
用 Python进行 Curses编程
发布 3.9.0a1

Guido van Rossum
and the Python development team

十二月 18, 2019
Python Software Foundation

Email: docs@python.org

Contents

1 curses是什么？ 1
1.1 Python的 curses模块 . 2

2 开始和结束 curses应用程序 2

3 Windows和 Pad 3

4 显示文字 4
4.1 属性和颜色 . 5

5 用户输入 6

6 更多的信息 7

作者 A.M. Kuchling, Eric S. Raymond
发布版本 2.04

摘要

本文档介绍了如何使用 curses扩展模块控制文本模式的显示。

1 curses是什么？

curses库为基于文本的终端提供了独立于终端的屏幕绘制和键盘处理功能；这些终端包括 VT100，Linux
控制台以及各种程序提供的模拟终端。显示终端支持各种控制代码以执行常见的操作，例如移动光标，
滚动屏幕和擦除区域。不同的终端使用相差很大的代码，并且往往有自己的小怪癖。

在普遍使用图形显示的世界中，人们可能会问“为什么自找要麻烦”？毕竟字符单元显示终端确实是一种
过时的技术，但是在某些领域中，能够用它们做花哨的事情仍然很有价值。一个小众市场是在不运行 X
server的小型或嵌入式 Unix上。另一个是在提供图形支持之前，可能需要运行的工具，例如操作系统安
装程序和内核配置程序。

1

curses库提供了相当基础的功能，为程序员提供了包含多个非重叠文本窗口的显示的抽象。窗口的内容
可以通过多种方式更改—添加文本，擦除文本，更改其外观—以及 curses库将确定需要向终端发送哪些
控制代码以产生正确的输出。curses并没有提供诸多用户界面概念，例如按钮，复选框或对话框。如果需
要这些功能，请考虑用户界面库，例如 Urwid。
curses库最初是为 BSD Unix编写的。后来 AT&T的 Unix System V版本加入了许多增强功能和新功能。
如今 BSD curses已不再维护，被 ncurses取代，ncurses是 AT&T接口的开源实现。如果使用的是 Linux或
FreeBSD等开源 Unix系统，则几乎肯定会使用 ncurses。由于大多数当前的商业 Unix版本都基于 System
V代码，因此这里描述的所有功能可能都可用。但是，某些专有 Unix所带来的较早版本的 curses可能无
法支持所有功能。

Windows版本的 Python不包含 curses模块。提供了一个名为 UniCurses的移植版本。也可以尝试使用
Fredrik Lundh编写 the Console module，它使用了与 curses不相同的 API，但提供了可光标定位的文本输
出，完全支持鼠标和键盘输入。

1.1 Python的 curses模块

The Python module is a fairly simple wrapper over the C functions provided by curses; if you’re already familiar with
curses programming in C, it’s really easy to transfer that knowledge to Python. The biggest difference is that the
Python interface makes things simpler by merging different C functions such as addstr(), mvaddstr(), and
mvwaddstr() into a single addstr() method. You’ll see this covered in more detail later.
This HOWTO is an introduction to writing text-mode programs with curses and Python. It doesn’t attempt to be a
complete guide to the curses API; for that, see the Python library guide’s section on ncurses, and the C manual pages
for ncurses. It will, however, give you the basic ideas.

2 开始和结束 curses应用程序

Before doing anything, curses must be initialized. This is done by calling the initscr() function, which will
determine the terminal type, send any required setup codes to the terminal, and create various internal data structures.
If successful, initscr() returns a window object representing the entire screen; this is usually called stdscr
after the name of the corresponding C variable.

import curses
stdscr = curses.initscr()

Usually curses applications turn off automatic echoing of keys to the screen, in order to be able to read keys and only
display them under certain circumstances. This requires calling the noecho() function.

curses.noecho()

Applications will also commonly need to react to keys instantly, without requiring the Enter key to be pressed; this is
called cbreak mode, as opposed to the usual buffered input mode.

curses.cbreak()

Terminals usually return special keys, such as the cursor keys or navigation keys such as Page Up and Home, as
a multibyte escape sequence. While you could write your application to expect such sequences and process them
accordingly, curses can do it for you, returning a special value such as curses.KEY_LEFT. To get curses to do the
job, you’ll have to enable keypad mode.

stdscr.keypad(True)

Terminating a curses application is much easier than starting one. You’ll need to call:

curses.nocbreak()
stdscr.keypad(False)
curses.echo()

2

https://pypi.org/project/urwid/
https://pypi.org/project/UniCurses
http://effbot.org/zone/console-index.htm

to reverse the curses-friendly terminal settings. Then call the endwin() function to restore the terminal to its
original operating mode.

curses.endwin()

A common problem when debugging a curses application is to get your terminal messed up when the application
dies without restoring the terminal to its previous state. In Python this commonly happens when your code is buggy
and raises an uncaught exception. Keys are no longer echoed to the screen when you type them, for example, which
makes using the shell difficult.
In Python you can avoid these complications and make debugging much easier by importing the curses.
wrapper() function and using it like this:

from curses import wrapper

def main(stdscr):
Clear screen
stdscr.clear()

This raises ZeroDivisionError when i == 10.
for i in range(0, 11):

v = i-10
stdscr.addstr(i, 0, '10 divided by {} is {}'.format(v, 10/v))

stdscr.refresh()
stdscr.getkey()

wrapper(main)

The wrapper() function takes a callable object and does the initializations described above, also initializing colors
if color support is present. wrapper() then runs your provided callable. Once the callable returns, wrapper()
will restore the original state of the terminal. The callable is called inside a try...except that catches exceptions,
restores the state of the terminal, and then re-raises the exception. Therefore your terminal won’t be left in a funny
state on exception and you’ll be able to read the exception’s message and traceback.

3 Windows和 Pad

Windows are the basic abstraction in curses. Awindow object represents a rectangular area of the screen, and supports
methods to display text, erase it, allow the user to input strings, and so forth.
The stdscr object returned by the initscr() function is a window object that covers the entire screen. Many
programs may need only this single window, but you might wish to divide the screen into smaller windows, in order
to redraw or clear them separately. The newwin() function creates a new window of a given size, returning the
new window object.

begin_x = 20; begin_y = 7
height = 5; width = 40
win = curses.newwin(height, width, begin_y, begin_x)

Note that the coordinate system used in curses is unusual. Coordinates are always passed in the order y,x, and the
top-left corner of a window is coordinate (0,0). This breaks the normal convention for handling coordinates where
the x coordinate comes first. This is an unfortunate difference from most other computer applications, but it’s been
part of curses since it was first written, and it’s too late to change things now.
Your application can determine the size of the screen by using thecurses.LINES andcurses.COLS variables to
obtain the y and x sizes. Legal coordinates will then extend from (0,0) to (curses.LINES - 1, curses.
COLS - 1).
When you call a method to display or erase text, the effect doesn’t immediately show up on the display. Instead you
must call the refresh() method of window objects to update the screen.

3

This is because curses was originally written with slow 300-baud terminal connections in mind; with these terminals,
minimizing the time required to redraw the screen was very important. Instead curses accumulates changes to the
screen and displays them in the most efficient manner when you call refresh(). For example, if your program
displays some text in a window and then clears the window, there’s no need to send the original text because they’re
never visible.
In practice, explicitly telling curses to redraw a window doesn’t really complicate programming with curses much.
Most programs go into a flurry of activity, and then pause waiting for a keypress or some other action on the part of
the user. All you have to do is to be sure that the screen has been redrawn before pausing to wait for user input, by
first calling stdscr.refresh() or the refresh() method of some other relevant window.
A pad is a special case of a window; it can be larger than the actual display screen, and only a portion of the pad
displayed at a time. Creating a pad requires the pad’s height and width, while refreshing a pad requires giving the
coordinates of the on-screen area where a subsection of the pad will be displayed.

pad = curses.newpad(100, 100)
These loops fill the pad with letters; addch() is
explained in the next section
for y in range(0, 99):

for x in range(0, 99):
pad.addch(y,x, ord('a') + (x*x+y*y) % 26)

Displays a section of the pad in the middle of the screen.
(0,0) : coordinate of upper-left corner of pad area to display.
(5,5) : coordinate of upper-left corner of window area to be filled
with pad content.
(20, 75) : coordinate of lower-right corner of window area to be
: filled with pad content.
pad.refresh(0,0, 5,5, 20,75)

The refresh() call displays a section of the pad in the rectangle extending from coordinate (5,5) to coordinate
(20,75) on the screen; the upper left corner of the displayed section is coordinate (0,0) on the pad. Beyond that
difference, pads are exactly like ordinary windows and support the same methods.
If you have multiple windows and pads on screen there is a more efficient way to update the screen and prevent
annoying screen flicker as each part of the screen gets updated. refresh() actually does two things:

1) Calls the noutrefresh() method of each window to update an underlying data structure representing the
desired state of the screen.

2) Calls the function doupdate() function to change the physical screen to match the desired state recorded
in the data structure.

Instead you can call noutrefresh() on a number of windows to update the data structure, and then call
doupdate() to update the screen.

4 显示文字

From a C programmer’s point of view, curses may sometimes look like a twisty maze of functions, all subtly
different. For example, addstr() displays a string at the current cursor location in the stdscr window,
while mvaddstr() moves to a given y,x coordinate first before displaying the string. waddstr() is just like
addstr(), but allows specifying a window to use instead of using stdscr by default. mvwaddstr() allows
specifying both a window and a coordinate.
Fortunately the Python interface hides all these details. stdscr is a window object like any other, and methods such
as addstr() accept multiple argument forms. Usually there are four different forms.

4

形式 描述
str或 ch 在当前位置显示字符串 str或字符 ch
str或 ch, attr 在当前位置使用 attr属性显示字符串 str或字符 ch
y, x, str或 ch 移动到窗口内的 y,x位置，并显示 str或 ch
y, x, str或 ch, attr 移至窗口内的 y,x位置，并使用 attr属性显示 str或 ch

Attributes allow displaying text in highlighted forms such as boldface, underline, reverse code, or in color. They’ll be
explained in more detail in the next subsection.
The addstr()method takes a Python string or bytestring as the value to be displayed. The contents of bytestrings
are sent to the terminal as-is. Strings are encoded to bytes using the value of the window’s encoding attribute; this
defaults to the default system encoding as returned by locale.getpreferredencoding().
The addch() methods take a character, which can be either a string of length 1, a bytestring of length 1, or an
integer.
Constants are provided for extension characters; these constants are integers greater than 255. For example,
ACS_PLMINUS is a +/- symbol, and ACS_ULCORNER is the upper left corner of a box (handy for drawing borders).
You can also use the appropriate Unicode character.
Windows remember where the cursor was left after the last operation, so if you leave out the y,x coordinates, the
string or character will be displayed wherever the last operation left off. You can also move the cursor with the
move(y,x) method. Because some terminals always display a flashing cursor, you may want to ensure that the
cursor is positioned in some location where it won’t be distracting; it can be confusing to have the cursor blinking at
some apparently random location.
If your application doesn’t need a blinking cursor at all, you can call curs_set(False) to make it invisible. For
compatibility with older curses versions, there’s a leaveok(bool) function that’s a synonym for curs_set().
When bool is true, the curses library will attempt to suppress the flashing cursor, and you won’t need to worry about
leaving it in odd locations.

4.1 属性和颜色

Characters can be displayed in different ways. Status lines in a text-based application are commonly shown in reverse
video, or a text viewer may need to highlight certain words. curses supports this by allowing you to specify an attribute
for each cell on the screen.
An attribute is an integer, each bit representing a different attribute. You can try to display text with multiple attribute
bits set, but curses doesn’t guarantee that all the possible combinations are available, or that they’re all visually distinct.
That depends on the ability of the terminal being used, so it’s safest to stick to the most commonly available attributes,
listed here.

属性 描述
A_BLINK 闪烁文字
A_BOLD 超亮或粗体文字
A_DIM 半明亮的文字
A_REVERSE 反向视频文本
A_STANDOUT 可用的最佳突出显示模式
A_UNDERLINE 带下划线的文字

So, to display a reverse-video status line on the top line of the screen, you could code:

stdscr.addstr(0, 0, "Current mode: Typing mode",
curses.A_REVERSE)

stdscr.refresh()

The curses library also supports color on those terminals that provide it. The most common such terminal is probably
the Linux console, followed by color xterms.

5

To use color, you must call the start_color() function soon after calling initscr(), to initialize the default
color set (the curses.wrapper() function does this automatically). Once that’s done, the has_colors()
function returns TRUE if the terminal in use can actually display color. (Note: curses uses the American spelling
’color’, instead of the Canadian/British spelling ’colour’. If you’re used to the British spelling, you’ll have to resign
yourself to misspelling it for the sake of these functions.)
The curses library maintains a finite number of color pairs, containing a foreground (or text) color and a background
color. You can get the attribute value corresponding to a color pair with the color_pair() function; this can be
bitwise-OR’ed with other attributes such as A_REVERSE, but again, such combinations are not guaranteed to work
on all terminals.
An example, which displays a line of text using color pair 1:

stdscr.addstr("Pretty text", curses.color_pair(1))
stdscr.refresh()

As I said before, a color pair consists of a foreground and background color. The init_pair(n, f, b) function
changes the definition of color pair n, to foreground color f and background color b. Color pair 0 is hard-wired to
white on black, and cannot be changed.
Colors are numbered, and start_color() initializes 8 basic colors when it activates color mode. They are:
0:black, 1:red, 2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The curses module defines named con-
stants for each of these colors: curses.COLOR_BLACK, curses.COLOR_RED, and so forth.
Let’s put all this together. To change color 1 to red text on a white background, you would call:

curses.init_pair(1, curses.COLOR_RED, curses.COLOR_WHITE)

When you change a color pair, any text already displayed using that color pair will change to the new colors. You can
also display new text in this color with:

stdscr.addstr(0,0, "RED ALERT!", curses.color_pair(1))

Very fancy terminals can change the definitions of the actual colors to a given RGB value. This lets you change color
1, which is usually red, to purple or blue or any other color you like. Unfortunately, the Linux console doesn’t support
this, so I’m unable to try it out, and can’t provide any examples. You can check if your terminal can do this by calling
can_change_color(), which returns True if the capability is there. If you’re lucky enough to have such a
talented terminal, consult your system’s man pages for more information.

5 用户输入

The C curses library offers only very simple input mechanisms. Python’s curses module adds a basic text-input
widget. (Other libraries such as Urwid have more extensive collections of widgets.)
There are two methods for getting input from a window:

• getch() refreshes the screen and then waits for the user to hit a key, displaying the key if echo() has been
called earlier. You can optionally specify a coordinate to which the cursor should be moved before pausing.

• getkey() does the same thing but converts the integer to a string. Individual characters are returned as
1-character strings, and special keys such as function keys return longer strings containing a key name such as
KEY_UP or ^G.

It’s possible to not wait for the user using the nodelay() window method. After nodelay(True), getch()
and getkey() for the window become non-blocking. To signal that no input is ready, getch() returns curses.
ERR (a value of -1) and getkey() raises an exception. There’s also a halfdelay() function, which can be used
to (in effect) set a timer on each getch(); if no input becomes available within a specified delay (measured in tenths
of a second), curses raises an exception.
The getch()method returns an integer; if it’s between 0 and 255, it represents the ASCII code of the key pressed.
Values greater than 255 are special keys such as Page Up, Home, or the cursor keys. You can compare the value

6

https://pypi.org/project/urwid/

returned to constants such as curses.KEY_PPAGE, curses.KEY_HOME, or curses.KEY_LEFT. The main
loop of your program may look something like this:

while True:
c = stdscr.getch()
if c == ord('p'):

PrintDocument()
elif c == ord('q'):

break # Exit the while loop
elif c == curses.KEY_HOME:

x = y = 0

The curses.ascii module supplies ASCII class membership functions that take either integer or 1-character
string arguments; these may be useful in writing more readable tests for such loops. It also supplies conversion
functions that take either integer or 1-character-string arguments and return the same type. For example, curses.
ascii.ctrl() returns the control character corresponding to its argument.
There’s also a method to retrieve an entire string, getstr(). It isn’t used very often, because its functionality is
quite limited; the only editing keys available are the backspace key and the Enter key, which terminates the string. It
can optionally be limited to a fixed number of characters.

curses.echo() # Enable echoing of characters

Get a 15-character string, with the cursor on the top line
s = stdscr.getstr(0,0, 15)

Thecurses.textpadmodule supplies a text box that supports an Emacs-like set of keybindings. Variousmethods
of theTextbox class support editing with input validation and gathering the edit results either with or without trailing
spaces. Here’s an example:

import curses
from curses.textpad import Textbox, rectangle

def main(stdscr):
stdscr.addstr(0, 0, "Enter IM message: (hit Ctrl-G to send)")

editwin = curses.newwin(5,30, 2,1)
rectangle(stdscr, 1,0, 1+5+1, 1+30+1)
stdscr.refresh()

box = Textbox(editwin)

Let the user edit until Ctrl-G is struck.
box.edit()

Get resulting contents
message = box.gather()

See the library documentation on curses.textpad for more details.

6 更多的信息

This HOWTO doesn’t cover some advanced topics, such as reading the contents of the screen or capturing mouse
events from an xterm instance, but the Python library page for the cursesmodule is now reasonably complete. You
should browse it next.
If you’re in doubt about the detailed behavior of the curses functions, consult the manual pages for your curses
implementation, whether it’s ncurses or a proprietary Unix vendor’s. The manual pages will document any quirks,
and provide complete lists of all the functions, attributes, and ACS_* characters available to you.

7

Because the curses API is so large, some functions aren’t supported in the Python interface. Often this isn’t because
they’re difficult to implement, but because no one has needed them yet. Also, Python doesn’t yet support the menu
library associated with ncurses. Patches adding support for these would be welcome; see the Python Developer’s
Guide to learn more about submitting patches to Python.

• Writing Programs with NCURSES: a lengthy tutorial for C programmers.
• ncurses手册主页 <https://linux.die.net/man/3/ncurses>‘_
• ncurses常见问题 <http://invisible-island.net/ncurses/ncurses.faq.html>‘_
• ”Use curses... don’t swear”: video of a PyCon 2013 talk on controlling terminals using curses or Urwid.
• ”Console Applications with Urwid”: video of a PyCon CA 2012 talk demonstrating some applications written
using Urwid.

8

https://devguide.python.org/
https://devguide.python.org/
http://invisible-island.net/ncurses/ncurses-intro.html
https://linux.die.net/man/3/ncurses
http://invisible-island.net/ncurses/ncurses.faq.html
https://www.youtube.com/watch?v=eN1eZtjLEnU
http://www.pyvideo.org/video/1568/console-applications-with-urwid

	curses 是什么？
	Python 的 curses 模块

	开始和结束curses应用程序
	Windows 和 Pad
	显示文字
	属性和颜色

	用户输入
	更多的信息

