B SR 1EF it

A1 3.8.0b2

Guido van Rossum
and the Python development team

+A 09, 2019

Python Software Foundation
Email: docs@python.org

Contents
1 EZAEHe P H G 2
2 fEZERP G 4
3 [N Z2A HELBE 2 Al Xk 5
4 AEZA MGk ik 5
5 HEIRSs 2 HCE =Bl 6
6 AP H AL B ZR AP 2E 7
7l g Ak R 8
8 AEHEILs P b IR 11
8.1 MM HGEEAMEE LR UEE -« 11
82 MHHIEAMEIE R SUEE o 12
9 AZA MR A S 13
10 445 H B3P 17
11 LAl H AR A D5 X 18
12 Customizing LogRecord 20
13 Subclassing QueueHandler - a ZeroMQ example 21
14 Subclassing QueueListener - a ZeroMQ example 22
15 An example dictionary-based configuration 23
16 Using a rotator and namer to customize log rotation processing 24

17 A more elaborate multiprocessing example 24

18 Inserting a BOM into messages sent to a SysLogHandler 28
19 Implementing structured logging 29
20 Customizing handlers with dictConfig () 30
21 Using particular formatting styles throughout your application 32

21.1 Using LogRecord factories o o it e e e 33

21.2 Using custom message ObJECES v v v v v v e 33
22 Configuring filters with dictConfig () 34
23 Customized exception formatting 35
24 Speaking logging messages 36
25 Buffering logging messages and outputting them conditionally 37
26 Formatting times using UTC (GMT) via configuration 39
27 Using a context manager for selective logging 40
28 A CLI application starter template 42
#5l 45

fE4# Vinay Sajip <vinay_sajip at red-dove dot com>
ARV E T VL HGICSAH RS, XSS e £ — B A AR .

1 ZSNMERPERBE

Z R HH “logging.getLogger(someLogger’)“Hif 231 [H] X [7] —> logger X4 (K5] o X AR FE R — A5
FEHAAL A 2 an s, HZEFE R —> Python e dbfE . RMIZG I HFE— X%, ssh, MARF
AT PAYE —AMBEH g SCRICE AL logger , TAE R AAE @ ((FORFECE) T logger, X1 logger I
T HHCRFAZ 4550 logger, 3% B2 Ak

import logging
import auxiliary_module

create logger with 'spam _application'

logger = logging.getLogger ('spam_application")
logger.setLevel (logging.DEBUG)

create file handler which logs even debug messages
fh = logging.FileHandler ('spam.log')

fh.setlLevel (logging.DEBUG)

create console handler with a higher log level

ch = logging.StreamHandler ()

ch.setLevel (logging.ERROR)

create formatter and add it to the handlers
formatter = logging.Formatter ('? (ascti

me)s — % (name)s - % (levelname)s — % (message)s')

Q3

fh.setFormatter (formatter)
ch.setFormatter (formatter)

add the handlers to the logger
logger.addHandler (fh)
logger.addHandler (ch)

logger.info('creating an instance of auxiliary_module.Auxiliary')
a = auxiliary_module.Auxiliary ()

logger.info('created an instance of auxiliary_module.Auxiliary')
logger.info('calling auxiliary_module.Auxiliary.do_something')
a.do_something ()

logger.info('finished auxiliary_module.Auxiliary.do_something')
logger.info('calling auxiliary_module.some_function()"')
auxiliary_module.some_function ()

logger.info('done with auxiliary_module.some_function() ")

X R B AR R

import logging

create logger
module_logger = logging.getLogger ('spam application.auxiliary')

class Auxiliary:
def _ init__ (self):
self.logger = logging.getLogger ('spam_application.auxiliary.Auxiliary")
self.logger.info('creating an instance of Auxiliary')

def do_something(self):
self.logger.info('doing something')
a=1+1
self.logger.info('done doing something')

def some_function () :
module_logger.info('received a call to "some_function"')

i R X R

2005-03-23 23:47:11,663 - spam_application - INFO -
creating an instance of auxiliary_module.Auxiliary

2005-03-23 23:47:11,665 - spam_application.auxiliary.Auxiliary - INFO -
creating an instance of Auxiliary

2005-03-23 23:47:11,665 - spam_application - INFO -
created an instance of auxiliary_module.Auxiliary

2005-03-23 23:47:11,668 - spam_application - INFO -
calling auxiliary_module.Auxiliary.do_something

2005-03-23 23:47:11,668 - spam_application.auxiliary.Auxiliary - INFO -
doing something

2005-03-23 23:47:11,669 - spam_application.auxiliary.Auxiliary - INFO -
done doing something

2005-03-23 23:47:11,670 - spam_application - INFO -
finished auxiliary_module.Auxiliary.do_something

2005-03-23 23:47:11,671 - spam_application - INFO -
calling auxiliary_module.some_function ()

2005-03-23 23:47:11,672 - spam_application.auxiliary - INFO -
received a call to 'some_function'

(B b

2005-03-23 23:47:11,673 - spam_application - INFO -
done with auxiliary_module.some_function ()

2 ESHEPEREE

L NEREPILT HEHATFERREIE, PATROIRR TIfE 148 (RIpZiE) FHhgd: hicss:

import logging
import threading
import time

def worker (arg) :
while not arg['stop']:
logging.debug ('Hi from myfunc')
time.sleep(0.5)

def main() :
logging.basicConfig(level=logging.DEBUG, format='?% (relativeCreated) 6d
% (threadName)s % (message)s')

info = {'stop': False}
thread = threading.Thread(target=worker, args=(info,))
thread.start ()
while True:
try:
logging.debug ('Hello from main')
time.sleep(0.75)
except KeyboardInterrupt:
info['stop'] = True
break
thread.join ()

if name == '__main__ ':

main ()

IBITER SRR XA

0 Thread-1 Hi from myfunc

3
505
755

1007
1507
1508
2010
2258
2512
3009
3013
3515
3761
4017
4513
4518

MainThread Hello
Thread-1 Hi from
MainThread Hello
Thread-1 Hi from
MainThread Hello
Thread-1 Hi from
Thread-1 Hi from
MainThread Hello
Thread-1 Hi from
MainThread Hello
Thread-1 Hi from
Thread-1 Hi from
MainThread Hello
Thread-1 Hi from
MainThread Hello
Thread-1 Hi from

from main
myfunc
from main
myfunc
from main
myfunc
myfunc
from main
myfunc
from main
myfunc
myfunc
from main
myfunc
from main
myfunc

R F LA H GG BRI st YA T2 AR LB .

3 EAZAEELERIS TR

H 0k a2 @ 1Y Python X4, addHandler () JyyEi%A BRI AT PAGS NG H S BEAS B . A RHE, M
R %ﬁPE%MMMﬂ%T—Aiﬁi# TTRF R DR S sl M S v i B A R R i B . B T
FERIE, RFEZHCEILA H G AL BgR BT, 725 ARSI i p H B0 8 T AR A EE . DU N2
T P R TR 1) s 150) W B A5 T

import logging

logger = logging.getLogger ('simple_example')
logger.setLevel (logging.DEBUG)

create file handler which logs even debug messages
fh = logging.FileHandler ('spam.log')

fh.setLevel (logging.DEBUG)

create console handler with a higher log level

ch = logging.StreamHandler ()

ch.setLevel (logging.ERROR)

create formatter and add it to the handlers
formatter = logging.Formatter ('? (asctime)s — 2 (name)s — 2 (levelname)s — 2% (message)s')
ch.setFormatter (formatter)

fh.setFormatter (formatter)

add the handlers to logger

logger.addHandler (ch)

logger.addHandler (fh)

'application' code

logger.debug ('debug message')
logger.info('info message')
logger.warning ('warn message')
logger.error ('error message')
logger.critical('critical message')

TEEERRE, AR RIIHFARXOREAZA B w0 Er ol 2Bt e 7—4
W4 R *fhe 1 H S AL B

TESn SN R, G REE IR A SR 90H B H SRS 2 R i . AEEMH print KL,
M2 Logger . debug: ‘EAMRIT ENIEA) T ZAEHAG AR SO B ds, ARATMEENTER BAEIRRS HhF
A UFREERE N, REEEE H il sk s B as r s DB S g Bl

4 ESMHFIEREE

TR AR FIE L, AR ZERF H SN R AR 2ORIAS R B 95 B AP P2] S A SO . BE AN A8 AT H 354
%4 DEBUG B 3 I EAC T T30, MHEARLESES INFO BOH i i B 7l & o 0 HAdsAE
SCPERP B EAR T E AL S I R, AT BRI S AT 2. AT /R BRI T A fie)

import logging

set up logging to file - see previous section for more details
logging.basicConfig(level=logging.DEBUG,
format="'% (asctime)s % (name)-12s % (levelname)-8s % (message)s',
datefmt="%m-%d SH:%M',
filename="'/temp/myapp.log',
filemode="w")
define a Handler which writes INFO messages or higher to the sys.stderr

CFItakEs)

console = logging.StreamHandler ()

console.setLevel (logging. INFO)

set a format which is simpler for console use

formatter = logging.Formatter ('? (name)-12s: ¢ (levelname)-8s % (message)s'")
tell the handler to use this format

console.setFormatter (formatter)

add the handler to the root logger
logging.getLogger ('') .addHandler (console)

Now, we can log to the root logger, or any other logger. First the root...
logging.info ('Jackdaws love my big sphinx of quartz.')

Now, define a couple of other loggers which might represent areas in your
application:

loggerl = logging.getLogger ('myapp.areal')
logger2 = logging.getlLogger ('myapp.area2')

loggerl.debug('Quick zephyrs blow, vexing daft Jim."')
loggerl.info ('How quickly daft jumping zebras vex.')
logger2.warning('Jail zesty vixen who grabbed pay from quack.')
logger2.error ('The five boxing wizards jump quickly."')

Misfrla, RSB PER G W EoR

root : INFO Jackdaws love my big sphinx of quartz.

myapp.areal : INFO How quickly daft jumping zebras vex.

myapp.area2 : WARNING Jail zesty vixen who grabbed pay from quack.
myapp.area2 : ERROR The five boxing wizards jump quickly.

AL S & BMGOX R

10-22 22:19 root INFO Jackdaws love my big sphinx of quartz.

10-22 22:19 myapp.areal DEBUG Quick zephyrs blow, vexing daft Jim.

10-22 22:19 myapp.areal INFO How quickly daft Jjumping zebras vex.

10-22 22:19 myapp.area?2 WARNING Jail zesty vixen who grabbed pay from quack.
10-22 22:19 myapp.area?2 ERROR The five boxing wizards jump quickly.

IEARETE 216, DEBUG ZUil R B R E/RTE S, T HAR I B P # i i
AR B R TAEFEH GRS RCR B, AR A A AL R0 0 H S AP

5 BERSF[EE B

PATR S AE— AR o 1) R 55 5 e L 1 7 o

import logging

import logging.config
import time

import os

read initial config file
logging.config.fileConfig('logging.conf'")

(£ 50

create and start listener on port 9999
t = logging.config.listen(9999)
t.start ()

logger = logging.getLogger ('simpleExample')

try:
loop through logging calls to see the difference
new configurations make, until Ctrl+C is pressed
while True:
logger.debug ('debug message')
logger.info('info message')
logger.warning ('warn message')
logger.error ('error message')
logger.critical ('critical message')
time.sleep (5)
except KeyboardInterrupt:
cleanup
logging.config.stopListening()
t.join ()

RFATF A, ERNCU AR G2 T280 HRFZ A e f i i 77 s e i a5 4% . AT H
5 i 55 45 e

#!/usr/bin/env python
import socket, sys, struct

with open(sys.argv([1l], 'rb') as f:
data_to_send = f.read()

HOST = 'localhost'

PORT = 9999

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
print ('connecting...")

s.connect ((HOST, PORT))

print ('sending config...')

s.send(struct.pack('>L', len(data_to_send)))
s.send(data_to_send)
s.close ()

print ('complete')

6 4b3E HEAMEEEERIFHZE

A IR E H S AL PR P AN P 28 24 B IEAE D SRR O T 58 A . 1XAE Web TR PR DL, 24
IRt A H A 7 B

—NE W ZE S 4T N8 SMTPHandler: M IF A TLIEE I Z AR A (a0, MEREAS (3 A0 b ol 0 2% B
REAEAE) , Ak IR mT RE TR BAR K i) o HSE L B A B 0 2% A A BRRR 0] B s A P 2 B 22
SocketHandler A REFENEZ /T DNS #if], X KB T (X MEIASIRAZERE RS, T Python 2
2N, XRAZIFEEESN) .

— PRy R P AL R B, BT AR LR BE A R) e LR R Y H A C S —A4
QueueHandler, HEioskay RiEHIAE ARG, %I 0] DL E N EBRNAREEEAEERE LR,
S ABF AR e, BT BERE e D op B4R B 4 queue . Full S5RH . WERKE 4

AbPR SRR FRR I K, IS MC X e E B (G N H AL PRES M I QueueHandlers) AT H:
& A AR AR

RO Z/ 5 —F 4 2 QueueListener, ’E%ﬁuﬂ‘ﬁﬁ}lﬂ’ﬁjﬂ QueueHandler HX}N ., QueueListener
e) HAR ARSI — L B AA, B R E— DINFREAE R BT A QueueHandlers (BT
HABA) LogRecords J§) Kk kA LogRecords BAFl. LogRecords &xMBAFIHRiREER, HaifLshsh
AT AR PR o

i — BRI 28 QueueListener 2 0] PAE I [R]— 3L 6 £ AR 55 T 21 “QueveHandlers”, iXFES T
TEGIR, BIEEAALBREFAR 5 H— SRR A AT ma4b .

PATR I B T RS2 R Bl (G T ATER):

que = queue.Queue (—1) # no limit on size

queue_handler = QueueHandler (que)

handler = logging.StreamHandler ()

listener = Queuelistener (que, handler)

root = logging.getLogger ()

root.addHandler (queue_handler)

formatter = logging.Formatter ('? (threadName)s: % (message)s')
handler.setFormatter (formatter)

listener.start ()

The log output will display the thread which generated
the event (the main thread) rather than the internal

thread which monitors the internal queue. This is what
you want to happen.

root.warning ('Look out!")

listener.stop()

FEETTIR AT

MainThread: Look out!

i 3.5 U 7K Python 3.5 Z i, QueueListener S MBI AT BA L S E Witk H &
ALPRRET . (X2 A E 2 B iSO SR A 9 75 — M & BB AY .) A Python 3.5 JFiR, Wl DAGE I 7E
W g A48 PR KR S I — 40 “respect_ handler _level=True" W AKX IL . MIXAEUCELI, et & B hE o
TR H G A B g P B R 59, FUETRRAL BRI S 0 I Y H AL PRES .

M 48 & X F0EE B &

ANRARARAE R 25 _E ik Uk, FTEROm A B AT . — R U@l F in—> SocketHandler KJ
SPITE Ak v AR H G AL B g e

import logging, logging.handlers

rootLogger = logging.getLogger ('")

rootLogger.setLevel (logging.DEBUG)

socketHandler = logging.handlers.SocketHandler ('localhost',
logging.handlers.DEFAULT_TCP_LOGGING_PORT)

don't bother with a formatter, since a socket handler sends the event as

an unformatted pickle

rootLogger.addHandler (socketHandler)

Now, we can log to the root logger, or any other logger. First the root...
logging.info ('Jackdaws love my big sphinx of quartz.')

(Rt

Now, define a couple of other loggers which might represent areas in your
application:

loggerl = logging.getlLogger ('myapp.areal')
logger2 = logging.getLogger ('myapp.area2')

loggerl.debug ('Quick zephyrs blow, vexing daft Jim.'")
loggerl.info ('How quickly daft jumping zebras vex.')
logger2.warning ('Jail zesty vixen who grabbed pay from quack.')
logger2.error ('The five boxing wizards jump quickly.')

TEW , AT PAE] socketserver fRBBEE — IR . X B2 HEAR G

import pickle

import logging

import logging.handlers
import socketserver
import struct

class LogRecordStreamHandler (socketserver.StreamRequestHandler) :
"""Handler for a streaming logging request.

This basically logs the record using whatever logging policy 1is
configured locally.

mmn

def handle (self):
Handle multiple requests — each expected to be a 4-byte length,
followed by the LogRecord in pickle format. Logs the record
according to whatever policy is configured locally.
mirrn
while True:
chunk = self.connection.recv (4)
if len(chunk) < 4:
break
slen = struct.unpack('>L"', chunk) [0]
chunk = self.connection.recv(slen)
while len (chunk) < slen:
chunk = chunk + self.connection.recv(slen - len (chunk))
obj = self.unPickle (chunk)
record = logging.makeLogRecord (obj)
self.handleLogRecord (record)

def unPickle(self, data):
return pickle.loads (data)

def handleLogRecord(self, record):

1f a name is specified, we use the named logger rather than the one

implied by the record.
if self.server.logname is not None:

name = self.server.logname
else:
name = record.name
logger = logging.getLogger (name)
(i)

N.B. EVERY record gets logged. This is because Logger.handle
is normally called AFTER logger-level filtering. If you want
to do filtering, do it at the client end to save wasting

cycles and network bandwidth!

logger.handle (record)

class LogRecordSocketReceiver (socketserver.ThreadingTCPServer) :

men

Simple TCP socket-based logging receiver suitable for testing.

mn

allow_reuse_address = True

def _ init_ (self, host='localhost',
port=logging.handlers.DEFAULT_TCP_LOGGING_PORT,
handler=LogRecordStreamHandler) :
socketserver.ThreadingTCPServer.__init__ (self, (host, port), handler)
self.abort = 0
self.timeout = 1

self.logname = None

def serve_until_stopped(self):
import select

abort = 0
while not abort:
rd, wr, ex = select.select([self.socket.fileno()],
(1, 1,
self.timeout)
if rd:

self.handle_request ()
abort = self.abort

def main() :
logging.basicConfig(
format="'% (relativeCreated) 5d % (name)-15s % (leve
tcpserver = LogRecordSocketReceiver ()
print ('About to start TCP server...')
tcpserver.serve_until_stopped /()

if _ name_ == '_ main__ ':
main ()

SIS, ST (P, S A ETIERN G R iR
i

About to start TCP server...

59 root INFO Jackdaws love my big sphinx of quartz.

59 myapp.areal DEBUG Quick zephyrs blow, vexing daft Jim.

69 myapp.areal INFO How quickly daft jumping zebras vex.

69 myapp.area?2 WARNING Jail zesty vixen who grabbed pay from quack.
69 myapp.area?2 ERROR The five boxing wizards jump quickly.

TR, TR T RIS — e e, WERIXERMEIR, AR AR DAIE L B 3 makePickle () JF
W&, S ARSI, IR A At B 5 S BRI T I

10

8 AHFLERPHMLTIER

AR, BT RS S HEILsaA I SEON, RIEAE AL xh s B UFERE. i, A—P Mg
REHY, WIAE T B SRR % s B H S (B Pomi i P o IP Mk) o SRR 43T DA
BWEBIMIS AR, HXF A2 . s (] REAR B/ a3 HE 42 1 Al _E B — A
Logger (5L, (HIXLLBIZA LR IICH), XAEG T PRFAE I, (H2Y Logger BB
PEFARR AR AL RN BRI, WIER Logger MSEBIBEAZIRBIAYIE, KB FXEAEEE

8.1 FHHEEEREELTIIER

— MG R SUFEE A H EFHAME BRI 2 A ZE LoggerAdapter. XANERRITHIH Logger, T
PART PABEL 328] debug () » info (). warning (). error (), exception (). critical() fll log().
XL EFERT V) Logger W FAHEI A4S, FIr AT RASZ B (i FH P b 2 204) S 31

BRAIE—1 LoggerAdapter WJSEFIRS, K&k A— Logger AYSERIRI— NS T R XE BEAY 74
X5 . BRI —A LoggerAdapter LB AR, BSIETHHAZ LA NN Logger BSLHI, H %
FEAH R E R SUE R, iXJ2& LoggerAdapter M—AMUH B

def debug(self, msg, /, *args, **kwargs):

Delegate a debug call to the underlying logger, after adding
contextual information from this adapter instance.

msg, kwargs = self.process(msg, kwargs)
self.logger.debug(msg, *args, **kwargs)

LoggerAdapter [process () i@ E T XUEERME] H AR S d . E~EAHEHEM H ST
M TSR, Hem (Rali) REBBUS I N A X TRZH B Sk . HorEm Aol g —
MHETBL HEA—extra T BN KBTS HE AR M8, WRIRAER SRS AT —
Aextra’ FEINSHL, EuiHE .

{ i extra’ () {0 s 2K LU AR (X X i A LogRecord LBl _dict__ H', ibARidid Formatter PYSEBIE
M E WA AT E, BB E XA P IR . ASRARTE— AR 3, Henit, AR E
FAP RGN BT UEE, IR FHEZEAE 4 LoggerAdapter ()12, HEMEM process () kK
MARAEMA S , DA @ — R E 7n l:

class CustomAdapter (logging.LoggerAdapter) :

This example adapter expects the passed in dict-like object to have a
"connid' key, whose value in brackets is prepended to the log message.

def process(self, msg, kwargs):
return '|] ' % (self.extra['connid'], msg), kwargs

R AT PAIC AL

logger = logging.getlLogger (__name_)
adapter = CustomAdapter (logger, {'connid': some_conn_id})

SRIG, RICSRAEE Bl o AT S HH B BRI “some_conn_id“[¥{K.

ERRFRZIIIBEEMREBLTIER

VRANTE ZERF— LR P UL 84 Loggeradapter-fRAT AR A —ASEBL 1 “__getitem__* I “__iter__“f{J2&
MSEBl, XAFEG R X ARESASEE (M b AR R) B RARE.

11

8.2 ERdiEesEE ETXIEE

PRALAT AR — NP E 92K Filter £E H G P E N UFE R, Filter BSCBlEBRIFE S ZA
) LogRecords, BAFHMIMHAMEIEIE, SR LAME M A& R AL FAF R i, s mT AR — AN B E X

2% Formatter,

B, fE—4 web W HREFH, EAEAPERTESR (S0& 2020 K)o DAFREE— DA A H
(threading.local) 48R, SRJGM “Filter“sh Xif 1, &K P AG(EE, a0 IP Huhb Al f P 4% Rl Ak AE
“LogRecord“Ht, i fi] {5 “LoggerAdapter 1 [1’ip” fl'user’ @44 . FEXFPEOLT, 0T AGE AR A% =1L 2
FRER SRS E] B Hl 2Bl h 4 R . X —Bon Bt ag:

import logging
from random import choice

class ContextFilter (logging.Filter):

mn

This is a filter which injects contextual information into the 1log.

Rather than use actual contextual information, we just use random

data in this demo.
mrrn

USERS = ['jim', 'fred', 'sheila']
IPS = ['123.231.231.123'", '127.0.0.1', '192.168.0.1"]

def filter (self, record):

record.ip = choice (ContextFilter.IPS)
record.user = choice (ContextFilter.USERS)
return True

if name_ == '_ _main__ ':
levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.
—CRITICAL)
logging.basicConfig(level= logglng DEBUG,

format= 1 % (n¢ 5s (level 8s IP: % (ip)
—~15s User: % (user)-8s ﬂ(mowga,w s
al = logging.getLogger('a.
a2 = logging.getLogger ('d.
f = ContextFilter()
al.addFilter (f)
a2.addrilter (f)
al.debug('A debug message')
al.info('An info message with $%s', 'some parameters')
for x in range(10):
1vl = choice (levels)
lvlname = logging.getLevelName (1vl)
az.log(lvl, 'A message at %s level with 2d %s', lvlname, 2, 'parameters')
TEIBATIY, AR N
2010-09-06 22:38:15,292 a.b.c DEBUG IP: 123.231.231.123 User: fred A debug.
—message
2010-09-06 22:38:15,300 a.b.c INFO IP: 192.168.0.1 User: sheila An info.
—message with some parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message.
—at CRITICAL level with 2 parameters
(QiviE3)

12

(£ 50

2010-09-06 22:38:15,300 d.e.f ERROR IP: 127.0.0.1 User: jim A message.
—at ERROR level with 2 parameters

2010-09-06 22:38:15,300 d.e.f DEBUG IP: 127.0.0.1 User: sheila A message.
—at DEBUG level with 2 parameters

2010-09-06 22:38:15,300 d.e.f ERROR IP: 123.231.231.123 User: fred A message.
—~at ERROR level with 2 parameters

2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 192.168.0.1 User: jim A message.
—at CRITICAL level with 2 parameters

2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message.
—~at CRITICAL level with 2 parameters

2010-09-06 22:38:15,300 d.e.f DEBUG IP: 192.168.0.1 User: jim A message.
—at DEBUG level with 2 parameters

2010-09-06 22:38:15,301 d.e.f ERROR IP: 127.0.0.1 User: sheila A message.
—at ERROR level with 2 parameters

2010-09-06 22:38:15,301 d.e.f DEBUG IP: 123.231.231.123 User: fred A message.
—at DEBUG level with 2 parameters

2010-09-06 22:38:15,301 d.e.f INFO IP: 123.231.231.123 User: fred A message.

—at INFO level with 2 parameters

9 MENHEICRELENLH

SR logging R RRR LA, KPR H 92D AAE H 03 2 AU =250 F e, (N % Az
1 H S0 R 2 BN SOPE I R 32 SCRFI - PO AE Python Wi B0 HE 2 A HERE F SC BT BN SCPET R 57
PCHIBRHE T 5 WERARTRZR/ 2R Y H S iD S B RS, A— D gL SRR H Sl s 2
—/~ socketHandler, XML T EIZ PRI A BMIEAR — i B 7 B0 H DR =
SO (AERBERRIE, R AZE— N BUA MR & TP — D ARR AT I RE) X — 20 5 SCRIR I 7 50
AHERAMNG, S DAHRER TN, KA SR AR B EA & -

You could also write your own handler which uses the Lock class from the multiprocessing module to se-
rialize access to the file from your processes. The existing FileHandler and subclasses do not make use of
multiprocessing at present, though they may do so in the future. Note that at present, the multiprocessing
module does not provide working lock functionality on all platforms (see https://bugs.python.org/issue3770).

s,] A Queue Fll QueueHandler XA) H &S F Ak 2 ARM 2 BERE N H) — AR . A
RGN IASE RS T AR AT IR . R B, AN RO M T R £ T T A ERE Y H AR, R AR
H O MBCE LS. KRR R ER T Mo (BIngRn] Gy 5206 A Bl iy M Wy 2 AR i =l M o R —— &A1)
E‘J%%%%ME’J), BRI AT DATE IS PR 3 1) Mo Wr R R LA AR o P AN (W] B BC 8 T DAY R I AR
T K — ik

You'll need these imports in your own code
import logging

import logging.handlers

import multiprocessing

Next two import lines for this demo only
from random import choice, random
import time

#

Because you'll want to define the logging configurations for listener and workers,.
—the

listener and worker process functions take a configurer parameter which is a.
—callable

(Rt

13

https://bugs.python.org/issue3770

(£ 50

for configuring logging for that process. These functions are also passed the queue,
which they use for communication.

In practice, you can configure the listener however you want, but note that in this
simple example, the listener does not apply level or filter logic to received.

H W R KR

—records.
In practice, you would probably want to do this logic in the worker processes, to.
—avoid
sending events which would be filtered out between processes.
#
The size of the rotated files is made small so you can see the results easily.
def listener_configurer():

root = logging.getLogger ()

h = logging.handlers.RotatingFileHandler ('mptest.log', 'a', 300, 10)

f = logging.Formatter ('$ (asctime)s % (processName)-10s % (name)s % (levelname)—-8s
—% (message)s')

h.setFormatter (f)

root .addHandler (h)

This is the listener process top-level loop: wait for logging events

(LogRecords)on the queue and handle them, quit when you get a None for a
LogRecord.

def listener_process (queue, configurer):

configurer ()
while True:
try:
record = queue.get ()
if record is None: # We send this as a sentinel to tell the listener to.
—quit.
break
logger = logging.getLogger (record.name)

logger.handle (record) # No level or filter logic applied - just do it!
except Exception:

import sys, traceback

print ('Whoops! Problem:', file=sys.stderr)

traceback.print_exc(file=sys.stderr)

Arrays used for random selections in this demo

LEVELS = [logging.DEBUG, logging.INFO, logging.WARNING,
logging.ERROR, logging.CRITICAL]

LOGGERS = ['a.b.c', 'd.e.f']

MESSAGES = [
'Random message #1',
'Random message #2',
'Random message #3',

The worker configuration is done at the start of the worker process run.
Note that on Windows you can't rely on fork semantics, so each process
will run the logging configuration code when it starts.
def worker_configurer (queue) :
h = logging.handlers.QueueHandler (queue) # Just the one handler needed
root = logging.getLogger ()

Qi3]

14

root .addHandler (h)
send all messages, for demo; no other level or filter logic applied.
root.setlLevel (logging.DEBUG)

This is the worker process top-level loop, which just logs ten events with
random intervening delays before terminating.
The print messages are just so you know it's doing something!
def worker_process(queue, configurer):
configurer (queue)
name = multiprocessing.current_process () .name
print ('Worker started: $s' % name)
for i in range (10):
time.sleep (random())
logger = logging.getLogger (choice (LOGGERS))
level = choice (LEVELS)
message = choice (MESSAGES)
logger.log(level, message)

o o

print ('Worker finished: $s' % name)

Here's where the demo gets orchestrated. Create the queue, create and start
the listener, create ten workers and start them, wait for them to finish,
then send a None to the queue to tell the listener to finish.
def main () :
queue = multiprocessing.Queue(-1)
listener = multiprocessing.Process (target=listener_process,
args=(queue, listener_configurer))
listener.start ()
workers = []
for i in range (10):
worker = multiprocessing.Process (target=worker_process,
args=(queue, worker_configurer))
workers.append (worker)
worker.start ()
for w in workers:
w.join ()
qgueue.put_nowait (None)
listener.join ()

if _name_ == '_ main__ ':
main ()

AR — AR, RRTE TR ICR B, R — D B LR

import logging

import logging.config

import logging.handlers

from multiprocessing import Process, Queue
import random

import threading

import time

def logger_thread(q) :
while True:
record = g.get ()
if record is None:
break

Qi¥iE3)

15

logger = logging.getLogger (record.name)
logger.handle (record)

def worker_process(q) :
gh = logging.handlers.QueueHandler (q)
root = logging.getLogger ()
root.setLevel (logging.DEBUG)
root .addHandler (gh)

levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,
logging.CRITICAL]
loggers = ['foo', 'foo.bar', 'foo.bar.baz',

'spam', 'spam.ham', 'spam.ham.eggs']
for i in range (100):
1vl = random.choice (levels)
logger = logging.getLogger (random.choice (loggers))
logger.log(lvl, 'Message no. 2d', 1)

if _name_ == '_ main_ ':
g = Queue ()
d = {
'version': 1,
'formatters': {
'detailed': {
'class': 'logging.Formatter',
'format': '$ (asctime)s % (name)-15s % (levelname)-8s % (processName)-10s
—% (message) s'
}
}I
'handlers': {
'console': {
'class': 'logging.StreamHandler',
'level': 'INFO',
}I
'file': {
'class': 'logging.FileHandler',
'filename': 'mplog.log',
'mode': 'w',
'formatter': 'detailed',

by
'foofile': {

'class': 'logging.FileHandler',
'filename': 'mplog-foo.log',
'mode': 'w',
'formatter': 'detailed',

}I

'errors': {
'class': 'logging.FileHandler',
'filename': 'mplog-errors.log',
'mode': 'w',
"level': 'ERROR',
'formatter': 'detailed',

by
I
'loggers': {
'foo': {

[23]

16

(£ 50

'handlers': ['foofile']
}
}I
'root': {
'level': 'DEBUG',
'handlers': ['console', 'file', 'errors']
}I
}
workers = []
for i in range(5):
wp = Process (target=worker_process, name='worker 5d' % (i + 1), args=(qg,))
workers.append (wp)
wp.start ()

logging.config.dictConfig(d)
lp = threading.Thread(target=logger_thread, args=(q,))
lp.start ()
At this point, the main process could do some useful work of its own
Once it's done that, it can wait for the workers to terminate...
for wp in workers:
wp.join ()
And now tell the logging thread to finish up, too
g.put (None)
lp.Jjoin()

R BUASFPEAC R 1 AT B AR E /Y H ST SR T A - WWWﬁﬁ%ﬁﬁ%T%ﬁmLﬁﬁ? F§ foo F
ARG A LR B — D3 mplog-foo. log. FEF#ERE (RIEURAE TARRER P-4/ HEHM) 1)
TSI R EL R G 4

10 RiBEEXH

A, R R H SR BHE SR K 2 K/, T SF SOP R IR . ARATRER S R —E
By B SR, ST QTR SRR R, OB s T IR I S AR ER . XX ﬁ@%%a

HEMIRMALT RotatingFileHandler:

import glob
import logging
import logging.handlers

LOG_FILENAME = 'logging_rotatingfile_example.out'

Set up a specific logger with our desired output level
my_logger = logging.getLogger ('MyLogger')
my_logger.setLevel (logging.DEBUG)

Add the log message handler to the logger
handler = logging.handlers.RotatingFileHandler (
LOG_FILENAME, maxBytes=20, backupCount=5)

my_logger.addHandler (handler)
Log some messages

for i in range(20):
my_logger.debug('i = %d' % 1i)

(Rt

17

(£ 50

See what files are created
logfiles = glob.glob('%s*'" $ LOG_FILENAME)

for filename in logfiles:
print (filename)

GURNZ S 6 DEMBSCIE, BSOS T R R R I s H A

logging_rotatingfile_example.out

logging_rotatingfile_example.out.
logging_rotatingfile_example.out.
logging_rotatingfile_example.out.
logging_rotatingfile_example.out.
logging_rotatingfile_example.out.

a b w N

BRI SCA AR 2)2 file:logging_rotatingfile_example.out , R FIIAK/NRENS, HRMH G “ 1 HE v . &4
A W AR A IR 2 (BIan <1 A48 =.2¢), Wﬁ“-6“jdﬁF Gyl

BAR, EAPITRF HERERES RN, X2 —Mamf Bl 1. VR RER B *maxBytes* BN — S
M.

1 EREMEEHEXMAETR

2 H S BLPEA IN 2 Python ARiEFERT, HAG— Mg AL B 21 71 Rl %o-formatting . 7EAPZ)5, Python
I T PR AL Y string. Template (fF Python 2.4 W) F1 str. format () (£ Python 2.6
B,

& (M 32 FF4R) ﬁtﬂﬂfﬂ‘%“ﬁﬂcﬁf%ﬂ THZEFE. Formatter ZEATPARAIN—ANER AR AT 5% O 7
ZH style. EREGAMER 'S, HAMBME ' F rsr W30, X T HAB MR RE . AR T)
JEAEE (WEE), 1El_li5‘4/Tif’ RS, WA e AR U str. format () B
string.Template, XHE—MEHEXWHI/RG], BRTiXETA:

>>> import logging
>>> root = logging.getLogger ()
>>> root.setlLevel (logging.DEBUG)

>>> handler = logging.StreamHandler ()
>>> bf = logging.Formatter ('{asctime} {name} {levelname:8s} {message}',
style="{")

>>> handler.setFormatter (bf)

>>> root.addHandler (handler)

>>> logger = logging.getLogger ('foo.bar')

>>> logger.debug('This is a DEBUG message')

2010-10-28 15:11:55,341 foo.bar DEBUG This is a DEBUG message
>>> logger.critical('This is a CRITICAL message')

2010-10-28 15:12:11,526 foo.bar CRITICAL This is a CRITICAL message
>>> df = logging.Formatter ('Sasctime S$name ${levelname} Smessage',
ce style='5")

>>> handler.setFormatter (df)
>>> logger.debug('This is a DEBUG message')

2010-10-28 15:13:06,924 foo.bar DEBUG This is a DEBUG message

>>> logger.critical('This is a CRITICAL message')

2010-10-28 15:13:11,494 foo.bar CRITICAL This is a CRITICAL message
>>>

18

R RS B H BN M T A H BN E T . B8R AT A F %-formatting, 411
TR

>>> logger.error ('This is an ', 'other,', 'ERROR,', 'message')
2010-10-28 15:19:29,833 foo.bar ERROR This is another, ERROR, message
>>>

Logging calls (logger.debug (), logger.info () etc.) only take positional parameters for the actual logging
message itself, with keyword parameters used only for determining options for how to handle the actual logging call (e.g.
the exc_info keyword parameter to indicate that traceback information should be logged, or the extra keyword
parameter to indicate additional contextual information to be added to the log). So you cannot directly make logging calls
using str.format () or string.Template syntax, because internally the logging package uses %-formatting
to merge the format string and the variable arguments. There would be no changing this while preserving backward
compatibility, since all logging calls which are out there in existing code will be using %-format strings.

There is, however, a way that you can use { }- and $- formatting to construct your individual log messages. Recall that for
a message you can use an arbitrary object as a message format string, and that the logging package will call str () on
that object to get the actual format string. Consider the following two classes:

class BraceMessage:
def _ _init__ (self, fmt, /, *args, **kwargs):
self.fmt = fmt
self.args = args
self.kwargs = kwargs

def str_ (self):

return self.fmt.format (*self.args, **self.kwargs)

class DollarMessage:
def __ _init__ (self, fmt, /, **kwargs):
self.fmt = fmt
self.kwargs = kwargs

def _ str_ (self):
from string import Template
return Template (self.fmt) .substitute (**self.kwargs)

Either of these can be used in place of a format string, to allow { }- or $-formatting to be used to build the actual "message”
part which appears in the formatted log output in place of ”%(message)s” or ”{message}” or "$message”. It’s a little
unwieldy to use the class names whenever you want to log something, but it’s quite palatable if you use an alias such
as __ (double underscore — not to be confused with _, the single underscore used as a synonym/alias for gettext.
gettext () orits brethren).

The above classes are not included in Python, though they’re easy enough to copy and paste into your own code. They
can be used as follows (assuming that they’re declared in a module called wherever):

>>> from wherever import BraceMessage as ___

>>> print (__ ('Message with {0} {name}', 2, name='placeholders'))
Message with 2 placeholders

>>> class Point: pass

>>> p = Point ()

>>> p.x = 0.5

>>> p.y = 0.5

>>> print (__ ('Message with coordinates: ({point.x:.2f}, {point.y:.2f})"',
. point=p))

Message with coordinates: (0.50, 0.50)

Q%))

19

(£ 50

>>> from wherever import DollarMessage as ___

>>> print (__ ('Message with $num $what', num=2, what='placeholders'))
Message with 2 placeholders

>>>

While the above examples use print () to show how the formatting works, you would of course use logger.
debug () or similar to actually log using this approach.

One thing to note is that you pay no significant performance penalty with this approach: the actual formatting happens
not when you make the logging call, but when (and if) the logged message is actually about to be output to a log by a
handler. So the only slightly unusual thing which might trip you up is that the parentheses go around the format string
and the arguments, not just the format string. That’s because the __ notation is just syntax sugar for a constructor call to
one of the XXXMessage classes.

If you prefer, you can use a LoggerAdapter to achieve a similar effect to the above, as in the following example:

import logging

class Message:
def _ _init__ (self, fmt, args):
self.fmt = fmt
self.args = args

def _ str_ (self):
return self.fmt.format (*self.args)

class StyleAdapter (logging.LoggerAdapter) :
def _ _init__ (self, logger, extra=None):
super (StyleAdapter, self).__init__ (logger, extra or {})

def log(self, level, msg, /, *args, **kwargs):
if self.isEnabledFor (level):
msg, kwargs = self.process(msg, kwargs)
self.logger._log(level, Message (msg, args), (), **kwargs)

logger = StyleAdapter (logging.getLogger (_ name__))

def main () :

logger.debug('Hello, ', 'world!")

if name == "'__main__ ':
logging.basicConfig(level=logging.DEBUG)
main ()

The above script should log the message Hello, world! when run with Python 3.2 or later.

12 Customizing LogRecord

Every logging event is represented by a LogRecord instance. When an event is logged and not filtered out by a logger’s
level, a LogRecord is created, populated with information about the event and then passed to the handlers for that
logger (and its ancestors, up to and including the logger where further propagation up the hierarchy is disabled). Before
Python 3.2, there were only two places where this creation was done:

* Logger.makeRecord (), whichis called in the normal process of logging an event. This invoked LogRecord
directly to create an instance.

20

* makeLogRecord (), which is called with a dictionary containing attributes to be added to the LogRecord. This
is typically invoked when a suitable dictionary has been received over the network (e.g. in pickle form via a
SocketHandler, or in JSON form via an HTTPHandler).

This has usually meant that if you need to do anything special with a LogRecord, you’ve had to do one of the following.

e Create your own Logger subclass, which overrides Logger.makeRecord(), and set it using
setLoggerClass () before any loggers that you care about are instantiated.

* AddaFilter toaloggeror handler, which does the necessary special manipulation you need whenits filter ()
method is called.

The first approach would be a little unwieldy in the scenario where (say) several different libraries wanted to do different
things. Each would attempt to set its own Logger subclass, and the one which did this last would win.

The second approach works reasonably well for many cases, but does not allow you to e.g. use a specialized subclass of
LogRecord. Library developers can set a suitable filter on their loggers, but they would have to remember to do this
every time they introduced a new logger (which they would do simply by adding new packages or modules and doing

logger = logging.getLogger (name)

at module level). It’s probably one too many things to think about. Developers could also add the filter to a
NullHandler attached to their top-level logger, but this would not be invoked if an application developer attached
a handler to a lower-level library logger — so output from that handler would not reflect the intentions of the library
developer.

In Python 3.2 and later, LogRecord creation is done through a factory, which you can specify. The factory is just
a callable you can set with setLogRecordFactory (), and interrogate with get LogRecordFactory (). The
factory is invoked with the same signature as the LogRecord constructor, as LogRecord is the default setting for the
factory.

This approach allows a custom factory to control all aspects of LogRecord creation. For example, you could return a
subclass, or just add some additional attributes to the record once created, using a pattern similar to this:

old_factory = logging.getLogRecordFactory ()

def record_factory(*args, **kwargs):
record = old_factory(*args, **kwargs)
record.custom_attribute = Oxdecafbad
return record

logging.setLogRecordFactory (record_factory)

This pattern allows different libraries to chain factories together, and as long as they don’t overwrite each other’s attributes
or unintentionally overwrite the attributes provided as standard, there should be no surprises. However, it should be borne
in mind that each link in the chain adds run-time overhead to all logging operations, and the technique should only be
used when the use of a Filter does not provide the desired result.

13 Subclassing QueueHandler - a ZeroMQ example

You can use a QueueHandler subclass to send messages to other kinds of queues, for example a ZeroMQ ’publish’
socket. In the example below,the socket is created separately and passed to the handler (as its ‘queue’):

import zmg # using pyzmqg, the Python binding for ZeroMQ
import json # for serializing records portably

(Qi¥i#3)

21

(£ 50

ctx = zmg.Context ()
sock = zmqg.Socket (ctx, zmg.PUB) # or zmqg.PUSH, or other suitable value
sock.bind('tcp://*:5556") # or wherever

class ZeroMQSocketHandler (QueueHandler) :
def enqueue(self, record):
self.queue.send_json (record._ _dict_)

handler = ZeroMQSocketHandler (sock)

Of course there are other ways of organizing this, for example passing in the data needed by the handler to create the
socket:

class ZeroMQSocketHandler (QueueHandler) :
def _ _init__ (self, uri, socktype=zmqg.PUB, ctx=None) :
self.ctx = ctx or zmg.Context ()
socket = zmg.Socket (self.ctx, socktype)
socket.bind (uri)
super () .__init__ (socket)

def enqueue(self, record):
self.queue.send_json (record. _dict_)

def close(self):
self.queue.close ()

14 Subclassing Queuelistener - a ZeroMQ example

You can also subclass QueueListener to get messages from other kinds of queues, for example a ZeroMQ ’subscribe’
socket. Here’s an example:

class ZeroMQSocketListener (QueuelListener) :
def __init__ (self, uri, /, *handlers, **kwargs):
self.ctx = kwargs.get ('ctx') or zmg.Context ()
socket = zmqg.Socket (self.ctx, zmg.SUB)

socket .setsockopt_string(zmg.SUBSCRIBE, '') # subscribe to everything
socket .connect (uri)
super () .__init__ (socket, *handlers, **kwargs)

def dequeue (self):
msg = self.queue.recv_json()
return logging.makeLogRecord (msg)

S W

Bilk logging HARILRBIHR) APL 2%,

B logging.config HICRAIRIIACE APL .

Bilt logging.handlers HEiCsib iy oA AL PR .
A basic logging tutorial

A more advanced logging tutorial

22

15 An example dictionary-based configuration

Below is an example of a logging configuration dictionary - it’s taken from the documentation on the Django project. This
dictionary is passed to dictConfig () to put the configuration into effect:

LOGGING = {

'version': 1,
'disable_existing_loggers': True,
'formatters': {
'verbose': {
'format': '$(levelname)s % (asctime)s % (module)s % (process)d % (thread)d
—% (message) s'
}I
'simple': {
'format': '$(levelname)s % (message)s'
}I
}I
'filters': {
'special': {
'()': 'project.logging.SpecialFilter',
'foo': 'bar',

}I
'handlers': {
'null': {
'level':'DEBUG',
'class':'django.utils.log.NullHandler',
}I
'console':{
'level':'DEBUG',

'class':'logging.StreamHandler',
'formatter': 'simple'
}I
'mail_admins': {
'level': '"ERROR',
'class': 'django.utils.log.AdminEmailHandler',
'filters': ['special']
}
}’
'loggers': {
'django': {
'handlers':['null'],

'propagate’': True,
'level':'"INFO',

}V

'django.request': {
'handlers': ['mail_admins'],
'level': 'ERROR',
'propagate': False,

}I

'myproject.custom': {
'handlers': ['console', 'mail_admins'],
"level': 'INFO',
'filters': ['special']

23

https://docs.djangoproject.com/en/1.9/topics/logging/#configuring-logging

For more information about this configuration, you can see the relevant section of the Django documentation.

16 Using a rotator and namer to customize log rotation processing

An example of how you can define a namer and rotator is given in the following snippet, which shows zlib-based com-
pression of the log file:

def namer (name) :
return name + ".gz"

def rotator (source, dest):
with open (source, "rb") as sf:
data = sf.read()
compressed = zlib.compress (data, 9)
with open(dest, "wb") as df:
df .write (compressed)
os.remove (source)

rh = logging.handlers.RotatingFileHandler (...)
rh.rotator = rotator
rh.namer = namer

These are not “true” .gz files, as they are bare compressed data, with no ”container” such as you’ d find in an actual gzip
file. This snippet is just for illustration purposes.

17 A more elaborate multiprocessing example

The following working example shows how logging can be used with multiprocessing using configuration files. The con-
figurations are fairly simple, but serve to illustrate how more complex ones could be implemented in a real multiprocessing
scenario.

In the example, the main process spawns a listener process and some worker processes. Each of the main process, the
listener and the workers have three separate configurations (the workers all share the same configuration). We can see
logging in the main process, how the workers log to a QueueHandler and how the listener implements a QueueListener
and a more complex logging configuration, and arranges to dispatch events received via the queue to the handlers specified
in the configuration. Note that these configurations are purely illustrative, but you should be able to adapt this example to
your own scenario.

Here’s the script - the docstrings and the comments hopefully explain how it works:

import logging

import logging.config

import logging.handlers

from multiprocessing import Process, Queue, Event, current_process
import os

import random

import time

class MyHandler:
mrrn
A simple handler for logging events. It runs in the listener process and
dispatches events to loggers based on the name in the received record,
which then get dispatched, by the logging system, to the handlers

24

https://docs.djangoproject.com/en/1.9/topics/logging/#configuring-logging

configured for those loggers.
mrirn

def handle (self, record):

if record.name == "root":
logger = logging.getLogger ()
else:
logger = logging.getLogger (record.name)

if logger.isEnabledFor (record.levelno) :
The process name is transformed just to show that it's the listener
doing the logging to files and console

o

record.processName = '2s (for 2s)' % (current_process () .name, record.

—processName)

def

def

logger.handle (record)

listener_process (g, stop_event, config):

mrrn

This could be done in the main process, but is just done in a separate
process for illustrative purposes.

This initialises logging according to the specified configuration,
starts the listener and waits for the main process to signal completion
via the event. The listener is then stopped, and the process exits.

mmn

logging.config.dictConfig(config)

listener = logging.handlers.Queuelistener (q, MyHandler())
listener.start ()
if os.name == 'posix':
On POSIX, the setup logger will have been configured in the
parent process, but should have been disabled following the
dictConfig call.
On Windows, since fork isn't used, the setup logger won't
exist in the child, so it would be created and the message
would appear - hence the "if posix" clause.

logger = logging.getLogger ('setup')

logger.critical ('Should not appear, because of disabled logger ...")
stop_event.wait ()
listener.stop()

worker_process (config) :

mrrn

A number of these are spawned for the purpose of illustration. In
practice, they could be a heterogeneous bunch of processes rather than
ones which are identical to each other.

This initialises logging according to the specified configuration,
and logs a hundred messages with random levels to randomly selected
loggers.

A small sleep is added to allow other processes a chance to run. This
is not strictly needed, but it mixes the output from the different
processes a bit more than if it's left out.

mrmrn

logging.config.dictConfig(configqg)

levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,

Qi3]

25

(£ 50

logging.CRITICAL]
loggers = ['foo', 'foo.bar', 'foo.bar.baz',
'spam', 'spam.ham', 'spam.ham.eggs']

if os.name == 'posix':
On POSIX, the setup logger will have been configured in the
parent process, but should have been disabled following the
dictConfig call.
On Windows, since fork isn't used, the setup logger won't
exist in the child, so it would be created and the message

would appear - hence the "if posix" clause.

logger = logging.getLogger ('setup')

logger.critical ('Should not appear, because of disabled logger ...'")
for i in range (100):

1lvl = random.choice (levels)

logger = logging.getLogger (random.choice (loggers))

logger.log(lvl, 'Message no. 2d', 1)

time.sleep(0.01)

So¥e %R W W

def main () :
g = Queue ()
The main process gets a simple configuration which prints to the console.

config_initial = {
'version': 1,
'handlers': {
'console': {
'class': 'logging.StreamHandler',
'level': '"INFO'
}
}I
'root': {
'handlers': ['console'],
'level': 'DEBUG'
}
}
The worker process configuration is just a QueueHandler attached to the
root logger, which allows all messages to be sent to the queue.
We disable existing loggers to disable the "setup" logger used in the
parent process. This is needed on POSIX because the logger will
be there in the child following a fork().
config_worker = {
'version': 1,

'disable_existing_loggers': True,
'handlers': {

'queue': {
'class': 'logging.handlers.QueueHandler',
'queue': g
}
}I
'root': {
'handlers': ['queue'],
'level': 'DEBUG'

}

The listener process configuration shows that the full flexibility of

logging configuration is available to dispatch events to handlers however
you want.

(i)

26

(£ 50

We disable existing loggers to disable the "setup" logger used in the
parent process. This is needed on POSIX because the logger will
be there in the child following a fork().

config_listener = {
'version': 1,
'disable_existing_loggers': True,
'formatters': {
'detailed': {
'class': 'logging.Formatter',
'format': '$ (asctime)s % (name)-15s % (levelname)-8s % (processName)—-10s

— % (message) s’

h

'simple': {
'class': 'logging.Formatter',
'format': '$% (name)-15s % (levelname)-8s % (processName)-10s % (message)s'
}
by
'handlers': {
'console': {
'class': 'logging.StreamHandler',
'formatter': 'simple',
'level': '"INFO'
by
"file': {
'class': 'logging.FileHandler',
'filename': 'mplog.log',
'mode': 'w',
'formatter': 'detailed'

b
'foofile': {

'class': 'logging.FileHandler',
'filename': 'mplog-foo.log',
'mode': 'w',
'formatter': 'detailed'
by
'errors': {
'class': 'logging.FileHandler',
'filename': 'mplog-errors.log',
'mode': 'w',
'formatter': 'detailed',
'level': 'ERROR'
3
}I
'loggers': {
'foo': {
'handlers': ['foofile']
}
}I
'root': {
'handlers': ['console', 'file', 'errors'],
'level': 'DEBUG'

}

Log some initial events, just to show that logging in the parent works
normally.

logging.config.dictConfig(config_initial)

(i)

27

(£ 50

if

logger = logging.getLogger ('setup')
logger.info ('About to create workers ...'")

workers = []
for i in range(5):
wp = Process (target=worker_process, name='worker S (1 + 1,

args=(config_worker,))
workers.append (wp)

wp.start ()
logger.info ('Started worker: ', wp.name)
logger.info ('About to create listener ...'")
stop_event = Event ()
lp = Process (target=listener_process, name='listener',
args=(q, stop_event, config_listener))
lp.start ()

logger.info('Started listener')
We now hang around for the workers to finish their work.
for wp in workers:

wp.join ()
Workers all done, listening can now stop.
Logging in the parent still works normally.
logger.info('Telling listener to stop ...")
stop_event.set ()
lp.join ()
logger.info('All done.")

__name__ == '__main__':
main ()

18 Inserting a BOM into messages sent to a SysLogHandler

RFC 5424 requires that a Unicode message be sent to a syslog daemon as a set of bytes which have the following structure:
an optional pure-ASCII component, followed by a UTF-8 Byte Order Mark (BOM), followed by Unicode encoded using
UTF-8. (See the relevant section of the specification.)

In Python 3.1, code was added to SysLogHandler to insert a BOM into the message, but unfortunately, it was im-
plemented incorrectly, with the BOM appearing at the beginning of the message and hence not allowing any pure-ASCII
component to appear before it.

As

this behaviour is broken, the incorrect BOM insertion code is being removed from Python 3.2.4 and later. However,

it is not being replaced, and if you want to produce RFC 5424-compliant messages which include a BOM, an optional
pure-ASCII sequence before it and arbitrary Unicode after it, encoded using UTF-8, then you need to do the following:

1. Attach a Formatter instance to your SysLogHandler instance, with a format string such as:

'"ASCII section\ufeffUnicode section'’

The Unicode code point U+FEFF, when encoded using UTF-8, will be encoded as a UTF-8§ BOM - the byte-string
b'\xef\xbb\xbf"'.

2. Replace the ASCII section with whatever placeholders you like, but make sure that the data that appears in there

after substitution is always ASCII (that way, it will remain unchanged after UTF-8 encoding).

3. Replace the Unicode section with whatever placeholders you like; if the data which appears there after substitution

contains characters outside the ASCII range, that’s fine — it will be encoded using UTF-8§.

28

https://tools.ietf.org/html/rfc5424.html
https://tools.ietf.org/html/rfc5424.html#section-6
https://tools.ietf.org/html/rfc5424.html

The formatted message will be encoded using UTF-8 encoding by SysLogHandler. If you follow the above rules, you
should be able to produce RFC 5424-compliant messages. If you don’t, logging may not complain, but your messages
will not be RFC 5424-compliant, and your syslog daemon may complain.

19 Implementing structured logging

Although most logging messages are intended for reading by humans, and thus not readily machine-parseable, there
might be circumstances where you want to output messages in a structured format which is capable of being parsed by a
program (without needing complex regular expressions to parse the log message). This is straightforward to achieve using
the logging package. There are a number of ways in which this could be achieved, but the following is a simple approach
which uses JSON to serialise the event in a machine-parseable manner:

import json
import logging

class StructuredMessage:

def _ init_ (self, message, /, **kwargs):
self.message = message
self.kwargs = kwargs

def _ str_ (self):

return ' >>> ' % (self.message, json.dumps (self.kwargs))
_ = StructuredMessage # optional, to improve readability
logging.basicConfig(level=logging.INFO, format=" ")
logging.info(_('message 1', foo='bar', bar='baz', num=123, fnum=123.456))

If the above script is run, it prints:

message 1 >>> {"fnum": 123.456, "num": 123, "bar": "baz", "foo": "bar"}

Note that the order of items might be different according to the version of Python used.

If you need more specialised processing, you can use a custom JSON encoder, as in the following complete example:

from _ future__ import unicode_literals

import json
import logging

This next bit is to ensure the script runs unchanged on 2.x and 3.x

try:
unicode
except NameError:
unicode = str

class Encoder (json.JSONEncoder) :
def default (self, o):
if isinstance (o, set):
return tuple (0)
elif isinstance (o, unicode):
return o.encode ('unicode_escape') .decode ('ascii')
return super (Encoder, self).default (o)

(FItgkss)

29

https://tools.ietf.org/html/rfc5424.html

class StructuredMessage:

def _ init_ (self, message, /, **kwargs):
self.message = message
self.kwargs = kwargs

def @ str_ (self):

s = Encoder () .encode (self.kwargs)
return ' >>> ' % (self.message, s)
_ = StructuredMessage # optional, to improve readability

def main() :
logging.basicConfig(level=logging.INFO, format=' ")
logging.info(_('message 1', set_value={1, 2, 3}, snowman='\u2603'"))

if _ name_ == '_ main_ ':
main ()

When the above script is run, it prints:

’message 1 >>> {"snowman": "\u2603", "set_value": [1, 2, 31}

Note that the order of items might be different according to the version of Python used.

20 Customizing handlers with dictConfig()

There are times when you want to customize logging handlers in particular ways, and if you use dictConfig () you
may be able to do this without subclassing. As an example, consider that you may want to set the ownership of a log file.
On POSIX, this is easily done using shutil.chown (), but the file handlers in the stdlib don’t offer built-in support.
You can customize handler creation using a plain function such as:

def owned_file_handler (filename, mode='a', encoding=None, owner=None) :
if owner:
if not os.path.exists (filename) :
open (filename, 'a').close()
shutil.chown (filename, *owner)
return logging.FileHandler (filename, mode, encoding)

You can then specify, in a logging configuration passed to dictConfig (), that a logging handler be created by calling
this function:

LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'default': {
'format': ' !
}I
}I
'handlers': {
"file':{
The values below are popped from this dictionary and
used to create the handler, set the handler's level and
its formatter.

(Rt

30

'"()': owned_file_handler,

'level':'DEBUG',

'formatter': 'default',

The values below are passed to the handler creator callable
as keyword arguments.

'owner': ['pulse', 'pulse'l],
'filename': 'chowntest.log',
'mode': 'w',
'encoding': 'utf-8',
}I
by
'root': {
'handlers': ['file'],
'level': 'DEBUG',

by

In this example I am setting the ownership using the pulse user and group, just for the purposes of illustration. Putting
it together into a working script, chowntest . py:

import logging, logging.config, os, shutil

def owned_file_handler (filename, mode='a', encoding=None, owner=None) :
if owner:
if not os.path.exists(filename) :
open (filename, 'a').close()
shutil.chown (filename, *owner)
return logging.FileHandler (filename, mode, encoding)

LOGGING = {

'version': 1,
'disable_existing_loggers': False,
'formatters': {
'default': {
'format': '$ (asctime)s % (levelname)s % (name)s % (message)s'

by
}I
'handlers': {
'file':{
The values below are popped from this dictionary and
used to create the handler, set the handler's level and
its formatter.
'()': owned_file_handler,
'level':'DEBUG',
'formatter': 'default',
The values below are passed to the handler creator callable
as keyword arguments.

'owner': ['pulse', 'pulse'l],
'filename': 'chowntest.log',
'mode': 'w',
'encoding': 'utf-8',
}I
}I
'root': {
'handlers': ['file'],
'level': 'DEBUG',
(T oarss)

31

(£ 50

by
}

logging.config.dictConfig (LOGGING)
logger = logging.getLogger ('mylogger')
logger.debug ('A debug message')

To run this, you will probably need to run as root:

$ sudo python3.3 chowntest.py

$ cat chowntest.log

2013-11-05 09:34:51,128 DEBUG mylogger A debug message

$ 1s -1 chowntest.log

-rw-r—--r—— 1 pulse pulse 55 2013-11-05 09:34 chowntest.log

Note that this example uses Python 3.3 because that’s where shutil.chown () makes an appearance. This approach
should work with any Python version that supports dictConfig () - namely, Python 2.7, 3.2 or later. With pre-3.3
versions, you would need to implement the actual ownership change using e.g. os.chown ().

In practice, the handler-creating function may be in a utility module somewhere in your project. Instead of the line in the
configuration:

"()': owned_file_handler,

you could use e.g.:

"()': 'ext://project.util.owned_file_handler',

where project.util can be replaced with the actual name of the package where the function resides. In the above
working script, using 'ext://__main__.owned_file_handler' should work. Here, the actual callable is
resolved by dictConfig () from the ext :// specification.

This example hopefully also points the way to how you could implement other types of file change - e.g. setting specific
POSIX permission bits - in the same way, using os . chmod () .

Of course, the approach could also be extended to types of handler other than a FileHandler - for example, one of
the rotating file handlers, or a different type of handler altogether.

21 Using particular formatting styles throughout your application

In Python 3.2, the Formatter gained a style keyword parameter which, while defaulting to % for backward com-
patibility, allowed the specification of { or $ to support the formatting approaches supported by str. format () and
string.Template. Note that this governs the formatting of logging messages for final output to logs, and is com-
pletely orthogonal to how an individual logging message is constructed.

Logging calls (debug (), info () etc.) only take positional parameters for the actual logging message itself, with
keyword parameters used only for determining options for how to handle the logging call (e.g. the exc_info keyword
parameter to indicate that traceback information should be logged, or the ext ra keyword parameter to indicate additional
contextual information to be added to the log). So you cannot directly make logging calls using str.format () or
string.Template syntax, because internally the logging package uses %-formatting to merge the format string and
the variable arguments. There would no changing this while preserving backward compatibility, since all logging calls
which are out there in existing code will be using %-format strings.

There have been suggestions to associate format styles with specific loggers, but that approach also runs into backward
compatibility problems because any existing code could be using a given logger name and using %-formatting.

32

For logging to work interoperably between any third-party libraries and your code, decisions about formatting need to be
made at the level of the individual logging call. This opens up a couple of ways in which alternative formatting styles can
be accommodated.

21.1 Using LogRecord factories

In Python 3.2, along with the Formatter changes mentioned above, the logging package gained the ability to allow
users to set their own LogRecord subclasses, using the set LogRecordFactory () function. You can use this to
set your own subclass of LogRecord, which does the Right Thing by overriding the getMessage () method. The
base class implementation of this method is where the msg % args formatting happens, and where you can substitute
your alternate formatting; however, you should be careful to support all formatting styles and allow %-formatting as the
default, to ensure interoperability with other code. Care should also be taken to call str (self.msg), justas the base
implementation does.

Refer to the reference documentation on set LogRecordFactory () and LogRecord for more information.

21.2 Using custom message objects

There is another, perhaps simpler way that you can use { }- and $- formatting to construct your individual log messages.
You may recall (from arbitrary-object-messages) that when logging you can use an arbitrary object as a message format
string, and that the logging package will call st r () on that object to get the actual format string. Consider the following
two classes:

class BraceMessage:
def _ _init__ (self, fmt, /, *args, **kwargs):
self.fmt = fmt
self.args = args
self.kwargs = kwargs

def str_ (self):

return self.fmt.format (*self.args, **self.kwargs)

class DollarMessage:
def __init__ (self, fmt, /, **kwargs):
self.fmt = fmt
self.kwargs = kwargs

def _ str_ (self):
from string import Template
return Template (self.fmt) .substitute (**self.kwargs)

Either of these can be used in place of a format string, to allow { }- or $-formatting to be used to build the actual “message”
part which appears in the formatted log output in place of “%(message)s” or “{message}” or “$message” . If you
find it a little unwieldy to use the class names whenever you want to log something, you can make it more palatable if you
use an alias such as M or __ for the message (or perhaps __, if you are using _ for localization).

Examples of this approach are given below. Firstly, formatting with str. format ():

>>> = BraceMessage
>>> print (__ ('Message with ', 2, 'placeholders'))
Message with 2 placeholders

>>> class Point: pass

>>> p = Point ()
>>> p.x = 0.5

(Rt

33

(£ 50

>>> p.y = 0.5
>>> print (("Message with coordinates: (,) ', point=p))
Message with coordinates: (0.50, 0.50)

Secondly, formatting with string. Template:

>>> = DollarMessage

>>> print (__('Message with $num $what', num=2, what='placeholders'))
Message with 2 placeholders

>>>

One thing to note is that you pay no significant performance penalty with this approach: the actual formatting happens
not when you make the logging call, but when (and if) the logged message is actually about to be output to a log by a
handler. So the only slightly unusual thing which might trip you up is that the parentheses go around the format string
and the arguments, not just the format string. That’ s because the __ notation is just syntax sugar for a constructor call
to one of the XXXMessage classes shown above.

22 Configuring filters with dictConfig()

You can configure filters using dictConfig (), though it might not be obvious at first glance how to do it (hence this
recipe). Since Filter is the only filter class included in the standard library, and it is unlikely to cater to many require-
ments (it’s only there as a base class), you will typically need to define your own Filter subclass with an overridden
filter () method. To do this, specify the () key in the configuration dictionary for the filter, specifying a callable
which will be used to create the filter (a class is the most obvious, but you can provide any callable which returns a
Filter instance). Here is a complete example:

import logging
import logging.config
import sys

class MyFilter (logging.Filter):
def _ _init__ (self, param=None) :
self.param = param

def filter(self, record):
if self.param is None:
allow = True

else:

allow = self.param not in record.msg
if allow:

record.msg = 'changed: ' + record.msg

return allow

LOGGING = {
'version': 1,
'filters': {
'myfilter': {
"()': MyFilter,
'param': 'noshow',

|
'handlers': {
'console': {

(R gksh)

34

(£ 50

'class': 'logging.StreamHandler',
'filters': ['myfilter']

}I

'root':
'level': 'DEBRUG',
'handlers': ['console']

}l

if name == '_ main

logging.config.dictConfig (LOGGING)
logging.debug('hello")
logging.debug('hello - noshow')

This example shows how you can pass configuration data to the callable which constructs the instance, in the form of
keyword parameters. When run, the above script will print:

changed: hello

which shows that the filter is working as configured.
A couple of extra points to note:

« If you can’t refer to the callable directly in the configuration (e.g. if it lives in a different module, and you can’t
import it directly where the configuration dictionary is), you can use the formext : // . . . asdescribed in logging-
config-dict-externalobj. For example, you could have used the text 'ext://__main__ .MyFilter' instead
of MyFilter in the above example.

* As well as for filters, this technique can also be used to configure custom handlers and formatters. See logging-
config-dict-userdef for more information on how logging supports using user-defined objects in its configuration,
and see the other cookbook recipe Customizing handlers with dictConfig() above.

23 Customized exception formatting

There might be times when you want to do customized exception formatting - for argument’s sake, let’s say you want
exactly one line per logged event, even when exception information is present. You can do this with a custom formatter
class, as shown in the following example:

import logging

class OneLineExceptionFormatter (logging.Formatter) :
def formatException(self, exc_info):

mmn

Format an exception so that it prints on a single line.

mmn

result = super (OnelineExceptionFormatter, self).formatException(exc_info)
return repr (result) # or format into one line however you want to

def format (self, record):

s = super (OnelineExceptionFormatter, self).format (record)
if record.exc_text:

s = s.replace('\n', "') + '|'
return s

(Foaks)

35

def configure_logging() :
fh = logging.FileHandler ('output.txt', 'w')
f = OnelineExceptionFormatter (' ’
fh.setFormatter (f)
root = logging.getLogger ()
root.setLevel (logging.DEBUG)
root .addHandler (fh)

def main () :
configure_logging ()
logging.info ('Sample message')

try:
x=1/0
except ZeroDivisionError as e:
logging.exception('ZeroDivisionError: ', e)
if name_ == '__main_ ':
main ()

When run, this produces a file with exactly two lines:

28/01/2015 07:21:23|INFO|Sample message |

28/01/2015 07:21:23|ERROR|ZeroDivisionError: integer division or modulo by zero]
—'Traceback (most recent call last):\n File "logtest7.py", line 30, in main\n X
—~= 1 / 0\nZeroDivisionError: integer division or modulo by zero']

While the above treatment is simplistic, it points the way to how exception information can be formatted to your liking.
The t raceback module may be helpful for more specialized needs.

24 Speaking logging messages

There might be situations when it is desirable to have logging messages rendered in an audible rather than a visible format.
This is easy to do if you have text-to-speech (TTS) functionality available in your system, even if it doesn’t have a Python
binding. Most TTS systems have a command line program you can run, and this can be invoked from a handler using
subprocess. It’s assumed here that TTS command line programs won’t expect to interact with users or take a long
time to complete, and that the frequency of logged messages will be not so high as to swamp the user with messages,
and that it’s acceptable to have the messages spoken one at a time rather than concurrently, The example implementation
below waits for one message to be spoken before the next is processed, and this might cause other handlers to be kept
waiting. Here is a short example showing the approach, which assumes that the espeak TTS package is available:

import logging
import subprocess
import sys

class TTSHandler (logging.Handler) :
def emit (self, record):

msg = self.format (record)

Speak slowly in a female English voice

cmd = ['espeak', '-s150', '-ven+£f3', msg]

p = subprocess.Popen(cmd, stdout=subprocess.PIPE,

stderr=subprocess.STDOUT)

36

(£ 50

wait for the program to finish
p.communicate ()

def configure_logging() :
h = TTSHandler ()
root = logging.getLogger ()
root .addHandler (h)
the default formatter just returns the message
root.setlLevel (logging.DEBUG)

def main () :
logging.info ('Hello")
logging.debug ('Goodbye")

if name == '_main__ ':
configure_logging ()
sys.exit (main())

When run, this script should say "Hello” and then "Goodbye” in a female voice.

The above approach can, of course, be adapted to other TTS systems and even other systems altogether which can process
messages via external programs run from a command line.

25 Buffering logging messages and outputting them conditionally

There might be situations where you want to log messages in a temporary area and only output them if a certain condition
occurs. For example, you may want to start logging debug events in a function, and if the function completes without
errors, you don’t want to clutter the log with the collected debug information, but if there is an error, you want all the
debug information to be output as well as the error.

Here is an example which shows how you could do this using a decorator for your functions where you want logging to
behave this way. It makes use of the 1logging.handlers.MemoryHandler, which allows buffering of logged
events until some condition occurs, at which point the buffered events are f1ushed - passed to another handler (the
target handler) for processing. By default, the MemoryHandler flushed when its buffer gets filled up or an event
whose level is greater than or equal to a specified threshold is seen. You can use this recipe with a more specialised
subclass of MemoryHandler if you want custom flushing behavior.

The example script has a simple function, foo, which just cycles through all the logging levels, writing to sys . stderr
to say what level it’s about to log at, and then actually logging a message at that level. You can pass a parameter to foo
which, if true, will log at ERROR and CRITICAL levels - otherwise, it only logs at DEBUG, INFO and WARNING
levels.

The script just arranges to decorate foo with a decorator which will do the conditional logging that’s required. The
decorator takes a logger as a parameter and attaches a memory handler for the duration of the call to the decorated
function. The decorator can be additionally parameterised using a target handler, a level at which flushing should occur,
and a capacity for the buffer (number of records buffered). These default to a St reamHandler which writes to sys.
stderr, logging.ERROR and 100 respectively.

Here’s the script:

import logging
from logging.handlers import MemoryHandler
import sys

logger = logging.getLogger (_ name_)

(Rt

37

logger.addHandler (logging.NullHandler ())

def log_if_errors(logger, target_handler=None, flush_level=None, capacity=None) :

if target_handler is None:
target_handler = logging.StreamHandler ()
if flush_level is None:
flush_level = logging.ERROR
if capacity is None:
capacity = 100
handler = MemoryHandler (capacity, flushLevel=flush_level,

def decorator (fn):
def wrapper (*args, **kwargs):
logger.addHandler (handler)
try:
return fn(*args, **kwargs)
except Exception:
logger.exception('call failed')
raise
finally:
super (MemoryHandler, handler) .flush()
logger.removeHandler (handler)
return wrapper

return decorator

def write_line(s):
sys.stderr.write('%s\n' % s)

def foo(fail=False):
write_line('about to log at DEBUG ...")
logger.debug ('Actually logged at DEBUG')
write_line('about to log at INFO ...")
logger.info ('Actually logged at INFO')
write_line ('about to log at WARNING ...")
logger.warning ('Actually logged at WARNING'")
if fail:
write_line ('about to log at ERROR ...")
logger.error ('Actually logged at ERROR')
write_line ('about to log at CRITICAL ...")
logger.critical ('Actually logged at CRITICAL'")
return fail

decorated_foo = log_if_errors(logger) (foo)
if _name_ == '_ main__ ':

logger.setLevel (logging.DEBUG)
write_line('Calling undecorated foo with False')
assert not foo (False)

write_line('Calling undecorated foo with True')
assert foo (True)

write_line('Calling decorated foo with False')
assert not decorated_foo (False)
write_line('Calling decorated foo with True')
assert decorated_foo (True)

target=target_handler)

When this script is run, the following output should be observed:

38

Calling undecorated foo with False
about to log at DEBUG

about to log at INFO

about to log at WARNING

Calling undecorated foo with True
about to log at DEBUG

about to log at INFO

about to log at WARNING

about to log at ERROR

about to log at CRITICAL

Calling decorated foo with False
about to log at DEBUG

about to log at INFO

about to log at WARNING

Calling decorated foo with True
about to log at DEBUG

about to log at INFO

about to log at WARNING

about to log at ERROR

Actually logged at DEBUG
Actually logged at INFO

Actually logged at WARNING
Actually logged at ERROR

about to log at CRITICAL
Actually logged at CRITICAL

As you can see, actual logging output only occurs when an event is logged whose severity is ERROR or greater, but in
that case, any previous events at lower severities are also logged.

You can of course use the conventional means of decoration:

@Qlog_if_ errors (logger)
def foo(fail=False):

26 Formatting times using UTC (GMT) via configuration

Sometimes you want to format times using UTC, which can be done using a class such as UTCFormatter, shown below:

import logging
import time

class UTCFormatter (logging.Formatter) :
converter = time.gmtime

and you can then use the UTCFormatter in your code instead of Formatter. If you want to do that via configuration,
you can use the dictConfig () API with an approach illustrated by the following complete example:

import logging
import logging.config
import time

class UTCFormatter (logging.Formatter) :
converter = time.gmtime

(Rt

39

LOGGING = {

'version': 1,
'disable_existing_loggers': False,
'formatters': {
'utc': {
'"()'": UTCFormatter,
'format': '$(asctime)s % (message)s',
Hs
'"local': {
'format': '$(asctime)s % (message)s',
t
}I
'handlers': {
'consolel': {
'class': 'logging.StreamHandler',
'formatter': 'utc',
Hs
'console2': {
'class': 'logging.StreamHandler',
'formatter': 'local',
}I
}I
'root': {
'handlers': ['consolel', 'console2'],
}
}
if _ name_ == '_ main__ ':
logging.config.dictConfig (LOGGING)
logging.warning('The local time is ¢s', time.asctime())

When this script is run, it should print something like:

2015-10-17 12:53:29,501 The local time is Sat Oct 17 13:53:29 2015
2015-10-17 13:53:29,501 The local time is Sat Oct 17 13:53:29 2015

showing how the time is formatted both as local time and UTC, one for each handler.

27 Using a context manager for selective logging

There are times when it would be useful to temporarily change the logging configuration and revert it back after doing
something. For this, a context manager is the most obvious way of saving and restoring the logging context. Here is a
simple example of such a context manager, which allows you to optionally change the logging level and add a logging
handler purely in the scope of the context manager:

import logging
import sys

class LoggingContext:
def _ _init__ (self, logger, level=None, handler=None, close=True):
self.logger = logger
self.level = level
self.handler = handler
self.close = close

(Rt

40

def _ enter_ (self):
if self.level is not None:
self.old_level = self.logger.level
self.logger.setlLevel (self.level)
if self.handler:
self.logger.addHandler (self.handler)

def _ exit_ (self, et, ev, tb):
if self.level is not None:
self.logger.setlLevel (self.old_level)
if self.handler:
self.logger.removeHandler (self.handler)
if self.handler and self.close:
self.handler.close ()
implicit return of None => don't swallow exceptions

If you specify a level value, the logger’s level is set to that value in the scope of the with block covered by the context
manager. If you specify a handler, it is added to the logger on entry to the block and removed on exit from the block.
You can also ask the manager to close the handler for you on block exit - you could do this if you don’t need the handler
any more.

To illustrate how it works, we can add the following block of code to the above:

if name_ == '_ main

logger = logging.getLogger ('foo')
logger.addHandler (logging.StreamHandler ())
logger.setlLevel (logging.INFO)
logger.info('l. This should appear just once on stderr.')
logger.debug('2. This should not appear.')
with LoggingContext (logger, level=logging.DEBUG) :
logger.debug('3. This should appear once on stderr.')
logger.debug('4. This should not appear.')
h = logging.StreamHandler (sys.stdout)
with LoggingContext (logger, level=logging.DEBUG, handler=h, close=True):
logger.debug('5. This should appear twice — once on stderr and once on stdout.

="
logger.info('6. This should appear just once on stderr.')
logger.debug('7. This should not appear.')

We initially set the logger’s level to INFO, so message #1 appears and message #2 doesn’t. We then change the level to
DEBUG temporarily in the following with block, and so message #3 appears. After the block exits, the logger’s level is
restored to INFO and so message #4 doesn’t appear. In the next with block, we set the level to DEBUG again but also
add a handler writing to sys . stdout. Thus, message #5 appears twice on the console (once via stderr and once
via stdout). After the with statement’s completion, the status is as it was before so message #6 appears (like message
#1) whereas message #7 doesn’t (just like message #2).

If we run the resulting script, the result is as follows:

$ python logctx.py

1. This should appear Jjust once on stderr.

3. This should appear once on stderr.

5. This should appear twice - once on stderr and once on stdout.
5. This should appear twice - once on stderr and once on stdout.
6. This should appear just once on stderr.

If we run it again, but pipe stderrto /dev/null, we see the following, which is the only message written to st dout:

41

$ python logctx.py 2>/dev/null
5. This should appear twice - once on stderr and once on stdout.

Once again, but piping stdout to /dev/null, we get:

$ python logctx.py >/dev/null

1. This should appear Jjust once on stderr.

3. This should appear once on stderr.

5. This should appear twice - once on stderr and once on stdout.
6. This should appear just once on stderr.

In this case, the message #5 printed to stdout doesn’t appear, as expected.

Of course, the approach described here can be generalised, for example to attach logging filters temporarily. Note that

the above code works in Python 2 as well as Python 3.

28 A CLI application starter template

Here’s an example which shows how you can:

* Use a logging level based on command-line arguments

 Dispatch to multiple subcommands in separate files, all logging at the same level in a consistent way

* Make use of simple, minimal configuration

Suppose we have a command-line application whose job is to stop, start or restart some services. This could be organised
for the purposes of illustration as a file app . py that is the main script for the application, with individual commands
implemented in start.py, stop.py and restart.py. Suppose further that we want to control the verbosity of
the application via a command-line argument, defaulting to 1ogging.INFO. Here’s one way that app . py could be

written:

import argparse
import importlib
import logging
import os

import sys

def main (args=None) :
scriptname = os.path.basename(file)
parser = argparse.ArgumentParser (scriptname)
levels = ('DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL')
parser.add_argument ('-—log-level', default='INFO', choices=levels)
subparsers = parser.add_subparsers (dest='command',
help='Available commands:"')
start_cmd = subparsers.add_parser ('start', help='Start a service')
start_cmd.add_argument ('name', metavar='NAME',
help='Name of service to start')
stop_cmd = subparsers.add_parser ('stop',
help='Stop one or more services')
stop_cmd.add_argument ('names', metavar='NAME', nargs='+',
help='Name of service to stop')
restart_cmd = subparsers.add_parser('restart',
help='Restart one or more services')
restart_cmd.add_argument ('names', metavar='NAME', nargs='+',
help='Name of service to restart')

42

(Rt

options = parser.parse_args()
the code to dispatch commands could all be in this file. For the purposes
of illustration only, we implement each command in a separate module.
try:

mod = importlib.import_module (options.command)

cmd = getattr (mod, 'command')
except (ImportError, AttributeError):

print ('Unable to find the code for command \'%s\'' % options.command)

return 1
Could get fancy here and load configuration from file or dictionary
logging.basicConfig(level=options.log_level,

format="'% (levelname)s % (name)s % (message)s')

cmd (options)

if name == '__main__':

sys.exit (main())

And the start, stop and restart commands can be implemented in separate modules, like so for starting:

start.py
import logging

logger = logging.getLogger (__name_)

def command (options) :
logger.debug ('About to start %s', options.name)
actually do the command processing here
logger.info('Started the \'%s\' service.', options.name)

and thus for stopping:

stop.py
import logging

logger = logging.getLogger (name)

def command (options) :

n = len(options.names)
if n == 1:
plural = "'
services = '"\'2s\'' % options.names[0]
else:
plural = 's'
services = ', '.Jjoin('\'¢s\'' % name for name in options.names)
i = services.rfind (', ")
services = services[:1] + ' and ' + services[i + 2:]

logger.debug ('About to stop ¢s', services)
actually do the command processing here
logger.info ('Stopped the ¢s service¢s.', services, plural)

and similarly for restarting:

restart.py
import logging

logger = logging.getLogger (_ name_)

[@iEEz3)

43

(£ 50

def command (options) :

n = len(options.names)
if n == 1:
plural = "'
services = '\'2s\'' % options.names[0]
else:
plural = 's'
services = ', '".Jjoin('\' \''" % name for name in options.names)
i = services.rfind(', ")
services = services[:1] + ' and ' + services[i + 2:]
logger.debug ('About to restart ', services)
actually do the command processing here
logger.info ('Restarted the service .', services, plural)

If we run this application with the default log level, we get output like this:

$ python app.py start foo
INFO start Started the 'foo' service.

$ python app.py stop foo bar
INFO stop Stopped the 'foo' and 'bar' services.

$ python app.py restart foo bar baz
INFO restart Restarted the 'foo', 'bar' and 'baz' services.

The first word is the logging level, and the second word is the module or package name of the place where the event was
logged.

If we change the logging level, then we can change the information sent to the log. For example, if we want more
information:

$ python app.py —--log-level DEBUG start foo
DEBUG start About to start foo
INFO start Started the 'foo' service.

$ python app.py -—-log-level DEBUG stop foo bar
DEBUG stop About to stop 'foo' and 'bar'
INFO stop Stopped the 'foo' and 'bar' services.

$ python app.py —--log-level DEBUG restart foo bar baz
DEBUG restart About to restart 'foo', 'bar' and 'baz'
INFO restart Restarted the 'foo', 'bar' and 'baz' services.

And if we want less:

$ python app.py -—-log-level WARNING start foo
$ python app.py —--log-level WARNING stop foo bar
$ python app.py --log-level WARNING restart foo bar baz

In this case, the commands don’t print anything to the console, since nothing at WARNING level or above is logged by
them.

44

sl
R

RFC
RFC 5424, 28,29
RFC 5424#section-6,28

45

	在多个模块中使用日志
	在多线程中使用日志
	使用多个日志处理器和多种格式化
	在多个地方记录日志
	日志服务器配置示例
	处理日志处理器的阻塞
	通过网络发送和接收日志
	在日志记录中添加上下文信息
	使用日志适配器传递上下文信息
	使用过滤器传递上下文信息

	从多个进程记录至单个文件
	轮换日志文件
	使用其他日志格式化方式
	Customizing LogRecord
	Subclassing QueueHandler - a ZeroMQ example
	Subclassing QueueListener - a ZeroMQ example
	An example dictionary-based configuration
	Using a rotator and namer to customize log rotation processing
	A more elaborate multiprocessing example
	Inserting a BOM into messages sent to a SysLogHandler
	Implementing structured logging
	Customizing handlers with dictConfig()
	Using particular formatting styles throughout your application
	Using LogRecord factories
	Using custom message objects

	Configuring filters with dictConfig()
	Customized exception formatting
	Speaking logging messages
	Buffering logging messages and outputting them conditionally
	Formatting times using UTC (GMT) via configuration
	Using a context manager for selective logging
	A CLI application starter template
	索引

