排序指南

作者

Andrew Dalke 与 Raymond Hettinger

发布版本

0.1

内置列表方法 list.sort() 原地修改列表,而内置函数 sorted() 由可迭代对象新建有序列表。

在本文档中,我们将探索使用 Python 对数据进行排序的各种技术。

排序的基础知识

简单的升序排序非常简单:只需调用 sorted() 函数即可。它会返回一个新的已排序列表。

>>> sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]

亦可用 list.sort() 方法。它原地修改原列表(并返回 None 以避免混淆)。往往不如 sorted() 方便——但若不需原列表,用它会略高效些。

>>> a = [5, 2, 3, 1, 4]
>>> a.sort()
>>> a
[1, 2, 3, 4, 5]

另一个区别是 list.sort() 方法只为列表定义,而 sorted() 函数接受任何可迭代对象。

>>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})
[1, 2, 3, 4, 5]

键函数

list.sort()sorted() 都有一个 key 形参来指定在进行比较之前要在每个列表元素上进行调用的函数。

例如,这是个不区分大小写的字符串比较:

>>> sorted("This is a test string from Andrew".split(), key=str.lower)
['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']

key 形参的值应该是一个函数,它接受一个参数并并返回一个用于排序的键。这种技巧速度很快,因为对于每个输入记录只会调用一次 key 函数。

常见的模式是用对象的某一些索引作为键对复杂对象排序。例如:

>>> student_tuples = [
...     ('john', 'A', 15),
...     ('jane', 'B', 12),
...     ('dave', 'B', 10),
... ]
>>> sorted(student_tuples, key=lambda student: student[2])   # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

同样的方法对于有具名属性的对象也适用。例如:

>>> class Student:
...     def __init__(self, name, grade, age):
...         self.name = name
...         self.grade = grade
...         self.age = age
...     def __repr__(self):
...         return repr((self.name, self.grade, self.age))
>>> student_objects = [
...     Student('john', 'A', 15),
...     Student('jane', 'B', 12),
...     Student('dave', 'B', 10),
... ]
>>> sorted(student_objects, key=lambda student: student.age)   # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

Operator 模块函数

上面显示的键函数模式非常常见,因此 Python 提供了便利功能,使访问器功能更容易,更快捷。 operator 模块有 itemgetter()attrgetter()methodcaller() 函数。

用了那些函数之后,前面的示例变得更简单,运行起来也更快:

>>> from operator import itemgetter, attrgetter
>>> sorted(student_tuples, key=itemgetter(2))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
>>> sorted(student_objects, key=attrgetter('age'))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

运算符模块的函数可以用来作多级排序。例如,按 grade 排序,然后按 age 排序:

>>> sorted(student_tuples, key=itemgetter(1,2))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
>>> sorted(student_objects, key=attrgetter('grade', 'age'))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

升序与降序

list.sort()sorted() 接受布尔形参 reverse 用于标记降序排序。例如,将学生数据按 age 倒序排序:

>>> sorted(student_tuples, key=itemgetter(2), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
>>> sorted(student_objects, key=attrgetter('age'), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

排序稳定性与复杂排序

排序保证 稳定:等键记录保持原始顺序。

>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
>>> sorted(data, key=itemgetter(0))
[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]

注意 blue 的两个记录是如何保序的:('blue', 1) 保证先于 ('blue', 2)

这个了不起的特性使得借助一系列排序步骤构建出复杂排序成为可能。例如,要按 grade 降序后 age 升序排序学生数据,只需先用 age 排序再用 grade 排序即可:

>>> s = sorted(student_objects, key=attrgetter('age'))     # sort on secondary key
>>> sorted(s, key=attrgetter('grade'), reverse=True)       # now sort on primary key, descending
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

可抽象为包装函数,依据接收的一些字段序的元组对接收的列表做多趟排序。

>>> def multisort(xs, specs):
...     for key, reverse in reversed(specs):
...         xs.sort(key=attrgetter(key), reverse=reverse)
...     return xs
>>> multisort(list(student_objects), (('grade', True), ('age', False)))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

Python 中曾用的 Timsort 算法借助数据集中任何已有的有序性来高效进行多种排序。

使用装饰-排序-去装饰的旧方法

装饰-排序-去装饰 (Decorate-Sort-Undecorate) 得名于它的三个步骤:

  • 首先,用控制排序顺序的新值装饰初始列表。

  • 其次,排序装饰后的列表。

  • 最后,去除装饰即得按新顺序排列的初始值的列表。

例如,用 DSU 方法按 grade 排序学生数据:

>>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]
>>> decorated.sort()
>>> [student for grade, i, student in decorated]               # undecorate
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

这方法语有效是因为元组按字典顺序进行比较,先比较第一项;如果它们相同则比较第二个项目,依此类推。

不一定在所有情况下都要在装饰列表中包含索引 i ,但包含它有两个好处:

  • 排序是稳定的——如果两个项具有相同的键,它们的顺序将保留在排序列表中。

  • 原始项目不必具有可比性,因为装饰元组的排序最多由前两项决定。 因此,例如原始列表可能包含无法直接排序的复数。

这个方法的另一个名字是 Randal L. Schwartz 在 Perl 程序员中推广的 Schwartzian transform

既然 Python 排序提供了键函数,那么通常不需要这种技术。

使用 cmp 参数的旧方法

本 HOWTO 中给出的许多结构都假定为 Python 2.4 或更高版本。在此之前,没有内置 sorted()list.sort() 也没有关键字参数。相反,所有 Py2.x 版本都支持 cmp 参数来处理用户指定的比较函数。

在 Py3.0 中, cmp 参数被完全删除(作为简化和统一语言努力的一部分,消除了丰富的比较与 __cmp__() 魔术方法之间的冲突)。

在 Py2.x 中, sort 允许一个可选函数,可以调用它来进行比较。该函数应该采用两个参数进行比较,然后返回负值为小于,如果它们相等则返回零,或者返回大于大于的正值。例如,我们可以这样做:

>>> def numeric_compare(x, y):
...     return x - y
>>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare) 
[1, 2, 3, 4, 5]

或者你可反转比较的顺序:

>>> def reverse_numeric(x, y):
...     return y - x
>>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric) 
[5, 4, 3, 2, 1]

将代码从 Python 2.x 移植到 3.x 时,如果用户提供比较功能并且需要将其转换为键函数,则会出现这种情况。 以下包装器使这很容易:

def cmp_to_key(mycmp):
    'Convert a cmp= function into a key= function'
    class K:
        def __init__(self, obj, *args):
            self.obj = obj
        def __lt__(self, other):
            return mycmp(self.obj, other.obj) < 0
        def __gt__(self, other):
            return mycmp(self.obj, other.obj) > 0
        def __eq__(self, other):
            return mycmp(self.obj, other.obj) == 0
        def __le__(self, other):
            return mycmp(self.obj, other.obj) <= 0
        def __ge__(self, other):
            return mycmp(self.obj, other.obj) >= 0
        def __ne__(self, other):
            return mycmp(self.obj, other.obj) != 0
    return K

要转换为键函数,只需包装旧的比较函数:

>>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))
[5, 4, 3, 2, 1]

在 Python 3.2 中, functools.cmp_to_key() 函数被添加到标准库中的 functools 模块中。

其它

  • 对于区域相关的排序,请使用 locale.strxfrm() 作为键函数,或者 locale.strcoll() 作为比较函数。

  • reverse 参数仍然保持排序稳定性(因此具有相等键的记录保留原始顺序)。 有趣的是,通过使用内置的 reversed() 函数两次,可以在没有参数的情况下模拟该效果:

    >>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
    >>> standard_way = sorted(data, key=itemgetter(0), reverse=True)
    >>> double_reversed = list(reversed(sorted(reversed(data), key=itemgetter(0))))
    >>> assert standard_way == double_reversed
    >>> standard_way
    [('red', 1), ('red', 2), ('blue', 1), ('blue', 2)]
    
  • 在两个对象之间进行比较时,保证排序例程使用 __lt__() 。 因此,通过定义 __lt__() 方法,可以很容易地为类添加标准排序顺序:

    >>> Student.__lt__ = lambda self, other: self.age < other.age
    >>> sorted(student_objects)
    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
    
  • 键函数不需要直接依赖于被排序的对象。键函数还可以访问外部资源。例如,如果学生成绩存储在字典中,则可以使用它们对单独的学生姓名列表进行排序:

    >>> students = ['dave', 'john', 'jane']
    >>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'}
    >>> sorted(students, key=newgrades.__getitem__)
    ['jane', 'dave', 'john']