

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	

 |

Python 文档目录

	Python的新变化
	Python 3.7 有什么新变化
	摘要 - 发布重点

	新的特性
	PEP 563：延迟的标注求值

	PEP 538: 传统 C 区域强制转换

	PEP 540: 强制 UTF-8 运行时模式

	PEP 553: 内置的 breakpoint()

	PEP 539: 用于线程局部存储的新 C API

	PEP 562: 定制对模块属性的访问

	PEP 564: 具有纳秒级精度的新时间函数

	PEP 565: 在 __main__ 中显示 DeprecationWarning

	PEP 560: 对 typing 模块和泛型类型的核心支持

	PEP 552: 基于哈希值的 .pyc 文件

	PEP 545: Python 文档翻译

	开发运行时模式: -X dev

	其他语言特性修改

	新增模块
	contextvars

	dataclasses

	importlib.resources

	改进的模块
	argparse

	asyncio

	binascii

	calendar

	collections

	compileall

	concurrent.futures

	contextlib

	cProfile

	crypt

	datetime

	dbm

	decimal

	dis

	distutils

	enum

	functools

	gc

	hmac

	http.client

	http.server

	idlelib 与 IDLE

	importlib

	io

	ipaddress

	itertools

	locale

	logging

	math

	mimetypes

	msilib

	multiprocessing

	os

	pathlib

	pdb

	py_compile

	pydoc

	queue

	re

	signal

	socket

	socketserver

	sqlite3

	ssl

	string

	subprocess

	sys

	time

	tkinter

	tracemalloc

	types

	unicodedata

	unittest

	unittest.mock

	urllib.parse

	uu

	uuid

	warnings

	xml

	xml.etree

	xmlrpc.server

	zipapp

	zipfile

	C API 的改变

	构建的改变

	性能优化

	其他 CPython 实现的改变

	已弃用的 Python 行为

	已弃用的 Python 模块、函数和方法
	aifc

	asyncio

	collections

	dbm

	enum

	gettext

	importlib

	locale

	macpath

	threading

	socket

	ssl

	sunau

	sys

	wave

	已弃用的 C API 函数和类型

	平台支持的移除

	API 与特性的移除

	移除的模块

	Windows 专属的改变

	移植到 Python 3.7
	Python 行为的更改

	更改的Python API

	C API 中的改变

	CPython 字节码的改变

	Windows 专属的改变

	其他 CPython 实现的改变

	Python 3.7.1 中的重要变化

	Python 3.7.2 中的重要变化

	Python 3.7.6 中的重要变化

	Python 3.6 有什么新变化A
	摘要 - 发布重点

	新的特性
	PEP 498: 格式化的字符串文字

	PEP 526: 变量注释的语法

	PEP 515: 数字文字中的下划线。

	PEP 525: 异步生成器

	PEP 530: 异步推导

	PEP 487: 自定义类创建

	PEP 487: Descriptor Protocol Enhancements

	PEP 519: 添加文件系统路径协议

	PEP 495: 消除本地时间的歧义

	PEP 529: 将Windows文件系统编码更改为UTF-8

	PEP 528: 将Windows控制台编码更改为UTF-8

	PEP 520: 保留类属性定义顺序

	PEP 468: 保留关键字参数顺序

	新的 dict 实现

	PEP 523: 向CPython 添加框架评估API

	PYTHONMALLOC 环境变量

	DTrace 和 SystemTap 探测支持

	其他语言特性修改

	新增模块
	secrets

	改进的模块
	array

	ast

	asyncio

	binascii

	cmath

	collections

	concurrent.futures

	contextlib

	datetime

	decimal

	distutils

	email

	encodings

	enum

	faulthandler

	fileinput

	hashlib

	http.client

	idlelib 与 IDLE

	importlib

	inspect

	json

	logging

	math

	multiprocessing

	os

	pathlib

	pdb

	pickle

	pickletools

	pydoc

	random

	re

	readline

	rlcompleter

	shlex

	site

	sqlite3

	socket

	socketserver

	ssl

	statistics

	struct

	subprocess

	sys

	telnetlib

	time

	timeit

	tkinter

	回溯

	tracemalloc

	typing

	unicodedata

	unittest.mock

	urllib.request

	urllib.robotparser

	venv

	warnings

	winreg

	winsound

	xmlrpc.client

	zipfile

	zlib

	性能优化

	构建和 C API 的改变

	其他改进

	弃用
	新关键字

	已弃用的 Python 行为

	已弃用的 Python 模块、函数和方法
	asynchat

	asyncore

	dbm

	distutils

	grp

	importlib

	os

	re

	ssl

	tkinter

	venv

	已弃用的 C API 函数和类型

	弃用的构建选项

	移除
	API 与特性的移除

	移植到Python 3.6
	 'python' 命令行为的变化

	更改的Python API

	C API 中的改变

	CPython 字节码的改变

	Python 3.6.2 中的重要变化
	New make regen-all build target

	Removal of make touch build target

	Python 3.6.4 中的重要变化

	Python 3.6.5 中的重要变化

	Python 3.6.7 中的重要变化

	Python 3.6.10 中的重要变化

	Python 3.5 有什么新变化
	摘要 - 发布重点

	新的特性
	PEP 492 - 使用 async 和 await 语法实现协程

	PEP 465 - 用于矩阵乘法的专用中缀运算符

	PEP 448 - Additional Unpacking Generalizations

	PEP 461 - percent formatting support for bytes and bytearray

	PEP 484 - 类型提示

	PEP 471 - os.scandir() function -- a better and faster directory iterator

	PEP 475: Retry system calls failing with EINTR

	PEP 479: Change StopIteration handling inside generators

	PEP 485: A function for testing approximate equality

	PEP 486: Make the Python Launcher aware of virtual environments

	PEP 488: Elimination of PYO files

	PEP 489: Multi-phase extension module initialization

	其他语言特性修改

	新增模块
	typing

	zipapp

	改进的模块
	argparse

	asyncio

	bz2

	cgi

	cmath

	code

	collections

	collections.abc

	compileall

	concurrent.futures

	configparser

	contextlib

	csv

	curses

	dbm

	difflib

	distutils

	doctest

	email

	enum

	faulthandler

	functools

	glob

	gzip

	heapq

	http

	http.client

	idlelib 与 IDLE

	imaplib

	imghdr

	importlib

	inspect

	io

	ipaddress

	json

	linecache

	locale

	logging

	lzma

	math

	multiprocessing

	operator

	os

	pathlib

	pickle

	poplib

	re

	readline

	selectors

	shutil

	signal

	smtpd

	smtplib

	sndhdr

	socket

	ssl
	Memory BIO Support

	Application-Layer Protocol Negotiation Support

	Other Changes

	sqlite3

	subprocess

	sys

	sysconfig

	tarfile

	threading

	time

	timeit

	tkinter

	回溯

	types

	unicodedata

	unittest

	unittest.mock

	urllib

	wsgiref

	xmlrpc

	xml.sax

	zipfile

	其他模块级更改

	性能优化

	构建和 C API 的改变

	弃用
	新关键字

	已弃用的 Python 行为

	不支持的操作系统

	已弃用的 Python 模块、函数和方法

	移除
	API 与特性的移除

	移植到Python 3.5
	Python 行为的改变

	更改的Python API

	C API 中的改变

	Python 3.5.4 的显著变化
	New make regen-all build target

	Removal of make touch build target

	Python 3.4 有什么新变化
	摘要 - 发布重点

	新的特性
	PEP 453: Explicit Bootstrapping of PIP in Python Installations
	Bootstrapping pip By Default

	文档更改

	PEP 446: Newly Created File Descriptors Are Non-Inheritable

	Improvements to Codec Handling

	PEP 451: A ModuleSpec Type for the Import System

	其他语言特性修改

	新增模块
	asyncio

	ensurepip

	enum

	pathlib

	selectors

	statistics

	tracemalloc

	改进的模块
	abc

	aifc

	argparse

	audioop

	base64

	collections

	colorsys

	contextlib

	dbm

	dis

	doctest

	email

	filecmp

	functools

	gc

	glob

	hashlib

	hmac

	html

	http

	idlelib 与 IDLE

	importlib

	inspect

	ipaddress

	logging

	marshal

	mmap

	multiprocessing

	operator

	os

	pdb

	pickle

	plistlib

	poplib

	pprint

	pty

	pydoc

	re

	resource

	select

	shelve

	shutil

	smtpd

	smtplib

	socket

	sqlite3

	ssl

	stat

	struct

	subprocess

	sunau

	sys

	tarfile

	textwrap

	threading

	回溯

	types

	urllib

	unittest

	venv

	wave

	weakref

	xml.etree

	zipfile

	CPython Implementation Changes
	PEP 445: Customization of CPython Memory Allocators

	PEP 442: Safe Object Finalization

	PEP 456: Secure and Interchangeable Hash Algorithm

	PEP 436: Argument Clinic

	Other Build and C API Changes

	其他改进

	Significant Optimizations

	弃用
	Deprecations in the Python API

	Deprecated Features

	移除
	不再支持的操作系统

	API 与特性的移除

	Code Cleanups

	移植到 Python 3.4
	 'python' 命令行为的变化

	更改的Python API

	C API 中的改变

	3.4.3 的变化
	PEP 476: Enabling certificate verification by default for stdlib http clients

	Python 3.3 有什么新变化
	摘要 - 发布重点

	PEP 405: 虚拟环境

	PEP 420: 隐式命名空间包

	PEP 3118: 新的内存视图实现和缓冲协议文档
	相关特性

	API changes

	PEP 393: 灵活的字符串表示
	Functionality

	Performance and resource usage

	PEP 397: 适用于Windows的Python启动器

	PEP 3151: 重写 OS 和 IO 异常的层次结构

	PEP 380: 委托给子生成器的语法

	PEP 409: 清除异常上下文

	PEP 414: 显式的Unicode文本

	PEP 3155: 类和函数的限定名称

	PEP 412: Key-Sharing Dictionary

	PEP 362: 函数签名对象

	PEP 421: 添加 sys.implementation
	SimpleNamespace

	Using importlib as the Implementation of Import
	New APIs

	Visible Changes

	其他语言特性修改

	A Finer-Grained Import Lock

	Builtin functions and types

	新增模块
	faulthandler

	ipaddress

	lzma

	改进的模块
	abc

	array

	base64

	binascii

	bz2

	codecs

	collections

	contextlib

	crypt

	curses

	datetime

	decimal
	相关特性

	API changes

	email
	Policy Framework

	Provisional Policy with New Header API

	Other API Changes

	ftplib

	functools

	gc

	hmac

	http

	html

	imaplib

	inspect

	io

	itertools

	logging

	math

	mmap

	multiprocessing

	nntplib

	os

	pdb

	pickle

	pydoc

	re

	sched

	select

	shlex

	shutil

	signal

	smtpd

	smtplib

	socket

	socketserver

	sqlite3

	ssl

	stat

	struct

	subprocess

	sys

	tarfile

	tempfile

	textwrap

	threading

	time

	types

	unittest

	urllib

	webbrowser

	xml.etree.ElementTree

	zlib

	性能优化

	构建和 C API 的改变

	弃用
	不支持的操作系统

	已弃用的 Python 模块、函数和方法

	已弃用的 C API 函数和类型

	弃用的功能

	移植到 Python 3.3
	Porting Python code

	Porting C code

	Building C extensions

	Command Line Switch Changes

	Python 3.2 有什么新变化
	PEP 384: 定义稳定的ABI

	PEP 389: Argparse 命令行解析模块

	PEP 391: 基于字典的日志配置

	PEP 3148: concurrent.futures 模块

	PEP 3147: PYC 仓库目录

	PEP 3149: ABI Version Tagged .so Files

	PEP 3333: Python Web服务器网关接口v1.0.1

	其他语言特性修改

	新增，改进和弃用的模块
	email

	elementtree

	functools

	itertools

	collections

	threading

	datetime 和 time

	math

	abc

	io

	reprlib

	logging

	csv

	contextlib

	decimal and fractions

	ftp

	popen

	select

	gzip 和 zipfile

	tarfile

	hashlib

	ast

	os

	shutil

	sqlite3

	html

	socket

	ssl

	nntp

	certificates

	imaplib

	http.client

	unittest

	random

	poplib

	asyncore

	tempfile

	inspect

	pydoc

	dis

	dbm

	ctypes

	site

	sysconfig

	pdb

	configparser

	urllib.parse

	mailbox

	turtledemo

	多线程

	性能优化

	Unicode

	编解码器

	文档

	IDLE

	代码库

	构建和 C API 的改变

	移植到 Python 3.2

	Python 3.1 有什么新变化
	PEP 372: 有序字典

	PEP 378: 千位分隔符的格式说明符

	其他语言特性修改

	新增，改进和弃用的模块

	性能优化

	IDLE

	构建和 C API 的改变

	移植到 Python 3.1

	Python 3.0 有什么新变化
	常见的绊脚石
	Print Is A Function

	Views And Iterators Instead Of Lists

	Ordering Comparisons

	整数

	Text Vs. Data Instead Of Unicode Vs. 8-bit

	Overview Of Syntax Changes
	新语法

	修改的语法

	移除的语法

	Changes Already Present In Python 2.6

	Library Changes

	PEP 3101: A New Approach To String Formatting

	Changes To Exceptions

	Miscellaneous Other Changes
	Operators And Special Methods

	Builtins

	构建和 C API 的改变

	性能

	移植 Python 3.0

	Python 2.7 有什么新变化
	Python 2.x的未来

	Changes to the Handling of Deprecation Warnings

	Python 3.1 Features

	PEP 372: Adding an Ordered Dictionary to collections

	PEP 378: 千位分隔符的格式说明符

	PEP 389: The argparse Module for Parsing Command Lines

	PEP 391: Dictionary-Based Configuration For Logging

	PEP 3106: Dictionary Views

	PEP 3137: The memoryview Object

	其他语言特性修改
	Interpreter Changes

	性能优化

	新增和改进的模块
	新模块：importlib

	新模块：sysconfig

	ttk: Themed Widgets for Tk

	更新的模块：unittest

	更新的模块：ElementTree 1.3

	构建和 C API 的改变
	胶囊

	特定于端口的更改：Windows

	特定于端口的更改：Mac OS X

	特定于 FreeBSD 的更改：

	Other Changes and Fixes

	移植到 Python 2.7

	New Features Added to Python 2.7 Maintenance Releases
	Two new environment variables for debug mode

	PEP 434: IDLE Enhancement Exception for All Branches

	PEP 466: Network Security Enhancements for Python 2.7

	PEP 477: Backport ensurepip (PEP 453) to Python 2.7
	Bootstrapping pip By Default

	文档更改

	PEP 476: Enabling certificate verification by default for stdlib http clients

	PEP 493：适用于Python 2.7 的HTTPS验证迁移工具

	New make regen-all build target

	Removal of make touch build target

	致谢

	Python 2.6 有什么新变化
	Python 3.0

	开发过程的变化
	New Issue Tracker: Roundup

	新的文档格式：使用 Sphinx 的 reStructuredText

	PEP 343: "with" 语句
	Writing Context Managers

	contextlib 模块

	PEP 366: 从主模块显式相对导入

	PEP 370: 分用户的 site-packages 目录

	PEP 371: 多任务处理包

	PEP 3101: 高级字符串格式

	PEP 3105: print 改为函数

	PEP 3110: 异常处理的变更

	PEP 3112: 字节字面值

	PEP 3116: 新 I/O 库

	PEP 3118: 修改缓冲区协议

	PEP 3119: 抽象基类

	PEP 3127: 整型文字支持和语法

	PEP 3129: 类装饰器

	PEP 3141: A Type Hierarchy for Numbers
	fractions 模块

	其他语言特性修改
	性能优化

	Interpreter Changes

	新增和改进的模块
	ast 模块

	future_builtins 模块

	The json module: JavaScript Object Notation

	plistlib 模块：属性列表解析器

	ctypes Enhancements

	Improved SSL Support

	Deprecations and Removals

	构建和 C API 的改变
	特定于端口的更改：Windows

	特定于端口的更改：Mac OS X

	特定于端口的更改：IRIX

	移植到Python 2.6

	致谢

	Python 2.5 有什么新变化
	PEP 308: 条件表达式

	PEP 309: 部分功能应用

	PEP 314: Python软件包的元数据 v1.1

	PEP 328: 绝对导入和相对导入

	PEP 338: 将模块作为脚本执行

	PEP 341: 统一 try/except/finally

	PEP 342: 生成器的新特性

	PEP 343: "with" 语句
	Writing Context Managers

	contextlib 模块

	PEP 352: 异常作为新型的类

	PEP 353: 使用ssize_t作为索引类型

	PEP 357: '__index__' 方法

	其他语言特性修改
	交互解释器变更

	性能优化

	新增，改进和删除的模块
	ctypes 包

	ElementTree 包

	hashlib 包

	sqlite3 包

	wsgiref 包

	构建和 C API 的改变
	Port-Specific Changes

	移植到Python 2.5

	致谢

	Python 2.4 有什么新变化
	PEP 218: 内置集合对象

	PEP 237: 统一长整数和整数

	PEP 289: 生成器表达式

	PEP 292: Simpler String Substitutions

	PEP 318: Decorators for Functions and Methods

	PEP 322: 反向迭代

	PEP 324: 新的子进程模块

	PEP 327: 十进数据类型
	为什么需要十进制？

	Decimal 类型

	Context 类型

	PEP 328: 多行导入

	PEP 331: Locale-Independent Float/String Conversions

	其他语言特性修改
	性能优化

	新增，改进和弃用的模块
	cookielib

	doctest

	构建和 C API 的改变
	Port-Specific Changes

	移植到 Python 2.4

	致谢

	Python 2.3 有什么新变化
	PEP 218: A Standard Set Datatype

	PEP 255: Simple Generators

	PEP 263: Source Code Encodings

	PEP 273: 从ZIP压缩包导入模块

	PEP 277: Unicode file name support for Windows NT

	PEP 278: 通用换行支持

	PEP 279: enumerate()

	PEP 282: logging 包

	PEP 285: 布尔类型

	PEP 293: Codec Error Handling Callbacks

	PEP 301: Distutils的软件包索引和元数据

	PEP 302: New Import Hooks

	PEP 305: 逗号分隔文件

	PEP 307: Pickle Enhancements

	扩展切片

	其他语言特性修改
	String Changes

	性能优化

	新增，改进和弃用的模块
	Date/Time 类型

	optparse 模块

	Pymalloc: A Specialized Object Allocator

	构建和 C API 的改变
	Port-Specific Changes

	Other Changes and Fixes

	移植到 Python 2.3

	致谢

	Python 2.2 有什么新变化
	概述

	PEPs 252 and 253: Type and Class Changes
	Old and New Classes

	Descriptors

	Multiple Inheritance: The Diamond Rule

	Attribute Access

	Related Links

	PEP 234: Iterators

	PEP 255: Simple Generators

	PEP 237: 统一长整数和整数

	PEP 238: Changing the Division Operator

	Unicode Changes

	PEP 227: Nested Scopes

	新增和改进的模块

	Interpreter Changes and Fixes

	Other Changes and Fixes

	致谢

	Python 2.1 有什么新变化
	概述

	PEP 227: Nested Scopes

	PEP 236: __future__ Directives

	PEP 207: Rich Comparisons

	PEP 230: Warning Framework

	PEP 229: New Build System

	PEP 205: Weak References

	PEP 232: Function Attributes

	PEP 235: Importing Modules on Case-Insensitive Platforms

	PEP 217: Interactive Display Hook

	PEP 208: New Coercion Model

	PEP 241: Metadata in Python Packages

	新增和改进的模块

	Other Changes and Fixes

	致谢

	Python 2.0 有什么新变化
	概述

	What About Python 1.6?

	新开发流程

	Unicode

	列表推导式

	Augmented Assignment

	字符串的方法

	Garbage Collection of Cycles

	其他核心变化
	Minor Language Changes

	Changes to Built-in Functions

	移植 Python 2.0

	扩展/嵌入更改

	Distutils：使模块易于安装

	XML 模块
	SAX2 Support

	DOM Support

	Relationship to PyXML

	模块更改

	新增模块

	IDLE 改进

	删除和弃用的模块

	致谢

	更新日志
	Python 下一版
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	IDLE

	工具/示例

	C API

	Python 3.7.7 final
	库

	文档

	Python 3.7.7 release candidate 1
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	IDLE

	Python 3.7.6 final
	macOS

	Python 3.7.6 release candidate 1
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	IDLE

	工具/示例

	C API

	Python 3.7.5 final
	库

	Windows

	Python 3.7.5 release candidate 1
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	IDLE

	工具/示例

	Python 3.7.4 final
	核心与内置

	文档

	Python 3.7.4 release candidate 2
	安全

	核心与内置

	库

	Windows

	macOS

	Python 3.7.4 release candidate 1
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	IDLE

	工具/示例

	C API

	Python 3.7.3 最终版

	Python 3.7.3 发布候选版 1
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	IDLE

	工具/示例

	C API

	Python 3.7.2 最终版
	库

	构建

	C API

	Python 3.7.2 发布候选版 1
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	IDLE

	工具/示例

	C API

	Python 3.7.1 最终版
	库

	Python 3.7.1 RC 2版本
	核心与内置

	库

	文档

	测试

	macOS

	C API

	Python 3.7.1 发布候选版 1
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	IDLE

	工具/示例

	C API

	Python 3.7.0 正式版
	库

	C API

	Python 3.7.0 release candidate 1
	核心与内置

	库

	文档

	构建

	Windows

	IDLE

	Python 3.7.0 beta 5
	核心与内置

	库

	文档

	测试

	构建

	macOS

	IDLE

	Python 3.7.0 beta 4
	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	IDLE

	工具/示例

	Python 3.7.0 beta 3
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	IDLE

	工具/示例

	C API

	Python 3.7.0 beta 2
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	IDLE

	工具/示例

	Python 3.7.0 beta 1
	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	C API

	Python 3.7.0 alpha 4
	核心与内置

	库

	文档

	测试

	Windows

	工具/示例

	C API

	Python 3.7.0 alpha 3
	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	IDLE

	工具/示例

	C API

	Python 3.7.0 alpha 2
	核心与内置

	库

	文档

	构建

	IDLE

	C API

	Python 3.7.0 alpha 1
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	IDLE

	工具/示例

	C API

	Python 3.6.6 正式版

	Python 3.6.6 RC 1
	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	IDLE

	工具/示例

	C API

	Python 3.6.5 正式版
	测试

	构建

	Python 3.6.5 rc1
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	IDLE

	工具/示例

	C API

	Python 3.6.4 正式版

	Python 3.6.4 rc1
	核心与内置

	库

	文档

	测试

	构建

	Windows

	macOS

	IDLE

	工具/示例

	C API

	Python 3.6.3 正式版
	库

	构建

	Python 3.6.3 rc1
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	IDLE

	工具/示例

	Python 3.6.2 正式版

	Python 3.6.2 rc2
	安全

	Python 3.6.2 rc1
	核心与内置

	库

	安全

	库

	IDLE

	C API

	构建

	文档

	工具/示例

	测试

	Windows

	Python 3.6.1 正式版
	核心与内置

	构建

	Python 3.6.1 rc1
	核心与内置

	库

	IDLE

	Windows

	C API

	文档

	测试

	构建

	Python 3.6.0 正式版

	Python 3.6.0 rc2
	核心与内置

	工具/示例

	Windows

	构建

	Python 3.6.0 rc1
	核心与内置

	库

	C API

	文档

	工具/示例

	Python 3.6.0 beta 4
	核心与内置

	库

	文档

	测试

	构建

	Python 3.6.0 beta 3
	核心与内置

	库

	Windows

	构建

	测试

	Python 3.6.0 beta 2
	核心与内置

	库

	Windows

	C API

	构建

	测试

	Python 3.6.0 beta 1
	核心与内置

	库

	IDLE

	C API

	测试

	构建

	工具/示例

	Windows

	Python 3.6.0 alpha 4
	核心与内置

	库

	IDLE

	测试

	Windows

	构建

	Python 3.6.0 alpha 3
	核心与内置

	库

	安全

	库

	安全

	库

	IDLE

	C API

	构建

	工具/示例

	文档

	测试

	Python 3.6.0 alpha 2
	核心与内置

	库

	安全

	库

	安全

	库

	IDLE

	文档

	测试

	Windows

	构建

	Windows

	C API

	工具/示例

	Python 3.6.0 alpha 1
	核心与内置

	库

	安全

	库

	安全

	库

	安全

	库

	IDLE

	文档

	测试

	构建

	Windows

	工具/示例

	C API

	Python 3.5.5 正式版

	Python 3.5.5 rc1
	安全

	核心与内置

	库

	Python 3.5.4 正式版
	库

	Python 3.5.4 rc1
	安全

	核心与内置

	库

	文档

	测试

	构建

	Windows

	C API

	Python 3.5.3 正式版

	Python 3.5.3 rc1
	核心与内置

	库

	安全

	库

	安全

	库

	IDLE

	C API

	文档

	测试

	工具/示例

	Windows

	构建

	Python 3.5.2 正式版
	核心与内置

	测试

	IDLE

	Python 3.5.2 rc1
	核心与内置

	安全

	库

	安全

	库

	安全

	库

	安全

	库

	安全

	库

	IDLE

	文档

	测试

	构建

	Windows

	工具/示例

	Windows

	Python 3.5.1 正式版
	核心与内置

	Windows

	Python 3.5.1 rc1
	核心与内置

	库

	IDLE

	文档

	测试

	构建

	Windows

	工具/示例

	Python 3.5.0 正式版
	构建

	Python 3.5.0 rc4
	库

	构建

	Python 3.5.0 rc3
	核心与内置

	库

	Python 3.5.0 rc2
	核心与内置

	库

	Python 3.5.0 rc1
	核心与内置

	库

	IDLE

	文档

	测试

	Python 3.5.0 beta 4
	核心与内置

	库

	构建

	Python 3.5.0 beta 3
	核心与内置

	库

	测试

	文档

	构建

	Python 3.5.0 beta 2
	核心与内置

	库

	Python 3.5.0 beta 1
	核心与内置

	库

	IDLE

	测试

	文档

	工具/示例

	Python 3.5.0 alpha 4
	核心与内置

	库

	构建

	测试

	工具/示例

	C API

	Python 3.5.0 alpha 3
	核心与内置

	库

	构建

	测试

	工具/示例

	Python 3.5.0 alpha 2
	核心与内置

	库

	构建

	C API

	Windows

	Python 3.5.0 alpha 1
	核心与内置

	库

	IDLE

	构建

	C API

	文档

	测试

	工具/示例

	Windows

	Python 教程
	1. 课前甜点

	2. 使用 Python 解释器
	2.1. 调用解释器
	2.1.1. 传入参数

	2.1.2. 交互模式

	2.2. 解释器的运行环境
	2.2.1. 源文件的字符编码

	3. Python 的非正式介绍
	3.1. Python 作为计算器使用
	3.1.1. 数字

	3.1.2. 字符串

	3.1.3. 列表

	3.2. 走向编程的第一步

	4. 其他流程控制工具
	4.1. if 语句

	4.2. for 语句

	4.3. range() 函数

	4.4. break 和 continue 语句，以及循环中的 else 子句

	4.5. pass 语句

	4.6. 定义函数

	4.7. 函数定义的更多形式
	4.7.1. 参数默认值

	4.7.2. 关键字参数

	4.7.3. 任意的参数列表

	4.7.4. 解包参数列表

	4.7.5. Lambda 表达式

	4.7.6. 文档字符串

	4.7.7. 函数标注

	4.8. 小插曲：编码风格

	5. 数据结构
	5.1. 列表的更多特性
	5.1.1. 列表作为栈使用

	5.1.2. 列表作为队列使用

	5.1.3. 列表推导式

	5.1.4. 嵌套的列表推导式

	5.2. del 语句

	5.3. 元组和序列

	5.4. 集合

	5.5. 字典

	5.6. 循环的技巧

	5.7. 深入条件控制

	5.8. 比较序列和其他类型

	6. 模块
	6.1. 更多有关模块的信息
	6.1.1. 以脚本的方式执行模块

	6.1.2. 模块搜索路径

	6.1.3. “编译过的”Python文件

	6.2. 标准模块

	6.3. dir() 函数

	6.4. 包
	6.4.1. 从包中导入 *

	6.4.2. 子包参考

	6.4.3. 多个目录中的包

	7. 输入输出
	7.1. 更漂亮的输出格式
	7.1.1. 格式化字符串文字

	7.1.2. 字符串的 format() 方法

	7.1.3. 手动格式化字符串

	7.1.4. 旧的字符串格式化方法

	7.2. 读写文件
	7.2.1. 文件对象的方法

	7.2.2. 使用 json 保存结构化数据

	8. 错误和异常
	8.1. 语法错误

	8.2. 异常

	8.3. 处理异常

	8.4. 抛出异常

	8.5. 用户自定义异常

	8.6. 定义清理操作

	8.7. 预定义的清理操作

	9. 类
	9.1. 名称和对象

	9.2. Python 作用域和命名空间
	9.2.1. 作用域和命名空间示例

	9.3. 初探类
	9.3.1. 类定义语法

	9.3.2. 类对象

	9.3.3. 实例对象

	9.3.4. 方法对象

	9.3.5. 类和实例变量

	9.4. 补充说明

	9.5. 继承
	9.5.1. 多重继承

	9.6. 私有变量

	9.7. 杂项说明

	9.8. 迭代器

	9.9. 生成器

	9.10. 生成器表达式

	10. 标准库简介
	10.1. 操作系统接口

	10.2. 文件通配符

	10.3. 命令行参数

	10.4. 错误输出重定向和程序终止

	10.5. 字符串模式匹配

	10.6. 数学

	10.7. 互联网访问

	10.8. 日期和时间

	10.9. 数据压缩

	10.10. 性能测量

	10.11. 质量控制

	10.12. 自带电池

	11. 标准库简介 —— 第二部分
	11.1. 格式化输出

	11.2. 模板

	11.3. 使用二进制数据记录格式

	11.4. 多线程

	11.5. 日志记录

	11.6. 弱引用

	11.7. 用于操作列表的工具

	11.8. 十进制浮点运算

	12. 虚拟环境和包
	12.1. 概述

	12.2. 创建虚拟环境

	12.3. 使用pip管理包

	13. 接下来？

	14. 交互式编辑和编辑历史
	14.1. Tab 补全和编辑历史

	14.2. 默认交互式解释器的替代品

	15. 浮点算术：争议和限制
	15.1. 表示性错误

	16. 附录
	16.1. 交互模式
	16.1.1. 错误处理

	16.1.2. 可执行的Python脚本

	16.1.3. 交互式启动文件

	16.1.4. 定制模块

	Python安装和使用
	1. 命令行与环境
	1.1. 命令行
	1.1.1. 接口选项

	1.1.2. 通用选项

	1.1.3. 其他选项

	1.1.4. 不应当使用的选项

	1.2. 环境变量
	1.2.1. 调试模式变量

	2. 在类Unix环境下使用Python
	2.1. 获得并安装Python的最新版本
	2.1.1. 在Linux中

	2.1.2. 在FreeBSD和OpenBSD上

	2.1.3. 在OpenSolaris系统上

	2.2. 构建Python

	2.3. 与Python相关的路径和文件

	2.4. 杂项

	3. 在Windows上使用 Python
	3.1. 完整安装程序
	3.1.1. 安装步骤

	3.1.2. 删除 MAX_PATH 限制

	3.1.3. 无UI 安装

	3.1.4. 免下载安装

	3.1.5. 修改安装

	3.2. Microsoft Store包
	3.2.1. 已知的问题

	3.3. nuget.org 安装包

	3.4. 可嵌入的包
	3.4.1. Python应用程序

	3.4.2. 嵌入Python

	3.5. 替代捆绑包

	3.6. 配置Python
	3.6.1. 附录：设置环境变量

	3.6.2. 查找Python可执行文件

	3.7. UTF-8 模式

	3.8. 适用于Windows的Python启动器
	3.8.1. 入门
	3.8.1.1. 从命令行

	3.8.1.2. 从虚拟环境

	3.8.1.3. 从脚本

	3.8.1.4. 从文件关联

	3.8.2. Shebang Lines

	3.8.3. shebang lines 的参数

	3.8.4. 自定义
	3.8.4.1. 通过INI文件自定义

	3.8.4.2. 自定义默认的Python版本

	3.8.5. 诊断

	3.9. 查找模块

	3.10. 附加模块
	3.10.1. PyWin32

	3.10.2. cx_Freeze

	3.10.3. WConio

	3.11. 在Windows上编译Python

	3.12. 其他平台

	4. 在苹果系统上使用 Python
	4.1. 获取和安装 MacPython
	4.1.1. 如何运行 Python 脚本

	4.1.2. 运行有图形界面的脚本

	4.1.3. 配置

	4.2. IDE

	4.3. 安装额外的 Python 包

	4.4. Mac 上的图形界面编程

	4.5. 在 Mac 上分发 Python 应用程序

	4.6. 其他资源

	5. 编辑器和集成开发环境

	Python语言参考
	1. 概述
	1.1. 其他实现

	1.2. 标注

	2. 词法分析
	2.1. 行结构
	2.1.1. 逻辑行

	2.1.2. 物理行

	2.1.3. 注释

	2.1.4. 编码声明

	2.1.5. 显式的行拼接

	2.1.6. 隐式的行拼接

	2.1.7. 空白行

	2.1.8. 缩进

	2.1.9. 形符之间的空白

	2.2. 其他形符

	2.3. 标识符和关键字
	2.3.1. 关键字

	2.3.2. 保留的标识符类

	2.4. 字面值
	2.4.1. 字符串和字节串字面值

	2.4.2. 字符串字面值拼接

	2.4.3. 格式化字符串字面值

	2.4.4. 数字字面值

	2.4.5. 整型数字面值

	2.4.6. 浮点数字面值

	2.4.7. 虚数字面值

	2.5. 运算符

	2.6. 分隔符

	3. 数据模型
	3.1. 对象、值与类型

	3.2. 标准类型层级结构

	3.3. 特殊方法名称
	3.3.1. 基本定制

	3.3.2. 自定义属性访问
	3.3.2.1. 自定义模块属性访问

	3.3.2.2. 实现描述器

	3.3.2.3. 发起调用描述器

	3.3.2.4. __slots__
	3.3.2.4.1. 使用 __slots__ 的注意事项

	3.3.3. 自定义类创建
	3.3.3.1. 元类

	3.3.3.2. 解析 MRO 条目

	3.3.3.3. 确定适当的元类

	3.3.3.4. 准备类命名空间

	3.3.3.5. 执行类主体

	3.3.3.6. 创建类对象

	3.3.3.7. 元类的作用

	3.3.4. 自定义实例及子类检查

	3.3.5. 模拟泛型类型

	3.3.6. 模拟可调用对象

	3.3.7. 模拟容器类型

	3.3.8. 模拟数字类型

	3.3.9. with 语句上下文管理器

	3.3.10. 特殊方法查找

	3.4. 协程
	3.4.1. 可等待对象

	3.4.2. 协程对象

	3.4.3. 异步迭代器

	3.4.4. 异步上下文管理器

	4. 执行模型
	4.1. 程序的结构

	4.2. 命名与绑定
	4.2.1. 名称的绑定

	4.2.2. 名称的解析

	4.2.3. 内置命名空间和受限的执行

	4.2.4. 与动态特性的交互

	4.3. 异常

	5. 导入系统
	5.1. importlib

	5.2. 包
	5.2.1. 常规包

	5.2.2. 命名空间包

	5.3. 搜索
	5.3.1. 模块缓存

	5.3.2. 查找器和加载器

	5.3.3. 导入钩子

	5.3.4. 元路径

	5.4. 加载
	5.4.1. 加载器

	5.4.2. 子模块

	5.4.3. 模块规格说明

	5.4.4. 导入相关的模块属性

	5.4.5. module.__path__

	5.4.6. 模块的 repr

	5.4.7. 已缓存字节码的失效

	5.5. 基于路径的查找器
	5.5.1. 路径条目查找器

	5.5.2. 路径条目查找器协议

	5.6. 替换标准导入系统

	5.7. 包相对导入

	5.8. 有关 __main__ 的特殊事项
	5.8.1. __main__.__spec__

	5.9. 开放问题项

	5.10. 参考文献

	6. 表达式
	6.1. 算术转换

	6.2. 原子
	6.2.1. 标识符（名称）

	6.2.2. 字面值

	6.2.3. 带圆括号的形式

	6.2.4. 列表、集合与字典的显示

	6.2.5. 列表显示

	6.2.6. 集合显示

	6.2.7. 字典显示

	6.2.8. 生成器表达式

	6.2.9. yield 表达式
	6.2.9.1. 生成器-迭代器的方法

	6.2.9.2. 例子

	6.2.9.3. 异步生成器函数

	6.2.9.4. 异步生成器-迭代器方法

	6.3. 原型
	6.3.1. 属性引用

	6.3.2. 抽取

	6.3.3. 切片

	6.3.4. 调用

	6.4. await 表达式

	6.5. 幂运算符

	6.6. 一元算术和位运算

	6.7. 二元算术运算符

	6.8. 移位运算

	6.9. 二元位运算

	6.10. 比较运算
	6.10.1. 值比较

	6.10.2. 成员检测运算

	6.10.3. 标识号比较

	6.11. 布尔运算

	6.12. 条件表达式

	6.13. lambda 表达式

	6.14. 表达式列表

	6.15. 求值顺序

	6.16. 运算符优先级

	7. 简单语句
	7.1. 表达式语句

	7.2. 赋值语句
	7.2.1. 增强赋值语句

	7.2.2. 带标注的赋值语句

	7.3. assert 语句

	7.4. pass 语句

	7.5. del 语句

	7.6. return 语句

	7.7. yield 语句

	7.8. raise 语句

	7.9. break 语句

	7.10. continue 语句

	7.11. import 语句
	7.11.1. future 语句

	7.12. global 语句

	7.13. nonlocal 语句

	8. 复合语句
	8.1. if 语句

	8.2. while 语句

	8.3. for 语句

	8.4. try 语句

	8.5. with 语句

	8.6. 函数定义

	8.7. 类定义

	8.8. 协程
	8.8.1. 协程函数定义

	8.8.2. async for 语句

	8.8.3. async with 语句

	9. 最高层级组件
	9.1. 完整的 Python 程序

	9.2. 文件输入

	9.3. 交互式输入

	9.4. 表达式输入

	10. 完整的语法规范

	Python 标准库
	概述
	可用性注释

	内置函数

	内置常量
	由 site 模块添加的常量

	内置类型
	逻辑值检测

	布尔运算 --- and, or, not

	比较运算

	数字类型 --- int, float, complex
	整数类型的按位运算

	整数类型的附加方法

	浮点类型的附加方法

	数字类型的哈希运算

	迭代器类型
	生成器类型

	序列类型 --- list, tuple, range
	通用序列操作

	不可变序列类型

	可变序列类型

	列表

	元组

	range 对象

	文本序列类型 --- str
	字符串的方法

	printf 风格的字符串格式化

	二进制序列类型 --- bytes, bytearray, memoryview
	bytes 对象

	bytearray 对象

	bytes 和 bytearray 操作

	printf 风格的字节串格式化

	内存视图

	集合类型 --- set, frozenset

	映射类型 --- dict
	字典视图对象

	上下文管理器类型

	其他内置类型
	模块

	类与类实例

	函数

	方法

	代码对象

	类型对象

	空对象

	省略符对象

	未实现对象

	布尔值

	内部对象

	特殊属性

	内置异常
	基类

	具体异常
	OS 异常

	警告

	异常层次结构

	文本处理服务
	string --- 常见的字符串操作
	字符串常量

	自定义字符串格式化

	格式字符串语法
	格式规格迷你语言

	格式示例

	模板字符串

	辅助函数

	re --- 正则表达式操作
	正则表达式语法

	模块内容

	正则表达式对象 （正则对象）

	匹配对象

	正则表达式例子
	检查对子

	模拟 scanf()

	search() vs. match()

	建立一个电话本

	文字整理

	找到所有副词

	找到所有副词和位置

	原始字符记法

	写一个词法分析器

	difflib --- 计算差异的辅助工具
	SequenceMatcher 对象

	SequenceMatcher 的示例

	Differ 对象

	Differ 示例

	difflib 的命令行接口

	textwrap --- 文本自动换行与填充

	unicodedata --- Unicode 数据库

	stringprep --- 因特网字符串预备

	readline --- GNU readline 接口
	初始化文件

	行缓冲区

	历史文件

	历史列表

	启动钩子

	Completion

	示例

	rlcompleter --- GNU readline 的补全函数
	Completer 对象

	二进制数据服务
	struct --- 将字节串解读为打包的二进制数据
	函数和异常

	格式字符串
	字节顺序，大小和对齐方式

	格式字符

	例子

	类

	codecs --- 编解码器注册和相关基类
	编解码器基类
	错误处理方案

	无状态的编码和解码

	增量式的编码和解码
	IncrementalEncoder 对象

	IncrementalDecoder 对象

	流式的编码和解码
	StreamWriter 对象

	StreamReader 对象

	StreamReaderWriter 对象

	StreamRecoder 对象

	编码格式与 Unicode

	标准编码

	Python 专属的编码格式
	文字编码

	二进制转换

	文字转换

	encodings.idna --- 应用程序中的国际化域名

	encodings.mbcs --- Windows ANSI代码页

	encodings.utf_8_sig --- 带BOM签名的UTF-8编解码器

	数据类型
	datetime --- 基本的日期和时间类型
	有效的类型

	timedelta 类对象

	date 对象

	datetime 对象

	time 对象

	tzinfo 对象

	timezone 对象

	strftime() 和 strptime() 的行为

	calendar --- 日历相关函数

	collections --- 容器数据类型
	ChainMap 对象
	ChainMap 例子和方法

	Counter 对象

	deque 对象
	deque 用法

	defaultdict 对象
	defaultdict 例子

	namedtuple() 命名元组的工厂函数

	OrderedDict 对象
	OrderedDict 例子和用法

	UserDict 对象

	UserList 对象

	UserString 对象

	collections.abc --- 容器的抽象基类
	容器抽象基类

	heapq --- 堆队列算法
	基本示例

	优先队列实现说明

	理论

	bisect --- 数组二分查找算法
	搜索有序列表

	其他示例

	array --- 高效的数值数组

	weakref --- 弱引用
	弱引用对象

	示例

	终结器对象

	比较终结器与 __del__() 方法

	types --- 动态类型创建和内置类型名称
	动态类型创建

	标准解释器类型

	附加工具类和函数

	协程工具函数

	copy --- 浅层 (shallow) 和深层 (deep) 复制操作

	pprint --- 数据美化输出
	PrettyPrinter 对象

	示例

	reprlib --- 另一种 repr() 实现
	Repr 对象

	子类化 Repr 对象

	enum --- 枚举类型支持
	模块内容

	创建一个 Enum

	对枚举成员及其属性的程序化访问

	复制枚举成员和值

	确保唯一的枚举值

	使用自动设定的值

	迭代

	比较运算

	允许的枚举成员和属性

	受限的 Enum 子类化

	封存

	可用 API

	派生的枚举
	IntEnum

	IntFlag

	标志

	其他事项

	有趣的示例
	省略值
	使用 auto

	使用 object

	使用描述性字符串

	使用自定义的 __new__()

	OrderedEnum

	DuplicateFreeEnum

	Planet

	TimePeriod

	各种枚举有何区别？
	枚举类

	枚举成员（即实例）

	细节要点
	支持 __dunder__ 名称

	支持的 _sunder_ 名称

	Enum 成员类型

	Enum 类和成员的布尔值

	带有方法的 Enum 类

	组合 Flag 的成员

	数字和数学模块
	numbers --- 数字的抽象基类
	数字的层次

	类型接口注释。
	加入更多数字的ABC

	实现算数运算

	math --- 数学函数
	数论与表示函数

	幂函数与对数函数

	三角函数

	角度转换

	双曲函数

	特殊函数

	常量

	cmath ——关于复数的数学函数
	到极坐标和从极坐标的转换

	幂函数与对数函数

	三角函数

	双曲函数

	分类函数

	常量

	decimal --- 十进制定点和浮点运算
	快速入门教程

	Decimal 对象
	逻辑操作数

	Context 对象

	常量

	舍入模式

	信号

	浮点数说明
	通过提升精度来缓解舍入误差

	特殊的值

	使用线程

	例程

	Decimal FAQ

	fractions --- 分数

	random --- 生成伪随机数
	簿记功能

	整数用函数

	序列用函数

	实值分布

	替代生成器

	关于再现性的说明

	例子和配方

	statistics --- 数学统计函数
	平均值以及对中心位置的评估

	对分散程度的评估

	函数细节

	异常

	函数式编程模块
	itertools --- 为高效循环而创建迭代器的函数
	Itertool函数

	Itertools食谱

	functools --- 高阶函数和可调用对象上的操作
	partial 对象

	operator --- 标准运算符替代函数
	将运算符映射到函数

	原地操作

	文件和目录访问
	pathlib --- 面向对象的文件系统路径
	基础使用

	纯路径
	通用性质

	运算符

	访问个别部分

	方法和特征属性

	具体路径
	方法

	对应的 os 模块的工具

	os.path --- 常见路径操作

	fileinput --- 迭代来自多个输入流的行

	stat --- 解析 stat() 结果

	filecmp --- 文件及目录的比较
	dircmp 类

	tempfile --- 生成临时文件和目录
	例子

	已弃用的函数和变量

	glob --- Unix 风格路径名模式扩展

	fnmatch --- Unix 文件名模式匹配

	linecache --- 随机读写文本行

	shutil --- 高阶文件操作
	目录和文件操作
	copytree 示例

	rmtree 示例

	归档操作
	归档程序示例

	使用 base_dir 的归档程序示例

	查询输出终端的尺寸

	macpath --- Mac OS 9 路径操作函数

	数据持久化
	pickle —— Python 对象序列化
	与其他 Python 模块间的关系
	与 marshal 间的关系

	与 json 模块的比较

	数据流格式

	模块接口

	可以被打包/解包的对象

	打包类实例
	持久化外部对象

	Dispatch 表

	处理有状态的对象

	限制全局变量

	性能

	例子

	copyreg --- 注意 pickle 支持函数
	示例

	shelve --- Python 对象持久化
	限制

	示例

	marshal --- 内部 Python 对象序列化

	dbm --- Unix "数据库" 接口
	dbm.gnu --- GNU 对 dbm 的重解析

	dbm.ndbm --- 基于 ndbm 的接口

	dbm.dumb --- 便携式 DBM 实现

	sqlite3 --- SQLite 数据库 DB-API 2.0 接口模块
	模块函数和常量

	连接对象（Connection）

	Cursor 对象

	行对象*Row*

	异常

	SQLite 与 Python 类型
	概述

	使用适配器将额外的 Python 类型保存在 SQLite 数据库中。
	让对象自行调整

	注册可调用的适配器

	将SQLite 值转换为自定义Python 类型

	默认适配器和转换器

	控制事务

	有效使用 sqlite3
	使用快捷方式

	通过名称而不是索引访问索引

	使用连接作为上下文管理器

	常见问题
	多线程

	数据压缩和存档
	zlib --- 与 gzip 兼容的压缩

	gzip --- 对 gzip 格式的支持
	用法示例

	bz2 --- 对 bzip2 压缩算法的支持
	文件压缩和解压

	增量压缩和解压

	一次性压缩或解压

	用法示例

	lzma --- 用 LZMA 算法压缩
	读写压缩文件

	在内存中压缩和解压缩数据

	杂项

	指定自定义的过滤器链

	例子

	zipfile --- 使用ZIP存档
	ZipFile 对象

	PyZipFile 对象

	ZipInfo 对象

	命令行界面
	命令行选项

	tarfile --- 读写tar归档文件
	TarFile 对象

	TarInfo 对象

	命令行界面
	命令行选项

	例子

	受支持的 tar 格式

	Unicode 问题

	文件格式
	csv --- CSV 文件读写
	模块内容

	变种与格式参数

	Reader 对象

	Writer 对象

	例子

	configparser --- 配置文件解析器
	快速起步

	支持的数据类型

	回退值

	受支持的 INI 文件结构

	值的插入

	映射协议访问

	定制解析器行为

	旧式 API 示例

	ConfigParser 对象

	RawConfigParser 对象

	异常

	netrc --- netrc 文件处理
	netrc 对象

	xdrlib --- 编码与解码 XDR 数据
	Packer 对象

	Unpacker 对象

	异常

	plistlib --- 生成与解析 Mac OS X .plist 文件
	例子

	加密服务
	hashlib --- 安全哈希与消息摘要
	哈希算法

	SHAKE 可变长度摘要

	密钥派生

	BLAKE2
	创建哈希对象

	常量

	例子
	简单哈希

	使用不同的摘要大小

	密钥哈希

	随机哈希

	个性化

	树形模式

	开发人员

	hmac --- 基于密钥的消息验证

	secrets --- 生成安全随机数字用于管理密码
	随机数

	生成凭据
	凭据应当使用多少个字节？

	其他功能

	应用技巧与最佳实践

	通用操作系统服务
	os --- 操作系统接口模块
	文件名，命令行参数，以及环境变量。

	进程参数

	创建文件对象

	文件描述符操作
	查询终端的尺寸

	文件描述符的继承

	文件和目录
	Linux 扩展属性

	进程管理

	调度器接口

	其他系统信息

	随机数

	io --- 处理流的核心工具
	概述
	文本 I/O

	二进制 I/O

	原始 I/O

	高阶模块接口
	内存中的流

	类的层次结构
	I/O 基类

	原始文件 I/O

	缓冲流

	文本 I/O

	性能
	二进制 I/O

	文本 I/O

	多线程

	可重入性

	time --- 时间的访问和转换
	函数

	Clock ID 常量

	时区常量

	argparse --- 命令行选项、参数和子命令解析器
	示例
	创建一个解析器

	添加参数

	解析参数

	ArgumentParser 对象
	prog

	usage

	描述

	epilog

	parents

	formatter_class

	prefix_chars

	fromfile_prefix_chars

	argument_default

	allow_abbrev

	conflict_handler

	add_help

	add_argument() 方法
	name or flags

	action

	nargs

	const

	默认值

	type -- 类型

	choices

	required

	help

	metavar

	dest

	Action 类

	parse_args() 方法
	选项值语法

	无效的参数

	包含 - 的参数

	参数缩写（前缀匹配）

	在 sys.argv 以外

	命名空间对象

	其它实用工具
	子命令

	FileType 对象

	参数组

	互斥

	解析器默认值

	打印帮助

	部分解析

	自定义文件解析

	退出方法

	混合解析

	升级 optparse 代码

	getopt --- C 风格的命令行选项解析器

	模块 logging --- Python 的日志记录工具
	Logger 对象

	日志级别

	处理器对象

	格式器对象

	Filter 对象

	LogRecord 属性

	LogRecord 属性

	LoggerAdapter 对象

	线程安全

	模块级别函数

	模块级属性

	与警告模块集成

	logging.config --- 日志记录配置
	配置函数

	Configuration dictionary schema
	Dictionary Schema Details

	Incremental Configuration

	Object connections

	User-defined objects

	Access to external objects

	Access to internal objects

	Import resolution and custom importers

	Configuration file format

	logging.handlers --- 日志处理
	StreamHandler

	FileHandler

	NullHandler

	WatchedFileHandler

	BaseRotatingHandler

	RotatingFileHandler

	TimedRotatingFileHandler

	SocketHandler

	DatagramHandler

	SysLogHandler

	NTEventLogHandler

	SMTPHandler

	MemoryHandler

	HTTPHandler

	QueueHandler

	QueueListener

	getpass --- 便携式密码输入工具

	curses --- 终端字符单元显示的处理
	函数

	Window Objects

	常量

	curses.textpad --- Text input widget for curses programs
	文本框对象

	curses.ascii --- Utilities for ASCII characters

	curses.panel --- A panel stack extension for curses
	函数

	Panel Objects

	platform --- 获取底层平台的标识数据
	跨平台

	Java平台

	Windows平台
	Win95/98 specific

	Mac OS平台

	Unix Platforms

	errno --- Standard errno system symbols

	ctypes --- Python 的外部函数库
	ctypes 教程
	载入动态连接库

	操作导入的动态链接库中的函数

	调用函数

	基础数据类型

	调用函数，继续

	使用自定义的数据类型调用函数

	Specifying the required argument types (function prototypes)

	Return types

	Passing pointers (or: passing parameters by reference)

	Structures and unions

	Structure/union alignment and byte order

	Bit fields in structures and unions

	Arrays

	Pointers

	Type conversions

	Incomplete Types

	Callback functions

	Accessing values exported from dlls

	Surprises

	Variable-sized data types

	ctypes reference
	Finding shared libraries

	Loading shared libraries

	Foreign functions

	Function prototypes

	Utility functions

	Data types

	基础数据类型

	Structured data types

	Arrays and pointers

	并发执行
	threading --- 基于线程的并行
	线程本地数据

	线程对象

	锁对象

	递归锁对象

	条件对象

	信号量对象
	Semaphore 例子

	事件对象

	定时器对象

	栅栏对象

	在 with 语句中使用锁、条件和信号量

	multiprocessing --- 基于进程的并行
	概述
	Process 类

	上下文和启动方法

	在进程之间交换对象

	进程之间的同步

	在进程之间共享状态

	使用工作进程

	参考
	Process 和异常

	管道和队列

	杂项

	连接对象（Connection）

	同步原语

	共享 ctypes 对象
	multiprocessing.sharedctypes 模块

	数据管理器
	自定义管理器

	使用远程管理器

	代理对象
	清理

	进程池

	监听者及客户端
	地址格式

	认证密码

	日志记录

	multiprocessing.dummy 模块

	编程指导
	所有启动方法

	spawn 和 forkserver 启动方式

	例子

	concurrent 包

	concurrent.futures --- 启动并行任务
	执行器对象

	线程池执行器
	ThreadPoolExecutor 例子

	进程池执行器
	ProcessPoolExecutor 例子

	期程对象

	模块函数

	Exception类

	subprocess --- 子进程管理
	使用 subprocess 模块
	常用参数

	Popen 构造函数

	异常

	安全考量

	Popen 对象

	Windows Popen 助手
	Windows 常数

	Older high-level API

	Replacing Older Functions with the subprocess Module
	Replacing /bin/sh shell backquote

	Replacing shell pipeline

	Replacing os.system()

	Replacing the os.spawn family

	Replacing os.popen(), os.popen2(), os.popen3()

	Replacing functions from the popen2 module

	Legacy Shell Invocation Functions

	注释
	Converting an argument sequence to a string on Windows

	sched --- 事件调度器
	调度器对象

	queue --- 一个同步的队列类
	Queue对象

	SimpleQueue 对象

	_thread --- 底层多线程 API

	_dummy_thread --- _thread 的替代模块

	dummy_threading --- 可直接替代 threading 模块。

	contextvars --- Context Variables
	Context Variables

	Manual Context Management

	asyncio support

	网络和进程间通信
	asyncio --- 异步 I/O
	协程与任务
	协程

	可等待对象

	运行 asyncio 程序

	创建任务

	休眠

	并发运行任务

	屏蔽取消操作

	超时

	简单等待

	来自其他线程的日程安排

	内省

	Task 对象

	基于生成器的协程

	流
	StreamReader

	StreamWriter

	例子
	TCP echo client using streams

	TCP echo server using streams

	Get HTTP headers

	Register an open socket to wait for data using streams

	Synchronization Primitives
	Lock

	Event

	Condition

	Semaphore

	BoundedSemaphore

	子进程集
	Creating Subprocesses

	常量

	Interacting with Subprocesses
	Subprocess and Threads

	例子

	队列集
	队列

	优先级队列

	后进先出队列

	异常

	例子

	异常

	事件循环
	事件循环方法集
	运行和停止循环

	调度回调

	调度延迟回调

	创建 Futures 和 Tasks

	打开网络连接

	创建网络服务

	传输文件

	TLS 升级

	监控文件描述符

	直接使用 socket 对象

	DNS

	使用管道

	Unix 信号

	在线程或者进程池中执行代码。

	错误处理API

	开启调试模式

	运行子进程

	回调处理

	Server Objects

	事件循环实现

	例子
	call_soon() 的 Hello World 示例。

	使用 call_later() 来展示当前的日期

	监控一个文件描述符的读事件

	为SIGINT和SIGTERM设置信号处理器

	Futures
	Future 函数

	Future 对象

	传输和协议
	传输
	传输层级

	基础传输

	只读传输

	只写传输

	数据报传输

	子进程传输

	协议
	基础协议

	基础协议

	流协议

	缓冲流协议

	数据报协议

	子进程协议

	例子
	TCP回应服务器

	TCP回应客户端

	UDP回应服务器

	UDP回应客户端

	链接已存在的套接字

	loop.subprocess_exec() and SubprocessProtocol

	策略
	获取和设置策略

	策略对象

	进程监视器

	自定义策略

	平台支持
	所有平台

	Windows
	Windows的子进程支持

	macOS

	高级API索引
	任务

	队列集

	子进程集

	流

	同步

	异常

	底层API目录
	获取事件循环

	事件循环方法集

	传输

	协议

	事件循环策略

	用 asyncio 开发
	Debug 模式

	并发性和多线程

	运行阻塞的代码

	日志记录

	检测 never-awaited 协同程序

	检测就再也没异常

	socket --- 底层网络接口
	套接字协议族

	模块内容
	异常

	常量

	函数
	创建套接字

	其他功能

	套接字对象

	关于套接字超时的说明
	超时与 connect 方法

	超时与 accept 方法

	示例

	ssl --- 套接字对象的TLS/SSL封装
	Functions, Constants, and Exceptions
	Socket creation

	上下文创建

	异常

	Random generation

	Certificate handling

	常量

	SSL Sockets

	SSL Contexts

	Certificates
	Certificate chains

	CA certificates

	Combined key and certificate

	Self-signed certificates

	例子
	Testing for SSL support

	Client-side operation

	Server-side operation

	Notes on non-blocking sockets

	Memory BIO Support

	SSL session

	Security considerations
	Best defaults

	Manual settings
	Verifying certificates

	Protocol versions

	Cipher selection

	Multi-processing

	TLS 1.3

	LibreSSL support

	select --- Waiting for I/O 完成
	/dev/poll 轮询对象

	边缘触发和水平触发的轮询 (epoll) 对象

	Poll 对象

	Kqueue 对象

	Kevent 对象

	selectors --- 高级 I/O 复用库
	概述

	类

	例子

	asyncore --- 异步socket处理器
	asyncore Example basic HTTP client

	asyncore Example basic echo server

	asynchat --- 异步 socket 指令/响应 处理器
	asynchat Example

	signal --- 设置异步事件处理程序
	一般规则
	执行 Python 信号处理程序

	信号与线程

	模块内容

	示例

	Note on SIGPIPE

	mmap --- 内存映射文件支持

	互联网数据处理
	email --- 电子邮件与 MIME 处理包
	email.message: Representing an email message

	email.parser: Parsing email messages
	FeedParser API

	Parser API

	Additional notes

	email.generator: Generating MIME documents

	email.policy: Policy Objects

	email.errors: 异常和缺陷类

	email.headerregistry: Custom Header Objects

	email.contentmanager: Managing MIME Content
	Content Manager Instances

	email: 示例

	email.message.Message: Representing an email message using the compat32 API

	email.mime: Creating email and MIME objects from scratch

	email.header: Internationalized headers

	email.charset: Representing character sets

	email.encoders: 编码器

	email.utils: 其他工具

	email.iterators: 迭代器

	json --- JSON 编码和解码器
	基本使用

	编码器和解码器

	异常

	标准符合性和互操作性
	字符编码

	Infinite 和 NaN 数值。

	对象中的重复名称

	顶级非对象，非数组值

	实现限制

	命令行界面
	命令行选项

	mailcap --- Mailcap 文件处理

	mailbox --- Manipulate mailboxes in various formats
	Mailbox 对象
	Maildir

	mbox

	MH

	Babyl

	MMDF

	Message objects
	MaildirMessage

	mboxMessage

	MHMessage

	BabylMessage

	MMDFMessage

	异常

	例子

	mimetypes --- Map filenames to MIME types
	MimeTypes Objects

	base64 --- Base16, Base32, Base64, Base85 数据编码

	binhex --- 对binhex4文件进行编码和解码
	注释

	binascii --- 二进制和 ASCII 码互转

	quopri --- 编码与解码经过 MIME 转码的可打印数据

	uu --- 对 uuencode 文件进行编码与解码

	结构化标记处理工具
	html --- 超文本标记语言支持

	html.parser --- 简单的 HTML 和 XHTML 解析器
	HTML 解析器的示例程序

	HTMLParser 方法

	例子

	html.entities --- HTML 一般实体的定义

	XML处理模块
	XML 漏洞

	defusedxml 和 defusedexpat 软件包

	xml.etree.ElementTree --- ElementTree XML API
	教程
	XML树和元素

	解析XML

	Pull API进行非阻塞解析

	寻找有趣的元素

	修改XML文件

	构建XML文档

	使用命名空间解析XML

	其他资源

	XPath支持
	示例

	支持的XPath语法

	参考
	函数

	XInclude 支持
	示例

	参考
	函数

	元素对象

	ElementTree 对象

	QName Objects

	TreeBuilder Objects

	XMLParser对象

	XMLPullParser对象

	异常

	xml.dom --- The Document Object Model API
	模块内容

	Objects in the DOM
	DOMImplementation Objects

	节点对象

	节点列表对象

	文档类型对象

	文档对象

	元素对象

	Attr 对象

	NamedNodeMap 对象

	注释对象

	Text 和 CDATASection 对象

	ProcessingInstruction 对象

	异常

	一致性
	类型映射

	Accessor Methods

	xml.dom.minidom --- Minimal DOM implementation
	DOM Objects

	DOM Example

	minidom and the DOM standard

	xml.dom.pulldom --- Support for building partial DOM trees
	DOMEventStream Objects

	xml.sax --- Support for SAX2 parsers
	SAXException Objects

	xml.sax.handler --- Base classes for SAX handlers
	ContentHandler 对象

	DTDHandler 对象

	EntityResolver 对象

	ErrorHandler 对象

	xml.sax.saxutils --- SAX 工具集

	xml.sax.xmlreader --- Interface for XML parsers
	XMLReader 对象

	IncrementalParser 对象

	Locator 对象

	InputSource 对象

	The Attributes Interface

	The AttributesNS Interface

	xml.parsers.expat --- Fast XML parsing using Expat
	XMLParser对象

	ExpatError Exceptions

	示例

	Content Model Descriptions

	Expat error constants

	互联网协议和支持
	webbrowser --- 方便的Web浏览器控制器
	浏览器控制器对象

	cgi --- Common Gateway Interface support
	概述

	使用cgi模块。

	Higher Level Interface

	函数

	Caring about security

	Installing your CGI script on a Unix system

	Testing your CGI script

	Debugging CGI scripts

	Common problems and solutions

	cgitb --- 用于 CGI 脚本的回溯管理器

	wsgiref --- WSGI Utilities and Reference Implementation
	wsgiref.util -- WSGI environment utilities

	wsgiref.headers -- WSGI response header tools

	wsgiref.simple_server -- a simple WSGI HTTP server

	wsgiref.validate --- WSGI conformance checker

	wsgiref.handlers -- server/gateway base classes

	例子

	urllib --- URL 处理模块

	urllib.request --- 用于打开 URL 的可扩展库
	Request 对象

	OpenerDirector 对象

	BaseHandler 对象

	HTTPRedirectHandler 对象

	HTTPCookieProcessor 对象

	ProxyHandler 对象

	HTTPPasswordMgr 对象

	HTTPPasswordMgrWithPriorAuth 对象

	AbstractBasicAuthHandler 对象

	HTTPBasicAuthHandler 对象

	ProxyBasicAuthHandler 对象

	AbstractDigestAuthHandler 对象

	HTTPDigestAuthHandler 对象

	ProxyDigestAuthHandler 对象

	HTTPHandler 对象

	HTTPSHandler 对象

	FileHandler 对象

	DataHandler 对象

	FTPHandler 对象

	CacheFTPHandler 对象

	UnknownHandler 对象

	HTTPErrorProcessor 对象

	例子

	Legacy interface

	urllib.request Restrictions

	urllib.response --- urllib 使用的 Response 类

	urllib.parse --- Parse URLs into components
	URL 解析

	解析ASCII编码字节

	结构化解析结果

	URL Quoting

	urllib.error --- urllib.request 引发的异常类

	urllib.robotparser --- robots.txt 语法分析程序

	http --- HTTP 模块
	HTTP 状态码

	http.client --- HTTP 协议客户端
	HTTPConnection 对象

	HTTPResponse 对象

	例子

	HTTPMessage Objects

	ftplib --- FTP 协议客户端
	FTP Objects

	FTP_TLS Objects

	poplib --- POP3 protocol client
	POP3 Objects

	POP3 Example

	imaplib --- IMAP4 protocol client
	IMAP4 Objects

	IMAP4 Example

	nntplib --- NNTP protocol client
	NNTP Objects
	Attributes

	方法

	Utility functions

	smtplib ---SMTP协议客户端
	SMTP Objects

	SMTP Example

	smtpd --- SMTP 服务器
	SMTPServer 对象

	DebuggingServer 对象

	PureProxy对象

	MailmanProxy 对象

	SMTPChannel 对象

	telnetlib --- Telnet client
	Telnet Objects

	Telnet Example

	uuid --- UUID objects according to RFC 4122
	示例

	socketserver --- A framework for network servers
	Server Creation Notes

	Server Objects

	Request Handler Objects

	例子
	socketserver.TCPServer Example

	socketserver.UDPServer Example

	Asynchronous Mixins

	http.server --- HTTP 服务器

	http.cookies --- HTTP状态管理
	Cookie 对象

	Morsel 对象

	示例

	http.cookiejar —— HTTP 客户端的 Cookie 处理
	CookieJar 和 FileCookieJar 对象

	FileCookieJar subclasses and co-operation with web browsers

	CookiePolicy 对象

	DefaultCookiePolicy 对象

	Cookie 对象

	例子

	xmlrpc --- XMLRPC 服务端与客户端模块

	xmlrpc.client --- XML-RPC client access
	ServerProxy 对象

	DateTime 对象

	Binary 对象

	Fault 对象

	ProtocolError 对象

	MultiCall 对象

	Convenience Functions

	Example of Client Usage

	Example of Client and Server Usage

	xmlrpc.server --- Basic XML-RPC servers
	SimpleXMLRPCServer Objects
	SimpleXMLRPCServer Example

	CGIXMLRPCRequestHandler

	Documenting XMLRPC server

	DocXMLRPCServer Objects

	DocCGIXMLRPCRequestHandler

	ipaddress --- IPv4/IPv6 manipulation library
	Convenience factory functions

	IP Addresses
	Address objects

	Conversion to Strings and Integers

	运算符
	Comparison operators

	Arithmetic operators

	IP Network definitions
	Prefix, net mask and host mask

	Network objects

	运算符
	Logical operators

	迭代

	Networks as containers of addresses

	Interface objects
	运算符
	Logical operators

	Other Module Level Functions

	Custom Exceptions

	多媒体服务
	audioop --- Manipulate raw audio data

	aifc --- Read and write AIFF and AIFC files

	sunau --- 读写 Sun AU 文件
	AU_read 对象

	AU_write 对象

	wave --- 读写WAV格式文件
	Wave_read对象

	Wave_write 对象

	chunk --- 读取 IFF 分块数据

	colorsys --- 颜色系统间的转换

	imghdr --- 推测图像类型

	sndhdr --- 推测声音文件的类型

	ossaudiodev --- Access to OSS-compatible audio devices
	Audio Device Objects

	Mixer Device Objects

	国际化
	gettext --- 多语种国际化服务
	GNU gettext API

	Class-based API
	The NullTranslations class

	The GNUTranslations class

	Solaris message catalog support

	The Catalog constructor

	Internationalizing your programs and modules
	Localizing your module

	Localizing your application

	Changing languages on the fly

	Deferred translations

	致谢

	locale --- 国际化服务
	Background, details, hints, tips and caveats

	For extension writers and programs that embed Python

	Access to message catalogs

	程序框架
	turtle --- 海龟绘图
	概述

	可用的 Turtle 和 Screen 方法概览
	Turtle 方法

	TurtleScreen/Screen 方法

	RawTurtle/Turtle 方法和对应函数
	海龟动作

	获取海龟的状态

	度量单位设置

	画笔控制
	绘图状态

	颜色控制

	填充

	更多绘图控制

	海龟状态
	可见性

	外观

	使用事件

	特殊海龟方法

	复合形状

	TurtleScreen/Screen 方法及对应函数
	窗口控制

	动画控制

	使用屏幕事件

	输入方法

	设置与特殊方法

	Screen 专有方法, 而非继承自 TurtleScreen

	公共类

	帮助与配置
	如何使用帮助

	文档字符串翻译为不同的语言

	如何配置 Screen 和 Turtle

	turtledemo --- 演示脚本集

	Python 2.6 之后的变化

	Python 3.0 之后的变化

	cmd --- 支持面向行的命令解释器
	Cmd 对象

	Cmd 例子

	shlex --- Simple lexical analysis
	shlex Objects

	Parsing Rules

	Improved Compatibility with Shells

	Tk图形用户界面(GUI)
	tkinter --- Tcl/Tk的Python接口
	Tkinter 模块

	Tkinter Life Preserver
	How To Use This Section

	A Simple Hello World Program

	A (Very) Quick Look at Tcl/Tk

	Mapping Basic Tk into Tkinter

	How Tk and Tkinter are Related

	Handy Reference
	Setting Options

	The Packer

	Packer Options

	Coupling Widget Variables

	The Window Manager

	Tk Option Data Types

	Bindings and Events

	The index Parameter

	Images

	File Handlers

	tkinter.ttk --- Tk主题小部件
	使用 Ttk

	Ttk 部件

	控件
	标准选项

	可滚动控件选项

	标签选项

	兼容性选项

	控件状态

	ttk.Widget

	组合框
	选项

	虚拟事件

	ttk.Combobox

	Spinbox
	选项

	虚拟事件

	ttk.Spinbox

	笔记本
	选项

	Tab 选项

	Tab Identifiers

	Virtual Events

	ttk.Notebook

	Progressbar
	选项

	ttk.Progressbar

	Separator
	选项

	Sizegrip
	Platform-specific notes

	Bugs

	Treeview
	选项

	Item Options

	Tag Options

	Column Identifiers

	Virtual Events

	ttk.Treeview

	Ttk Styling
	Layouts

	tkinter.tix --- Extension widgets for Tk
	Using Tix

	Tix Widgets
	Basic Widgets

	File Selectors

	Hierarchical ListBox

	Tabular ListBox

	Manager Widgets

	Image Types

	Miscellaneous Widgets

	Form Geometry Manager

	Tix Commands

	tkinter.scrolledtext --- 滚动文字控件

	IDLE
	目录
	文件目录 （命令行和编辑器）

	编辑目录（命令行和编辑器）

	格式菜单（仅 window 编辑器）

	运行菜单（仅 window 编辑器）

	Shell 菜单（仅 window 编辑器）

	调试菜单（仅 window 编辑器）

	选项菜单（命令行和编辑器）

	Window 菜单（命令行和编辑器）

	帮助菜单（命令行和编辑器）

	上下文菜单

	编辑和导航
	编辑窗口

	按键绑定

	自动缩进

	完成

	提示

	代码上下文

	Python Shell 窗口

	文本颜色

	启动和代码执行
	命令行语法

	启动失败

	运行用户代码

	Shell中的用户输出

	开发 tkinter 应用程序

	在没有子进程的情况下运行

	帮助和偏好
	帮助资源

	偏好设定

	macOS 上的IDLE

	扩展

	其他图形用户界面（GUI）包

	开发工具
	typing --- 类型标注支持
	类型别名

	NewType

	Callable

	泛型(Generic)

	用户定义的泛型类型

	Any 类型

	类,函数和修饰器.

	pydoc --- 文档生成器和在线帮助系统

	doctest --- 测试交互性的Python示例
	简单用法：检查Docstrings中的示例

	Simple Usage: Checking Examples in a Text File

	How It Works
	Which Docstrings Are Examined?

	How are Docstring Examples Recognized?

	What's the Execution Context?

	What About Exceptions?

	Option Flags

	Directives

	警告

	Basic API

	Unittest API

	Advanced API
	DocTest 对象

	Example Objects

	DocTestFinder 对象

	DocTestParser 对象

	DocTestRunner 对象

	OutputChecker 对象

	调试

	Soapbox

	unittest --- 单元测试框架
	基本实例

	命令行界面
	命令行选项

	探索性测试

	组织你的测试代码

	复用已有的测试代码

	跳过测试与预计的失败

	Distinguishing test iterations using subtests

	类与函数
	测试用例
	Deprecated aliases

	Grouping tests

	Loading and running tests
	load_tests Protocol

	Class and Module Fixtures
	setUpClass and tearDownClass

	setUpModule and tearDownModule

	Signal Handling

	unittest.mock --- 模拟对象库
	快速上手

	The Mock Class
	Calling

	Deleting Attributes

	Mock names and the name attribute

	Attaching Mocks as Attributes

	The patchers
	patch

	patch.object

	patch.dict

	patch.multiple

	patch methods: start and stop

	patch builtins

	TEST_PREFIX

	Nesting Patch Decorators

	Where to patch

	Patching Descriptors and Proxy Objects

	MagicMock and magic method support
	Mocking Magic Methods

	Magic Mock

	Helpers
	sentinel

	DEFAULT

	call

	create_autospec

	ANY

	FILTER_DIR

	mock_open

	Autospeccing

	Sealing mocks

	unittest.mock 上手指南
	使用 mock
	模拟方法调用

	对象上的方法调用的 mock

	Mocking Classes

	Naming your mocks

	Tracking all Calls

	Setting Return Values and Attributes

	Raising exceptions with mocks

	Side effect functions and iterables

	Creating a Mock from an Existing Object

	Patch Decorators

	Further Examples
	Mocking chained calls

	Partial mocking

	Mocking a Generator Method

	Applying the same patch to every test method

	Mocking Unbound Methods

	Checking multiple calls with mock

	Coping with mutable arguments

	Nesting Patches

	Mocking a dictionary with MagicMock

	Mock subclasses and their attributes

	Mocking imports with patch.dict

	Tracking order of calls and less verbose call assertions

	More complex argument matching

	2to3 - 自动将 Python 2 代码转为 Python 3 代码
	使用 2to3

	修复器

	lib2to3 —— 2to3 支持库

	test --- Python回归测试包
	Writing Unit Tests for the test package

	Running tests using the command-line interface

	test.support --- Utilities for the Python test suite

	test.support.script_helper --- Utilities for the Python execution tests

	调试和分析
	bdb --- Debugger framework

	faulthandler --- Dump the Python traceback
	Dumping the traceback

	Fault handler state

	Dumping the tracebacks after a timeout

	Dumping the traceback on a user signal

	Issue with file descriptors

	示例

	pdb --- Python的调试器
	调试器命令

	Python 分析器
	分析器简介

	即时用户手册

	profile 和 cProfile 模块参考

	Stats 类

	什么是确定性性能分析？

	局限性

	准确估量

	使用自定义计时器

	timeit --- 测量小代码片段的执行时间
	基本示例

	Python 接口

	命令行界面

	例子

	trace --- Trace or track Python statement execution
	Command-Line Usage
	Main options

	Modifiers

	Filters

	编程接口

	tracemalloc --- 跟踪内存分配
	例子
	显示前10项

	计算差异

	Get the traceback of a memory block

	Pretty top

	API
	函数

	域过滤器

	过滤器

	Frame

	快照

	统计

	StatisticDiff

	跟踪

	回溯

	软件打包和分发
	distutils --- 构建和安装 Python 模块

	ensurepip --- Bootstrapping the pip installer
	Command line interface

	Module API

	venv --- 创建虚拟环境
	创建虚拟环境

	API

	一个扩展 EnvBuilder 的例子

	zipapp --- Manage executable Python zip archives
	Basic Example

	命令行界面

	Python API

	例子

	Specifying the Interpreter

	Creating Standalone Applications with zipapp
	Making a Windows executable

	Caveats

	The Python Zip Application Archive Format

	Python运行时服务
	sys --- 系统相关的参数和函数

	sysconfig --- Provide access to Python's configuration information
	配置变量

	安装路径

	其他功能

	Using sysconfig as a script

	builtins --- 内建对象

	__main__ --- 顶层脚本环境

	warnings --- Warning control
	警告类别

	The Warnings Filter
	Describing Warning Filters

	默认警告过滤器

	Overriding the default filter

	暂时禁止警告

	测试警告

	Updating Code For New Versions of Dependencies

	Available Functions

	Available Context Managers

	dataclasses --- 数据类
	模块级装饰器、类和函数

	初始化后处理

	类变量

	仅初始化变量

	冻结的实例

	继承

	默认工厂函数

	可变的默认值

	异常

	contextlib --- Utilities for with-statement contexts
	工具

	例子和配方
	Supporting a variable number of context managers

	Catching exceptions from __enter__ methods

	Cleaning up in an __enter__ implementation

	Replacing any use of try-finally and flag variables

	Using a context manager as a function decorator

	Single use, reusable and reentrant context managers
	Reentrant context managers

	Reusable context managers

	abc --- 抽象基类

	atexit --- 退出处理器
	atexit 示例

	traceback --- 打印或检索堆栈回溯
	TracebackException Objects

	StackSummary Objects

	FrameSummary Objects

	Traceback Examples

	__future__ --- Future 语句定义

	gc --- 垃圾回收器接口

	inspect --- 检查对象
	类型和成员

	Retrieving source code

	Introspecting callables with the Signature object

	类与函数

	The interpreter stack

	Fetching attributes statically

	Current State of Generators and Coroutines

	Code Objects Bit Flags

	命令行界面

	site —— 指定 Site 的配置钩子
	Readline configuration

	模块内容

	命令行界面

	自定义 Python 解释器
	code --- 解释器基础类
	交互解释器对象

	交互式控制台对象

	codeop --- 编译Python代码

	导入模块
	zipimport --- 从 Zip 存档中导入模块
	zipimporter 对象

	例子

	pkgutil --- 包扩展模块工具

	modulefinder --- 查找脚本使用的模块
	ModuleFinder 的示例用法

	runpy --- Locating and executing Python modules

	importlib --- import 的实现
	概述

	函数

	importlib.abc —— 关于导入的抽象基类

	importlib.resources -- 资源

	importlib.machinery -- Importers and path hooks

	importlib.util -- Utility code for importers

	例子
	Importing programmatically

	Checking if a module can be imported

	Importing a source file directly

	Setting up an importer

	Approximating importlib.import_module()

	Python 语言服务
	parser --- 访问 Python 解析树
	创建 ST 对象

	转换 ST 对象

	Queries on ST Objects

	异常和错误处理

	ST 对象

	示例: compile() 的模拟

	ast --- 抽象语法树
	节点类

	抽象文法

	ast 中的辅助函数

	symtable --- Access to the compiler's symbol tables
	Generating Symbol Tables

	Examining Symbol Tables

	symbol --- 与 Python 解析树一起使用的常量

	token --- 与Python解析树一起使用的常量

	keyword --- 检验Python关键字

	tokenize -- 对 Python 代码使用的标记解析器
	对输入进行解析标记

	Command-Line Usage

	例子

	tabnanny --- 模糊缩进检测

	pyclbr --- Python module browser support
	函数对象

	类对象

	py_compile --- Compile Python source files

	compileall --- Byte-compile Python libraries
	Command-line use

	Public functions

	dis --- Python 字节码反汇编器
	字节码分析

	分析函数

	Python字节码说明

	操作码集合

	pickletools --- pickle 开发者工具集
	命令行语法
	命令行选项

	编程接口

	杂项服务
	formatter --- 通用格式化输出
	The Formatter Interface

	Formatter Implementations

	The Writer Interface

	Writer Implementations

	Windows系统相关模块
	msilib --- Read and write Microsoft Installer files
	Database Objects

	View Objects

	Summary Information Objects

	Record Objects

	Errors

	CAB Objects

	Directory Objects

	相关特性

	GUI classes

	Precomputed tables

	msvcrt --- Useful routines from the MS VC++ runtime
	File Operations

	Console I/O

	Other Functions

	winreg --- Windows 注册表访问
	函数

	常量
	HKEY_* Constants

	Access Rights
	64-bit Specific

	Value Types

	Registry Handle Objects

	winsound --- Sound-playing interface for Windows

	Unix 专有服务
	posix --- 最常见的 POSIX 系统调用
	大文件支持

	重要的模块内容

	pwd --- 用户密码数据库

	spwd --- The shadow password database

	grp --- 组数据库

	crypt --- Function to check Unix passwords
	Hashing Methods

	Module Attributes

	模块函数

	例子

	termios --- POSIX 风格的 tty 控制
	示例

	tty --- 终端控制功能

	pty --- 伪终端工具
	示例

	fcntl --- The fcntl and ioctl system calls

	pipes --- 终端管道接口
	模板对象

	resource --- Resource usage information
	Resource Limits

	Resource Usage

	nis --- Sun 的 NIS (黄页) 接口

	Unix syslog 库例程
	例子
	简单示例

	被取代的模块
	optparse --- 解析器的命令行选项
	背景
	术语

	What are options for?

	位置位置

	教程
	Understanding option actions

	The store action

	Handling boolean (flag) options

	Other actions

	默认值

	Generating help
	Grouping Options

	Printing a version string

	How optparse handles errors

	Putting it all together

	参考指南
	创建解析器

	填充解析器

	定义选项

	Option attributes

	Standard option actions

	Standard option types

	解析参数

	Querying and manipulating your option parser

	Conflicts between options

	清理

	Other methods

	Option Callbacks
	Defining a callback option

	How callbacks are called

	Raising errors in a callback

	Callback example 1: trivial callback

	Callback example 2: check option order

	Callback example 3: check option order (generalized)

	Callback example 4: check arbitrary condition

	Callback example 5: fixed arguments

	Callback example 6: variable arguments

	Extending optparse
	Adding new types

	Adding new actions

	imp --- Access the import internals
	例子

	未创建文档的模块
	平台特定模块

	扩展和嵌入 Python 解释器
	推荐的第三方工具

	不使用第三方工具创建扩展
	1. 使用 C 或 C++ 扩展 Python
	1.1. 一个简单的例子

	1.2. 关于错误和异常

	1.3. 回到例子

	1.4. 模块方法表和初始化函数

	1.5. 编译和链接

	1.6. 在C中调用Python函数

	1.7. 提取扩展函数的参数

	1.8. 给扩展函数的关键字参数

	1.9. 构造任意值

	1.10. 引用计数
	1.10.1. Python中的引用计数

	1.10.2. 拥有规则

	1.10.3. 危险的薄冰

	1.10.4. NULL指针

	1.11. 在C++中编写扩展

	1.12. 给扩展模块提供C API

	2. 自定义扩展类型：教程
	2.1. 基础

	2.2. Adding data and methods to the Basic example

	2.3. Providing finer control over data attributes

	2.4. Supporting cyclic garbage collection

	2.5. Subclassing other types

	3. 定义扩展类型：已分类主题
	3.1. 终结和内存释放

	3.2. 对象展示

	3.3. Attribute Management
	3.3.1. 泛型属性管理

	3.3.2. Type-specific Attribute Management

	3.4. Object Comparison

	3.5. Abstract Protocol Support

	3.6. Weak Reference Support

	3.7. 更多建议

	4. 构建C/C++扩展
	4.1. 使用distutils构建C和C++扩展

	4.2. 发布你的扩展模块

	5. 在Windows平台编译C和C++扩展
	5.1. A Cookbook Approach

	5.2. Differences Between Unix and Windows

	5.3. Using DLLs in Practice

	在更大的应用程序中嵌入 CPython 运行时
	1. 在其它应用程序嵌入 Python
	1.1. Very High Level Embedding

	1.2. Beyond Very High Level Embedding: An overview

	1.3. 纯嵌入

	1.4. Extending Embedded Python

	1.5. 在 C++ 中嵌入 Python

	1.6. 在类 Unix 系统中编译和链接

	Python/C API 参考手册
	概述
	代码标准

	包含文件

	有用的宏

	对象、类型和引用计数
	引用计数
	Reference Count Details

	类型

	异常

	嵌入Python

	调试构建

	稳定的应用程序二进制接口

	The Very High Level Layer

	引用计数

	异常处理
	Printing and clearing

	抛出异常

	Issuing warnings

	Querying the error indicator

	Signal Handling

	Exception Classes

	Exception Objects

	Unicode Exception Objects

	递归控制

	标准异常

	标准警告类别

	工具
	操作系统实用程序

	系统功能

	过程控制

	导入模块

	数据 marshal 操作支持

	解析参数并构建值变量
	解析参数
	字符串和缓存区

	数字

	其他对象

	API 函数

	创建变量

	字符串转换与格式化

	反射

	编解码器注册与支持功能
	Codec 查找API

	用于Unicode编码错误处理程序的注册表API

	抽象对象层
	对象协议

	数字协议

	序列协议

	映射协议

	迭代器协议

	缓冲协议
	缓冲区结构

	Buffer request types
	request-independent fields

	readonly, format

	shape, strides, suboffsets

	连续性的请求

	复合请求

	复杂数组
	NumPy-style: shape and strides

	PIL-style: shape, strides and suboffsets

	Buffer-related functions

	旧缓冲协议

	具体的对象层
	基本对象
	类型对象

	None 对象

	数值对象
	整数型对象

	布尔对象

	浮点数对象

	复数对象
	表示复数的C结构体

	表示复数的Python对象

	序列对象
	bytes 对象

	字节数组对象
	类型检查宏

	直接 API 函数

	宏

	Unicode Objects and Codecs
	Unicode对象
	Unicode类型

	Unicode字符属性

	Creating and accessing Unicode strings

	Deprecated Py_UNICODE APIs

	Locale Encoding

	File System Encoding

	wchar_t Support

	Built-in Codecs
	Generic Codecs

	UTF-8 Codecs

	UTF-32 Codecs

	UTF-16 Codecs

	UTF-7 Codecs

	Unicode-Escape Codecs

	Raw-Unicode-Escape Codecs

	Latin-1 Codecs

	ASCII Codecs

	Character Map Codecs

	MBCS codecs for Windows

	Methods & Slots

	Methods and Slot Functions

	元组对象

	Struct Sequence Objects

	列表对象

	容器对象
	字典对象

	集合对象

	函数对象
	函数对象

	实例方法对象

	方法对象

	Cell 对象

	代码对象

	其他对象
	文件对象

	模块对象
	Initializing C modules
	Single-phase initialization

	Multi-phase initialization

	Low-level module creation functions

	Support functions

	Module lookup

	迭代器对象

	描述符对象

	切片对象

	Ellipsis Object

	MemoryView 对象

	弱引用对象

	胶囊

	生成器对象

	协程对象

	上下文变量对象

	DateTime 对象

	Initialization, Finalization, and Threads
	在Python初始化之前

	全局配置变量

	Initializing and finalizing the interpreter

	Process-wide parameters

	Thread State and the Global Interpreter Lock
	Releasing the GIL from extension code

	非Python创建的线程

	高阶 API

	Low-level API

	Sub-interpreter support
	错误和警告

	异步通知

	分析和跟踪

	高级调试器支持

	Thread Local Storage Support
	Thread Specific Storage (TSS) API
	Dynamic Allocation

	方法

	Thread Local Storage (TLS) API

	内存管理
	概述

	原始内存接口

	内存接口

	对象分配器

	默认内存分配器

	Customize Memory Allocators

	The pymalloc allocator
	Customize pymalloc Arena Allocator

	tracemalloc C API

	例子

	对象实现支持
	在堆上分配对象

	Common Object Structures

	类型对象

	Number Object Structures

	Mapping Object Structures

	Sequence Object Structures

	Buffer Object Structures

	Async Object Structures

	使对象类型支持循环垃圾回收

	API 和 ABI 版本管理

	分发 Python 模块
	关键术语

	开源许可与协作

	安装工具

	阅读Python包用户指南

	我该如何...？
	...为我的项目选择一个名字？

	...创建和分发二进制扩展？

	安装 Python 模块
	关键术语

	基本使用

	我应如何 ...？
	... 在 Python 3.4 之前的 Python 版本中安装 pip ？

	... 只为当前用户安装软件包？

	... 安装科学计算类 Python 软件包？

	... 使用并行安装的多个 Python 版本？

	常见的安装问题
	在 Linux 的系统 Python 版本上安装

	未安装 pip

	安装二进制编译扩展

	Python 常用指引
	将 Python 2 代码迁移到 Python 3
	简要说明

	详情
	删除对Python 2.6及更早版本的支持

	Make sure you specify the proper version support in your setup.py file

	良好的测试覆盖率

	了解Python 2 和 3之间的区别

	更新代码
	除法

	文本与二进制数据

	Use feature detection instead of version detection

	Prevent compatibility regressions

	Check which dependencies block your transition

	Update your setup.py file to denote Python 3 compatibility

	Use continuous integration to stay compatible

	考虑使用可选的静态类型检查

	将扩展模块移植到 Python 3
	条件编译

	对象API的更改
	str/unicode 统一

	long/int 统一

	模块初始化和状态

	CObject 替换为 Capsule

	其他选项

	用 Python 进行 Curses 编程
	curses 是什么？
	Python 的 curses 模块

	开始和结束curses应用程序

	Windows 和 Pad

	显示文字
	属性和颜色

	用户输入

	更多的信息

	实现描述器
	摘要

	定义和简介

	描述器协议

	发起调用描述器

	描述符示例

	属性

	函数和方法

	静态方法和类方法

	函数式编程指引
	概述
	形式证明

	模块化

	易于调试和测试

	组合性

	迭代器
	支持迭代器的数据类型

	生成器表达式和列表推导式

	生成器
	向生成器传递值

	内置函数

	itertools 模块
	创建新的迭代器

	对元素使用函数

	选择元素

	组合函数

	为元素分组

	functools 模块
	operator 模块

	小函数和 lambda 表达式

	修订记录和致谢

	参考文献
	通用文献

	Python 相关

	Python 文档

	日志 HOWTO
	日志基础教程
	什么时候使用 Logging

	一个简单的例子

	记录日志到文件

	从多个模块记录日志

	记录变量数据

	更改显示消息的格式

	在消息中显示日期/时间

	后续步骤

	进阶日志教程
	记录流程

	记录器

	处理程序

	格式化程序

	配置日志记录

	如果没有提供配置会发生什么

	配置库的日志记录

	日志级别
	自定义级别

	有用的处理程序

	记录日志中引发的异常

	使用任意对象作为消息

	优化

	日志操作手册
	在多个模块中记录日志

	在多个线程中记录日志

	多个日志处理器以及多种格式化器

	在多个地方记录日志

	日志服务器配置示例

	处理日志处理器的阻塞

	通过网络发送和接收日志

	在日志记录中添加上下文信息
	使用日志适配器传递上下文信息
	使用除字典之外的其它对象传递上下文信息

	使用过滤器传递上下文信息

	从多个进程记录至单个文件
	Using concurrent.futures.ProcessPoolExecutor

	轮换日志文件

	使用其他日志格式化方式

	Customizing LogRecord

	Subclassing QueueHandler - a ZeroMQ example

	Subclassing QueueListener - a ZeroMQ example

	An example dictionary-based configuration

	Using a rotator and namer to customize log rotation processing

	A more elaborate multiprocessing example

	Inserting a BOM into messages sent to a SysLogHandler

	Implementing structured logging

	Customizing handlers with dictConfig()

	Using particular formatting styles throughout your application
	Using LogRecord factories

	Using custom message objects

	Configuring filters with dictConfig()

	Customized exception formatting

	Speaking logging messages

	缓冲日志消息并有条件地输出它们

	通过配置使用UTC (GMT) 格式化时间

	使用上下文管理器的可选的日志记录

	A CLI application starter template

	A Qt GUI for logging

	正则表达式HOWTO
	概述

	简单模式
	匹配字符

	重复

	使用正则表达式
	编译正则表达式

	反斜杠灾难

	应用匹配

	模块级别函数

	编译标志

	更多模式能力
	更多元字符

	分组

	非捕获和命名组

	前向断言

	修改字符串
	分割字符串

	搜索和替换

	常见问题
	使用字符串方法

	match() 和 search()

	贪婪与非贪婪

	使用 re.VERBOSE

	反馈

	套接字编程指南
	套接字
	历史

	创建套接字
	进程间通信

	使用一个套接字
	二进制数据

	断开连接
	套接字何时销毁

	非阻塞的套接字

	排序指南
	基本排序

	关键函数

	Operator 模块函数

	升序和降序

	排序稳定性和排序复杂度

	使用装饰-排序-去装饰的旧方法

	使用 cmp 参数的旧方法

	其它

	Unicode 指南
	Unicode 概述
	定义

	编码

	参考文献

	Python's Unicode Support
	The String Type

	Converting to Bytes

	Unicode Literals in Python Source Code

	Unicode Properties

	Comparing Strings

	Unicode Regular Expressions

	参考文献

	Reading and Writing Unicode Data
	Unicode filenames

	Tips for Writing Unicode-aware Programs
	Converting Between File Encodings

	Files in an Unknown Encoding

	参考文献

	致谢

	HOWTO 使用 urllib 包获取网络资源
	概述

	提取URL
	数据

	Headers

	处理异常
	URLError

	HTTPError
	错误代码

	包装起来
	数字1

	Number 2

	info and geturl

	Openers and Handlers

	基本认证

	代理

	Sockets and Layers

	备注

	Argparse 教程
	概念

	基础

	位置参数介绍

	可选参数介绍
	短选项

	结合位置参数和可选参数

	进行一些小小的改进
	矛盾的选项

	后记

	ipaddress模块介绍
	创建 Address/Network/Interface 对象
	关于IP版本的说明

	IP主机地址

	定义网络

	主机接口

	审查 Address/Network/Interface 对象

	Network 作为 Address 列表

	比较运算

	将IP地址与其他模块一起使用

	实例创建失败时获取更多详细信息

	Argument Clinic How-To
	The Goals Of Argument Clinic

	Basic Concepts And Usage

	Converting Your First Function

	Advanced Topics
	Symbolic default values

	Renaming the C functions and variables generated by Argument Clinic

	Converting functions using PyArg_UnpackTuple

	Optional Groups

	Using real Argument Clinic converters, instead of "legacy converters"

	Py_buffer

	Advanced converters

	Parameter default values

	The NULL default value

	Expressions specified as default values

	Using a return converter

	Cloning existing functions

	Calling Python code

	Using a "self converter"

	Writing a custom converter

	Writing a custom return converter

	METH_O and METH_NOARGS

	tp_new and tp_init functions

	Changing and redirecting Clinic's output

	The #ifdef trick

	Using Argument Clinic in Python files

	使用 DTrace 和 SystemTap 检测CPython
	启用静态标记

	静态DTrace探针

	静态SystemTap标记

	可用的静态标记

	SystemTap Tapsets

	例子

	Python 常见问题
	Python常见问题
	一般信息

	现实世界中的 Python

	编程常见问题
	一般问题

	核心语言

	数字和字符串

	性能

	序列（元组/列表）

	对象

	模块

	设计和历史常见问题
	为什么Python使用缩进来分组语句？

	为什么简单的算术运算得到奇怪的结果？

	为什么浮点计算不准确？

	为什么Python字符串是不可变的？

	为什么必须在方法定义和调用中显式使用“self”？

	为什么不能在表达式中赋值？

	为什么Python对某些功能（例如list.index()）使用方法来实现，而其他功能（例如len(List)）使用函数实现？

	为什么 join()是一个字符串方法而不是列表或元组方法？

	异常有多快？

	为什么Python中没有switch或case语句？

	难道不能在解释器中模拟线程，而非得依赖特定于操作系统的线程实现吗？

	为什么lambda表达式不能包含语句？

	可以将Python编译为机器代码，C或其他语言吗？

	Python如何管理内存？

	为什么CPython不使用更传统的垃圾回收方案？

	CPython退出时为什么不释放所有内存？

	为什么有单独的元组和列表数据类型？

	列表是如何在CPython中实现的？

	字典是如何在CPython中实现的？

	为什么字典key必须是不可变的？

	为什么 list.sort() 没有返回排序列表？

	如何在Python中指定和实施接口规范？

	为什么没有goto？

	为什么原始字符串（r-strings）不能以反斜杠结尾？

	为什么Python没有属性赋值的“with”语句？

	为什么 if/while/def/class语句需要冒号？

	为什么Python在列表和元组的末尾允许使用逗号？

	代码库和插件 FAQ
	通用的代码库问题

	通用任务

	线程相关

	输入输出

	网络 / Internet 编程

	数据库

	数学和数字

	扩展/嵌入常见问题
	可以使用C语言中创建自己的函数吗？

	可以使用C++语言中创建自己的函数吗？

	C很难写，有没有其他选择？

	如何在 C 中执行任意 Python 语句？

	如何在 C 中对任意 Python 表达式求值？

	如何从Python对象中提取C的值？

	如何使用Py_BuildValue()创建任意长度的元组？

	如何从C调用对象的方法？

	如何捕获PyErr_Print()（或打印到stdout / stderr的任何内容）的输出？

	如何从C访问用Python编写的模块？

	如何在 Python 中对接 C ++ 对象？

	我使用Setup文件添加了一个模块，为什么make失败了？

	如何调试扩展？

	我想在Linux系统上编译一个Python模块，但是缺少一些文件。为什么?

	如何区分“输入不完整”和“输入无效”？

	如何找到未定义的g++符号__builtin_new或__pure_virtual？

	能否创建一个对象类，其中部分方法在C中实现，而其他方法在Python中实现（例如通过继承）？

	Python在Windows上的常见问题
	我怎样在Windows下运行一个Python程序？

	我怎么让 Python 脚本可执行？

	为什么有时候 Python 程序会启动缓慢？

	我怎样使用Python脚本制作可执行文件？

	*.pyd 文件和DLL文件相同吗？

	我怎样将Python嵌入一个Windows程序？

	如何让编辑器不要在我的 Python 源代码中插入 tab ？

	如何在不阻塞的情况下检查按键？

	图形用户界面（GUI）常见问题
	图形界面常见问题

	Python 是否有平台无关的图形界面工具包？

	有哪些Python的GUI工具是某个平台专用的？

	有关Tkinter的问题

	“为什么我的电脑上安装了 Python ？”
	什么是 Python？

	为什么我的电脑上安装了 Python ？

	我能删除 Python 吗？

	术语对照表

	文档说明
	Python 文档的贡献者

	解决 Bug
	文档 Bug

	使用 Python 的问题追踪系统

	开始为 Python 贡献您的知识

	Copyright

	历史和许可证
	该软件的历史

	获取或以其他方式使用 Python 的条款和条件
	用于 PYTHON 3.7.7 的 PSF 许可协议

	用于 PYTHON 2.0 的 BEOPEN.COM 许可协议

	用于 PYTHON 1.6.1 的 CNRI 许可协议

	用于 PYTHON 0.9.0 至 1.2 的 CWI 许可协议

	被收录软件的许可证与鸣谢
	Mersenne Twister

	套接字

	异步套接字服务

	Cookie 管理

	执行追踪

	UUencode 与 UUdecode 函数

	XML 远程过程调用

	test_epoll

	Select kqueue

	SipHash24

	strtod and dtoa

	OpenSSL

	expat

	libffi

	zlib

	cfuhash

	libmpdec

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	

 |

 Python的新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	

 |

Python的新变化

这个“Python 有什么新变化？”系列内容会带您浏览 Python 大版本之间重要的变化。在新版发布后，如果您希望掌握最新变化，请务必阅读这些内容。

	Python 3.7 有什么新变化
	摘要 - 发布重点

	新的特性

	其他语言特性修改

	新增模块

	改进的模块

	C API 的改变

	构建的改变

	性能优化

	其他 CPython 实现的改变

	已弃用的 Python 行为

	已弃用的 Python 模块、函数和方法

	已弃用的 C API 函数和类型

	平台支持的移除

	API 与特性的移除

	移除的模块

	Windows 专属的改变

	移植到 Python 3.7

	Python 3.7.1 中的重要变化

	Python 3.7.2 中的重要变化

	Python 3.7.6 中的重要变化

	Python 3.6 有什么新变化A
	摘要 - 发布重点

	新的特性

	其他语言特性修改

	新增模块

	改进的模块

	性能优化

	构建和 C API 的改变

	其他改进

	弃用

	移除

	移植到Python 3.6

	Python 3.6.2 中的重要变化

	Python 3.6.4 中的重要变化

	Python 3.6.5 中的重要变化

	Python 3.6.7 中的重要变化

	Python 3.6.10 中的重要变化

	Python 3.5 有什么新变化
	摘要 - 发布重点

	新的特性

	其他语言特性修改

	新增模块

	改进的模块

	其他模块级更改

	性能优化

	构建和 C API 的改变

	弃用

	移除

	移植到Python 3.5

	Python 3.5.4 的显著变化

	Python 3.4 有什么新变化
	摘要 - 发布重点

	新的特性

	新增模块

	改进的模块

	CPython Implementation Changes

	弃用

	移除

	移植到 Python 3.4

	3.4.3 的变化

	Python 3.3 有什么新变化
	摘要 - 发布重点

	PEP 405: 虚拟环境

	PEP 420: 隐式命名空间包

	PEP 3118: 新的内存视图实现和缓冲协议文档

	PEP 393: 灵活的字符串表示

	PEP 397: 适用于Windows的Python启动器

	PEP 3151: 重写 OS 和 IO 异常的层次结构

	PEP 380: 委托给子生成器的语法

	PEP 409: 清除异常上下文

	PEP 414: 显式的Unicode文本

	PEP 3155: 类和函数的限定名称

	PEP 412: Key-Sharing Dictionary

	PEP 362: 函数签名对象

	PEP 421: 添加 sys.implementation

	Using importlib as the Implementation of Import

	其他语言特性修改

	A Finer-Grained Import Lock

	Builtin functions and types

	新增模块

	改进的模块

	性能优化

	构建和 C API 的改变

	弃用

	移植到 Python 3.3

	Python 3.2 有什么新变化
	PEP 384: 定义稳定的ABI

	PEP 389: Argparse 命令行解析模块

	PEP 391: 基于字典的日志配置

	PEP 3148: concurrent.futures 模块

	PEP 3147: PYC 仓库目录

	PEP 3149: ABI Version Tagged .so Files

	PEP 3333: Python Web服务器网关接口v1.0.1

	其他语言特性修改

	新增，改进和弃用的模块

	多线程

	性能优化

	Unicode

	编解码器

	文档

	IDLE

	代码库

	构建和 C API 的改变

	移植到 Python 3.2

	Python 3.1 有什么新变化
	PEP 372: 有序字典

	PEP 378: 千位分隔符的格式说明符

	其他语言特性修改

	新增，改进和弃用的模块

	性能优化

	IDLE

	构建和 C API 的改变

	移植到 Python 3.1

	Python 3.0 有什么新变化
	常见的绊脚石

	Overview Of Syntax Changes

	Changes Already Present In Python 2.6

	Library Changes

	PEP 3101: A New Approach To String Formatting

	Changes To Exceptions

	Miscellaneous Other Changes

	构建和 C API 的改变

	性能

	移植 Python 3.0

	Python 2.7 有什么新变化
	Python 2.x的未来

	Changes to the Handling of Deprecation Warnings

	Python 3.1 Features

	PEP 372: Adding an Ordered Dictionary to collections

	PEP 378: 千位分隔符的格式说明符

	PEP 389: The argparse Module for Parsing Command Lines

	PEP 391: Dictionary-Based Configuration For Logging

	PEP 3106: Dictionary Views

	PEP 3137: The memoryview Object

	其他语言特性修改

	新增和改进的模块

	构建和 C API 的改变

	Other Changes and Fixes

	移植到 Python 2.7

	New Features Added to Python 2.7 Maintenance Releases

	致谢

	Python 2.6 有什么新变化
	Python 3.0

	开发过程的变化

	PEP 343: "with" 语句

	PEP 366: 从主模块显式相对导入

	PEP 370: 分用户的 site-packages 目录

	PEP 371: 多任务处理包

	PEP 3101: 高级字符串格式

	PEP 3105: print 改为函数

	PEP 3110: 异常处理的变更

	PEP 3112: 字节字面值

	PEP 3116: 新 I/O 库

	PEP 3118: 修改缓冲区协议

	PEP 3119: 抽象基类

	PEP 3127: 整型文字支持和语法

	PEP 3129: 类装饰器

	PEP 3141: A Type Hierarchy for Numbers

	其他语言特性修改

	新增和改进的模块

	Deprecations and Removals

	构建和 C API 的改变

	移植到Python 2.6

	致谢

	Python 2.5 有什么新变化
	PEP 308: 条件表达式

	PEP 309: 部分功能应用

	PEP 314: Python软件包的元数据 v1.1

	PEP 328: 绝对导入和相对导入

	PEP 338: 将模块作为脚本执行

	PEP 341: 统一 try/except/finally

	PEP 342: 生成器的新特性

	PEP 343: "with" 语句

	PEP 352: 异常作为新型的类

	PEP 353: 使用ssize_t作为索引类型

	PEP 357: '__index__' 方法

	其他语言特性修改

	新增，改进和删除的模块

	构建和 C API 的改变

	移植到Python 2.5

	致谢

	Python 2.4 有什么新变化
	PEP 218: 内置集合对象

	PEP 237: 统一长整数和整数

	PEP 289: 生成器表达式

	PEP 292: Simpler String Substitutions

	PEP 318: Decorators for Functions and Methods

	PEP 322: 反向迭代

	PEP 324: 新的子进程模块

	PEP 327: 十进数据类型

	PEP 328: 多行导入

	PEP 331: Locale-Independent Float/String Conversions

	其他语言特性修改

	新增，改进和弃用的模块

	构建和 C API 的改变

	移植到 Python 2.4

	致谢

	Python 2.3 有什么新变化
	PEP 218: A Standard Set Datatype

	PEP 255: Simple Generators

	PEP 263: Source Code Encodings

	PEP 273: 从ZIP压缩包导入模块

	PEP 277: Unicode file name support for Windows NT

	PEP 278: 通用换行支持

	PEP 279: enumerate()

	PEP 282: logging 包

	PEP 285: 布尔类型

	PEP 293: Codec Error Handling Callbacks

	PEP 301: Distutils的软件包索引和元数据

	PEP 302: New Import Hooks

	PEP 305: 逗号分隔文件

	PEP 307: Pickle Enhancements

	扩展切片

	其他语言特性修改

	新增，改进和弃用的模块

	Pymalloc: A Specialized Object Allocator

	构建和 C API 的改变

	Other Changes and Fixes

	移植到 Python 2.3

	致谢

	Python 2.2 有什么新变化
	概述

	PEPs 252 and 253: Type and Class Changes

	PEP 234: Iterators

	PEP 255: Simple Generators

	PEP 237: 统一长整数和整数

	PEP 238: Changing the Division Operator

	Unicode Changes

	PEP 227: Nested Scopes

	新增和改进的模块

	Interpreter Changes and Fixes

	Other Changes and Fixes

	致谢

	Python 2.1 有什么新变化
	概述

	PEP 227: Nested Scopes

	PEP 236: __future__ Directives

	PEP 207: Rich Comparisons

	PEP 230: Warning Framework

	PEP 229: New Build System

	PEP 205: Weak References

	PEP 232: Function Attributes

	PEP 235: Importing Modules on Case-Insensitive Platforms

	PEP 217: Interactive Display Hook

	PEP 208: New Coercion Model

	PEP 241: Metadata in Python Packages

	新增和改进的模块

	Other Changes and Fixes

	致谢

	Python 2.0 有什么新变化
	概述

	What About Python 1.6?

	新开发流程

	Unicode

	列表推导式

	Augmented Assignment

	字符串的方法

	Garbage Collection of Cycles

	其他核心变化

	移植 Python 2.0

	扩展/嵌入更改

	Distutils：使模块易于安装

	XML 模块

	模块更改

	新增模块

	IDLE 改进

	删除和弃用的模块

	致谢

这个“更新日志”是 Misc/NEWS.d [https://github.com/python/cpython/tree/3.7/Misc/NEWS.d] 目录下 构建文件 [https://pypi.org/project/blurb] 的 HTML 版本，它包含了对当前 Python 版本进行的 所有 重要的更改。

	更新日志
	Python 下一版

	Python 3.7.7 final

	Python 3.7.7 release candidate 1

	Python 3.7.6 final

	Python 3.7.6 release candidate 1

	Python 3.7.5 final

	Python 3.7.5 release candidate 1

	Python 3.7.4 final

	Python 3.7.4 release candidate 2

	Python 3.7.4 release candidate 1

	Python 3.7.3 最终版

	Python 3.7.3 发布候选版 1

	Python 3.7.2 最终版

	Python 3.7.2 发布候选版 1

	Python 3.7.1 最终版

	Python 3.7.1 RC 2版本

	Python 3.7.1 发布候选版 1

	Python 3.7.0 正式版

	Python 3.7.0 release candidate 1

	Python 3.7.0 beta 5

	Python 3.7.0 beta 4

	Python 3.7.0 beta 3

	Python 3.7.0 beta 2

	Python 3.7.0 beta 1

	Python 3.7.0 alpha 4

	Python 3.7.0 alpha 3

	Python 3.7.0 alpha 2

	Python 3.7.0 alpha 1

	Python 3.6.6 正式版

	Python 3.6.6 RC 1

	Python 3.6.5 正式版

	Python 3.6.5 rc1

	Python 3.6.4 正式版

	Python 3.6.4 rc1

	Python 3.6.3 正式版

	Python 3.6.3 rc1

	Python 3.6.2 正式版

	Python 3.6.2 rc2

	Python 3.6.2 rc1

	Python 3.6.1 正式版

	Python 3.6.1 rc1

	Python 3.6.0 正式版

	Python 3.6.0 rc2

	Python 3.6.0 rc1

	Python 3.6.0 beta 4

	Python 3.6.0 beta 3

	Python 3.6.0 beta 2

	Python 3.6.0 beta 1

	Python 3.6.0 alpha 4

	Python 3.6.0 alpha 3

	Python 3.6.0 alpha 2

	Python 3.6.0 alpha 1

	Python 3.5.5 正式版

	Python 3.5.5 rc1

	Python 3.5.4 正式版

	Python 3.5.4 rc1

	Python 3.5.3 正式版

	Python 3.5.3 rc1

	Python 3.5.2 正式版

	Python 3.5.2 rc1

	Python 3.5.1 正式版

	Python 3.5.1 rc1

	Python 3.5.0 正式版

	Python 3.5.0 rc4

	Python 3.5.0 rc3

	Python 3.5.0 rc2

	Python 3.5.0 rc1

	Python 3.5.0 beta 4

	Python 3.5.0 beta 3

	Python 3.5.0 beta 2

	Python 3.5.0 beta 1

	Python 3.5.0 alpha 4

	Python 3.5.0 alpha 3

	Python 3.5.0 alpha 2

	Python 3.5.0 alpha 1

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	

 |

 Python 3.7 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 3.7 有什么新变化

	编者

	Elvis Pranskevichus <elvis@magic.io>

本文解释了 Python 3.7 相比 3.6 的新增特性。Python 3.7 于 2018 年 6 月 27 日发布。完整的详情可参阅 更新日志。

摘要 - 发布重点

新的语法特性：

	PEP 563，类型标注延迟求值。

向后不兼容的语法更改：

	async 和 await 现在是保留的关键字。

新的库模块：

	contextvars: PEP 567 -- 上下文变量

	dataclasses: PEP 557 -- 数据类

	importlib.resources

新的内置特性：

	PEP 553, 新的 breakpoint() 函数。

对 Python 数据模型的改进：

	PEP 562, 自定义可访问的模块属性。

	PEP 560, typing模块和泛型类型的核心支持。

	dict 对象会保持插入时的顺序这个特性 正式宣布 [https://mail.python.org/pipermail/python-dev/2017-December/151283.html] 成为 Python 语言官方规范的一部分。

标准库中的重大改进：

	asyncio 模块添加了新的功能，重大改进请参阅 可用性与性能提升。

	time 模块现在提供 纳秒级精度函数 的支持。

CPython 实现的改进：

	避免使用 ASCII 作为默认的文本编码：

	PEP 538，传统 C 区域强制转换

	PEP 540，强制 UTF-8 运行时模式

	PEP 552，确定性的 .pyc 文件

	新的开发运行时模式

	PEP 565，改进的 DeprecationWarning 处理

C API 的改进：

	PEP 539，用于线程本地存储的新 C API

文档的改进：

	PEP 545, Python 文档翻译

	新的文档翻译：Japanese [https://docs.python.org/ja/]，French [https://docs.python.org/fr/] 和 Korean [https://docs.python.org/ko/]。

此版本在诸多方面有显著的性能改进。性能优化 章节详细列出了它们。

和之前的 Python 版本存在兼容性的更改列表，请参阅 移植到 Python 3.7 章节。

新的特性

PEP 563：延迟的标注求值

随着 PEP 3107 [https://www.python.org/dev/peps/pep-3107] 加入标注功能并在 PEP 526 [https://www.python.org/dev/peps/pep-0526] 进一步细化，Python 中类型提示的出现揭示了两个明显的可用性问题：

	标注只能使用在当前作用域中已经存在的名称，也就是说，它们不支持任何形式的前向引用；而且——

	标注源码对 Python 程序的启动时间有不利的影响。

这两个问题都可以通过延迟标注求值来解决。在定义标注的时候，编译器并不会编译执行相应表达式的代码，而是保存与相应表达式的 AST 等价的字符串形式。如果有需要，标注可以在运行时使用 typing.get_type_hints() 进行解析。在不需要这种解析的通常情况下，标注的存储成本更低（因为解析器只需处理较短的字符串）且启动时间更短。

在可用性方面，标注现在支持向前引用，以使以下句法有效:

class C:
 @classmethod
 def from_string(cls, source: str) -> C:
 ...

 def validate_b(self, obj: B) -> bool:
 ...

class B:
 ...

由于此修改会破坏兼容性，在 Python 3.7 中此种新的行为需要在每个模块层级上使用 __future__ 导入来启用:

from __future__ import annotations

它将在 Python 4.0 中成为默认行为。

参见

	PEP 563 [https://www.python.org/dev/peps/pep-0563] -- 延迟的标注求值
	PEP 由 Łukasz Langa 撰写并实现。

PEP 538: 传统 C 区域强制转换

Python 3 系列有一个持续的挑战就是为处理 7 比特位 ASCII 文本的假定编码确定合理的默认策略，目前的设定是在非 Windows 平台上使用默认的 C 或 POSIX 区域设置。

PEP 538 [https://www.python.org/dev/peps/pep-0538] 更新了默认的解释器命令行接口，以自动将上述区域强制转换为可用的基于 UTF-8 的区域，具体描述可参见有关新增环境变量 PYTHONCOERCECLOCALE 的文档。 以这种方式自动设置 LC_CTYPE 意味着核心解释器和能感知区域的 C 扩展 (例如 readline) 都将会假定 UTF-8 已被用作默认的文本编码，而不再是 ASCII。

PEP 11 [https://www.python.org/dev/peps/pep-0011] 中的平台支持定义也已被更新以限制完整文本处理支持适当配置的基于非 ASCII 的语言区域。

作为此更改的一部分，当使用任何已定义的强制转换目标区域时 (目前为 C.UTF-8, C.utf8 和 UTF-8) stdin 和 stdout 默认的处理器现在将为 surrogateescape (而不是 strict)。 而无论是什么区域，stderr 默认的处理器仍为 backslashreplace。

默认情况下区域强制转换会静默进行，但为了辅助调试潜在的区域相关集成问题，可以通过设置 PYTHONCOERCECLOCALE=warn 来请求显式地启用警告信息（直接在 stderr 上发出）。 此设置还会使得 Python 运行时在核心解释器初始化时如果传统 C 区域仍然处于激活状态时发出警告。

虽然 PEP 538 [https://www.python.org/dev/peps/pep-0538] 的区域强制转换的好处在于它还会同时影响扩展模块 (例如 GNU readline) 以及子进程 (包括运行非 Python 应用和旧版本 Python 的子进程)，但它也存在需要所运行系统必须存在适合的目标区域的缺点。 为了更好地处理没有可用适合的目标区域的情况 (例如在 RHEL/CentOS 7 上就会出现此情况)，Python 3.7 还实现了 PEP 540: 强制 UTF-8 运行时模式。

参见

	PEP 538 [https://www.python.org/dev/peps/pep-0538] -- 强制转换传统 C 区域到基于 UTF-8 的区域
	PEP 由 Nick Coghlan 撰写并实现。

PEP 540: 强制 UTF-8 运行时模式

新的 -X utf8 命令行选项和 PYTHONUTF8 环境变量可被用来启用 CPython 的 UTF-8 模式。

当处于 UTF-8 模式时，CPython 会忽略区域设置，并默认使用 UTF-8 编码。 用于 sys.stdin 和 sys.stdout 流的错误处理器将设置为 surrogateescape。

强制 UTF-8 模式可被用来在嵌入的 Python 解释器中改变文本处理行为，而不会改变嵌入方应用的区域设置。

PEP 540 [https://www.python.org/dev/peps/pep-0540] 的 UTF-8 模式的好处是不必关心运行所在系统中有哪些可用区域即可工作，但它也存在对扩展模块 (例如 GNU readline)、运行非 Python 应用的子进程以及运行旧版本 Python 的子进程不起作用的缺点。 为了减小与这些组件通信时破坏文本数据的风险，Python 3.7 还实现了 PEP 540: 强制 UTF-8 运行时模式)。

UTF-8 模式在语言区域为 C 或 POSIX 并且 PEP 538 [https://www.python.org/dev/peps/pep-0538] 区域强制转换特性无法将其修改为某种基于 UTF-8 的替代项时会被默认启用（无论修改失败是由于设置了 PYTHONCOERCECLOCALE=0, LC_ALL 还是由于缺少适合的目标区域）。

参见

	PEP 540 [https://www.python.org/dev/peps/pep-0540] -- 增加了新的 UTF-8 模式
	PEP 由 Victor Stinner 撰写并实现

PEP 553: 内置的 breakpoint()

Python 3.7 包含了新的内置 breakpoint() 函数，作为一种简单方便地进入 Python 调试器的方式。

内置 breakpoint() 会调用 sys.breakpointhook()。 在默认情况下后者会导入 pdb 然后再调用 pdb.set_trace()，但是通过将 sys.breakpointhook() 绑定到你选定的函数，breakpoint() 可以进入任何调试器。 此外，环境变量 PYTHONBREAKPOINT 可被设置为你选定的调试器的可调用对象。 设置 PYTHONBREAKPOINT=0 会完全禁用内置 breakpoint()。

参见

	PEP 553 [https://www.python.org/dev/peps/pep-0553] -- 内置的 breakpoint()
	PEP 由 Barry Warsaw 撰写并实现

PEP 539: 用于线程局部存储的新 C API

虽然 Python 已提供了用于线程局部存储支持的 C API；但原有的 线程局部存储 (TLS) API 使用 int 来表示所有平台上的 TLS 密钥。 对于官方支持的平台而言这通常不是问题，但这既不符合 POSIX 标准，也不具备任何实际意义上的可移植性。

PEP 539 [https://www.python.org/dev/peps/pep-0539] 通过向 CPython 提供了一个新的 线程特定存储 (TSS) API 来改变这一点，它取代了原有的 CPython 内部 TLS API 的使用，并且原有 API 已弃用。 TSS API 使用一种新类型 Py_tss_t 而非 int 来表示 TSS 密钥 -- 这是一种不透明类型，其定义可能依赖于下层的 TLS 实现。 因此，这将允许在以无法安全地转换为 int 的方式定义原生 TLS 密钥的平台上构建 CPython。

请注意在原生 TLS 密钥定义方式无法被安全地转换为 int 的平台上，原有 TLS API 中的全部函数将无法执行并会立即返回失败信息。 这样能清楚地表明原有 API 在无法可靠使用的平台上不受支持，并且不会再尝试添加此类支持。

参见

	PEP 539 [https://www.python.org/dev/peps/pep-0539] -- 在 CPython 中用于线程局部存储的新 C-API
	PEP 由 Erik M. Bray 撰写；由 Masayuki Yamamoto 实现。

PEP 562: 定制对模块属性的访问

Python 3.7 允许在模块上定义 __getattr__() 并且当以其他方式找不到某个模块属性时将会调用它。 在模块上定义 __dir__() 现在也是允许的。

一个典型的可能有用的例子是已弃用模块属性和惰性加载。

参见

	PEP 562 [https://www.python.org/dev/peps/pep-0562] -- 模块的 __getattr__ 和 __dir__
	PEP 由 Ivan Levkivskyi 撰写并实现

PEP 564: 具有纳秒级精度的新时间函数

现代系统的时钟精度可以超过由 time.time() 函数及其变化形式所返回的浮点数的有限精度。 为了避免精度损失，PEP 564 [https://www.python.org/dev/peps/pep-0564] 在 time 模块中增加了原有计时器函数的六个新“纳秒版”变化形式:

	time.clock_gettime_ns()

	time.clock_settime_ns()

	time.monotonic_ns()

	time.perf_counter_ns()

	time.process_time_ns()

	time.time_ns()

这些新函数会以整数值的形式返回纳秒数。

测量 [https://www.python.org/dev/peps/pep-0564/#annex-clocks-resolution-in-python] 表明在 Linux 和 Windows 上 time.time_ns() 的精度大约比 time.time() 要高 3 倍。

参见

	PEP 564 [https://www.python.org/dev/peps/pep-0564] -- 增加具有纳秒级精度的新时间函数
	PEP 由 Victor Stinner 撰写并实现

PEP 565: 在 __main__ 中显示 DeprecationWarning

DeprecationWarning 的默认处理方式已经被更改，这此警告默认只显示一次，仅有当直接在 __main__ 模块中运行的代码触发它们时才会再次显示。 因此，单文件脚本开发者以及 Python 交互模式使用者应该会再次开始看到针对他们所使用 API 的已弃用警告，但被导入应用、库和框架模块所触发的已弃用警告默认将继续隐藏。

作为此项更改的结果，标准库现在允许开发者在三种不同的已弃用警告行为之间进行选择:

	FutureWarning: 默认情况下总是会显示，建议用于应用程序最终用户应该看到的警告信息（例如对于已弃用的应用程序配置的设置选项）。

	DeprecationWarning: 默认情况下仅在 __main__ 中以及当运行测试时会显示，建议用于其他 Python 开发者应该看到的警告信息，提示版本升级可能导致行为改变或者错误。

	PendingDeprecationWarning: 默认情况下仅在运行测试时会显示，可用于提示未来版本升级将会改变警告类别为 DeprecationWarning 或 FutureWarning 的情况。

在此之前 DeprecationWarning 和 PendingDeprecationWarning 都仅在运行测试时可见，这意味着主要编写单文件脚本或使用 Python 交互模式的开发者可能会因他们所用 API 突然出现的改变而感到惊讶。

参见

	PEP 565 [https://www.python.org/dev/peps/pep-0565] -- 在 __main__ 中显示 DeprecationWarning
	PEP 由 Nick Coghlan 撰写并实现

PEP 560: 对 typing 模块和泛型类型的核心支持

PEP 484 [https://www.python.org/dev/peps/pep-0484] 最初的设计方式使其不会向核心 CPython 解释器引入 任何 更改。 现在类型提示和 typing 模块已被社区广泛使用，因此这个限制已被取消。 这个 PEP 引入了两个特殊方法 __class_getitem__() 和 __mro_entries__，这些方法现在被 typing 中的大多数类和特殊构造所使用。 结果就是与类型相关的各类操作的速度提升了 7 倍，泛型类型可以在没有元类冲突的情况下被使用，而 typing 模块中几个长期存在的错误也已被修正。

参见

	PEP 560 [https://www.python.org/dev/peps/pep-0560] -- 对 typing 模块和泛型类型的核心支持
	PEP 由 Ivan Levkivskyi 撰写并实现

PEP 552: 基于哈希值的 .pyc 文件

传统上 Python 检查字节码缓存文件 (即 .pyc 文件) 是否最新的方式是通过对源码元数据 (最后更改的时间戳和大小）和生成缓存时保存在其文件头中的源码元数据进行比较。 这种检查方法虽然有效，但也存在缺点。 当文件系统的时间戳太粗糙时，Python 有可能错过源码更新，导致用户感到困惑。 此外，在缓存文件中存在时间戳对于 构建可再现 [https://reproducible-builds.org/] 并且基于内容的构建系统来说是有问题的。

PEP 552 [https://www.python.org/dev/peps/pep-0552] 扩展了 pyc 格式以允许使用源文件的哈希值而非源文件的时间戳来检查有效性。 这种 .pyc 文件就称为“基于哈希值的”。 默认情况下，Python 仍然使用基于时间戳的有效性检查，不会在运行时生成基于哈希值的 .pyc 文件。 基于哈希值的 .pyc 文件可以使用 py_compile 或 compileall 来生成。

基于哈希值的 .pyc 文件包含两种变体：已选定和未选定。 Python 会在运行时针对相应源码文件验证已选定基于哈希值的 .pyc 文件，但对未选定基于哈希值的 pyc 文件则不会这样做。 未选定基于哈希值的 .pyc 文件对于需要由 Python 外部的系统（例如构建系统）负责使 .pyc 文件保持最新的环境来说是一种有用的性能优化。

请参阅 已缓存字节码的失效 了解更多信息。

参见

	PEP 552 [https://www.python.org/dev/peps/pep-0552] -- 确定性的 pyc 文件
	PEP 由 Benjamin Peterson 撰写并实现

PEP 545: Python 文档翻译

PEP 545 [https://www.python.org/dev/peps/pep-0545] 描述了创建和维护 Python 文档翻译的整个过程。

新增了三个新的翻译版本:

	日语: https://docs.python.org/ja/

	法语: https://docs.python.org/fr/

	韩语: https://docs.python.org/ko/

参见

	PEP 545 [https://www.python.org/dev/peps/pep-0545] -- Python 文档翻译
	PEP 由 Julien Palard, Inada Naoki 和 Victor Stinner 撰写并实现。

开发运行时模式: -X dev

新的 -X dev 命令行选项或新的 PYTHONDEVMODE 环境变量可被用来启用 CPython 的 开发模式。 在开发模式下，CPython 会执行额外的在默认情况下开销过大的运行时检查。 请参阅 -X dev 文档查看对于此模式效果的完整描述。

其他语言特性修改

	await 表达式和包含 async for 子句的推导式不允许在 格式化字符串字面值 的表达式中使用。 在 Python 3.7 中此限制已被取消。

	现在可以将超过 255 个参数传递给一个函数，而现在一个函数也可以拥有超过 255 个形参。 （由 Serhiy Storchaka 在 bpo-12844 [https://bugs.python.org/issue12844] 和 bpo-18896 [https://bugs.python.org/issue18896] 中贡献。）

	现在 bytes.fromhex() 和 bytearray.fromhex() 会忽略所有 ASCII 空白符，而非仅是空格符. （由 Robert Xiao 在 bpo-28927 [https://bugs.python.org/issue28927] 中贡献。）

	str, bytes 和 bytearray 获得了对新 isascii() 方法的支持，该方法可被用来测试是个字符串或字节串是否仅包含 ASCII 字符。 （由 INADA Naoki 在 bpo-32677 [https://bugs.python.org/issue32677] 中贡献。）

	现在当 from ... import ... 失败时 ImportError 会显示模块名称和模块 __file__ 路径。 （由 Matthias Bussonnier 在 bpo-29546 [https://bugs.python.org/issue29546] 中贡献。）

	现在已支持涉及将子模块绑定到一个名称的绝对导入的循环导入。 （由 Serhiy Storchaka 在 bpo-30024 [https://bugs.python.org/issue30024] 中贡献。）

	现在 object.__format__(x, '') 等价于 str(x) 而非 format(str(self), '')。 （由 Serhiy Storchaka d bpo-28974 [https://bugs.python.org/issue28974] 中贡献。）

	为更好地支持栈跟踪的动态创建，现在 types.TracebackType 可以从 Python 代码中被实例化，并且 回溯对象 的 tb_next 属性现在是可写的。 （由 Nathaniel J. Smith 在 bpo-30579 [https://bugs.python.org/issue30579] 中贡献。）

	当使用 -m 开关时，现在 sys.path[0] 会主动扩展为完整的起始目录路径，而不是保持为空目录（这将允许在发生导入时从 当前 工作目录导入） （由 Nick Coghlan 在 bpo-33053 [https://bugs.python.org/issue33053] 中贡献。）

	新的 -X importtime 选项或 PYTHONPROFILEIMPORTTIME 环境变量可被用来显示每次模块导入的时间。 （由 Victor Stinner 在 bpo-31415 [https://bugs.python.org/issue31415] 中贡献。）

新增模块

contextvars

新的 contextvars 模块和一组 新的 C API 引入了对 上下文变量 的支持。 上下文变量在概念上类似于线程局部变量。 与 TLS 不同，上下文变量能正确地支持异步代码。

asyncio 和 decimal 已得到更新以使用和支持开箱即用的上下文变量。 特别是激活的 decimal 上下文现在将存储在上下文变量中，它允许十进制运算在异步代码中使用正确的上下文。

参见

	PEP 567 [https://www.python.org/dev/peps/pep-0567] -- 上下文变量
	PEP 由 Yury Selivanov 撰写并实现

dataclasses

新的 dataclass() 装饰器提供了一种声明 数据类 的方式。 数据类使用变量标注来描述其属性。 它的构造器和其他魔术方法例如 __repr__(), __eq__() 以及 __hash__() 会自动地生成。

示例:

@dataclass
class Point:
 x: float
 y: float
 z: float = 0.0

p = Point(1.5, 2.5)
print(p) # produces "Point(x=1.5, y=2.5, z=0.0)"

参见

	PEP 557 [https://www.python.org/dev/peps/pep-0557] -- 数据类
	PEP 由 Eric V. Smith 撰写并实现

importlib.resources

新的 importlib.resources 模块提供了一些新的 API 和一个新的 ABC 用于访问、打开和读取包内的 资源。 资源基本上类似于包内的文件，但它们不一定是物理文件系统中实际的文件。 模块加载器可以提供 get_resource_reader() 函数，它会返回一个 importlib.abc.ResourceReader 实例来支持这个新 API。 内置的文件路径加载器和 zip 文件加载器都支持此特性。

由 Barry Warsaw 和 Brett Cannon 在 bpo-32248 [https://bugs.python.org/issue32248] 中贡献。

参见

importlib_resources [http://importlib-resources.readthedocs.io/en/latest/] -- 用于先前 Python 版本的 PyPI 下层接口。

改进的模块

argparse

新的 ArgumentParser.parse_intermixed_args() 方法允许混合选项与位置参数。 （由 paul.j3 在 bpo-14191 [https://bugs.python.org/issue14191] 中提供。）

asyncio

asyncio 模块获得了许多新的特性、可用性和 性能提升。 重要的改变包括:

	新的 暂定 asyncio.run() 函数可被用于通过自动创建和销毁事件循环以基于同步代码运行协程。 （由 Yury Selivanov 在 bpo-32314 [https://bugs.python.org/issue32314] 中贡献。）

	asyncio 增加支持 contextvars. loop.call_soon(), loop.call_soon_threadsafe(), loop.call_later(), loop.call_at() 并且 Future.add_done_callback() 具有新的可选仅关键字参数 context。 现在 Tasks 会自动跟踪其上下文。 详情参见 PEP 567 [https://www.python.org/dev/peps/pep-0567]。 （由 Yury Selivanov 在 bpo-32436 [https://bugs.python.org/issue32436] 中贡献。）

	增加了新的 asyncio.create_task() 函数作为 asyncio.get_event_loop().create_task() 的快捷方式。 （由 Andrew Svetlov 在 bpo-32311 [https://bugs.python.org/issue32311] 中贡献。）

	新的 loop.start_tls() 方法可用于升级现有的 TLS 连接。 （由 Yury Selivanov 在 bpo-23749 [https://bugs.python.org/issue23749] 中贡献。）

	新的 loop.sock_recv_into() 方法允许直接从套接字读取数据放入所提供的缓冲区，从而可以减少数据复制。 （由 Antoine Pitrou 在 bpo-31819 [https://bugs.python.org/issue31819] 中贡献。）

	新的 asyncio.current_task() 函数可返回当前运行的 Task 实例，以及新的 asyncio.all_tasks() 函数可返回给定循环中所有现存 Task 实例的集合。 Task.current_task() 和 Task.all_tasks() 方法已弃用。 （由 Andrew Svetlov 在 bpo-32250 [https://bugs.python.org/issue32250] 中贡献。）

	新的 暂定 BufferedProtocol 类允许通过手动控制接收缓冲区来实现流式协议。 （由 Yury Selivanov 在 bpo-32251 [https://bugs.python.org/issue32251] 中贡献。）

	新的 asyncio.get_running_loop() 函数可返回当前运行的循环，如果没有循环在运行则引发 RuntimeError。 这与 asyncio.get_event_loop() 不同，后者在没有循环在运行时将 创建 一个新的事件循环。 （由 Yury Selivanov 在 bpo-32269 [https://bugs.python.org/issue32269] 中提供。）

	新的 StreamWriter.wait_closed() 协程方法允许执行等待直到流写入器被关闭。 新的 StreamWriter.is_closing() 方法可用于确定写入器是否被关闭。 （由 Andrew Svetlov 在 bpo-32391 [https://bugs.python.org/issue32391] 中贡献。）

	新的 loop.sock_sendfile() 协程方法允许在可能的情况下使用 os.sendfile 发送文件。 （由 Andrew Svetlov 在 bpo-32410 [https://bugs.python.org/issue32410] 中贡献。）

	新的 Future.get_loop() 和 Task.get_loop() 方法会返回创建 task 或 future 对象的事件循环的实例。 Server.get_loop() 允许为 asyncio.Server 对象执行同样操作。 （由 Yury Selivanov 在 bpo-32415 [https://bugs.python.org/issue32415] 中，以及由 Srinivas Reddy Thatiparthy 在 bpo-32418 [https://bugs.python.org/issue32418] 中贡献。）

	现在可以控制 asyncio.Server 的实例如何开启服务。 之前，服务在创建后将立即开启服务。 新的 start_serving 关键字参数已添加到 loop.create_server() 和 loop.create_unix_server()，并且 Server.start_serving(), 和 Server.serve_forever() 可被用来分离服务的实例化和服务的开启。 新的 Server.is_serving() 方法会在服务开启时返回 True。 现在 Server 对象已是异步上下文管理器:

srv = await loop.create_server(...)

async with srv:
 # some code

At this point, srv is closed and no longer accepts new connections.

（由 Yury Selivanov 在 bpo-32662 [https://bugs.python.org/issue32662] 中贡献。）

	由 loop.call_later() 所返回的回调对象已获得新的 when() 方法，该方法会返回一个排入计划日程的绝对时间戳。 （由 Andrew Svetlov 在 bpo-32741 [https://bugs.python.org/issue32741] 中贡献。）

	loop.create_datagram_endpoint() 方法已获得对 Unix 套接字的支持。 （由 Quentin Dawans 在 bpo-31245 [https://bugs.python.org/issue31245] 中贡献。）

	asyncio.open_connection(), asyncio.start_server() functions, loop.create_connection(), loop.create_server(), loop.create_accepted_socket() 方法及其对应的 UNIX 套接字变体现在接受 ssl_handshake_timeout 关键字参数。 （由 Neil Aspinall 在 bpo-29970 [https://bugs.python.org/issue29970] 中贡献。）

	新的 Handle.cancelled() 方法会在回调被取消时返回 True。 （由 Marat Sharafutdinov 在 bpo-31943 [https://bugs.python.org/issue31943] 中贡献。）

	asyncio 源已被转换为使用 async/await 语法。 （由 Andrew Svetlov 在 bpo-32193 [https://bugs.python.org/issue32193] 中贡献。）

	新的 ReadTransport.is_reading() 方法可用于确定传输的读取状态。 此外，对 ReadTransport.resume_reading() 和 ReadTransport.pause_reading() 的调用现在是幂等的。 （由 Yury Selivanov 在 bpo-32356 [https://bugs.python.org/issue32356] 中贡献。）

	接受套接字路径的循环方法现在支持传入 路径类对象。 （由 Yury Selivanov 在 bpo-32066 [https://bugs.python.org/issue32066] 中贡献。）

	在 asyncio 中，Linux 上的 TCP 套接字现在创建时默认带有 TCP_NODELAY 旗标设置。 （由 Yury Selivanov 和 Victor Stinner 在 bpo-27456 [https://bugs.python.org/issue27456] 中贡献。）

	在被取消任务中发生的异常不会再被记录。 （由 Yury Selivanov 在 bpo-30508 [https://bugs.python.org/issue30508] 中贡献。）

	新的 WindowsSelectorEventLoopPolicy 和 WindowsProactorEventLoopPolicy 类。 （由 Yury Selivanov 在 bpo-33792 [https://bugs.python.org/issue33792] 中贡献。）

部分 asyncio API 改为 已弃用。

binascii

b2a_uu() 函数现在接受可选的 backtick 关键字参数。 当其为真值时，零会以 '`' 而非空格来表示。 （由 Xiang Zhang 在 bpo-30103 [https://bugs.python.org/issue30103] 中贡献。）

calendar

HTMLCalendar 类具有新的类属性，可以简化所生成 HTML 日历中 CSS 类的自定义。 （由 Oz Tiram 在 bpo-30095 [https://bugs.python.org/issue30095] 中贡献。）

collections

collections.namedtuple() 现在支持默认值。 （由 Raymond Hettinger 在 bpo-32320 [https://bugs.python.org/issue32320] 中贡献。）

compileall

compileall.compile_dir() 增加了新的 invalidation_mode 形参，可用于启用 基于哈希值的 .pyc 有效性检测。 失效模式也可以在命令行中使用新的 --invalidation-mode 参数来指定。 （由 Benjamin Peterson 在 bpo-31650 [https://bugs.python.org/issue31650] 中贡献。）

concurrent.futures

ProcessPoolExecutor 和 ThreadPoolExecutor 现在支持新的 初始化器 以及 initargs 构造器参数。 （由 Antoine Pitrou 在 bpo-21423 [https://bugs.python.org/issue21423] 中贡献。）

ProcessPoolExecutor 现在能通过新的 mp_context 参数来接受多进程上下文。 （由 Thomas Moreau 在 bpo-31540 [https://bugs.python.org/issue31540] 中贡献。）

contextlib

新的 nullcontext() 是一个比 ExitStack 更简单和快速的无操作上下文管理器。 （由 Jesse-Bakker 在 bpo-10049 [https://bugs.python.org/issue10049] 中贡献。）

增加了新的 asynccontextmanager(), AbstractAsyncContextManager 和 AsyncExitStack 以补充它们所对应的同步项。 （由 Jelle Zijlstra 在 bpo-29679 [https://bugs.python.org/issue29679] 和 bpo-30241 [https://bugs.python.org/issue30241] 中，以及由 Alexander Mohr 和 Ilya Kulakov 在 bpo-29302 [https://bugs.python.org/issue29302] 中贡献。）

cProfile

cProfile 命令行现在接受 -m module_name 作为脚本路径的替代。 （由 Sanyam Khurana 在 bpo-21862 [https://bugs.python.org/issue21862] 中贡献。）

crypt

crypt 模块现在支持 Blowfish 哈希方法。 （由 Serhiy Storchaka 在 bpo-31664 [https://bugs.python.org/issue31664] 中贡献。）

mksalt() 函数现在允许指定哈希操作的轮数。 （由 Serhiy Storchaka 在 bpo-31702 [https://bugs.python.org/issue31702] 中贡献。）

datetime

新的 datetime.fromisoformat() 方法会基于由 datetime.isoformat() 所输出的某一特定格式字符串构建 datetime 对象。 （由 Paul Ganssle 在 bpo-15873 [https://bugs.python.org/issue15873] 中贡献。）

tzinfo 类现在支持小于一分钟的偏移量。 （由 Alexander Belopolsky 在 bpo-5288 [https://bugs.python.org/issue5288] 中贡献。）

dbm

dbm.dumb 现在支持读取只读文件，并且在其未改变时不再写入索引文件。

decimal

decimal 模块现在使用 上下文变量 来储存十进制值上下文。 （由 Yury Selivanov 在 bpo-32630 [https://bugs.python.org/issue32630] 中贡献。）

dis

dis() 函数现在能够反汇编嵌套的代码对象（推导式、生成器表达式和嵌套函数的代码，以及用于构建嵌套类的代码）。 反汇编递归的最大深度由新的 depth 形参来控制。 （由 Serhiy Storchaka 在 bpo-11822 [https://bugs.python.org/issue11822] 中贡献。）

distutils

README.rst 现在包含在 distutils 的标准 README 列表之中，因而也包含在源码发布之中。 （由 Ryan Gonzalez 在 bpo-11913 [https://bugs.python.org/issue11913] 中贡献。）

enum

Enum 增加了新的 _ignore_ 类特征属性，该属性允许列出不应当成为枚举成员的特征属性名称。 （由 Ethan Furman 在 bpo-31801 [https://bugs.python.org/issue31801] 中贡献。）

在 Python 3.8 中，尝试在 Enum 类中检查非 Enum 对象将引发 TypeError (例如 1 in Color)；类似地，尝试在 Flag 成员中检查非 Flag 对象也将引发 TypeError (例如 1 in Perm.RW)；目前，两种操作均会返回 False 并且已弃用。 （由 Ethan Furman 在 bpo-33217 [https://bugs.python.org/issue33217] 中贡献。）

functools

functools.singledispatch() 现在支持使用类型标注来注册实现。 （由 Łukasz Langa 在 bpo-32227 [https://bugs.python.org/issue32227] 中贡献。）

gc

新的 gc.freeze() 函数允许冻结由垃圾回收器所跟踪的所有对象，并将它们从未来的集合中排除。 这可以在 POSIX fork() 调用之前使用以令 GC 友好地进行写入时复制或加速收集。 新的 gc.unfreeze() 函数会反转此操作。 此外，gc.get_freeze_count() 可被用于获取冻结对象的数量。 （由 Li Zekun 在 bpo-31558 [https://bugs.python.org/issue31558] 中贡献。）

hmac

hmac 现在具有经优化的一次性 digest() 函数，其速度比 HMAC() 要快三倍。 （由 Christian Heimes 在 bpo-32433 [https://bugs.python.org/issue32433] 中贡献。）

http.client

HTTPConnection 和 HTTPSConnection 现在支持新的 blocksize 参数以提升上传吞吐量。 （由 Nir Soffer 在 bpo-31945 [https://bugs.python.org/issue31945] 中贡献。）

http.server

SimpleHTTPRequestHandler 现在支持 HTTP If-Modified-Since 标头。 如果目标文件在该标点指定的时间之后未被修改则服务器会返回 304 响应状态。 （由 Pierre Quentel 在 bpo-29654 [https://bugs.python.org/issue29654] 中贡献。）

SimpleHTTPRequestHandler 接受新的 directory 参数并增加了新的 --directory 命令行参数。 通过此形参，服务器可以对服务指定目录，默认情况下它使用当前工作目录。 （由 Stéphane Wirtel 和 Julien Palard 在 bpo-28707 [https://bugs.python.org/issue28707] 中贡献。）

新的 ThreadingHTTPServer 类使用线程来处理使用 ThreadingMixin 的请求。 它会在 http.server 附带 -m 运行时被使用。 （由 Julien Palard 在 bpo-31639 [https://bugs.python.org/issue31639] 中贡献。）

idlelib 与 IDLE

多个对自动补全的修正。 （由 Louie Lu 在 bpo-15786 [https://bugs.python.org/issue15786] 中贡献。）

Module Browser (在 File 菜单中，之前称为 Class Browser) 现在会在最高层级函数和类之外显示嵌套的函数和类。 （由 Guilherme Polo, Cheryl Sabella 和 Terry Jan Reedy 在 bpo-1612262 [https://bugs.python.org/issue1612262] 中贡献。）

Settings 对话框 (Options 中的 Configure IDLE) 已经被部分重写以改进外观和功能。 （由 Cheryl Sabella 和 Terry Jan Reedy 在多个问题项中贡献。）

字体样本现在包括一组非拉丁字符以便用户能更好地查看所选特定字体的效果。 （由 Terry Jan Reedy 在 bpo-13802 [https://bugs.python.org/issue13802] 中贡献。） 样本可以被修改以包括其他字符。 （由 Serhiy Storchaka 在 bpo-31860 [https://bugs.python.org/issue31860] 中贡献。）

之前以扩展形式实现的 IDLE 特性已作为正常特性重新实现。 它们的设置已从 Extensions 选项卡移至其他对话框选项卡。 （由 Charles Wohlganger 和 Terry Jan Reedy 在 bpo-27099 [https://bugs.python.org/issue27099] 中实现。）

编辑器代码上下文选项已经过修改。 Box 会显示所有上下文行直到最大行数。 点击一个上下文行会使编辑器跳转到该行。 自定义主题的上下文颜色已添加到 Settings 对话框的 Highlights 选项卡。 （由 Cheryl Sabella 和 Terry Jan Reedy 在 bpo-33642 [https://bugs.python.org/issue33642], bpo-33768 [https://bugs.python.org/issue33768] 和 bpo-33679 [https://bugs.python.org/issue33679] 中贡献。）

在 Windows 上，会有新的 API 调用将 tk 对 DPI 的调整告知 Windows。 在 Windows 8.1+ 或 10 上，如果 Python 二进制码的 DPI 兼容属性未改变，并且监视器分辨率大于 96 DPI，这应该会令文本和线条更清晰。 否则的话它应该不造成影响。 （由 Terry Jan Reedy 在 bpo-33656 [https://bugs.python.org/issue33656] 中贡献。）

在 3.7.1 中新增:

超过 N 行（默认值为 50）的输出将被折叠为一个按钮。 N 可以在 Settings 对话框的 General 页的 PyShell 部分中进行修改。 数量较少但是超长的行可以通过在输出上右击来折叠。 被折叠的输出可通过双击按钮来展开，或是通过右击按钮来放入剪贴板或是单独的窗口。 （由 Tal Einat 在 bpo-1529353 [https://bugs.python.org/issue1529353] 中贡献。）

上述修改已被反向移植到 3.6 维护发行版中。

在 3.7.4 中新增:

在 Run 菜单中增加了 "Run Customized" 以使用自定义设置来运行模块。 输入的任何命令行参数都会被加入 sys.argv。 它们在下次自定义运行时会再次显示在窗体中。 用户也可以禁用通常的 Shell 主模块重启。 （由 Cheryl Sabella, Terry Jan Reedy 等人在 bpo-5680 [https://bugs.python.org/issue5680] 和 bpo-37627 [https://bugs.python.org/issue37627] 中贡献。）

在 3.7.5 中新增:

在 IDLE 编辑器窗口中增加了可选的行序号。 窗口打开时默认不带行序号，除非在配置对话框的 General 选项卡中进行设置。 已打开窗口中的行序号可以在 Options 菜单中显示和隐藏。 （由 Tal Einat 和 Saimadhav Heblikar 在 bpo-17535 [https://bugs.python.org/issue17535] 中贡献。）

importlib

引入了 importlib.abc.ResourceReader ABC 以支持从包中加载资源。 另请参阅 importlib.resources。 （由 Barry Warsaw, Brett Cannon 在 bpo-32248 [https://bugs.python.org/issue32248] 中贡献。）

如果模块缺少规格描述 importlib.reload() 现在会引发 ModuleNotFoundError。 （由 Garvit Khatri 在 bpo-29851 [https://bugs.python.org/issue29851] 中贡献。）

如果指定的父模块不是一个包 (即缺少 __path__ 属性) importlib.find_spec() 现在会引发 ModuleNotFoundError 而非 AttributeError。 （由 Milan Oberkirch 在 bpo-30436 [https://bugs.python.org/issue30436] 中贡献。）

新的 importlib.source_hash() 可被用来计算传入源的哈希值。 基于哈希值的 .pyc 文件 会嵌入此函数所返回的值。

io

新的 TextIOWrapper.reconfigure() 方法可用于根据新的设置重新配置文本流。 （由 Antoine Pitrou 在 bpo-30526 [https://bugs.python.org/issue30526] 以及 INADA Naoki 在 bpo-15216 [https://bugs.python.org/issue15216] 中贡献。）

ipaddress

methods of ipaddress.IPv6Network 和 ipaddress.IPv4Network 中新的 subnet_of() 以及 supernet_of() 方法可用于网络包含测试。 （由 Michel Albert 和 Cheryl Sabella 在 bpo-20825 [https://bugs.python.org/issue20825] 中贡献。）

itertools

itertools.islice() 现在接受 类整数对象 作为 start, stop 和 slice 参数。 （由 Will Roberts 在 bpo-30537 [https://bugs.python.org/issue30537] 中贡献。）

locale

locale.format_string() 中新的 monetary 参数可用于转换所使用的千位分隔符和分组字符串。 （由 Garvit 在 bpo-10379 [https://bugs.python.org/issue10379] 中贡献。）

现在 locale.getpreferredencoding() 函数在 Android 上或是在 强制 UTF-8 模式 下总是返回 'UTF-8' 。

logging

Logger 实例现在可以被 pickle。 （由 Vinay Sajip 在 bpo-30520 [https://bugs.python.org/issue30520] 中贡献。）

新的 StreamHandler.setStream() 方法可用于在句柄创建之后替换日志流。 （由 Vinay Sajip 在 bpo-30522 [https://bugs.python.org/issue30522] 中创建。）

现在可以在传递给 logging.config.fileConfig() 的配置信息中对句柄构造器指定关键字参数。 （由 Preston Landers 在 bpo-31080 [https://bugs.python.org/issue31080] 中贡献。)

math

新的 math.remainder() 函数实现了 IEEE 754 风格的余数运算。 （由 Mark Dickinson 在 bpo-29962 [https://bugs.python.org/issue29962] 中贡献。）

mimetypes

.bmp 的 MIME type 从 'image/x-ms-bmp' 改为 'image/bmp'。 （由 Nitish Chandra 在 bpo-22589 [https://bugs.python.org/issue22589] 中贡献。）

msilib

新的 Database.Close() 方法可用于关闭 MSI 数据库。 （由 Berker Peksag 在 bpo-20486 [https://bugs.python.org/issue20486] 中贡献。）

multiprocessing

新的 Process.close() 方法会显式地关闭进程对象并释放与其关联的所有资源。 如果底层进程仍在运行则将引发 ValueError。 （由 Antoine Pitrou 在 bpo-30596 [https://bugs.python.org/issue30596] 中贡献。）

新的 Process.kill() 方法可用于在 Unix 上使用 SIGKILL 信号来终止进程。 （由 Vitor Pereira 在 bpo-30794 [https://bugs.python.org/issue30794] 中贡献。）

由 Process 所创建的非守护线程现在会在进程退出时被合并。 （由 Antoine Pitrou 在 bpo-18966 [https://bugs.python.org/issue18966] 中贡献。）

os

os.fwalk() 现在接受 bytes 类型的 path 参数。 （由 Serhiy Storchaka 在 bpo-28682 [https://bugs.python.org/issue28682] 中贡献。）

os.scandir() 已获得对 文件描述器 的支持。 （由 Serhiy Storchaka 在 bpo-25996 [https://bugs.python.org/issue25996] 中贡献。）

新的 register_at_fork() 函数允许注册 Python 回调以便在进程分叉中执行。 （由 Antoine Pitrou 在 bpo-16500 [https://bugs.python.org/issue16500] 中贡献。）

增加了 os.preadv() (结合了 os.readv() 与 os.pread() 的功能) 以及 os.pwritev() 函数 (结合了 os.writev() 和 os.pwrite() 的功能)。 （由 Pablo Galindo 在 bpo-31368 [https://bugs.python.org/issue31368] 中贡献。）

os.makedirs() 的 mode 参数不再影响新创建的中间层级目录的文件权限。 （由 Serhiy Storchaka 在 bpo-19930 [https://bugs.python.org/issue19930] 中贡献。）

os.dup2() 现在会返回新的文件描述器。 之前，返回的总是 None。 （由 Benjamin Peterson 在 bpo-32441 [https://bugs.python.org/issue32441] 中贡献。）

在 Solaris 及其派生系统上 os.stat() 所返回的结构现在会包含 st_fstype 属性。 （由 Jesús Cea Avión 在 bpo-32659 [https://bugs.python.org/issue32659] 中贡献。）

pathlib

在 POSIX 类系统上新的 Path.is_mount() 方法现在可用于确定一个路径是否为挂载点。 （由 Cooper Ry Lees 在 bpo-30897 [https://bugs.python.org/issue30897] 中贡献。）

pdb

pdb.set_trace() 现在接受一个可选的限关键字参数 header。 如果给出，它会在调试开始之前被打印到控制台。 （由 Barry Warsaw 在 bpo-31389 [https://bugs.python.org/issue31389] 中贡献。）

pdb 命令行现在接受 -m module_name 作为对脚本文件的替代。 （由 Mario Corchero 在 bpo-32206 [https://bugs.python.org/issue32206] 中贡献。）

py_compile

py_compile.compile() -- 及其扩展形式 compileall -- 现在会通过无条件地为基于哈希值的有效性验证创建 .pyc 文件来支持 SOURCE_DATE_EPOCH 环境变量。 这样可以确保当 .pyc 文件被主动创建时 可重现的生成 [https://reproducible-builds.org/]。 （由 Bernhard M. Wiedemann 在 bpo-29708 [https://bugs.python.org/issue29708] 中贡献。）

pydoc

pydoc 服务器现在可以绑定到由新的 -n 命令行参数所指定的任意主机名。 （由 Feanil Patel 在 bpo-31128 [https://bugs.python.org/issue31128] 中贡献。）

queue

新的 SimpleQueue 类是一个无界的 FIFO 队列。 （由 Antoine Pitrou 在 bpo-14976 [https://bugs.python.org/issue14976] 中贡献。）

re

旗标 re.ASCII, re.LOCALE 和 re.UNICODE 可以在组的范围内设置。 （由 Serhiy Storchaka 在 bpo-31690 [https://bugs.python.org/issue31690] 中贡献。）

re.split() 现在支持基于匹配一个空字符串的模式例如 r'\b', '^$' 或 (?=-) 进行拆分。 （由 Serhiy Storchaka 在 bpo-25054 [https://bugs.python.org/issue25054] 中贡献。）

使用 re.LOCALE 旗标编译的正则表达式不再依赖于编译时的区域设置。 区域设置仅在已编译正则表达式被使用时才被应用。 （由 Serhiy Storchaka 在 bpo-30215 [https://bugs.python.org/issue30215] 中贡献。）

现在如果一个正则表达式包含语义将在未来发生改变的字符集构造，则会引发 FutureWarning，例如嵌套集与集合操作等。 （由 Serhiy Storchaka 在 bpo-30349 [https://bugs.python.org/issue30349] 中贡献。）

已编译正则表达式和匹配对象现在可以使用 copy.copy() 和 copy.deepcopy() 进行拷贝。 （由 Serhiy Storchaka 在 bpo-10076 [https://bugs.python.org/issue10076] 中贡献。）

signal

signal.set_wakeup_fd() 函数新增的 warn_on_full_buffer 参数可以指定当唤醒缓冲区溢出时 Python 是否要在 stderr 上打印警告信息。 （由 Nathaniel J. Smith 在 bpo-30050 [https://bugs.python.org/issue30050] 中贡献。）

socket

新增的 socket.getblocking() 方法会在套接字处于阻塞模式时返回 True，否则返回 False。 （由 Yury Selivanov 在 bpo-32373 [https://bugs.python.org/issue32373] 中贡献。）

新的 socket.close() 函数可关闭所传入的套接字文件描述符。 应该用此函数来代替 os.close() 以获得更好的跨平台兼容性。 （由 Christian Heimes 在 bpo-32454 [https://bugs.python.org/issue32454] 中贡献。）

socket 模块现在会公开 socket.TCP_CONGESTION (Linux 2.6.13), socket.TCP_USER_TIMEOUT (Linux 2.6.37) 以及 socket.TCP_NOTSENT_LOWAT (Linux 3.12) 常量。 （由 Omar Sandoval 在 bpo-26273 [https://bugs.python.org/issue26273] 以及 Nathaniel J. Smith 在 bpo-29728 [https://bugs.python.org/issue29728] 中贡献。）

已加入对 socket.AF_VSOCK 套接字的支持以允许在虚拟机及其宿主机之间进行通讯。 （由 Cathy Avery 在 bpo-27584 [https://bugs.python.org/issue27584] 中贡献。）

套接字现在默认会根据文件描述符自动检测所属族、类型和协议。 （由 Christian Heimes 在 bpo-28134 [https://bugs.python.org/issue28134] 中贡献。）

socketserver

socketserver.ThreadingMixIn.server_close() 现在会等待所有非守护线程完成。 socketserver.ForkingMixIn.server_close() 现在会等待所有子进程完成。

为 socketserver.ForkingMixIn 和 socketserver.ThreadingMixIn 类增加了新的 socketserver.ForkingMixIn.block_on_close 类属性。 该类属性值设为 False 以保持 3.7 之前的行为。

sqlite3

现在当下层的 SQLite 库版本为 3.6.11 及以上时 sqlite3.Connection 会开放 backup() 方法。 （由 Lele Gaifax 在 bpo-27645 [https://bugs.python.org/issue27645] 中贡献。）

sqlite3.connect() 的 database 参数现在接受任何 path-like object，而不是只接受字符串。 （由 Anders Lorentsen 在 bpo-31843 [https://bugs.python.org/issue31843] 中贡献。）

ssl

ssl 模块现在使用 OpenSSL 的内置 API 代替 match_hostname() 来检查主机名或 IP 地址。 值的验证会在 TLS 握手期间进行。 任何证书验证错误包括主机名检查失败现在将引发 SSLCertVerificationError 并使用正确的 TLS Alert 消息中止握手过程。 这个新异常包含有额外的信息。 主机名验证可通过 SSLContext.hostname_checks_common_name 进行自定义。 （由 Christian Heimes 在 bpo-31399 [https://bugs.python.org/issue31399] 中贡献。）

注解

改进的主机名检测需要有兼容 OpenSSL 1.0.2 或 1.1 的 libssl 实现。 因此，OpenSSL 0.9.8 和 1.0.1 不再被支持（请参阅 平台支持的移除 了解详情）。 目前 ssl 模块主要兼容 LibreSSL 2.7.2 及更高版本。

ssl 模块不再以 SNI TLS 扩展发送 IP 地址。 （由 Christian Heimes 在 bpo-32185 [https://bugs.python.org/issue32185] 中贡献。）

match_hostname() 不再支持部分通配符例如 www*.example.org。 （由 Mandeep Singh 在 bpo-23033 [https://bugs.python.org/issue23033] 以及 Christian Heimes 在 bpo-31399 [https://bugs.python.org/issue31399] 中贡献。）

ssl 模块默认的加密套件选择现在是使用黑名单方式而非硬编码的白名单。 Python 不会再重新启用已经被 OpenSSL 安全更新所阻止的加密。 默认的加密套件选择可以在编译时进行配置。 （由 Christian Heimes 在 bpo-31429 [https://bugs.python.org/issue31429] 中贡献。）

现在已支持包含国际化域名 (IDN) 的服务器证书验证。 作为此更改的一部分，SSLSocket.server_hostname 属性现在会以预期的 A 标签形式 ("xn--pythn-mua.org") 而不是以 U 标签形式 ("pythön.org") 存储。 （由 Nathaniel J. Smith 与 Christian Heimes 在 bpo-28414 [https://bugs.python.org/issue28414] 中贡献。）

ssl 模块对 TLS 1.3 和 OpenSSL 1.1.1 具有初步和实验性的支持。 在 Python 3.7.0 发布的时刻，OpenSSL 1.1.1 仍在开发中，而 TLS 1.3 尚未最终确定。 TLS 1.3 握手和协议行为与 TLS 1.2 及更早的版本略有差异，请参阅 TLS 1.3。 （由 Christian Heimes 在 bpo-32947 [https://bugs.python.org/issue32947], bpo-20995 [https://bugs.python.org/issue20995], bpo-29136 [https://bugs.python.org/issue29136], bpo-30622 [https://bugs.python.org/issue30622] 以及 bpo-33618 [https://bugs.python.org/issue33618] 中贡献。）

SSLSocket 和 SSLObject 不再具有公共构造器。 直接实例化从未成为有文档和受支持的特性。 实际必须通过 SSLContext 的方法 wrap_socket() 和 wrap_bio() 来创建。 （由 Christian Heimes 在 bpo-32951 [https://bugs.python.org/issue32951] 中贡献。）

用于设置最小和最大 TLS 协议版本的 OpenSSL 1.1 API 现已可用，名称分别为 SSLContext.minimum_version 和 SSLContext.maximum_version。 受支持的协议由几个新增旗标指定，例如 HAS_TLSv1_1。 （由 Christian Heimes 在 bpo-32609 [https://bugs.python.org/issue32609] 中贡献。）

增加了 SSLContext.post_handshake_auth 以及 ssl.SSLSocket.verify_client_post_handshake() 来启用并初始化 TLS 1.3 握手后验证。 （由 Christian Heimes 在 bpo-34670 [https://bugs.python.org/issue34670] 中贡献。）

string

string.Template 现在允许你有选择地分别修改带大括号的占位符和不带大括号的占位符所对应的正则表达式模式。 （由 Barry Warsaw 在 bpo-1198569 [https://bugs.python.org/issue1198569] 中贡献。）

subprocess

subprocess.run() 函数接受新的 capture_output 关键字参数。 当其为真值时，将会捕获 stdout 和 stderr。 这相当于将 subprocess.PIPE 作为 stdout 和 stderr 参数传入。 （由 Bo Bayles 在 bpo-32102 [https://bugs.python.org/issue32102] 中贡献。）

subprocess.run 函数和 subprocess.Popen 构造器现在接受 text 关键字参数作为 universal_newlines 的别名。 （由 Andrew Clegg 在 bpo-31756 [https://bugs.python.org/issue31756] 中贡献。）

在 Windows 中当重定向标准句柄时 close_fds 的默认值由 False 改为 True。 现在可以在重定向标准句柄时将 close_fds 设为真值。 参阅 subprocess.Popen。 这意味着现在 close_fds 在所有受支持的平台上默认值均为 True。 （由 Segev Finer 在 bpo-19764 [https://bugs.python.org/issue19764] 中贡献。）

在 subprocess.call(), subprocess.run() 期间或在 Popen 上下文管理器中，subprocess 模块现在能更优雅地处理 KeyboardInterrupt。 它现在会等待一小段时间以便子进程退出，然后再继续处理 KeyboardInterrupt 异常。 （由 Gregory P. Smith 在 bpo-25942 [https://bugs.python.org/issue25942] 中贡献。）

sys

新增 sys.breakpointhook() 钩子函数，供内置的 breakpoint() 进行调用。 （由 Barry Warsaw 在 bpo-31353 [https://bugs.python.org/issue31353] 中贡献。）

在 Android 中新增的 sys.getandroidapilevel() 会返回构建时的 Android API 版本。 （由 Victor Stinner 在 bpo-28740 [https://bugs.python.org/issue28740] 中贡献。）

新的 sys.get_coroutine_origin_tracking_depth() 函数会返回当前协程的由新的 sys.set_coroutine_origin_tracking_depth() 所设定的原始跟踪深度。 asyncio 已转换为使用这个新 API 代替已弃用的 sys.set_coroutine_wrapper()。 （由 Nathaniel J. Smith 在 bpo-32591 [https://bugs.python.org/issue32591] 中贡献。）

time

PEP 564 [https://www.python.org/dev/peps/pep-0564] 向 time 模块增加六个具有纳秒级精度的新函数:

	time.clock_gettime_ns()

	time.clock_settime_ns()

	time.monotonic_ns()

	time.perf_counter_ns()

	time.process_time_ns()

	time.time_ns()

增加了新的时钟标识符:

	time.CLOCK_BOOTTIME (Linux): 与 time.CLOCK_MONOTONIC 相似，不同点在于它还包括任何系统挂起的时间。

	time.CLOCK_PROF (FreeBSD, NetBSD 和 OpenBSD): 高精度的分进程 CPU 计时器。

	time.CLOCK_UPTIME (FreeBSD, OpenBSD): 该时间的绝对值是系统运行且未挂起的时间，提供准确的正常运行时间度量。

新的 time.thread_time() 和 time.thread_time_ns() 函数可用于获取每线程的 CPU 时间度量。 （由 Antoine Pitrou 在 bpo-32025 [https://bugs.python.org/issue32025] 中贡献。）

新的 time.pthread_getcpuclockid() 函数会返回特定线程中 CPU 时钟的时钟 ID。

tkinter

新的 tkinter.ttk.Spinbox 类现已可用。 （由 Alan Moore 在 bpo-32585 [https://bugs.python.org/issue32585] 中贡献。）

tracemalloc

tracemalloc.Traceback 的行为更接近正规的回溯，会对所有帧按从最旧到最新来排序。 Traceback.format() 现在接受负的 limit，并会将结果截短至排在第 abs(limit) 位的旧帧。 如果要获得旧的行为，请在 Traceback.format() 中使用新的 most_recent_first 参数。 （由 Jesse Bakker 在 bpo-32121 [https://bugs.python.org/issue32121] 中贡献。）

types

新的 WrapperDescriptorType, MethodWrapperType, MethodDescriptorType 和 ClassMethodDescriptorType 类现已可用。 （由 Manuel Krebber 和 Guido van Rossum 在 bpo-29377 [https://bugs.python.org/issue29377] 以及 Serhiy Storchaka 在 bpo-32265 [https://bugs.python.org/issue32265] 中贡献。）

新的 types.resolve_bases() 函数会以 PEP 560 [https://www.python.org/dev/peps/pep-0560] 所规定的方式动态解析 MRO 条目。 （由 Ivan Levkivskyi 在 bpo-32717 [https://bugs.python.org/issue32717] 中贡献。）

unicodedata

内部的 unicodedata 数据库已升级为使用 Unicode 11 [http://www.unicode.org/versions/Unicode11.0.0/]。 （由 Benjamin Peterson 贡献。）

unittest

新的 -k 命令行选项允许通过名称子字符串或类似于 Unix shell 的模式来筛选测试项。 例如，python -m unittest -k foo 将运行 foo_tests.SomeTest.test_something, bar_tests.SomeTest.test_foo，但不会运行 bar_tests.FooTest.test_something。 （由 Jonas Haag 在 bpo-32071 [https://bugs.python.org/issue32071] 中贡献。）

unittest.mock

现在 sentinel 属性会在它们被 复制 或 封存 时保存其标识。 （由 Serhiy Storchaka 在 bpo-20804 [https://bugs.python.org/issue20804] 中贡献。）

新的 seal() 函数允许 Mock 对实例进行密封，这将禁止进一步创建属性模拟。 密封会以递归方式应用于自身模拟的所有属性。 （由 Mario Corchero 在 bpo-30541 [https://bugs.python.org/issue30541] 中贡献。）

urllib.parse

urllib.parse.quote() 已经从 RFC 2396 [https://tools.ietf.org/html/rfc2396.html] 更新为 RFC 3986 [https://tools.ietf.org/html/rfc3986.html]，将 ~ 添加到默认情况下从未引用的字符集。 （由 Christian Theune 和 Ratnadeep Debnath 在 bpo-16285 [https://bugs.python.org/issue16285] 中贡献。）

uu

uu.encode() 函数现在接受可选的 backtick 关键字参数。 当其为真时，零会以 '`' 而非空格来表示。 （由 Xiang Zhang 在 bpo-30103 [https://bugs.python.org/issue30103] 中贡献。）

uuid

新的 UUID.is_safe 属性会从平台中继有关是否使用多进程安全模式来生成所需 UUID 的信息。 （由 Barry Warsaw 在 bpo-22807 [https://bugs.python.org/issue22807] 中贡献。）

uuid.getnode() 现在更倾向于统一管理的 MAC 地址而不是本地管理的 MAC 地址。 这样可以更好地保证从 uuid.uuid1() 返回的 UUID 的全局唯一性。 如果只有本地管理的 MAC 地址可用，则返回首个找到的此类地址。 （由 Barry Warsaw 在 bpo-32107 [https://bugs.python.org/issue32107] 中贡献。）

warnings

默认警告过滤器的初始化已进行以下更改:

	通过命令行选项（包括 -b 以及新的 CPython 专属的 -X dev 选项）启用的警告总是会通过 sys.warnoptions 属性被传递给警告机制。

	通过命令行或环境变量启用的警告过滤器现在具有以下优先顺序:

	用于 -b (或 -bb) 的 BytesWarning 过滤器

	通过 -W 选项指定的任何过滤器

	通过 PYTHONWARNINGS 环境变量指定的任何过滤器

	任何其他 CPython 专属过滤器（例如 -X dev 模式中新增的 default 过滤器）

	由警告机制所定义的任何隐式过滤器

	在 CPython 调试版本中，现在默认情况下会显示所有警告（隐式过滤器列表为空）

（由 Nick Coghlan 和 Victor Stinner 在 bpo-20361 [https://bugs.python.org/issue20361], bpo-32043 [https://bugs.python.org/issue32043] 以及 bpo-32230 [https://bugs.python.org/issue32230] 中贡献。）

在单文件脚本和交互式提示符中，默认情况下会再次显示已弃用警告。 详情参见 PEP 565: 在 __main__ 中显示 DeprecationWarning。 （由 Nick Coghlan 在 bpo-31975 [https://bugs.python.org/issue31975] 中贡献。）

xml

作为对 DTD 和外部实体检索的缓解，在默认情况下 xml.dom.minidom 和 xml.sax 模块不再处理外部实体。 （由 Christian Heimes 在 bpo-17239 [https://bugs.python.org/issue17239] 中贡献。）

xml.etree

find() 方法中的 ElementPath 描述词现在可以将当前节点文本与 [. = "text"] 进行比较，而不仅是子节点中的文本。 描述词还允许添加空格以提高可读性。 （由 Stefan Behnel 在 bpo-31648 [https://bugs.python.org/issue31648] 中贡献。）

xmlrpc.server

SimpleXMLRPCDispatcher.register_function 现在可以被用作装饰器。 （由 Xiang Zhang 在 bpo-7769 [https://bugs.python.org/issue7769] 中贡献。）

zipapp

函数 create_archive() 现在接受可选的 filter 参数，以允许用户选择哪些文件应被加入归档包。 （由 Irmen de Jong 在 bpo-31072 [https://bugs.python.org/issue31072] 中贡献。）

函数 create_archive() 现在接受可选的 compressed 参数，以生成压缩归档包。 另外也加入了命令行选项 --compress 以支持压缩。 （由 Zhiming Wang 在 bpo-31638 [https://bugs.python.org/issue31638] 中贡献。）

zipfile

ZipFile 现在接受新的 compresslevel 形参，以控制压缩级别。 （由 Bo Bayles 在 bpo-21417 [https://bugs.python.org/issue21417] 中贡献。）

ZipFile 所创建的归档包中的子目录现在会按字母表顺序保存。 （由 Bernhard M. Wiedemann 在 bpo-30693 [https://bugs.python.org/issue30693] 中贡献。）

C API 的改变

已实现了用于线程本地存储的新 API。 相关概述请参阅 PEP 539: 用于线程局部存储的新 C API，完整参考文档请查看 Thread Specific Storage (TSS) API。 （由 Masayuki Yamamoto 在 bpo-25658 [https://bugs.python.org/issue25658] 中贡献。)

新的 上下文变量 功能开放了许多 新的 C API。

新的 PyImport_GetModule() 函数会返回之前所导入的具有给定名称的模块。 （由 Eric Snow 在 bpo-28411 [https://bugs.python.org/issue28411] 中贡献。）

新的 Py_RETURN_RICHCOMPARE 宏可以简化丰富比较函数的编写。 （由 Petr Victorin 在 bpo-23699 [https://bugs.python.org/issue23699] 中贡献。）

新的 Py_UNREACHABLE 宏可用于标记不可到达的代码路径。 （由 Barry Warsaw 在 bpo-31338 [https://bugs.python.org/issue31338] 中贡献。）

tracemalloc 现在通过新的 PyTraceMalloc_Track() 和 PyTraceMalloc_Untrack() 函数公开了一个 C API。 （由 Victor Stinner 在 bpo-30054 [https://bugs.python.org/issue30054] 中贡献。）

新的 import__find__load__start() 和 import__find__load__done() 静态标记可用于跟踪模块导入。 （由 Christian Heimes 在 bpo-31574 [https://bugs.python.org/issue31574] 中贡献。）

结构体 PyMemberDef, PyGetSetDef, PyStructSequence_Field, PyStructSequence_Desc 和 wrapperbase 的字段 name 和 doc 现在的类型为 const char * 而不是 char *。 （由 Serhiy Storchaka 在 bpo-28761 [https://bugs.python.org/issue28761] 中贡献。）

PyUnicode_AsUTF8AndSize() 和 PyUnicode_AsUTF8() 的结果类型现在是 const char * 而非 char *。 （由 Serhiy Storchaka 在 bpo-28769 [https://bugs.python.org/issue28769] 中贡献。）

PyMapping_Keys(), PyMapping_Values() 和 PyMapping_Items() 的结果现在肯定是列表，而非可能是列表也可能是元组。 （由 Oren Milman 在 bpo-28280 [https://bugs.python.org/issue28280] 中贡献。）

添加了函数 PySlice_Unpack() 和 PySlice_AdjustIndices()。 （由 Serhiy Storchaka 在 bpo-27867 [https://bugs.python.org/issue27867] 中贡献。）

PyOS_AfterFork() 已弃用，建议改用新的 functions PyOS_BeforeFork(), PyOS_AfterFork_Parent() 和 PyOS_AfterFork_Child()。 （由 Antoine Pitrou 在 bpo-16500 [https://bugs.python.org/issue16500] 中贡献。）

曾经作为公共 API 一部分的 PyExc_RecursionErrorInst 单例已被移除，因为它的成员永远不会被清理，可能在解释器的最终化过程中导致段错误。 由 Xavier de Gaye 在 bpo-22898 [https://bugs.python.org/issue22898] 和 bpo-30697 [https://bugs.python.org/issue30697] 中贡献。

添加 C API 对使用 timezone 的构造器 PyTimeZone_FromOffset() 和 PyTimeZone_FromOffsetAndName() 的时区的支持，以及通常 PyDateTime_TimeZone_UTC 使用 UTC 单例。 由 Paul Ganssle 在 bpo-10381 [https://bugs.python.org/issue10381] 中贡献。

PyThread_start_new_thread() 和 PyThread_get_thread_ident() 的结果类型以及 PyThreadState_SetAsyncExc() 的 id 参数类型由 long 改为 unsigned long。 （由 Serhiy Storchaka 在 bpo-6532 [https://bugs.python.org/issue6532] 中贡献。）

现在 PyUnicode_AsWideCharString() 如果第二个参数为 NULL 并且 wchar_t* 字符串包含空字符则会引发 ValueError。 （由 Serhiy Storchaka 在 bpo-30708 [https://bugs.python.org/issue30708] 中贡献。）

对启动顺序以及动态内存分配器管理的更改意味着早已记录在案的，对在调用大多数 C API 函数之前调用 Py_Initialize() 的要求的依赖现在变得更加强烈，未遵循此要求可能导致嵌入式应用程序中的段错误。 请参阅此文档的 移植到 Python 3.7 一节以及 C API 文档的 在Python初始化之前 一节了解更多细节。

新的 PyInterpreterState_GetID() 会返回给定解释器的唯一 ID。 （由 Eric Snow 在 bpo-29102 [https://bugs.python.org/issue29102] 中贡献。）

现在当启用 UTF-8 模式 时 Py_DecodeLocale(), Py_EncodeLocale() 会使用 UTF-8 编码。 （由 Victor Stinner 在 bpo-29240 [https://bugs.python.org/issue29240] 中贡献。）

PyUnicode_DecodeLocaleAndSize() 和 PyUnicode_EncodeLocale() 现在会为 surrogateescape 错误句柄使用当前区域编码。 （由 Victor Stinner 在 bpo-29240 [https://bugs.python.org/issue29240] 中贡献。）

PyUnicode_FindChar() 的 start 和 end 形参的行为现在调整为与字符串切片类似。 （由 Xiang Zhang 在 bpo-28822 [https://bugs.python.org/issue28822] 中贡献。）

构建的改变

对于 --without-threads 构建的支持已被移除。 threading 模块现在将总是可用。 （由 Antoine Pitrou 在 bpo-31370 [https://bugs.python.org/issue31370] 中贡献。）

在非 OSX UNIX 平台上已不再包含用于构建 _ctypes 模块的完整 libffi 副本。 现在当在此类平台上构建 _ctypes 时需要事先装有 libffi 的副本。 （由 Zachary Ware 在 bpo-27979 [https://bugs.python.org/issue27979] 中贡献。）

Windows 构建过程不再依赖 Subversion 来拉取外部源码，而是改用一段 Python 脚本从 GitHub 下载 zip 文件。 如果未在系统中找到 Python 3.6 (通过 py -3.6)，则会使用 NuGet 下载一份 32 位的 Python 副本用于此目的。 （由 Zachary Ware 在 bpo-30450 [https://bugs.python.org/issue30450] 中贡献。）

ssl 模块需要兼容 OpenSSL 1.0.2 或 1.1 的 libssl。 OpenSSL 1.0.1 的生命期已于 2016-12-31 终止且不再受支持。 LibreSSL 暂时也不受支持。 LibreSSL 发布版直到 2.6.4 版还缺少所需的 OpenSSL 1.0.2 API。

性能优化

通过移植更多代码来使用 METH_FASTCALL 的约定，可以显著地减少调用 C 代码中实现的各类标准库的很多方法的开销。 （由 Victor Stinner 在 bpo-29300 [https://bugs.python.org/issue29300]、bpo-29507 [https://bugs.python.org/issue29507]、bpo-29452 [https://bugs.python.org/issue29452] 以及 bpo-29286 [https://bugs.python.org/issue29286] 中贡献。）

通过各种优化方式，使 Python 在 Linux 上的启动时间缩短了 10%，在 macOS 上缩短了 30%。 （由 Victor Stinner, INADA Naoki 在 bpo-29585 [https://bugs.python.org/issue29585] 中，以及 Ivan Levkivskyi 在 bpo-31333 [https://bugs.python.org/issue31333] 中贡献。）

由于避免创建绑定方法案例的字节码更改，方法调用速度现在加快了 20%。 （由 Yury Selivanov 和 INADA Naoki 在 bpo-26110 [https://bugs.python.org/issue26110] 中贡献。）

对 asyncio 模块里面的一些常用函数做了显著的性能优化。

	asyncio.get_event_loop() 函数已经改用 C 重新实现，使其执行速度加快了 15 倍。 （由 Yury Selivanov 在 bpo-32296 [https://bugs.python.org/issue32296] 中贡献。）

	asyncio.Future 回调管理已经过优化。 （由 Yury Selivanov 在 bpo-32348 [https://bugs.python.org/issue32348] 中贡献。）

	asyncio.gather() 的执行速度现在加快了 15%。 （由 Yury Selivanov 在 bpo-32355 [https://bugs.python.org/issue32355] 中贡献。）

	当 delay 参数为零或负值时 asyncio.sleep() 的执行速度现在加快了 2 倍。 （由 Andrew Svetlov 在 bpo-32351 [https://bugs.python.org/issue32351] 中贡献。）

	asyncio 调试模式的执行开销已获减轻。 （由 Antoine Pitrou 在 bpo-31970 [https://bugs.python.org/issue31970] 中贡献。）

作为 PEP 560 工作 的结果，typing 的导入时间已减少了 7 倍，许多与类型相关的操作现在会执行得更快。 （由 Ivan Levkivskyi 在 bpo-32226 [https://bugs.python.org/issue32226] 中贡献。）

sorted() 和 list.sort() 已经过优化，在通常情况下执行速度可提升 40-75%。 （由 Elliot Gorokhovsky 在 bpo-28685 [https://bugs.python.org/issue28685] 中贡献。）

dict.copy() 的执行速度现在加快了 5.5 倍。 （由 Yury Selivanov 在 bpo-31179 [https://bugs.python.org/issue31179] 中贡献。）

当 name 未找到并且 obj 未重载 object.__getattr__() 或 object.__getattribute__() 时 hasattr() 和 getattr() 现在会比原来快大约 4 倍。 （由 INADA Naoki 在 bpo-32544 [https://bugs.python.org/issue32544] 中贡献。）

在字符串中搜索特定的 Unicode 字符（例如乌克兰语字母“Є”）会比搜索其他字符慢上 25 倍。 而现在最坏情况下也只会慢上 3 倍。 （由 Serhiy Storchaka 在 bpo-24821 [https://bugs.python.org/issue24821] 中贡献。）

collections.namedtuple() 工厂对象已经重写实现，使得创建具名元组的速度加快了 4 到 6 倍。 （由 Jelle Zijlstra 在 bpo-28638 [https://bugs.python.org/issue28638] 中贡献，进一步的改进由 INADA Naoki, Serhiy Storchaka 和 Raymond Hettinger 贡献。）

现在 date.fromordinal() 和 date.fromtimestamp() 在通常情况下执行速度可提升 30%。 （由 Paul Ganssle 在 bpo-32403 [https://bugs.python.org/issue32403] 中贡献。）

由于使用了 os.scandir()，现在 os.fwalk() 函数执行速度提升了 2 倍。 （由 Serhiy Storchaka 在 bpo-25996 [https://bugs.python.org/issue25996] 中贡献。）

由于使用了 os.scandir() 函数，shutil.rmtree() 函数的执行速度已经提升了 20--40%。 （由 Serhiy Storchaka 在 bpo-28564 [https://bugs.python.org/issue28564] 中贡献。）

正则表达式 忽略大小写的匹配和搜索已获得优化。 现在搜索某些模式的速度提升了 20 倍。 （由 Serhiy Storchaka 在 bpo-30285 [https://bugs.python.org/issue30285] 中贡献。）

re.compile() 现在会将 flags 形参转换为 int 对象，如果它是 RegexFlag 的话。 它现在会和 Python 3.5 一样快，而比 Python 3.6 快大约 10%，实际速度取决于具体的模式。 （由 INADA Naoki 在 bpo-31671 [https://bugs.python.org/issue31671] 中贡献。）

selectors.EpollSelector, selectors.PollSelector 和 selectors.DevpollSelector 这几个类的 modify() 方法在重负载下可以加快 10% 左右。 （由 Giampaolo Rodola' 在 bpo-30014 [https://bugs.python.org/issue30014] 中贡献。）

常量折叠已经从窥孔优化器迁移至新的 AST 优化器，后者可以以更高的一致性来执行优化。 （由 Eugene Toder 和 INADA Naoki 在 bpo-29469 [https://bugs.python.org/issue29469] 和 bpo-11549 [https://bugs.python.org/issue11549] 中贡献。）

abc 中的大部分函数和方法已经用 C 重写。 这使得创建抽像基类以及调用其 isinstance() 和 issubclass() 的速度加快了 1.5 倍。 这也使得 Python 启动耗时减少了 10%。 （由 Ivan Levkivskyi 和 INADA Naoki 在 bpo-31333 [https://bugs.python.org/issue31333] 中贡献。）

在不构造子类时，通过使用快速路径构造器使得 datetime.date 和 datetime.datetime 的替代构造器获得了显著的速度提升。 （由 Paul Ganssle 在 bpo-32403 [https://bugs.python.org/issue32403] 中贡献。）

在特定情况下 array.array 实例的比较速度已获得很大提升。 现在当比较存放相同的整数类型的值的数组时会比原来快 10 到 70 倍。 （由 Adrian Wielgosik 在 bpo-24700 [https://bugs.python.org/issue24700] 中贡献。）

在大多数平台上 math.erf() 和 math.erfc() 函数现在使用（更快的）C 库实现。 （由 Serhiy Storchaka 在 bpo-26121 [https://bugs.python.org/issue26121] 中贡献。）

其他 CPython 实现的改变

	跟踪钩子现在可以选择不接收 line 而是选择从解释器接收 opcode 事件，具体做法是在被跟踪的帧上相应地设置新的 f_trace_lines 和 f_trace_opcodes 属性。 （由 Nick Coghlan 在 bpo-31344 [https://bugs.python.org/issue31344] 中贡献。）

	修复了一些命名空间包模块属性的一致性问题。 命名空间模块对象的 __file__ 被设置为 None (原先未设置)，对象的 __spec__.origin 也被设置为 None (之前为字符串 "namespace")。 参见 bpo-32305 [https://bugs.python.org/issue32305]。 而且，命名空间模块对象的 __spec__.loader 被设置的值与 __loader__ 相同 (原先前者被设置为 None)。 参见 bpo-32303 [https://bugs.python.org/issue32303]。

	locals() 字典现在以变量定义的词法顺序显示。 原先未定义顺序。 （由 Raymond Hettinger 在 bpo-32690 [https://bugs.python.org/issue32690] 中贡献。）

	distutils upload 命令不会再试图将行结束字符 CR 改为 CRLF。 这修复了 sdists 的一个以与 CR 等价的字节结束的数据损坏问题。 （由 Bo Bayles 在 bpo-32304 [https://bugs.python.org/issue32304] 中贡献。）

已弃用的 Python 行为

在推导式和生成器表达式中的 yield 语句（包括 yield 和 yield from 子句）现在已弃用（最左端的 for 子句中的可迭代对象表达式除外）。 这确保了推导式总是立即返回适当类型的容器（而不是有可能返回 generator iterator 对象），这样生成器表达式不会试图将它们的隐式输出与任何来自显式 yield 表达式的输出交错起来。 在 Python 3.7 中，这样的表达式会在编译时引发 DeprecationWarning，在 Python 3.8 中则将引发 SyntaxError。 （由 Serhiy Storchaka 在 bpo-10544 [https://bugs.python.org/issue10544] 中贡献。）

从 object.__complex__() 返回一个 complex 的子类的行为已弃用并将在未来的 Python 版本中引发错误。 这使得 __complex__() 的行为与 object.__int__() 和 object.__float__() 保持一致。 （由 Serhiy Storchaka 在 bpo-28894 [https://bugs.python.org/issue28894] 中贡献。）

已弃用的 Python 模块、函数和方法

aifc

aifc.openfp() 已弃用并将在 Python 3.9 中被移除。 请改用 aifc.open()。 （由 Brian Curtin 在 bpo-31985 [https://bugs.python.org/issue31985] 中贡献。）

asyncio

对 asyncio.Lock 和其他 asyncio 同步原语的 await 实例的直接支持已弃用。 想要获取并释放同步资源必须使用异步上下文管理器。 （由 Andrew Svetlov 在 bpo-32253 [https://bugs.python.org/issue32253] 中贡献。）

asyncio.Task.current_task() 和 asyncio.Task.all_tasks() 方法已弃用。 （由 Andrew Svetlov 在 bpo-32250 [https://bugs.python.org/issue32250] 中贡献。）

collections

在 Python 3.8 中，collections.abc 内的抽象基类将不会再通过常规的 collections 模块公开。 这有助于更清晰地区别具体类与抽象基类。 （由 Serhiy Storchaka 在 bpo-25988 [https://bugs.python.org/issue25988] 中贡献。）

dbm

dbm.dumb 现在支持读取只读文件，且当其未被更改时不会再写入索引文件。 现在如果索引文件丢失并在 'r' 与 'w' 模式下被重新创建，则会发出已弃用警告（在未来的 Python 发布版中将改为错误）。 （由 Serhiy Storchaka 在 bpo-28847 [https://bugs.python.org/issue28847] 中贡献。）

enum

在 Python 3.8 中，尝试在 Enum 类中检查非 Enum 对象将引发 TypeError (例如 1 in Color)；类似地，尝试在 Flag 成员中检查非 Flag 对象也将引发 TypeError (例如 1 in Perm.RW)；目前，两种操作均会返回 False。 （由 Ethan Furman 在 bpo-33217 [https://bugs.python.org/issue33217] 中贡献。）

gettext

使用非整数值在 gettext 中选择复数形式现在已弃用。 它从未正确地发挥作用。 （由 Serhiy Storchaka 在 bpo-28692 [https://bugs.python.org/issue28692] 中贡献。）

importlib

下列方法 MetaPathFinder.find_module() (被 MetaPathFinder.find_spec() 替代) 和 PathEntryFinder.find_loader() (被 PathEntryFinder.find_spec() 替代) 都在 Python 3.4 中已弃用，现在会引发 DeprecationWarning。 （由 Matthias Bussonnier 在 bpo-29576 [https://bugs.python.org/issue29576] 中贡献）

importlib.abc.ResourceLoader ABC 已弃用，推荐改用 importlib.abc.ResourceReader。

locale

locale.format() 已弃用，请改用 locale.format_string()。 （由 Garvit 在 bpo-10379 [https://bugs.python.org/issue10379] 中贡献。）

macpath

macpath 现在已弃用，将在 Python 3.8 中被移除。 （由 Chi Hsuan Yen 在 bpo-9850 [https://bugs.python.org/issue9850] 中贡献。）

threading

dummy_threading 和 _dummy_thread 已弃用。 构建禁用线程的 Python 已不再可能。 请改用 threading。 （由 Antoine Pitrou 在 bpo-31370 [https://bugs.python.org/issue31370] 中贡献。）

socket

socket.htons() 和 socket.ntohs() 中的静默参数截断已弃用。 在未来的 Python 版本中，如果传入的参数长度大于 16 比特位，将会引发异常。 （由 Oren Milman 在 bpo-28332 [https://bugs.python.org/issue28332] 中贡献。）

ssl

ssl.wrap_socket() 已弃用。 请改用 ssl.SSLContext.wrap_socket()。 （由 Christian Heimes 在 bpo-28124 [https://bugs.python.org/issue28124] 中贡献。）

sunau

sunau.openfp() 已弃用并将在 Python 3.9 中被移除。 请改用 sunau.open()。 （由 Brian Curtin 在 bpo-31985 [https://bugs.python.org/issue31985] 中贡献。）

sys

已弃用 sys.set_coroutine_wrapper() 和 sys.get_coroutine_wrapper()。

未写入文档的 sys.callstats() 函数已弃用并将在未来的 Python 版本中被移除。 （由 Victor Stinner 在 bpo-28799 [https://bugs.python.org/issue28799] 中贡献。）

wave

wave.openfp() 已弃用并将在 Python 3.9 中被移除。 请改用 wave.open()。 （由 Brian Curtin 在 bpo-31985 [https://bugs.python.org/issue31985] 中贡献。）

已弃用的 C API 函数和类型

如果 Py_LIMITED_API 未设定或设定为范围在 0x03050400 和 0x03060000 (不含) 之间，或为 0x03060100 或更高的值，函数 PySlice_GetIndicesEx() 已弃用并被一个宏所替代。 （由 Serhiy Storchaka 在 bpo-27867 [https://bugs.python.org/issue27867] 中贡献。）

PyOS_AfterFork() 已弃用。 请改用 PyOS_BeforeFork(), PyOS_AfterFork_Parent() 或 PyOS_AfterFork_Child()。 （由 Antoine Pitrou 在 bpo-16500 [https://bugs.python.org/issue16500] 中贡献。）

平台支持的移除

	官方已不再支持 FreeBSD 9 及更旧的版本。

	为了完整的 Unicode 支持，包括在扩展模块之内，*nix 平台现在至少应当提供 C.UTF-8 (完整区域), C.utf8 (完整区域) 或 UTF-8 (LC_CTYPE 专属区域) 中的一个作为基于 ASCII 的传统 C 区域的替代。

	OpenSSL 0.9.8 和 1.0.1 已不再受支持，这意味着在仍然使用这些版本的旧平台上构建带有 SSL/TLS 支持的 CPython 3.7 时，需要自定义构建选项以链接到更新的 OpenSSL 版本。

注意，此问题会影响到 Debian 8 (代号“jessie”) 和 Ubuntu 14.04 (代号“Trusty”) 等长期支持 Linux 发行版，因为它们默认仍然使用 OpenSSL 1.0.1。

Debian 9 (“stretch”) 和 Ubuntu 16.04 (“xenial”) 以及其他最新的长期支持 Linux 发行版 (例如 RHEL/CentOS 7.5, SLES 12-SP3) 都使用 OpenSSL 1.0.2 或更新的版本，因此继续在默认的构建配置中受到支持。

CPython 自己的 CI 配置文件 [https://github.com/python/cpython/tree/3.7/.travis.yml] 提供了一个使用 CPython 测试套件中的 SSL 兼容性测试架构 [https://github.com/python/cpython/tree/3.7/Tools/ssl/multissltests.py] 基于 OpenSSL 1.1.0 进行构建和链接的例子，而不是使用过时的系统所提供的 OpenSSL。

API 与特性的移除

下列特性与 API 已从 Python 3.7 中移除:

	os.stat_float_times() 函数已被移除。 它在 Python 2.3 中被引入用于向下兼容 Python 2.2，并自 Python 3.1 起就已弃用。

	在 re.sub() 的替换模块中由 '\' 与一个 ASCII 字母构成的未知转义在 Python 3.5 中已弃用，现在将会引发错误。

	在 tarfile.TarFile.add() 中移除了对 exclude 参数的支持。 它在 Python 2.7 和 3.2 中已弃用。 请改用 filter 参数。

	ntpath 模块中的 splitunc() 函数在 Python 3.1 中已弃用，现在已被移除。 请改用 splitdrive() 函数。

	collections.namedtuple() 不再支持 verbose 形参或 _source 属性，该属性会显示为具名元组类所生成的源代码。 这是加速类创建的设计优化的一部分。 （由 Jelle Zijlstra 在 bpo-28638 [https://bugs.python.org/issue28638] 中贡献，进一步的改进由 INADA Naoki, Serhiy Storchaka 和 Raymond Hettinger 贡献。）

	函数 bool(), float(), list() 和 tuple() 不再接受关键字参数。 int() 的第一个参数现在只能作为位置参数传入。

	移除了之前在 Python 2.4 中已弃用的 plistlib 模块的类 Plist, Dict 和 _InternalDict。 作为函数 readPlist() 和 readPlistFromBytes() 返回结果的 Dict 值现在为普通 dict。 你不能再使用属性访问来获取这些字典的项。

	asyncio.windows_utils.socketpair() 函数已被移除。 请改用 socket.socketpair() 函数，它自 Python 3.5 起就在所有平台上可用。 asyncio.windows_utils.socketpair 在 Python 3.5 及更新版本上只是 socket.socketpair 的别名。

	asyncio 不再将 selectors 和 _overlapped 模块导出为 asyncio.selectors 和 asyncio._overlapped。 请将 from asyncio import selectors 替换为 import selectors。

	现在已禁止直接实例化 ssl.SSLSocket 和 ssl.SSLObject 对象。 相应构造器从未写入文档、也从未作为公有构造器进行测试或设计。 用户应当使用 ssl.wrap_socket() 或 ssl.SSLContext。 （由 Christian Heimes 在 bpo-32951 [https://bugs.python.org/issue32951] 中贡献。）

	未被使用的 distutils install_misc 命令已被移除。 （由 Eric N. Vander Weele 在 bpo-29218 [https://bugs.python.org/issue29218] 中贡献。）

移除的模块

fpectl 模块已被移除。 它从未被默认启用，从未在 x86-64 上正确发挥效果，并且它对 Python ABI 的改变会导致 C 扩展的意外损坏。 （由 Nathaniel J. Smith 在 bpo-29137 [https://bugs.python.org/issue29137] 中贡献。）

Windows 专属的改变

Python 启动器（py.exe）可以接受 32 位或 64 位标记而 不必 同时指定一个小版本。 因此 py -3-32 和 py -3-64 与 py -3.7-32 均为有效，并且现在还接受 -m-64 和 -m.n-64 来强制使用 64 位 python 命令，即使是本应使用 32 位的时候。 如果指定版本不可用则 py.exe 将报错退出。 （由 Steve Barnes 在 bpo-30291 [https://bugs.python.org/issue30291] 中贡献。）

启动器可以运行 py -0 来列出已安装的所有 python，默认版本会以星号标出。 运行 py -0p 将同时列出相应的路径。 如果运行 py 时指定了无法匹配的版本，它将显示 简短形式 的可用版本列表。 （由 Steve Barnes 在 bpo-30362 [https://bugs.python.org/issue30362] 中贡献。）

移植到 Python 3.7

本节列出了先前描述的更改以及可能需要更改代码的其他错误修正.

Python 行为的更改

	async 和 await 现在是保留关键字。 使用了这些名称作为标识符的代码现在将引发 SyntaxError。 （由 Jelle Zijlstra 在 bpo-30406 [https://bugs.python.org/issue30406] 中贡献。）

	PEP 479 [https://www.python.org/dev/peps/pep-0479] 在 Python 3.7 中对所有代码启用，在协程和生成器中直接或间接引发的 StopIteration 异常会被转换为 RuntimeError 异常。 （由 Yury Selivanov 在 bpo-32670 [https://bugs.python.org/issue32670] 中贡献。）

	object.__aiter__() 方法不再能被声明为异步的。 （由 Yury Selivanov 在 bpo-31709 [https://bugs.python.org/issue31709] 中贡献。）

	由于一个疏忽，之前的 Python 版本会错误地接受以下语法:

f(1 for x in [1],)

class C(1 for x in [1]):
 pass

现在 Python 3.7 会正确地引发 SyntaxError，因为生成器表达式总是必须直接包含于一对括号之内， 且前后都不能有逗号，仅在调用时可以忽略重复的括号。 （由 Serhiy Storchaka 在 bpo-32012 [https://bugs.python.org/issue32012] 和 bpo-32023 [https://bugs.python.org/issue32023] 中贡献。）

	现在当使用 -m 开关时，会将初始工作目录添加到 sys.path，而不再是一个空字符串（即在每次导入时动态地指明当前工作目录）。 任何会检测该空字符串，或是以其他方式依赖之前行为的的程序将需要进行相应的更新（例如改为还要检测 os.getcwd() 或 os.path.dirname(__main__.__file__)，具体做法首先要取决于为何要对代码执行空字符串检测）。

更改的Python API

	socketserver.ThreadingMixIn.server_close() 现在会等待所有非守护线程完成。 将新增的 socketserver.ThreadingMixIn.block_on_close 类属性设为 False 可获得 3.7 之前版本的行为。 （由 Victor Stinner 在 bpo-31233 [https://bugs.python.org/issue31233] 和 bpo-33540 [https://bugs.python.org/issue33540] 中贡献。）

	socketserver.ForkingMixIn.server_close() 现在会等等所有子进程完成。 将新增的 socketserver.ForkingMixIn.block_on_close 类属性设为 False 可获得 3.7 之前版本的行为。 （由 Victor Stinner 在 bpo-31151 [https://bugs.python.org/issue31151] 和 bpo-33540 [https://bugs.python.org/issue33540] 中贡献。）

	某些情况下 locale.localeconv() 函数现在会临时将 LC_CTYPE 区域设置为 LC_NUMERIC 的值。 （由 Victor Stinner 在 bpo-31900 [https://bugs.python.org/issue31900] 中贡献。）

	如果 path 为字符串 pkgutil.walk_packages() 现在会引发 ValueError。 之前则是返回一个空列表。 （由 Sanyam Khurana 在 bpo-24744 [https://bugs.python.org/issue24744] 中贡献。）

	string.Formatter.format() 的格式字符串参数现在为 仅限位置 参数。 将其作为关键字参数传入的方式自 Python 3.5 起已弃用。 （由 Serhiy Storchaka 在 bpo-29193 [https://bugs.python.org/issue29193] 中贡献。）

	类 http.cookies.Morsel 的属性 key, value 和 coded_value 现在均为只读。 对其赋值的操作自 Python 3.5 起已弃用。 要设置它们的值请使用 set() 方法。 （由 Serhiy Storchaka 在 bpo-29192 [https://bugs.python.org/issue29192] 中贡献。）

	os.makedirs() 的 mode 参数不会再影响新建中间层级目录的文件权限位。 要设置它们的文件权限位你可以在发起调用 makedirs() 之前设置 umask。 （由 Serhiy Storchaka 在 bpo-19930 [https://bugs.python.org/issue19930] 中贡献。）

	struct.Struct.format 的类型现在是 str 而非 bytes。 （由 Victor Stinner 在 bpo-21071 [https://bugs.python.org/issue21071] 中贡献。）

	parse_multipart() 现在接受 encoding 和 errors 参数并返回与 FieldStorage 同样的结果：对于非文件字段，与键相关联的值是一个字符串列表，而非字节串。 （由 Pierre Quentel 在 bpo-29979 [https://bugs.python.org/issue29979] 中贡献。）

	由于 socket 中的内部更改，在由旧版 Python 中的 socket.share 所创建的套接字上调用 socket.fromshare() 已不受支持。

	BaseException 的 repr 已更改为不包含末尾的逗号。 大多数异常都会受此更改影响。 （由 Serhiy Storchaka 在 bpo-30399 [https://bugs.python.org/issue30399] 中贡献。）

	datetime.timedelta 的 repr 已更改为在输出中包含关键字参数。 （由 Utkarsh Upadhyay 在 bpo-30302 [https://bugs.python.org/issue30302] 中贡献。）

	因为 shutil.rmtree() 现在是使用 os.scandir() 函数实现的，用户指定的句柄 onerror 现在被调用时如果列目录失败会附带第一个参数 os.scandir 而不是 os.listdir。

	未来可能加入在正则表达式中对 Unicode 技术标准 #18 [https://unicode.org/reports/tr18/] 中嵌套集合与集合操作的支持。 这会改变现有语法。 为了推动这项未来的改变，目前在有歧义的情况下会引发 FutureWarning。 这包括以字面值 '[' 开头或包含字面值字符序列 '--', '&&', '~~' 以及 '||' 的集合。 要避免警告，请用反斜杠对其进行转义。 （由 Serhiy Storchaka 在 bpo-30349 [https://bugs.python.org/issue30349] 中贡献。）

	基于可以匹配空字符串的 正则表达式 对字符串进行拆分的结果已被更改。 例如基于 r'\s*' 的拆分现在不仅会像原先那样拆分空格符，而且会拆分所有非空格字符之前和字符串结尾处的空字符串。 通过将模式修改为 r'\s+' 可以恢复原先的行为。 自 Python 3.5 开始此类模式将会引发 FutureWarning。

对于同时匹配空字符串和非空字符串的模式，在其他情况下搜索所有匹配的结果也可能会被更改。 例如在字符串 'a\n\n' 中，模式 r'(?m)^\s*?$' 将不仅会匹配位置 2 和 3 上的空字符串，还会匹配位置 2--3 上的字符串 '\n'。 想要只匹配空行，模式应当改写为 r'(?m)^[^\S\n]*$'。

re.sub() 现在会替换与前一个的非空匹配相邻的空匹配。 例如 re.sub('x*', '-', 'abxd') 现在会返回 '-a-b--d-' 而不是 '-a-b-d-' ('b' 和 'd' 之间的第一个减号是替换 'x'，而第二个减号则是替换 'x' 和 'd' 之间的空字符串)。

（由 Serhiy Storchaka 在 bpo-25054 [https://bugs.python.org/issue25054] 和 bpo-32308 [https://bugs.python.org/issue32308] 中贡献。）

	re.escape() 更改为只转义正则表达式特殊字符，而不转义 ASCII 字母、数字和 '_' 以外的所有字符。 （由 Serhiy Storchaka 在 bpo-29995 [https://bugs.python.org/issue29995] 中贡献。）

	tracemalloc.Traceback 帧现在是按从最旧到最新排序，以便与 traceback 更为一致。 （由 Jesse Bakker 在 bpo-32121 [https://bugs.python.org/issue32121] 中贡献。）

	在支持 socket.SOCK_NONBLOCK 或 socket.SOCK_CLOEXEC 标志位的操作系统上，socket.type 不再应用它们。 因此，像 if sock.type == socket.SOCK_STREAM 之类的检测会在所有平台上按预期的方式工作。 （由 Yury Selivanov 在 bpo-32331 [https://bugs.python.org/issue32331] 中贡献。）

	在 Windows 上当重定向标准句柄时，subprocess.Popen 的 close_fds 参数的默认值从 False 更改为 True。 如果你以前依赖于在使用带有标准 io 重定向的 subprocess.Popen 时所继承的句柄，则必须传入 close_fds=False 以保留原先的行为，或是使用 STARTUPINFO.lpAttributeList。

	importlib.machinery.PathFinder.invalidate_caches() -- 此方法隐式地影响 importlib.invalidate_caches() -- 现在会删除 sys.path_importer_cache 中被设为 None 的条目。 （由 Brett Cannon 在 bpo-33169 [https://bugs.python.org/issue33169] 中贡献。）

	在 asyncio 中，loop.sock_recv(), loop.sock_sendall(), loop.sock_accept(), loop.getaddrinfo(), loop.getnameinfo() 已被更改为正确的协程方法以与培训五日文档相匹配。 之前，这些方法会返回 asyncio.Future 实例。 （由 Yury Selivanov 在 bpo-32327 [https://bugs.python.org/issue32327] 中贡献。）

	asyncio.Server.sockets 现在会返回服务器套接字列表的副本，而不是直接地返回它。 （由 Yury Selivanov 在 bpo-32662 [https://bugs.python.org/issue32662] 中贡献。）

	Struct.format 现在是一个 str 实例而非 bytes 实例。 （由 Victor Stinner 在 bpo-21071 [https://bugs.python.org/issue21071] 中贡献。）

	现在可以通过将 required=True 传给 ArgumentParser.add_subparsers() 使得 argparse 子解析器成为必需的。 （由 Anthony Sottile 在 bpo-26510 [https://bugs.python.org/issue26510] 中贡献。）

	ast.literal_eval() 现在更为严格。 任意地加减数字已不再被允许。 （由 Serhiy Storchaka 在 bpo-31778 [https://bugs.python.org/issue31778] 中贡献。）

	当一个日期超出 0001-01-01 到 9999-12-31 范围时 Calendar.itermonthdates 现在将始终如一地引发异常，以便支持不能容忍此类异常的应用程序，可以使用新增的 Calendar.itermonthdays3 和 Calendar.itermonthdays4。 这些新方法返回元组，并且其不受 datetime.date 所支持的范围限制。 （由 Alexander Belopolsky 在 bpo-28292 [https://bugs.python.org/issue28292] 中贡献。）

	collections.ChainMap 现在会保留底层映射的顺序。 （由 Raymond Hettinger 在 bpo-32792 [https://bugs.python.org/issue32792] 中贡献。）

	如果在解释器关闭期间被调用，concurrent.futures.ThreadPoolExecutor 和 concurrent.futures.ProcessPoolExecutor 的 submit() 方法现在会引发 RuntimeError。 （由 Mark Nemec 在 bpo-33097 [https://bugs.python.org/issue33097] 中贡献。）

	configparser.ConfigParser 构造器现在使用 read_dict() 来处理默认值，以使其行为与解析器的其余部分保持致。 在默认字典中的非字符串键和值现在会被隐式地转换为字符串。 （由 James Tocknell 在 bpo-23835 [https://bugs.python.org/issue23835] 中贡献。）

	一些未写入文档的内部导入已被移除。 一个例子是 os.errno 已不再可用；应改为直接使用 import errno。 请注意此类未写入文档的内部导入可能未经通知地随时被移除，甚至是在微版本号发行版中移除。

C API 中的改变

函数 PySlice_GetIndicesEx() 被认为对于大小可变的序列来说并不安全。 如果切片索引不是 int 的实例，而是实现了 __index__() 方法的对象，则序列可以在其长度被传给 PySlice_GetIndicesEx() 之后调整大小。 这可能导致返回超出序列长度的索引号。 为了避免可能的问题，请使用新增的函数 PySlice_Unpack() 和 PySlice_AdjustIndices()。 （由 Serhiy Storchaka 在 bpo-27867 [https://bugs.python.org/issue27867] 中贡献。）

CPython 字节码的改变

新增了两个操作码: LOAD_METHOD 和 CALL_METHOD。 （由 Yury Selivanov 和 INADA Naoki 在 bpo-26110 [https://bugs.python.org/issue26110] 中贡献。）

STORE_ANNOTATION 操作码已被移除。 （由 Mark Shannon 在 bpo-32550 [https://bugs.python.org/issue32550] 中贡献。）

Windows 专属的改变

用于重载 sys.path 的文件现在命名为 <python-executable>._pth 而不是 'sys.path'。 请参阅 查找模块 了解更多信息。 （由 Steve Dower 在 bpo-28137 [https://bugs.python.org/issue28137] 中贡献。）

其他 CPython 实现的改变

为了准备在未来对公开的 CPython 运行时初始化 API 进行潜在更改（请参阅 PEP 432 [https://www.python.org/dev/peps/pep-0432] 获取最初但略为过时的文稿），CPython 内部的启动和配置管理逻辑已经过大幅重构。 虽然这些更新旨在对嵌入式应用程序和常规的 CPython CLI 用户都完全透明，但它们在这里被提及是因为重构会改变解释器启动期间许多操作的内部顺序，因此可能提示出原先隐藏的缺陷，这可能存在于嵌入式应用程序中，或是在 CPython 自身内部。 （最初由 Nick Coghlan 和 Eric Snow 作为 bpo-22257 [https://bugs.python.org/issue22257] 的一部分贡献，并由 Nick, Eric 和 Victor Stinner 在一系列其他问题报告中进一步更新）。 已知会受到影响的一些细节：

	PySys_AddWarnOptionUnicode() 目前对嵌入式应用程序不可用，因为在调用 Py_Initialize 之前需要创建 Unicode 对象。 请改用 PySys_AddWarnOption()。

	嵌入式应用程序通过 PySys_AddWarnOption() 所添加的警告过滤器现在应该以更高的一致性优先于由解释器所设置的默认过滤器

由于默认警告过滤器的配置方式发生了变化，将 Py_BytesWarningFlag 设置为大于一的值不再足以在发出 BytesWarning 消息的同时将其转换为异常。 而是改为必须设置旗标（以便首先发出警告），以及添加显式的 error::BytesWarning 警告过滤器来将其转换为异常。

由于编译器处理文档字符串的方式发生了变化，一个仅由文档字符串构成的函数体中隐式的 return None 现在被标记为在与文档字符串相同的行，而不是在函数的标题行。

当前异常状态已从帧对象移到协程对象。 这会简化解释器并修正由于在进入或退出生成器时具有交换异常状态而导致的一些模糊错误。 （由 Mark Shannon 在 bpo-25612 [https://bugs.python.org/issue25612] 中贡献。）

Python 3.7.1 中的重要变化

从 3.7.1 开始，Py_Initialize() 现在始终会读取并遵循与 Py_Main() 相同的环境设置（在更早的 Python 版本中，它会遵循一个错误定义的环境变量子集，而在 Python 3.7.0 中则会由于 bpo-34247 [https://bugs.python.org/issue34247] 而完全不读取它们）。 如果不想要此行为，请在调用 Py_Initialize() 之前将 Py_IgnoreEnvironmentFlag 设为 1。

在 3.7.1 中，上下文变量的 C API 已 获得更新 以使用 PyObject 指针。 另请参阅 bpo-34762 [https://bugs.python.org/issue34762]。

在默认情况下 xml.dom.minidom 和 xml.sax 模块将不再处理外部实体。 另请参阅 bpo-17239 [https://bugs.python.org/issue17239]。

在 3.7.1 中，当提供不带末尾新行的输入时 tokenize 模块现在会隐式地添加 NEWLINE 形符。 此行为现在已与 C 词法分析器的内部行为相匹配。 （由 Ammar Askar 在 bpo-33899 [https://bugs.python.org/issue33899] 中贡献。）

Python 3.7.2 中的重要变化

在 3.7.2 中，Windows 下的 venv 不再复制原来的二进制文件，而是改为创建名为 python.exe 和 pythonw.exe 的重定向脚本。 这解决了一个长期存在的问题，即所有虚拟环境在每次 Python 升级后都必须进行升级或是重新创建。 然而，要注意此发布版仍然要求重新创建虚拟环境以获得新的脚本。

Python 3.7.6 中的重要变化

出于重要的安全性考量，asyncio.loop.create_datagram_endpoint() 的 reuse_address 形参不再被支持。 这是由 UDP 中的套接字选项 SO_REUSEADDR 的行为导致的。 更多细节请参阅 loop.create_datagram_endpoint() 的文档。 （由 Kyle Stanley, Antoine Pitrou 和 Yury Selivanov 在 bpo-37228 [https://bugs.python.org/issue37228] 中贡献。。）

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 3.6 有什么新变化A

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 3.6 有什么新变化A

	作者

	Elvis Pranskevichus <elvis@magic.io>, Yury Selivanov <yury@magic.io>

本文解释了与3.5相比，Python 3.6中的新功能。 Python 3.6于2016年12月23日发布。请参阅 changelog [https://docs.python.org/3.6/whatsnew/changelog.html] 以获取完整的更改列表。

参见

PEP 494 [https://www.python.org/dev/peps/pep-0494] - Python 3.6发布计划

摘要 - 发布重点

新的语法特性：

	PEP 498, 格式化的字符串文字

	PEP 515, 数字文字中的下划线。

	PEP 526 , 变量注释的语法。

	PEP 525, 异步生成器。

	PEP 530: 异步推导。

新的库模块：

	secrets: PEP 506 -- Secrets模块被加入Python标准库。

CPython 实现的改进：

	The dict type has been reimplemented to use
a more compact representation
based on a proposal by Raymond Hettinger [https://mail.python.org/pipermail/python-dev/2012-December/123028.html]
and similar to the PyPy dict implementation [https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html]. This resulted in dictionaries
using 20% to 25% less memory when compared to Python 3.5.

	Customization of class creation has been simplified with the
new protocol.

	The class attribute definition order is
now preserved.

	The order of elements in **kwargs now
corresponds to the order in which keyword
arguments were passed to the function.

	添加了 DTrace 和 SystemTap 探测支持

	The new PYTHONMALLOC environment variable
can now be used to debug the interpreter memory allocation and access
errors.

标准库中的重大改进：

	The asyncio module has received new features, significant
usability and performance improvements, and a fair amount of bug fixes.
Starting with Python 3.6 the asyncio module is no longer provisional
and its API is considered stable.

	A new file system path protocol has been
implemented to support path-like objects.
All standard library functions operating on paths have been updated to
work with the new protocol.

	The datetime module has gained support for
Local Time Disambiguation.

	The typing module received a number of
improvements.

	The tracemalloc module has been significantly reworked
and is now used to provide better output for ResourceWarning
as well as provide better diagnostics for memory allocation errors.
See the PYTHONMALLOC section for more
information.

安全改进：

	The new secrets module has been added to simplify the generation of
cryptographically strong pseudo-random numbers suitable for
managing secrets such as account authentication, tokens, and similar.

	On Linux, os.urandom() now blocks until the system urandom entropy
pool is initialized to increase the security. See the PEP 524 [https://www.python.org/dev/peps/pep-0524] for the
rationale.

	The hashlib and ssl modules now support OpenSSL 1.1.0.

	The default settings and feature set of the ssl module have been
improved.

	The hashlib module received support for the BLAKE2, SHA-3 and SHAKE
hash algorithms and the scrypt() key derivation function.

Windows改进：

	PEP 528 和 PEP 529, 将Windows文件系统和控制台的编码更改为UTF-8

	The py.exe launcher, when used interactively, no longer prefers
Python 2 over Python 3 when the user doesn't specify a version (via
command line arguments or a config file). Handling of shebang lines
remains unchanged - "python" refers to Python 2 in that case.

	python.exe and pythonw.exe have been marked as long-path aware,
which means that the 260 character path limit may no longer apply.
See removing the MAX_PATH limitation for details.

	A ._pth file can be added to force isolated mode and fully specify
all search paths to avoid registry and environment lookup. See
the documentation for more information.

	A python36.zip file now works as a landmark to infer
PYTHONHOME. See the documentation for
more information.

新的特性

PEP 498: 格式化的字符串文字

PEP 498 [https://www.python.org/dev/peps/pep-0498] introduces a new kind of string literals: f-strings, or
formatted string literals.

Formatted string literals are prefixed with 'f' and are similar to
the format strings accepted by str.format(). They contain replacement
fields surrounded by curly braces. The replacement fields are expressions,
which are evaluated at run time, and then formatted using the
format() protocol:

>>> name = "Fred"
>>> f"He said his name is {name}."
'He said his name is Fred.'
>>> width = 10
>>> precision = 4
>>> value = decimal.Decimal("12.34567")
>>> f"result: {value:{width}.{precision}}" # nested fields
'result: 12.35'

参见

	PEP 498 [https://www.python.org/dev/peps/pep-0498] -- 文字字符串插值。
	PEP 由 Eric V. Smith 撰写并实现

Feature documentation.

PEP 526: 变量注释的语法

PEP 484 [https://www.python.org/dev/peps/pep-0484] introduced the standard for type annotations of function
parameters, a.k.a. type hints. This PEP adds syntax to Python for annotating
the types of variables including class variables and instance variables:

primes: List[int] = []

captain: str # Note: no initial value!

class Starship:
 stats: Dict[str, int] = {}

Just as for function annotations, the Python interpreter does not attach any
particular meaning to variable annotations and only stores them in the
__annotations__ attribute of a class or module.

In contrast to variable declarations in statically typed languages,
the goal of annotation syntax is to provide an easy way to specify structured
type metadata for third party tools and libraries via the abstract syntax tree
and the __annotations__ attribute.

参见

	PEP 526 [https://www.python.org/dev/peps/pep-0526] -- 变量注释的语法。
	PEP 由 Ryan Gonzalez, Philip House, Ivan Levkivskyi, Lisa Roach, 和 Guido van Rossum 撰写，由 Ivan Levkivskyi 实现。

Tools that use or will use the new syntax:
mypy [http://www.mypy-lang.org/],
pytype [https://github.com/google/pytype], PyCharm, etc.

PEP 515: 数字文字中的下划线。

PEP 515 [https://www.python.org/dev/peps/pep-0515] adds the ability to use underscores in numeric literals for
improved readability. For example:

>>> 1_000_000_000_000_000
1000000000000000
>>> 0x_FF_FF_FF_FF
4294967295

Single underscores are allowed between digits and after any base
specifier. Leading, trailing, or multiple underscores in a row are not
allowed.

The string formatting language also now has support
for the '_' option to signal the use of an underscore for a thousands
separator for floating point presentation types and for integer
presentation type 'd'. For integer presentation types 'b',
'o', 'x', and 'X', underscores will be inserted every 4
digits:

>>> '{:_}'.format(1000000)
'1_000_000'
>>> '{:_x}'.format(0xFFFFFFFF)
'ffff_ffff'

参见

	PEP 515 [https://www.python.org/dev/peps/pep-0515] -- 数字文字中的下划线。
	PEP 由 Georg Brandl 和 Serhiy Storchaka 撰写

PEP 525: 异步生成器

PEP 492 [https://www.python.org/dev/peps/pep-0492] introduced support for native coroutines and async / await
syntax to Python 3.5. A notable limitation of the Python 3.5 implementation
is that it was not possible to use await and yield in the same
function body. In Python 3.6 this restriction has been lifted, making it
possible to define asynchronous generators:

async def ticker(delay, to):
 """Yield numbers from 0 to *to* every *delay* seconds."""
 for i in range(to):
 yield i
 await asyncio.sleep(delay)

The new syntax allows for faster and more concise code.

参见

	PEP 525 [https://www.python.org/dev/peps/pep-0525] -- 异步生成器
	PEP 由 Yury Selivanov 撰写并实现

PEP 530: 异步推导

PEP 530 [https://www.python.org/dev/peps/pep-0530] adds support for using async for in list, set, dict
comprehensions and generator expressions:

result = [i async for i in aiter() if i % 2]

Additionally, await expressions are supported in all kinds
of comprehensions:

result = [await fun() for fun in funcs if await condition()]

参见

	PEP 530 [https://www.python.org/dev/peps/pep-0530] -- 异步推导
	PEP 由 Yury Selivanov 撰写并实现

PEP 487: 自定义类创建

It is now possible to customize subclass creation without using a metaclass.
The new __init_subclass__ classmethod will be called on the base class
whenever a new subclass is created:

class PluginBase:
 subclasses = []

 def __init_subclass__(cls, **kwargs):
 super().__init_subclass__(**kwargs)
 cls.subclasses.append(cls)

class Plugin1(PluginBase):
 pass

class Plugin2(PluginBase):
 pass

In order to allow zero-argument super() calls to work correctly from
__init_subclass__() implementations, custom metaclasses must
ensure that the new __classcell__ namespace entry is propagated to
type.__new__ (as described in 创建类对象).

参见

	PEP 487 [https://www.python.org/dev/peps/pep-0487] -- 自定义类创建
	PEP 由 Martin Teichmann 撰写并实现。

Feature documentation

PEP 487: Descriptor Protocol Enhancements

PEP 487 [https://www.python.org/dev/peps/pep-0487] extends the descriptor protocol to include the new optional
__set_name__() method. Whenever a new class is defined, the new
method will be called on all descriptors included in the definition, providing
them with a reference to the class being defined and the name given to the
descriptor within the class namespace. In other words, instances of
descriptors can now know the attribute name of the descriptor in the
owner class:

class IntField:
 def __get__(self, instance, owner):
 return instance.__dict__[self.name]

 def __set__(self, instance, value):
 if not isinstance(value, int):
 raise ValueError(f'expecting integer in {self.name}')
 instance.__dict__[self.name] = value

 # this is the new initializer:
 def __set_name__(self, owner, name):
 self.name = name

class Model:
 int_field = IntField()

参见

	PEP 487 [https://www.python.org/dev/peps/pep-0487] -- 自定义类创建
	PEP 由 Martin Teichmann 撰写并实现。

Feature documentation

PEP 519: 添加文件系统路径协议

File system paths have historically been represented as str
or bytes objects. This has led to people who write code which
operate on file system paths to assume that such objects are only one
of those two types (an int representing a file descriptor
does not count as that is not a file path). Unfortunately that
assumption prevents alternative object representations of file system
paths like pathlib from working with pre-existing code,
including Python's standard library.

To fix this situation, a new interface represented by
os.PathLike has been defined. By implementing the
__fspath__() method, an object signals that it
represents a path. An object can then provide a low-level
representation of a file system path as a str or
bytes object. This means an object is considered
path-like if it implements
os.PathLike or is a str or bytes object
which represents a file system path. Code can use os.fspath(),
os.fsdecode(), or os.fsencode() to explicitly get a
str and/or bytes representation of a path-like
object.

The built-in open() function has been updated to accept
os.PathLike objects, as have all relevant functions in the
os and os.path modules, and most other functions and
classes in the standard library. The os.DirEntry class
and relevant classes in pathlib have also been updated to
implement os.PathLike.

The hope is that updating the fundamental functions for operating
on file system paths will lead to third-party code to implicitly
support all path-like objects without any
code changes, or at least very minimal ones (e.g. calling
os.fspath() at the beginning of code before operating on a
path-like object).

Here are some examples of how the new interface allows for
pathlib.Path to be used more easily and transparently with
pre-existing code:

>>> import pathlib
>>> with open(pathlib.Path("README")) as f:
... contents = f.read()
...
>>> import os.path
>>> os.path.splitext(pathlib.Path("some_file.txt"))
('some_file', '.txt')
>>> os.path.join("/a/b", pathlib.Path("c"))
'/a/b/c'
>>> import os
>>> os.fspath(pathlib.Path("some_file.txt"))
'some_file.txt'

(Implemented by Brett Cannon, Ethan Furman, Dusty Phillips, and Jelle Zijlstra.)

参见

	PEP 519 [https://www.python.org/dev/peps/pep-0519] -- 添加文件系统路径协议
	PEP 由 Brett Cannon 和 Koos Zevenhoven 撰写。

PEP 495: 消除本地时间的歧义

In most world locations, there have been and will be times when local clocks
are moved back. In those times, intervals are introduced in which local
clocks show the same time twice in the same day. In these situations, the
information displayed on a local clock (or stored in a Python datetime
instance) is insufficient to identify a particular moment in time.

PEP 495 [https://www.python.org/dev/peps/pep-0495] adds the new fold attribute to instances of
datetime.datetime and datetime.time classes to differentiate
between two moments in time for which local times are the same:

>>> u0 = datetime(2016, 11, 6, 4, tzinfo=timezone.utc)
>>> for i in range(4):
... u = u0 + i*HOUR
... t = u.astimezone(Eastern)
... print(u.time(), 'UTC =', t.time(), t.tzname(), t.fold)
...
04:00:00 UTC = 00:00:00 EDT 0
05:00:00 UTC = 01:00:00 EDT 0
06:00:00 UTC = 01:00:00 EST 1
07:00:00 UTC = 02:00:00 EST 0

The values of the fold attribute have the
value 0 for all instances except those that represent the second
(chronologically) moment in time in an ambiguous case.

参见

	PEP 495 [https://www.python.org/dev/peps/pep-0495] -- 消除本地时间的歧义
	PEP 由 Alexander Belopolsky 和 Tim Peters 撰写，由 Alexander Belopolsky 实现。

PEP 529: 将Windows文件系统编码更改为UTF-8

Representing filesystem paths is best performed with str (Unicode) rather than
bytes. However, there are some situations where using bytes is sufficient and
correct.

Prior to Python 3.6, data loss could result when using bytes paths on Windows.
With this change, using bytes to represent paths is now supported on Windows,
provided those bytes are encoded with the encoding returned by
sys.getfilesystemencoding(), which now defaults to 'utf-8'.

Applications that do not use str to represent paths should use
os.fsencode() and os.fsdecode() to ensure their bytes are
correctly encoded. To revert to the previous behaviour, set
PYTHONLEGACYWINDOWSFSENCODING or call
sys._enablelegacywindowsfsencoding().

有关详细信息和可能需要的代码修改的讨论，请参见 PEP 529 [https://www.python.org/dev/peps/pep-0529] 。

PEP 528: 将Windows控制台编码更改为UTF-8

The default console on Windows will now accept all Unicode characters and
provide correctly read str objects to Python code. sys.stdin,
sys.stdout and sys.stderr now default to utf-8 encoding.

This change only applies when using an interactive console, and not when
redirecting files or pipes. To revert to the previous behaviour for interactive
console use, set PYTHONLEGACYWINDOWSSTDIO.

参见

	PEP 528 [https://www.python.org/dev/peps/pep-0528] -- 将Windows控制台编码更改为UTF-8
	PEP 由 Steve Dower 撰写并实现。

PEP 520: 保留类属性定义顺序

Attributes in a class definition body have a natural ordering: the same
order in which the names appear in the source. This order is now
preserved in the new class's __dict__ attribute.

Also, the effective default class execution namespace (returned from
type.__prepare__()) is now an insertion-order-preserving
mapping.

参见

	PEP 520 [https://www.python.org/dev/peps/pep-0520] -- 保留类属性定义顺序
	PEP 由 Eric Snow 撰写并实现

PEP 468: 保留关键字参数顺序

**kwargs in a function signature is now guaranteed to be an
insertion-order-preserving mapping.

参见

	PEP 468 [https://www.python.org/dev/peps/pep-0468] -- 保留关键字参数顺序
	PEP 由 Eric Snow 撰写并实现

新的 dict 实现

The dict type now uses a "compact" representation
based on a proposal by Raymond Hettinger [https://mail.python.org/pipermail/python-dev/2012-December/123028.html]
which was first implemented by PyPy [https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html].
The memory usage of the new dict() is between 20% and 25% smaller
compared to Python 3.5.

The order-preserving aspect of this new implementation is considered an
implementation detail and should not be relied upon (this may change in
the future, but it is desired to have this new dict implementation in
the language for a few releases before changing the language spec to mandate
order-preserving semantics for all current and future Python
implementations; this also helps preserve backwards-compatibility
with older versions of the language where random iteration order is
still in effect, e.g. Python 3.5).

(Contributed by INADA Naoki in bpo-27350 [https://bugs.python.org/issue27350]. Idea
originally suggested by Raymond Hettinger [https://mail.python.org/pipermail/python-dev/2012-December/123028.html].)

PEP 523: 向CPython 添加框架评估API

While Python provides extensive support to customize how code
executes, one place it has not done so is in the evaluation of frame
objects. If you wanted some way to intercept frame evaluation in
Python there really wasn't any way without directly manipulating
function pointers for defined functions.

PEP 523 [https://www.python.org/dev/peps/pep-0523] changes this by providing an API to make frame
evaluation pluggable at the C level. This will allow for tools such
as debuggers and JITs to intercept frame evaluation before the
execution of Python code begins. This enables the use of alternative
evaluation implementations for Python code, tracking frame
evaluation, etc.

This API is not part of the limited C API and is marked as private to
signal that usage of this API is expected to be limited and only
applicable to very select, low-level use-cases. Semantics of the
API will change with Python as necessary.

参见

	PEP 523 [https://www.python.org/dev/peps/pep-0523] -- 向CPython 添加框架评估API
	PEP 由 Brett Cannon 和 Dino Viehland 撰写。

PYTHONMALLOC 环境变量

The new PYTHONMALLOC environment variable allows setting the Python
memory allocators and installing debug hooks.

It is now possible to install debug hooks on Python memory allocators on Python
compiled in release mode using PYTHONMALLOC=debug. Effects of debug hooks:

	新分配的内存中填充字节 0xCB

	释放的内存中填充了字节 0xDB

	Detect violations of the Python memory allocator API. For example,
PyObject_Free() called on a memory block allocated by
PyMem_Malloc().

	在缓冲区开始之前检测写操作（缓冲区下溢）

	在缓冲区结束后检测写操作（缓冲区溢出）

	Check that the GIL is held when allocator
functions of PYMEM_DOMAIN_OBJ (ex: PyObject_Malloc()) and
PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are called.

检查是否保留了 GIL 也是Python 3.6 的新特性。

See the PyMem_SetupDebugHooks() function for debug hooks on Python
memory allocators.

It is now also possible to force the usage of the malloc() allocator of
the C library for all Python memory allocations using PYTHONMALLOC=malloc.
This is helpful when using external memory debuggers like Valgrind on
a Python compiled in release mode.

On error, the debug hooks on Python memory allocators now use the
tracemalloc module to get the traceback where a memory block was
allocated.

Example of fatal error on buffer overflow using
python3.6 -X tracemalloc=5 (store 5 frames in traces):

Debug memory block at address p=0x7fbcd41666f8: API 'o'
 4 bytes originally requested
 The 7 pad bytes at p-7 are FORBIDDENBYTE, as expected.
 The 8 pad bytes at tail=0x7fbcd41666fc are not all FORBIDDENBYTE (0xfb):
 at tail+0: 0x02 *** OUCH
 at tail+1: 0xfb
 at tail+2: 0xfb
 at tail+3: 0xfb
 at tail+4: 0xfb
 at tail+5: 0xfb
 at tail+6: 0xfb
 at tail+7: 0xfb
 The block was made by call #1233329 to debug malloc/realloc.
 Data at p: 1a 2b 30 00

Memory block allocated at (most recent call first):
 File "test/test_bytes.py", line 323
 File "unittest/case.py", line 600
 File "unittest/case.py", line 648
 File "unittest/suite.py", line 122
 File "unittest/suite.py", line 84

Fatal Python error: bad trailing pad byte

Current thread 0x00007fbcdbd32700 (most recent call first):
 File "test/test_bytes.py", line 323 in test_hex
 File "unittest/case.py", line 600 in run
 File "unittest/case.py", line 648 in __call__
 File "unittest/suite.py", line 122 in run
 File "unittest/suite.py", line 84 in __call__
 File "unittest/suite.py", line 122 in run
 File "unittest/suite.py", line 84 in __call__
 ...

（由 Victor Stinner 在 bpo-26516 [https://bugs.python.org/issue26516] 和 bpo-26564 [https://bugs.python.org/issue26564] 中贡献。）

DTrace 和 SystemTap 探测支持

Python can now be built --with-dtrace which enables static markers
for the following events in the interpreter:

	函数调用/返回

	垃圾收集开始/完成

	执行的代码行。

This can be used to instrument running interpreters in production,
without the need to recompile specific debug builds or providing
application-specific profiling/debugging code.

更多信息，请参见 使用 DTrace 和 SystemTap 检测CPython 。

当前的实现已在 Linux 和 macOS 上进行了测试。将来可能会添加其他标记。

(Contributed by Łukasz Langa in bpo-21590 [https://bugs.python.org/issue21590], based on patches by
Jesús Cea Avión, David Malcolm, and Nikhil Benesch.)

其他语言特性修改

对Python 语言核心进行的小改动：

	A global or nonlocal statement must now textually appear
before the first use of the affected name in the same scope.
Previously this was a SyntaxWarning.

	It is now possible to set a special method to
None to indicate that the corresponding operation is not available.
For example, if a class sets __iter__() to None, the class
is not iterable.
(Contributed by Andrew Barnert and Ivan Levkivskyi in bpo-25958 [https://bugs.python.org/issue25958].)

	Long sequences of repeated traceback lines are now abbreviated as
"[Previous line repeated {count} more times]" (see
回溯 for an example).
(Contributed by Emanuel Barry in bpo-26823 [https://bugs.python.org/issue26823].)

	Import now raises the new exception ModuleNotFoundError
(subclass of ImportError) when it cannot find a module. Code
that currently checks for ImportError (in try-except) will still work.
(Contributed by Eric Snow in bpo-15767 [https://bugs.python.org/issue15767].)

	Class methods relying on zero-argument super() will now work correctly
when called from metaclass methods during class creation.
(Contributed by Martin Teichmann in bpo-23722 [https://bugs.python.org/issue23722].)

新增模块

secrets

The main purpose of the new secrets module is to provide an obvious way
to reliably generate cryptographically strong pseudo-random values suitable
for managing secrets, such as account authentication, tokens, and similar.

警告

Note that the pseudo-random generators in the random module
should NOT be used for security purposes. Use secrets
on Python 3.6+ and os.urandom() on Python 3.5 and earlier.

参见

	PEP 506 [https://www.python.org/dev/peps/pep-0506] -- Secrets模块被加入Python标准库
	PEP 由 Steven D'Aprano 撰写并实现。

改进的模块

array

Exhausted iterators of array.array will now stay exhausted even
if the iterated array is extended. This is consistent with the behavior
of other mutable sequences.

（由 Serhiy Storchaka 在 bpo-26492 [https://bugs.python.org/issue26492] 中贡献。）

ast

The new ast.Constant AST node has been added. It can be used
by external AST optimizers for the purposes of constant folding.

（由 Victor Stinner 在 bpo-26146 [https://bugs.python.org/issue26146] 中贡献。）

asyncio

Starting with Python 3.6 the asyncio module is no longer provisional and its
API is considered stable.

Notable changes in the asyncio module since Python 3.5.0
(all backported to 3.5.x due to the provisional status):

	The get_event_loop() function has been changed to
always return the currently running loop when called from coroutines
and callbacks.
(Contributed by Yury Selivanov in bpo-28613 [https://bugs.python.org/issue28613].)

	The ensure_future() function and all functions that
use it, such as loop.run_until_complete(),
now accept all kinds of awaitable objects.
(Contributed by Yury Selivanov.)

	New run_coroutine_threadsafe() function to submit
coroutines to event loops from other threads.
(Contributed by Vincent Michel.)

	New Transport.is_closing()
method to check if the transport is closing or closed.
(Contributed by Yury Selivanov.)

	The loop.create_server()
method can now accept a list of hosts.
(Contributed by Yann Sionneau.)

	New loop.create_future()
method to create Future objects. This allows alternative event
loop implementations, such as
uvloop [https://github.com/MagicStack/uvloop], to provide a faster
asyncio.Future implementation.
(Contributed by Yury Selivanov in bpo-27041 [https://bugs.python.org/issue27041].)

	New loop.get_exception_handler()
method to get the current exception handler.
(Contributed by Yury Selivanov in bpo-27040 [https://bugs.python.org/issue27040].)

	New StreamReader.readuntil()
method to read data from the stream until a separator bytes
sequence appears.
(Contributed by Mark Korenberg.)

	The performance of StreamReader.readexactly()
has been improved.
(Contributed by Mark Korenberg in bpo-28370 [https://bugs.python.org/issue28370].)

	The loop.getaddrinfo()
method is optimized to avoid calling the system getaddrinfo
function if the address is already resolved.
(Contributed by A. Jesse Jiryu Davis.)

	The loop.stop()
method has been changed to stop the loop immediately after
the current iteration. Any new callbacks scheduled as a result
of the last iteration will be discarded.
(Contributed by Guido van Rossum in bpo-25593 [https://bugs.python.org/issue25593].)

	Future.set_exception
will now raise TypeError when passed an instance of
the StopIteration exception.
(Contributed by Chris Angelico in bpo-26221 [https://bugs.python.org/issue26221].)

	New loop.connect_accepted_socket()
method to be used by servers that accept connections outside of asyncio,
but that use asyncio to handle them.
(Contributed by Jim Fulton in bpo-27392 [https://bugs.python.org/issue27392].)

	TCP_NODELAY flag is now set for all TCP transports by default.
(Contributed by Yury Selivanov in bpo-27456 [https://bugs.python.org/issue27456].)

	New loop.shutdown_asyncgens()
to properly close pending asynchronous generators before closing the
loop.
(Contributed by Yury Selivanov in bpo-28003 [https://bugs.python.org/issue28003].)

	Future and Task
classes now have an optimized C implementation which makes asyncio
code up to 30% faster.
(Contributed by Yury Selivanov and INADA Naoki in bpo-26081 [https://bugs.python.org/issue26081]
and bpo-28544 [https://bugs.python.org/issue28544].)

binascii

The b2a_base64() function now accepts an optional newline
keyword argument to control whether the newline character is appended to the
return value.
(Contributed by Victor Stinner in bpo-25357 [https://bugs.python.org/issue25357].)

cmath

The new cmath.tau (τ) constant has been added.
(Contributed by Lisa Roach in bpo-12345 [https://bugs.python.org/issue12345], see PEP 628 [https://www.python.org/dev/peps/pep-0628] for details.)

New constants: cmath.inf and cmath.nan to
match math.inf and math.nan, and also cmath.infj
and cmath.nanj to match the format used by complex repr.
(Contributed by Mark Dickinson in bpo-23229 [https://bugs.python.org/issue23229].)

collections

The new Collection abstract base class has been
added to represent sized iterable container classes.
(Contributed by Ivan Levkivskyi, docs by Neil Girdhar in bpo-27598 [https://bugs.python.org/issue27598].)

The new Reversible abstract base class represents
iterable classes that also provide the __reversed__() method.
(Contributed by Ivan Levkivskyi in bpo-25987 [https://bugs.python.org/issue25987].)

The new AsyncGenerator abstract base class represents
asynchronous generators.
(Contributed by Yury Selivanov in bpo-28720 [https://bugs.python.org/issue28720].)

The namedtuple() function now accepts an optional
keyword argument module, which, when specified, is used for
the __module__ attribute of the returned named tuple class.
(Contributed by Raymond Hettinger in bpo-17941 [https://bugs.python.org/issue17941].)

The verbose and rename arguments for
namedtuple() are now keyword-only.
(Contributed by Raymond Hettinger in bpo-25628 [https://bugs.python.org/issue25628].)

Recursive collections.deque instances can now be pickled.
(Contributed by Serhiy Storchaka in bpo-26482 [https://bugs.python.org/issue26482].)

concurrent.futures

The ThreadPoolExecutor
class constructor now accepts an optional thread_name_prefix argument
to make it possible to customize the names of the threads created by the
pool.
(Contributed by Gregory P. Smith in bpo-27664 [https://bugs.python.org/issue27664].)

contextlib

The contextlib.AbstractContextManager class has been added to
provide an abstract base class for context managers. It provides a
sensible default implementation for __enter__() which returns
self and leaves __exit__() an abstract method. A matching
class has been added to the typing module as
typing.ContextManager.
(Contributed by Brett Cannon in bpo-25609 [https://bugs.python.org/issue25609].)

datetime

The datetime and time classes have
the new fold attribute used to disambiguate local time
when necessary. Many functions in the datetime have been
updated to support local time disambiguation.
See Local Time Disambiguation section for more
information.
(Contributed by Alexander Belopolsky in bpo-24773 [https://bugs.python.org/issue24773].)

The datetime.strftime() and
date.strftime() methods now support
ISO 8601 date directives %G, %u and %V.
(Contributed by Ashley Anderson in bpo-12006 [https://bugs.python.org/issue12006].)

The datetime.isoformat() function
now accepts an optional timespec argument that specifies the number
of additional components of the time value to include.
(Contributed by Alessandro Cucci and Alexander Belopolsky in bpo-19475 [https://bugs.python.org/issue19475].)

The datetime.combine() now
accepts an optional tzinfo argument.
(Contributed by Alexander Belopolsky in bpo-27661 [https://bugs.python.org/issue27661].)

decimal

New Decimal.as_integer_ratio()
method that returns a pair (n, d) of integers that represent the given
Decimal instance as a fraction, in lowest terms and
with a positive denominator:

>>> Decimal('-3.14').as_integer_ratio()
(-157, 50)

（由 Stefan Krah 和 Mark Dickinson 在 bpo-25928 [https://bugs.python.org/issue25928] 中贡献。）

distutils

The default_format attribute has been removed from
distutils.command.sdist.sdist and the formats
attribute defaults to ['gztar']. Although not anticipated,
any code relying on the presence of default_format may
need to be adapted. See bpo-27819 [https://bugs.python.org/issue27819] for more details.

email

The new email API, enabled via the policy keyword to various constructors, is
no longer provisional. The email documentation has been reorganized and
rewritten to focus on the new API, while retaining the old documentation for
the legacy API. (Contributed by R. David Murray in bpo-24277 [https://bugs.python.org/issue24277].)

The email.mime classes now all accept an optional policy keyword.
(Contributed by Berker Peksag in bpo-27331 [https://bugs.python.org/issue27331].)

The DecodedGenerator now supports the policy
keyword.

There is a new policy attribute,
message_factory, that controls what class is used
by default when the parser creates new message objects. For the
email.policy.compat32 policy this is Message,
for the new policies it is EmailMessage.
(Contributed by R. David Murray in bpo-20476 [https://bugs.python.org/issue20476].)

encodings

On Windows, added the 'oem' encoding to use CP_OEMCP, and the 'ansi'
alias for the existing 'mbcs' encoding, which uses the CP_ACP code page.
(Contributed by Steve Dower in bpo-27959 [https://bugs.python.org/issue27959].)

enum

Two new enumeration base classes have been added to the enum module:
Flag and IntFlags. Both are used to define
constants that can be combined using the bitwise operators.
(Contributed by Ethan Furman in bpo-23591 [https://bugs.python.org/issue23591].)

Many standard library modules have been updated to use the
IntFlags class for their constants.

The new enum.auto value can be used to assign values to enum
members automatically:

>>> from enum import Enum, auto
>>> class Color(Enum):
... red = auto()
... blue = auto()
... green = auto()
...
>>> list(Color)
[<Color.red: 1>, <Color.blue: 2>, <Color.green: 3>]

faulthandler

On Windows, the faulthandler module now installs a handler for Windows
exceptions: see faulthandler.enable(). (Contributed by Victor Stinner in
bpo-23848 [https://bugs.python.org/issue23848].)

fileinput

hook_encoded() now supports the errors argument.
(Contributed by Joseph Hackman in bpo-25788 [https://bugs.python.org/issue25788].)

hashlib

hashlib supports OpenSSL 1.1.0. The minimum recommend version is 1.0.2.
(Contributed by Christian Heimes in bpo-26470 [https://bugs.python.org/issue26470].)

BLAKE2 hash functions were added to the module. blake2b()
and blake2s() are always available and support the full
feature set of BLAKE2.
(Contributed by Christian Heimes in bpo-26798 [https://bugs.python.org/issue26798] based on code by
Dmitry Chestnykh and Samuel Neves. Documentation written by Dmitry Chestnykh.)

The SHA-3 hash functions sha3_224(), sha3_256(),
sha3_384(), sha3_512(), and SHAKE hash functions
shake_128() and shake_256() were added.
(Contributed by Christian Heimes in bpo-16113 [https://bugs.python.org/issue16113]. Keccak Code Package
by Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer.)

The password-based key derivation function scrypt() is now
available with OpenSSL 1.1.0 and newer.
(Contributed by Christian Heimes in bpo-27928 [https://bugs.python.org/issue27928].)

http.client

HTTPConnection.request() and
endheaders() both now support
chunked encoding request bodies.
(Contributed by Demian Brecht and Rolf Krahl in bpo-12319 [https://bugs.python.org/issue12319].)

idlelib 与 IDLE

The idlelib package is being modernized and refactored to make IDLE look and
work better and to make the code easier to understand, test, and improve. Part
of making IDLE look better, especially on Linux and Mac, is using ttk widgets,
mostly in the dialogs. As a result, IDLE no longer runs with tcl/tk 8.4. It
now requires tcl/tk 8.5 or 8.6. We recommend running the latest release of
either.

'Modernizing' includes renaming and consolidation of idlelib modules. The
renaming of files with partial uppercase names is similar to the renaming of,
for instance, Tkinter and TkFont to tkinter and tkinter.font in 3.0. As a
result, imports of idlelib files that worked in 3.5 will usually not work in
3.6. At least a module name change will be needed (see idlelib/README.txt),
sometimes more. (Name changes contributed by Al Swiegart and Terry Reedy in
bpo-24225 [https://bugs.python.org/issue24225]. Most idlelib patches since have been and will be part of the
process.)

In compensation, the eventual result with be that some idlelib classes will be
easier to use, with better APIs and docstrings explaining them. Additional
useful information will be added to idlelib when available.

在 3.6.2 中新增:

多个对自动补全的修正。 （由 Louie Lu 在 bpo-15786 [https://bugs.python.org/issue15786] 中贡献。）

在 3.6.3 中新增:

Module Browser (在 File 菜单中，之前称为 Class Browser) 现在会在最高层级函数和类之外显示嵌套的函数和类。 （由 Guilherme Polo, Cheryl Sabella 和 Terry Jan Reedy 在 bpo-1612262 [https://bugs.python.org/issue1612262] 中贡献。）

之前以扩展形式实现的 IDLE 特性已作为正常特性重新实现。 它们的设置已从 Extensions 选项卡移至其他对话框选项卡。 （由 Charles Wohlganger 和 Terry Jan Reedy 在 bpo-27099 [https://bugs.python.org/issue27099] 中实现。）

Settings 对话框 (Options 中的 Configure IDLE) 已经被部分重写以改进外观和功能。 （由 Cheryl Sabella 和 Terry Jan Reedy 在多个问题项中贡献。）

在 3.6.4 中新增:

字体样本现在包括一组非拉丁字符以便用户能更好地查看所选特定字体的效果。 （由 Terry Jan Reedy 在 bpo-13802 [https://bugs.python.org/issue13802] 中贡献。） 样本可以被修改以包括其他字符。 （由 Serhiy Storchaka 在 bpo-31860 [https://bugs.python.org/issue31860] 中贡献。）

在 3.6.6 中新增:

编辑器代码上下文选项已经过修改。 Box 会显示所有上下文行直到最大行数。 点击一个上下文行会使编辑器跳转到该行。 自定义主题的上下文颜色已添加到 Settings 对话框的 Highlights 选项卡。 （由 Cheryl Sabella 和 Terry Jan Reedy 在 bpo-33642 [https://bugs.python.org/issue33642], bpo-33768 [https://bugs.python.org/issue33768] 和 bpo-33679 [https://bugs.python.org/issue33679] 中贡献。）

在 Windows 上，会有新的 API 调用将 tk 对 DPI 的调整告知 Windows。 在 Windows 8.1+ 或 10 上，如果 Python 二进制码的 DPI 兼容属性未改变，并且监视器分辨率大于 96 DPI，这应该会令文本和线条更清晰。 否则的话它应该不造成影响。 （由 Terry Jan Reedy 在 bpo-33656 [https://bugs.python.org/issue33656] 中贡献。）

在 3.6.7 中新增:

超过 N 行（默认值为 50）的输出将被折叠为一个按钮。 N 可以在 Settings 对话框的 General 页的 PyShell 部分中进行修改。 数量较少但是超长的行可以通过在输出上右击来折叠。 被折叠的输出可通过双击按钮来展开，或是通过右击按钮来放入剪贴板或是单独的窗口。 （由 Tal Einat 在 bpo-1529353 [https://bugs.python.org/issue1529353] 中贡献。）

importlib

Import now raises the new exception ModuleNotFoundError
(subclass of ImportError) when it cannot find a module. Code
that current checks for ImportError (in try-except) will still work.
(Contributed by Eric Snow in bpo-15767 [https://bugs.python.org/issue15767].)

importlib.util.LazyLoader now calls
create_module() on the wrapped loader, removing the
restriction that importlib.machinery.BuiltinImporter and
importlib.machinery.ExtensionFileLoader couldn't be used with
importlib.util.LazyLoader.

importlib.util.cache_from_source(),
importlib.util.source_from_cache(), and
importlib.util.spec_from_file_location() now accept a
path-like object.

inspect

The inspect.signature() function now reports the
implicit .0 parameters generated by the compiler for comprehension and
generator expression scopes as if they were positional-only parameters called
implicit0. (Contributed by Jelle Zijlstra in bpo-19611 [https://bugs.python.org/issue19611].)

To reduce code churn when upgrading from Python 2.7 and the legacy
inspect.getargspec() API, the previously documented deprecation of
inspect.getfullargspec() has been reversed. While this function is
convenient for single/source Python 2/3 code bases, the richer
inspect.signature() interface remains the recommended approach for new
code. (Contributed by Nick Coghlan in bpo-27172 [https://bugs.python.org/issue27172])

json

json.load() and json.loads() now support binary input. Encoded
JSON should be represented using either UTF-8, UTF-16, or UTF-32.
(Contributed by Serhiy Storchaka in bpo-17909 [https://bugs.python.org/issue17909].)

logging

The new WatchedFileHandler.reopenIfNeeded()
method has been added to add the ability to check if the log file needs to
be reopened.
(Contributed by Marian Horban in bpo-24884 [https://bugs.python.org/issue24884].)

math

The tau (τ) constant has been added to the math and cmath
modules.
(Contributed by Lisa Roach in bpo-12345 [https://bugs.python.org/issue12345], see PEP 628 [https://www.python.org/dev/peps/pep-0628] for details.)

multiprocessing

Proxy Objects returned by
multiprocessing.Manager() can now be nested.
(Contributed by Davin Potts in bpo-6766 [https://bugs.python.org/issue6766].)

os

See the summary of PEP 519 for details on how the
os and os.path modules now support
path-like objects.

scandir() now supports bytes paths on Windows.

A new close() method allows explicitly closing a
scandir() iterator. The scandir() iterator now
supports the context manager protocol. If a scandir()
iterator is neither exhausted nor explicitly closed a ResourceWarning
will be emitted in its destructor.
(Contributed by Serhiy Storchaka in bpo-25994 [https://bugs.python.org/issue25994].)

On Linux, os.urandom() now blocks until the system urandom entropy pool
is initialized to increase the security. See the PEP 524 [https://www.python.org/dev/peps/pep-0524] for the rationale.

The Linux getrandom() syscall (get random bytes) is now exposed as the new
os.getrandom() function.
(Contributed by Victor Stinner, part of the PEP 524 [https://www.python.org/dev/peps/pep-0524])

pathlib

pathlib now supports path-like objects.
(Contributed by Brett Cannon in bpo-27186 [https://bugs.python.org/issue27186].)

See the summary of PEP 519 for details.

pdb

The Pdb class constructor has a new optional readrc argument
to control whether .pdbrc files should be read.

pickle

Objects that need __new__ called with keyword arguments can now be pickled
using pickle protocols older than protocol version 4.
Protocol version 4 already supports this case. (Contributed by Serhiy
Storchaka in bpo-24164 [https://bugs.python.org/issue24164].)

pickletools

pickletools.dis() now outputs the implicit memo index for the
MEMOIZE opcode.
(Contributed by Serhiy Storchaka in bpo-25382 [https://bugs.python.org/issue25382].)

pydoc

The pydoc module has learned to respect the MANPAGER
environment variable.
(Contributed by Matthias Klose in bpo-8637 [https://bugs.python.org/issue8637].)

help() and pydoc can now list named tuple fields in the
order they were defined rather than alphabetically.
(Contributed by Raymond Hettinger in bpo-24879 [https://bugs.python.org/issue24879].)

random

The new choices() function returns a list of elements of
specified size from the given population with optional weights.
(Contributed by Raymond Hettinger in bpo-18844 [https://bugs.python.org/issue18844].)

re

Added support of modifier spans in regular expressions. Examples:
'(?i:p)ython' matches 'python' and 'Python', but not 'PYTHON';
'(?i)g(?-i:v)r' matches 'GvR' and 'gvr', but not 'GVR'.
(Contributed by Serhiy Storchaka in bpo-433028 [https://bugs.python.org/issue433028].)

Match object groups can be accessed by __getitem__, which is
equivalent to group(). So mo['name'] is now equivalent to
mo.group('name'). (Contributed by Eric Smith in bpo-24454 [https://bugs.python.org/issue24454].)

Match objects now support
index-like objects as group
indices.
(Contributed by Jeroen Demeyer and Xiang Zhang in bpo-27177 [https://bugs.python.org/issue27177].)

readline

Added set_auto_history() to enable or disable
automatic addition of input to the history list. (Contributed by
Tyler Crompton in bpo-26870 [https://bugs.python.org/issue26870].)

rlcompleter

Private and special attribute names now are omitted unless the prefix starts
with underscores. A space or a colon is added after some completed keywords.
(Contributed by Serhiy Storchaka in bpo-25011 [https://bugs.python.org/issue25011] and bpo-25209 [https://bugs.python.org/issue25209].)

shlex

The shlex has much
improved shell compatibility
through the new punctuation_chars argument to control which characters
are treated as punctuation.
(Contributed by Vinay Sajip in bpo-1521950 [https://bugs.python.org/issue1521950].)

site

When specifying paths to add to sys.path in a .pth file,
you may now specify file paths on top of directories (e.g. zip files).
(Contributed by Wolfgang Langner in bpo-26587 [https://bugs.python.org/issue26587]).

sqlite3

sqlite3.Cursor.lastrowid now supports the REPLACE statement.
(Contributed by Alex LordThorsen in bpo-16864 [https://bugs.python.org/issue16864].)

socket

The ioctl() function now supports the
SIO_LOOPBACK_FAST_PATH control code.
(Contributed by Daniel Stokes in bpo-26536 [https://bugs.python.org/issue26536].)

The getsockopt() constants SO_DOMAIN,
SO_PROTOCOL, SO_PEERSEC, and SO_PASSSEC are now supported.
(Contributed by Christian Heimes in bpo-26907 [https://bugs.python.org/issue26907].)

The setsockopt() now supports the
setsockopt(level, optname, None, optlen: int) form.
(Contributed by Christian Heimes in bpo-27744 [https://bugs.python.org/issue27744].)

The socket module now supports the address family
AF_ALG to interface with Linux Kernel crypto API. ALG_*,
SOL_ALG and sendmsg_afalg() were added.
(Contributed by Christian Heimes in bpo-27744 [https://bugs.python.org/issue27744] with support from
Victor Stinner.)

New Linux constants TCP_USER_TIMEOUT and TCP_CONGESTION were added.
(Contributed by Omar Sandoval, issue:26273).

socketserver

Servers based on the socketserver module, including those
defined in http.server, xmlrpc.server and
wsgiref.simple_server, now support the context manager
protocol.
(Contributed by Aviv Palivoda in bpo-26404 [https://bugs.python.org/issue26404].)

The wfile attribute of
StreamRequestHandler classes now implements
the io.BufferedIOBase writable interface. In particular,
calling write() is now guaranteed to send the
data in full. (Contributed by Martin Panter in bpo-26721 [https://bugs.python.org/issue26721].)

ssl

ssl supports OpenSSL 1.1.0. The minimum recommend version is 1.0.2.
(Contributed by Christian Heimes in bpo-26470 [https://bugs.python.org/issue26470].)

3DES has been removed from the default cipher suites and ChaCha20 Poly1305
cipher suites have been added.
(Contributed by Christian Heimes in bpo-27850 [https://bugs.python.org/issue27850] and bpo-27766 [https://bugs.python.org/issue27766].)

SSLContext has better default configuration for options
and ciphers.
(Contributed by Christian Heimes in bpo-28043 [https://bugs.python.org/issue28043].)

SSL session can be copied from one client-side connection to another
with the new SSLSession class. TLS session resumption can
speed up the initial handshake, reduce latency and improve performance
(Contributed by Christian Heimes in bpo-19500 [https://bugs.python.org/issue19500] based on a draft by
Alex Warhawk.)

The new get_ciphers() method can be used to
get a list of enabled ciphers in order of cipher priority.

All constants and flags have been converted to IntEnum and
IntFlags.
(Contributed by Christian Heimes in bpo-28025 [https://bugs.python.org/issue28025].)

Server and client-side specific TLS protocols for SSLContext
were added.
(Contributed by Christian Heimes in bpo-28085 [https://bugs.python.org/issue28085].)

statistics

A new harmonic_mean() function has been added.
(Contributed by Steven D'Aprano in bpo-27181 [https://bugs.python.org/issue27181].)

struct

struct now supports IEEE 754 half-precision floats via the 'e'
format specifier.
(Contributed by Eli Stevens, Mark Dickinson in bpo-11734 [https://bugs.python.org/issue11734].)

subprocess

subprocess.Popen destructor now emits a ResourceWarning warning
if the child process is still running. Use the context manager protocol (with
proc: ...) or explicitly call the wait() method to
read the exit status of the child process. (Contributed by Victor Stinner in
bpo-26741 [https://bugs.python.org/issue26741].)

The subprocess.Popen constructor and all functions that pass arguments
through to it now accept encoding and errors arguments. Specifying either
of these will enable text mode for the stdin, stdout and stderr streams.
(Contributed by Steve Dower in bpo-6135 [https://bugs.python.org/issue6135].)

sys

The new getfilesystemencodeerrors() function returns the name of
the error mode used to convert between Unicode filenames and bytes filenames.
(Contributed by Steve Dower in bpo-27781 [https://bugs.python.org/issue27781].)

On Windows the return value of the getwindowsversion() function
now includes the platform_version field which contains the accurate major
version, minor version and build number of the current operating system,
rather than the version that is being emulated for the process
(Contributed by Steve Dower in bpo-27932 [https://bugs.python.org/issue27932].)

telnetlib

Telnet is now a context manager (contributed by
Stéphane Wirtel in bpo-25485 [https://bugs.python.org/issue25485]).

time

The struct_time attributes tm_gmtoff and
tm_zone are now available on all platforms.

timeit

The new Timer.autorange() convenience
method has been added to call Timer.timeit()
repeatedly so that the total run time is greater or equal to 200 milliseconds.
(Contributed by Steven D'Aprano in bpo-6422 [https://bugs.python.org/issue6422].)

timeit now warns when there is substantial (4x) variance
between best and worst times.
(Contributed by Serhiy Storchaka in bpo-23552 [https://bugs.python.org/issue23552].)

tkinter

Added methods trace_add(),
trace_remove() and trace_info()
in the tkinter.Variable class. They replace old methods
trace_variable(), trace(),
trace_vdelete() and
trace_vinfo() that use obsolete Tcl commands and might
not work in future versions of Tcl.
(Contributed by Serhiy Storchaka in bpo-22115 [https://bugs.python.org/issue22115]).

回溯

Both the traceback module and the interpreter's builtin exception display now
abbreviate long sequences of repeated lines in tracebacks as shown in the
following example:

>>> def f(): f()
...
>>> f()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 1, in f
 File "<stdin>", line 1, in f
 File "<stdin>", line 1, in f
 [Previous line repeated 995 more times]
RecursionError: maximum recursion depth exceeded

（由 Emanuel Barry在 bpo-26823 [https://bugs.python.org/issue26823] 中贡献。）

tracemalloc

The tracemalloc module now supports tracing memory allocations in
multiple different address spaces.

The new DomainFilter filter class has been added
to filter block traces by their address space (domain).

（由 Victor Stinner 在 bpo-26588 [https://bugs.python.org/issue26588] 中贡献。）

typing

Since the typing module is provisional,
all changes introduced in Python 3.6 have also been
backported to Python 3.5.x.

The typing module has a much improved support for generic type
aliases. For example Dict[str, Tuple[S, T]] is now a valid
type annotation.
(Contributed by Guido van Rossum in Github #195 [https://github.com/python/typing/pull/195].)

The typing.ContextManager class has been added for
representing contextlib.AbstractContextManager.
(Contributed by Brett Cannon in bpo-25609 [https://bugs.python.org/issue25609].)

The typing.Collection class has been added for
representing collections.abc.Collection.
(Contributed by Ivan Levkivskyi in bpo-27598 [https://bugs.python.org/issue27598].)

The typing.ClassVar type construct has been added to
mark class variables. As introduced in PEP 526 [https://www.python.org/dev/peps/pep-0526], a variable annotation
wrapped in ClassVar indicates that a given attribute is intended to be used as
a class variable and should not be set on instances of that class.
(Contributed by Ivan Levkivskyi in Github #280 [https://github.com/python/typing/pull/280].)

A new TYPE_CHECKING constant that is assumed to be
True by the static type checkers, but is False at runtime.
(Contributed by Guido van Rossum in Github #230 [https://github.com/python/typing/issues/230].)

A new NewType() helper function has been added to create
lightweight distinct types for annotations:

from typing import NewType

UserId = NewType('UserId', int)
some_id = UserId(524313)

The static type checker will treat the new type as if it were a subclass
of the original type. (Contributed by Ivan Levkivskyi in Github #189 [https://github.com/python/typing/issues/189].)

unicodedata

The unicodedata module now uses data from Unicode 9.0.0 [http://unicode.org/versions/Unicode9.0.0/].
(Contributed by Benjamin Peterson.)

unittest.mock

The Mock class has the following improvements:

	Two new methods, Mock.assert_called() and Mock.assert_called_once() to check if the mock object
was called.
(Contributed by Amit Saha in bpo-26323 [https://bugs.python.org/issue26323].)

	The Mock.reset_mock() method
now has two optional keyword only arguments: return_value and
side_effect.
(Contributed by Kushal Das in bpo-21271 [https://bugs.python.org/issue21271].)

urllib.request

If a HTTP request has a file or iterable body (other than a
bytes object) but no Content-Length header, rather than
throwing an error, AbstractHTTPHandler now
falls back to use chunked transfer encoding.
(Contributed by Demian Brecht and Rolf Krahl in bpo-12319 [https://bugs.python.org/issue12319].)

urllib.robotparser

RobotFileParser now supports the Crawl-delay and
Request-rate extensions.
(Contributed by Nikolay Bogoychev in bpo-16099 [https://bugs.python.org/issue16099].)

venv

venv accepts a new parameter --prompt. This parameter provides an
alternative prefix for the virtual environment. (Proposed by Łukasz Balcerzak
and ported to 3.6 by Stéphane Wirtel in bpo-22829 [https://bugs.python.org/issue22829].)

warnings

A new optional source parameter has been added to the
warnings.warn_explicit() function: the destroyed object which emitted a
ResourceWarning. A source attribute has also been added to
warnings.WarningMessage (contributed by Victor Stinner in
bpo-26568 [https://bugs.python.org/issue26568] and bpo-26567 [https://bugs.python.org/issue26567]).

When a ResourceWarning warning is logged, the tracemalloc module is now
used to try to retrieve the traceback where the destroyed object was allocated.

Example with the script example.py:

import warnings

def func():
 return open(__file__)

f = func()
f = None

Output of the command python3.6 -Wd -X tracemalloc=5 example.py:

example.py:7: ResourceWarning: unclosed file <_io.TextIOWrapper name='example.py' mode='r' encoding='UTF-8'>
 f = None
Object allocated at (most recent call first):
 File "example.py", lineno 4
 return open(__file__)
 File "example.py", lineno 6
 f = func()

The "Object allocated at" traceback is new and is only displayed if
tracemalloc is tracing Python memory allocations and if the
warnings module was already imported.

winreg

Added the 64-bit integer type REG_QWORD.
(Contributed by Clement Rouault in bpo-23026 [https://bugs.python.org/issue23026].)

winsound

Allowed keyword arguments to be passed to Beep,
MessageBeep, and PlaySound (bpo-27982 [https://bugs.python.org/issue27982]).

xmlrpc.client

The xmlrpc.client module now supports unmarshalling
additional data types used by the Apache XML-RPC implementation
for numerics and None.
(Contributed by Serhiy Storchaka in bpo-26885 [https://bugs.python.org/issue26885].)

zipfile

A new ZipInfo.from_file() class method
allows making a ZipInfo instance from a filesystem file.
A new ZipInfo.is_dir() method can be used
to check if the ZipInfo instance represents a directory.
(Contributed by Thomas Kluyver in bpo-26039 [https://bugs.python.org/issue26039].)

The ZipFile.open() method can now be used to
write data into a ZIP file, as well as for extracting data.
(Contributed by Thomas Kluyver in bpo-26039 [https://bugs.python.org/issue26039].)

zlib

The compress() and decompress() functions now accept
keyword arguments.
(Contributed by Aviv Palivoda in bpo-26243 [https://bugs.python.org/issue26243] and
Xiang Zhang in bpo-16764 [https://bugs.python.org/issue16764] respectively.)

性能优化

	The Python interpreter now uses a 16-bit wordcode instead of bytecode which
made a number of opcode optimizations possible.
(Contributed by Demur Rumed with input and reviews from
Serhiy Storchaka and Victor Stinner in bpo-26647 [https://bugs.python.org/issue26647] and bpo-28050 [https://bugs.python.org/issue28050].)

	The asyncio.Future class now has an optimized C implementation.
(Contributed by Yury Selivanov and INADA Naoki in bpo-26081 [https://bugs.python.org/issue26081].)

	The asyncio.Task class now has an optimized
C implementation. (Contributed by Yury Selivanov in bpo-28544 [https://bugs.python.org/issue28544].)

	Various implementation improvements in the typing module
(such as caching of generic types) allow up to 30 times performance
improvements and reduced memory footprint.

	The ASCII decoder is now up to 60 times as fast for error handlers
surrogateescape, ignore and replace (Contributed
by Victor Stinner in bpo-24870 [https://bugs.python.org/issue24870]).

	The ASCII and the Latin1 encoders are now up to 3 times as fast for the
error handler surrogateescape
(Contributed by Victor Stinner in bpo-25227 [https://bugs.python.org/issue25227]).

	The UTF-8 encoder is now up to 75 times as fast for error handlers
ignore, replace, surrogateescape, surrogatepass (Contributed
by Victor Stinner in bpo-25267 [https://bugs.python.org/issue25267]).

	The UTF-8 decoder is now up to 15 times as fast for error handlers
ignore, replace and surrogateescape (Contributed
by Victor Stinner in bpo-25301 [https://bugs.python.org/issue25301]).

	bytes % args is now up to 2 times faster. (Contributed by Victor Stinner
in bpo-25349 [https://bugs.python.org/issue25349]).

	bytearray % args is now between 2.5 and 5 times faster. (Contributed by
Victor Stinner in bpo-25399 [https://bugs.python.org/issue25399]).

	Optimize bytes.fromhex() and bytearray.fromhex(): they are now
between 2x and 3.5x faster. (Contributed by Victor Stinner in bpo-25401 [https://bugs.python.org/issue25401]).

	Optimize bytes.replace(b'', b'.') and bytearray.replace(b'', b'.'):
up to 80% faster. (Contributed by Josh Snider in bpo-26574 [https://bugs.python.org/issue26574]).

	Allocator functions of the PyMem_Malloc() domain
(PYMEM_DOMAIN_MEM) now use the pymalloc memory allocator instead of malloc() function of the C library. The
pymalloc allocator is optimized for objects smaller or equal to 512 bytes
with a short lifetime, and use malloc() for larger memory blocks.
(Contributed by Victor Stinner in bpo-26249 [https://bugs.python.org/issue26249]).

	pickle.load() and pickle.loads() are now up to 10% faster when
deserializing many small objects (Contributed by Victor Stinner in
bpo-27056 [https://bugs.python.org/issue27056]).

	Passing keyword arguments to a function has an
overhead in comparison with passing positional arguments. Now in extension functions implemented with using
Argument Clinic this overhead is significantly decreased.
(Contributed by Serhiy Storchaka in bpo-27574 [https://bugs.python.org/issue27574]).

	Optimized glob() and iglob() functions in the
glob module; they are now about 3--6 times faster.
(Contributed by Serhiy Storchaka in bpo-25596 [https://bugs.python.org/issue25596]).

	Optimized globbing in pathlib by using os.scandir();
it is now about 1.5--4 times faster.
(Contributed by Serhiy Storchaka in bpo-26032 [https://bugs.python.org/issue26032]).

	xml.etree.ElementTree parsing, iteration and deepcopy performance
has been significantly improved.
(Contributed by Serhiy Storchaka in bpo-25638 [https://bugs.python.org/issue25638], bpo-25873 [https://bugs.python.org/issue25873],
and bpo-25869 [https://bugs.python.org/issue25869].)

	Creation of fractions.Fraction instances from floats and
decimals is now 2 to 3 times faster.
(Contributed by Serhiy Storchaka in bpo-25971 [https://bugs.python.org/issue25971].)

构建和 C API 的改变

	Python now requires some C99 support in the toolchain to build.
Most notably, Python now uses standard integer types and macros in
place of custom macros like PY_LONG_LONG.
For more information, see PEP 7 [https://www.python.org/dev/peps/pep-0007] and bpo-17884 [https://bugs.python.org/issue17884].

	Cross-compiling CPython with the Android NDK and the Android API level set to
21 (Android 5.0 Lollipop) or greater runs successfully. While Android is not
yet a supported platform, the Python test suite runs on the Android emulator
with only about 16 tests failures. See the Android meta-issue bpo-26865 [https://bugs.python.org/issue26865].

	The --enable-optimizations configure flag has been added. Turning it on
will activate expensive optimizations like PGO.
(Original patch by Alecsandru Patrascu of Intel in bpo-26359 [https://bugs.python.org/issue26359].)

	The GIL must now be held when allocator
functions of PYMEM_DOMAIN_OBJ (ex: PyObject_Malloc()) and
PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are called.

	New Py_FinalizeEx() API which indicates if flushing buffered data
failed.
(Contributed by Martin Panter in bpo-5319 [https://bugs.python.org/issue5319].)

	PyArg_ParseTupleAndKeywords() now supports positional-only
parameters. Positional-only parameters are
defined by empty names.
(Contributed by Serhiy Storchaka in bpo-26282 [https://bugs.python.org/issue26282]).

	PyTraceback_Print method now abbreviates long sequences of repeated lines
as "[Previous line repeated {count} more times]".
(Contributed by Emanuel Barry in bpo-26823 [https://bugs.python.org/issue26823].)

	The new PyErr_SetImportErrorSubclass() function allows for
specifying a subclass of ImportError to raise.
(Contributed by Eric Snow in bpo-15767 [https://bugs.python.org/issue15767].)

	The new PyErr_ResourceWarning() function can be used to generate
a ResourceWarning providing the source of the resource allocation.
(Contributed by Victor Stinner in bpo-26567 [https://bugs.python.org/issue26567].)

	The new PyOS_FSPath() function returns the file system
representation of a path-like object.
(Contributed by Brett Cannon in bpo-27186 [https://bugs.python.org/issue27186].)

	The PyUnicode_FSConverter() and PyUnicode_FSDecoder()
functions will now accept path-like objects.

其他改进

	When --version (short form: -V) is supplied twice,
Python prints sys.version for detailed information.

$./python -VV
Python 3.6.0b4+ (3.6:223967b49e49+, Nov 21 2016, 20:55:04)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)]

弃用

新关键字

async and await are not recommended to be used as variable, class,
function or module names. Introduced by PEP 492 [https://www.python.org/dev/peps/pep-0492] in Python 3.5, they will
become proper keywords in Python 3.7. Starting in Python 3.6, the use of
async or await as names will generate a DeprecationWarning.

已弃用的 Python 行为

Raising the StopIteration exception inside a generator will now
generate a DeprecationWarning, and will trigger a RuntimeError
in Python 3.7. See PEP 479: Change StopIteration handling inside generators for details.

The __aiter__() method is now expected to return an asynchronous
iterator directly instead of returning an awaitable as previously.
Doing the former will trigger a DeprecationWarning. Backward
compatibility will be removed in Python 3.7.
(Contributed by Yury Selivanov in bpo-27243 [https://bugs.python.org/issue27243].)

A backslash-character pair that is not a valid escape sequence now generates
a DeprecationWarning. Although this will eventually become a
SyntaxError, that will not be for several Python releases.
(Contributed by Emanuel Barry in bpo-27364 [https://bugs.python.org/issue27364].)

When performing a relative import, falling back on __name__ and
__path__ from the calling module when __spec__ or
__package__ are not defined now raises an ImportWarning.
(Contributed by Rose Ames in bpo-25791 [https://bugs.python.org/issue25791].)

已弃用的 Python 模块、函数和方法

asynchat

The asynchat has been deprecated in favor of asyncio.
(Contributed by Mariatta in bpo-25002 [https://bugs.python.org/issue25002].)

asyncore

The asyncore has been deprecated in favor of asyncio.
(Contributed by Mariatta in bpo-25002 [https://bugs.python.org/issue25002].)

dbm

Unlike other dbm implementations, the dbm.dumb module
creates databases with the 'rw' mode and allows modifying the database
opened with the 'r' mode. This behavior is now deprecated and will
be removed in 3.8.
(Contributed by Serhiy Storchaka in bpo-21708 [https://bugs.python.org/issue21708].)

distutils

The undocumented extra_path argument to the
Distribution constructor is now considered deprecated
and will raise a warning if set. Support for this parameter will be
removed in a future Python release. See bpo-27919 [https://bugs.python.org/issue27919] for details.

grp

The support of non-integer arguments in getgrgid() has been
deprecated.
(Contributed by Serhiy Storchaka in bpo-26129 [https://bugs.python.org/issue26129].)

importlib

The importlib.machinery.SourceFileLoader.load_module() and
importlib.machinery.SourcelessFileLoader.load_module() methods
are now deprecated. They were the only remaining implementations of
importlib.abc.Loader.load_module() in importlib that had not
been deprecated in previous versions of Python in favour of
importlib.abc.Loader.exec_module().

The importlib.machinery.WindowsRegistryFinder class is now
deprecated. As of 3.6.0, it is still added to sys.meta_path by
default (on Windows), but this may change in future releases.

os

Undocumented support of general bytes-like objects
as paths in os functions, compile() and similar functions is
now deprecated.
(Contributed by Serhiy Storchaka in bpo-25791 [https://bugs.python.org/issue25791] and bpo-26754 [https://bugs.python.org/issue26754].)

re

Support for inline flags (?letters) in the middle of the regular
expression has been deprecated and will be removed in a future Python
version. Flags at the start of a regular expression are still allowed.
(Contributed by Serhiy Storchaka in bpo-22493 [https://bugs.python.org/issue22493].)

ssl

OpenSSL 0.9.8, 1.0.0 and 1.0.1 are deprecated and no longer supported.
In the future the ssl module will require at least OpenSSL 1.0.2 or
1.1.0.

SSL-related arguments like certfile, keyfile and check_hostname
in ftplib, http.client, imaplib, poplib,
and smtplib have been deprecated in favor of context.
(Contributed by Christian Heimes in bpo-28022 [https://bugs.python.org/issue28022].)

A couple of protocols and functions of the ssl module are now
deprecated. Some features will no longer be available in future versions
of OpenSSL. Other features are deprecated in favor of a different API.
(Contributed by Christian Heimes in bpo-28022 [https://bugs.python.org/issue28022] and bpo-26470 [https://bugs.python.org/issue26470].)

tkinter

The tkinter.tix module is now deprecated. tkinter users
should use tkinter.ttk instead.

venv

The pyvenv script has been deprecated in favour of python3 -m venv.
This prevents confusion as to what Python interpreter pyvenv is
connected to and thus what Python interpreter will be used by the virtual
environment. (Contributed by Brett Cannon in bpo-25154 [https://bugs.python.org/issue25154].)

已弃用的 C API 函数和类型

Undocumented functions PyUnicode_AsEncodedObject(),
PyUnicode_AsDecodedObject(), PyUnicode_AsEncodedUnicode()
and PyUnicode_AsDecodedUnicode() are deprecated now.
Use the generic codec based API instead.

弃用的构建选项

The --with-system-ffi configure flag is now on by default on non-macOS
UNIX platforms. It may be disabled by using --without-system-ffi, but
using the flag is deprecated and will not be accepted in Python 3.7.
macOS is unaffected by this change. Note that many OS distributors already
use the --with-system-ffi flag when building their system Python.

移除

API 与特性的移除

	Unknown escapes consisting of '\' and an ASCII letter in
regular expressions will now cause an error. In replacement templates for
re.sub() they are still allowed, but deprecated.
The re.LOCALE flag can now only be used with binary patterns.

	inspect.getmoduleinfo() was removed (was deprecated since CPython 3.3).
inspect.getmodulename() should be used for obtaining the module
name for a given path.
(Contributed by Yury Selivanov in bpo-13248 [https://bugs.python.org/issue13248].)

	traceback.Ignore class and traceback.usage, traceback.modname,
traceback.fullmodname, traceback.find_lines_from_code,
traceback.find_lines, traceback.find_strings,
traceback.find_executable_lines methods were removed from the
traceback module. They were undocumented methods deprecated since
Python 3.2 and equivalent functionality is available from private methods.

	The tk_menuBar() and tk_bindForTraversal() dummy methods in
tkinter widget classes were removed (corresponding Tk commands
were obsolete since Tk 4.0).

	The open() method of the zipfile.ZipFile
class no longer supports the 'U' mode (was deprecated since Python 3.4).
Use io.TextIOWrapper for reading compressed text files in
universal newlines mode.

	The undocumented IN, CDROM, DLFCN, TYPES, CDIO, and
STROPTS modules have been removed. They had been available in the
platform specific Lib/plat-*/ directories, but were chronically out of
date, inconsistently available across platforms, and unmaintained. The
script that created these modules is still available in the source
distribution at Tools/scripts/h2py.py [https://github.com/python/cpython/tree/3.7/Tools/scripts/h2py.py].

	The deprecated asynchat.fifo class has been removed.

移植到Python 3.6

本节列出了先前描述的更改以及可能需要更改代码的其他错误修正.

 'python' 命令行为的变化

	The output of a special Python build with defined COUNT_ALLOCS,
SHOW_ALLOC_COUNT or SHOW_TRACK_COUNT macros is now off by
default. It can be re-enabled using the -X showalloccount option.
It now outputs to stderr instead of stdout.
(Contributed by Serhiy Storchaka in bpo-23034 [https://bugs.python.org/issue23034].)

更改的Python API

	open() will no longer allow combining the 'U' mode flag
with '+'.
(Contributed by Jeff Balogh and John O'Connor in bpo-2091 [https://bugs.python.org/issue2091].)

	sqlite3 no longer implicitly commits an open transaction before DDL
statements.

	On Linux, os.urandom() now blocks until the system urandom entropy pool
is initialized to increase the security.

	When importlib.abc.Loader.exec_module() is defined,
importlib.abc.Loader.create_module() must also be defined.

	PyErr_SetImportError() now sets TypeError when its msg
argument is not set. Previously only NULL was returned.

	The format of the co_lnotab attribute of code objects changed to support
a negative line number delta. By default, Python does not emit bytecode with
a negative line number delta. Functions using frame.f_lineno,
PyFrame_GetLineNumber() or PyCode_Addr2Line() are not affected.
Functions directly decoding co_lnotab should be updated to use a signed
8-bit integer type for the line number delta, but this is only required to
support applications using a negative line number delta. See
Objects/lnotab_notes.txt for the co_lnotab format and how to decode
it, and see the PEP 511 [https://www.python.org/dev/peps/pep-0511] for the rationale.

	The functions in the compileall module now return booleans instead
of 1 or 0 to represent success or failure, respectively. Thanks to
booleans being a subclass of integers, this should only be an issue if you
were doing identity checks for 1 or 0. See bpo-25768 [https://bugs.python.org/issue25768].

	Reading the port attribute of
urllib.parse.urlsplit() and urlparse() results
now raises ValueError for out-of-range values, rather than
returning None. See bpo-20059 [https://bugs.python.org/issue20059].

	The imp module now raises a DeprecationWarning instead of
PendingDeprecationWarning.

	The following modules have had missing APIs added to their __all__
attributes to match the documented APIs:
calendar, cgi, csv,
ElementTree, enum,
fileinput, ftplib, logging, mailbox,
mimetypes, optparse, plistlib, smtpd,
subprocess, tarfile, threading and
wave. This means they will export new symbols when import *
is used.
(Contributed by Joel Taddei and Jacek Kołodziej in bpo-23883 [https://bugs.python.org/issue23883].)

	When performing a relative import, if __package__ does not compare equal
to __spec__.parent then ImportWarning is raised.
(Contributed by Brett Cannon in bpo-25791 [https://bugs.python.org/issue25791].)

	When a relative import is performed and no parent package is known, then
ImportError will be raised. Previously, SystemError could be
raised. (Contributed by Brett Cannon in bpo-18018 [https://bugs.python.org/issue18018].)

	Servers based on the socketserver module, including those
defined in http.server, xmlrpc.server and
wsgiref.simple_server, now only catch exceptions derived
from Exception. Therefore if a request handler raises
an exception like SystemExit or KeyboardInterrupt,
handle_error() is no longer called, and
the exception will stop a single-threaded server. (Contributed by
Martin Panter in bpo-23430 [https://bugs.python.org/issue23430].)

	spwd.getspnam() now raises a PermissionError instead of
KeyError if the user doesn't have privileges.

	The socket.socket.close() method now raises an exception if
an error (e.g. EBADF) was reported by the underlying system call.
(Contributed by Martin Panter in bpo-26685 [https://bugs.python.org/issue26685].)

	The decode_data argument for the smtpd.SMTPChannel and
smtpd.SMTPServer constructors is now False by default.
This means that the argument passed to
process_message() is now a bytes object by
default, and process_message() will be passed keyword arguments.
Code that has already been updated in accordance with the deprecation
warning generated by 3.5 will not be affected.

	All optional arguments of the dump(), dumps(),
load() and loads() functions and
JSONEncoder and JSONDecoder class
constructors in the json module are now keyword-only.
(Contributed by Serhiy Storchaka in bpo-18726 [https://bugs.python.org/issue18726].)

	type 的子类如果未重载 type.__new__，将不再能使用一个参数的形式来获取对象的类型。

	As part of PEP 487 [https://www.python.org/dev/peps/pep-0487], the handling of keyword arguments passed to
type (other than the metaclass hint, metaclass) is now
consistently delegated to object.__init_subclass__(). This means that
type.__new__() and type.__init__() both now accept arbitrary
keyword arguments, but object.__init_subclass__() (which is called from
type.__new__()) will reject them by default. Custom metaclasses
accepting additional keyword arguments will need to adjust their calls to
type.__new__() (whether direct or via super) accordingly.

	In distutils.command.sdist.sdist, the default_format
attribute has been removed and is no longer honored. Instead, the
gzipped tarfile format is the default on all platforms and no
platform-specific selection is made.
In environments where distributions are
built on Windows and zip distributions are required, configure
the project with a setup.cfg file containing the following:

[sdist]
formats=zip

This behavior has also been backported to earlier Python versions
by Setuptools 26.0.0.

	In the urllib.request module and the
http.client.HTTPConnection.request() method, if no Content-Length
header field has been specified and the request body is a file object,
it is now sent with HTTP 1.1 chunked encoding. If a file object has to
be sent to a HTTP 1.0 server, the Content-Length value now has to be
specified by the caller.
(Contributed by Demian Brecht and Rolf Krahl with tweaks from
Martin Panter in bpo-12319 [https://bugs.python.org/issue12319].)

	The DictReader now returns rows of type
OrderedDict.
(Contributed by Steve Holden in bpo-27842 [https://bugs.python.org/issue27842].)

	The crypt.METHOD_CRYPT will no longer be added to crypt.methods
if unsupported by the platform.
(Contributed by Victor Stinner in bpo-25287 [https://bugs.python.org/issue25287].)

	The verbose and rename arguments for
namedtuple() are now keyword-only.
(Contributed by Raymond Hettinger in bpo-25628 [https://bugs.python.org/issue25628].)

	On Linux, ctypes.util.find_library() now looks in
LD_LIBRARY_PATH for shared libraries.
(Contributed by Vinay Sajip in bpo-9998 [https://bugs.python.org/issue9998].)

	The imaplib.IMAP4 class now handles flags containing the
']' character in messages sent from the server to improve
real-world compatibility.
(Contributed by Lita Cho in bpo-21815 [https://bugs.python.org/issue21815].)

	The mmap.write() function now returns the number
of bytes written like other write methods.
(Contributed by Jakub Stasiak in bpo-26335 [https://bugs.python.org/issue26335].)

	The pkgutil.iter_modules() and pkgutil.walk_packages()
functions now return ModuleInfo named tuples.
(Contributed by Ramchandra Apte in bpo-17211 [https://bugs.python.org/issue17211].)

	re.sub() now raises an error for invalid numerical group
references in replacement templates even if the pattern is not
found in the string. The error message for invalid group references
now includes the group index and the position of the reference.
(Contributed by SilentGhost, Serhiy Storchaka in bpo-25953 [https://bugs.python.org/issue25953].)

	zipfile.ZipFile will now raise NotImplementedError for
unrecognized compression values. Previously a plain RuntimeError
was raised. Additionally, calling ZipFile methods
on a closed ZipFile or calling the write() method
on a ZipFile created with mode 'r' will raise a ValueError.
Previously, a RuntimeError was raised in those scenarios.

	when custom metaclasses are combined with zero-argument super() or
direct references from methods to the implicit __class__ closure
variable, the implicit __classcell__ namespace entry must now be passed
up to type.__new__ for initialisation. Failing to do so will result in
a DeprecationWarning in Python 3.6 and a RuntimeError in
Python 3.8.

	With the introduction of ModuleNotFoundError, import system consumers
may start expecting import system replacements to raise that more specific
exception when appropriate, rather than the less-specific ImportError.
To provide future compatibility with such consumers, implementors of
alternative import systems that completely replace __import__() will
need to update their implementations to raise the new subclass when a module
can't be found at all. Implementors of compliant plugins to the default
import system shouldn't need to make any changes, as the default import
system will raise the new subclass when appropriate.

C API 中的改变

	The PyMem_Malloc() allocator family now uses the pymalloc allocator rather than the system malloc(). Applications calling
PyMem_Malloc() without holding the GIL can now crash. Set the
PYTHONMALLOC environment variable to debug to validate the
usage of memory allocators in your application. See bpo-26249 [https://bugs.python.org/issue26249].

	Py_Exit() (and the main interpreter) now override the exit status
with 120 if flushing buffered data failed. See bpo-5319 [https://bugs.python.org/issue5319].

CPython 字节码的改变

There have been several major changes to the bytecode in Python 3.6.

	The Python interpreter now uses a 16-bit wordcode instead of bytecode.
(Contributed by Demur Rumed with input and reviews from
Serhiy Storchaka and Victor Stinner in bpo-26647 [https://bugs.python.org/issue26647] and bpo-28050 [https://bugs.python.org/issue28050].)

	The new FORMAT_VALUE and BUILD_STRING opcodes as part
of the formatted string literal implementation.
(Contributed by Eric Smith in bpo-25483 [https://bugs.python.org/issue25483] and
Serhiy Storchaka in bpo-27078 [https://bugs.python.org/issue27078].)

	The new BUILD_CONST_KEY_MAP opcode to optimize the creation
of dictionaries with constant keys.
(Contributed by Serhiy Storchaka in bpo-27140 [https://bugs.python.org/issue27140].)

	The function call opcodes have been heavily reworked for better performance
and simpler implementation.
The MAKE_FUNCTION, CALL_FUNCTION,
CALL_FUNCTION_KW and BUILD_MAP_UNPACK_WITH_CALL opcodes
have been modified, the new CALL_FUNCTION_EX and
BUILD_TUPLE_UNPACK_WITH_CALL have been added, and
CALL_FUNCTION_VAR, CALL_FUNCTION_VAR_KW and MAKE_CLOSURE opcodes
have been removed.
(Contributed by Demur Rumed in bpo-27095 [https://bugs.python.org/issue27095], and Serhiy Storchaka in
bpo-27213 [https://bugs.python.org/issue27213], bpo-28257 [https://bugs.python.org/issue28257].)

	The new SETUP_ANNOTATIONS and STORE_ANNOTATION opcodes
have been added to support the new variable annotation syntax.
(Contributed by Ivan Levkivskyi in bpo-27985 [https://bugs.python.org/issue27985].)

Python 3.6.2 中的重要变化

New make regen-all build target

To simplify cross-compilation, and to ensure that CPython can reliably be
compiled without requiring an existing version of Python to already be
available, the autotools-based build system no longer attempts to implicitly
recompile generated files based on file modification times.

Instead, a new make regen-all command has been added to force regeneration
of these files when desired (e.g. after an initial version of Python has
already been built based on the pregenerated versions).

More selective regeneration targets are also defined - see
Makefile.pre.in [https://github.com/python/cpython/tree/3.7/Makefile.pre.in] for details.

（由 Victor Stinner 在 bpo-23404 [https://bugs.python.org/issue23404] 中贡献。）

3.6.2 新版功能.

Removal of make touch build target

The make touch build target previously used to request implicit regeneration
of generated files by updating their modification times has been removed.

It has been replaced by the new make regen-all target.

（由 Victor Stinner 在 bpo-23404 [https://bugs.python.org/issue23404] 中贡献。）

在 3.6.2 版更改.

Python 3.6.4 中的重要变化

The PyExc_RecursionErrorInst singleton that was part of the public API
has been removed as its members being never cleared may cause a segfault
during finalization of the interpreter.
(Contributed by Xavier de Gaye in bpo-22898 [https://bugs.python.org/issue22898] and bpo-30697 [https://bugs.python.org/issue30697].)

Python 3.6.5 中的重要变化

The locale.localeconv() function now sets temporarily the LC_CTYPE
locale to the LC_NUMERIC locale in some cases.
(Contributed by Victor Stinner in bpo-31900 [https://bugs.python.org/issue31900].)

Python 3.6.7 中的重要变化

In 3.6.7 the tokenize module now implicitly emits a NEWLINE token
when provided with input that does not have a trailing new line. This behavior
now matches what the C tokenizer does internally.
(Contributed by Ammar Askar in bpo-33899 [https://bugs.python.org/issue33899].)

Python 3.6.10 中的重要变化

出于重要的安全性考量，asyncio.loop.create_datagram_endpoint() 的 reuse_address 形参不再被支持。 这是由 UDP 中的套接字选项 SO_REUSEADDR 的行为导致的。 更多细节请参阅 loop.create_datagram_endpoint() 的文档。 （由 Kyle Stanley, Antoine Pitrou 和 Yury Selivanov 在 bpo-37228 [https://bugs.python.org/issue37228] 中贡献。。）

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 3.5 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 3.5 有什么新变化

	作者

	Elvis Pranskevichus <elvis@magic.io>, Yury Selivanov <yury@magic.io>

This article explains the new features in Python 3.5, compared to 3.4.
Python 3.5 was released on September 13, 2015. See the
changelog [https://docs.python.org/3.5/whatsnew/changelog.html] for a full
list of changes.

参见

PEP 478 [https://www.python.org/dev/peps/pep-0478] - Python 3.5 发布计划

摘要 - 发布重点

新的语法特性：

	PEP 492, 使用 async 和 await 语法实现协程。

	PEP 465, 新的矩阵乘法运算符: a @ b.

	PEP 448, additional unpacking generalizations.

新的库模块：

	typing: PEP 484 -- 类型提示.

	zipapp: PEP 441 改进Python ZIP应用程序支持.

新的内置特性：

	bytes % args, bytearray % args: PEP 461 --
Adding % formatting to bytes and bytearray.

	New bytes.hex(), bytearray.hex() and memoryview.hex()
methods. (Contributed by Arnon Yaari in bpo-9951 [https://bugs.python.org/issue9951].)

	memoryview now supports tuple indexing (including multi-dimensional).
(Contributed by Antoine Pitrou in bpo-23632 [https://bugs.python.org/issue23632].)

	Generators have a new gi_yieldfrom attribute, which returns the
object being iterated by yield from expressions. (Contributed
by Benno Leslie and Yury Selivanov in bpo-24450 [https://bugs.python.org/issue24450].)

	A new RecursionError exception is now raised when maximum
recursion depth is reached. (Contributed by Georg Brandl
in bpo-19235 [https://bugs.python.org/issue19235].)

CPython 实现的改进：

	When the LC_TYPE locale is the POSIX locale (C locale),
sys.stdin and sys.stdout now use the
surrogateescape error handler, instead of the strict error handler.
(Contributed by Victor Stinner in bpo-19977 [https://bugs.python.org/issue19977].)

	.pyo files are no longer used and have been replaced by a more flexible
scheme that includes the optimization level explicitly in .pyc name.
(See PEP 488 overview.)

	Builtin and extension modules are now initialized in a multi-phase process,
which is similar to how Python modules are loaded.
(See PEP 489 overview.)

标准库中的重大改进：

	collections.OrderedDict is now
implemented in C, which makes it
4 to 100 times faster.

	The ssl module gained
support for Memory BIO, which decouples SSL
protocol handling from network IO.

	The new os.scandir() function provides a
better and significantly faster way
of directory traversal.

	functools.lru_cache() has been mostly
reimplemented in C, yielding much better
performance.

	The new subprocess.run() function provides a
streamlined way to run subprocesses.

	The traceback module has been significantly
enhanced for improved
performance and developer convenience.

安全改进：

	SSLv3 is now disabled throughout the standard library.
It can still be enabled by instantiating a ssl.SSLContext
manually. (See bpo-22638 [https://bugs.python.org/issue22638] for more details; this change was
backported to CPython 3.4 and 2.7.)

	HTTP cookie parsing is now stricter, in order to protect
against potential injection attacks. (Contributed by Antoine Pitrou
in bpo-22796 [https://bugs.python.org/issue22796].)

Windows改进：

	A new installer for Windows has replaced the old MSI.
See 在Windows上使用 Python for more information.

	Windows builds now use Microsoft Visual C++ 14.0, and extension modules
should use the same.

Please read on for a comprehensive list of user-facing changes, including many
other smaller improvements, CPython optimizations, deprecations, and potential
porting issues.

新的特性

PEP 492 - 使用 async 和 await 语法实现协程

PEP 492 [https://www.python.org/dev/peps/pep-0492] greatly improves support for asynchronous programming in Python
by adding awaitable objects,
coroutine functions,
asynchronous iteration,
and asynchronous context managers.

Coroutine functions are declared using the new async def syntax:

>>> async def coro():
... return 'spam'

Inside a coroutine function, the new await expression can be used
to suspend coroutine execution until the result is available. Any object
can be awaited, as long as it implements the awaitable protocol by
defining the __await__() method.

PEP 492 also adds async for statement for convenient iteration
over asynchronous iterables.

An example of a rudimentary HTTP client written using the new syntax:

import asyncio

async def http_get(domain):
 reader, writer = await asyncio.open_connection(domain, 80)

 writer.write(b'\r\n'.join([
 b'GET / HTTP/1.1',
 b'Host: %b' % domain.encode('latin-1'),
 b'Connection: close',
 b'', b''
]))

 async for line in reader:
 print('>>>', line)

 writer.close()

loop = asyncio.get_event_loop()
try:
 loop.run_until_complete(http_get('example.com'))
finally:
 loop.close()

Similarly to asynchronous iteration, there is a new syntax for asynchronous
context managers. The following script:

import asyncio

async def coro(name, lock):
 print('coro {}: waiting for lock'.format(name))
 async with lock:
 print('coro {}: holding the lock'.format(name))
 await asyncio.sleep(1)
 print('coro {}: releasing the lock'.format(name))

loop = asyncio.get_event_loop()
lock = asyncio.Lock()
coros = asyncio.gather(coro(1, lock), coro(2, lock))
try:
 loop.run_until_complete(coros)
finally:
 loop.close()

将输出：

coro 2: waiting for lock
coro 2: holding the lock
coro 1: waiting for lock
coro 2: releasing the lock
coro 1: holding the lock
coro 1: releasing the lock

Note that both async for and async with can only
be used inside a coroutine function declared with async def.

Coroutine functions are intended to be run inside a compatible event loop,
such as the asyncio loop.

注解

在 3.5.2 版更改: Starting with CPython 3.5.2, __aiter__ can directly return
asynchronous iterators. Returning
an awaitable object will result in a
PendingDeprecationWarning.

See more details in the 异步迭代器 documentation
section.

参见

	PEP 492 [https://www.python.org/dev/peps/pep-0492] -- 使用 async 和 await 语法实现协程
	PEP 由 Yury Selivanov 撰写并实现

PEP 465 - 用于矩阵乘法的专用中缀运算符

PEP 465 [https://www.python.org/dev/peps/pep-0465] adds the @ infix operator for matrix multiplication.
Currently, no builtin Python types implement the new operator, however, it
can be implemented by defining __matmul__(), __rmatmul__(),
and __imatmul__() for regular, reflected, and in-place matrix
multiplication. The semantics of these methods is similar to that of
methods defining other infix arithmetic operators.

矩阵乘法在数学，科学，工程学的许多领域中是一种常见的操作，使用 @ 运算符可以编写更简洁的代码：

S = (H @ beta - r).T @ inv(H @ V @ H.T) @ (H @ beta - r)

代替：

S = dot((dot(H, beta) - r).T,
 dot(inv(dot(dot(H, V), H.T)), dot(H, beta) - r))

NumPy 1.10 支持新的运算符：

>>> import numpy

>>> x = numpy.ones(3)
>>> x
array([1., 1., 1.])

>>> m = numpy.eye(3)
>>> m
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

>>> x @ m
array([1., 1., 1.])

参见

	PEP 465 [https://www.python.org/dev/peps/pep-0465] -- 用于矩阵乘法的专用中缀运算符
	PEP 由 Nathaniel J. Smith 撰写，由 Benjamin Peterson 实现。

PEP 448 - Additional Unpacking Generalizations

PEP 448 [https://www.python.org/dev/peps/pep-0448] extends the allowed uses of the * iterable unpacking
operator and ** dictionary unpacking operator. It is now possible
to use an arbitrary number of unpackings in function calls:

>>> print(*[1], *[2], 3, *[4, 5])
1 2 3 4 5

>>> def fn(a, b, c, d):
... print(a, b, c, d)
...

>>> fn(**{'a': 1, 'c': 3}, **{'b': 2, 'd': 4})
1 2 3 4

Similarly, tuple, list, set, and dictionary displays allow multiple
unpackings (see 表达式列表 and 字典显示):

>>> *range(4), 4
(0, 1, 2, 3, 4)

>>> [*range(4), 4]
[0, 1, 2, 3, 4]

>>> {*range(4), 4, *(5, 6, 7)}
{0, 1, 2, 3, 4, 5, 6, 7}

>>> {'x': 1, **{'y': 2}}
{'x': 1, 'y': 2}

参见

	PEP 448 [https://www.python.org/dev/peps/pep-0448] -- Additional Unpacking Generalizations
	PEP 由 Joshua Landau 撰写 ，由 Neil Girdhar，Thomas Wouters 和 Joshua Landau 实现。

PEP 461 - percent formatting support for bytes and bytearray

PEP 461 [https://www.python.org/dev/peps/pep-0461] adds support for the %
interpolation operator to bytes
and bytearray.

While interpolation is usually thought of as a string operation, there are
cases where interpolation on bytes or bytearrays makes sense, and the
work needed to make up for this missing functionality detracts from the
overall readability of the code. This issue is particularly important when
dealing with wire format protocols, which are often a mixture of binary
and ASCII compatible text.

示例:

>>> b'Hello %b!' % b'World'
b'Hello World!'

>>> b'x=%i y=%f' % (1, 2.5)
b'x=1 y=2.500000'

Unicode is not allowed for %b, but it is accepted by %a (equivalent of
repr(obj).encode('ascii', 'backslashreplace')):

>>> b'Hello %b!' % 'World'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: %b requires bytes, or an object that implements __bytes__, not 'str'

>>> b'price: %a' % '10€'
b"price: '10\\u20ac'"

Note that %s and %r conversion types, although supported, should
only be used in codebases that need compatibility with Python 2.

参见

	PEP 461 [https://www.python.org/dev/peps/pep-0461] -- Adding % formatting to bytes and bytearray
	PEP 由 Ethan Furman 撰写 ，由 Neil Schemenauer 和 Ethan Furman 实现。

PEP 484 - 类型提示

Function annotation syntax has been a Python feature since version 3.0
(PEP 3107 [https://www.python.org/dev/peps/pep-3107]), however the semantics of annotations has been left undefined.

Experience has shown that the majority of function annotation
uses were to provide type hints to function parameters and return values. It
became evident that it would be beneficial for Python users, if the
standard library included the base definitions and tools for type annotations.

PEP 484 [https://www.python.org/dev/peps/pep-0484] introduces a provisional module to
provide these standard definitions and tools, along with some conventions
for situations where annotations are not available.

For example, here is a simple function whose argument and return type
are declared in the annotations:

def greeting(name: str) -> str:
 return 'Hello ' + name

While these annotations are available at runtime through the usual
__annotations__ attribute, no automatic type checking happens at
runtime. Instead, it is assumed that a separate off-line type checker
(e.g. mypy [http://mypy-lang.org]) will be used for on-demand
source code analysis.

The type system supports unions, generic types, and a special type
named Any which is consistent with (i.e. assignable to
and from) all types.

参见

	typing 模块文档

	
	PEP 484 [https://www.python.org/dev/peps/pep-0484] -- 类型提示
	PEP 由 Guido van Rossum，Jukka Lehtosalo 和 Łukasz Langa 撰写，由 Guido van Rossum 实现。

	
	PEP 483 [https://www.python.org/dev/peps/pep-0483] -- 类型提示理论
	PEP 由 Yury Selivanov 撰写

PEP 471 - os.scandir() function -- a better and faster directory iterator

PEP 471 [https://www.python.org/dev/peps/pep-0471] adds a new directory iteration function, os.scandir(),
to the standard library. Additionally, os.walk() is now
implemented using scandir, which makes it 3 to 5 times faster
on POSIX systems and 7 to 20 times faster on Windows systems. This is
largely achieved by greatly reducing the number of calls to os.stat()
required to walk a directory tree.

Additionally, scandir returns an iterator, as opposed to returning
a list of file names, which improves memory efficiency when iterating
over very large directories.

The following example shows a simple use of os.scandir() to display all
the files (excluding directories) in the given path that don't start with
'.'. The entry.is_file() call will generally
not make an additional system call:

for entry in os.scandir(path):
 if not entry.name.startswith('.') and entry.is_file():
 print(entry.name)

参见

	PEP 471 [https://www.python.org/dev/peps/pep-0471] -- os.scandir() function -- a better and faster directory iterator
	PEP 由 Ben Hoyt 在 Victor Stinner 的帮助下撰写并实现

PEP 475: Retry system calls failing with EINTR

An errno.EINTR error code is returned whenever a system call, that
is waiting for I/O, is interrupted by a signal. Previously, Python would
raise InterruptedError in such cases. This meant that, when writing a
Python application, the developer had two choices:

	Ignore the InterruptedError.

	Handle the InterruptedError and attempt to restart the interrupted
system call at every call site.

The first option makes an application fail intermittently.
The second option adds a large amount of boilerplate that makes the
code nearly unreadable. Compare:

print("Hello World")

和:

while True:
 try:
 print("Hello World")
 break
 except InterruptedError:
 continue

PEP 475 [https://www.python.org/dev/peps/pep-0475] implements automatic retry of system calls on
EINTR. This removes the burden of dealing with EINTR
or InterruptedError in user code in most situations and makes
Python programs, including the standard library, more robust. Note that
the system call is only retried if the signal handler does not raise an
exception.

Below is a list of functions which are now retried when interrupted
by a signal:

	open() 和 io.open();

	faulthandler 模块的功能

	os functions: fchdir(), fchmod(),
fchown(), fdatasync(), fstat(),
fstatvfs(), fsync(), ftruncate(),
mkfifo(), mknod(), open(),
posix_fadvise(), posix_fallocate(), pread(),
pwrite(), read(), readv(), sendfile(),
wait3(), wait4(), wait(),
waitid(), waitpid(), write(),
writev();

	特例: os.close() 和 os.dup2() 现在忽略 EINTR 错误; 不重试系统调用（请参阅PEP了解基本原理）

	select 函数: devpoll.poll(), epoll.poll(), kqueue.control(), poll.poll(), select();

	socket 类的方法: accept(), connect() (except for non-blocking sockets), recv(), recvfrom(), recvmsg(), send(), sendall(), sendmsg(), sendto();

	signal.sigtimedwait() 和 signal.sigwaitinfo();

	time.sleep().

参见

	PEP 475 [https://www.python.org/dev/peps/pep-0475] -- Retry system calls failing with EINTR
	PEP and implementation written by Charles-François Natali and
Victor Stinner, with the help of Antoine Pitrou (the French connection).

PEP 479: Change StopIteration handling inside generators

The interaction of generators and StopIteration in Python 3.4 and
earlier was sometimes surprising, and could conceal obscure bugs. Previously,
StopIteration raised accidentally inside a generator function was
interpreted as the end of the iteration by the loop construct driving the
generator.

PEP 479 [https://www.python.org/dev/peps/pep-0479] changes the behavior of generators: when a StopIteration
exception is raised inside a generator, it is replaced with a
RuntimeError before it exits the generator frame. The main goal of
this change is to ease debugging in the situation where an unguarded
next() call raises StopIteration and causes the iteration controlled
by the generator to terminate silently. This is particularly pernicious in
combination with the yield from construct.

This is a backwards incompatible change, so to enable the new behavior,
a __future__ import is necessary:

>>> from __future__ import generator_stop

>>> def gen():
... next(iter([]))
... yield
...
>>> next(gen())
Traceback (most recent call last):
 File "<stdin>", line 2, in gen
StopIteration

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
RuntimeError: generator raised StopIteration

Without a __future__ import, a PendingDeprecationWarning will be
raised whenever a StopIteration exception is raised inside a generator.

参见

	PEP 479 [https://www.python.org/dev/peps/pep-0479] -- Change StopIteration handling inside generators
	PEP 由 Chris Angelico 和 Guido van Rossum 撰写，由 Chris Angelico，Yury Selivanov 和 Nick Coghlan 实现。

PEP 485: A function for testing approximate equality

PEP 485 [https://www.python.org/dev/peps/pep-0485] adds the math.isclose() and cmath.isclose()
functions which tell whether two values are approximately equal or
"close" to each other. Whether or not two values are considered
close is determined according to given absolute and relative tolerances.
Relative tolerance is the maximum allowed difference between isclose
arguments, relative to the larger absolute value:

>>> import math
>>> a = 5.0
>>> b = 4.99998
>>> math.isclose(a, b, rel_tol=1e-5)
True
>>> math.isclose(a, b, rel_tol=1e-6)
False

It is also possible to compare two values using absolute tolerance, which
must be a non-negative value:

>>> import math
>>> a = 5.0
>>> b = 4.99998
>>> math.isclose(a, b, abs_tol=0.00003)
True
>>> math.isclose(a, b, abs_tol=0.00001)
False

参见

	PEP 485 [https://www.python.org/dev/peps/pep-0485] —— 用于测试近似相等的函数
	PEP 由 Christopher Barker 撰写，由 Chris Barker 和 Tal Einat 实现。

PEP 486: Make the Python Launcher aware of virtual environments

PEP 486 [https://www.python.org/dev/peps/pep-0486] makes the Windows launcher (see PEP 397 [https://www.python.org/dev/peps/pep-0397]) aware of an active
virtual environment. When the default interpreter would be used and the
VIRTUAL_ENV environment variable is set, the interpreter in the virtual
environment will be used.

参见

	PEP 486 [https://www.python.org/dev/peps/pep-0486] -- Make the Python Launcher aware of virtual environments
	PEP 由 Paul Moore 撰写并实现

PEP 488: Elimination of PYO files

PEP 488 [https://www.python.org/dev/peps/pep-0488] does away with the concept of .pyo files. This means that
.pyc files represent both unoptimized and optimized bytecode. To prevent the
need to constantly regenerate bytecode files, .pyc files now have an
optional opt- tag in their name when the bytecode is optimized. This has the
side-effect of no more bytecode file name clashes when running under either
-O or -OO. Consequently, bytecode files generated from
-O, and -OO may now exist simultaneously.
importlib.util.cache_from_source() has an updated API to help with
this change.

参见

	PEP 488 [https://www.python.org/dev/peps/pep-0488] -- Elimination of PYO files
	PEP 由 Brett Cannon 撰写并实现。

PEP 489: Multi-phase extension module initialization

PEP 489 [https://www.python.org/dev/peps/pep-0489] updates extension module initialization to take advantage of the
two step module loading mechanism introduced by PEP 451 [https://www.python.org/dev/peps/pep-0451] in Python 3.4.

This change brings the import semantics of extension modules that opt-in to
using the new mechanism much closer to those of Python source and bytecode
modules, including the ability to use any valid identifier as a module name,
rather than being restricted to ASCII.

参见

	PEP 489 [https://www.python.org/dev/peps/pep-0489] -- Multi-phase extension module initialization
	PEP 由 Petr Viktorin , Stefan Behnel 和 Nick Coghlan 撰写，由 Petr Viktorin 实现。

其他语言特性修改

对Python 语言核心进行的小改动：

	Added the "namereplace" error handlers. The "backslashreplace"
error handlers now work with decoding and translating.
(Contributed by Serhiy Storchaka in bpo-19676 [https://bugs.python.org/issue19676] and bpo-22286 [https://bugs.python.org/issue22286].)

	The -b option now affects comparisons of bytes with
int. (Contributed by Serhiy Storchaka in bpo-23681 [https://bugs.python.org/issue23681].)

	New Kazakh kz1048 and Tajik koi8_t codecs.
(Contributed by Serhiy Storchaka in bpo-22682 [https://bugs.python.org/issue22682] and bpo-22681 [https://bugs.python.org/issue22681].)

	Property docstrings are now writable. This is especially useful for
collections.namedtuple() docstrings.
(Contributed by Berker Peksag in bpo-24064 [https://bugs.python.org/issue24064].)

	Circular imports involving relative imports are now supported.
(Contributed by Brett Cannon and Antoine Pitrou in bpo-17636 [https://bugs.python.org/issue17636].)

新增模块

typing

The new typing provisional module
provides standard definitions and tools for function type annotations.
See Type Hints for more information.

zipapp

The new zipapp module (specified in PEP 441 [https://www.python.org/dev/peps/pep-0441]) provides an API and
command line tool for creating executable Python Zip Applications, which
were introduced in Python 2.6 in bpo-1739468 [https://bugs.python.org/issue1739468], but which were not well
publicized, either at the time or since.

With the new module, bundling your application is as simple as putting all
the files, including a __main__.py file, into a directory myapp
and running:

$ python -m zipapp myapp
$ python myapp.pyz

The module implementation has been contributed by Paul Moore in
bpo-23491 [https://bugs.python.org/issue23491].

参见

PEP 441 [https://www.python.org/dev/peps/pep-0441] -- Improving Python ZIP Application Support

改进的模块

argparse

The ArgumentParser class now allows disabling
abbreviated usage of long options by setting
allow_abbrev to False. (Contributed by Jonathan Paugh,
Steven Bethard, paul j3 and Daniel Eriksson in bpo-14910 [https://bugs.python.org/issue14910].)

asyncio

Since the asyncio module is provisional,
all changes introduced in Python 3.5 have also been backported to Python 3.4.x.

Notable changes in the asyncio module since Python 3.4.0:

	New debugging APIs: loop.set_debug()
and loop.get_debug() methods.
(Contributed by Victor Stinner.)

	The proactor event loop now supports SSL.
(Contributed by Antoine Pitrou and Victor Stinner in bpo-22560 [https://bugs.python.org/issue22560].)

	A new loop.is_closed() method to
check if the event loop is closed.
(Contributed by Victor Stinner in bpo-21326 [https://bugs.python.org/issue21326].)

	A new loop.create_task()
to conveniently create and schedule a new Task
for a coroutine. The create_task method is also used by all
asyncio functions that wrap coroutines into tasks, such as
asyncio.wait(), asyncio.gather(), etc.
(Contributed by Victor Stinner.)

	A new transport.get_write_buffer_limits()
method to inquire for high- and low- water limits of the flow
control.
(Contributed by Victor Stinner.)

	The async() function is deprecated in favor of
ensure_future().
(Contributed by Yury Selivanov.)

	New loop.set_task_factory() and
loop.get_task_factory()
methods to customize the task factory that loop.create_task() method uses. (Contributed by Yury
Selivanov.)

	New Queue.join() and
Queue.task_done() queue methods.
(Contributed by Victor Stinner.)

	The JoinableQueue class was removed, in favor of the
asyncio.Queue class.
(Contributed by Victor Stinner.)

3.5.1 中的更新：

	The ensure_future() function and all functions that
use it, such as loop.run_until_complete(),
now accept all kinds of awaitable objects.
(Contributed by Yury Selivanov.)

	New run_coroutine_threadsafe() function to submit
coroutines to event loops from other threads.
(Contributed by Vincent Michel.)

	New Transport.is_closing()
method to check if the transport is closing or closed.
(Contributed by Yury Selivanov.)

	The loop.create_server()
method can now accept a list of hosts.
(Contributed by Yann Sionneau.)

3.5.2 中的更新：

	New loop.create_future()
method to create Future objects. This allows alternative event
loop implementations, such as
uvloop [https://github.com/MagicStack/uvloop], to provide a faster
asyncio.Future implementation.
(Contributed by Yury Selivanov.)

	New loop.get_exception_handler()
method to get the current exception handler.
(Contributed by Yury Selivanov.)

	New StreamReader.readuntil()
method to read data from the stream until a separator bytes
sequence appears.
(Contributed by Mark Korenberg.)

	The loop.create_connection()
and loop.create_server()
methods are optimized to avoid calling the system getaddrinfo
function if the address is already resolved.
(Contributed by A. Jesse Jiryu Davis.)

	The loop.sock_connect(sock, address)
no longer requires the address to be resolved prior to the call.
(Contributed by A. Jesse Jiryu Davis.)

bz2

The BZ2Decompressor.decompress
method now accepts an optional max_length argument to limit the maximum
size of decompressed data. (Contributed by Nikolaus Rath in bpo-15955 [https://bugs.python.org/issue15955].)

cgi

The FieldStorage class now supports the context manager
protocol. (Contributed by Berker Peksag in bpo-20289 [https://bugs.python.org/issue20289].)

cmath

A new function isclose() provides a way to test for approximate
equality. (Contributed by Chris Barker and Tal Einat in bpo-24270 [https://bugs.python.org/issue24270].)

code

The InteractiveInterpreter.showtraceback()
method now prints the full chained traceback, just like the interactive
interpreter. (Contributed by Claudiu Popa in bpo-17442 [https://bugs.python.org/issue17442].)

collections

The OrderedDict class is now implemented in C, which
makes it 4 to 100 times faster. (Contributed by Eric Snow in bpo-16991 [https://bugs.python.org/issue16991].)

OrderedDict.items(),
OrderedDict.keys(),
OrderedDict.values() views now support
reversed() iteration.
(Contributed by Serhiy Storchaka in bpo-19505 [https://bugs.python.org/issue19505].)

The deque class now defines
index(), insert(), and
copy(), and supports the + and * operators.
This allows deques to be recognized as a MutableSequence
and improves their substitutability for lists.
(Contributed by Raymond Hettinger in bpo-23704 [https://bugs.python.org/issue23704].)

Docstrings produced by namedtuple() can now be updated:

Point = namedtuple('Point', ['x', 'y'])
Point.__doc__ += ': Cartesian coodinate'
Point.x.__doc__ = 'abscissa'
Point.y.__doc__ = 'ordinate'

（由 Berker Peksag 在 bpo-24064 [https://bugs.python.org/issue24064] 中贡献。）

The UserString class now implements the
__getnewargs__(), __rmod__(), casefold(),
format_map(), isprintable(), and maketrans()
methods to match the corresponding methods of str.
(Contributed by Joe Jevnik in bpo-22189 [https://bugs.python.org/issue22189].)

collections.abc

The Sequence.index() method now
accepts start and stop arguments to match the corresponding methods
of tuple, list, etc.
(Contributed by Devin Jeanpierre in bpo-23086 [https://bugs.python.org/issue23086].)

A new Generator abstract base class. (Contributed
by Stefan Behnel in bpo-24018 [https://bugs.python.org/issue24018].)

New Awaitable, Coroutine,
AsyncIterator, and
AsyncIterable abstract base classes.
(Contributed by Yury Selivanov in bpo-24184 [https://bugs.python.org/issue24184].)

For earlier Python versions, a backport of the new ABCs is available in an
external PyPI package [https://pypi.org/project/backports_abc].

compileall

A new compileall option, -j N, allows running N workers
simultaneously to perform parallel bytecode compilation.
The compile_dir() function has a corresponding workers
parameter. (Contributed by Claudiu Popa in bpo-16104 [https://bugs.python.org/issue16104].)

Another new option, -r, allows controlling the maximum recursion
level for subdirectories. (Contributed by Claudiu Popa in bpo-19628 [https://bugs.python.org/issue19628].)

The -q command line option can now be specified more than once, in
which case all output, including errors, will be suppressed. The corresponding
quiet parameter in compile_dir(),
compile_file(), and compile_path() can now
accept an integer value indicating the level of output suppression.
(Contributed by Thomas Kluyver in bpo-21338 [https://bugs.python.org/issue21338].)

concurrent.futures

The Executor.map() method now accepts a
chunksize argument to allow batching of tasks to improve performance when
ProcessPoolExecutor() is used.
(Contributed by Dan O'Reilly in bpo-11271 [https://bugs.python.org/issue11271].)

The number of workers in the ThreadPoolExecutor
constructor is optional now. The default value is 5 times the number of CPUs.
(Contributed by Claudiu Popa in bpo-21527 [https://bugs.python.org/issue21527].)

configparser

configparser now provides a way to customize the conversion
of values by specifying a dictionary of converters in the
ConfigParser constructor, or by defining them
as methods in ConfigParser subclasses. Converters defined in
a parser instance are inherited by its section proxies.

示例:

>>> import configparser
>>> conv = {}
>>> conv['list'] = lambda v: [e.strip() for e in v.split() if e.strip()]
>>> cfg = configparser.ConfigParser(converters=conv)
>>> cfg.read_string("""
... [s]
... list = a b c d e f g
... """)
>>> cfg.get('s', 'list')
'a b c d e f g'
>>> cfg.getlist('s', 'list')
['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> section = cfg['s']
>>> section.getlist('list')
['a', 'b', 'c', 'd', 'e', 'f', 'g']

（由 Łukasz Langa 在 bpo-18159 [https://bugs.python.org/issue18159] 中贡献。）

contextlib

The new redirect_stderr() context manager (similar to
redirect_stdout()) makes it easier for utility scripts to
handle inflexible APIs that write their output to sys.stderr and
don't provide any options to redirect it:

>>> import contextlib, io, logging
>>> f = io.StringIO()
>>> with contextlib.redirect_stderr(f):
... logging.warning('warning')
...
>>> f.getvalue()
'WARNING:root:warning\n'

（由 Berker Peksag 在 bpo-22389 [https://bugs.python.org/issue22389] 中贡献。）

csv

The writerow() method now supports arbitrary iterables,
not just sequences. (Contributed by Serhiy Storchaka in bpo-23171 [https://bugs.python.org/issue23171].)

curses

The new update_lines_cols() function updates the LINES
and COLS environment variables. This is useful for detecting
manual screen resizing. (Contributed by Arnon Yaari in bpo-4254 [https://bugs.python.org/issue4254].)

dbm

dumb.open always creates a new database when the flag
has the value "n". (Contributed by Claudiu Popa in bpo-18039 [https://bugs.python.org/issue18039].)

difflib

The charset of HTML documents generated by
HtmlDiff.make_file()
can now be customized by using a new charset keyword-only argument.
The default charset of HTML document changed from "ISO-8859-1"
to "utf-8".
(Contributed by Berker Peksag in bpo-2052 [https://bugs.python.org/issue2052].)

The diff_bytes() function can now compare lists of byte
strings. This fixes a regression from Python 2.
(Contributed by Terry J. Reedy and Greg Ward in bpo-17445 [https://bugs.python.org/issue17445].)

distutils

Both the build and build_ext commands now accept a -j option to
enable parallel building of extension modules.
(Contributed by Antoine Pitrou in bpo-5309 [https://bugs.python.org/issue5309].)

The distutils module now supports xz compression, and can be
enabled by passing xztar as an argument to bdist --format.
(Contributed by Serhiy Storchaka in bpo-16314 [https://bugs.python.org/issue16314].)

doctest

The DocTestSuite() function returns an empty
unittest.TestSuite if module contains no docstrings, instead of
raising ValueError. (Contributed by Glenn Jones in bpo-15916 [https://bugs.python.org/issue15916].)

email

A new policy option Policy.mangle_from_
controls whether or not lines that start with "From " in email bodies are
prefixed with a ">" character by generators. The default is True for
compat32 and False for all other policies.
(Contributed by Milan Oberkirch in bpo-20098 [https://bugs.python.org/issue20098].)

A new
Message.get_content_disposition()
method provides easy access to a canonical value for the
Content-Disposition header.
(Contributed by Abhilash Raj in bpo-21083 [https://bugs.python.org/issue21083].)

A new policy option EmailPolicy.utf8
can be set to True to encode email headers using the UTF-8 charset instead
of using encoded words. This allows Messages to be formatted according to
RFC 6532 [https://tools.ietf.org/html/rfc6532.html] and used with an SMTP server that supports the RFC 6531 [https://tools.ietf.org/html/rfc6531.html]
SMTPUTF8 extension. (Contributed by R. David Murray in
bpo-24211 [https://bugs.python.org/issue24211].)

The mime.text.MIMEText constructor now
accepts a charset.Charset instance.
(Contributed by Claude Paroz and Berker Peksag in bpo-16324 [https://bugs.python.org/issue16324].)

enum

The Enum callable has a new parameter start to
specify the initial number of enum values if only names are provided:

>>> Animal = enum.Enum('Animal', 'cat dog', start=10)
>>> Animal.cat
<Animal.cat: 10>
>>> Animal.dog
<Animal.dog: 11>

（由 Ethan Furman 在 bpo-21706 [https://bugs.python.org/issue21706] 中贡献。）

faulthandler

The enable(), register(),
dump_traceback() and
dump_traceback_later() functions now accept file
descriptors in addition to file-like objects.
(Contributed by Wei Wu in bpo-23566 [https://bugs.python.org/issue23566].)

functools

Most of the lru_cache() machinery is now implemented in C, making
it significantly faster. (Contributed by Matt Joiner, Alexey Kachayev, and
Serhiy Storchaka in bpo-14373 [https://bugs.python.org/issue14373].)

glob

The iglob() and glob() functions now support recursive
search in subdirectories, using the "**" pattern.
(Contributed by Serhiy Storchaka in bpo-13968 [https://bugs.python.org/issue13968].)

gzip

The mode argument of the GzipFile constructor now
accepts "x" to request exclusive creation.
(Contributed by Tim Heaney in bpo-19222 [https://bugs.python.org/issue19222].)

heapq

Element comparison in merge() can now be customized by
passing a key function in a new optional key keyword argument,
and a new optional reverse keyword argument can be used to reverse element
comparison:

>>> import heapq
>>> a = ['9', '777', '55555']
>>> b = ['88', '6666']
>>> list(heapq.merge(a, b, key=len))
['9', '88', '777', '6666', '55555']
>>> list(heapq.merge(reversed(a), reversed(b), key=len, reverse=True))
['55555', '6666', '777', '88', '9']

（由 Raymond Hettinger 在 bpo-13742 [https://bugs.python.org/issue13742] 中贡献。）

http

A new HTTPStatus enum that defines a set of
HTTP status codes, reason phrases and long descriptions written in English.
(Contributed by Demian Brecht in bpo-21793 [https://bugs.python.org/issue21793].)

http.client

HTTPConnection.getresponse()
now raises a RemoteDisconnected exception when a
remote server connection is closed unexpectedly. Additionally, if a
ConnectionError (of which RemoteDisconnected
is a subclass) is raised, the client socket is now closed automatically,
and will reconnect on the next request:

import http.client
conn = http.client.HTTPConnection('www.python.org')
for retries in range(3):
 try:
 conn.request('GET', '/')
 resp = conn.getresponse()
 except http.client.RemoteDisconnected:
 pass

（由 Martin Panter 在 bpo-3566 [https://bugs.python.org/issue3566] 中贡献。）

idlelib 与 IDLE

Since idlelib implements the IDLE shell and editor and is not intended for
import by other programs, it gets improvements with every release. See
Lib/idlelib/NEWS.txt for a cumulative list of changes since 3.4.0,
as well as changes made in future 3.5.x releases. This file is also available
from the IDLE Help ‣ About IDLE dialog.

imaplib

The IMAP4 class now supports the context manager protocol.
When used in a with statement, the IMAP4 LOGOUT
command will be called automatically at the end of the block.
(Contributed by Tarek Ziadé and Serhiy Storchaka in bpo-4972 [https://bugs.python.org/issue4972].)

The imaplib module now supports RFC 5161 [https://tools.ietf.org/html/rfc5161.html] (ENABLE Extension)
and RFC 6855 [https://tools.ietf.org/html/rfc6855.html] (UTF-8 Support) via the IMAP4.enable()
method. A new IMAP4.utf8_enabled
attribute tracks whether or not RFC 6855 [https://tools.ietf.org/html/rfc6855.html] support is enabled.
(Contributed by Milan Oberkirch, R. David Murray, and Maciej Szulik in
bpo-21800 [https://bugs.python.org/issue21800].)

The imaplib module now automatically encodes non-ASCII string usernames
and passwords using UTF-8, as recommended by the RFCs. (Contributed by Milan
Oberkirch in bpo-21800 [https://bugs.python.org/issue21800].)

imghdr

The what() function now recognizes the
OpenEXR [http://www.openexr.com] format
(contributed by Martin Vignali and Claudiu Popa in bpo-20295 [https://bugs.python.org/issue20295]),
and the WebP [https://en.wikipedia.org/wiki/WebP] format
(contributed by Fabrice Aneche and Claudiu Popa in bpo-20197 [https://bugs.python.org/issue20197].)

importlib

The util.LazyLoader class allows for
lazy loading of modules in applications where startup time is important.
(Contributed by Brett Cannon in bpo-17621 [https://bugs.python.org/issue17621].)

The abc.InspectLoader.source_to_code()
method is now a static method. This makes it easier to initialize a module
object with code compiled from a string by running
exec(code, module.__dict__).
(Contributed by Brett Cannon in bpo-21156 [https://bugs.python.org/issue21156].)

The new util.module_from_spec()
function is now the preferred way to create a new module. As opposed to
creating a types.ModuleType instance directly, this new function
will set the various import-controlled attributes based on the passed-in
spec object. (Contributed by Brett Cannon in bpo-20383 [https://bugs.python.org/issue20383].)

inspect

Both the Signature and Parameter classes are
now picklable and hashable. (Contributed by Yury Selivanov in bpo-20726 [https://bugs.python.org/issue20726]
and bpo-20334 [https://bugs.python.org/issue20334].)

A new
BoundArguments.apply_defaults()
method provides a way to set default values for missing arguments:

>>> def foo(a, b='ham', *args): pass
>>> ba = inspect.signature(foo).bind('spam')
>>> ba.apply_defaults()
>>> ba.arguments
OrderedDict([('a', 'spam'), ('b', 'ham'), ('args', ())])

（由 Yury Selivanov 在 bpo-24190 [https://bugs.python.org/issue24190] 中贡献。）

A new class method
Signature.from_callable() makes
subclassing of Signature easier. (Contributed
by Yury Selivanov and Eric Snow in bpo-17373 [https://bugs.python.org/issue17373].)

The signature() function now accepts a follow_wrapped
optional keyword argument, which, when set to False, disables automatic
following of __wrapped__ links.
(Contributed by Yury Selivanov in bpo-20691 [https://bugs.python.org/issue20691].)

A set of new functions to inspect
coroutine functions and
coroutine objects has been added:
iscoroutine(), iscoroutinefunction(),
isawaitable(), getcoroutinelocals(),
and getcoroutinestate().
(Contributed by Yury Selivanov in bpo-24017 [https://bugs.python.org/issue24017] and bpo-24400 [https://bugs.python.org/issue24400].)

The stack(), trace(),
getouterframes(), and getinnerframes()
functions now return a list of named tuples.
(Contributed by Daniel Shahaf in bpo-16808 [https://bugs.python.org/issue16808].)

io

A new BufferedIOBase.readinto1()
method, that uses at most one call to the underlying raw stream's
RawIOBase.read() or
RawIOBase.readinto() methods.
(Contributed by Nikolaus Rath in bpo-20578 [https://bugs.python.org/issue20578].)

ipaddress

Both the IPv4Network and IPv6Network classes
now accept an (address, netmask) tuple argument, so as to easily construct
network objects from existing addresses:

>>> import ipaddress
>>> ipaddress.IPv4Network(('127.0.0.0', 8))
IPv4Network('127.0.0.0/8')
>>> ipaddress.IPv4Network(('127.0.0.0', '255.0.0.0'))
IPv4Network('127.0.0.0/8')

（由 Peter Moody 和 Antoine Pitrou 在 bpo-16531 [https://bugs.python.org/issue16531] 中贡献。）

A new reverse_pointer attribute for the
IPv4Network and IPv6Network classes
returns the name of the reverse DNS PTR record:

>>> import ipaddress
>>> addr = ipaddress.IPv4Address('127.0.0.1')
>>> addr.reverse_pointer
'1.0.0.127.in-addr.arpa'
>>> addr6 = ipaddress.IPv6Address('::1')
>>> addr6.reverse_pointer
'1.0.ip6.arpa'

（由 Leon Weber 在 bpo-20480 [https://bugs.python.org/issue20480] 中贡献。）

json

The json.tool command line interface now preserves the order of keys in
JSON objects passed in input. The new --sort-keys option can be used
to sort the keys alphabetically. (Contributed by Berker Peksag
in bpo-21650 [https://bugs.python.org/issue21650].)

JSON decoder now raises JSONDecodeError instead of
ValueError to provide better context information about the error.
(Contributed by Serhiy Storchaka in bpo-19361 [https://bugs.python.org/issue19361].)

linecache

A new lazycache() function can be used to capture information
about a non-file-based module to permit getting its lines later via
getline(). This avoids doing I/O until a line is actually
needed, without having to carry the module globals around indefinitely.
(Contributed by Robert Collins in bpo-17911 [https://bugs.python.org/issue17911].)

locale

A new delocalize() function can be used to convert a string into
a normalized number string, taking the LC_NUMERIC settings into account:

>>> import locale
>>> locale.setlocale(locale.LC_NUMERIC, 'de_DE.UTF-8')
'de_DE.UTF-8'
>>> locale.delocalize('1.234,56')
'1234.56'
>>> locale.setlocale(locale.LC_NUMERIC, 'en_US.UTF-8')
'en_US.UTF-8'
>>> locale.delocalize('1,234.56')
'1234.56'

（由 Cédric Krier 在 bpo-13918 [https://bugs.python.org/issue13918] 中贡献。）

logging

All logging methods (Logger log(),
exception(), critical(),
debug(), etc.), now accept exception instances
as an exc_info argument, in addition to boolean values and exception
tuples:

>>> import logging
>>> try:
... 1/0
... except ZeroDivisionError as ex:
... logging.error('exception', exc_info=ex)
ERROR:root:exception

（由 Yury Selivanov 在 bpo-20537 [https://bugs.python.org/issue20537] 中贡献。）

The handlers.HTTPHandler class now
accepts an optional ssl.SSLContext instance to configure SSL
settings used in an HTTP connection.
(Contributed by Alex Gaynor in bpo-22788 [https://bugs.python.org/issue22788].)

The handlers.QueueListener class now
takes a respect_handler_level keyword argument which, if set to True,
will pass messages to handlers taking handler levels into account.
(Contributed by Vinay Sajip.)

lzma

The LZMADecompressor.decompress()
method now accepts an optional max_length argument to limit the maximum
size of decompressed data.
(Contributed by Martin Panter in bpo-15955 [https://bugs.python.org/issue15955].)

math

Two new constants have been added to the math module: inf
and nan. (Contributed by Mark Dickinson in bpo-23185 [https://bugs.python.org/issue23185].)

A new function isclose() provides a way to test for approximate
equality. (Contributed by Chris Barker and Tal Einat in bpo-24270 [https://bugs.python.org/issue24270].)

A new gcd() function has been added. The fractions.gcd()
function is now deprecated. (Contributed by Mark Dickinson and Serhiy
Storchaka in bpo-22486 [https://bugs.python.org/issue22486].)

multiprocessing

sharedctypes.synchronized()
objects now support the context manager protocol.
(Contributed by Charles-François Natali in bpo-21565 [https://bugs.python.org/issue21565].)

operator

attrgetter(), itemgetter(),
and methodcaller() objects now support pickling.
(Contributed by Josh Rosenberg and Serhiy Storchaka in bpo-22955 [https://bugs.python.org/issue22955].)

New matmul() and imatmul() functions
to perform matrix multiplication.
(Contributed by Benjamin Peterson in bpo-21176 [https://bugs.python.org/issue21176].)

os

The new scandir() function returning an iterator of
DirEntry objects has been added. If possible, scandir()
extracts file attributes while scanning a directory, removing the need to
perform subsequent system calls to determine file type or attributes, which may
significantly improve performance. (Contributed by Ben Hoyt with the help
of Victor Stinner in bpo-22524 [https://bugs.python.org/issue22524].)

On Windows, a new
stat_result.st_file_attributes
attribute is now available. It corresponds to the dwFileAttributes member
of the BY_HANDLE_FILE_INFORMATION structure returned by
GetFileInformationByHandle(). (Contributed by Ben Hoyt in bpo-21719 [https://bugs.python.org/issue21719].)

The urandom() function now uses the getrandom() syscall on Linux 3.17
or newer, and getentropy() on OpenBSD 5.6 and newer, removing the need to
use /dev/urandom and avoiding failures due to potential file descriptor
exhaustion. (Contributed by Victor Stinner in bpo-22181 [https://bugs.python.org/issue22181].)

New get_blocking() and set_blocking() functions allow
getting and setting a file descriptor's blocking mode (O_NONBLOCK.)
(Contributed by Victor Stinner in bpo-22054 [https://bugs.python.org/issue22054].)

The truncate() and ftruncate() functions are now supported
on Windows. (Contributed by Steve Dower in bpo-23668 [https://bugs.python.org/issue23668].)

There is a new os.path.commonpath() function returning the longest
common sub-path of each passed pathname. Unlike the
os.path.commonprefix() function, it always returns a valid
path:

>>> os.path.commonprefix(['/usr/lib', '/usr/local/lib'])
'/usr/l'

>>> os.path.commonpath(['/usr/lib', '/usr/local/lib'])
'/usr'

（由 Rafik Draoui 和 Serhiy Storchaka 在 bpo-10395 [https://bugs.python.org/issue10395] 中贡献。）

pathlib

The new Path.samefile() method can be used
to check whether the path points to the same file as another path, which can
be either another Path object, or a string:

>>> import pathlib
>>> p1 = pathlib.Path('/etc/hosts')
>>> p2 = pathlib.Path('/etc/../etc/hosts')
>>> p1.samefile(p2)
True

（由 Vajrasky Kok 和 Antoine Pitrou 在 bpo-19775 [https://bugs.python.org/issue19775] 中贡献。）

The Path.mkdir() method now accepts a new optional
exist_ok argument to match mkdir -p and os.makedirs()
functionality. (Contributed by Berker Peksag in bpo-21539 [https://bugs.python.org/issue21539].)

There is a new Path.expanduser() method to
expand ~ and ~user prefixes. (Contributed by Serhiy Storchaka and
Claudiu Popa in bpo-19776 [https://bugs.python.org/issue19776].)

A new Path.home() class method can be used to get
a Path instance representing the user’s home
directory.
(Contributed by Victor Salgado and Mayank Tripathi in bpo-19777 [https://bugs.python.org/issue19777].)

New Path.write_text(),
Path.read_text(),
Path.write_bytes(),
Path.read_bytes() methods to simplify
read/write operations on files.

The following code snippet will create or rewrite existing file
~/spam42:

>>> import pathlib
>>> p = pathlib.Path('~/spam42')
>>> p.expanduser().write_text('ham')
3

（由 Christopher Welborn 在 bpo-20218 [https://bugs.python.org/issue20218] 中贡献。）

pickle

Nested objects, such as unbound methods or nested classes, can now be pickled
using pickle protocols older than protocol version 4.
Protocol version 4 already supports these cases. (Contributed by Serhiy
Storchaka in bpo-23611 [https://bugs.python.org/issue23611].)

poplib

A new POP3.utf8() command enables RFC 6856 [https://tools.ietf.org/html/rfc6856.html]
(Internationalized Email) support, if a POP server supports it.
(Contributed by Milan OberKirch in bpo-21804 [https://bugs.python.org/issue21804].)

re

References and conditional references to groups with fixed length are now
allowed in lookbehind assertions:

>>> import re
>>> pat = re.compile(r'(a|b).(?<=\1)c')
>>> pat.match('aac')
<_sre.SRE_Match object; span=(0, 3), match='aac'>
>>> pat.match('bbc')
<_sre.SRE_Match object; span=(0, 3), match='bbc'>

（由 Serhiy Storchaka 在 bpo-9179 [https://bugs.python.org/issue9179] 中贡献。）

The number of capturing groups in regular expressions is no longer limited to
100. (Contributed by Serhiy Storchaka in bpo-22437 [https://bugs.python.org/issue22437].)

The sub() and subn() functions now replace unmatched
groups with empty strings instead of raising an exception.
(Contributed by Serhiy Storchaka in bpo-1519638 [https://bugs.python.org/issue1519638].)

The re.error exceptions have new attributes,
msg, pattern,
pos, lineno,
and colno, that provide better context
information about the error:

>>> re.compile("""
... (?x)
... .++
... """)
Traceback (most recent call last):
 ...
sre_constants.error: multiple repeat at position 16 (line 3, column 7)

（由 Serhiy Storchaka 在 bpo-22578 [https://bugs.python.org/issue22578] 中贡献。）

readline

A new append_history_file() function can be used to append
the specified number of trailing elements in history to the given file.
(Contributed by Bruno Cauet in bpo-22940 [https://bugs.python.org/issue22940].)

selectors

The new DevpollSelector supports efficient
/dev/poll polling on Solaris.
(Contributed by Giampaolo Rodola' in bpo-18931 [https://bugs.python.org/issue18931].)

shutil

The move() function now accepts a copy_function argument,
allowing, for example, the copy() function to be used instead of
the default copy2() if there is a need to ignore file metadata
when moving.
(Contributed by Claudiu Popa in bpo-19840 [https://bugs.python.org/issue19840].)

The make_archive() function now supports the xztar format.
(Contributed by Serhiy Storchaka in bpo-5411 [https://bugs.python.org/issue5411].)

signal

On Windows, the set_wakeup_fd() function now also supports
socket handles. (Contributed by Victor Stinner in bpo-22018 [https://bugs.python.org/issue22018].)

Various SIG* constants in the signal module have been converted into
Enums. This allows meaningful names to be printed
during debugging, instead of integer "magic numbers".
(Contributed by Giampaolo Rodola' in bpo-21076 [https://bugs.python.org/issue21076].)

smtpd

Both the SMTPServer and SMTPChannel classes now
accept a decode_data keyword argument to determine if the DATA portion of
the SMTP transaction is decoded using the "utf-8" codec or is instead
provided to the
SMTPServer.process_message()
method as a byte string. The default is True for backward compatibility
reasons, but will change to False in Python 3.6. If decode_data is set
to False, the process_message method must be prepared to accept keyword
arguments.
(Contributed by Maciej Szulik in bpo-19662 [https://bugs.python.org/issue19662].)

The SMTPServer class now advertises the 8BITMIME extension
(RFC 6152 [https://tools.ietf.org/html/rfc6152.html]) if decode_data has been set True. If the client
specifies BODY=8BITMIME on the MAIL command, it is passed to
SMTPServer.process_message()
via the mail_options keyword.
(Contributed by Milan Oberkirch and R. David Murray in bpo-21795 [https://bugs.python.org/issue21795].)

The SMTPServer class now also supports the SMTPUTF8
extension (RFC 6531 [https://tools.ietf.org/html/rfc6531.html]: Internationalized Email). If the client specified
SMTPUTF8 BODY=8BITMIME on the MAIL command, they are passed to
SMTPServer.process_message()
via the mail_options keyword. It is the responsibility of the
process_message method to correctly handle the SMTPUTF8 data.
(Contributed by Milan Oberkirch in bpo-21725 [https://bugs.python.org/issue21725].)

It is now possible to provide, directly or via name resolution, IPv6
addresses in the SMTPServer constructor, and have it
successfully connect. (Contributed by Milan Oberkirch in bpo-14758 [https://bugs.python.org/issue14758].)

smtplib

A new SMTP.auth() method provides a convenient way to
implement custom authentication mechanisms. (Contributed by Milan
Oberkirch in bpo-15014 [https://bugs.python.org/issue15014].)

The SMTP.set_debuglevel() method now
accepts an additional debuglevel (2), which enables timestamps in debug
messages. (Contributed by Gavin Chappell and Maciej Szulik in bpo-16914 [https://bugs.python.org/issue16914].)

Both the SMTP.sendmail() and
SMTP.send_message() methods now
support RFC 6531 [https://tools.ietf.org/html/rfc6531.html] (SMTPUTF8).
(Contributed by Milan Oberkirch and R. David Murray in bpo-22027 [https://bugs.python.org/issue22027].)

sndhdr

The what() and whathdr() functions now return
a namedtuple(). (Contributed by Claudiu Popa in
bpo-18615 [https://bugs.python.org/issue18615].)

socket

Functions with timeouts now use a monotonic clock, instead of a system clock.
(Contributed by Victor Stinner in bpo-22043 [https://bugs.python.org/issue22043].)

A new socket.sendfile() method allows
sending a file over a socket by using the high-performance os.sendfile()
function on UNIX, resulting in uploads being from 2 to 3 times faster than when
using plain socket.send().
(Contributed by Giampaolo Rodola' in bpo-17552 [https://bugs.python.org/issue17552].)

The socket.sendall() method no longer resets the
socket timeout every time bytes are received or sent. The socket timeout is
now the maximum total duration to send all data.
(Contributed by Victor Stinner in bpo-23853 [https://bugs.python.org/issue23853].)

The backlog argument of the socket.listen()
method is now optional. By default it is set to
SOMAXCONN or to 128, whichever is less.
(Contributed by Charles-François Natali in bpo-21455 [https://bugs.python.org/issue21455].)

ssl

Memory BIO Support

（由 Geert Jansen 在 bpo-21965 [https://bugs.python.org/issue21965] 中贡献。）

The new SSLObject class has been added to provide SSL protocol
support for cases when the network I/O capabilities of SSLSocket
are not necessary or are suboptimal. SSLObject represents
an SSL protocol instance, but does not implement any network I/O methods, and
instead provides a memory buffer interface. The new MemoryBIO
class can be used to pass data between Python and an SSL protocol instance.

The memory BIO SSL support is primarily intended to be used in frameworks
implementing asynchronous I/O for which SSLSocket's readiness
model ("select/poll") is inefficient.

A new SSLContext.wrap_bio() method can be used
to create a new SSLObject instance.

Application-Layer Protocol Negotiation Support

（由 Benjamin Peterson 在 bpo-20188 [https://bugs.python.org/issue20188] 中贡献。）

Where OpenSSL support is present, the ssl module now implements
the Application-Layer Protocol Negotiation TLS extension as described
in RFC 7301 [https://tools.ietf.org/html/rfc7301.html].

The new SSLContext.set_alpn_protocols()
can be used to specify which protocols a socket should advertise during
the TLS handshake.

The new
SSLSocket.selected_alpn_protocol()
returns the protocol that was selected during the TLS handshake.
The HAS_ALPN flag indicates whether ALPN support is present.

Other Changes

There is a new SSLSocket.version() method to
query the actual protocol version in use.
(Contributed by Antoine Pitrou in bpo-20421 [https://bugs.python.org/issue20421].)

The SSLSocket class now implements
a SSLSocket.sendfile() method.
(Contributed by Giampaolo Rodola' in bpo-17552 [https://bugs.python.org/issue17552].)

The SSLSocket.send() method now raises either
the ssl.SSLWantReadError or ssl.SSLWantWriteError exception on a
non-blocking socket if the operation would block. Previously, it would return
0. (Contributed by Nikolaus Rath in bpo-20951 [https://bugs.python.org/issue20951].)

The cert_time_to_seconds() function now interprets the input time
as UTC and not as local time, per RFC 5280 [https://tools.ietf.org/html/rfc5280.html]. Additionally, the return
value is always an int. (Contributed by Akira Li in bpo-19940 [https://bugs.python.org/issue19940].)

New SSLObject.shared_ciphers() and
SSLSocket.shared_ciphers() methods return
the list of ciphers sent by the client during the handshake.
(Contributed by Benjamin Peterson in bpo-23186 [https://bugs.python.org/issue23186].)

The SSLSocket.do_handshake(),
SSLSocket.read(),
SSLSocket.shutdown(), and
SSLSocket.write() methods of the SSLSocket
class no longer reset the socket timeout every time bytes are received or sent.
The socket timeout is now the maximum total duration of the method.
(Contributed by Victor Stinner in bpo-23853 [https://bugs.python.org/issue23853].)

The match_hostname() function now supports matching of IP addresses.
(Contributed by Antoine Pitrou in bpo-23239 [https://bugs.python.org/issue23239].)

sqlite3

The Row class now fully supports the sequence protocol,
in particular reversed() iteration and slice indexing.
(Contributed by Claudiu Popa in bpo-10203 [https://bugs.python.org/issue10203]; by Lucas Sinclair,
Jessica McKellar, and Serhiy Storchaka in bpo-13583 [https://bugs.python.org/issue13583].)

subprocess

The new run() function has been added.
It runs the specified command and returns a
CompletedProcess object, which describes a finished
process. The new API is more consistent and is the recommended approach
to invoking subprocesses in Python code that does not need to maintain
compatibility with earlier Python versions.
(Contributed by Thomas Kluyver in bpo-23342 [https://bugs.python.org/issue23342].)

示例:

>>> subprocess.run(["ls", "-l"]) # doesn't capture output
CompletedProcess(args=['ls', '-l'], returncode=0)

>>> subprocess.run("exit 1", shell=True, check=True)
Traceback (most recent call last):
 ...
subprocess.CalledProcessError: Command 'exit 1' returned non-zero exit status 1

>>> subprocess.run(["ls", "-l", "/dev/null"], stdout=subprocess.PIPE)
CompletedProcess(args=['ls', '-l', '/dev/null'], returncode=0,
stdout=b'crw-rw-rw- 1 root root 1, 3 Jan 23 16:23 /dev/null\n')

sys

A new set_coroutine_wrapper() function allows setting a global
hook that will be called whenever a coroutine object
is created by an async def function. A corresponding
get_coroutine_wrapper() can be used to obtain a currently set
wrapper. Both functions are provisional,
and are intended for debugging purposes only. (Contributed by Yury Selivanov
in bpo-24017 [https://bugs.python.org/issue24017].)

A new is_finalizing() function can be used to check if the Python
interpreter is shutting down.
(Contributed by Antoine Pitrou in bpo-22696 [https://bugs.python.org/issue22696].)

sysconfig

The name of the user scripts directory on Windows now includes the first
two components of the Python version. (Contributed by Paul Moore
in bpo-23437 [https://bugs.python.org/issue23437].)

tarfile

The mode argument of the open() function now accepts "x"
to request exclusive creation. (Contributed by Berker Peksag in bpo-21717 [https://bugs.python.org/issue21717].)

The TarFile.extractall() and
TarFile.extract() methods now take a keyword
argument numeric_owner. If set to True, the extracted files and
directories will be owned by the numeric uid and gid from the tarfile.
If set to False (the default, and the behavior in versions prior to 3.5),
they will be owned by the named user and group in the tarfile.
(Contributed by Michael Vogt and Eric Smith in bpo-23193 [https://bugs.python.org/issue23193].)

The TarFile.list() now accepts an optional
members keyword argument that can be set to a subset of the list returned
by TarFile.getmembers().
(Contributed by Serhiy Storchaka in bpo-21549 [https://bugs.python.org/issue21549].)

threading

Both the Lock.acquire() and
RLock.acquire() methods
now use a monotonic clock for timeout management.
(Contributed by Victor Stinner in bpo-22043 [https://bugs.python.org/issue22043].)

time

The monotonic() function is now always available.
(Contributed by Victor Stinner in bpo-22043 [https://bugs.python.org/issue22043].)

timeit

A new command line option -u or --unit=U can be used to specify the time
unit for the timer output. Supported options are usec, msec,
or sec. (Contributed by Julian Gindi in bpo-18983 [https://bugs.python.org/issue18983].)

The timeit() function has a new globals parameter for
specifying the namespace in which the code will be running.
(Contributed by Ben Roberts in bpo-2527 [https://bugs.python.org/issue2527].)

tkinter

The tkinter._fix module used for setting up the Tcl/Tk environment
on Windows has been replaced by a private function in the _tkinter
module which makes no permanent changes to environment variables.
(Contributed by Zachary Ware in bpo-20035 [https://bugs.python.org/issue20035].)

回溯

New walk_stack() and walk_tb()
functions to conveniently traverse frame and traceback objects.
(Contributed by Robert Collins in bpo-17911 [https://bugs.python.org/issue17911].)

New lightweight classes: TracebackException,
StackSummary, and FrameSummary.
(Contributed by Robert Collins in bpo-17911 [https://bugs.python.org/issue17911].)

Both the print_tb() and print_stack() functions
now support negative values for the limit argument.
(Contributed by Dmitry Kazakov in bpo-22619 [https://bugs.python.org/issue22619].)

types

A new coroutine() function to transform
generator and
generator-like objects into
awaitables.
(Contributed by Yury Selivanov in bpo-24017 [https://bugs.python.org/issue24017].)

A new type called CoroutineType, which is used for
coroutine objects created by async def functions.
(Contributed by Yury Selivanov in bpo-24400 [https://bugs.python.org/issue24400].)

unicodedata

The unicodedata module now uses data from Unicode 8.0.0 [http://unicode.org/versions/Unicode8.0.0/].

unittest

The TestLoader.loadTestsFromModule()
method now accepts a keyword-only argument pattern which is passed to
load_tests as the third argument. Found packages are now checked for
load_tests regardless of whether their path matches pattern, because it
is impossible for a package name to match the default pattern.
(Contributed by Robert Collins and Barry A. Warsaw in bpo-16662 [https://bugs.python.org/issue16662].)

Unittest discovery errors now are exposed in the
TestLoader.errors attribute of the
TestLoader instance.
(Contributed by Robert Collins in bpo-19746 [https://bugs.python.org/issue19746].)

A new command line option --locals to show local variables in
tracebacks. (Contributed by Robert Collins in bpo-22936 [https://bugs.python.org/issue22936].)

unittest.mock

The Mock class has the following improvements:

	The class constructor has a new unsafe parameter, which causes mock
objects to raise AttributeError on attribute names starting
with "assert".
(Contributed by Kushal Das in bpo-21238 [https://bugs.python.org/issue21238].)

	A new Mock.assert_not_called()
method to check if the mock object was called.
(Contributed by Kushal Das in bpo-21262 [https://bugs.python.org/issue21262].)

The MagicMock class now supports __truediv__(),
__divmod__() and __matmul__() operators.
(Contributed by Johannes Baiter in bpo-20968 [https://bugs.python.org/issue20968], and Håkan Lövdahl
in bpo-23581 [https://bugs.python.org/issue23581] and bpo-23568 [https://bugs.python.org/issue23568].)

It is no longer necessary to explicitly pass create=True to the
patch() function when patching builtin names.
(Contributed by Kushal Das in bpo-17660 [https://bugs.python.org/issue17660].)

urllib

A new
request.HTTPPasswordMgrWithPriorAuth
class allows HTTP Basic Authentication credentials to be managed so as to
eliminate unnecessary 401 response handling, or to unconditionally send
credentials on the first request in order to communicate with servers that
return a 404 response instead of a 401 if the Authorization header
is not sent. (Contributed by Matej Cepl in bpo-19494 [https://bugs.python.org/issue19494] and Akshit Khurana in
bpo-7159 [https://bugs.python.org/issue7159].)

A new quote_via argument for the
parse.urlencode()
function provides a way to control the encoding of query parts if needed.
(Contributed by Samwyse and Arnon Yaari in bpo-13866 [https://bugs.python.org/issue13866].)

The request.urlopen() function accepts an
ssl.SSLContext object as a context argument, which will be used for
the HTTPS connection. (Contributed by Alex Gaynor in bpo-22366 [https://bugs.python.org/issue22366].)

The parse.urljoin() was updated to use the
RFC 3986 [https://tools.ietf.org/html/rfc3986.html] semantics for the resolution of relative URLs, rather than
RFC 1808 [https://tools.ietf.org/html/rfc1808.html] and RFC 2396 [https://tools.ietf.org/html/rfc2396.html].
(Contributed by Demian Brecht and Senthil Kumaran in bpo-22118 [https://bugs.python.org/issue22118].)

wsgiref

The headers argument of the headers.Headers
class constructor is now optional.
(Contributed by Pablo Torres Navarrete and SilentGhost in bpo-5800 [https://bugs.python.org/issue5800].)

xmlrpc

The client.ServerProxy class now supports
the context manager protocol.
(Contributed by Claudiu Popa in bpo-20627 [https://bugs.python.org/issue20627].)

The client.ServerProxy constructor now accepts
an optional ssl.SSLContext instance.
(Contributed by Alex Gaynor in bpo-22960 [https://bugs.python.org/issue22960].)

xml.sax

SAX parsers now support a character stream of the
xmlreader.InputSource object.
(Contributed by Serhiy Storchaka in bpo-2175 [https://bugs.python.org/issue2175].)

parseString() now accepts a str instance.
(Contributed by Serhiy Storchaka in bpo-10590 [https://bugs.python.org/issue10590].)

zipfile

ZIP output can now be written to unseekable streams.
(Contributed by Serhiy Storchaka in bpo-23252 [https://bugs.python.org/issue23252].)

The mode argument of ZipFile.open() method now
accepts "x" to request exclusive creation.
(Contributed by Serhiy Storchaka in bpo-21717 [https://bugs.python.org/issue21717].)

其他模块级更改

Many functions in the mmap, ossaudiodev, socket,
ssl, and codecs modules now accept writable
bytes-like objects.
(Contributed by Serhiy Storchaka in bpo-23001 [https://bugs.python.org/issue23001].)

性能优化

The os.walk() function has been sped up by 3 to 5 times on POSIX systems,
and by 7 to 20 times on Windows. This was done using the new os.scandir()
function, which exposes file information from the underlying readdir or
FindFirstFile/FindNextFile system calls. (Contributed by
Ben Hoyt with help from Victor Stinner in bpo-23605 [https://bugs.python.org/issue23605].)

Construction of bytes(int) (filled by zero bytes) is faster and uses less
memory for large objects. calloc() is used instead of malloc() to
allocate memory for these objects.
(Contributed by Victor Stinner in bpo-21233 [https://bugs.python.org/issue21233].)

Some operations on ipaddress IPv4Network and
IPv6Network have been massively sped up, such as
subnets(), supernet(),
summarize_address_range(), collapse_addresses().
The speed up can range from 3 to 15 times.
(Contributed by Antoine Pitrou, Michel Albert, and Markus in
bpo-21486 [https://bugs.python.org/issue21486], bpo-21487 [https://bugs.python.org/issue21487], bpo-20826 [https://bugs.python.org/issue20826], bpo-23266 [https://bugs.python.org/issue23266].)

Pickling of ipaddress objects was optimized to produce significantly
smaller output. (Contributed by Serhiy Storchaka in bpo-23133 [https://bugs.python.org/issue23133].)

Many operations on io.BytesIO are now 50% to 100% faster.
(Contributed by Serhiy Storchaka in bpo-15381 [https://bugs.python.org/issue15381] and David Wilson in
bpo-22003 [https://bugs.python.org/issue22003].)

The marshal.dumps() function is now faster: 65--85% with versions 3
and 4, 20--25% with versions 0 to 2 on typical data, and up to 5 times in
best cases.
(Contributed by Serhiy Storchaka in bpo-20416 [https://bugs.python.org/issue20416] and bpo-23344 [https://bugs.python.org/issue23344].)

The UTF-32 encoder is now 3 to 7 times faster.
(Contributed by Serhiy Storchaka in bpo-15027 [https://bugs.python.org/issue15027].)

Regular expressions are now parsed up to 10% faster.
(Contributed by Serhiy Storchaka in bpo-19380 [https://bugs.python.org/issue19380].)

The json.dumps() function was optimized to run with
ensure_ascii=False as fast as with ensure_ascii=True.
(Contributed by Naoki Inada in bpo-23206 [https://bugs.python.org/issue23206].)

The PyObject_IsInstance() and PyObject_IsSubclass()
functions have been sped up in the common case that the second argument
has type as its metaclass.
(Contributed Georg Brandl by in bpo-22540 [https://bugs.python.org/issue22540].)

Method caching was slightly improved, yielding up to 5% performance
improvement in some benchmarks.
(Contributed by Antoine Pitrou in bpo-22847 [https://bugs.python.org/issue22847].)

Objects from the random module now use 50% less memory on 64-bit
builds. (Contributed by Serhiy Storchaka in bpo-23488 [https://bugs.python.org/issue23488].)

The property() getter calls are up to 25% faster.
(Contributed by Joe Jevnik in bpo-23910 [https://bugs.python.org/issue23910].)

Instantiation of fractions.Fraction is now up to 30% faster.
(Contributed by Stefan Behnel in bpo-22464 [https://bugs.python.org/issue22464].)

String methods find(), rfind(), split(),
partition() and the in string operator are now significantly
faster for searching 1-character substrings.
(Contributed by Serhiy Storchaka in bpo-23573 [https://bugs.python.org/issue23573].)

构建和 C API 的改变

增加了 calloc 函数

	PyMem_RawCalloc(),

	PyMem_Calloc(),

	PyObject_Calloc().

(Victor Stinner 贡献于 bpo-21233 [https://bugs.python.org/issue21233].)

新的 encoding/decoding 帮助函数:

	Py_DecodeLocale() (替代 _Py_char2wchar()),

	Py_EncodeLocale() (替代 _Py_wchar2char()).

（由 Victor Stinner 在 bpo-18395 [https://bugs.python.org/issue18395] 中贡献。）

A new PyCodec_NameReplaceErrors() function to replace the unicode
encode error with \N{...} escapes.
(Contributed by Serhiy Storchaka in bpo-19676 [https://bugs.python.org/issue19676].)

A new PyErr_FormatV() function similar to PyErr_Format(),
but accepts a va_list argument.
(Contributed by Antoine Pitrou in bpo-18711 [https://bugs.python.org/issue18711].)

A new PyExc_RecursionError exception.
(Contributed by Georg Brandl in bpo-19235 [https://bugs.python.org/issue19235].)

New PyModule_FromDefAndSpec(), PyModule_FromDefAndSpec2(),
and PyModule_ExecDef() functions introduced by PEP 489 [https://www.python.org/dev/peps/pep-0489] --
multi-phase extension module initialization.
(Contributed by Petr Viktorin in bpo-24268 [https://bugs.python.org/issue24268].)

New PyNumber_MatrixMultiply() and
PyNumber_InPlaceMatrixMultiply() functions to perform matrix
multiplication.
(Contributed by Benjamin Peterson in bpo-21176 [https://bugs.python.org/issue21176]. See also PEP 465 [https://www.python.org/dev/peps/pep-0465]
for details.)

The PyTypeObject.tp_finalize slot is now part of the stable ABI.

Windows builds now require Microsoft Visual C++ 14.0, which
is available as part of Visual Studio 2015 [https://www.visualstudio.com/].

Extension modules now include a platform information tag in their filename on
some platforms (the tag is optional, and CPython will import extensions without
it, although if the tag is present and mismatched, the extension won't be
loaded):

	On Linux, extension module filenames end with
.cpython-<major><minor>m-<architecture>-<os>.pyd:

	<major> is the major number of the Python version;
for Python 3.5 this is 3.

	<minor> is the minor number of the Python version;
for Python 3.5 this is 5.

	<architecture> is the hardware architecture the extension module
was built to run on. It's most commonly either i386 for 32-bit Intel
platforms or x86_64 for 64-bit Intel (and AMD) platforms.

	<os> is always linux-gnu, except for extensions built to
talk to the 32-bit ABI on 64-bit platforms, in which case it is
linux-gnu32 (and <architecture> will be x86_64).

	On Windows, extension module filenames end with
<debug>.cp<major><minor>-<platform>.pyd:

	<major> is the major number of the Python version;
for Python 3.5 this is 3.

	<minor> is the minor number of the Python version;
for Python 3.5 this is 5.

	<platform> is the platform the extension module was built for,
either win32 for Win32, win_amd64 for Win64, win_ia64 for
Windows Itanium 64, and win_arm for Windows on ARM.

	If built in debug mode, <debug> will be _d,
otherwise it will be blank.

	On OS X platforms, extension module filenames now end with -darwin.so.

	On all other platforms, extension module filenames are the same as they were
with Python 3.4.

弃用

新关键字

async and await are not recommended to be used as variable, class,
function or module names. Introduced by PEP 492 [https://www.python.org/dev/peps/pep-0492] in Python 3.5, they will
become proper keywords in Python 3.7.

已弃用的 Python 行为

Raising the StopIteration exception inside a generator will now generate a silent
PendingDeprecationWarning, which will become a non-silent deprecation
warning in Python 3.6 and will trigger a RuntimeError in Python 3.7.
See PEP 479: Change StopIteration handling inside generators
for details.

不支持的操作系统

Windows XP is no longer supported by Microsoft, thus, per PEP 11 [https://www.python.org/dev/peps/pep-0011], CPython
3.5 is no longer officially supported on this OS.

已弃用的 Python 模块、函数和方法

The formatter module has now graduated to full deprecation and is still
slated for removal in Python 3.6.

The asyncio.async() function is deprecated in favor of
ensure_future().

The smtpd module has in the past always decoded the DATA portion of
email messages using the utf-8 codec. This can now be controlled by the
new decode_data keyword to SMTPServer. The default value is
True, but this default is deprecated. Specify the decode_data keyword
with an appropriate value to avoid the deprecation warning.

Directly assigning values to the key,
value and
coded_value of http.cookies.Morsel
objects is deprecated. Use the set() method
instead. In addition, the undocumented LegalChars parameter of
set() is deprecated, and is now ignored.

Passing a format string as keyword argument format_string to the
format() method of the string.Formatter
class has been deprecated.
(Contributed by Serhiy Storchaka in bpo-23671 [https://bugs.python.org/issue23671].)

The platform.dist() and platform.linux_distribution() functions
are now deprecated. Linux distributions use too many different ways of
describing themselves, so the functionality is left to a package.
(Contributed by Vajrasky Kok and Berker Peksag in bpo-1322 [https://bugs.python.org/issue1322].)

The previously undocumented from_function and from_builtin methods of
inspect.Signature are deprecated. Use the new
Signature.from_callable()
method instead. (Contributed by Yury Selivanov in bpo-24248 [https://bugs.python.org/issue24248].)

The inspect.getargspec() function is deprecated and scheduled to be
removed in Python 3.6. (See bpo-20438 [https://bugs.python.org/issue20438] for details.)

The inspect getfullargspec(),
getcallargs(), and formatargspec() functions are
deprecated in favor of the inspect.signature() API. (Contributed by Yury
Selivanov in bpo-20438 [https://bugs.python.org/issue20438].)

getargvalues() and formatargvalues() functions
were inadvertently marked as deprecated with the release of Python 3.5.0.

Use of re.LOCALE flag with str patterns or re.ASCII is now
deprecated. (Contributed by Serhiy Storchaka in bpo-22407 [https://bugs.python.org/issue22407].)

Use of unrecognized special sequences consisting of '\' and an ASCII letter
in regular expression patterns and replacement patterns now raises a
deprecation warning and will be forbidden in Python 3.6.
(Contributed by Serhiy Storchaka in bpo-23622 [https://bugs.python.org/issue23622].)

The undocumented and unofficial use_load_tests default argument of the
unittest.TestLoader.loadTestsFromModule() method now is
deprecated and ignored.
(Contributed by Robert Collins and Barry A. Warsaw in bpo-16662 [https://bugs.python.org/issue16662].)

移除

API 与特性的移除

The following obsolete and previously deprecated APIs and features have been
removed:

	The __version__ attribute has been dropped from the email package. The
email code hasn't been shipped separately from the stdlib for a long time,
and the __version__ string was not updated in the last few releases.

	The internal Netrc class in the ftplib module was deprecated in
3.4, and has now been removed.
(Contributed by Matt Chaput in bpo-6623 [https://bugs.python.org/issue6623].)

	The concept of .pyo files has been removed.

	The JoinableQueue class in the provisional asyncio module was
deprecated in 3.4.4 and is now removed.
(Contributed by A. Jesse Jiryu Davis in bpo-23464 [https://bugs.python.org/issue23464].)

移植到Python 3.5

本节列出了先前描述的更改以及可能需要更改代码的其他错误修正.

Python 行为的改变

	由于一个疏忽，之前的 Python 版本会错误地接受以下语法:

f(1 for x in [1], *args)
f(1 for x in [1], **kwargs)

Python 3.5 now correctly raises a SyntaxError, as generator
expressions must be put in parentheses if not a sole argument to a function.

更改的Python API

	PEP 475 [https://www.python.org/dev/peps/pep-0475]: System calls are now retried when interrupted by a signal instead
of raising InterruptedError if the Python signal handler does not
raise an exception.

	Before Python 3.5, a datetime.time object was considered to be false
if it represented midnight in UTC. This behavior was considered obscure and
error-prone and has been removed in Python 3.5. See bpo-13936 [https://bugs.python.org/issue13936] for full
details.

	The ssl.SSLSocket.send() method now raises either
ssl.SSLWantReadError or ssl.SSLWantWriteError
on a non-blocking socket if the operation would block. Previously,
it would return 0. (Contributed by Nikolaus Rath in bpo-20951 [https://bugs.python.org/issue20951].)

	The __name__ attribute of generators is now set from the function name,
instead of being set from the code name. Use gen.gi_code.co_name to
retrieve the code name. Generators also have a new __qualname__
attribute, the qualified name, which is now used for the representation
of a generator (repr(gen)).
(Contributed by Victor Stinner in bpo-21205 [https://bugs.python.org/issue21205].)

	The deprecated "strict" mode and argument of HTMLParser,
HTMLParser.error(), and the HTMLParserError exception have been
removed. (Contributed by Ezio Melotti in bpo-15114 [https://bugs.python.org/issue15114].)
The convert_charrefs argument of HTMLParser is
now True by default. (Contributed by Berker Peksag in bpo-21047 [https://bugs.python.org/issue21047].)

	Although it is not formally part of the API, it is worth noting for porting
purposes (ie: fixing tests) that error messages that were previously of the
form "'sometype' does not support the buffer protocol" are now of the form "a
bytes-like object is required, not 'sometype'".
(Contributed by Ezio Melotti in bpo-16518 [https://bugs.python.org/issue16518].)

	If the current directory is set to a directory that no longer exists then
FileNotFoundError will no longer be raised and instead
find_spec() will return None
without caching None in sys.path_importer_cache, which is
different than the typical case (bpo-22834 [https://bugs.python.org/issue22834]).

	HTTP status code and messages from http.client and http.server
were refactored into a common HTTPStatus enum. The values in
http.client and http.server remain available for backwards
compatibility. (Contributed by Demian Brecht in bpo-21793 [https://bugs.python.org/issue21793].)

	When an import loader defines importlib.machinery.Loader.exec_module()
it is now expected to also define
create_module() (raises a
DeprecationWarning now, will be an error in Python 3.6). If the loader
inherits from importlib.abc.Loader then there is nothing to do, else
simply define create_module() to return
None. (Contributed by Brett Cannon in bpo-23014 [https://bugs.python.org/issue23014].)

	The re.split() function always ignored empty pattern matches, so the
"x*" pattern worked the same as "x+", and the "\b" pattern never
worked. Now re.split() raises a warning if the pattern could match
an empty string. For compatibility, use patterns that never match an empty
string (e.g. "x+" instead of "x*"). Patterns that could only match
an empty string (such as "\b") now raise an error.
(Contributed by Serhiy Storchaka in bpo-22818 [https://bugs.python.org/issue22818].)

	The http.cookies.Morsel dict-like interface has been made self
consistent: morsel comparison now takes the key
and value into account,
copy() now results in a
Morsel instance rather than a dict, and
update() will now raise an exception if any of the
keys in the update dictionary are invalid. In addition, the undocumented
LegalChars parameter of set() is deprecated and
is now ignored. (Contributed by Demian Brecht in bpo-2211 [https://bugs.python.org/issue2211].)

	PEP 488 [https://www.python.org/dev/peps/pep-0488] has removed .pyo files from Python and introduced the optional
opt- tag in .pyc file names. The
importlib.util.cache_from_source() has gained an optimization
parameter to help control the opt- tag. Because of this, the
debug_override parameter of the function is now deprecated. .pyo files
are also no longer supported as a file argument to the Python interpreter and
thus serve no purpose when distributed on their own (i.e. sourceless code
distribution). Due to the fact that the magic number for bytecode has changed
in Python 3.5, all old .pyo files from previous versions of Python are
invalid regardless of this PEP.

	The socket module now exports the CAN_RAW_FD_FRAMES
constant on linux 3.6 and greater.

	The ssl.cert_time_to_seconds() function now interprets the input time
as UTC and not as local time, per RFC 5280 [https://tools.ietf.org/html/rfc5280.html]. Additionally, the return
value is always an int. (Contributed by Akira Li in bpo-19940 [https://bugs.python.org/issue19940].)

	The pygettext.py Tool now uses the standard +NNNN format for timezones in
the POT-Creation-Date header.

	The smtplib module now uses sys.stderr instead of the previous
module-level stderr variable for debug output. If your (test)
program depends on patching the module-level variable to capture the debug
output, you will need to update it to capture sys.stderr instead.

	The str.startswith() and str.endswith() methods no longer return
True when finding the empty string and the indexes are completely out of
range. (Contributed by Serhiy Storchaka in bpo-24284 [https://bugs.python.org/issue24284].)

	The inspect.getdoc() function now returns documentation strings
inherited from base classes. Documentation strings no longer need to be
duplicated if the inherited documentation is appropriate. To suppress an
inherited string, an empty string must be specified (or the documentation
may be filled in). This change affects the output of the pydoc
module and the help() function.
(Contributed by Serhiy Storchaka in bpo-15582 [https://bugs.python.org/issue15582].)

	Nested functools.partial() calls are now flattened. If you were
relying on the previous behavior, you can now either add an attribute to a
functools.partial() object or you can create a subclass of
functools.partial().
(Contributed by Alexander Belopolsky in bpo-7830 [https://bugs.python.org/issue7830].)

C API 中的改变

	The undocumented format member of the
(non-public) PyMemoryViewObject structure has been removed.
All extensions relying on the relevant parts in memoryobject.h
must be rebuilt.

	The PyMemAllocator structure was renamed to
PyMemAllocatorEx and a new calloc field was added.

	Removed non-documented macro PyObject_REPR which leaked references.
Use format character %R in PyUnicode_FromFormat()-like functions
to format the repr() of the object.
(Contributed by Serhiy Storchaka in bpo-22453 [https://bugs.python.org/issue22453].)

	Because the lack of the __module__ attribute breaks pickling and
introspection, a deprecation warning is now raised for builtin types without
the __module__ attribute. This would be an AttributeError in
the future.
(Contributed by Serhiy Storchaka in bpo-20204 [https://bugs.python.org/issue20204].)

	As part of the PEP 492 [https://www.python.org/dev/peps/pep-0492] implementation, the tp_reserved slot of
PyTypeObject was replaced with a
tp_as_async slot. Refer to 协程对象 for
new types, structures and functions.

Python 3.5.4 的显著变化

New make regen-all build target

To simplify cross-compilation, and to ensure that CPython can reliably be
compiled without requiring an existing version of Python to already be
available, the autotools-based build system no longer attempts to implicitly
recompile generated files based on file modification times.

Instead, a new make regen-all command has been added to force regeneration
of these files when desired (e.g. after an initial version of Python has
already been built based on the pregenerated versions).

More selective regeneration targets are also defined - see
Makefile.pre.in [https://github.com/python/cpython/tree/3.7/Makefile.pre.in] for details.

（由 Victor Stinner 在 bpo-23404 [https://bugs.python.org/issue23404] 中贡献。）

3.5.4 新版功能.

Removal of make touch build target

The make touch build target previously used to request implicit regeneration
of generated files by updating their modification times has been removed.

It has been replaced by the new make regen-all target.

（由 Victor Stinner 在 bpo-23404 [https://bugs.python.org/issue23404] 中贡献。）

在 3.5.4 版更改.

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 3.4 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 3.4 有什么新变化

	作者

	R. David Murray <rdmurray@bitdance.com> (Editor)

This article explains the new features in Python 3.4, compared to 3.3.
Python 3.4 was released on March 16, 2014. For full details, see the
changelog [https://docs.python.org/3.4/whatsnew/changelog.html].

参见

PEP 429 [https://www.python.org/dev/peps/pep-0429] -- Python 3.4 发布计划

摘要 - 发布重点

新的语法特性：

	No new syntax features were added in Python 3.4.

其他的新特性

	pip 能够随时可用 (PEP 453 [https://www.python.org/dev/peps/pep-0453]).

	Newly created file descriptors are non-inheritable
(PEP 446 [https://www.python.org/dev/peps/pep-0446]).

	command line option for isolated mode
(bpo-16499 [https://bugs.python.org/issue16499]).

	improvements in the handling of codecs
that are not text encodings (multiple issues).

	A ModuleSpec Type for the Import System
(PEP 451 [https://www.python.org/dev/peps/pep-0451]). (Affects importer authors.)

	The marshal format has been made more compact and efficient (bpo-16475 [https://bugs.python.org/issue16475]).

新的库模块：

	asyncio: New provisional API for asynchronous IO (PEP 3156 [https://www.python.org/dev/peps/pep-3156]).

	ensurepip: Bootstrapping the pip installer
(PEP 453 [https://www.python.org/dev/peps/pep-0453]).

	enum: Support for enumeration types
(PEP 435 [https://www.python.org/dev/peps/pep-0435]).

	pathlib: Object-oriented filesystem paths
(PEP 428 [https://www.python.org/dev/peps/pep-0428]).

	selectors: High-level and efficient I/O multiplexing, built upon the select module primitives (part
of PEP 3156 [https://www.python.org/dev/peps/pep-3156]).

	statistics: A basic numerically stable statistics library (PEP 450 [https://www.python.org/dev/peps/pep-0450]).

	tracemalloc: Trace Python memory allocations (PEP 454 [https://www.python.org/dev/peps/pep-0454]).

Significantly improved library modules:

	Single-dispatch generic functions in
functools (PEP 443 [https://www.python.org/dev/peps/pep-0443]).

	New pickle protocol 4 (PEP 3154 [https://www.python.org/dev/peps/pep-3154]).

	multiprocessing now has an option to avoid using os.fork
on Unix (bpo-8713 [https://bugs.python.org/issue8713]).

	email has a new submodule, contentmanager, and
a new Message subclass
(EmailMessage) that simplify MIME
handling (bpo-18891 [https://bugs.python.org/issue18891]).

	The inspect and pydoc modules are now capable of
correct introspection of a much wider variety of callable objects,
which improves the output of the Python help() system.

	The ipaddress module API has been declared stable

安全改进：

	Secure and interchangeable hash algorithm
(PEP 456 [https://www.python.org/dev/peps/pep-0456]).

	Make newly created file descriptors non-inheritable
(PEP 446 [https://www.python.org/dev/peps/pep-0446]) to avoid leaking file descriptors to child processes.

	New command line option for isolated mode,
(bpo-16499 [https://bugs.python.org/issue16499]).

	multiprocessing now has an option to avoid using os.fork
on Unix. spawn and forkserver are
more secure because they avoid sharing data with child processes.

	multiprocessing child processes on Windows no longer inherit
all of the parent's inheritable handles, only the necessary ones.

	A new hashlib.pbkdf2_hmac() function provides
the PKCS#5 password-based key derivation function 2 [https://en.wikipedia.org/wiki/PBKDF2].

	TLSv1.1 and TLSv1.2 support for ssl.

	Retrieving certificates from the Windows system cert store support for ssl.

	Server-side SNI (Server Name Indication) support for ssl.

	The ssl.SSLContext class has a lot of improvements.

	All modules in the standard library that support SSL now support server
certificate verification, including hostname matching
(ssl.match_hostname()) and CRLs (Certificate Revocation lists, see
ssl.SSLContext.load_verify_locations()).

CPython 实现的改进：

	Safe object finalization (PEP 442 [https://www.python.org/dev/peps/pep-0442]).

	Leveraging PEP 442 [https://www.python.org/dev/peps/pep-0442], in most cases module globals are no longer set
to None during finalization (bpo-18214 [https://bugs.python.org/issue18214]).

	Configurable memory allocators (PEP 445 [https://www.python.org/dev/peps/pep-0445]).

	Argument Clinic (PEP 436 [https://www.python.org/dev/peps/pep-0436]).

Please read on for a comprehensive list of user-facing changes, including many
other smaller improvements, CPython optimizations, deprecations, and potential
porting issues.

新的特性

PEP 453: Explicit Bootstrapping of PIP in Python Installations

Bootstrapping pip By Default

The new ensurepip module (defined in PEP 453 [https://www.python.org/dev/peps/pep-0453]) provides a standard
cross-platform mechanism to bootstrap the pip installer into Python
installations and virtual environments. The version of pip included
with Python 3.4.0 is pip 1.5.4, and future 3.4.x maintenance releases
will update the bundled version to the latest version of pip that is
available at the time of creating the release candidate.

By default, the commands pipX and pipX.Y will be installed on all
platforms (where X.Y stands for the version of the Python installation),
along with the pip Python package and its dependencies. On Windows and
in virtual environments on all platforms, the unversioned pip command
will also be installed. On other platforms, the system wide unversioned
pip command typically refers to the separately installed Python 2
version.

The pyvenv command line utility and the venv
module make use of the ensurepip module to make pip readily
available in virtual environments. When using the command line utility,
pip is installed by default, while when using the venv module
API installation of pip must be requested explicitly.

For CPython source builds on POSIX systems,
the make install and make altinstall commands bootstrap pip by
default. This behaviour can be controlled through configure options, and
overridden through Makefile options.

On Windows and Mac OS X, the CPython installers now default to installing
pip along with CPython itself (users may opt out of installing it
during the installation process). Window users will need to opt in to the
automatic PATH modifications to have pip available from the command
line by default, otherwise it can still be accessed through the Python
launcher for Windows as py -m pip.

As discussed in the PEP [https://www.python.org/dev/peps/pep-0453/#recommendations-for-downstream-distributors], platform packagers may choose not to install
these commands by default, as long as, when invoked, they provide clear and
simple directions on how to install them on that platform (usually using
the system package manager).

注解

To avoid conflicts between parallel Python 2 and Python 3 installations,
only the versioned pip3 and pip3.4 commands are bootstrapped by
default when ensurepip is invoked directly - the --default-pip
option is needed to also request the unversioned pip command.
pyvenv and the Windows installer ensure that the unqualified pip
command is made available in those environments, and pip can always be
invoked via the -m switch rather than directly to avoid ambiguity on
systems with multiple Python installations.

文档更改

As part of this change, the 安装 Python 模块 and
分发 Python 模块 sections of the documentation have been
completely redesigned as short getting started and FAQ documents. Most
packaging documentation has now been moved out to the Python Packaging
Authority maintained Python Packaging User Guide [https://packaging.python.org] and the documentation of the individual
projects.

However, as this migration is currently still incomplete, the legacy
versions of those guides remaining available as 安装Python模块（旧版）
and 分发 Python 模块（遗留版本）.

参见

	PEP 453 [https://www.python.org/dev/peps/pep-0453] -- Python安装中pip的显式引导
	PEP 由Donald Stufft 和 Nick Coghlan 撰写，由 Donald Stufft，Nick Coghlan，Martin von Löwis 和 Ned Deily 实现。

PEP 446: Newly Created File Descriptors Are Non-Inheritable

PEP 446 [https://www.python.org/dev/peps/pep-0446] makes newly created file descriptors non-inheritable. In general, this is the behavior an application will
want: when launching a new process, having currently open files also
open in the new process can lead to all sorts of hard to find bugs,
and potentially to security issues.

However, there are occasions when inheritance is desired. To support
these cases, the following new functions and methods are available:

	os.get_inheritable(), os.set_inheritable()

	os.get_handle_inheritable(), os.set_handle_inheritable()

	socket.socket.get_inheritable(), socket.socket.set_inheritable()

参见

	PEP 446 [https://www.python.org/dev/peps/pep-0446] -- Make newly created file descriptors non-inheritable
	PEP 由 Victor Stinner 撰写并实现。

Improvements to Codec Handling

Since it was first introduced, the codecs module has always been
intended to operate as a type-neutral dynamic encoding and decoding
system. However, its close coupling with the Python text model, especially
the type restricted convenience methods on the builtin str,
bytes and bytearray types, has historically obscured that
fact.

As a key step in clarifying the situation, the codecs.encode() and
codecs.decode() convenience functions are now properly documented in
Python 2.7, 3.3 and 3.4. These functions have existed in the codecs
module (and have been covered by the regression test suite) since Python 2.4,
but were previously only discoverable through runtime introspection.

Unlike the convenience methods on str, bytes and
bytearray, the codecs convenience functions support arbitrary
codecs in both Python 2 and Python 3, rather than being limited to Unicode text
encodings (in Python 3) or basestring <-> basestring conversions (in
Python 2).

In Python 3.4, the interpreter is able to identify the known non-text
encodings provided in the standard library and direct users towards these
general purpose convenience functions when appropriate:

>>> b"abcdef".decode("hex")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
LookupError: 'hex' is not a text encoding; use codecs.decode() to handle arbitrary codecs

>>> "hello".encode("rot13")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
LookupError: 'rot13' is not a text encoding; use codecs.encode() to handle arbitrary codecs

>>> open("foo.txt", encoding="hex")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
LookupError: 'hex' is not a text encoding; use codecs.open() to handle arbitrary codecs

In a related change, whenever it is feasible without breaking backwards
compatibility, exceptions raised during encoding and decoding operations
are wrapped in a chained exception of the same type that mentions the
name of the codec responsible for producing the error:

>>> import codecs

>>> codecs.decode(b"abcdefgh", "hex")
Traceback (most recent call last):
 File "/usr/lib/python3.4/encodings/hex_codec.py", line 20, in hex_decode
 return (binascii.a2b_hex(input), len(input))
binascii.Error: Non-hexadecimal digit found

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
binascii.Error: decoding with 'hex' codec failed (Error: Non-hexadecimal digit found)

>>> codecs.encode("hello", "bz2")
Traceback (most recent call last):
 File "/usr/lib/python3.4/encodings/bz2_codec.py", line 17, in bz2_encode
 return (bz2.compress(input), len(input))
 File "/usr/lib/python3.4/bz2.py", line 498, in compress
 return comp.compress(data) + comp.flush()
TypeError: 'str' does not support the buffer interface

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: encoding with 'bz2' codec failed (TypeError: 'str' does not support the buffer interface)

Finally, as the examples above show, these improvements have permitted
the restoration of the convenience aliases for the non-Unicode codecs that
were themselves restored in Python 3.2. This means that encoding binary data
to and from its hexadecimal representation (for example) can now be written
as:

>>> from codecs import encode, decode
>>> encode(b"hello", "hex")
b'68656c6c6f'
>>> decode(b"68656c6c6f", "hex")
b'hello'

The binary and text transforms provided in the standard library are detailed
in 二进制转换 and 文字转换.

(Contributed by Nick Coghlan in bpo-7475 [https://bugs.python.org/issue7475], bpo-17827 [https://bugs.python.org/issue17827],
bpo-17828 [https://bugs.python.org/issue17828] and bpo-19619 [https://bugs.python.org/issue19619].)

PEP 451: A ModuleSpec Type for the Import System

PEP 451 [https://www.python.org/dev/peps/pep-0451] provides an encapsulation of the information about a module that the
import machinery will use to load it (that is, a module specification). This
helps simplify both the import implementation and several import-related APIs.
The change is also a stepping stone for several future import-related
improvements [https://mail.python.org/pipermail/python-dev/2013-November/130111.html].

The public-facing changes from the PEP are entirely backward-compatible.
Furthermore, they should be transparent to everyone but importer authors. Key
finder and loader methods have been deprecated, but they will continue working.
New importers should use the new methods described in the PEP. Existing
importers should be updated to implement the new methods. See the
弃用 section for a list of methods that should be replaced and
their replacements.

其他语言特性修改

对Python 语言核心进行的小改动：

	Unicode database updated to UCD version 6.3.

	min() and max() now accept a default keyword-only argument that
can be used to specify the value they return if the iterable they are
evaluating has no elements. (Contributed by Julian Berman in
bpo-18111 [https://bugs.python.org/issue18111].)

	Module objects are now weakref'able.

	Module __file__ attributes (and related values) should now always
contain absolute paths by default, with the sole exception of
__main__.__file__ when a script has been executed directly using
a relative path. (Contributed by Brett Cannon in bpo-18416 [https://bugs.python.org/issue18416].)

	All the UTF-* codecs (except UTF-7) now reject surrogates during both
encoding and decoding unless the surrogatepass error handler is used,
with the exception of the UTF-16 decoder (which accepts valid surrogate pairs)
and the UTF-16 encoder (which produces them while encoding non-BMP characters).
(Contributed by Victor Stinner, Kang-Hao (Kenny) Lu and Serhiy Storchaka in
bpo-12892 [https://bugs.python.org/issue12892].)

	New German EBCDIC codec cp273. (Contributed
by Michael Bierenfeld and Andrew Kuchling in bpo-1097797 [https://bugs.python.org/issue1097797].)

	New Ukrainian codec cp1125. (Contributed by
Serhiy Storchaka in bpo-19668 [https://bugs.python.org/issue19668].)

	bytes.join() and bytearray.join() now accept arbitrary
buffer objects as arguments. (Contributed by Antoine Pitrou in
bpo-15958 [https://bugs.python.org/issue15958].)

	The int constructor now accepts any object that has an __index__
method for its base argument. (Contributed by Mark Dickinson in
bpo-16772 [https://bugs.python.org/issue16772].)

	Frame objects now have a clear() method that clears all
references to local variables from the frame. (Contributed by Antoine Pitrou
in bpo-17934 [https://bugs.python.org/issue17934].)

	memoryview is now registered as a Sequence,
and supports the reversed() builtin. (Contributed by Nick Coghlan
and Claudiu Popa in bpo-18690 [https://bugs.python.org/issue18690] and bpo-19078 [https://bugs.python.org/issue19078].)

	Signatures reported by help() have been modified and improved in
several cases as a result of the introduction of Argument Clinic and other
changes to the inspect and pydoc modules.

	__length_hint__() is now part of the formal language
specification (see PEP 424 [https://www.python.org/dev/peps/pep-0424]). (Contributed by Armin Ronacher in
bpo-16148 [https://bugs.python.org/issue16148].)

新增模块

asyncio

The new asyncio module (defined in PEP 3156 [https://www.python.org/dev/peps/pep-3156]) provides a standard
pluggable event loop model for Python, providing solid asynchronous IO
support in the standard library, and making it easier for other event loop
implementations to interoperate with the standard library and each other.

For Python 3.4, this module is considered a provisional API.

参见

	PEP 3156 [https://www.python.org/dev/peps/pep-3156] -- Asynchronous IO Support Rebooted: the "asyncio" Module
	PEP 由 Guido van Rossum 领导编写和实现。

ensurepip

The new ensurepip module is the primary infrastructure for the
PEP 453 [https://www.python.org/dev/peps/pep-0453] implementation. In the normal course of events end users will not
need to interact with this module, but it can be used to manually bootstrap
pip if the automated bootstrapping into an installation or virtual
environment was declined.

ensurepip includes a bundled copy of pip, up-to-date as of the first
release candidate of the release of CPython with which it ships (this applies
to both maintenance releases and feature releases). ensurepip does not
access the internet. If the installation has Internet access, after
ensurepip is run the bundled pip can be used to upgrade pip to a
more recent release than the bundled one. (Note that such an upgraded version
of pip is considered to be a separately installed package and will not be
removed if Python is uninstalled.)

The module is named ensurepip because if called when pip is already
installed, it does nothing. It also has an --upgrade option that will
cause it to install the bundled copy of pip if the existing installed
version of pip is older than the bundled copy.

enum

The new enum module (defined in PEP 435 [https://www.python.org/dev/peps/pep-0435]) provides a standard
implementation of enumeration types, allowing other modules (such as
socket) to provide more informative error messages and better
debugging support by replacing opaque integer constants with backwards
compatible enumeration values.

参见

	PEP 435 [https://www.python.org/dev/peps/pep-0435] -- Adding an Enum type to the Python standard library
	PEP 由 Barry Warsaw，Eli Bendersky 和 Ethan Furman 撰写 ，由 Ethan Furman 实现。

pathlib

The new pathlib module offers classes representing filesystem paths
with semantics appropriate for different operating systems. Path classes are
divided between pure paths, which provide purely computational operations
without I/O, and concrete paths, which inherit from pure paths but also
provide I/O operations.

For Python 3.4, this module is considered a provisional API.

参见

	PEP 428 [https://www.python.org/dev/peps/pep-0428] -- The pathlib module -- object-oriented filesystem paths
	PEP 由 Antoine Pitrou 撰写并实现

selectors

The new selectors module (created as part of implementing PEP 3156 [https://www.python.org/dev/peps/pep-3156])
allows high-level and efficient I/O multiplexing, built upon the
select module primitives.

statistics

The new statistics module (defined in PEP 450 [https://www.python.org/dev/peps/pep-0450]) offers some core
statistics functionality directly in the standard library. This module
supports calculation of the mean, median, mode, variance and standard
deviation of a data series.

参见

	PEP 450 [https://www.python.org/dev/peps/pep-0450] -- Adding A Statistics Module To The Standard Library
	PEP 由 Steven D'Aprano 撰写并实现。

tracemalloc

The new tracemalloc module (defined in PEP 454 [https://www.python.org/dev/peps/pep-0454]) is a debug tool to
trace memory blocks allocated by Python. It provides the following information:

	Trace where an object was allocated

	Statistics on allocated memory blocks per filename and per line number:
total size, number and average size of allocated memory blocks

	Compute the differences between two snapshots to detect memory leaks

参见

	PEP 454 [https://www.python.org/dev/peps/pep-0454] -- Add a new tracemalloc module to trace Python memory allocations
	PEP 由 Victor Stinner 撰写并实现

改进的模块

abc

New function abc.get_cache_token() can be used to know when to invalidate
caches that are affected by changes in the object graph. (Contributed
by Łukasz Langa in bpo-16832 [https://bugs.python.org/issue16832].)

New class ABC has ABCMeta as its meta class.
Using ABC as a base class has essentially the same effect as specifying
metaclass=abc.ABCMeta, but is simpler to type and easier to read.
(Contributed by Bruno Dupuis in bpo-16049 [https://bugs.python.org/issue16049].)

aifc

The getparams() method now returns a namedtuple rather than a
plain tuple. (Contributed by Claudiu Popa in bpo-17818 [https://bugs.python.org/issue17818].)

aifc.open() now supports the context management protocol: when used in a
with block, the close() method of the returned
object will be called automatically at the end of the block. (Contributed by
Serhiy Storchacha in bpo-16486 [https://bugs.python.org/issue16486].)

The writeframesraw() and writeframes()
methods now accept any bytes-like object. (Contributed by Serhiy
Storchaka in bpo-8311 [https://bugs.python.org/issue8311].)

argparse

The FileType class now accepts encoding and
errors arguments, which are passed through to open(). (Contributed
by Lucas Maystre in bpo-11175 [https://bugs.python.org/issue11175].)

audioop

audioop now supports 24-bit samples. (Contributed by Serhiy Storchaka
in bpo-12866 [https://bugs.python.org/issue12866].)

New byteswap() function converts big-endian samples to
little-endian and vice versa. (Contributed by Serhiy Storchaka in
bpo-19641 [https://bugs.python.org/issue19641].)

All audioop functions now accept any bytes-like object. Strings
are not accepted: they didn't work before, now they raise an error right away.
(Contributed by Serhiy Storchaka in bpo-16685 [https://bugs.python.org/issue16685].)

base64

The encoding and decoding functions in base64 now accept any
bytes-like object in cases where it previously required a
bytes or bytearray instance. (Contributed by Nick Coghlan in
bpo-17839 [https://bugs.python.org/issue17839].)

New functions a85encode(), a85decode(),
b85encode(), and b85decode() provide the ability to
encode and decode binary data from and to Ascii85 and the git/mercurial
Base85 formats, respectively. The a85 functions have options that can
be used to make them compatible with the variants of the Ascii85 encoding,
including the Adobe variant. (Contributed by Martin Morrison, the Mercurial
project, Serhiy Storchaka, and Antoine Pitrou in bpo-17618 [https://bugs.python.org/issue17618].)

collections

The ChainMap.new_child() method now accepts an m argument specifying
the child map to add to the chain. This allows an existing mapping and/or a
custom mapping type to be used for the child. (Contributed by Vinay Sajip in
bpo-16613 [https://bugs.python.org/issue16613].)

colorsys

The number of digits in the coefficients for the RGB --- YIQ conversions have
been expanded so that they match the FCC NTSC versions. The change in
results should be less than 1% and may better match results found elsewhere.
(Contributed by Brian Landers and Serhiy Storchaka in bpo-14323 [https://bugs.python.org/issue14323].)

contextlib

The new contextlib.suppress context manager helps to clarify the
intent of code that deliberately suppresses exceptions from a single
statement. (Contributed by Raymond Hettinger in bpo-15806 [https://bugs.python.org/issue15806] and
Zero Piraeus in bpo-19266 [https://bugs.python.org/issue19266].)

The new contextlib.redirect_stdout() context manager makes it easier
for utility scripts to handle inflexible APIs that write their output to
sys.stdout and don't provide any options to redirect it. Using the
context manager, the sys.stdout output can be redirected to any
other stream or, in conjunction with io.StringIO, to a string.
The latter can be especially useful, for example, to capture output
from a function that was written to implement a command line interface.
It is recommended only for utility scripts because it affects the
global state of sys.stdout. (Contributed by Raymond Hettinger
in bpo-15805 [https://bugs.python.org/issue15805].)

The contextlib documentation has also been updated to include a
discussion of the
differences between single use, reusable and reentrant context managers.

dbm

dbm.open() objects now support the context management protocol. When
used in a with statement, the close method of the database
object will be called automatically at the end of the block. (Contributed by
Claudiu Popa and Nick Coghlan in bpo-19282 [https://bugs.python.org/issue19282].)

dis

Functions show_code(), dis(), distb(), and
disassemble() now accept a keyword-only file argument that
controls where they write their output.

The dis module is now built around an Instruction class
that provides object oriented access to the details of each individual bytecode
operation.

A new method, get_instructions(), provides an iterator that emits
the Instruction stream for a given piece of Python code. Thus it is now
possible to write a program that inspects and manipulates a bytecode
object in ways different from those provided by the dis module
itself. For example:

>>> import dis
>>> for instr in dis.get_instructions(lambda x: x + 1):
... print(instr.opname)
LOAD_FAST
LOAD_CONST
BINARY_ADD
RETURN_VALUE

The various display tools in the dis module have been rewritten to use
these new components.

In addition, a new application-friendly class Bytecode provides
an object-oriented API for inspecting bytecode in both in human-readable form
and for iterating over instructions. The Bytecode constructor
takes the same arguments that get_instruction() does (plus an
optional current_offset), and the resulting object can be iterated to produce
Instruction objects. But it also has a dis
method, equivalent to calling dis on the constructor argument, but
returned as a multi-line string:

>>> bytecode = dis.Bytecode(lambda x: x + 1, current_offset=3)
>>> for instr in bytecode:
... print('{} ({})'.format(instr.opname, instr.opcode))
LOAD_FAST (124)
LOAD_CONST (100)
BINARY_ADD (23)
RETURN_VALUE (83)
>>> bytecode.dis().splitlines()
[' 1 0 LOAD_FAST 0 (x)',
 ' --> 3 LOAD_CONST 1 (1)',
 ' 6 BINARY_ADD',
 ' 7 RETURN_VALUE']

Bytecode also has a class method,
from_traceback(), that provides the ability to manipulate a
traceback (that is, print(Bytecode.from_traceback(tb).dis()) is equivalent
to distb(tb)).

(Contributed by Nick Coghlan, Ryan Kelly and Thomas Kluyver in bpo-11816 [https://bugs.python.org/issue11816]
and Claudiu Popa in bpo-17916 [https://bugs.python.org/issue17916].)

New function stack_effect() computes the effect on the Python stack
of a given opcode and argument, information that is not otherwise available.
(Contributed by Larry Hastings in bpo-19722 [https://bugs.python.org/issue19722].)

doctest

A new option flag, FAIL_FAST, halts
test running as soon as the first failure is detected. (Contributed by R.
David Murray and Daniel Urban in bpo-16522 [https://bugs.python.org/issue16522].)

The doctest command line interface now uses argparse, and has two
new options, -o and -f. -o allows doctest options to be specified on the command line, and -f is a
shorthand for -o FAIL_FAST (to parallel the similar option supported by the
unittest CLI). (Contributed by R. David Murray in bpo-11390 [https://bugs.python.org/issue11390].)

doctest will now find doctests in extension module __doc__ strings.
(Contributed by Zachary Ware in bpo-3158 [https://bugs.python.org/issue3158].)

email

as_string() now accepts a policy argument to
override the default policy of the message when generating a string
representation of it. This means that as_string can now be used in more
circumstances, instead of having to create and use a generator in
order to pass formatting parameters to its flatten method. (Contributed by
R. David Murray in bpo-18600 [https://bugs.python.org/issue18600].)

New method as_bytes() added to produce a bytes
representation of the message in a fashion similar to how as_string
produces a string representation. It does not accept the maxheaderlen
argument, but does accept the unixfrom and policy arguments. The
Message __bytes__() method
calls it, meaning that bytes(mymsg) will now produce the intuitive
result: a bytes object containing the fully formatted message. (Contributed
by R. David Murray in bpo-18600 [https://bugs.python.org/issue18600].)

The Message.set_param() message now accepts a replace keyword argument.
When specified, the associated header will be updated without changing
its location in the list of headers. For backward compatibility, the default
is False. (Contributed by R. David Murray in bpo-18891 [https://bugs.python.org/issue18891].)

A pair of new subclasses of Message have been added
(EmailMessage and MIMEPart), along with a new sub-module,
contentmanager and a new policy attribute
content_manager. All documentation is
currently in the new module, which is being added as part of email's new
provisional API. These classes provide a number of new methods that
make extracting content from and inserting content into email messages much
easier. For details, see the contentmanager documentation and
the email: 示例. These API additions complete the
bulk of the work that was planned as part of the email6 project. The currently
provisional API is scheduled to become final in Python 3.5 (possibly with a few
minor additions in the area of error handling). (Contributed by R. David
Murray in bpo-18891 [https://bugs.python.org/issue18891].)

filecmp

A new clear_cache() function provides the ability to clear the
filecmp comparison cache, which uses os.stat() information to
determine if the file has changed since the last compare. This can be used,
for example, if the file might have been changed and re-checked in less time
than the resolution of a particular filesystem's file modification time field.
(Contributed by Mark Levitt in bpo-18149 [https://bugs.python.org/issue18149].)

New module attribute DEFAULT_IGNORES provides the list of
directories that are used as the default value for the ignore parameter of
the dircmp() function. (Contributed by Eli Bendersky in
bpo-15442 [https://bugs.python.org/issue15442].)

functools

The new partialmethod() descriptor brings partial argument
application to descriptors, just as partial() provides
for normal callables. The new descriptor also makes it easier to get
arbitrary callables (including partial() instances)
to behave like normal instance methods when included in a class definition.
(Contributed by Alon Horev and Nick Coghlan in bpo-4331 [https://bugs.python.org/issue4331].)

The new singledispatch() decorator brings support for
single-dispatch generic functions to the Python standard library. Where
object oriented programming focuses on grouping multiple operations on a
common set of data into a class, a generic function focuses on grouping
multiple implementations of an operation that allows it to work with
different kinds of data.

参见

	PEP 443 [https://www.python.org/dev/peps/pep-0443] -- Single-dispatch generic functions
	PEP 由 Łukasz Langa 撰写并实现。

total_ordering() now supports a return value of
NotImplemented from the underlying comparison function. (Contributed
by Katie Miller in bpo-10042 [https://bugs.python.org/issue10042].)

A pure-python version of the partial() function is now in the
stdlib; in CPython it is overridden by the C accelerated version, but it is
available for other implementations to use. (Contributed by Brian Thorne in
bpo-12428 [https://bugs.python.org/issue12428].)

gc

New function get_stats() returns a list of three per-generation
dictionaries containing the collections statistics since interpreter startup.
(Contributed by Antoine Pitrou in bpo-16351 [https://bugs.python.org/issue16351].)

glob

A new function escape() provides a way to escape special characters
in a filename so that they do not become part of the globbing expansion but are
instead matched literally. (Contributed by Serhiy Storchaka in bpo-8402 [https://bugs.python.org/issue8402].)

hashlib

A new hashlib.pbkdf2_hmac() function provides
the PKCS#5 password-based key derivation function 2 [https://en.wikipedia.org/wiki/PBKDF2]. (Contributed by Christian
Heimes in bpo-18582 [https://bugs.python.org/issue18582].)

The name attribute of hashlib hash objects is now
a formally supported interface. It has always existed in CPython's
hashlib (although it did not return lower case names for all supported
hashes), but it was not a public interface and so some other Python
implementations have not previously supported it. (Contributed by Jason R.
Coombs in bpo-18532 [https://bugs.python.org/issue18532].)

hmac

hmac now accepts bytearray as well as bytes for the key
argument to the new() function, and the msg parameter to both the
new() function and the update() method now
accepts any type supported by the hashlib module. (Contributed
by Jonas Borgström in bpo-18240 [https://bugs.python.org/issue18240].)

The digestmod argument to the hmac.new() function may now be any hash
digest name recognized by hashlib. In addition, the current behavior in
which the value of digestmod defaults to MD5 is deprecated: in a
future version of Python there will be no default value. (Contributed by
Christian Heimes in bpo-17276 [https://bugs.python.org/issue17276].)

With the addition of block_size and name
attributes (and the formal documentation of the digest_size
attribute), the hmac module now conforms fully to the PEP 247 [https://www.python.org/dev/peps/pep-0247] API.
(Contributed by Christian Heimes in bpo-18775 [https://bugs.python.org/issue18775].)

html

New function unescape() function converts HTML5 character references to
the corresponding Unicode characters. (Contributed by Ezio Melotti in
bpo-2927 [https://bugs.python.org/issue2927].)

HTMLParser accepts a new keyword argument
convert_charrefs that, when True, automatically converts all character
references. For backward-compatibility, its value defaults to False, but
it will change to True in a future version of Python, so you are invited to
set it explicitly and update your code to use this new feature. (Contributed
by Ezio Melotti in bpo-13633 [https://bugs.python.org/issue13633].)

The strict argument of HTMLParser is now deprecated.
(Contributed by Ezio Melotti in bpo-15114 [https://bugs.python.org/issue15114].)

http

send_error() now accepts an
optional additional explain parameter which can be used to provide an
extended error description, overriding the hardcoded default if there is one.
This extended error description will be formatted using the
error_message_format attribute and sent as the body
of the error response. (Contributed by Karl Cow in bpo-12921 [https://bugs.python.org/issue12921].)

The http.server command line interface now has
a -b/--bind option that causes the server to listen on a specific address.
(Contributed by Malte Swart in bpo-17764 [https://bugs.python.org/issue17764].)

idlelib 与 IDLE

Since idlelib implements the IDLE shell and editor and is not intended for
import by other programs, it gets improvements with every release. See
Lib/idlelib/NEWS.txt for a cumulative list of changes since 3.3.0,
as well as changes made in future 3.4.x releases. This file is also available
from the IDLE Help ‣ About IDLE dialog.

importlib

The InspectLoader ABC defines a new method,
source_to_code() that accepts source
data and a path and returns a code object. The default implementation
is equivalent to compile(data, path, 'exec', dont_inherit=True).
(Contributed by Eric Snow and Brett Cannon in bpo-15627 [https://bugs.python.org/issue15627].)

InspectLoader also now has a default implementation
for the get_code() method. However,
it will normally be desirable to override the default implementation
for performance reasons. (Contributed by Brett Cannon in bpo-18072 [https://bugs.python.org/issue18072].)

The reload() function has been moved from imp to
importlib as part of the imp module deprecation. (Contributed by
Berker Peksag in bpo-18193 [https://bugs.python.org/issue18193].)

importlib.util now has a MAGIC_NUMBER attribute
providing access to the bytecode version number. This replaces the
get_magic() function in the deprecated imp module.
(Contributed by Brett Cannon in bpo-18192 [https://bugs.python.org/issue18192].)

New importlib.util functions cache_from_source()
and source_from_cache() replace the same-named functions
in the deprecated imp module. (Contributed by Brett Cannon in
bpo-18194 [https://bugs.python.org/issue18194].)

The importlib bootstrap NamespaceLoader now conforms to
the InspectLoader ABC, which means that runpy and
python -m can now be used with namespace packages. (Contributed
by Brett Cannon in bpo-18058 [https://bugs.python.org/issue18058].)

importlib.util has a new function decode_source()
that decodes source from bytes using universal newline processing. This is
useful for implementing InspectLoader.get_source() methods.

importlib.machinery.ExtensionFileLoader now has a
get_filename() method. This was
inadvertently omitted in the original implementation. (Contributed by Eric
Snow in bpo-19152 [https://bugs.python.org/issue19152].)

inspect

The inspect module now offers a basic command line interface to quickly display source code and other
information for modules, classes and functions. (Contributed by Claudiu Popa
and Nick Coghlan in bpo-18626 [https://bugs.python.org/issue18626].)

unwrap() makes it easy to unravel wrapper function chains
created by functools.wraps() (and any other API that sets the
__wrapped__ attribute on a wrapper function). (Contributed by
Daniel Urban, Aaron Iles and Nick Coghlan in bpo-13266 [https://bugs.python.org/issue13266].)

As part of the implementation of the new enum module, the
inspect module now has substantially better support for custom
__dir__ methods and dynamic class attributes provided through
metaclasses. (Contributed by Ethan Furman in bpo-18929 [https://bugs.python.org/issue18929] and
bpo-19030 [https://bugs.python.org/issue19030].)

getfullargspec() and getargspec()
now use the signature() API. This allows them to
support a much broader range of callables, including those with
__signature__ attributes, those with metadata provided by argument
clinic, functools.partial() objects and more. Note that, unlike
signature(), these functions still ignore __wrapped__
attributes, and report the already bound first argument for bound methods,
so it is still necessary to update your code to use
signature() directly if those features are desired.
(Contributed by Yury Selivanov in bpo-17481 [https://bugs.python.org/issue17481].)

signature() now supports duck types of CPython functions,
which adds support for functions compiled with Cython. (Contributed
by Stefan Behnel and Yury Selivanov in bpo-17159 [https://bugs.python.org/issue17159].)

ipaddress

ipaddress was added to the standard library in Python 3.3 as a
provisional API. With the release of Python 3.4, this qualification
has been removed: ipaddress is now considered a stable API, covered
by the normal standard library requirements to maintain backwards
compatibility.

A new is_global property is True if
an address is globally routeable. (Contributed by Peter Moody in
bpo-17400 [https://bugs.python.org/issue17400].)

logging

The TimedRotatingFileHandler has a new atTime
parameter that can be used to specify the time of day when rollover should
happen. (Contributed by Ronald Oussoren in bpo-9556 [https://bugs.python.org/issue9556].)

SocketHandler and
DatagramHandler now support Unix domain sockets (by
setting port to None). (Contributed by Vinay Sajip in commit
ce46195b56a9.)

fileConfig() now accepts a
configparser.RawConfigParser subclass instance for the fname
parameter. This facilitates using a configuration file when logging
configuration is just a part of the overall application configuration, or where
the application modifies the configuration before passing it to
fileConfig(). (Contributed by Vinay Sajip in
bpo-16110 [https://bugs.python.org/issue16110].)

Logging configuration data received from a socket via the
logging.config.listen() function can now be validated before being
processed by supplying a verification function as the argument to the new
verify keyword argument. (Contributed by Vinay Sajip in bpo-15452 [https://bugs.python.org/issue15452].)

marshal

The default marshal version has been bumped to 3. The code implementing
the new version restores the Python2 behavior of recording only one copy of
interned strings and preserving the interning on deserialization, and extends
this "one copy" ability to any object type (including handling recursive
references). This reduces both the size of .pyc files and the amount of
memory a module occupies in memory when it is loaded from a .pyc (or
.pyo) file. (Contributed by Kristján Valur Jónsson in bpo-16475 [https://bugs.python.org/issue16475],
with additional speedups by Antoine Pitrou in bpo-19219 [https://bugs.python.org/issue19219].)

mmap

mmap objects can now be weakrefed. (Contributed by Valerie Lambert in
bpo-4885 [https://bugs.python.org/issue4885].)

multiprocessing

On Unix two new start methods,
spawn and forkserver, have been added for starting processes using
multiprocessing. These make the mixing of processes with threads more
robust, and the spawn method matches the semantics that multiprocessing has
always used on Windows. New function
get_all_start_methods() reports all start methods
available on the platform, get_start_method() reports
the current start method, and set_start_method() sets
the start method. (Contributed by Richard Oudkerk in bpo-8713 [https://bugs.python.org/issue8713].)

multiprocessing also now has the concept of a context, which
determines how child processes are created. New function
get_context() returns a context that uses a specified
start method. It has the same API as the multiprocessing module itself,
so you can use it to create Pools and other
objects that will operate within that context. This allows a framework and an
application or different parts of the same application to use multiprocessing
without interfering with each other. (Contributed by Richard Oudkerk in
bpo-18999 [https://bugs.python.org/issue18999].)

Except when using the old fork start method, child processes no longer
inherit unneeded handles/file descriptors from their parents (part of
bpo-8713 [https://bugs.python.org/issue8713]).

multiprocessing now relies on runpy (which implements the
-m switch) to initialise __main__ appropriately in child processes
when using the spawn or forkserver start methods. This resolves some
edge cases where combining multiprocessing, the -m command line switch,
and explicit relative imports could cause obscure failures in child
processes. (Contributed by Nick Coghlan in bpo-19946 [https://bugs.python.org/issue19946].)

operator

New function length_hint() provides an implementation of the
specification for how the __length_hint__() special method should
be used, as part of the PEP 424 [https://www.python.org/dev/peps/pep-0424] formal specification of this language
feature. (Contributed by Armin Ronacher in bpo-16148 [https://bugs.python.org/issue16148].)

There is now a pure-python version of the operator module available for
reference and for use by alternate implementations of Python. (Contributed by
Zachary Ware in bpo-16694 [https://bugs.python.org/issue16694].)

os

There are new functions to get and set the inheritable flag of a file descriptor (os.get_inheritable(),
os.set_inheritable()) or a Windows handle
(os.get_handle_inheritable(), os.set_handle_inheritable()).

New function cpu_count() reports the number of CPUs available on the
platform on which Python is running (or None if the count can't be
determined). The multiprocessing.cpu_count() function is now implemented
in terms of this function). (Contributed by Trent Nelson, Yogesh Chaudhari,
Victor Stinner, and Charles-François Natali in bpo-17914 [https://bugs.python.org/issue17914].)

os.path.samestat() is now available on the Windows platform (and the
os.path.samefile() implementation is now shared between Unix and
Windows). (Contributed by Brian Curtin in bpo-11939 [https://bugs.python.org/issue11939].)

os.path.ismount() now recognizes volumes mounted below a drive
root on Windows. (Contributed by Tim Golden in bpo-9035 [https://bugs.python.org/issue9035].)

os.open() supports two new flags on platforms that provide them,
O_PATH (un-opened file descriptor), and O_TMPFILE
(unnamed temporary file; as of 3.4.0 release available only on Linux systems
with a kernel version of 3.11 or newer that have uapi headers). (Contributed
by Christian Heimes in bpo-18673 [https://bugs.python.org/issue18673] and Benjamin Peterson, respectively.)

pdb

pdb has been enhanced to handle generators, yield, and
yield from in a more useful fashion. This is especially helpful when
debugging asyncio based programs. (Contributed by Andrew Svetlov and
Xavier de Gaye in bpo-16596 [https://bugs.python.org/issue16596].)

The print command has been removed from pdb, restoring access to the
Python print() function from the pdb command line. Python2's pdb did
not have a print command; instead, entering print executed the
print statement. In Python3 print was mistakenly made an alias for the
pdb p command. p, however, prints the repr of its argument,
not the str like the Python2 print command did. Worse, the Python3
pdb print command shadowed the Python3 print function, making it
inaccessible at the pdb prompt. (Contributed by Connor Osborn in
bpo-18764 [https://bugs.python.org/issue18764].)

pickle

pickle now supports (but does not use by default) a new pickle protocol,
protocol 4. This new protocol addresses a number of issues that were present
in previous protocols, such as the serialization of nested classes, very large
strings and containers, and classes whose __new__() method takes
keyword-only arguments. It also provides some efficiency improvements.

参见

	PEP 3154 [https://www.python.org/dev/peps/pep-3154] -- Pickle protocol 4
	PEP 由 Antoine Pitrou 撰写，并由 Alexandre Vassalotti 实现

plistlib

plistlib now has an API that is similar to the standard pattern for
stdlib serialization protocols, with new load(),
dump(), loads(), and dumps()
functions. (The older API is now deprecated.) In addition to the already
supported XML plist format (FMT_XML), it also now supports
the binary plist format (FMT_BINARY). (Contributed by Ronald
Oussoren and others in bpo-14455 [https://bugs.python.org/issue14455].)

poplib

Two new methods have been added to poplib: capa(),
which returns the list of capabilities advertised by the POP server, and
stls(), which switches a clear-text POP3 session into an
encrypted POP3 session if the POP server supports it. (Contributed by Lorenzo
Catucci in bpo-4473 [https://bugs.python.org/issue4473].)

pprint

The pprint module's PrettyPrinter class and its
pformat(), and pprint() functions have a new
option, compact, that controls how the output is formatted. Currently
setting compact to True means that sequences will be printed with as many
sequence elements as will fit within width on each (indented) line.
(Contributed by Serhiy Storchaka in bpo-19132 [https://bugs.python.org/issue19132].)

Long strings are now wrapped using Python's normal line continuation
syntax. (Contributed by Antoine Pitrou in bpo-17150 [https://bugs.python.org/issue17150].)

pty

pty.spawn() now returns the status value from os.waitpid() on
the child process, instead of None. (Contributed by Gregory P. Smith.)

pydoc

The pydoc module is now based directly on the inspect.signature()
introspection API, allowing it to provide signature information for a wider
variety of callable objects. This change also means that __wrapped__
attributes are now taken into account when displaying help information.
(Contributed by Larry Hastings in bpo-19674 [https://bugs.python.org/issue19674].)

The pydoc module no longer displays the self parameter for
already bound methods. Instead, it aims to always display the exact current
signature of the supplied callable. (Contributed by Larry Hastings in
bpo-20710 [https://bugs.python.org/issue20710].)

In addition to the changes that have been made to pydoc directly,
its handling of custom __dir__ methods and various descriptor
behaviours has also been improved substantially by the underlying changes in
the inspect module.

As the help() builtin is based on pydoc, the above changes also
affect the behaviour of help().

re

New fullmatch() function and regex.fullmatch() method anchor
the pattern at both ends of the string to match. This provides a way to be
explicit about the goal of the match, which avoids a class of subtle bugs where
$ characters get lost during code changes or the addition of alternatives
to an existing regular expression. (Contributed by Matthew Barnett in
bpo-16203 [https://bugs.python.org/issue16203].)

The repr of regex objects now includes the pattern
and the flags; the repr of match objects now
includes the start, end, and the part of the string that matched. (Contributed
by Hugo Lopes Tavares and Serhiy Storchaka in bpo-13592 [https://bugs.python.org/issue13592] and
bpo-17087 [https://bugs.python.org/issue17087].)

resource

New prlimit() function, available on Linux platforms with a
kernel version of 2.6.36 or later and glibc of 2.13 or later, provides the
ability to query or set the resource limits for processes other than the one
making the call. (Contributed by Christian Heimes in bpo-16595 [https://bugs.python.org/issue16595].)

On Linux kernel version 2.6.36 or later, there are also some new
Linux specific constants: RLIMIT_MSGQUEUE,
RLIMIT_NICE, RLIMIT_RTPRIO,
RLIMIT_RTTIME, and RLIMIT_SIGPENDING.
(Contributed by Christian Heimes in bpo-19324 [https://bugs.python.org/issue19324].)

On FreeBSD version 9 and later, there some new FreeBSD specific constants:
RLIMIT_SBSIZE, RLIMIT_SWAP, and
RLIMIT_NPTS. (Contributed by Claudiu Popa in
bpo-19343 [https://bugs.python.org/issue19343].)

select

epoll objects now support the context management protocol.
When used in a with statement, the close()
method will be called automatically at the end of the block. (Contributed
by Serhiy Storchaka in bpo-16488 [https://bugs.python.org/issue16488].)

devpoll objects now have fileno() and
close() methods, as well as a new attribute
closed. (Contributed by Victor Stinner in
bpo-18794 [https://bugs.python.org/issue18794].)

shelve

Shelf instances may now be used in with statements,
and will be automatically closed at the end of the with block.
(Contributed by Filip Gruszczyński in bpo-13896 [https://bugs.python.org/issue13896].)

shutil

copyfile() now raises a specific Error subclass,
SameFileError, when the source and destination are the same
file, which allows an application to take appropriate action on this specific
error. (Contributed by Atsuo Ishimoto and Hynek Schlawack in
bpo-1492704 [https://bugs.python.org/issue1492704].)

smtpd

The SMTPServer and SMTPChannel classes now
accept a map keyword argument which, if specified, is passed in to
asynchat.async_chat as its map argument. This allows an application
to avoid affecting the global socket map. (Contributed by Vinay Sajip in
bpo-11959 [https://bugs.python.org/issue11959].)

smtplib

SMTPException is now a subclass of OSError, which allows
both socket level errors and SMTP protocol level errors to be caught in one
try/except statement by code that only cares whether or not an error occurred.
(Contributed by Ned Jackson Lovely in bpo-2118 [https://bugs.python.org/issue2118].)

socket

The socket module now supports the CAN_BCM protocol on
platforms that support it. (Contributed by Brian Thorne in bpo-15359 [https://bugs.python.org/issue15359].)

Socket objects have new methods to get or set their inheritable flag, get_inheritable() and
set_inheritable().

The socket.AF_* and socket.SOCK_* constants are now enumeration values
using the new enum module. This allows meaningful names to be printed
during debugging, instead of integer "magic numbers".

The AF_LINK constant is now available on BSD and OSX.

inet_pton() and inet_ntop() are now supported
on Windows. (Contributed by Atsuo Ishimoto in bpo-7171 [https://bugs.python.org/issue7171].)

sqlite3

A new boolean parameter to the connect() function, uri, can be
used to indicate that the database parameter is a uri (see the SQLite
URI documentation [https://www.sqlite.org/uri.html]). (Contributed by poq in
bpo-13773 [https://bugs.python.org/issue13773].)

ssl

PROTOCOL_TLSv1_1 and PROTOCOL_TLSv1_2 (TLSv1.1 and
TLSv1.2 support) have been added; support for these protocols is only available if
Python is linked with OpenSSL 1.0.1 or later. (Contributed by Michele Orrù and
Antoine Pitrou in bpo-16692 [https://bugs.python.org/issue16692].)

New function create_default_context() provides a standard way to
obtain an SSLContext whose settings are intended to be a
reasonable balance between compatibility and security. These settings are
more stringent than the defaults provided by the SSLContext
constructor, and may be adjusted in the future, without prior deprecation, if
best-practice security requirements change. The new recommended best
practice for using stdlib libraries that support SSL is to use
create_default_context() to obtain an SSLContext
object, modify it if needed, and then pass it as the context argument
of the appropriate stdlib API. (Contributed by Christian Heimes
in bpo-19689 [https://bugs.python.org/issue19689].)

SSLContext method load_verify_locations()
accepts a new optional argument cadata, which can be used to provide PEM or
DER encoded certificates directly via strings or bytes, respectively.
(Contributed by Christian Heimes in bpo-18138 [https://bugs.python.org/issue18138].)

New function get_default_verify_paths() returns
a named tuple of the paths and environment variables that the
set_default_verify_paths() method uses to set
OpenSSL's default cafile and capath. This can be an aid in
debugging default verification issues. (Contributed by Christian Heimes
in bpo-18143 [https://bugs.python.org/issue18143].)

SSLContext has a new method,
cert_store_stats(), that reports the number of loaded
X.509 certs, X.509 CA certs, and certificate revocation lists
(crls), as well as a get_ca_certs() method that
returns a list of the loaded CA certificates. (Contributed by Christian
Heimes in bpo-18147 [https://bugs.python.org/issue18147].)

If OpenSSL 0.9.8 or later is available, SSLContext has a new
attribute verify_flags that can be used to control the
certificate verification process by setting it to some combination of the new
constants VERIFY_DEFAULT, VERIFY_CRL_CHECK_LEAF,
VERIFY_CRL_CHECK_CHAIN, or VERIFY_X509_STRICT.
OpenSSL does not do any CRL verification by default. (Contributed by
Christien Heimes in bpo-8813 [https://bugs.python.org/issue8813].)

New SSLContext method load_default_certs()
loads a set of default "certificate authority" (CA) certificates from default
locations, which vary according to the platform. It can be used to load both
TLS web server authentication certificates
(purpose=SERVER_AUTH) for a client to use to verify a
server, and certificates for a server to use in verifying client certificates
(purpose=CLIENT_AUTH). (Contributed by Christian
Heimes in bpo-19292 [https://bugs.python.org/issue19292].)

Two new windows-only functions, enum_certificates() and
enum_crls() provide the ability to retrieve certificates,
certificate information, and CRLs from the Windows cert store. (Contributed
by Christian Heimes in bpo-17134 [https://bugs.python.org/issue17134].)

Support for server-side SNI (Server Name Indication) using the new
ssl.SSLContext.set_servername_callback() method.
(Contributed by Daniel Black in bpo-8109 [https://bugs.python.org/issue8109].)

The dictionary returned by SSLSocket.getpeercert() contains additional
X509v3 extension items: crlDistributionPoints, calIssuers, and
OCSP URIs. (Contributed by Christian Heimes in bpo-18379 [https://bugs.python.org/issue18379].)

stat

The stat module is now backed by a C implementation in _stat. A C
implementation is required as most of the values aren't standardized and
are platform-dependent. (Contributed by Christian Heimes in bpo-11016 [https://bugs.python.org/issue11016].)

The module supports new ST_MODE flags, S_IFDOOR,
S_IFPORT, and S_IFWHT. (Contributed by
Christian Hiemes in bpo-11016 [https://bugs.python.org/issue11016].)

struct

New function iter_unpack and a new
struct.Struct.iter_unpack() method on compiled formats provide streamed
unpacking of a buffer containing repeated instances of a given format of data.
(Contributed by Antoine Pitrou in bpo-17804 [https://bugs.python.org/issue17804].)

subprocess

check_output() now accepts an input argument that can
be used to provide the contents of stdin for the command that is run.
(Contributed by Zack Weinberg in bpo-16624 [https://bugs.python.org/issue16624].)

getstatus() and getstatusoutput() now
work on Windows. This change was actually inadvertently made in 3.3.4.
(Contributed by Tim Golden in bpo-10197 [https://bugs.python.org/issue10197].)

sunau

The getparams() method now returns a namedtuple rather than a
plain tuple. (Contributed by Claudiu Popa in bpo-18901 [https://bugs.python.org/issue18901].)

sunau.open() now supports the context management protocol: when used in a
with block, the close method of the returned object will be
called automatically at the end of the block. (Contributed by Serhiy Storchaka
in bpo-18878 [https://bugs.python.org/issue18878].)

AU_write.setsampwidth() now supports 24 bit samples, thus adding
support for writing 24 sample using the module. (Contributed by
Serhiy Storchaka in bpo-19261 [https://bugs.python.org/issue19261].)

The writeframesraw() and
writeframes() methods now accept any bytes-like
object. (Contributed by Serhiy Storchaka in bpo-8311 [https://bugs.python.org/issue8311].)

sys

New function sys.getallocatedblocks() returns the current number of
blocks allocated by the interpreter. (In CPython with the default
--with-pymalloc setting, this is allocations made through the
PyObject_Malloc() API.) This can be useful for tracking memory leaks,
especially if automated via a test suite. (Contributed by Antoine Pitrou
in bpo-13390 [https://bugs.python.org/issue13390].)

When the Python interpreter starts in interactive mode, it checks for an __interactivehook__ attribute
on the sys module. If the attribute exists, its value is called with no
arguments just before interactive mode is started. The check is made after the
PYTHONSTARTUP file is read, so it can be set there. The site
module sets it to a function that enables tab
completion and history saving (in ~/.python-history) if the platform
supports readline. If you do not want this (new) behavior, you can
override it in PYTHONSTARTUP, sitecustomize, or
usercustomize by deleting this attribute from sys (or setting it
to some other callable). (Contributed by Éric Araujo and Antoine Pitrou in
bpo-5845 [https://bugs.python.org/issue5845].)

tarfile

The tarfile module now supports a simple 命令行界面 when
called as a script directly or via -m. This can be used to create and
extract tarfile archives. (Contributed by Berker Peksag in bpo-13477 [https://bugs.python.org/issue13477].)

textwrap

The TextWrapper class has two new attributes/constructor
arguments: max_lines, which limits the number of
lines in the output, and placeholder, which is a
string that will appear at the end of the output if it has been truncated
because of max_lines. Building on these capabilities, a new convenience
function shorten() collapses all of the whitespace in the input
to single spaces and produces a single line of a given width that ends with
the placeholder (by default, [...]). (Contributed by Antoine Pitrou and
Serhiy Storchaka in bpo-18585 [https://bugs.python.org/issue18585] and bpo-18725 [https://bugs.python.org/issue18725].)

threading

The Thread object representing the main thread can be
obtained from the new main_thread() function. In normal
conditions this will be the thread from which the Python interpreter was
started. (Contributed by Andrew Svetlov in bpo-18882 [https://bugs.python.org/issue18882].)

回溯

A new traceback.clear_frames() function takes a traceback object
and clears the local variables in all of the frames it references,
reducing the amount of memory consumed. (Contributed by Andrew Kuchling in
bpo-1565525 [https://bugs.python.org/issue1565525].)

types

A new DynamicClassAttribute() descriptor provides a way to define
an attribute that acts normally when looked up through an instance object, but
which is routed to the class __getattr__ when looked up through the
class. This allows one to have properties active on a class, and have virtual
attributes on the class with the same name (see Enum for an example).
(Contributed by Ethan Furman in bpo-19030 [https://bugs.python.org/issue19030].)

urllib

urllib.request now supports data: URLs via the
DataHandler class. (Contributed by Mathias Panzenböck
in bpo-16423 [https://bugs.python.org/issue16423].)

The http method that will be used by a Request class
can now be specified by setting a method
class attribute on the subclass. (Contributed by Jason R Coombs in
bpo-18978 [https://bugs.python.org/issue18978].)

Request objects are now reusable: if the
full_url or data
attributes are modified, all relevant internal properties are updated. This
means, for example, that it is now possible to use the same
Request object in more than one
OpenerDirector.open() call with different data arguments, or to
modify a Request's url rather than recomputing it
from scratch. There is also a new
remove_header() method that can be used to remove
headers from a Request. (Contributed by Alexey
Kachayev in bpo-16464 [https://bugs.python.org/issue16464], Daniel Wozniak in bpo-17485 [https://bugs.python.org/issue17485], and Damien Brecht
and Senthil Kumaran in bpo-17272 [https://bugs.python.org/issue17272].)

HTTPError objects now have a
headers attribute that provides access to the
HTTP response headers associated with the error. (Contributed by
Berker Peksag in bpo-15701 [https://bugs.python.org/issue15701].)

unittest

The TestCase class has a new method,
subTest(), that produces a context manager whose
with block becomes a "sub-test". This context manager allows a test
method to dynamically generate subtests by, say, calling the subTest
context manager inside a loop. A single test method can thereby produce an
indefinite number of separately-identified and separately-counted tests, all of
which will run even if one or more of them fail. For example:

class NumbersTest(unittest.TestCase):
 def test_even(self):
 for i in range(6):
 with self.subTest(i=i):
 self.assertEqual(i % 2, 0)

will result in six subtests, each identified in the unittest verbose output
with a label consisting of the variable name i and a particular value for
that variable (i=0, i=1, etc). See Distinguishing test iterations using subtests for the full
version of this example. (Contributed by Antoine Pitrou in bpo-16997 [https://bugs.python.org/issue16997].)

unittest.main() now accepts an iterable of test names for
defaultTest, where previously it only accepted a single test name as a
string. (Contributed by Jyrki Pulliainen in bpo-15132 [https://bugs.python.org/issue15132].)

If SkipTest is raised during test discovery (that is, at the
module level in the test file), it is now reported as a skip instead of an
error. (Contributed by Zach Ware in bpo-16935 [https://bugs.python.org/issue16935].)

discover() now sorts the discovered files to provide
consistent test ordering. (Contributed by Martin Melin and Jeff Ramnani in
bpo-16709 [https://bugs.python.org/issue16709].)

TestSuite now drops references to tests as soon as the test
has been run, if the test is successful. On Python interpreters that do
garbage collection, this allows the tests to be garbage collected if nothing
else is holding a reference to the test. It is possible to override this
behavior by creating a TestSuite subclass that defines a
custom _removeTestAtIndex method. (Contributed by Tom Wardill, Matt
McClure, and Andrew Svetlov in bpo-11798 [https://bugs.python.org/issue11798].)

A new test assertion context-manager, assertLogs(),
will ensure that a given block of code emits a log message using the
logging module. By default the message can come from any logger and
have a priority of INFO or higher, but both the logger name and an
alternative minimum logging level may be specified. The object returned by the
context manager can be queried for the LogRecords and/or
formatted messages that were logged. (Contributed by Antoine Pitrou in
bpo-18937 [https://bugs.python.org/issue18937].)

Test discovery now works with namespace packages (Contributed by Claudiu Popa
in bpo-17457 [https://bugs.python.org/issue17457].)

unittest.mock objects now inspect their specification signatures when
matching calls, which means an argument can now be matched by either position
or name, instead of only by position. (Contributed by Antoine Pitrou in
bpo-17015 [https://bugs.python.org/issue17015].)

mock_open() objects now have readline and readlines
methods. (Contributed by Toshio Kuratomi in bpo-17467 [https://bugs.python.org/issue17467].)

venv

venv now includes activation scripts for the csh and fish
shells. (Contributed by Andrew Svetlov in bpo-15417 [https://bugs.python.org/issue15417].)

EnvBuilder and the create() convenience function
take a new keyword argument with_pip, which defaults to False, that
controls whether or not EnvBuilder ensures that pip is
installed in the virtual environment. (Contributed by Nick Coghlan in
bpo-19552 [https://bugs.python.org/issue19552] as part of the PEP 453 [https://www.python.org/dev/peps/pep-0453] implementation.)

wave

The getparams() method now returns a namedtuple rather than a
plain tuple. (Contributed by Claudiu Popa in bpo-17487 [https://bugs.python.org/issue17487].)

wave.open() now supports the context management protocol. (Contributed
by Claudiu Popa in bpo-17616 [https://bugs.python.org/issue17616].)

wave can now write output to unseekable files. (Contributed by David Jones, Guilherme Polo, and Serhiy
Storchaka in bpo-5202 [https://bugs.python.org/issue5202].)

The writeframesraw() and
writeframes() methods now accept any bytes-like
object. (Contributed by Serhiy Storchaka in bpo-8311 [https://bugs.python.org/issue8311].)

weakref

New WeakMethod class simulates weak references to bound
methods. (Contributed by Antoine Pitrou in bpo-14631 [https://bugs.python.org/issue14631].)

New finalize class makes it possible to register a callback
to be invoked when an object is garbage collected, without needing to
carefully manage the lifecycle of the weak reference itself. (Contributed by
Richard Oudkerk in bpo-15528 [https://bugs.python.org/issue15528].)

The callback, if any, associated with a ref is now
exposed via the __callback__ attribute. (Contributed
by Mark Dickinson in bpo-17643 [https://bugs.python.org/issue17643].)

xml.etree

A new parser, XMLPullParser, allows a
non-blocking applications to parse XML documents. An example can be
seen at Pull API进行非阻塞解析. (Contributed by Antoine
Pitrou in bpo-17741 [https://bugs.python.org/issue17741].)

The xml.etree.ElementTree tostring() and
tostringlist() functions, and the
ElementTree
write() method, now have a
short_empty_elements keyword-only parameter
providing control over whether elements with no content are written in
abbreviated (<tag />) or expanded (<tag></tag>) form. (Contributed by
Ariel Poliak and Serhiy Storchaka in bpo-14377 [https://bugs.python.org/issue14377].)

zipfile

The writepy() method of the
PyZipFile class has a new filterfunc option that can be
used to control which directories and files are added to the archive. For
example, this could be used to exclude test files from the archive.
(Contributed by Christian Tismer in bpo-19274 [https://bugs.python.org/issue19274].)

The allowZip64 parameter to ZipFile and
PyZipfile is now True by default. (Contributed by
William Mallard in bpo-17201 [https://bugs.python.org/issue17201].)

CPython Implementation Changes

PEP 445: Customization of CPython Memory Allocators

PEP 445 [https://www.python.org/dev/peps/pep-0445] adds new C level interfaces to customize memory allocation in
the CPython interpreter.

参见

	PEP 445 [https://www.python.org/dev/peps/pep-0445] -- Add new APIs to customize Python memory allocators
	PEP 由 Victor Stinner 撰写并实现。

PEP 442: Safe Object Finalization

PEP 442 [https://www.python.org/dev/peps/pep-0442] removes the current limitations and quirks of object finalization
in CPython. With it, objects with __del__() methods, as well as
generators with finally clauses, can be finalized when they are
part of a reference cycle.

As part of this change, module globals are no longer forcibly set to
None during interpreter shutdown in most cases, instead relying
on the normal operation of the cyclic garbage collector. This avoids a
whole class of interpreter-shutdown-time errors, usually involving
__del__ methods, that have plagued Python since the cyclic GC
was first introduced.

参见

	PEP 442 [https://www.python.org/dev/peps/pep-0442] -- Safe object finalization
	PEP 由 Antoine Pitrou 撰写并实现

PEP 456: Secure and Interchangeable Hash Algorithm

PEP 456 [https://www.python.org/dev/peps/pep-0456] follows up on earlier security fix work done on Python's hash
algorithm to address certain DOS attacks to which public facing APIs backed by
dictionary lookups may be subject. (See bpo-14621 [https://bugs.python.org/issue14621] for the start of the
current round of improvements.) The PEP unifies CPython's hash code to make it
easier for a packager to substitute a different hash algorithm, and switches
Python's default implementation to a SipHash implementation on platforms that
have a 64 bit data type. Any performance differences in comparison with the
older FNV algorithm are trivial.

The PEP adds additional fields to the sys.hash_info named tuple to
describe the hash algorithm in use by the currently executing binary. Otherwise,
the PEP does not alter any existing CPython APIs.

PEP 436: Argument Clinic

"Argument Clinic" (PEP 436 [https://www.python.org/dev/peps/pep-0436]) is now part of the CPython build process
and can be used to simplify the process of defining and maintaining
accurate signatures for builtins and standard library extension modules
implemented in C.

Some standard library extension modules have been converted to use Argument
Clinic in Python 3.4, and pydoc and inspect have been updated
accordingly.

It is expected that signature metadata for programmatic introspection will
be added to additional callables implemented in C as part of Python 3.4
maintenance releases.

注解

The Argument Clinic PEP is not fully up to date with the state of the
implementation. This has been deemed acceptable by the release manager
and core development team in this case, as Argument Clinic will not
be made available as a public API for third party use in Python 3.4.

参见

	PEP 436 [https://www.python.org/dev/peps/pep-0436] -- The Argument Clinic DSL
	PEP 由 Larry Hastings 撰写并实现

Other Build and C API Changes

	The new PyType_GetSlot() function has been added to the stable ABI,
allowing retrieval of function pointers from named type slots when using
the limited API. (Contributed by Martin von Löwis in bpo-17162 [https://bugs.python.org/issue17162].)

	The new Py_SetStandardStreamEncoding() pre-initialization API
allows applications embedding the CPython interpreter to reliably force
a particular encoding and error handler for the standard streams.
(Contributed by Bastien Montagne and Nick Coghlan in bpo-16129 [https://bugs.python.org/issue16129].)

	Most Python C APIs that don't mutate string arguments are now correctly
marked as accepting const char * rather than char *. (Contributed
by Serhiy Storchaka in bpo-1772673 [https://bugs.python.org/issue1772673].)

	A new shell version of python-config can be used even when a python
interpreter is not available (for example, in cross compilation scenarios).

	PyUnicode_FromFormat() now supports width and precision
specifications for %s, %A, %U, %V, %S, and %R.
(Contributed by Ysj Ray and Victor Stinner in bpo-7330 [https://bugs.python.org/issue7330].)

	New function PyStructSequence_InitType2() supplements the
existing PyStructSequence_InitType() function. The difference
is that it returns 0 on success and -1 on failure.

	The CPython source can now be compiled using the address sanity checking
features of recent versions of GCC and clang: the false alarms in the small
object allocator have been silenced. (Contributed by Dhiru Kholia in
bpo-18596 [https://bugs.python.org/issue18596].)

	The Windows build now uses Address Space Layout Randomization [https://en.wikipedia.org/wiki/Address_space_layout_randomization] and Data Execution Prevention [https://en.wikipedia.org/wiki/Data_Execution_Prevention]. (Contributed by
Christian Heimes in bpo-16632 [https://bugs.python.org/issue16632].)

	New function PyObject_LengthHint() is the C API equivalent
of operator.length_hint(). (Contributed by Armin Ronacher in
bpo-16148 [https://bugs.python.org/issue16148].)

其他改进

	The python command has a new option, -I, which causes it to run in "isolated mode",
which means that sys.path contains neither the script's directory nor
the user's site-packages directory, and all PYTHON* environment
variables are ignored (it implies both -s and -E). Other
restrictions may also be applied in the future, with the goal being to
isolate the execution of a script from the user's environment. This is
appropriate, for example, when Python is used to run a system script. On
most POSIX systems it can and should be used in the #! line of system
scripts. (Contributed by Christian Heimes in bpo-16499 [https://bugs.python.org/issue16499].)

	Tab-completion is now enabled by default in the interactive interpreter
on systems that support readline. History is also enabled by default,
and is written to (and read from) the file ~/.python-history.
(Contributed by Antoine Pitrou and Éric Araujo in bpo-5845 [https://bugs.python.org/issue5845].)

	Invoking the Python interpreter with --version now outputs the version to
standard output instead of standard error (bpo-18338 [https://bugs.python.org/issue18338]). Similar changes
were made to argparse (bpo-18920 [https://bugs.python.org/issue18920]) and other modules that have
script-like invocation capabilities (bpo-18922 [https://bugs.python.org/issue18922]).

	The CPython Windows installer now adds .py to the PATHEXT
variable when extensions are registered, allowing users to run a python
script at the windows command prompt by just typing its name without the
.py extension. (Contributed by Paul Moore in bpo-18569 [https://bugs.python.org/issue18569].)

	A new make target coverage-report [https://devguide.python.org/coverage/#measuring-coverage-of-c-code-with-gcov-and-lcov]
will build python, run the test suite, and generate an HTML coverage report
for the C codebase using gcov and lcov [http://ltp.sourceforge.net/coverage/lcov.php].

	The -R option to the python regression test suite now
also checks for memory allocation leaks, using
sys.getallocatedblocks(). (Contributed by Antoine Pitrou in
bpo-13390 [https://bugs.python.org/issue13390].)

	python -m now works with namespace packages.

	The stat module is now implemented in C, which means it gets the
values for its constants from the C header files, instead of having the
values hard-coded in the python module as was previously the case.

	Loading multiple python modules from a single OS module (.so, .dll)
now works correctly (previously it silently returned the first python
module in the file). (Contributed by Václav Šmilauer in bpo-16421 [https://bugs.python.org/issue16421].)

	A new opcode, LOAD_CLASSDEREF, has been added to fix a bug in the
loading of free variables in class bodies that could be triggered by certain
uses of __prepare__. (Contributed by Benjamin Peterson in
bpo-17853 [https://bugs.python.org/issue17853].)

	A number of MemoryError-related crashes were identified and fixed by Victor
Stinner using his PEP 445 [https://www.python.org/dev/peps/pep-0445]-based pyfailmalloc tool (bpo-18408 [https://bugs.python.org/issue18408],
bpo-18520 [https://bugs.python.org/issue18520]).

	The pyvenv command now accepts a --copies option
to use copies rather than symlinks even on systems where symlinks are the
default. (Contributed by Vinay Sajip in bpo-18807 [https://bugs.python.org/issue18807].)

	The pyvenv command also accepts a --without-pip
option to suppress the otherwise-automatic bootstrapping of pip into
the virtual environment. (Contributed by Nick Coghlan in bpo-19552 [https://bugs.python.org/issue19552]
as part of the PEP 453 [https://www.python.org/dev/peps/pep-0453] implementation.)

	The encoding name is now optional in the value set for the
PYTHONIOENCODING environment variable. This makes it possible to
set just the error handler, without changing the default encoding.
(Contributed by Serhiy Storchaka in bpo-18818 [https://bugs.python.org/issue18818].)

	The bz2, lzma, and gzip module open functions now
support x (exclusive creation) mode. (Contributed by Tim Heaney and
Vajrasky Kok in bpo-19201 [https://bugs.python.org/issue19201], bpo-19222 [https://bugs.python.org/issue19222], and bpo-19223 [https://bugs.python.org/issue19223].)

Significant Optimizations

	The UTF-32 decoder is now 3x to 4x faster. (Contributed by Serhiy Storchaka
in bpo-14625 [https://bugs.python.org/issue14625].)

	The cost of hash collisions for sets is now reduced. Each hash table
probe now checks a series of consecutive, adjacent key/hash pairs before
continuing to make random probes through the hash table. This exploits
cache locality to make collision resolution less expensive.
The collision resolution scheme can be described as a hybrid of linear
probing and open addressing. The number of additional linear probes
defaults to nine. This can be changed at compile-time by defining
LINEAR_PROBES to be any value. Set LINEAR_PROBES=0 to turn-off
linear probing entirely. (Contributed by Raymond Hettinger in
bpo-18771 [https://bugs.python.org/issue18771].)

	The interpreter starts about 30% faster. A couple of measures lead to the
speedup. The interpreter loads fewer modules on startup, e.g. the re,
collections and locale modules and their dependencies are no
longer imported by default. The marshal module has been improved to load
compiled Python code faster. (Contributed by Antoine Pitrou, Christian
Heimes and Victor Stinner in bpo-19219 [https://bugs.python.org/issue19219], bpo-19218 [https://bugs.python.org/issue19218], bpo-19209 [https://bugs.python.org/issue19209],
bpo-19205 [https://bugs.python.org/issue19205] and bpo-9548 [https://bugs.python.org/issue9548].)

	bz2.BZ2File is now as fast or faster than the Python2 version for
most cases. lzma.LZMAFile has also been optimized. (Contributed by
Serhiy Storchaka and Nadeem Vawda in bpo-16034 [https://bugs.python.org/issue16034].)

	random.getrandbits() is 20%-40% faster for small integers (the most
common use case). (Contributed by Serhiy Storchaka in bpo-16674 [https://bugs.python.org/issue16674].)

	By taking advantage of the new storage format for strings, pickling of
strings is now significantly faster. (Contributed by Victor Stinner and
Antoine Pitrou in bpo-15596 [https://bugs.python.org/issue15596].)

	A performance issue in io.FileIO.readall() has been solved. This
particularly affects Windows, and significantly speeds up the case of piping
significant amounts of data through subprocess. (Contributed
by Richard Oudkerk in bpo-15758 [https://bugs.python.org/issue15758].)

	html.escape() is now 10x faster. (Contributed by Matt Bryant in
bpo-18020 [https://bugs.python.org/issue18020].)

	On Windows, the native VirtualAlloc is now used instead of the CRT
malloc in obmalloc. Artificial benchmarks show about a 3% memory
savings.

	os.urandom() now uses a lazily-opened persistent file descriptor
so as to avoid using many file descriptors when run in parallel from
multiple threads. (Contributed by Antoine Pitrou in bpo-18756 [https://bugs.python.org/issue18756].)

弃用

This section covers various APIs and other features that have been deprecated
in Python 3.4, and will be removed in Python 3.5 or later. In most (but not
all) cases, using the deprecated APIs will produce a DeprecationWarning
when the interpreter is run with deprecation warnings enabled (for example, by
using -Wd).

Deprecations in the Python API

	As mentioned in PEP 451: A ModuleSpec Type for the Import System, a number of importlib
methods and functions are deprecated: importlib.find_loader() is
replaced by importlib.util.find_spec();
importlib.machinery.PathFinder.find_module() is replaced by
importlib.machinery.PathFinder.find_spec();
importlib.abc.MetaPathFinder.find_module() is replaced by
importlib.abc.MetaPathFinder.find_spec();
importlib.abc.PathEntryFinder.find_loader() and
find_module() are replaced by
importlib.abc.PathEntryFinder.find_spec(); all of the xxxLoader ABC
load_module methods (importlib.abc.Loader.load_module(),
importlib.abc.InspectLoader.load_module(),
importlib.abc.FileLoader.load_module(),
importlib.abc.SourceLoader.load_module()) should no longer be
implemented, instead loaders should implement an
exec_module method
(importlib.abc.Loader.exec_module(),
importlib.abc.InspectLoader.exec_module()
importlib.abc.SourceLoader.exec_module()) and let the import system
take care of the rest; and
importlib.abc.Loader.module_repr(),
importlib.util.module_for_loader(), importlib.util.set_loader(),
and importlib.util.set_package() are no longer needed because their
functions are now handled automatically by the import system.

	The imp module is pending deprecation. To keep compatibility with
Python 2/3 code bases, the module's removal is currently not scheduled.

	The formatter module is pending deprecation and is slated for removal
in Python 3.6.

	MD5 as the default digestmod for the hmac.new() function is
deprecated. Python 3.6 will require an explicit digest name or constructor as
digestmod argument.

	The internal Netrc class in the ftplib module has been documented
as deprecated in its docstring for quite some time. It now emits a
DeprecationWarning and will be removed completely in Python 3.5.

	The undocumented endtime argument to subprocess.Popen.wait() should
not have been exposed and is hopefully not in use; it is deprecated and
will mostly likely be removed in Python 3.5.

	The strict argument of HTMLParser is deprecated.

	The plistlib readPlist(),
writePlist(), readPlistFromBytes(), and
writePlistToBytes() functions are deprecated in favor of the
corresponding new functions load(), dump(),
loads(), and dumps(). Data()
is deprecated in favor of just using the bytes constructor.

	The sysconfig key SO is deprecated, it has been replaced by
EXT_SUFFIX.

	The U mode accepted by various open functions is deprecated.
In Python3 it does not do anything useful, and should be replaced by
appropriate uses of io.TextIOWrapper (if needed) and its newline
argument.

	The parser argument of xml.etree.ElementTree.iterparse() has
been deprecated, as has the html argument of
XMLParser(). To prepare for the removal of the
latter, all arguments to XMLParser should be passed by keyword.

Deprecated Features

	Running IDLE with the -n flag (no subprocess) is deprecated.
However, the feature will not be removed until bpo-18823 [https://bugs.python.org/issue18823] is resolved.

	The site module adding a "site-python" directory to sys.path, if it
exists, is deprecated (bpo-19375 [https://bugs.python.org/issue19375]).

移除

不再支持的操作系统

从源代码和构建工具中删除了对以下操作系统的支持：

	OS/2 (bpo-16135 [https://bugs.python.org/issue16135]).

	Windows 2000（变更集e52df05b496a）。

	Windows系统中 COMSPEC 指向 command.com 的版本（ bpo-14470 [https://bugs.python.org/issue14470] ）。

	VMS (bpo-16136 [https://bugs.python.org/issue16136]).

API 与特性的移除

The following obsolete and previously deprecated APIs and features have been
removed:

	The unmaintained Misc/TextMate and Misc/vim directories have been
removed (see the devguide [https://devguide.python.org]
for suggestions on what to use instead).

	The SO makefile macro is removed (it was replaced by the
SHLIB_SUFFIX and EXT_SUFFIX macros) (bpo-16754 [https://bugs.python.org/issue16754]).

	The PyThreadState.tick_counter field has been removed; its value has
been meaningless since Python 3.2, when the "new GIL" was introduced
(bpo-19199 [https://bugs.python.org/issue19199]).

	PyLoader and PyPycLoader have been removed from importlib.
(Contributed by Taras Lyapun in bpo-15641 [https://bugs.python.org/issue15641].)

	The strict argument to HTTPConnection and
HTTPSConnection has been removed. HTTP 0.9-style
"Simple Responses" are no longer supported.

	The deprecated urllib.request.Request getter and setter methods
add_data, has_data, get_data, get_type, get_host,
get_selector, set_proxy, get_origin_req_host, and
is_unverifiable have been removed (use direct attribute access instead).

	Support for loading the deprecated TYPE_INT64 has been removed from
marshal. (Contributed by Dan Riti in bpo-15480 [https://bugs.python.org/issue15480].)

	inspect.Signature: positional-only parameters are now required
to have a valid name.

	object.__format__() no longer accepts non-empty format strings, it now
raises a TypeError instead. Using a non-empty string has been
deprecated since Python 3.2. This change has been made to prevent a
situation where previously working (but incorrect) code would start failing
if an object gained a __format__ method, which means that your code may now
raise a TypeError if you are using an 's' format code with objects
that do not have a __format__ method that handles it. See bpo-7994 [https://bugs.python.org/issue7994] for
background.

	difflib.SequenceMatcher.isbjunk() and
difflib.SequenceMatcher.isbpopular() were deprecated in 3.2, and have
now been removed: use x in sm.bjunk and
x in sm.bpopular, where sm is a SequenceMatcher object
(bpo-13248 [https://bugs.python.org/issue13248]).

Code Cleanups

	The unused and undocumented internal Scanner class has been removed from
the pydoc module.

	The private and effectively unused _gestalt module has been removed,
along with the private platform functions _mac_ver_lookup,
_mac_ver_gstalt, and _bcd2str, which would only have ever been called
on badly broken OSX systems (see bpo-18393 [https://bugs.python.org/issue18393]).

	The hardcoded copies of certain stat constants that were included in
the tarfile module namespace have been removed.

移植到 Python 3.4

本节列出了先前描述的更改以及可能需要更改代码的其他错误修正.

 'python' 命令行为的变化

	In a posix shell, setting the PATH environment variable to
an empty value is equivalent to not setting it at all. However, setting
PYTHONPATH to an empty value was not equivalent to not setting it
at all: setting PYTHONPATH to an empty value was equivalent to
setting it to ., which leads to confusion when reasoning by analogy to
how PATH works. The behavior now conforms to the posix convention
for PATH.

	The [X refs, Y blocks] output of a debug (--with-pydebug) build of the
CPython interpreter is now off by default. It can be re-enabled using the
-X showrefcount option. (Contributed by Ezio Melotti in bpo-17323 [https://bugs.python.org/issue17323].)

	The python command and most stdlib scripts (as well as argparse) now
output --version information to stdout instead of stderr (for
issue list see 其他改进 above).

更改的Python API

	The ABCs defined in importlib.abc now either raise the appropriate
exception or return a default value instead of raising
NotImplementedError blindly. This will only affect code calling
super() and falling through all the way to the ABCs. For compatibility,
catch both NotImplementedError or the appropriate exception as needed.

	The module type now initializes the __package__ and __loader__
attributes to None by default. To determine if these attributes were set
in a backwards-compatible fashion, use e.g.
getattr(module, '__loader__', None) is not None. (bpo-17115 [https://bugs.python.org/issue17115].)

	importlib.util.module_for_loader() now sets __loader__ and
__package__ unconditionally to properly support reloading. If this is not
desired then you will need to set these attributes manually. You can use
importlib.util.module_to_load() for module management.

	Import now resets relevant attributes (e.g. __name__, __loader__,
__package__, __file__, __cached__) unconditionally when reloading.
Note that this restores a pre-3.3 behavior in that it means a module is
re-found when re-loaded (bpo-19413 [https://bugs.python.org/issue19413]).

	Frozen packages no longer set __path__ to a list containing the package
name, they now set it to an empty list. The previous behavior could cause
the import system to do the wrong thing on submodule imports if there was
also a directory with the same name as the frozen package. The correct way
to determine if a module is a package or not is to use hasattr(module,
'__path__') (bpo-18065 [https://bugs.python.org/issue18065]).

	Frozen modules no longer define a __file__ attribute. It's semantically
incorrect for frozen modules to set the attribute as they are not loaded from
any explicit location. If you must know that a module comes from frozen code
then you can see if the module's __spec__.location is set to 'frozen',
check if the loader is a subclass of
importlib.machinery.FrozenImporter,
or if Python 2 compatibility is necessary you can use imp.is_frozen().

	py_compile.compile() now raises FileExistsError if the file path
it would write to is a symlink or a non-regular file. This is to act as a
warning that import will overwrite those files with a regular file regardless
of what type of file path they were originally.

	importlib.abc.SourceLoader.get_source() no longer raises
ImportError when the source code being loaded triggers a
SyntaxError or UnicodeDecodeError. As ImportError is
meant to be raised only when source code cannot be found but it should, it was
felt to be over-reaching/overloading of that meaning when the source code is
found but improperly structured. If you were catching ImportError before and
wish to continue to ignore syntax or decoding issues, catch all three
exceptions now.

	functools.update_wrapper() and functools.wraps() now correctly
set the __wrapped__ attribute to the function being wrapped, even if
that function also had its __wrapped__ attribute set. This means
__wrapped__ attributes now correctly link a stack of decorated
functions rather than every __wrapped__ attribute in the chain
referring to the innermost function. Introspection libraries that
assumed the previous behaviour was intentional can use
inspect.unwrap() to access the first function in the chain that has
no __wrapped__ attribute.

	inspect.getfullargspec() has been reimplemented on top of
inspect.signature() and hence handles a much wider variety of callable
objects than it did in the past. It is expected that additional builtin and
extension module callables will gain signature metadata over the course of
the Python 3.4 series. Code that assumes that
inspect.getfullargspec() will fail on non-Python callables may need
to be adjusted accordingly.

	importlib.machinery.PathFinder now passes on the current working
directory to objects in sys.path_hooks for the empty string. This
results in sys.path_importer_cache never containing '', thus
iterating through sys.path_importer_cache based on sys.path
will not find all keys. A module's __file__ when imported in the current
working directory will also now have an absolute path, including when using
-m with the interpreter (except for __main__.__file__ when a script
has been executed directly using a relative path) (Contributed by Brett
Cannon in bpo-18416 [https://bugs.python.org/issue18416]). is specified on the command-line)
(bpo-18416 [https://bugs.python.org/issue18416]).

	The removal of the strict argument to HTTPConnection
and HTTPSConnection changes the meaning of the
remaining arguments if you are specifying them positionally rather than by
keyword. If you've been paying attention to deprecation warnings your code
should already be specifying any additional arguments via keywords.

	Strings between from __future__ import ... statements now always raise
a SyntaxError. Previously if there was no leading docstring, an
interstitial string would sometimes be ignored. This brings CPython into
compliance with the language spec; Jython and PyPy already were.
(bpo-17434 [https://bugs.python.org/issue17434]).

	ssl.SSLSocket.getpeercert() and ssl.SSLSocket.do_handshake()
now raise an OSError with ENOTCONN when the SSLSocket is not
connected, instead of the previous behavior of raising an
AttributeError. In addition, getpeercert()
will raise a ValueError if the handshake has not yet been done.

	base64.b32decode() now raises a binascii.Error when the
input string contains non-b32-alphabet characters, instead of a
TypeError. This particular TypeError was missed when the other
TypeErrors were converted. (Contributed by Serhiy Storchaka in
bpo-18011 [https://bugs.python.org/issue18011].) Note: this change was also inadvertently applied in Python
3.3.3.

	The file attribute is now automatically closed when
the creating cgi.FieldStorage instance is garbage collected. If you
were pulling the file object out separately from the cgi.FieldStorage
instance and not keeping the instance alive, then you should either store the
entire cgi.FieldStorage instance or read the contents of the file
before the cgi.FieldStorage instance is garbage collected.

	Calling read or write on a closed SSL socket now raises an
informative ValueError rather than the previous more mysterious
AttributeError (bpo-9177 [https://bugs.python.org/issue9177]).

	slice.indices() no longer produces an OverflowError for huge
values. As a consequence of this fix, slice.indices() now raises a
ValueError if given a negative length; previously it returned nonsense
values (bpo-14794 [https://bugs.python.org/issue14794]).

	The complex constructor, unlike the cmath functions, was
incorrectly accepting float values if an object's __complex__
special method returned one. This now raises a TypeError.
(bpo-16290 [https://bugs.python.org/issue16290].)

	The int constructor in 3.2 and 3.3 erroneously accepts float
values for the base parameter. It is unlikely anyone was doing this, but
if so, it will now raise a TypeError (bpo-16772 [https://bugs.python.org/issue16772]).

	Defaults for keyword-only arguments are now evaluated after defaults for
regular keyword arguments, instead of before. Hopefully no one wrote any
code that depends on the previous buggy behavior (bpo-16967 [https://bugs.python.org/issue16967]).

	Stale thread states are now cleared after fork(). This may cause
some system resources to be released that previously were incorrectly kept
perpetually alive (for example, database connections kept in thread-local
storage). (bpo-17094 [https://bugs.python.org/issue17094].)

	Parameter names in __annotations__ dicts are now mangled properly,
similarly to __kwdefaults__. (Contributed by Yury Selivanov in
bpo-20625 [https://bugs.python.org/issue20625].)

	hashlib.hash.name now always returns the identifier in lower case.
Previously some builtin hashes had uppercase names, but now that it is a
formal public interface the naming has been made consistent (bpo-18532 [https://bugs.python.org/issue18532]).

	Because unittest.TestSuite now drops references to tests after they
are run, test harnesses that re-use a TestSuite to re-run
a set of tests may fail. Test suites should not be re-used in this fashion
since it means state is retained between test runs, breaking the test
isolation that unittest is designed to provide. However, if the lack
of isolation is considered acceptable, the old behavior can be restored by
creating a TestSuite subclass that defines a
_removeTestAtIndex method that does nothing (see
TestSuite.__iter__()) (bpo-11798 [https://bugs.python.org/issue11798]).

	unittest now uses argparse for command line parsing. There are
certain invalid command forms that used to work that are no longer allowed;
in theory this should not cause backward compatibility issues since the
disallowed command forms didn't make any sense and are unlikely to be in use.

	The re.split(), re.findall(), and re.sub() functions, and
the group() and groups() methods of
match objects now always return a bytes object when the string
to be matched is a bytes-like object. Previously the return type
matched the input type, so if your code was depending on the return value
being, say, a bytearray, you will need to change your code.

	audioop functions now raise an error immediately if passed string
input, instead of failing randomly later on (bpo-16685 [https://bugs.python.org/issue16685]).

	The new convert_charrefs argument to HTMLParser
currently defaults to False for backward compatibility, but will
eventually be changed to default to True. It is recommended that you add
this keyword, with the appropriate value, to any
HTMLParser calls in your code (bpo-13633 [https://bugs.python.org/issue13633]).

	Since the digestmod argument to the hmac.new() function will in the
future have no default, all calls to hmac.new() should be changed to
explicitly specify a digestmod (bpo-17276 [https://bugs.python.org/issue17276]).

	Calling sysconfig.get_config_var() with the SO key, or looking
SO up in the results of a call to sysconfig.get_config_vars()
is deprecated. This key should be replaced by EXT_SUFFIX or
SHLIB_SUFFIX, depending on the context (bpo-19555 [https://bugs.python.org/issue19555]).

	Any calls to open functions that specify U should be modified.
U is ineffective in Python3 and will eventually raise an error if used.
Depending on the function, the equivalent of its old Python2 behavior can be
achieved using either a newline argument, or if necessary by wrapping the
stream in TextIOWrapper to use its newline argument
(bpo-15204 [https://bugs.python.org/issue15204]).

	If you use pyvenv in a script and desire that pip
not be installed, you must add --without-pip to your command
invocation.

	The default behavior of json.dump() and json.dumps() when
an indent is specified has changed: it no longer produces trailing
spaces after the item separating commas at the ends of lines. This
will matter only if you have tests that are doing white-space-sensitive
comparisons of such output (bpo-16333 [https://bugs.python.org/issue16333]).

	doctest now looks for doctests in extension module __doc__
strings, so if your doctest test discovery includes extension modules that
have things that look like doctests in them you may see test failures you've
never seen before when running your tests (bpo-3158 [https://bugs.python.org/issue3158]).

	The collections.abc module has been slightly refactored as
part of the Python startup improvements. As a consequence of this, it is no
longer the case that importing collections automatically imports
collections.abc. If your program depended on the (undocumented)
implicit import, you will need to add an explicit import collections.abc
(bpo-20784 [https://bugs.python.org/issue20784]).

C API 中的改变

	PyEval_EvalFrameEx(), PyObject_Repr(), and
PyObject_Str(), along with some other internal C APIs, now include
a debugging assertion that ensures they are not used in situations where
they may silently discard a currently active exception. In cases where
discarding the active exception is expected and desired (for example,
because it has already been saved locally with PyErr_Fetch() or
is being deliberately replaced with a different exception), an explicit
PyErr_Clear() call will be needed to avoid triggering the
assertion when invoking these operations (directly or indirectly) and
running against a version of Python that is compiled with assertions
enabled.

	PyErr_SetImportError() now sets TypeError when its msg
argument is not set. Previously only NULL was returned with no exception
set.

	The result of the PyOS_ReadlineFunctionPointer callback must
now be a string allocated by PyMem_RawMalloc() or
PyMem_RawRealloc(), or NULL if an error occurred, instead of a
string allocated by PyMem_Malloc() or PyMem_Realloc()
(bpo-16742 [https://bugs.python.org/issue16742])

	PyThread_set_key_value() now always set the value. In Python
3.3, the function did nothing if the key already exists (if the current
value is a non-NULL pointer).

	The f_tstate (thread state) field of the PyFrameObject
structure has been removed to fix a bug: see bpo-14432 [https://bugs.python.org/issue14432] for the
rationale.

3.4.3 的变化

PEP 476: Enabling certificate verification by default for stdlib http clients

http.client and modules which use it, such as urllib.request and
xmlrpc.client, will now verify that the server presents a certificate
which is signed by a CA in the platform trust store and whose hostname matches
the hostname being requested by default, significantly improving security for
many applications.

For applications which require the old previous behavior, they can pass an
alternate context:

import urllib.request
import ssl

This disables all verification
context = ssl._create_unverified_context()

This allows using a specific certificate for the host, which doesn't need
to be in the trust store
context = ssl.create_default_context(cafile="/path/to/file.crt")

urllib.request.urlopen("https://invalid-cert", context=context)

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 3.3 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 3.3 有什么新变化

本文介绍了Python 3.3相比 3.2 的新增特性。Python 3.3于2012年9月29日发布。有关完整详细信息，请参见 changelog [https://docs.python.org/3.3/whatsnew/changelog.html]。

参见

PEP 398 [https://www.python.org/dev/peps/pep-0398] - Python 3.3 发布计划

摘要 - 发布重点

新的语法特性：

	New yield from expression for generator delegation.

	The u'unicode' syntax is accepted again for str objects.

新的库模块：

	faulthandler （帮助调试低级崩溃）

	ipaddress (high-level objects representing IP addresses and masks)

	lzma (compress data using the XZ / LZMA algorithm)

	unittest.mock (replace parts of your system under test with mock objects)

	venv (Python virtual environments, as in the
popular virtualenv package)

新的内置特性：

	重写 I/O 异常的层次结构.

实现的改进：

	基于 importlib 重写 import machinery

	More compact unicode strings.

	More compact attribute dictionaries.

显着改进的库模块：

	C Accelerator for the decimal module.

	Better unicode handling in the email module
(provisional).

安全改进：

	Hash randomization is switched on by default.

Please read on for a comprehensive list of user-facing changes.

PEP 405: 虚拟环境

Virtual environments help create separate Python setups while sharing a
system-wide base install, for ease of maintenance. Virtual environments
have their own set of private site packages (i.e. locally-installed
libraries), and are optionally segregated from the system-wide site
packages. Their concept and implementation are inspired by the popular
virtualenv third-party package, but benefit from tighter integration
with the interpreter core.

This PEP adds the venv module for programmatic access, and the
pyvenv script for command-line access and
administration. The Python interpreter checks for a pyvenv.cfg,
file whose existence signals the base of a virtual environment's directory
tree.

参见

	PEP 405 [https://www.python.org/dev/peps/pep-0405] - Python虚拟环境
	PEP written by Carl Meyer; implementation by Carl Meyer and Vinay Sajip

PEP 420: 隐式命名空间包

Native support for package directories that don't require __init__.py
marker files and can automatically span multiple path segments (inspired by
various third party approaches to namespace packages, as described in
PEP 420 [https://www.python.org/dev/peps/pep-0420])

参见

	PEP 420 [https://www.python.org/dev/peps/pep-0420] - 隐式命名空间包
	PEP 由 Eric V. Smith 撰写，由 Eric V. Smith 和 Barry Warsaw 实现

PEP 3118: 新的内存视图实现和缓冲协议文档

The implementation of PEP 3118 [https://www.python.org/dev/peps/pep-3118] has been significantly improved.

The new memoryview implementation comprehensively fixes all ownership and
lifetime issues of dynamically allocated fields in the Py_buffer struct
that led to multiple crash reports. Additionally, several functions that
crashed or returned incorrect results for non-contiguous or multi-dimensional
input have been fixed.

The memoryview object now has a PEP-3118 compliant getbufferproc()
that checks the consumer's request type. Many new features have been
added, most of them work in full generality for non-contiguous arrays
and arrays with suboffsets.

The documentation has been updated, clearly spelling out responsibilities
for both exporters and consumers. Buffer request flags are grouped into
basic and compound flags. The memory layout of non-contiguous and
multi-dimensional NumPy-style arrays is explained.

相关特性

	All native single character format specifiers in struct module syntax
(optionally prefixed with '@') are now supported.

	With some restrictions, the cast() method allows changing of format and
shape of C-contiguous arrays.

	Multi-dimensional list representations are supported for any array type.

	Multi-dimensional comparisons are supported for any array type.

	One-dimensional memoryviews of hashable (read-only) types with formats B,
b or c are now hashable. (Contributed by Antoine Pitrou in bpo-13411 [https://bugs.python.org/issue13411].)

	Arbitrary slicing of any 1-D arrays type is supported. For example, it
is now possible to reverse a memoryview in O(1) by using a negative step.

API changes

	The maximum number of dimensions is officially limited to 64.

	The representation of empty shape, strides and suboffsets is now
an empty tuple instead of None.

	Accessing a memoryview element with format 'B' (unsigned bytes)
now returns an integer (in accordance with the struct module syntax).
For returning a bytes object the view must be cast to 'c' first.

	memoryview comparisons now use the logical structure of the operands
and compare all array elements by value. All format strings in struct
module syntax are supported. Views with unrecognised format strings
are still permitted, but will always compare as unequal, regardless
of view contents.

	For further changes see Build and C API Changes and Porting C code.

（由 Stefan Krah 在 bpo-10181 [https://bugs.python.org/issue10181] 中贡献。）

参见

PEP 3118 [https://www.python.org/dev/peps/pep-3118] - 修改缓冲区协议

PEP 393: 灵活的字符串表示

The Unicode string type is changed to support multiple internal
representations, depending on the character with the largest Unicode ordinal
(1, 2, or 4 bytes) in the represented string. This allows a space-efficient
representation in common cases, but gives access to full UCS-4 on all
systems. For compatibility with existing APIs, several representations may
exist in parallel; over time, this compatibility should be phased out.

On the Python side, there should be no downside to this change.

On the C API side, PEP 393 is fully backward compatible. The legacy API
should remain available at least five years. Applications using the legacy
API will not fully benefit of the memory reduction, or - worse - may use
a bit more memory, because Python may have to maintain two versions of each
string (in the legacy format and in the new efficient storage).

Functionality

Changes introduced by PEP 393 [https://www.python.org/dev/peps/pep-0393] are the following:

	Python now always supports the full range of Unicode code points, including
non-BMP ones (i.e. from U+0000 to U+10FFFF). The distinction between
narrow and wide builds no longer exists and Python now behaves like a wide
build, even under Windows.

	With the death of narrow builds, the problems specific to narrow builds have
also been fixed, for example:

	len() now always returns 1 for non-BMP characters,
so len('\U0010FFFF') == 1;

	surrogate pairs are not recombined in string literals,
so '\uDBFF\uDFFF' != '\U0010FFFF';

	indexing or slicing non-BMP characters returns the expected value,
so '\U0010FFFF'[0] now returns '\U0010FFFF' and not '\uDBFF';

	all other functions in the standard library now correctly handle
non-BMP code points.

	The value of sys.maxunicode is now always 1114111 (0x10FFFF
in hexadecimal). The PyUnicode_GetMax() function still returns
either 0xFFFF or 0x10FFFF for backward compatibility, and it should
not be used with the new Unicode API (see bpo-13054 [https://bugs.python.org/issue13054]).

	The ./configure flag --with-wide-unicode has been removed.

Performance and resource usage

The storage of Unicode strings now depends on the highest code point in the string:

	pure ASCII and Latin1 strings (U+0000-U+00FF) use 1 byte per code point;

	BMP strings (U+0000-U+FFFF) use 2 bytes per code point;

	non-BMP strings (U+10000-U+10FFFF) use 4 bytes per code point.

The net effect is that for most applications, memory usage of string
storage should decrease significantly - especially compared to former
wide unicode builds - as, in many cases, strings will be pure ASCII
even in international contexts (because many strings store non-human
language data, such as XML fragments, HTTP headers, JSON-encoded data,
etc.). We also hope that it will, for the same reasons, increase CPU
cache efficiency on non-trivial applications. The memory usage of
Python 3.3 is two to three times smaller than Python 3.2, and a little
bit better than Python 2.7, on a Django benchmark (see the PEP for
details).

参见

	PEP 393 [https://www.python.org/dev/peps/pep-0393] - 灵活的字符串表示
	PEP written by Martin von Löwis; implementation by Torsten Becker
and Martin von Löwis.

PEP 397: 适用于Windows的Python启动器

The Python 3.3 Windows installer now includes a py launcher application
that can be used to launch Python applications in a version independent
fashion.

This launcher is invoked implicitly when double-clicking *.py files.
If only a single Python version is installed on the system, that version
will be used to run the file. If multiple versions are installed, the most
recent version is used by default, but this can be overridden by including
a Unix-style "shebang line" in the Python script.

The launcher can also be used explicitly from the command line as the py
application. Running py follows the same version selection rules as
implicitly launching scripts, but a more specific version can be selected
by passing appropriate arguments (such as -3 to request Python 3 when
Python 2 is also installed, or -2.6 to specifically request an earlier
Python version when a more recent version is installed).

In addition to the launcher, the Windows installer now includes an
option to add the newly installed Python to the system PATH. (Contributed
by Brian Curtin in bpo-3561 [https://bugs.python.org/issue3561].)

参见

	PEP 397 [https://www.python.org/dev/peps/pep-0397] - 适用于Windows的Python启动器
	PEP written by Mark Hammond and Martin v. Löwis; implementation by
Vinay Sajip.

Launcher documentation: 适用于Windows的Python启动器

Installer PATH modification: 查找Python可执行文件

PEP 3151: 重写 OS 和 IO 异常的层次结构

The hierarchy of exceptions raised by operating system errors is now both
simplified and finer-grained.

You don't have to worry anymore about choosing the appropriate exception
type between OSError, IOError, EnvironmentError,
WindowsError, mmap.error, socket.error or
select.error. All these exception types are now only one:
OSError. The other names are kept as aliases for compatibility
reasons.

Also, it is now easier to catch a specific error condition. Instead of
inspecting the errno attribute (or args[0]) for a particular
constant from the errno module, you can catch the adequate
OSError subclass. The available subclasses are the following:

	BlockingIOError

	ChildProcessError

	ConnectionError

	FileExistsError

	FileNotFoundError

	InterruptedError

	IsADirectoryError

	NotADirectoryError

	PermissionError

	ProcessLookupError

	TimeoutError

And the ConnectionError itself has finer-grained subclasses:

	BrokenPipeError

	ConnectionAbortedError

	ConnectionRefusedError

	ConnectionResetError

Thanks to the new exceptions, common usages of the errno can now be
avoided. For example, the following code written for Python 3.2:

from errno import ENOENT, EACCES, EPERM

try:
 with open("document.txt") as f:
 content = f.read()
except IOError as err:
 if err.errno == ENOENT:
 print("document.txt file is missing")
 elif err.errno in (EACCES, EPERM):
 print("You are not allowed to read document.txt")
 else:
 raise

can now be written without the errno import and without manual
inspection of exception attributes:

try:
 with open("document.txt") as f:
 content = f.read()
except FileNotFoundError:
 print("document.txt file is missing")
except PermissionError:
 print("You are not allowed to read document.txt")

参见

	PEP 3151 [https://www.python.org/dev/peps/pep-3151] - 重写 OS 和 IO 异常的层次结构
	PEP 由 Antoine Pitrou 撰写并实现

PEP 380: 委托给子生成器的语法

PEP 380 adds the yield from expression, allowing a generator to
delegate
part of its operations to another generator. This allows a section of code
containing yield to be factored out and placed in another generator.
Additionally, the subgenerator is allowed to return with a value, and the
value is made available to the delegating generator.

While designed primarily for use in delegating to a subgenerator, the yield
from expression actually allows delegation to arbitrary subiterators.

For simple iterators, yield from iterable is essentially just a shortened
form of for item in iterable: yield item:

>>> def g(x):
... yield from range(x, 0, -1)
... yield from range(x)
...
>>> list(g(5))
[5, 4, 3, 2, 1, 0, 1, 2, 3, 4]

However, unlike an ordinary loop, yield from allows subgenerators to
receive sent and thrown values directly from the calling scope, and
return a final value to the outer generator:

>>> def accumulate():
... tally = 0
... while 1:
... next = yield
... if next is None:
... return tally
... tally += next
...
>>> def gather_tallies(tallies):
... while 1:
... tally = yield from accumulate()
... tallies.append(tally)
...
>>> tallies = []
>>> acc = gather_tallies(tallies)
>>> next(acc) # Ensure the accumulator is ready to accept values
>>> for i in range(4):
... acc.send(i)
...
>>> acc.send(None) # Finish the first tally
>>> for i in range(5):
... acc.send(i)
...
>>> acc.send(None) # Finish the second tally
>>> tallies
[6, 10]

The main principle driving this change is to allow even generators that are
designed to be used with the send and throw methods to be split into
multiple subgenerators as easily as a single large function can be split into
multiple subfunctions.

参见

	PEP 380 [https://www.python.org/dev/peps/pep-0380] - 委托给子生成器的语法
	PEP 由 Greg Ewing 撰写，由 Greg Ewing 实现。由 Renaud Blanch，Ryan Kelly 和 Nick Coghlan 集成到3.3，由 Zbigniew Jędrzejewski-Szmek 和 Nick Coghlan 编写文档

PEP 409: 清除异常上下文

PEP 409 introduces new syntax that allows the display of the chained
exception context to be disabled. This allows cleaner error messages in
applications that convert between exception types:

>>> class D:
... def __init__(self, extra):
... self._extra_attributes = extra
... def __getattr__(self, attr):
... try:
... return self._extra_attributes[attr]
... except KeyError:
... raise AttributeError(attr) from None
...
>>> D({}).x
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 8, in __getattr__
AttributeError: x

Without the from None suffix to suppress the cause, the original
exception would be displayed by default:

>>> class C:
... def __init__(self, extra):
... self._extra_attributes = extra
... def __getattr__(self, attr):
... try:
... return self._extra_attributes[attr]
... except KeyError:
... raise AttributeError(attr)
...
>>> C({}).x
Traceback (most recent call last):
 File "<stdin>", line 6, in __getattr__
KeyError: 'x'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 8, in __getattr__
AttributeError: x

No debugging capability is lost, as the original exception context remains
available if needed (for example, if an intervening library has incorrectly
suppressed valuable underlying details):

>>> try:
... D({}).x
... except AttributeError as exc:
... print(repr(exc.__context__))
...
KeyError('x',)

参见

	PEP 409 [https://www.python.org/dev/peps/pep-0409] - 清除异常上下文
	PEP 由 Ethan Furman 撰写 ，由 Ethan Furman 和 Nick Coghlan 实现。

PEP 414: 显式的Unicode文本

To ease the transition from Python 2 for Unicode aware Python applications
that make heavy use of Unicode literals, Python 3.3 once again supports the
"u" prefix for string literals. This prefix has no semantic significance
in Python 3, it is provided solely to reduce the number of purely mechanical
changes in migrating to Python 3, making it easier for developers to focus on
the more significant semantic changes (such as the stricter default
separation of binary and text data).

参见

	PEP 414 [https://www.python.org/dev/peps/pep-0414] - 显式的Unicode文本
	PEP 由 Armin Ronacher 撰写

PEP 3155: 类和函数的限定名称

Functions and class objects have a new __qualname__ attribute representing
the "path" from the module top-level to their definition. For global functions
and classes, this is the same as __name__. For other functions and classes,
it provides better information about where they were actually defined, and
how they might be accessible from the global scope.

Example with (non-bound) methods:

>>> class C:
... def meth(self):
... pass
>>> C.meth.__name__
'meth'
>>> C.meth.__qualname__
'C.meth'

Example with nested classes:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.D.__name__
'D'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__name__
'meth'
>>> C.D.meth.__qualname__
'C.D.meth'

Example with nested functions:

>>> def outer():
... def inner():
... pass
... return inner
...
>>> outer().__name__
'inner'
>>> outer().__qualname__
'outer.<locals>.inner'

The string representation of those objects is also changed to include the
new, more precise information:

>>> str(C.D)
"<class '__main__.C.D'>"
>>> str(C.D.meth)
'<function C.D.meth at 0x7f46b9fe31e0>'

参见

	PEP 3155 [https://www.python.org/dev/peps/pep-3155] - 类和函数的限定名称
	PEP 由 Antoine Pitrou 撰写并实现

PEP 412: Key-Sharing Dictionary

Dictionaries used for the storage of objects' attributes are now able to
share part of their internal storage between each other (namely, the part
which stores the keys and their respective hashes). This reduces the memory
consumption of programs creating many instances of non-builtin types.

参见

	PEP 412 [https://www.python.org/dev/peps/pep-0412] - Key-Sharing Dictionary
	PEP 由 Mark Shannon 撰写并实现。

PEP 362: 函数签名对象

A new function inspect.signature() makes introspection of python
callables easy and straightforward. A broad range of callables is supported:
python functions, decorated or not, classes, and functools.partial()
objects. New classes inspect.Signature, inspect.Parameter
and inspect.BoundArguments hold information about the call signatures,
such as, annotations, default values, parameters kinds, and bound arguments,
which considerably simplifies writing decorators and any code that validates
or amends calling signatures or arguments.

参见

	PEP 362 [https://www.python.org/dev/peps/pep-0362]: - 函数签名对象
	PEP 由 Brett Cannon，Yury Selivanov，Larry Hastings，Jiwon Seo 撰写，由 Yury Selivanov 实现

PEP 421: 添加 sys.implementation

A new attribute on the sys module exposes details specific to the
implementation of the currently running interpreter. The initial set of
attributes on sys.implementation are name, version,
hexversion, and cache_tag.

The intention of sys.implementation is to consolidate into one namespace
the implementation-specific data used by the standard library. This allows
different Python implementations to share a single standard library code base
much more easily. In its initial state, sys.implementation holds only a
small portion of the implementation-specific data. Over time that ratio will
shift in order to make the standard library more portable.

One example of improved standard library portability is cache_tag. As of
Python 3.3, sys.implementation.cache_tag is used by importlib to
support PEP 3147 [https://www.python.org/dev/peps/pep-3147] compliance. Any Python implementation that uses
importlib for its built-in import system may use cache_tag to control
the caching behavior for modules.

SimpleNamespace

The implementation of sys.implementation also introduces a new type to
Python: types.SimpleNamespace. In contrast to a mapping-based
namespace, like dict, SimpleNamespace is attribute-based, like
object. However, unlike object, SimpleNamespace instances
are writable. This means that you can add, remove, and modify the namespace
through normal attribute access.

参见

	PEP 421 [https://www.python.org/dev/peps/pep-0421] - 添加 sys.implementation
	PEP 由 Eric Snow 撰写并实现

Using importlib as the Implementation of Import

bpo-2377 [https://bugs.python.org/issue2377] - Replace __import__ w/ importlib.__import__
bpo-13959 [https://bugs.python.org/issue13959] - Re-implement parts of imp in pure Python
bpo-14605 [https://bugs.python.org/issue14605] - Make import machinery explicit
bpo-14646 [https://bugs.python.org/issue14646] - Require loaders set __loader__ and __package__

The __import__() function is now powered by importlib.__import__().
This work leads to the completion of "phase 2" of PEP 302 [https://www.python.org/dev/peps/pep-0302]. There are
multiple benefits to this change. First, it has allowed for more of the
machinery powering import to be exposed instead of being implicit and hidden
within the C code. It also provides a single implementation for all Python VMs
supporting Python 3.3 to use, helping to end any VM-specific deviations in
import semantics. And finally it eases the maintenance of import, allowing for
future growth to occur.

For the common user, there should be no visible change in semantics. For
those whose code currently manipulates import or calls import
programmatically, the code changes that might possibly be required are covered
in the Porting Python code section of this document.

New APIs

One of the large benefits of this work is the exposure of what goes into
making the import statement work. That means the various importers that were
once implicit are now fully exposed as part of the importlib package.

The abstract base classes defined in importlib.abc have been expanded
to properly delineate between meta path finders
and path entry finders by introducing
importlib.abc.MetaPathFinder and
importlib.abc.PathEntryFinder, respectively. The old ABC of
importlib.abc.Finder is now only provided for backwards-compatibility
and does not enforce any method requirements.

In terms of finders, importlib.machinery.FileFinder exposes the
mechanism used to search for source and bytecode files of a module. Previously
this class was an implicit member of sys.path_hooks.

For loaders, the new abstract base class importlib.abc.FileLoader helps
write a loader that uses the file system as the storage mechanism for a module's
code. The loader for source files
(importlib.machinery.SourceFileLoader), sourceless bytecode files
(importlib.machinery.SourcelessFileLoader), and extension modules
(importlib.machinery.ExtensionFileLoader) are now available for
direct use.

ImportError now has name and path attributes which are set when
there is relevant data to provide. The message for failed imports will also
provide the full name of the module now instead of just the tail end of the
module's name.

The importlib.invalidate_caches() function will now call the method with
the same name on all finders cached in sys.path_importer_cache to help
clean up any stored state as necessary.

Visible Changes

For potential required changes to code, see the Porting Python code
section.

Beyond the expanse of what importlib now exposes, there are other
visible changes to import. The biggest is that sys.meta_path and
sys.path_hooks now store all of the meta path finders and path entry
hooks used by import. Previously the finders were implicit and hidden within
the C code of import instead of being directly exposed. This means that one can
now easily remove or change the order of the various finders to fit one's needs.

Another change is that all modules have a __loader__ attribute, storing the
loader used to create the module. PEP 302 [https://www.python.org/dev/peps/pep-0302] has been updated to make this
attribute mandatory for loaders to implement, so in the future once 3rd-party
loaders have been updated people will be able to rely on the existence of the
attribute. Until such time, though, import is setting the module post-load.

Loaders are also now expected to set the __package__ attribute from
PEP 366 [https://www.python.org/dev/peps/pep-0366]. Once again, import itself is already setting this on all loaders
from importlib and import itself is setting the attribute post-load.

None is now inserted into sys.path_importer_cache when no finder
can be found on sys.path_hooks. Since imp.NullImporter is not
directly exposed on sys.path_hooks it could no longer be relied upon to
always be available to use as a value representing no finder found.

All other changes relate to semantic changes which should be taken into
consideration when updating code for Python 3.3, and thus should be read about
in the Porting Python code section of this document.

(Implementation by Brett Cannon)

其他语言特性修改

对Python 语言核心进行的小改动：

	Added support for Unicode name aliases and named sequences.
Both unicodedata.lookup() and '\N{...}' now resolve name aliases,
and unicodedata.lookup() resolves named sequences too.

（由 Ezio Melotti 在 bpo-12753 [https://bugs.python.org/issue12753] 中贡献。）

	Unicode database updated to UCD version 6.1.0

	Equality comparisons on range() objects now return a result reflecting
the equality of the underlying sequences generated by those range objects.
(bpo-13201 [https://bugs.python.org/issue13201])

	The count(), find(), rfind(), index() and rindex()
methods of bytes and bytearray objects now accept an
integer between 0 and 255 as their first argument.

（由 Petri Lehtinen 在 bpo-12170 [https://bugs.python.org/issue12170] 中贡献。）

	The rjust(), ljust(), and center() methods of bytes
and bytearray now accept a bytearray for the fill
argument. (Contributed by Petri Lehtinen in bpo-12380 [https://bugs.python.org/issue12380].)

	New methods have been added to list and bytearray:
copy() and clear() (bpo-10516 [https://bugs.python.org/issue10516]). Consequently,
MutableSequence now also defines a
clear() method (bpo-11388 [https://bugs.python.org/issue11388]).

	Raw bytes literals can now be written rb"..." as well as br"...".

（由 Antoine Pitrou 在 bpo-13748 [https://bugs.python.org/issue13748] 中贡献。）

	dict.setdefault() now does only one lookup for the given key, making
it atomic when used with built-in types.

（由 Filip Gruszczyński 在 bpo-13521 [https://bugs.python.org/issue13521] 中贡献。）

	The error messages produced when a function call does not match the function
signature have been significantly improved.

（由 Benjamin Peterson 贡献。）

A Finer-Grained Import Lock

Previous versions of CPython have always relied on a global import lock.
This led to unexpected annoyances, such as deadlocks when importing a module
would trigger code execution in a different thread as a side-effect.
Clumsy workarounds were sometimes employed, such as the
PyImport_ImportModuleNoBlock() C API function.

In Python 3.3, importing a module takes a per-module lock. This correctly
serializes importation of a given module from multiple threads (preventing
the exposure of incompletely initialized modules), while eliminating the
aforementioned annoyances.

（由 Antoine Pitrou 在 bpo-9260 [https://bugs.python.org/issue9260] 中贡献。）

Builtin functions and types

	open() gets a new opener parameter: the underlying file descriptor
for the file object is then obtained by calling opener with (file,
flags). It can be used to use custom flags like os.O_CLOEXEC for
example. The 'x' mode was added: open for exclusive creation, failing if
the file already exists.

	print(): added the flush keyword argument. If the flush keyword
argument is true, the stream is forcibly flushed.

	hash(): hash randomization is enabled by default, see
object.__hash__() and PYTHONHASHSEED.

	The str type gets a new casefold() method: return a
casefolded copy of the string, casefolded strings may be used for caseless
matching. For example, 'ß'.casefold() returns 'ss'.

	The sequence documentation has been substantially rewritten to better
explain the binary/text sequence distinction and to provide specific
documentation sections for the individual builtin sequence types
(bpo-4966 [https://bugs.python.org/issue4966]).

新增模块

faulthandler

This new debug module faulthandler contains functions to dump Python tracebacks explicitly,
on a fault (a crash like a segmentation fault), after a timeout, or on a user
signal. Call faulthandler.enable() to install fault handlers for the
SIGSEGV, SIGFPE, SIGABRT, SIGBUS, and
SIGILL signals. You can also enable them at startup by setting the
PYTHONFAULTHANDLER environment variable or by using -X
faulthandler command line option.

Example of a segmentation fault on Linux:

$ python -q -X faulthandler
>>> import ctypes
>>> ctypes.string_at(0)
Fatal Python error: Segmentation fault

Current thread 0x00007fb899f39700:
 File "/home/python/cpython/Lib/ctypes/__init__.py", line 486 in string_at
 File "<stdin>", line 1 in <module>
Segmentation fault

ipaddress

The new ipaddress module provides tools for creating and manipulating
objects representing IPv4 and IPv6 addresses, networks and interfaces (i.e.
an IP address associated with a specific IP subnet).

（由 Google 和 Peter Moody 在 bpo-3144 [https://bugs.python.org/issue3144] 中贡献。）

lzma

The newly-added lzma module provides data compression and decompression
using the LZMA algorithm, including support for the .xz and .lzma
file formats.

（由 Nadeem Vawda 和 Per Øyvind Karlsen 在 bpo-16531 [https://bugs.python.org/issue16531] 中贡献。）

改进的模块

abc

Improved support for abstract base classes containing descriptors composed with
abstract methods. The recommended approach to declaring abstract descriptors is
now to provide __isabstractmethod__ as a dynamically updated
property. The built-in descriptors have been updated accordingly.

	abc.abstractproperty has been deprecated, use property
with abc.abstractmethod() instead.

	abc.abstractclassmethod has been deprecated, use
classmethod with abc.abstractmethod() instead.

	abc.abstractstaticmethod has been deprecated, use
staticmethod with abc.abstractmethod() instead.

（由 Pablo Galindo 在 bpo-11610 [https://bugs.python.org/issue11610] 中贡献。）

abc.ABCMeta.register() now returns the registered subclass, which means
it can now be used as a class decorator (bpo-10868 [https://bugs.python.org/issue10868]).

array

The array module supports the long long type using q and
Q type codes.

（由 Oren Tirosh 和 Hirokazu Yamamoto 在 bpo-1172711 [https://bugs.python.org/issue1172711] 中贡献。）

base64

ASCII-only Unicode strings are now accepted by the decoding functions of the
base64 modern interface. For example, base64.b64decode('YWJj')
returns b'abc'. (Contributed by Catalin Iacob in bpo-13641 [https://bugs.python.org/issue13641].)

binascii

In addition to the binary objects they normally accept, the a2b_ functions
now all also accept ASCII-only strings as input. (Contributed by Antoine
Pitrou in bpo-13637 [https://bugs.python.org/issue13637].)

bz2

The bz2 module has been rewritten from scratch. In the process, several
new features have been added:

	New bz2.open() function: open a bzip2-compressed file in binary or
text mode.

	bz2.BZ2File can now read from and write to arbitrary file-like
objects, by means of its constructor's fileobj argument.

（由 Nadeem Vawda 在 bpo-5863 [https://bugs.python.org/issue5863] 中贡献。）

	bz2.BZ2File and bz2.decompress() can now decompress
multi-stream inputs (such as those produced by the pbzip2 tool).
bz2.BZ2File can now also be used to create this type of file, using
the 'a' (append) mode.

（由 Nir Aides 在 bpo-1625 [https://bugs.python.org/issue1625] 中贡献。）

	bz2.BZ2File now implements all of the io.BufferedIOBase API,
except for the detach() and truncate() methods.

codecs

The mbcs codec has been rewritten to handle correctly
replace and ignore error handlers on all Windows versions. The
mbcs codec now supports all error handlers, instead of only
replace to encode and ignore to decode.

A new Windows-only codec has been added: cp65001 (bpo-13216 [https://bugs.python.org/issue13216]). It is the
Windows code page 65001 (Windows UTF-8, CP_UTF8). For example, it is used
by sys.stdout if the console output code page is set to cp65001 (e.g., using
chcp 65001 command).

Multibyte CJK decoders now resynchronize faster. They only ignore the first
byte of an invalid byte sequence. For example, b'\xff\n'.decode('gb2312',
'replace') now returns a \n after the replacement character.

(bpo-12016 [https://bugs.python.org/issue12016])

Incremental CJK codec encoders are no longer reset at each call to their
encode() methods. For example:

>>> import codecs
>>> encoder = codecs.getincrementalencoder('hz')('strict')
>>> b''.join(encoder.encode(x) for x in '\u52ff\u65bd\u65bc\u4eba\u3002 Bye.')
b'~{NpJ)l6HK!#~} Bye.'

This example gives b'~{Np~}~{J)~}~{l6~}~{HK~}~{!#~} Bye.' with older Python
versions.

(bpo-12100 [https://bugs.python.org/issue12100])

The unicode_internal codec has been deprecated.

collections

Addition of a new ChainMap class to allow treating a
number of mappings as a single unit. (Written by Raymond Hettinger for
bpo-11089 [https://bugs.python.org/issue11089], made public in bpo-11297 [https://bugs.python.org/issue11297].)

The abstract base classes have been moved in a new collections.abc
module, to better differentiate between the abstract and the concrete
collections classes. Aliases for ABCs are still present in the
collections module to preserve existing imports. (bpo-11085 [https://bugs.python.org/issue11085])

The Counter class now supports the unary + and -
operators, as well as the in-place operators +=, -=, |=, and
&=. (Contributed by Raymond Hettinger in bpo-13121 [https://bugs.python.org/issue13121].)

contextlib

ExitStack now provides a solid foundation for
programmatic manipulation of context managers and similar cleanup
functionality. Unlike the previous contextlib.nested API (which was
deprecated and removed), the new API is designed to work correctly
regardless of whether context managers acquire their resources in
their __init__ method (for example, file objects) or in their
__enter__ method (for example, synchronisation objects from the
threading module).

(bpo-13585 [https://bugs.python.org/issue13585])

crypt

Addition of salt and modular crypt format (hashing method) and the mksalt()
function to the crypt module.

(bpo-10924 [https://bugs.python.org/issue10924])

curses

	If the curses module is linked to the ncursesw library, use Unicode
functions when Unicode strings or characters are passed (e.g.
waddwstr()), and bytes functions otherwise (e.g. waddstr()).

	Use the locale encoding instead of utf-8 to encode Unicode strings.

	curses.window has a new curses.window.encoding attribute.

	The curses.window class has a new get_wch()
method to get a wide character

	The curses module has a new unget_wch() function to
push a wide character so the next get_wch() will return
it

（由 Iñigo Serna 在 bpo-6755 [https://bugs.python.org/issue6755] 中贡献。）

datetime

	Equality comparisons between naive and aware datetime
instances now return False instead of raising TypeError
(bpo-15006 [https://bugs.python.org/issue15006]).

	New datetime.datetime.timestamp() method: Return POSIX timestamp
corresponding to the datetime instance.

	The datetime.datetime.strftime() method supports formatting years
older than 1000.

	The datetime.datetime.astimezone() method can now be
called without arguments to convert datetime instance to the system
timezone.

decimal

	bpo-7652 [https://bugs.python.org/issue7652] - integrate fast native decimal arithmetic.
	C-module and libmpdec written by Stefan Krah.

The new C version of the decimal module integrates the high speed libmpdec
library for arbitrary precision correctly-rounded decimal floating point
arithmetic. libmpdec conforms to IBM's General Decimal Arithmetic Specification.

Performance gains range from 10x for database applications to 100x for
numerically intensive applications. These numbers are expected gains
for standard precisions used in decimal floating point arithmetic. Since
the precision is user configurable, the exact figures may vary. For example,
in integer bignum arithmetic the differences can be significantly higher.

The following table is meant as an illustration. Benchmarks are available
at http://www.bytereef.org/mpdecimal/quickstart.html.

	
	decimal.py

	_decimal

	加速

	pi

	42.02秒

	0.345秒

	120倍

	telco

	172.19秒

	5.68秒

	30倍

	psycopg

	3.57秒

	0.29秒

	12倍

相关特性

	The FloatOperation signal optionally enables stricter
semantics for mixing floats and Decimals.

	If Python is compiled without threads, the C version automatically
disables the expensive thread local context machinery. In this case,
the variable HAVE_THREADS is set to False.

API changes

	C模块上下文限制（如下表），具体取决于计算机体系结构：

	
	32位

	64位

	MAX_PREC

	425000000

	999999999999999999

	MAX_EMAX

	425000000

	999999999999999999

	MIN_EMIN

	-425000000

	-999999999999999999

	In the context templates (DefaultContext,
BasicContext and ExtendedContext)
the magnitude of Emax and
Emin has changed to 999999.

	The Decimal constructor in decimal.py does not observe
the context limits and converts values with arbitrary exponents or precision
exactly. Since the C version has internal limits, the following scheme is
used: If possible, values are converted exactly, otherwise
InvalidOperation is raised and the result is NaN. In the
latter case it is always possible to use create_decimal()
in order to obtain a rounded or inexact value.

	The power function in decimal.py is always correctly-rounded. In the
C version, it is defined in terms of the correctly-rounded
exp() and ln() functions,
but the final result is only "almost always correctly rounded".

	In the C version, the context dictionary containing the signals is a
MutableMapping. For speed reasons,
flags and traps always
refer to the same MutableMapping that the context
was initialized with. If a new signal dictionary is assigned,
flags and traps
are updated with the new values, but they do not reference the RHS
dictionary.

	Pickling a Context produces a different output in order
to have a common interchange format for the Python and C versions.

	The order of arguments in the Context constructor has been
changed to match the order displayed by repr().

	The watchexp parameter in the quantize() method
is deprecated.

email

Policy Framework

The email package now has a policy framework. A
Policy is an object with several methods and properties
that control how the email package behaves. The primary policy for Python 3.3
is the Compat32 policy, which provides backward
compatibility with the email package in Python 3.2. A policy can be
specified when an email message is parsed by a parser, or when a
Message object is created, or when an email is
serialized using a generator. Unless overridden, a policy passed
to a parser is inherited by all the Message object and sub-objects
created by the parser. By default a generator will use the policy of
the Message object it is serializing. The default policy is
compat32.

The minimum set of controls implemented by all policy objects are:

	max_line_length

	The maximum length, excluding the linesep character(s),
individual lines may have when a Message is
serialized. Defaults to 78.

	linesep

	The character used to separate individual lines when a
Message is serialized. Defaults to \n.

	cte_type

	7bit or 8bit. 8bit applies only to a
Bytes generator, and means that non-ASCII may
be used where allowed by the protocol (or where it
exists in the original input).

	raise_on_defect

	Causes a parser to raise error when defects are
encountered instead of adding them to the Message
object's defects list.

A new policy instance, with new settings, is created using the
clone() method of policy objects. clone takes
any of the above controls as keyword arguments. Any control not specified in
the call retains its default value. Thus you can create a policy that uses
\r\n linesep characters like this:

mypolicy = compat32.clone(linesep='\r\n')

Policies can be used to make the generation of messages in the format needed by
your application simpler. Instead of having to remember to specify
linesep='\r\n' in all the places you call a generator, you can specify
it once, when you set the policy used by the parser or the Message,
whichever your program uses to create Message objects. On the other hand,
if you need to generate messages in multiple forms, you can still specify the
parameters in the appropriate generator call. Or you can have custom
policy instances for your different cases, and pass those in when you create
the generator.

Provisional Policy with New Header API

While the policy framework is worthwhile all by itself, the main motivation for
introducing it is to allow the creation of new policies that implement new
features for the email package in a way that maintains backward compatibility
for those who do not use the new policies. Because the new policies introduce a
new API, we are releasing them in Python 3.3 as a provisional policy. Backwards incompatible changes (up to and including
removal of the code) may occur if deemed necessary by the core developers.

The new policies are instances of EmailPolicy,
and add the following additional controls:

	refold_source

	Controls whether or not headers parsed by a
parser are refolded by the
generator. It can be none, long,
or all. The default is long, which means that
source headers with a line longer than
max_line_length get refolded. none means no
line get refolded, and all means that all lines
get refolded.

	header_factory

	A callable that take a name and value and
produces a custom header object.

The header_factory is the key to the new features provided by the new
policies. When one of the new policies is used, any header retrieved from
a Message object is an object produced by the header_factory, and any
time you set a header on a Message it becomes an object produced by
header_factory. All such header objects have a name attribute equal
to the header name. Address and Date headers have additional attributes
that give you access to the parsed data of the header. This means you can now
do things like this:

>>> m = Message(policy=SMTP)
>>> m['To'] = 'Éric <foo@example.com>'
>>> m['to']
'Éric <foo@example.com>'
>>> m['to'].addresses
(Address(display_name='Éric', username='foo', domain='example.com'),)
>>> m['to'].addresses[0].username
'foo'
>>> m['to'].addresses[0].display_name
'Éric'
>>> m['Date'] = email.utils.localtime()
>>> m['Date'].datetime
datetime.datetime(2012, 5, 25, 21, 39, 24, 465484, tzinfo=datetime.timezone(datetime.timedelta(-1, 72000), 'EDT'))
>>> m['Date']
'Fri, 25 May 2012 21:44:27 -0400'
>>> print(m)
To: =?utf-8?q?=C3=89ric?= <foo@example.com>
Date: Fri, 25 May 2012 21:44:27 -0400

You will note that the unicode display name is automatically encoded as
utf-8 when the message is serialized, but that when the header is accessed
directly, you get the unicode version. This eliminates any need to deal with
the email.header decode_header() or
make_header() functions.

You can also create addresses from parts:

>>> m['cc'] = [Group('pals', [Address('Bob', 'bob', 'example.com'),
... Address('Sally', 'sally', 'example.com')]),
... Address('Bonzo', addr_spec='bonz@laugh.com')]
>>> print(m)
To: =?utf-8?q?=C3=89ric?= <foo@example.com>
Date: Fri, 25 May 2012 21:44:27 -0400
cc: pals: Bob <bob@example.com>, Sally <sally@example.com>;, Bonzo <bonz@laugh.com>

Decoding to unicode is done automatically:

>>> m2 = message_from_string(str(m))
>>> m2['to']
'Éric <foo@example.com>'

When you parse a message, you can use the addresses and groups
attributes of the header objects to access the groups and individual
addresses:

>>> m2['cc'].addresses
(Address(display_name='Bob', username='bob', domain='example.com'), Address(display_name='Sally', username='sally', domain='example.com'), Address(display_name='Bonzo', username='bonz', domain='laugh.com'))
>>> m2['cc'].groups
(Group(display_name='pals', addresses=(Address(display_name='Bob', username='bob', domain='example.com'), Address(display_name='Sally', username='sally', domain='example.com')), Group(display_name=None, addresses=(Address(display_name='Bonzo', username='bonz', domain='laugh.com'),))

In summary, if you use one of the new policies, header manipulation works the
way it ought to: your application works with unicode strings, and the email
package transparently encodes and decodes the unicode to and from the RFC
standard Content Transfer Encodings.

Other API Changes

New BytesHeaderParser, added to the parser
module to complement HeaderParser and complete the Bytes
API.

New utility functions:

	format_datetime(): given a datetime,
produce a string formatted for use in an email header.

	parsedate_to_datetime(): given a date string from
an email header, convert it into an aware datetime,
or a naive datetime if the offset is -0000.

	localtime(): With no argument, returns the
current local time as an aware datetime using the local
timezone. Given an aware datetime,
converts it into an aware datetime using the
local timezone.

ftplib

	ftplib.FTP now accepts a source_address keyword argument to
specify the (host, port) to use as the source address in the bind call
when creating the outgoing socket. (Contributed by Giampaolo Rodolà
in bpo-8594 [https://bugs.python.org/issue8594].)

	The FTP_TLS class now provides a new
ccc() function to revert control channel back to
plaintext. This can be useful to take advantage of firewalls that know how
to handle NAT with non-secure FTP without opening fixed ports. (Contributed
by Giampaolo Rodolà in bpo-12139 [https://bugs.python.org/issue12139].)

	Added ftplib.FTP.mlsd() method which provides a parsable directory
listing format and deprecates ftplib.FTP.nlst() and
ftplib.FTP.dir(). (Contributed by Giampaolo Rodolà in bpo-11072 [https://bugs.python.org/issue11072].)

functools

The functools.lru_cache() decorator now accepts a typed keyword
argument (that defaults to False to ensure that it caches values of
different types that compare equal in separate cache slots. (Contributed
by Raymond Hettinger in bpo-13227 [https://bugs.python.org/issue13227].)

gc

It is now possible to register callbacks invoked by the garbage collector
before and after collection using the new callbacks list.

hmac

A new compare_digest() function has been added to prevent side
channel attacks on digests through timing analysis. (Contributed by Nick
Coghlan and Christian Heimes in bpo-15061 [https://bugs.python.org/issue15061].)

http

http.server.BaseHTTPRequestHandler now buffers the headers and writes
them all at once when end_headers() is
called. A new method flush_headers()
can be used to directly manage when the accumulated headers are sent.
(Contributed by Andrew Schaaf in bpo-3709 [https://bugs.python.org/issue3709].)

http.server now produces valid HTML 4.01 strict output.
(Contributed by Ezio Melotti in bpo-13295 [https://bugs.python.org/issue13295].)

http.client.HTTPResponse now has a
readinto() method, which means it can be used
as an io.RawIOBase class. (Contributed by John Kuhn in
bpo-13464 [https://bugs.python.org/issue13464].)

html

html.parser.HTMLParser is now able to parse broken markup without
raising errors, therefore the strict argument of the constructor and the
HTMLParseError exception are now deprecated.
The ability to parse broken markup is the result of a number of bug fixes that
are also available on the latest bug fix releases of Python 2.7/3.2.
(Contributed by Ezio Melotti in bpo-15114 [https://bugs.python.org/issue15114], and bpo-14538 [https://bugs.python.org/issue14538],
bpo-13993 [https://bugs.python.org/issue13993], bpo-13960 [https://bugs.python.org/issue13960], bpo-13358 [https://bugs.python.org/issue13358], bpo-1745761 [https://bugs.python.org/issue1745761],
bpo-755670 [https://bugs.python.org/issue755670], bpo-13357 [https://bugs.python.org/issue13357], bpo-12629 [https://bugs.python.org/issue12629], bpo-1200313 [https://bugs.python.org/issue1200313],
bpo-670664 [https://bugs.python.org/issue670664], bpo-13273 [https://bugs.python.org/issue13273], bpo-12888 [https://bugs.python.org/issue12888], bpo-7311 [https://bugs.python.org/issue7311].)

A new html5 dictionary that maps HTML5 named character
references to the equivalent Unicode character(s) (e.g. html5['gt;'] ==
'>') has been added to the html.entities module. The dictionary is
now also used by HTMLParser. (Contributed by Ezio
Melotti in bpo-11113 [https://bugs.python.org/issue11113] and bpo-15156 [https://bugs.python.org/issue15156].)

imaplib

The IMAP4_SSL constructor now accepts an SSLContext
parameter to control parameters of the secure channel.

（由 Sijin Joseph 在 bpo-8808 [https://bugs.python.org/issue8808] 中贡献。）

inspect

A new getclosurevars() function has been added. This function
reports the current binding of all names referenced from the function body and
where those names were resolved, making it easier to verify correct internal
state when testing code that relies on stateful closures.

由 Meador Inge 和 Nick Coghlan 在 bpo-13062 [https://bugs.python.org/issue13062] 中贡献。

A new getgeneratorlocals() function has been added. This
function reports the current binding of local variables in the generator's
stack frame, making it easier to verify correct internal state when testing
generators.

（由 Meador Inge 在 bpo-15153 [https://bugs.python.org/issue15153] 中贡献。）

io

The open() function has a new 'x' mode that can be used to
exclusively create a new file, and raise a FileExistsError if the file
already exists. It is based on the C11 'x' mode to fopen().

（由 David Townshend 在 bpo-12760 [https://bugs.python.org/issue12760] 中贡献。）

The constructor of the TextIOWrapper class has a new
write_through optional argument. If write_through is True, calls to
write() are guaranteed not to be buffered: any data
written on the TextIOWrapper object is immediately handled to its
underlying binary buffer.

itertools

accumulate() now takes an optional func argument for
providing a user-supplied binary function.

logging

The basicConfig() function now supports an optional handlers
argument taking an iterable of handlers to be added to the root logger.

A class level attribute append_nul has
been added to SysLogHandler to allow control of the
appending of the NUL (\000) byte to syslog records, since for some
daemons it is required while for others it is passed through to the log.

math

The math module has a new function, log2(), which returns
the base-2 logarithm of x.

(Written by Mark Dickinson in bpo-11888 [https://bugs.python.org/issue11888].)

mmap

The read() method is now more compatible with other file-like
objects: if the argument is omitted or specified as None, it returns the
bytes from the current file position to the end of the mapping. (Contributed
by Petri Lehtinen in bpo-12021 [https://bugs.python.org/issue12021].)

multiprocessing

The new multiprocessing.connection.wait() function allows polling
multiple objects (such as connections, sockets and pipes) with a timeout.
(Contributed by Richard Oudkerk in bpo-12328 [https://bugs.python.org/issue12328].)

multiprocessing.Connection objects can now be transferred over
multiprocessing connections.
(Contributed by Richard Oudkerk in bpo-4892 [https://bugs.python.org/issue4892].)

multiprocessing.Process now accepts a daemon keyword argument
to override the default behavior of inheriting the daemon flag from
the parent process (bpo-6064 [https://bugs.python.org/issue6064]).

New attribute multiprocessing.Process.sentinel allows a
program to wait on multiple Process objects at one
time using the appropriate OS primitives (for example, select on
posix systems).

New methods multiprocessing.pool.Pool.starmap() and
starmap_async() provide
itertools.starmap() equivalents to the existing
multiprocessing.pool.Pool.map() and
map_async() functions. (Contributed by Hynek
Schlawack in bpo-12708 [https://bugs.python.org/issue12708].)

nntplib

The nntplib.NNTP class now supports the context management protocol to
unconditionally consume socket.error exceptions and to close the NNTP
connection when done:

>>> from nntplib import NNTP
>>> with NNTP('news.gmane.org') as n:
... n.group('gmane.comp.python.committers')
...
('211 1755 1 1755 gmane.comp.python.committers', 1755, 1, 1755, 'gmane.comp.python.committers')
>>>

（由 Giampaolo Rodolà 在 bpo-9795 [https://bugs.python.org/issue9795] 中贡献。）

os

	The os module has a new pipe2() function that makes it
possible to create a pipe with O_CLOEXEC or
O_NONBLOCK flags set atomically. This is especially useful to
avoid race conditions in multi-threaded programs.

	The os module has a new sendfile() function which provides
an efficient "zero-copy" way for copying data from one file (or socket)
descriptor to another. The phrase "zero-copy" refers to the fact that all of
the copying of data between the two descriptors is done entirely by the
kernel, with no copying of data into userspace buffers. sendfile()
can be used to efficiently copy data from a file on disk to a network socket,
e.g. for downloading a file.

(Patch submitted by Ross Lagerwall and Giampaolo Rodolà in bpo-10882 [https://bugs.python.org/issue10882].)

	To avoid race conditions like symlink attacks and issues with temporary
files and directories, it is more reliable (and also faster) to manipulate
file descriptors instead of file names. Python 3.3 enhances existing functions
and introduces new functions to work on file descriptors (bpo-4761 [https://bugs.python.org/issue4761],
bpo-10755 [https://bugs.python.org/issue10755] and bpo-14626 [https://bugs.python.org/issue14626]).

	The os module has a new fwalk() function similar to
walk() except that it also yields file descriptors referring to the
directories visited. This is especially useful to avoid symlink races.

	The following functions get new optional dir_fd (paths relative to
directory descriptors) and/or follow_symlinks (not
following symlinks):
access(), chflags(), chmod(), chown(),
link(), lstat(), mkdir(), mkfifo(),
mknod(), open(), readlink(), remove(),
rename(), replace(), rmdir(), stat(),
symlink(), unlink(), utime(). Platform
support for using these parameters can be checked via the sets
os.supports_dir_fd and os.supports_follows_symlinks.

	The following functions now support a file descriptor for their path argument:
chdir(), chmod(), chown(),
execve(), listdir(), pathconf(), exists(),
stat(), statvfs(), utime(). Platform support
for this can be checked via the os.supports_fd set.

	access() accepts an effective_ids keyword argument to turn on
using the effective uid/gid rather than the real uid/gid in the access check.
Platform support for this can be checked via the
supports_effective_ids set.

	The os module has two new functions: getpriority() and
setpriority(). They can be used to get or set process
niceness/priority in a fashion similar to os.nice() but extended to all
processes instead of just the current one.

(Patch submitted by Giampaolo Rodolà in bpo-10784 [https://bugs.python.org/issue10784].)

	The new os.replace() function allows cross-platform renaming of a
file with overwriting the destination. With os.rename(), an existing
destination file is overwritten under POSIX, but raises an error under
Windows.
(Contributed by Antoine Pitrou in bpo-8828 [https://bugs.python.org/issue8828].)

	The stat family of functions (stat(), fstat(),
and lstat()) now support reading a file's timestamps
with nanosecond precision. Symmetrically, utime()
can now write file timestamps with nanosecond precision. (Contributed by
Larry Hastings in bpo-14127 [https://bugs.python.org/issue14127].)

	The new os.get_terminal_size() function queries the size of the
terminal attached to a file descriptor. See also
shutil.get_terminal_size().
(Contributed by Zbigniew Jędrzejewski-Szmek in bpo-13609 [https://bugs.python.org/issue13609].)

	New functions to support Linux extended attributes (bpo-12720 [https://bugs.python.org/issue12720]):
getxattr(), listxattr(), removexattr(),
setxattr().

	New interface to the scheduler. These functions
control how a process is allocated CPU time by the operating system. New
functions:
sched_get_priority_max(), sched_get_priority_min(),
sched_getaffinity(), sched_getparam(),
sched_getscheduler(), sched_rr_get_interval(),
sched_setaffinity(), sched_setparam(),
sched_setscheduler(), sched_yield(),

	New functions to control the file system:

	posix_fadvise(): Announces an intention to access data in a
specific pattern thus allowing the kernel to make optimizations.

	posix_fallocate(): Ensures that enough disk space is allocated
for a file.

	sync(): Force write of everything to disk.

	Additional new posix functions:

	lockf(): Apply, test or remove a POSIX lock on an open file descriptor.

	pread(): Read from a file descriptor at an offset, the file
offset remains unchanged.

	pwrite(): Write to a file descriptor from an offset, leaving
the file offset unchanged.

	readv(): Read from a file descriptor into a number of writable buffers.

	truncate(): Truncate the file corresponding to path, so that
it is at most length bytes in size.

	waitid(): Wait for the completion of one or more child processes.

	writev(): Write the contents of buffers to a file descriptor,
where buffers is an arbitrary sequence of buffers.

	getgrouplist() (bpo-9344 [https://bugs.python.org/issue9344]): Return list of group ids that
specified user belongs to.

	times() and uname(): Return type changed from a tuple to
a tuple-like object with named attributes.

	Some platforms now support additional constants for the lseek()
function, such as os.SEEK_HOLE and os.SEEK_DATA.

	New constants RTLD_LAZY, RTLD_NOW,
RTLD_GLOBAL, RTLD_LOCAL, RTLD_NODELETE,
RTLD_NOLOAD, and RTLD_DEEPBIND are available on
platforms that support them. These are for use with the
sys.setdlopenflags() function, and supersede the similar constants
defined in ctypes and DLFCN. (Contributed by Victor Stinner
in bpo-13226 [https://bugs.python.org/issue13226].)

	os.symlink() now accepts (and ignores) the target_is_directory
keyword argument on non-Windows platforms, to ease cross-platform support.

pdb

Tab-completion is now available not only for command names, but also their
arguments. For example, for the break command, function and file names
are completed.

（由 Georg Brandl 在 bpo-14210 [https://bugs.python.org/issue14210] 中贡献）

pickle

pickle.Pickler objects now have an optional
dispatch_table attribute allowing per-pickler
reduction functions to be set.

（由 Richard Oudkerk 在 bpo-14166 [https://bugs.python.org/issue14166] 中贡献。）

pydoc

The Tk GUI and the serve() function have been removed from the
pydoc module: pydoc -g and serve() have been deprecated
in Python 3.2.

re

str regular expressions now support \u and \U escapes.

（由 Serhiy Storchaka 在 bpo-3665 [https://bugs.python.org/issue3665] 中贡献。）

sched

	run() now accepts a blocking parameter which when
set to false makes the method execute the scheduled events due to expire
soonest (if any) and then return immediately.
This is useful in case you want to use the scheduler in
non-blocking applications. (Contributed by Giampaolo Rodolà in bpo-13449 [https://bugs.python.org/issue13449].)

	scheduler class can now be safely used in multi-threaded
environments. (Contributed by Josiah Carlson and Giampaolo Rodolà in
bpo-8684 [https://bugs.python.org/issue8684].)

	timefunc and delayfunct parameters of scheduler class
constructor are now optional and defaults to time.time() and
time.sleep() respectively. (Contributed by Chris Clark in
bpo-13245 [https://bugs.python.org/issue13245].)

	enter() and enterabs()
argument parameter is now optional. (Contributed by Chris Clark in
bpo-13245 [https://bugs.python.org/issue13245].)

	enter() and enterabs()
now accept a kwargs parameter. (Contributed by Chris Clark in
bpo-13245 [https://bugs.python.org/issue13245].)

select

Solaris and derivative platforms have a new class select.devpoll
for high performance asynchronous sockets via /dev/poll.
(Contributed by Jesús Cea Avión in bpo-6397 [https://bugs.python.org/issue6397].)

shlex

The previously undocumented helper function quote from the
pipes modules has been moved to the shlex module and
documented. quote() properly escapes all characters in a string
that might be otherwise given special meaning by the shell.

shutil

	新的函数：

	disk_usage(): provides total, used and free disk space
statistics. (Contributed by Giampaolo Rodolà in bpo-12442 [https://bugs.python.org/issue12442].)

	chown(): allows one to change user and/or group of the given
path also specifying the user/group names and not only their numeric
ids. (Contributed by Sandro Tosi in bpo-12191 [https://bugs.python.org/issue12191].)

	shutil.get_terminal_size(): returns the size of the terminal window
to which the interpreter is attached. (Contributed by Zbigniew
Jędrzejewski-Szmek in bpo-13609 [https://bugs.python.org/issue13609].)

	copy2() and copystat() now preserve file
timestamps with nanosecond precision on platforms that support it.
They also preserve file "extended attributes" on Linux. (Contributed
by Larry Hastings in bpo-14127 [https://bugs.python.org/issue14127] and bpo-15238 [https://bugs.python.org/issue15238].)

	Several functions now take an optional symlinks argument: when that
parameter is true, symlinks aren't dereferenced and the operation instead
acts on the symlink itself (or creates one, if relevant).
(Contributed by Hynek Schlawack in bpo-12715 [https://bugs.python.org/issue12715].)

	When copying files to a different file system, move() now
handles symlinks the way the posix mv command does, recreating the
symlink rather than copying the target file contents. (Contributed by
Jonathan Niehof in bpo-9993 [https://bugs.python.org/issue9993].) move() now also returns
the dst argument as its result.

	rmtree() is now resistant to symlink attacks on platforms
which support the new dir_fd parameter in os.open() and
os.unlink(). (Contributed by Martin von Löwis and Hynek Schlawack
in bpo-4489 [https://bugs.python.org/issue4489].)

signal

	The signal module has new functions:

	pthread_sigmask(): fetch and/or change the signal mask of the
calling thread (Contributed by Jean-Paul Calderone in bpo-8407 [https://bugs.python.org/issue8407]);

	pthread_kill(): send a signal to a thread;

	sigpending(): examine pending functions;

	sigwait(): wait a signal;

	sigwaitinfo(): wait for a signal, returning detailed
information about it;

	sigtimedwait(): like sigwaitinfo() but with a
timeout.

	The signal handler writes the signal number as a single byte instead of
a nul byte into the wakeup file descriptor. So it is possible to wait more
than one signal and know which signals were raised.

	signal.signal() and signal.siginterrupt() raise an OSError,
instead of a RuntimeError: OSError has an errno attribute.

smtpd

The smtpd module now supports RFC 5321 [https://tools.ietf.org/html/rfc5321.html] (extended SMTP) and RFC 1870 [https://tools.ietf.org/html/rfc1870.html]
(size extension). Per the standard, these extensions are enabled if and only
if the client initiates the session with an EHLO command.

(Initial ELHO support by Alberto Trevino. Size extension by Juhana
Jauhiainen. Substantial additional work on the patch contributed by Michele
Orrù and Dan Boswell. bpo-8739 [https://bugs.python.org/issue8739])

smtplib

The SMTP, SMTP_SSL, and
LMTP classes now accept a source_address keyword argument
to specify the (host, port) to use as the source address in the bind call
when creating the outgoing socket. (Contributed by Paulo Scardine in
bpo-11281 [https://bugs.python.org/issue11281].)

SMTP now supports the context management protocol, allowing an
SMTP instance to be used in a with statement. (Contributed
by Giampaolo Rodolà in bpo-11289 [https://bugs.python.org/issue11289].)

The SMTP_SSL constructor and the starttls()
method now accept an SSLContext parameter to control parameters of the secure
channel. (Contributed by Kasun Herath in bpo-8809 [https://bugs.python.org/issue8809].)

socket

	The socket class now exposes additional methods to process
ancillary data when supported by the underlying platform:

	sendmsg()

	recvmsg()

	recvmsg_into()

(Contributed by David Watson in bpo-6560 [https://bugs.python.org/issue6560], based on an earlier patch by
Heiko Wundram)

	The socket class now supports the PF_CAN protocol family
(https://en.wikipedia.org/wiki/Socketcan), on Linux
(https://lwn.net/Articles/253425).

(Contributed by Matthias Fuchs, updated by Tiago Gonçalves in bpo-10141 [https://bugs.python.org/issue10141].)

	The socket class now supports the PF_RDS protocol family
(https://en.wikipedia.org/wiki/Reliable_Datagram_Sockets and
https://oss.oracle.com/projects/rds/).

	The socket class now supports the PF_SYSTEM protocol
family on OS X. (Contributed by Michael Goderbauer in bpo-13777 [https://bugs.python.org/issue13777].)

	New function sethostname() allows the hostname to be set
on unix systems if the calling process has sufficient privileges.
(Contributed by Ross Lagerwall in bpo-10866 [https://bugs.python.org/issue10866].)

socketserver

BaseServer now has an overridable method
service_actions() that is called by the
serve_forever() method in the service loop.
ForkingMixIn now uses this to clean up zombie
child processes. (Contributed by Justin Warkentin in bpo-11109 [https://bugs.python.org/issue11109].)

sqlite3

New sqlite3.Connection method
set_trace_callback() can be used to capture a trace of
all sql commands processed by sqlite. (Contributed by Torsten Landschoff
in bpo-11688 [https://bugs.python.org/issue11688].)

ssl

	The ssl module has two new random generation functions:

	RAND_bytes(): generate cryptographically strong
pseudo-random bytes.

	RAND_pseudo_bytes(): generate pseudo-random bytes.

（由 Victor Stinner 在 bpo-12049 [https://bugs.python.org/issue12049] 中贡献。）

	The ssl module now exposes a finer-grained exception hierarchy
in order to make it easier to inspect the various kinds of errors.
(Contributed by Antoine Pitrou in bpo-11183 [https://bugs.python.org/issue11183].)

	load_cert_chain() now accepts a password argument
to be used if the private key is encrypted.
(Contributed by Adam Simpkins in bpo-12803 [https://bugs.python.org/issue12803].)

	Diffie-Hellman key exchange, both regular and Elliptic Curve-based, is
now supported through the load_dh_params() and
set_ecdh_curve() methods.
(Contributed by Antoine Pitrou in bpo-13626 [https://bugs.python.org/issue13626] and bpo-13627 [https://bugs.python.org/issue13627].)

	SSL sockets have a new get_channel_binding() method
allowing the implementation of certain authentication mechanisms such as
SCRAM-SHA-1-PLUS. (Contributed by Jacek Konieczny in bpo-12551 [https://bugs.python.org/issue12551].)

	You can query the SSL compression algorithm used by an SSL socket, thanks
to its new compression() method. The new attribute
OP_NO_COMPRESSION can be used to disable compression.
(Contributed by Antoine Pitrou in bpo-13634 [https://bugs.python.org/issue13634].)

	Support has been added for the Next Protocol Negotiation extension using
the ssl.SSLContext.set_npn_protocols() method.
(Contributed by Colin Marc in bpo-14204 [https://bugs.python.org/issue14204].)

	SSL errors can now be introspected more easily thanks to
library and reason attributes.
(Contributed by Antoine Pitrou in bpo-14837 [https://bugs.python.org/issue14837].)

	The get_server_certificate() function now supports IPv6.
(Contributed by Charles-François Natali in bpo-11811 [https://bugs.python.org/issue11811].)

	New attribute OP_CIPHER_SERVER_PREFERENCE allows setting
SSLv3 server sockets to use the server's cipher ordering preference rather
than the client's (bpo-13635 [https://bugs.python.org/issue13635]).

stat

The undocumented tarfile.filemode function has been moved to
stat.filemode(). It can be used to convert a file's mode to a string of
the form '-rwxrwxrwx'.

（由 Giampaolo Rodolà 在 bpo-14807 [https://bugs.python.org/issue14807] 中贡献。）

struct

The struct module now supports ssize_t and size_t via the
new codes n and N, respectively. (Contributed by Antoine Pitrou
in bpo-3163 [https://bugs.python.org/issue3163].)

subprocess

Command strings can now be bytes objects on posix platforms. (Contributed by
Victor Stinner in bpo-8513 [https://bugs.python.org/issue8513].)

A new constant DEVNULL allows suppressing output in a
platform-independent fashion. (Contributed by Ross Lagerwall in
bpo-5870 [https://bugs.python.org/issue5870].)

sys

The sys module has a new thread_info named
tuple holding information about the thread implementation
(bpo-11223 [https://bugs.python.org/issue11223]).

tarfile

tarfile now supports lzma encoding via the lzma module.
(Contributed by Lars Gustäbel in bpo-5689 [https://bugs.python.org/issue5689].)

tempfile

tempfile.SpooledTemporaryFile's
truncate() method now accepts
a size parameter. (Contributed by Ryan Kelly in bpo-9957 [https://bugs.python.org/issue9957].)

textwrap

The textwrap module has a new indent() that makes
it straightforward to add a common prefix to selected lines in a block
of text (bpo-13857 [https://bugs.python.org/issue13857]).

threading

threading.Condition, threading.Semaphore,
threading.BoundedSemaphore, threading.Event, and
threading.Timer, all of which used to be factory functions returning a
class instance, are now classes and may be subclassed. (Contributed by Éric
Araujo in bpo-10968 [https://bugs.python.org/issue10968].)

The threading.Thread constructor now accepts a daemon keyword
argument to override the default behavior of inheriting the daemon flag
value from the parent thread (bpo-6064 [https://bugs.python.org/issue6064]).

The formerly private function _thread.get_ident is now available as the
public function threading.get_ident(). This eliminates several cases of
direct access to the _thread module in the stdlib. Third party code that
used _thread.get_ident should likewise be changed to use the new public
interface.

time

The PEP 418 [https://www.python.org/dev/peps/pep-0418] added new functions to the time module:

	get_clock_info(): Get information on a clock.

	monotonic(): Monotonic clock (cannot go backward), not affected
by system clock updates.

	perf_counter(): Performance counter with the highest available
resolution to measure a short duration.

	process_time(): Sum of the system and user CPU time of the
current process.

Other new functions:

	clock_getres(), clock_gettime() and
clock_settime() functions with CLOCK_xxx constants.
(Contributed by Victor Stinner in bpo-10278 [https://bugs.python.org/issue10278].)

To improve cross platform consistency, sleep() now raises a
ValueError when passed a negative sleep value. Previously this was an
error on posix, but produced an infinite sleep on Windows.

types

Add a new types.MappingProxyType class: Read-only proxy of a mapping.
(bpo-14386 [https://bugs.python.org/issue14386])

The new functions types.new_class() and types.prepare_class() provide support
for PEP 3115 compliant dynamic type creation. (bpo-14588 [https://bugs.python.org/issue14588])

unittest

assertRaises(), assertRaisesRegex(), assertWarns(), and
assertWarnsRegex() now accept a keyword argument msg when used as
context managers. (Contributed by Ezio Melotti and Winston Ewert in
bpo-10775 [https://bugs.python.org/issue10775].)

unittest.TestCase.run() now returns the TestResult
object.

urllib

The Request class, now accepts a method argument
used by get_method() to determine what HTTP method
should be used. For example, this will send a 'HEAD' request:

>>> urlopen(Request('https://www.python.org', method='HEAD'))

(bpo-1673007 [https://bugs.python.org/issue1673007])

webbrowser

The webbrowser module supports more "browsers": Google Chrome (named
chrome, chromium, chrome-browser or
chromium-browser depending on the version and operating system),
and the generic launchers xdg-open, from the FreeDesktop.org
project, and gvfs-open, which is the default URI handler for GNOME
3. (The former contributed by Arnaud Calmettes in bpo-13620 [https://bugs.python.org/issue13620], the latter
by Matthias Klose in bpo-14493 [https://bugs.python.org/issue14493].)

xml.etree.ElementTree

The xml.etree.ElementTree module now imports its C accelerator by
default; there is no longer a need to explicitly import
xml.etree.cElementTree (this module stays for backwards compatibility,
but is now deprecated). In addition, the iter family of methods of
Element has been optimized (rewritten in C).
The module's documentation has also been greatly improved with added examples
and a more detailed reference.

zlib

New attribute zlib.Decompress.eof makes it possible to distinguish
between a properly-formed compressed stream and an incomplete or truncated one.
(Contributed by Nadeem Vawda in bpo-12646 [https://bugs.python.org/issue12646].)

New attribute zlib.ZLIB_RUNTIME_VERSION reports the version string of
the underlying zlib library that is loaded at runtime. (Contributed by
Torsten Landschoff in bpo-12306 [https://bugs.python.org/issue12306].)

性能优化

Major performance enhancements have been added:

	Thanks to PEP 393 [https://www.python.org/dev/peps/pep-0393], some operations on Unicode strings have been optimized:

	the memory footprint is divided by 2 to 4 depending on the text

	encode an ASCII string to UTF-8 doesn't need to encode characters anymore,
the UTF-8 representation is shared with the ASCII representation

	the UTF-8 encoder has been optimized

	repeating a single ASCII letter and getting a substring of an ASCII string
is 4 times faster

	UTF-8 is now 2x to 4x faster. UTF-16 encoding is now up to 10x faster.

(Contributed by Serhiy Storchaka, bpo-14624 [https://bugs.python.org/issue14624], bpo-14738 [https://bugs.python.org/issue14738] and
bpo-15026 [https://bugs.python.org/issue15026].)

构建和 C API 的改变

Changes to Python's build process and to the C API include:

	新的 PEP 3118 [https://www.python.org/dev/peps/pep-3118] 相关功能：

	PyMemoryView_FromMemory()

	PEP 393 [https://www.python.org/dev/peps/pep-0393] 添加了新的 Unicode 类型，宏和函数

	高阶 API

	PyUnicode_CopyCharacters()

	PyUnicode_FindChar()

	PyUnicode_GetLength(), PyUnicode_GET_LENGTH

	PyUnicode_New()

	PyUnicode_Substring()

	PyUnicode_ReadChar(), PyUnicode_WriteChar()

	低阶 API:

	Py_UCS1, Py_UCS2, Py_UCS4 types

	PyASCIIObject 和 PyCompactUnicodeObject 结构

	PyUnicode_READY

	PyUnicode_FromKindAndData()

	PyUnicode_AsUCS4(), PyUnicode_AsUCS4Copy()

	PyUnicode_DATA, PyUnicode_1BYTE_DATA,
PyUnicode_2BYTE_DATA, PyUnicode_4BYTE_DATA

	PyUnicode_KIND 使用 PyUnicode_Kind 枚举: PyUnicode_WCHAR_KIND, PyUnicode_1BYTE_KIND, PyUnicode_2BYTE_KIND, PyUnicode_4BYTE_KIND

	PyUnicode_READ, PyUnicode_READ_CHAR, PyUnicode_WRITE

	PyUnicode_MAX_CHAR_VALUE

	PyArg_ParseTuple 现在接受 c 格式的 bytearray (bpo-12380 [https://bugs.python.org/issue12380])。

弃用

不支持的操作系统

由于缺少维护人员，不再支持 OS/2 和 VMS 系统 。

由于维护负担，将 COMSPEC 设置为 command.com 的 Windows平台（含Windows 2000）不再受支持。

OSF支持在3.2中被弃用，现在已经被完全删除。

已弃用的 Python 模块、函数和方法

	Passing a non-empty string to object.__format__() is deprecated, and
will produce a TypeError in Python 3.4 (bpo-9856 [https://bugs.python.org/issue9856]).

	The unicode_internal codec has been deprecated because of the
PEP 393 [https://www.python.org/dev/peps/pep-0393], use UTF-8, UTF-16 (utf-16-le or utf-16-be), or UTF-32
(utf-32-le or utf-32-be)

	ftplib.FTP.nlst() and ftplib.FTP.dir(): use
ftplib.FTP.mlsd()

	platform.popen(): use the subprocess module. Check especially
the Replacing Older Functions with the subprocess Module section (bpo-11377 [https://bugs.python.org/issue11377]).

	bpo-13374 [https://bugs.python.org/issue13374]: The Windows bytes API has been deprecated in the os
module. Use Unicode filenames, instead of bytes filenames, to not depend on
the ANSI code page anymore and to support any filename.

	bpo-13988 [https://bugs.python.org/issue13988]: The xml.etree.cElementTree module is deprecated. The
accelerator is used automatically whenever available.

	The behaviour of time.clock() depends on the platform: use the new
time.perf_counter() or time.process_time() function instead,
depending on your requirements, to have a well defined behaviour.

	The os.stat_float_times() function is deprecated.

	abc module:

	abc.abstractproperty has been deprecated, use property
with abc.abstractmethod() instead.

	abc.abstractclassmethod has been deprecated, use
classmethod with abc.abstractmethod() instead.

	abc.abstractstaticmethod has been deprecated, use
staticmethod with abc.abstractmethod() instead.

	importlib package:

	importlib.abc.SourceLoader.path_mtime() is now deprecated in favour of
importlib.abc.SourceLoader.path_stats() as bytecode files now store
both the modification time and size of the source file the bytecode file was
compiled from.

已弃用的 C API 函数和类型

Py_UNICODE 已经在 PEP 393 [https://www.python.org/dev/peps/pep-0393] 弃用，并将于 Python 4 中移除。所有使用此类型的函数都已弃用：

Unicode functions and methods using Py_UNICODE and
Py_UNICODE* types:

	PyUnicode_FromUnicode: 使用 PyUnicode_FromWideChar() 或 PyUnicode_FromKindAndData()

	PyUnicode_AS_UNICODE, PyUnicode_AsUnicode(), PyUnicode_AsUnicodeAndSize(): 使用 PyUnicode_AsWideCharString()

	PyUnicode_AS_DATA: 使用 PyUnicode_DATA 以及 PyUnicode_READ 和 PyUnicode_WRITE

	PyUnicode_GET_SIZE, PyUnicode_GetSize(): 使用 PyUnicode_GET_LENGTH 或 PyUnicode_GetLength()

	PyUnicode_GET_DATA_SIZE: 使用 PyUnicode_GET_LENGTH(str) * PyUnicode_KIND(str) (仅适用于现成的字符串)

	PyUnicode_AsUnicodeCopy(): 使用 PyUnicode_AsUCS4Copy() 或 PyUnicode_AsWideCharString()

	PyUnicode_GetMax()

Functions and macros manipulating Py_UNICODE* strings:

	Py_UNICODE_strlen: 使用 PyUnicode_GetLength() 或 PyUnicode_GET_LENGTH

	Py_UNICODE_strcat: 使用 PyUnicode_CopyCharacters() 或 PyUnicode_FromFormat()

	Py_UNICODE_strcpy, Py_UNICODE_strncpy, Py_UNICODE_COPY: 使用 PyUnicode_CopyCharacters() 或 PyUnicode_Substring()

	Py_UNICODE_strcmp: 使用 PyUnicode_Compare()

	Py_UNICODE_strncmp: 使用 PyUnicode_Tailmatch()

	Py_UNICODE_strchr, Py_UNICODE_strrchr: 使用 PyUnicode_FindChar()

	Py_UNICODE_FILL: 使用 PyUnicode_Fill()

	Py_UNICODE_MATCH

编码器:

	PyUnicode_Encode(): 使用 PyUnicode_AsEncodedObject()

	PyUnicode_EncodeUTF7()

	PyUnicode_EncodeUTF8(): 使用 PyUnicode_AsUTF8() 或 PyUnicode_AsUTF8String()

	PyUnicode_EncodeUTF32()

	PyUnicode_EncodeUTF16()

	PyUnicode_EncodeUnicodeEscape:() 使用 PyUnicode_AsUnicodeEscapeString()

	PyUnicode_EncodeRawUnicodeEscape:() 使用 PyUnicode_AsRawUnicodeEscapeString()

	PyUnicode_EncodeLatin1(): 使用 PyUnicode_AsLatin1String()

	PyUnicode_EncodeASCII(): 使用 PyUnicode_AsASCIIString()

	PyUnicode_EncodeCharmap()

	PyUnicode_TranslateCharmap()

	PyUnicode_EncodeMBCS(): 使用 PyUnicode_AsMBCSString() 或 PyUnicode_EncodeCodePage() (和 CP_ACP code_page)

	PyUnicode_EncodeDecimal(),
PyUnicode_TransformDecimalToASCII()

弃用的功能

The array module's 'u' format code is now deprecated and will be
removed in Python 4 together with the rest of the (Py_UNICODE) API.

移植到 Python 3.3

本节列出了先前描述的更改以及可能需要更改代码的其他错误修正.

Porting Python code

	Hash randomization is enabled by default. Set the PYTHONHASHSEED
environment variable to 0 to disable hash randomization. See also the
object.__hash__() method.

	bpo-12326 [https://bugs.python.org/issue12326]: On Linux, sys.platform doesn't contain the major version
anymore. It is now always 'linux', instead of 'linux2' or 'linux3' depending
on the Linux version used to build Python. Replace sys.platform == 'linux2'
with sys.platform.startswith('linux'), or directly sys.platform == 'linux' if
you don't need to support older Python versions.

	bpo-13847 [https://bugs.python.org/issue13847], bpo-14180 [https://bugs.python.org/issue14180]: time and datetime:
OverflowError is now raised instead of ValueError if a
timestamp is out of range. OSError is now raised if C functions
gmtime() or localtime() failed.

	The default finders used by import now utilize a cache of what is contained
within a specific directory. If you create a Python source file or sourceless
bytecode file, make sure to call importlib.invalidate_caches() to clear
out the cache for the finders to notice the new file.

	ImportError now uses the full name of the module that was attempted to
be imported. Doctests that check ImportErrors' message will need to be
updated to use the full name of the module instead of just the tail of the
name.

	The index argument to __import__() now defaults to 0 instead of -1
and no longer support negative values. It was an oversight when PEP 328 [https://www.python.org/dev/peps/pep-0328] was
implemented that the default value remained -1. If you need to continue to
perform a relative import followed by an absolute import, then perform the
relative import using an index of 1, followed by another import using an
index of 0. It is preferred, though, that you use
importlib.import_module() rather than call __import__() directly.

	__import__() no longer allows one to use an index value other than 0
for top-level modules. E.g. __import__('sys', level=1) is now an error.

	Because sys.meta_path and sys.path_hooks now have finders on
them by default, you will most likely want to use list.insert() instead
of list.append() to add to those lists.

	Because None is now inserted into sys.path_importer_cache, if you
are clearing out entries in the dictionary of paths that do not have a
finder, you will need to remove keys paired with values of None and
imp.NullImporter to be backwards-compatible. This will lead to extra
overhead on older versions of Python that re-insert None into
sys.path_importer_cache where it represents the use of implicit
finders, but semantically it should not change anything.

	importlib.abc.Finder no longer specifies a find_module() abstract
method that must be implemented. If you were relying on subclasses to
implement that method, make sure to check for the method's existence first.
You will probably want to check for find_loader() first, though, in the
case of working with path entry finders.

	pkgutil has been converted to use importlib internally. This
eliminates many edge cases where the old behaviour of the PEP 302 import
emulation failed to match the behaviour of the real import system. The
import emulation itself is still present, but is now deprecated. The
pkgutil.iter_importers() and pkgutil.walk_packages() functions
special case the standard import hooks so they are still supported even
though they do not provide the non-standard iter_modules() method.

	A longstanding RFC-compliance bug (bpo-1079 [https://bugs.python.org/issue1079]) in the parsing done by
email.header.decode_header() has been fixed. Code that uses the
standard idiom to convert encoded headers into unicode
(str(make_header(decode_header(h))) will see no change, but code that
looks at the individual tuples returned by decode_header will see that
whitespace that precedes or follows ASCII sections is now included in the
ASCII section. Code that builds headers using make_header should
also continue to work without change, since make_header continues to add
whitespace between ASCII and non-ASCII sections if it is not already
present in the input strings.

	email.utils.formataddr() now does the correct content transfer
encoding when passed non-ASCII display names. Any code that depended on
the previous buggy behavior that preserved the non-ASCII unicode in the
formatted output string will need to be changed (bpo-1690608 [https://bugs.python.org/issue1690608]).

	poplib.POP3.quit() may now raise protocol errors like all other
poplib methods. Code that assumes quit does not raise
poplib.error_proto errors may need to be changed if errors on quit
are encountered by a particular application (bpo-11291 [https://bugs.python.org/issue11291]).

	The strict argument to email.parser.Parser, deprecated since
Python 2.4, has finally been removed.

	The deprecated method unittest.TestCase.assertSameElements has been
removed.

	The deprecated variable time.accept2dyear has been removed.

	The deprecated Context._clamp attribute has been removed from the
decimal module. It was previously replaced by the public attribute
clamp. (See bpo-8540 [https://bugs.python.org/issue8540].)

	The undocumented internal helper class SSLFakeFile has been removed
from smtplib, since its functionality has long been provided directly
by socket.socket.makefile().

	Passing a negative value to time.sleep() on Windows now raises an
error instead of sleeping forever. It has always raised an error on posix.

	The ast.__version__ constant has been removed. If you need to
make decisions affected by the AST version, use sys.version_info
to make the decision.

	Code that used to work around the fact that the threading module used
factory functions by subclassing the private classes will need to change to
subclass the now-public classes.

	The undocumented debugging machinery in the threading module has been
removed, simplifying the code. This should have no effect on production
code, but is mentioned here in case any application debug frameworks were
interacting with it (bpo-13550 [https://bugs.python.org/issue13550]).

Porting C code

	In the course of changes to the buffer API the undocumented
smalltable member of the
Py_buffer structure has been removed and the
layout of the PyMemoryViewObject has changed.

All extensions relying on the relevant parts in memoryobject.h
or object.h must be rebuilt.

	Due to PEP 393, the Py_UNICODE type and all
functions using this type are deprecated (but will stay available for
at least five years). If you were using low-level Unicode APIs to
construct and access unicode objects and you want to benefit of the
memory footprint reduction provided by PEP 393, you have to convert
your code to the new Unicode API.

However, if you only have been using high-level functions such as
PyUnicode_Concat(), PyUnicode_Join() or
PyUnicode_FromFormat(), your code will automatically take
advantage of the new unicode representations.

	PyImport_GetMagicNumber() now returns -1 upon failure.

	As a negative value for the level argument to __import__() is no
longer valid, the same now holds for PyImport_ImportModuleLevel().
This also means that the value of level used by
PyImport_ImportModuleEx() is now 0 instead of -1.

Building C extensions

	The range of possible file names for C extensions has been narrowed.
Very rarely used spellings have been suppressed: under POSIX, files
named xxxmodule.so, xxxmodule.abi3.so and
xxxmodule.cpython-*.so are no longer recognized as implementing
the xxx module. If you had been generating such files, you have
to switch to the other spellings (i.e., remove the module string
from the file names).

(implemented in bpo-14040 [https://bugs.python.org/issue14040].)

Command Line Switch Changes

	The -Q command-line flag and related artifacts have been removed. Code
checking sys.flags.division_warning will need updating.

（bpo-14807 [https://bugs.python.org/issue14807]，由 Éric Araujo 贡献。）

	When python is started with -S, import site
will no longer add site-specific paths to the module search paths. In
previous versions, it did.

(bpo-11591 [https://bugs.python.org/issue11591], contributed by Carl Meyer with editions by Éric Araujo.)

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 3.2 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 3.2 有什么新变化

	作者

	Raymond Hettinger

This article explains the new features in Python 3.2 as compared to 3.1. It
focuses on a few highlights and gives a few examples. For full details, see the
Misc/NEWS [https://github.com/python/cpython/blob/076ca6c3c8df3030307e548d9be792ce3c1c6eea/Misc/NEWS]
file.

参见

PEP 392 [https://www.python.org/dev/peps/pep-0392] - Python 3.2 发布计划

PEP 384: 定义稳定的ABI

In the past, extension modules built for one Python version were often
not usable with other Python versions. Particularly on Windows, every
feature release of Python required rebuilding all extension modules that
one wanted to use. This requirement was the result of the free access to
Python interpreter internals that extension modules could use.

With Python 3.2, an alternative approach becomes available: extension
modules which restrict themselves to a limited API (by defining
Py_LIMITED_API) cannot use many of the internals, but are constrained
to a set of API functions that are promised to be stable for several
releases. As a consequence, extension modules built for 3.2 in that
mode will also work with 3.3, 3.4, and so on. Extension modules that
make use of details of memory structures can still be built, but will
need to be recompiled for every feature release.

参见

	PEP 384 [https://www.python.org/dev/peps/pep-0384] - 定义稳定的ABI
	PEP 由 Martin von Löwis 撰写

PEP 389: Argparse 命令行解析模块

A new module for command line parsing, argparse, was introduced to
overcome the limitations of optparse which did not provide support for
positional arguments (not just options), subcommands, required options and other
common patterns of specifying and validating options.

This module has already had widespread success in the community as a
third-party module. Being more fully featured than its predecessor, the
argparse module is now the preferred module for command-line processing.
The older module is still being kept available because of the substantial amount
of legacy code that depends on it.

Here's an annotated example parser showing features like limiting results to a
set of choices, specifying a metavar in the help screen, validating that one
or more positional arguments is present, and making a required option:

import argparse
parser = argparse.ArgumentParser(
 description = 'Manage servers', # main description for help
 epilog = 'Tested on Solaris and Linux') # displayed after help
parser.add_argument('action', # argument name
 choices = ['deploy', 'start', 'stop'], # three allowed values
 help = 'action on each target') # help msg
parser.add_argument('targets',
 metavar = 'HOSTNAME', # var name used in help msg
 nargs = '+', # require one or more targets
 help = 'url for target machines') # help msg explanation
parser.add_argument('-u', '--user', # -u or --user option
 required = True, # make it a required argument
 help = 'login as user')

Example of calling the parser on a command string:

>>> cmd = 'deploy sneezy.example.com sleepy.example.com -u skycaptain'
>>> result = parser.parse_args(cmd.split())
>>> result.action
'deploy'
>>> result.targets
['sneezy.example.com', 'sleepy.example.com']
>>> result.user
'skycaptain'

Example of the parser's automatically generated help:

>>> parser.parse_args('-h'.split())

usage: manage_cloud.py [-h] -u USER
 {deploy,start,stop} HOSTNAME [HOSTNAME ...]

Manage servers

positional arguments:
 {deploy,start,stop} action on each target
 HOSTNAME url for target machines

optional arguments:
 -h, --help show this help message and exit
 -u USER, --user USER login as user

Tested on Solaris and Linux

An especially nice argparse feature is the ability to define subparsers,
each with their own argument patterns and help displays:

import argparse
parser = argparse.ArgumentParser(prog='HELM')
subparsers = parser.add_subparsers()

parser_l = subparsers.add_parser('launch', help='Launch Control') # first subgroup
parser_l.add_argument('-m', '--missiles', action='store_true')
parser_l.add_argument('-t', '--torpedos', action='store_true')

parser_m = subparsers.add_parser('move', help='Move Vessel', # second subgroup
 aliases=('steer', 'turn')) # equivalent names
parser_m.add_argument('-c', '--course', type=int, required=True)
parser_m.add_argument('-s', '--speed', type=int, default=0)

$./helm.py --help # top level help (launch and move)
$./helm.py launch --help # help for launch options
$./helm.py launch --missiles # set missiles=True and torpedos=False
$./helm.py steer --course 180 --speed 5 # set movement parameters

参见

	PEP 389 [https://www.python.org/dev/peps/pep-0389] - 新的命令行解析模块
	PEP 由 Steven Bethard 撰写

升级 optparse 代码 for details on the differences from optparse.

PEP 391: 基于字典的日志配置

The logging module provided two kinds of configuration, one style with
function calls for each option or another style driven by an external file saved
in a ConfigParser format. Those options did not provide the flexibility
to create configurations from JSON or YAML files, nor did they support
incremental configuration, which is needed for specifying logger options from a
command line.

To support a more flexible style, the module now offers
logging.config.dictConfig() for specifying logging configuration with
plain Python dictionaries. The configuration options include formatters,
handlers, filters, and loggers. Here's a working example of a configuration
dictionary:

{"version": 1,
 "formatters": {"brief": {"format": "%(levelname)-8s: %(name)-15s: %(message)s"},
 "full": {"format": "%(asctime)s %(name)-15s %(levelname)-8s %(message)s"}
 },
 "handlers": {"console": {
 "class": "logging.StreamHandler",
 "formatter": "brief",
 "level": "INFO",
 "stream": "ext://sys.stdout"},
 "console_priority": {
 "class": "logging.StreamHandler",
 "formatter": "full",
 "level": "ERROR",
 "stream": "ext://sys.stderr"}
 },
 "root": {"level": "DEBUG", "handlers": ["console", "console_priority"]}}

If that dictionary is stored in a file called conf.json, it can be
loaded and called with code like this:

>>> import json, logging.config
>>> with open('conf.json') as f:
... conf = json.load(f)
...
>>> logging.config.dictConfig(conf)
>>> logging.info("Transaction completed normally")
INFO : root : Transaction completed normally
>>> logging.critical("Abnormal termination")
2011-02-17 11:14:36,694 root CRITICAL Abnormal termination

参见

	PEP 391 [https://www.python.org/dev/peps/pep-0391] - 基于字典的日志配置
	PEP 由 Vinay Sajip 撰写

PEP 3148: concurrent.futures 模块

Code for creating and managing concurrency is being collected in a new top-level
namespace, concurrent. Its first member is a futures package which provides
a uniform high-level interface for managing threads and processes.

The design for concurrent.futures was inspired by the
java.util.concurrent package. In that model, a running call and its result
are represented by a Future object that abstracts
features common to threads, processes, and remote procedure calls. That object
supports status checks (running or done), timeouts, cancellations, adding
callbacks, and access to results or exceptions.

The primary offering of the new module is a pair of executor classes for
launching and managing calls. The goal of the executors is to make it easier to
use existing tools for making parallel calls. They save the effort needed to
setup a pool of resources, launch the calls, create a results queue, add
time-out handling, and limit the total number of threads, processes, or remote
procedure calls.

Ideally, each application should share a single executor across multiple
components so that process and thread limits can be centrally managed. This
solves the design challenge that arises when each component has its own
competing strategy for resource management.

Both classes share a common interface with three methods:
submit() for scheduling a callable and
returning a Future object;
map() for scheduling many asynchronous calls
at a time, and shutdown() for freeing
resources. The class is a context manager and can be used in a
with statement to assure that resources are automatically released
when currently pending futures are done executing.

A simple of example of ThreadPoolExecutor is a
launch of four parallel threads for copying files:

import concurrent.futures, shutil
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as e:
 e.submit(shutil.copy, 'src1.txt', 'dest1.txt')
 e.submit(shutil.copy, 'src2.txt', 'dest2.txt')
 e.submit(shutil.copy, 'src3.txt', 'dest3.txt')
 e.submit(shutil.copy, 'src3.txt', 'dest4.txt')

参见

	PEP 3148 [https://www.python.org/dev/peps/pep-3148] -- futures - 异步执行指令
	PEP 由 Brian Quinlan 撰写

Code for Threaded Parallel URL reads, an
example using threads to fetch multiple web pages in parallel.

Code for computing prime numbers in
parallel, an example demonstrating
ProcessPoolExecutor.

PEP 3147: PYC 仓库目录

Python's scheme for caching bytecode in .pyc files did not work well in
environments with multiple Python interpreters. If one interpreter encountered
a cached file created by another interpreter, it would recompile the source and
overwrite the cached file, thus losing the benefits of caching.

The issue of "pyc fights" has become more pronounced as it has become
commonplace for Linux distributions to ship with multiple versions of Python.
These conflicts also arise with CPython alternatives such as Unladen Swallow.

To solve this problem, Python's import machinery has been extended to use
distinct filenames for each interpreter. Instead of Python 3.2 and Python 3.3 and
Unladen Swallow each competing for a file called "mymodule.pyc", they will now
look for "mymodule.cpython-32.pyc", "mymodule.cpython-33.pyc", and
"mymodule.unladen10.pyc". And to prevent all of these new files from
cluttering source directories, the pyc files are now collected in a
"__pycache__" directory stored under the package directory.

Aside from the filenames and target directories, the new scheme has a few
aspects that are visible to the programmer:

	Imported modules now have a __cached__ attribute which stores the name
of the actual file that was imported:

>>> import collections
>>> collections.__cached__
'c:/py32/lib/__pycache__/collections.cpython-32.pyc'

	The tag that is unique to each interpreter is accessible from the imp
module:

>>> import imp
>>> imp.get_tag()
'cpython-32'

	Scripts that try to deduce source filename from the imported file now need to
be smarter. It is no longer sufficient to simply strip the "c" from a ".pyc"
filename. Instead, use the new functions in the imp module:

>>> imp.source_from_cache('c:/py32/lib/__pycache__/collections.cpython-32.pyc')
'c:/py32/lib/collections.py'
>>> imp.cache_from_source('c:/py32/lib/collections.py')
'c:/py32/lib/__pycache__/collections.cpython-32.pyc'

	The py_compile and compileall modules have been updated to
reflect the new naming convention and target directory. The command-line
invocation of compileall has new options: -i for
specifying a list of files and directories to compile and -b which causes
bytecode files to be written to their legacy location rather than
__pycache__.

	The importlib.abc module has been updated with new abstract base
classes for loading bytecode files. The obsolete
ABCs, PyLoader and
PyPycLoader, have been deprecated (instructions on how
to stay Python 3.1 compatible are included with the documentation).

参见

	PEP 3147 [https://www.python.org/dev/peps/pep-3147] - PYC 仓库目录
	PEP 由 Barry Warsaw 撰写

PEP 3149: ABI Version Tagged .so Files

The PYC repository directory allows multiple bytecode cache files to be
co-located. This PEP implements a similar mechanism for shared object files by
giving them a common directory and distinct names for each version.

The common directory is "pyshared" and the file names are made distinct by
identifying the Python implementation (such as CPython, PyPy, Jython, etc.), the
major and minor version numbers, and optional build flags (such as "d" for
debug, "m" for pymalloc, "u" for wide-unicode). For an arbitrary package "foo",
you may see these files when the distribution package is installed:

/usr/share/pyshared/foo.cpython-32m.so
/usr/share/pyshared/foo.cpython-33md.so

In Python itself, the tags are accessible from functions in the sysconfig
module:

>>> import sysconfig
>>> sysconfig.get_config_var('SOABI') # find the version tag
'cpython-32mu'
>>> sysconfig.get_config_var('EXT_SUFFIX') # find the full filename extension
'.cpython-32mu.so'

参见

	PEP 3149 [https://www.python.org/dev/peps/pep-3149] - ABI Version Tagged .so Files
	PEP 由 Barry Warsaw 撰写

PEP 3333: Python Web服务器网关接口v1.0.1

This informational PEP clarifies how bytes/text issues are to be handled by the
WSGI protocol. The challenge is that string handling in Python 3 is most
conveniently handled with the str type even though the HTTP protocol
is itself bytes oriented.

The PEP differentiates so-called native strings that are used for
request/response headers and metadata versus byte strings which are used for
the bodies of requests and responses.

The native strings are always of type str but are restricted to code
points between U+0000 through U+00FF which are translatable to bytes using
Latin-1 encoding. These strings are used for the keys and values in the
environment dictionary and for response headers and statuses in the
start_response() function. They must follow RFC 2616 [https://tools.ietf.org/html/rfc2616.html] with respect to
encoding. That is, they must either be ISO-8859-1 characters or use
RFC 2047 [https://tools.ietf.org/html/rfc2047.html] MIME encoding.

For developers porting WSGI applications from Python 2, here are the salient
points:

	If the app already used strings for headers in Python 2, no change is needed.

	If instead, the app encoded output headers or decoded input headers, then the
headers will need to be re-encoded to Latin-1. For example, an output header
encoded in utf-8 was using h.encode('utf-8') now needs to convert from
bytes to native strings using h.encode('utf-8').decode('latin-1').

	Values yielded by an application or sent using the write() method
must be byte strings. The start_response() function and environ
must use native strings. The two cannot be mixed.

For server implementers writing CGI-to-WSGI pathways or other CGI-style
protocols, the users must to be able access the environment using native strings
even though the underlying platform may have a different convention. To bridge
this gap, the wsgiref module has a new function,
wsgiref.handlers.read_environ() for transcoding CGI variables from
os.environ into native strings and returning a new dictionary.

参见

	PEP 3333 [https://www.python.org/dev/peps/pep-3333] - Python Web服务器网关接口v1.0.1
	PEP 由 Phillip Eby 撰写

其他语言特性修改

对Python 语言核心进行的小改动：

	String formatting for format() and str.format() gained new
capabilities for the format character #. Previously, for integers in
binary, octal, or hexadecimal, it caused the output to be prefixed with '0b',
'0o', or '0x' respectively. Now it can also handle floats, complex, and
Decimal, causing the output to always have a decimal point even when no digits
follow it.

>>> format(20, '#o')
'0o24'
>>> format(12.34, '#5.0f')
' 12.'

(Suggested by Mark Dickinson and implemented by Eric Smith in bpo-7094 [https://bugs.python.org/issue7094].)

	There is also a new str.format_map() method that extends the
capabilities of the existing str.format() method by accepting arbitrary
mapping objects. This new method makes it possible to use string
formatting with any of Python's many dictionary-like objects such as
defaultdict, Shelf,
ConfigParser, or dbm. It is also useful with
custom dict subclasses that normalize keys before look-up or that
supply a __missing__() method for unknown keys:

>>> import shelve
>>> d = shelve.open('tmp.shl')
>>> 'The {project_name} status is {status} as of {date}'.format_map(d)
'The testing project status is green as of February 15, 2011'

>>> class LowerCasedDict(dict):
... def __getitem__(self, key):
... return dict.__getitem__(self, key.lower())
>>> lcd = LowerCasedDict(part='widgets', quantity=10)
>>> 'There are {QUANTITY} {Part} in stock'.format_map(lcd)
'There are 10 widgets in stock'

>>> class PlaceholderDict(dict):
... def __missing__(self, key):
... return '<{}>'.format(key)
>>> 'Hello {name}, welcome to {location}'.format_map(PlaceholderDict())
'Hello <name>, welcome to <location>'

(Suggested by Raymond Hettinger and implemented by Eric Smith in
bpo-6081 [https://bugs.python.org/issue6081].)

	The interpreter can now be started with a quiet option, -q, to prevent
the copyright and version information from being displayed in the interactive
mode. The option can be introspected using the sys.flags attribute:

$ python -q
>>> sys.flags
sys.flags(debug=0, division_warning=0, inspect=0, interactive=0,
optimize=0, dont_write_bytecode=0, no_user_site=0, no_site=0,
ignore_environment=0, verbose=0, bytes_warning=0, quiet=1)

（由 Marcin Wojdyr 在 bpo-1772833 [https://bugs.python.org/issue1772833] 中贡献。）

	The hasattr() function works by calling getattr() and detecting
whether an exception is raised. This technique allows it to detect methods
created dynamically by __getattr__() or __getattribute__() which
would otherwise be absent from the class dictionary. Formerly, hasattr
would catch any exception, possibly masking genuine errors. Now, hasattr
has been tightened to only catch AttributeError and let other
exceptions pass through:

>>> class A:
... @property
... def f(self):
... return 1 // 0
...
>>> a = A()
>>> hasattr(a, 'f')
Traceback (most recent call last):
 ...
ZeroDivisionError: integer division or modulo by zero

(Discovered by Yury Selivanov and fixed by Benjamin Peterson; bpo-9666 [https://bugs.python.org/issue9666].)

	The str() of a float or complex number is now the same as its
repr(). Previously, the str() form was shorter but that just
caused confusion and is no longer needed now that the shortest possible
repr() is displayed by default:

>>> import math
>>> repr(math.pi)
'3.141592653589793'
>>> str(math.pi)
'3.141592653589793'

(Proposed and implemented by Mark Dickinson; bpo-9337 [https://bugs.python.org/issue9337].)

	memoryview objects now have a release() method
and they also now support the context management protocol. This allows timely
release of any resources that were acquired when requesting a buffer from the
original object.

>>> with memoryview(b'abcdefgh') as v:
... print(v.tolist())
[97, 98, 99, 100, 101, 102, 103, 104]

(Added by Antoine Pitrou; bpo-9757 [https://bugs.python.org/issue9757].)

	Previously it was illegal to delete a name from the local namespace if it
occurs as a free variable in a nested block:

def outer(x):
 def inner():
 return x
 inner()
 del x

This is now allowed. Remember that the target of an except clause
is cleared, so this code which used to work with Python 2.6, raised a
SyntaxError with Python 3.1 and now works again:

def f():
 def print_error():
 print(e)
 try:
 something
 except Exception as e:
 print_error()
 # implicit "del e" here

(See bpo-4617 [https://bugs.python.org/issue4617].)

	The internal structsequence tool now creates subclasses of tuple.
This means that C structures like those returned by os.stat(),
time.gmtime(), and sys.version_info now work like a
named tuple and now work with functions and methods that
expect a tuple as an argument. This is a big step forward in making the C
structures as flexible as their pure Python counterparts:

>>> import sys
>>> isinstance(sys.version_info, tuple)
True
>>> 'Version %d.%d.%d %s(%d)' % sys.version_info
'Version 3.2.0 final(0)'

(Suggested by Arfrever Frehtes Taifersar Arahesis and implemented
by Benjamin Peterson in bpo-8413 [https://bugs.python.org/issue8413].)

	Warnings are now easier to control using the PYTHONWARNINGS
environment variable as an alternative to using -W at the command line:

$ export PYTHONWARNINGS='ignore::RuntimeWarning::,once::UnicodeWarning::'

(Suggested by Barry Warsaw and implemented by Philip Jenvey in bpo-7301 [https://bugs.python.org/issue7301].)

	A new warning category, ResourceWarning, has been added. It is
emitted when potential issues with resource consumption or cleanup
are detected. It is silenced by default in normal release builds but
can be enabled through the means provided by the warnings
module, or on the command line.

A ResourceWarning is issued at interpreter shutdown if the
gc.garbage list isn't empty, and if gc.DEBUG_UNCOLLECTABLE is
set, all uncollectable objects are printed. This is meant to make the
programmer aware that their code contains object finalization issues.

A ResourceWarning is also issued when a file object is destroyed
without having been explicitly closed. While the deallocator for such
object ensures it closes the underlying operating system resource
(usually, a file descriptor), the delay in deallocating the object could
produce various issues, especially under Windows. Here is an example
of enabling the warning from the command line:

$ python -q -Wdefault
>>> f = open("foo", "wb")
>>> del f
__main__:1: ResourceWarning: unclosed file <_io.BufferedWriter name='foo'>

(Added by Antoine Pitrou and Georg Brandl in bpo-10093 [https://bugs.python.org/issue10093] and bpo-477863 [https://bugs.python.org/issue477863].)

	range objects now support index and count methods. This is part
of an effort to make more objects fully implement the
collections.Sequence abstract base class. As a result, the
language will have a more uniform API. In addition, range objects
now support slicing and negative indices, even with values larger than
sys.maxsize. This makes range more interoperable with lists:

>>> range(0, 100, 2).count(10)
1
>>> range(0, 100, 2).index(10)
5
>>> range(0, 100, 2)[5]
10
>>> range(0, 100, 2)[0:5]
range(0, 10, 2)

（由 Daniel Stutzbach 在 bpo-9213 [https://bugs.python.org/issue9213] 中贡献，由 Alexander Belopolsky 在 bpo-2690 [https://bugs.python.org/issue2690] 中贡献，由 Nick Coghlan 在 bpo-10889 [https://bugs.python.org/issue10889] 中贡献。）

	The callable() builtin function from Py2.x was resurrected. It provides
a concise, readable alternative to using an abstract base class in an
expression like isinstance(x, collections.Callable):

>>> callable(max)
True
>>> callable(20)
False

（见 bpo-10518 [https://bugs.python.org/issue10518] ）

	Python's import mechanism can now load modules installed in directories with
non-ASCII characters in the path name. This solved an aggravating problem
with home directories for users with non-ASCII characters in their usernames.

(Required extensive work by Victor Stinner in bpo-9425 [https://bugs.python.org/issue9425].)

新增，改进和弃用的模块

Python's standard library has undergone significant maintenance efforts and
quality improvements.

The biggest news for Python 3.2 is that the email package, mailbox
module, and nntplib modules now work correctly with the bytes/text model
in Python 3. For the first time, there is correct handling of messages with
mixed encodings.

Throughout the standard library, there has been more careful attention to
encodings and text versus bytes issues. In particular, interactions with the
operating system are now better able to exchange non-ASCII data using the
Windows MBCS encoding, locale-aware encodings, or UTF-8.

Another significant win is the addition of substantially better support for
SSL connections and security certificates.

In addition, more classes now implement a context manager to support
convenient and reliable resource clean-up using a with statement.

email

The usability of the email package in Python 3 has been mostly fixed by
the extensive efforts of R. David Murray. The problem was that emails are
typically read and stored in the form of bytes rather than str
text, and they may contain multiple encodings within a single email. So, the
email package had to be extended to parse and generate email messages in bytes
format.

	New functions message_from_bytes() and
message_from_binary_file(), and new classes
BytesFeedParser and BytesParser
allow binary message data to be parsed into model objects.

	Given bytes input to the model, get_payload()
will by default decode a message body that has a
Content-Transfer-Encoding of 8bit using the charset
specified in the MIME headers and return the resulting string.

	Given bytes input to the model, Generator will
convert message bodies that have a Content-Transfer-Encoding of
8bit to instead have a 7bit Content-Transfer-Encoding.

Headers with unencoded non-ASCII bytes are deemed to be RFC 2047 [https://tools.ietf.org/html/rfc2047.html]-encoded
using the unknown-8bit character set.

	A new class BytesGenerator produces bytes as output,
preserving any unchanged non-ASCII data that was present in the input used to
build the model, including message bodies with a
Content-Transfer-Encoding of 8bit.

	The smtplib SMTP class now accepts a byte string
for the msg argument to the sendmail() method,
and a new method, send_message() accepts a
Message object and can optionally obtain the
from_addr and to_addrs addresses directly from the object.

(Proposed and implemented by R. David Murray, bpo-4661 [https://bugs.python.org/issue4661] and bpo-10321 [https://bugs.python.org/issue10321].)

elementtree

The xml.etree.ElementTree package and its xml.etree.cElementTree
counterpart have been updated to version 1.3.

Several new and useful functions and methods have been added:

	xml.etree.ElementTree.fromstringlist() which builds an XML document
from a sequence of fragments

	xml.etree.ElementTree.register_namespace() for registering a global
namespace prefix

	xml.etree.ElementTree.tostringlist() for string representation
including all sublists

	xml.etree.ElementTree.Element.extend() for appending a sequence of zero
or more elements

	xml.etree.ElementTree.Element.iterfind() searches an element and
subelements

	xml.etree.ElementTree.Element.itertext() creates a text iterator over
an element and its subelements

	xml.etree.ElementTree.TreeBuilder.end() closes the current element

	xml.etree.ElementTree.TreeBuilder.doctype() handles a doctype
declaration

两个方法被弃用：

	xml.etree.ElementTree.getchildren() 被 list(elem) 替代。

	xml.etree.ElementTree.getiterator() 被 Element.iter 替代。

For details of the update, see Introducing ElementTree [http://effbot.org/zone/elementtree-13-intro.htm] on Fredrik Lundh's website.

（由 Florent Xicluna 和 Fredrik Lundh 在 bpo-1772833 [https://bugs.python.org/issue1772833] 中贡献。）

functools

	The functools module includes a new decorator for caching function
calls. functools.lru_cache() can save repeated queries to an external
resource whenever the results are expected to be the same.

For example, adding a caching decorator to a database query function can save
database accesses for popular searches:

>>> import functools
>>> @functools.lru_cache(maxsize=300)
... def get_phone_number(name):
... c = conn.cursor()
... c.execute('SELECT phonenumber FROM phonelist WHERE name=?', (name,))
... return c.fetchone()[0]

>>> for name in user_requests:
... get_phone_number(name) # cached lookup

To help with choosing an effective cache size, the wrapped function is
instrumented for tracking cache statistics:

>>> get_phone_number.cache_info()
CacheInfo(hits=4805, misses=980, maxsize=300, currsize=300)

If the phonelist table gets updated, the outdated contents of the cache can be
cleared with:

>>> get_phone_number.cache_clear()

(Contributed by Raymond Hettinger and incorporating design ideas from Jim
Baker, Miki Tebeka, and Nick Coghlan; see recipe 498245 [https://code.activestate.com/recipes/498245], recipe 577479 [https://code.activestate.com/recipes/577479], bpo-10586 [https://bugs.python.org/issue10586], and
bpo-10593 [https://bugs.python.org/issue10593].)

	The functools.wraps() decorator now adds a __wrapped__ attribute
pointing to the original callable function. This allows wrapped functions to
be introspected. It also copies __annotations__ if defined. And now
it also gracefully skips over missing attributes such as __doc__ which
might not be defined for the wrapped callable.

In the above example, the cache can be removed by recovering the original
function:

>>> get_phone_number = get_phone_number.__wrapped__ # uncached function

(By Nick Coghlan and Terrence Cole; bpo-9567 [https://bugs.python.org/issue9567], bpo-3445 [https://bugs.python.org/issue3445], and
bpo-8814 [https://bugs.python.org/issue8814].)

	To help write classes with rich comparison methods, a new decorator
functools.total_ordering() will use existing equality and inequality
methods to fill in the remaining methods.

For example, supplying __eq__ and __lt__ will enable
total_ordering() to fill-in __le__, __gt__ and __ge__:

@total_ordering
class Student:
 def __eq__(self, other):
 return ((self.lastname.lower(), self.firstname.lower()) ==
 (other.lastname.lower(), other.firstname.lower()))

 def __lt__(self, other):
 return ((self.lastname.lower(), self.firstname.lower()) <
 (other.lastname.lower(), other.firstname.lower()))

With the total_ordering decorator, the remaining comparison methods
are filled in automatically.

（由 Raymond Hettinger 贡献。）

	To aid in porting programs from Python 2, the functools.cmp_to_key()
function converts an old-style comparison function to
modern key function:

>>> # locale-aware sort order
>>> sorted(iterable, key=cmp_to_key(locale.strcoll))

For sorting examples and a brief sorting tutorial, see the Sorting HowTo [https://wiki.python.org/moin/HowTo/Sorting/] tutorial.

（由 Raymond Hettinger 贡献。）

itertools

	The itertools module has a new accumulate() function
modeled on APL's scan operator and Numpy's accumulate function:

>>> from itertools import accumulate
>>> list(accumulate([8, 2, 50]))
[8, 10, 60]

>>> prob_dist = [0.1, 0.4, 0.2, 0.3]
>>> list(accumulate(prob_dist)) # cumulative probability distribution
[0.1, 0.5, 0.7, 1.0]

For an example using accumulate(), see the examples for
the random module.

(Contributed by Raymond Hettinger and incorporating design suggestions
from Mark Dickinson.)

collections

	The collections.Counter class now has two forms of in-place
subtraction, the existing -= operator for saturating subtraction [https://en.wikipedia.org/wiki/Saturation_arithmetic] and the new
subtract() method for regular subtraction. The
former is suitable for multisets [https://en.wikipedia.org/wiki/Multiset]
which only have positive counts, and the latter is more suitable for use cases
that allow negative counts:

>>> from collections import Counter
>>> tally = Counter(dogs=5, cats=3)
>>> tally -= Counter(dogs=2, cats=8) # saturating subtraction
>>> tally
Counter({'dogs': 3})

>>> tally = Counter(dogs=5, cats=3)
>>> tally.subtract(dogs=2, cats=8) # regular subtraction
>>> tally
Counter({'dogs': 3, 'cats': -5})

（由 Raymond Hettinger 贡献。）

	The collections.OrderedDict class has a new method
move_to_end() which takes an existing key and
moves it to either the first or last position in the ordered sequence.

The default is to move an item to the last position. This is equivalent of
renewing an entry with od[k] = od.pop(k).

A fast move-to-end operation is useful for resequencing entries. For example,
an ordered dictionary can be used to track order of access by aging entries
from the oldest to the most recently accessed.

>>> from collections import OrderedDict
>>> d = OrderedDict.fromkeys(['a', 'b', 'X', 'd', 'e'])
>>> list(d)
['a', 'b', 'X', 'd', 'e']
>>> d.move_to_end('X')
>>> list(d)
['a', 'b', 'd', 'e', 'X']

（由 Raymond Hettinger 贡献。）

	The collections.deque class grew two new methods
count() and reverse() that
make them more substitutable for list objects:

>>> from collections import deque
>>> d = deque('simsalabim')
>>> d.count('s')
2
>>> d.reverse()
>>> d
deque(['m', 'i', 'b', 'a', 'l', 'a', 's', 'm', 'i', 's'])

（由 Raymond Hettinger 贡献。）

threading

The threading module has a new Barrier
synchronization class for making multiple threads wait until all of them have
reached a common barrier point. Barriers are useful for making sure that a task
with multiple preconditions does not run until all of the predecessor tasks are
complete.

Barriers can work with an arbitrary number of threads. This is a generalization
of a Rendezvous [https://en.wikipedia.org/wiki/Synchronous_rendezvous] which
is defined for only two threads.

Implemented as a two-phase cyclic barrier, Barrier objects
are suitable for use in loops. The separate filling and draining phases
assure that all threads get released (drained) before any one of them can loop
back and re-enter the barrier. The barrier fully resets after each cycle.

Example of using barriers:

from threading import Barrier, Thread

def get_votes(site):
 ballots = conduct_election(site)
 all_polls_closed.wait() # do not count until all polls are closed
 totals = summarize(ballots)
 publish(site, totals)

all_polls_closed = Barrier(len(sites))
for site in sites:
 Thread(target=get_votes, args=(site,)).start()

In this example, the barrier enforces a rule that votes cannot be counted at any
polling site until all polls are closed. Notice how a solution with a barrier
is similar to one with threading.Thread.join(), but the threads stay alive
and continue to do work (summarizing ballots) after the barrier point is
crossed.

If any of the predecessor tasks can hang or be delayed, a barrier can be created
with an optional timeout parameter. Then if the timeout period elapses before
all the predecessor tasks reach the barrier point, all waiting threads are
released and a BrokenBarrierError exception is raised:

def get_votes(site):
 ballots = conduct_election(site)
 try:
 all_polls_closed.wait(timeout=midnight - time.now())
 except BrokenBarrierError:
 lockbox = seal_ballots(ballots)
 queue.put(lockbox)
 else:
 totals = summarize(ballots)
 publish(site, totals)

In this example, the barrier enforces a more robust rule. If some election
sites do not finish before midnight, the barrier times-out and the ballots are
sealed and deposited in a queue for later handling.

See Barrier Synchronization Patterns [http://osl.cs.illinois.edu/media/papers/karmani-2009-barrier_synchronization_pattern.pdf]
for more examples of how barriers can be used in parallel computing. Also, there is
a simple but thorough explanation of barriers in The Little Book of Semaphores [https://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf], section 3.6.

(Contributed by Kristján Valur Jónsson with an API review by Jeffrey Yasskin in
bpo-8777 [https://bugs.python.org/issue8777].)

datetime 和 time

	The datetime module has a new type timezone that
implements the tzinfo interface by returning a fixed UTC
offset and timezone name. This makes it easier to create timezone-aware
datetime objects:

>>> from datetime import datetime, timezone

>>> datetime.now(timezone.utc)
datetime.datetime(2010, 12, 8, 21, 4, 2, 923754, tzinfo=datetime.timezone.utc)

>>> datetime.strptime("01/01/2000 12:00 +0000", "%m/%d/%Y %H:%M %z")
datetime.datetime(2000, 1, 1, 12, 0, tzinfo=datetime.timezone.utc)

	Also, timedelta objects can now be multiplied by
float and divided by float and int objects.
And timedelta objects can now divide one another.

	The datetime.date.strftime() method is no longer restricted to years
after 1900. The new supported year range is from 1000 to 9999 inclusive.

	Whenever a two-digit year is used in a time tuple, the interpretation has been
governed by time.accept2dyear. The default is True which means that
for a two-digit year, the century is guessed according to the POSIX rules
governing the %y strptime format.

Starting with Py3.2, use of the century guessing heuristic will emit a
DeprecationWarning. Instead, it is recommended that
time.accept2dyear be set to False so that large date ranges
can be used without guesswork:

>>> import time, warnings
>>> warnings.resetwarnings() # remove the default warning filters

>>> time.accept2dyear = True # guess whether 11 means 11 or 2011
>>> time.asctime((11, 1, 1, 12, 34, 56, 4, 1, 0))
Warning (from warnings module):
 ...
DeprecationWarning: Century info guessed for a 2-digit year.
'Fri Jan 1 12:34:56 2011'

>>> time.accept2dyear = False # use the full range of allowable dates
>>> time.asctime((11, 1, 1, 12, 34, 56, 4, 1, 0))
'Fri Jan 1 12:34:56 11'

Several functions now have significantly expanded date ranges. When
time.accept2dyear is false, the time.asctime() function will
accept any year that fits in a C int, while the time.mktime() and
time.strftime() functions will accept the full range supported by the
corresponding operating system functions.

(Contributed by Alexander Belopolsky and Victor Stinner in bpo-1289118 [https://bugs.python.org/issue1289118],
bpo-5094 [https://bugs.python.org/issue5094], bpo-6641 [https://bugs.python.org/issue6641], bpo-2706 [https://bugs.python.org/issue2706], bpo-1777412 [https://bugs.python.org/issue1777412], bpo-8013 [https://bugs.python.org/issue8013],
and bpo-10827 [https://bugs.python.org/issue10827].)

math

The math module has been updated with six new functions inspired by the
C99 standard.

The isfinite() function provides a reliable and fast way to detect
special values. It returns True for regular numbers and False for Nan or
Infinity:

>>> from math import isfinite
>>> [isfinite(x) for x in (123, 4.56, float('Nan'), float('Inf'))]
[True, True, False, False]

The expm1() function computes e**x-1 for small values of x
without incurring the loss of precision that usually accompanies the subtraction
of nearly equal quantities:

>>> from math import expm1
>>> expm1(0.013671875) # more accurate way to compute e**x-1 for a small x
0.013765762467652909

The erf() function computes a probability integral or Gaussian
error function [https://en.wikipedia.org/wiki/Error_function]. The
complementary error function, erfc(), is 1 - erf(x):

>>> from math import erf, erfc, sqrt
>>> erf(1.0/sqrt(2.0)) # portion of normal distribution within 1 standard deviation
0.682689492137086
>>> erfc(1.0/sqrt(2.0)) # portion of normal distribution outside 1 standard deviation
0.31731050786291404
>>> erf(1.0/sqrt(2.0)) + erfc(1.0/sqrt(2.0))
1.0

The gamma() function is a continuous extension of the factorial
function. See https://en.wikipedia.org/wiki/Gamma_function for details. Because
the function is related to factorials, it grows large even for small values of
x, so there is also a lgamma() function for computing the natural
logarithm of the gamma function:

>>> from math import gamma, lgamma
>>> gamma(7.0) # six factorial
720.0
>>> lgamma(801.0) # log(800 factorial)
4551.950730698041

（由 Mark Dickinson 贡献）

abc

The abc module now supports abstractclassmethod() and
abstractstaticmethod().

These tools make it possible to define an abstract base class that
requires a particular classmethod() or staticmethod() to be
implemented:

class Temperature(metaclass=abc.ABCMeta):
 @abc.abstractclassmethod
 def from_fahrenheit(cls, t):
 ...
 @abc.abstractclassmethod
 def from_celsius(cls, t):
 ...

(Patch submitted by Daniel Urban; bpo-5867 [https://bugs.python.org/issue5867].)

io

The io.BytesIO has a new method, getbuffer(), which
provides functionality similar to memoryview(). It creates an editable
view of the data without making a copy. The buffer's random access and support
for slice notation are well-suited to in-place editing:

>>> REC_LEN, LOC_START, LOC_LEN = 34, 7, 11

>>> def change_location(buffer, record_number, location):
... start = record_number * REC_LEN + LOC_START
... buffer[start: start+LOC_LEN] = location

>>> import io

>>> byte_stream = io.BytesIO(
... b'G3805 storeroom Main chassis '
... b'X7899 shipping Reserve cog '
... b'L6988 receiving Primary sprocket'
...)
>>> buffer = byte_stream.getbuffer()
>>> change_location(buffer, 1, b'warehouse ')
>>> change_location(buffer, 0, b'showroom ')
>>> print(byte_stream.getvalue())
b'G3805 showroom Main chassis '
b'X7899 warehouse Reserve cog '
b'L6988 receiving Primary sprocket'

（由 Antoine Pitrou 在 bpo-5506 [https://bugs.python.org/issue5506] 中贡献。）

reprlib

When writing a __repr__() method for a custom container, it is easy to
forget to handle the case where a member refers back to the container itself.
Python's builtin objects such as list and set handle
self-reference by displaying "..." in the recursive part of the representation
string.

To help write such __repr__() methods, the reprlib module has a new
decorator, recursive_repr(), for detecting recursive calls to
__repr__() and substituting a placeholder string instead:

>>> class MyList(list):
... @recursive_repr()
... def __repr__(self):
... return '<' + '|'.join(map(repr, self)) + '>'
...
>>> m = MyList('abc')
>>> m.append(m)
>>> m.append('x')
>>> print(m)
<'a'|'b'|'c'|...|'x'>

（由 Raymond Hettinger 在 bpo-9826 [https://bugs.python.org/issue9826] 和 bpo-9826 [https://bugs.python.org/issue9826] 中贡献。）

logging

In addition to dictionary-based configuration described above, the
logging package has many other improvements.

The logging documentation has been augmented by a basic tutorial, an advanced tutorial, and a cookbook of
logging recipes. These documents are the fastest way to learn about logging.

The logging.basicConfig() set-up function gained a style argument to
support three different types of string formatting. It defaults to "%" for
traditional %-formatting, can be set to "{" for the new str.format() style, or
can be set to "$" for the shell-style formatting provided by
string.Template. The following three configurations are equivalent:

>>> from logging import basicConfig
>>> basicConfig(style='%', format="%(name)s -> %(levelname)s: %(message)s")
>>> basicConfig(style='{', format="{name} -> {levelname} {message}")
>>> basicConfig(style='$', format="$name -> $levelname: $message")

If no configuration is set-up before a logging event occurs, there is now a
default configuration using a StreamHandler directed to
sys.stderr for events of WARNING level or higher. Formerly, an
event occurring before a configuration was set-up would either raise an
exception or silently drop the event depending on the value of
logging.raiseExceptions. The new default handler is stored in
logging.lastResort.

The use of filters has been simplified. Instead of creating a
Filter object, the predicate can be any Python callable that
returns True or False.

There were a number of other improvements that add flexibility and simplify
configuration. See the module documentation for a full listing of changes in
Python 3.2.

csv

The csv module now supports a new dialect, unix_dialect,
which applies quoting for all fields and a traditional Unix style with '\n' as
the line terminator. The registered dialect name is unix.

The csv.DictWriter has a new method,
writeheader() for writing-out an initial row to document
the field names:

>>> import csv, sys
>>> w = csv.DictWriter(sys.stdout, ['name', 'dept'], dialect='unix')
>>> w.writeheader()
"name","dept"
>>> w.writerows([
... {'name': 'tom', 'dept': 'accounting'},
... {'name': 'susan', 'dept': 'Salesl'}])
"tom","accounting"
"susan","sales"

(New dialect suggested by Jay Talbot in bpo-5975 [https://bugs.python.org/issue5975], and the new method
suggested by Ed Abraham in bpo-1537721 [https://bugs.python.org/issue1537721].)

contextlib

There is a new and slightly mind-blowing tool
ContextDecorator that is helpful for creating a
context manager that does double duty as a function decorator.

As a convenience, this new functionality is used by
contextmanager() so that no extra effort is needed to support
both roles.

The basic idea is that both context managers and function decorators can be used
for pre-action and post-action wrappers. Context managers wrap a group of
statements using a with statement, and function decorators wrap a
group of statements enclosed in a function. So, occasionally there is a need to
write a pre-action or post-action wrapper that can be used in either role.

For example, it is sometimes useful to wrap functions or groups of statements
with a logger that can track the time of entry and time of exit. Rather than
writing both a function decorator and a context manager for the task, the
contextmanager() provides both capabilities in a single
definition:

from contextlib import contextmanager
import logging

logging.basicConfig(level=logging.INFO)

@contextmanager
def track_entry_and_exit(name):
 logging.info('Entering: %s', name)
 yield
 logging.info('Exiting: %s', name)

Formerly, this would have only been usable as a context manager:

with track_entry_and_exit('widget loader'):
 print('Some time consuming activity goes here')
 load_widget()

Now, it can be used as a decorator as well:

@track_entry_and_exit('widget loader')
def activity():
 print('Some time consuming activity goes here')
 load_widget()

Trying to fulfill two roles at once places some limitations on the technique.
Context managers normally have the flexibility to return an argument usable by
a with statement, but there is no parallel for function decorators.

In the above example, there is not a clean way for the track_entry_and_exit
context manager to return a logging instance for use in the body of enclosed
statements.

（由 Michael Foord 在 bpo-9110 [https://bugs.python.org/issue9110] 中贡献。）

decimal and fractions

Mark Dickinson crafted an elegant and efficient scheme for assuring that
different numeric datatypes will have the same hash value whenever their actual
values are equal (bpo-8188 [https://bugs.python.org/issue8188]):

assert hash(Fraction(3, 2)) == hash(1.5) == \
 hash(Decimal("1.5")) == hash(complex(1.5, 0))

Some of the hashing details are exposed through a new attribute,
sys.hash_info, which describes the bit width of the hash value, the
prime modulus, the hash values for infinity and nan, and the multiplier
used for the imaginary part of a number:

>>> sys.hash_info
sys.hash_info(width=64, modulus=2305843009213693951, inf=314159, nan=0, imag=1000003)

An early decision to limit the inter-operability of various numeric types has
been relaxed. It is still unsupported (and ill-advised) to have implicit
mixing in arithmetic expressions such as Decimal('1.1') + float('1.1')
because the latter loses information in the process of constructing the binary
float. However, since existing floating point value can be converted losslessly
to either a decimal or rational representation, it makes sense to add them to
the constructor and to support mixed-type comparisons.

	The decimal.Decimal constructor now accepts float objects
directly so there in no longer a need to use the from_float()
method (bpo-8257 [https://bugs.python.org/issue8257]).

	Mixed type comparisons are now fully supported so that
Decimal objects can be directly compared with float
and fractions.Fraction (bpo-2531 [https://bugs.python.org/issue2531] and bpo-8188 [https://bugs.python.org/issue8188]).

Similar changes were made to fractions.Fraction so that the
from_float() and from_decimal()
methods are no longer needed (bpo-8294 [https://bugs.python.org/issue8294]):

>>> from decimal import Decimal
>>> from fractions import Fraction
>>> Decimal(1.1)
Decimal('1.100000000000000088817841970012523233890533447265625')
>>> Fraction(1.1)
Fraction(2476979795053773, 2251799813685248)

Another useful change for the decimal module is that the
Context.clamp attribute is now public. This is useful in creating
contexts that correspond to the decimal interchange formats specified in IEEE
754 (see bpo-8540 [https://bugs.python.org/issue8540]).

（由 Mark Dickinson 和 Raymond Hettinger贡献。）

ftp

The ftplib.FTP class now supports the context management protocol to
unconditionally consume socket.error exceptions and to close the FTP
connection when done:

>>> from ftplib import FTP
>>> with FTP("ftp1.at.proftpd.org") as ftp:
 ftp.login()
 ftp.dir()

'230 Anonymous login ok, restrictions apply.'
dr-xr-xr-x 9 ftp ftp 154 May 6 10:43 .
dr-xr-xr-x 9 ftp ftp 154 May 6 10:43 ..
dr-xr-xr-x 5 ftp ftp 4096 May 6 10:43 CentOS
dr-xr-xr-x 3 ftp ftp 18 Jul 10 2008 Fedora

Other file-like objects such as mmap.mmap and fileinput.input()
also grew auto-closing context managers:

with fileinput.input(files=('log1.txt', 'log2.txt')) as f:
 for line in f:
 process(line)

（由 Tarek Ziadé 和 Giampaolo Rodolà 在 bpo-4972`贡献，由 Georg Brandl 在 :issue:`8046 [https://bugs.python.org/issue4972`贡献，由 Georg Brandl 在 :issue:`8046] 和 bpo-1286 [https://bugs.python.org/issue1286] 贡献。）

The FTP_TLS class now accepts a context parameter, which is a
ssl.SSLContext object allowing bundling SSL configuration options,
certificates and private keys into a single (potentially long-lived) structure.

（由 Giampaolo Rodolà 在 bpo-8806 [https://bugs.python.org/issue8806] 中贡献。）

popen

The os.popen() and subprocess.Popen() functions now support
with statements for auto-closing of the file descriptors.

（由 Antoine Pitrou 和 Brian Curtin 在 bpo-7461 [https://bugs.python.org/issue7461] 和 bpo-10554 [https://bugs.python.org/issue10554] 中贡献。）

select

The select module now exposes a new, constant attribute,
PIPE_BUF, which gives the minimum number of bytes which are
guaranteed not to block when select.select() says a pipe is ready
for writing.

>>> import select
>>> select.PIPE_BUF
512

(Available on Unix systems. Patch by Sébastien Sablé in bpo-9862 [https://bugs.python.org/issue9862])

gzip 和 zipfile

gzip.GzipFile now implements the io.BufferedIOBase
abstract base class (except for truncate()). It also has a
peek() method and supports unseekable as well as
zero-padded file objects.

The gzip module also gains the compress() and
decompress() functions for easier in-memory compression and
decompression. Keep in mind that text needs to be encoded as bytes
before compressing and decompressing:

>>> import gzip
>>> s = 'Three shall be the number thou shalt count, '
>>> s += 'and the number of the counting shall be three'
>>> b = s.encode() # convert to utf-8
>>> len(b)
89
>>> c = gzip.compress(b)
>>> len(c)
77
>>> gzip.decompress(c).decode()[:42] # decompress and convert to text
'Three shall be the number thou shalt count'

（由 Anand B. Pillai 在 bpo-3488 [https://bugs.python.org/issue3488] 中贡献，由Antoine Pitrou, Nir Aides 和 Brian Curtin 在 bpo-9962 [https://bugs.python.org/issue9962]，bpo-1675951 [https://bugs.python.org/issue1675951] ，bpo-7471 [https://bugs.python.org/issue7471] 和 bpo-2846 [https://bugs.python.org/issue2846] 中贡献。）

Also, the zipfile.ZipExtFile class was reworked internally to represent
files stored inside an archive. The new implementation is significantly faster
and can be wrapped in an io.BufferedReader object for more speedups. It
also solves an issue where interleaved calls to read and readline gave the
wrong results.

(Patch submitted by Nir Aides in bpo-7610 [https://bugs.python.org/issue7610].)

tarfile

The TarFile class can now be used as a context manager. In
addition, its add() method has a new option, filter,
that controls which files are added to the archive and allows the file metadata
to be edited.

The new filter option replaces the older, less flexible exclude parameter
which is now deprecated. If specified, the optional filter parameter needs to
be a keyword argument. The user-supplied filter function accepts a
TarInfo object and returns an updated
TarInfo object, or if it wants the file to be excluded, the
function can return None:

>>> import tarfile, glob

>>> def myfilter(tarinfo):
... if tarinfo.isfile(): # only save real files
... tarinfo.uname = 'monty' # redact the user name
... return tarinfo

>>> with tarfile.open(name='myarchive.tar.gz', mode='w:gz') as tf:
... for filename in glob.glob('*.txt'):
... tf.add(filename, filter=myfilter)
... tf.list()
-rw-r--r-- monty/501 902 2011-01-26 17:59:11 annotations.txt
-rw-r--r-- monty/501 123 2011-01-26 17:59:11 general_questions.txt
-rw-r--r-- monty/501 3514 2011-01-26 17:59:11 prion.txt
-rw-r--r-- monty/501 124 2011-01-26 17:59:11 py_todo.txt
-rw-r--r-- monty/501 1399 2011-01-26 17:59:11 semaphore_notes.txt

(Proposed by Tarek Ziadé and implemented by Lars Gustäbel in bpo-6856 [https://bugs.python.org/issue6856].)

hashlib

The hashlib module has two new constant attributes listing the hashing
algorithms guaranteed to be present in all implementations and those available
on the current implementation:

>>> import hashlib

>>> hashlib.algorithms_guaranteed
{'sha1', 'sha224', 'sha384', 'sha256', 'sha512', 'md5'}

>>> hashlib.algorithms_available
{'md2', 'SHA256', 'SHA512', 'dsaWithSHA', 'mdc2', 'SHA224', 'MD4', 'sha256',
'sha512', 'ripemd160', 'SHA1', 'MDC2', 'SHA', 'SHA384', 'MD2',
'ecdsa-with-SHA1','md4', 'md5', 'sha1', 'DSA-SHA', 'sha224',
'dsaEncryption', 'DSA', 'RIPEMD160', 'sha', 'MD5', 'sha384'}

（由 Carl Chenet 在 bpo-7418 [https://bugs.python.org/issue7418] 中建议。）

ast

The ast module has a wonderful a general-purpose tool for safely
evaluating expression strings using the Python literal
syntax. The ast.literal_eval() function serves as a secure alternative to
the builtin eval() function which is easily abused. Python 3.2 adds
bytes and set literals to the list of supported types:
strings, bytes, numbers, tuples, lists, dicts, sets, booleans, and None.

>>> from ast import literal_eval

>>> request = "{'req': 3, 'func': 'pow', 'args': (2, 0.5)}"
>>> literal_eval(request)
{'args': (2, 0.5), 'req': 3, 'func': 'pow'}

>>> request = "os.system('do something harmful')"
>>> literal_eval(request)
Traceback (most recent call last):
 ...
ValueError: malformed node or string: <_ast.Call object at 0x101739a10>

（由Benjamin Peterson 和 Georg Brandl 实现。）

os

Different operating systems use various encodings for filenames and environment
variables. The os module provides two new functions,
fsencode() and fsdecode(), for encoding and decoding
filenames:

>>> import os
>>> filename = 'Sehenswürdigkeiten'
>>> os.fsencode(filename)
b'Sehensw\xc3\xbcrdigkeiten'

Some operating systems allow direct access to encoded bytes in the
environment. If so, the os.supports_bytes_environ constant will be
true.

For direct access to encoded environment variables (if available),
use the new os.getenvb() function or use os.environb
which is a bytes version of os.environ.

（由 Victor Stinner 贡献。）

shutil

The shutil.copytree() function has two new options:

	ignore_dangling_symlinks: when symlinks=False so that the function
copies a file pointed to by a symlink, not the symlink itself. This option
will silence the error raised if the file doesn't exist.

	copy_function: is a callable that will be used to copy files.
shutil.copy2() is used by default.

（由 Tarek Ziadé 贡献。）

In addition, the shutil module now supports archiving operations for zipfiles, uncompressed tarfiles, gzipped tarfiles,
and bzipped tarfiles. And there are functions for registering additional
archiving file formats (such as xz compressed tarfiles or custom formats).

The principal functions are make_archive() and
unpack_archive(). By default, both operate on the current
directory (which can be set by os.chdir()) and on any sub-directories.
The archive filename needs to be specified with a full pathname. The archiving
step is non-destructive (the original files are left unchanged).

>>> import shutil, pprint

>>> os.chdir('mydata') # change to the source directory
>>> f = shutil.make_archive('/var/backup/mydata',
... 'zip') # archive the current directory
>>> f # show the name of archive
'/var/backup/mydata.zip'
>>> os.chdir('tmp') # change to an unpacking
>>> shutil.unpack_archive('/var/backup/mydata.zip') # recover the data

>>> pprint.pprint(shutil.get_archive_formats()) # display known formats
[('bztar', "bzip2'ed tar-file"),
 ('gztar', "gzip'ed tar-file"),
 ('tar', 'uncompressed tar file'),
 ('zip', 'ZIP file')]

>>> shutil.register_archive_format(# register a new archive format
... name='xz',
... function=xz.compress, # callable archiving function
... extra_args=[('level', 8)], # arguments to the function
... description='xz compression'
...)

（由 Tarek Ziadé 贡献。）

sqlite3

The sqlite3 module was updated to pysqlite version 2.6.0. It has two new capabilities.

	The sqlite3.Connection.in_transit attribute is true if there is an
active transaction for uncommitted changes.

	The sqlite3.Connection.enable_load_extension() and
sqlite3.Connection.load_extension() methods allows you to load SQLite
extensions from ".so" files. One well-known extension is the fulltext-search
extension distributed with SQLite.

（由 R. David Murray 和 Shashwat Anand 在 bpo-4739 [https://bugs.python.org/issue4739] 中贡献。）

html

A new html module was introduced with only a single function,
escape(), which is used for escaping reserved characters from HTML
markup:

>>> import html
>>> html.escape('x > 2 && x < 7')
'x > 2 && x < 7'

socket

The socket module has two new improvements.

	Socket objects now have a detach() method which puts
the socket into closed state without actually closing the underlying file
descriptor. The latter can then be reused for other purposes.
(Added by Antoine Pitrou; bpo-8524 [https://bugs.python.org/issue8524].)

	socket.create_connection() now supports the context management protocol
to unconditionally consume socket.error exceptions and to close the
socket when done.
(Contributed by Giampaolo Rodolà; bpo-9794 [https://bugs.python.org/issue9794].)

ssl

The ssl module added a number of features to satisfy common requirements
for secure (encrypted, authenticated) internet connections:

	A new class, SSLContext, serves as a container for persistent
SSL data, such as protocol settings, certificates, private keys, and various
other options. It includes a wrap_socket() for creating
an SSL socket from an SSL context.

	A new function, ssl.match_hostname(), supports server identity
verification for higher-level protocols by implementing the rules of HTTPS
(from RFC 2818 [https://tools.ietf.org/html/rfc2818.html]) which are also suitable for other protocols.

	The ssl.wrap_socket() constructor function now takes a ciphers
argument. The ciphers string lists the allowed encryption algorithms using
the format described in the OpenSSL documentation [https://www.openssl.org/docs/manmaster/man1/ciphers.html#CIPHER-LIST-FORMAT].

	When linked against recent versions of OpenSSL, the ssl module now
supports the Server Name Indication extension to the TLS protocol, allowing
multiple "virtual hosts" using different certificates on a single IP port.
This extension is only supported in client mode, and is activated by passing
the server_hostname argument to ssl.SSLContext.wrap_socket().

	Various options have been added to the ssl module, such as
OP_NO_SSLv2 which disables the insecure and obsolete SSLv2
protocol.

	The extension now loads all the OpenSSL ciphers and digest algorithms. If
some SSL certificates cannot be verified, they are reported as an "unknown
algorithm" error.

	The version of OpenSSL being used is now accessible using the module
attributes ssl.OPENSSL_VERSION (a string),
ssl.OPENSSL_VERSION_INFO (a 5-tuple), and
ssl.OPENSSL_VERSION_NUMBER (an integer).

（由 Antoine Pitrou 在 bpo-1589 [https://bugs.python.org/issue1589], bpo-8322 [https://bugs.python.org/issue8322], bpo-5639 [https://bugs.python.org/issue5639], bpo-4870 [https://bugs.python.org/issue4870], bpo-8484 [https://bugs.python.org/issue8484] 和 bpo-8321 [https://bugs.python.org/issue8321] 中贡献。）

nntp

The nntplib module has a revamped implementation with better bytes and
text semantics as well as more practical APIs. These improvements break
compatibility with the nntplib version in Python 3.1, which was partly
dysfunctional in itself.

Support for secure connections through both implicit (using
nntplib.NNTP_SSL) and explicit (using nntplib.NNTP.starttls())
TLS has also been added.

（由 Antoine Pitrou 在 bpo-9360 [https://bugs.python.org/issue9360] 中贡献，由 Andrew Vant 在 bpo-1926 [https://bugs.python.org/issue1926] 中贡献。）

certificates

http.client.HTTPSConnection, urllib.request.HTTPSHandler
and urllib.request.urlopen() now take optional arguments to allow for
server certificate checking against a set of Certificate Authorities,
as recommended in public uses of HTTPS.

(Added by Antoine Pitrou, bpo-9003 [https://bugs.python.org/issue9003].)

imaplib

Support for explicit TLS on standard IMAP4 connections has been added through
the new imaplib.IMAP4.starttls method.

（由 Lorenzo M. Catucci 和 Antoine Pitrou 在 bpo-4471 [https://bugs.python.org/issue4471] 中贡献。）

http.client

There were a number of small API improvements in the http.client module.
The old-style HTTP 0.9 simple responses are no longer supported and the strict
parameter is deprecated in all classes.

The HTTPConnection and
HTTPSConnection classes now have a source_address
parameter for a (host, port) tuple indicating where the HTTP connection is made
from.

Support for certificate checking and HTTPS virtual hosts were added to
HTTPSConnection.

The request() method on connection objects
allowed an optional body argument so that a file object could be used
to supply the content of the request. Conveniently, the body argument now
also accepts an iterable object so long as it includes an explicit
Content-Length header. This extended interface is much more flexible than
before.

To establish an HTTPS connection through a proxy server, there is a new
set_tunnel() method that sets the host and
port for HTTP Connect tunneling.

To match the behavior of http.server, the HTTP client library now also
encodes headers with ISO-8859-1 (Latin-1) encoding. It was already doing that
for incoming headers, so now the behavior is consistent for both incoming and
outgoing traffic. (See work by Armin Ronacher in bpo-10980 [https://bugs.python.org/issue10980].)

unittest

The unittest module has a number of improvements supporting test discovery for
packages, easier experimentation at the interactive prompt, new testcase
methods, improved diagnostic messages for test failures, and better method
names.

	The command-line call python -m unittest can now accept file paths
instead of module names for running specific tests (bpo-10620 [https://bugs.python.org/issue10620]). The new
test discovery can find tests within packages, locating any test importable
from the top-level directory. The top-level directory can be specified with
the -t option, a pattern for matching files with -p, and a directory to
start discovery with -s:

$ python -m unittest discover -s my_proj_dir -p _test.py

（由 Michael Foord 贡献）

	Experimentation at the interactive prompt is now easier because the
unittest.case.TestCase class can now be instantiated without
arguments:

>>> from unittest import TestCase
>>> TestCase().assertEqual(pow(2, 3), 8)

（由 Michael Foord 贡献）

	The unittest module has two new methods,
assertWarns() and
assertWarnsRegex() to verify that a given warning type
is triggered by the code under test:

with self.assertWarns(DeprecationWarning):
 legacy_function('XYZ')

（由 Antoine Pitrou 在 bpo-9754 [https://bugs.python.org/issue9754] 中贡献。）

Another new method, assertCountEqual() is used to
compare two iterables to determine if their element counts are equal (whether
the same elements are present with the same number of occurrences regardless
of order):

def test_anagram(self):
 self.assertCountEqual('algorithm', 'logarithm')

（由 Raymond Hettinger 贡献。）

	A principal feature of the unittest module is an effort to produce meaningful
diagnostics when a test fails. When possible, the failure is recorded along
with a diff of the output. This is especially helpful for analyzing log files
of failed test runs. However, since diffs can sometime be voluminous, there is
a new maxDiff attribute that sets maximum length of
diffs displayed.

	In addition, the method names in the module have undergone a number of clean-ups.

For example, assertRegex() is the new name for
assertRegexpMatches() which was misnamed because the
test uses re.search(), not re.match(). Other methods using
regular expressions are now named using short form "Regex" in preference to
"Regexp" -- this matches the names used in other unittest implementations,
matches Python's old name for the re module, and it has unambiguous
camel-casing.

（由 Raymond Hettinger 贡献并由 Ezio Melotti 实现。）

	To improve consistency, some long-standing method aliases are being
deprecated in favor of the preferred names:

	旧名称

	首选名称

	assert_()

	assertTrue()

	assertEquals()

	assertEqual()

	assertNotEquals()

	assertNotEqual()

	assertAlmostEquals()

	assertAlmostEqual()

	assertNotAlmostEquals()

	assertNotAlmostEqual()

Likewise, the TestCase.fail* methods deprecated in Python 3.1 are expected
to be removed in Python 3.3. Also see the Deprecated aliases section in
the unittest documentation.

（由 Ezio Melotti 在 bpo-9424 [https://bugs.python.org/issue9424] 中贡献。）

	The assertDictContainsSubset() method was deprecated
because it was misimplemented with the arguments in the wrong order. This
created hard-to-debug optical illusions where tests like
TestCase().assertDictContainsSubset({'a':1, 'b':2}, {'a':1}) would fail.

（由 Raymond Hettinger 贡献。）

random

The integer methods in the random module now do a better job of producing
uniform distributions. Previously, they computed selections with
int(n*random()) which had a slight bias whenever n was not a power of two.
Now, multiple selections are made from a range up to the next power of two and a
selection is kept only when it falls within the range 0 <= x < n. The
functions and methods affected are randrange(),
randint(), choice(), shuffle() and
sample().

（由 Raymond Hettinger 在 bpo-9025 [https://bugs.python.org/issue9025] 中贡献。）

poplib

POP3_SSL class now accepts a context parameter, which is a
ssl.SSLContext object allowing bundling SSL configuration options,
certificates and private keys into a single (potentially long-lived)
structure.

（由 Giampaolo Rodolà 在 bpo-8807 [https://bugs.python.org/issue8807] 中贡献。）

asyncore

asyncore.dispatcher now provides a
handle_accepted() method
returning a (sock, addr) pair which is called when a connection has actually
been established with a new remote endpoint. This is supposed to be used as a
replacement for old handle_accept() and avoids
the user to call accept() directly.

（由 Giampaolo Rodolà 在 bpo-6706 [https://bugs.python.org/issue6706] 中贡献。）

tempfile

The tempfile module has a new context manager,
TemporaryDirectory which provides easy deterministic
cleanup of temporary directories:

with tempfile.TemporaryDirectory() as tmpdirname:
 print('created temporary dir:', tmpdirname)

由 Neil Schemenauer 和 Nick Coghlan 在 bpo-13062 [https://bugs.python.org/issue13062] 中贡献。

inspect

	The inspect module has a new function
getgeneratorstate() to easily identify the current state of a
generator-iterator:

>>> from inspect import getgeneratorstate
>>> def gen():
... yield 'demo'
>>> g = gen()
>>> getgeneratorstate(g)
'GEN_CREATED'
>>> next(g)
'demo'
>>> getgeneratorstate(g)
'GEN_SUSPENDED'
>>> next(g, None)
>>> getgeneratorstate(g)
'GEN_CLOSED'

由 Rodolpho Eckhardt 和 Nick Coghlan 在 bpo-10220 [https://bugs.python.org/issue10220] 中贡献。

	To support lookups without the possibility of activating a dynamic attribute,
the inspect module has a new function, getattr_static().
Unlike hasattr(), this is a true read-only search, guaranteed not to
change state while it is searching:

>>> class A:
... @property
... def f(self):
... print('Running')
... return 10
...
>>> a = A()
>>> getattr(a, 'f')
Running
10
>>> inspect.getattr_static(a, 'f')
<property object at 0x1022bd788>

（由 Michael Foord 贡献）

pydoc

The pydoc module now provides a much-improved Web server interface, as
well as a new command-line option -b to automatically open a browser window
to display that server:

$ pydoc3.2 -b

（由 Ron Adam 在 bpo-2001 [https://bugs.python.org/issue2001] 中贡献。）

dis

The dis module gained two new functions for inspecting code,
code_info() and show_code(). Both provide detailed code
object information for the supplied function, method, source code string or code
object. The former returns a string and the latter prints it:

>>> import dis, random
>>> dis.show_code(random.choice)
Name: choice
Filename: /Library/Frameworks/Python.framework/Versions/3.2/lib/python3.2/random.py
Argument count: 2
Kw-only arguments: 0
Number of locals: 3
Stack size: 11
Flags: OPTIMIZED, NEWLOCALS, NOFREE
Constants:
 0: 'Choose a random element from a non-empty sequence.'
 1: 'Cannot choose from an empty sequence'
Names:
 0: _randbelow
 1: len
 2: ValueError
 3: IndexError
Variable names:
 0: self
 1: seq
 2: i

In addition, the dis() function now accepts string arguments
so that the common idiom dis(compile(s, '', 'eval')) can be shortened
to dis(s):

>>> dis('3*x+1 if x%2==1 else x//2')
 1 0 LOAD_NAME 0 (x)
 3 LOAD_CONST 0 (2)
 6 BINARY_MODULO
 7 LOAD_CONST 1 (1)
 10 COMPARE_OP 2 (==)
 13 POP_JUMP_IF_FALSE 28
 16 LOAD_CONST 2 (3)
 19 LOAD_NAME 0 (x)
 22 BINARY_MULTIPLY
 23 LOAD_CONST 1 (1)
 26 BINARY_ADD
 27 RETURN_VALUE
 >> 28 LOAD_NAME 0 (x)
 31 LOAD_CONST 0 (2)
 34 BINARY_FLOOR_DIVIDE
 35 RETURN_VALUE

Taken together, these improvements make it easier to explore how CPython is
implemented and to see for yourself what the language syntax does
under-the-hood.

（由 Nick Coghlan 在 bpo-9147 [https://bugs.python.org/issue9147] 中贡献。）

dbm

All database modules now support the get() and setdefault() methods.

（由 Ray Allen 在 bpo-9523 [https://bugs.python.org/issue9523] 中建议。）

ctypes

A new type, ctypes.c_ssize_t represents the C ssize_t datatype.

site

The site module has three new functions useful for reporting on the
details of a given Python installation.

	getsitepackages() lists all global site-packages directories.

	getuserbase() reports on the user's base directory where data can
be stored.

	getusersitepackages() reveals the user-specific site-packages
directory path.

>>> import site
>>> site.getsitepackages()
['/Library/Frameworks/Python.framework/Versions/3.2/lib/python3.2/site-packages',
 '/Library/Frameworks/Python.framework/Versions/3.2/lib/site-python',
 '/Library/Python/3.2/site-packages']
>>> site.getuserbase()
'/Users/raymondhettinger/Library/Python/3.2'
>>> site.getusersitepackages()
'/Users/raymondhettinger/Library/Python/3.2/lib/python/site-packages'

Conveniently, some of site's functionality is accessible directly from the
command-line:

$ python -m site --user-base
/Users/raymondhettinger/.local
$ python -m site --user-site
/Users/raymondhettinger/.local/lib/python3.2/site-packages

（由 Tarek Ziadé 在 bpo-6693 [https://bugs.python.org/issue6693] 中贡献。）

sysconfig

The new sysconfig module makes it straightforward to discover
installation paths and configuration variables that vary across platforms and
installations.

The module offers access simple access functions for platform and version
information:

	get_platform() returning values like linux-i586 or
macosx-10.6-ppc.

	get_python_version() returns a Python version string
such as "3.2".

It also provides access to the paths and variables corresponding to one of
seven named schemes used by distutils. Those include posix_prefix,
posix_home, posix_user, nt, nt_user, os2, os2_home:

	get_paths() makes a dictionary containing installation paths
for the current installation scheme.

	get_config_vars() returns a dictionary of platform specific
variables.

还有一个方便的命令行界面：

C:\Python32>python -m sysconfig
Platform: "win32"
Python version: "3.2"
Current installation scheme: "nt"

Paths:
 data = "C:\Python32"
 include = "C:\Python32\Include"
 platinclude = "C:\Python32\Include"
 platlib = "C:\Python32\Lib\site-packages"
 platstdlib = "C:\Python32\Lib"
 purelib = "C:\Python32\Lib\site-packages"
 scripts = "C:\Python32\Scripts"
 stdlib = "C:\Python32\Lib"

Variables:
 BINDIR = "C:\Python32"
 BINLIBDEST = "C:\Python32\Lib"
 EXE = ".exe"
 INCLUDEPY = "C:\Python32\Include"
 LIBDEST = "C:\Python32\Lib"
 SO = ".pyd"
 VERSION = "32"
 abiflags = ""
 base = "C:\Python32"
 exec_prefix = "C:\Python32"
 platbase = "C:\Python32"
 prefix = "C:\Python32"
 projectbase = "C:\Python32"
 py_version = "3.2"
 py_version_nodot = "32"
 py_version_short = "3.2"
 srcdir = "C:\Python32"
 userbase = "C:\Documents and Settings\Raymond\Application Data\Python"

（由TarekZiadé 移出Distutils。）

pdb

The pdb debugger module gained a number of usability improvements:

	pdb.py now has a -c option that executes commands as given in a
.pdbrc script file.

	A .pdbrc script file can contain continue and next commands
that continue debugging.

	The Pdb class constructor now accepts a nosigint argument.

	New commands: l(list), ll(long list) and source for
listing source code.

	New commands: display and undisplay for showing or hiding
the value of an expression if it has changed.

	New command: interact for starting an interactive interpreter containing
the global and local names found in the current scope.

	Breakpoints can be cleared by breakpoint number.

（由Georg Brandl, Antonio Cuni 和 Ilya Sandler 贡献。）

configparser

The configparser module was modified to improve usability and
predictability of the default parser and its supported INI syntax. The old
ConfigParser class was removed in favor of SafeConfigParser
which has in turn been renamed to ConfigParser. Support
for inline comments is now turned off by default and section or option
duplicates are not allowed in a single configuration source.

Config parsers gained a new API based on the mapping protocol:

>>> parser = ConfigParser()
>>> parser.read_string("""
... [DEFAULT]
... location = upper left
... visible = yes
... editable = no
... color = blue
...
... [main]
... title = Main Menu
... color = green
...
... [options]
... title = Options
... """)
>>> parser['main']['color']
'green'
>>> parser['main']['editable']
'no'
>>> section = parser['options']
>>> section['title']
'Options'
>>> section['title'] = 'Options (editable: %(editable)s)'
>>> section['title']
'Options (editable: no)'

The new API is implemented on top of the classical API, so custom parser
subclasses should be able to use it without modifications.

The INI file structure accepted by config parsers can now be customized. Users
can specify alternative option/value delimiters and comment prefixes, change the
name of the DEFAULT section or switch the interpolation syntax.

There is support for pluggable interpolation including an additional interpolation
handler ExtendedInterpolation:

>>> parser = ConfigParser(interpolation=ExtendedInterpolation())
>>> parser.read_dict({'buildout': {'directory': '/home/ambv/zope9'},
... 'custom': {'prefix': '/usr/local'}})
>>> parser.read_string("""
... [buildout]
... parts =
... zope9
... instance
... find-links =
... ${buildout:directory}/downloads/dist
...
... [zope9]
... recipe = plone.recipe.zope9install
... location = /opt/zope
...
... [instance]
... recipe = plone.recipe.zope9instance
... zope9-location = ${zope9:location}
... zope-conf = ${custom:prefix}/etc/zope.conf
... """)
>>> parser['buildout']['find-links']
'\n/home/ambv/zope9/downloads/dist'
>>> parser['instance']['zope-conf']
'/usr/local/etc/zope.conf'
>>> instance = parser['instance']
>>> instance['zope-conf']
'/usr/local/etc/zope.conf'
>>> instance['zope9-location']
'/opt/zope'

A number of smaller features were also introduced, like support for specifying
encoding in read operations, specifying fallback values for get-functions, or
reading directly from dictionaries and strings.

(All changes contributed by Łukasz Langa.)

urllib.parse

A number of usability improvements were made for the urllib.parse module.

The urlparse() function now supports IPv6 [https://en.wikipedia.org/wiki/IPv6] addresses as described in RFC 2732 [https://tools.ietf.org/html/rfc2732.html]:

>>> import urllib.parse
>>> urllib.parse.urlparse('http://[dead:beef:cafe:5417:affe:8FA3:deaf:feed]/foo/')
ParseResult(scheme='http',
 netloc='[dead:beef:cafe:5417:affe:8FA3:deaf:feed]',
 path='/foo/',
 params='',
 query='',
 fragment='')

The urldefrag() function now returns a named tuple:

>>> r = urllib.parse.urldefrag('http://python.org/about/#target')
>>> r
DefragResult(url='http://python.org/about/', fragment='target')
>>> r[0]
'http://python.org/about/'
>>> r.fragment
'target'

And, the urlencode() function is now much more flexible,
accepting either a string or bytes type for the query argument. If it is a
string, then the safe, encoding, and error parameters are sent to
quote_plus() for encoding:

>>> urllib.parse.urlencode([
... ('type', 'telenovela'),
... ('name', '¿Dónde Está Elisa?')],
... encoding='latin-1')
'type=telenovela&name=%BFD%F3nde+Est%E1+Elisa%3F'

As detailed in 解析ASCII编码字节, all the urllib.parse
functions now accept ASCII-encoded byte strings as input, so long as they are
not mixed with regular strings. If ASCII-encoded byte strings are given as
parameters, the return types will also be an ASCII-encoded byte strings:

>>> urllib.parse.urlparse(b'http://www.python.org:80/about/')
ParseResultBytes(scheme=b'http', netloc=b'www.python.org:80',
 path=b'/about/', params=b'', query=b'', fragment=b'')

(Work by Nick Coghlan, Dan Mahn, and Senthil Kumaran in bpo-2987 [https://bugs.python.org/issue2987],
bpo-5468 [https://bugs.python.org/issue5468], and bpo-9873 [https://bugs.python.org/issue9873].)

mailbox

Thanks to a concerted effort by R. David Murray, the mailbox module has
been fixed for Python 3.2. The challenge was that mailbox had been originally
designed with a text interface, but email messages are best represented with
bytes because various parts of a message may have different encodings.

The solution harnessed the email package's binary support for parsing
arbitrary email messages. In addition, the solution required a number of API
changes.

As expected, the add() method for
mailbox.Mailbox objects now accepts binary input.

StringIO and text file input are deprecated. Also, string input
will fail early if non-ASCII characters are used. Previously it would fail when
the email was processed in a later step.

There is also support for binary output. The get_file()
method now returns a file in the binary mode (where it used to incorrectly set
the file to text-mode). There is also a new get_bytes()
method that returns a bytes representation of a message corresponding
to a given key.

It is still possible to get non-binary output using the old API's
get_string() method, but that approach
is not very useful. Instead, it is best to extract messages from
a Message object or to load them from binary input.

(Contributed by R. David Murray, with efforts from Steffen Daode Nurpmeso and an
initial patch by Victor Stinner in bpo-9124 [https://bugs.python.org/issue9124].)

turtledemo

The demonstration code for the turtle module was moved from the Demo
directory to main library. It includes over a dozen sample scripts with
lively displays. Being on sys.path, it can now be run directly
from the command-line:

$ python -m turtledemo

(Moved from the Demo directory by Alexander Belopolsky in bpo-10199 [https://bugs.python.org/issue10199].)

多线程

	The mechanism for serializing execution of concurrently running Python threads
(generally known as the GIL or Global Interpreter Lock) has
been rewritten. Among the objectives were more predictable switching
intervals and reduced overhead due to lock contention and the number of
ensuing system calls. The notion of a "check interval" to allow thread
switches has been abandoned and replaced by an absolute duration expressed in
seconds. This parameter is tunable through sys.setswitchinterval().
It currently defaults to 5 milliseconds.

Additional details about the implementation can be read from a python-dev
mailing-list message [https://mail.python.org/pipermail/python-dev/2009-October/093321.html]
(however, "priority requests" as exposed in this message have not been kept
for inclusion).

（由 Antoine Pitrou 贡献。）

	Regular and recursive locks now accept an optional timeout argument to their
acquire() method. (Contributed by Antoine Pitrou;
bpo-7316 [https://bugs.python.org/issue7316].)

	Similarly, threading.Semaphore.acquire() also gained a timeout
argument. (Contributed by Torsten Landschoff; bpo-850728 [https://bugs.python.org/issue850728].)

	Regular and recursive lock acquisitions can now be interrupted by signals on
platforms using Pthreads. This means that Python programs that deadlock while
acquiring locks can be successfully killed by repeatedly sending SIGINT to the
process (by pressing Ctrl+C in most shells).
(Contributed by Reid Kleckner; bpo-8844 [https://bugs.python.org/issue8844].)

性能优化

A number of small performance enhancements have been added:

	Python's peephole optimizer now recognizes patterns such x in {1, 2, 3} as
being a test for membership in a set of constants. The optimizer recasts the
set as a frozenset and stores the pre-built constant.

Now that the speed penalty is gone, it is practical to start writing
membership tests using set-notation. This style is both semantically clear
and operationally fast:

extension = name.rpartition('.')[2]
if extension in {'xml', 'html', 'xhtml', 'css'}:
 handle(name)

(Patch and additional tests contributed by Dave Malcolm; bpo-6690 [https://bugs.python.org/issue6690]).

	Serializing and unserializing data using the pickle module is now
several times faster.

（由 Alexandre Vassalotti, Antoine Pitrou 和 Unladen Swallow 团队在 bpo-9410 [https://bugs.python.org/issue9410] 和 bpo-3873 [https://bugs.python.org/issue3873] 中贡献。）

	The Timsort algorithm [https://en.wikipedia.org/wiki/Timsort] used in
list.sort() and sorted() now runs faster and uses less memory
when called with a key function. Previously, every element of
a list was wrapped with a temporary object that remembered the key value
associated with each element. Now, two arrays of keys and values are
sorted in parallel. This saves the memory consumed by the sort wrappers,
and it saves time lost to delegating comparisons.

(Patch by Daniel Stutzbach in bpo-9915 [https://bugs.python.org/issue9915].)

	JSON decoding performance is improved and memory consumption is reduced
whenever the same string is repeated for multiple keys. Also, JSON encoding
now uses the C speedups when the sort_keys argument is true.

（由Antoine Pitrou 在 bpo-7451 [https://bugs.python.org/issue7451] 中贡献，由 Raymond Hettinger 和 Antoine Pitrou 在 bpo-10314 [https://bugs.python.org/issue10314] 中贡献。）

	Recursive locks (created with the threading.RLock() API) now benefit
from a C implementation which makes them as fast as regular locks, and between
10x and 15x faster than their previous pure Python implementation.

（由 Antoine Pitrou 在 bpo-3001 [https://bugs.python.org/issue3001] 中贡献。）

	The fast-search algorithm in stringlib is now used by the split(),
rsplit(), splitlines() and replace() methods on
bytes, bytearray and str objects. Likewise, the
algorithm is also used by rfind(), rindex(), rsplit() and
rpartition().

(Patch by Florent Xicluna in bpo-7622 [https://bugs.python.org/issue7622] and bpo-7462 [https://bugs.python.org/issue7462].)

	Integer to string conversions now work two "digits" at a time, reducing the
number of division and modulo operations.

(bpo-6713 [https://bugs.python.org/issue6713] by Gawain Bolton, Mark Dickinson, and Victor Stinner.)

There were several other minor optimizations. Set differencing now runs faster
when one operand is much larger than the other (patch by Andress Bennetts in
bpo-8685 [https://bugs.python.org/issue8685]). The array.repeat() method has a faster implementation
(bpo-1569291 [https://bugs.python.org/issue1569291] by Alexander Belopolsky). The BaseHTTPRequestHandler
has more efficient buffering (bpo-3709 [https://bugs.python.org/issue3709] by Andrew Schaaf). The
operator.attrgetter() function has been sped-up (bpo-10160 [https://bugs.python.org/issue10160] by
Christos Georgiou). And ConfigParser loads multi-line arguments a bit
faster (bpo-7113 [https://bugs.python.org/issue7113] by Łukasz Langa).

Unicode

Python has been updated to Unicode 6.0.0 [http://unicode.org/versions/Unicode6.0.0/]. The update to the standard adds
over 2,000 new characters including emoji [https://en.wikipedia.org/wiki/Emoji]
symbols which are important for mobile phones.

In addition, the updated standard has altered the character properties for two
Kannada characters (U+0CF1, U+0CF2) and one New Tai Lue numeric character
(U+19DA), making the former eligible for use in identifiers while disqualifying
the latter. For more information, see Unicode Character Database Changes [http://www.unicode.org/versions/Unicode6.0.0/#Database_Changes].

编解码器

Support was added for cp720 Arabic DOS encoding (bpo-1616979 [https://bugs.python.org/issue1616979]).

MBCS encoding no longer ignores the error handler argument. In the default
strict mode, it raises an UnicodeDecodeError when it encounters an
undecodable byte sequence and an UnicodeEncodeError for an unencodable
character.

The MBCS codec supports 'strict' and 'ignore' error handlers for
decoding, and 'strict' and 'replace' for encoding.

To emulate Python3.1 MBCS encoding, select the 'ignore' handler for decoding
and the 'replace' handler for encoding.

On Mac OS X, Python decodes command line arguments with 'utf-8' rather than
the locale encoding.

By default, tarfile uses 'utf-8' encoding on Windows (instead of
'mbcs') and the 'surrogateescape' error handler on all operating
systems.

文档

The documentation continues to be improved.

	A table of quick links has been added to the top of lengthy sections such as
内置函数. In the case of itertools, the links are
accompanied by tables of cheatsheet-style summaries to provide an overview and
memory jog without having to read all of the docs.

	In some cases, the pure Python source code can be a helpful adjunct to the
documentation, so now many modules now feature quick links to the latest
version of the source code. For example, the functools module
documentation has a quick link at the top labeled:

源代码 Lib/functools.py [https://github.com/python/cpython/tree/3.7/Lib/functools.py].

（由 Raymond Hettinger 贡献，参见 rationale [https://rhettinger.wordpress.com/2011/01/28/open-your-source-more/]。）

	The docs now contain more examples and recipes. In particular, re
module has an extensive section, 正则表达式例子. Likewise, the
itertools module continues to be updated with new
Itertools食谱.

	The datetime module now has an auxiliary implementation in pure Python.
No functionality was changed. This just provides an easier-to-read alternate
implementation.

（由 Alexander Belopolsky 在 bpo-9528 [https://bugs.python.org/issue9528] 中贡献。）

	The unmaintained Demo directory has been removed. Some demos were
integrated into the documentation, some were moved to the Tools/demo
directory, and others were removed altogether.

（由 Georg Brandl 在 bpo-7962 [https://bugs.python.org/issue7962] 中贡献）

IDLE

	The format menu now has an option to clean source files by stripping
trailing whitespace.

（由 Raymond Hettinger 在 bpo-5150 [https://bugs.python.org/issue5150] 中贡献。）

	IDLE on Mac OS X now works with both Carbon AquaTk and Cocoa AquaTk.

（由 Kevin Walzer, Ned Deily 和 Ronald Oussoren 在 bpo-6075 [https://bugs.python.org/issue6075] 中贡献。）

代码库

In addition to the existing Subversion code repository at http://svn.python.org
there is now a Mercurial [https://www.mercurial-scm.org/] repository at
https://hg.python.org/.

After the 3.2 release, there are plans to switch to Mercurial as the primary
repository. This distributed version control system should make it easier for
members of the community to create and share external changesets. See
PEP 385 [https://www.python.org/dev/peps/pep-0385] for details.

To learn to use the new version control system, see the Quick Start [https://www.mercurial-scm.org/wiki/QuickStart] or the Guide to
Mercurial Workflows [https://www.mercurial-scm.org/guide].

构建和 C API 的改变

Changes to Python's build process and to the C API include:

	The idle, pydoc and 2to3 scripts are now installed with a
version-specific suffix on make altinstall (bpo-10679 [https://bugs.python.org/issue10679]).

	The C functions that access the Unicode Database now accept and return
characters from the full Unicode range, even on narrow unicode builds
(Py_UNICODE_TOLOWER, Py_UNICODE_ISDECIMAL, and others). A visible difference
in Python is that unicodedata.numeric() now returns the correct value
for large code points, and repr() may consider more characters as
printable.

(Reported by Bupjoe Lee and fixed by Amaury Forgeot D'Arc; bpo-5127 [https://bugs.python.org/issue5127].)

	Computed gotos are now enabled by default on supported compilers (which are
detected by the configure script). They can still be disabled selectively by
specifying --without-computed-gotos.

（由 Antoine Pitrou 在 bpo-9203 [https://bugs.python.org/issue9203] 中贡献。）

	The option --with-wctype-functions was removed. The built-in unicode
database is now used for all functions.

（由 Amaury Forgeot d'Arc 在 bpo-9210 [https://bugs.python.org/issue9210] 中贡献。）

	Hash values are now values of a new type, Py_hash_t, which is
defined to be the same size as a pointer. Previously they were of type long,
which on some 64-bit operating systems is still only 32 bits long. As a
result of this fix, set and dict can now hold more than
2**32 entries on builds with 64-bit pointers (previously, they could grow
to that size but their performance degraded catastrophically).

(Suggested by Raymond Hettinger and implemented by Benjamin Peterson;
bpo-9778 [https://bugs.python.org/issue9778].)

	A new macro Py_VA_COPY copies the state of the variable argument
list. It is equivalent to C99 va_copy but available on all Python platforms
(bpo-2443 [https://bugs.python.org/issue2443]).

	A new C API function PySys_SetArgvEx() allows an embedded interpreter
to set sys.argv without also modifying sys.path
(bpo-5753 [https://bugs.python.org/issue5753]).

	PyEval_CallObject is now only available in macro form. The
function declaration, which was kept for backwards compatibility reasons, is
now removed -- the macro was introduced in 1997 (bpo-8276 [https://bugs.python.org/issue8276]).

	There is a new function PyLong_AsLongLongAndOverflow() which
is analogous to PyLong_AsLongAndOverflow(). They both serve to
convert Python int into a native fixed-width type while providing
detection of cases where the conversion won't fit (bpo-7767 [https://bugs.python.org/issue7767]).

	The PyUnicode_CompareWithASCIIString() function now returns not
equal if the Python string is NUL terminated.

	There is a new function PyErr_NewExceptionWithDoc() that is
like PyErr_NewException() but allows a docstring to be specified.
This lets C exceptions have the same self-documenting capabilities as
their pure Python counterparts (bpo-7033 [https://bugs.python.org/issue7033]).

	When compiled with the --with-valgrind option, the pymalloc
allocator will be automatically disabled when running under Valgrind. This
gives improved memory leak detection when running under Valgrind, while taking
advantage of pymalloc at other times (bpo-2422 [https://bugs.python.org/issue2422]).

	Removed the O? format from the PyArg_Parse functions. The format is no
longer used and it had never been documented (bpo-8837 [https://bugs.python.org/issue8837]).

There were a number of other small changes to the C-API. See the
Misc/NEWS [https://github.com/python/cpython/tree/3.7/Misc/NEWS] file for a complete list.

Also, there were a number of updates to the Mac OS X build, see
Mac/BuildScript/README.txt [https://github.com/python/cpython/tree/3.7/Mac/BuildScript/README.txt] for details. For users running a 32/64-bit
build, there is a known problem with the default Tcl/Tk on Mac OS X 10.6.
Accordingly, we recommend installing an updated alternative such as
ActiveState Tcl/Tk 8.5.9 [https://www.activestate.com/activetcl/downloads].
See https://www.python.org/download/mac/tcltk/ for additional details.

移植到 Python 3.2

This section lists previously described changes and other bugfixes that may
require changes to your code:

	The configparser module has a number of clean-ups. The major change is
to replace the old ConfigParser class with long-standing preferred
alternative SafeConfigParser. In addition there are a number of
smaller incompatibilities:

	The interpolation syntax is now validated on
get() and
set() operations. In the default
interpolation scheme, only two tokens with percent signs are valid: %(name)s
and %%, the latter being an escaped percent sign.

	The set() and
add_section() methods now verify that
values are actual strings. Formerly, unsupported types could be introduced
unintentionally.

	Duplicate sections or options from a single source now raise either
DuplicateSectionError or
DuplicateOptionError. Formerly, duplicates would
silently overwrite a previous entry.

	Inline comments are now disabled by default so now the ; character
can be safely used in values.

	Comments now can be indented. Consequently, for ; or # to appear at
the start of a line in multiline values, it has to be interpolated. This
keeps comment prefix characters in values from being mistaken as comments.

	"" is now a valid value and is no longer automatically converted to an
empty string. For empty strings, use "option =" in a line.

	The nntplib module was reworked extensively, meaning that its APIs
are often incompatible with the 3.1 APIs.

	bytearray objects can no longer be used as filenames; instead,
they should be converted to bytes.

	The array.tostring() and array.fromstring() have been renamed to
array.tobytes() and array.frombytes() for clarity. The old names
have been deprecated. (See bpo-8990 [https://bugs.python.org/issue8990].)

	PyArg_Parse*() 函数:

	"t#" format has been removed: use "s#" or "s*" instead

	"w" and "w#" formats has been removed: use "w*" instead

	The PyCObject type, deprecated in 3.1, has been removed. To wrap
opaque C pointers in Python objects, the PyCapsule API should be used
instead; the new type has a well-defined interface for passing typing safety
information and a less complicated signature for calling a destructor.

	The sys.setfilesystemencoding() function was removed because
it had a flawed design.

	The random.seed() function and method now salt string seeds with an
sha512 hash function. To access the previous version of seed in order to
reproduce Python 3.1 sequences, set the version argument to 1,
random.seed(s, version=1).

	The previously deprecated string.maketrans() function has been removed
in favor of the static methods bytes.maketrans() and
bytearray.maketrans(). This change solves the confusion around which
types were supported by the string module. Now, str,
bytes, and bytearray each have their own maketrans and
translate methods with intermediate translation tables of the appropriate
type.

（由Georg Brandl在 bpo-5675 [https://bugs.python.org/issue5675] 中贡献）

	The previously deprecated contextlib.nested() function has been removed
in favor of a plain with statement which can accept multiple
context managers. The latter technique is faster (because it is built-in),
and it does a better job finalizing multiple context managers when one of them
raises an exception:

with open('mylog.txt') as infile, open('a.out', 'w') as outfile:
 for line in infile:
 if '<critical>' in line:
 outfile.write(line)

(Contributed by Georg Brandl and Mattias Brändström;
appspot issue 53094 [https://codereview.appspot.com/53094].)

	struct.pack() now only allows bytes for the s string pack code.
Formerly, it would accept text arguments and implicitly encode them to bytes
using UTF-8. This was problematic because it made assumptions about the
correct encoding and because a variable-length encoding can fail when writing
to fixed length segment of a structure.

Code such as struct.pack('<6sHHBBB', 'GIF87a', x, y) should be rewritten
with to use bytes instead of text, struct.pack('<6sHHBBB', b'GIF87a', x, y).

(Discovered by David Beazley and fixed by Victor Stinner; bpo-10783 [https://bugs.python.org/issue10783].)

	The xml.etree.ElementTree class now raises an
xml.etree.ElementTree.ParseError when a parse fails. Previously it
raised an xml.parsers.expat.ExpatError.

	The new, longer str() value on floats may break doctests which rely on
the old output format.

	In subprocess.Popen, the default value for close_fds is now
True under Unix; under Windows, it is True if the three standard
streams are set to None, False otherwise. Previously, close_fds
was always False by default, which produced difficult to solve bugs
or race conditions when open file descriptors would leak into the child
process.

	Support for legacy HTTP 0.9 has been removed from urllib.request
and http.client. Such support is still present on the server side
(in http.server).

（由 Antoine Pitrou 在 bpo-10711 [https://bugs.python.org/issue10711] 中贡献。）

	SSL sockets in timeout mode now raise socket.timeout when a timeout
occurs, rather than a generic SSLError.

（由 Antoine Pitrou 在 bpo-10272 [https://bugs.python.org/issue10272] 中贡献。）

	The misleading functions PyEval_AcquireLock() and
PyEval_ReleaseLock() have been officially deprecated. The
thread-state aware APIs (such as PyEval_SaveThread()
and PyEval_RestoreThread()) should be used instead.

	Due to security risks, asyncore.handle_accept() has been deprecated, and
a new function, asyncore.handle_accepted(), was added to replace it.

（由 Giampaolo Rodola 在 bpo-6706 [https://bugs.python.org/issue6706] 中贡献。）

	Due to the new GIL implementation, PyEval_InitThreads()
cannot be called before Py_Initialize() anymore.

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 3.1 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 3.1 有什么新变化

	作者

	Raymond Hettinger

This article explains the new features in Python 3.1, compared to 3.0.

PEP 372: 有序字典

Regular Python dictionaries iterate over key/value pairs in arbitrary order.
Over the years, a number of authors have written alternative implementations
that remember the order that the keys were originally inserted. Based on
the experiences from those implementations, a new
collections.OrderedDict class has been introduced.

The OrderedDict API is substantially the same as regular dictionaries
but will iterate over keys and values in a guaranteed order depending on
when a key was first inserted. If a new entry overwrites an existing entry,
the original insertion position is left unchanged. Deleting an entry and
reinserting it will move it to the end.

The standard library now supports use of ordered dictionaries in several
modules. The configparser module uses them by default. This lets
configuration files be read, modified, and then written back in their original
order. The _asdict() method for collections.namedtuple() now
returns an ordered dictionary with the values appearing in the same order as
the underlying tuple indices. The json module is being built-out with
an object_pairs_hook to allow OrderedDicts to be built by the decoder.
Support was also added for third-party tools like PyYAML [http://pyyaml.org/].

参见

	PEP 372 [https://www.python.org/dev/peps/pep-0372] - 有序字典
	PEP 由 Armin Ronacher 和 Raymond Hettinger 撰写，由 Raymond Hettinger 实现。

PEP 378: 千位分隔符的格式说明符

The built-in format() function and the str.format() method use
a mini-language that now includes a simple, non-locale aware way to format
a number with a thousands separator. That provides a way to humanize a
program's output, improving its professional appearance and readability:

>>> format(1234567, ',d')
'1,234,567'
>>> format(1234567.89, ',.2f')
'1,234,567.89'
>>> format(12345.6 + 8901234.12j, ',f')
'12,345.600000+8,901,234.120000j'
>>> format(Decimal('1234567.89'), ',f')
'1,234,567.89'

The supported types are int, float, complex
and decimal.Decimal.

Discussions are underway about how to specify alternative separators
like dots, spaces, apostrophes, or underscores. Locale-aware applications
should use the existing n format specifier which already has some support
for thousands separators.

参见

	PEP 378 [https://www.python.org/dev/peps/pep-0378] - 千位分隔符的格式说明符
	PEP 由 Raymond Hettinger 撰写，并由 Eric Smith 和 Mark Dickinson 实现

其他语言特性修改

对Python 语言核心进行的小改动：

	Directories and zip archives containing a __main__.py
file can now be executed directly by passing their name to the
interpreter. The directory/zipfile is automatically inserted as the
first entry in sys.path. (Suggestion and initial patch by Andy Chu;
revised patch by Phillip J. Eby and Nick Coghlan; bpo-1739468 [https://bugs.python.org/issue1739468].)

	The int() type gained a bit_length method that returns the
number of bits necessary to represent its argument in binary:

>>> n = 37
>>> bin(37)
'0b100101'
>>> n.bit_length()
6
>>> n = 2**123-1
>>> n.bit_length()
123
>>> (n+1).bit_length()
124

（由 Fredrik Johansson, Victor Stinner, Raymond Hettinger 和 Mark Dickinson 在 bpo-36326 [https://bugs.python.org/issue36326] 中贡献。）

	The fields in format() strings can now be automatically
numbered:

>>> 'Sir {} of {}'.format('Gallahad', 'Camelot')
'Sir Gallahad of Camelot'

Formerly, the string would have required numbered fields such as:
'Sir {0} of {1}'.

（由 Eric Smith在 bpo-5237 [https://bugs.python.org/issue5237] 中贡献）

	The string.maketrans() function is deprecated and is replaced by new
static methods, bytes.maketrans() and bytearray.maketrans().
This change solves the confusion around which types were supported by the
string module. Now, str, bytes, and
bytearray each have their own maketrans and translate
methods with intermediate translation tables of the appropriate type.

（由Georg Brandl在 bpo-5675 [https://bugs.python.org/issue5675] 中贡献）

	The syntax of the with statement now allows multiple context
managers in a single statement:

>>> with open('mylog.txt') as infile, open('a.out', 'w') as outfile:
... for line in infile:
... if '<critical>' in line:
... outfile.write(line)

With the new syntax, the contextlib.nested() function is no longer
needed and is now deprecated.

(Contributed by Georg Brandl and Mattias Brändström;
appspot issue 53094 [https://codereview.appspot.com/53094].)

	round(x, n) now returns an integer if x is an integer.
Previously it returned a float:

>>> round(1123, -2)
1100

（由 Mark Dickinson在 bpo-4707 [https://bugs.python.org/issue4707] 贡献）

	Python now uses David Gay's algorithm for finding the shortest floating
point representation that doesn't change its value. This should help
mitigate some of the confusion surrounding binary floating point
numbers.

The significance is easily seen with a number like 1.1 which does not
have an exact equivalent in binary floating point. Since there is no exact
equivalent, an expression like float('1.1') evaluates to the nearest
representable value which is 0x1.199999999999ap+0 in hex or
1.100000000000000088817841970012523233890533447265625 in decimal. That
nearest value was and still is used in subsequent floating point
calculations.

What is new is how the number gets displayed. Formerly, Python used a
simple approach. The value of repr(1.1) was computed as format(1.1,
'.17g') which evaluated to '1.1000000000000001'. The advantage of
using 17 digits was that it relied on IEEE-754 guarantees to assure that
eval(repr(1.1)) would round-trip exactly to its original value. The
disadvantage is that many people found the output to be confusing (mistaking
intrinsic limitations of binary floating point representation as being a
problem with Python itself).

The new algorithm for repr(1.1) is smarter and returns '1.1'.
Effectively, it searches all equivalent string representations (ones that
get stored with the same underlying float value) and returns the shortest
representation.

The new algorithm tends to emit cleaner representations when possible, but
it does not change the underlying values. So, it is still the case that
1.1 + 2.2 != 3.3 even though the representations may suggest otherwise.

The new algorithm depends on certain features in the underlying floating
point implementation. If the required features are not found, the old
algorithm will continue to be used. Also, the text pickle protocols
assure cross-platform portability by using the old algorithm.

（由 Eric Smith 和 Mark Dickinson 在 bpo-1580 [https://bugs.python.org/issue1580] 贡献）

新增，改进和弃用的模块

	Added a collections.Counter class to support convenient
counting of unique items in a sequence or iterable:

>>> Counter(['red', 'blue', 'red', 'green', 'blue', 'blue'])
Counter({'blue': 3, 'red': 2, 'green': 1})

（由 Raymond Hettinger 在 bpo-1696199 [https://bugs.python.org/issue1696199] 中贡献。）

	Added a new module, tkinter.ttk for access to the Tk themed widget set.
The basic idea of ttk is to separate, to the extent possible, the code
implementing a widget's behavior from the code implementing its appearance.

（由 Guilherme Polo 在 bpo-2983 [https://bugs.python.org/issue2983] 中贡献。）

	The gzip.GzipFile and bz2.BZ2File classes now support
the context management protocol:

>>> # Automatically close file after writing
>>> with gzip.GzipFile(filename, "wb") as f:
... f.write(b"xxx")

（由 Antoine Pitrou 贡献。）

	The decimal module now supports methods for creating a
decimal object from a binary float. The conversion is
exact but can sometimes be surprising:

>>> Decimal.from_float(1.1)
Decimal('1.100000000000000088817841970012523233890533447265625')

The long decimal result shows the actual binary fraction being
stored for 1.1. The fraction has many digits because 1.1 cannot
be exactly represented in binary.

（由Raymond Hettinger 和 Mark Dickinson贡献。）

	The itertools module grew two new functions. The
itertools.combinations_with_replacement() function is one of
four for generating combinatorics including permutations and Cartesian
products. The itertools.compress() function mimics its namesake
from APL. Also, the existing itertools.count() function now has
an optional step argument and can accept any type of counting
sequence including fractions.Fraction and
decimal.Decimal:

>>> [p+q for p,q in combinations_with_replacement('LOVE', 2)]
['LL', 'LO', 'LV', 'LE', 'OO', 'OV', 'OE', 'VV', 'VE', 'EE']

>>> list(compress(data=range(10), selectors=[0,0,1,1,0,1,0,1,0,0]))
[2, 3, 5, 7]

>>> c = count(start=Fraction(1,2), step=Fraction(1,6))
>>> [next(c), next(c), next(c), next(c)]
[Fraction(1, 2), Fraction(2, 3), Fraction(5, 6), Fraction(1, 1)]

（由 Raymond Hettinger 贡献。）

	collections.namedtuple() now supports a keyword argument
rename which lets invalid fieldnames be automatically converted to
positional names in the form _0, _1, etc. This is useful when
the field names are being created by an external source such as a
CSV header, SQL field list, or user input:

>>> query = input()
SELECT region, dept, count(*) FROM main GROUPBY region, dept

>>> cursor.execute(query)
>>> query_fields = [desc[0] for desc in cursor.description]
>>> UserQuery = namedtuple('UserQuery', query_fields, rename=True)
>>> pprint.pprint([UserQuery(*row) for row in cursor])
[UserQuery(region='South', dept='Shipping', _2=185),
 UserQuery(region='North', dept='Accounting', _2=37),
 UserQuery(region='West', dept='Sales', _2=419)]

（由 Raymond Hettinger 在 bpo-1818 [https://bugs.python.org/issue1818] 中贡献。）

	The re.sub(), re.subn() and re.split() functions now
accept a flags parameter.

（由 Gregory Smith 贡献）

	The logging module now implements a simple logging.NullHandler
class for applications that are not using logging but are calling
library code that does. Setting-up a null handler will suppress
spurious warnings such as "No handlers could be found for logger foo":

>>> h = logging.NullHandler()
>>> logging.getLogger("foo").addHandler(h)

（由 Vinay Sajip 在 bpo-4384 [https://bugs.python.org/issue4384] 中贡献。）

	The runpy module which supports the -m command line switch
now supports the execution of packages by looking for and executing
a __main__ submodule when a package name is supplied.

（由 Andi Vajda 在 bpo-4195 [https://bugs.python.org/issue4195] 中贡献。）

	The pdb module can now access and display source code loaded via
zipimport (or any other conformant PEP 302 [https://www.python.org/dev/peps/pep-0302] loader).

（由 Alexander Belopolsky 在 bpo-4201 [https://bugs.python.org/issue4201] 中贡献。）

	functools.partial objects can now be pickled.

(Suggested by Antoine Pitrou and Jesse Noller. Implemented by
Jack Diederich; bpo-5228 [https://bugs.python.org/issue5228].)

	Add pydoc help topics for symbols so that help('@')
works as expected in the interactive environment.

（由 David Laban 在 bpo-4739 [https://bugs.python.org/issue4739] 中贡献。）

	The unittest module now supports skipping individual tests or classes
of tests. And it supports marking a test as an expected failure, a test that
is known to be broken, but shouldn't be counted as a failure on a
TestResult:

class TestGizmo(unittest.TestCase):

 @unittest.skipUnless(sys.platform.startswith("win"), "requires Windows")
 def test_gizmo_on_windows(self):
 ...

 @unittest.expectedFailure
 def test_gimzo_without_required_library(self):
 ...

Also, tests for exceptions have been builtout to work with context managers
using the with statement:

def test_division_by_zero(self):
 with self.assertRaises(ZeroDivisionError):
 x / 0

In addition, several new assertion methods were added including
assertSetEqual(), assertDictEqual(),
assertDictContainsSubset(), assertListEqual(),
assertTupleEqual(), assertSequenceEqual(),
assertRaisesRegexp(), assertIsNone(),
and assertIsNotNone().

（由Benjamin Peterson 和 Antoine Pitrou 贡献。）

	The io module has three new constants for the seek()
method SEEK_SET, SEEK_CUR, and SEEK_END.

	The sys.version_info tuple is now a named tuple:

>>> sys.version_info
sys.version_info(major=3, minor=1, micro=0, releaselevel='alpha', serial=2)

（由 Ross Light 在 bpo-4285 [https://bugs.python.org/issue4285] 中贡献。）

	The nntplib and imaplib modules now support IPv6.

（由 Derek Morr 在 bpo-14807 [https://bugs.python.org/issue14807] 和 bpo-1664 [https://bugs.python.org/issue1664] 中贡献。）

	The pickle module has been adapted for better interoperability with
Python 2.x when used with protocol 2 or lower. The reorganization of the
standard library changed the formal reference for many objects. For
example, __builtin__.set in Python 2 is called builtins.set in Python
3. This change confounded efforts to share data between different versions of
Python. But now when protocol 2 or lower is selected, the pickler will
automatically use the old Python 2 names for both loading and dumping. This
remapping is turned-on by default but can be disabled with the fix_imports
option:

>>> s = {1, 2, 3}
>>> pickle.dumps(s, protocol=0)
b'c__builtin__\nset\np0\n((lp1\nL1L\naL2L\naL3L\natp2\nRp3\n.'
>>> pickle.dumps(s, protocol=0, fix_imports=False)
b'cbuiltins\nset\np0\n((lp1\nL1L\naL2L\naL3L\natp2\nRp3\n.'

An unfortunate but unavoidable side-effect of this change is that protocol 2
pickles produced by Python 3.1 won't be readable with Python 3.0. The latest
pickle protocol, protocol 3, should be used when migrating data between
Python 3.x implementations, as it doesn't attempt to remain compatible with
Python 2.x.

（由 Alexandre Vassalotti 和 Antoine Pitrou 在 bpo-6137 [https://bugs.python.org/issue6137] 中贡献。）

	A new module, importlib was added. It provides a complete, portable,
pure Python reference implementation of the import statement and its
counterpart, the __import__() function. It represents a substantial
step forward in documenting and defining the actions that take place during
imports.

（由 Brett Cannon 贡献。）

性能优化

Major performance enhancements have been added:

	The new I/O library (as defined in PEP 3116 [https://www.python.org/dev/peps/pep-3116]) was mostly written in
Python and quickly proved to be a problematic bottleneck in Python 3.0.
In Python 3.1, the I/O library has been entirely rewritten in C and is
2 to 20 times faster depending on the task at hand. The pure Python
version is still available for experimentation purposes through
the _pyio module.

（由 Amaury Forgeot d'Arc 和 Antoine Pitrou 贡献。）

	Added a heuristic so that tuples and dicts containing only untrackable objects
are not tracked by the garbage collector. This can reduce the size of
collections and therefore the garbage collection overhead on long-running
programs, depending on their particular use of datatypes.

（由 Antoine Pitrou 在 bpo-4688 [https://bugs.python.org/issue4688] 中贡献。）

	Enabling a configure option named --with-computed-gotos
on compilers that support it (notably: gcc, SunPro, icc), the bytecode
evaluation loop is compiled with a new dispatch mechanism which gives
speedups of up to 20%, depending on the system, the compiler, and
the benchmark.

（由 Antoine Pitrou 以及其他一些参与者在 bpo-4753 [https://bugs.python.org/issue4753] 中贡献。）

	The decoding of UTF-8, UTF-16 and LATIN-1 is now two to four times
faster.

（由 Antoine Pitrou 和 Amaury Forgeot d'Arc 在 bpo-4868 [https://bugs.python.org/issue4868] 中贡献。）

	The json module now has a C extension to substantially improve
its performance. In addition, the API was modified so that json works
only with str, not with bytes. That change makes the
module closely match the JSON specification [http://json.org/]
which is defined in terms of Unicode.

（由 Bob Ippolito 在 bpo-4136 [https://bugs.python.org/issue4136] 中贡献。并由 Antoine Pitrou 和 Benjamin Peterson 转换为Py3.1）

	Unpickling now interns the attribute names of pickled objects. This saves
memory and allows pickles to be smaller.

（由 Jake McGuire 和 Antoine Pitrou 在 bpo-5084 [https://bugs.python.org/issue5084] 中贡献。）

IDLE

	IDLE's format menu now provides an option to strip trailing whitespace
from a source file.

（由 Roger D. Serwy 在 bpo-5150 [https://bugs.python.org/issue5150] 中贡献。）

构建和 C API 的改变

Changes to Python's build process and to the C API include:

	Integers are now stored internally either in base 2**15 or in base
2**30, the base being determined at build time. Previously, they
were always stored in base 2**15. Using base 2**30 gives
significant performance improvements on 64-bit machines, but
benchmark results on 32-bit machines have been mixed. Therefore,
the default is to use base 2**30 on 64-bit machines and base 2**15
on 32-bit machines; on Unix, there's a new configure option
--enable-big-digits that can be used to override this default.

Apart from the performance improvements this change should be invisible to
end users, with one exception: for testing and debugging purposes there's a
new sys.int_info that provides information about the
internal format, giving the number of bits per digit and the size in bytes
of the C type used to store each digit:

>>> import sys
>>> sys.int_info
sys.int_info(bits_per_digit=30, sizeof_digit=4)

（由 Mark Dickinson在 bpo-4258 [https://bugs.python.org/issue4258] 贡献）

	The PyLong_AsUnsignedLongLong() function now handles a negative
pylong by raising OverflowError instead of TypeError.

（由 Mark Dickinson 和 Lisandro Dalcrin 在 bpo-5175 [https://bugs.python.org/issue5175] 中贡献。）

	Deprecated PyNumber_Int(). Use PyNumber_Long() instead.

（由 Mark Dickinson在 bpo-4910 [https://bugs.python.org/issue4910] 贡献）

	Added a new PyOS_string_to_double() function to replace the
deprecated functions PyOS_ascii_strtod() and PyOS_ascii_atof().

（由 Mark Dickinson在 bpo-5914 [https://bugs.python.org/issue5914] 贡献）

	Added PyCapsule as a replacement for the PyCObject API.
The principal difference is that the new type has a well defined interface
for passing typing safety information and a less complicated signature
for calling a destructor. The old type had a problematic API and is now
deprecated.

（由 Larry Hastings 在 bpo-5630 [https://bugs.python.org/issue5630] 中贡献。）

移植到 Python 3.1

This section lists previously described changes and other bugfixes
that may require changes to your code:

	The new floating point string representations can break existing doctests.
For example:

def e():
 '''Compute the base of natural logarithms.

 >>> e()
 2.7182818284590451

 '''
 return sum(1/math.factorial(x) for x in reversed(range(30)))

doctest.testmod()

**
Failed example:
 e()
Expected:
 2.7182818284590451
Got:
 2.718281828459045
**

	The automatic name remapping in the pickle module for protocol 2 or lower can
make Python 3.1 pickles unreadable in Python 3.0. One solution is to use
protocol 3. Another solution is to set the fix_imports option to False.
See the discussion above for more details.

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 3.0 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 3.0 有什么新变化

	作者

	Guido van Rossum

This article explains the new features in Python 3.0, compared to 2.6.
Python 3.0, also known as "Python 3000" or "Py3K", is the first ever
intentionally backwards incompatible Python release. There are more
changes than in a typical release, and more that are important for all
Python users. Nevertheless, after digesting the changes, you'll find
that Python really hasn't changed all that much -- by and large, we're
mostly fixing well-known annoyances and warts, and removing a lot of
old cruft.

This article doesn't attempt to provide a complete specification of
all new features, but instead tries to give a convenient overview.
For full details, you should refer to the documentation for Python
3.0, and/or the many PEPs referenced in the text. If you want to
understand the complete implementation and design rationale for a
particular feature, PEPs usually have more details than the regular
documentation; but note that PEPs usually are not kept up-to-date once
a feature has been fully implemented.

Due to time constraints this document is not as complete as it should
have been. As always for a new release, the Misc/NEWS file in the
source distribution contains a wealth of detailed information about
every small thing that was changed.

常见的绊脚石

This section lists those few changes that are most likely to trip you
up if you're used to Python 2.5.

Print Is A Function

The print statement has been replaced with a print()
function, with keyword arguments to replace most of the special syntax
of the old print statement (PEP 3105 [https://www.python.org/dev/peps/pep-3105]). Examples:

Old: print "The answer is", 2*2
New: print("The answer is", 2*2)

Old: print x, # Trailing comma suppresses newline
New: print(x, end=" ") # Appends a space instead of a newline

Old: print # Prints a newline
New: print() # You must call the function!

Old: print >>sys.stderr, "fatal error"
New: print("fatal error", file=sys.stderr)

Old: print (x, y) # prints repr((x, y))
New: print((x, y)) # Not the same as print(x, y)!

You can also customize the separator between items, e.g.:

print("There are <", 2**32, "> possibilities!", sep="")

which produces:

There are <4294967296> possibilities!

注意

	The print() function doesn't support the "softspace" feature of
the old print statement. For example, in Python 2.x,
print "A\n", "B" would write "A\nB\n"; but in Python 3.0,
print("A\n", "B") writes "A\n B\n".

	Initially, you'll be finding yourself typing the old print x
a lot in interactive mode. Time to retrain your fingers to type
print(x) instead!

	When using the 2to3 source-to-source conversion tool, all
print statements are automatically converted to
print() function calls, so this is mostly a non-issue for
larger projects.

Views And Iterators Instead Of Lists

Some well-known APIs no longer return lists:

	dict methods dict.keys(), dict.items() and
dict.values() return "views" instead of lists. For example,
this no longer works: k = d.keys(); k.sort(). Use k =
sorted(d) instead (this works in Python 2.5 too and is just
as efficient).

	Also, the dict.iterkeys(), dict.iteritems() and
dict.itervalues() methods are no longer supported.

	map() and filter() return iterators. If you really need
a list and the input sequences are all of equal length, a quick
fix is to wrap map() in list(), e.g. list(map(...)),
but a better fix is
often to use a list comprehension (especially when the original code
uses lambda), or rewriting the code so it doesn't need a
list at all. Particularly tricky is map() invoked for the
side effects of the function; the correct transformation is to use a
regular for loop (since creating a list would just be
wasteful).

If the input sequences are not of equal length, map() will
stop at the termination of the shortest of the sequences. For full
compatibility with map() from Python 2.x, also wrap the sequences in
itertools.zip_longest(), e.g. map(func, *sequences) becomes
list(map(func, itertools.zip_longest(*sequences))).

	range() now behaves like xrange() used to behave, except
it works with values of arbitrary size. The latter no longer
exists.

	zip() now returns an iterator.

Ordering Comparisons

Python 3.0 has simplified the rules for ordering comparisons:

	The ordering comparison operators (<, <=, >=, >)
raise a TypeError exception when the operands don't have a
meaningful natural ordering. Thus, expressions like 1 < '', 0
> None or len <= len are no longer valid, and e.g. None <
None raises TypeError instead of returning
False. A corollary is that sorting a heterogeneous list
no longer makes sense -- all the elements must be comparable to each
other. Note that this does not apply to the == and !=
operators: objects of different incomparable types always compare
unequal to each other.

	builtin.sorted() and list.sort() no longer accept the
cmp argument providing a comparison function. Use the key
argument instead. N.B. the key and reverse arguments are now
"keyword-only".

	The cmp() function should be treated as gone, and the __cmp__()
special method is no longer supported. Use __lt__() for sorting,
__eq__() with __hash__(), and other rich comparisons as needed.
(If you really need the cmp() functionality, you could use the
expression (a > b) - (a < b) as the equivalent for cmp(a, b).)

整数

	PEP 237 [https://www.python.org/dev/peps/pep-0237]: Essentially, long renamed to int.
That is, there is only one built-in integral type, named
int; but it behaves mostly like the old long type.

	PEP 238 [https://www.python.org/dev/peps/pep-0238]: An expression like 1/2 returns a float. Use
1//2 to get the truncating behavior. (The latter syntax has
existed for years, at least since Python 2.2.)

	The sys.maxint constant was removed, since there is no
longer a limit to the value of integers. However, sys.maxsize
can be used as an integer larger than any practical list or string
index. It conforms to the implementation's "natural" integer size
and is typically the same as sys.maxint in previous releases
on the same platform (assuming the same build options).

	The repr() of a long integer doesn't include the trailing L
anymore, so code that unconditionally strips that character will
chop off the last digit instead. (Use str() instead.)

	Octal literals are no longer of the form 0720; use 0o720
instead.

Text Vs. Data Instead Of Unicode Vs. 8-bit

Everything you thought you knew about binary data and Unicode has
changed.

	Python 3.0 uses the concepts of text and (binary) data instead
of Unicode strings and 8-bit strings. All text is Unicode; however
encoded Unicode is represented as binary data. The type used to
hold text is str, the type used to hold data is
bytes. The biggest difference with the 2.x situation is
that any attempt to mix text and data in Python 3.0 raises
TypeError, whereas if you were to mix Unicode and 8-bit
strings in Python 2.x, it would work if the 8-bit string happened to
contain only 7-bit (ASCII) bytes, but you would get
UnicodeDecodeError if it contained non-ASCII values. This
value-specific behavior has caused numerous sad faces over the
years.

	As a consequence of this change in philosophy, pretty much all code
that uses Unicode, encodings or binary data most likely has to
change. The change is for the better, as in the 2.x world there
were numerous bugs having to do with mixing encoded and unencoded
text. To be prepared in Python 2.x, start using unicode
for all unencoded text, and str for binary or encoded data
only. Then the 2to3 tool will do most of the work for you.

	You can no longer use u"..." literals for Unicode text.
However, you must use b"..." literals for binary data.

	As the str and bytes types cannot be mixed, you
must always explicitly convert between them. Use str.encode()
to go from str to bytes, and bytes.decode()
to go from bytes to str. You can also use
bytes(s, encoding=...) and str(b, encoding=...),
respectively.

	Like str, the bytes type is immutable. There is a
separate mutable type to hold buffered binary data,
bytearray. Nearly all APIs that accept bytes also
accept bytearray. The mutable API is based on
collections.MutableSequence.

	All backslashes in raw string literals are interpreted literally.
This means that '\U' and '\u' escapes in raw strings are not
treated specially. For example, r'\u20ac' is a string of 6
characters in Python 3.0, whereas in 2.6, ur'\u20ac' was the
single "euro" character. (Of course, this change only affects raw
string literals; the euro character is '\u20ac' in Python 3.0.)

	The built-in basestring abstract type was removed. Use
str instead. The str and bytes types
don't have functionality enough in common to warrant a shared base
class. The 2to3 tool (see below) replaces every occurrence of
basestring with str.

	Files opened as text files (still the default mode for open())
always use an encoding to map between strings (in memory) and bytes
(on disk). Binary files (opened with a b in the mode argument)
always use bytes in memory. This means that if a file is opened
using an incorrect mode or encoding, I/O will likely fail loudly,
instead of silently producing incorrect data. It also means that
even Unix users will have to specify the correct mode (text or
binary) when opening a file. There is a platform-dependent default
encoding, which on Unixy platforms can be set with the LANG
environment variable (and sometimes also with some other
platform-specific locale-related environment variables). In many
cases, but not all, the system default is UTF-8; you should never
count on this default. Any application reading or writing more than
pure ASCII text should probably have a way to override the encoding.
There is no longer any need for using the encoding-aware streams
in the codecs module.

	The initial values of sys.stdin, sys.stdout and
sys.stderr are now unicode-only text files (i.e., they are
instances of io.TextIOBase). To read and write bytes data
with these streams, you need to use their io.TextIOBase.buffer
attribute.

	Filenames are passed to and returned from APIs as (Unicode) strings.
This can present platform-specific problems because on some
platforms filenames are arbitrary byte strings. (On the other hand,
on Windows filenames are natively stored as Unicode.) As a
work-around, most APIs (e.g. open() and many functions in the
os module) that take filenames accept bytes objects
as well as strings, and a few APIs have a way to ask for a
bytes return value. Thus, os.listdir() returns a
list of bytes instances if the argument is a bytes
instance, and os.getcwdb() returns the current working
directory as a bytes instance. Note that when
os.listdir() returns a list of strings, filenames that
cannot be decoded properly are omitted rather than raising
UnicodeError.

	Some system APIs like os.environ and sys.argv can
also present problems when the bytes made available by the system is
not interpretable using the default encoding. Setting the LANG
variable and rerunning the program is probably the best approach.

	PEP 3138 [https://www.python.org/dev/peps/pep-3138]: The repr() of a string no longer escapes
non-ASCII characters. It still escapes control characters and code
points with non-printable status in the Unicode standard, however.

	PEP 3120 [https://www.python.org/dev/peps/pep-3120]: The default source encoding is now UTF-8.

	PEP 3131 [https://www.python.org/dev/peps/pep-3131]: Non-ASCII letters are now allowed in identifiers.
(However, the standard library remains ASCII-only with the exception
of contributor names in comments.)

	The StringIO and cStringIO modules are gone. Instead,
import the io module and use io.StringIO or
io.BytesIO for text and data respectively.

	See also the Unicode 指南, which was updated for Python 3.0.

Overview Of Syntax Changes

This section gives a brief overview of every syntactic change in
Python 3.0.

新语法

	PEP 3107 [https://www.python.org/dev/peps/pep-3107]: Function argument and return value annotations. This
provides a standardized way of annotating a function's parameters
and return value. There are no semantics attached to such
annotations except that they can be introspected at runtime using
the __annotations__ attribute. The intent is to encourage
experimentation through metaclasses, decorators or frameworks.

	PEP 3102 [https://www.python.org/dev/peps/pep-3102]: Keyword-only arguments. Named parameters occurring
after *args in the parameter list must be specified using
keyword syntax in the call. You can also use a bare * in the
parameter list to indicate that you don't accept a variable-length
argument list, but you do have keyword-only arguments.

	Keyword arguments are allowed after the list of base classes in a
class definition. This is used by the new convention for specifying
a metaclass (see next section), but can be used for other purposes
as well, as long as the metaclass supports it.

	PEP 3104 [https://www.python.org/dev/peps/pep-3104]: nonlocal statement. Using nonlocal x
you can now assign directly to a variable in an outer (but
non-global) scope. nonlocal is a new reserved word.

	PEP 3132 [https://www.python.org/dev/peps/pep-3132]: Extended Iterable Unpacking. You can now write things
like a, b, *rest = some_sequence. And even *rest, a =
stuff. The rest object is always a (possibly empty) list; the
right-hand side may be any iterable. Example:

(a, *rest, b) = range(5)

This sets a to 0, b to 4, and rest to [1, 2, 3].

	Dictionary comprehensions: {k: v for k, v in stuff} means the
same thing as dict(stuff) but is more flexible. (This is
PEP 274 [https://www.python.org/dev/peps/pep-0274] vindicated. :-)

	Set literals, e.g. {1, 2}. Note that {} is an empty
dictionary; use set() for an empty set. Set comprehensions are
also supported; e.g., {x for x in stuff} means the same thing as
set(stuff) but is more flexible.

	New octal literals, e.g. 0o720 (already in 2.6). The old octal
literals (0720) are gone.

	New binary literals, e.g. 0b1010 (already in 2.6), and
there is a new corresponding built-in function, bin().

	Bytes literals are introduced with a leading b or B, and
there is a new corresponding built-in function, bytes().

修改的语法

	PEP 3109 [https://www.python.org/dev/peps/pep-3109] and PEP 3134 [https://www.python.org/dev/peps/pep-3134]: new raise statement syntax:
raise [expr [from expr]]. See below.

	as and with are now reserved words. (Since
2.6, actually.)

	True, False, and None are reserved words. (2.6 partially enforced
the restrictions on None already.)

	Change from except exc, var to
except exc as var. See PEP 3110 [https://www.python.org/dev/peps/pep-3110].

	PEP 3115 [https://www.python.org/dev/peps/pep-3115]: New Metaclass Syntax. Instead of:

class C:
 __metaclass__ = M
 ...

you must now use:

class C(metaclass=M):
 ...

The module-global __metaclass__ variable is no longer
supported. (It was a crutch to make it easier to default to
new-style classes without deriving every class from
object.)

	List comprehensions no longer support the syntactic form
[... for var in item1, item2, ...]. Use
[... for var in (item1, item2, ...)] instead.
Also note that list comprehensions have different semantics: they
are closer to syntactic sugar for a generator expression inside a
list() constructor, and in particular the loop control
variables are no longer leaked into the surrounding scope.

	The ellipsis (...) can be used as an atomic expression
anywhere. (Previously it was only allowed in slices.) Also, it
must now be spelled as (Previously it could also be
spelled as . . ., by a mere accident of the grammar.)

移除的语法

	PEP 3113 [https://www.python.org/dev/peps/pep-3113]: Tuple parameter unpacking removed. You can no longer
write def foo(a, (b, c)):
Use def foo(a, b_c): b, c = b_c instead.

	Removed backticks (use repr() instead).

	Removed <> (use != instead).

	Removed keyword: exec() is no longer a keyword; it remains as
a function. (Fortunately the function syntax was also accepted in
2.x.) Also note that exec() no longer takes a stream argument;
instead of exec(f) you can use exec(f.read()).

	Integer literals no longer support a trailing l or L.

	String literals no longer support a leading u or U.

	The from module import * syntax is only
allowed at the module level, no longer inside functions.

	The only acceptable syntax for relative imports is from .[module]
import name. All import forms not starting with . are
interpreted as absolute imports. (PEP 328 [https://www.python.org/dev/peps/pep-0328])

	Classic classes are gone.

Changes Already Present In Python 2.6

Since many users presumably make the jump straight from Python 2.5 to
Python 3.0, this section reminds the reader of new features that were
originally designed for Python 3.0 but that were back-ported to Python
2.6. The corresponding sections in Python 2.6 有什么新变化 should be
consulted for longer descriptions.

	PEP 343: "with" 语句. The with statement is now a standard
feature and no longer needs to be imported from the __future__.
Also check out Writing Context Managers and
contextlib 模块.

	PEP 366: 从主模块显式相对导入. This enhances the usefulness of the -m
option when the referenced module lives in a package.

	PEP 370: 分用户的 site-packages 目录.

	PEP 371: 多任务处理包.

	PEP 3101: 高级字符串格式. Note: the 2.6 description mentions the
format() method for both 8-bit and Unicode strings. In 3.0,
only the str type (text strings with Unicode support)
supports this method; the bytes type does not. The plan is
to eventually make this the only API for string formatting, and to
start deprecating the % operator in Python 3.1.

	PEP 3105: print 改为函数. This is now a standard feature and no longer needs
to be imported from __future__. More details were given above.

	PEP 3110: 异常处理的变更. The except exc as var
syntax is now standard and except exc, var is no
longer supported. (Of course, the as var part is still
optional.)

	PEP 3112: 字节字面值. The b"..." string literal notation (and its
variants like b'...', b"""...""", and br"...") now
produces a literal of type bytes.

	PEP 3116: 新 I/O 库. The io module is now the standard way of
doing file I/O. The built-in open() function is now an
alias for io.open() and has additional keyword arguments
encoding, errors, newline and closefd. Also note that an
invalid mode argument now raises ValueError, not
IOError. The binary file object underlying a text file
object can be accessed as f.buffer (but beware that the
text object maintains a buffer of itself in order to speed up
the encoding and decoding operations).

	PEP 3118: 修改缓冲区协议. The old builtin buffer() is now really gone;
the new builtin memoryview() provides (mostly) similar
functionality.

	PEP 3119: 抽象基类. The abc module and the ABCs defined in the
collections module plays a somewhat more prominent role in
the language now, and built-in collection types like dict
and list conform to the collections.MutableMapping
and collections.MutableSequence ABCs, respectively.

	PEP 3127: 整型文字支持和语法. As mentioned above, the new octal literal
notation is the only one supported, and binary literals have been
added.

	PEP 3129: 类装饰器.

	PEP 3141: A Type Hierarchy for Numbers. The numbers module is another new use of
ABCs, defining Python's "numeric tower". Also note the new
fractions module which implements numbers.Rational.

Library Changes

Due to time constraints, this document does not exhaustively cover the
very extensive changes to the standard library. PEP 3108 [https://www.python.org/dev/peps/pep-3108] is the
reference for the major changes to the library. Here's a capsule
review:

	Many old modules were removed. Some, like gopherlib (no
longer used) and md5 (replaced by hashlib), were
already deprecated by PEP 4 [https://www.python.org/dev/peps/pep-0004]. Others were removed as a result
of the removal of support for various platforms such as Irix, BeOS
and Mac OS 9 (see PEP 11 [https://www.python.org/dev/peps/pep-0011]). Some modules were also selected for
removal in Python 3.0 due to lack of use or because a better
replacement exists. See PEP 3108 [https://www.python.org/dev/peps/pep-3108] for an exhaustive list.

	The bsddb3 package was removed because its presence in the
core standard library has proved over time to be a particular burden
for the core developers due to testing instability and Berkeley DB's
release schedule. However, the package is alive and well,
externally maintained at https://www.jcea.es/programacion/pybsddb.htm.

	Some modules were renamed because their old name disobeyed
PEP 8 [https://www.python.org/dev/peps/pep-0008], or for various other reasons. Here's the list:

	旧名称

	新名称

	_winreg

	winreg

	ConfigParser

	configparser

	copy_reg

	copyreg

	队列

	queue

	SocketServer

	socketserver

	markupbase

	_markupbase

	repr

	reprlib

	test.test_support

	test.support

	A common pattern in Python 2.x is to have one version of a module
implemented in pure Python, with an optional accelerated version
implemented as a C extension; for example, pickle and
cPickle. This places the burden of importing the accelerated
version and falling back on the pure Python version on each user of
these modules. In Python 3.0, the accelerated versions are
considered implementation details of the pure Python versions.
Users should always import the standard version, which attempts to
import the accelerated version and falls back to the pure Python
version. The pickle / cPickle pair received this
treatment. The profile module is on the list for 3.1. The
StringIO module has been turned into a class in the io
module.

	Some related modules have been grouped into packages, and usually
the submodule names have been simplified. The resulting new
packages are:

	dbm (anydbm, dbhash, dbm,
dumbdbm, gdbm, whichdb).

	html (HTMLParser, htmlentitydefs).

	http (httplib, BaseHTTPServer,
CGIHTTPServer, SimpleHTTPServer, Cookie,
cookielib).

	tkinter (all Tkinter-related modules except
turtle). The target audience of turtle doesn't
really care about tkinter. Also note that as of Python
2.6, the functionality of turtle has been greatly enhanced.

	urllib (urllib, urllib2, urlparse,
robotparse).

	xmlrpc (xmlrpclib, DocXMLRPCServer,
SimpleXMLRPCServer).

Some other changes to standard library modules, not covered by
PEP 3108 [https://www.python.org/dev/peps/pep-3108]:

	Killed sets. Use the built-in set() class.

	Cleanup of the sys module: removed sys.exitfunc(),
sys.exc_clear(), sys.exc_type, sys.exc_value,
sys.exc_traceback. (Note that sys.last_type
etc. remain.)

	Cleanup of the array.array type: the read() and
write() methods are gone; use fromfile() and
tofile() instead. Also, the 'c' typecode for array is
gone -- use either 'b' for bytes or 'u' for Unicode
characters.

	Cleanup of the operator module: removed
sequenceIncludes() and isCallable().

	Cleanup of the thread module: acquire_lock() and
release_lock() are gone; use acquire() and
release() instead.

	Cleanup of the random module: removed the jumpahead() API.

	The new module is gone.

	The functions os.tmpnam(), os.tempnam() and
os.tmpfile() have been removed in favor of the tempfile
module.

	The tokenize module has been changed to work with bytes. The
main entry point is now tokenize.tokenize(), instead of
generate_tokens.

	string.letters and its friends (string.lowercase and
string.uppercase) are gone. Use
string.ascii_letters etc. instead. (The reason for the
removal is that string.letters and friends had
locale-specific behavior, which is a bad idea for such
attractively-named global "constants".)

	Renamed module __builtin__ to builtins (removing the
underscores, adding an 's'). The __builtins__ variable
found in most global namespaces is unchanged. To modify a builtin,
you should use builtins, not __builtins__!

PEP 3101 [https://www.python.org/dev/peps/pep-3101]: A New Approach To String Formatting

	A new system for built-in string formatting operations replaces the
% string formatting operator. (However, the % operator is
still supported; it will be deprecated in Python 3.1 and removed
from the language at some later time.) Read PEP 3101 [https://www.python.org/dev/peps/pep-3101] for the full
scoop.

Changes To Exceptions

The APIs for raising and catching exception have been cleaned up and
new powerful features added:

	PEP 352 [https://www.python.org/dev/peps/pep-0352]: All exceptions must be derived (directly or indirectly)
from BaseException. This is the root of the exception
hierarchy. This is not new as a recommendation, but the
requirement to inherit from BaseException is new. (Python
2.6 still allowed classic classes to be raised, and placed no
restriction on what you can catch.) As a consequence, string
exceptions are finally truly and utterly dead.

	Almost all exceptions should actually derive from Exception;
BaseException should only be used as a base class for
exceptions that should only be handled at the top level, such as
SystemExit or KeyboardInterrupt. The recommended
idiom for handling all exceptions except for this latter category is
to use except Exception.

	StandardError was removed.

	Exceptions no longer behave as sequences. Use the args
attribute instead.

	PEP 3109 [https://www.python.org/dev/peps/pep-3109]: Raising exceptions. You must now use raise
Exception(args) instead of raise Exception, args.
Additionally, you can no longer explicitly specify a traceback;
instead, if you have to do this, you can assign directly to the
__traceback__ attribute (see below).

	PEP 3110 [https://www.python.org/dev/peps/pep-3110]: Catching exceptions. You must now use
except SomeException as variable instead
of except SomeException, variable. Moreover, the
variable is explicitly deleted when the except block
is left.

	PEP 3134 [https://www.python.org/dev/peps/pep-3134]: Exception chaining. There are two cases: implicit
chaining and explicit chaining. Implicit chaining happens when an
exception is raised in an except or finally
handler block. This usually happens due to a bug in the handler
block; we call this a secondary exception. In this case, the
original exception (that was being handled) is saved as the
__context__ attribute of the secondary exception.
Explicit chaining is invoked with this syntax:

raise SecondaryException() from primary_exception

(where primary_exception is any expression that produces an
exception object, probably an exception that was previously caught).
In this case, the primary exception is stored on the
__cause__ attribute of the secondary exception. The
traceback printed when an unhandled exception occurs walks the chain
of __cause__ and __context__ attributes and prints a
separate traceback for each component of the chain, with the primary
exception at the top. (Java users may recognize this behavior.)

	PEP 3134 [https://www.python.org/dev/peps/pep-3134]: Exception objects now store their traceback as the
__traceback__ attribute. This means that an exception
object now contains all the information pertaining to an exception,
and there are fewer reasons to use sys.exc_info() (though the
latter is not removed).

	A few exception messages are improved when Windows fails to load an
extension module. For example, error code 193 is now %1 is
not a valid Win32 application. Strings now deal with non-English
locales.

Miscellaneous Other Changes

Operators And Special Methods

	!= now returns the opposite of ==, unless == returns
NotImplemented.

	The concept of "unbound methods" has been removed from the language.
When referencing a method as a class attribute, you now get a plain
function object.

	__getslice__(), __setslice__() and __delslice__()
were killed. The syntax a[i:j] now translates to
a.__getitem__(slice(i, j)) (or __setitem__() or
__delitem__(), when used as an assignment or deletion target,
respectively).

	PEP 3114 [https://www.python.org/dev/peps/pep-3114]: the standard next() method has been renamed to
__next__().

	The __oct__() and __hex__() special methods are removed
-- oct() and hex() use __index__() now to convert
the argument to an integer.

	Removed support for __members__ and __methods__.

	The function attributes named func_X have been renamed to
use the __X__ form, freeing up these names in the function
attribute namespace for user-defined attributes. To wit,
func_closure, func_code, func_defaults,
func_dict, func_doc, func_globals,
func_name were renamed to __closure__,
__code__, __defaults__, __dict__,
__doc__, __globals__, __name__,
respectively.

	__nonzero__() is now __bool__().

Builtins

	PEP 3135 [https://www.python.org/dev/peps/pep-3135]: New super(). You can now invoke super()
without arguments and (assuming this is in a regular instance method
defined inside a class statement) the right class and
instance will automatically be chosen. With arguments, the behavior
of super() is unchanged.

	PEP 3111 [https://www.python.org/dev/peps/pep-3111]: raw_input() was renamed to input(). That
is, the new input() function reads a line from
sys.stdin and returns it with the trailing newline stripped.
It raises EOFError if the input is terminated prematurely.
To get the old behavior of input(), use eval(input()).

	A new built-in function next() was added to call the
__next__() method on an object.

	The round() function rounding strategy and return type have
changed. Exact halfway cases are now rounded to the nearest even
result instead of away from zero. (For example, round(2.5) now
returns 2 rather than 3.) round(x[, n]) now
delegates to x.__round__([n]) instead of always returning a
float. It generally returns an integer when called with a single
argument and a value of the same type as x when called with two
arguments.

	Moved intern() to sys.intern().

	Removed: apply(). Instead of apply(f, args) use
f(*args).

	Removed callable(). Instead of callable(f) you can use
isinstance(f, collections.Callable). The operator.isCallable()
function is also gone.

	Removed coerce(). This function no longer serves a purpose
now that classic classes are gone.

	Removed execfile(). Instead of execfile(fn) use
exec(open(fn).read()).

	Removed the file type. Use open(). There are now several
different kinds of streams that open can return in the io module.

	Removed reduce(). Use functools.reduce() if you really
need it; however, 99 percent of the time an explicit for
loop is more readable.

	Removed reload(). Use imp.reload().

	Removed. dict.has_key() -- use the in operator
instead.

构建和 C API 的改变

Due to time constraints, here is a very incomplete list of changes
to the C API.

	Support for several platforms was dropped, including but not limited
to Mac OS 9, BeOS, RISCOS, Irix, and Tru64.

	PEP 3118 [https://www.python.org/dev/peps/pep-3118]: New Buffer API.

	PEP 3121 [https://www.python.org/dev/peps/pep-3121]: Extension Module Initialization & Finalization.

	PEP 3123 [https://www.python.org/dev/peps/pep-3123]: Making PyObject_HEAD conform to standard C.

	No more C API support for restricted execution.

	PyNumber_Coerce(), PyNumber_CoerceEx(),
PyMember_Get(), and PyMember_Set() C APIs are removed.

	New C API PyImport_ImportModuleNoBlock(), works like
PyImport_ImportModule() but won't block on the import lock
(returning an error instead).

	Renamed the boolean conversion C-level slot and method:
nb_nonzero is now nb_bool.

	Removed METH_OLDARGS and WITH_CYCLE_GC from the C API.

性能

The net result of the 3.0 generalizations is that Python 3.0 runs the
pystone benchmark around 10% slower than Python 2.5. Most likely the
biggest cause is the removal of special-casing for small integers.
There's room for improvement, but it will happen after 3.0 is
released!

移植 Python 3.0

For porting existing Python 2.5 or 2.6 source code to Python 3.0, the
best strategy is the following:

	(Prerequisite:) Start with excellent test coverage.

	Port to Python 2.6. This should be no more work than the average
port from Python 2.x to Python 2.(x+1). Make sure all your tests
pass.

	(Still using 2.6:) Turn on the -3 command line switch.
This enables warnings about features that will be removed (or
change) in 3.0. Run your test suite again, and fix code that you
get warnings about until there are no warnings left, and all your
tests still pass.

	Run the 2to3 source-to-source translator over your source code
tree. (See 2to3 - 自动将 Python 2 代码转为 Python 3 代码 for more on this tool.) Run the
result of the translation under Python 3.0. Manually fix up any
remaining issues, fixing problems until all tests pass again.

It is not recommended to try to write source code that runs unchanged
under both Python 2.6 and 3.0; you'd have to use a very contorted
coding style, e.g. avoiding print statements, metaclasses,
and much more. If you are maintaining a library that needs to support
both Python 2.6 and Python 3.0, the best approach is to modify step 3
above by editing the 2.6 version of the source code and running the
2to3 translator again, rather than editing the 3.0 version of the
source code.

For porting C extensions to Python 3.0, please see 将扩展模块移植到 Python 3.

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 2.7 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 2.7 有什么新变化

	作者

	A.M. Kuchling (amk at amk.ca)

本文介绍了Python 2.7 的新功能。 Python 2.7 于2010年7月3日发布。

Numeric handling has been improved in many ways, for both
floating-point numbers and for the Decimal class.
There are some useful additions to the standard library, such as a
greatly enhanced unittest module, the argparse module
for parsing command-line options, convenient OrderedDict
and Counter classes in the collections module,
and many other improvements.

Python 2.7 is planned to be the last of the 2.x releases, so we worked
on making it a good release for the long term. To help with porting
to Python 3, several new features from the Python 3.x series have been
included in 2.7.

This article doesn't attempt to provide a complete specification of
the new features, but instead provides a convenient overview. For
full details, you should refer to the documentation for Python 2.7 at
https://docs.python.org. If you want to understand the rationale for
the design and implementation, refer to the PEP for a particular new
feature or the issue on https://bugs.python.org in which a change was
discussed. Whenever possible, "What's New in Python" links to the
bug/patch item for each change.

Python 2.x的未来

Python 2.7 是 2.x 系列中的最后一个主版本，因为Python 维护人员已将新功能开发工作的重点转移到了 Python 3.x 系列中。这意味着，尽管 Python 2 会继续修复bug并更新，以便在新的硬件和支持操作系统版本上正确构建，但不会有新的功能发布。

然而，尽管在 Python 2.7 和 Python 3 之间有一个很大的公共子集，并且迁移到该公共子集或直接迁移到 Python 3 所涉及的许多更改可以安全地自动化完成。但是一些其他更改（特别是那些与Unicode处理相关的更改）可能需要仔细考虑，并且最好用自动化回归测试套件进行健壮性测试，以便有效地迁移。

这意味着 Python2.7 将长期保留，为尚未移植到 Python 3 的生产系统提供一个稳定且受支持的基础平台。Python 2.7系列的预期完整生命周期在 PEP 373 [https://www.python.org/dev/peps/pep-0373] 中有详细介绍。

长期保留 2.7 版的的一些关键后果：

	如上所述，与早期的2.x版本相比，2.7版本的维护时间更长。目前，预计核心开发团队将继续支持Python 2.7（接收安全更新和其他错误修复），直到至少2020年（首次发布后10年，相比之下，通常的支持期为18--24个月）。

	随着 Python 2.7 标准库的老化，有效地利用 Python 包索引（直接或通过重新分发者）对 Python 2 用户来说变得更加重要。除了各种任务的第三方包之外，可用的包还包括与 Python 2 兼容的 Python 3 标准库中的新模块和功能的后端移植，以及各种工具和库，这些工具和库可以让用户更容易迁移到 Python 3。 Python 包用户指南 [https://packaging.python.org] 提供了从 Python 包索引的下载和安装软件的指导。

	虽然现在增强 Python 2 的首选方法是在Python包索引上发布新包，但这种方法不一定适用于所有情况，尤其是与网络安全相关的情况。在一些特殊情况下，如果在PyPI上发布新的或更新的包无法得到充分的处理，则可以使用Python增强建议过程来提出直接在Python 2标准库中添加新功能。任何此类添加及其添加的维护版本将在下面的 New Features Added to Python 2.7 Maintenance Releases 部分中注明。

对于希望从 Python2 迁移到 Python3 的项目，或者对于希望同时支持 Python2 和 Python3 用户的库和框架开发人员，可以使用各种工具和指南来帮助决定合适的方法并管理所涉及的一些技术细节。建议从 将 Python 2 代码迁移到 Python 3 操作指南开始。

Changes to the Handling of Deprecation Warnings

For Python 2.7, a policy decision was made to silence warnings only of
interest to developers by default. DeprecationWarning and its
descendants are now ignored unless otherwise requested, preventing
users from seeing warnings triggered by an application. This change
was also made in the branch that became Python 3.2. (Discussed
on stdlib-sig and carried out in bpo-7319 [https://bugs.python.org/issue7319].)

In previous releases, DeprecationWarning messages were
enabled by default, providing Python developers with a clear
indication of where their code may break in a future major version
of Python.

However, there are increasingly many users of Python-based
applications who are not directly involved in the development of
those applications. DeprecationWarning messages are
irrelevant to such users, making them worry about an application
that's actually working correctly and burdening application developers
with responding to these concerns.

You can re-enable display of DeprecationWarning messages by
running Python with the -Wdefault (short form:
-Wd) switch, or by setting the PYTHONWARNINGS
environment variable to "default" (or "d") before running
Python. Python code can also re-enable them
by calling warnings.simplefilter('default').

The unittest module also automatically reenables deprecation warnings
when running tests.

Python 3.1 Features

就像 Python2.6 集成了 Python3.0 的特性一样，2.7版也集成了 Python3.1 中的一些新特性。2.x 系列继续提供迁移到3.x系列的工具。

3.1 功能的部分列表，这些功能已反向移植到 2.7：

	The syntax for set literals ({1,2,3} is a mutable set).

	Dictionary and set comprehensions ({i: i*2 for i in range(3)}).

	Multiple context managers in a single with statement.

	A new version of the io library, rewritten in C for performance.

	The ordered-dictionary type described in PEP 372: Adding an Ordered Dictionary to collections.

	The new "," format specifier described in PEP 378: 千位分隔符的格式说明符.

	The memoryview object.

	A small subset of the importlib module,
described below.

	The repr() of a float x is shorter in many cases: it's now
based on the shortest decimal string that's guaranteed to round back
to x. As in previous versions of Python, it's guaranteed that
float(repr(x)) recovers x.

	Float-to-string and string-to-float conversions are correctly rounded.
The round() function is also now correctly rounded.

	The PyCapsule type, used to provide a C API for extension modules.

	The PyLong_AsLongAndOverflow() C API function.

Other new Python3-mode warnings include:

	operator.isCallable() and operator.sequenceIncludes(),
which are not supported in 3.x, now trigger warnings.

	The -3 switch now automatically
enables the -Qwarn switch that causes warnings
about using classic division with integers and long integers.

PEP 372: Adding an Ordered Dictionary to collections

Regular Python dictionaries iterate over key/value pairs in arbitrary order.
Over the years, a number of authors have written alternative implementations
that remember the order that the keys were originally inserted. Based on
the experiences from those implementations, 2.7 introduces a new
OrderedDict class in the collections module.

The OrderedDict API provides the same interface as regular
dictionaries but iterates over keys and values in a guaranteed order
depending on when a key was first inserted:

>>> from collections import OrderedDict
>>> d = OrderedDict([('first', 1),
... ('second', 2),
... ('third', 3)])
>>> d.items()
[('first', 1), ('second', 2), ('third', 3)]

If a new entry overwrites an existing entry, the original insertion
position is left unchanged:

>>> d['second'] = 4
>>> d.items()
[('first', 1), ('second', 4), ('third', 3)]

Deleting an entry and reinserting it will move it to the end:

>>> del d['second']
>>> d['second'] = 5
>>> d.items()
[('first', 1), ('third', 3), ('second', 5)]

The popitem() method has an optional last
argument that defaults to True. If last is true, the most recently
added key is returned and removed; if it's false, the
oldest key is selected:

>>> od = OrderedDict([(x,0) for x in range(20)])
>>> od.popitem()
(19, 0)
>>> od.popitem()
(18, 0)
>>> od.popitem(last=False)
(0, 0)
>>> od.popitem(last=False)
(1, 0)

Comparing two ordered dictionaries checks both the keys and values,
and requires that the insertion order was the same:

>>> od1 = OrderedDict([('first', 1),
... ('second', 2),
... ('third', 3)])
>>> od2 = OrderedDict([('third', 3),
... ('first', 1),
... ('second', 2)])
>>> od1 == od2
False
>>> # Move 'third' key to the end
>>> del od2['third']; od2['third'] = 3
>>> od1 == od2
True

Comparing an OrderedDict with a regular dictionary
ignores the insertion order and just compares the keys and values.

How does the OrderedDict work? It maintains a
doubly-linked list of keys, appending new keys to the list as they're inserted.
A secondary dictionary maps keys to their corresponding list node, so
deletion doesn't have to traverse the entire linked list and therefore
remains O(1).

The standard library now supports use of ordered dictionaries in several
modules.

	The ConfigParser module uses them by default, meaning that
configuration files can now be read, modified, and then written back
in their original order.

	The _asdict() method for
collections.namedtuple() now returns an ordered dictionary with the
values appearing in the same order as the underlying tuple indices.

	The json module's JSONDecoder class
constructor was extended with an object_pairs_hook parameter to
allow OrderedDict instances to be built by the decoder.
Support was also added for third-party tools like
PyYAML [http://pyyaml.org/].

参见

	PEP 372 [https://www.python.org/dev/peps/pep-0372] - 将有序词典添加到集合中
	PEP 由 Armin Ronacher 和 Raymond Hettinger 撰写，由 Raymond Hettinger 实现。

PEP 378: 千位分隔符的格式说明符

To make program output more readable, it can be useful to add
separators to large numbers, rendering them as
18,446,744,073,709,551,616 instead of 18446744073709551616.

The fully general solution for doing this is the locale module,
which can use different separators ("," in North America, "." in
Europe) and different grouping sizes, but locale is complicated
to use and unsuitable for multi-threaded applications where different
threads are producing output for different locales.

Therefore, a simple comma-grouping mechanism has been added to the
mini-language used by the str.format() method. When
formatting a floating-point number, simply include a comma between the
width and the precision:

>>> '{:20,.2f}'.format(18446744073709551616.0)
'18,446,744,073,709,551,616.00'

When formatting an integer, include the comma after the width:

>>> '{:20,d}'.format(18446744073709551616)
'18,446,744,073,709,551,616'

This mechanism is not adaptable at all; commas are always used as the
separator and the grouping is always into three-digit groups. The
comma-formatting mechanism isn't as general as the locale
module, but it's easier to use.

参见

	PEP 378 [https://www.python.org/dev/peps/pep-0378] - 千位分隔符的格式说明符
	PEP 由 Raymond Hettinger 撰写，并由 Eric Smith 实现

PEP 389: The argparse Module for Parsing Command Lines

The argparse module for parsing command-line arguments was
added as a more powerful replacement for the
optparse module.

This means Python now supports three different modules for parsing
command-line arguments: getopt, optparse, and
argparse. The getopt module closely resembles the C
library's getopt() function, so it remains useful if you're writing a
Python prototype that will eventually be rewritten in C.
optparse becomes redundant, but there are no plans to remove it
because there are many scripts still using it, and there's no
automated way to update these scripts. (Making the argparse
API consistent with optparse's interface was discussed but
rejected as too messy and difficult.)

In short, if you're writing a new script and don't need to worry
about compatibility with earlier versions of Python, use
argparse instead of optparse.

Here's an example:

import argparse

parser = argparse.ArgumentParser(description='Command-line example.')

Add optional switches
parser.add_argument('-v', action='store_true', dest='is_verbose',
 help='produce verbose output')
parser.add_argument('-o', action='store', dest='output',
 metavar='FILE',
 help='direct output to FILE instead of stdout')
parser.add_argument('-C', action='store', type=int, dest='context',
 metavar='NUM', default=0,
 help='display NUM lines of added context')

Allow any number of additional arguments.
parser.add_argument(nargs='*', action='store', dest='inputs',
 help='input filenames (default is stdin)')

args = parser.parse_args()
print args.__dict__

Unless you override it, -h and --help switches
are automatically added, and produce neatly formatted output:

-> ./python.exe argparse-example.py --help
usage: argparse-example.py [-h] [-v] [-o FILE] [-C NUM] [inputs [inputs ...]]

Command-line example.

positional arguments:
 inputs input filenames (default is stdin)

optional arguments:
 -h, --help show this help message and exit
 -v produce verbose output
 -o FILE direct output to FILE instead of stdout
 -C NUM display NUM lines of added context

As with optparse, the command-line switches and arguments
are returned as an object with attributes named by the dest parameters:

-> ./python.exe argparse-example.py -v
{'output': None,
 'is_verbose': True,
 'context': 0,
 'inputs': []}

-> ./python.exe argparse-example.py -v -o /tmp/output -C 4 file1 file2
{'output': '/tmp/output',
 'is_verbose': True,
 'context': 4,
 'inputs': ['file1', 'file2']}

argparse has much fancier validation than optparse; you
can specify an exact number of arguments as an integer, 0 or more
arguments by passing '*', 1 or more by passing '+', or an
optional argument with '?'. A top-level parser can contain
sub-parsers to define subcommands that have different sets of
switches, as in svn commit, svn checkout, etc. You can
specify an argument's type as FileType, which will
automatically open files for you and understands that '-' means
standard input or output.

参见

	argparse documentation
	argparse 模块的文档页面。

	升级 optparse 代码
	Part of the Python documentation, describing how to convert
code that uses optparse.

	PEP 389 [https://www.python.org/dev/peps/pep-0389] - argparse - 新的命令行解析模块
	PEP 由 Steven Bethard 撰写并实现。

PEP 391: Dictionary-Based Configuration For Logging

The logging module is very flexible; applications can define
a tree of logging subsystems, and each logger in this tree can filter
out certain messages, format them differently, and direct messages to
a varying number of handlers.

All this flexibility can require a lot of configuration. You can
write Python statements to create objects and set their properties,
but a complex set-up requires verbose but boring code.
logging also supports a fileConfig()
function that parses a file, but the file format doesn't support
configuring filters, and it's messier to generate programmatically.

Python 2.7 adds a dictConfig() function that
uses a dictionary to configure logging. There are many ways to
produce a dictionary from different sources: construct one with code;
parse a file containing JSON; or use a YAML parsing library if one is
installed. For more information see 配置函数.

The following example configures two loggers, the root logger and a
logger named "network". Messages sent to the root logger will be
sent to the system log using the syslog protocol, and messages
to the "network" logger will be written to a network.log file
that will be rotated once the log reaches 1MB.

import logging
import logging.config

configdict = {
 'version': 1, # Configuration schema in use; must be 1 for now
 'formatters': {
 'standard': {
 'format': ('%(asctime)s %(name)-15s '
 '%(levelname)-8s %(message)s')}},

 'handlers': {'netlog': {'backupCount': 10,
 'class': 'logging.handlers.RotatingFileHandler',
 'filename': '/logs/network.log',
 'formatter': 'standard',
 'level': 'INFO',
 'maxBytes': 1000000},
 'syslog': {'class': 'logging.handlers.SysLogHandler',
 'formatter': 'standard',
 'level': 'ERROR'}},

 # Specify all the subordinate loggers
 'loggers': {
 'network': {
 'handlers': ['netlog']
 }
 },
 # Specify properties of the root logger
 'root': {
 'handlers': ['syslog']
 },
}

Set up configuration
logging.config.dictConfig(configdict)

As an example, log two error messages
logger = logging.getLogger('/')
logger.error('Database not found')

netlogger = logging.getLogger('network')
netlogger.error('Connection failed')

Three smaller enhancements to the logging module, all
implemented by Vinay Sajip, are:

	The SysLogHandler class now supports
syslogging over TCP. The constructor has a socktype parameter
giving the type of socket to use, either socket.SOCK_DGRAM
for UDP or socket.SOCK_STREAM for TCP. The default
protocol remains UDP.

	Logger instances gained a getChild()
method that retrieves a descendant logger using a relative path.
For example, once you retrieve a logger by doing log = getLogger('app'),
calling log.getChild('network.listen') is equivalent to
getLogger('app.network.listen').

	The LoggerAdapter class gained an
isEnabledFor() method that takes a
level and returns whether the underlying logger would
process a message of that level of importance.

参见

	PEP 391 [https://www.python.org/dev/peps/pep-0391] - 基于字典的日志配置
	PEP 由 Vinay Sajip 撰写并实现

PEP 3106: Dictionary Views

The dictionary methods keys(), values(), and
items() are different in Python 3.x. They return an object
called a view instead of a fully materialized list.

It's not possible to change the return values of keys(),
values(), and items() in Python 2.7 because
too much code would break. Instead the 3.x versions were added
under the new names viewkeys(), viewvalues(),
and viewitems().

>>> d = dict((i*10, chr(65+i)) for i in range(26))
>>> d
{0: 'A', 130: 'N', 10: 'B', 140: 'O', 20: ..., 250: 'Z'}
>>> d.viewkeys()
dict_keys([0, 130, 10, 140, 20, 150, 30, ..., 250])

Views can be iterated over, but the key and item views also behave
like sets. The & operator performs intersection, and |
performs a union:

>>> d1 = dict((i*10, chr(65+i)) for i in range(26))
>>> d2 = dict((i**.5, i) for i in range(1000))
>>> d1.viewkeys() & d2.viewkeys()
set([0.0, 10.0, 20.0, 30.0])
>>> d1.viewkeys() | range(0, 30)
set([0, 1, 130, 3, 4, 5, 6, ..., 120, 250])

The view keeps track of the dictionary and its contents change as the
dictionary is modified:

>>> vk = d.viewkeys()
>>> vk
dict_keys([0, 130, 10, ..., 250])
>>> d[260] = '&'
>>> vk
dict_keys([0, 130, 260, 10, ..., 250])

However, note that you can't add or remove keys while you're iterating
over the view:

>>> for k in vk:
... d[k*2] = k
...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
RuntimeError: dictionary changed size during iteration

You can use the view methods in Python 2.x code, and the 2to3
converter will change them to the standard keys(),
values(), and items() methods.

参见

	PEP 3106 [https://www.python.org/dev/peps/pep-3106] - 改造 dict.keys(), .values() 和 .items()
	PEP written by Guido van Rossum.
Backported to 2.7 by Alexandre Vassalotti; bpo-1967 [https://bugs.python.org/issue1967].

PEP 3137: The memoryview Object

The memoryview object provides a view of another object's
memory content that matches the bytes type's interface.

>>> import string
>>> m = memoryview(string.letters)
>>> m
<memory at 0x37f850>
>>> len(m) # Returns length of underlying object
52
>>> m[0], m[25], m[26] # Indexing returns one byte
('a', 'z', 'A')
>>> m2 = m[0:26] # Slicing returns another memoryview
>>> m2
<memory at 0x37f080>

The content of the view can be converted to a string of bytes or
a list of integers:

>>> m2.tobytes()
'abcdefghijklmnopqrstuvwxyz'
>>> m2.tolist()
[97, 98, 99, 100, 101, 102, 103, ... 121, 122]
>>>

memoryview objects allow modifying the underlying object if
it's a mutable object.

>>> m2[0] = 75
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: cannot modify read-only memory
>>> b = bytearray(string.letters) # Creating a mutable object
>>> b
bytearray(b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ')
>>> mb = memoryview(b)
>>> mb[0] = '*' # Assign to view, changing the bytearray.
>>> b[0:5] # The bytearray has been changed.
bytearray(b'*bcde')
>>>

参见

	PEP 3137 [https://www.python.org/dev/peps/pep-3137] - 不变字节和可变缓冲区
	PEP written by Guido van Rossum.
Implemented by Travis Oliphant, Antoine Pitrou and others.
Backported to 2.7 by Antoine Pitrou; bpo-2396 [https://bugs.python.org/issue2396].

其他语言特性修改

对Python 语言核心进行的小改动：

	The syntax for set literals has been backported from Python 3.x.
Curly brackets are used to surround the contents of the resulting
mutable set; set literals are
distinguished from dictionaries by not containing colons and values.
{} continues to represent an empty dictionary; use
set() for an empty set.

>>> {1, 2, 3, 4, 5}
set([1, 2, 3, 4, 5])
>>> set() # empty set
set([])
>>> {} # empty dict
{}

Backported by Alexandre Vassalotti; bpo-2335 [https://bugs.python.org/issue2335].

	Dictionary and set comprehensions are another feature backported from
3.x, generalizing list/generator comprehensions to use
the literal syntax for sets and dictionaries.

>>> {x: x*x for x in range(6)}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
>>> {('a'*x) for x in range(6)}
set(['', 'a', 'aa', 'aaa', 'aaaa', 'aaaaa'])

Backported by Alexandre Vassalotti; bpo-2333 [https://bugs.python.org/issue2333].

	The with statement can now use multiple context managers
in one statement. Context managers are processed from left to right
and each one is treated as beginning a new with statement.
This means that:

with A() as a, B() as b:
 ... suite of statements ...

相当于:

with A() as a:
 with B() as b:
 ... suite of statements ...

The contextlib.nested() function provides a very similar
function, so it's no longer necessary and has been deprecated.

(Proposed in https://codereview.appspot.com/53094; implemented by
Georg Brandl.)

	Conversions between floating-point numbers and strings are
now correctly rounded on most platforms. These conversions occur
in many different places: str() on
floats and complex numbers; the float and complex
constructors;
numeric formatting; serializing and
deserializing floats and complex numbers using the
marshal, pickle
and json modules;
parsing of float and imaginary literals in Python code;
and Decimal-to-float conversion.

Related to this, the repr() of a floating-point number x
now returns a result based on the shortest decimal string that's
guaranteed to round back to x under correct rounding (with
round-half-to-even rounding mode). Previously it gave a string
based on rounding x to 17 decimal digits.

The rounding library responsible for this improvement works on
Windows and on Unix platforms using the gcc, icc, or suncc
compilers. There may be a small number of platforms where correct
operation of this code cannot be guaranteed, so the code is not
used on such systems. You can find out which code is being used
by checking sys.float_repr_style, which will be short
if the new code is in use and legacy if it isn't.

Implemented by Eric Smith and Mark Dickinson, using David Gay's
dtoa.c library; bpo-7117 [https://bugs.python.org/issue7117].

	Conversions from long integers and regular integers to floating
point now round differently, returning the floating-point number
closest to the number. This doesn't matter for small integers that
can be converted exactly, but for large numbers that will
unavoidably lose precision, Python 2.7 now approximates more
closely. For example, Python 2.6 computed the following:

>>> n = 295147905179352891391
>>> float(n)
2.9514790517935283e+20
>>> n - long(float(n))
65535L

Python 2.7's floating-point result is larger, but much closer to the
true value:

>>> n = 295147905179352891391
>>> float(n)
2.9514790517935289e+20
>>> n - long(float(n))
-1L

(Implemented by Mark Dickinson; bpo-3166 [https://bugs.python.org/issue3166].)

Integer division is also more accurate in its rounding behaviours. (Also
implemented by Mark Dickinson; bpo-1811 [https://bugs.python.org/issue1811].)

	Implicit coercion for complex numbers has been removed; the interpreter
will no longer ever attempt to call a __coerce__() method on complex
objects. (Removed by Meador Inge and Mark Dickinson; bpo-5211 [https://bugs.python.org/issue5211].)

	The str.format() method now supports automatic numbering of the replacement
fields. This makes using str.format() more closely resemble using
%s formatting:

>>> '{}:{}:{}'.format(2009, 04, 'Sunday')
'2009:4:Sunday'
>>> '{}:{}:{day}'.format(2009, 4, day='Sunday')
'2009:4:Sunday'

The auto-numbering takes the fields from left to right, so the first {...}
specifier will use the first argument to str.format(), the next
specifier will use the next argument, and so on. You can't mix auto-numbering
and explicit numbering -- either number all of your specifier fields or none
of them -- but you can mix auto-numbering and named fields, as in the second
example above. (Contributed by Eric Smith; bpo-5237 [https://bugs.python.org/issue5237].)

Complex numbers now correctly support usage with format(),
and default to being right-aligned.
Specifying a precision or comma-separation applies to both the real
and imaginary parts of the number, but a specified field width and
alignment is applied to the whole of the resulting 1.5+3j
output. (Contributed by Eric Smith; bpo-1588 [https://bugs.python.org/issue1588] and bpo-7988 [https://bugs.python.org/issue7988].)

The 'F' format code now always formats its output using uppercase characters,
so it will now produce 'INF' and 'NAN'.
(Contributed by Eric Smith; bpo-3382 [https://bugs.python.org/issue3382].)

A low-level change: the object.__format__() method now triggers
a PendingDeprecationWarning if it's passed a format string,
because the __format__() method for object converts
the object to a string representation and formats that. Previously
the method silently applied the format string to the string
representation, but that could hide mistakes in Python code. If
you're supplying formatting information such as an alignment or
precision, presumably you're expecting the formatting to be applied
in some object-specific way. (Fixed by Eric Smith; bpo-7994 [https://bugs.python.org/issue7994].)

	The int() and long() types gained a bit_length
method that returns the number of bits necessary to represent
its argument in binary:

>>> n = 37
>>> bin(n)
'0b100101'
>>> n.bit_length()
6
>>> n = 2**123-1
>>> n.bit_length()
123
>>> (n+1).bit_length()
124

(Contributed by Fredrik Johansson and Victor Stinner; bpo-3439 [https://bugs.python.org/issue3439].)

	The import statement will no longer try an absolute import
if a relative import (e.g. from .os import sep) fails. This
fixes a bug, but could possibly break certain import
statements that were only working by accident. (Fixed by Meador Inge;
bpo-7902 [https://bugs.python.org/issue7902].)

	It's now possible for a subclass of the built-in unicode type
to override the __unicode__() method. (Implemented by
Victor Stinner; bpo-1583863 [https://bugs.python.org/issue1583863].)

	The bytearray type's translate() method now accepts
None as its first argument. (Fixed by Georg Brandl;
bpo-4759 [https://bugs.python.org/issue4759].)

	When using @classmethod and @staticmethod to wrap
methods as class or static methods, the wrapper object now
exposes the wrapped function as their __func__ attribute.
(Contributed by Amaury Forgeot d'Arc, after a suggestion by
George Sakkis; bpo-5982 [https://bugs.python.org/issue5982].)

	When a restricted set of attributes were set using __slots__,
deleting an unset attribute would not raise AttributeError
as you would expect. Fixed by Benjamin Peterson; bpo-7604 [https://bugs.python.org/issue7604].)

	Two new encodings are now supported: "cp720", used primarily for
Arabic text; and "cp858", a variant of CP 850 that adds the euro
symbol. (CP720 contributed by Alexander Belchenko and Amaury
Forgeot d'Arc in bpo-1616979 [https://bugs.python.org/issue1616979]; CP858 contributed by Tim Hatch in
bpo-8016 [https://bugs.python.org/issue8016].)

	The file object will now set the filename attribute
on the IOError exception when trying to open a directory
on POSIX platforms (noted by Jan Kaliszewski; bpo-4764 [https://bugs.python.org/issue4764]), and
now explicitly checks for and forbids writing to read-only file objects
instead of trusting the C library to catch and report the error
(fixed by Stefan Krah; bpo-5677 [https://bugs.python.org/issue5677]).

	The Python tokenizer now translates line endings itself, so the
compile() built-in function now accepts code using any
line-ending convention. Additionally, it no longer requires that the
code end in a newline.

	Extra parentheses in function definitions are illegal in Python 3.x,
meaning that you get a syntax error from def f((x)): pass. In
Python3-warning mode, Python 2.7 will now warn about this odd usage.
(Noted by James Lingard; bpo-7362 [https://bugs.python.org/issue7362].)

	It's now possible to create weak references to old-style class
objects. New-style classes were always weak-referenceable. (Fixed
by Antoine Pitrou; bpo-8268 [https://bugs.python.org/issue8268].)

	When a module object is garbage-collected, the module's dictionary is
now only cleared if no one else is holding a reference to the
dictionary (bpo-7140 [https://bugs.python.org/issue7140]).

Interpreter Changes

A new environment variable, PYTHONWARNINGS,
allows controlling warnings. It should be set to a string
containing warning settings, equivalent to those
used with the -W switch, separated by commas.
(Contributed by Brian Curtin; bpo-7301 [https://bugs.python.org/issue7301].)

For example, the following setting will print warnings every time
they occur, but turn warnings from the Cookie module into an
error. (The exact syntax for setting an environment variable varies
across operating systems and shells.)

export PYTHONWARNINGS=all,error:::Cookie:0

性能优化

Several performance enhancements have been added:

	A new opcode was added to perform the initial setup for
with statements, looking up the __enter__() and
__exit__() methods. (Contributed by Benjamin Peterson.)

	The garbage collector now performs better for one common usage
pattern: when many objects are being allocated without deallocating
any of them. This would previously take quadratic
time for garbage collection, but now the number of full garbage collections
is reduced as the number of objects on the heap grows.
The new logic only performs a full garbage collection pass when
the middle generation has been collected 10 times and when the
number of survivor objects from the middle generation exceeds 10% of
the number of objects in the oldest generation. (Suggested by Martin
von Löwis and implemented by Antoine Pitrou; bpo-4074 [https://bugs.python.org/issue4074].)

	The garbage collector tries to avoid tracking simple containers
which can't be part of a cycle. In Python 2.7, this is now true for
tuples and dicts containing atomic types (such as ints, strings,
etc.). Transitively, a dict containing tuples of atomic types won't
be tracked either. This helps reduce the cost of each
garbage collection by decreasing the number of objects to be
considered and traversed by the collector.
(Contributed by Antoine Pitrou; bpo-4688 [https://bugs.python.org/issue4688].)

	Long integers are now stored internally either in base 2**15 or in base
2**30, the base being determined at build time. Previously, they
were always stored in base 2**15. Using base 2**30 gives
significant performance improvements on 64-bit machines, but
benchmark results on 32-bit machines have been mixed. Therefore,
the default is to use base 2**30 on 64-bit machines and base 2**15
on 32-bit machines; on Unix, there's a new configure option
--enable-big-digits that can be used to override this default.

Apart from the performance improvements this change should be
invisible to end users, with one exception: for testing and
debugging purposes there's a new structseq sys.long_info that
provides information about the internal format, giving the number of
bits per digit and the size in bytes of the C type used to store
each digit:

>>> import sys
>>> sys.long_info
sys.long_info(bits_per_digit=30, sizeof_digit=4)

（由 Mark Dickinson在 bpo-4258 [https://bugs.python.org/issue4258] 贡献）

Another set of changes made long objects a few bytes smaller: 2 bytes
smaller on 32-bit systems and 6 bytes on 64-bit.
(Contributed by Mark Dickinson; bpo-5260 [https://bugs.python.org/issue5260].)

	The division algorithm for long integers has been made faster
by tightening the inner loop, doing shifts instead of multiplications,
and fixing an unnecessary extra iteration.
Various benchmarks show speedups of between 50% and 150% for long
integer divisions and modulo operations.
(Contributed by Mark Dickinson; bpo-5512 [https://bugs.python.org/issue5512].)
Bitwise operations are also significantly faster (initial patch by
Gregory Smith; bpo-1087418 [https://bugs.python.org/issue1087418]).

	The implementation of % checks for the left-side operand being
a Python string and special-cases it; this results in a 1--3%
performance increase for applications that frequently use %
with strings, such as templating libraries.
(Implemented by Collin Winter; bpo-5176 [https://bugs.python.org/issue5176].)

	List comprehensions with an if condition are compiled into
faster bytecode. (Patch by Antoine Pitrou, back-ported to 2.7
by Jeffrey Yasskin; bpo-4715 [https://bugs.python.org/issue4715].)

	Converting an integer or long integer to a decimal string was made
faster by special-casing base 10 instead of using a generalized
conversion function that supports arbitrary bases.
(Patch by Gawain Bolton; bpo-6713 [https://bugs.python.org/issue6713].)

	The split(), replace(), rindex(),
rpartition(), and rsplit() methods of string-like types
(strings, Unicode strings, and bytearray objects) now use a
fast reverse-search algorithm instead of a character-by-character
scan. This is sometimes faster by a factor of 10. (Added by
Florent Xicluna; bpo-7462 [https://bugs.python.org/issue7462] and bpo-7622 [https://bugs.python.org/issue7622].)

	The pickle and cPickle modules now automatically
intern the strings used for attribute names, reducing memory usage
of the objects resulting from unpickling. (Contributed by Jake
McGuire; bpo-5084 [https://bugs.python.org/issue5084].)

	The cPickle module now special-cases dictionaries,
nearly halving the time required to pickle them.
(Contributed by Collin Winter; bpo-5670 [https://bugs.python.org/issue5670].)

新增和改进的模块

As in every release, Python's standard library received a number of
enhancements and bug fixes. Here's a partial list of the most notable
changes, sorted alphabetically by module name. Consult the
Misc/NEWS file in the source tree for a more complete list of
changes, or look through the Subversion logs for all the details.

	The bdb module's base debugging class Bdb
gained a feature for skipping modules. The constructor
now takes an iterable containing glob-style patterns such as
django.*; the debugger will not step into stack frames
from a module that matches one of these patterns.
(Contributed by Maru Newby after a suggestion by
Senthil Kumaran; bpo-5142 [https://bugs.python.org/issue5142].)

	The binascii module now supports the buffer API, so it can be
used with memoryview instances and other similar buffer objects.
(Backported from 3.x by Florent Xicluna; bpo-7703 [https://bugs.python.org/issue7703].)

	Updated module: the bsddb module has been updated from 4.7.2devel9
to version 4.8.4 of
the pybsddb package [https://www.jcea.es/programacion/pybsddb.htm].
The new version features better Python 3.x compatibility, various bug fixes,
and adds several new BerkeleyDB flags and methods.
(Updated by Jesús Cea Avión; bpo-8156 [https://bugs.python.org/issue8156]. The pybsddb
changelog can be read at http://hg.jcea.es/pybsddb/file/tip/ChangeLog.)

	The bz2 module's BZ2File now supports the context
management protocol, so you can write with bz2.BZ2File(...) as f:.
(Contributed by Hagen Fürstenau; bpo-3860 [https://bugs.python.org/issue3860].)

	New class: the Counter class in the collections
module is useful for tallying data. Counter instances
behave mostly like dictionaries but return zero for missing keys instead of
raising a KeyError:

>>> from collections import Counter
>>> c = Counter()
>>> for letter in 'here is a sample of english text':
... c[letter] += 1
...
>>> c
Counter({' ': 6, 'e': 5, 's': 3, 'a': 2, 'i': 2, 'h': 2,
'l': 2, 't': 2, 'g': 1, 'f': 1, 'm': 1, 'o': 1, 'n': 1,
'p': 1, 'r': 1, 'x': 1})
>>> c['e']
5
>>> c['z']
0

There are three additional Counter methods.
most_common() returns the N most common
elements and their counts. elements()
returns an iterator over the contained elements, repeating each
element as many times as its count.
subtract() takes an iterable and
subtracts one for each element instead of adding; if the argument is
a dictionary or another Counter, the counts are
subtracted.

>>> c.most_common(5)
[(' ', 6), ('e', 5), ('s', 3), ('a', 2), ('i', 2)]
>>> c.elements() ->
 'a', 'a', ' ', ' ', ' ', ' ', ' ', ' ',
 'e', 'e', 'e', 'e', 'e', 'g', 'f', 'i', 'i',
 'h', 'h', 'm', 'l', 'l', 'o', 'n', 'p', 's',
 's', 's', 'r', 't', 't', 'x'
>>> c['e']
5
>>> c.subtract('very heavy on the letter e')
>>> c['e'] # Count is now lower
-1

Contributed by Raymond Hettinger; bpo-1696199 [https://bugs.python.org/issue1696199].

New class: OrderedDict is described in the earlier
section PEP 372: Adding an Ordered Dictionary to collections.

New method: The deque data type now has a
count() method that returns the number of
contained elements equal to the supplied argument x, and a
reverse() method that reverses the elements
of the deque in-place. deque also exposes its maximum
length as the read-only maxlen attribute.
(Both features added by Raymond Hettinger.)

The namedtuple class now has an optional rename parameter.
If rename is true, field names that are invalid because they've
been repeated or aren't legal Python identifiers will be
renamed to legal names that are derived from the field's
position within the list of fields:

>>> from collections import namedtuple
>>> T = namedtuple('T', ['field1', '$illegal', 'for', 'field2'], rename=True)
>>> T._fields
('field1', '_1', '_2', 'field2')

(Added by Raymond Hettinger; bpo-1818 [https://bugs.python.org/issue1818].)

Finally, the Mapping abstract base class now
returns NotImplemented if a mapping is compared to
another type that isn't a Mapping.
(Fixed by Daniel Stutzbach; bpo-8729 [https://bugs.python.org/issue8729].)

	Constructors for the parsing classes in the ConfigParser module now
take an allow_no_value parameter, defaulting to false; if true,
options without values will be allowed. For example:

>>> import ConfigParser, StringIO
>>> sample_config = """
... [mysqld]
... user = mysql
... pid-file = /var/run/mysqld/mysqld.pid
... skip-bdb
... """
>>> config = ConfigParser.RawConfigParser(allow_no_value=True)
>>> config.readfp(StringIO.StringIO(sample_config))
>>> config.get('mysqld', 'user')
'mysql'
>>> print config.get('mysqld', 'skip-bdb')
None
>>> print config.get('mysqld', 'unknown')
Traceback (most recent call last):
 ...
NoOptionError: No option 'unknown' in section: 'mysqld'

(Contributed by Mats Kindahl; bpo-7005 [https://bugs.python.org/issue7005].)

	Deprecated function: contextlib.nested(), which allows
handling more than one context manager with a single with
statement, has been deprecated, because the with statement
now supports multiple context managers.

	The cookielib module now ignores cookies that have an invalid
version field, one that doesn't contain an integer value. (Fixed by
John J. Lee; bpo-3924 [https://bugs.python.org/issue3924].)

	The copy module's deepcopy() function will now
correctly copy bound instance methods. (Implemented by
Robert Collins; bpo-1515 [https://bugs.python.org/issue1515].)

	The ctypes module now always converts None to a C NULL
pointer for arguments declared as pointers. (Changed by Thomas
Heller; bpo-4606 [https://bugs.python.org/issue4606].) The underlying libffi library [https://sourceware.org/libffi/] has been updated to version
3.0.9, containing various fixes for different platforms. (Updated
by Matthias Klose; bpo-8142 [https://bugs.python.org/issue8142].)

	New method: the datetime module's timedelta class
gained a total_seconds() method that returns the
number of seconds in the duration. (Contributed by Brian Quinlan; bpo-5788 [https://bugs.python.org/issue5788].)

	New method: the Decimal class gained a
from_float() class method that performs an exact
conversion of a floating-point number to a Decimal.
This exact conversion strives for the
closest decimal approximation to the floating-point representation's value;
the resulting decimal value will therefore still include the inaccuracy,
if any.
For example, Decimal.from_float(0.1) returns
Decimal('0.1000000000000000055511151231257827021181583404541015625').
(Implemented by Raymond Hettinger; bpo-4796 [https://bugs.python.org/issue4796].)

Comparing instances of Decimal with floating-point
numbers now produces sensible results based on the numeric values
of the operands. Previously such comparisons would fall back to
Python's default rules for comparing objects, which produced arbitrary
results based on their type. Note that you still cannot combine
Decimal and floating-point in other operations such as addition,
since you should be explicitly choosing how to convert between float and
Decimal. (Fixed by Mark Dickinson; bpo-2531 [https://bugs.python.org/issue2531].)

The constructor for Decimal now accepts
floating-point numbers (added by Raymond Hettinger; bpo-8257 [https://bugs.python.org/issue8257])
and non-European Unicode characters such as Arabic-Indic digits
(contributed by Mark Dickinson; bpo-6595 [https://bugs.python.org/issue6595]).

Most of the methods of the Context class now accept integers
as well as Decimal instances; the only exceptions are the
canonical() and is_canonical()
methods. (Patch by Juan José Conti; bpo-7633 [https://bugs.python.org/issue7633].)

When using Decimal instances with a string's
format() method, the default alignment was previously
left-alignment. This has been changed to right-alignment, which is
more sensible for numeric types. (Changed by Mark Dickinson; bpo-6857 [https://bugs.python.org/issue6857].)

Comparisons involving a signaling NaN value (or sNAN) now signal
InvalidOperation instead of silently returning a true or
false value depending on the comparison operator. Quiet NaN values
(or NaN) are now hashable. (Fixed by Mark Dickinson;
bpo-7279 [https://bugs.python.org/issue7279].)

	The difflib module now produces output that is more
compatible with modern diff/patch tools
through one small change, using a tab character instead of spaces as
a separator in the header giving the filename. (Fixed by Anatoly
Techtonik; bpo-7585 [https://bugs.python.org/issue7585].)

	The Distutils sdist command now always regenerates the
MANIFEST file, since even if the MANIFEST.in or
setup.py files haven't been modified, the user might have
created some new files that should be included.
(Fixed by Tarek Ziadé; bpo-8688 [https://bugs.python.org/issue8688].)

	The doctest module's IGNORE_EXCEPTION_DETAIL flag
will now ignore the name of the module containing the exception
being tested. (Patch by Lennart Regebro; bpo-7490 [https://bugs.python.org/issue7490].)

	The email module's Message class will
now accept a Unicode-valued payload, automatically converting the
payload to the encoding specified by output_charset.
(Added by R. David Murray; bpo-1368247 [https://bugs.python.org/issue1368247].)

	The Fraction class now accepts a single float or
Decimal instance, or two rational numbers, as
arguments to its constructor. (Implemented by Mark Dickinson;
rationals added in bpo-5812 [https://bugs.python.org/issue5812], and float/decimal in
bpo-8294 [https://bugs.python.org/issue8294].)

Ordering comparisons (<, <=, >, >=) between
fractions and complex numbers now raise a TypeError.
This fixes an oversight, making the Fraction
match the other numeric types.

	New class: FTP_TLS in
the ftplib module provides secure FTP
connections using TLS encapsulation of authentication as well as
subsequent control and data transfers.
(Contributed by Giampaolo Rodola; bpo-2054 [https://bugs.python.org/issue2054].)

The storbinary() method for binary uploads can now restart
uploads thanks to an added rest parameter (patch by Pablo Mouzo;
bpo-6845 [https://bugs.python.org/issue6845].)

	New class decorator: total_ordering() in the functools
module takes a class that defines an __eq__() method and one of
__lt__(), __le__(), __gt__(), or __ge__(),
and generates the missing comparison methods. Since the
__cmp__() method is being deprecated in Python 3.x,
this decorator makes it easier to define ordered classes.
(Added by Raymond Hettinger; bpo-5479 [https://bugs.python.org/issue5479].)

New function: cmp_to_key() will take an old-style comparison
function that expects two arguments and return a new callable that
can be used as the key parameter to functions such as
sorted(), min() and max(), etc. The primary
intended use is to help with making code compatible with Python 3.x.
(Added by Raymond Hettinger.)

	New function: the gc module's is_tracked() returns
true if a given instance is tracked by the garbage collector, false
otherwise. (Contributed by Antoine Pitrou; bpo-4688 [https://bugs.python.org/issue4688].)

	The gzip module's GzipFile now supports the context
management protocol, so you can write with gzip.GzipFile(...) as f:
(contributed by Hagen Fürstenau; bpo-3860 [https://bugs.python.org/issue3860]), and it now implements
the io.BufferedIOBase ABC, so you can wrap it with
io.BufferedReader for faster processing
(contributed by Nir Aides; bpo-7471 [https://bugs.python.org/issue7471]).
It's also now possible to override the modification time
recorded in a gzipped file by providing an optional timestamp to
the constructor. (Contributed by Jacques Frechet; bpo-4272 [https://bugs.python.org/issue4272].)

Files in gzip format can be padded with trailing zero bytes; the
gzip module will now consume these trailing bytes. (Fixed by
Tadek Pietraszek and Brian Curtin; bpo-2846 [https://bugs.python.org/issue2846].)

	New attribute: the hashlib module now has an algorithms
attribute containing a tuple naming the supported algorithms.
In Python 2.7, hashlib.algorithms contains
('md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512').
(Contributed by Carl Chenet; bpo-7418 [https://bugs.python.org/issue7418].)

	The default HTTPResponse class used by the httplib module now
supports buffering, resulting in much faster reading of HTTP responses.
(Contributed by Kristján Valur Jónsson; bpo-4879 [https://bugs.python.org/issue4879].)

The HTTPConnection and HTTPSConnection classes
now support a source_address parameter, a (host, port) 2-tuple
giving the source address that will be used for the connection.
(Contributed by Eldon Ziegler; bpo-3972 [https://bugs.python.org/issue3972].)

	The ihooks module now supports relative imports. Note that
ihooks is an older module for customizing imports,
superseded by the imputil module added in Python 2.0.
(Relative import support added by Neil Schemenauer.)

	The imaplib module now supports IPv6 addresses.
(Contributed by Derek Morr; bpo-1655 [https://bugs.python.org/issue1655].)

	New function: the inspect module's getcallargs()
takes a callable and its positional and keyword arguments,
and figures out which of the callable's parameters will receive each argument,
returning a dictionary mapping argument names to their values. For example:

>>> from inspect import getcallargs
>>> def f(a, b=1, *pos, **named):
... pass
>>> getcallargs(f, 1, 2, 3)
{'a': 1, 'b': 2, 'pos': (3,), 'named': {}}
>>> getcallargs(f, a=2, x=4)
{'a': 2, 'b': 1, 'pos': (), 'named': {'x': 4}}
>>> getcallargs(f)
Traceback (most recent call last):
...
TypeError: f() takes at least 1 argument (0 given)

（由 Georg Sakkis 在 bpo-3135 [https://bugs.python.org/issue3135] 中贡献）

	Updated module: The io library has been upgraded to the version shipped with
Python 3.1. For 3.1, the I/O library was entirely rewritten in C
and is 2 to 20 times faster depending on the task being performed. The
original Python version was renamed to the _pyio module.

One minor resulting change: the io.TextIOBase class now
has an errors attribute giving the error setting
used for encoding and decoding errors (one of 'strict', 'replace',
'ignore').

The io.FileIO class now raises an OSError when passed
an invalid file descriptor. (Implemented by Benjamin Peterson;
bpo-4991 [https://bugs.python.org/issue4991].) The truncate() method now preserves the
file position; previously it would change the file position to the
end of the new file. (Fixed by Pascal Chambon; bpo-6939 [https://bugs.python.org/issue6939].)

	New function: itertools.compress(data, selectors) takes two
iterators. Elements of data are returned if the corresponding
value in selectors is true:

itertools.compress('ABCDEF', [1,0,1,0,1,1]) =>
 A, C, E, F

New function: itertools.combinations_with_replacement(iter, r)
returns all the possible r-length combinations of elements from the
iterable iter. Unlike combinations(), individual elements
can be repeated in the generated combinations:

itertools.combinations_with_replacement('abc', 2) =>
 ('a', 'a'), ('a', 'b'), ('a', 'c'),
 ('b', 'b'), ('b', 'c'), ('c', 'c')

Note that elements are treated as unique depending on their position
in the input, not their actual values.

The itertools.count() function now has a step argument that
allows incrementing by values other than 1. count() also
now allows keyword arguments, and using non-integer values such as
floats or Decimal instances. (Implemented by Raymond
Hettinger; bpo-5032 [https://bugs.python.org/issue5032].)

itertools.combinations() and itertools.product()
previously raised ValueError for values of r larger than
the input iterable. This was deemed a specification error, so they
now return an empty iterator. (Fixed by Raymond Hettinger; bpo-4816 [https://bugs.python.org/issue4816].)

	Updated module: The json module was upgraded to version 2.0.9 of the
simplejson package, which includes a C extension that makes
encoding and decoding faster.
(Contributed by Bob Ippolito; bpo-4136 [https://bugs.python.org/issue4136].)

To support the new collections.OrderedDict type, json.load()
now has an optional object_pairs_hook parameter that will be called
with any object literal that decodes to a list of pairs.
(Contributed by Raymond Hettinger; bpo-5381 [https://bugs.python.org/issue5381].)

	The mailbox module's Maildir class now records the
timestamp on the directories it reads, and only re-reads them if the
modification time has subsequently changed. This improves
performance by avoiding unneeded directory scans. (Fixed by
A.M. Kuchling and Antoine Pitrou; bpo-1607951 [https://bugs.python.org/issue1607951], bpo-6896 [https://bugs.python.org/issue6896].)

	New functions: the math module gained
erf() and erfc() for the error function and the complementary error function,
expm1() which computes e**x - 1 with more precision than
using exp() and subtracting 1,
gamma() for the Gamma function, and
lgamma() for the natural log of the Gamma function.
(Contributed by Mark Dickinson and nirinA raseliarison; bpo-3366 [https://bugs.python.org/issue3366].)

	The multiprocessing module's Manager* classes
can now be passed a callable that will be called whenever
a subprocess is started, along with a set of arguments that will be
passed to the callable.
(Contributed by lekma; bpo-5585 [https://bugs.python.org/issue5585].)

The Pool class, which controls a pool of worker processes,
now has an optional maxtasksperchild parameter. Worker processes
will perform the specified number of tasks and then exit, causing the
Pool to start a new worker. This is useful if tasks may leak
memory or other resources, or if some tasks will cause the worker to
become very large.
(Contributed by Charles Cazabon; bpo-6963 [https://bugs.python.org/issue6963].)

	The nntplib module now supports IPv6 addresses.
(Contributed by Derek Morr; bpo-1664 [https://bugs.python.org/issue1664].)

	New functions: the os module wraps the following POSIX system
calls: getresgid() and getresuid(), which return the
real, effective, and saved GIDs and UIDs;
setresgid() and setresuid(), which set
real, effective, and saved GIDs and UIDs to new values;
initgroups(), which initialize the group access list
for the current process. (GID/UID functions
contributed by Travis H.; bpo-6508 [https://bugs.python.org/issue6508]. Support for initgroups added
by Jean-Paul Calderone; bpo-7333 [https://bugs.python.org/issue7333].)

The os.fork() function now re-initializes the import lock in
the child process; this fixes problems on Solaris when fork()
is called from a thread. (Fixed by Zsolt Cserna; bpo-7242 [https://bugs.python.org/issue7242].)

	In the os.path module, the normpath() and
abspath() functions now preserve Unicode; if their input path
is a Unicode string, the return value is also a Unicode string.
(normpath() fixed by Matt Giuca in bpo-5827 [https://bugs.python.org/issue5827];
abspath() fixed by Ezio Melotti in bpo-3426 [https://bugs.python.org/issue3426].)

	The pydoc module now has help for the various symbols that Python
uses. You can now do help('<<') or help('@'), for example.
(Contributed by David Laban; bpo-4739 [https://bugs.python.org/issue4739].)

	The re module's split(), sub(), and subn()
now accept an optional flags argument, for consistency with the
other functions in the module. (Added by Gregory P. Smith.)

	New function: run_path() in the runpy module
will execute the code at a provided path argument. path can be
the path of a Python source file (example.py), a compiled
bytecode file (example.pyc), a directory
(./package/), or a zip archive (example.zip). If a
directory or zip path is provided, it will be added to the front of
sys.path and the module __main__ will be imported. It's
expected that the directory or zip contains a __main__.py;
if it doesn't, some other __main__.py might be imported from
a location later in sys.path. This makes more of the machinery
of runpy available to scripts that want to mimic the way
Python's command line processes an explicit path name.
(Added by Nick Coghlan; bpo-6816 [https://bugs.python.org/issue6816].)

	New function: in the shutil module, make_archive()
takes a filename, archive type (zip or tar-format), and a directory
path, and creates an archive containing the directory's contents.
(Added by Tarek Ziadé.)

shutil's copyfile() and copytree()
functions now raise a SpecialFileError exception when
asked to copy a named pipe. Previously the code would treat
named pipes like a regular file by opening them for reading, and
this would block indefinitely. (Fixed by Antoine Pitrou; bpo-3002 [https://bugs.python.org/issue3002].)

	The signal module no longer re-installs the signal handler
unless this is truly necessary, which fixes a bug that could make it
impossible to catch the EINTR signal robustly. (Fixed by
Charles-Francois Natali; bpo-8354 [https://bugs.python.org/issue8354].)

	New functions: in the site module, three new functions
return various site- and user-specific paths.
getsitepackages() returns a list containing all
global site-packages directories,
getusersitepackages() returns the path of the user's
site-packages directory, and
getuserbase() returns the value of the USER_BASE
environment variable, giving the path to a directory that can be used
to store data.
(Contributed by Tarek Ziadé; bpo-6693 [https://bugs.python.org/issue6693].)

The site module now reports exceptions occurring
when the sitecustomize module is imported, and will no longer
catch and swallow the KeyboardInterrupt exception. (Fixed by
Victor Stinner; bpo-3137 [https://bugs.python.org/issue3137].)

	The create_connection() function
gained a source_address parameter, a (host, port) 2-tuple
giving the source address that will be used for the connection.
(Contributed by Eldon Ziegler; bpo-3972 [https://bugs.python.org/issue3972].)

The recv_into() and recvfrom_into()
methods will now write into objects that support the buffer API, most usefully
the bytearray and memoryview objects. (Implemented by
Antoine Pitrou; bpo-8104 [https://bugs.python.org/issue8104].)

	The SocketServer module's TCPServer class now
supports socket timeouts and disabling the Nagle algorithm.
The disable_nagle_algorithm class attribute
defaults to False; if overridden to be true,
new request connections will have the TCP_NODELAY option set to
prevent buffering many small sends into a single TCP packet.
The timeout class attribute can hold
a timeout in seconds that will be applied to the request socket; if
no request is received within that time, handle_timeout()
will be called and handle_request() will return.
(Contributed by Kristján Valur Jónsson; bpo-6192 [https://bugs.python.org/issue6192] and bpo-6267 [https://bugs.python.org/issue6267].)

	Updated module: the sqlite3 module has been updated to
version 2.6.0 of the pysqlite package [https://github.com/ghaering/pysqlite]. Version 2.6.0 includes a number of bugfixes, and adds
the ability to load SQLite extensions from shared libraries.
Call the enable_load_extension(True) method to enable extensions,
and then call load_extension() to load a particular shared library.
(Updated by Gerhard Häring.)

	The ssl module's SSLSocket objects now support the
buffer API, which fixed a test suite failure (fix by Antoine Pitrou;
bpo-7133 [https://bugs.python.org/issue7133]) and automatically set
OpenSSL's SSL_MODE_AUTO_RETRY, which will prevent an error
code being returned from recv() operations that trigger an SSL
renegotiation (fix by Antoine Pitrou; bpo-8222 [https://bugs.python.org/issue8222]).

The ssl.wrap_socket() constructor function now takes a
ciphers argument that's a string listing the encryption algorithms
to be allowed; the format of the string is described
in the OpenSSL documentation [https://www.openssl.org/docs/manmaster/man1/ciphers.html#CIPHER-LIST-FORMAT].
(Added by Antoine Pitrou; bpo-8322 [https://bugs.python.org/issue8322].)

Another change makes the extension load all of OpenSSL's ciphers and
digest algorithms so that they're all available. Some SSL
certificates couldn't be verified, reporting an "unknown algorithm"
error. (Reported by Beda Kosata, and fixed by Antoine Pitrou;
bpo-8484 [https://bugs.python.org/issue8484].)

The version of OpenSSL being used is now available as the module
attributes ssl.OPENSSL_VERSION (a string),
ssl.OPENSSL_VERSION_INFO (a 5-tuple), and
ssl.OPENSSL_VERSION_NUMBER (an integer). (Added by Antoine
Pitrou; bpo-8321 [https://bugs.python.org/issue8321].)

	The struct module will no longer silently ignore overflow
errors when a value is too large for a particular integer format
code (one of bBhHiIlLqQ); it now always raises a
struct.error exception. (Changed by Mark Dickinson;
bpo-1523 [https://bugs.python.org/issue1523].) The pack() function will also
attempt to use __index__() to convert and pack non-integers
before trying the __int__() method or reporting an error.
(Changed by Mark Dickinson; bpo-8300 [https://bugs.python.org/issue8300].)

	New function: the subprocess module's
check_output() runs a command with a specified set of arguments
and returns the command's output as a string when the command runs without
error, or raises a CalledProcessError exception otherwise.

>>> subprocess.check_output(['df', '-h', '.'])
'Filesystem Size Used Avail Capacity Mounted on\n
/dev/disk0s2 52G 49G 3.0G 94% /\n'

>>> subprocess.check_output(['df', '-h', '/bogus'])
 ...
subprocess.CalledProcessError: Command '['df', '-h', '/bogus']' returned non-zero exit status 1

（由 Gregory P. Smith 贡献）

The subprocess module will now retry its internal system calls
on receiving an EINTR signal. (Reported by several people; final
patch by Gregory P. Smith in bpo-1068268 [https://bugs.python.org/issue1068268].)

	New function: is_declared_global() in the symtable module
returns true for variables that are explicitly declared to be global,
false for ones that are implicitly global.
(Contributed by Jeremy Hylton.)

	The syslog module will now use the value of sys.argv[0] as the
identifier instead of the previous default value of 'python'.
(Changed by Sean Reifschneider; bpo-8451 [https://bugs.python.org/issue8451].)

	The sys.version_info value is now a named tuple, with attributes
named major, minor, micro,
releaselevel, and serial. (Contributed by Ross
Light; bpo-4285 [https://bugs.python.org/issue4285].)

sys.getwindowsversion() also returns a named tuple,
with attributes named major, minor, build,
platform, service_pack, service_pack_major,
service_pack_minor, suite_mask, and
product_type. (Contributed by Brian Curtin; bpo-7766 [https://bugs.python.org/issue7766].)

	The tarfile module's default error handling has changed, to
no longer suppress fatal errors. The default error level was previously 0,
which meant that errors would only result in a message being written to the
debug log, but because the debug log is not activated by default,
these errors go unnoticed. The default error level is now 1,
which raises an exception if there's an error.
(Changed by Lars Gustäbel; bpo-7357 [https://bugs.python.org/issue7357].)

tarfile now supports filtering the TarInfo
objects being added to a tar file. When you call add(),
you may supply an optional filter argument
that's a callable. The filter callable will be passed the
TarInfo for every file being added, and can modify and return it.
If the callable returns None, the file will be excluded from the
resulting archive. This is more powerful than the existing
exclude argument, which has therefore been deprecated.
(Added by Lars Gustäbel; bpo-6856 [https://bugs.python.org/issue6856].)
The TarFile class also now supports the context management protocol.
(Added by Lars Gustäbel; bpo-7232 [https://bugs.python.org/issue7232].)

	The wait() method of the threading.Event class
now returns the internal flag on exit. This means the method will usually
return true because wait() is supposed to block until the
internal flag becomes true. The return value will only be false if
a timeout was provided and the operation timed out.
(Contributed by Tim Lesher; bpo-1674032 [https://bugs.python.org/issue1674032].)

	The Unicode database provided by the unicodedata module is
now used internally to determine which characters are numeric,
whitespace, or represent line breaks. The database also
includes information from the Unihan.txt data file (patch
by Anders Chrigström and Amaury Forgeot d'Arc; bpo-1571184 [https://bugs.python.org/issue1571184])
and has been updated to version 5.2.0 (updated by
Florent Xicluna; bpo-8024 [https://bugs.python.org/issue8024]).

	The urlparse module's urlsplit() now handles
unknown URL schemes in a fashion compliant with RFC 3986 [https://tools.ietf.org/html/rfc3986.html]: if the
URL is of the form "<something>://...", the text before the
:// is treated as the scheme, even if it's a made-up scheme that
the module doesn't know about. This change may break code that
worked around the old behaviour. For example, Python 2.6.4 or 2.5
will return the following:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', '', '//host/filename?query', '', '')

Python 2.7 (and Python 2.6.5) will return:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', 'host', '/filename?query', '', '')

(Python 2.7 actually produces slightly different output, since it
returns a named tuple instead of a standard tuple.)

The urlparse module also supports IPv6 literal addresses as defined by
RFC 2732 [https://tools.ietf.org/html/rfc2732.html] (contributed by Senthil Kumaran; bpo-2987 [https://bugs.python.org/issue2987]).

>>> urlparse.urlparse('http://[1080::8:800:200C:417A]/foo')
ParseResult(scheme='http', netloc='[1080::8:800:200C:417A]',
 path='/foo', params='', query='', fragment='')

	New class: the WeakSet class in the weakref
module is a set that only holds weak references to its elements; elements
will be removed once there are no references pointing to them.
(Originally implemented in Python 3.x by Raymond Hettinger, and backported
to 2.7 by Michael Foord.)

	The ElementTree library, xml.etree, no longer escapes
ampersands and angle brackets when outputting an XML processing
instruction (which looks like <?xml-stylesheet href="#style1"?>)
or comment (which looks like <!-- comment -->).
(Patch by Neil Muller; bpo-2746 [https://bugs.python.org/issue2746].)

	The XML-RPC client and server, provided by the xmlrpclib and
SimpleXMLRPCServer modules, have improved performance by
supporting HTTP/1.1 keep-alive and by optionally using gzip encoding
to compress the XML being exchanged. The gzip compression is
controlled by the encode_threshold attribute of
SimpleXMLRPCRequestHandler, which contains a size in bytes;
responses larger than this will be compressed.
(Contributed by Kristján Valur Jónsson; bpo-6267 [https://bugs.python.org/issue6267].)

	The zipfile module's ZipFile now supports the context
management protocol, so you can write with zipfile.ZipFile(...) as f:.
(Contributed by Brian Curtin; bpo-5511 [https://bugs.python.org/issue5511].)

zipfile now also supports archiving empty directories and
extracts them correctly. (Fixed by Kuba Wieczorek; bpo-4710 [https://bugs.python.org/issue4710].)
Reading files out of an archive is faster, and interleaving
read() and readline() now works correctly.
(Contributed by Nir Aides; bpo-7610 [https://bugs.python.org/issue7610].)

The is_zipfile() function now
accepts a file object, in addition to the path names accepted in earlier
versions. (Contributed by Gabriel Genellina; bpo-4756 [https://bugs.python.org/issue4756].)

The writestr() method now has an optional compress_type parameter
that lets you override the default compression method specified in the
ZipFile constructor. (Contributed by Ronald Oussoren;
bpo-6003 [https://bugs.python.org/issue6003].)

新模块：importlib

Python 3.1 includes the importlib package, a re-implementation
of the logic underlying Python's import statement.
importlib is useful for implementors of Python interpreters and
to users who wish to write new importers that can participate in the
import process. Python 2.7 doesn't contain the complete
importlib package, but instead has a tiny subset that contains
a single function, import_module().

import_module(name, package=None) imports a module. name is
a string containing the module or package's name. It's possible to do
relative imports by providing a string that begins with a .
character, such as ..utils.errors. For relative imports, the
package argument must be provided and is the name of the package that
will be used as the anchor for
the relative import. import_module() both inserts the imported
module into sys.modules and returns the module object.

Here are some examples:

>>> from importlib import import_module
>>> anydbm = import_module('anydbm') # Standard absolute import
>>> anydbm
<module 'anydbm' from '/p/python/Lib/anydbm.py'>
>>> # Relative import
>>> file_util = import_module('..file_util', 'distutils.command')
>>> file_util
<module 'distutils.file_util' from '/python/Lib/distutils/file_util.pyc'>

importlib was implemented by Brett Cannon and introduced in
Python 3.1.

新模块：sysconfig

The sysconfig module has been pulled out of the Distutils
package, becoming a new top-level module in its own right.
sysconfig provides functions for getting information about
Python's build process: compiler switches, installation paths, the
platform name, and whether Python is running from its source
directory.

Some of the functions in the module are:

	get_config_var() returns variables from Python's
Makefile and the pyconfig.h file.

	get_config_vars() returns a dictionary containing
all of the configuration variables.

	get_path() returns the configured path for
a particular type of module: the standard library,
site-specific modules, platform-specific modules, etc.

	is_python_build() returns true if you're running a
binary from a Python source tree, and false otherwise.

Consult the sysconfig documentation for more details and for
a complete list of functions.

The Distutils package and sysconfig are now maintained by Tarek
Ziadé, who has also started a Distutils2 package (source repository at
https://hg.python.org/distutils2/) for developing a next-generation
version of Distutils.

ttk: Themed Widgets for Tk

Tcl/Tk 8.5 includes a set of themed widgets that re-implement basic Tk
widgets but have a more customizable appearance and can therefore more
closely resemble the native platform's widgets. This widget
set was originally called Tile, but was renamed to Ttk (for "themed Tk")
on being added to Tcl/Tck release 8.5.

To learn more, read the ttk module documentation. You may also
wish to read the Tcl/Tk manual page describing the
Ttk theme engine, available at
https://www.tcl.tk/man/tcl8.5/TkCmd/ttk_intro.htm. Some
screenshots of the Python/Ttk code in use are at
https://code.google.com/archive/p/python-ttk/wikis/Screenshots.wiki.

The ttk module was written by Guilherme Polo and added in
bpo-2983 [https://bugs.python.org/issue2983]. An alternate version called Tile.py, written by
Martin Franklin and maintained by Kevin Walzer, was proposed for
inclusion in bpo-2618 [https://bugs.python.org/issue2618], but the authors argued that Guilherme
Polo's work was more comprehensive.

更新的模块：unittest

The unittest module was greatly enhanced; many
new features were added. Most of these features were implemented
by Michael Foord, unless otherwise noted. The enhanced version of
the module is downloadable separately for use with Python versions 2.4 to 2.6,
packaged as the unittest2 package, from
https://pypi.org/project/unittest2.

When used from the command line, the module can automatically discover
tests. It's not as fancy as py.test [http://pytest.org] or
nose [https://nose.readthedocs.io/], but provides a
simple way to run tests kept within a set of package directories. For example,
the following command will search the test/ subdirectory for
any importable test files named test*.py:

python -m unittest discover -s test

Consult the unittest module documentation for more details.
(Developed in bpo-6001 [https://bugs.python.org/issue6001].)

The main() function supports some other new options:

	-b or --buffer will buffer the standard output
and standard error streams during each test. If the test passes,
any resulting output will be discarded; on failure, the buffered
output will be displayed.

	-c or --catch will cause the control-C interrupt
to be handled more gracefully. Instead of interrupting the test
process immediately, the currently running test will be completed
and then the partial results up to the interruption will be reported.
If you're impatient, a second press of control-C will cause an immediate
interruption.

This control-C handler tries to avoid causing problems when the code
being tested or the tests being run have defined a signal handler of
their own, by noticing that a signal handler was already set and
calling it. If this doesn't work for you, there's a
removeHandler() decorator that can be used to mark tests that
should have the control-C handling disabled.

	-f or --failfast makes
test execution stop immediately when a test fails instead of
continuing to execute further tests. (Suggested by Cliff Dyer and
implemented by Michael Foord; bpo-8074 [https://bugs.python.org/issue8074].)

The progress messages now show 'x' for expected failures
and 'u' for unexpected successes when run in verbose mode.
(Contributed by Benjamin Peterson.)

Test cases can raise the SkipTest exception to skip a
test (bpo-1034053 [https://bugs.python.org/issue1034053]).

The error messages for assertEqual(),
assertTrue(), and assertFalse()
failures now provide more information. If you set the
longMessage attribute of your TestCase classes to
true, both the standard error message and any additional message you
provide will be printed for failures. (Added by Michael Foord; bpo-5663 [https://bugs.python.org/issue5663].)

The assertRaises() method now
returns a context handler when called without providing a callable
object to run. For example, you can write this:

with self.assertRaises(KeyError):
 {}['foo']

(Implemented by Antoine Pitrou; bpo-4444 [https://bugs.python.org/issue4444].)

Module- and class-level setup and teardown fixtures are now supported.
Modules can contain setUpModule() and tearDownModule()
functions. Classes can have setUpClass() and
tearDownClass() methods that must be defined as class methods
(using @classmethod or equivalent). These functions and
methods are invoked when the test runner switches to a test case in a
different module or class.

The methods addCleanup() and
doCleanups() were added.
addCleanup() lets you add cleanup functions that
will be called unconditionally (after setUp() if
setUp() fails, otherwise after tearDown()). This allows
for much simpler resource allocation and deallocation during tests
(bpo-5679 [https://bugs.python.org/issue5679]).

A number of new methods were added that provide more specialized
tests. Many of these methods were written by Google engineers
for use in their test suites; Gregory P. Smith, Michael Foord, and
GvR worked on merging them into Python's version of unittest.

	assertIsNone() and assertIsNotNone() take one
expression and verify that the result is or is not None.

	assertIs() and assertIsNot()
take two values and check whether the two values evaluate to the same object or not.
(Added by Michael Foord; bpo-2578 [https://bugs.python.org/issue2578].)

	assertIsInstance() and
assertNotIsInstance() check whether
the resulting object is an instance of a particular class, or of
one of a tuple of classes. (Added by Georg Brandl; bpo-7031 [https://bugs.python.org/issue7031].)

	assertGreater(), assertGreaterEqual(),
assertLess(), and assertLessEqual() compare
two quantities.

	assertMultiLineEqual() compares two strings, and if they're
not equal, displays a helpful comparison that highlights the
differences in the two strings. This comparison is now used by
default when Unicode strings are compared with assertEqual().

	assertRegexpMatches() and
assertNotRegexpMatches() checks whether the
first argument is a string matching or not matching the regular
expression provided as the second argument (bpo-8038 [https://bugs.python.org/issue8038]).

	assertRaisesRegexp() checks whether a particular exception
is raised, and then also checks that the string representation of
the exception matches the provided regular expression.

	assertIn() and assertNotIn()
tests whether first is or is not in second.

	assertItemsEqual() tests whether two provided sequences
contain the same elements.

	assertSetEqual() compares whether two sets are equal, and
only reports the differences between the sets in case of error.

	Similarly, assertListEqual() and assertTupleEqual()
compare the specified types and explain any differences without necessarily
printing their full values; these methods are now used by default
when comparing lists and tuples using assertEqual().
More generally, assertSequenceEqual() compares two sequences
and can optionally check whether both sequences are of a
particular type.

	assertDictEqual() compares two dictionaries and reports the
differences; it's now used by default when you compare two dictionaries
using assertEqual(). assertDictContainsSubset() checks whether
all of the key/value pairs in first are found in second.

	assertAlmostEqual() and assertNotAlmostEqual() test
whether first and second are approximately equal. This method
can either round their difference to an optionally-specified number
of places (the default is 7) and compare it to zero, or require
the difference to be smaller than a supplied delta value.

	loadTestsFromName() properly honors the
suiteClass attribute of
the TestLoader. (Fixed by Mark Roddy; bpo-6866 [https://bugs.python.org/issue6866].)

	A new hook lets you extend the assertEqual() method to handle
new data types. The addTypeEqualityFunc() method takes a type
object and a function. The function will be used when both of the
objects being compared are of the specified type. This function
should compare the two objects and raise an exception if they don't
match; it's a good idea for the function to provide additional
information about why the two objects aren't matching, much as the new
sequence comparison methods do.

unittest.main() now takes an optional exit argument. If
false, main() doesn't call sys.exit(), allowing
main() to be used from the interactive interpreter.
(Contributed by J. Pablo Fernández; bpo-3379 [https://bugs.python.org/issue3379].)

TestResult has new startTestRun() and
stopTestRun() methods that are called immediately before
and after a test run. (Contributed by Robert Collins; bpo-5728 [https://bugs.python.org/issue5728].)

With all these changes, the unittest.py was becoming awkwardly
large, so the module was turned into a package and the code split into
several files (by Benjamin Peterson). This doesn't affect how the
module is imported or used.

参见

	http://www.voidspace.org.uk/python/articles/unittest2.shtml
	Describes the new features, how to use them, and the
rationale for various design decisions. (By Michael Foord.)

更新的模块：ElementTree 1.3

The version of the ElementTree library included with Python was updated to
version 1.3. Some of the new features are:

	The various parsing functions now take a parser keyword argument
giving an XMLParser instance that will
be used. This makes it possible to override the file's internal encoding:

p = ET.XMLParser(encoding='utf-8')
t = ET.XML("""<root/>""", parser=p)

Errors in parsing XML now raise a ParseError exception, whose
instances have a position attribute
containing a (line, column) tuple giving the location of the problem.

	ElementTree's code for converting trees to a string has been
significantly reworked, making it roughly twice as fast in many
cases. The ElementTree.write()
and Element.write() methods now have a method parameter that can be
"xml" (the default), "html", or "text". HTML mode will output empty
elements as <empty></empty> instead of <empty/>, and text
mode will skip over elements and only output the text chunks. If
you set the tag attribute of an element to None but
leave its children in place, the element will be omitted when the
tree is written out, so you don't need to do more extensive rearrangement
to remove a single element.

Namespace handling has also been improved. All xmlns:<whatever>
declarations are now output on the root element, not scattered throughout
the resulting XML. You can set the default namespace for a tree
by setting the default_namespace attribute and can
register new prefixes with register_namespace(). In XML mode,
you can use the true/false xml_declaration parameter to suppress the
XML declaration.

	New Element method:
extend() appends the items from a
sequence to the element's children. Elements themselves behave like
sequences, so it's easy to move children from one element to
another:

from xml.etree import ElementTree as ET

t = ET.XML("""<list>
 <item>1</item> <item>2</item> <item>3</item>
</list>""")
new = ET.XML('<root/>')
new.extend(t)

Outputs <root><item>1</item>...</root>
print ET.tostring(new)

	New Element method:
iter() yields the children of the
element as a generator. It's also possible to write for child in
elem: to loop over an element's children. The existing method
getiterator() is now deprecated, as is getchildren()
which constructs and returns a list of children.

	New Element method:
itertext() yields all chunks of
text that are descendants of the element. For example:

t = ET.XML("""<list>
 <item>1</item> <item>2</item> <item>3</item>
</list>""")

Outputs ['\n ', '1', ' ', '2', ' ', '3', '\n']
print list(t.itertext())

	Deprecated: using an element as a Boolean (i.e., if elem:) would
return true if the element had any children, or false if there were
no children. This behaviour is confusing -- None is false, but
so is a childless element? -- so it will now trigger a
FutureWarning. In your code, you should be explicit: write
len(elem) != 0 if you're interested in the number of children,
or elem is not None.

Fredrik Lundh develops ElementTree and produced the 1.3 version;
you can read his article describing 1.3 at
http://effbot.org/zone/elementtree-13-intro.htm.
Florent Xicluna updated the version included with
Python, after discussions on python-dev and in bpo-6472 [https://bugs.python.org/issue6472].)

构建和 C API 的改变

Changes to Python's build process and to the C API include:

	The latest release of the GNU Debugger, GDB 7, can be scripted
using Python [https://sourceware.org/gdb/current/onlinedocs/gdb/Python.html].
When you begin debugging an executable program P, GDB will look for
a file named P-gdb.py and automatically read it. Dave Malcolm
contributed a python-gdb.py that adds a number of
commands useful when debugging Python itself. For example,
py-up and py-down go up or down one Python stack frame,
which usually corresponds to several C stack frames. py-print
prints the value of a Python variable, and py-bt prints the
Python stack trace. (Added as a result of bpo-8032 [https://bugs.python.org/issue8032].)

	If you use the .gdbinit file provided with Python,
the "pyo" macro in the 2.7 version now works correctly when the thread being
debugged doesn't hold the GIL; the macro now acquires it before printing.
(Contributed by Victor Stinner; bpo-3632 [https://bugs.python.org/issue3632].)

	Py_AddPendingCall() is now thread-safe, letting any
worker thread submit notifications to the main Python thread. This
is particularly useful for asynchronous IO operations.
(Contributed by Kristján Valur Jónsson; bpo-4293 [https://bugs.python.org/issue4293].)

	New function: PyCode_NewEmpty() creates an empty code object;
only the filename, function name, and first line number are required.
This is useful for extension modules that are attempting to
construct a more useful traceback stack. Previously such
extensions needed to call PyCode_New(), which had many
more arguments. (Added by Jeffrey Yasskin.)

	New function: PyErr_NewExceptionWithDoc() creates a new
exception class, just as the existing PyErr_NewException() does,
but takes an extra char * argument containing the docstring for the
new exception class. (Added by 'lekma' on the Python bug tracker;
bpo-7033 [https://bugs.python.org/issue7033].)

	New function: PyFrame_GetLineNumber() takes a frame object
and returns the line number that the frame is currently executing.
Previously code would need to get the index of the bytecode
instruction currently executing, and then look up the line number
corresponding to that address. (Added by Jeffrey Yasskin.)

	New functions: PyLong_AsLongAndOverflow() and
PyLong_AsLongLongAndOverflow() approximates a Python long
integer as a C long or long long.
If the number is too large to fit into
the output type, an overflow flag is set and returned to the caller.
(Contributed by Case Van Horsen; bpo-7528 [https://bugs.python.org/issue7528] and bpo-7767 [https://bugs.python.org/issue7767].)

	New function: stemming from the rewrite of string-to-float conversion,
a new PyOS_string_to_double() function was added. The old
PyOS_ascii_strtod() and PyOS_ascii_atof() functions
are now deprecated.

	New function: PySys_SetArgvEx() sets the value of
sys.argv and can optionally update sys.path to include the
directory containing the script named by sys.argv[0] depending
on the value of an updatepath parameter.

This function was added to close a security hole for applications
that embed Python. The old function, PySys_SetArgv(), would
always update sys.path, and sometimes it would add the current
directory. This meant that, if you ran an application embedding
Python in a directory controlled by someone else, attackers could
put a Trojan-horse module in the directory (say, a file named
os.py) that your application would then import and run.

If you maintain a C/C++ application that embeds Python, check
whether you're calling PySys_SetArgv() and carefully consider
whether the application should be using PySys_SetArgvEx()
with updatepath set to false.

Security issue reported as CVE-2008-5983 [https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983];
discussed in bpo-5753 [https://bugs.python.org/issue5753], and fixed by Antoine Pitrou.

	New macros: the Python header files now define the following macros:
Py_ISALNUM,
Py_ISALPHA,
Py_ISDIGIT,
Py_ISLOWER,
Py_ISSPACE,
Py_ISUPPER,
Py_ISXDIGIT,
Py_TOLOWER, and Py_TOUPPER.
All of these functions are analogous to the C
standard macros for classifying characters, but ignore the current
locale setting, because in
several places Python needs to analyze characters in a
locale-independent way. (Added by Eric Smith;
bpo-5793 [https://bugs.python.org/issue5793].)

	Removed function: PyEval_CallObject is now only available
as a macro. A function version was being kept around to preserve
ABI linking compatibility, but that was in 1997; it can certainly be
deleted by now. (Removed by Antoine Pitrou; bpo-8276 [https://bugs.python.org/issue8276].)

	New format codes: the PyFormat_FromString(),
PyFormat_FromStringV(), and PyErr_Format() functions now
accept %lld and %llu format codes for displaying
C's long long types.
(Contributed by Mark Dickinson; bpo-7228 [https://bugs.python.org/issue7228].)

	The complicated interaction between threads and process forking has
been changed. Previously, the child process created by
os.fork() might fail because the child is created with only a
single thread running, the thread performing the os.fork().
If other threads were holding a lock, such as Python's import lock,
when the fork was performed, the lock would still be marked as
"held" in the new process. But in the child process nothing would
ever release the lock, since the other threads weren't replicated,
and the child process would no longer be able to perform imports.

Python 2.7 acquires the import lock before performing an
os.fork(), and will also clean up any locks created using the
threading module. C extension modules that have internal
locks, or that call fork() themselves, will not benefit
from this clean-up.

(Fixed by Thomas Wouters; bpo-1590864 [https://bugs.python.org/issue1590864].)

	The Py_Finalize() function now calls the internal
threading._shutdown() function; this prevents some exceptions from
being raised when an interpreter shuts down.
(Patch by Adam Olsen; bpo-1722344 [https://bugs.python.org/issue1722344].)

	When using the PyMemberDef structure to define attributes
of a type, Python will no longer let you try to delete or set a
T_STRING_INPLACE attribute.

	Global symbols defined by the ctypes module are now prefixed
with Py, or with _ctypes. (Implemented by Thomas
Heller; bpo-3102 [https://bugs.python.org/issue3102].)

	New configure option: the --with-system-expat switch allows
building the pyexpat module to use the system Expat library.
(Contributed by Arfrever Frehtes Taifersar Arahesis; bpo-7609 [https://bugs.python.org/issue7609].)

	New configure option: the
--with-valgrind option will now disable the pymalloc
allocator, which is difficult for the Valgrind memory-error detector
to analyze correctly.
Valgrind will therefore be better at detecting memory leaks and
overruns. (Contributed by James Henstridge; bpo-2422 [https://bugs.python.org/issue2422].)

	New configure option: you can now supply an empty string to
--with-dbmliborder= in order to disable all of the various
DBM modules. (Added by Arfrever Frehtes Taifersar Arahesis;
bpo-6491 [https://bugs.python.org/issue6491].)

	The configure script now checks for floating-point rounding bugs
on certain 32-bit Intel chips and defines a X87_DOUBLE_ROUNDING
preprocessor definition. No code currently uses this definition,
but it's available if anyone wishes to use it.
(Added by Mark Dickinson; bpo-2937 [https://bugs.python.org/issue2937].)

configure also now sets a LDCXXSHARED Makefile
variable for supporting C++ linking. (Contributed by Arfrever
Frehtes Taifersar Arahesis; bpo-1222585 [https://bugs.python.org/issue1222585].)

	The build process now creates the necessary files for pkg-config
support. (Contributed by Clinton Roy; bpo-3585 [https://bugs.python.org/issue3585].)

	The build process now supports Subversion 1.7. (Contributed by
Arfrever Frehtes Taifersar Arahesis; bpo-6094 [https://bugs.python.org/issue6094].)

胶囊

Python 3.1 adds a new C datatype, PyCapsule, for providing a
C API to an extension module. A capsule is essentially the holder of
a C void * pointer, and is made available as a module attribute; for
example, the socket module's API is exposed as socket.CAPI,
and unicodedata exposes ucnhash_CAPI. Other extensions
can import the module, access its dictionary to get the capsule
object, and then get the void * pointer, which will usually point
to an array of pointers to the module's various API functions.

There is an existing data type already used for this,
PyCObject, but it doesn't provide type safety. Evil code
written in pure Python could cause a segmentation fault by taking a
PyCObject from module A and somehow substituting it for the
PyCObject in module B. Capsules know their own name,
and getting the pointer requires providing the name:

void *vtable;

if (!PyCapsule_IsValid(capsule, "mymodule.CAPI") {
 PyErr_SetString(PyExc_ValueError, "argument type invalid");
 return NULL;
}

vtable = PyCapsule_GetPointer(capsule, "mymodule.CAPI");

You are assured that vtable points to whatever you're expecting.
If a different capsule was passed in, PyCapsule_IsValid() would
detect the mismatched name and return false. Refer to
给扩展模块提供C API for more information on using these objects.

Python 2.7 now uses capsules internally to provide various
extension-module APIs, but the PyCObject_AsVoidPtr() was
modified to handle capsules, preserving compile-time compatibility
with the CObject interface. Use of
PyCObject_AsVoidPtr() will signal a
PendingDeprecationWarning, which is silent by default.

Implemented in Python 3.1 and backported to 2.7 by Larry Hastings;
discussed in bpo-5630 [https://bugs.python.org/issue5630].

特定于端口的更改：Windows

	The msvcrt module now contains some constants from
the crtassem.h header file:
CRT_ASSEMBLY_VERSION,
VC_ASSEMBLY_PUBLICKEYTOKEN,
and LIBRARIES_ASSEMBLY_NAME_PREFIX.
(Contributed by David Cournapeau; bpo-4365 [https://bugs.python.org/issue4365].)

	The _winreg module for accessing the registry now implements
the CreateKeyEx() and DeleteKeyEx()
functions, extended versions of previously-supported functions that
take several extra arguments. The DisableReflectionKey(),
EnableReflectionKey(), and QueryReflectionKey()
were also tested and documented.
(Implemented by Brian Curtin: bpo-7347 [https://bugs.python.org/issue7347].)

	The new _beginthreadex() API is used to start threads, and
the native thread-local storage functions are now used.
(Contributed by Kristján Valur Jónsson; bpo-3582 [https://bugs.python.org/issue3582].)

	The os.kill() function now works on Windows. The signal value
can be the constants CTRL_C_EVENT,
CTRL_BREAK_EVENT, or any integer. The first two constants
will send Control-C and Control-Break keystroke events to
subprocesses; any other value will use the TerminateProcess()
API. (Contributed by Miki Tebeka; bpo-1220212 [https://bugs.python.org/issue1220212].)

	The os.listdir() function now correctly fails
for an empty path. (Fixed by Hirokazu Yamamoto; bpo-5913 [https://bugs.python.org/issue5913].)

	The mimelib module will now read the MIME database from
the Windows registry when initializing.
(Patch by Gabriel Genellina; bpo-4969 [https://bugs.python.org/issue4969].)

特定于端口的更改：Mac OS X

	The path /Library/Python/2.7/site-packages is now appended to
sys.path, in order to share added packages between the system
installation and a user-installed copy of the same version.
(Changed by Ronald Oussoren; bpo-4865 [https://bugs.python.org/issue4865].)

在 2.7.13 版更改: As of 2.7.13, this change was removed.
/Library/Python/2.7/site-packages, the site-packages directory
used by the Apple-supplied system Python 2.7 is no longer appended to
sys.path for user-installed Pythons such as from the python.org
installers. As of macOS 10.12, Apple changed how the system
site-packages directory is configured, which could cause installation
of pip components, like setuptools, to fail. Packages installed for
the system Python will no longer be shared with user-installed
Pythons. (bpo-28440 [https://bugs.python.org/issue28440])

特定于 FreeBSD 的更改：

	FreeBSD 7.1's SO_SETFIB constant, used with
getsockopt()/setsockopt() to select an
alternate routing table, is now available in the socket
module. (Added by Kyle VanderBeek; bpo-8235 [https://bugs.python.org/issue8235].)

Other Changes and Fixes

	Two benchmark scripts, iobench and ccbench, were
added to the Tools directory. iobench measures the
speed of the built-in file I/O objects returned by open()
while performing various operations, and ccbench is a
concurrency benchmark that tries to measure computing throughput,
thread switching latency, and IO processing bandwidth when
performing several tasks using a varying number of threads.

	The Tools/i18n/msgfmt.py script now understands plural
forms in .po files. (Fixed by Martin von Löwis;
bpo-5464 [https://bugs.python.org/issue5464].)

	When importing a module from a .pyc or .pyo file
with an existing .py counterpart, the co_filename
attributes of the resulting code objects are overwritten when the
original filename is obsolete. This can happen if the file has been
renamed, moved, or is accessed through different paths. (Patch by
Ziga Seilnacht and Jean-Paul Calderone; bpo-1180193 [https://bugs.python.org/issue1180193].)

	The regrtest.py script now takes a --randseed=
switch that takes an integer that will be used as the random seed
for the -r option that executes tests in random order.
The -r option also reports the seed that was used
(Added by Collin Winter.)

	Another regrtest.py switch is -j, which
takes an integer specifying how many tests run in parallel. This
allows reducing the total runtime on multi-core machines.
This option is compatible with several other options, including the
-R switch which is known to produce long runtimes.
(Added by Antoine Pitrou, bpo-6152 [https://bugs.python.org/issue6152].) This can also be used
with a new -F switch that runs selected tests in a loop
until they fail. (Added by Antoine Pitrou; bpo-7312 [https://bugs.python.org/issue7312].)

	When executed as a script, the py_compile.py module now
accepts '-' as an argument, which will read standard input for
the list of filenames to be compiled. (Contributed by Piotr
Ożarowski; bpo-8233 [https://bugs.python.org/issue8233].)

移植到 Python 2.7

This section lists previously described changes and other bugfixes
that may require changes to your code:

	The range() function processes its arguments more
consistently; it will now call __int__() on non-float,
non-integer arguments that are supplied to it. (Fixed by Alexander
Belopolsky; bpo-1533 [https://bugs.python.org/issue1533].)

	The string format() method changed the default precision used
for floating-point and complex numbers from 6 decimal
places to 12, which matches the precision used by str().
(Changed by Eric Smith; bpo-5920 [https://bugs.python.org/issue5920].)

	Because of an optimization for the with statement, the special
methods __enter__() and __exit__() must belong to the object's
type, and cannot be directly attached to the object's instance. This
affects new-style classes (derived from object) and C extension
types. (bpo-6101 [https://bugs.python.org/issue6101].)

	Due to a bug in Python 2.6, the exc_value parameter to
__exit__() methods was often the string representation of the
exception, not an instance. This was fixed in 2.7, so exc_value
will be an instance as expected. (Fixed by Florent Xicluna;
bpo-7853 [https://bugs.python.org/issue7853].)

	When a restricted set of attributes were set using __slots__,
deleting an unset attribute would not raise AttributeError
as you would expect. Fixed by Benjamin Peterson; bpo-7604 [https://bugs.python.org/issue7604].)

In the standard library:

	Operations with datetime instances that resulted in a year
falling outside the supported range didn't always raise
OverflowError. Such errors are now checked more carefully
and will now raise the exception. (Reported by Mark Leander, patch
by Anand B. Pillai and Alexander Belopolsky; bpo-7150 [https://bugs.python.org/issue7150].)

	When using Decimal instances with a string's
format() method, the default alignment was previously
left-alignment. This has been changed to right-alignment, which might
change the output of your programs.
(Changed by Mark Dickinson; bpo-6857 [https://bugs.python.org/issue6857].)

Comparisons involving a signaling NaN value (or sNAN) now signal
InvalidOperation instead of silently returning a true or
false value depending on the comparison operator. Quiet NaN values
(or NaN) are now hashable. (Fixed by Mark Dickinson;
bpo-7279 [https://bugs.python.org/issue7279].)

	The ElementTree library, xml.etree, no longer escapes
ampersands and angle brackets when outputting an XML processing
instruction (which looks like <?xml-stylesheet href="#style1"?>)
or comment (which looks like <!-- comment -->).
(Patch by Neil Muller; bpo-2746 [https://bugs.python.org/issue2746].)

	The readline() method of StringIO objects now does
nothing when a negative length is requested, as other file-like
objects do. (bpo-7348 [https://bugs.python.org/issue7348]).

	The syslog module will now use the value of sys.argv[0] as the
identifier instead of the previous default value of 'python'.
(Changed by Sean Reifschneider; bpo-8451 [https://bugs.python.org/issue8451].)

	The tarfile module's default error handling has changed, to
no longer suppress fatal errors. The default error level was previously 0,
which meant that errors would only result in a message being written to the
debug log, but because the debug log is not activated by default,
these errors go unnoticed. The default error level is now 1,
which raises an exception if there's an error.
(Changed by Lars Gustäbel; bpo-7357 [https://bugs.python.org/issue7357].)

	The urlparse module's urlsplit() now handles
unknown URL schemes in a fashion compliant with RFC 3986 [https://tools.ietf.org/html/rfc3986.html]: if the
URL is of the form "<something>://...", the text before the
:// is treated as the scheme, even if it's a made-up scheme that
the module doesn't know about. This change may break code that
worked around the old behaviour. For example, Python 2.6.4 or 2.5
will return the following:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', '', '//host/filename?query', '', '')

Python 2.7 (and Python 2.6.5) will return:

>>> import urlparse
>>> urlparse.urlsplit('invented://host/filename?query')
('invented', 'host', '/filename?query', '', '')

(Python 2.7 actually produces slightly different output, since it
returns a named tuple instead of a standard tuple.)

对于C扩展：

	C extensions that use integer format codes with the PyArg_Parse*
family of functions will now raise a TypeError exception
instead of triggering a DeprecationWarning (bpo-5080 [https://bugs.python.org/issue5080]).

	Use the new PyOS_string_to_double() function instead of the old
PyOS_ascii_strtod() and PyOS_ascii_atof() functions,
which are now deprecated.

对于嵌入Python的应用程序：

	The PySys_SetArgvEx() function was added, letting
applications close a security hole when the existing
PySys_SetArgv() function was used. Check whether you're
calling PySys_SetArgv() and carefully consider whether the
application should be using PySys_SetArgvEx() with
updatepath set to false.

New Features Added to Python 2.7 Maintenance Releases

New features may be added to Python 2.7 maintenance releases when the
situation genuinely calls for it. Any such additions must go through
the Python Enhancement Proposal process, and make a compelling case for why
they can't be adequately addressed by either adding the new feature solely to
Python 3, or else by publishing it on the Python Package Index.

In addition to the specific proposals listed below, there is a general
exemption allowing new -3 warnings to be added in any Python 2.7
maintenance release.

Two new environment variables for debug mode

In debug mode, the [xxx refs] statistic is not written by default, the
PYTHONSHOWREFCOUNT environment variable now must also be set.
(Contributed by Victor Stinner; bpo-31733 [https://bugs.python.org/issue31733].)

When Python is compiled with COUNT_ALLOC defined, allocation counts are no
longer dumped by default anymore: the PYTHONSHOWALLOCCOUNT environment
variable must now also be set. Moreover, allocation counts are now dumped into
stderr, rather than stdout. (Contributed by Victor Stinner; bpo-31692 [https://bugs.python.org/issue31692].)

2.7.15 新版功能.

PEP 434: IDLE Enhancement Exception for All Branches

PEP 434 [https://www.python.org/dev/peps/pep-0434] describes a general exemption for changes made to the IDLE
development environment shipped along with Python. This exemption makes it
possible for the IDLE developers to provide a more consistent user
experience across all supported versions of Python 2 and 3.

For details of any IDLE changes, refer to the NEWS file for the specific
release.

PEP 466: Network Security Enhancements for Python 2.7

PEP 466 [https://www.python.org/dev/peps/pep-0466] describes a number of network security enhancement proposals
that have been approved for inclusion in Python 2.7 maintenance releases,
with the first of those changes appearing in the Python 2.7.7 release.

PEP 466 [https://www.python.org/dev/peps/pep-0466] Python 2.7.7 中添加的相关功能：

	hmac.compare_digest() was backported from Python 3 to make a timing
attack resistant comparison operation available to Python 2 applications.
(Contributed by Alex Gaynor; bpo-21306 [https://bugs.python.org/issue21306].)

	OpenSSL 1.0.1g was upgraded in the official Windows installers published on
python.org. (Contributed by Zachary Ware; bpo-21462 [https://bugs.python.org/issue21462].)

PEP 466 [https://www.python.org/dev/peps/pep-0466] Python 2.7.8 中添加的相关功能：

	hashlib.pbkdf2_hmac() was backported from Python 3 to make a hashing
algorithm suitable for secure password storage broadly available to Python
2 applications. (Contributed by Alex Gaynor; bpo-21304 [https://bugs.python.org/issue21304].)

	OpenSSL 1.0.1h was upgraded for the official Windows installers published on
python.org. (contributed by Zachary Ware in bpo-21671 [https://bugs.python.org/issue21671] for CVE-2014-0224)

PEP 466 [https://www.python.org/dev/peps/pep-0466] Python 2.7.9 中添加的相关功能：

	Most of Python 3.4's ssl module was backported. This means ssl
now supports Server Name Indication, TLS1.x settings, access to the platform
certificate store, the SSLContext class, and other
features. (Contributed by Alex Gaynor and David Reid; bpo-21308 [https://bugs.python.org/issue21308].)

Refer to the "Version added: 2.7.9" notes in the module documentation for
specific details.

	os.urandom() was changed to cache a file descriptor to /dev/urandom
instead of reopening /dev/urandom on every call. (Contributed by Alex
Gaynor; bpo-21305 [https://bugs.python.org/issue21305].)

	hashlib.algorithms_guaranteed and
hashlib.algorithms_available were backported from Python 3 to make
it easier for Python 2 applications to select the strongest available hash
algorithm. (Contributed by Alex Gaynor in bpo-21307 [https://bugs.python.org/issue21307])

PEP 477: Backport ensurepip (PEP 453) to Python 2.7

PEP 477 [https://www.python.org/dev/peps/pep-0477] approves the inclusion of the PEP 453 [https://www.python.org/dev/peps/pep-0453] ensurepip module and the
improved documentation that was enabled by it in the Python 2.7 maintenance
releases, appearing first in the Python 2.7.9 release.

Bootstrapping pip By Default

The new ensurepip module (defined in PEP 453 [https://www.python.org/dev/peps/pep-0453]) provides a standard
cross-platform mechanism to bootstrap the pip installer into Python
installations. The version of pip included with Python 2.7.9 is pip
1.5.6, and future 2.7.x maintenance releases will update the bundled version to
the latest version of pip that is available at the time of creating the
release candidate.

By default, the commands pip, pipX and pipX.Y will be installed on
all platforms (where X.Y stands for the version of the Python installation),
along with the pip Python package and its dependencies.

For CPython source builds on POSIX systems,
the make install and make altinstall commands do not bootstrap pip
by default. This behaviour can be controlled through configure options, and
overridden through Makefile options.

On Windows and Mac OS X, the CPython installers now default to installing
pip along with CPython itself (users may opt out of installing it
during the installation process). Window users will need to opt in to the
automatic PATH modifications to have pip available from the command
line by default, otherwise it can still be accessed through the Python
launcher for Windows as py -m pip.

As discussed in the PEP [https://www.python.org/dev/peps/pep-0477/#disabling-ensurepip-by-downstream-distributors], platform packagers may choose not to install
these commands by default, as long as, when invoked, they provide clear and
simple directions on how to install them on that platform (usually using
the system package manager).

文档更改

As part of this change, the 安装 Python 模块 and
分发 Python 模块 sections of the documentation have been
completely redesigned as short getting started and FAQ documents. Most
packaging documentation has now been moved out to the Python Packaging
Authority maintained Python Packaging User Guide [http://packaging.python.org] and the documentation of the individual
projects.

However, as this migration is currently still incomplete, the legacy
versions of those guides remaining available as 安装Python模块（旧版）
and 分发 Python 模块（遗留版本）.

参见

	PEP 453 [https://www.python.org/dev/peps/pep-0453] -- Python安装中pip的显式引导
	PEP 由Donald Stufft 和 Nick Coghlan 撰写，由 Donald Stufft，Nick Coghlan，Martin von Löwis 和 Ned Deily 实现。

PEP 476: Enabling certificate verification by default for stdlib http clients

PEP 476 [https://www.python.org/dev/peps/pep-0476] updated httplib and modules which use it, such as
urllib2 and xmlrpclib, to now verify that the server
presents a certificate which is signed by a Certificate Authority in the
platform trust store and whose hostname matches the hostname being requested
by default, significantly improving security for many applications. This
change was made in the Python 2.7.9 release.

For applications which require the old previous behavior, they can pass an
alternate context:

import urllib2
import ssl

This disables all verification
context = ssl._create_unverified_context()

This allows using a specific certificate for the host, which doesn't need
to be in the trust store
context = ssl.create_default_context(cafile="/path/to/file.crt")

urllib2.urlopen("https://invalid-cert", context=context)

PEP 493：适用于Python 2.7 的HTTPS验证迁移工具

PEP 493 [https://www.python.org/dev/peps/pep-0493] provides additional migration tools to support a more incremental
infrastructure upgrade process for environments containing applications and
services relying on the historically permissive processing of server
certificates when establishing client HTTPS connections. These additions were
made in the Python 2.7.12 release.

These tools are intended for use in cases where affected applications and
services can't be modified to explicitly pass a more permissive SSL context
when establishing the connection.

For applications and services which can't be modified at all, the new
PYTHONHTTPSVERIFY environment variable may be set to 0 to revert an
entire Python process back to the default permissive behaviour of Python 2.7.8
and earlier.

For cases where the connection establishment code can't be modified, but the
overall application can be, the new ssl._https_verify_certificates()
function can be used to adjust the default behaviour at runtime.

New make regen-all build target

To simplify cross-compilation, and to ensure that CPython can reliably be
compiled without requiring an existing version of Python to already be
available, the autotools-based build system no longer attempts to implicitly
recompile generated files based on file modification times.

Instead, a new make regen-all command has been added to force regeneration
of these files when desired (e.g. after an initial version of Python has
already been built based on the pregenerated versions).

More selective regeneration targets are also defined - see
Makefile.pre.in [https://github.com/python/cpython/tree/3.7/Makefile.pre.in] for details.

（由 Victor Stinner 在 bpo-23404 [https://bugs.python.org/issue23404] 中贡献。）

2.7.14 新版功能.

Removal of make touch build target

The make touch build target previously used to request implicit regeneration
of generated files by updating their modification times has been removed.

It has been replaced by the new make regen-all target.

（由 Victor Stinner 在 bpo-23404 [https://bugs.python.org/issue23404] 中贡献。）

在 2.7.14 版更改.

致谢

作者要感谢以下人员为本文的各种草案提供建议，更正和帮助： Nick Coghlan, Philip Jenvey, Ryan Lovett, R. David Murray, Hugh Secker-Walker.

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 2.6 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 2.6 有什么新变化

	作者

	A.M. Kuchling (amk at amk.ca)

This article explains the new features in Python 2.6, released on October 1
2008. The release schedule is described in PEP 361 [https://www.python.org/dev/peps/pep-0361].

The major theme of Python 2.6 is preparing the migration path to
Python 3.0, a major redesign of the language. Whenever possible,
Python 2.6 incorporates new features and syntax from 3.0 while
remaining compatible with existing code by not removing older features
or syntax. When it's not possible to do that, Python 2.6 tries to do
what it can, adding compatibility functions in a
future_builtins module and a -3 switch to warn about
usages that will become unsupported in 3.0.

Some significant new packages have been added to the standard library,
such as the multiprocessing and json modules, but
there aren't many new features that aren't related to Python 3.0 in
some way.

Python 2.6 also sees a number of improvements and bugfixes throughout
the source. A search through the change logs finds there were 259
patches applied and 612 bugs fixed between Python 2.5 and 2.6. Both
figures are likely to be underestimates.

This article doesn't attempt to provide a complete specification of
the new features, but instead provides a convenient overview. For
full details, you should refer to the documentation for Python 2.6. If
you want to understand the rationale for the design and
implementation, refer to the PEP for a particular new feature.
Whenever possible, "What's New in Python" links to the bug/patch item
for each change.

Python 3.0

The development cycle for Python versions 2.6 and 3.0 was
synchronized, with the alpha and beta releases for both versions being
made on the same days. The development of 3.0 has influenced many
features in 2.6.

Python 3.0 is a far-ranging redesign of Python that breaks
compatibility with the 2.x series. This means that existing Python
code will need some conversion in order to run on
Python 3.0. However, not all the changes in 3.0 necessarily break
compatibility. In cases where new features won't cause existing code
to break, they've been backported to 2.6 and are described in this
document in the appropriate place. Some of the 3.0-derived features
are:

	A __complex__() method for converting objects to a complex number.

	Alternate syntax for catching exceptions: except TypeError as exc.

	The addition of functools.reduce() as a synonym for the built-in
reduce() function.

Python 3.0 adds several new built-in functions and changes the
semantics of some existing builtins. Functions that are new in 3.0
such as bin() have simply been added to Python 2.6, but existing
builtins haven't been changed; instead, the future_builtins
module has versions with the new 3.0 semantics. Code written to be
compatible with 3.0 can do from future_builtins import hex, map as
necessary.

A new command-line switch, -3, enables warnings
about features that will be removed in Python 3.0. You can run code
with this switch to see how much work will be necessary to port
code to 3.0. The value of this switch is available
to Python code as the boolean variable sys.py3kwarning,
and to C extension code as Py_Py3kWarningFlag.

参见

The 3xxx series of PEPs, which contains proposals for Python 3.0.
PEP 3000 [https://www.python.org/dev/peps/pep-3000] describes the development process for Python 3.0.
Start with PEP 3100 [https://www.python.org/dev/peps/pep-3100] that describes the general goals for Python
3.0, and then explore the higher-numbered PEPS that propose
specific features.

开发过程的变化

While 2.6 was being developed, the Python development process
underwent two significant changes: we switched from SourceForge's
issue tracker to a customized Roundup installation, and the
documentation was converted from LaTeX to reStructuredText.

New Issue Tracker: Roundup

For a long time, the Python developers had been growing increasingly
annoyed by SourceForge's bug tracker. SourceForge's hosted solution
doesn't permit much customization; for example, it wasn't possible to
customize the life cycle of issues.

The infrastructure committee of the Python Software Foundation
therefore posted a call for issue trackers, asking volunteers to set
up different products and import some of the bugs and patches from
SourceForge. Four different trackers were examined: Jira [https://www.atlassian.com/software/jira/],
Launchpad [https://launchpad.net/],
Roundup [http://roundup.sourceforge.net/], and
Trac [https://trac.edgewall.org/].
The committee eventually settled on Jira
and Roundup as the two candidates. Jira is a commercial product that
offers no-cost hosted instances to free-software projects; Roundup
is an open-source project that requires volunteers
to administer it and a server to host it.

After posting a call for volunteers, a new Roundup installation was
set up at https://bugs.python.org. One installation of Roundup can
host multiple trackers, and this server now also hosts issue trackers
for Jython and for the Python web site. It will surely find
other uses in the future. Where possible,
this edition of "What's New in Python" links to the bug/patch
item for each change.

Hosting of the Python bug tracker is kindly provided by
Upfront Systems [http://www.upfrontsoftware.co.za]
of Stellenbosch, South Africa. Martin von Löwis put a
lot of effort into importing existing bugs and patches from
SourceForge; his scripts for this import operation are at
http://svn.python.org/view/tracker/importer/ and may be useful to
other projects wishing to move from SourceForge to Roundup.

参见

	https://bugs.python.org
	Python 的错误追踪器

	http://bugs.jython.org:
	Jython 的错误追踪器

	http://roundup.sourceforge.net/
	Roundup 下载和文档。

	http://svn.python.org/view/tracker/importer/
	Martin von Löwis 的转换脚本。

新的文档格式：使用 Sphinx 的 reStructuredText

The Python documentation was written using LaTeX since the project
started around 1989. In the 1980s and early 1990s, most documentation
was printed out for later study, not viewed online. LaTeX was widely
used because it provided attractive printed output while remaining
straightforward to write once the basic rules of the markup were
learned.

Today LaTeX is still used for writing publications destined for
printing, but the landscape for programming tools has shifted. We no
longer print out reams of documentation; instead, we browse through it
online and HTML has become the most important format to support.
Unfortunately, converting LaTeX to HTML is fairly complicated and Fred
L. Drake Jr., the long-time Python documentation editor, spent a lot
of time maintaining the conversion process. Occasionally people would
suggest converting the documentation into SGML and later XML, but
performing a good conversion is a major task and no one ever committed
the time required to finish the job.

During the 2.6 development cycle, Georg Brandl put a lot of effort
into building a new toolchain for processing the documentation. The
resulting package is called Sphinx, and is available from
http://sphinx-doc.org/.

Sphinx concentrates on HTML output, producing attractively styled and
modern HTML; printed output is still supported through conversion to
LaTeX. The input format is reStructuredText, a markup syntax
supporting custom extensions and directives that is commonly used in
the Python community.

Sphinx is a standalone package that can be used for writing, and
almost two dozen other projects
(listed on the Sphinx web site [https://www.sphinx-doc.org/en/master/examples.html])
have adopted Sphinx as their documentation tool.

参见

	Documenting Python [https://devguide.python.org/documenting/]
	描述如何编写Python文档。

	Sphinx [http://sphinx-doc.org/]
	Sphinx工具链的文档和代码。

	Docutils [http://docutils.sourceforge.net]
	reStructuredText 的基础解析器和工具集。

PEP 343: "with" 语句

The previous version, Python 2.5, added the 'with'
statement as an optional feature, to be enabled by a from __future__
import with_statement directive. In 2.6 the statement no longer needs to
be specially enabled; this means that with is now always a
keyword. The rest of this section is a copy of the corresponding
section from the "What's New in Python 2.5" document; if you're
familiar with the 'with' statement
from Python 2.5, you can skip this section.

The 'with' statement clarifies code that previously would use
try...finally blocks to ensure that clean-up code is executed. In this
section, I'll discuss the statement as it will commonly be used. In the next
section, I'll examine the implementation details and show how to write objects
for use with this statement.

The 'with' statement is a control-flow structure whose basic
structure is:

with expression [as variable]:
 with-block

The expression is evaluated, and it should result in an object that supports the
context management protocol (that is, has __enter__() and __exit__()
methods).

The object's __enter__() is called before with-block is executed and
therefore can run set-up code. It also may return a value that is bound to the
name variable, if given. (Note carefully that variable is not assigned
the result of expression.)

After execution of the with-block is finished, the object's __exit__()
method is called, even if the block raised an exception, and can therefore run
clean-up code.

Some standard Python objects now support the context management protocol and can
be used with the 'with' statement. File objects are one example:

with open('/etc/passwd', 'r') as f:
 for line in f:
 print line
 ... more processing code ...

After this statement has executed, the file object in f will have been
automatically closed, even if the for loop raised an exception
part-way through the block.

注解

In this case, f is the same object created by open(), because
file.__enter__() returns self.

The threading module's locks and condition variables also support the
'with' statement:

lock = threading.Lock()
with lock:
 # Critical section of code
 ...

The lock is acquired before the block is executed and always released once the
block is complete.

The localcontext() function in the decimal module makes it easy
to save and restore the current decimal context, which encapsulates the desired
precision and rounding characteristics for computations:

from decimal import Decimal, Context, localcontext

Displays with default precision of 28 digits
v = Decimal('578')
print v.sqrt()

with localcontext(Context(prec=16)):
 # All code in this block uses a precision of 16 digits.
 # The original context is restored on exiting the block.
 print v.sqrt()

Writing Context Managers

Under the hood, the 'with' statement is fairly complicated. Most
people will only use 'with' in company with existing objects and
don't need to know these details, so you can skip the rest of this section if
you like. Authors of new objects will need to understand the details of the
underlying implementation and should keep reading.

A high-level explanation of the context management protocol is:

	The expression is evaluated and should result in an object called a "context
manager". The context manager must have __enter__() and __exit__()
methods.

	The context manager's __enter__() method is called. The value returned
is assigned to VAR. If no as VAR clause is present, the value is simply
discarded.

	The code in BLOCK is executed.

	If BLOCK raises an exception, the context manager's __exit__() method
is called with three arguments, the exception details (type, value, traceback,
the same values returned by sys.exc_info(), which can also be None
if no exception occurred). The method's return value controls whether an exception
is re-raised: any false value re-raises the exception, and True will result
in suppressing it. You'll only rarely want to suppress the exception, because
if you do the author of the code containing the 'with' statement will
never realize anything went wrong.

	If BLOCK didn't raise an exception, the __exit__() method is still
called, but type, value, and traceback are all None.

Let's think through an example. I won't present detailed code but will only
sketch the methods necessary for a database that supports transactions.

(For people unfamiliar with database terminology: a set of changes to the
database are grouped into a transaction. Transactions can be either committed,
meaning that all the changes are written into the database, or rolled back,
meaning that the changes are all discarded and the database is unchanged. See
any database textbook for more information.)

Let's assume there's an object representing a database connection. Our goal will
be to let the user write code like this:

db_connection = DatabaseConnection()
with db_connection as cursor:
 cursor.execute('insert into ...')
 cursor.execute('delete from ...')
 # ... more operations ...

The transaction should be committed if the code in the block runs flawlessly or
rolled back if there's an exception. Here's the basic interface for
DatabaseConnection that I'll assume:

class DatabaseConnection:
 # Database interface
 def cursor(self):
 "Returns a cursor object and starts a new transaction"
 def commit(self):
 "Commits current transaction"
 def rollback(self):
 "Rolls back current transaction"

The __enter__() method is pretty easy, having only to start a new
transaction. For this application the resulting cursor object would be a useful
result, so the method will return it. The user can then add as cursor to
their 'with' statement to bind the cursor to a variable name.

class DatabaseConnection:
 ...
 def __enter__(self):
 # Code to start a new transaction
 cursor = self.cursor()
 return cursor

The __exit__() method is the most complicated because it's where most of
the work has to be done. The method has to check if an exception occurred. If
there was no exception, the transaction is committed. The transaction is rolled
back if there was an exception.

In the code below, execution will just fall off the end of the function,
returning the default value of None. None is false, so the exception
will be re-raised automatically. If you wished, you could be more explicit and
add a return statement at the marked location.

class DatabaseConnection:
 ...
 def __exit__(self, type, value, tb):
 if tb is None:
 # No exception, so commit
 self.commit()
 else:
 # Exception occurred, so rollback.
 self.rollback()
 # return False

contextlib 模块

The contextlib module provides some functions and a decorator that
are useful when writing objects for use with the 'with' statement.

The decorator is called contextmanager(), and lets you write a single
generator function instead of defining a new class. The generator should yield
exactly one value. The code up to the yield will be executed as the
__enter__() method, and the value yielded will be the method's return
value that will get bound to the variable in the 'with' statement's
as clause, if any. The code after the yield will be
executed in the __exit__() method. Any exception raised in the block will
be raised by the yield statement.

Using this decorator, our database example from the previous section
could be written as:

from contextlib import contextmanager

@contextmanager
def db_transaction(connection):
 cursor = connection.cursor()
 try:
 yield cursor
 except:
 connection.rollback()
 raise
 else:
 connection.commit()

db = DatabaseConnection()
with db_transaction(db) as cursor:
 ...

The contextlib module also has a nested(mgr1, mgr2, ...) function
that combines a number of context managers so you don't need to write nested
'with' statements. In this example, the single 'with'
statement both starts a database transaction and acquires a thread lock:

lock = threading.Lock()
with nested (db_transaction(db), lock) as (cursor, locked):
 ...

Finally, the closing() function returns its argument so that it can be
bound to a variable, and calls the argument's .close() method at the end
of the block.

import urllib, sys
from contextlib import closing

with closing(urllib.urlopen('http://www.yahoo.com')) as f:
 for line in f:
 sys.stdout.write(line)

参见

	PEP 343 [https://www.python.org/dev/peps/pep-0343] - "with" 语句
	PEP written by Guido van Rossum and Nick Coghlan; implemented by Mike Bland,
Guido van Rossum, and Neal Norwitz. The PEP shows the code generated for a
'with' statement, which can be helpful in learning how the statement
works.

contextlib 模块的文档。

PEP 366: 从主模块显式相对导入

Python's -m switch allows running a module as a script.
When you ran a module that was located inside a package, relative
imports didn't work correctly.

The fix for Python 2.6 adds a __package__ attribute to
modules. When this attribute is present, relative imports will be
relative to the value of this attribute instead of the
__name__ attribute.

PEP 302-style importers can then set __package__ as necessary.
The runpy module that implements the -m switch now
does this, so relative imports will now work correctly in scripts
running from inside a package.

PEP 370: 分用户的 site-packages 目录

When you run Python, the module search path sys.path usually
includes a directory whose path ends in "site-packages". This
directory is intended to hold locally-installed packages available to
all users using a machine or a particular site installation.

Python 2.6 introduces a convention for user-specific site directories.
The directory varies depending on the platform:

	Unix and Mac OS X: ~/.local/

	Windows: %APPDATA%/Python

Within this directory, there will be version-specific subdirectories,
such as lib/python2.6/site-packages on Unix/Mac OS and
Python26/site-packages on Windows.

If you don't like the default directory, it can be overridden by an
environment variable. PYTHONUSERBASE sets the root
directory used for all Python versions supporting this feature. On
Windows, the directory for application-specific data can be changed by
setting the APPDATA environment variable. You can also
modify the site.py file for your Python installation.

The feature can be disabled entirely by running Python with the
-s option or setting the PYTHONNOUSERSITE
environment variable.

参见

	PEP 370 [https://www.python.org/dev/peps/pep-0370] -- 分用户的 site-packages 目录
	PEP 由 Christian Heimes 撰写并实现

PEP 371: 多任务处理包

The new multiprocessing package lets Python programs create new
processes that will perform a computation and return a result to the
parent. The parent and child processes can communicate using queues
and pipes, synchronize their operations using locks and semaphores,
and can share simple arrays of data.

The multiprocessing module started out as an exact emulation of
the threading module using processes instead of threads. That
goal was discarded along the path to Python 2.6, but the general
approach of the module is still similar. The fundamental class
is the Process, which is passed a callable object and
a collection of arguments. The start() method
sets the callable running in a subprocess, after which you can call
the is_alive() method to check whether the subprocess is still running
and the join() method to wait for the process to exit.

Here's a simple example where the subprocess will calculate a
factorial. The function doing the calculation is written strangely so
that it takes significantly longer when the input argument is a
multiple of 4.

import time
from multiprocessing import Process, Queue

def factorial(queue, N):
 "Compute a factorial."
 # If N is a multiple of 4, this function will take much longer.
 if (N % 4) == 0:
 time.sleep(.05 * N/4)

 # Calculate the result
 fact = 1L
 for i in range(1, N+1):
 fact = fact * i

 # Put the result on the queue
 queue.put(fact)

if __name__ == '__main__':
 queue = Queue()

 N = 5

 p = Process(target=factorial, args=(queue, N))
 p.start()
 p.join()

 result = queue.get()
 print 'Factorial', N, '=', result

A Queue is used to communicate the result of the factorial.
The Queue object is stored in a global variable.
The child process will use the value of the variable when the child
was created; because it's a Queue, parent and child can use
the object to communicate. (If the parent were to change the value of
the global variable, the child's value would be unaffected, and vice
versa.)

Two other classes, Pool and Manager, provide
higher-level interfaces. Pool will create a fixed number of
worker processes, and requests can then be distributed to the workers
by calling apply() or apply_async() to add a single request,
and map() or map_async() to add a number of
requests. The following code uses a Pool to spread requests
across 5 worker processes and retrieve a list of results:

from multiprocessing import Pool

def factorial(N, dictionary):
 "Compute a factorial."
 ...
p = Pool(5)
result = p.map(factorial, range(1, 1000, 10))
for v in result:
 print v

This produces the following output:

1
39916800
51090942171709440000
8222838654177922817725562880000000
33452526613163807108170062053440751665152000000000
...

The other high-level interface, the Manager class, creates a
separate server process that can hold master copies of Python data
structures. Other processes can then access and modify these data
structures using proxy objects. The following example creates a
shared dictionary by calling the dict() method; the worker
processes then insert values into the dictionary. (Locking is not
done for you automatically, which doesn't matter in this example.
Manager's methods also include Lock(), RLock(),
and Semaphore() to create shared locks.)

import time
from multiprocessing import Pool, Manager

def factorial(N, dictionary):
 "Compute a factorial."
 # Calculate the result
 fact = 1L
 for i in range(1, N+1):
 fact = fact * i

 # Store result in dictionary
 dictionary[N] = fact

if __name__ == '__main__':
 p = Pool(5)
 mgr = Manager()
 d = mgr.dict() # Create shared dictionary

 # Run tasks using the pool
 for N in range(1, 1000, 10):
 p.apply_async(factorial, (N, d))

 # Mark pool as closed -- no more tasks can be added.
 p.close()

 # Wait for tasks to exit
 p.join()

 # Output results
 for k, v in sorted(d.items()):
 print k, v

This will produce the output:

1 1
11 39916800
21 51090942171709440000
31 8222838654177922817725562880000000
41 33452526613163807108170062053440751665152000000000
51 15511187532873822802242430164693032110632597200169861120000...

参见

multiprocessing 模块的文档。

	PEP 371 [https://www.python.org/dev/peps/pep-0371] - 添加多任务处理包
	PEP 由 Jesse Noller 和 Richard Oudkerk 撰写，由 Richard Oudkerk 和 Jesse Noller 实现

PEP 3101: 高级字符串格式

In Python 3.0, the % operator is supplemented by a more powerful string
formatting method, format(). Support for the str.format() method
has been backported to Python 2.6.

In 2.6, both 8-bit and Unicode strings have a .format() method that
treats the string as a template and takes the arguments to be formatted.
The formatting template uses curly brackets ({, }) as special characters:

>>> # Substitute positional argument 0 into the string.
>>> "User ID: {0}".format("root")
'User ID: root'
>>> # Use the named keyword arguments
>>> "User ID: {uid} Last seen: {last_login}".format(
... uid="root",
... last_login = "5 Mar 2008 07:20")
'User ID: root Last seen: 5 Mar 2008 07:20'

Curly brackets can be escaped by doubling them:

>>> "Empty dict: {{}}".format()
"Empty dict: {}"

Field names can be integers indicating positional arguments, such as
{0}, {1}, etc. or names of keyword arguments. You can also
supply compound field names that read attributes or access dictionary keys:

>>> import sys
>>> print 'Platform: {0.platform}\nPython version: {0.version}'.format(sys)
Platform: darwin
Python version: 2.6a1+ (trunk:61261M, Mar 5 2008, 20:29:41)
[GCC 4.0.1 (Apple Computer, Inc. build 5367)]'

>>> import mimetypes
>>> 'Content-type: {0[.mp4]}'.format(mimetypes.types_map)
'Content-type: video/mp4'

Note that when using dictionary-style notation such as [.mp4], you
don't need to put any quotation marks around the string; it will look
up the value using .mp4 as the key. Strings beginning with a
number will be converted to an integer. You can't write more
complicated expressions inside a format string.

So far we've shown how to specify which field to substitute into the
resulting string. The precise formatting used is also controllable by
adding a colon followed by a format specifier. For example:

>>> # Field 0: left justify, pad to 15 characters
>>> # Field 1: right justify, pad to 6 characters
>>> fmt = '{0:15} ${1:>6}'
>>> fmt.format('Registration', 35)
'Registration $ 35'
>>> fmt.format('Tutorial', 50)
'Tutorial $ 50'
>>> fmt.format('Banquet', 125)
'Banquet $ 125'

Format specifiers can reference other fields through nesting:

>>> fmt = '{0:{1}}'
>>> width = 15
>>> fmt.format('Invoice #1234', width)
'Invoice #1234 '
>>> width = 35
>>> fmt.format('Invoice #1234', width)
'Invoice #1234 '

可以指定所需宽度内的字段对齐方式：

	字符

	效果

	< (默认)

	左对齐

	>

	右对齐

	^

	居中对齐

	=

	（仅适用于数字类型）在符号后加空格。

Format specifiers can also include a presentation type, which
controls how the value is formatted. For example, floating-point numbers
can be formatted as a general number or in exponential notation:

>>> '{0:g}'.format(3.75)
'3.75'
>>> '{0:e}'.format(3.75)
'3.750000e+00'

A variety of presentation types are available. Consult the 2.6
documentation for a complete list; here's a sample:

	b

	二进制。输出以2为底的数字。

	c

	字符。在打印之前将整数转换为相应的Unicode字符。

	d

	十进制整数。 输出以 10 为基数的数字。

	o

	八进制格式。 输出以 8 为基数的数字。

	x

	十六进制格式。 输出以 16 为基数的数字，使用小写字母表示 9 以上的数码。

	e

	指数表示法。用字母 'e' 以科学计数法打印数字以表示指数。

	g

	General format. This prints the number as a fixed-point number, unless
the number is too large, in which case it switches to 'e' exponent
notation.

	n

	Number. This is the same as 'g' (for floats) or 'd' (for integers),
except that it uses the current locale setting to insert the appropriate
number separator characters.

	%

	Percentage. Multiplies the number by 100 and displays in fixed ('f')
format, followed by a percent sign.

Classes and types can define a __format__() method to control how they're
formatted. It receives a single argument, the format specifier:

def __format__(self, format_spec):
 if isinstance(format_spec, unicode):
 return unicode(str(self))
 else:
 return str(self)

There's also a format() builtin that will format a single
value. It calls the type's __format__() method with the
provided specifier:

>>> format(75.6564, '.2f')
'75.66'

参见

	格式字符串语法
	格式字段的参考文档。

	PEP 3101 [https://www.python.org/dev/peps/pep-3101] - 高级字符串格式
	PEP 由 Eric V. Smith 撰写并实现

PEP 3105: print 改为函数

The print statement becomes the print() function in Python 3.0.
Making print() a function makes it possible to replace the function
by doing def print(...) or importing a new function from somewhere else.

Python 2.6 has a __future__ import that removes print as language
syntax, letting you use the functional form instead. For example:

>>> from __future__ import print_function
>>> print('# of entries', len(dictionary), file=sys.stderr)

The signature of the new function is:

def print(*args, sep=' ', end='\n', file=None)

The parameters are:

	args: positional arguments whose values will be printed out.

	sep: the separator, which will be printed between arguments.

	end: the ending text, which will be printed after all of the
arguments have been output.

	file: the file object to which the output will be sent.

参见

	PEP 3105 [https://www.python.org/dev/peps/pep-3105]: print 改为函数
	PEP 由 Georg Brandl 撰写

PEP 3110: 异常处理的变更

One error that Python programmers occasionally make
is writing the following code:

try:
 ...
except TypeError, ValueError: # Wrong!
 ...

The author is probably trying to catch both TypeError and
ValueError exceptions, but this code actually does something
different: it will catch TypeError and bind the resulting
exception object to the local name "ValueError". The
ValueError exception will not be caught at all. The correct
code specifies a tuple of exceptions:

try:
 ...
except (TypeError, ValueError):
 ...

This error happens because the use of the comma here is ambiguous:
does it indicate two different nodes in the parse tree, or a single
node that's a tuple?

Python 3.0 makes this unambiguous by replacing the comma with the word
"as". To catch an exception and store the exception object in the
variable exc, you must write:

try:
 ...
except TypeError as exc:
 ...

Python 3.0 will only support the use of "as", and therefore interprets
the first example as catching two different exceptions. Python 2.6
supports both the comma and "as", so existing code will continue to
work. We therefore suggest using "as" when writing new Python code
that will only be executed with 2.6.

参见

	PEP 3110 [https://www.python.org/dev/peps/pep-3110] - 在 Python 3000 中捕获异常
	PEP 由 Collin Winter 撰写并实现

PEP 3112: 字节字面值

Python 3.0 adopts Unicode as the language's fundamental string type and
denotes 8-bit literals differently, either as b'string'
or using a bytes constructor. For future compatibility,
Python 2.6 adds bytes as a synonym for the str type,
and it also supports the b'' notation.

The 2.6 str differs from 3.0's bytes type in various
ways; most notably, the constructor is completely different. In 3.0,
bytes([65, 66, 67]) is 3 elements long, containing the bytes
representing ABC; in 2.6, bytes([65, 66, 67]) returns the
12-byte string representing the str() of the list.

The primary use of bytes in 2.6 will be to write tests of
object type such as isinstance(x, bytes). This will help the 2to3
converter, which can't tell whether 2.x code intends strings to
contain either characters or 8-bit bytes; you can now
use either bytes or str to represent your intention
exactly, and the resulting code will also be correct in Python 3.0.

There's also a __future__ import that causes all string literals
to become Unicode strings. This means that \u escape sequences
can be used to include Unicode characters:

from __future__ import unicode_literals

s = ('\u751f\u3080\u304e\u3000\u751f\u3054'
 '\u3081\u3000\u751f\u305f\u307e\u3054')

print len(s) # 12 Unicode characters

At the C level, Python 3.0 will rename the existing 8-bit
string type, called PyStringObject in Python 2.x,
to PyBytesObject. Python 2.6 uses #define
to support using the names PyBytesObject(),
PyBytes_Check(), PyBytes_FromStringAndSize(),
and all the other functions and macros used with strings.

Instances of the bytes type are immutable just
as strings are. A new bytearray type stores a mutable
sequence of bytes:

>>> bytearray([65, 66, 67])
bytearray(b'ABC')
>>> b = bytearray(u'\u21ef\u3244', 'utf-8')
>>> b
bytearray(b'\xe2\x87\xaf\xe3\x89\x84')
>>> b[0] = '\xe3'
>>> b
bytearray(b'\xe3\x87\xaf\xe3\x89\x84')
>>> unicode(str(b), 'utf-8')
u'\u31ef \u3244'

Byte arrays support most of the methods of string types, such as
startswith()/endswith(), find()/rfind(),
and some of the methods of lists, such as append(),
pop(), and reverse().

>>> b = bytearray('ABC')
>>> b.append('d')
>>> b.append(ord('e'))
>>> b
bytearray(b'ABCde')

There's also a corresponding C API, with
PyByteArray_FromObject(),
PyByteArray_FromStringAndSize(),
and various other functions.

参见

	PEP 3112 [https://www.python.org/dev/peps/pep-3112] - Python 3000 中的字节字面值
	PEP 由 Jason Orendorff 撰写， 补丁2.6 由 Christian Heimes 撰写。

PEP 3116: 新 I/O 库

Python's built-in file objects support a number of methods, but
file-like objects don't necessarily support all of them. Objects that
imitate files usually support read() and write(), but they
may not support readline(), for example. Python 3.0 introduces
a layered I/O library in the io module that separates buffering
and text-handling features from the fundamental read and write
operations.

There are three levels of abstract base classes provided by
the io module:

	RawIOBase defines raw I/O operations: read(),
readinto(),
write(), seek(), tell(), truncate(),
and close().
Most of the methods of this class will often map to a single system call.
There are also readable(), writable(), and seekable()
methods for determining what operations a given object will allow.

Python 3.0 has concrete implementations of this class for files and
sockets, but Python 2.6 hasn't restructured its file and socket objects
in this way.

	BufferedIOBase is an abstract base class that
buffers data in memory to reduce the number of
system calls used, making I/O processing more efficient.
It supports all of the methods of RawIOBase,
and adds a raw attribute holding the underlying raw object.

There are five concrete classes implementing this ABC.
BufferedWriter and BufferedReader are for objects
that support write-only or read-only usage that have a seek()
method for random access. BufferedRandom objects support
read and write access upon the same underlying stream, and
BufferedRWPair is for objects such as TTYs that have both
read and write operations acting upon unconnected streams of data.
The BytesIO class supports reading, writing, and seeking
over an in-memory buffer.

	TextIOBase: Provides functions for reading and writing
strings (remember, strings will be Unicode in Python 3.0),
and supporting universal newlines. TextIOBase defines
the readline() method and supports iteration upon
objects.

There are two concrete implementations. TextIOWrapper
wraps a buffered I/O object, supporting all of the methods for
text I/O and adding a buffer attribute for access
to the underlying object. StringIO simply buffers
everything in memory without ever writing anything to disk.

(In Python 2.6, io.StringIO is implemented in
pure Python, so it's pretty slow. You should therefore stick with the
existing StringIO module or cStringIO for now. At some
point Python 3.0's io module will be rewritten into C for speed,
and perhaps the C implementation will be backported to the 2.x releases.)

In Python 2.6, the underlying implementations haven't been
restructured to build on top of the io module's classes. The
module is being provided to make it easier to write code that's
forward-compatible with 3.0, and to save developers the effort of writing
their own implementations of buffering and text I/O.

参见

	PEP 3116 [https://www.python.org/dev/peps/pep-3116] - 新 I/O
	PEP written by Daniel Stutzbach, Mike Verdone, and Guido van Rossum.
Code by Guido van Rossum, Georg Brandl, Walter Doerwald,
Jeremy Hylton, Martin von Löwis, Tony Lownds, and others.

PEP 3118: 修改缓冲区协议

The buffer protocol is a C-level API that lets Python types
exchange pointers into their internal representations. A
memory-mapped file can be viewed as a buffer of characters, for
example, and this lets another module such as re
treat memory-mapped files as a string of characters to be searched.

The primary users of the buffer protocol are numeric-processing
packages such as NumPy, which expose the internal representation
of arrays so that callers can write data directly into an array instead
of going through a slower API. This PEP updates the buffer protocol in light of experience
from NumPy development, adding a number of new features
such as indicating the shape of an array or locking a memory region.

The most important new C API function is
PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags), which
takes an object and a set of flags, and fills in the
Py_buffer structure with information
about the object's memory representation. Objects
can use this operation to lock memory in place
while an external caller could be modifying the contents,
so there's a corresponding PyBuffer_Release(Py_buffer *view) to
indicate that the external caller is done.

The flags argument to PyObject_GetBuffer() specifies
constraints upon the memory returned. Some examples are:

	PyBUF_WRITABLE indicates that the memory must be writable.

	PyBUF_LOCK requests a read-only or exclusive lock on the memory.

	PyBUF_C_CONTIGUOUS and PyBUF_F_CONTIGUOUS
requests a C-contiguous (last dimension varies the fastest) or
Fortran-contiguous (first dimension varies the fastest) array layout.

Two new argument codes for PyArg_ParseTuple(),
s* and z*, return locked buffer objects for a parameter.

参见

	PEP 3118 [https://www.python.org/dev/peps/pep-3118] - 修改缓冲区协议
	PEP 由 Travis Oliphant 和 Carl Banks 撰写，由 Travis Oliphant 实现。

PEP 3119: 抽象基类

Some object-oriented languages such as Java support interfaces,
declaring that a class has a given set of methods or supports a given
access protocol. Abstract Base Classes (or ABCs) are an equivalent
feature for Python. The ABC support consists of an abc module
containing a metaclass called ABCMeta, special handling of
this metaclass by the isinstance() and issubclass()
builtins, and a collection of basic ABCs that the Python developers
think will be widely useful. Future versions of Python will probably
add more ABCs.

Let's say you have a particular class and wish to know whether it supports
dictionary-style access. The phrase "dictionary-style" is vague, however.
It probably means that accessing items with obj[1] works.
Does it imply that setting items with obj[2] = value works?
Or that the object will have keys(), values(), and items()
methods? What about the iterative variants such as iterkeys()? copy()
and update()? Iterating over the object with iter()?

The Python 2.6 collections module includes a number of
different ABCs that represent these distinctions. Iterable
indicates that a class defines __iter__(), and
Container means the class defines a __contains__()
method and therefore supports x in y expressions. The basic
dictionary interface of getting items, setting items, and
keys(), values(), and items(), is defined by the
MutableMapping ABC.

You can derive your own classes from a particular ABC
to indicate they support that ABC's interface:

import collections

class Storage(collections.MutableMapping):
 ...

Alternatively, you could write the class without deriving from
the desired ABC and instead register the class by
calling the ABC's register() method:

import collections

class Storage:
 ...

collections.MutableMapping.register(Storage)

For classes that you write, deriving from the ABC is probably clearer.
The register() method is useful when you've written a new
ABC that can describe an existing type or class, or if you want
to declare that some third-party class implements an ABC.
For example, if you defined a PrintableType ABC,
it's legal to do:

Register Python's types
PrintableType.register(int)
PrintableType.register(float)
PrintableType.register(str)

Classes should obey the semantics specified by an ABC, but
Python can't check this; it's up to the class author to
understand the ABC's requirements and to implement the code accordingly.

To check whether an object supports a particular interface, you can
now write:

def func(d):
 if not isinstance(d, collections.MutableMapping):
 raise ValueError("Mapping object expected, not %r" % d)

Don't feel that you must now begin writing lots of checks as in the
above example. Python has a strong tradition of duck-typing, where
explicit type-checking is never done and code simply calls methods on
an object, trusting that those methods will be there and raising an
exception if they aren't. Be judicious in checking for ABCs and only
do it where it's absolutely necessary.

You can write your own ABCs by using abc.ABCMeta as the
metaclass in a class definition:

from abc import ABCMeta, abstractmethod

class Drawable():
 __metaclass__ = ABCMeta

 @abstractmethod
 def draw(self, x, y, scale=1.0):
 pass

 def draw_doubled(self, x, y):
 self.draw(x, y, scale=2.0)

class Square(Drawable):
 def draw(self, x, y, scale):
 ...

In the Drawable ABC above, the draw_doubled() method
renders the object at twice its size and can be implemented in terms
of other methods described in Drawable. Classes implementing
this ABC therefore don't need to provide their own implementation
of draw_doubled(), though they can do so. An implementation
of draw() is necessary, though; the ABC can't provide
a useful generic implementation.

You can apply the @abstractmethod decorator to methods such as
draw() that must be implemented; Python will then raise an
exception for classes that don't define the method.
Note that the exception is only raised when you actually
try to create an instance of a subclass lacking the method:

>>> class Circle(Drawable):
... pass
...
>>> c = Circle()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Circle with abstract methods draw
>>>

Abstract data attributes can be declared using the
@abstractproperty decorator:

from abc import abstractproperty
...

@abstractproperty
def readonly(self):
 return self._x

Subclasses must then define a readonly() property.

参见

	PEP 3119 [https://www.python.org/dev/peps/pep-3119] - 引入抽象基类
	PEP written by Guido van Rossum and Talin.
Implemented by Guido van Rossum.
Backported to 2.6 by Benjamin Aranguren, with Alex Martelli.

PEP 3127: 整型文字支持和语法

Python 3.0 changes the syntax for octal (base-8) integer literals,
prefixing them with "0o" or "0O" instead of a leading zero, and adds
support for binary (base-2) integer literals, signalled by a "0b" or
"0B" prefix.

Python 2.6 doesn't drop support for a leading 0 signalling
an octal number, but it does add support for "0o" and "0b":

>>> 0o21, 2*8 + 1
(17, 17)
>>> 0b101111
47

The oct() builtin still returns numbers
prefixed with a leading zero, and a new bin()
builtin returns the binary representation for a number:

>>> oct(42)
'052'
>>> future_builtins.oct(42)
'0o52'
>>> bin(173)
'0b10101101'

The int() and long() builtins will now accept the "0o"
and "0b" prefixes when base-8 or base-2 are requested, or when the
base argument is zero (signalling that the base used should be
determined from the string):

>>> int ('0o52', 0)
42
>>> int('1101', 2)
13
>>> int('0b1101', 2)
13
>>> int('0b1101', 0)
13

参见

	PEP 3127 [https://www.python.org/dev/peps/pep-3127] - 整型文字支持和语法
	PEP written by Patrick Maupin; backported to 2.6 by
Eric Smith.

PEP 3129: 类装饰器

Decorators have been extended from functions to classes. It's now legal to
write:

@foo
@bar
class A:
 pass

这相当于:

class A:
 pass

A = foo(bar(A))

参见

	PEP 3129 [https://www.python.org/dev/peps/pep-3129] - 类装饰器
	PEP 由 Collin Winter 撰写并实现

PEP 3141: A Type Hierarchy for Numbers

Python 3.0 adds several abstract base classes for numeric types
inspired by Scheme's numeric tower. These classes were backported to
2.6 as the numbers module.

The most general ABC is Number. It defines no operations at
all, and only exists to allow checking if an object is a number by
doing isinstance(obj, Number).

Complex is a subclass of Number. Complex numbers
can undergo the basic operations of addition, subtraction,
multiplication, division, and exponentiation, and you can retrieve the
real and imaginary parts and obtain a number's conjugate. Python's built-in
complex type is an implementation of Complex.

Real further derives from Complex, and adds
operations that only work on real numbers: floor(), trunc(),
rounding, taking the remainder mod N, floor division,
and comparisons.

Rational numbers derive from Real, have
numerator and denominator properties, and can be
converted to floats. Python 2.6 adds a simple rational-number class,
Fraction, in the fractions module. (It's called
Fraction instead of Rational to avoid
a name clash with numbers.Rational.)

Integral numbers derive from Rational, and
can be shifted left and right with << and >>,
combined using bitwise operations such as & and |,
and can be used as array indexes and slice boundaries.

In Python 3.0, the PEP slightly redefines the existing builtins
round(), math.floor(), math.ceil(), and adds a new
one, math.trunc(), that's been backported to Python 2.6.
math.trunc() rounds toward zero, returning the closest
Integral that's between the function's argument and zero.

参见

	PEP 3141 [https://www.python.org/dev/peps/pep-3141] - A Type Hierarchy for Numbers
	PEP 由 Jeffrey Yasskin 撰写

Scheme's numerical tower [https://www.gnu.org/software/guile/manual/html_node/Numerical-Tower.html#Numerical-Tower], from the Guile manual.

Scheme's number datatypes [http://schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%_sec_6.2] from the R5RS Scheme specification.

fractions 模块

To fill out the hierarchy of numeric types, the fractions
module provides a rational-number class. Rational numbers store their
values as a numerator and denominator forming a fraction, and can
exactly represent numbers such as 2/3 that floating-point numbers
can only approximate.

The Fraction constructor takes two Integral values
that will be the numerator and denominator of the resulting fraction.

>>> from fractions import Fraction
>>> a = Fraction(2, 3)
>>> b = Fraction(2, 5)
>>> float(a), float(b)
(0.66666666666666663, 0.40000000000000002)
>>> a+b
Fraction(16, 15)
>>> a/b
Fraction(5, 3)

For converting floating-point numbers to rationals,
the float type now has an as_integer_ratio() method that returns
the numerator and denominator for a fraction that evaluates to the same
floating-point value:

>>> (2.5) .as_integer_ratio()
(5, 2)
>>> (3.1415) .as_integer_ratio()
(7074029114692207L, 2251799813685248L)
>>> (1./3) .as_integer_ratio()
(6004799503160661L, 18014398509481984L)

Note that values that can only be approximated by floating-point
numbers, such as 1./3, are not simplified to the number being
approximated; the fraction attempts to match the floating-point value
exactly.

The fractions module is based upon an implementation by Sjoerd
Mullender that was in Python's Demo/classes/ directory for a
long time. This implementation was significantly updated by Jeffrey
Yasskin.

其他语言特性修改

对Python 语言核心进行的小改动：

	Directories and zip archives containing a __main__.py file
can now be executed directly by passing their name to the
interpreter. The directory or zip archive is automatically inserted
as the first entry in sys.path. (Suggestion and initial patch by
Andy Chu, subsequently revised by Phillip J. Eby and Nick Coghlan;
bpo-1739468 [https://bugs.python.org/issue1739468].)

	The hasattr() function was catching and ignoring all errors,
under the assumption that they meant a __getattr__() method
was failing somehow and the return value of hasattr() would
therefore be False. This logic shouldn't be applied to
KeyboardInterrupt and SystemExit, however; Python 2.6
will no longer discard such exceptions when hasattr()
encounters them. (Fixed by Benjamin Peterson; bpo-2196 [https://bugs.python.org/issue2196].)

	When calling a function using the ** syntax to provide keyword
arguments, you are no longer required to use a Python dictionary;
any mapping will now work:

>>> def f(**kw):
... print sorted(kw)
...
>>> ud=UserDict.UserDict()
>>> ud['a'] = 1
>>> ud['b'] = 'string'
>>> f(**ud)
['a', 'b']

（由 Alexander Belopolsky 在 bpo-1686487 [https://bugs.python.org/issue1686487] 中贡献。）

It's also become legal to provide keyword arguments after a *args argument
to a function call.

>>> def f(*args, **kw):
... print args, kw
...
>>> f(1,2,3, *(4,5,6), keyword=13)
(1, 2, 3, 4, 5, 6) {'keyword': 13}

Previously this would have been a syntax error.
(Contributed by Amaury Forgeot d'Arc; bpo-3473 [https://bugs.python.org/issue3473].)

	A new builtin, next(iterator, [default]) returns the next item
from the specified iterator. If the default argument is supplied,
it will be returned if iterator has been exhausted; otherwise,
the StopIteration exception will be raised. (Backported
in bpo-2719 [https://bugs.python.org/issue2719].)

	Tuples now have index() and count() methods matching the
list type's index() and count() methods:

>>> t = (0,1,2,3,4,0,1,2)
>>> t.index(3)
3
>>> t.count(0)
2

（由 Raymond Hettinger 贡献）

	The built-in types now have improved support for extended slicing syntax,
accepting various combinations of (start, stop, step).
Previously, the support was partial and certain corner cases wouldn't work.
(Implemented by Thomas Wouters.)

	Properties now have three attributes, getter, setter
and deleter, that are decorators providing useful shortcuts
for adding a getter, setter or deleter function to an existing
property. You would use them like this:

class C(object):
 @property
 def x(self):
 return self._x

 @x.setter
 def x(self, value):
 self._x = value

 @x.deleter
 def x(self):
 del self._x

class D(C):
 @C.x.getter
 def x(self):
 return self._x * 2

 @x.setter
 def x(self, value):
 self._x = value / 2

	Several methods of the built-in set types now accept multiple iterables:
intersection(),
intersection_update(),
union(), update(),
difference() and difference_update().

>>> s=set('1234567890')
>>> s.intersection('abc123', 'cdf246') # Intersection between all inputs
set(['2'])
>>> s.difference('246', '789')
set(['1', '0', '3', '5'])

（由 Raymond Hettinger 贡献。）

	Many floating-point features were added. The float() function
will now turn the string nan into an
IEEE 754 Not A Number value, and +inf and -inf into
positive or negative infinity. This works on any platform with
IEEE 754 semantics. (Contributed by Christian Heimes; bpo-1635 [https://bugs.python.org/issue1635].)

Other functions in the math module, isinf() and
isnan(), return true if their floating-point argument is
infinite or Not A Number. (bpo-1640 [https://bugs.python.org/issue1640])

Conversion functions were added to convert floating-point numbers
into hexadecimal strings (bpo-3008 [https://bugs.python.org/issue3008]). These functions
convert floats to and from a string representation without
introducing rounding errors from the conversion between decimal and
binary. Floats have a hex() method that returns a string
representation, and the float.fromhex() method converts a string
back into a number:

>>> a = 3.75
>>> a.hex()
'0x1.e000000000000p+1'
>>> float.fromhex('0x1.e000000000000p+1')
3.75
>>> b=1./3
>>> b.hex()
'0x1.5555555555555p-2'

	A numerical nicety: when creating a complex number from two floats
on systems that support signed zeros (-0 and +0), the
complex() constructor will now preserve the sign
of the zero. (Fixed by Mark T. Dickinson; bpo-1507 [https://bugs.python.org/issue1507].)

	Classes that inherit a __hash__() method from a parent class
can set __hash__ = None to indicate that the class isn't
hashable. This will make hash(obj) raise a TypeError
and the class will not be indicated as implementing the
Hashable ABC.

You should do this when you've defined a __cmp__() or
__eq__() method that compares objects by their value rather
than by identity. All objects have a default hash method that uses
id(obj) as the hash value. There's no tidy way to remove the
__hash__() method inherited from a parent class, so
assigning None was implemented as an override. At the
C level, extensions can set tp_hash to
PyObject_HashNotImplemented().
(Fixed by Nick Coghlan and Amaury Forgeot d'Arc; bpo-2235 [https://bugs.python.org/issue2235].)

	The GeneratorExit exception now subclasses
BaseException instead of Exception. This means
that an exception handler that does except Exception:
will not inadvertently catch GeneratorExit.
(Contributed by Chad Austin; bpo-1537 [https://bugs.python.org/issue1537].)

	Generator objects now have a gi_code attribute that refers to
the original code object backing the generator.
(Contributed by Collin Winter; bpo-1473257 [https://bugs.python.org/issue1473257].)

	The compile() built-in function now accepts keyword arguments
as well as positional parameters. (Contributed by Thomas Wouters;
bpo-1444529 [https://bugs.python.org/issue1444529].)

	The complex() constructor now accepts strings containing
parenthesized complex numbers, meaning that complex(repr(cplx))
will now round-trip values. For example, complex('(3+4j)')
now returns the value (3+4j). (bpo-1491866 [https://bugs.python.org/issue1491866])

	The string translate() method now accepts None as the
translation table parameter, which is treated as the identity
transformation. This makes it easier to carry out operations
that only delete characters. (Contributed by Bengt Richter and
implemented by Raymond Hettinger; bpo-1193128 [https://bugs.python.org/issue1193128].)

	The built-in dir() function now checks for a __dir__()
method on the objects it receives. This method must return a list
of strings containing the names of valid attributes for the object,
and lets the object control the value that dir() produces.
Objects that have __getattr__() or __getattribute__()
methods can use this to advertise pseudo-attributes they will honor.
(bpo-1591665 [https://bugs.python.org/issue1591665])

	Instance method objects have new attributes for the object and function
comprising the method; the new synonym for im_self is
__self__, and im_func is also available as __func__.
The old names are still supported in Python 2.6, but are gone in 3.0.

	An obscure change: when you use the locals() function inside a
class statement, the resulting dictionary no longer returns free
variables. (Free variables, in this case, are variables referenced in the
class statement that aren't attributes of the class.)

性能优化

	The warnings module has been rewritten in C. This makes
it possible to invoke warnings from the parser, and may also
make the interpreter's startup faster.
(Contributed by Neal Norwitz and Brett Cannon; bpo-1631171 [https://bugs.python.org/issue1631171].)

	Type objects now have a cache of methods that can reduce
the work required to find the correct method implementation
for a particular class; once cached, the interpreter doesn't need to
traverse base classes to figure out the right method to call.
The cache is cleared if a base class or the class itself is modified,
so the cache should remain correct even in the face of Python's dynamic
nature.
(Original optimization implemented by Armin Rigo, updated for
Python 2.6 by Kevin Jacobs; bpo-1700288 [https://bugs.python.org/issue1700288].)

By default, this change is only applied to types that are included with
the Python core. Extension modules may not necessarily be compatible with
this cache,
so they must explicitly add Py_TPFLAGS_HAVE_VERSION_TAG
to the module's tp_flags field to enable the method cache.
(To be compatible with the method cache, the extension module's code
must not directly access and modify the tp_dict member of
any of the types it implements. Most modules don't do this,
but it's impossible for the Python interpreter to determine that.
See bpo-1878 [https://bugs.python.org/issue1878] for some discussion.)

	Function calls that use keyword arguments are significantly faster
by doing a quick pointer comparison, usually saving the time of a
full string comparison. (Contributed by Raymond Hettinger, after an
initial implementation by Antoine Pitrou; bpo-1819 [https://bugs.python.org/issue1819].)

	All of the functions in the struct module have been rewritten in
C, thanks to work at the Need For Speed sprint.
(Contributed by Raymond Hettinger.)

	Some of the standard built-in types now set a bit in their type
objects. This speeds up checking whether an object is a subclass of
one of these types. (Contributed by Neal Norwitz.)

	Unicode strings now use faster code for detecting
whitespace and line breaks; this speeds up the split() method
by about 25% and splitlines() by 35%.
(Contributed by Antoine Pitrou.) Memory usage is reduced
by using pymalloc for the Unicode string's data.

	The with statement now stores the __exit__() method on the stack,
producing a small speedup. (Implemented by Jeffrey Yasskin.)

	To reduce memory usage, the garbage collector will now clear internal
free lists when garbage-collecting the highest generation of objects.
This may return memory to the operating system sooner.

Interpreter Changes

Two command-line options have been reserved for use by other Python
implementations. The -J switch has been reserved for use by
Jython for Jython-specific options, such as switches that are passed to
the underlying JVM. -X has been reserved for options
specific to a particular implementation of Python such as CPython,
Jython, or IronPython. If either option is used with Python 2.6, the
interpreter will report that the option isn't currently used.

Python can now be prevented from writing .pyc or .pyo
files by supplying the -B switch to the Python interpreter,
or by setting the PYTHONDONTWRITEBYTECODE environment
variable before running the interpreter. This setting is available to
Python programs as the sys.dont_write_bytecode variable, and
Python code can change the value to modify the interpreter's
behaviour. (Contributed by Neal Norwitz and Georg Brandl.)

The encoding used for standard input, output, and standard error can
be specified by setting the PYTHONIOENCODING environment
variable before running the interpreter. The value should be a string
in the form <encoding> or <encoding>:<errorhandler>.
The encoding part specifies the encoding's name, e.g. utf-8 or
latin-1; the optional errorhandler part specifies
what to do with characters that can't be handled by the encoding,
and should be one of "error", "ignore", or "replace". (Contributed
by Martin von Löwis.)

新增和改进的模块

As in every release, Python's standard library received a number of
enhancements and bug fixes. Here's a partial list of the most notable
changes, sorted alphabetically by module name. Consult the
Misc/NEWS file in the source tree for a more complete list of
changes, or look through the Subversion logs for all the details.

	The asyncore and asynchat modules are
being actively maintained again, and a number of patches and bugfixes
were applied. (Maintained by Josiah Carlson; see bpo-1736190 [https://bugs.python.org/issue1736190] for
one patch.)

	The bsddb module also has a new maintainer, Jesús Cea Avión, and the package
is now available as a standalone package. The web page for the package is
www.jcea.es/programacion/pybsddb.htm [https://www.jcea.es/programacion/pybsddb.htm].
The plan is to remove the package from the standard library
in Python 3.0, because its pace of releases is much more frequent than
Python's.

The bsddb.dbshelve module now uses the highest pickling protocol
available, instead of restricting itself to protocol 1.
(Contributed by W. Barnes.)

	The cgi module will now read variables from the query string
of an HTTP POST request. This makes it possible to use form actions
with URLs that include query strings such as
"/cgi-bin/add.py?category=1". (Contributed by Alexandre Fiori and
Nubis; bpo-1817 [https://bugs.python.org/issue1817].)

The parse_qs() and parse_qsl() functions have been
relocated from the cgi module to the urlparse module.
The versions still available in the cgi module will
trigger PendingDeprecationWarning messages in 2.6
(bpo-600362 [https://bugs.python.org/issue600362]).

	The cmath module underwent extensive revision,
contributed by Mark Dickinson and Christian Heimes.
Five new functions were added:

	polar() converts a complex number to polar form, returning
the modulus and argument of the complex number.

	rect() does the opposite, turning a modulus, argument pair
back into the corresponding complex number.

	phase() returns the argument (also called the angle) of a complex
number.

	isnan() returns True if either
the real or imaginary part of its argument is a NaN.

	isinf() returns True if either the real or imaginary part of
its argument is infinite.

The revisions also improved the numerical soundness of the
cmath module. For all functions, the real and imaginary
parts of the results are accurate to within a few units of least
precision (ulps) whenever possible. See bpo-1381 [https://bugs.python.org/issue1381] for the
details. The branch cuts for asinh(), atanh(): and
atan() have also been corrected.

The tests for the module have been greatly expanded; nearly 2000 new
test cases exercise the algebraic functions.

On IEEE 754 platforms, the cmath module now handles IEEE 754
special values and floating-point exceptions in a manner consistent
with Annex 'G' of the C99 standard.

	A new data type in the collections module: namedtuple(typename,
fieldnames) is a factory function that creates subclasses of the standard tuple
whose fields are accessible by name as well as index. For example:

>>> var_type = collections.namedtuple('variable',
... 'id name type size')
>>> # Names are separated by spaces or commas.
>>> # 'id, name, type, size' would also work.
>>> var_type._fields
('id', 'name', 'type', 'size')

>>> var = var_type(1, 'frequency', 'int', 4)
>>> print var[0], var.id # Equivalent
1 1
>>> print var[2], var.type # Equivalent
int int
>>> var._asdict()
{'size': 4, 'type': 'int', 'id': 1, 'name': 'frequency'}
>>> v2 = var._replace(name='amplitude')
>>> v2
variable(id=1, name='amplitude', type='int', size=4)

Several places in the standard library that returned tuples have
been modified to return namedtuple instances. For example,
the Decimal.as_tuple() method now returns a named tuple with
sign, digits, and exponent fields.

（由 Raymond Hettinger 贡献。）

	Another change to the collections module is that the
deque type now supports an optional maxlen parameter;
if supplied, the deque's size will be restricted to no more
than maxlen items. Adding more items to a full deque causes
old items to be discarded.

>>> from collections import deque
>>> dq=deque(maxlen=3)
>>> dq
deque([], maxlen=3)
>>> dq.append(1); dq.append(2); dq.append(3)
>>> dq
deque([1, 2, 3], maxlen=3)
>>> dq.append(4)
>>> dq
deque([2, 3, 4], maxlen=3)

（由 Raymond Hettinger 贡献。）

	The Cookie module's Morsel objects now support an
httponly attribute. In some browsers. cookies with this attribute
set cannot be accessed or manipulated by JavaScript code.
(Contributed by Arvin Schnell; bpo-1638033 [https://bugs.python.org/issue1638033].)

	A new window method in the curses module,
chgat(), changes the display attributes for a certain number of
characters on a single line. (Contributed by Fabian Kreutz.)

Boldface text starting at y=0,x=21
and affecting the rest of the line.
stdscr.chgat(0, 21, curses.A_BOLD)

The Textbox class in the curses.textpad module
now supports editing in insert mode as well as overwrite mode.
Insert mode is enabled by supplying a true value for the insert_mode
parameter when creating the Textbox instance.

	The datetime module's strftime() methods now support a
%f format code that expands to the number of microseconds in the
object, zero-padded on
the left to six places. (Contributed by Skip Montanaro; bpo-1158 [https://bugs.python.org/issue1158].)

	The decimal module was updated to version 1.66 of
the General Decimal Specification [http://speleotrove.com/decimal/decarith.html]. New features
include some methods for some basic mathematical functions such as
exp() and log10():

>>> Decimal(1).exp()
Decimal("2.718281828459045235360287471")
>>> Decimal("2.7182818").ln()
Decimal("0.9999999895305022877376682436")
>>> Decimal(1000).log10()
Decimal("3")

The as_tuple() method of Decimal objects now returns a
named tuple with sign, digits, and exponent fields.

(Implemented by Facundo Batista and Mark Dickinson. Named tuple
support added by Raymond Hettinger.)

	The difflib module's SequenceMatcher class
now returns named tuples representing matches,
with a, b, and size attributes.
(Contributed by Raymond Hettinger.)

	An optional timeout parameter, specifying a timeout measured in
seconds, was added to the ftplib.FTP class constructor as
well as the connect() method. (Added by Facundo Batista.)
Also, the FTP class's storbinary() and
storlines() now take an optional callback parameter that
will be called with each block of data after the data has been sent.
(Contributed by Phil Schwartz; bpo-1221598 [https://bugs.python.org/issue1221598].)

	The reduce() built-in function is also available in the
functools module. In Python 3.0, the builtin has been
dropped and reduce() is only available from functools;
currently there are no plans to drop the builtin in the 2.x series.
(Patched by Christian Heimes; bpo-1739906 [https://bugs.python.org/issue1739906].)

	When possible, the getpass module will now use
/dev/tty to print a prompt message and read the password,
falling back to standard error and standard input. If the
password may be echoed to the terminal, a warning is printed before
the prompt is displayed. (Contributed by Gregory P. Smith.)

	The glob.glob() function can now return Unicode filenames if
a Unicode path was used and Unicode filenames are matched within the
directory. (bpo-1001604 [https://bugs.python.org/issue1001604])

	A new function in the heapq module, merge(iter1, iter2, ...),
takes any number of iterables returning data in sorted
order, and returns a new generator that returns the contents of all
the iterators, also in sorted order. For example:

>>> list(heapq.merge([1, 3, 5, 9], [2, 8, 16]))
[1, 2, 3, 5, 8, 9, 16]

Another new function, heappushpop(heap, item),
pushes item onto heap, then pops off and returns the smallest item.
This is more efficient than making a call to heappush() and then
heappop().

heapq is now implemented to only use less-than comparison,
instead of the less-than-or-equal comparison it previously used.
This makes heapq's usage of a type match the
list.sort() method.
(Contributed by Raymond Hettinger.)

	An optional timeout parameter, specifying a timeout measured in
seconds, was added to the httplib.HTTPConnection and
HTTPSConnection class constructors. (Added by Facundo
Batista.)

	Most of the inspect module's functions, such as
getmoduleinfo() and getargs(), now return named tuples.
In addition to behaving like tuples, the elements of the return value
can also be accessed as attributes.
(Contributed by Raymond Hettinger.)

Some new functions in the module include
isgenerator(), isgeneratorfunction(),
and isabstract().

	The itertools module gained several new functions.

izip_longest(iter1, iter2, ...[, fillvalue]) makes tuples from
each of the elements; if some of the iterables are shorter than
others, the missing values are set to fillvalue. For example:

>>> tuple(itertools.izip_longest([1,2,3], [1,2,3,4,5]))
((1, 1), (2, 2), (3, 3), (None, 4), (None, 5))

product(iter1, iter2, ..., [repeat=N]) returns the Cartesian product
of the supplied iterables, a set of tuples containing
every possible combination of the elements returned from each iterable.

>>> list(itertools.product([1,2,3], [4,5,6]))
[(1, 4), (1, 5), (1, 6),
 (2, 4), (2, 5), (2, 6),
 (3, 4), (3, 5), (3, 6)]

The optional repeat keyword argument is used for taking the
product of an iterable or a set of iterables with themselves,
repeated N times. With a single iterable argument, N-tuples
are returned:

>>> list(itertools.product([1,2], repeat=3))
[(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),
 (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)]

With two iterables, 2N-tuples are returned.

>>> list(itertools.product([1,2], [3,4], repeat=2))
[(1, 3, 1, 3), (1, 3, 1, 4), (1, 3, 2, 3), (1, 3, 2, 4),
 (1, 4, 1, 3), (1, 4, 1, 4), (1, 4, 2, 3), (1, 4, 2, 4),
 (2, 3, 1, 3), (2, 3, 1, 4), (2, 3, 2, 3), (2, 3, 2, 4),
 (2, 4, 1, 3), (2, 4, 1, 4), (2, 4, 2, 3), (2, 4, 2, 4)]

combinations(iterable, r) returns sub-sequences of length r from
the elements of iterable.

>>> list(itertools.combinations('123', 2))
[('1', '2'), ('1', '3'), ('2', '3')]
>>> list(itertools.combinations('123', 3))
[('1', '2', '3')]
>>> list(itertools.combinations('1234', 3))
[('1', '2', '3'), ('1', '2', '4'),
 ('1', '3', '4'), ('2', '3', '4')]

permutations(iter[, r]) returns all the permutations of length r of
the iterable's elements. If r is not specified, it will default to the
number of elements produced by the iterable.

>>> list(itertools.permutations([1,2,3,4], 2))
[(1, 2), (1, 3), (1, 4),
 (2, 1), (2, 3), (2, 4),
 (3, 1), (3, 2), (3, 4),
 (4, 1), (4, 2), (4, 3)]

itertools.chain(*iterables) is an existing function in
itertools that gained a new constructor in Python 2.6.
itertools.chain.from_iterable(iterable) takes a single
iterable that should return other iterables. chain() will
then return all the elements of the first iterable, then
all the elements of the second, and so on.

>>> list(itertools.chain.from_iterable([[1,2,3], [4,5,6]]))
[1, 2, 3, 4, 5, 6]

(All contributed by Raymond Hettinger.)

	The logging module's FileHandler class
and its subclasses WatchedFileHandler, RotatingFileHandler,
and TimedRotatingFileHandler now
have an optional delay parameter to their constructors. If delay
is true, opening of the log file is deferred until the first
emit() call is made. (Contributed by Vinay Sajip.)

TimedRotatingFileHandler also has a utc constructor
parameter. If the argument is true, UTC time will be used
in determining when midnight occurs and in generating filenames;
otherwise local time will be used.

	Several new functions were added to the math module:

	isinf() and isnan() determine whether a given float
is a (positive or negative) infinity or a NaN (Not a Number), respectively.

	copysign() copies the sign bit of an IEEE 754 number,
returning the absolute value of x combined with the sign bit of
y. For example, math.copysign(1, -0.0) returns -1.0.
(Contributed by Christian Heimes.)

	factorial() computes the factorial of a number.
(Contributed by Raymond Hettinger; bpo-2138 [https://bugs.python.org/issue2138].)

	fsum() adds up the stream of numbers from an iterable,
and is careful to avoid loss of precision through using partial sums.
(Contributed by Jean Brouwers, Raymond Hettinger, and Mark Dickinson;
bpo-2819 [https://bugs.python.org/issue2819].)

	acosh(), asinh()
and atanh() compute the inverse hyperbolic functions.

	log1p() returns the natural logarithm of 1+x
(base e).

	trunc() rounds a number toward zero, returning the closest
Integral that's between the function's argument and zero.
Added as part of the backport of
PEP 3141's type hierarchy for numbers.

	The math module has been improved to give more consistent
behaviour across platforms, especially with respect to handling of
floating-point exceptions and IEEE 754 special values.

Whenever possible, the module follows the recommendations of the C99
standard about 754's special values. For example, sqrt(-1.)
should now give a ValueError across almost all platforms,
while sqrt(float('NaN')) should return a NaN on all IEEE 754
platforms. Where Annex 'F' of the C99 standard recommends signaling
'divide-by-zero' or 'invalid', Python will raise ValueError.
Where Annex 'F' of the C99 standard recommends signaling 'overflow',
Python will raise OverflowError. (See bpo-711019 [https://bugs.python.org/issue711019] and
bpo-1640 [https://bugs.python.org/issue1640].)

（由 Christian Heimes 和 Mark Dickinson 贡献。）

	mmap objects now have a rfind() method that searches for a
substring beginning at the end of the string and searching
backwards. The find() method also gained an end parameter
giving an index at which to stop searching.
(Contributed by John Lenton.)

	The operator module gained a
methodcaller() function that takes a name and an optional
set of arguments, returning a callable that will call
the named function on any arguments passed to it. For example:

>>> # Equivalent to lambda s: s.replace('old', 'new')
>>> replacer = operator.methodcaller('replace', 'old', 'new')
>>> replacer('old wine in old bottles')
'new wine in new bottles'

（由 Gregory Petrosyan 提供建议，之后由 Georg Brandl 贡献。）

The attrgetter() function now accepts dotted names and performs
the corresponding attribute lookups:

>>> inst_name = operator.attrgetter(
... '__class__.__name__')
>>> inst_name('')
'str'
>>> inst_name(help)
'_Helper'

（由 Barry Warsaw 提供建议，之后由 Georg Brandl 贡献。）

	The os module now wraps several new system calls.
fchmod(fd, mode) and fchown(fd, uid, gid) change the mode
and ownership of an opened file, and lchmod(path, mode) changes
the mode of a symlink. (Contributed by Georg Brandl and Christian
Heimes.)

chflags() and lchflags() are wrappers for the
corresponding system calls (where they're available), changing the
flags set on a file. Constants for the flag values are defined in
the stat module; some possible values include
UF_IMMUTABLE to signal the file may not be changed and
UF_APPEND to indicate that data can only be appended to the
file. (Contributed by M. Levinson.)

os.closerange(low, high) efficiently closes all file descriptors
from low to high, ignoring any errors and not including high itself.
This function is now used by the subprocess module to make starting
processes faster. (Contributed by Georg Brandl; bpo-1663329 [https://bugs.python.org/issue1663329].)

	The os.environ object's clear() method will now unset the
environment variables using os.unsetenv() in addition to clearing
the object's keys. (Contributed by Martin Horcicka; bpo-1181 [https://bugs.python.org/issue1181].)

	The os.walk() function now has a followlinks parameter. If
set to True, it will follow symlinks pointing to directories and
visit the directory's contents. For backward compatibility, the
parameter's default value is false. Note that the function can fall
into an infinite recursion if there's a symlink that points to a
parent directory. (bpo-1273829 [https://bugs.python.org/issue1273829])

	In the os.path module, the splitext() function
has been changed to not split on leading period characters.
This produces better results when operating on Unix's dot-files.
For example, os.path.splitext('.ipython')
now returns ('.ipython', '') instead of ('', '.ipython').
(bpo-1115886 [https://bugs.python.org/issue1115886])

A new function, os.path.relpath(path, start='.'), returns a relative path
from the start path, if it's supplied, or from the current
working directory to the destination path. (Contributed by
Richard Barran; bpo-1339796 [https://bugs.python.org/issue1339796].)

On Windows, os.path.expandvars() will now expand environment variables
given in the form "%var%", and "~user" will be expanded into the
user's home directory path. (Contributed by Josiah Carlson;
bpo-957650 [https://bugs.python.org/issue957650].)

	The Python debugger provided by the pdb module
gained a new command: "run" restarts the Python program being debugged
and can optionally take new command-line arguments for the program.
(Contributed by Rocky Bernstein; bpo-1393667 [https://bugs.python.org/issue1393667].)

	The pdb.post_mortem() function, used to begin debugging a
traceback, will now use the traceback returned by sys.exc_info()
if no traceback is supplied. (Contributed by Facundo Batista;
bpo-1106316 [https://bugs.python.org/issue1106316].)

	The pickletools module now has an optimize() function
that takes a string containing a pickle and removes some unused
opcodes, returning a shorter pickle that contains the same data structure.
(Contributed by Raymond Hettinger.)

	A get_data() function was added to the pkgutil
module that returns the contents of resource files included
with an installed Python package. For example:

>>> import pkgutil
>>> print pkgutil.get_data('test', 'exception_hierarchy.txt')
BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
 +-- StopIteration
 +-- StandardError
 ...

（由 Paul Moore 在 bpo-2439 [https://bugs.python.org/issue2439] 中贡献。）

	The pyexpat module's Parser objects now allow setting
their buffer_size attribute to change the size of the buffer
used to hold character data.
(Contributed by Achim Gaedke; bpo-1137 [https://bugs.python.org/issue1137].)

	The Queue module now provides queue variants that retrieve entries
in different orders. The PriorityQueue class stores
queued items in a heap and retrieves them in priority order,
and LifoQueue retrieves the most recently added entries first,
meaning that it behaves like a stack.
(Contributed by Raymond Hettinger.)

	The random module's Random objects can
now be pickled on a 32-bit system and unpickled on a 64-bit
system, and vice versa. Unfortunately, this change also means
that Python 2.6's Random objects can't be unpickled correctly
on earlier versions of Python.
(Contributed by Shawn Ligocki; bpo-1727780 [https://bugs.python.org/issue1727780].)

The new triangular(low, high, mode) function returns random
numbers following a triangular distribution. The returned values
are between low and high, not including high itself, and
with mode as the most frequently occurring value
in the distribution. (Contributed by Wladmir van der Laan and
Raymond Hettinger; bpo-1681432 [https://bugs.python.org/issue1681432].)

	Long regular expression searches carried out by the re
module will check for signals being delivered, so
time-consuming searches can now be interrupted.
(Contributed by Josh Hoyt and Ralf Schmitt; bpo-846388 [https://bugs.python.org/issue846388].)

The regular expression module is implemented by compiling bytecodes
for a tiny regex-specific virtual machine. Untrusted code
could create malicious strings of bytecode directly and cause crashes,
so Python 2.6 includes a verifier for the regex bytecode.
(Contributed by Guido van Rossum from work for Google App Engine;
bpo-3487 [https://bugs.python.org/issue3487].)

	The rlcompleter module's Completer.complete() method
will now ignore exceptions triggered while evaluating a name.
(Fixed by Lorenz Quack; bpo-2250 [https://bugs.python.org/issue2250].)

	The sched module's scheduler instances now
have a read-only queue attribute that returns the
contents of the scheduler's queue, represented as a list of
named tuples with the fields (time, priority, action, argument).
(Contributed by Raymond Hettinger; bpo-1861 [https://bugs.python.org/issue1861].)

	The select module now has wrapper functions
for the Linux epoll() and BSD kqueue() system calls.
modify() method was added to the existing poll
objects; pollobj.modify(fd, eventmask) takes a file descriptor
or file object and an event mask, modifying the recorded event mask
for that file.
(Contributed by Christian Heimes; bpo-1657 [https://bugs.python.org/issue1657].)

	The shutil.copytree() function now has an optional ignore argument
that takes a callable object. This callable will receive each directory path
and a list of the directory's contents, and returns a list of names that
will be ignored, not copied.

The shutil module also provides an ignore_patterns()
function for use with this new parameter. ignore_patterns()
takes an arbitrary number of glob-style patterns and returns a
callable that will ignore any files and directories that match any
of these patterns. The following example copies a directory tree,
but skips both .svn directories and Emacs backup files,
which have names ending with '~':

shutil.copytree('Doc/library', '/tmp/library',
 ignore=shutil.ignore_patterns('*~', '.svn'))

（由 Tarek Ziadé 在 bpo-2663 [https://bugs.python.org/issue2663] 中贡献。）

	Integrating signal handling with GUI handling event loops
like those used by Tkinter or GTk+ has long been a problem; most
software ends up polling, waking up every fraction of a second to check
if any GUI events have occurred.
The signal module can now make this more efficient.
Calling signal.set_wakeup_fd(fd) sets a file descriptor
to be used; when a signal is received, a byte is written to that
file descriptor. There's also a C-level function,
PySignal_SetWakeupFd(), for setting the descriptor.

Event loops will use this by opening a pipe to create two descriptors,
one for reading and one for writing. The writable descriptor
will be passed to set_wakeup_fd(), and the readable descriptor
will be added to the list of descriptors monitored by the event loop via
select() or poll().
On receiving a signal, a byte will be written and the main event loop
will be woken up, avoiding the need to poll.

（由 Adam Olsen 在 bpo-1583 [https://bugs.python.org/issue1583] 中贡献。）

The siginterrupt() function is now available from Python code,
and allows changing whether signals can interrupt system calls or not.
(Contributed by Ralf Schmitt.)

The setitimer() and getitimer() functions have also been
added (where they're available). setitimer()
allows setting interval timers that will cause a signal to be
delivered to the process after a specified time, measured in
wall-clock time, consumed process time, or combined process+system
time. (Contributed by Guilherme Polo; bpo-2240 [https://bugs.python.org/issue2240].)

	The smtplib module now supports SMTP over SSL thanks to the
addition of the SMTP_SSL class. This class supports an
interface identical to the existing SMTP class.
(Contributed by Monty Taylor.) Both class constructors also have an
optional timeout parameter that specifies a timeout for the
initial connection attempt, measured in seconds. (Contributed by
Facundo Batista.)

An implementation of the LMTP protocol (RFC 2033 [https://tools.ietf.org/html/rfc2033.html]) was also added
to the module. LMTP is used in place of SMTP when transferring
e-mail between agents that don't manage a mail queue. (LMTP
implemented by Leif Hedstrom; bpo-957003 [https://bugs.python.org/issue957003].)

SMTP.starttls() now complies with RFC 3207 [https://tools.ietf.org/html/rfc3207.html] and forgets any
knowledge obtained from the server not obtained from the TLS
negotiation itself. (Patch contributed by Bill Fenner;
bpo-829951 [https://bugs.python.org/issue829951].)

	The socket module now supports TIPC (http://tipc.sourceforge.net/),
a high-performance non-IP-based protocol designed for use in clustered
environments. TIPC addresses are 4- or 5-tuples.
(Contributed by Alberto Bertogli; bpo-1646 [https://bugs.python.org/issue1646].)

A new function, create_connection(), takes an address and
connects to it using an optional timeout value, returning the
connected socket object. This function also looks up the address's
type and connects to it using IPv4 or IPv6 as appropriate. Changing
your code to use create_connection() instead of
socket(socket.AF_INET, ...) may be all that's required to make
your code work with IPv6.

	The base classes in the SocketServer module now support
calling a handle_timeout() method after a span of inactivity
specified by the server's timeout attribute. (Contributed
by Michael Pomraning.) The serve_forever() method
now takes an optional poll interval measured in seconds,
controlling how often the server will check for a shutdown request.
(Contributed by Pedro Werneck and Jeffrey Yasskin;
bpo-742598 [https://bugs.python.org/issue742598], bpo-1193577 [https://bugs.python.org/issue1193577].)

	The sqlite3 module, maintained by Gerhard Häring,
has been updated from version 2.3.2 in Python 2.5 to
version 2.4.1.

	The struct module now supports the C99 _Bool type,
using the format character '?'.
(Contributed by David Remahl.)

	The Popen objects provided by the subprocess module
now have terminate(), kill(), and send_signal() methods.
On Windows, send_signal() only supports the SIGTERM
signal, and all these methods are aliases for the Win32 API function
TerminateProcess().
(Contributed by Christian Heimes.)

	A new variable in the sys module, float_info, is an
object containing information derived from the float.h file
about the platform's floating-point support. Attributes of this
object include mant_dig (number of digits in the mantissa),
epsilon (smallest difference between 1.0 and the next
largest value representable), and several others. (Contributed by
Christian Heimes; bpo-1534 [https://bugs.python.org/issue1534].)

Another new variable, dont_write_bytecode, controls whether Python
writes any .pyc or .pyo files on importing a module.
If this variable is true, the compiled files are not written. The
variable is initially set on start-up by supplying the -B
switch to the Python interpreter, or by setting the
PYTHONDONTWRITEBYTECODE environment variable before
running the interpreter. Python code can subsequently
change the value of this variable to control whether bytecode files
are written or not.
(Contributed by Neal Norwitz and Georg Brandl.)

Information about the command-line arguments supplied to the Python
interpreter is available by reading attributes of a named
tuple available as sys.flags. For example, the verbose
attribute is true if Python
was executed in verbose mode, debug is true in debugging mode, etc.
These attributes are all read-only.
(Contributed by Christian Heimes.)

A new function, getsizeof(), takes a Python object and returns
the amount of memory used by the object, measured in bytes. Built-in
objects return correct results; third-party extensions may not,
but can define a __sizeof__() method to return the
object's size.
(Contributed by Robert Schuppenies; bpo-2898 [https://bugs.python.org/issue2898].)

It's now possible to determine the current profiler and tracer functions
by calling sys.getprofile() and sys.gettrace().
(Contributed by Georg Brandl; bpo-1648 [https://bugs.python.org/issue1648].)

	The tarfile module now supports POSIX.1-2001 (pax) tarfiles in
addition to the POSIX.1-1988 (ustar) and GNU tar formats that were
already supported. The default format is GNU tar; specify the
format parameter to open a file using a different format:

tar = tarfile.open("output.tar", "w",
 format=tarfile.PAX_FORMAT)

The new encoding and errors parameters specify an encoding and
an error handling scheme for character conversions. 'strict',
'ignore', and 'replace' are the three standard ways Python can
handle errors,;
'utf-8' is a special value that replaces bad characters with
their UTF-8 representation. (Character conversions occur because the
PAX format supports Unicode filenames, defaulting to UTF-8 encoding.)

The TarFile.add() method now accepts an exclude argument that's
a function that can be used to exclude certain filenames from
an archive.
The function must take a filename and return true if the file
should be excluded or false if it should be archived.
The function is applied to both the name initially passed to add()
and to the names of files in recursively-added directories.

(All changes contributed by Lars Gustäbel).

	An optional timeout parameter was added to the
telnetlib.Telnet class constructor, specifying a timeout
measured in seconds. (Added by Facundo Batista.)

	The tempfile.NamedTemporaryFile class usually deletes
the temporary file it created when the file is closed. This
behaviour can now be changed by passing delete=False to the
constructor. (Contributed by Damien Miller; bpo-1537850 [https://bugs.python.org/issue1537850].)

A new class, SpooledTemporaryFile, behaves like
a temporary file but stores its data in memory until a maximum size is
exceeded. On reaching that limit, the contents will be written to
an on-disk temporary file. (Contributed by Dustin J. Mitchell.)

The NamedTemporaryFile and SpooledTemporaryFile classes
both work as context managers, so you can write
with tempfile.NamedTemporaryFile() as tmp:
(Contributed by Alexander Belopolsky; bpo-2021 [https://bugs.python.org/issue2021].)

	The test.test_support module gained a number
of context managers useful for writing tests.
EnvironmentVarGuard() is a
context manager that temporarily changes environment variables and
automatically restores them to their old values.

Another context manager, TransientResource, can surround calls
to resources that may or may not be available; it will catch and
ignore a specified list of exceptions. For example,
a network test may ignore certain failures when connecting to an
external web site:

with test_support.TransientResource(IOError,
 errno=errno.ETIMEDOUT):
 f = urllib.urlopen('https://sf.net')
 ...

Finally, check_warnings() resets the warning module's
warning filters and returns an object that will record all warning
messages triggered (bpo-3781 [https://bugs.python.org/issue3781]):

with test_support.check_warnings() as wrec:
 warnings.simplefilter("always")
 # ... code that triggers a warning ...
 assert str(wrec.message) == "function is outdated"
 assert len(wrec.warnings) == 1, "Multiple warnings raised"

（由 Brett Cannon 贡献。）

	The textwrap module can now preserve existing whitespace
at the beginnings and ends of the newly-created lines
by specifying drop_whitespace=False
as an argument:

>>> S = """This sentence has a bunch of
... extra whitespace."""
>>> print textwrap.fill(S, width=15)
This sentence
has a bunch
of extra
whitespace.
>>> print textwrap.fill(S, drop_whitespace=False, width=15)
This sentence
 has a bunch
 of extra
 whitespace.
>>>

（由 Dwayne Bailey 在 bpo-1581073 [https://bugs.python.org/issue1581073] 中贡献。）

	The threading module API is being changed to use properties
such as daemon instead of setDaemon() and
isDaemon() methods, and some methods have been renamed to use
underscores instead of camel-case; for example, the
activeCount() method is renamed to active_count(). Both
the 2.6 and 3.0 versions of the module support the same properties
and renamed methods, but don't remove the old methods. No date has been set
for the deprecation of the old APIs in Python 3.x; the old APIs won't
be removed in any 2.x version.
(Carried out by several people, most notably Benjamin Peterson.)

The threading module's Thread objects
gained an ident property that returns the thread's
identifier, a nonzero integer. (Contributed by Gregory P. Smith;
bpo-2871 [https://bugs.python.org/issue2871].)

	The timeit module now accepts callables as well as strings
for the statement being timed and for the setup code.
Two convenience functions were added for creating
Timer instances:
repeat(stmt, setup, time, repeat, number) and
timeit(stmt, setup, time, number) create an instance and call
the corresponding method. (Contributed by Erik Demaine;
bpo-1533909 [https://bugs.python.org/issue1533909].)

	The Tkinter module now accepts lists and tuples for options,
separating the elements by spaces before passing the resulting value to
Tcl/Tk.
(Contributed by Guilherme Polo; bpo-2906 [https://bugs.python.org/issue2906].)

	The turtle module for turtle graphics was greatly enhanced by
Gregor Lingl. New features in the module include:

	Better animation of turtle movement and rotation.

	Control over turtle movement using the new delay(),
tracer(), and speed() methods.

	The ability to set new shapes for the turtle, and to
define a new coordinate system.

	Turtles now have an undo() method that can roll back actions.

	Simple support for reacting to input events such as mouse and keyboard
activity, making it possible to write simple games.

	A turtle.cfg file can be used to customize the starting appearance
of the turtle's screen.

	The module's docstrings can be replaced by new docstrings that have been
translated into another language.

(bpo-1513695 [https://bugs.python.org/issue1513695])

	An optional timeout parameter was added to the
urllib.urlopen() function and the
urllib.ftpwrapper class constructor, as well as the
urllib2.urlopen() function. The parameter specifies a timeout
measured in seconds. For example:

>>> u = urllib2.urlopen("http://slow.example.com",
 timeout=3)
Traceback (most recent call last):
 ...
urllib2.URLError: <urlopen error timed out>
>>>

(Added by Facundo Batista.)

	The Unicode database provided by the unicodedata module
has been updated to version 5.1.0. (Updated by
Martin von Löwis; bpo-3811 [https://bugs.python.org/issue3811].)

	The warnings module's formatwarning() and showwarning()
gained an optional line argument that can be used to supply the
line of source code. (Added as part of bpo-1631171 [https://bugs.python.org/issue1631171], which re-implemented
part of the warnings module in C code.)

A new function, catch_warnings(), is a context manager
intended for testing purposes that lets you temporarily modify the
warning filters and then restore their original values (bpo-3781 [https://bugs.python.org/issue3781]).

	The XML-RPC SimpleXMLRPCServer and DocXMLRPCServer
classes can now be prevented from immediately opening and binding to
their socket by passing False as the bind_and_activate
constructor parameter. This can be used to modify the instance's
allow_reuse_address attribute before calling the
server_bind() and server_activate() methods to
open the socket and begin listening for connections.
(Contributed by Peter Parente; bpo-1599845 [https://bugs.python.org/issue1599845].)

SimpleXMLRPCServer also has a _send_traceback_header
attribute; if true, the exception and formatted traceback are returned
as HTTP headers "X-Exception" and "X-Traceback". This feature is
for debugging purposes only and should not be used on production servers
because the tracebacks might reveal passwords or other sensitive
information. (Contributed by Alan McIntyre as part of his
project for Google's Summer of Code 2007.)

	The xmlrpclib module no longer automatically converts
datetime.date and datetime.time to the
xmlrpclib.DateTime type; the conversion semantics were
not necessarily correct for all applications. Code using
xmlrpclib should convert date and time
instances. (bpo-1330538 [https://bugs.python.org/issue1330538]) The code can also handle
dates before 1900 (contributed by Ralf Schmitt; bpo-2014 [https://bugs.python.org/issue2014])
and 64-bit integers represented by using <i8> in XML-RPC responses
(contributed by Riku Lindblad; bpo-2985 [https://bugs.python.org/issue2985]).

	The zipfile module's ZipFile class now has
extract() and extractall() methods that will unpack
a single file or all the files in the archive to the current directory, or
to a specified directory:

z = zipfile.ZipFile('python-251.zip')

Unpack a single file, writing it relative
to the /tmp directory.
z.extract('Python/sysmodule.c', '/tmp')

Unpack all the files in the archive.
z.extractall()

（由 Alan McIntyre 在 bpo-467924 [https://bugs.python.org/issue467924] 中贡献。）

The open(), read() and extract() methods can now
take either a filename or a ZipInfo object. This is useful when an
archive accidentally contains a duplicated filename.
(Contributed by Graham Horler; bpo-1775025 [https://bugs.python.org/issue1775025].)

Finally, zipfile now supports using Unicode filenames
for archived files. (Contributed by Alexey Borzenkov; bpo-1734346 [https://bugs.python.org/issue1734346].)

ast 模块

The ast module provides an Abstract Syntax Tree
representation of Python code, and Armin Ronacher
contributed a set of helper functions that perform a variety of
common tasks. These will be useful for HTML templating
packages, code analyzers, and similar tools that process
Python code.

The parse() function takes an expression and returns an AST.
The dump() function outputs a representation of a tree, suitable
for debugging:

import ast

t = ast.parse("""
d = {}
for i in 'abcdefghijklm':
 d[i + i] = ord(i) - ord('a') + 1
print d
""")
print ast.dump(t)

This outputs a deeply nested tree:

Module(body=[
 Assign(targets=[
 Name(id='d', ctx=Store())
], value=Dict(keys=[], values=[]))
 For(target=Name(id='i', ctx=Store()),
 iter=Str(s='abcdefghijklm'), body=[
 Assign(targets=[
 Subscript(value=
 Name(id='d', ctx=Load()),
 slice=
 Index(value=
 BinOp(left=Name(id='i', ctx=Load()), op=Add(),
 right=Name(id='i', ctx=Load()))), ctx=Store())
], value=
 BinOp(left=
 BinOp(left=
 Call(func=
 Name(id='ord', ctx=Load()), args=[
 Name(id='i', ctx=Load())
], keywords=[], starargs=None, kwargs=None),
 op=Sub(), right=Call(func=
 Name(id='ord', ctx=Load()), args=[
 Str(s='a')
], keywords=[], starargs=None, kwargs=None)),
 op=Add(), right=Num(n=1)))
], orelse=[])
 Print(dest=None, values=[
 Name(id='d', ctx=Load())
], nl=True)
])

The literal_eval() method takes a string or an AST
representing a literal expression, parses and evaluates it, and
returns the resulting value. A literal expression is a Python
expression containing only strings, numbers, dictionaries,
etc. but no statements or function calls. If you need to
evaluate an expression but cannot accept the security risk of using an
eval() call, literal_eval() will handle it safely:

>>> literal = '("a", "b", {2:4, 3:8, 1:2})'
>>> print ast.literal_eval(literal)
('a', 'b', {1: 2, 2: 4, 3: 8})
>>> print ast.literal_eval('"a" + "b"')
Traceback (most recent call last):
 ...
ValueError: malformed string

The module also includes NodeVisitor and
NodeTransformer classes for traversing and modifying an AST,
and functions for common transformations such as changing line
numbers.

future_builtins 模块

Python 3.0 makes many changes to the repertoire of built-in
functions, and most of the changes can't be introduced in the Python
2.x series because they would break compatibility.
The future_builtins module provides versions
of these built-in functions that can be imported when writing
3.0-compatible code.

The functions in this module currently include:

	ascii(obj): equivalent to repr(). In Python 3.0,
repr() will return a Unicode string, while ascii() will
return a pure ASCII bytestring.

	filter(predicate, iterable),
map(func, iterable1, ...): the 3.0 versions
return iterators, unlike the 2.x builtins which return lists.

	hex(value), oct(value): instead of calling the
__hex__() or __oct__() methods, these versions will
call the __index__() method and convert the result to hexadecimal
or octal. oct() will use the new 0o notation for its
result.

The json module: JavaScript Object Notation

The new json module supports the encoding and decoding of Python types in
JSON (Javascript Object Notation). JSON is a lightweight interchange format
often used in web applications. For more information about JSON, see
http://www.json.org.

json comes with support for decoding and encoding most built-in Python
types. The following example encodes and decodes a dictionary:

>>> import json
>>> data = {"spam": "foo", "parrot": 42}
>>> in_json = json.dumps(data) # Encode the data
>>> in_json
'{"parrot": 42, "spam": "foo"}'
>>> json.loads(in_json) # Decode into a Python object
{"spam": "foo", "parrot": 42}

It's also possible to write your own decoders and encoders to support
more types. Pretty-printing of the JSON strings is also supported.

json (originally called simplejson) was written by Bob
Ippolito.

plistlib 模块：属性列表解析器

The .plist format is commonly used on Mac OS X to
store basic data types (numbers, strings, lists,
and dictionaries) by serializing them into an XML-based format.
It resembles the XML-RPC serialization of data types.

Despite being primarily used on Mac OS X, the format
has nothing Mac-specific about it and the Python implementation works
on any platform that Python supports, so the plistlib module
has been promoted to the standard library.

Using the module is simple:

import sys
import plistlib
import datetime

Create data structure
data_struct = dict(lastAccessed=datetime.datetime.now(),
 version=1,
 categories=('Personal','Shared','Private'))

Create string containing XML.
plist_str = plistlib.writePlistToString(data_struct)
new_struct = plistlib.readPlistFromString(plist_str)
print data_struct
print new_struct

Write data structure to a file and read it back.
plistlib.writePlist(data_struct, '/tmp/customizations.plist')
new_struct = plistlib.readPlist('/tmp/customizations.plist')

read/writePlist accepts file-like objects as well as paths.
plistlib.writePlist(data_struct, sys.stdout)

ctypes Enhancements

Thomas Heller continued to maintain and enhance the
ctypes module.

ctypes now supports a c_bool datatype
that represents the C99 bool type. (Contributed by David Remahl;
bpo-1649190 [https://bugs.python.org/issue1649190].)

The ctypes string, buffer and array types have improved
support for extended slicing syntax,
where various combinations of (start, stop, step) are supplied.
(Implemented by Thomas Wouters.)

All ctypes data types now support
from_buffer() and from_buffer_copy()
methods that create a ctypes instance based on a
provided buffer object. from_buffer_copy() copies
the contents of the object,
while from_buffer() will share the same memory area.

A new calling convention tells ctypes to clear the errno or
Win32 LastError variables at the outset of each wrapped call.
(Implemented by Thomas Heller; bpo-1798 [https://bugs.python.org/issue1798].)

You can now retrieve the Unix errno variable after a function
call. When creating a wrapped function, you can supply
use_errno=True as a keyword parameter to the DLL() function
and then call the module-level methods set_errno() and
get_errno() to set and retrieve the error value.

The Win32 LastError variable is similarly supported by
the DLL(), OleDLL(), and WinDLL() functions.
You supply use_last_error=True as a keyword parameter
and then call the module-level methods set_last_error()
and get_last_error().

The byref() function, used to retrieve a pointer to a ctypes
instance, now has an optional offset parameter that is a byte
count that will be added to the returned pointer.

Improved SSL Support

Bill Janssen made extensive improvements to Python 2.6's support for
the Secure Sockets Layer by adding a new module, ssl, that's
built atop the OpenSSL [https://www.openssl.org/] library.
This new module provides more control over the protocol negotiated,
the X.509 certificates used, and has better support for writing SSL
servers (as opposed to clients) in Python. The existing SSL support
in the socket module hasn't been removed and continues to work,
though it will be removed in Python 3.0.

To use the new module, you must first create a TCP connection in the
usual way and then pass it to the ssl.wrap_socket() function.
It's possible to specify whether a certificate is required, and to
obtain certificate info by calling the getpeercert() method.

参见

ssl 模块的文档。

Deprecations and Removals

	String exceptions have been removed. Attempting to use them raises a
TypeError.

	Changes to the Exception interface
as dictated by PEP 352 [https://www.python.org/dev/peps/pep-0352] continue to be made. For 2.6,
the message attribute is being deprecated in favor of the
args attribute.

	(3.0-warning mode) Python 3.0 will feature a reorganized standard
library that will drop many outdated modules and rename others.
Python 2.6 running in 3.0-warning mode will warn about these modules
when they are imported.

The list of deprecated modules is:
audiodev,
bgenlocations,
buildtools,
bundlebuilder,
Canvas,
compiler,
dircache,
dl,
fpformat,
gensuitemodule,
ihooks,
imageop,
imgfile,
linuxaudiodev,
mhlib,
mimetools,
multifile,
new,
pure,
statvfs,
sunaudiodev,
test.testall, and
toaiff.

	gopherlib 模块已被移除。

	The MimeWriter module and mimify module
have been deprecated; use the email
package instead.

	The md5 module has been deprecated; use the hashlib module
instead.

	The posixfile module has been deprecated; fcntl.lockf()
provides better locking.

	The popen2 module has been deprecated; use the subprocess
module.

	rgbimg 模块已被移除。

	The sets module has been deprecated; it's better to
use the built-in set and frozenset types.

	The sha module has been deprecated; use the hashlib module
instead.

构建和 C API 的改变

Changes to Python's build process and to the C API include:

	Python now must be compiled with C89 compilers (after 19
years!). This means that the Python source tree has dropped its
own implementations of memmove() and strerror(), which
are in the C89 standard library.

	Python 2.6 can be built with Microsoft Visual Studio 2008 (version
9.0), and this is the new default compiler. See the
PCbuild directory for the build files. (Implemented by
Christian Heimes.)

	On Mac OS X, Python 2.6 can be compiled as a 4-way universal build.
The configure script
can take a --with-universal-archs=[32-bit|64-bit|all]
switch, controlling whether the binaries are built for 32-bit
architectures (x86, PowerPC), 64-bit (x86-64 and PPC-64), or both.
(Contributed by Ronald Oussoren.)

	The BerkeleyDB module now has a C API object, available as
bsddb.db.api. This object can be used by other C extensions
that wish to use the bsddb module for their own purposes.
(Contributed by Duncan Grisby.)

	The new buffer interface, previously described in
the PEP 3118 section,
adds PyObject_GetBuffer() and PyBuffer_Release(),
as well as a few other functions.

	Python's use of the C stdio library is now thread-safe, or at least
as thread-safe as the underlying library is. A long-standing potential
bug occurred if one thread closed a file object while another thread
was reading from or writing to the object. In 2.6 file objects
have a reference count, manipulated by the
PyFile_IncUseCount() and PyFile_DecUseCount()
functions. File objects can't be closed unless the reference count
is zero. PyFile_IncUseCount() should be called while the GIL
is still held, before carrying out an I/O operation using the
FILE * pointer, and PyFile_DecUseCount() should be called
immediately after the GIL is re-acquired.
(Contributed by Antoine Pitrou and Gregory P. Smith.)

	Importing modules simultaneously in two different threads no longer
deadlocks; it will now raise an ImportError. A new API
function, PyImport_ImportModuleNoBlock(), will look for a
module in sys.modules first, then try to import it after
acquiring an import lock. If the import lock is held by another
thread, an ImportError is raised.
(Contributed by Christian Heimes.)

	Several functions return information about the platform's
floating-point support. PyFloat_GetMax() returns
the maximum representable floating point value,
and PyFloat_GetMin() returns the minimum
positive value. PyFloat_GetInfo() returns an object
containing more information from the float.h file, such as
"mant_dig" (number of digits in the mantissa), "epsilon"
(smallest difference between 1.0 and the next largest value
representable), and several others.
(Contributed by Christian Heimes; bpo-1534 [https://bugs.python.org/issue1534].)

	C functions and methods that use
PyComplex_AsCComplex() will now accept arguments that
have a __complex__() method. In particular, the functions in the
cmath module will now accept objects with this method.
This is a backport of a Python 3.0 change.
(Contributed by Mark Dickinson; bpo-1675423 [https://bugs.python.org/issue1675423].)

	Python's C API now includes two functions for case-insensitive string
comparisons, PyOS_stricmp(char*, char*)
and PyOS_strnicmp(char*, char*, Py_ssize_t).
(Contributed by Christian Heimes; bpo-1635 [https://bugs.python.org/issue1635].)

	Many C extensions define their own little macro for adding
integers and strings to the module's dictionary in the
init* function. Python 2.6 finally defines standard macros
for adding values to a module, PyModule_AddStringMacro
and PyModule_AddIntMacro(). (Contributed by
Christian Heimes.)

	Some macros were renamed in both 3.0 and 2.6 to make it clearer that
they are macros,
not functions. Py_Size() became Py_SIZE(),
Py_Type() became Py_TYPE(), and
Py_Refcnt() became Py_REFCNT().
The mixed-case macros are still available
in Python 2.6 for backward compatibility.
(bpo-1629 [https://bugs.python.org/issue1629])

	Distutils now places C extensions it builds in a
different directory when running on a debug version of Python.
(Contributed by Collin Winter; bpo-1530959 [https://bugs.python.org/issue1530959].)

	Several basic data types, such as integers and strings, maintain
internal free lists of objects that can be re-used. The data
structures for these free lists now follow a naming convention: the
variable is always named free_list, the counter is always named
numfree, and a macro Py<typename>_MAXFREELIST is
always defined.

	A new Makefile target, "make patchcheck", prepares the Python source tree
for making a patch: it fixes trailing whitespace in all modified
.py files, checks whether the documentation has been changed,
and reports whether the Misc/ACKS and Misc/NEWS files
have been updated.
(Contributed by Brett Cannon.)

Another new target, "make profile-opt", compiles a Python binary
using GCC's profile-guided optimization. It compiles Python with
profiling enabled, runs the test suite to obtain a set of profiling
results, and then compiles using these results for optimization.
(Contributed by Gregory P. Smith.)

特定于端口的更改：Windows

	The support for Windows 95, 98, ME and NT4 has been dropped.
Python 2.6 requires at least Windows 2000 SP4.

	The new default compiler on Windows is Visual Studio 2008 (version
9.0). The build directories for Visual Studio 2003 (version 7.1) and
2005 (version 8.0) were moved into the PC/ directory. The new
PCbuild directory supports cross compilation for X64, debug
builds and Profile Guided Optimization (PGO). PGO builds are roughly
10% faster than normal builds. (Contributed by Christian Heimes
with help from Amaury Forgeot d'Arc and Martin von Löwis.)

	The msvcrt module now supports
both the normal and wide char variants of the console I/O
API. The getwch() function reads a keypress and returns a Unicode
value, as does the getwche() function. The putwch() function
takes a Unicode character and writes it to the console.
(Contributed by Christian Heimes.)

	os.path.expandvars() will now expand environment variables in
the form "%var%", and "~user" will be expanded into the user's home
directory path. (Contributed by Josiah Carlson; bpo-957650 [https://bugs.python.org/issue957650].)

	The socket module's socket objects now have an
ioctl() method that provides a limited interface to the
WSAIoctl() system interface.

	The _winreg module now has a function,
ExpandEnvironmentStrings(),
that expands environment variable references such as %NAME%
in an input string. The handle objects provided by this
module now support the context protocol, so they can be used
in with statements. (Contributed by Christian Heimes.)

_winreg also has better support for x64 systems,
exposing the DisableReflectionKey(), EnableReflectionKey(),
and QueryReflectionKey() functions, which enable and disable
registry reflection for 32-bit processes running on 64-bit systems.
(bpo-1753245 [https://bugs.python.org/issue1753245])

	The msilib module's Record object
gained GetInteger() and GetString() methods that
return field values as an integer or a string.
(Contributed by Floris Bruynooghe; bpo-2125 [https://bugs.python.org/issue2125].)

特定于端口的更改：Mac OS X

	现在，在编译Python的框架版本时，可以为 configure 脚本添加 --with-framework-name= 选项来指定要使用的框架名称。

	macfs 模块已被删除。这反过来要求删除 macostools.touched() 函数，因为它依赖于 macfs 模块。 (bpo-1490190 [https://bugs.python.org/issue1490190])

	许多其他 Mac OS 模块已弃用并将在 Python 3.0 中被删除: _builtinSuites, aepack, aetools, aetypes, applesingle, appletrawmain, appletrunner, argvemulator, Audio_mac, autoGIL, Carbon, cfmfile, CodeWarrior, ColorPicker, EasyDialogs, Explorer, Finder, FrameWork, findertools, ic, icglue, icopen, macerrors, MacOS, macfs, macostools, macresource, MiniAEFrame, Nav, Netscape, OSATerminology, pimp, PixMapWrapper, StdSuites, SystemEvents, Terminal 和 terminalcommand。

特定于端口的更改：IRIX

许多旧的 IRIX 专用模块已被弃用，并将在Python 3.0中删除： al 和 AL, cd, cddb, cdplayer, CL 和 cl, DEVICE, ERRNO, FILE, FL 和 fl, flp, fm, GET, GLWS, GL 和 gl, IN, IOCTL, jpeg, panelparser, readcd, SV 和 sv, torgb, videoreader, 和 WAIT.

移植到Python 2.6

This section lists previously described changes and other bugfixes
that may require changes to your code:

	Classes that aren't supposed to be hashable should
set __hash__ = None in their definitions to indicate
the fact.

	String exceptions have been removed. Attempting to use them raises a
TypeError.

	The __init__() method of collections.deque
now clears any existing contents of the deque
before adding elements from the iterable. This change makes the
behavior match list.__init__().

	object.__init__() previously accepted arbitrary arguments and
keyword arguments, ignoring them. In Python 2.6, this is no longer
allowed and will result in a TypeError. This will affect
__init__() methods that end up calling the corresponding
method on object (perhaps through using super()).
See bpo-1683368 [https://bugs.python.org/issue1683368] for discussion.

	The Decimal constructor now accepts leading and trailing
whitespace when passed a string. Previously it would raise an
InvalidOperation exception. On the other hand, the
create_decimal() method of Context objects now
explicitly disallows extra whitespace, raising a
ConversionSyntax exception.

	Due to an implementation accident, if you passed a file path to
the built-in __import__() function, it would actually import
the specified file. This was never intended to work, however, and
the implementation now explicitly checks for this case and raises
an ImportError.

	C API: the PyImport_Import() and PyImport_ImportModule()
functions now default to absolute imports, not relative imports.
This will affect C extensions that import other modules.

	C API: extension data types that shouldn't be hashable
should define their tp_hash slot to
PyObject_HashNotImplemented().

	The socket module exception socket.error now inherits
from IOError. Previously it wasn't a subclass of
StandardError but now it is, through IOError.
(Implemented by Gregory P. Smith; bpo-1706815 [https://bugs.python.org/issue1706815].)

	The xmlrpclib module no longer automatically converts
datetime.date and datetime.time to the
xmlrpclib.DateTime type; the conversion semantics were
not necessarily correct for all applications. Code using
xmlrpclib should convert date and time
instances. (bpo-1330538 [https://bugs.python.org/issue1330538])

	(3.0-warning mode) The Exception class now warns
when accessed using slicing or index access; having
Exception behave like a tuple is being phased out.

	(3.0-warning mode) inequality comparisons between two dictionaries
or two objects that don't implement comparison methods are reported
as warnings. dict1 == dict2 still works, but dict1 < dict2
is being phased out.

Comparisons between cells, which are an implementation detail of Python's
scoping rules, also cause warnings because such comparisons are forbidden
entirely in 3.0.

致谢

作者感谢以下人员对本文各种草稿给予的建议，更正和协助： Georg Brandl, Steve Brown, Nick Coghlan, Ralph Corderoy, Jim Jewett, Kent Johnson, Chris Lambacher, Martin Michlmayr, Antoine Pitrou, Brian Warner.

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 2.5 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 2.5 有什么新变化

	作者

	A.M. Kuchling

This article explains the new features in Python 2.5. The final release of
Python 2.5 is scheduled for August 2006; PEP 356 [https://www.python.org/dev/peps/pep-0356] describes the planned
release schedule.

The changes in Python 2.5 are an interesting mix of language and library
improvements. The library enhancements will be more important to Python's user
community, I think, because several widely-useful packages were added. New
modules include ElementTree for XML processing (xml.etree),
the SQLite database module (sqlite), and the ctypes
module for calling C functions.

The language changes are of middling significance. Some pleasant new features
were added, but most of them aren't features that you'll use every day.
Conditional expressions were finally added to the language using a novel syntax;
see section PEP 308: 条件表达式. The new 'with' statement will make
writing cleanup code easier (section PEP 343: "with" 语句). Values can now be passed
into generators (section PEP 342: 生成器的新特性). Imports are now visible as either
absolute or relative (section PEP 328: 绝对导入和相对导入). Some corner cases of exception
handling are handled better (section PEP 341: 统一 try/except/finally). All these improvements
are worthwhile, but they're improvements to one specific language feature or
another; none of them are broad modifications to Python's semantics.

As well as the language and library additions, other improvements and bugfixes
were made throughout the source tree. A search through the SVN change logs
finds there were 353 patches applied and 458 bugs fixed between Python 2.4 and
2.5. (Both figures are likely to be underestimates.)

This article doesn't try to be a complete specification of the new features;
instead changes are briefly introduced using helpful examples. For full
details, you should always refer to the documentation for Python 2.5 at
https://docs.python.org. If you want to understand the complete implementation
and design rationale, refer to the PEP for a particular new feature.

Comments, suggestions, and error reports for this document are welcome; please
e-mail them to the author or open a bug in the Python bug tracker.

PEP 308: 条件表达式

For a long time, people have been requesting a way to write conditional
expressions, which are expressions that return value A or value B depending on
whether a Boolean value is true or false. A conditional expression lets you
write a single assignment statement that has the same effect as the following:

if condition:
 x = true_value
else:
 x = false_value

There have been endless tedious discussions of syntax on both python-dev and
comp.lang.python. A vote was even held that found the majority of voters wanted
conditional expressions in some form, but there was no syntax that was preferred
by a clear majority. Candidates included C's cond ? true_v : false_v, if
cond then true_v else false_v, and 16 other variations.

Guido van Rossum 最终选择了一种令人惊讶的语法：

x = true_value if condition else false_value

Evaluation is still lazy as in existing Boolean expressions, so the order of
evaluation jumps around a bit. The condition expression in the middle is
evaluated first, and the true_value expression is evaluated only if the
condition was true. Similarly, the false_value expression is only evaluated
when the condition is false.

This syntax may seem strange and backwards; why does the condition go in the
middle of the expression, and not in the front as in C's c ? x : y? The
decision was checked by applying the new syntax to the modules in the standard
library and seeing how the resulting code read. In many cases where a
conditional expression is used, one value seems to be the 'common case' and one
value is an 'exceptional case', used only on rarer occasions when the condition
isn't met. The conditional syntax makes this pattern a bit more obvious:

contents = ((doc + '\n') if doc else '')

I read the above statement as meaning "here contents is usually assigned a
value of doc+'\n'; sometimes doc is empty, in which special case an empty
string is returned." I doubt I will use conditional expressions very often
where there isn't a clear common and uncommon case.

There was some discussion of whether the language should require surrounding
conditional expressions with parentheses. The decision was made to not
require parentheses in the Python language's grammar, but as a matter of style I
think you should always use them. Consider these two statements:

First version -- no parens
level = 1 if logging else 0

Second version -- with parens
level = (1 if logging else 0)

In the first version, I think a reader's eye might group the statement into
'level = 1', 'if logging', 'else 0', and think that the condition decides
whether the assignment to level is performed. The second version reads
better, in my opinion, because it makes it clear that the assignment is always
performed and the choice is being made between two values.

Another reason for including the brackets: a few odd combinations of list
comprehensions and lambdas could look like incorrect conditional expressions.
See PEP 308 [https://www.python.org/dev/peps/pep-0308] for some examples. If you put parentheses around your
conditional expressions, you won't run into this case.

参见

	PEP 308 [https://www.python.org/dev/peps/pep-0308] - 条件表达式
	PEP 由 Guido van Rossum 和 Raymond D 撰写，由 Thomas Wouters 实现。

PEP 309: 部分功能应用

The functools module is intended to contain tools for functional-style
programming.

One useful tool in this module is the partial() function. For programs
written in a functional style, you'll sometimes want to construct variants of
existing functions that have some of the parameters filled in. Consider a
Python function f(a, b, c); you could create a new function g(b, c) that
was equivalent to f(1, b, c). This is called "partial function
application".

partial() takes the arguments (function, arg1, arg2, ... kwarg1=value1,
kwarg2=value2). The resulting object is callable, so you can just call it to
invoke function with the filled-in arguments.

这里有一个很小但很现实的例子:

import functools

def log (message, subsystem):
 "Write the contents of 'message' to the specified subsystem."
 print '%s: %s' % (subsystem, message)
 ...

server_log = functools.partial(log, subsystem='server')
server_log('Unable to open socket')

Here's another example, from a program that uses PyGTK. Here a context-sensitive
pop-up menu is being constructed dynamically. The callback provided
for the menu option is a partially applied version of the open_item()
method, where the first argument has been provided.

...
class Application:
 def open_item(self, path):
 ...
 def init (self):
 open_func = functools.partial(self.open_item, item_path)
 popup_menu.append(("Open", open_func, 1))

Another function in the functools module is the
update_wrapper(wrapper, wrapped) function that helps you write
well-behaved decorators. update_wrapper() copies the name, module, and
docstring attribute to a wrapper function so that tracebacks inside the wrapped
function are easier to understand. For example, you might write:

def my_decorator(f):
 def wrapper(*args, **kwds):
 print 'Calling decorated function'
 return f(*args, **kwds)
 functools.update_wrapper(wrapper, f)
 return wrapper

wraps() is a decorator that can be used inside your own decorators to copy
the wrapped function's information. An alternate version of the previous
example would be:

def my_decorator(f):
 @functools.wraps(f)
 def wrapper(*args, **kwds):
 print 'Calling decorated function'
 return f(*args, **kwds)
 return wrapper

参见

	PEP 309 [https://www.python.org/dev/peps/pep-0309] - Partial Function Application
	PEP由 Peter Harris 提出并撰写；由 Hye-Shik Chang 和 Nick Coghlan 实现，并由 Raymond Hettinger 适配。

PEP 314: Python软件包的元数据 v1.1

Some simple dependency support was added to Distutils. The setup()
function now has requires, provides, and obsoletes keyword
parameters. When you build a source distribution using the sdist command,
the dependency information will be recorded in the PKG-INFO file.

Another new keyword parameter is download_url, which should be set to a URL
for the package's source code. This means it's now possible to look up an entry
in the package index, determine the dependencies for a package, and download the
required packages.

VERSION = '1.0'
setup(name='PyPackage',
 version=VERSION,
 requires=['numarray', 'zlib (>=1.1.4)'],
 obsoletes=['OldPackage']
 download_url=('http://www.example.com/pypackage/dist/pkg-%s.tar.gz'
 % VERSION),
)

Another new enhancement to the Python package index at
https://pypi.org is storing source and binary archives for a
package. The new upload Distutils command will upload a package to
the repository.

Before a package can be uploaded, you must be able to build a distribution using
the sdist Distutils command. Once that works, you can run python
setup.py upload to add your package to the PyPI archive. Optionally you can
GPG-sign the package by supplying the --sign and --identity
options.

Package uploading was implemented by Martin von Löwis and Richard Jones.

参见

	PEP 314 [https://www.python.org/dev/peps/pep-0314] - Python软件包的元数据 v1.1
	PEP 由 A.M. Kuchling, Richard Jones 和 Fred Drake 提出并撰写，由 Richard Jones 和 Fred Drake 实现

PEP 328: 绝对导入和相对导入

The simpler part of PEP 328 was implemented in Python 2.4: parentheses could now
be used to enclose the names imported from a module using the from ... import
... statement, making it easier to import many different names.

The more complicated part has been implemented in Python 2.5: importing a module
can be specified to use absolute or package-relative imports. The plan is to
move toward making absolute imports the default in future versions of Python.

Let's say you have a package directory like this:

pkg/
pkg/__init__.py
pkg/main.py
pkg/string.py

This defines a package named pkg containing the pkg.main and
pkg.string submodules.

Consider the code in the main.py module. What happens if it executes
the statement import string? In Python 2.4 and earlier, it will first look
in the package's directory to perform a relative import, finds
pkg/string.py, imports the contents of that file as the
pkg.string module, and that module is bound to the name string in the
pkg.main module's namespace.

That's fine if pkg.string was what you wanted. But what if you wanted
Python's standard string module? There's no clean way to ignore
pkg.string and look for the standard module; generally you had to look at
the contents of sys.modules, which is slightly unclean. Holger Krekel's
py.std package provides a tidier way to perform imports from the standard
library, import py; py.std.string.join(), but that package isn't available
on all Python installations.

Reading code which relies on relative imports is also less clear, because a
reader may be confused about which module, string or pkg.string,
is intended to be used. Python users soon learned not to duplicate the names of
standard library modules in the names of their packages' submodules, but you
can't protect against having your submodule's name being used for a new module
added in a future version of Python.

In Python 2.5, you can switch import's behaviour to absolute imports
using a from __future__ import absolute_import directive. This absolute-import
behaviour will become the default in a future version (probably Python
2.7). Once absolute imports are the default, import string will always
find the standard library's version. It's suggested that users should begin
using absolute imports as much as possible, so it's preferable to begin writing
from pkg import string in your code.

Relative imports are still possible by adding a leading period to the module
name when using the from ... import form:

Import names from pkg.string
from .string import name1, name2
Import pkg.string
from . import string

This imports the string module relative to the current package, so in
pkg.main this will import name1 and name2 from pkg.string.
Additional leading periods perform the relative import starting from the parent
of the current package. For example, code in the A.B.C module can do:

from . import D # Imports A.B.D
from .. import E # Imports A.E
from ..F import G # Imports A.F.G

Leading periods cannot be used with the import modname form of the import
statement, only the from ... import form.

参见

	PEP 328 [https://www.python.org/dev/peps/pep-0328] - 导入：多行和绝对/相对导入
	PEP 由 Aahz 撰写，由 Thomas Wouters 实现。

	https://pylib.readthedocs.io/
	The py library by Holger Krekel, which contains the py.std package.

PEP 338: 将模块作为脚本执行

The -m switch added in Python 2.4 to execute a module as a script
gained a few more abilities. Instead of being implemented in C code inside the
Python interpreter, the switch now uses an implementation in a new module,
runpy.

The runpy module implements a more sophisticated import mechanism so that
it's now possible to run modules in a package such as pychecker.checker.
The module also supports alternative import mechanisms such as the
zipimport module. This means you can add a .zip archive's path to
sys.path and then use the -m switch to execute code from the
archive.

参见

	PEP 338 [https://www.python.org/dev/peps/pep-0338] - 将模块作为脚本执行
	PEP 由 Nick Coghlan 撰写并实现。

PEP 341: 统一 try/except/finally

Until Python 2.5, the try statement came in two flavours. You could
use a finally block to ensure that code is always executed, or one or
more except blocks to catch specific exceptions. You couldn't
combine both except blocks and a finally block, because
generating the right bytecode for the combined version was complicated and it
wasn't clear what the semantics of the combined statement should be.

Guido van Rossum spent some time working with Java, which does support the
equivalent of combining except blocks and a finally block,
and this clarified what the statement should mean. In Python 2.5, you can now
write:

try:
 block-1 ...
except Exception1:
 handler-1 ...
except Exception2:
 handler-2 ...
else:
 else-block
finally:
 final-block

The code in block-1 is executed. If the code raises an exception, the various
except blocks are tested: if the exception is of class
Exception1, handler-1 is executed; otherwise if it's of class
Exception2, handler-2 is executed, and so forth. If no exception is
raised, the else-block is executed.

No matter what happened previously, the final-block is executed once the code
block is complete and any raised exceptions handled. Even if there's an error in
an exception handler or the else-block and a new exception is raised, the code
in the final-block is still run.

参见

	PEP 341 [https://www.python.org/dev/peps/pep-0341] - 统一 try-except 和 try-finally
	PEP 由 Georg Brandl 撰写，由 Thomas Lee 实现。

PEP 342: 生成器的新特性

Python 2.5 adds a simple way to pass values into a generator. As introduced in
Python 2.3, generators only produce output; once a generator's code was invoked
to create an iterator, there was no way to pass any new information into the
function when its execution is resumed. Sometimes the ability to pass in some
information would be useful. Hackish solutions to this include making the
generator's code look at a global variable and then changing the global
variable's value, or passing in some mutable object that callers then modify.

To refresh your memory of basic generators, here's a simple example:

def counter (maximum):
 i = 0
 while i < maximum:
 yield i
 i += 1

When you call counter(10), the result is an iterator that returns the values
from 0 up to 9. On encountering the yield statement, the iterator
returns the provided value and suspends the function's execution, preserving the
local variables. Execution resumes on the following call to the iterator's
next() method, picking up after the yield statement.

In Python 2.3, yield was a statement; it didn't return any value. In
2.5, yield is now an expression, returning a value that can be
assigned to a variable or otherwise operated on:

val = (yield i)

I recommend that you always put parentheses around a yield expression
when you're doing something with the returned value, as in the above example.
The parentheses aren't always necessary, but it's easier to always add them
instead of having to remember when they're needed.

(PEP 342 [https://www.python.org/dev/peps/pep-0342] explains the exact rules, which are that a
yield-expression must always be parenthesized except when it
occurs at the top-level
expression on the right-hand side of an assignment. This means you can write
val = yield i but have to use parentheses when there's an operation, as in
val = (yield i) + 12.)

Values are sent into a generator by calling its send(value) method. The
generator's code is then resumed and the yield expression returns the
specified value. If the regular next() method is called, the
yield returns None.

Here's the previous example, modified to allow changing the value of the
internal counter.

def counter (maximum):
 i = 0
 while i < maximum:
 val = (yield i)
 # If value provided, change counter
 if val is not None:
 i = val
 else:
 i += 1

And here's an example of changing the counter:

>>> it = counter(10)
>>> print it.next()
0
>>> print it.next()
1
>>> print it.send(8)
8
>>> print it.next()
9
>>> print it.next()
Traceback (most recent call last):
 File "t.py", line 15, in ?
 print it.next()
StopIteration

yield will usually return None, so you should always check
for this case. Don't just use its value in expressions unless you're sure that
the send() method will be the only method used to resume your generator
function.

In addition to send(), there are two other new methods on generators:

	throw(type, value=None, traceback=None) is used to raise an exception
inside the generator; the exception is raised by the yield expression
where the generator's execution is paused.

	close() raises a new GeneratorExit exception inside the generator
to terminate the iteration. On receiving this exception, the generator's code
must either raise GeneratorExit or StopIteration. Catching the
GeneratorExit exception and returning a value is illegal and will trigger
a RuntimeError; if the function raises some other exception, that
exception is propagated to the caller. close() will also be called by
Python's garbage collector when the generator is garbage-collected.

If you need to run cleanup code when a GeneratorExit occurs, I suggest
using a try: ... finally: suite instead of catching GeneratorExit.

这些改变的累积效应是，让生成器从单向的信息生产者变成了既是生产者，又是消费者。

Generators also become coroutines, a more generalized form of subroutines.
Subroutines are entered at one point and exited at another point (the top of the
function, and a return statement), but coroutines can be entered,
exited, and resumed at many different points (the yield statements).
We'll have to figure out patterns for using coroutines effectively in Python.

The addition of the close() method has one side effect that isn't obvious.
close() is called when a generator is garbage-collected, so this means the
generator's code gets one last chance to run before the generator is destroyed.
This last chance means that try...finally statements in generators can now
be guaranteed to work; the finally clause will now always get a
chance to run. The syntactic restriction that you couldn't mix yield
statements with a try...finally suite has therefore been removed. This
seems like a minor bit of language trivia, but using generators and
try...finally is actually necessary in order to implement the
with statement described by PEP 343. I'll look at this new statement
in the following section.

Another even more esoteric effect of this change: previously, the
gi_frame attribute of a generator was always a frame object. It's now
possible for gi_frame to be None once the generator has been
exhausted.

参见

	PEP 342 [https://www.python.org/dev/peps/pep-0342] - 通过增强型生成器实现协程
	PEP 由 Guido van Rossum 和 Phillip J. Eby 撰写，由 Phillip J. Eby 实现。包括一些更高级的使用生成器作为协程的示例。

这些功能的早期版本在 PEP 288 [https://www.python.org/dev/peps/pep-0288] （由 Raymond Hettinger 撰写） 和 PEP 325 [https://www.python.org/dev/peps/pep-0325] （由 Samuele Pedroni 撰写）中提出。

	https://en.wikipedia.org/wiki/Coroutine
	协程的Wikipedia条目。

	http://www.sidhe.org/~dan/blog/archives/000178.html
	An explanation of coroutines from a Perl point of view, written by Dan Sugalski.

PEP 343: "with" 语句

The 'with' statement clarifies code that previously would use
try...finally blocks to ensure that clean-up code is executed. In this
section, I'll discuss the statement as it will commonly be used. In the next
section, I'll examine the implementation details and show how to write objects
for use with this statement.

The 'with' statement is a new control-flow structure whose basic
structure is:

with expression [as variable]:
 with-block

The expression is evaluated, and it should result in an object that supports the
context management protocol (that is, has __enter__() and __exit__()
methods.

The object's __enter__() is called before with-block is executed and
therefore can run set-up code. It also may return a value that is bound to the
name variable, if given. (Note carefully that variable is not assigned
the result of expression.)

After execution of the with-block is finished, the object's __exit__()
method is called, even if the block raised an exception, and can therefore run
clean-up code.

To enable the statement in Python 2.5, you need to add the following directive
to your module:

from __future__ import with_statement

该语句在Python 2.6 中始终启用。

Some standard Python objects now support the context management protocol and can
be used with the 'with' statement. File objects are one example:

with open('/etc/passwd', 'r') as f:
 for line in f:
 print line
 ... more processing code ...

After this statement has executed, the file object in f will have been
automatically closed, even if the for loop raised an exception
part-way through the block.

注解

In this case, f is the same object created by open(), because
file.__enter__() returns self.

The threading module's locks and condition variables also support the
'with' statement:

lock = threading.Lock()
with lock:
 # Critical section of code
 ...

The lock is acquired before the block is executed and always released once the
block is complete.

The new localcontext() function in the decimal module makes it easy
to save and restore the current decimal context, which encapsulates the desired
precision and rounding characteristics for computations:

from decimal import Decimal, Context, localcontext

Displays with default precision of 28 digits
v = Decimal('578')
print v.sqrt()

with localcontext(Context(prec=16)):
 # All code in this block uses a precision of 16 digits.
 # The original context is restored on exiting the block.
 print v.sqrt()

Writing Context Managers

Under the hood, the 'with' statement is fairly complicated. Most
people will only use 'with' in company with existing objects and
don't need to know these details, so you can skip the rest of this section if
you like. Authors of new objects will need to understand the details of the
underlying implementation and should keep reading.

A high-level explanation of the context management protocol is:

	The expression is evaluated and should result in an object called a "context
manager". The context manager must have __enter__() and __exit__()
methods.

	The context manager's __enter__() method is called. The value returned
is assigned to VAR. If no 'as VAR' clause is present, the value is simply
discarded.

	The code in BLOCK is executed.

	If BLOCK raises an exception, the __exit__(type, value, traceback)
is called with the exception details, the same values returned by
sys.exc_info(). The method's return value controls whether the exception
is re-raised: any false value re-raises the exception, and True will result
in suppressing it. You'll only rarely want to suppress the exception, because
if you do the author of the code containing the 'with' statement will
never realize anything went wrong.

	If BLOCK didn't raise an exception, the __exit__() method is still
called, but type, value, and traceback are all None.

Let's think through an example. I won't present detailed code but will only
sketch the methods necessary for a database that supports transactions.

(For people unfamiliar with database terminology: a set of changes to the
database are grouped into a transaction. Transactions can be either committed,
meaning that all the changes are written into the database, or rolled back,
meaning that the changes are all discarded and the database is unchanged. See
any database textbook for more information.)

Let's assume there's an object representing a database connection. Our goal will
be to let the user write code like this:

db_connection = DatabaseConnection()
with db_connection as cursor:
 cursor.execute('insert into ...')
 cursor.execute('delete from ...')
 # ... more operations ...

The transaction should be committed if the code in the block runs flawlessly or
rolled back if there's an exception. Here's the basic interface for
DatabaseConnection that I'll assume:

class DatabaseConnection:
 # Database interface
 def cursor (self):
 "Returns a cursor object and starts a new transaction"
 def commit (self):
 "Commits current transaction"
 def rollback (self):
 "Rolls back current transaction"

The __enter__() method is pretty easy, having only to start a new
transaction. For this application the resulting cursor object would be a useful
result, so the method will return it. The user can then add as cursor to
their 'with' statement to bind the cursor to a variable name.

class DatabaseConnection:
 ...
 def __enter__ (self):
 # Code to start a new transaction
 cursor = self.cursor()
 return cursor

The __exit__() method is the most complicated because it's where most of
the work has to be done. The method has to check if an exception occurred. If
there was no exception, the transaction is committed. The transaction is rolled
back if there was an exception.

In the code below, execution will just fall off the end of the function,
returning the default value of None. None is false, so the exception
will be re-raised automatically. If you wished, you could be more explicit and
add a return statement at the marked location.

class DatabaseConnection:
 ...
 def __exit__ (self, type, value, tb):
 if tb is None:
 # No exception, so commit
 self.commit()
 else:
 # Exception occurred, so rollback.
 self.rollback()
 # return False

contextlib 模块

The new contextlib module provides some functions and a decorator that
are useful for writing objects for use with the 'with' statement.

The decorator is called contextmanager(), and lets you write a single
generator function instead of defining a new class. The generator should yield
exactly one value. The code up to the yield will be executed as the
__enter__() method, and the value yielded will be the method's return
value that will get bound to the variable in the 'with' statement's
as clause, if any. The code after the yield will be
executed in the __exit__() method. Any exception raised in the block will
be raised by the yield statement.

Our database example from the previous section could be written using this
decorator as:

from contextlib import contextmanager

@contextmanager
def db_transaction (connection):
 cursor = connection.cursor()
 try:
 yield cursor
 except:
 connection.rollback()
 raise
 else:
 connection.commit()

db = DatabaseConnection()
with db_transaction(db) as cursor:
 ...

The contextlib module also has a nested(mgr1, mgr2, ...) function
that combines a number of context managers so you don't need to write nested
'with' statements. In this example, the single 'with'
statement both starts a database transaction and acquires a thread lock:

lock = threading.Lock()
with nested (db_transaction(db), lock) as (cursor, locked):
 ...

Finally, the closing(object) function returns object so that it can be
bound to a variable, and calls object.close at the end of the block.

import urllib, sys
from contextlib import closing

with closing(urllib.urlopen('http://www.yahoo.com')) as f:
 for line in f:
 sys.stdout.write(line)

参见

	PEP 343 [https://www.python.org/dev/peps/pep-0343] - "with" 语句
	PEP written by Guido van Rossum and Nick Coghlan; implemented by Mike Bland,
Guido van Rossum, and Neal Norwitz. The PEP shows the code generated for a
'with' statement, which can be helpful in learning how the statement
works.

contextlib 模块的文档。

PEP 352: 异常作为新型的类

Exception classes can now be new-style classes, not just classic classes, and
the built-in Exception class and all the standard built-in exceptions
(NameError, ValueError, etc.) are now new-style classes.

The inheritance hierarchy for exceptions has been rearranged a bit. In 2.5, the
inheritance relationships are:

BaseException # New in Python 2.5
|- KeyboardInterrupt
|- SystemExit
|- Exception
 |- (all other current built-in exceptions)

This rearrangement was done because people often want to catch all exceptions
that indicate program errors. KeyboardInterrupt and SystemExit
aren't errors, though, and usually represent an explicit action such as the user
hitting Control-C or code calling sys.exit(). A bare except: will
catch all exceptions, so you commonly need to list KeyboardInterrupt and
SystemExit in order to re-raise them. The usual pattern is:

try:
 ...
except (KeyboardInterrupt, SystemExit):
 raise
except:
 # Log error...
 # Continue running program...

In Python 2.5, you can now write except Exception to achieve the same
result, catching all the exceptions that usually indicate errors but leaving
KeyboardInterrupt and SystemExit alone. As in previous versions,
a bare except: still catches all exceptions.

The goal for Python 3.0 is to require any class raised as an exception to derive
from BaseException or some descendant of BaseException, and future
releases in the Python 2.x series may begin to enforce this constraint.
Therefore, I suggest you begin making all your exception classes derive from
Exception now. It's been suggested that the bare except: form should
be removed in Python 3.0, but Guido van Rossum hasn't decided whether to do this
or not.

Raising of strings as exceptions, as in the statement raise "Error
occurred", is deprecated in Python 2.5 and will trigger a warning. The aim is
to be able to remove the string-exception feature in a few releases.

参见

	PEP 352 [https://www.python.org/dev/peps/pep-0352] - 异常所需的超类
	PEP 由 Brett Cannon 和 Guido van Rossum 撰写，由 Brett Cannon 实现

PEP 353: 使用ssize_t作为索引类型

A wide-ranging change to Python's C API, using a new Py_ssize_t type
definition instead of int, will permit the interpreter to handle more
data on 64-bit platforms. This change doesn't affect Python's capacity on 32-bit
platforms.

Various pieces of the Python interpreter used C's int type to store
sizes or counts; for example, the number of items in a list or tuple were stored
in an int. The C compilers for most 64-bit platforms still define
int as a 32-bit type, so that meant that lists could only hold up to
2**31 - 1 = 2147483647 items. (There are actually a few different
programming models that 64-bit C compilers can use -- see
http://www.unix.org/version2/whatsnew/lp64_wp.html for a discussion -- but the
most commonly available model leaves int as 32 bits.)

A limit of 2147483647 items doesn't really matter on a 32-bit platform because
you'll run out of memory before hitting the length limit. Each list item
requires space for a pointer, which is 4 bytes, plus space for a
PyObject representing the item. 2147483647*4 is already more bytes
than a 32-bit address space can contain.

It's possible to address that much memory on a 64-bit platform, however. The
pointers for a list that size would only require 16 GiB of space, so it's not
unreasonable that Python programmers might construct lists that large.
Therefore, the Python interpreter had to be changed to use some type other than
int, and this will be a 64-bit type on 64-bit platforms. The change
will cause incompatibilities on 64-bit machines, so it was deemed worth making
the transition now, while the number of 64-bit users is still relatively small.
(In 5 or 10 years, we may all be on 64-bit machines, and the transition would
be more painful then.)

This change most strongly affects authors of C extension modules. Python
strings and container types such as lists and tuples now use
Py_ssize_t to store their size. Functions such as
PyList_Size() now return Py_ssize_t. Code in extension modules
may therefore need to have some variables changed to Py_ssize_t.

The PyArg_ParseTuple() and Py_BuildValue() functions have a new
conversion code, n, for Py_ssize_t. PyArg_ParseTuple()'s
s# and t# still output int by default, but you can define the
macro PY_SSIZE_T_CLEAN before including Python.h to make
them return Py_ssize_t.

PEP 353 [https://www.python.org/dev/peps/pep-0353] has a section on conversion guidelines that extension authors should
read to learn about supporting 64-bit platforms.

参见

	PEP 353 [https://www.python.org/dev/peps/pep-0353] - 使用ssize_t作为索引类型
	PEP 由 Martin von Löwis 撰写并实现。

PEP 357: '__index__' 方法

The NumPy developers had a problem that could only be solved by adding a new
special method, __index__(). When using slice notation, as in
[start:stop:step], the values of the start, stop, and step indexes
must all be either integers or long integers. NumPy defines a variety of
specialized integer types corresponding to unsigned and signed integers of 8,
16, 32, and 64 bits, but there was no way to signal that these types could be
used as slice indexes.

Slicing can't just use the existing __int__() method because that method
is also used to implement coercion to integers. If slicing used
__int__(), floating-point numbers would also become legal slice indexes
and that's clearly an undesirable behaviour.

Instead, a new special method called __index__() was added. It takes no
arguments and returns an integer giving the slice index to use. For example:

class C:
 def __index__ (self):
 return self.value

The return value must be either a Python integer or long integer. The
interpreter will check that the type returned is correct, and raises a
TypeError if this requirement isn't met.

A corresponding nb_index slot was added to the C-level
PyNumberMethods structure to let C extensions implement this protocol.
PyNumber_Index(obj) can be used in extension code to call the
__index__() function and retrieve its result.

参见

	PEP 357 [https://www.python.org/dev/peps/pep-0357] - 允许将任何对象用于切片
	PEP 由 Travis Oliphant 撰写并实现。

其他语言特性修改

Here are all of the changes that Python 2.5 makes to the core Python language.

	The dict type has a new hook for letting subclasses provide a default
value when a key isn't contained in the dictionary. When a key isn't found, the
dictionary's __missing__(key) method will be called. This hook is used
to implement the new defaultdict class in the collections
module. The following example defines a dictionary that returns zero for any
missing key:

class zerodict (dict):
 def __missing__ (self, key):
 return 0

d = zerodict({1:1, 2:2})
print d[1], d[2] # Prints 1, 2
print d[3], d[4] # Prints 0, 0

	Both 8-bit and Unicode strings have new partition(sep) and
rpartition(sep) methods that simplify a common use case.

The find(S) method is often used to get an index which is then used to
slice the string and obtain the pieces that are before and after the separator.
partition(sep) condenses this pattern into a single method call that
returns a 3-tuple containing the substring before the separator, the separator
itself, and the substring after the separator. If the separator isn't found,
the first element of the tuple is the entire string and the other two elements
are empty. rpartition(sep) also returns a 3-tuple but starts searching
from the end of the string; the r stands for 'reverse'.

几个例子:

>>> ('http://www.python.org').partition('://')
('http', '://', 'www.python.org')
>>> ('file:/usr/share/doc/index.html').partition('://')
('file:/usr/share/doc/index.html', '', '')
>>> (u'Subject: a quick question').partition(':')
(u'Subject', u':', u' a quick question')
>>> 'www.python.org'.rpartition('.')
('www.python', '.', 'org')
>>> 'www.python.org'.rpartition(':')
('', '', 'www.python.org')

(Implemented by Fredrik Lundh following a suggestion by Raymond Hettinger.)

	The startswith() and endswith() methods of string types now accept
tuples of strings to check for.

def is_image_file (filename):
 return filename.endswith(('.gif', '.jpg', '.tiff'))

(Implemented by Georg Brandl following a suggestion by Tom Lynn.)

	The min() and max() built-in functions gained a key keyword
parameter analogous to the key argument for sort(). This parameter
supplies a function that takes a single argument and is called for every value
in the list; min()/max() will return the element with the
smallest/largest return value from this function. For example, to find the
longest string in a list, you can do:

L = ['medium', 'longest', 'short']
Prints 'longest'
print max(L, key=len)
Prints 'short', because lexicographically 'short' has the largest value
print max(L)

（由 Steven Bethard 和 Raymond Hettinger 贡献。）

	Two new built-in functions, any() and all(), evaluate whether an
iterator contains any true or false values. any() returns True
if any value returned by the iterator is true; otherwise it will return
False. all() returns True only if all of the values
returned by the iterator evaluate as true. (Suggested by Guido van Rossum, and
implemented by Raymond Hettinger.)

	The result of a class's __hash__() method can now be either a long
integer or a regular integer. If a long integer is returned, the hash of that
value is taken. In earlier versions the hash value was required to be a
regular integer, but in 2.5 the id() built-in was changed to always
return non-negative numbers, and users often seem to use id(self) in
__hash__() methods (though this is discouraged).

	ASCII is now the default encoding for modules. It's now a syntax error if a
module contains string literals with 8-bit characters but doesn't have an
encoding declaration. In Python 2.4 this triggered a warning, not a syntax
error. See PEP 263 [https://www.python.org/dev/peps/pep-0263] for how to declare a module's encoding; for example, you
might add a line like this near the top of the source file:

-*- coding: latin1 -*-

	A new warning, UnicodeWarning, is triggered when you attempt to
compare a Unicode string and an 8-bit string that can't be converted to Unicode
using the default ASCII encoding. The result of the comparison is false:

>>> chr(128) == unichr(128) # Can't convert chr(128) to Unicode
__main__:1: UnicodeWarning: Unicode equal comparison failed
 to convert both arguments to Unicode - interpreting them
 as being unequal
False
>>> chr(127) == unichr(127) # chr(127) can be converted
True

Previously this would raise a UnicodeDecodeError exception, but in 2.5
this could result in puzzling problems when accessing a dictionary. If you
looked up unichr(128) and chr(128) was being used as a key, you'd get a
UnicodeDecodeError exception. Other changes in 2.5 resulted in this
exception being raised instead of suppressed by the code in dictobject.c
that implements dictionaries.

Raising an exception for such a comparison is strictly correct, but the change
might have broken code, so instead UnicodeWarning was introduced.

（由 Marc-André Lemburg 实现。）

	One error that Python programmers sometimes make is forgetting to include an
__init__.py module in a package directory. Debugging this mistake can be
confusing, and usually requires running Python with the -v switch to
log all the paths searched. In Python 2.5, a new ImportWarning warning is
triggered when an import would have picked up a directory as a package but no
__init__.py was found. This warning is silently ignored by default;
provide the -Wd option when running the Python executable to display
the warning message. (Implemented by Thomas Wouters.)

	The list of base classes in a class definition can now be empty. As an
example, this is now legal:

class C():
 pass

（由 Brett Cannon 实现。）

交互解释器变更

In the interactive interpreter, quit and exit have long been strings so
that new users get a somewhat helpful message when they try to quit:

>>> quit
'Use Ctrl-D (i.e. EOF) to exit.'

In Python 2.5, quit and exit are now objects that still produce string
representations of themselves, but are also callable. Newbies who try quit()
or exit() will now exit the interpreter as they expect. (Implemented by
Georg Brandl.)

The Python executable now accepts the standard long options --help
and --version; on Windows, it also accepts the /? option
for displaying a help message. (Implemented by Georg Brandl.)

性能优化

Several of the optimizations were developed at the NeedForSpeed sprint, an event
held in Reykjavik, Iceland, from May 21--28 2006. The sprint focused on speed
enhancements to the CPython implementation and was funded by EWT LLC with local
support from CCP Games. Those optimizations added at this sprint are specially
marked in the following list.

	When they were introduced in Python 2.4, the built-in set and
frozenset types were built on top of Python's dictionary type. In 2.5
the internal data structure has been customized for implementing sets, and as a
result sets will use a third less memory and are somewhat faster. (Implemented
by Raymond Hettinger.)

	The speed of some Unicode operations, such as finding substrings, string
splitting, and character map encoding and decoding, has been improved.
(Substring search and splitting improvements were added by Fredrik Lundh and
Andrew Dalke at the NeedForSpeed sprint. Character maps were improved by Walter
Dörwald and Martin von Löwis.)

	The long(str, base) function is now faster on long digit strings
because fewer intermediate results are calculated. The peak is for strings of
around 800--1000 digits where the function is 6 times faster. (Contributed by
Alan McIntyre and committed at the NeedForSpeed sprint.)

	It's now illegal to mix iterating over a file with for line in file and
calling the file object's read()/readline()/readlines()
methods. Iteration uses an internal buffer and the read*() methods
don't use that buffer. Instead they would return the data following the
buffer, causing the data to appear out of order. Mixing iteration and these
methods will now trigger a ValueError from the read*() method.
(Implemented by Thomas Wouters.)

	The struct module now compiles structure format strings into an
internal representation and caches this representation, yielding a 20% speedup.
(Contributed by Bob Ippolito at the NeedForSpeed sprint.)

	The re module got a 1 or 2% speedup by switching to Python's allocator
functions instead of the system's malloc() and free().
(Contributed by Jack Diederich at the NeedForSpeed sprint.)

	The code generator's peephole optimizer now performs simple constant folding
in expressions. If you write something like a = 2+3, the code generator
will do the arithmetic and produce code corresponding to a = 5. (Proposed
and implemented by Raymond Hettinger.)

	Function calls are now faster because code objects now keep the most recently
finished frame (a "zombie frame") in an internal field of the code object,
reusing it the next time the code object is invoked. (Original patch by Michael
Hudson, modified by Armin Rigo and Richard Jones; committed at the NeedForSpeed
sprint.) Frame objects are also slightly smaller, which may improve cache
locality and reduce memory usage a bit. (Contributed by Neal Norwitz.)

	Python's built-in exceptions are now new-style classes, a change that speeds
up instantiation considerably. Exception handling in Python 2.5 is therefore
about 30% faster than in 2.4. (Contributed by Richard Jones, Georg Brandl and
Sean Reifschneider at the NeedForSpeed sprint.)

	Importing now caches the paths tried, recording whether they exist or not so
that the interpreter makes fewer open() and stat() calls on
startup. (Contributed by Martin von Löwis and Georg Brandl.)

新增，改进和删除的模块

The standard library received many enhancements and bug fixes in Python 2.5.
Here's a partial list of the most notable changes, sorted alphabetically by
module name. Consult the Misc/NEWS file in the source tree for a more
complete list of changes, or look through the SVN logs for all the details.

	The audioop module now supports the a-LAW encoding, and the code for
u-LAW encoding has been improved. (Contributed by Lars Immisch.)

	The codecs module gained support for incremental codecs. The
codec.lookup() function now returns a CodecInfo instance instead
of a tuple. CodecInfo instances behave like a 4-tuple to preserve
backward compatibility but also have the attributes encode,
decode, incrementalencoder, incrementaldecoder,
streamwriter, and streamreader. Incremental codecs can receive
input and produce output in multiple chunks; the output is the same as if the
entire input was fed to the non-incremental codec. See the codecs module
documentation for details. (Designed and implemented by Walter Dörwald.)

	The collections module gained a new type, defaultdict, that
subclasses the standard dict type. The new type mostly behaves like a
dictionary but constructs a default value when a key isn't present,
automatically adding it to the dictionary for the requested key value.

The first argument to defaultdict's constructor is a factory function
that gets called whenever a key is requested but not found. This factory
function receives no arguments, so you can use built-in type constructors such
as list() or int(). For example, you can make an index of words
based on their initial letter like this:

words = """Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che la diritta via era smarrita""".lower().split()

index = defaultdict(list)

for w in words:
 init_letter = w[0]
 index[init_letter].append(w)

打印 index 导致以下输出:

defaultdict(<type 'list'>, {'c': ['cammin', 'che'], 'e': ['era'],
 'd': ['del', 'di', 'diritta'], 'm': ['mezzo', 'mi'],
 'l': ['la'], 'o': ['oscura'], 'n': ['nel', 'nostra'],
 'p': ['per'], 's': ['selva', 'smarrita'],
 'r': ['ritrovai'], 'u': ['una'], 'v': ['vita', 'via']}

（由 Guido van Rossum 贡献。）

	The deque double-ended queue type supplied by the collections
module now has a remove(value) method that removes the first occurrence
of value in the queue, raising ValueError if the value isn't found.
(Contributed by Raymond Hettinger.)

	New module: The contextlib module contains helper functions for use
with the new 'with' statement. See section contextlib 模块
for more about this module.

	New module: The cProfile module is a C implementation of the existing
profile module that has much lower overhead. The module's interface is
the same as profile: you run cProfile.run('main()') to profile a
function, can save profile data to a file, etc. It's not yet known if the
Hotshot profiler, which is also written in C but doesn't match the
profile module's interface, will continue to be maintained in future
versions of Python. (Contributed by Armin Rigo.)

Also, the pstats module for analyzing the data measured by the profiler
now supports directing the output to any file object by supplying a stream
argument to the Stats constructor. (Contributed by Skip Montanaro.)

	The csv module, which parses files in comma-separated value format,
received several enhancements and a number of bugfixes. You can now set the
maximum size in bytes of a field by calling the
csv.field_size_limit(new_limit) function; omitting the new_limit
argument will return the currently-set limit. The reader class now has
a line_num attribute that counts the number of physical lines read from
the source; records can span multiple physical lines, so line_num is not
the same as the number of records read.

The CSV parser is now stricter about multi-line quoted fields. Previously, if a
line ended within a quoted field without a terminating newline character, a
newline would be inserted into the returned field. This behavior caused problems
when reading files that contained carriage return characters within fields, so
the code was changed to return the field without inserting newlines. As a
consequence, if newlines embedded within fields are important, the input should
be split into lines in a manner that preserves the newline characters.

（由Skip Montanaro 和 Andrew McNamara 贡献。）

	The datetime class in the datetime module now has a
strptime(string, format) method for parsing date strings, contributed
by Josh Spoerri. It uses the same format characters as time.strptime() and
time.strftime():

from datetime import datetime

ts = datetime.strptime('10:13:15 2006-03-07',
 '%H:%M:%S %Y-%m-%d')

	The SequenceMatcher.get_matching_blocks() method in the difflib
module now guarantees to return a minimal list of blocks describing matching
subsequences. Previously, the algorithm would occasionally break a block of
matching elements into two list entries. (Enhancement by Tim Peters.)

	The doctest module gained a SKIP option that keeps an example from
being executed at all. This is intended for code snippets that are usage
examples intended for the reader and aren't actually test cases.

An encoding parameter was added to the testfile() function and the
DocFileSuite class to specify the file's encoding. This makes it
easier to use non-ASCII characters in tests contained within a docstring.
(Contributed by Bjorn Tillenius.)

	email 包已经升级到 4.0 （由 Barry Warsaw 贡献）

	The fileinput module was made more flexible. Unicode filenames are now
supported, and a mode parameter that defaults to "r" was added to the
input() function to allow opening files in binary or universal
newlines mode. Another new parameter, openhook, lets you use a function
other than open() to open the input files. Once you're iterating over
the set of files, the FileInput object's new fileno() returns
the file descriptor for the currently opened file. (Contributed by Georg
Brandl.)

	In the gc module, the new get_count() function returns a 3-tuple
containing the current collection counts for the three GC generations. This is
accounting information for the garbage collector; when these counts reach a
specified threshold, a garbage collection sweep will be made. The existing
gc.collect() function now takes an optional generation argument of 0, 1,
or 2 to specify which generation to collect. (Contributed by Barry Warsaw.)

	The nsmallest() and nlargest() functions in the heapq
module now support a key keyword parameter similar to the one provided by
the min()/max() functions and the sort() methods. For
example:

>>> import heapq
>>> L = ["short", 'medium', 'longest', 'longer still']
>>> heapq.nsmallest(2, L) # Return two lowest elements, lexicographically
['longer still', 'longest']
>>> heapq.nsmallest(2, L, key=len) # Return two shortest elements
['short', 'medium']

（由 Raymond Hettinger 贡献。）

	The itertools.islice() function now accepts None for the start and
step arguments. This makes it more compatible with the attributes of slice
objects, so that you can now write the following:

s = slice(5) # Create slice object
itertools.islice(iterable, s.start, s.stop, s.step)

（由 Raymond Hettinger 贡献。）

	The format() function in the locale module has been modified and
two new functions were added, format_string() and currency().

The format() function's val parameter could previously be a string as
long as no more than one %char specifier appeared; now the parameter must be
exactly one %char specifier with no surrounding text. An optional monetary
parameter was also added which, if True, will use the locale's rules for
formatting currency in placing a separator between groups of three digits.

To format strings with multiple %char specifiers, use the new
format_string() function that works like format() but also supports
mixing %char specifiers with arbitrary text.

A new currency() function was also added that formats a number according
to the current locale's settings.

（由Georg Brandl 贡献。）

	The mailbox module underwent a massive rewrite to add the capability to
modify mailboxes in addition to reading them. A new set of classes that include
mbox, MH, and Maildir are used to read mailboxes, and
have an add(message) method to add messages, remove(key) to
remove messages, and lock()/unlock() to lock/unlock the mailbox.
The following example converts a maildir-format mailbox into an mbox-format
one:

import mailbox

'factory=None' uses email.Message.Message as the class representing
individual messages.
src = mailbox.Maildir('maildir', factory=None)
dest = mailbox.mbox('/tmp/mbox')

for msg in src:
 dest.add(msg)

(Contributed by Gregory K. Johnson. Funding was provided by Google's 2005
Summer of Code.)

	New module: the msilib module allows creating Microsoft Installer
.msi files and CAB files. Some support for reading the .msi
database is also included. (Contributed by Martin von Löwis.)

	The nis module now supports accessing domains other than the system
default domain by supplying a domain argument to the nis.match() and
nis.maps() functions. (Contributed by Ben Bell.)

	The operator module's itemgetter() and attrgetter()
functions now support multiple fields. A call such as
operator.attrgetter('a', 'b') will return a function that retrieves the
a and b attributes. Combining this new feature with the
sort() method's key parameter lets you easily sort lists using
multiple fields. (Contributed by Raymond Hettinger.)

	The optparse module was updated to version 1.5.1 of the Optik library.
The OptionParser class gained an epilog attribute, a string
that will be printed after the help message, and a destroy() method to
break reference cycles created by the object. (Contributed by Greg Ward.)

	The os module underwent several changes. The stat_float_times
variable now defaults to true, meaning that os.stat() will now return time
values as floats. (This doesn't necessarily mean that os.stat() will
return times that are precise to fractions of a second; not all systems support
such precision.)

Constants named os.SEEK_SET, os.SEEK_CUR, and
os.SEEK_END have been added; these are the parameters to the
os.lseek() function. Two new constants for locking are
os.O_SHLOCK and os.O_EXLOCK.

Two new functions, wait3() and wait4(), were added. They're similar
the waitpid() function which waits for a child process to exit and returns
a tuple of the process ID and its exit status, but wait3() and
wait4() return additional information. wait3() doesn't take a
process ID as input, so it waits for any child process to exit and returns a
3-tuple of process-id, exit-status, resource-usage as returned from the
resource.getrusage() function. wait4(pid) does take a process ID.
(Contributed by Chad J. Schroeder.)

On FreeBSD, the os.stat() function now returns times with nanosecond
resolution, and the returned object now has st_gen and
st_birthtime. The st_flags attribute is also available, if the
platform supports it. (Contributed by Antti Louko and Diego Pettenò.)

	The Python debugger provided by the pdb module can now store lists of
commands to execute when a breakpoint is reached and execution stops. Once
breakpoint #1 has been created, enter commands 1 and enter a series of
commands to be executed, finishing the list with end. The command list can
include commands that resume execution, such as continue or next.
(Contributed by Grégoire Dooms.)

	The pickle and cPickle modules no longer accept a return value
of None from the __reduce__() method; the method must return a tuple
of arguments instead. The ability to return None was deprecated in Python
2.4, so this completes the removal of the feature.

	The pkgutil module, containing various utility functions for finding
packages, was enhanced to support PEP 302's import hooks and now also works for
packages stored in ZIP-format archives. (Contributed by Phillip J. Eby.)

	The pybench benchmark suite by Marc-André Lemburg is now included in the
Tools/pybench directory. The pybench suite is an improvement on the
commonly used pystone.py program because pybench provides a more
detailed measurement of the interpreter's speed. It times particular operations
such as function calls, tuple slicing, method lookups, and numeric operations,
instead of performing many different operations and reducing the result to a
single number as pystone.py does.

	The pyexpat module now uses version 2.0 of the Expat parser.
(Contributed by Trent Mick.)

	The Queue class provided by the Queue module gained two new
methods. join() blocks until all items in the queue have been retrieved
and all processing work on the items have been completed. Worker threads call
the other new method, task_done(), to signal that processing for an item
has been completed. (Contributed by Raymond Hettinger.)

	The old regex and regsub modules, which have been deprecated
ever since Python 2.0, have finally been deleted. Other deleted modules:
statcache, tzparse, whrandom.

	Also deleted: the lib-old directory, which includes ancient modules
such as dircmp and ni, was removed. lib-old wasn't on the
default sys.path, so unless your programs explicitly added the directory to
sys.path, this removal shouldn't affect your code.

	The rlcompleter module is no longer dependent on importing the
readline module and therefore now works on non-Unix platforms. (Patch
from Robert Kiendl.)

	The SimpleXMLRPCServer and DocXMLRPCServer classes now have a
rpc_paths attribute that constrains XML-RPC operations to a limited set
of URL paths; the default is to allow only '/' and '/RPC2'. Setting
rpc_paths to None or an empty tuple disables this path checking.

	The socket module now supports AF_NETLINK sockets on Linux,
thanks to a patch from Philippe Biondi. Netlink sockets are a Linux-specific
mechanism for communications between a user-space process and kernel code; an
introductory article about them is at https://www.linuxjournal.com/article/7356.
In Python code, netlink addresses are represented as a tuple of 2 integers,
(pid, group_mask).

Two new methods on socket objects, recv_into(buffer) and
recvfrom_into(buffer), store the received data in an object that
supports the buffer protocol instead of returning the data as a string. This
means you can put the data directly into an array or a memory-mapped file.

Socket objects also gained getfamily(), gettype(), and
getproto() accessor methods to retrieve the family, type, and protocol
values for the socket.

	New module: the spwd module provides functions for accessing the shadow
password database on systems that support shadow passwords.

	The struct is now faster because it compiles format strings into
Struct objects with pack() and unpack() methods. This is
similar to how the re module lets you create compiled regular expression
objects. You can still use the module-level pack() and unpack()
functions; they'll create Struct objects and cache them. Or you can
use Struct instances directly:

s = struct.Struct('ih3s')

data = s.pack(1972, 187, 'abc')
year, number, name = s.unpack(data)

You can also pack and unpack data to and from buffer objects directly using the
pack_into(buffer, offset, v1, v2, ...) and unpack_from(buffer,
offset) methods. This lets you store data directly into an array or a
memory-mapped file.

(Struct objects were implemented by Bob Ippolito at the NeedForSpeed
sprint. Support for buffer objects was added by Martin Blais, also at the
NeedForSpeed sprint.)

	The Python developers switched from CVS to Subversion during the 2.5
development process. Information about the exact build version is available as
the sys.subversion variable, a 3-tuple of (interpreter-name, branch-name,
revision-range). For example, at the time of writing my copy of 2.5 was
reporting ('CPython', 'trunk', '45313:45315').

This information is also available to C extensions via the
Py_GetBuildInfo() function that returns a string of build information
like this: "trunk:45355:45356M, Apr 13 2006, 07:42:19". (Contributed by
Barry Warsaw.)

	Another new function, sys._current_frames(), returns the current stack
frames for all running threads as a dictionary mapping thread identifiers to the
topmost stack frame currently active in that thread at the time the function is
called. (Contributed by Tim Peters.)

	The TarFile class in the tarfile module now has an
extractall() method that extracts all members from the archive into the
current working directory. It's also possible to set a different directory as
the extraction target, and to unpack only a subset of the archive's members.

The compression used for a tarfile opened in stream mode can now be autodetected
using the mode 'r|*'. (Contributed by Lars Gustäbel.)

	The threading module now lets you set the stack size used when new
threads are created. The stack_size([*size*]) function returns the
currently configured stack size, and supplying the optional size parameter
sets a new value. Not all platforms support changing the stack size, but
Windows, POSIX threading, and OS/2 all do. (Contributed by Andrew MacIntyre.)

	The unicodedata module has been updated to use version 4.1.0 of the
Unicode character database. Version 3.2.0 is required by some specifications,
so it's still available as unicodedata.ucd_3_2_0.

	New module: the uuid module generates universally unique identifiers
(UUIDs) according to RFC 4122 [https://tools.ietf.org/html/rfc4122.html]. The RFC defines several different UUID
versions that are generated from a starting string, from system properties, or
purely randomly. This module contains a UUID class and functions
named uuid1(), uuid3(), uuid4(), and uuid5() to
generate different versions of UUID. (Version 2 UUIDs are not specified in
RFC 4122 [https://tools.ietf.org/html/rfc4122.html] and are not supported by this module.)

>>> import uuid
>>> # make a UUID based on the host ID and current time
>>> uuid.uuid1()
UUID('a8098c1a-f86e-11da-bd1a-00112444be1e')

>>> # make a UUID using an MD5 hash of a namespace UUID and a name
>>> uuid.uuid3(uuid.NAMESPACE_DNS, 'python.org')
UUID('6fa459ea-ee8a-3ca4-894e-db77e160355e')

>>> # make a random UUID
>>> uuid.uuid4()
UUID('16fd2706-8baf-433b-82eb-8c7fada847da')

>>> # make a UUID using a SHA-1 hash of a namespace UUID and a name
>>> uuid.uuid5(uuid.NAMESPACE_DNS, 'python.org')
UUID('886313e1-3b8a-5372-9b90-0c9aee199e5d')

（由 Ka-Ping Yee 贡献。）

	The weakref module's WeakKeyDictionary and
WeakValueDictionary types gained new methods for iterating over the
weak references contained in the dictionary. iterkeyrefs() and
keyrefs() methods were added to WeakKeyDictionary, and
itervaluerefs() and valuerefs() were added to
WeakValueDictionary. (Contributed by Fred L. Drake, Jr.)

	The webbrowser module received a number of enhancements. It's now
usable as a script with python -m webbrowser, taking a URL as the argument;
there are a number of switches to control the behaviour (-n for a new
browser window, -t for a new tab). New module-level functions,
open_new() and open_new_tab(), were added to support this. The
module's open() function supports an additional feature, an autoraise
parameter that signals whether to raise the open window when possible. A number
of additional browsers were added to the supported list such as Firefox, Opera,
Konqueror, and elinks. (Contributed by Oleg Broytmann and Georg Brandl.)

	The xmlrpclib module now supports returning datetime objects
for the XML-RPC date type. Supply use_datetime=True to the loads()
function or the Unmarshaller class to enable this feature. (Contributed
by Skip Montanaro.)

	The zipfile module now supports the ZIP64 version of the format,
meaning that a .zip archive can now be larger than 4 GiB and can contain
individual files larger than 4 GiB. (Contributed by Ronald Oussoren.)

	The zlib module's Compress and Decompress objects now
support a copy() method that makes a copy of the object's internal state
and returns a new Compress or Decompress object.
(Contributed by Chris AtLee.)

ctypes 包

The ctypes package, written by Thomas Heller, has been added to the
standard library. ctypes lets you call arbitrary functions in shared
libraries or DLLs. Long-time users may remember the dl module, which
provides functions for loading shared libraries and calling functions in them.
The ctypes package is much fancier.

To load a shared library or DLL, you must create an instance of the
CDLL class and provide the name or path of the shared library or DLL.
Once that's done, you can call arbitrary functions by accessing them as
attributes of the CDLL object.

import ctypes

libc = ctypes.CDLL('libc.so.6')
result = libc.printf("Line of output\n")

Type constructors for the various C types are provided: c_int(),
c_float(), c_double(), c_char_p() (equivalent to char
*), and so forth. Unlike Python's types, the C versions are all mutable; you
can assign to their value attribute to change the wrapped value. Python
integers and strings will be automatically converted to the corresponding C
types, but for other types you must call the correct type constructor. (And I
mean must; getting it wrong will often result in the interpreter crashing
with a segmentation fault.)

You shouldn't use c_char_p() with a Python string when the C function will
be modifying the memory area, because Python strings are supposed to be
immutable; breaking this rule will cause puzzling bugs. When you need a
modifiable memory area, use create_string_buffer():

s = "this is a string"
buf = ctypes.create_string_buffer(s)
libc.strfry(buf)

C functions are assumed to return integers, but you can set the restype
attribute of the function object to change this:

>>> libc.atof('2.71828')
-1783957616
>>> libc.atof.restype = ctypes.c_double
>>> libc.atof('2.71828')
2.71828

ctypes also provides a wrapper for Python's C API as the
ctypes.pythonapi object. This object does not release the global
interpreter lock before calling a function, because the lock must be held when
calling into the interpreter's code. There's a py_object() type
constructor that will create a PyObject * pointer. A simple usage:

import ctypes

d = {}
ctypes.pythonapi.PyObject_SetItem(ctypes.py_object(d),
 ctypes.py_object("abc"), ctypes.py_object(1))
d is now {'abc', 1}.

Don't forget to use py_object(); if it's omitted you end up with a
segmentation fault.

ctypes has been around for a while, but people still write and
distribution hand-coded extension modules because you can't rely on
ctypes being present. Perhaps developers will begin to write Python
wrappers atop a library accessed through ctypes instead of extension
modules, now that ctypes is included with core Python.

参见

	http://starship.python.net/crew/theller/ctypes/
	ctypes的主页，含教程， 参考和常见问题解答。

ctypes 模块的文档。

ElementTree 包

A subset of Fredrik Lundh's ElementTree library for processing XML has been
added to the standard library as xml.etree. The available modules are
ElementTree, ElementPath, and ElementInclude from
ElementTree 1.2.6. The cElementTree accelerator module is also
included.

The rest of this section will provide a brief overview of using ElementTree.
Full documentation for ElementTree is available at
http://effbot.org/zone/element-index.htm.

ElementTree represents an XML document as a tree of element nodes. The text
content of the document is stored as the text and tail
attributes of (This is one of the major differences between ElementTree and
the Document Object Model; in the DOM there are many different types of node,
including TextNode.)

The most commonly used parsing function is parse(), that takes either a
string (assumed to contain a filename) or a file-like object and returns an
ElementTree instance:

from xml.etree import ElementTree as ET

tree = ET.parse('ex-1.xml')

feed = urllib.urlopen(
 'http://planet.python.org/rss10.xml')
tree = ET.parse(feed)

Once you have an ElementTree instance, you can call its getroot()
method to get the root Element node.

There's also an XML() function that takes a string literal and returns an
Element node (not an ElementTree). This function provides a
tidy way to incorporate XML fragments, approaching the convenience of an XML
literal:

svg = ET.XML("""<svg width="10px" version="1.0">
 </svg>""")
svg.set('height', '320px')
svg.append(elem1)

Each XML element supports some dictionary-like and some list-like access
methods. Dictionary-like operations are used to access attribute values, and
list-like operations are used to access child nodes.

	运算

	结果：

	elem[n]

	返回第n个子元素

	elem[m:n]

	返回第m至第n个子元素的列表。

	len(elem)

	返回子元素的个数

	list(elem)

	返回子元素的列表

	elem.append(elem2)

	将 elem2 添加为子级。

	elem.insert(index, elem2)

	在指定位置插入 elem2 。

	del elem[n]

	删除第n个子元素

	elem.keys()

	返回属性名称的列表。

	elem.get(name)

	返回 name 属性的值。

	elem.set(name, value)

	为 name 属性设置新值

	elem.attrib

	检索包含属性的字典。

	del elem.attrib[name]

	Deletes 属性 name

Comments and processing instructions are also represented as Element
nodes. To check if a node is a comment or processing instructions:

if elem.tag is ET.Comment:
 ...
elif elem.tag is ET.ProcessingInstruction:
 ...

To generate XML output, you should call the ElementTree.write() method.
Like parse(), it can take either a string or a file-like object:

Encoding is US-ASCII
tree.write('output.xml')

Encoding is UTF-8
f = open('output.xml', 'w')
tree.write(f, encoding='utf-8')

(Caution: the default encoding used for output is ASCII. For general XML work,
where an element's name may contain arbitrary Unicode characters, ASCII isn't a
very useful encoding because it will raise an exception if an element's name
contains any characters with values greater than 127. Therefore, it's best to
specify a different encoding such as UTF-8 that can handle any Unicode
character.)

This section is only a partial description of the ElementTree interfaces. Please
read the package's official documentation for more details.

参见

	http://effbot.org/zone/element-index.htm
	ElementTree 的官方文档

hashlib 包

A new hashlib module, written by Gregory P. Smith, has been added to
replace the md5 and sha modules. hashlib adds support for
additional secure hashes (SHA-224, SHA-256, SHA-384, and SHA-512). When
available, the module uses OpenSSL for fast platform optimized implementations
of algorithms.

The old md5 and sha modules still exist as wrappers around hashlib
to preserve backwards compatibility. The new module's interface is very close
to that of the old modules, but not identical. The most significant difference
is that the constructor functions for creating new hashing objects are named
differently.

Old versions
h = md5.md5()
h = md5.new()

New version
h = hashlib.md5()

Old versions
h = sha.sha()
h = sha.new()

New version
h = hashlib.sha1()

Hash that weren't previously available
h = hashlib.sha224()
h = hashlib.sha256()
h = hashlib.sha384()
h = hashlib.sha512()

Alternative form
h = hashlib.new('md5') # Provide algorithm as a string

Once a hash object has been created, its methods are the same as before:
update(string) hashes the specified string into the current digest
state, digest() and hexdigest() return the digest value as a binary
string or a string of hex digits, and copy() returns a new hashing object
with the same digest state.

参见

hashlib 模块的文档。

sqlite3 包

The pysqlite module (http://www.pysqlite.org), a wrapper for the SQLite embedded
database, has been added to the standard library under the package name
sqlite3.

SQLite 是一个C语言库，它可以提供一种轻量级的基于磁盘的数据库，这种数据库不需要独立的服务器进程，也允许需要使用一种非标准的 SQL 查询语言来访问它。一些应用程序可以使用 SQLite 作为内部数据存储。可以用它来创建一个应用程序原型，然后再迁移到更大的数据库，比如 PostgreSQL 或 Oracle。

pysqlite was written by Gerhard Häring and provides a SQL interface compliant
with the DB-API 2.0 specification described by PEP 249 [https://www.python.org/dev/peps/pep-0249].

If you're compiling the Python source yourself, note that the source tree
doesn't include the SQLite code, only the wrapper module. You'll need to have
the SQLite libraries and headers installed before compiling Python, and the
build process will compile the module when the necessary headers are available.

To use the module, you must first create a Connection object that
represents the database. Here the data will be stored in the
/tmp/example file:

conn = sqlite3.connect('/tmp/example')

你也可以使用 :memory: 来创建一个内存中的数据库

Once you have a Connection, you can create a Cursor object
and call its execute() method to perform SQL commands:

c = conn.cursor()

Create table
c.execute('''create table stocks
(date text, trans text, symbol text,
 qty real, price real)''')

Insert a row of data
c.execute("""insert into stocks
 values ('2006-01-05','BUY','RHAT',100,35.14)""")

Usually your SQL operations will need to use values from Python variables. You
shouldn't assemble your query using Python's string operations because doing so
is insecure; it makes your program vulnerable to an SQL injection attack.

Instead, use the DB-API's parameter substitution. Put ? as a placeholder
wherever you want to use a value, and then provide a tuple of values as the
second argument to the cursor's execute() method. (Other database modules
may use a different placeholder, such as %s or :1.) For example:

Never do this -- insecure!
symbol = 'IBM'
c.execute("... where symbol = '%s'" % symbol)

Do this instead
t = (symbol,)
c.execute('select * from stocks where symbol=?', t)

Larger example
for t in (('2006-03-28', 'BUY', 'IBM', 1000, 45.00),
 ('2006-04-05', 'BUY', 'MSOFT', 1000, 72.00),
 ('2006-04-06', 'SELL', 'IBM', 500, 53.00),
):
 c.execute('insert into stocks values (?,?,?,?,?)', t)

To retrieve data after executing a SELECT statement, you can either treat the
cursor as an iterator, call the cursor's fetchone() method to retrieve a
single matching row, or call fetchall() to get a list of the matching
rows.

下面是一个使用迭代器形式的例子：

>>> c = conn.cursor()
>>> c.execute('select * from stocks order by price')
>>> for row in c:
... print row
...
(u'2006-01-05', u'BUY', u'RHAT', 100, 35.140000000000001)
(u'2006-03-28', u'BUY', u'IBM', 1000, 45.0)
(u'2006-04-06', u'SELL', u'IBM', 500, 53.0)
(u'2006-04-05', u'BUY', u'MSOFT', 1000, 72.0)
>>>

For more information about the SQL dialect supported by SQLite, see
https://www.sqlite.org.

参见

	http://www.pysqlite.org
	pysqlite 的主页

	https://www.sqlite.org
	SQLite的主页；它的文档详细描述了它所支持的 SQL 方言的语法和可用的数据类型。

sqlite3 模块的文档。

	PEP 249 [https://www.python.org/dev/peps/pep-0249] - DB-API 2.0 规范
	Marc-André Lemburg 写的 PEP。

wsgiref 包

The Web Server Gateway Interface (WSGI) v1.0 defines a standard interface
between web servers and Python web applications and is described in PEP 333 [https://www.python.org/dev/peps/pep-0333].
The wsgiref package is a reference implementation of the WSGI
specification.

The package includes a basic HTTP server that will run a WSGI application; this
server is useful for debugging but isn't intended for production use. Setting
up a server takes only a few lines of code:

from wsgiref import simple_server

wsgi_app = ...

host = ''
port = 8000
httpd = simple_server.make_server(host, port, wsgi_app)
httpd.serve_forever()

参见

	http://www.wsgi.org
	WSGI相关资源的核心网站。

	PEP 333 [https://www.python.org/dev/peps/pep-0333] - Python Web服务器网关接口 v1.0
	PEP 由 Phillip J. Eby 撰写

构建和 C API 的改变

Changes to Python's build process and to the C API include:

	The Python source tree was converted from CVS to Subversion, in a complex
migration procedure that was supervised and flawlessly carried out by Martin von
Löwis. The procedure was developed as PEP 347 [https://www.python.org/dev/peps/pep-0347].

	Coverity, a company that markets a source code analysis tool called Prevent,
provided the results of their examination of the Python source code. The
analysis found about 60 bugs that were quickly fixed. Many of the bugs were
refcounting problems, often occurring in error-handling code. See
https://scan.coverity.com for the statistics.

	The largest change to the C API came from PEP 353 [https://www.python.org/dev/peps/pep-0353], which modifies the
interpreter to use a Py_ssize_t type definition instead of
int. See the earlier section PEP 353: 使用ssize_t作为索引类型 for a discussion of this
change.

	The design of the bytecode compiler has changed a great deal, no longer
generating bytecode by traversing the parse tree. Instead the parse tree is
converted to an abstract syntax tree (or AST), and it is the abstract syntax
tree that's traversed to produce the bytecode.

It's possible for Python code to obtain AST objects by using the
compile() built-in and specifying _ast.PyCF_ONLY_AST as the value of
the flags parameter:

from _ast import PyCF_ONLY_AST
ast = compile("""a=0
for i in range(10):
 a += i
""", "<string>", 'exec', PyCF_ONLY_AST)

assignment = ast.body[0]
for_loop = ast.body[1]

No official documentation has been written for the AST code yet, but PEP 339 [https://www.python.org/dev/peps/pep-0339]
discusses the design. To start learning about the code, read the definition of
the various AST nodes in Parser/Python.asdl. A Python script reads this
file and generates a set of C structure definitions in
Include/Python-ast.h. The PyParser_ASTFromString() and
PyParser_ASTFromFile(), defined in Include/pythonrun.h, take
Python source as input and return the root of an AST representing the contents.
This AST can then be turned into a code object by PyAST_Compile(). For
more information, read the source code, and then ask questions on python-dev.

The AST code was developed under Jeremy Hylton's management, and implemented by
(in alphabetical order) Brett Cannon, Nick Coghlan, Grant Edwards, John
Ehresman, Kurt Kaiser, Neal Norwitz, Tim Peters, Armin Rigo, and Neil
Schemenauer, plus the participants in a number of AST sprints at conferences
such as PyCon.

	Evan Jones's patch to obmalloc, first described in a talk at PyCon DC 2005,
was applied. Python 2.4 allocated small objects in 256K-sized arenas, but never
freed arenas. With this patch, Python will free arenas when they're empty. The
net effect is that on some platforms, when you allocate many objects, Python's
memory usage may actually drop when you delete them and the memory may be
returned to the operating system. (Implemented by Evan Jones, and reworked by
Tim Peters.)

Note that this change means extension modules must be more careful when
allocating memory. Python's API has many different functions for allocating
memory that are grouped into families. For example, PyMem_Malloc(),
PyMem_Realloc(), and PyMem_Free() are one family that allocates
raw memory, while PyObject_Malloc(), PyObject_Realloc(), and
PyObject_Free() are another family that's supposed to be used for
creating Python objects.

Previously these different families all reduced to the platform's
malloc() and free() functions. This meant it didn't matter if
you got things wrong and allocated memory with the PyMem() function but
freed it with the PyObject() function. With 2.5's changes to obmalloc,
these families now do different things and mismatches will probably result in a
segfault. You should carefully test your C extension modules with Python 2.5.

	The built-in set types now have an official C API. Call PySet_New()
and PyFrozenSet_New() to create a new set, PySet_Add() and
PySet_Discard() to add and remove elements, and PySet_Contains()
and PySet_Size() to examine the set's state. (Contributed by Raymond
Hettinger.)

	C code can now obtain information about the exact revision of the Python
interpreter by calling the Py_GetBuildInfo() function that returns a
string of build information like this: "trunk:45355:45356M, Apr 13 2006,
07:42:19". (Contributed by Barry Warsaw.)

	Two new macros can be used to indicate C functions that are local to the
current file so that a faster calling convention can be used.
Py_LOCAL(type) declares the function as returning a value of the
specified type and uses a fast-calling qualifier.
Py_LOCAL_INLINE(type) does the same thing and also requests the
function be inlined. If PY_LOCAL_AGGRESSIVE() is defined before
python.h is included, a set of more aggressive optimizations are enabled
for the module; you should benchmark the results to find out if these
optimizations actually make the code faster. (Contributed by Fredrik Lundh at
the NeedForSpeed sprint.)

	PyErr_NewException(name, base, dict) can now accept a tuple of base
classes as its base argument. (Contributed by Georg Brandl.)

	The PyErr_Warn() function for issuing warnings is now deprecated in
favour of PyErr_WarnEx(category, message, stacklevel) which lets you
specify the number of stack frames separating this function and the caller. A
stacklevel of 1 is the function calling PyErr_WarnEx(), 2 is the
function above that, and so forth. (Added by Neal Norwitz.)

	The CPython interpreter is still written in C, but the code can now be
compiled with a C++ compiler without errors. (Implemented by Anthony Baxter,
Martin von Löwis, Skip Montanaro.)

	The PyRange_New() function was removed. It was never documented, never
used in the core code, and had dangerously lax error checking. In the unlikely
case that your extensions were using it, you can replace it by something like
the following:

range = PyObject_CallFunction((PyObject*) &PyRange_Type, "lll",
 start, stop, step);

Port-Specific Changes

	MacOS X (10.3 and higher): dynamic loading of modules now uses the
dlopen() function instead of MacOS-specific functions.

	MacOS X: an --enable-universalsdk switch was added to the
configure script that compiles the interpreter as a universal binary
able to run on both PowerPC and Intel processors. (Contributed by Ronald
Oussoren; bpo-2573 [https://bugs.python.org/issue2573].)

	Windows: .dll is no longer supported as a filename extension for
extension modules. .pyd is now the only filename extension that will be
searched for.

移植到Python 2.5

This section lists previously described changes that may require changes to your
code:

	ASCII is now the default encoding for modules. It's now a syntax error if a
module contains string literals with 8-bit characters but doesn't have an
encoding declaration. In Python 2.4 this triggered a warning, not a syntax
error.

	Previously, the gi_frame attribute of a generator was always a frame
object. Because of the PEP 342 [https://www.python.org/dev/peps/pep-0342] changes described in section PEP 342: 生成器的新特性,
it's now possible for gi_frame to be None.

	A new warning, UnicodeWarning, is triggered when you attempt to
compare a Unicode string and an 8-bit string that can't be converted to Unicode
using the default ASCII encoding. Previously such comparisons would raise a
UnicodeDecodeError exception.

	Library: the csv module is now stricter about multi-line quoted fields.
If your files contain newlines embedded within fields, the input should be split
into lines in a manner which preserves the newline characters.

	Library: the locale module's format() function's would
previously accept any string as long as no more than one %char specifier
appeared. In Python 2.5, the argument must be exactly one %char specifier with
no surrounding text.

	Library: The pickle and cPickle modules no longer accept a
return value of None from the __reduce__() method; the method must
return a tuple of arguments instead. The modules also no longer accept the
deprecated bin keyword parameter.

	Library: The SimpleXMLRPCServer and DocXMLRPCServer classes now
have a rpc_paths attribute that constrains XML-RPC operations to a
limited set of URL paths; the default is to allow only '/' and '/RPC2'.
Setting rpc_paths to None or an empty tuple disables this path
checking.

	C API: Many functions now use Py_ssize_t instead of int to
allow processing more data on 64-bit machines. Extension code may need to make
the same change to avoid warnings and to support 64-bit machines. See the
earlier section PEP 353: 使用ssize_t作为索引类型 for a discussion of this change.

	C API: The obmalloc changes mean that you must be careful to not mix usage
of the PyMem_*() and PyObject_*() families of functions. Memory
allocated with one family's *_Malloc() must be freed with the
corresponding family's *_Free() function.

致谢

作者感谢以下人员对本文各种草稿给予的建议，更正和协助： Georg Brandl, Nick Coghlan, Phillip J. Eby, Lars Gustäbel, Raymond Hettinger, Ralf W. Grosse-Kunstleve, Kent Johnson, Iain Lowe, Martin von Löwis, Fredrik Lundh, Andrew McNamara, Skip Montanaro, Gustavo Niemeyer, Paul Prescod, James Pryor, Mike Rovner, Scott Weikart, Barry Warsaw, Thomas Wouters.

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 2.4 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 2.4 有什么新变化

	作者

	A.M. Kuchling

本文介绍了2005年3月30日发布的 Python 2.4.1 的新功能。

Python 2.4 is a medium-sized release. It doesn't introduce as many changes as
the radical Python 2.2, but introduces more features than the conservative 2.3
release. The most significant new language features are function decorators and
generator expressions; most other changes are to the standard library.

According to the CVS change logs, there were 481 patches applied and 502 bugs
fixed between Python 2.3 and 2.4. Both figures are likely to be underestimates.

This article doesn't attempt to provide a complete specification of every single
new feature, but instead provides a brief introduction to each feature. For
full details, you should refer to the documentation for Python 2.4, such as the
Python Library Reference and the Python Reference Manual. Often you will be
referred to the PEP for a particular new feature for explanations of the
implementation and design rationale.

PEP 218: 内置集合对象

Python 2.3 introduced the sets module. C implementations of set data
types have now been added to the Python core as two new built-in types,
set(iterable) and frozenset(iterable). They provide high speed
operations for membership testing, for eliminating duplicates from sequences,
and for mathematical operations like unions, intersections, differences, and
symmetric differences.

>>> a = set('abracadabra') # form a set from a string
>>> 'z' in a # fast membership testing
False
>>> a # unique letters in a
set(['a', 'r', 'b', 'c', 'd'])
>>> ''.join(a) # convert back into a string
'arbcd'

>>> b = set('alacazam') # form a second set
>>> a - b # letters in a but not in b
set(['r', 'd', 'b'])
>>> a | b # letters in either a or b
set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])
>>> a & b # letters in both a and b
set(['a', 'c'])
>>> a ^ b # letters in a or b but not both
set(['r', 'd', 'b', 'm', 'z', 'l'])

>>> a.add('z') # add a new element
>>> a.update('wxy') # add multiple new elements
>>> a
set(['a', 'c', 'b', 'd', 'r', 'w', 'y', 'x', 'z'])
>>> a.remove('x') # take one element out
>>> a
set(['a', 'c', 'b', 'd', 'r', 'w', 'y', 'z'])

The frozenset() type is an immutable version of set(). Since it is
immutable and hashable, it may be used as a dictionary key or as a member of
another set.

The sets module remains in the standard library, and may be useful if you
wish to subclass the Set or ImmutableSet classes. There are
currently no plans to deprecate the module.

参见

	PEP 218 [https://www.python.org/dev/peps/pep-0218] - 添加内置Set对象类型
	最初由 Greg Wilson 提出，由 Raymond Hettinger 最终实现。

PEP 237: 统一长整数和整数

The lengthy transition process for this PEP, begun in Python 2.2, takes another
step forward in Python 2.4. In 2.3, certain integer operations that would
behave differently after int/long unification triggered FutureWarning
warnings and returned values limited to 32 or 64 bits (depending on your
platform). In 2.4, these expressions no longer produce a warning and instead
produce a different result that's usually a long integer.

The problematic expressions are primarily left shifts and lengthy hexadecimal
and octal constants. For example, 2 << 32 results in a warning in 2.3,
evaluating to 0 on 32-bit platforms. In Python 2.4, this expression now returns
the correct answer, 8589934592.

参见

	PEP 237 [https://www.python.org/dev/peps/pep-0237] - 统一长整数和整数
	原始PEP由 Moshe Zadka 和 GvR 撰写，2.4 的变更由 Kalle Svensson 实现。

PEP 289: 生成器表达式

The iterator feature introduced in Python 2.2 and the itertools module
make it easier to write programs that loop through large data sets without
having the entire data set in memory at one time. List comprehensions don't fit
into this picture very well because they produce a Python list object containing
all of the items. This unavoidably pulls all of the objects into memory, which
can be a problem if your data set is very large. When trying to write a
functionally-styled program, it would be natural to write something like:

links = [link for link in get_all_links() if not link.followed]
for link in links:
 ...

代替：

for link in get_all_links():
 if link.followed:
 continue
 ...

The first form is more concise and perhaps more readable, but if you're dealing
with a large number of link objects you'd have to write the second form to avoid
having all link objects in memory at the same time.

Generator expressions work similarly to list comprehensions but don't
materialize the entire list; instead they create a generator that will return
elements one by one. The above example could be written as:

links = (link for link in get_all_links() if not link.followed)
for link in links:
 ...

Generator expressions always have to be written inside parentheses, as in the
above example. The parentheses signalling a function call also count, so if you
want to create an iterator that will be immediately passed to a function you
could write:

print sum(obj.count for obj in list_all_objects())

Generator expressions differ from list comprehensions in various small ways.
Most notably, the loop variable (obj in the above example) is not accessible
outside of the generator expression. List comprehensions leave the variable
assigned to its last value; future versions of Python will change this, making
list comprehensions match generator expressions in this respect.

参见

	PEP 289 [https://www.python.org/dev/peps/pep-0289] - 生成器表达式
	Proposed by Raymond Hettinger and implemented by Jiwon Seo with early efforts
steered by Hye-Shik Chang.

PEP 292: Simpler String Substitutions

Some new classes in the standard library provide an alternative mechanism for
substituting variables into strings; this style of substitution may be better
for applications where untrained users need to edit templates.

The usual way of substituting variables by name is the % operator:

>>> '%(page)i: %(title)s' % {'page':2, 'title': 'The Best of Times'}
'2: The Best of Times'

When writing the template string, it can be easy to forget the i or s
after the closing parenthesis. This isn't a big problem if the template is in a
Python module, because you run the code, get an "Unsupported format character"
ValueError, and fix the problem. However, consider an application such
as Mailman where template strings or translations are being edited by users who
aren't aware of the Python language. The format string's syntax is complicated
to explain to such users, and if they make a mistake, it's difficult to provide
helpful feedback to them.

PEP 292 adds a Template class to the string module that uses
$ to indicate a substitution:

>>> import string
>>> t = string.Template('$page: $title')
>>> t.substitute({'page':2, 'title': 'The Best of Times'})
'2: The Best of Times'

If a key is missing from the dictionary, the substitute() method will
raise a KeyError. There's also a safe_substitute() method that
ignores missing keys:

>>> t = string.Template('$page: $title')
>>> t.safe_substitute({'page':3})
'3: $title'

参见

	PEP 292 [https://www.python.org/dev/peps/pep-0292] - Simpler String Substitutions
	由 Barry Warsaw 撰写并实现

PEP 318: Decorators for Functions and Methods

Python 2.2 extended Python's object model by adding static methods and class
methods, but it didn't extend Python's syntax to provide any new way of defining
static or class methods. Instead, you had to write a def statement
in the usual way, and pass the resulting method to a staticmethod() or
classmethod() function that would wrap up the function as a method of the
new type. Your code would look like this:

class C:
 def meth (cls):
 ...

 meth = classmethod(meth) # Rebind name to wrapped-up class method

If the method was very long, it would be easy to miss or forget the
classmethod() invocation after the function body.

The intention was always to add some syntax to make such definitions more
readable, but at the time of 2.2's release a good syntax was not obvious. Today
a good syntax still isn't obvious but users are asking for easier access to
the feature; a new syntactic feature has been added to meet this need.

The new feature is called "function decorators". The name comes from the idea
that classmethod(), staticmethod(), and friends are storing
additional information on a function object; they're decorating functions with
more details.

The notation borrows from Java and uses the '@' character as an indicator.
Using the new syntax, the example above would be written:

class C:

 @classmethod
 def meth (cls):
 ...

The @classmethod is shorthand for the meth=classmethod(meth) assignment.
More generally, if you have the following:

@A
@B
@C
def f ():
 ...

It's equivalent to the following pre-decorator code:

def f(): ...
f = A(B(C(f)))

Decorators must come on the line before a function definition, one decorator per
line, and can't be on the same line as the def statement, meaning that @A def
f(): ... is illegal. You can only decorate function definitions, either at
the module level or inside a class; you can't decorate class definitions.

A decorator is just a function that takes the function to be decorated as an
argument and returns either the same function or some new object. The return
value of the decorator need not be callable (though it typically is), unless
further decorators will be applied to the result. It's easy to write your own
decorators. The following simple example just sets an attribute on the function
object:

>>> def deco(func):
... func.attr = 'decorated'
... return func
...
>>> @deco
... def f(): pass
...
>>> f
<function f at 0x402ef0d4>
>>> f.attr
'decorated'
>>>

As a slightly more realistic example, the following decorator checks that the
supplied argument is an integer:

def require_int (func):
 def wrapper (arg):
 assert isinstance(arg, int)
 return func(arg)

 return wrapper

@require_int
def p1 (arg):
 print arg

@require_int
def p2(arg):
 print arg*2

An example in PEP 318 [https://www.python.org/dev/peps/pep-0318] contains a fancier version of this idea that lets you
both specify the required type and check the returned type.

Decorator functions can take arguments. If arguments are supplied, your
decorator function is called with only those arguments and must return a new
decorator function; this function must take a single function and return a
function, as previously described. In other words, @A @B @C(args) becomes:

def f(): ...
_deco = C(args)
f = A(B(_deco(f)))

Getting this right can be slightly brain-bending, but it's not too difficult.

A small related change makes the func_name attribute of functions
writable. This attribute is used to display function names in tracebacks, so
decorators should change the name of any new function that's constructed and
returned.

参见

	PEP 318 [https://www.python.org/dev/peps/pep-0318] - Decorators for Functions, Methods and Classes
	Written by Kevin D. Smith, Jim Jewett, and Skip Montanaro. Several people
wrote patches implementing function decorators, but the one that was actually
checked in was patch #979728, written by Mark Russell.

	https://wiki.python.org/moin/PythonDecoratorLibrary
	该Wiki页面包含几个装饰器示例。

PEP 322: 反向迭代

A new built-in function, reversed(seq), takes a sequence and returns an
iterator that loops over the elements of the sequence in reverse order.

>>> for i in reversed(xrange(1,4)):
... print i
...
3
2
1

Compared to extended slicing, such as range(1,4)[::-1], reversed() is
easier to read, runs faster, and uses substantially less memory.

Note that reversed() only accepts sequences, not arbitrary iterators. If
you want to reverse an iterator, first convert it to a list with list().

>>> input = open('/etc/passwd', 'r')
>>> for line in reversed(list(input)):
... print line
...
root:*:0:0:System Administrator:/var/root:/bin/tcsh
 ...

参见

	PEP 322 [https://www.python.org/dev/peps/pep-0322] - 反向迭代
	由 Raymond Hettinger 撰写并实现。

PEP 324: 新的子进程模块

The standard library provides a number of ways to execute a subprocess, offering
different features and different levels of complexity.
os.system(command) is easy to use, but slow (it runs a shell process
which executes the command) and dangerous (you have to be careful about escaping
the shell's metacharacters). The popen2 module offers classes that can
capture standard output and standard error from the subprocess, but the naming
is confusing. The subprocess module cleans this up, providing a unified
interface that offers all the features you might need.

Instead of popen2's collection of classes, subprocess contains a
single class called Popen whose constructor supports a number of
different keyword arguments.

class Popen(args, bufsize=0, executable=None,
 stdin=None, stdout=None, stderr=None,
 preexec_fn=None, close_fds=False, shell=False,
 cwd=None, env=None, universal_newlines=False,
 startupinfo=None, creationflags=0):

args is commonly a sequence of strings that will be the arguments to the
program executed as the subprocess. (If the shell argument is true, args
can be a string which will then be passed on to the shell for interpretation,
just as os.system() does.)

stdin, stdout, and stderr specify what the subprocess's input, output, and
error streams will be. You can provide a file object or a file descriptor, or
you can use the constant subprocess.PIPE to create a pipe between the
subprocess and the parent.

The constructor has a number of handy options:

	close_fds requests that all file descriptors be closed before running the
subprocess.

	cwd specifies the working directory in which the subprocess will be executed
(defaulting to whatever the parent's working directory is).

	env is a dictionary specifying environment variables.

	preexec_fn is a function that gets called before the child is started.

	universal_newlines opens the child's input and output using Python's
universal newlines feature.

Once you've created the Popen instance, you can call its wait()
method to pause until the subprocess has exited, poll() to check if it's
exited without pausing, or communicate(data) to send the string data
to the subprocess's standard input. communicate(data) then reads any
data that the subprocess has sent to its standard output or standard error,
returning a tuple (stdout_data, stderr_data).

call() is a shortcut that passes its arguments along to the Popen
constructor, waits for the command to complete, and returns the status code of
the subprocess. It can serve as a safer analog to os.system():

sts = subprocess.call(['dpkg', '-i', '/tmp/new-package.deb'])
if sts == 0:
 # Success
 ...
else:
 # dpkg returned an error
 ...

The command is invoked without use of the shell. If you really do want to use
the shell, you can add shell=True as a keyword argument and provide a string
instead of a sequence:

sts = subprocess.call('dpkg -i /tmp/new-package.deb', shell=True)

The PEP takes various examples of shell and Python code and shows how they'd be
translated into Python code that uses subprocess. Reading this section
of the PEP is highly recommended.

参见

	PEP 324 [https://www.python.org/dev/peps/pep-0324] - 子进程 - 新的进程模块
	由 Peter Åstrand 在 Fredrik Lundh 等人的协助下撰写并实现。

PEP 327: 十进数据类型

Python has always supported floating-point (FP) numbers, based on the underlying
C double type, as a data type. However, while most programming
languages provide a floating-point type, many people (even programmers) are
unaware that floating-point numbers don't represent certain decimal fractions
accurately. The new Decimal type can represent these fractions
accurately, up to a user-specified precision limit.

为什么需要十进制？

The limitations arise from the representation used for floating-point numbers.
FP numbers are made up of three components:

	The sign, which is positive or negative.

	The mantissa, which is a single-digit binary number followed by a fractional
part. For example, 1.01 in base-2 notation is 1 + 0/2 + 1/4, or 1.25 in
decimal notation.

	The exponent, which tells where the decimal point is located in the number
represented.

For example, the number 1.25 has positive sign, a mantissa value of 1.01 (in
binary), and an exponent of 0 (the decimal point doesn't need to be shifted).
The number 5 has the same sign and mantissa, but the exponent is 2 because the
mantissa is multiplied by 4 (2 to the power of the exponent 2); 1.25 * 4 equals
5.

Modern systems usually provide floating-point support that conforms to a
standard called IEEE 754. C's double type is usually implemented as a
64-bit IEEE 754 number, which uses 52 bits of space for the mantissa. This
means that numbers can only be specified to 52 bits of precision. If you're
trying to represent numbers whose expansion repeats endlessly, the expansion is
cut off after 52 bits. Unfortunately, most software needs to produce output in
base 10, and common fractions in base 10 are often repeating decimals in binary.
For example, 1.1 decimal is binary 1.0001100110011 ...; .1 = 1/16 + 1/32 +
1/256 plus an infinite number of additional terms. IEEE 754 has to chop off
that infinitely repeated decimal after 52 digits, so the representation is
slightly inaccurate.

Sometimes you can see this inaccuracy when the number is printed:

>>> 1.1
1.1000000000000001

The inaccuracy isn't always visible when you print the number because the
FP-to-decimal-string conversion is provided by the C library, and most C libraries try
to produce sensible output. Even if it's not displayed, however, the inaccuracy
is still there and subsequent operations can magnify the error.

For many applications this doesn't matter. If I'm plotting points and
displaying them on my monitor, the difference between 1.1 and 1.1000000000000001
is too small to be visible. Reports often limit output to a certain number of
decimal places, and if you round the number to two or three or even eight
decimal places, the error is never apparent. However, for applications where it
does matter, it's a lot of work to implement your own custom arithmetic
routines.

因此，创建了 Decimal 类型。

Decimal 类型

A new module, decimal, was added to Python's standard library. It
contains two classes, Decimal and Context. Decimal
instances represent numbers, and Context instances are used to wrap up
various settings such as the precision and default rounding mode.

Decimal instances are immutable, like regular Python integers and FP
numbers; once it's been created, you can't change the value an instance
represents. Decimal instances can be created from integers or
strings:

>>> import decimal
>>> decimal.Decimal(1972)
Decimal("1972")
>>> decimal.Decimal("1.1")
Decimal("1.1")

You can also provide tuples containing the sign, the mantissa represented as a
tuple of decimal digits, and the exponent:

>>> decimal.Decimal((1, (1, 4, 7, 5), -2))
Decimal("-14.75")

Cautionary note: the sign bit is a Boolean value, so 0 is positive and 1 is
negative.

Converting from floating-point numbers poses a bit of a problem: should the FP
number representing 1.1 turn into the decimal number for exactly 1.1, or for 1.1
plus whatever inaccuracies are introduced? The decision was to dodge the issue
and leave such a conversion out of the API. Instead, you should convert the
floating-point number into a string using the desired precision and pass the
string to the Decimal constructor:

>>> f = 1.1
>>> decimal.Decimal(str(f))
Decimal("1.1")
>>> decimal.Decimal('%.12f' % f)
Decimal("1.100000000000")

Once you have Decimal instances, you can perform the usual mathematical
operations on them. One limitation: exponentiation requires an integer
exponent:

>>> a = decimal.Decimal('35.72')
>>> b = decimal.Decimal('1.73')
>>> a+b
Decimal("37.45")
>>> a-b
Decimal("33.99")
>>> a*b
Decimal("61.7956")
>>> a/b
Decimal("20.64739884393063583815028902")
>>> a ** 2
Decimal("1275.9184")
>>> a**b
Traceback (most recent call last):
 ...
decimal.InvalidOperation: x ** (non-integer)

You can combine Decimal instances with integers, but not with
floating-point numbers:

>>> a + 4
Decimal("39.72")
>>> a + 4.5
Traceback (most recent call last):
 ...
TypeError: You can interact Decimal only with int, long or Decimal data types.
>>>

Decimal numbers can be used with the math and cmath
modules, but note that they'll be immediately converted to floating-point
numbers before the operation is performed, resulting in a possible loss of
precision and accuracy. You'll also get back a regular floating-point number
and not a Decimal.

>>> import math, cmath
>>> d = decimal.Decimal('123456789012.345')
>>> math.sqrt(d)
351364.18288201344
>>> cmath.sqrt(-d)
351364.18288201344j

Decimal instances have a sqrt() method that returns a
Decimal, but if you need other things such as trigonometric functions
you'll have to implement them.

>>> d.sqrt()
Decimal("351364.1828820134592177245001")

Context 类型

Instances of the Context class encapsulate several settings for
decimal operations:

	prec is the precision, the number of decimal places.

	rounding specifies the rounding mode. The decimal module has
constants for the various possibilities: ROUND_DOWN,
ROUND_CEILING, ROUND_HALF_EVEN, and various others.

	traps is a dictionary specifying what happens on encountering certain
error conditions: either an exception is raised or a value is returned. Some
examples of error conditions are division by zero, loss of precision, and
overflow.

There's a thread-local default context available by calling getcontext();
you can change the properties of this context to alter the default precision,
rounding, or trap handling. The following example shows the effect of changing
the precision of the default context:

>>> decimal.getcontext().prec
28
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.1428571428571428571428571429")
>>> decimal.getcontext().prec = 9
>>> decimal.Decimal(1) / decimal.Decimal(7)
Decimal("0.142857143")

The default action for error conditions is selectable; the module can either
return a special value such as infinity or not-a-number, or exceptions can be
raised:

>>> decimal.Decimal(1) / decimal.Decimal(0)
Traceback (most recent call last):
 ...
decimal.DivisionByZero: x / 0
>>> decimal.getcontext().traps[decimal.DivisionByZero] = False
>>> decimal.Decimal(1) / decimal.Decimal(0)
Decimal("Infinity")
>>>

The Context instance also has various methods for formatting numbers
such as to_eng_string() and to_sci_string().

For more information, see the documentation for the decimal module, which
includes a quick-start tutorial and a reference.

参见

	PEP 327 [https://www.python.org/dev/peps/pep-0327] - 十进数据类型
	由 Facundo Batista 撰写，由Facundo Batista, Eric Price, Raymond Hettinger, Aahz 和 Tim Peters 实现。

	http://www.lahey.com/float.htm
	The article uses Fortran code to illustrate many of the problems that
floating-point inaccuracy can cause.

	http://speleotrove.com/decimal/
	A description of a decimal-based representation. This representation is being
proposed as a standard, and underlies the new Python decimal type. Much of this
material was written by Mike Cowlishaw, designer of the Rexx language.

PEP 328: 多行导入

One language change is a small syntactic tweak aimed at making it easier to
import many names from a module. In a from module import names statement,
names is a sequence of names separated by commas. If the sequence is very
long, you can either write multiple imports from the same module, or you can use
backslashes to escape the line endings like this:

from SimpleXMLRPCServer import SimpleXMLRPCServer,\
 SimpleXMLRPCRequestHandler,\
 CGIXMLRPCRequestHandler,\
 resolve_dotted_attribute

The syntactic change in Python 2.4 simply allows putting the names within
parentheses. Python ignores newlines within a parenthesized expression, so the
backslashes are no longer needed:

from SimpleXMLRPCServer import (SimpleXMLRPCServer,
 SimpleXMLRPCRequestHandler,
 CGIXMLRPCRequestHandler,
 resolve_dotted_attribute)

The PEP also proposes that all import statements be absolute imports,
with a leading . character to indicate a relative import. This part of the
PEP was not implemented for Python 2.4, but was completed for Python 2.5.

参见

	PEP 328 [https://www.python.org/dev/peps/pep-0328] - 导入：多行和绝对/相对导入
	由 Aahz 撰写，多行导入由 Dima Dorfman 实现。

PEP 331: Locale-Independent Float/String Conversions

The locale modules lets Python software select various conversions and
display conventions that are localized to a particular country or language.
However, the module was careful to not change the numeric locale because various
functions in Python's implementation required that the numeric locale remain set
to the 'C' locale. Often this was because the code was using the C
library's atof() function.

Not setting the numeric locale caused trouble for extensions that used third-party
C libraries, however, because they wouldn't have the correct locale set.
The motivating example was GTK+, whose user interface widgets weren't displaying
numbers in the current locale.

The solution described in the PEP is to add three new functions to the Python
API that perform ASCII-only conversions, ignoring the locale setting:

	PyOS_ascii_strtod(str, ptr) and PyOS_ascii_atof(str, ptr)
both convert a string to a C double.

	PyOS_ascii_formatd(buffer, buf_len, format, d) converts a
double to an ASCII string.

The code for these functions came from the GLib library
(https://developer.gnome.org/glib/stable/), whose developers kindly
relicensed the relevant functions and donated them to the Python Software
Foundation. The locale module can now change the numeric locale,
letting extensions such as GTK+ produce the correct results.

参见

	PEP 331 [https://www.python.org/dev/peps/pep-0331] - Locale-Independent Float/String Conversions
	由Christian R. Reis撰写，由 Gustavo Carneiro 实现。

其他语言特性修改

Here are all of the changes that Python 2.4 makes to the core Python language.

	Decorators for functions and methods were added (PEP 318 [https://www.python.org/dev/peps/pep-0318]).

	Built-in set() and frozenset() types were added (PEP 218 [https://www.python.org/dev/peps/pep-0218]).
Other new built-ins include the reversed(seq) function (PEP 322 [https://www.python.org/dev/peps/pep-0322]).

	Generator expressions were added (PEP 289 [https://www.python.org/dev/peps/pep-0289]).

	Certain numeric expressions no longer return values restricted to 32 or 64
bits (PEP 237 [https://www.python.org/dev/peps/pep-0237]).

	You can now put parentheses around the list of names in a from module import
names statement (PEP 328 [https://www.python.org/dev/peps/pep-0328]).

	The dict.update() method now accepts the same argument forms as the
dict constructor. This includes any mapping, any iterable of key/value
pairs, and keyword arguments. (Contributed by Raymond Hettinger.)

	The string methods ljust(), rjust(), and center() now take
an optional argument for specifying a fill character other than a space.
(Contributed by Raymond Hettinger.)

	Strings also gained an rsplit() method that works like the split()
method but splits from the end of the string. (Contributed by Sean
Reifschneider.)

>>> 'www.python.org'.split('.', 1)
['www', 'python.org']
'www.python.org'.rsplit('.', 1)
['www.python', 'org']

	Three keyword parameters, cmp, key, and reverse, were added to the
sort() method of lists. These parameters make some common usages of
sort() simpler. All of these parameters are optional.

For the cmp parameter, the value should be a comparison function that takes
two parameters and returns -1, 0, or +1 depending on how the parameters compare.
This function will then be used to sort the list. Previously this was the only
parameter that could be provided to sort().

key should be a single-parameter function that takes a list element and
returns a comparison key for the element. The list is then sorted using the
comparison keys. The following example sorts a list case-insensitively:

>>> L = ['A', 'b', 'c', 'D']
>>> L.sort() # Case-sensitive sort
>>> L
['A', 'D', 'b', 'c']
>>> # Using 'key' parameter to sort list
>>> L.sort(key=lambda x: x.lower())
>>> L
['A', 'b', 'c', 'D']
>>> # Old-fashioned way
>>> L.sort(cmp=lambda x,y: cmp(x.lower(), y.lower()))
>>> L
['A', 'b', 'c', 'D']

The last example, which uses the cmp parameter, is the old way to perform a
case-insensitive sort. It works but is slower than using a key parameter.
Using key calls lower() method once for each element in the list while
using cmp will call it twice for each comparison, so using key saves on
invocations of the lower() method.

For simple key functions and comparison functions, it is often possible to avoid
a lambda expression by using an unbound method instead. For example,
the above case-insensitive sort is best written as:

>>> L.sort(key=str.lower)
>>> L
['A', 'b', 'c', 'D']

Finally, the reverse parameter takes a Boolean value. If the value is true,
the list will be sorted into reverse order. Instead of L.sort();
L.reverse(), you can now write L.sort(reverse=True).

The results of sorting are now guaranteed to be stable. This means that two
entries with equal keys will be returned in the same order as they were input.
For example, you can sort a list of people by name, and then sort the list by
age, resulting in a list sorted by age where people with the same age are in
name-sorted order.

(All changes to sort() contributed by Raymond Hettinger.)

	There is a new built-in function sorted(iterable) that works like the
in-place list.sort() method but can be used in expressions. The
differences are:

	the input may be any iterable;

	a newly formed copy is sorted, leaving the original intact; and

	the expression returns the new sorted copy

>>> L = [9,7,8,3,2,4,1,6,5]
>>> [10+i for i in sorted(L)] # usable in a list comprehension
[11, 12, 13, 14, 15, 16, 17, 18, 19]
>>> L # original is left unchanged
[9,7,8,3,2,4,1,6,5]
>>> sorted('Monty Python') # any iterable may be an input
[' ', 'M', 'P', 'h', 'n', 'n', 'o', 'o', 't', 't', 'y', 'y']

>>> # List the contents of a dict sorted by key values
>>> colormap = dict(red=1, blue=2, green=3, black=4, yellow=5)
>>> for k, v in sorted(colormap.iteritems()):
... print k, v
...
black 4
blue 2
green 3
red 1
yellow 5

（由 Raymond Hettinger 贡献。）

	Integer operations will no longer trigger an OverflowWarning. The
OverflowWarning warning will disappear in Python 2.5.

	The interpreter gained a new switch, -m, that takes a name, searches
for the corresponding module on sys.path, and runs the module as a script.
For example, you can now run the Python profiler with python -m profile.
(Contributed by Nick Coghlan.)

	The eval(expr, globals, locals) and execfile(filename, globals,
locals) functions and the exec statement now accept any mapping type
for the locals parameter. Previously this had to be a regular Python
dictionary. (Contributed by Raymond Hettinger.)

	The zip() built-in function and itertools.izip() now return an
empty list if called with no arguments. Previously they raised a
TypeError exception. This makes them more suitable for use with variable
length argument lists:

>>> def transpose(array):
... return zip(*array)
...
>>> transpose([(1,2,3), (4,5,6)])
[(1, 4), (2, 5), (3, 6)]
>>> transpose([])
[]

（由 Raymond Hettinger 贡献。）

	Encountering a failure while importing a module no longer leaves a partially-initialized
module object in sys.modules. The incomplete module object left
behind would fool further imports of the same module into succeeding, leading to
confusing errors. (Fixed by Tim Peters.)

	None is now a constant; code that binds a new value to the name
None is now a syntax error. (Contributed by Raymond Hettinger.)

性能优化

	The inner loops for list and tuple slicing were optimized and now run about
one-third faster. The inner loops for dictionaries were also optimized,
resulting in performance boosts for keys(), values(), items(),
iterkeys(), itervalues(), and iteritems(). (Contributed by
Raymond Hettinger.)

	The machinery for growing and shrinking lists was optimized for speed and for
space efficiency. Appending and popping from lists now runs faster due to more
efficient code paths and less frequent use of the underlying system
realloc(). List comprehensions also benefit. list.extend() was
also optimized and no longer converts its argument into a temporary list before
extending the base list. (Contributed by Raymond Hettinger.)

	list(), tuple(), map(), filter(), and zip() now
run several times faster with non-sequence arguments that supply a
__len__() method. (Contributed by Raymond Hettinger.)

	The methods list.__getitem__(), dict.__getitem__(), and
dict.__contains__() are now implemented as method_descriptor
objects rather than wrapper_descriptor objects. This form of access
doubles their performance and makes them more suitable for use as arguments to
functionals: map(mydict.__getitem__, keylist). (Contributed by Raymond
Hettinger.)

	Added a new opcode, LIST_APPEND, that simplifies the generated bytecode
for list comprehensions and speeds them up by about a third. (Contributed by
Raymond Hettinger.)

	The peephole bytecode optimizer has been improved to produce shorter, faster
bytecode; remarkably, the resulting bytecode is more readable. (Enhanced by
Raymond Hettinger.)

	String concatenations in statements of the form s = s + "abc" and s +=
"abc" are now performed more efficiently in certain circumstances. This
optimization won't be present in other Python implementations such as Jython, so
you shouldn't rely on it; using the join() method of strings is still
recommended when you want to efficiently glue a large number of strings
together. (Contributed by Armin Rigo.)

The net result of the 2.4 optimizations is that Python 2.4 runs the pystone
benchmark around 5% faster than Python 2.3 and 35% faster than Python 2.2.
(pystone is not a particularly good benchmark, but it's the most commonly used
measurement of Python's performance. Your own applications may show greater or
smaller benefits from Python 2.4.)

新增，改进和弃用的模块

As usual, Python's standard library received a number of enhancements and bug
fixes. Here's a partial list of the most notable changes, sorted alphabetically
by module name. Consult the Misc/NEWS file in the source tree for a more
complete list of changes, or look through the CVS logs for all the details.

	The asyncore module's loop() function now has a count parameter
that lets you perform a limited number of passes through the polling loop. The
default is still to loop forever.

	The base64 module now has more complete RFC 3548 [https://tools.ietf.org/html/rfc3548.html] support for Base64,
Base32, and Base16 encoding and decoding, including optional case folding and
optional alternative alphabets. (Contributed by Barry Warsaw.)

	The bisect module now has an underlying C implementation for improved
performance. (Contributed by Dmitry Vasiliev.)

	由 Hye-Shik Chang 维护的东亚编解码器的 CJKCodecs 集合已集成到 2.4 中。新的编码为：

	汉语（台湾）:: gb2312, gbk, gb18030, big5hkscs, hz

	汉语（大陆）: big5, cp950

	
	日语: cp932, euc-jis-2004, euc-jp, euc-jisx0213, iso-2022-jp,
	iso-2022-jp-1, iso-2022-jp-2, iso-2022-jp-3, iso-2022-jp-ext, iso-2022-jp-2004,
shift-jis, shift-jisx0213, shift-jis-2004

	韩语: cp949, euc-kr, johab, iso-2022-kr

	添加了其他一些新的编码：HP Roman8, ISO_8859-11, ISO_8859-16, PCTP-154 和 TIS-620

	The UTF-8 and UTF-16 codecs now cope better with receiving partial input.
Previously the StreamReader class would try to read more data, making
it impossible to resume decoding from the stream. The read() method will
now return as much data as it can and future calls will resume decoding where
previous ones left off. (Implemented by Walter Dörwald.)

	There is a new collections module for various specialized collection
datatypes. Currently it contains just one type, deque, a double-ended
queue that supports efficiently adding and removing elements from either
end:

>>> from collections import deque
>>> d = deque('ghi') # make a new deque with three items
>>> d.append('j') # add a new entry to the right side
>>> d.appendleft('f') # add a new entry to the left side
>>> d # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])
>>> d.pop() # return and remove the rightmost item
'j'
>>> d.popleft() # return and remove the leftmost item
'f'
>>> list(d) # list the contents of the deque
['g', 'h', 'i']
>>> 'h' in d # search the deque
True

Several modules, such as the Queue and threading modules, now take
advantage of collections.deque for improved performance. (Contributed
by Raymond Hettinger.)

	The ConfigParser classes have been enhanced slightly. The read()
method now returns a list of the files that were successfully parsed, and the
set() method raises TypeError if passed a value argument that
isn't a string. (Contributed by John Belmonte and David Goodger.)

	The curses module now supports the ncurses extension
use_default_colors(). On platforms where the terminal supports
transparency, this makes it possible to use a transparent background.
(Contributed by Jörg Lehmann.)

	The difflib module now includes an HtmlDiff class that creates
an HTML table showing a side by side comparison of two versions of a text.
(Contributed by Dan Gass.)

	The email package was updated to version 3.0, which dropped various
deprecated APIs and removes support for Python versions earlier than 2.3. The
3.0 version of the package uses a new incremental parser for MIME messages,
available in the email.FeedParser module. The new parser doesn't require
reading the entire message into memory, and doesn't raise exceptions if a
message is malformed; instead it records any problems in the defect
attribute of the message. (Developed by Anthony Baxter, Barry Warsaw, Thomas
Wouters, and others.)

	The heapq module has been converted to C. The resulting tenfold
improvement in speed makes the module suitable for handling high volumes of
data. In addition, the module has two new functions nlargest() and
nsmallest() that use heaps to find the N largest or smallest values in a
dataset without the expense of a full sort. (Contributed by Raymond Hettinger.)

	The httplib module now contains constants for HTTP status codes defined
in various HTTP-related RFC documents. Constants have names such as
OK, CREATED, CONTINUE, and
MOVED_PERMANENTLY; use pydoc to get a full list. (Contributed by
Andrew Eland.)

	The imaplib module now supports IMAP's THREAD command (contributed by
Yves Dionne) and new deleteacl() and myrights() methods (contributed
by Arnaud Mazin).

	The itertools module gained a groupby(iterable[, *func*])
function. iterable is something that can be iterated over to return a stream
of elements, and the optional func parameter is a function that takes an
element and returns a key value; if omitted, the key is simply the element
itself. groupby() then groups the elements into subsequences which have
matching values of the key, and returns a series of 2-tuples containing the key
value and an iterator over the subsequence.

Here's an example to make this clearer. The key function simply returns
whether a number is even or odd, so the result of groupby() is to return
consecutive runs of odd or even numbers.

>>> import itertools
>>> L = [2, 4, 6, 7, 8, 9, 11, 12, 14]
>>> for key_val, it in itertools.groupby(L, lambda x: x % 2):
... print key_val, list(it)
...
0 [2, 4, 6]
1 [7]
0 [8]
1 [9, 11]
0 [12, 14]
>>>

groupby() is typically used with sorted input. The logic for
groupby() is similar to the Unix uniq filter which makes it handy for
eliminating, counting, or identifying duplicate elements:

>>> word = 'abracadabra'
>>> letters = sorted(word) # Turn string into a sorted list of letters
>>> letters
['a', 'a', 'a', 'a', 'a', 'b', 'b', 'c', 'd', 'r', 'r']
>>> for k, g in itertools.groupby(letters):
... print k, list(g)
...
a ['a', 'a', 'a', 'a', 'a']
b ['b', 'b']
c ['c']
d ['d']
r ['r', 'r']
>>> # List unique letters
>>> [k for k, g in groupby(letters)]
['a', 'b', 'c', 'd', 'r']
>>> # Count letter occurrences
>>> [(k, len(list(g))) for k, g in groupby(letters)]
[('a', 5), ('b', 2), ('c', 1), ('d', 1), ('r', 2)]

（由 Hye-Shik Chang 贡献。）

	itertools also gained a function named tee(iterator, N) that
returns N independent iterators that replicate iterator. If N is omitted,
the default is 2.

>>> L = [1,2,3]
>>> i1, i2 = itertools.tee(L)
>>> i1,i2
(<itertools.tee object at 0x402c2080>, <itertools.tee object at 0x402c2090>)
>>> list(i1) # Run the first iterator to exhaustion
[1, 2, 3]
>>> list(i2) # Run the second iterator to exhaustion
[1, 2, 3]

Note that tee() has to keep copies of the values returned by the
iterator; in the worst case, it may need to keep all of them. This should
therefore be used carefully if the leading iterator can run far ahead of the
trailing iterator in a long stream of inputs. If the separation is large, then
you might as well use list() instead. When the iterators track closely
with one another, tee() is ideal. Possible applications include
bookmarking, windowing, or lookahead iterators. (Contributed by Raymond
Hettinger.)

	A number of functions were added to the locale module, such as
bind_textdomain_codeset() to specify a particular encoding and a family of
l*gettext() functions that return messages in the chosen encoding.
(Contributed by Gustavo Niemeyer.)

	Some keyword arguments were added to the logging package's
basicConfig() function to simplify log configuration. The default
behavior is to log messages to standard error, but various keyword arguments can
be specified to log to a particular file, change the logging format, or set the
logging level. For example:

import logging
logging.basicConfig(filename='/var/log/application.log',
 level=0, # Log all messages
 format='%(levelname):%(process):%(thread):%(message)')

Other additions to the logging package include a log(level, msg)
convenience method, as well as a TimedRotatingFileHandler class that
rotates its log files at a timed interval. The module already had
RotatingFileHandler, which rotated logs once the file exceeded a
certain size. Both classes derive from a new BaseRotatingHandler class
that can be used to implement other rotating handlers.

（更改由 Vinay Sajip 实现。）

	The marshal module now shares interned strings on unpacking a data
structure. This may shrink the size of certain pickle strings, but the primary
effect is to make .pyc files significantly smaller. (Contributed by
Martin von Löwis.)

	The nntplib module's NNTP class gained description() and
descriptions() methods to retrieve newsgroup descriptions for a single
group or for a range of groups. (Contributed by Jürgen A. Erhard.)

	Two new functions were added to the operator module,
attrgetter(attr) and itemgetter(index). Both functions return
callables that take a single argument and return the corresponding attribute or
item; these callables make excellent data extractors when used with map()
or sorted(). For example:

>>> L = [('c', 2), ('d', 1), ('a', 4), ('b', 3)]
>>> map(operator.itemgetter(0), L)
['c', 'd', 'a', 'b']
>>> map(operator.itemgetter(1), L)
[2, 1, 4, 3]
>>> sorted(L, key=operator.itemgetter(1)) # Sort list by second tuple item
[('d', 1), ('c', 2), ('b', 3), ('a', 4)]

（由 Raymond Hettinger 贡献。）

	The optparse module was updated in various ways. The module now passes
its messages through gettext.gettext(), making it possible to
internationalize Optik's help and error messages. Help messages for options can
now include the string '%default', which will be replaced by the option's
default value. (Contributed by Greg Ward.)

	The long-term plan is to deprecate the rfc822 module in some future
Python release in favor of the email package. To this end, the
email.Utils.formatdate() function has been changed to make it usable as a
replacement for rfc822.formatdate(). You may want to write new e-mail
processing code with this in mind. (Change implemented by Anthony Baxter.)

	A new urandom(n) function was added to the os module, returning
a string containing n bytes of random data. This function provides access to
platform-specific sources of randomness such as /dev/urandom on Linux or
the Windows CryptoAPI. (Contributed by Trevor Perrin.)

	Another new function: os.path.lexists(path) returns true if the file
specified by path exists, whether or not it's a symbolic link. This differs
from the existing os.path.exists(path) function, which returns false if
path is a symlink that points to a destination that doesn't exist.
(Contributed by Beni Cherniavsky.)

	A new getsid() function was added to the posix module that
underlies the os module. (Contributed by J. Raynor.)

	The poplib module now supports POP over SSL. (Contributed by Hector
Urtubia.)

	The profile module can now profile C extension functions. (Contributed
by Nick Bastin.)

	The random module has a new method called getrandbits(N) that
returns a long integer N bits in length. The existing randrange()
method now uses getrandbits() where appropriate, making generation of
arbitrarily large random numbers more efficient. (Contributed by Raymond
Hettinger.)

	The regular expression language accepted by the re module was extended
with simple conditional expressions, written as (?(group)A|B). group is
either a numeric group ID or a group name defined with (?P<group>...)
earlier in the expression. If the specified group matched, the regular
expression pattern A will be tested against the string; if the group didn't
match, the pattern B will be used instead. (Contributed by Gustavo Niemeyer.)

	The re module is also no longer recursive, thanks to a massive amount
of work by Gustavo Niemeyer. In a recursive regular expression engine, certain
patterns result in a large amount of C stack space being consumed, and it was
possible to overflow the stack. For example, if you matched a 30000-byte string
of a characters against the expression (a|b)+, one stack frame was
consumed per character. Python 2.3 tried to check for stack overflow and raise
a RuntimeError exception, but certain patterns could sidestep the
checking and if you were unlucky Python could segfault. Python 2.4's regular
expression engine can match this pattern without problems.

	The signal module now performs tighter error-checking on the parameters
to the signal.signal() function. For example, you can't set a handler on
the SIGKILL signal; previous versions of Python would quietly accept
this, but 2.4 will raise a RuntimeError exception.

	Two new functions were added to the socket module. socketpair()
returns a pair of connected sockets and getservbyport(port) looks up the
service name for a given port number. (Contributed by Dave Cole and Barry
Warsaw.)

	The sys.exitfunc() function has been deprecated. Code should be using
the existing atexit module, which correctly handles calling multiple exit
functions. Eventually sys.exitfunc() will become a purely internal
interface, accessed only by atexit.

	The tarfile module now generates GNU-format tar files by default.
(Contributed by Lars Gustäbel.)

	The threading module now has an elegantly simple way to support
thread-local data. The module contains a local class whose attribute
values are local to different threads.

import threading

data = threading.local()
data.number = 42
data.url = ('www.python.org', 80)

Other threads can assign and retrieve their own values for the number
and url attributes. You can subclass local to initialize
attributes or to add methods. (Contributed by Jim Fulton.)

	The timeit module now automatically disables periodic garbage
collection during the timing loop. This change makes consecutive timings more
comparable. (Contributed by Raymond Hettinger.)

	The weakref module now supports a wider variety of objects including
Python functions, class instances, sets, frozensets, deques, arrays, files,
sockets, and regular expression pattern objects. (Contributed by Raymond
Hettinger.)

	The xmlrpclib module now supports a multi-call extension for
transmitting multiple XML-RPC calls in a single HTTP operation. (Contributed by
Brian Quinlan.)

	mpz, rotor 和 xreadlines 模块已被移除。

cookielib

The cookielib library supports client-side handling for HTTP cookies,
mirroring the Cookie module's server-side cookie support. Cookies are
stored in cookie jars; the library transparently stores cookies offered by the
web server in the cookie jar, and fetches the cookie from the jar when
connecting to the server. As in web browsers, policy objects control whether
cookies are accepted or not.

In order to store cookies across sessions, two implementations of cookie jars
are provided: one that stores cookies in the Netscape format so applications can
use the Mozilla or Lynx cookie files, and one that stores cookies in the same
format as the Perl libwww library.

urllib2 has been changed to interact with cookielib:
HTTPCookieProcessor manages a cookie jar that is used when accessing
URLs.

该模块由 John J. Lee 贡献。

doctest

The doctest module underwent considerable refactoring thanks to Edward
Loper and Tim Peters. Testing can still be as simple as running
doctest.testmod(), but the refactorings allow customizing the module's
operation in various ways

The new DocTestFinder class extracts the tests from a given object's
docstrings:

def f (x, y):
 """>>> f(2,2)
4
>>> f(3,2)
6
 """
 return x*y

finder = doctest.DocTestFinder()

Get list of DocTest instances
tests = finder.find(f)

The new DocTestRunner class then runs individual tests and can produce
a summary of the results:

runner = doctest.DocTestRunner()
for t in tests:
 tried, failed = runner.run(t)

runner.summarize(verbose=1)

The above example produces the following output:

1 items passed all tests:
 2 tests in f
2 tests in 1 items.
2 passed and 0 failed.
Test passed.

DocTestRunner uses an instance of the OutputChecker class to
compare the expected output with the actual output. This class takes a number
of different flags that customize its behaviour; ambitious users can also write
a completely new subclass of OutputChecker.

The default output checker provides a number of handy features. For example,
with the doctest.ELLIPSIS option flag, an ellipsis (...) in the
expected output matches any substring, making it easier to accommodate outputs
that vary in minor ways:

def o (n):
 """>>> o(1)
<__main__.C instance at 0x...>
>>>
"""

Another special string, <BLANKLINE>, matches a blank line:

def p (n):
 """>>> p(1)
<BLANKLINE>
>>>
"""

Another new capability is producing a diff-style display of the output by
specifying the doctest.REPORT_UDIFF (unified diffs),
doctest.REPORT_CDIFF (context diffs), or doctest.REPORT_NDIFF
(delta-style) option flags. For example:

def g (n):
 """>>> g(4)
here
is
a
lengthy
>>>"""
 L = 'here is a rather lengthy list of words'.split()
 for word in L[:n]:
 print word

Running the above function's tests with doctest.REPORT_UDIFF specified,
you get the following output:

**
File "t.py", line 15, in g
Failed example:
 g(4)
Differences (unified diff with -expected +actual):
 @@ -2,3 +2,3 @@
 is
 a
 -lengthy
 +rather
**

构建和 C API 的改变

Some of the changes to Python's build process and to the C API are:

	Three new convenience macros were added for common return values from
extension functions: Py_RETURN_NONE, Py_RETURN_TRUE, and
Py_RETURN_FALSE. (Contributed by Brett Cannon.)

	Another new macro, Py_CLEAR(obj), decreases the reference count of
obj and sets obj to the null pointer. (Contributed by Jim Fulton.)

	A new function, PyTuple_Pack(N, obj1, obj2, ..., objN), constructs
tuples from a variable length argument list of Python objects. (Contributed by
Raymond Hettinger.)

	A new function, PyDict_Contains(d, k), implements fast dictionary
lookups without masking exceptions raised during the look-up process.
(Contributed by Raymond Hettinger.)

	The Py_IS_NAN(X) macro returns 1 if its float or double argument
X is a NaN. (Contributed by Tim Peters.)

	C code can avoid unnecessary locking by using the new
PyEval_ThreadsInitialized() function to tell if any thread operations
have been performed. If this function returns false, no lock operations are
needed. (Contributed by Nick Coghlan.)

	A new function, PyArg_VaParseTupleAndKeywords(), is the same as
PyArg_ParseTupleAndKeywords() but takes a va_list instead of a
number of arguments. (Contributed by Greg Chapman.)

	A new method flag, METH_COEXISTS, allows a function defined in slots
to co-exist with a PyCFunction having the same name. This can halve
the access time for a method such as set.__contains__(). (Contributed by
Raymond Hettinger.)

	Python can now be built with additional profiling for the interpreter itself,
intended as an aid to people developing the Python core. Providing
--enable-profiling to the configure script will let you
profile the interpreter with gprof, and providing the
--with-tsc switch enables profiling using the Pentium's
Time-Stamp-Counter register. Note that the --with-tsc switch is slightly
misnamed, because the profiling feature also works on the PowerPC platform,
though that processor architecture doesn't call that register "the TSC
register". (Contributed by Jeremy Hylton.)

	The tracebackobject type has been renamed to
PyTracebackObject.

Port-Specific Changes

	The Windows port now builds under MSVC++ 7.1 as well as version 6.
(Contributed by Martin von Löwis.)

移植到 Python 2.4

This section lists previously described changes that may require changes to your
code:

	Left shifts and hexadecimal/octal constants that are too large no longer
trigger a FutureWarning and return a value limited to 32 or 64 bits;
instead they return a long integer.

	Integer operations will no longer trigger an OverflowWarning. The
OverflowWarning warning will disappear in Python 2.5.

	The zip() built-in function and itertools.izip() now return an
empty list instead of raising a TypeError exception if called with no
arguments.

	You can no longer compare the date and datetime instances
provided by the datetime module. Two instances of different classes
will now always be unequal, and relative comparisons (<, >) will raise
a TypeError.

	dircache.listdir() now passes exceptions to the caller instead of
returning empty lists.

	LexicalHandler.startDTD() used to receive the public and system IDs in
the wrong order. This has been corrected; applications relying on the wrong
order need to be fixed.

	fcntl.ioctl() now warns if the mutate argument is omitted and
relevant.

	The tarfile module now generates GNU-format tar files by default.

	Encountering a failure while importing a module no longer leaves a
partially-initialized module object in sys.modules.

	None is now a constant; code that binds a new value to the name
None is now a syntax error.

	The signals.signal() function now raises a RuntimeError exception
for certain illegal values; previously these errors would pass silently. For
example, you can no longer set a handler on the SIGKILL signal.

致谢

作者感谢以下人员对本文各种草稿给予的建议，更正和协助：Koray Can, Hye-Shik Chang, Michael Dyck, Raymond Hettinger, Brian Hurt, Hamish Lawson, Fredrik Lundh, Sean Reifschneider, Sadruddin Rejeb.

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 2.3 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 2.3 有什么新变化

	作者

	A.M. Kuchling

This article explains the new features in Python 2.3. Python 2.3 was released
on July 29, 2003.

The main themes for Python 2.3 are polishing some of the features added in 2.2,
adding various small but useful enhancements to the core language, and expanding
the standard library. The new object model introduced in the previous version
has benefited from 18 months of bugfixes and from optimization efforts that have
improved the performance of new-style classes. A few new built-in functions
have been added such as sum() and enumerate(). The in
operator can now be used for substring searches (e.g. "ab" in "abc" returns
True).

Some of the many new library features include Boolean, set, heap, and date/time
data types, the ability to import modules from ZIP-format archives, metadata
support for the long-awaited Python catalog, an updated version of IDLE, and
modules for logging messages, wrapping text, parsing CSV files, processing
command-line options, using BerkeleyDB databases... the list of new and
enhanced modules is lengthy.

This article doesn't attempt to provide a complete specification of the new
features, but instead provides a convenient overview. For full details, you
should refer to the documentation for Python 2.3, such as the Python Library
Reference and the Python Reference Manual. If you want to understand the
complete implementation and design rationale, refer to the PEP for a particular
new feature.

PEP 218: A Standard Set Datatype

The new sets module contains an implementation of a set datatype. The
Set class is for mutable sets, sets that can have members added and
removed. The ImmutableSet class is for sets that can't be modified,
and instances of ImmutableSet can therefore be used as dictionary keys.
Sets are built on top of dictionaries, so the elements within a set must be
hashable.

下面是一个简单的例子:

>>> import sets
>>> S = sets.Set([1,2,3])
>>> S
Set([1, 2, 3])
>>> 1 in S
True
>>> 0 in S
False
>>> S.add(5)
>>> S.remove(3)
>>> S
Set([1, 2, 5])
>>>

The union and intersection of sets can be computed with the union() and
intersection() methods; an alternative notation uses the bitwise operators
& and |. Mutable sets also have in-place versions of these methods,
union_update() and intersection_update().

>>> S1 = sets.Set([1,2,3])
>>> S2 = sets.Set([4,5,6])
>>> S1.union(S2)
Set([1, 2, 3, 4, 5, 6])
>>> S1 | S2 # Alternative notation
Set([1, 2, 3, 4, 5, 6])
>>> S1.intersection(S2)
Set([])
>>> S1 & S2 # Alternative notation
Set([])
>>> S1.union_update(S2)
>>> S1
Set([1, 2, 3, 4, 5, 6])
>>>

It's also possible to take the symmetric difference of two sets. This is the
set of all elements in the union that aren't in the intersection. Another way
of putting it is that the symmetric difference contains all elements that are in
exactly one set. Again, there's an alternative notation (^), and an
in-place version with the ungainly name symmetric_difference_update().

>>> S1 = sets.Set([1,2,3,4])
>>> S2 = sets.Set([3,4,5,6])
>>> S1.symmetric_difference(S2)
Set([1, 2, 5, 6])
>>> S1 ^ S2
Set([1, 2, 5, 6])
>>>

There are also issubset() and issuperset() methods for checking
whether one set is a subset or superset of another:

>>> S1 = sets.Set([1,2,3])
>>> S2 = sets.Set([2,3])
>>> S2.issubset(S1)
True
>>> S1.issubset(S2)
False
>>> S1.issuperset(S2)
True
>>>

参见

	PEP 218 [https://www.python.org/dev/peps/pep-0218] - 添加内置Set对象类型
	PEP 由 Greg V. Wilson 撰写 ; 由 Greg V. Wilson, Alex Martelli 和 GvR 实现。

PEP 255: Simple Generators

In Python 2.2, generators were added as an optional feature, to be enabled by a
from __future__ import generators directive. In 2.3 generators no longer
need to be specially enabled, and are now always present; this means that
yield is now always a keyword. The rest of this section is a copy of
the description of generators from the "What's New in Python 2.2" document; if
you read it back when Python 2.2 came out, you can skip the rest of this
section.

You're doubtless familiar with how function calls work in Python or C. When you
call a function, it gets a private namespace where its local variables are
created. When the function reaches a return statement, the local
variables are destroyed and the resulting value is returned to the caller. A
later call to the same function will get a fresh new set of local variables.
But, what if the local variables weren't thrown away on exiting a function?
What if you could later resume the function where it left off? This is what
generators provide; they can be thought of as resumable functions.

Here's the simplest example of a generator function:

def generate_ints(N):
 for i in range(N):
 yield i

A new keyword, yield, was introduced for generators. Any function
containing a yield statement is a generator function; this is
detected by Python's bytecode compiler which compiles the function specially as
a result.

When you call a generator function, it doesn't return a single value; instead it
returns a generator object that supports the iterator protocol. On executing
the yield statement, the generator outputs the value of i,
similar to a return statement. The big difference between
yield and a return statement is that on reaching a
yield the generator's state of execution is suspended and local
variables are preserved. On the next call to the generator's .next()
method, the function will resume executing immediately after the
yield statement. (For complicated reasons, the yield
statement isn't allowed inside the try block of a
try...finally statement; read PEP 255 [https://www.python.org/dev/peps/pep-0255] for a full
explanation of the interaction between yield and exceptions.)

Here's a sample usage of the generate_ints() generator:

>>> gen = generate_ints(3)
>>> gen
<generator object at 0x8117f90>
>>> gen.next()
0
>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
Traceback (most recent call last):
 File "stdin", line 1, in ?
 File "stdin", line 2, in generate_ints
StopIteration

You could equally write for i in generate_ints(5), or a,b,c =
generate_ints(3).

Inside a generator function, the return statement can only be used
without a value, and signals the end of the procession of values; afterwards the
generator cannot return any further values. return with a value, such
as return 5, is a syntax error inside a generator function. The end of the
generator's results can also be indicated by raising StopIteration
manually, or by just letting the flow of execution fall off the bottom of the
function.

You could achieve the effect of generators manually by writing your own class
and storing all the local variables of the generator as instance variables. For
example, returning a list of integers could be done by setting self.count to
0, and having the next() method increment self.count and return it.
However, for a moderately complicated generator, writing a corresponding class
would be much messier. Lib/test/test_generators.py contains a number of
more interesting examples. The simplest one implements an in-order traversal of
a tree using generators recursively.

A recursive generator that generates Tree leaves in in-order.
def inorder(t):
 if t:
 for x in inorder(t.left):
 yield x
 yield t.label
 for x in inorder(t.right):
 yield x

Two other examples in Lib/test/test_generators.py produce solutions for
the N-Queens problem (placing N queens on an NxN chess board so that no
queen threatens another) and the Knight's Tour (a route that takes a knight to
every square of an NxN chessboard without visiting any square twice).

The idea of generators comes from other programming languages, especially Icon
(https://www.cs.arizona.edu/icon/), where the idea of generators is central. In
Icon, every expression and function call behaves like a generator. One example
from "An Overview of the Icon Programming Language" at
https://www.cs.arizona.edu/icon/docs/ipd266.htm gives an idea of what this looks
like:

sentence := "Store it in the neighboring harbor"
if (i := find("or", sentence)) > 5 then write(i)

In Icon the find() function returns the indexes at which the substring
"or" is found: 3, 23, 33. In the if statement, i is first
assigned a value of 3, but 3 is less than 5, so the comparison fails, and Icon
retries it with the second value of 23. 23 is greater than 5, so the comparison
now succeeds, and the code prints the value 23 to the screen.

Python doesn't go nearly as far as Icon in adopting generators as a central
concept. Generators are considered part of the core Python language, but
learning or using them isn't compulsory; if they don't solve any problems that
you have, feel free to ignore them. One novel feature of Python's interface as
compared to Icon's is that a generator's state is represented as a concrete
object (the iterator) that can be passed around to other functions or stored in
a data structure.

参见

	PEP 255 [https://www.python.org/dev/peps/pep-0255] - 简单生成器
	Written by Neil Schemenauer, Tim Peters, Magnus Lie Hetland. Implemented mostly
by Neil Schemenauer and Tim Peters, with other fixes from the Python Labs crew.

PEP 263: Source Code Encodings

Python source files can now be declared as being in different character set
encodings. Encodings are declared by including a specially formatted comment in
the first or second line of the source file. For example, a UTF-8 file can be
declared with:

#!/usr/bin/env python
-*- coding: UTF-8 -*-

Without such an encoding declaration, the default encoding used is 7-bit ASCII.
Executing or importing modules that contain string literals with 8-bit
characters and have no encoding declaration will result in a
DeprecationWarning being signalled by Python 2.3; in 2.4 this will be a
syntax error.

The encoding declaration only affects Unicode string literals, which will be
converted to Unicode using the specified encoding. Note that Python identifiers
are still restricted to ASCII characters, so you can't have variable names that
use characters outside of the usual alphanumerics.

参见

	PEP 263 [https://www.python.org/dev/peps/pep-0263] - Defining Python Source Code Encodings
	由 Marc-André Lemburg 和 Martin von Löwis 撰写 ; 由 Suzuki Hisao 和 Martin von Löwis 实现。

PEP 273: 从ZIP压缩包导入模块

The new zipimport module adds support for importing modules from a
ZIP-format archive. You don't need to import the module explicitly; it will be
automatically imported if a ZIP archive's filename is added to sys.path.
For example:

amk@nyman:~/src/python$ unzip -l /tmp/example.zip
Archive: /tmp/example.zip
 Length Date Time Name
 -------- ---- ---- ----
 8467 11-26-02 22:30 jwzthreading.py
 -------- -------
 8467 1 file
amk@nyman:~/src/python$./python
Python 2.3 (#1, Aug 1 2003, 19:54:32)
>>> import sys
>>> sys.path.insert(0, '/tmp/example.zip') # Add .zip file to front of path
>>> import jwzthreading
>>> jwzthreading.__file__
'/tmp/example.zip/jwzthreading.py'
>>>

An entry in sys.path can now be the filename of a ZIP archive. The ZIP
archive can contain any kind of files, but only files named *.py,
*.pyc, or *.pyo can be imported. If an archive only contains
*.py files, Python will not attempt to modify the archive by adding the
corresponding *.pyc file, meaning that if a ZIP archive doesn't contain
*.pyc files, importing may be rather slow.

A path within the archive can also be specified to only import from a
subdirectory; for example, the path /tmp/example.zip/lib/ would only
import from the lib/ subdirectory within the archive.

参见

	PEP 273 [https://www.python.org/dev/peps/pep-0273] - 从ZIP压缩包导入模块
	Written by James C. Ahlstrom, who also provided an implementation. Python 2.3
follows the specification in PEP 273 [https://www.python.org/dev/peps/pep-0273], but uses an implementation written by
Just van Rossum that uses the import hooks described in PEP 302 [https://www.python.org/dev/peps/pep-0302]. See section
PEP 302: New Import Hooks for a description of the new import hooks.

PEP 277: Unicode file name support for Windows NT

On Windows NT, 2000, and XP, the system stores file names as Unicode strings.
Traditionally, Python has represented file names as byte strings, which is
inadequate because it renders some file names inaccessible.

Python now allows using arbitrary Unicode strings (within the limitations of the
file system) for all functions that expect file names, most notably the
open() built-in function. If a Unicode string is passed to
os.listdir(), Python now returns a list of Unicode strings. A new
function, os.getcwdu(), returns the current directory as a Unicode string.

Byte strings still work as file names, and on Windows Python will transparently
convert them to Unicode using the mbcs encoding.

Other systems also allow Unicode strings as file names but convert them to byte
strings before passing them to the system, which can cause a UnicodeError
to be raised. Applications can test whether arbitrary Unicode strings are
supported as file names by checking os.path.supports_unicode_filenames,
a Boolean value.

Under MacOS, os.listdir() may now return Unicode filenames.

参见

	PEP 277 [https://www.python.org/dev/peps/pep-0277] - Unicode file name support for Windows NT
	由 Neil Hodgson 撰写 ; 由 Neil Hodgson, Martin von Löwis 和 Mark Hammond 实现。

PEP 278: 通用换行支持

The three major operating systems used today are Microsoft Windows, Apple's
Macintosh OS, and the various Unix derivatives. A minor irritation of
cross-platform work is that these three platforms all use different characters to
mark the ends of lines in text files. Unix uses the linefeed (ASCII character
10), MacOS uses the carriage return (ASCII character 13), and Windows uses a
two-character sequence of a carriage return plus a newline.

Python's file objects can now support end of line conventions other than the
one followed by the platform on which Python is running. Opening a file with
the mode 'U' or 'rU' will open a file for reading in universal
newlines mode. All three line ending conventions will be translated to a
'\n' in the strings returned by the various file methods such as
read() and readline().

Universal newline support is also used when importing modules and when executing
a file with the execfile() function. This means that Python modules can
be shared between all three operating systems without needing to convert the
line-endings.

This feature can be disabled when compiling Python by specifying the
--without-universal-newlines switch when running Python's
configure script.

参见

	PEP 278 [https://www.python.org/dev/peps/pep-0278] - 通用换行支持
	由 Jack Jansen 撰写并实现。

PEP 279: enumerate()

A new built-in function, enumerate(), will make certain loops a bit
clearer. enumerate(thing), where thing is either an iterator or a
sequence, returns an iterator that will return (0, thing[0]), (1,
thing[1]), (2, thing[2]), and so forth.

A common idiom to change every element of a list looks like this:

for i in range(len(L)):
 item = L[i]
 # ... compute some result based on item ...
 L[i] = result

可以使用 enumerate() 重写为：

for i, item in enumerate(L):
 # ... compute some result based on item ...
 L[i] = result

参见

	PEP 279 [https://www.python.org/dev/peps/pep-0279] - 内置函数 enumerate()
	由 Raymond Hettinger 撰写并实现。

PEP 282: logging 包

A standard package for writing logs, logging, has been added to Python
2.3. It provides a powerful and flexible mechanism for generating logging
output which can then be filtered and processed in various ways. A
configuration file written in a standard format can be used to control the
logging behavior of a program. Python includes handlers that will write log
records to standard error or to a file or socket, send them to the system log,
or even e-mail them to a particular address; of course, it's also possible to
write your own handler classes.

The Logger class is the primary class. Most application code will deal
with one or more Logger objects, each one used by a particular
subsystem of the application. Each Logger is identified by a name, and
names are organized into a hierarchy using . as the component separator.
For example, you might have Logger instances named server,
server.auth and server.network. The latter two instances are below
server in the hierarchy. This means that if you turn up the verbosity for
server or direct server messages to a different handler, the changes
will also apply to records logged to server.auth and server.network.
There's also a root Logger that's the parent of all other loggers.

For simple uses, the logging package contains some convenience functions
that always use the root log:

import logging

logging.debug('Debugging information')
logging.info('Informational message')
logging.warning('Warning:config file %s not found', 'server.conf')
logging.error('Error occurred')
logging.critical('Critical error -- shutting down')

This produces the following output:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

In the default configuration, informational and debugging messages are
suppressed and the output is sent to standard error. You can enable the display
of informational and debugging messages by calling the setLevel() method
on the root logger.

Notice the warning() call's use of string formatting operators; all of the
functions for logging messages take the arguments (msg, arg1, arg2, ...) and
log the string resulting from msg % (arg1, arg2, ...).

There's also an exception() function that records the most recent
traceback. Any of the other functions will also record the traceback if you
specify a true value for the keyword argument exc_info.

def f():
 try: 1/0
 except: logging.exception('Problem recorded')

f()

This produces the following output:

ERROR:root:Problem recorded
Traceback (most recent call last):
 File "t.py", line 6, in f
 1/0
ZeroDivisionError: integer division or modulo by zero

Slightly more advanced programs will use a logger other than the root logger.
The getLogger(name) function is used to get a particular log, creating
it if it doesn't exist yet. getLogger(None) returns the root logger.

log = logging.getLogger('server')
 ...
log.info('Listening on port %i', port)
 ...
log.critical('Disk full')
 ...

Log records are usually propagated up the hierarchy, so a message logged to
server.auth is also seen by server and root, but a Logger
can prevent this by setting its propagate attribute to False.

There are more classes provided by the logging package that can be
customized. When a Logger instance is told to log a message, it
creates a LogRecord instance that is sent to any number of different
Handler instances. Loggers and handlers can also have an attached list
of filters, and each filter can cause the LogRecord to be ignored or
can modify the record before passing it along. When they're finally output,
LogRecord instances are converted to text by a Formatter
class. All of these classes can be replaced by your own specially-written
classes.

With all of these features the logging package should provide enough
flexibility for even the most complicated applications. This is only an
incomplete overview of its features, so please see the package's reference
documentation for all of the details. Reading PEP 282 [https://www.python.org/dev/peps/pep-0282] will also be helpful.

参见

	PEP 282 [https://www.python.org/dev/peps/pep-0282] - Logging 系统
	由 Vinay Sajip 和 Trent Mick 撰写 ; 由 Vinay Sajip 实现。

PEP 285: 布尔类型

A Boolean type was added to Python 2.3. Two new constants were added to the
__builtin__ module, True and False. (True and
False constants were added to the built-ins in Python 2.2.1, but the
2.2.1 versions are simply set to integer values of 1 and 0 and aren't a
different type.)

The type object for this new type is named bool; the constructor for it
takes any Python value and converts it to True or False.

>>> bool(1)
True
>>> bool(0)
False
>>> bool([])
False
>>> bool((1,))
True

Most of the standard library modules and built-in functions have been changed to
return Booleans.

>>> obj = []
>>> hasattr(obj, 'append')
True
>>> isinstance(obj, list)
True
>>> isinstance(obj, tuple)
False

Python's Booleans were added with the primary goal of making code clearer. For
example, if you're reading a function and encounter the statement return 1,
you might wonder whether the 1 represents a Boolean truth value, an index,
or a coefficient that multiplies some other quantity. If the statement is
return True, however, the meaning of the return value is quite clear.

Python's Booleans were not added for the sake of strict type-checking. A very
strict language such as Pascal would also prevent you performing arithmetic with
Booleans, and would require that the expression in an if statement
always evaluate to a Boolean result. Python is not this strict and never will
be, as PEP 285 [https://www.python.org/dev/peps/pep-0285] explicitly says. This means you can still use any expression
in an if statement, even ones that evaluate to a list or tuple or
some random object. The Boolean type is a subclass of the int class so
that arithmetic using a Boolean still works.

>>> True + 1
2
>>> False + 1
1
>>> False * 75
0
>>> True * 75
75

To sum up True and False in a sentence: they're alternative
ways to spell the integer values 1 and 0, with the single difference that
str() and repr() return the strings 'True' and 'False'
instead of '1' and '0'.

参见

	PEP 285 [https://www.python.org/dev/peps/pep-0285] - 添加布尔类型
	由 GvR 撰写并实现。

PEP 293: Codec Error Handling Callbacks

When encoding a Unicode string into a byte string, unencodable characters may be
encountered. So far, Python has allowed specifying the error processing as
either "strict" (raising UnicodeError), "ignore" (skipping the
character), or "replace" (using a question mark in the output string), with
"strict" being the default behavior. It may be desirable to specify alternative
processing of such errors, such as inserting an XML character reference or HTML
entity reference into the converted string.

Python now has a flexible framework to add different processing strategies. New
error handlers can be added with codecs.register_error(), and codecs then
can access the error handler with codecs.lookup_error(). An equivalent C
API has been added for codecs written in C. The error handler gets the necessary
state information such as the string being converted, the position in the string
where the error was detected, and the target encoding. The handler can then
either raise an exception or return a replacement string.

Two additional error handlers have been implemented using this framework:
"backslashreplace" uses Python backslash quoting to represent unencodable
characters and "xmlcharrefreplace" emits XML character references.

参见

	PEP 293 [https://www.python.org/dev/peps/pep-0293] - Codec Error Handling Callbacks
	由 Walter Dörwald 撰写并实现。

PEP 301: Distutils的软件包索引和元数据

Support for the long-requested Python catalog makes its first appearance in 2.3.

The heart of the catalog is the new Distutils register command.
Running python setup.py register will collect the metadata describing a
package, such as its name, version, maintainer, description, &c., and send it to
a central catalog server. The resulting catalog is available from
https://pypi.org.

To make the catalog a bit more useful, a new optional classifiers keyword
argument has been added to the Distutils setup() function. A list of
Trove [http://catb.org/~esr/trove/]-style strings can be supplied to help
classify the software.

Here's an example setup.py with classifiers, written to be compatible
with older versions of the Distutils:

from distutils import core
kw = {'name': "Quixote",
 'version': "0.5.1",
 'description': "A highly Pythonic Web application framework",
 # ...
 }

if (hasattr(core, 'setup_keywords') and
 'classifiers' in core.setup_keywords):
 kw['classifiers'] = \
 ['Topic :: Internet :: WWW/HTTP :: Dynamic Content',
 'Environment :: No Input/Output (Daemon)',
 'Intended Audience :: Developers'],

core.setup(**kw)

The full list of classifiers can be obtained by running python setup.py
register --list-classifiers.

参见

	PEP 301 [https://www.python.org/dev/peps/pep-0301] - Distutils 的软件包索引和元数据
	由 Richard Jones 撰写并实现。

PEP 302: New Import Hooks

While it's been possible to write custom import hooks ever since the
ihooks module was introduced in Python 1.3, no one has ever been really
happy with it because writing new import hooks is difficult and messy. There
have been various proposed alternatives such as the imputil and iu
modules, but none of them has ever gained much acceptance, and none of them were
easily usable from C code.

PEP 302 [https://www.python.org/dev/peps/pep-0302] borrows ideas from its predecessors, especially from Gordon
McMillan's iu module. Three new items are added to the sys
module:

	sys.path_hooks is a list of callable objects; most often they'll be
classes. Each callable takes a string containing a path and either returns an
importer object that will handle imports from this path or raises an
ImportError exception if it can't handle this path.

	sys.path_importer_cache caches importer objects for each path, so
sys.path_hooks will only need to be traversed once for each path.

	sys.meta_path is a list of importer objects that will be traversed before
sys.path is checked. This list is initially empty, but user code can add
objects to it. Additional built-in and frozen modules can be imported by an
object added to this list.

Importer objects must have a single method, find_module(fullname,
path=None). fullname will be a module or package name, e.g. string or
distutils.core. find_module() must return a loader object that has a
single method, load_module(fullname), that creates and returns the
corresponding module object.

Pseudo-code for Python's new import logic, therefore, looks something like this
(simplified a bit; see PEP 302 [https://www.python.org/dev/peps/pep-0302] for the full details):

for mp in sys.meta_path:
 loader = mp(fullname)
 if loader is not None:
 <module> = loader.load_module(fullname)

for path in sys.path:
 for hook in sys.path_hooks:
 try:
 importer = hook(path)
 except ImportError:
 # ImportError, so try the other path hooks
 pass
 else:
 loader = importer.find_module(fullname)
 <module> = loader.load_module(fullname)

Not found!
raise ImportError

参见

	PEP 302 [https://www.python.org/dev/peps/pep-0302] - 新导入钩
	由 Just van Rossum 和 Paul Moore 撰写 ; 由 Just van Rossum 实现。

PEP 305: 逗号分隔文件

Comma-separated files are a format frequently used for exporting data from
databases and spreadsheets. Python 2.3 adds a parser for comma-separated files.

Comma-separated format is deceptively simple at first glance:

Costs,150,200,3.95

Read a line and call line.split(','): what could be simpler? But toss in
string data that can contain commas, and things get more complicated:

"Costs",150,200,3.95,"Includes taxes, shipping, and sundry items"

A big ugly regular expression can parse this, but using the new csv
package is much simpler:

import csv

input = open('datafile', 'rb')
reader = csv.reader(input)
for line in reader:
 print line

The reader() function takes a number of different options. The field
separator isn't limited to the comma and can be changed to any character, and so
can the quoting and line-ending characters.

Different dialects of comma-separated files can be defined and registered;
currently there are two dialects, both used by Microsoft Excel. A separate
csv.writer class will generate comma-separated files from a succession
of tuples or lists, quoting strings that contain the delimiter.

参见

	该实现在“Python 增强提议” - PEP 305 (CSV 文件 API) 中被提出
	由 Kevin Altis, Dave Cole, Andrew McNamara, Skip Montanaro, Cliff Wells 撰写并实现。

PEP 307: Pickle Enhancements

The pickle and cPickle modules received some attention during the
2.3 development cycle. In 2.2, new-style classes could be pickled without
difficulty, but they weren't pickled very compactly; PEP 307 [https://www.python.org/dev/peps/pep-0307] quotes a trivial
example where a new-style class results in a pickled string three times longer
than that for a classic class.

The solution was to invent a new pickle protocol. The pickle.dumps()
function has supported a text-or-binary flag for a long time. In 2.3, this
flag is redefined from a Boolean to an integer: 0 is the old text-mode pickle
format, 1 is the old binary format, and now 2 is a new 2.3-specific format. A
new constant, pickle.HIGHEST_PROTOCOL, can be used to select the
fanciest protocol available.

Unpickling is no longer considered a safe operation. 2.2's pickle
provided hooks for trying to prevent unsafe classes from being unpickled
(specifically, a __safe_for_unpickling__ attribute), but none of this
code was ever audited and therefore it's all been ripped out in 2.3. You should
not unpickle untrusted data in any version of Python.

To reduce the pickling overhead for new-style classes, a new interface for
customizing pickling was added using three special methods:
__getstate__(), __setstate__(), and __getnewargs__(). Consult
PEP 307 [https://www.python.org/dev/peps/pep-0307] for the full semantics of these methods.

As a way to compress pickles yet further, it's now possible to use integer codes
instead of long strings to identify pickled classes. The Python Software
Foundation will maintain a list of standardized codes; there's also a range of
codes for private use. Currently no codes have been specified.

参见

	PEP 307 [https://www.python.org/dev/peps/pep-0307] - Extensions to the pickle protocol
	PEP 由 Guido van Rossum 和 Tim Peters 撰写和实现。

扩展切片

Ever since Python 1.4, the slicing syntax has supported an optional third "step"
or "stride" argument. For example, these are all legal Python syntax:
L[1:10:2], L[:-1:1], L[::-1]. This was added to Python at the
request of the developers of Numerical Python, which uses the third argument
extensively. However, Python's built-in list, tuple, and string sequence types
have never supported this feature, raising a TypeError if you tried it.
Michael Hudson contributed a patch to fix this shortcoming.

For example, you can now easily extract the elements of a list that have even
indexes:

>>> L = range(10)
>>> L[::2]
[0, 2, 4, 6, 8]

Negative values also work to make a copy of the same list in reverse order:

>>> L[::-1]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

This also works for tuples, arrays, and strings:

>>> s='abcd'
>>> s[::2]
'ac'
>>> s[::-1]
'dcba'

If you have a mutable sequence such as a list or an array you can assign to or
delete an extended slice, but there are some differences between assignment to
extended and regular slices. Assignment to a regular slice can be used to
change the length of the sequence:

>>> a = range(3)
>>> a
[0, 1, 2]
>>> a[1:3] = [4, 5, 6]
>>> a
[0, 4, 5, 6]

Extended slices aren't this flexible. When assigning to an extended slice, the
list on the right hand side of the statement must contain the same number of
items as the slice it is replacing:

>>> a = range(4)
>>> a
[0, 1, 2, 3]
>>> a[::2]
[0, 2]
>>> a[::2] = [0, -1]
>>> a
[0, 1, -1, 3]
>>> a[::2] = [0,1,2]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ValueError: attempt to assign sequence of size 3 to extended slice of size 2

Deletion is more straightforward:

>>> a = range(4)
>>> a
[0, 1, 2, 3]
>>> a[::2]
[0, 2]
>>> del a[::2]
>>> a
[1, 3]

One can also now pass slice objects to the __getitem__() methods of the
built-in sequences:

>>> range(10).__getitem__(slice(0, 5, 2))
[0, 2, 4]

Or use slice objects directly in subscripts:

>>> range(10)[slice(0, 5, 2)]
[0, 2, 4]

To simplify implementing sequences that support extended slicing, slice objects
now have a method indices(length) which, given the length of a sequence,
returns a (start, stop, step) tuple that can be passed directly to
range(). indices() handles omitted and out-of-bounds indices in a
manner consistent with regular slices (and this innocuous phrase hides a welter
of confusing details!). The method is intended to be used like this:

class FakeSeq:
 ...
 def calc_item(self, i):
 ...
 def __getitem__(self, item):
 if isinstance(item, slice):
 indices = item.indices(len(self))
 return FakeSeq([self.calc_item(i) for i in range(*indices)])
 else:
 return self.calc_item(i)

From this example you can also see that the built-in slice object is
now the type object for the slice type, and is no longer a function. This is
consistent with Python 2.2, where int, str, etc., underwent
the same change.

其他语言特性修改

Here are all of the changes that Python 2.3 makes to the core Python language.

	The yield statement is now always a keyword, as described in
section PEP 255: Simple Generators of this document.

	A new built-in function enumerate() was added, as described in section
PEP 279: enumerate() of this document.

	Two new constants, True and False were added along with the
built-in bool type, as described in section PEP 285: 布尔类型 of this
document.

	The int() type constructor will now return a long integer instead of
raising an OverflowError when a string or floating-point number is too
large to fit into an integer. This can lead to the paradoxical result that
isinstance(int(expression), int) is false, but that seems unlikely to cause
problems in practice.

	Built-in types now support the extended slicing syntax, as described in
section 扩展切片 of this document.

	A new built-in function, sum(iterable, start=0), adds up the numeric
items in the iterable object and returns their sum. sum() only accepts
numbers, meaning that you can't use it to concatenate a bunch of strings.
(Contributed by Alex Martelli.)

	list.insert(pos, value) used to insert value at the front of the list
when pos was negative. The behaviour has now been changed to be consistent
with slice indexing, so when pos is -1 the value will be inserted before the
last element, and so forth.

	list.index(value), which searches for value within the list and returns
its index, now takes optional start and stop arguments to limit the search
to only part of the list.

	Dictionaries have a new method, pop(key[, *default*]), that returns
the value corresponding to key and removes that key/value pair from the
dictionary. If the requested key isn't present in the dictionary, default is
returned if it's specified and KeyError raised if it isn't.

>>> d = {1:2}
>>> d
{1: 2}
>>> d.pop(4)
Traceback (most recent call last):
 File "stdin", line 1, in ?
KeyError: 4
>>> d.pop(1)
2
>>> d.pop(1)
Traceback (most recent call last):
 File "stdin", line 1, in ?
KeyError: 'pop(): dictionary is empty'
>>> d
{}
>>>

There's also a new class method, dict.fromkeys(iterable, value), that
creates a dictionary with keys taken from the supplied iterator iterable and
all values set to value, defaulting to None.

(Patches contributed by Raymond Hettinger.)

Also, the dict() constructor now accepts keyword arguments to simplify
creating small dictionaries:

>>> dict(red=1, blue=2, green=3, black=4)
{'blue': 2, 'black': 4, 'green': 3, 'red': 1}

（由 Just van Rossum 贡献。）

	The assert statement no longer checks the __debug__ flag, so
you can no longer disable assertions by assigning to __debug__. Running
Python with the -O switch will still generate code that doesn't
execute any assertions.

	Most type objects are now callable, so you can use them to create new objects
such as functions, classes, and modules. (This means that the new module
can be deprecated in a future Python version, because you can now use the type
objects available in the types module.) For example, you can create a new
module object with the following code:

>>> import types
>>> m = types.ModuleType('abc','docstring')
>>> m
<module 'abc' (built-in)>
>>> m.__doc__
'docstring'

	A new warning, PendingDeprecationWarning was added to indicate features
which are in the process of being deprecated. The warning will not be printed
by default. To check for use of features that will be deprecated in the future,
supply -Walways::PendingDeprecationWarning:: on the command line or
use warnings.filterwarnings().

	The process of deprecating string-based exceptions, as in raise "Error
occurred", has begun. Raising a string will now trigger
PendingDeprecationWarning.

	Using None as a variable name will now result in a SyntaxWarning
warning. In a future version of Python, None may finally become a keyword.

	The xreadlines() method of file objects, introduced in Python 2.1, is no
longer necessary because files now behave as their own iterator.
xreadlines() was originally introduced as a faster way to loop over all
the lines in a file, but now you can simply write for line in file_obj.
File objects also have a new read-only encoding attribute that gives the
encoding used by the file; Unicode strings written to the file will be
automatically converted to bytes using the given encoding.

	The method resolution order used by new-style classes has changed, though
you'll only notice the difference if you have a really complicated inheritance
hierarchy. Classic classes are unaffected by this change. Python 2.2
originally used a topological sort of a class's ancestors, but 2.3 now uses the
C3 algorithm as described in the paper "A Monotonic Superclass Linearization
for Dylan" [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.3910]. To
understand the motivation for this change, read Michele Simionato's article
"Python 2.3 Method Resolution Order" [http://www.phyast.pitt.edu/~micheles/mro.html], or
read the thread on python-dev starting with the message at
https://mail.python.org/pipermail/python-dev/2002-October/029035.html. Samuele
Pedroni first pointed out the problem and also implemented the fix by coding the
C3 algorithm.

	Python runs multithreaded programs by switching between threads after
executing N bytecodes. The default value for N has been increased from 10 to
100 bytecodes, speeding up single-threaded applications by reducing the
switching overhead. Some multithreaded applications may suffer slower response
time, but that's easily fixed by setting the limit back to a lower number using
sys.setcheckinterval(N). The limit can be retrieved with the new
sys.getcheckinterval() function.

	One minor but far-reaching change is that the names of extension types defined
by the modules included with Python now contain the module and a '.' in
front of the type name. For example, in Python 2.2, if you created a socket and
printed its __class__, you'd get this output:

>>> s = socket.socket()
>>> s.__class__
<type 'socket'>

In 2.3, you get this:

>>> s.__class__
<type '_socket.socket'>

	One of the noted incompatibilities between old- and new-style classes has been
removed: you can now assign to the __name__ and __bases__
attributes of new-style classes. There are some restrictions on what can be
assigned to __bases__ along the lines of those relating to assigning to
an instance's __class__ attribute.

String Changes

	The in operator now works differently for strings. Previously, when
evaluating X in Y where X and Y are strings, X could only be a single
character. That's now changed; X can be a string of any length, and X in Y
will return True if X is a substring of Y. If X is the empty
string, the result is always True.

>>> 'ab' in 'abcd'
True
>>> 'ad' in 'abcd'
False
>>> '' in 'abcd'
True

Note that this doesn't tell you where the substring starts; if you need that
information, use the find() string method.

	The strip(), lstrip(), and rstrip() string methods now have
an optional argument for specifying the characters to strip. The default is
still to remove all whitespace characters:

>>> ' abc '.strip()
'abc'
>>> '><><abc<><><>'.strip('<>')
'abc'
>>> '><><abc<><><>\n'.strip('<>')
'abc<><><>\n'
>>> u'\u4000\u4001abc\u4000'.strip(u'\u4000')
u'\u4001abc'
>>>

(Suggested by Simon Brunning and implemented by Walter Dörwald.)

	The startswith() and endswith() string methods now accept negative
numbers for the start and end parameters.

	Another new string method is zfill(), originally a function in the
string module. zfill() pads a numeric string with zeros on the
left until it's the specified width. Note that the % operator is still more
flexible and powerful than zfill().

>>> '45'.zfill(4)
'0045'
>>> '12345'.zfill(4)
'12345'
>>> 'goofy'.zfill(6)
'0goofy'

（由 Walter Dörwald 贡献。）

	A new type object, basestring, has been added. Both 8-bit strings and
Unicode strings inherit from this type, so isinstance(obj, basestring) will
return True for either kind of string. It's a completely abstract
type, so you can't create basestring instances.

	Interned strings are no longer immortal and will now be garbage-collected in
the usual way when the only reference to them is from the internal dictionary of
interned strings. (Implemented by Oren Tirosh.)

性能优化

	The creation of new-style class instances has been made much faster; they're
now faster than classic classes!

	The sort() method of list objects has been extensively rewritten by Tim
Peters, and the implementation is significantly faster.

	Multiplication of large long integers is now much faster thanks to an
implementation of Karatsuba multiplication, an algorithm that scales better than
the O(n*n) required for the grade-school multiplication algorithm. (Original
patch by Christopher A. Craig, and significantly reworked by Tim Peters.)

	The SET_LINENO opcode is now gone. This may provide a small speed
increase, depending on your compiler's idiosyncrasies. See section
Other Changes and Fixes for a longer explanation. (Removed by Michael Hudson.)

	xrange() objects now have their own iterator, making for i in
xrange(n) slightly faster than for i in range(n). (Patch by Raymond
Hettinger.)

	A number of small rearrangements have been made in various hotspots to improve
performance, such as inlining a function or removing some code. (Implemented
mostly by GvR, but lots of people have contributed single changes.)

The net result of the 2.3 optimizations is that Python 2.3 runs the pystone
benchmark around 25% faster than Python 2.2.

新增，改进和弃用的模块

As usual, Python's standard library received a number of enhancements and bug
fixes. Here's a partial list of the most notable changes, sorted alphabetically
by module name. Consult the Misc/NEWS file in the source tree for a more
complete list of changes, or look through the CVS logs for all the details.

	The array module now supports arrays of Unicode characters using the
'u' format character. Arrays also now support using the += assignment
operator to add another array's contents, and the *= assignment operator to
repeat an array. (Contributed by Jason Orendorff.)

	The bsddb module has been replaced by version 4.1.6 of the PyBSDDB [http://pybsddb.sourceforge.net] package, providing a more complete interface
to the transactional features of the BerkeleyDB library.

The old version of the module has been renamed to bsddb185 and is no
longer built automatically; you'll have to edit Modules/Setup to enable
it. Note that the new bsddb package is intended to be compatible with
the old module, so be sure to file bugs if you discover any incompatibilities.
When upgrading to Python 2.3, if the new interpreter is compiled with a new
version of the underlying BerkeleyDB library, you will almost certainly have to
convert your database files to the new version. You can do this fairly easily
with the new scripts db2pickle.py and pickle2db.py which you
will find in the distribution's Tools/scripts directory. If you've
already been using the PyBSDDB package and importing it as bsddb3, you
will have to change your import statements to import it as bsddb.

	The new bz2 module is an interface to the bz2 data compression library.
bz2-compressed data is usually smaller than corresponding
zlib-compressed data. (Contributed by Gustavo Niemeyer.)

	A set of standard date/time types has been added in the new datetime
module. See the following section for more details.

	The Distutils Extension class now supports an extra constructor
argument named depends for listing additional source files that an extension
depends on. This lets Distutils recompile the module if any of the dependency
files are modified. For example, if sampmodule.c includes the header
file sample.h, you would create the Extension object like
this:

ext = Extension("samp",
 sources=["sampmodule.c"],
 depends=["sample.h"])

Modifying sample.h would then cause the module to be recompiled.
(Contributed by Jeremy Hylton.)

	Other minor changes to Distutils: it now checks for the CC,
CFLAGS, CPP, LDFLAGS, and CPPFLAGS
environment variables, using them to override the settings in Python's
configuration (contributed by Robert Weber).

	Previously the doctest module would only search the docstrings of
public methods and functions for test cases, but it now also examines private
ones as well. The DocTestSuite() function creates a
unittest.TestSuite object from a set of doctest tests.

	The new gc.get_referents(object) function returns a list of all the
objects referenced by object.

	The getopt module gained a new function, gnu_getopt(), that
supports the same arguments as the existing getopt() function but uses
GNU-style scanning mode. The existing getopt() stops processing options as
soon as a non-option argument is encountered, but in GNU-style mode processing
continues, meaning that options and arguments can be mixed. For example:

>>> getopt.getopt(['-f', 'filename', 'output', '-v'], 'f:v')
([('-f', 'filename')], ['output', '-v'])
>>> getopt.gnu_getopt(['-f', 'filename', 'output', '-v'], 'f:v')
([('-f', 'filename'), ('-v', '')], ['output'])

（由 Peter Åstrand 贡献。）

	The grp, pwd, and resource modules now return enhanced
tuples:

>>> import grp
>>> g = grp.getgrnam('amk')
>>> g.gr_name, g.gr_gid
('amk', 500)

	The gzip module can now handle files exceeding 2 GiB.

	The new heapq module contains an implementation of a heap queue
algorithm. A heap is an array-like data structure that keeps items in a
partially sorted order such that, for every index k, heap[k] <=
heap[2*k+1] and heap[k] <= heap[2*k+2]. This makes it quick to remove the
smallest item, and inserting a new item while maintaining the heap property is
O(lg n). (See https://xlinux.nist.gov/dads//HTML/priorityque.html for more
information about the priority queue data structure.)

The heapq module provides heappush() and heappop() functions
for adding and removing items while maintaining the heap property on top of some
other mutable Python sequence type. Here's an example that uses a Python list:

>>> import heapq
>>> heap = []
>>> for item in [3, 7, 5, 11, 1]:
... heapq.heappush(heap, item)
...
>>> heap
[1, 3, 5, 11, 7]
>>> heapq.heappop(heap)
1
>>> heapq.heappop(heap)
3
>>> heap
[5, 7, 11]

（由 Kevin O'Connor 贡献。）

	The IDLE integrated development environment has been updated using the code
from the IDLEfork project (http://idlefork.sourceforge.net). The most notable feature is
that the code being developed is now executed in a subprocess, meaning that
there's no longer any need for manual reload() operations. IDLE's core code
has been incorporated into the standard library as the idlelib package.

	The imaplib module now supports IMAP over SSL. (Contributed by Piers
Lauder and Tino Lange.)

	The itertools contains a number of useful functions for use with
iterators, inspired by various functions provided by the ML and Haskell
languages. For example, itertools.ifilter(predicate, iterator) returns all
elements in the iterator for which the function predicate() returns
True, and itertools.repeat(obj, N) returns obj N times.
There are a number of other functions in the module; see the package's reference
documentation for details.
(Contributed by Raymond Hettinger.)

	Two new functions in the math module, degrees(rads) and
radians(degs), convert between radians and degrees. Other functions in
the math module such as math.sin() and math.cos() have always
required input values measured in radians. Also, an optional base argument
was added to math.log() to make it easier to compute logarithms for bases
other than e and 10. (Contributed by Raymond Hettinger.)

	Several new POSIX functions (getpgid(), killpg(), lchown(),
loadavg(), major(), makedev(), minor(), and
mknod()) were added to the posix module that underlies the
os module. (Contributed by Gustavo Niemeyer, Geert Jansen, and Denis S.
Otkidach.)

	In the os module, the *stat() family of functions can now report
fractions of a second in a timestamp. Such time stamps are represented as
floats, similar to the value returned by time.time().

During testing, it was found that some applications will break if time stamps
are floats. For compatibility, when using the tuple interface of the
stat_result time stamps will be represented as integers. When using
named fields (a feature first introduced in Python 2.2), time stamps are still
represented as integers, unless os.stat_float_times() is invoked to enable
float return values:

>>> os.stat("/tmp").st_mtime
1034791200
>>> os.stat_float_times(True)
>>> os.stat("/tmp").st_mtime
1034791200.6335014

In Python 2.4, the default will change to always returning floats.

Application developers should enable this feature only if all their libraries
work properly when confronted with floating point time stamps, or if they use
the tuple API. If used, the feature should be activated on an application level
instead of trying to enable it on a per-use basis.

	The optparse module contains a new parser for command-line arguments
that can convert option values to a particular Python type and will
automatically generate a usage message. See the following section for more
details.

	The old and never-documented linuxaudiodev module has been deprecated,
and a new version named ossaudiodev has been added. The module was
renamed because the OSS sound drivers can be used on platforms other than Linux,
and the interface has also been tidied and brought up to date in various ways.
(Contributed by Greg Ward and Nicholas FitzRoy-Dale.)

	The new platform module contains a number of functions that try to
determine various properties of the platform you're running on. There are
functions for getting the architecture, CPU type, the Windows OS version, and
even the Linux distribution version. (Contributed by Marc-André Lemburg.)

	The parser objects provided by the pyexpat module can now optionally
buffer character data, resulting in fewer calls to your character data handler
and therefore faster performance. Setting the parser object's
buffer_text attribute to True will enable buffering.

	The sample(population, k) function was added to the random
module. population is a sequence or xrange object containing the
elements of a population, and sample() chooses k elements from the
population without replacing chosen elements. k can be any value up to
len(population). For example:

>>> days = ['Mo', 'Tu', 'We', 'Th', 'Fr', 'St', 'Sn']
>>> random.sample(days, 3) # Choose 3 elements
['St', 'Sn', 'Th']
>>> random.sample(days, 7) # Choose 7 elements
['Tu', 'Th', 'Mo', 'We', 'St', 'Fr', 'Sn']
>>> random.sample(days, 7) # Choose 7 again
['We', 'Mo', 'Sn', 'Fr', 'Tu', 'St', 'Th']
>>> random.sample(days, 8) # Can't choose eight
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "random.py", line 414, in sample
 raise ValueError, "sample larger than population"
ValueError: sample larger than population
>>> random.sample(xrange(1,10000,2), 10) # Choose ten odd nos. under 10000
[3407, 3805, 1505, 7023, 2401, 2267, 9733, 3151, 8083, 9195]

The random module now uses a new algorithm, the Mersenne Twister,
implemented in C. It's faster and more extensively studied than the previous
algorithm.

(All changes contributed by Raymond Hettinger.)

	The readline module also gained a number of new functions:
get_history_item(), get_current_history_length(), and
redisplay().

	The rexec and Bastion modules have been declared dead, and
attempts to import them will fail with a RuntimeError. New-style classes
provide new ways to break out of the restricted execution environment provided
by rexec, and no one has interest in fixing them or time to do so. If
you have applications using rexec, rewrite them to use something else.

(Sticking with Python 2.2 or 2.1 will not make your applications any safer
because there are known bugs in the rexec module in those versions. To
repeat: if you're using rexec, stop using it immediately.)

	The rotor module has been deprecated because the algorithm it uses for
encryption is not believed to be secure. If you need encryption, use one of the
several AES Python modules that are available separately.

	The shutil module gained a move(src, dest) function that
recursively moves a file or directory to a new location.

	Support for more advanced POSIX signal handling was added to the signal
but then removed again as it proved impossible to make it work reliably across
platforms.

	The socket module now supports timeouts. You can call the
settimeout(t) method on a socket object to set a timeout of t seconds.
Subsequent socket operations that take longer than t seconds to complete will
abort and raise a socket.timeout exception.

The original timeout implementation was by Tim O'Malley. Michael Gilfix
integrated it into the Python socket module and shepherded it through a
lengthy review. After the code was checked in, Guido van Rossum rewrote parts
of it. (This is a good example of a collaborative development process in
action.)

	On Windows, the socket module now ships with Secure Sockets Layer
(SSL) support.

	The value of the C PYTHON_API_VERSION macro is now exposed at the
Python level as sys.api_version. The current exception can be cleared by
calling the new sys.exc_clear() function.

	The new tarfile module allows reading from and writing to
tar-format archive files. (Contributed by Lars Gustäbel.)

	The new textwrap module contains functions for wrapping strings
containing paragraphs of text. The wrap(text, width) function takes a
string and returns a list containing the text split into lines of no more than
the chosen width. The fill(text, width) function returns a single
string, reformatted to fit into lines no longer than the chosen width. (As you
can guess, fill() is built on top of wrap(). For example:

>>> import textwrap
>>> paragraph = "Not a whit, we defy augury: ... more text ..."
>>> textwrap.wrap(paragraph, 60)
["Not a whit, we defy augury: there's a special providence in",
 "the fall of a sparrow. If it be now, 'tis not to come; if it",
 ...]
>>> print textwrap.fill(paragraph, 35)
Not a whit, we defy augury: there's
a special providence in the fall of
a sparrow. If it be now, 'tis not
to come; if it be not to come, it
will be now; if it be not now, yet
it will come: the readiness is all.
>>>

The module also contains a TextWrapper class that actually implements
the text wrapping strategy. Both the TextWrapper class and the
wrap() and fill() functions support a number of additional keyword
arguments for fine-tuning the formatting; consult the module's documentation
for details. (Contributed by Greg Ward.)

	The thread and threading modules now have companion modules,
dummy_thread and dummy_threading, that provide a do-nothing
implementation of the thread module's interface for platforms where
threads are not supported. The intention is to simplify thread-aware modules
(ones that don't rely on threads to run) by putting the following code at the
top:

try:
 import threading as _threading
except ImportError:
 import dummy_threading as _threading

In this example, _threading is used as the module name to make it clear
that the module being used is not necessarily the actual threading
module. Code can call functions and use classes in _threading whether or
not threads are supported, avoiding an if statement and making the
code slightly clearer. This module will not magically make multithreaded code
run without threads; code that waits for another thread to return or to do
something will simply hang forever.

	The time module's strptime() function has long been an annoyance
because it uses the platform C library's strptime() implementation, and
different platforms sometimes have odd bugs. Brett Cannon contributed a
portable implementation that's written in pure Python and should behave
identically on all platforms.

	The new timeit module helps measure how long snippets of Python code
take to execute. The timeit.py file can be run directly from the
command line, or the module's Timer class can be imported and used
directly. Here's a short example that figures out whether it's faster to
convert an 8-bit string to Unicode by appending an empty Unicode string to it or
by using the unicode() function:

import timeit

timer1 = timeit.Timer('unicode("abc")')
timer2 = timeit.Timer('"abc" + u""')

Run three trials
print timer1.repeat(repeat=3, number=100000)
print timer2.repeat(repeat=3, number=100000)

On my laptop this outputs:
[0.36831796169281006, 0.37441694736480713, 0.35304892063140869]
[0.17574405670166016, 0.18193507194519043, 0.17565798759460449]

	The Tix module has received various bug fixes and updates for the
current version of the Tix package.

	The Tkinter module now works with a thread-enabled version of Tcl.
Tcl's threading model requires that widgets only be accessed from the thread in
which they're created; accesses from another thread can cause Tcl to panic. For
certain Tcl interfaces, Tkinter will now automatically avoid this when a
widget is accessed from a different thread by marshalling a command, passing it
to the correct thread, and waiting for the results. Other interfaces can't be
handled automatically but Tkinter will now raise an exception on such an
access so that you can at least find out about the problem. See
https://mail.python.org/pipermail/python-dev/2002-December/031107.html for a more
detailed explanation of this change. (Implemented by Martin von Löwis.)

	Calling Tcl methods through _tkinter no longer returns only strings.
Instead, if Tcl returns other objects those objects are converted to their
Python equivalent, if one exists, or wrapped with a _tkinter.Tcl_Obj
object if no Python equivalent exists. This behavior can be controlled through
the wantobjects() method of tkapp objects.

When using _tkinter through the Tkinter module (as most Tkinter
applications will), this feature is always activated. It should not cause
compatibility problems, since Tkinter would always convert string results to
Python types where possible.

If any incompatibilities are found, the old behavior can be restored by setting
the wantobjects variable in the Tkinter module to false before
creating the first tkapp object.

import Tkinter
Tkinter.wantobjects = 0

Any breakage caused by this change should be reported as a bug.

	The UserDict module has a new DictMixin class which defines
all dictionary methods for classes that already have a minimum mapping
interface. This greatly simplifies writing classes that need to be
substitutable for dictionaries, such as the classes in the shelve
module.

Adding the mix-in as a superclass provides the full dictionary interface
whenever the class defines __getitem__(), __setitem__(),
__delitem__(), and keys(). For example:

>>> import UserDict
>>> class SeqDict(UserDict.DictMixin):
... """Dictionary lookalike implemented with lists."""
... def __init__(self):
... self.keylist = []
... self.valuelist = []
... def __getitem__(self, key):
... try:
... i = self.keylist.index(key)
... except ValueError:
... raise KeyError
... return self.valuelist[i]
... def __setitem__(self, key, value):
... try:
... i = self.keylist.index(key)
... self.valuelist[i] = value
... except ValueError:
... self.keylist.append(key)
... self.valuelist.append(value)
... def __delitem__(self, key):
... try:
... i = self.keylist.index(key)
... except ValueError:
... raise KeyError
... self.keylist.pop(i)
... self.valuelist.pop(i)
... def keys(self):
... return list(self.keylist)
...
>>> s = SeqDict()
>>> dir(s) # See that other dictionary methods are implemented
['__cmp__', '__contains__', '__delitem__', '__doc__', '__getitem__',
 '__init__', '__iter__', '__len__', '__module__', '__repr__',
 '__setitem__', 'clear', 'get', 'has_key', 'items', 'iteritems',
 'iterkeys', 'itervalues', 'keylist', 'keys', 'pop', 'popitem',
 'setdefault', 'update', 'valuelist', 'values']

（由 Raymond Hettinger 贡献。）

	The DOM implementation in xml.dom.minidom can now generate XML output
in a particular encoding by providing an optional encoding argument to the
toxml() and toprettyxml() methods of DOM nodes.

	The xmlrpclib module now supports an XML-RPC extension for handling nil
data values such as Python's None. Nil values are always supported on
unmarshalling an XML-RPC response. To generate requests containing None,
you must supply a true value for the allow_none parameter when creating a
Marshaller instance.

	The new DocXMLRPCServer module allows writing self-documenting XML-RPC
servers. Run it in demo mode (as a program) to see it in action. Pointing the
Web browser to the RPC server produces pydoc-style documentation; pointing
xmlrpclib to the server allows invoking the actual methods. (Contributed by
Brian Quinlan.)

	Support for internationalized domain names (RFCs 3454, 3490, 3491, and 3492)
has been added. The "idna" encoding can be used to convert between a Unicode
domain name and the ASCII-compatible encoding (ACE) of that name.

>{}>{}> u"www.Alliancefrançaise.nu".encode("idna")
'www.xn--alliancefranaise-npb.nu'

The socket module has also been extended to transparently convert
Unicode hostnames to the ACE version before passing them to the C library.
Modules that deal with hostnames such as httplib and ftplib)
also support Unicode host names; httplib also sends HTTP Host
headers using the ACE version of the domain name. urllib supports
Unicode URLs with non-ASCII host names as long as the path part of the URL
is ASCII only.

To implement this change, the stringprep module, the mkstringprep
tool and the punycode encoding have been added.

Date/Time 类型

Date and time types suitable for expressing timestamps were added as the
datetime module. The types don't support different calendars or many
fancy features, and just stick to the basics of representing time.

The three primary types are: date, representing a day, month, and year;
time, consisting of hour, minute, and second; and datetime,
which contains all the attributes of both date and time.
There's also a timedelta class representing differences between two
points in time, and time zone logic is implemented by classes inheriting from
the abstract tzinfo class.

You can create instances of date and time by either supplying
keyword arguments to the appropriate constructor, e.g.
datetime.date(year=1972, month=10, day=15), or by using one of a number of
class methods. For example, the date.today() class method returns the
current local date.

Once created, instances of the date/time classes are all immutable. There are a
number of methods for producing formatted strings from objects:

>>> import datetime
>>> now = datetime.datetime.now()
>>> now.isoformat()
'2002-12-30T21:27:03.994956'
>>> now.ctime() # Only available on date, datetime
'Mon Dec 30 21:27:03 2002'
>>> now.strftime('%Y %d %b')
'2002 30 Dec'

The replace() method allows modifying one or more fields of a
date or datetime instance, returning a new instance:

>>> d = datetime.datetime.now()
>>> d
datetime.datetime(2002, 12, 30, 22, 15, 38, 827738)
>>> d.replace(year=2001, hour = 12)
datetime.datetime(2001, 12, 30, 12, 15, 38, 827738)
>>>

Instances can be compared, hashed, and converted to strings (the result is the
same as that of isoformat()). date and datetime
instances can be subtracted from each other, and added to timedelta
instances. The largest missing feature is that there's no standard library
support for parsing strings and getting back a date or
datetime.

For more information, refer to the module's reference documentation.
(Contributed by Tim Peters.)

optparse 模块

The getopt module provides simple parsing of command-line arguments. The
new optparse module (originally named Optik) provides more elaborate
command-line parsing that follows the Unix conventions, automatically creates
the output for --help, and can perform different actions for different
options.

You start by creating an instance of OptionParser and telling it what
your program's options are.

import sys
from optparse import OptionParser

op = OptionParser()
op.add_option('-i', '--input',
 action='store', type='string', dest='input',
 help='set input filename')
op.add_option('-l', '--length',
 action='store', type='int', dest='length',
 help='set maximum length of output')

Parsing a command line is then done by calling the parse_args() method.

options, args = op.parse_args(sys.argv[1:])
print options
print args

This returns an object containing all of the option values, and a list of
strings containing the remaining arguments.

Invoking the script with the various arguments now works as you'd expect it to.
Note that the length argument is automatically converted to an integer.

$./python opt.py -i data arg1
<Values at 0x400cad4c: {'input': 'data', 'length': None}>
['arg1']
$./python opt.py --input=data --length=4
<Values at 0x400cad2c: {'input': 'data', 'length': 4}>
[]
$

The help message is automatically generated for you:

$./python opt.py --help
usage: opt.py [options]

options:
 -h, --help show this help message and exit
 -iINPUT, --input=INPUT
 set input filename
 -lLENGTH, --length=LENGTH
 set maximum length of output
$

有关更多详细信息，请参见模块的文档。

Optik was written by Greg Ward, with suggestions from the readers of the Getopt
SIG.

Pymalloc: A Specialized Object Allocator

Pymalloc, a specialized object allocator written by Vladimir Marangozov, was a
feature added to Python 2.1. Pymalloc is intended to be faster than the system
malloc() and to have less memory overhead for allocation patterns typical
of Python programs. The allocator uses C's malloc() function to get large
pools of memory and then fulfills smaller memory requests from these pools.

In 2.1 and 2.2, pymalloc was an experimental feature and wasn't enabled by
default; you had to explicitly enable it when compiling Python by providing the
--with-pymalloc option to the configure script. In 2.3,
pymalloc has had further enhancements and is now enabled by default; you'll have
to supply --without-pymalloc to disable it.

This change is transparent to code written in Python; however, pymalloc may
expose bugs in C extensions. Authors of C extension modules should test their
code with pymalloc enabled, because some incorrect code may cause core dumps at
runtime.

There's one particularly common error that causes problems. There are a number
of memory allocation functions in Python's C API that have previously just been
aliases for the C library's malloc() and free(), meaning that if
you accidentally called mismatched functions the error wouldn't be noticeable.
When the object allocator is enabled, these functions aren't aliases of
malloc() and free() any more, and calling the wrong function to
free memory may get you a core dump. For example, if memory was allocated using
PyObject_Malloc(), it has to be freed using PyObject_Free(), not
free(). A few modules included with Python fell afoul of this and had to
be fixed; doubtless there are more third-party modules that will have the same
problem.

As part of this change, the confusing multiple interfaces for allocating memory
have been consolidated down into two API families. Memory allocated with one
family must not be manipulated with functions from the other family. There is
one family for allocating chunks of memory and another family of functions
specifically for allocating Python objects.

	To allocate and free an undistinguished chunk of memory use the "raw memory"
family: PyMem_Malloc(), PyMem_Realloc(), and PyMem_Free().

	The "object memory" family is the interface to the pymalloc facility described
above and is biased towards a large number of "small" allocations:
PyObject_Malloc(), PyObject_Realloc(), and PyObject_Free().

	To allocate and free Python objects, use the "object" family
PyObject_New(), PyObject_NewVar(), and PyObject_Del().

Thanks to lots of work by Tim Peters, pymalloc in 2.3 also provides debugging
features to catch memory overwrites and doubled frees in both extension modules
and in the interpreter itself. To enable this support, compile a debugging
version of the Python interpreter by running configure with
--with-pydebug.

To aid extension writers, a header file Misc/pymemcompat.h is
distributed with the source to Python 2.3 that allows Python extensions to use
the 2.3 interfaces to memory allocation while compiling against any version of
Python since 1.5.2. You would copy the file from Python's source distribution
and bundle it with the source of your extension.

参见

	https://hg.python.org/cpython/file/default/Objects/obmalloc.c
	For the full details of the pymalloc implementation, see the comments at
the top of the file Objects/obmalloc.c in the Python source code.
The above link points to the file within the python.org SVN browser.

构建和 C API 的改变

Changes to Python's build process and to the C API include:

	The cycle detection implementation used by the garbage collection has proven
to be stable, so it's now been made mandatory. You can no longer compile Python
without it, and the --with-cycle-gc switch to configure has
been removed.

	Python can now optionally be built as a shared library
(libpython2.3.so) by supplying --enable-shared when running
Python's configure script. (Contributed by Ondrej Palkovsky.)

	The DL_EXPORT and DL_IMPORT macros are now deprecated.
Initialization functions for Python extension modules should now be declared
using the new macro PyMODINIT_FUNC, while the Python core will
generally use the PyAPI_FUNC and PyAPI_DATA macros.

	The interpreter can be compiled without any docstrings for the built-in
functions and modules by supplying --without-doc-strings to the
configure script. This makes the Python executable about 10% smaller,
but will also mean that you can't get help for Python's built-ins. (Contributed
by Gustavo Niemeyer.)

	The PyArg_NoArgs() macro is now deprecated, and code that uses it
should be changed. For Python 2.2 and later, the method definition table can
specify the METH_NOARGS flag, signalling that there are no arguments,
and the argument checking can then be removed. If compatibility with pre-2.2
versions of Python is important, the code could use PyArg_ParseTuple(args,
"") instead, but this will be slower than using METH_NOARGS.

	PyArg_ParseTuple() accepts new format characters for various sizes of
unsigned integers: B for unsigned char, H for unsigned
short int, I for unsigned int, and K for unsigned
long long.

	A new function, PyObject_DelItemString(mapping, char *key) was added
as shorthand for PyObject_DelItem(mapping, PyString_New(key)).

	File objects now manage their internal string buffer differently, increasing
it exponentially when needed. This results in the benchmark tests in
Lib/test/test_bufio.py speeding up considerably (from 57 seconds to 1.7
seconds, according to one measurement).

	It's now possible to define class and static methods for a C extension type by
setting either the METH_CLASS or METH_STATIC flags in a
method's PyMethodDef structure.

	Python now includes a copy of the Expat XML parser's source code, removing any
dependence on a system version or local installation of Expat.

	If you dynamically allocate type objects in your extension, you should be
aware of a change in the rules relating to the __module__ and
__name__ attributes. In summary, you will want to ensure the type's
dictionary contains a '__module__' key; making the module name the part of
the type name leading up to the final period will no longer have the desired
effect. For more detail, read the API reference documentation or the source.

Port-Specific Changes

Support for a port to IBM's OS/2 using the EMX runtime environment was merged
into the main Python source tree. EMX is a POSIX emulation layer over the OS/2
system APIs. The Python port for EMX tries to support all the POSIX-like
capability exposed by the EMX runtime, and mostly succeeds; fork() and
fcntl() are restricted by the limitations of the underlying emulation
layer. The standard OS/2 port, which uses IBM's Visual Age compiler, also
gained support for case-sensitive import semantics as part of the integration of
the EMX port into CVS. (Contributed by Andrew MacIntyre.)

On MacOS, most toolbox modules have been weaklinked to improve backward
compatibility. This means that modules will no longer fail to load if a single
routine is missing on the current OS version. Instead calling the missing
routine will raise an exception. (Contributed by Jack Jansen.)

The RPM spec files, found in the Misc/RPM/ directory in the Python
source distribution, were updated for 2.3. (Contributed by Sean Reifschneider.)

Other new platforms now supported by Python include AtheOS
(http://www.atheos.cx/), GNU/Hurd, and OpenVMS.

Other Changes and Fixes

As usual, there were a bunch of other improvements and bugfixes scattered
throughout the source tree. A search through the CVS change logs finds there
were 523 patches applied and 514 bugs fixed between Python 2.2 and 2.3. Both
figures are likely to be underestimates.

Some of the more notable changes are:

	If the PYTHONINSPECT environment variable is set, the Python
interpreter will enter the interactive prompt after running a Python program, as
if Python had been invoked with the -i option. The environment
variable can be set before running the Python interpreter, or it can be set by
the Python program as part of its execution.

	The regrtest.py script now provides a way to allow "all resources
except foo." A resource name passed to the -u option can now be
prefixed with a hyphen ('-') to mean "remove this resource." For example,
the option '-uall,-bsddb' could be used to enable the use of all resources
except bsddb.

	The tools used to build the documentation now work under Cygwin as well as
Unix.

	The SET_LINENO opcode has been removed. Back in the mists of time, this
opcode was needed to produce line numbers in tracebacks and support trace
functions (for, e.g., pdb). Since Python 1.5, the line numbers in
tracebacks have been computed using a different mechanism that works with
"python -O". For Python 2.3 Michael Hudson implemented a similar scheme to
determine when to call the trace function, removing the need for SET_LINENO
entirely.

It would be difficult to detect any resulting difference from Python code, apart
from a slight speed up when Python is run without -O.

C extensions that access the f_lineno field of frame objects should
instead call PyCode_Addr2Line(f->f_code, f->f_lasti). This will have the
added effect of making the code work as desired under "python -O" in earlier
versions of Python.

A nifty new feature is that trace functions can now assign to the
f_lineno attribute of frame objects, changing the line that will be
executed next. A jump command has been added to the pdb debugger
taking advantage of this new feature. (Implemented by Richie Hindle.)

移植到 Python 2.3

This section lists previously described changes that may require changes to your
code:

	yield is now always a keyword; if it's used as a variable name in
your code, a different name must be chosen.

	For strings X and Y, X in Y now works if X is more than one
character long.

	The int() type constructor will now return a long integer instead of
raising an OverflowError when a string or floating-point number is too
large to fit into an integer.

	If you have Unicode strings that contain 8-bit characters, you must declare
the file's encoding (UTF-8, Latin-1, or whatever) by adding a comment to the top
of the file. See section PEP 263: Source Code Encodings for more information.

	Calling Tcl methods through _tkinter no longer returns only strings.
Instead, if Tcl returns other objects those objects are converted to their
Python equivalent, if one exists, or wrapped with a _tkinter.Tcl_Obj
object if no Python equivalent exists.

	Large octal and hex literals such as 0xffffffff now trigger a
FutureWarning. Currently they're stored as 32-bit numbers and result in a
negative value, but in Python 2.4 they'll become positive long integers.

There are a few ways to fix this warning. If you really need a positive number,
just add an L to the end of the literal. If you're trying to get a 32-bit
integer with low bits set and have previously used an expression such as ~(1
<< 31), it's probably clearest to start with all bits set and clear the
desired upper bits. For example, to clear just the top bit (bit 31), you could
write 0xffffffffL &~(1L<<31).

	You can no longer disable assertions by assigning to __debug__.

	The Distutils setup() function has gained various new keyword arguments
such as depends. Old versions of the Distutils will abort if passed unknown
keywords. A solution is to check for the presence of the new
get_distutil_options() function in your setup.py and only uses the
new keywords with a version of the Distutils that supports them:

from distutils import core

kw = {'sources': 'foo.c', ...}
if hasattr(core, 'get_distutil_options'):
 kw['depends'] = ['foo.h']
ext = Extension(**kw)

	Using None as a variable name will now result in a SyntaxWarning
warning.

	Names of extension types defined by the modules included with Python now
contain the module and a '.' in front of the type name.

致谢

作者要感谢以下人员为本文的各种草案提供建议，更正和帮助： Jeff Bauer, Simon Brunning, Brett Cannon, Michael Chermside, Andrew Dalke, Scott David Daniels, Fred L. Drake, Jr., David Fraser, Kelly Gerber, Raymond Hettinger, Michael Hudson, Chris Lambert, Detlef Lannert, Martin von Löwis, Andrew MacIntyre, Lalo Martins, Chad Netzer, Gustavo Niemeyer, Neal Norwitz, Hans Nowak, Chris Reedy, Francesco Ricciardi, Vinay Sajip, Neil Schemenauer, Roman Suzi, Jason Tishler, Just van Rossum.

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 2.2 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 2.2 有什么新变化

	作者

	A.M. Kuchling

概述

This article explains the new features in Python 2.2.2, released on October 14,
2002. Python 2.2.2 is a bugfix release of Python 2.2, originally released on
December 21, 2001.

Python 2.2 can be thought of as the "cleanup release". There are some features
such as generators and iterators that are completely new, but most of the
changes, significant and far-reaching though they may be, are aimed at cleaning
up irregularities and dark corners of the language design.

This article doesn't attempt to provide a complete specification of the new
features, but instead provides a convenient overview. For full details, you
should refer to the documentation for Python 2.2, such as the Python Library
Reference [https://docs.python.org/2.2/lib/lib.html] and the Python
Reference Manual [https://docs.python.org/2.2/ref/ref.html]. If you want to
understand the complete implementation and design rationale for a change, refer
to the PEP for a particular new feature.

PEPs 252 and 253: Type and Class Changes

The largest and most far-reaching changes in Python 2.2 are to Python's model of
objects and classes. The changes should be backward compatible, so it's likely
that your code will continue to run unchanged, but the changes provide some
amazing new capabilities. Before beginning this, the longest and most
complicated section of this article, I'll provide an overview of the changes and
offer some comments.

A long time ago I wrote a Web page listing flaws in Python's design. One of the
most significant flaws was that it's impossible to subclass Python types
implemented in C. In particular, it's not possible to subclass built-in types,
so you can't just subclass, say, lists in order to add a single useful method to
them. The UserList module provides a class that supports all of the
methods of lists and that can be subclassed further, but there's lots of C code
that expects a regular Python list and won't accept a UserList
instance.

Python 2.2 fixes this, and in the process adds some exciting new capabilities.
A brief summary:

	You can subclass built-in types such as lists and even integers, and your
subclasses should work in every place that requires the original type.

	It's now possible to define static and class methods, in addition to the
instance methods available in previous versions of Python.

	It's also possible to automatically call methods on accessing or setting an
instance attribute by using a new mechanism called properties. Many uses
of __getattr__() can be rewritten to use properties instead, making the
resulting code simpler and faster. As a small side benefit, attributes can now
have docstrings, too.

	The list of legal attributes for an instance can be limited to a particular
set using slots, making it possible to safeguard against typos and
perhaps make more optimizations possible in future versions of Python.

Some users have voiced concern about all these changes. Sure, they say, the new
features are neat and lend themselves to all sorts of tricks that weren't
possible in previous versions of Python, but they also make the language more
complicated. Some people have said that they've always recommended Python for
its simplicity, and feel that its simplicity is being lost.

Personally, I think there's no need to worry. Many of the new features are
quite esoteric, and you can write a lot of Python code without ever needed to be
aware of them. Writing a simple class is no more difficult than it ever was, so
you don't need to bother learning or teaching them unless they're actually
needed. Some very complicated tasks that were previously only possible from C
will now be possible in pure Python, and to my mind that's all for the better.

I'm not going to attempt to cover every single corner case and small change that
were required to make the new features work. Instead this section will paint
only the broad strokes. See section Related Links, "Related Links", for
further sources of information about Python 2.2's new object model.

Old and New Classes

First, you should know that Python 2.2 really has two kinds of classes: classic
or old-style classes, and new-style classes. The old-style class model is
exactly the same as the class model in earlier versions of Python. All the new
features described in this section apply only to new-style classes. This
divergence isn't intended to last forever; eventually old-style classes will be
dropped, possibly in Python 3.0.

So how do you define a new-style class? You do it by subclassing an existing
new-style class. Most of Python's built-in types, such as integers, lists,
dictionaries, and even files, are new-style classes now. A new-style class
named object, the base class for all built-in types, has also been
added so if no built-in type is suitable, you can just subclass
object:

class C(object):
 def __init__ (self):
 ...
 ...

This means that class statements that don't have any base classes are
always classic classes in Python 2.2. (Actually you can also change this by
setting a module-level variable named __metaclass__ --- see PEP 253 [https://www.python.org/dev/peps/pep-0253]
for the details --- but it's easier to just subclass object.)

The type objects for the built-in types are available as built-ins, named using
a clever trick. Python has always had built-in functions named int(),
float(), and str(). In 2.2, they aren't functions any more, but
type objects that behave as factories when called.

>>> int
<type 'int'>
>>> int('123')
123

To make the set of types complete, new type objects such as dict() and
file() have been added. Here's a more interesting example, adding a
lock() method to file objects:

class LockableFile(file):
 def lock (self, operation, length=0, start=0, whence=0):
 import fcntl
 return fcntl.lockf(self.fileno(), operation,
 length, start, whence)

The now-obsolete posixfile module contained a class that emulated all of
a file object's methods and also added a lock() method, but this class
couldn't be passed to internal functions that expected a built-in file,
something which is possible with our new LockableFile.

Descriptors

In previous versions of Python, there was no consistent way to discover what
attributes and methods were supported by an object. There were some informal
conventions, such as defining __members__ and __methods__
attributes that were lists of names, but often the author of an extension type
or a class wouldn't bother to define them. You could fall back on inspecting
the __dict__ of an object, but when class inheritance or an arbitrary
__getattr__() hook were in use this could still be inaccurate.

The one big idea underlying the new class model is that an API for describing
the attributes of an object using descriptors has been formalized.
Descriptors specify the value of an attribute, stating whether it's a method or
a field. With the descriptor API, static methods and class methods become
possible, as well as more exotic constructs.

Attribute descriptors are objects that live inside class objects, and have a few
attributes of their own:

	__name__ is the attribute's name.

	__doc__ is the attribute's docstring.

	__get__(object) is a method that retrieves the attribute value from
object.

	__set__(object, value) sets the attribute on object to value.

	__delete__(object, value) deletes the value attribute of object.

For example, when you write obj.x, the steps that Python actually performs
are:

descriptor = obj.__class__.x
descriptor.__get__(obj)

For methods, descriptor.__get__() returns a temporary object that's
callable, and wraps up the instance and the method to be called on it. This is
also why static methods and class methods are now possible; they have
descriptors that wrap up just the method, or the method and the class. As a
brief explanation of these new kinds of methods, static methods aren't passed
the instance, and therefore resemble regular functions. Class methods are
passed the class of the object, but not the object itself. Static and class
methods are defined like this:

class C(object):
 def f(arg1, arg2):
 ...
 f = staticmethod(f)

 def g(cls, arg1, arg2):
 ...
 g = classmethod(g)

The staticmethod() function takes the function f(), and returns it
wrapped up in a descriptor so it can be stored in the class object. You might
expect there to be special syntax for creating such methods (def static f,
defstatic f(), or something like that) but no such syntax has been defined
yet; that's been left for future versions of Python.

More new features, such as slots and properties, are also implemented as new
kinds of descriptors, and it's not difficult to write a descriptor class that
does something novel. For example, it would be possible to write a descriptor
class that made it possible to write Eiffel-style preconditions and
postconditions for a method. A class that used this feature might be defined
like this:

from eiffel import eiffelmethod

class C(object):
 def f(self, arg1, arg2):
 # The actual function
 ...
 def pre_f(self):
 # Check preconditions
 ...
 def post_f(self):
 # Check postconditions
 ...

 f = eiffelmethod(f, pre_f, post_f)

Note that a person using the new eiffelmethod() doesn't have to understand
anything about descriptors. This is why I think the new features don't increase
the basic complexity of the language. There will be a few wizards who need to
know about it in order to write eiffelmethod() or the ZODB or whatever,
but most users will just write code on top of the resulting libraries and ignore
the implementation details.

Multiple Inheritance: The Diamond Rule

Multiple inheritance has also been made more useful through changing the rules
under which names are resolved. Consider this set of classes (diagram taken
from PEP 253 [https://www.python.org/dev/peps/pep-0253] by Guido van Rossum):

 class A:
 ^ ^ def save(self): ...
 / \
 / \
 / \
 / \
class B class C:
 ^ ^ def save(self): ...
 \ /
 \ /
 \ /
 \ /
 class D

The lookup rule for classic classes is simple but not very smart; the base
classes are searched depth-first, going from left to right. A reference to
D.save() will search the classes D, B, and then
A, where save() would be found and returned. C.save()
would never be found at all. This is bad, because if C's save()
method is saving some internal state specific to C, not calling it will
result in that state never getting saved.

New-style classes follow a different algorithm that's a bit more complicated to
explain, but does the right thing in this situation. (Note that Python 2.3
changes this algorithm to one that produces the same results in most cases, but
produces more useful results for really complicated inheritance graphs.)

	List all the base classes, following the classic lookup rule and include a
class multiple times if it's visited repeatedly. In the above example, the list
of visited classes is [D, B, A, C,
A].

	Scan the list for duplicated classes. If any are found, remove all but one
occurrence, leaving the last one in the list. In the above example, the list
becomes [D, B, C, A] after dropping
duplicates.

Following this rule, referring to D.save() will return C.save(),
which is the behaviour we're after. This lookup rule is the same as the one
followed by Common Lisp. A new built-in function, super(), provides a way
to get at a class's superclasses without having to reimplement Python's
algorithm. The most commonly used form will be super(class, obj), which
returns a bound superclass object (not the actual class object). This form
will be used in methods to call a method in the superclass; for example,
D's save() method would look like this:

class D (B,C):
 def save (self):
 # Call superclass .save()
 super(D, self).save()
 # Save D's private information here
 ...

super() can also return unbound superclass objects when called as
super(class) or super(class1, class2), but this probably won't
often be useful.

Attribute Access

A fair number of sophisticated Python classes define hooks for attribute access
using __getattr__(); most commonly this is done for convenience, to make
code more readable by automatically mapping an attribute access such as
obj.parent into a method call such as obj.get_parent. Python 2.2 adds
some new ways of controlling attribute access.

First, __getattr__(attr_name) is still supported by new-style classes,
and nothing about it has changed. As before, it will be called when an attempt
is made to access obj.foo and no attribute named foo is found in the
instance's dictionary.

New-style classes also support a new method,
__getattribute__(attr_name). The difference between the two methods is
that __getattribute__() is always called whenever any attribute is
accessed, while the old __getattr__() is only called if foo isn't
found in the instance's dictionary.

However, Python 2.2's support for properties will often be a simpler way
to trap attribute references. Writing a __getattr__() method is
complicated because to avoid recursion you can't use regular attribute accesses
inside them, and instead have to mess around with the contents of
__dict__. __getattr__() methods also end up being called by Python
when it checks for other methods such as __repr__() or __coerce__(),
and so have to be written with this in mind. Finally, calling a function on
every attribute access results in a sizable performance loss.

property is a new built-in type that packages up three functions that
get, set, or delete an attribute, and a docstring. For example, if you want to
define a size attribute that's computed, but also settable, you could
write:

class C(object):
 def get_size (self):
 result = ... computation ...
 return result
 def set_size (self, size):
 ... compute something based on the size
 and set internal state appropriately ...

 # Define a property. The 'delete this attribute'
 # method is defined as None, so the attribute
 # can't be deleted.
 size = property(get_size, set_size,
 None,
 "Storage size of this instance")

That is certainly clearer and easier to write than a pair of
__getattr__()/__setattr__() methods that check for the size
attribute and handle it specially while retrieving all other attributes from the
instance's __dict__. Accesses to size are also the only ones
which have to perform the work of calling a function, so references to other
attributes run at their usual speed.

Finally, it's possible to constrain the list of attributes that can be
referenced on an object using the new __slots__ class attribute. Python
objects are usually very dynamic; at any time it's possible to define a new
attribute on an instance by just doing obj.new_attr=1. A new-style class
can define a class attribute named __slots__ to limit the legal
attributes to a particular set of names. An example will make this clear:

>>> class C(object):
... __slots__ = ('template', 'name')
...
>>> obj = C()
>>> print obj.template
None
>>> obj.template = 'Test'
>>> print obj.template
Test
>>> obj.newattr = None
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: 'C' object has no attribute 'newattr'

Note how you get an AttributeError on the attempt to assign to an
attribute not listed in __slots__.

Related Links

This section has just been a quick overview of the new features, giving enough
of an explanation to start you programming, but many details have been
simplified or ignored. Where should you go to get a more complete picture?

https://docs.python.org/dev/howto/descriptor.html is a lengthy tutorial introduction to
the descriptor features, written by Guido van Rossum. If my description has
whetted your appetite, go read this tutorial next, because it goes into much
more detail about the new features while still remaining quite easy to read.

Next, there are two relevant PEPs, PEP 252 [https://www.python.org/dev/peps/pep-0252] and PEP 253 [https://www.python.org/dev/peps/pep-0253]. PEP 252 [https://www.python.org/dev/peps/pep-0252] is
titled "Making Types Look More Like Classes", and covers the descriptor API.
PEP 253 [https://www.python.org/dev/peps/pep-0253] is titled "Subtyping Built-in Types", and describes the changes to
type objects that make it possible to subtype built-in objects. PEP 253 [https://www.python.org/dev/peps/pep-0253] is
the more complicated PEP of the two, and at a few points the necessary
explanations of types and meta-types may cause your head to explode. Both PEPs
were written and implemented by Guido van Rossum, with substantial assistance
from the rest of the Zope Corp. team.

Finally, there's the ultimate authority: the source code. Most of the machinery
for the type handling is in Objects/typeobject.c, but you should only
resort to it after all other avenues have been exhausted, including posting a
question to python-list or python-dev.

PEP 234: Iterators

Another significant addition to 2.2 is an iteration interface at both the C and
Python levels. Objects can define how they can be looped over by callers.

In Python versions up to 2.1, the usual way to make for item in obj work is
to define a __getitem__() method that looks something like this:

def __getitem__(self, index):
 return <next item>

__getitem__() is more properly used to define an indexing operation on an
object so that you can write obj[5] to retrieve the sixth element. It's a
bit misleading when you're using this only to support for loops.
Consider some file-like object that wants to be looped over; the index
parameter is essentially meaningless, as the class probably assumes that a
series of __getitem__() calls will be made with index incrementing by
one each time. In other words, the presence of the __getitem__() method
doesn't mean that using file[5] to randomly access the sixth element will
work, though it really should.

In Python 2.2, iteration can be implemented separately, and __getitem__()
methods can be limited to classes that really do support random access. The
basic idea of iterators is simple. A new built-in function, iter(obj)
or iter(C, sentinel), is used to get an iterator. iter(obj) returns
an iterator for the object obj, while iter(C, sentinel) returns an
iterator that will invoke the callable object C until it returns sentinel to
signal that the iterator is done.

Python classes can define an __iter__() method, which should create and
return a new iterator for the object; if the object is its own iterator, this
method can just return self. In particular, iterators will usually be their
own iterators. Extension types implemented in C can implement a tp_iter
function in order to return an iterator, and extension types that want to behave
as iterators can define a tp_iternext function.

So, after all this, what do iterators actually do? They have one required
method, next(), which takes no arguments and returns the next value. When
there are no more values to be returned, calling next() should raise the
StopIteration exception.

>>> L = [1,2,3]
>>> i = iter(L)
>>> print i
<iterator object at 0x8116870>
>>> i.next()
1
>>> i.next()
2
>>> i.next()
3
>>> i.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
StopIteration
>>>

In 2.2, Python's for statement no longer expects a sequence; it
expects something for which iter() will return an iterator. For backward
compatibility and convenience, an iterator is automatically constructed for
sequences that don't implement __iter__() or a tp_iter slot, so
for i in [1,2,3] will still work. Wherever the Python interpreter loops
over a sequence, it's been changed to use the iterator protocol. This means you
can do things like this:

>>> L = [1,2,3]
>>> i = iter(L)
>>> a,b,c = i
>>> a,b,c
(1, 2, 3)

Iterator support has been added to some of Python's basic types. Calling
iter() on a dictionary will return an iterator which loops over its keys:

>>> m = {'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 'May': 5, 'Jun': 6,
... 'Jul': 7, 'Aug': 8, 'Sep': 9, 'Oct': 10, 'Nov': 11, 'Dec': 12}
>>> for key in m: print key, m[key]
...
Mar 3
Feb 2
Aug 8
Sep 9
May 5
Jun 6
Jul 7
Jan 1
Apr 4
Nov 11
Dec 12
Oct 10

That's just the default behaviour. If you want to iterate over keys, values, or
key/value pairs, you can explicitly call the iterkeys(),
itervalues(), or iteritems() methods to get an appropriate iterator.
In a minor related change, the in operator now works on dictionaries,
so key in dict is now equivalent to dict.has_key(key).

Files also provide an iterator, which calls the readline() method until
there are no more lines in the file. This means you can now read each line of a
file using code like this:

for line in file:
 # do something for each line
 ...

Note that you can only go forward in an iterator; there's no way to get the
previous element, reset the iterator, or make a copy of it. An iterator object
could provide such additional capabilities, but the iterator protocol only
requires a next() method.

参见

	PEP 234 [https://www.python.org/dev/peps/pep-0234] - Iterators
	由 Ka-Ping Yee 和 GvR 撰写；由 Python Labs 小组（主要由 GvR 和 Tim Peters）实现。

PEP 255: Simple Generators

Generators are another new feature, one that interacts with the introduction of
iterators.

You're doubtless familiar with how function calls work in Python or C. When you
call a function, it gets a private namespace where its local variables are
created. When the function reaches a return statement, the local
variables are destroyed and the resulting value is returned to the caller. A
later call to the same function will get a fresh new set of local variables.
But, what if the local variables weren't thrown away on exiting a function?
What if you could later resume the function where it left off? This is what
generators provide; they can be thought of as resumable functions.

Here's the simplest example of a generator function:

def generate_ints(N):
 for i in range(N):
 yield i

A new keyword, yield, was introduced for generators. Any function
containing a yield statement is a generator function; this is
detected by Python's bytecode compiler which compiles the function specially as
a result. Because a new keyword was introduced, generators must be explicitly
enabled in a module by including a from __future__ import generators
statement near the top of the module's source code. In Python 2.3 this
statement will become unnecessary.

When you call a generator function, it doesn't return a single value; instead it
returns a generator object that supports the iterator protocol. On executing
the yield statement, the generator outputs the value of i,
similar to a return statement. The big difference between
yield and a return statement is that on reaching a
yield the generator's state of execution is suspended and local
variables are preserved. On the next call to the generator's next() method,
the function will resume executing immediately after the yield
statement. (For complicated reasons, the yield statement isn't
allowed inside the try block of a
try...finally statement; read PEP 255 [https://www.python.org/dev/peps/pep-0255] for a full
explanation of the interaction between yield and exceptions.)

Here's a sample usage of the generate_ints() generator:

>>> gen = generate_ints(3)
>>> gen
<generator object at 0x8117f90>
>>> gen.next()
0
>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 2, in generate_ints
StopIteration

You could equally write for i in generate_ints(5), or a,b,c =
generate_ints(3).

Inside a generator function, the return statement can only be used
without a value, and signals the end of the procession of values; afterwards the
generator cannot return any further values. return with a value, such
as return 5, is a syntax error inside a generator function. The end of the
generator's results can also be indicated by raising StopIteration
manually, or by just letting the flow of execution fall off the bottom of the
function.

You could achieve the effect of generators manually by writing your own class
and storing all the local variables of the generator as instance variables. For
example, returning a list of integers could be done by setting self.count to
0, and having the next() method increment self.count and return it.
However, for a moderately complicated generator, writing a corresponding class
would be much messier. Lib/test/test_generators.py contains a number of
more interesting examples. The simplest one implements an in-order traversal of
a tree using generators recursively.

A recursive generator that generates Tree leaves in in-order.
def inorder(t):
 if t:
 for x in inorder(t.left):
 yield x
 yield t.label
 for x in inorder(t.right):
 yield x

Two other examples in Lib/test/test_generators.py produce solutions for
the N-Queens problem (placing N queens on an NxN chess board so that no
queen threatens another) and the Knight's Tour (a route that takes a knight to
every square of an NxN chessboard without visiting any square twice).

The idea of generators comes from other programming languages, especially Icon
(https://www.cs.arizona.edu/icon/), where the idea of generators is central. In
Icon, every expression and function call behaves like a generator. One example
from "An Overview of the Icon Programming Language" at
https://www.cs.arizona.edu/icon/docs/ipd266.htm gives an idea of what this looks
like:

sentence := "Store it in the neighboring harbor"
if (i := find("or", sentence)) > 5 then write(i)

In Icon the find() function returns the indexes at which the substring
"or" is found: 3, 23, 33. In the if statement, i is first
assigned a value of 3, but 3 is less than 5, so the comparison fails, and Icon
retries it with the second value of 23. 23 is greater than 5, so the comparison
now succeeds, and the code prints the value 23 to the screen.

Python doesn't go nearly as far as Icon in adopting generators as a central
concept. Generators are considered a new part of the core Python language, but
learning or using them isn't compulsory; if they don't solve any problems that
you have, feel free to ignore them. One novel feature of Python's interface as
compared to Icon's is that a generator's state is represented as a concrete
object (the iterator) that can be passed around to other functions or stored in
a data structure.

参见

	PEP 255 [https://www.python.org/dev/peps/pep-0255] - 简单生成器
	Written by Neil Schemenauer, Tim Peters, Magnus Lie Hetland. Implemented mostly
by Neil Schemenauer and Tim Peters, with other fixes from the Python Labs crew.

PEP 237: 统一长整数和整数

In recent versions, the distinction between regular integers, which are 32-bit
values on most machines, and long integers, which can be of arbitrary size, was
becoming an annoyance. For example, on platforms that support files larger than
2**32 bytes, the tell() method of file objects has to return a long
integer. However, there were various bits of Python that expected plain integers
and would raise an error if a long integer was provided instead. For example,
in Python 1.5, only regular integers could be used as a slice index, and
'abc'[1L:] would raise a TypeError exception with the message 'slice
index must be int'.

Python 2.2 will shift values from short to long integers as required. The 'L'
suffix is no longer needed to indicate a long integer literal, as now the
compiler will choose the appropriate type. (Using the 'L' suffix will be
discouraged in future 2.x versions of Python, triggering a warning in Python
2.4, and probably dropped in Python 3.0.) Many operations that used to raise an
OverflowError will now return a long integer as their result. For
example:

>>> 1234567890123
1234567890123L
>>> 2 ** 64
18446744073709551616L

In most cases, integers and long integers will now be treated identically. You
can still distinguish them with the type() built-in function, but that's
rarely needed.

参见

	PEP 237 [https://www.python.org/dev/peps/pep-0237] - 统一长整数和整数
	由 Moshe Zadka 和 Guido van Rossum 撰写 ; 大部分由 Guido van Rossum 实现。

PEP 238: Changing the Division Operator

The most controversial change in Python 2.2 heralds the start of an effort to
fix an old design flaw that's been in Python from the beginning. Currently
Python's division operator, /, behaves like C's division operator when
presented with two integer arguments: it returns an integer result that's
truncated down when there would be a fractional part. For example, 3/2 is
1, not 1.5, and (-1)/2 is -1, not -0.5. This means that the results of
division can vary unexpectedly depending on the type of the two operands and
because Python is dynamically typed, it can be difficult to determine the
possible types of the operands.

(The controversy is over whether this is really a design flaw, and whether
it's worth breaking existing code to fix this. It's caused endless discussions
on python-dev, and in July 2001 erupted into a storm of acidly sarcastic
postings on comp.lang.python. I won't argue for either side here
and will stick to describing what's implemented in 2.2. Read PEP 238 [https://www.python.org/dev/peps/pep-0238] for a
summary of arguments and counter-arguments.)

Because this change might break code, it's being introduced very gradually.
Python 2.2 begins the transition, but the switch won't be complete until Python
3.0.

First, I'll borrow some terminology from PEP 238 [https://www.python.org/dev/peps/pep-0238]. "True division" is the
division that most non-programmers are familiar with: 3/2 is 1.5, 1/4 is 0.25,
and so forth. "Floor division" is what Python's / operator currently does
when given integer operands; the result is the floor of the value returned by
true division. "Classic division" is the current mixed behaviour of /; it
returns the result of floor division when the operands are integers, and returns
the result of true division when one of the operands is a floating-point number.

Here are the changes 2.2 introduces:

	A new operator, //, is the floor division operator. (Yes, we know it looks
like C++'s comment symbol.) // always performs floor division no matter
what the types of its operands are, so 1 // 2 is 0 and 1.0 // 2.0 is
also 0.0.

// is always available in Python 2.2; you don't need to enable it using a
__future__ statement.

	By including a from __future__ import division in a module, the /
operator will be changed to return the result of true division, so 1/2 is
0.5. Without the __future__ statement, / still means classic division.
The default meaning of / will not change until Python 3.0.

	Classes can define methods called __truediv__() and __floordiv__()
to overload the two division operators. At the C level, there are also slots in
the PyNumberMethods structure so extension types can define the two
operators.

	Python 2.2 supports some command-line arguments for testing whether code will
work with the changed division semantics. Running python with -Q
warn will cause a warning to be issued whenever division is applied to two
integers. You can use this to find code that's affected by the change and fix
it. By default, Python 2.2 will simply perform classic division without a
warning; the warning will be turned on by default in Python 2.3.

参见

	PEP 238 [https://www.python.org/dev/peps/pep-0238] - Changing the Division Operator
	由 Moshe Zadka 和 Guido van Rossum 撰写 ; 由 Guido van Rossum 实现。

Unicode Changes

Python's Unicode support has been enhanced a bit in 2.2. Unicode strings are
usually stored as UCS-2, as 16-bit unsigned integers. Python 2.2 can also be
compiled to use UCS-4, 32-bit unsigned integers, as its internal encoding by
supplying --enable-unicode=ucs4 to the configure script. (It's also
possible to specify --disable-unicode to completely disable Unicode
support.)

When built to use UCS-4 (a "wide Python"), the interpreter can natively handle
Unicode characters from U+000000 to U+110000, so the range of legal values for
the unichr() function is expanded accordingly. Using an interpreter
compiled to use UCS-2 (a "narrow Python"), values greater than 65535 will still
cause unichr() to raise a ValueError exception. This is all
described in PEP 261 [https://www.python.org/dev/peps/pep-0261], "Support for 'wide' Unicode characters"; consult it for
further details.

Another change is simpler to explain. Since their introduction, Unicode strings
have supported an encode() method to convert the string to a selected
encoding such as UTF-8 or Latin-1. A symmetric decode([*encoding*])
method has been added to 8-bit strings (though not to Unicode strings) in 2.2.
decode() assumes that the string is in the specified encoding and decodes
it, returning whatever is returned by the codec.

Using this new feature, codecs have been added for tasks not directly related to
Unicode. For example, codecs have been added for uu-encoding, MIME's base64
encoding, and compression with the zlib module:

>>> s = """Here is a lengthy piece of redundant, overly verbose,
... and repetitive text.
... """
>>> data = s.encode('zlib')
>>> data
'x\x9c\r\xc9\xc1\r\x80 \x10\x04\xc0?Ul...'
>>> data.decode('zlib')
'Here is a lengthy piece of redundant, overly verbose,\nand repetitive text.\n'
>>> print s.encode('uu')
begin 666 <data>
M2&5R92!I<R!A(&QE;F=T:'D@<&EE8V4@;V8@<F5D=6YD86YT+"!O=F5R;'D@
>=F5R8F]S92P*86YD(')E<&5T:71I=F4@=&5X="X*

end
>>> "sheesh".encode('rot-13')
'furrfu'

To convert a class instance to Unicode, a __unicode__() method can be
defined by a class, analogous to __str__().

encode(), decode(), and __unicode__() were implemented by
Marc-André Lemburg. The changes to support using UCS-4 internally were
implemented by Fredrik Lundh and Martin von Löwis.

参见

	PEP 261 [https://www.python.org/dev/peps/pep-0261] - Support for 'wide' Unicode characters
	Written by Paul Prescod.

PEP 227: Nested Scopes

In Python 2.1, statically nested scopes were added as an optional feature, to be
enabled by a from __future__ import nested_scopes directive. In 2.2 nested
scopes no longer need to be specially enabled, and are now always present. The
rest of this section is a copy of the description of nested scopes from my
"What's New in Python 2.1" document; if you read it when 2.1 came out, you can
skip the rest of this section.

The largest change introduced in Python 2.1, and made complete in 2.2, is to
Python's scoping rules. In Python 2.0, at any given time there are at most
three namespaces used to look up variable names: local, module-level, and the
built-in namespace. This often surprised people because it didn't match their
intuitive expectations. For example, a nested recursive function definition
doesn't work:

def f():
 ...
 def g(value):
 ...
 return g(value-1) + 1
 ...

The function g() will always raise a NameError exception, because
the binding of the name g isn't in either its local namespace or in the
module-level namespace. This isn't much of a problem in practice (how often do
you recursively define interior functions like this?), but this also made using
the lambda expression clumsier, and this was a problem in practice.
In code which uses lambda you can often find local variables being
copied by passing them as the default values of arguments.

def find(self, name):
 "Return list of any entries equal to 'name'"
 L = filter(lambda x, name=name: x == name,
 self.list_attribute)
 return L

The readability of Python code written in a strongly functional style suffers
greatly as a result.

The most significant change to Python 2.2 is that static scoping has been added
to the language to fix this problem. As a first effect, the name=name
default argument is now unnecessary in the above example. Put simply, when a
given variable name is not assigned a value within a function (by an assignment,
or the def, class, or import statements),
references to the variable will be looked up in the local namespace of the
enclosing scope. A more detailed explanation of the rules, and a dissection of
the implementation, can be found in the PEP.

This change may cause some compatibility problems for code where the same
variable name is used both at the module level and as a local variable within a
function that contains further function definitions. This seems rather unlikely
though, since such code would have been pretty confusing to read in the first
place.

One side effect of the change is that the from module import * and
exec statements have been made illegal inside a function scope under
certain conditions. The Python reference manual has said all along that from
module import * is only legal at the top level of a module, but the CPython
interpreter has never enforced this before. As part of the implementation of
nested scopes, the compiler which turns Python source into bytecodes has to
generate different code to access variables in a containing scope. from
module import * and exec make it impossible for the compiler to
figure this out, because they add names to the local namespace that are
unknowable at compile time. Therefore, if a function contains function
definitions or lambda expressions with free variables, the compiler
will flag this by raising a SyntaxError exception.

To make the preceding explanation a bit clearer, here's an example:

x = 1
def f():
 # The next line is a syntax error
 exec 'x=2'
 def g():
 return x

Line 4 containing the exec statement is a syntax error, since
exec would define a new local variable named x whose value should
be accessed by g().

This shouldn't be much of a limitation, since exec is rarely used in
most Python code (and when it is used, it's often a sign of a poor design
anyway).

参见

	PEP 227 [https://www.python.org/dev/peps/pep-0227] - Statically Nested Scopes
	由 Jeremy Hylton 撰写并实现。

新增和改进的模块

	The xmlrpclib module was contributed to the standard library by Fredrik
Lundh, providing support for writing XML-RPC clients. XML-RPC is a simple
remote procedure call protocol built on top of HTTP and XML. For example, the
following snippet retrieves a list of RSS channels from the O'Reilly Network,
and then lists the recent headlines for one channel:

import xmlrpclib
s = xmlrpclib.Server(
 'http://www.oreillynet.com/meerkat/xml-rpc/server.php')
channels = s.meerkat.getChannels()
channels is a list of dictionaries, like this:
[{'id': 4, 'title': 'Freshmeat Daily News'}
{'id': 190, 'title': '32Bits Online'},
{'id': 4549, 'title': '3DGamers'}, ...]

Get the items for one channel
items = s.meerkat.getItems({'channel': 4})

'items' is another list of dictionaries, like this:
[{'link': 'http://freshmeat.net/releases/52719/',
'description': 'A utility which converts HTML to XSL FO.',
'title': 'html2fo 0.3 (Default)'}, ...]

The SimpleXMLRPCServer module makes it easy to create straightforward
XML-RPC servers. See http://xmlrpc.scripting.com/ for more information about XML-RPC.

	The new hmac module implements the HMAC algorithm described by
RFC 2104 [https://tools.ietf.org/html/rfc2104.html]. (Contributed by Gerhard Häring.)

	Several functions that originally returned lengthy tuples now return
pseudo-sequences that still behave like tuples but also have mnemonic attributes such
as memberst_mtime or tm_year. The enhanced functions include
stat(), fstat(), statvfs(), and fstatvfs() in the
os module, and localtime(), gmtime(), and strptime() in
the time module.

For example, to obtain a file's size using the old tuples, you'd end up writing
something like file_size = os.stat(filename)[stat.ST_SIZE], but now this can
be written more clearly as file_size = os.stat(filename).st_size.

The original patch for this feature was contributed by Nick Mathewson.

	The Python profiler has been extensively reworked and various errors in its
output have been corrected. (Contributed by Fred L. Drake, Jr. and Tim Peters.)

	The socket module can be compiled to support IPv6; specify the
--enable-ipv6 option to Python's configure script. (Contributed by
Jun-ichiro "itojun" Hagino.)

	Two new format characters were added to the struct module for 64-bit
integers on platforms that support the C long long type. q is for
a signed 64-bit integer, and Q is for an unsigned one. The value is
returned in Python's long integer type. (Contributed by Tim Peters.)

	In the interpreter's interactive mode, there's a new built-in function
help() that uses the pydoc module introduced in Python 2.1 to
provide interactive help. help(object) displays any available help text
about object. help() with no argument puts you in an online help
utility, where you can enter the names of functions, classes, or modules to read
their help text. (Contributed by Guido van Rossum, using Ka-Ping Yee's
pydoc module.)

	Various bugfixes and performance improvements have been made to the SRE engine
underlying the re module. For example, the re.sub() and
re.split() functions have been rewritten in C. Another contributed patch
speeds up certain Unicode character ranges by a factor of two, and a new
finditer() method that returns an iterator over all the non-overlapping
matches in a given string. (SRE is maintained by Fredrik Lundh. The
BIGCHARSET patch was contributed by Martin von Löwis.)

	The smtplib module now supports RFC 2487 [https://tools.ietf.org/html/rfc2487.html], "Secure SMTP over TLS", so
it's now possible to encrypt the SMTP traffic between a Python program and the
mail transport agent being handed a message. smtplib also supports SMTP
authentication. (Contributed by Gerhard Häring.)

	The imaplib module, maintained by Piers Lauder, has support for several
new extensions: the NAMESPACE extension defined in RFC 2342 [https://tools.ietf.org/html/rfc2342.html], SORT, GETACL and
SETACL. (Contributed by Anthony Baxter and Michel Pelletier.)

	The rfc822 module's parsing of email addresses is now compliant with
RFC 2822 [https://tools.ietf.org/html/rfc2822.html], an update to RFC 822 [https://tools.ietf.org/html/rfc822.html]. (The module's name is not going to be
changed to rfc2822.) A new package, email, has also been added for
parsing and generating e-mail messages. (Contributed by Barry Warsaw, and
arising out of his work on Mailman.)

	The difflib module now contains a new Differ class for
producing human-readable lists of changes (a "delta") between two sequences of
lines of text. There are also two generator functions, ndiff() and
restore(), which respectively return a delta from two sequences, or one of
the original sequences from a delta. (Grunt work contributed by David Goodger,
from ndiff.py code by Tim Peters who then did the generatorization.)

	New constants ascii_letters, ascii_lowercase, and
ascii_uppercase were added to the string module. There were
several modules in the standard library that used string.letters to
mean the ranges A-Za-z, but that assumption is incorrect when locales are in
use, because string.letters varies depending on the set of legal
characters defined by the current locale. The buggy modules have all been fixed
to use ascii_letters instead. (Reported by an unknown person; fixed by
Fred L. Drake, Jr.)

	The mimetypes module now makes it easier to use alternative MIME-type
databases by the addition of a MimeTypes class, which takes a list of
filenames to be parsed. (Contributed by Fred L. Drake, Jr.)

	A Timer class was added to the threading module that allows
scheduling an activity to happen at some future time. (Contributed by Itamar
Shtull-Trauring.)

Interpreter Changes and Fixes

Some of the changes only affect people who deal with the Python interpreter at
the C level because they're writing Python extension modules, embedding the
interpreter, or just hacking on the interpreter itself. If you only write Python
code, none of the changes described here will affect you very much.

	Profiling and tracing functions can now be implemented in C, which can operate
at much higher speeds than Python-based functions and should reduce the overhead
of profiling and tracing. This will be of interest to authors of development
environments for Python. Two new C functions were added to Python's API,
PyEval_SetProfile() and PyEval_SetTrace(). The existing
sys.setprofile() and sys.settrace() functions still exist, and have
simply been changed to use the new C-level interface. (Contributed by Fred L.
Drake, Jr.)

	Another low-level API, primarily of interest to implementors of Python
debuggers and development tools, was added. PyInterpreterState_Head() and
PyInterpreterState_Next() let a caller walk through all the existing
interpreter objects; PyInterpreterState_ThreadHead() and
PyThreadState_Next() allow looping over all the thread states for a given
interpreter. (Contributed by David Beazley.)

	The C-level interface to the garbage collector has been changed to make it
easier to write extension types that support garbage collection and to debug
misuses of the functions. Various functions have slightly different semantics,
so a bunch of functions had to be renamed. Extensions that use the old API will
still compile but will not participate in garbage collection, so updating them
for 2.2 should be considered fairly high priority.

To upgrade an extension module to the new API, perform the following steps:

	Rename Py_TPFLAGS_GC() to PyTPFLAGS_HAVE_GC().

	
	Use PyObject_GC_New() or PyObject_GC_NewVar() to allocate
	objects, and PyObject_GC_Del() to deallocate them.

	
	Rename PyObject_GC_Init() to PyObject_GC_Track() and
	PyObject_GC_Fini() to PyObject_GC_UnTrack().

	Remove PyGC_HEAD_SIZE() from object size calculations.

	Remove calls to PyObject_AS_GC() and PyObject_FROM_GC().

	A new et format sequence was added to PyArg_ParseTuple(); et
takes both a parameter and an encoding name, and converts the parameter to the
given encoding if the parameter turns out to be a Unicode string, or leaves it
alone if it's an 8-bit string, assuming it to already be in the desired
encoding. This differs from the es format character, which assumes that
8-bit strings are in Python's default ASCII encoding and converts them to the
specified new encoding. (Contributed by M.-A. Lemburg, and used for the MBCS
support on Windows described in the following section.)

	A different argument parsing function, PyArg_UnpackTuple(), has been
added that's simpler and presumably faster. Instead of specifying a format
string, the caller simply gives the minimum and maximum number of arguments
expected, and a set of pointers to PyObject* variables that will be
filled in with argument values.

	Two new flags METH_NOARGS and METH_O are available in method
definition tables to simplify implementation of methods with no arguments or a
single untyped argument. Calling such methods is more efficient than calling a
corresponding method that uses METH_VARARGS. Also, the old
METH_OLDARGS style of writing C methods is now officially deprecated.

	Two new wrapper functions, PyOS_snprintf() and PyOS_vsnprintf()
were added to provide cross-platform implementations for the relatively new
snprintf() and vsnprintf() C lib APIs. In contrast to the standard
sprintf() and vsprintf() functions, the Python versions check the
bounds of the buffer used to protect against buffer overruns. (Contributed by
M.-A. Lemburg.)

	The _PyTuple_Resize() function has lost an unused parameter, so now it
takes 2 parameters instead of 3. The third argument was never used, and can
simply be discarded when porting code from earlier versions to Python 2.2.

Other Changes and Fixes

As usual there were a bunch of other improvements and bugfixes scattered
throughout the source tree. A search through the CVS change logs finds there
were 527 patches applied and 683 bugs fixed between Python 2.1 and 2.2; 2.2.1
applied 139 patches and fixed 143 bugs; 2.2.2 applied 106 patches and fixed 82
bugs. These figures are likely to be underestimates.

Some of the more notable changes are:

	The code for the MacOS port for Python, maintained by Jack Jansen, is now kept
in the main Python CVS tree, and many changes have been made to support MacOS X.

The most significant change is the ability to build Python as a framework,
enabled by supplying the --enable-framework option to the configure
script when compiling Python. According to Jack Jansen, "This installs a
self-contained Python installation plus the OS X framework "glue" into
/Library/Frameworks/Python.framework (or another location of choice).
For now there is little immediate added benefit to this (actually, there is the
disadvantage that you have to change your PATH to be able to find Python), but
it is the basis for creating a full-blown Python application, porting the
MacPython IDE, possibly using Python as a standard OSA scripting language and
much more."

Most of the MacPython toolbox modules, which interface to MacOS APIs such as
windowing, QuickTime, scripting, etc. have been ported to OS X, but they've been
left commented out in setup.py. People who want to experiment with
these modules can uncomment them manually.

	Keyword arguments passed to built-in functions that don't take them now cause a
TypeError exception to be raised, with the message "function takes no
keyword arguments".

	Weak references, added in Python 2.1 as an extension module, are now part of
the core because they're used in the implementation of new-style classes. The
ReferenceError exception has therefore moved from the weakref
module to become a built-in exception.

	A new script, Tools/scripts/cleanfuture.py by Tim Peters,
automatically removes obsolete __future__ statements from Python source
code.

	An additional flags argument has been added to the built-in function
compile(), so the behaviour of __future__ statements can now be
correctly observed in simulated shells, such as those presented by IDLE and
other development environments. This is described in PEP 264 [https://www.python.org/dev/peps/pep-0264]. (Contributed
by Michael Hudson.)

	The new license introduced with Python 1.6 wasn't GPL-compatible. This is
fixed by some minor textual changes to the 2.2 license, so it's now legal to
embed Python inside a GPLed program again. Note that Python itself is not
GPLed, but instead is under a license that's essentially equivalent to the BSD
license, same as it always was. The license changes were also applied to the
Python 2.0.1 and 2.1.1 releases.

	When presented with a Unicode filename on Windows, Python will now convert it
to an MBCS encoded string, as used by the Microsoft file APIs. As MBCS is
explicitly used by the file APIs, Python's choice of ASCII as the default
encoding turns out to be an annoyance. On Unix, the locale's character set is
used if locale.nl_langinfo(CODESET) is available. (Windows support was
contributed by Mark Hammond with assistance from Marc-André Lemburg. Unix
support was added by Martin von Löwis.)

	Large file support is now enabled on Windows. (Contributed by Tim Peters.)

	The Tools/scripts/ftpmirror.py script now parses a .netrc
file, if you have one. (Contributed by Mike Romberg.)

	Some features of the object returned by the xrange() function are now
deprecated, and trigger warnings when they're accessed; they'll disappear in
Python 2.3. xrange objects tried to pretend they were full sequence
types by supporting slicing, sequence multiplication, and the in
operator, but these features were rarely used and therefore buggy. The
tolist() method and the start, stop, and step
attributes are also being deprecated. At the C level, the fourth argument to
the PyRange_New() function, repeat, has also been deprecated.

	There were a bunch of patches to the dictionary implementation, mostly to fix
potential core dumps if a dictionary contains objects that sneakily changed
their hash value, or mutated the dictionary they were contained in. For a while
python-dev fell into a gentle rhythm of Michael Hudson finding a case that
dumped core, Tim Peters fixing the bug, Michael finding another case, and round
and round it went.

	On Windows, Python can now be compiled with Borland C thanks to a number of
patches contributed by Stephen Hansen, though the result isn't fully functional
yet. (But this is progress...)

	Another Windows enhancement: Wise Solutions generously offered PythonLabs use
of their InstallerMaster 8.1 system. Earlier PythonLabs Windows installers used
Wise 5.0a, which was beginning to show its age. (Packaged up by Tim Peters.)

	Files ending in .pyw can now be imported on Windows. .pyw is a
Windows-only thing, used to indicate that a script needs to be run using
PYTHONW.EXE instead of PYTHON.EXE in order to prevent a DOS console from popping
up to display the output. This patch makes it possible to import such scripts,
in case they're also usable as modules. (Implemented by David Bolen.)

	On platforms where Python uses the C dlopen() function to load
extension modules, it's now possible to set the flags used by dlopen()
using the sys.getdlopenflags() and sys.setdlopenflags() functions.
(Contributed by Bram Stolk.)

	The pow() built-in function no longer supports 3 arguments when
floating-point numbers are supplied. pow(x, y, z) returns (x**y) % z,
but this is never useful for floating point numbers, and the final result varies
unpredictably depending on the platform. A call such as pow(2.0, 8.0, 7.0)
will now raise a TypeError exception.

致谢

作者要感谢以下人员为本文的各种草案提供建议，更正和帮助： Fred Bremmer, Keith Briggs, Andrew Dalke, Fred L. Drake, Jr., Carel Fellinger, David Goodger, Mark Hammond, Stephen Hansen, Michael Hudson, Jack Jansen, Marc-André Lemburg, Martin von Löwis, Fredrik Lundh, Michael McLay, Nick Mathewson, Paul Moore, Gustavo Niemeyer, Don O'Donnell, Joonas Paalasma, Tim Peters, Jens Quade, Tom Reinhardt, Neil Schemenauer, Guido van Rossum, Greg Ward, Edward Welbourne.

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 2.1 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 2.1 有什么新变化

	作者

	A.M. Kuchling

概述

This article explains the new features in Python 2.1. While there aren't as
many changes in 2.1 as there were in Python 2.0, there are still some pleasant
surprises in store. 2.1 is the first release to be steered through the use of
Python Enhancement Proposals, or PEPs, so most of the sizable changes have
accompanying PEPs that provide more complete documentation and a design
rationale for the change. This article doesn't attempt to document the new
features completely, but simply provides an overview of the new features for
Python programmers. Refer to the Python 2.1 documentation, or to the specific
PEP, for more details about any new feature that particularly interests you.

One recent goal of the Python development team has been to accelerate the pace
of new releases, with a new release coming every 6 to 9 months. 2.1 is the first
release to come out at this faster pace, with the first alpha appearing in
January, 3 months after the final version of 2.0 was released.

Python 2.1 的最终版本于2001年4月17日发布。

PEP 227: Nested Scopes

The largest change in Python 2.1 is to Python's scoping rules. In Python 2.0,
at any given time there are at most three namespaces used to look up variable
names: local, module-level, and the built-in namespace. This often surprised
people because it didn't match their intuitive expectations. For example, a
nested recursive function definition doesn't work:

def f():
 ...
 def g(value):
 ...
 return g(value-1) + 1
 ...

The function g() will always raise a NameError exception, because
the binding of the name g isn't in either its local namespace or in the
module-level namespace. This isn't much of a problem in practice (how often do
you recursively define interior functions like this?), but this also made using
the lambda expression clumsier, and this was a problem in practice.
In code which uses lambda you can often find local variables being
copied by passing them as the default values of arguments.

def find(self, name):
 "Return list of any entries equal to 'name'"
 L = filter(lambda x, name=name: x == name,
 self.list_attribute)
 return L

The readability of Python code written in a strongly functional style suffers
greatly as a result.

The most significant change to Python 2.1 is that static scoping has been added
to the language to fix this problem. As a first effect, the name=name
default argument is now unnecessary in the above example. Put simply, when a
given variable name is not assigned a value within a function (by an assignment,
or the def, class, or import statements),
references to the variable will be looked up in the local namespace of the
enclosing scope. A more detailed explanation of the rules, and a dissection of
the implementation, can be found in the PEP.

This change may cause some compatibility problems for code where the same
variable name is used both at the module level and as a local variable within a
function that contains further function definitions. This seems rather unlikely
though, since such code would have been pretty confusing to read in the first
place.

One side effect of the change is that the from module import * and
exec statements have been made illegal inside a function scope under
certain conditions. The Python reference manual has said all along that from
module import * is only legal at the top level of a module, but the CPython
interpreter has never enforced this before. As part of the implementation of
nested scopes, the compiler which turns Python source into bytecodes has to
generate different code to access variables in a containing scope. from
module import * and exec make it impossible for the compiler to
figure this out, because they add names to the local namespace that are
unknowable at compile time. Therefore, if a function contains function
definitions or lambda expressions with free variables, the compiler
will flag this by raising a SyntaxError exception.

To make the preceding explanation a bit clearer, here's an example:

x = 1
def f():
 # The next line is a syntax error
 exec 'x=2'
 def g():
 return x

Line 4 containing the exec statement is a syntax error, since
exec would define a new local variable named x whose value should
be accessed by g().

This shouldn't be much of a limitation, since exec is rarely used in
most Python code (and when it is used, it's often a sign of a poor design
anyway).

Compatibility concerns have led to nested scopes being introduced gradually; in
Python 2.1, they aren't enabled by default, but can be turned on within a module
by using a future statement as described in PEP 236. (See the following section
for further discussion of PEP 236.) In Python 2.2, nested scopes will become
the default and there will be no way to turn them off, but users will have had
all of 2.1's lifetime to fix any breakage resulting from their introduction.

参见

	PEP 227 [https://www.python.org/dev/peps/pep-0227] - Statically Nested Scopes
	由 Jeremy Hylton 撰写并实现。

PEP 236: __future__ Directives

The reaction to nested scopes was widespread concern about the dangers of
breaking code with the 2.1 release, and it was strong enough to make the
Pythoneers take a more conservative approach. This approach consists of
introducing a convention for enabling optional functionality in release N that
will become compulsory in release N+1.

The syntax uses a from...import statement using the reserved module name
__future__. Nested scopes can be enabled by the following statement:

from __future__ import nested_scopes

While it looks like a normal import statement, it's not; there are
strict rules on where such a future statement can be put. They can only be at
the top of a module, and must precede any Python code or regular
import statements. This is because such statements can affect how
the Python bytecode compiler parses code and generates bytecode, so they must
precede any statement that will result in bytecodes being produced.

参见

	PEP 236 [https://www.python.org/dev/peps/pep-0236] - Back to the __future__
	由 Tim Peters 撰写，主要由 Jeremy Hylton 实现。

PEP 207: Rich Comparisons

In earlier versions, Python's support for implementing comparisons on user-defined
classes and extension types was quite simple. Classes could implement a
__cmp__() method that was given two instances of a class, and could only
return 0 if they were equal or +1 or -1 if they weren't; the method couldn't
raise an exception or return anything other than a Boolean value. Users of
Numeric Python often found this model too weak and restrictive, because in the
number-crunching programs that numeric Python is used for, it would be more
useful to be able to perform elementwise comparisons of two matrices, returning
a matrix containing the results of a given comparison for each element. If the
two matrices are of different sizes, then the compare has to be able to raise an
exception to signal the error.

In Python 2.1, rich comparisons were added in order to support this need.
Python classes can now individually overload each of the <, <=, >,
>=, ==, and != operations. The new magic method names are:

	运算

	方法名称

	<

	__lt__()

	<=

	__le__()

	>

	__gt__()

	>=

	__ge__()

	==

	__eq__()

	!=

	__ne__()

(The magic methods are named after the corresponding Fortran operators .LT..
.LE., &c. Numeric programmers are almost certainly quite familiar with
these names and will find them easy to remember.)

Each of these magic methods is of the form method(self, other), where
self will be the object on the left-hand side of the operator, while
other will be the object on the right-hand side. For example, the
expression A < B will cause A.__lt__(B) to be called.

Each of these magic methods can return anything at all: a Boolean, a matrix, a
list, or any other Python object. Alternatively they can raise an exception if
the comparison is impossible, inconsistent, or otherwise meaningless.

The built-in cmp(A,B) function can use the rich comparison machinery,
and now accepts an optional argument specifying which comparison operation to
use; this is given as one of the strings "<", "<=", ">", ">=",
"==", or "!=". If called without the optional third argument,
cmp() will only return -1, 0, or +1 as in previous versions of Python;
otherwise it will call the appropriate method and can return any Python object.

There are also corresponding changes of interest to C programmers; there's a new
slot tp_richcmp in type objects and an API for performing a given rich
comparison. I won't cover the C API here, but will refer you to PEP 207, or to
2.1's C API documentation, for the full list of related functions.

参见

	PEP 207 [https://www.python.org/dev/peps/pep-0207] - Rich Comparisons
	Written by Guido van Rossum, heavily based on earlier work by David Ascher, and
implemented by Guido van Rossum.

PEP 230: Warning Framework

Over its 10 years of existence, Python has accumulated a certain number of
obsolete modules and features along the way. It's difficult to know when a
feature is safe to remove, since there's no way of knowing how much code uses it
--- perhaps no programs depend on the feature, or perhaps many do. To enable
removing old features in a more structured way, a warning framework was added.
When the Python developers want to get rid of a feature, it will first trigger a
warning in the next version of Python. The following Python version can then
drop the feature, and users will have had a full release cycle to remove uses of
the old feature.

Python 2.1 adds the warning framework to be used in this scheme. It adds a
warnings module that provide functions to issue warnings, and to filter
out warnings that you don't want to be displayed. Third-party modules can also
use this framework to deprecate old features that they no longer wish to
support.

For example, in Python 2.1 the regex module is deprecated, so importing
it causes a warning to be printed:

>>> import regex
__main__:1: DeprecationWarning: the regex module
 is deprecated; please use the re module
>>>

Warnings can be issued by calling the warnings.warn() function:

warnings.warn("feature X no longer supported")

The first parameter is the warning message; an additional optional parameters
can be used to specify a particular warning category.

Filters can be added to disable certain warnings; a regular expression pattern
can be applied to the message or to the module name in order to suppress a
warning. For example, you may have a program that uses the regex module
and not want to spare the time to convert it to use the re module right
now. The warning can be suppressed by calling

import warnings
warnings.filterwarnings(action = 'ignore',
 message='.*regex module is deprecated',
 category=DeprecationWarning,
 module = '__main__')

This adds a filter that will apply only to warnings of the class
DeprecationWarning triggered in the __main__ module, and applies
a regular expression to only match the message about the regex module
being deprecated, and will cause such warnings to be ignored. Warnings can also
be printed only once, printed every time the offending code is executed, or
turned into exceptions that will cause the program to stop (unless the
exceptions are caught in the usual way, of course).

Functions were also added to Python's C API for issuing warnings; refer to PEP
230 or to Python's API documentation for the details.

参见

	PEP 5 [https://www.python.org/dev/peps/pep-0005] - Guidelines for Language Evolution
	Written by Paul Prescod, to specify procedures to be followed when removing old
features from Python. The policy described in this PEP hasn't been officially
adopted, but the eventual policy probably won't be too different from Prescod's
proposal.

	PEP 230 [https://www.python.org/dev/peps/pep-0230] - Warning Framework
	由 Guido van Rossum 撰写并实现。

PEP 229: New Build System

When compiling Python, the user had to go in and edit the Modules/Setup
file in order to enable various additional modules; the default set is
relatively small and limited to modules that compile on most Unix platforms.
This means that on Unix platforms with many more features, most notably Linux,
Python installations often don't contain all useful modules they could.

Python 2.0 added the Distutils, a set of modules for distributing and installing
extensions. In Python 2.1, the Distutils are used to compile much of the
standard library of extension modules, autodetecting which ones are supported on
the current machine. It's hoped that this will make Python installations easier
and more featureful.

Instead of having to edit the Modules/Setup file in order to enable
modules, a setup.py script in the top directory of the Python source
distribution is run at build time, and attempts to discover which modules can be
enabled by examining the modules and header files on the system. If a module is
configured in Modules/Setup, the setup.py script won't attempt
to compile that module and will defer to the Modules/Setup file's
contents. This provides a way to specific any strange command-line flags or
libraries that are required for a specific platform.

In another far-reaching change to the build mechanism, Neil Schemenauer
restructured things so Python now uses a single makefile that isn't recursive,
instead of makefiles in the top directory and in each of the Python/,
Parser/, Objects/, and Modules/ subdirectories. This
makes building Python faster and also makes hacking the Makefiles clearer and
simpler.

参见

	PEP 229 [https://www.python.org/dev/peps/pep-0229] - Using Distutils to Build Python
	由 A.M. Kuchling 撰写并实现。

PEP 205: Weak References

Weak references, available through the weakref module, are a minor but
useful new data type in the Python programmer's toolbox.

Storing a reference to an object (say, in a dictionary or a list) has the side
effect of keeping that object alive forever. There are a few specific cases
where this behaviour is undesirable, object caches being the most common one,
and another being circular references in data structures such as trees.

For example, consider a memoizing function that caches the results of another
function f(x) by storing the function's argument and its result in a
dictionary:

_cache = {}
def memoize(x):
 if _cache.has_key(x):
 return _cache[x]

 retval = f(x)

 # Cache the returned object
 _cache[x] = retval

 return retval

This version works for simple things such as integers, but it has a side effect;
the _cache dictionary holds a reference to the return values, so they'll
never be deallocated until the Python process exits and cleans up. This isn't
very noticeable for integers, but if f() returns an object, or a data
structure that takes up a lot of memory, this can be a problem.

Weak references provide a way to implement a cache that won't keep objects alive
beyond their time. If an object is only accessible through weak references, the
object will be deallocated and the weak references will now indicate that the
object it referred to no longer exists. A weak reference to an object obj is
created by calling wr = weakref.ref(obj). The object being referred to is
returned by calling the weak reference as if it were a function: wr(). It
will return the referenced object, or None if the object no longer exists.

This makes it possible to write a memoize() function whose cache doesn't
keep objects alive, by storing weak references in the cache.

_cache = {}
def memoize(x):
 if _cache.has_key(x):
 obj = _cache[x]()
 # If weak reference object still exists,
 # return it
 if obj is not None: return obj

 retval = f(x)

 # Cache a weak reference
 _cache[x] = weakref.ref(retval)

 return retval

The weakref module also allows creating proxy objects which behave like
weak references --- an object referenced only by proxy objects is deallocated --
but instead of requiring an explicit call to retrieve the object, the proxy
transparently forwards all operations to the object as long as the object still
exists. If the object is deallocated, attempting to use a proxy will cause a
weakref.ReferenceError exception to be raised.

proxy = weakref.proxy(obj)
proxy.attr # Equivalent to obj.attr
proxy.meth() # Equivalent to obj.meth()
del obj
proxy.attr # raises weakref.ReferenceError

参见

	PEP 205 [https://www.python.org/dev/peps/pep-0205] - 弱引用
	由 Fred L. Drake, Jr 撰写并实现。

PEP 232: Function Attributes

In Python 2.1, functions can now have arbitrary information attached to them.
People were often using docstrings to hold information about functions and
methods, because the __doc__ attribute was the only way of attaching any
information to a function. For example, in the Zope Web application server,
functions are marked as safe for public access by having a docstring, and in
John Aycock's SPARK parsing framework, docstrings hold parts of the BNF grammar
to be parsed. This overloading is unfortunate, since docstrings are really
intended to hold a function's documentation; for example, it means you can't
properly document functions intended for private use in Zope.

Arbitrary attributes can now be set and retrieved on functions using the regular
Python syntax:

def f(): pass

f.publish = 1
f.secure = 1
f.grammar = "A ::= B (C D)*"

The dictionary containing attributes can be accessed as the function's
__dict__. Unlike the __dict__ attribute of class instances, in
functions you can actually assign a new dictionary to __dict__, though
the new value is restricted to a regular Python dictionary; you can't be
tricky and set it to a UserDict instance, or any other random object
that behaves like a mapping.

参见

	PEP 232 [https://www.python.org/dev/peps/pep-0232] - Function Attributes
	PEP 由 Barry Warsaw 撰写并实现

PEP 235: Importing Modules on Case-Insensitive Platforms

Some operating systems have filesystems that are case-insensitive, MacOS and
Windows being the primary examples; on these systems, it's impossible to
distinguish the filenames FILE.PY and file.py, even though they do store
the file's name in its original case (they're case-preserving, too).

In Python 2.1, the import statement will work to simulate case-sensitivity
on case-insensitive platforms. Python will now search for the first
case-sensitive match by default, raising an ImportError if no such file
is found, so import file will not import a module named FILE.PY.
Case-insensitive matching can be requested by setting the PYTHONCASEOK
environment variable before starting the Python interpreter.

PEP 217: Interactive Display Hook

When using the Python interpreter interactively, the output of commands is
displayed using the built-in repr() function. In Python 2.1, the variable
sys.displayhook() can be set to a callable object which will be called
instead of repr(). For example, you can set it to a special
pretty-printing function:

>>> # Create a recursive data structure
... L = [1,2,3]
>>> L.append(L)
>>> L # Show Python's default output
[1, 2, 3, [...]]
>>> # Use pprint.pprint() as the display function
... import sys, pprint
>>> sys.displayhook = pprint.pprint
>>> L
[1, 2, 3, <Recursion on list with id=135143996>]
>>>

参见

	PEP 217 [https://www.python.org/dev/peps/pep-0217] - Display Hook for Interactive Use
	由 Moshe Zadka 撰写并实现

PEP 208: New Coercion Model

How numeric coercion is done at the C level was significantly modified. This
will only affect the authors of C extensions to Python, allowing them more
flexibility in writing extension types that support numeric operations.

Extension types can now set the type flag Py_TPFLAGS_CHECKTYPES in their
PyTypeObject structure to indicate that they support the new coercion model.
In such extension types, the numeric slot functions can no longer assume that
they'll be passed two arguments of the same type; instead they may be passed two
arguments of differing types, and can then perform their own internal coercion.
If the slot function is passed a type it can't handle, it can indicate the
failure by returning a reference to the Py_NotImplemented singleton value.
The numeric functions of the other type will then be tried, and perhaps they can
handle the operation; if the other type also returns Py_NotImplemented, then
a TypeError will be raised. Numeric methods written in Python can also
return Py_NotImplemented, causing the interpreter to act as if the method
did not exist (perhaps raising a TypeError, perhaps trying another
object's numeric methods).

参见

	PEP 208 [https://www.python.org/dev/peps/pep-0208] - Reworking the Coercion Model
	Written and implemented by Neil Schemenauer, heavily based upon earlier work by
Marc-André Lemburg. Read this to understand the fine points of how numeric
operations will now be processed at the C level.

PEP 241: Metadata in Python Packages

A common complaint from Python users is that there's no single catalog of all
the Python modules in existence. T. Middleton's Vaults of Parnassus at
http://www.vex.net/parnassus/ are the largest catalog of Python modules, but
registering software at the Vaults is optional, and many people don't bother.

As a first small step toward fixing the problem, Python software packaged using
the Distutils sdist command will include a file named
PKG-INFO containing information about the package such as its name,
version, and author (metadata, in cataloguing terminology). PEP 241 contains
the full list of fields that can be present in the PKG-INFO file. As
people began to package their software using Python 2.1, more and more packages
will include metadata, making it possible to build automated cataloguing systems
and experiment with them. With the result experience, perhaps it'll be possible
to design a really good catalog and then build support for it into Python 2.2.
For example, the Distutils sdist and bdist_* commands
could support an upload option that would automatically upload your
package to a catalog server.

You can start creating packages containing PKG-INFO even if you're not
using Python 2.1, since a new release of the Distutils will be made for users of
earlier Python versions. Version 1.0.2 of the Distutils includes the changes
described in PEP 241, as well as various bugfixes and enhancements. It will be
available from the Distutils SIG at https://www.python.org/community/sigs/current/distutils-sig/.

参见

	PEP 241 [https://www.python.org/dev/peps/pep-0241] - Metadata for Python Software Packages
	由 A.M. Kuchling 撰写并实现。

	PEP 243 [https://www.python.org/dev/peps/pep-0243] - Module Repository Upload Mechanism
	Written by Sean Reifschneider, this draft PEP describes a proposed mechanism for
uploading Python packages to a central server.

新增和改进的模块

	Ka-Ping Yee contributed two new modules: inspect.py, a module for
getting information about live Python code, and pydoc.py, a module for
interactively converting docstrings to HTML or text. As a bonus,
Tools/scripts/pydoc, which is now automatically installed, uses
pydoc.py to display documentation given a Python module, package, or
class name. For example, pydoc xml.dom displays the following:

Python Library Documentation: package xml.dom in xml

NAME
 xml.dom - W3C Document Object Model implementation for Python.

FILE
 /usr/local/lib/python2.1/xml/dom/__init__.pyc

DESCRIPTION
 The Python mapping of the Document Object Model is documented in the
 Python Library Reference in the section on the xml.dom package.

 This package contains the following modules:
 ...

pydoc also includes a Tk-based interactive help browser. pydoc
quickly becomes addictive; try it out!

	Two different modules for unit testing were added to the standard library.
The doctest module, contributed by Tim Peters, provides a testing
framework based on running embedded examples in docstrings and comparing the
results against the expected output. PyUnit, contributed by Steve Purcell, is a
unit testing framework inspired by JUnit, which was in turn an adaptation of
Kent Beck's Smalltalk testing framework. See http://pyunit.sourceforge.net/ for
more information about PyUnit.

	The difflib module contains a class, SequenceMatcher, which
compares two sequences and computes the changes required to transform one
sequence into the other. For example, this module can be used to write a tool
similar to the Unix diff program, and in fact the sample program
Tools/scripts/ndiff.py demonstrates how to write such a script.

	curses.panel, a wrapper for the panel library, part of ncurses and of
SYSV curses, was contributed by Thomas Gellekum. The panel library provides
windows with the additional feature of depth. Windows can be moved higher or
lower in the depth ordering, and the panel library figures out where panels
overlap and which sections are visible.

	The PyXML package has gone through a few releases since Python 2.0, and Python
2.1 includes an updated version of the xml package. Some of the
noteworthy changes include support for Expat 1.2 and later versions, the ability
for Expat parsers to handle files in any encoding supported by Python, and
various bugfixes for SAX, DOM, and the minidom module.

	Ping also contributed another hook for handling uncaught exceptions.
sys.excepthook() can be set to a callable object. When an exception isn't
caught by any try...except blocks, the exception will be
passed to sys.excepthook(), which can then do whatever it likes. At the
Ninth Python Conference, Ping demonstrated an application for this hook:
printing an extended traceback that not only lists the stack frames, but also
lists the function arguments and the local variables for each frame.

	Various functions in the time module, such as asctime() and
localtime(), require a floating point argument containing the time in
seconds since the epoch. The most common use of these functions is to work with
the current time, so the floating point argument has been made optional; when a
value isn't provided, the current time will be used. For example, log file
entries usually need a string containing the current time; in Python 2.1,
time.asctime() can be used, instead of the lengthier
time.asctime(time.localtime(time.time())) that was previously required.

This change was proposed and implemented by Thomas Wouters.

	The ftplib module now defaults to retrieving files in passive mode,
because passive mode is more likely to work from behind a firewall. This
request came from the Debian bug tracking system, since other Debian packages
use ftplib to retrieve files and then don't work from behind a firewall.
It's deemed unlikely that this will cause problems for anyone, because Netscape
defaults to passive mode and few people complain, but if passive mode is
unsuitable for your application or network setup, call set_pasv(0) on
FTP objects to disable passive mode.

	Support for raw socket access has been added to the socket module,
contributed by Grant Edwards.

	The pstats module now contains a simple interactive statistics browser
for displaying timing profiles for Python programs, invoked when the module is
run as a script. Contributed by Eric S. Raymond.

	A new implementation-dependent function, sys._getframe([depth]), has
been added to return a given frame object from the current call stack.
sys._getframe() returns the frame at the top of the call stack; if the
optional integer argument depth is supplied, the function returns the frame
that is depth calls below the top of the stack. For example,
sys._getframe(1) returns the caller's frame object.

This function is only present in CPython, not in Jython or the .NET
implementation. Use it for debugging, and resist the temptation to put it into
production code.

Other Changes and Fixes

There were relatively few smaller changes made in Python 2.1 due to the shorter
release cycle. A search through the CVS change logs turns up 117 patches
applied, and 136 bugs fixed; both figures are likely to be underestimates. Some
of the more notable changes are:

	A specialized object allocator is now optionally available, that should be
faster than the system malloc() and have less memory overhead. The
allocator uses C's malloc() function to get large pools of memory, and
then fulfills smaller memory requests from these pools. It can be enabled by
providing the --with-pymalloc option to the configure
script; see Objects/obmalloc.c for the implementation details.

Authors of C extension modules should test their code with the object allocator
enabled, because some incorrect code may break, causing core dumps at runtime.
There are a bunch of memory allocation functions in Python's C API that have
previously been just aliases for the C library's malloc() and
free(), meaning that if you accidentally called mismatched functions, the
error wouldn't be noticeable. When the object allocator is enabled, these
functions aren't aliases of malloc() and free() any more, and
calling the wrong function to free memory will get you a core dump. For
example, if memory was allocated using PyMem_New(), it has to be freed
using PyMem_Del(), not free(). A few modules included with Python
fell afoul of this and had to be fixed; doubtless there are more third-party
modules that will have the same problem.

The object allocator was contributed by Vladimir Marangozov.

	The speed of line-oriented file I/O has been improved because people often
complain about its lack of speed, and because it's often been used as a naïve
benchmark. The readline() method of file objects has therefore been
rewritten to be much faster. The exact amount of the speedup will vary from
platform to platform depending on how slow the C library's getc() was, but
is around 66%, and potentially much faster on some particular operating systems.
Tim Peters did much of the benchmarking and coding for this change, motivated by
a discussion in comp.lang.python.

A new module and method for file objects was also added, contributed by Jeff
Epler. The new method, xreadlines(), is similar to the existing
xrange() built-in. xreadlines() returns an opaque sequence object
that only supports being iterated over, reading a line on every iteration but
not reading the entire file into memory as the existing readlines() method
does. You'd use it like this:

for line in sys.stdin.xreadlines():
 # ... do something for each line ...
 ...

For a fuller discussion of the line I/O changes, see the python-dev summary for
January 1--15, 2001 at https://mail.python.org/pipermail/python-dev/2001-January/.

	A new method, popitem(), was added to dictionaries to enable
destructively iterating through the contents of a dictionary; this can be faster
for large dictionaries because there's no need to construct a list containing
all the keys or values. D.popitem() removes a random (key, value) pair
from the dictionary D and returns it as a 2-tuple. This was implemented
mostly by Tim Peters and Guido van Rossum, after a suggestion and preliminary
patch by Moshe Zadka.

	Modules can now control which names are imported when from module import *
is used, by defining an __all__ attribute containing a list of names that
will be imported. One common complaint is that if the module imports other
modules such as sys or string, from module import * will add
them to the importing module's namespace. To fix this, simply list the public
names in __all__:

List public names
__all__ = ['Database', 'open']

A stricter version of this patch was first suggested and implemented by Ben
Wolfson, but after some python-dev discussion, a weaker final version was
checked in.

	Applying repr() to strings previously used octal escapes for
non-printable characters; for example, a newline was '\012'. This was a
vestigial trace of Python's C ancestry, but today octal is of very little
practical use. Ka-Ping Yee suggested using hex escapes instead of octal ones,
and using the \n, \t, \r escapes for the appropriate characters,
and implemented this new formatting.

	Syntax errors detected at compile-time can now raise exceptions containing the
filename and line number of the error, a pleasant side effect of the compiler
reorganization done by Jeremy Hylton.

	C extensions which import other modules have been changed to use
PyImport_ImportModule(), which means that they will use any import hooks
that have been installed. This is also encouraged for third-party extensions
that need to import some other module from C code.

	The size of the Unicode character database was shrunk by another 340K thanks
to Fredrik Lundh.

	Some new ports were contributed: MacOS X (by Steven Majewski), Cygwin (by
Jason Tishler); RISCOS (by Dietmar Schwertberger); Unixware 7 (by Billy G.
Allie).

And there's the usual list of minor bugfixes, minor memory leaks, docstring
edits, and other tweaks, too lengthy to be worth itemizing; see the CVS logs for
the full details if you want them.

致谢

作者要感谢以下人员对本文的各种草案提出建议： Graeme Cross, David Goodger, Jay Graves, Michael Hudson, Marc-André Lemburg, Fredrik Lundh, Neil Schemenauer, Thomas Wouters.

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 2.0 有什么新变化

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

Python 2.0 有什么新变化

	作者

	A.M. Kuchling and Moshe Zadka

概述

A new release of Python, version 2.0, was released on October 16, 2000. This
article covers the exciting new features in 2.0, highlights some other useful
changes, and points out a few incompatible changes that may require rewriting
code.

Python's development never completely stops between releases, and a steady flow
of bug fixes and improvements are always being submitted. A host of minor fixes,
a few optimizations, additional docstrings, and better error messages went into
2.0; to list them all would be impossible, but they're certainly significant.
Consult the publicly-available CVS logs if you want to see the full list. This
progress is due to the five developers working for PythonLabs are now getting
paid to spend their days fixing bugs, and also due to the improved communication
resulting from moving to SourceForge.

What About Python 1.6?

Python 1.6 can be thought of as the Contractual Obligations Python release.
After the core development team left CNRI in May 2000, CNRI requested that a 1.6
release be created, containing all the work on Python that had been performed at
CNRI. Python 1.6 therefore represents the state of the CVS tree as of May 2000,
with the most significant new feature being Unicode support. Development
continued after May, of course, so the 1.6 tree received a few fixes to ensure
that it's forward-compatible with Python 2.0. 1.6 is therefore part of Python's
evolution, and not a side branch.

So, should you take much interest in Python 1.6? Probably not. The 1.6final
and 2.0beta1 releases were made on the same day (September 5, 2000), the plan
being to finalize Python 2.0 within a month or so. If you have applications to
maintain, there seems little point in breaking things by moving to 1.6, fixing
them, and then having another round of breakage within a month by moving to 2.0;
you're better off just going straight to 2.0. Most of the really interesting
features described in this document are only in 2.0, because a lot of work was
done between May and September.

新开发流程

The most important change in Python 2.0 may not be to the code at all, but to
how Python is developed: in May 2000 the Python developers began using the tools
made available by SourceForge for storing source code, tracking bug reports,
and managing the queue of patch submissions. To report bugs or submit patches
for Python 2.0, use the bug tracking and patch manager tools available from
Python's project page, located at https://sourceforge.net/projects/python/.

The most important of the services now hosted at SourceForge is the Python CVS
tree, the version-controlled repository containing the source code for Python.
Previously, there were roughly 7 or so people who had write access to the CVS
tree, and all patches had to be inspected and checked in by one of the people on
this short list. Obviously, this wasn't very scalable. By moving the CVS tree
to SourceForge, it became possible to grant write access to more people; as of
September 2000 there were 27 people able to check in changes, a fourfold
increase. This makes possible large-scale changes that wouldn't be attempted if
they'd have to be filtered through the small group of core developers. For
example, one day Peter Schneider-Kamp took it into his head to drop K&R C
compatibility and convert the C source for Python to ANSI C. After getting
approval on the python-dev mailing list, he launched into a flurry of checkins
that lasted about a week, other developers joined in to help, and the job was
done. If there were only 5 people with write access, probably that task would
have been viewed as "nice, but not worth the time and effort needed" and it
would never have gotten done.

The shift to using SourceForge's services has resulted in a remarkable increase
in the speed of development. Patches now get submitted, commented on, revised
by people other than the original submitter, and bounced back and forth between
people until the patch is deemed worth checking in. Bugs are tracked in one
central location and can be assigned to a specific person for fixing, and we can
count the number of open bugs to measure progress. This didn't come without a
cost: developers now have more e-mail to deal with, more mailing lists to
follow, and special tools had to be written for the new environment. For
example, SourceForge sends default patch and bug notification e-mail messages
that are completely unhelpful, so Ka-Ping Yee wrote an HTML screen-scraper that
sends more useful messages.

The ease of adding code caused a few initial growing pains, such as code was
checked in before it was ready or without getting clear agreement from the
developer group. The approval process that has emerged is somewhat similar to
that used by the Apache group. Developers can vote +1, +0, -0, or -1 on a patch;
+1 and -1 denote acceptance or rejection, while +0 and -0 mean the developer is
mostly indifferent to the change, though with a slight positive or negative
slant. The most significant change from the Apache model is that the voting is
essentially advisory, letting Guido van Rossum, who has Benevolent Dictator For
Life status, know what the general opinion is. He can still ignore the result of
a vote, and approve or reject a change even if the community disagrees with him.

Producing an actual patch is the last step in adding a new feature, and is
usually easy compared to the earlier task of coming up with a good design.
Discussions of new features can often explode into lengthy mailing list threads,
making the discussion hard to follow, and no one can read every posting to
python-dev. Therefore, a relatively formal process has been set up to write
Python Enhancement Proposals (PEPs), modelled on the Internet RFC process. PEPs
are draft documents that describe a proposed new feature, and are continually
revised until the community reaches a consensus, either accepting or rejecting
the proposal. Quoting from the introduction to PEP 1, "PEP Purpose and
Guidelines":

PEP stands for Python Enhancement Proposal. A PEP is a design document
providing information to the Python community, or describing a new feature for
Python. The PEP should provide a concise technical specification of the feature
and a rationale for the feature.

We intend PEPs to be the primary mechanisms for proposing new features, for
collecting community input on an issue, and for documenting the design decisions
that have gone into Python. The PEP author is responsible for building
consensus within the community and documenting dissenting opinions.

Read the rest of PEP 1 for the details of the PEP editorial process, style, and
format. PEPs are kept in the Python CVS tree on SourceForge, though they're not
part of the Python 2.0 distribution, and are also available in HTML form from
https://www.python.org/dev/peps/. As of September 2000, there are 25 PEPS, ranging
from PEP 201, "Lockstep Iteration", to PEP 225, "Elementwise/Objectwise
Operators".

Unicode

The largest new feature in Python 2.0 is a new fundamental data type: Unicode
strings. Unicode uses 16-bit numbers to represent characters instead of the
8-bit number used by ASCII, meaning that 65,536 distinct characters can be
supported.

The final interface for Unicode support was arrived at through countless
often-stormy discussions on the python-dev mailing list, and mostly implemented by
Marc-André Lemburg, based on a Unicode string type implementation by Fredrik
Lundh. A detailed explanation of the interface was written up as PEP 100 [https://www.python.org/dev/peps/pep-0100],
"Python Unicode Integration". This article will simply cover the most
significant points about the Unicode interfaces.

In Python source code, Unicode strings are written as u"string". Arbitrary
Unicode characters can be written using a new escape sequence, \uHHHH, where
HHHH is a 4-digit hexadecimal number from 0000 to FFFF. The existing
\xHHHH escape sequence can also be used, and octal escapes can be used for
characters up to U+01FF, which is represented by \777.

Unicode strings, just like regular strings, are an immutable sequence type.
They can be indexed and sliced, but not modified in place. Unicode strings have
an encode([encoding]) method that returns an 8-bit string in the desired
encoding. Encodings are named by strings, such as 'ascii', 'utf-8',
'iso-8859-1', or whatever. A codec API is defined for implementing and
registering new encodings that are then available throughout a Python program.
If an encoding isn't specified, the default encoding is usually 7-bit ASCII,
though it can be changed for your Python installation by calling the
sys.setdefaultencoding(encoding) function in a customized version of
site.py.

Combining 8-bit and Unicode strings always coerces to Unicode, using the default
ASCII encoding; the result of 'a' + u'bc' is u'abc'.

New built-in functions have been added, and existing built-ins modified to
support Unicode:

	unichr(ch) returns a Unicode string 1 character long, containing the
character ch.

	ord(u), where u is a 1-character regular or Unicode string, returns the
number of the character as an integer.

	unicode(string [, encoding] [, errors]) creates a Unicode string
from an 8-bit string. encoding is a string naming the encoding to use. The
errors parameter specifies the treatment of characters that are invalid for
the current encoding; passing 'strict' as the value causes an exception to
be raised on any encoding error, while 'ignore' causes errors to be silently
ignored and 'replace' uses U+FFFD, the official replacement character, in
case of any problems.

	The exec statement, and various built-ins such as eval(),
getattr(), and setattr() will also accept Unicode strings as well as
regular strings. (It's possible that the process of fixing this missed some
built-ins; if you find a built-in function that accepts strings but doesn't
accept Unicode strings at all, please report it as a bug.)

A new module, unicodedata, provides an interface to Unicode character
properties. For example, unicodedata.category(u'A') returns the 2-character
string 'Lu', the 'L' denoting it's a letter, and 'u' meaning that it's
uppercase. unicodedata.bidirectional(u'\u0660') returns 'AN', meaning that
U+0660 is an Arabic number.

The codecs module contains functions to look up existing encodings and
register new ones. Unless you want to implement a new encoding, you'll most
often use the codecs.lookup(encoding) function, which returns a
4-element tuple: (encode_func, decode_func, stream_reader, stream_writer).

	encode_func is a function that takes a Unicode string, and returns a 2-tuple
(string, length). string is an 8-bit string containing a portion (perhaps
all) of the Unicode string converted into the given encoding, and length tells
you how much of the Unicode string was converted.

	decode_func is the opposite of encode_func, taking an 8-bit string and
returning a 2-tuple (ustring, length), consisting of the resulting Unicode
string ustring and the integer length telling how much of the 8-bit string
was consumed.

	stream_reader is a class that supports decoding input from a stream.
stream_reader(file_obj) returns an object that supports the read(),
readline(), and readlines() methods. These methods will all
translate from the given encoding and return Unicode strings.

	stream_writer, similarly, is a class that supports encoding output to a
stream. stream_writer(file_obj) returns an object that supports the
write() and writelines() methods. These methods expect Unicode
strings, translating them to the given encoding on output.

For example, the following code writes a Unicode string into a file, encoding
it as UTF-8:

import codecs

unistr = u'\u0660\u2000ab ...'

(UTF8_encode, UTF8_decode,
 UTF8_streamreader, UTF8_streamwriter) = codecs.lookup('UTF-8')

output = UTF8_streamwriter(open('/tmp/output', 'wb'))
output.write(unistr)
output.close()

The following code would then read UTF-8 input from the file:

input = UTF8_streamreader(open('/tmp/output', 'rb'))
print repr(input.read())
input.close()

Unicode-aware regular expressions are available through the re module,
which has a new underlying implementation called SRE written by Fredrik Lundh of
Secret Labs AB.

A -U command line option was added which causes the Python compiler to
interpret all string literals as Unicode string literals. This is intended to be
used in testing and future-proofing your Python code, since some future version
of Python may drop support for 8-bit strings and provide only Unicode strings.

列表推导式

Lists are a workhorse data type in Python, and many programs manipulate a list
at some point. Two common operations on lists are to loop over them, and either
pick out the elements that meet a certain criterion, or apply some function to
each element. For example, given a list of strings, you might want to pull out
all the strings containing a given substring, or strip off trailing whitespace
from each line.

The existing map() and filter() functions can be used for this
purpose, but they require a function as one of their arguments. This is fine if
there's an existing built-in function that can be passed directly, but if there
isn't, you have to create a little function to do the required work, and
Python's scoping rules make the result ugly if the little function needs
additional information. Take the first example in the previous paragraph,
finding all the strings in the list containing a given substring. You could
write the following to do it:

Given the list L, make a list of all strings
containing the substring S.
sublist = filter(lambda s, substring=S:
 string.find(s, substring) != -1,
 L)

Because of Python's scoping rules, a default argument is used so that the
anonymous function created by the lambda expression knows what
substring is being searched for. List comprehensions make this cleaner:

sublist = [s for s in L if string.find(s, S) != -1]

List comprehensions have the form:

[expression for expr in sequence1
 for expr2 in sequence2 ...
 for exprN in sequenceN
 if condition]

The for...in clauses contain the sequences to be
iterated over. The sequences do not have to be the same length, because they
are not iterated over in parallel, but from left to right; this is explained
more clearly in the following paragraphs. The elements of the generated list
will be the successive values of expression. The final if clause
is optional; if present, expression is only evaluated and added to the result
if condition is true.

To make the semantics very clear, a list comprehension is equivalent to the
following Python code:

for expr1 in sequence1:
 for expr2 in sequence2:
 ...
 for exprN in sequenceN:
 if (condition):
 # Append the value of
 # the expression to the
 # resulting list.

This means that when there are multiple for...in
clauses, the resulting list will be equal to the product of the lengths of all
the sequences. If you have two lists of length 3, the output list is 9 elements
long:

seq1 = 'abc'
seq2 = (1,2,3)
>>> [(x,y) for x in seq1 for y in seq2]
[('a', 1), ('a', 2), ('a', 3), ('b', 1), ('b', 2), ('b', 3), ('c', 1),
('c', 2), ('c', 3)]

To avoid introducing an ambiguity into Python's grammar, if expression is
creating a tuple, it must be surrounded with parentheses. The first list
comprehension below is a syntax error, while the second one is correct:

Syntax error
[x,y for x in seq1 for y in seq2]
Correct
[(x,y) for x in seq1 for y in seq2]

The idea of list comprehensions originally comes from the functional programming
language Haskell (https://www.haskell.org). Greg Ewing argued most effectively
for adding them to Python and wrote the initial list comprehension patch, which
was then discussed for a seemingly endless time on the python-dev mailing list
and kept up-to-date by Skip Montanaro.

Augmented Assignment

Augmented assignment operators, another long-requested feature, have been added
to Python 2.0. Augmented assignment operators include +=, -=, *=,
and so forth. For example, the statement a += 2 increments the value of the
variable a by 2, equivalent to the slightly lengthier a = a + 2.

The full list of supported assignment operators is +=, -=, *=,
/=, %=, **=, &=, |=, ^=, >>=, and <<=. Python
classes can override the augmented assignment operators by defining methods
named __iadd__(), __isub__(), etc. For example, the following
Number class stores a number and supports using += to create a new
instance with an incremented value.

class Number:
 def __init__(self, value):
 self.value = value
 def __iadd__(self, increment):
 return Number(self.value + increment)

n = Number(5)
n += 3
print n.value

The __iadd__() special method is called with the value of the increment,
and should return a new instance with an appropriately modified value; this
return value is bound as the new value of the variable on the left-hand side.

Augmented assignment operators were first introduced in the C programming
language, and most C-derived languages, such as awk, C++, Java, Perl,
and PHP also support them. The augmented assignment patch was implemented by
Thomas Wouters.

字符串的方法

Until now string-manipulation functionality was in the string module,
which was usually a front-end for the strop module written in C. The
addition of Unicode posed a difficulty for the strop module, because the
functions would all need to be rewritten in order to accept either 8-bit or
Unicode strings. For functions such as string.replace(), which takes 3
string arguments, that means eight possible permutations, and correspondingly
complicated code.

Instead, Python 2.0 pushes the problem onto the string type, making string
manipulation functionality available through methods on both 8-bit strings and
Unicode strings.

>>> 'andrew'.capitalize()
'Andrew'
>>> 'hostname'.replace('os', 'linux')
'hlinuxtname'
>>> 'moshe'.find('sh')
2

One thing that hasn't changed, a noteworthy April Fools' joke notwithstanding,
is that Python strings are immutable. Thus, the string methods return new
strings, and do not modify the string on which they operate.

The old string module is still around for backwards compatibility, but it
mostly acts as a front-end to the new string methods.

Two methods which have no parallel in pre-2.0 versions, although they did exist
in JPython for quite some time, are startswith() and endswith().
s.startswith(t) is equivalent to s[:len(t)] == t, while
s.endswith(t) is equivalent to s[-len(t):] == t.

One other method which deserves special mention is join(). The
join() method of a string receives one parameter, a sequence of strings,
and is equivalent to the string.join() function from the old string
module, with the arguments reversed. In other words, s.join(seq) is
equivalent to the old string.join(seq, s).

Garbage Collection of Cycles

The C implementation of Python uses reference counting to implement garbage
collection. Every Python object maintains a count of the number of references
pointing to itself, and adjusts the count as references are created or
destroyed. Once the reference count reaches zero, the object is no longer
accessible, since you need to have a reference to an object to access it, and if
the count is zero, no references exist any longer.

Reference counting has some pleasant properties: it's easy to understand and
implement, and the resulting implementation is portable, fairly fast, and reacts
well with other libraries that implement their own memory handling schemes. The
major problem with reference counting is that it sometimes doesn't realise that
objects are no longer accessible, resulting in a memory leak. This happens when
there are cycles of references.

Consider the simplest possible cycle, a class instance which has a reference to
itself:

instance = SomeClass()
instance.myself = instance

After the above two lines of code have been executed, the reference count of
instance is 2; one reference is from the variable named 'instance', and
the other is from the myself attribute of the instance.

If the next line of code is del instance, what happens? The reference count
of instance is decreased by 1, so it has a reference count of 1; the
reference in the myself attribute still exists. Yet the instance is no
longer accessible through Python code, and it could be deleted. Several objects
can participate in a cycle if they have references to each other, causing all of
the objects to be leaked.

Python 2.0 fixes this problem by periodically executing a cycle detection
algorithm which looks for inaccessible cycles and deletes the objects involved.
A new gc module provides functions to perform a garbage collection,
obtain debugging statistics, and tuning the collector's parameters.

Running the cycle detection algorithm takes some time, and therefore will result
in some additional overhead. It is hoped that after we've gotten experience
with the cycle collection from using 2.0, Python 2.1 will be able to minimize
the overhead with careful tuning. It's not yet obvious how much performance is
lost, because benchmarking this is tricky and depends crucially on how often the
program creates and destroys objects. The detection of cycles can be disabled
when Python is compiled, if you can't afford even a tiny speed penalty or
suspect that the cycle collection is buggy, by specifying the
--without-cycle-gc switch when running the configure
script.

Several people tackled this problem and contributed to a solution. An early
implementation of the cycle detection approach was written by Toby Kelsey. The
current algorithm was suggested by Eric Tiedemann during a visit to CNRI, and
Guido van Rossum and Neil Schemenauer wrote two different implementations, which
were later integrated by Neil. Lots of other people offered suggestions along
the way; the March 2000 archives of the python-dev mailing list contain most of
the relevant discussion, especially in the threads titled "Reference cycle
collection for Python" and "Finalization again".

其他核心变化

Various minor changes have been made to Python's syntax and built-in functions.
None of the changes are very far-reaching, but they're handy conveniences.

Minor Language Changes

A new syntax makes it more convenient to call a given function with a tuple of
arguments and/or a dictionary of keyword arguments. In Python 1.5 and earlier,
you'd use the apply() built-in function: apply(f, args, kw) calls the
function f() with the argument tuple args and the keyword arguments in
the dictionary kw. apply() is the same in 2.0, but thanks to a patch
from Greg Ewing, f(*args, **kw) is a shorter and clearer way to achieve the
same effect. This syntax is symmetrical with the syntax for defining
functions:

def f(*args, **kw):
 # args is a tuple of positional args,
 # kw is a dictionary of keyword args
 ...

The print statement can now have its output directed to a file-like
object by following the print with >> file, similar to the
redirection operator in Unix shells. Previously you'd either have to use the
write() method of the file-like object, which lacks the convenience and
simplicity of print, or you could assign a new value to
sys.stdout and then restore the old value. For sending output to standard
error, it's much easier to write this:

print >> sys.stderr, "Warning: action field not supplied"

Modules can now be renamed on importing them, using the syntax import module
as name or from module import name as othername. The patch was submitted
by Thomas Wouters.

A new format style is available when using the % operator; '%r' will insert
the repr() of its argument. This was also added from symmetry
considerations, this time for symmetry with the existing '%s' format style,
which inserts the str() of its argument. For example, '%r %s' % ('abc',
'abc') returns a string containing 'abc' abc.

Previously there was no way to implement a class that overrode Python's built-in
in operator and implemented a custom version. obj in seq returns
true if obj is present in the sequence seq; Python computes this by simply
trying every index of the sequence until either obj is found or an
IndexError is encountered. Moshe Zadka contributed a patch which adds a
__contains__() magic method for providing a custom implementation for
in. Additionally, new built-in objects written in C can define what
in means for them via a new slot in the sequence protocol.

Earlier versions of Python used a recursive algorithm for deleting objects.
Deeply nested data structures could cause the interpreter to fill up the C stack
and crash; Christian Tismer rewrote the deletion logic to fix this problem. On
a related note, comparing recursive objects recursed infinitely and crashed;
Jeremy Hylton rewrote the code to no longer crash, producing a useful result
instead. For example, after this code:

a = []
b = []
a.append(a)
b.append(b)

The comparison a==b returns true, because the two recursive data structures
are isomorphic. See the thread "trashcan and PR#7" in the April 2000 archives of
the python-dev mailing list for the discussion leading up to this
implementation, and some useful relevant links. Note that comparisons can now
also raise exceptions. In earlier versions of Python, a comparison operation
such as cmp(a,b) would always produce an answer, even if a user-defined
__cmp__() method encountered an error, since the resulting exception would
simply be silently swallowed.

Work has been done on porting Python to 64-bit Windows on the Itanium processor,
mostly by Trent Mick of ActiveState. (Confusingly, sys.platform is still
'win32' on Win64 because it seems that for ease of porting, MS Visual C++
treats code as 32 bit on Itanium.) PythonWin also supports Windows CE; see the
Python CE page at http://pythonce.sourceforge.net/ for more information.

Another new platform is Darwin/MacOS X; initial support for it is in Python 2.0.
Dynamic loading works, if you specify "configure --with-dyld --with-suffix=.x".
Consult the README in the Python source distribution for more instructions.

An attempt has been made to alleviate one of Python's warts, the often-confusing
NameError exception when code refers to a local variable before the
variable has been assigned a value. For example, the following code raises an
exception on the print statement in both 1.5.2 and 2.0; in 1.5.2 a
NameError exception is raised, while 2.0 raises a new
UnboundLocalError exception. UnboundLocalError is a subclass of
NameError, so any existing code that expects NameError to be
raised should still work.

def f():
 print "i=",i
 i = i + 1
f()

Two new exceptions, TabError and IndentationError, have been
introduced. They're both subclasses of SyntaxError, and are raised when
Python code is found to be improperly indented.

Changes to Built-in Functions

A new built-in, zip(seq1, seq2, ...), has been added. zip()
returns a list of tuples where each tuple contains the i-th element from each of
the argument sequences. The difference between zip() and map(None,
seq1, seq2) is that map() pads the sequences with None if the
sequences aren't all of the same length, while zip() truncates the
returned list to the length of the shortest argument sequence.

The int() and long() functions now accept an optional "base"
parameter when the first argument is a string. int('123', 10) returns 123,
while int('123', 16) returns 291. int(123, 16) raises a
TypeError exception with the message "can't convert non-string with
explicit base".

A new variable holding more detailed version information has been added to the
sys module. sys.version_info is a tuple (major, minor, micro,
level, serial) For example, in a hypothetical 2.0.1beta1, sys.version_info
would be (2, 0, 1, 'beta', 1). level is a string such as "alpha",
"beta", or "final" for a final release.

Dictionaries have an odd new method, setdefault(key, default), which
behaves similarly to the existing get() method. However, if the key is
missing, setdefault() both returns the value of default as get()
would do, and also inserts it into the dictionary as the value for key. Thus,
the following lines of code:

if dict.has_key(key): return dict[key]
else:
 dict[key] = []
 return dict[key]

can be reduced to a single return dict.setdefault(key, []) statement.

The interpreter sets a maximum recursion depth in order to catch runaway
recursion before filling the C stack and causing a core dump or GPF..
Previously this limit was fixed when you compiled Python, but in 2.0 the maximum
recursion depth can be read and modified using sys.getrecursionlimit() and
sys.setrecursionlimit(). The default value is 1000, and a rough maximum
value for a given platform can be found by running a new script,
Misc/find_recursionlimit.py.

移植 Python 2.0

New Python releases try hard to be compatible with previous releases, and the
record has been pretty good. However, some changes are considered useful
enough, usually because they fix initial design decisions that turned out to be
actively mistaken, that breaking backward compatibility can't always be avoided.
This section lists the changes in Python 2.0 that may cause old Python code to
break.

The change which will probably break the most code is tightening up the
arguments accepted by some methods. Some methods would take multiple arguments
and treat them as a tuple, particularly various list methods such as
append() and insert(). In earlier versions of Python, if L is
a list, L.append(1,2) appends the tuple (1,2) to the list. In Python
2.0 this causes a TypeError exception to be raised, with the message:
'append requires exactly 1 argument; 2 given'. The fix is to simply add an
extra set of parentheses to pass both values as a tuple: L.append((1,2)).

The earlier versions of these methods were more forgiving because they used an
old function in Python's C interface to parse their arguments; 2.0 modernizes
them to use PyArg_ParseTuple(), the current argument parsing function,
which provides more helpful error messages and treats multi-argument calls as
errors. If you absolutely must use 2.0 but can't fix your code, you can edit
Objects/listobject.c and define the preprocessor symbol
NO_STRICT_LIST_APPEND to preserve the old behaviour; this isn't recommended.

Some of the functions in the socket module are still forgiving in this
way. For example, socket.connect(('hostname', 25))() is the correct
form, passing a tuple representing an IP address, but socket.connect(
'hostname', 25)() also works. socket.connect_ex() and socket.bind()
are similarly easy-going. 2.0alpha1 tightened these functions up, but because
the documentation actually used the erroneous multiple argument form, many
people wrote code which would break with the stricter checking. GvR backed out
the changes in the face of public reaction, so for the socket module, the
documentation was fixed and the multiple argument form is simply marked as
deprecated; it will be tightened up again in a future Python version.

The \x escape in string literals now takes exactly 2 hex digits. Previously
it would consume all the hex digits following the 'x' and take the lowest 8 bits
of the result, so \x123456 was equivalent to \x56.

The AttributeError and NameError exceptions have a more friendly
error message, whose text will be something like 'Spam' instance has no
attribute 'eggs' or name 'eggs' is not defined. Previously the error
message was just the missing attribute name eggs, and code written to take
advantage of this fact will break in 2.0.

Some work has been done to make integers and long integers a bit more
interchangeable. In 1.5.2, large-file support was added for Solaris, to allow
reading files larger than 2 GiB; this made the tell() method of file
objects return a long integer instead of a regular integer. Some code would
subtract two file offsets and attempt to use the result to multiply a sequence
or slice a string, but this raised a TypeError. In 2.0, long integers
can be used to multiply or slice a sequence, and it'll behave as you'd
intuitively expect it to; 3L * 'abc' produces 'abcabcabc', and
(0,1,2,3)[2L:4L] produces (2,3). Long integers can also be used in various
contexts where previously only integers were accepted, such as in the
seek() method of file objects, and in the formats supported by the %
operator (%d, %i, %x, etc.). For example, "%d" % 2L**64 will
produce the string 18446744073709551616.

The subtlest long integer change of all is that the str() of a long
integer no longer has a trailing 'L' character, though repr() still
includes it. The 'L' annoyed many people who wanted to print long integers that
looked just like regular integers, since they had to go out of their way to chop
off the character. This is no longer a problem in 2.0, but code which does
str(longval)[:-1] and assumes the 'L' is there, will now lose the final
digit.

Taking the repr() of a float now uses a different formatting precision
than str(). repr() uses %.17g format string for C's
sprintf(), while str() uses %.12g as before. The effect is that
repr() may occasionally show more decimal places than str(), for
certain numbers. For example, the number 8.1 can't be represented exactly in
binary, so repr(8.1) is '8.0999999999999996', while str(8.1) is
'8.1'.

The -X command-line option, which turned all standard exceptions into
strings instead of classes, has been removed; the standard exceptions will now
always be classes. The exceptions module containing the standard
exceptions was translated from Python to a built-in C module, written by Barry
Warsaw and Fredrik Lundh.

扩展/嵌入更改

Some of the changes are under the covers, and will only be apparent to people
writing C extension modules or embedding a Python interpreter in a larger
application. If you aren't dealing with Python's C API, you can safely skip
this section.

The version number of the Python C API was incremented, so C extensions compiled
for 1.5.2 must be recompiled in order to work with 2.0. On Windows, it's not
possible for Python 2.0 to import a third party extension built for Python 1.5.x
due to how Windows DLLs work, so Python will raise an exception and the import
will fail.

Users of Jim Fulton's ExtensionClass module will be pleased to find out that
hooks have been added so that ExtensionClasses are now supported by
isinstance() and issubclass(). This means you no longer have to
remember to write code such as if type(obj) == myExtensionClass, but can use
the more natural if isinstance(obj, myExtensionClass).

The Python/importdl.c file, which was a mass of #ifdefs to support
dynamic loading on many different platforms, was cleaned up and reorganised by
Greg Stein. importdl.c is now quite small, and platform-specific code
has been moved into a bunch of Python/dynload_*.c files. Another
cleanup: there were also a number of my*.h files in the Include/
directory that held various portability hacks; they've been merged into a single
file, Include/pyport.h.

Vladimir Marangozov's long-awaited malloc restructuring was completed, to make
it easy to have the Python interpreter use a custom allocator instead of C's
standard malloc(). For documentation, read the comments in
Include/pymem.h and Include/objimpl.h. For the lengthy
discussions during which the interface was hammered out, see the Web archives of
the 'patches' and 'python-dev' lists at python.org.

Recent versions of the GUSI development environment for MacOS support POSIX
threads. Therefore, Python's POSIX threading support now works on the
Macintosh. Threading support using the user-space GNU pth library was also
contributed.

Threading support on Windows was enhanced, too. Windows supports thread locks
that use kernel objects only in case of contention; in the common case when
there's no contention, they use simpler functions which are an order of
magnitude faster. A threaded version of Python 1.5.2 on NT is twice as slow as
an unthreaded version; with the 2.0 changes, the difference is only 10%. These
improvements were contributed by Yakov Markovitch.

Python 2.0's source now uses only ANSI C prototypes, so compiling Python now
requires an ANSI C compiler, and can no longer be done using a compiler that
only supports K&R C.

Previously the Python virtual machine used 16-bit numbers in its bytecode,
limiting the size of source files. In particular, this affected the maximum
size of literal lists and dictionaries in Python source; occasionally people who
are generating Python code would run into this limit. A patch by Charles G.
Waldman raises the limit from 2^16 to 2^{32}.

Three new convenience functions intended for adding constants to a module's
dictionary at module initialization time were added: PyModule_AddObject(),
PyModule_AddIntConstant(), and PyModule_AddStringConstant(). Each
of these functions takes a module object, a null-terminated C string containing
the name to be added, and a third argument for the value to be assigned to the
name. This third argument is, respectively, a Python object, a C long, or a C
string.

A wrapper API was added for Unix-style signal handlers. PyOS_getsig() gets
a signal handler and PyOS_setsig() will set a new handler.

Distutils：使模块易于安装

Before Python 2.0, installing modules was a tedious affair -- there was no way
to figure out automatically where Python is installed, or what compiler options
to use for extension modules. Software authors had to go through an arduous
ritual of editing Makefiles and configuration files, which only really work on
Unix and leave Windows and MacOS unsupported. Python users faced wildly
differing installation instructions which varied between different extension
packages, which made administering a Python installation something of a chore.

The SIG for distribution utilities, shepherded by Greg Ward, has created the
Distutils, a system to make package installation much easier. They form the
distutils package, a new part of Python's standard library. In the best
case, installing a Python module from source will require the same steps: first
you simply mean unpack the tarball or zip archive, and the run "python
setup.py install". The platform will be automatically detected, the compiler
will be recognized, C extension modules will be compiled, and the distribution
installed into the proper directory. Optional command-line arguments provide
more control over the installation process, the distutils package offers many
places to override defaults -- separating the build from the install, building
or installing in non-default directories, and more.

In order to use the Distutils, you need to write a setup.py script. For
the simple case, when the software contains only .py files, a minimal
setup.py can be just a few lines long:

from distutils.core import setup
setup (name = "foo", version = "1.0",
 py_modules = ["module1", "module2"])

The setup.py file isn't much more complicated if the software consists
of a few packages:

from distutils.core import setup
setup (name = "foo", version = "1.0",
 packages = ["package", "package.subpackage"])

A C extension can be the most complicated case; here's an example taken from
the PyXML package:

from distutils.core import setup, Extension

expat_extension = Extension('xml.parsers.pyexpat',
 define_macros = [('XML_NS', None)],
 include_dirs = ['extensions/expat/xmltok',
 'extensions/expat/xmlparse'],
 sources = ['extensions/pyexpat.c',
 'extensions/expat/xmltok/xmltok.c',
 'extensions/expat/xmltok/xmlrole.c',]
)
setup (name = "PyXML", version = "0.5.4",
 ext_modules =[expat_extension])

The Distutils can also take care of creating source and binary distributions.
The "sdist" command, run by "python setup.py sdist', builds a source
distribution such as foo-1.0.tar.gz. Adding new commands isn't
difficult, "bdist_rpm" and "bdist_wininst" commands have already been
contributed to create an RPM distribution and a Windows installer for the
software, respectively. Commands to create other distribution formats such as
Debian packages and Solaris .pkg files are in various stages of
development.

All this is documented in a new manual, Distributing Python Modules, that
joins the basic set of Python documentation.

XML 模块

Python 1.5.2 included a simple XML parser in the form of the xmllib
module, contributed by Sjoerd Mullender. Since 1.5.2's release, two different
interfaces for processing XML have become common: SAX2 (version 2 of the Simple
API for XML) provides an event-driven interface with some similarities to
xmllib, and the DOM (Document Object Model) provides a tree-based
interface, transforming an XML document into a tree of nodes that can be
traversed and modified. Python 2.0 includes a SAX2 interface and a stripped-down
DOM interface as part of the xml package. Here we will give a brief
overview of these new interfaces; consult the Python documentation or the source
code for complete details. The Python XML SIG is also working on improved
documentation.

SAX2 Support

SAX defines an event-driven interface for parsing XML. To use SAX, you must
write a SAX handler class. Handler classes inherit from various classes
provided by SAX, and override various methods that will then be called by the
XML parser. For example, the startElement() and endElement()
methods are called for every starting and end tag encountered by the parser, the
characters() method is called for every chunk of character data, and so
forth.

The advantage of the event-driven approach is that the whole document doesn't
have to be resident in memory at any one time, which matters if you are
processing really huge documents. However, writing the SAX handler class can
get very complicated if you're trying to modify the document structure in some
elaborate way.

For example, this little example program defines a handler that prints a message
for every starting and ending tag, and then parses the file hamlet.xml
using it:

from xml import sax

class SimpleHandler(sax.ContentHandler):
 def startElement(self, name, attrs):
 print 'Start of element:', name, attrs.keys()

 def endElement(self, name):
 print 'End of element:', name

Create a parser object
parser = sax.make_parser()

Tell it what handler to use
handler = SimpleHandler()
parser.setContentHandler(handler)

Parse a file!
parser.parse('hamlet.xml')

For more information, consult the Python documentation, or the XML HOWTO at
http://pyxml.sourceforge.net/topics/howto/xml-howto.html.

DOM Support

The Document Object Model is a tree-based representation for an XML document. A
top-level Document instance is the root of the tree, and has a single
child which is the top-level Element instance. This Element
has children nodes representing character data and any sub-elements, which may
have further children of their own, and so forth. Using the DOM you can
traverse the resulting tree any way you like, access element and attribute
values, insert and delete nodes, and convert the tree back into XML.

The DOM is useful for modifying XML documents, because you can create a DOM
tree, modify it by adding new nodes or rearranging subtrees, and then produce a
new XML document as output. You can also construct a DOM tree manually and
convert it to XML, which can be a more flexible way of producing XML output than
simply writing <tag1>...</tag1> to a file.

The DOM implementation included with Python lives in the xml.dom.minidom
module. It's a lightweight implementation of the Level 1 DOM with support for
XML namespaces. The parse() and parseString() convenience
functions are provided for generating a DOM tree:

from xml.dom import minidom
doc = minidom.parse('hamlet.xml')

doc is a Document instance. Document, like all the other
DOM classes such as Element and Text, is a subclass of the
Node base class. All the nodes in a DOM tree therefore support certain
common methods, such as toxml() which returns a string containing the XML
representation of the node and its children. Each class also has special
methods of its own; for example, Element and Document
instances have a method to find all child elements with a given tag name.
Continuing from the previous 2-line example:

perslist = doc.getElementsByTagName('PERSONA')
print perslist[0].toxml()
print perslist[1].toxml()

For the Hamlet XML file, the above few lines output:

<PERSONA>CLAUDIUS, king of Denmark. </PERSONA>
<PERSONA>HAMLET, son to the late, and nephew to the present king.</PERSONA>

The root element of the document is available as doc.documentElement, and
its children can be easily modified by deleting, adding, or removing nodes:

root = doc.documentElement

Remove the first child
root.removeChild(root.childNodes[0])

Move the new first child to the end
root.appendChild(root.childNodes[0])

Insert the new first child (originally,
the third child) before the 20th child.
root.insertBefore(root.childNodes[0], root.childNodes[20])

Again, I will refer you to the Python documentation for a complete listing of
the different Node classes and their various methods.

Relationship to PyXML

The XML Special Interest Group has been working on XML-related Python code for a
while. Its code distribution, called PyXML, is available from the SIG's Web
pages at https://www.python.org/community/sigs/current/xml-sig. The PyXML distribution also used
the package name xml. If you've written programs that used PyXML, you're
probably wondering about its compatibility with the 2.0 xml package.

The answer is that Python 2.0's xml package isn't compatible with PyXML,
but can be made compatible by installing a recent version PyXML. Many
applications can get by with the XML support that is included with Python 2.0,
but more complicated applications will require that the full PyXML package will
be installed. When installed, PyXML versions 0.6.0 or greater will replace the
xml package shipped with Python, and will be a strict superset of the
standard package, adding a bunch of additional features. Some of the additional
features in PyXML include:

	4DOM, a full DOM implementation from FourThought, Inc.

	The xmlproc validating parser, written by Lars Marius Garshol.

	The sgmlop parser accelerator module, written by Fredrik Lundh.

模块更改

Lots of improvements and bugfixes were made to Python's extensive standard
library; some of the affected modules include readline,
ConfigParser, cgi, calendar, posix, readline,
xmllib, aifc, chunk, wave, random, shelve,
and nntplib. Consult the CVS logs for the exact patch-by-patch details.

Brian Gallew contributed OpenSSL support for the socket module. OpenSSL
is an implementation of the Secure Socket Layer, which encrypts the data being
sent over a socket. When compiling Python, you can edit Modules/Setup
to include SSL support, which adds an additional function to the socket
module: socket.ssl(socket, keyfile, certfile), which takes a socket
object and returns an SSL socket. The httplib and urllib modules
were also changed to support https:// URLs, though no one has implemented
FTP or SMTP over SSL.

The httplib module has been rewritten by Greg Stein to support HTTP/1.1.
Backward compatibility with the 1.5 version of httplib is provided,
though using HTTP/1.1 features such as pipelining will require rewriting code to
use a different set of interfaces.

The Tkinter module now supports Tcl/Tk version 8.1, 8.2, or 8.3, and
support for the older 7.x versions has been dropped. The Tkinter module now
supports displaying Unicode strings in Tk widgets. Also, Fredrik Lundh
contributed an optimization which makes operations like create_line and
create_polygon much faster, especially when using lots of coordinates.

The curses module has been greatly extended, starting from Oliver
Andrich's enhanced version, to provide many additional functions from ncurses
and SYSV curses, such as colour, alternative character set support, pads, and
mouse support. This means the module is no longer compatible with operating
systems that only have BSD curses, but there don't seem to be any currently
maintained OSes that fall into this category.

As mentioned in the earlier discussion of 2.0's Unicode support, the underlying
implementation of the regular expressions provided by the re module has
been changed. SRE, a new regular expression engine written by Fredrik Lundh and
partially funded by Hewlett Packard, supports matching against both 8-bit
strings and Unicode strings.

新增模块

A number of new modules were added. We'll simply list them with brief
descriptions; consult the 2.0 documentation for the details of a particular
module.

	atexit: For registering functions to be called before the Python
interpreter exits. Code that currently sets sys.exitfunc directly should be
changed to use the atexit module instead, importing atexit and
calling atexit.register() with the function to be called on exit.
(Contributed by Skip Montanaro.)

	codecs, encodings, unicodedata: Added as part of the new
Unicode support.

	filecmp: Supersedes the old cmp, cmpcache and
dircmp modules, which have now become deprecated. (Contributed by Gordon
MacMillan and Moshe Zadka.)

	gettext: This module provides internationalization (I18N) and
localization (L10N) support for Python programs by providing an interface to the
GNU gettext message catalog library. (Integrated by Barry Warsaw, from separate
contributions by Martin von Löwis, Peter Funk, and James Henstridge.)

	linuxaudiodev: Support for the /dev/audio device on Linux, a
twin to the existing sunaudiodev module. (Contributed by Peter Bosch,
with fixes by Jeremy Hylton.)

	mmap: An interface to memory-mapped files on both Windows and Unix. A
file's contents can be mapped directly into memory, at which point it behaves
like a mutable string, so its contents can be read and modified. They can even
be passed to functions that expect ordinary strings, such as the re
module. (Contributed by Sam Rushing, with some extensions by A.M. Kuchling.)

	pyexpat: An interface to the Expat XML parser. (Contributed by Paul
Prescod.)

	robotparser: Parse a robots.txt file, which is used for writing
Web spiders that politely avoid certain areas of a Web site. The parser accepts
the contents of a robots.txt file, builds a set of rules from it, and
can then answer questions about the fetchability of a given URL. (Contributed
by Skip Montanaro.)

	tabnanny: A module/script to check Python source code for ambiguous
indentation. (Contributed by Tim Peters.)

	UserString: A base class useful for deriving objects that behave like
strings.

	webbrowser: A module that provides a platform independent way to launch
a web browser on a specific URL. For each platform, various browsers are tried
in a specific order. The user can alter which browser is launched by setting the
BROWSER environment variable. (Originally inspired by Eric S. Raymond's patch
to urllib which added similar functionality, but the final module comes
from code originally implemented by Fred Drake as
Tools/idle/BrowserControl.py, and adapted for the standard library by
Fred.)

	_winreg: An interface to the Windows registry. _winreg is an
adaptation of functions that have been part of PythonWin since 1995, but has now
been added to the core distribution, and enhanced to support Unicode.
_winreg was written by Bill Tutt and Mark Hammond.

	zipfile: A module for reading and writing ZIP-format archives. These
are archives produced by PKZIP on DOS/Windows or zip on
Unix, not to be confused with gzip-format files (which are
supported by the gzip module) (Contributed by James C. Ahlstrom.)

	imputil: A module that provides a simpler way for writing customized
import hooks, in comparison to the existing ihooks module. (Implemented
by Greg Stein, with much discussion on python-dev along the way.)

IDLE 改进

IDLE is the official Python cross-platform IDE, written using Tkinter. Python
2.0 includes IDLE 0.6, which adds a number of new features and improvements. A
partial list:

	UI improvements and optimizations, especially in the area of syntax
highlighting and auto-indentation.

	The class browser now shows more information, such as the top level functions
in a module.

	Tab width is now a user settable option. When opening an existing Python file,
IDLE automatically detects the indentation conventions, and adapts.

	There is now support for calling browsers on various platforms, used to open
the Python documentation in a browser.

	IDLE now has a command line, which is largely similar to the vanilla Python
interpreter.

	Call tips were added in many places.

	IDLE can now be installed as a package.

	In the editor window, there is now a line/column bar at the bottom.

	Three new keystroke commands: Check module (Alt-F5), Import module (F5) and
Run script (Ctrl-F5).

删除和弃用的模块

A few modules have been dropped because they're obsolete, or because there are
now better ways to do the same thing. The stdwin module is gone; it was
for a platform-independent windowing toolkit that's no longer developed.

A number of modules have been moved to the lib-old subdirectory:
cmp, cmpcache, dircmp, dump, find,
grep, packmail, poly, util, whatsound,
zmod. If you have code which relies on a module that's been moved to
lib-old, you can simply add that directory to sys.path to get them
back, but you're encouraged to update any code that uses these modules.

致谢

作者要感谢以下人士对本文的各种草稿提出建议： David Bolen, Mark Hammond, Gregg Hauser, Jeremy Hylton, Fredrik Lundh, Detlef Lannert, Aahz Maruch, Skip Montanaro, Vladimir Marangozov, Tobias Polzin, Guido van Rossum, Neil Schemenauer, and Russ Schmidt.

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 更新日志

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

更新日志

Python 下一版

发布日期: XXXX-XX-XX

安全

	bpo-39073 [https://bugs.python.org/issue39073]: Disallow CR or LF in email.headerregistry.Address arguments to
guard against header injection attacks.

	bpo-38576 [https://bugs.python.org/issue38576]: Disallow control characters in hostnames in http.client,
addressing CVE-2019-18348. Such potentially malicious header injection
URLs now cause a InvalidURL to be raised.

	bpo-39503 [https://bugs.python.org/issue39503]: CVE-2020-8492: The
AbstractBasicAuthHandler class of the
urllib.request module uses an inefficient regular expression which
can be exploited by an attacker to cause a denial of service. Fix the
regex to prevent the catastrophic backtracking. Vulnerability reported by
Ben Caller and Matt Schwager.

核心与内置

	bpo-40663 [https://bugs.python.org/issue40663]: Correctly generate annotations where parentheses are omitted
but required (e.g: Type[(str, int, *other))].

	bpo-40417 [https://bugs.python.org/issue40417]: Fix imp module deprecation warning when PyImport_ReloadModule
is called. Patch by Robert Rouhani.

	bpo-20526 [https://bugs.python.org/issue20526]: Fix PyThreadState_Clear(). PyThreadState.frame is
a borrowed reference, not a strong reference: PyThreadState_Clear()
must not call Py_CLEAR(tstate->frame).

	bpo-38894 [https://bugs.python.org/issue38894]: Fix a bug that was causing incomplete results when calling
pathlib.Path.glob in the presence of symlinks that point to files
where the user does not have read access. Patch by Pablo Galindo and Matt
Wozniski.

	bpo-39871 [https://bugs.python.org/issue39871]: Fix a possible SystemError in
math.{atan2,copysign,remainder}() when the first argument cannot be
converted to a float. Patch by Zachary Spytz.

	bpo-39520 [https://bugs.python.org/issue39520]: Fix unparsing of ext slices with no items (foo[:,]). Patch
by Batuhan Taskaya.

	bpo-24048 [https://bugs.python.org/issue24048]: Save the live exception during import.c's remove_module().

	bpo-22490 [https://bugs.python.org/issue22490]: Don't leak environment variable __PYVENV_LAUNCHER__ into
the interpreter session on macOS.

库

	bpo-40448 [https://bugs.python.org/issue40448]: ensurepip now disables the use of pip cache when
installing the bundled versions of pip and setuptools. Patch by
Krzysztof Konopko.

	bpo-40807 [https://bugs.python.org/issue40807]: Stop codeop._maybe_compile, used by code.InteractiveInterpreter
(and IDLE). from from emitting each warning three times.

	bpo-38488 [https://bugs.python.org/issue38488]: Update ensurepip to install pip 20.1.1 and setuptools 47.1.0.

	bpo-40767 [https://bugs.python.org/issue40767]: webbrowser now properly finds the default browser in
pure Wayland systems by checking the WAYLAND_DISPLAY environment variable.
Patch contributed by Jérémy Attali.

	bpo-30008 [https://bugs.python.org/issue30008]: Fix ssl code to be compatible with OpenSSL 1.1.x builds
that use no-deprecated and --api=1.1.0.

	bpo-25872 [https://bugs.python.org/issue25872]: linecache could crash with a KeyError when
accessed from multiple threads. Fix by Michael Graczyk.

	bpo-40515 [https://bugs.python.org/issue40515]: The ssl and hashlib modules now actively check
that OpenSSL is build with thread support. Python 3.7.0 made thread
support mandatory and no longer works safely with a no-thread builds.

	bpo-13097 [https://bugs.python.org/issue13097]: ctypes now raises an ArgumentError when a callback is
invoked with more than 1024 arguments.

	bpo-40559 [https://bugs.python.org/issue40559]: Fix possible memory leak in the C implementation of
asyncio.Task.

	bpo-40457 [https://bugs.python.org/issue40457]: The ssl module now support OpenSSL builds without TLS 1.0 and
1.1 methods.

	bpo-40459 [https://bugs.python.org/issue40459]: platform.win32_ver() now produces correct ptype strings
instead of empty strings.

	bpo-40138 [https://bugs.python.org/issue40138]: Fix the Windows implementation of os.waitpid() for exit
code larger than INT_MAX >> 8. The exit status is now interpreted as
an unsigned number.

	bpo-39942 [https://bugs.python.org/issue39942]: Set "__main__" as the default module name when "__name__" is
missing in typing.TypeVar. Patch by Weipeng Hong.

	bpo-40287 [https://bugs.python.org/issue40287]: Fixed SpooledTemporaryFile.seek() to return the position.

	bpo-40196 [https://bugs.python.org/issue40196]: Fix a bug in the symtable module that was causing
incorrectly report global variables as local. Patch by Pablo Galindo.

	bpo-40126 [https://bugs.python.org/issue40126]: Fixed reverting multiple patches in unittest.mock. Patcher's
__exit__() is now never called if its __enter__() is failed.
Returning true from __exit__() silences now the exception.

	bpo-40089 [https://bugs.python.org/issue40089]: Fix threading._after_fork(): if fork was not called by a thread
spawned by threading.Thread, threading._after_fork() now creates a
_MainThread instance for _main_thread, instead of a _DummyThread instance.

	bpo-39503 [https://bugs.python.org/issue39503]: AbstractBasicAuthHandler of
urllib.request now parses all WWW-Authenticate HTTP headers and
accepts multiple challenges per header: use the realm of the first Basic
challenge.

	bpo-40014 [https://bugs.python.org/issue40014]: Fix os.getgrouplist(): if getgrouplist() function fails
because the group list is too small, retry with a larger group list. On
failure, the glibc implementation of getgrouplist() sets ngroups
to the total number of groups. For other implementations, double the group
list size.

	bpo-40025 [https://bugs.python.org/issue40025]: Raise TypeError when _generate_next_value_ is defined after
members. Patch by Ethan Onstott.

	bpo-40016 [https://bugs.python.org/issue40016]: In re docstring, clarify the relationship between inline and
argument compile flags.

	bpo-39652 [https://bugs.python.org/issue39652]: The column name found in sqlite3.Cursor.description is now
truncated on the first '[' only if the PARSE_COLNAMES option is set.

	bpo-38662 [https://bugs.python.org/issue38662]: The ensurepip module now invokes pip via the runpy
module. Hence it is no longer tightly coupled with the internal API of the
bundled pip version, allowing easier updates to a newer pip
version both internally and for distributors.

	bpo-39916 [https://bugs.python.org/issue39916]: More reliable use of os.scandir() in Path.glob(). It no
longer emits a ResourceWarning when interrupted.

	bpo-39850 [https://bugs.python.org/issue39850]: multiprocessing now supports abstract socket addresses
(if abstract sockets are supported in the running platform). Patch by
Pablo Galindo.

	bpo-39828 [https://bugs.python.org/issue39828]: Fix json.tool to catch BrokenPipeError. Patch by
Dong-hee Na.

	bpo-39040 [https://bugs.python.org/issue39040]: Fix parsing of invalid mime headers parameters by collapsing
whitespace between encoded words in a bare-quote-string.

	bpo-35714 [https://bugs.python.org/issue35714]: struct.error is now raised if there is a null character
in a struct format string.

	bpo-36541 [https://bugs.python.org/issue36541]: lib2to3 now recognizes named assignment expressions (the walrus
operator, :=)

	bpo-29620 [https://bugs.python.org/issue29620]: assertWarns() no longer raises a
RuntimeException when accessing a module's __warningregistry__
causes importation of a new module, or when a new module is imported in
another thread. Patch by Kernc.

	bpo-34226 [https://bugs.python.org/issue34226]: Fix cgi.parse_multipart without content_length. Patch by
Roger Duran

	bpo-31758 [https://bugs.python.org/issue31758]: Prevent crashes when using an uninitialized
_elementtree.XMLParser object. Patch by Oren Milman.

文档

	bpo-40561 [https://bugs.python.org/issue40561]: Provide docstrings for webbrowser open functions.

	bpo-27635 [https://bugs.python.org/issue27635]: The pickle documentation incorrectly claimed that __new__
isn't called by default when unpickling.

	bpo-39879 [https://bugs.python.org/issue39879]: Updated 数据模型 docs to include dict() insertion
order preservation. Patch by Furkan Onder and Samy Lahfa.

	bpo-39677 [https://bugs.python.org/issue39677]: Changed operand name of MAKE_FUNCTION from argc to
flags for module dis

	bpo-39435 [https://bugs.python.org/issue39435]: Fix an incorrect signature for pickle.loads() in the docs

	bpo-38387 [https://bugs.python.org/issue38387]: Document PyDoc_STRVAR macro in the C-API reference.

测试

	bpo-40964 [https://bugs.python.org/issue40964]: Disable remote imaplib tests, host cyrus.andrew.cmu.edu
is blocking incoming connections.

	bpo-40055 [https://bugs.python.org/issue40055]: distutils.tests now saves/restores warnings filters to leave
them unchanged. Importing tests imports docutils which imports
pkg_resources which adds a warnings filter.

	bpo-40436 [https://bugs.python.org/issue40436]: test_gdb and test.pythoninfo now check gdb command exit code.

	bpo-39932 [https://bugs.python.org/issue39932]: Fix multiprocessing test_heap(): a new Heap object is now
created for each test run.

	bpo-40162 [https://bugs.python.org/issue40162]: Update Travis CI configuration to OpenSSL 1.1.1f.

	bpo-40146 [https://bugs.python.org/issue40146]: Update OpenSSL to 1.1.1f in Azure Pipelines.

	bpo-40019 [https://bugs.python.org/issue40019]: test_gdb now skips tests if it detects that gdb failed to read
debug information because the Python binary is optimized.

	bpo-27807 [https://bugs.python.org/issue27807]: test_site.test_startup_imports() is now skipped if a path
of sys.path contains a .pth file.

	bpo-39793 [https://bugs.python.org/issue39793]: Use the same domain when testing make_msgid. Patch by
Batuhan Taskaya.

	bpo-1812 [https://bugs.python.org/issue1812]: Fix newline handling in doctest.testfile when loading from a
package whose loader has a get_data method. Patch by Peter Donis.

	bpo-37957 [https://bugs.python.org/issue37957]: test.regrtest now can receive a list of test patterns to ignore
(using the -i/--ignore argument) or a file with a list of patterns to
ignore (using the --ignore-file argument). Patch by Pablo Galindo.

	bpo-38502 [https://bugs.python.org/issue38502]: test.regrtest now uses process groups in the multiprocessing
mode (-jN command line option) if process groups are available: if
os.setsid() and os.killpg() functions are available.

	bpo-37421 [https://bugs.python.org/issue37421]: multiprocessing tests now stop the ForkServer instance if it's
running: close the "alive" file descriptor to ask the server to stop and
then remove its UNIX address.

	bpo-37421 [https://bugs.python.org/issue37421]: multiprocessing tests now explicitly call _run_finalizers()
to immediately remove temporary directories created by tests.

构建

	bpo-40653 [https://bugs.python.org/issue40653]: Move _dirnameW out of HAVE_SYMLINK to fix a potential compiling
issue.

	bpo-38360 [https://bugs.python.org/issue38360]: Support single-argument form of macOS -isysroot flag.

	bpo-40204 [https://bugs.python.org/issue40204]: Pin Sphinx version to 1.8.2 in Doc/Makefile.

	bpo-40158 [https://bugs.python.org/issue40158]: Fix CPython MSBuild Properties in NuGet Package
(build/native/python.props)

Windows

	bpo-40164 [https://bugs.python.org/issue40164]: Updates Windows OpenSSL to 1.1.1g

	bpo-39631 [https://bugs.python.org/issue39631]: Changes the registered MIME type for .py files on Windows
to text/x-python instead of text/plain.

	bpo-40650 [https://bugs.python.org/issue40650]: Include winsock2.h in pytime.c for timeval.

	bpo-40164 [https://bugs.python.org/issue40164]: Updates Windows to OpenSSL 1.1.1f

	bpo-39930 [https://bugs.python.org/issue39930]: Ensures the required vcruntime140.dll is included in
install packages.

	bpo-39847 [https://bugs.python.org/issue39847]: Avoid hang when computer is hibernated whilst waiting for a
mutex (for lock-related objects from threading) around 49-day
uptime.

	bpo-38492 [https://bugs.python.org/issue38492]: 删除 pythonw.exe 依赖的 Microsoft C++ 执行库。

macOS

	bpo-40741 [https://bugs.python.org/issue40741]: Update macOS installer to use SQLite 3.32.2.

	bpo-40164 [https://bugs.python.org/issue40164]: Update macOS installer builds to use OpenSSL 1.1.1g.

IDLE

	bpo-39885 [https://bugs.python.org/issue39885]: Make context menu Cut and Copy work again when right-clicking
within a selection.

	bpo-40723 [https://bugs.python.org/issue40723]: Make test_idle pass when run after import.

	bpo-27115 [https://bugs.python.org/issue27115]: For 'Go to Line', use a Query box subclass with IDLE standard
behavior and improved error checking.

	bpo-39885 [https://bugs.python.org/issue39885]: Since clicking to get an IDLE context menu moves the cursor,
any text selection should be and now is cleared.

	bpo-39852 [https://bugs.python.org/issue39852]: Edit "Go to line" now clears any selection, preventing
accidental deletion. It also updates Ln and Col on the status bar.

	bpo-38439 [https://bugs.python.org/issue38439]: Add a 256×256 pixel IDLE icon to support more modern
environments. Created by Andrew Clover. Delete the unused macOS idle.icns
icon file.

	bpo-38689 [https://bugs.python.org/issue38689]: IDLE will no longer freeze when inspect.signature fails when
fetching a calltip.

工具/示例

	bpo-40479 [https://bugs.python.org/issue40479]: Update multissltest helper to test with latest OpenSSL 1.0.2,
1.1.0, 1.1.1, and 3.0.0-alpha.

	bpo-40179 [https://bugs.python.org/issue40179]: Fixed translation of #elif in Argument Clinic.

	bpo-40163 [https://bugs.python.org/issue40163]: Fix multissltest tool. OpenSSL has changed download URL for old
releases. The multissltest tool now tries to download from current and old
download URLs.

	bpo-36184 [https://bugs.python.org/issue36184]: Port python-gdb.py to FreeBSD. python-gdb.py now checks for
"take_gil" function name to check if a frame tries to acquire the GIL,
instead of checking for "pthread_cond_timedwait" which is specific to
Linux and can be a different condition than the GIL.

	bpo-39889 [https://bugs.python.org/issue39889]: Fixed unparse.py for extended slices containing a single
element (e.g. a[i:j,]). Remove redundant tuples when index with a
tuple (e.g. a[i, j]).

C API

	bpo-39884 [https://bugs.python.org/issue39884]: _PyMethodDef_RawFastCallDict() and
_PyMethodDef_RawFastCallKeywords() now include the method name in
the SystemError "bad call flags" error message to ease debug.

	bpo-38643 [https://bugs.python.org/issue38643]: PyNumber_ToBase() now raises a SystemError
instead of crashing when called with invalid base.

Python 3.7.7 final

Release date: 2020-03-10

库

	bpo-13487 [https://bugs.python.org/issue13487]: Avoid a possible "RuntimeError: dictionary changed size during
iteration" from inspect.getmodule() when it tried to loop through
sys.modules.

文档

	bpo-17422 [https://bugs.python.org/issue17422]: The language reference no longer restricts default class
namespaces to dicts only.

Python 3.7.7 release candidate 1

Release date: 2020-03-04

安全

	bpo-39401 [https://bugs.python.org/issue39401]: Avoid unsafe load of api-ms-win-core-path-l1-1-0.dll at
startup on Windows 7.

核心与内置

	bpo-39776 [https://bugs.python.org/issue39776]: Fix race condition where threads created by PyGILState_Ensure()
could get a duplicate id.

This affects consumers of tstate->id like the contextvar caching
machinery, which could return invalid cached objects under heavy thread
load (observed in embedded scenarios).

	bpo-39778 [https://bugs.python.org/issue39778]: Fixed a crash due to incorrect handling of weak references in
collections.OrderedDict classes. Patch by Pablo Galindo.

	bpo-39382 [https://bugs.python.org/issue39382]: Fix a use-after-free in the single inheritance path of
issubclass(), when the __bases__ of an object has a single
reference, and so does its first item. Patch by Yonatan Goldschmidt.

	bpo-39606 [https://bugs.python.org/issue39606]: Fix regression caused by fix for bpo-39386 [https://bugs.python.org/issue39386], that prevented
calling aclose on an async generator that had already been closed or
exhausted.

	bpo-39510 [https://bugs.python.org/issue39510]: Fix segfault in readinto() method on closed BufferedReader.

	bpo-39453 [https://bugs.python.org/issue39453]: Fixed a possible crash in list.__contains__() when a list
is changed during comparing items. Patch by Dong-hee Na.

	bpo-39427 [https://bugs.python.org/issue39427]: Document all possibilities for the -X options in the
command line help section. Patch by Pablo Galindo.

	bpo-39421 [https://bugs.python.org/issue39421]: Fix possible crashes when operating with the functions in the
heapq module and custom comparison operators.

	bpo-39386 [https://bugs.python.org/issue39386]: Prevent double awaiting of async iterator.

	bpo-38588 [https://bugs.python.org/issue38588]: Fix possible crashes in dict and list when calling
PyObject_RichCompareBool().

	bpo-39031 [https://bugs.python.org/issue39031]: When parsing an "elif" node, lineno and col_offset of the node
now point to the "elif" keyword and not to its condition, making it
consistent with the "if" node. Patch by Lysandros Nikolaou.

	bpo-38610 [https://bugs.python.org/issue38610]: Fix possible crashes in several list methods by holding strong
references to list elements when calling
PyObject_RichCompareBool().

库

	bpo-39794 [https://bugs.python.org/issue39794]: Add --without-decimal-contextvar build option. This enables a
thread-local rather than a coroutine local context.

	bpo-39769 [https://bugs.python.org/issue39769]: The compileall.compile_dir() function's ddir parameter
and the compileall command line flag -d no longer write the wrong
pathname to the generated pyc file for submodules beneath the root of the
directory tree being compiled. This fixes a regression introduced with
Python 3.5.

	bpo-30566 [https://bugs.python.org/issue30566]: Fix IndexError when trying to decode an invalid string
with punycode codec.

	bpo-39649 [https://bugs.python.org/issue39649]: Remove obsolete check for __args__ in
bdb.Bdb.format_stack_entry.

	bpo-27657 [https://bugs.python.org/issue27657]: The original fix for bpo-27657 [https://bugs.python.org/issue27657], "Fix urlparse() with numeric
paths" (GH-16839) included in 3.7.6, inadvertently introduced a behavior
change that broke several third-party packages relying on the original
undefined parsing behavior. The change is reverted in 3.7.7, restoring the
behavior of 3.7.5 and earlier releases.

	bpo-21016 [https://bugs.python.org/issue21016]: The pydoc and trace modules now use the
sysconfig module to get the path to the Python standard library, to
support uncommon installation path like /usr/lib64/python3.9/ on
Fedora. Patch by Jan Matějek.

	bpo-39548 [https://bugs.python.org/issue39548]: Fix handling of header in
urllib.request.AbstractDigestAuthHandler when the optional
qop parameter is not present.

	bpo-39450 [https://bugs.python.org/issue39450]: Striped whitespace from docstring before returning it from
unittest.case.shortDescription().

	bpo-39493 [https://bugs.python.org/issue39493]: Mark typing.IO.closed as a property

	bpo-39485 [https://bugs.python.org/issue39485]: Fix a bug in unittest.mock.create_autospec() that would
complain about the wrong number of arguments for custom descriptors
defined in an extension module returning functions.

	bpo-39430 [https://bugs.python.org/issue39430]: Fixed race condition in lazy imports in tarfile.

	bpo-39389 [https://bugs.python.org/issue39389]: Write accurate compression level metadata in gzip
archives, rather than always signaling maximum compression.

	bpo-39274 [https://bugs.python.org/issue39274]: bool(fraction.Fraction) now returns a boolean even if
(numerator != 0) does not return a boolean (ex: numpy number).

	bpo-39242 [https://bugs.python.org/issue39242]: Updated the Gmane domain from news.gmane.org to news.gmane.io
which is used for examples of NNTP news reader server
and nntplib tests.

	bpo-39152 [https://bugs.python.org/issue39152]: Fix ttk.Scale.configure([name]) to return configuration tuple
for name or all options. Giovanni Lombardo contributed part of the patch.

	bpo-39198 [https://bugs.python.org/issue39198]: If an exception were to be thrown in Logger.isEnabledFor
(say, by asyncio timeouts or stopit) , the logging global lock may not
be released appropriately, resulting in deadlock. This change wraps that
block of code with try...finally to ensure the lock is released.

	bpo-39191 [https://bugs.python.org/issue39191]: Perform a check for running loop before starting a new task in
loop.run_until_complete() to fail fast; it prevents the side effect of
new task spawning before exception raising.

	bpo-38871 [https://bugs.python.org/issue38871]: Correctly parenthesize filter-based statements that contain
lambda expressions in mod:lib2to3. Patch by Dong-hee Na.

	bpo-39142 [https://bugs.python.org/issue39142]: A change was made to logging.config.dictConfig to avoid
converting instances of named tuples to ConvertingTuple. It's assumed that
named tuples are too specialised to be treated like ordinary tuples; if a
user of named tuples requires ConvertingTuple functionality, they will
have to implement that themselves in their named tuple class.

	bpo-38971 [https://bugs.python.org/issue38971]: Open issue in the BPO indicated a desire to make the
implementation of codecs.open() at parity with io.open(), which implements
a try/except to assure file stream gets closed before an exception is
raised.

	bpo-39057 [https://bugs.python.org/issue39057]: urllib.request.proxy_bypass_environment() now ignores
leading dots and no longer ignores a trailing newline.

	bpo-39056 [https://bugs.python.org/issue39056]: Fixed handling invalid warning category in the -W option. No
longer import the re module if it is not needed.

	bpo-39055 [https://bugs.python.org/issue39055]: base64.b64decode() with validate=True raises now a
binascii.Error if the input ends with a single \n.

	bpo-38878 [https://bugs.python.org/issue38878]: Fixed __subclasshook__ of os.PathLike to return a
correct result upon inheritence. Patch by Bar Harel.

	bpo-35182 [https://bugs.python.org/issue35182]: Fixed Popen.communicate() subsequent call crash when the
child process has already closed any piped standard stream, but still
continues to be running. Patch by Andriy Maletsky.

	bpo-38473 [https://bugs.python.org/issue38473]: Use signature from inner mock for autospecced methods attached
with unittest.mock.attach_mock(). Patch by Karthikeyan Singaravelan.

	bpo-38293 [https://bugs.python.org/issue38293]: Add copy.copy() and copy.deepcopy() support to
property() objects.

	bpo-37953 [https://bugs.python.org/issue37953]: In typing, improved the __hash__ and __eq__
methods for ForwardReferences.

	bpo-36406 [https://bugs.python.org/issue36406]: Handle namespace packages in doctest. Patch by
Karthikeyan Singaravelan.

文档

	bpo-13790 [https://bugs.python.org/issue13790]: Change 'string' to 'specification' in format doc.

	bpo-39530 [https://bugs.python.org/issue39530]: Fix misleading documentation about mixed-type numeric
comparisons.

	bpo-17422 [https://bugs.python.org/issue17422]: The language reference now specifies restrictions on class
namespaces. Adapted from a patch by Ethan Furman.

	bpo-39654 [https://bugs.python.org/issue39654]: In pyclbr doc, update 'class' to 'module' where appropriate and
add readmodule comment. Patch by Hakan Çelik.

	bpo-39392 [https://bugs.python.org/issue39392]: Explain that when filling with turtle, overlap regions may be
left unfilled.

	bpo-39381 [https://bugs.python.org/issue39381]: Mention in docs that asyncio.get_event_loop() implicitly
creates new event loop only if called from the main thread.

	bpo-38918 [https://bugs.python.org/issue38918]: Add an entry for __module__ in the "function" & "method"
sections of the inspect docs types and members table [https://docs.python.org/3/library/inspect.html#types-and-members]

	bpo-3530 [https://bugs.python.org/issue3530]: In the ast module documentation, fix a misleading
NodeTransformer example and add advice on when to use the
fix_missing_locations function.

测试

	bpo-38546 [https://bugs.python.org/issue38546]: Fix test_ressources_gced_in_workers() of
test_concurrent_futures: explicitly stop the manager to prevent leaking a
child process running in the background after the test completes.

构建

	bpo-39144 [https://bugs.python.org/issue39144]: The ctags and etags build targets both include Modules/_ctypes
and Python standard library source files.

Windows

	bpo-38597 [https://bugs.python.org/issue38597]: distutils will no longer statically link
vcruntime140.dll when a redistributable version is unavailable.
All future releases of CPython will include a copy of this DLL to ensure
distributed extensions can continue to load.

	bpo-38380 [https://bugs.python.org/issue38380]: Update Windows builds to use SQLite 3.31.1

	bpo-39439 [https://bugs.python.org/issue39439]: Reduce overhead when using multiprocessing in a Windows virtual
environment

	bpo-39185 [https://bugs.python.org/issue39185]: The build.bat script has additional options for very-quiet
output (-q) and very-verbose output (-vv)

macOS

	bpo-38380 [https://bugs.python.org/issue38380]: Update macOS builds to use SQLite 3.31.1

IDLE

	bpo-39781 [https://bugs.python.org/issue39781]: Selecting code context lines no longer causes a jump.

	bpo-39663 [https://bugs.python.org/issue39663]: Add tests for pyparse find_good_parse_start().

	bpo-39600 [https://bugs.python.org/issue39600]: In the font configuration window, remove duplicated font names.

	bpo-30780 [https://bugs.python.org/issue30780]: Add remaining configdialog tests for buttons and highlights and
keys tabs.

	bpo-39388 [https://bugs.python.org/issue39388]: IDLE Settings Cancel button now cancels pending changes

	bpo-39050 [https://bugs.python.org/issue39050]: Make IDLE Settings dialog Help button work again.

	bpo-34118 [https://bugs.python.org/issue34118]: Tag memoryview, range, and tuple as classes, the same as list,
etcetera, in the library manual built-in functions list.

	bpo-38792 [https://bugs.python.org/issue38792]: Close an IDLE shell calltip if a KeyboardInterrupt or
shell restart occurs. Patch by Zackery Spytz.

	bpo-32989 [https://bugs.python.org/issue32989]: Add tests for editor newline_and_indent_event method. Remove
dead code from pyparse find_good_parse_start method.

Python 3.7.6 final

发布日期: 2019-12-18

macOS

	bpo-38295 [https://bugs.python.org/issue38295]: Prevent failure of test_relative_path in test_py_compile on
macOS Catalina.

Python 3.7.6 release candidate 1

Release date: 2019-12-11

安全

	bpo-38945 [https://bugs.python.org/issue38945]: Newline characters have been escaped when performing uu
encoding to prevent them from overflowing into to content section of the
encoded file. This prevents malicious or accidental modification of data
during the decoding process.

	bpo-37228 [https://bugs.python.org/issue37228]: Due to significant security concerns, the reuse_address
parameter of asyncio.loop.create_datagram_endpoint() is no longer
supported. This is because of the behavior of SO_REUSEADDR in UDP. For
more details, see the documentation for
loop.create_datagram_endpoint(). (Contributed by Kyle Stanley, Antoine
Pitrou, and Yury Selivanov in bpo-37228 [https://bugs.python.org/issue37228].)

	bpo-38804 [https://bugs.python.org/issue38804]: Fixes a ReDoS vulnerability in http.cookiejar. Patch by
Ben Caller.

核心与内置

	bpo-38673 [https://bugs.python.org/issue38673]: In REPL mode, don't switch to PS2 if the line starts with
comment or whitespace. Based on work by Batuhan Taşkaya.

	bpo-38535 [https://bugs.python.org/issue38535]: 修复了装饰器中不带参数调用的AST节点的行号和列偏移量。

	bpo-38379 [https://bugs.python.org/issue38379]: When cyclic garbage collection (gc) runs finalizers that
resurrect unreachable objects, the current gc run ends, without collecting
any cyclic trash. However, the statistics reported by collect() and
get_stats() claimed that all cyclic trash found was collected, and
that the resurrected objects were collected. Changed the stats to report
that none were collected.

	bpo-35409 [https://bugs.python.org/issue35409]: Ignore GeneratorExit exceptions when throwing an exception into
the aclose coroutine of an asynchronous generator.

库

	bpo-39006 [https://bugs.python.org/issue39006]: Fix asyncio when the ssl module is missing: only check for
ssl.SSLSocket instance if the ssl module is available.

	bpo-38979 [https://bugs.python.org/issue38979]: Return class from ContextVar.__class_getitem__ to simplify
subclassing.

	bpo-38986 [https://bugs.python.org/issue38986]: Make repr of C accelerated TaskWakeupMethWrapper the same as of
pure Python version.

	bpo-33684 [https://bugs.python.org/issue33684]: Fix json.tool failed to read a JSON file with non-ASCII
characters when locale encoding is not UTF-8.

	bpo-26730 [https://bugs.python.org/issue26730]: Fix SpooledTemporaryFile.rollover() might corrupt the file
when it is in text mode. Patch by Serhiy Storchaka.

	bpo-37838 [https://bugs.python.org/issue37838]: typing.get_type_hints() properly handles functions
decorated with functools.wraps().

	bpo-38821 [https://bugs.python.org/issue38821]: Fix unhandled exceptions in argparse when
internationalizing error messages for arguments with nargs set to
special (non-integer) values. Patch by Federico Bond.

	bpo-38820 [https://bugs.python.org/issue38820]: Make Python compatible with OpenSSL 3.0.0.
ssl.SSLSocket.getpeercert() no longer returns IPv6 addresses with a
trailing new line.

	bpo-38785 [https://bugs.python.org/issue38785]: Prevent asyncio from crashing if parent __init__ is not
called from a constructor of object derived from asyncio.Future.

	bpo-27805 [https://bugs.python.org/issue27805]: Allow opening pipes and other non-seekable files in append mode
with open().

	bpo-38686 [https://bugs.python.org/issue38686]: Added support for multiple qop values in
urllib.request.AbstractDigestAuthHandler.

	bpo-38334 [https://bugs.python.org/issue38334]: 修复了在加密的 zipfile.ZipExtFile 上向后搜索的问题。

	bpo-31202 [https://bugs.python.org/issue31202]: pathlib.WindowsPath.glob() 的结果现在与文本部分的式样匹配。

	bpo-38109 [https://bugs.python.org/issue38109]: Add missing stat.S_IFDOOR, stat.S_IFPORT,
stat.S_IFWHT, stat.S_ISDOOR(), stat.S_ISPORT(), and
stat.S_ISWHT() values to the Python implementation of stat.

	bpo-38422 [https://bugs.python.org/issue38422]: Clarify docstrings of pathlib suffix(es)

	bpo-38405 [https://bugs.python.org/issue38405]: Nested subclasses of typing.NamedTuple are now
pickleable.

	bpo-38332 [https://bugs.python.org/issue38332]: Prevent KeyError thrown by _encoded_words.decode()
when given an encoded-word with invalid content-type encoding from
propagating all the way to email.message.get().

	bpo-38341 [https://bugs.python.org/issue38341]: Add smtplib.SMTPNotSupportedError to the smtplib
exported names.

	bpo-13153 [https://bugs.python.org/issue13153]: OS native encoding is now used for converting between Python
strings and Tcl objects. This allows to display, copy and paste to
clipboard emoji and other non-BMP characters. Converting strings from Tcl
to Python and back now never fails (except MemoryError).

	bpo-36993 [https://bugs.python.org/issue36993]: Improve error reporting for corrupt zip files with bad zip64
extra data. Patch by Daniel Hillier.

	bpo-36952 [https://bugs.python.org/issue36952]: Starting with Python 3.3, importing ABCs from
collections is deprecated, and import should be done from
collections.abc. Still being able to import from collections
was marked for removal in 3.8, but has been delayed to 3.9; documentation
and DeprecationWarning clarified.

	bpo-36820 [https://bugs.python.org/issue36820]: Break cycle generated when saving an exception in socket.py,
codeop.py and dyld.py as they keep alive not only the exception but user
objects through the __traceback__ attribute. Patch by Mario Corchero.

	bpo-34776 [https://bugs.python.org/issue34776]: Fix dataclasses to support forward references in type
annotations

	bpo-33348 [https://bugs.python.org/issue33348]: lib2to3 now recognizes expressions after * and ** like in
f(*[] or []).

	bpo-27657 [https://bugs.python.org/issue27657]: Fix urllib.parse.urlparse() with numeric paths. A string like
"path:80" is no longer parsed as a path but as a scheme ("path") and a
path ("80").

文档

	bpo-38351 [https://bugs.python.org/issue38351]: Modernize email examples from %-formatting to f-strings.

	bpo-38592 [https://bugs.python.org/issue38592]: Add Brazilian Portuguese to the language switcher at Python
Documentation website.

	bpo-38294 [https://bugs.python.org/issue38294]: Add list of no-longer-escaped chars to re.escape documentation

测试

	bpo-38547 [https://bugs.python.org/issue38547]: Fix test_pty: if the process is the session leader, closing the
master file descriptor raises a SIGHUP signal: simply ignore SIGHUP when
running the tests.

	bpo-38965 [https://bugs.python.org/issue38965]: Fix test_faulthandler on GCC 10. Use the "volatile" keyword in
faulthandler._stack_overflow() to prevent tail call optimization on
any compiler, rather than relying on compiler specific pragma.

	bpo-38669 [https://bugs.python.org/issue38669]: Raise TypeError when passing target as a string with
unittest.mock.patch.object().

	bpo-35998 [https://bugs.python.org/issue35998]: Fix a race condition in test_asyncio.test_start_tls_server_1().
Previously, there was a race condition between the test main() function
which replaces the protocol and the test ServerProto protocol which sends
ANSWER once it gets HELLO. Now, only the test main() function is
responsible to send data, ServerProto no longer sends data.

	bpo-37531 [https://bugs.python.org/issue37531]: On timeout, regrtest no longer attempts to call
popen.communicate() again: it can hang until all child processes using
stdout and stderr pipes completes. Kill the worker process and ignores its
output. Change also the faulthandler timeout of the main process from 1
minute to 5 minutes, for Python slowest buildbots.

构建

	bpo-37404 [https://bugs.python.org/issue37404]: asyncio now raises TyperError when calling
incompatible methods with an ssl.SSLSocket socket. Patch by Ido
Michael.

	bpo-38809 [https://bugs.python.org/issue38809]: On Windows, build scripts will now recognize and use python.exe
from an active virtual env.

	bpo-37415 [https://bugs.python.org/issue37415]: Fix stdatomic.h header check for ICC compiler: the ICC
implementation lacks atomic_uintptr_t type which is needed by Python.

Windows

	bpo-38589 [https://bugs.python.org/issue38589]: Fixes HTML Help shortcut when Windows is not installed to C
drive

IDLE

	bpo-38944 [https://bugs.python.org/issue38944]: Excape key now closes IDLE completion windows. Patch by Johnny
Najera.

	bpo-38943 [https://bugs.python.org/issue38943]: Fix IDLE autocomplete windows not always appearing on some
systems. Patch by Johnny Najera.

	bpo-38862 [https://bugs.python.org/issue38862]: 'Strip Trailing Whitespace' on the Format menu removes extra
newlines at the end of non-shell files.

	bpo-26353 [https://bugs.python.org/issue26353]: Stop adding newline when saving an IDLE shell window.

	bpo-38636 [https://bugs.python.org/issue38636]: Fix IDLE Format menu tab toggle and file indent width. These
functions (default shortcuts Alt-T and Alt-U) were mistakenly disabled in
3.7.5 and 3.8.0.

	bpo-4630 [https://bugs.python.org/issue4630]: Add an option to toggle IDLE's cursor blink for shell, editor,
and output windows. See Settings, General, Window Preferences, Cursor
Blink. Patch by Zachary Spytz.

	bpo-38598 [https://bugs.python.org/issue38598]: Do not try to compile IDLE shell or output windows

	bpo-36698 [https://bugs.python.org/issue36698]: IDLE no longer fails when write non-encodable characters to
stderr. It now escapes them with a backslash, as the regular Python
interpreter. Added the errors field to the standard streams.

工具/示例

	bpo-38118 [https://bugs.python.org/issue38118]: Update Valgrind suppression file to ignore a false alarm in
PyUnicode_Decode() when using GCC builtin strcmp().

	bpo-38347 [https://bugs.python.org/issue38347]: pathfix.py: Assume all files that end on '.py' are Python
scripts when working recursively.

C API

	bpo-38540 [https://bugs.python.org/issue38540]: Fixed possible leak in PyArg_Parse() and similar
functions for format units "es#" and "et#" when the macro
PY_SSIZE_T_CLEAN is not defined.

	bpo-38395 [https://bugs.python.org/issue38395]: Fix a crash in weakref.proxy objects due to incorrect
lifetime management when calling some associated methods that may delete
the last reference to object being referenced by the proxy. Patch by Pablo
Galindo.

Python 3.7.5 final

发布日期: 2019-10-14

库

	bpo-38368 [https://bugs.python.org/issue38368]: Prevent ctypes crash when handling arrays in structs/unions.

	bpo-38449 [https://bugs.python.org/issue38449]: Revert GH-15522, which introduces a regression in
mimetypes.guess_type() due to improper handling of filenames as
urls.

Windows

	bpo-38344 [https://bugs.python.org/issue38344]: Fix syntax in activate.bat.

Python 3.7.5 release candidate 1

发布日期: 2019-10-01

安全

	bpo-38243 [https://bugs.python.org/issue38243]: 在将文档页渲染为 HTML 时会对 xmlrpc.server.DocXMLRPCServer 的服务器标题进行转义。 （由 Dong-hee Na 在 bpo-38243 [https://bugs.python.org/issue38243] 中贡献。）

	bpo-38174 [https://bugs.python.org/issue38174]: 将厂商化的 expat 库版本更新至 2.2.8，这解决了 CVE-2019-15903。

	bpo-37764 [https://bugs.python.org/issue37764]: 修复了 email._header_value_parser.get_unstructured 在邮件头不包含末尾空格，以及在其包含无效的已编码字等特定情况下进入无限循环的问题。 由 Ashwin Ramaswami 贡献补丁。

	bpo-37461 [https://bugs.python.org/issue37461]: Fix an infinite loop when parsing specially crafted email
headers. Patch by Abhilash Raj.

	bpo-34155 [https://bugs.python.org/issue34155]: Fix parsing of invalid email addresses with more than one @
(e.g. a@b@c.com.) to not return the part before 2nd @ as valid email
address. Patch by maxking & jpic.

核心与内置

	bpo-36871 [https://bugs.python.org/issue36871]: Improve error handling for the assert_has_calls method of
mocks. Fixed a bug where any errors encountered while binding the expected
calls to the mock's spec were silently swallowed, leading to misleading
error output.

	bpo-38013 [https://bugs.python.org/issue38013]: Allow to call async_generator_athrow().throw(...) even for
non-started async generator helper. It fixes annoying warning at the end
of asyncio.run() call.

	bpo-38124 [https://bugs.python.org/issue38124]: Fix an off-by-one error in PyState_AddModule that could cause
out-of-bounds memory access.

	bpo-36946 [https://bugs.python.org/issue36946]: Fix possible signed integer overflow when handling slices.
Patch by hongweipeng.

	bpo-37409 [https://bugs.python.org/issue37409]: Ensure explicit relative imports from interactive sessions and
scripts (having no parent package) always raise ImportError, rather than
treating the current module as the package. Patch by Ben Lewis.

	bpo-36311 [https://bugs.python.org/issue36311]: Decoding bytes objects larger than 2GiB is faster and no longer
fails when a multibyte characters spans a chunk boundary.

	bpo-37467 [https://bugs.python.org/issue37467]: Fix sys.excepthook() and PyErr_Display() if a
filename is a bytes string. For example, for a SyntaxError exception where
the filename attribute is a bytes string.

	bpo-37417 [https://bugs.python.org/issue37417]: bytearray.extend() now correctly handles errors that
arise during iteration. Patch by Brandt Bucher.

	bpo-20523 [https://bugs.python.org/issue20523]: pdb.Pdb supports ~/.pdbrc in Windows 7. Patch by Tim Hopper
and Dan Lidral-Porter.

库

	bpo-38019 [https://bugs.python.org/issue38019]: Correctly handle pause/resume reading of closed asyncio unix
pipe.

	bpo-38216 [https://bugs.python.org/issue38216]: Allow the rare code that wants to send invalid http requests
from the http.client library a way to do so. The fixes for bpo-30458 [https://bugs.python.org/issue30458]
led to breakage for some projects that were relying on this ability to
test their own behavior in the face of bad requests.

	bpo-38191 [https://bugs.python.org/issue38191]: Constructor of NamedTuple type now accepts
arbitrary keyword argument names, including "cls", "self", "typename" and
"fields".

	bpo-38185 [https://bugs.python.org/issue38185]: Fixed case-insensitive string comparison in
sqlite3.Row indexing.

	bpo-38175 [https://bugs.python.org/issue38175]: Fix a memory leak in comparison of sqlite3.Row
objects.

	bpo-33936 [https://bugs.python.org/issue33936]: _hashlib no longer calls obsolete OpenSSL initialization
function with OpenSSL 1.1.0+.

	bpo-34706 [https://bugs.python.org/issue34706]: Preserve subclassing in inspect.Signature.from_callable.

	bpo-38059 [https://bugs.python.org/issue38059]: inspect.py now uses sys.exit() instead of exit()

	bpo-38006 [https://bugs.python.org/issue38006]: weakref.WeakValueDictionary defines a local remove() function
used as callback for weak references. This function was created with a
closure. Modify the implementation to avoid the closure.

	bpo-34410 [https://bugs.python.org/issue34410]: Fixed a crash in the tee() iterator when re-enter it.
RuntimeError is now raised in this case.

	bpo-37965 [https://bugs.python.org/issue37965]: Fix C compiler warning caused by
distutils.ccompiler.CCompiler.has_function.

	bpo-36205 [https://bugs.python.org/issue36205]: Fix the rusage implementation of time.process_time() to
correctly report the sum of the system and user CPU time.

	bpo-22347 [https://bugs.python.org/issue22347]: Update mimetypes.guess_type to allow proper parsing of URLs
with only a host name. Patch by Dong-hee Na.

	bpo-37950 [https://bugs.python.org/issue37950]: Fix ast.dump() when call with incompletely initialized
node.

	bpo-37915 [https://bugs.python.org/issue37915]: Fix a segmentation fault that appeared when comparing instances
of datetime.timezone and datetime.tzinfo objects. Patch by Pablo
Galindo.

	bpo-37885 [https://bugs.python.org/issue37885]: venv: Don't generate unset variable warning on deactivate.

	bpo-37868 [https://bugs.python.org/issue37868]: Fix dataclasses.is_dataclass when given an instance that never
raises AttributeError in __getattr__. That is, an object that returns
something for __dataclass_fields__ even if it's not a dataclass.

	bpo-37811 [https://bugs.python.org/issue37811]: Fix socket module's socket.connect(address) function
being unable to establish connection in case of interrupted system call.
The problem was observed on all OSes which poll(2) system call can
take only non-negative integers and -1 as a timeout value.

	bpo-21131 [https://bugs.python.org/issue21131]: Fix faulthandler.register(chain=True) stack. faulthandler
now allocates a dedicated stack of SIGSTKSZ*2 bytes, instead of just
SIGSTKSZ bytes. Calling the previous signal handler in faulthandler
signal handler uses more than SIGSTKSZ bytes of stack memory on some
platforms.

	bpo-34621 [https://bugs.python.org/issue34621]: Fixed unpickle-ability in older Python versions (<3.7) of UUID
objects with is_safe set to SafeUUID.unknown.

	bpo-37738 [https://bugs.python.org/issue37738]: Fix the implementation of curses addch(str, color_pair):
pass the color pair to setcchar(), instead of always passing 0 as the
color pair.

	bpo-37723 [https://bugs.python.org/issue37723]: Fix performance regression on regular expression parsing with
huge character sets. Patch by Yann Vaginay.

	bpo-32178 [https://bugs.python.org/issue32178]: Fix IndexError in email package when trying to parse
invalid address fields starting with :.

	bpo-37685 [https://bugs.python.org/issue37685]: Fixed comparisons of datetime.timedelta and
datetime.timezone.

	bpo-37695 [https://bugs.python.org/issue37695]: Correct curses.unget_wch() error message. Patch by
Anthony Sottile.

	bpo-29553 [https://bugs.python.org/issue29553]: Fixed argparse.ArgumentParser.format_usage() for mutually
exclusive groups. Patch by Andrew Nester.

	bpo-37664 [https://bugs.python.org/issue37664]: Update wheels bundled with ensurepip (pip 19.2.3 and setuptools
41.2.0)

	bpo-37642 [https://bugs.python.org/issue37642]: Allowed the pure Python implementation of
datetime.timezone to represent sub-minute offsets close to
minimum and maximum boundaries, specifically in the ranges (23:59, 24:00)
and (-23:59, 24:00). Patch by Ngalim Siregar

	bpo-37491 [https://bugs.python.org/issue37491]: Fix IndexError when parsing email headers with unexpectedly
ending bare-quoted string value. Patch by Abhilash Raj.

	bpo-18378 [https://bugs.python.org/issue18378]: Recognize "UTF-8" as a valid value for LC_CTYPE in
locale._parse_localename.

	bpo-37579 [https://bugs.python.org/issue37579]: Return NotImplemented in Python implementation of
__eq__ for timedelta and time
when the other object being compared is not of the same type to match C
implementation. Patch by Karthikeyan Singaravelan.

	bpo-21478 [https://bugs.python.org/issue21478]: Record calls to parent when autospecced object is attached to a
mock using unittest.mock.attach_mock(). Patch by Karthikeyan
Singaravelan.

	bpo-37531 [https://bugs.python.org/issue37531]: "python3 -m test -jN --timeout=TIMEOUT" now kills a worker
process if it runs longer than TIMEOUT seconds.

	bpo-37482 [https://bugs.python.org/issue37482]: Fix serialization of display name in originator or destination
address fields with both encoded words and special chars.

	bpo-37424 [https://bugs.python.org/issue37424]: Fixes a possible hang when using a timeout on
subprocess.run() while capturing output. If the child process spawned
its own children or otherwise connected its stdout or stderr handles with
another process, we could hang after the timeout was reached and our child
was killed when attempting to read final output from the pipes.

	bpo-37421 [https://bugs.python.org/issue37421]: Fix multiprocessing.util.get_temp_dir() finalizer: clear
also the 'tempdir' configuration of the current process, so next call to
get_temp_dir() will create a new temporary directory, rather than
reusing the removed temporary directory.

	bpo-37420 [https://bugs.python.org/issue37420]: os.sched_setaffinity() now correctly handles errors that
arise during iteration over its mask argument. Patch by Brandt Bucher.

	bpo-29412 [https://bugs.python.org/issue29412]: Fix IndexError in parsing a header value ending unexpectedly.
Patch by Abhilash Raj.

	bpo-37372 [https://bugs.python.org/issue37372]: Fix error unpickling datetime.time objects from Python 2 with
seconds>=24. Patch by Justin Blanchard.

	bpo-27860 [https://bugs.python.org/issue27860]: Fix IPv4Interface and IPv6Interface didn't accept
string mask when the argument is tuple.

	bpo-33972 [https://bugs.python.org/issue33972]: Email with single part but content-type set to multipart/*
doesn't raise AttributeError anymore.

	bpo-21872 [https://bugs.python.org/issue21872]: Fix lzma: module decompresses data incompletely. When
decompressing a FORMAT_ALONE format file, and it doesn't have the end
marker, sometimes the last one to dozens bytes can't be output. Patch by
Ma Lin.

	bpo-12144 [https://bugs.python.org/issue12144]: Ensure cookies with expires attribute are handled in
CookieJar.make_cookies().

	bpo-37163 [https://bugs.python.org/issue37163]: dataclasses.replace() now supports the field named "obj".

	bpo-36871 [https://bugs.python.org/issue36871]: Ensure method signature is used instead of constructor
signature of a class while asserting mock object against method calls.
Patch by Karthikeyan Singaravelan.

	bpo-36564 [https://bugs.python.org/issue36564]: Fix infinite loop in email header folding logic that would be
triggered when an email policy's max_line_length is not long enough to
include the required markup and any values in the message. Patch by Paul
Ganssle

	bpo-35168 [https://bugs.python.org/issue35168]: shlex.shlex.punctuation_chars is now a read-only
property.

	bpo-20504 [https://bugs.python.org/issue20504]: Fixes a bug in cgi module when a multipart/form-data
request has no Content-Length header.

	bpo-4963 [https://bugs.python.org/issue4963]: Fixed non-deterministic behavior related to mimetypes extension
mapping and module reinitialization.

文档

	bpo-26868 [https://bugs.python.org/issue26868]: Fix example usage of PyModule_AddObject() to properly
handle errors.

	bpo-37979 [https://bugs.python.org/issue37979]: Added a link to dateutil.parser.isoparse in the
datetime.fromisoformat documentation. Patch by Paul Ganssle

	bpo-37937 [https://bugs.python.org/issue37937]: Mention frame.f_trace in sys.settrace() docs.

	bpo-37726 [https://bugs.python.org/issue37726]: Stop recommending getopt in the tutorial for command line
argument parsing and promote argparse.

	bpo-32910 [https://bugs.python.org/issue32910]: Remove implementation-specific behaviour of how venv's
Deactivate works.

	bpo-37256 [https://bugs.python.org/issue37256]: Fix wording of arguments for Request in
urllib.request

	bpo-37284 [https://bugs.python.org/issue37284]: Add a brief note to indicate that any new
sys.implementation required attributes must go through the PEP
process.

	bpo-30088 [https://bugs.python.org/issue30088]: Documented that mailbox.Maildir constructor doesn't
attempt to verify the maildir folder layout correctness. Patch by
Sviatoslav Sydorenko.

	bpo-37487 [https://bugs.python.org/issue37487]: Fix PyList_GetItem index description to include 0.

	bpo-37478 [https://bugs.python.org/issue37478]: Added possible exceptions to the description of os.chdir().

	bpo-37004 [https://bugs.python.org/issue37004]: In the documentation for difflib, a note was added explicitly
warning that the results of SequenceMatcher's ratio method may depend on
the order of the input strings.

	bpo-35803 [https://bugs.python.org/issue35803]: Document and test that tempfile functions may accept a
path-like object for the dir argument. Patch by Anthony
Sottile.

	bpo-34293 [https://bugs.python.org/issue34293]: Fix the Doc/Makefile regarding PAPER environment variable and
PDF builds

测试

	bpo-38239 [https://bugs.python.org/issue38239]: Fix test_gdb for Link Time Optimization (LTO) builds.

	bpo-38275 [https://bugs.python.org/issue38275]: test_ssl now handles disabled TLS/SSL versions better.
OpenSSL's crypto policy and run-time settings are recognized and tests for
disabled versions are skipped. Tests also accept more TLS minimum_versions
for platforms that override OpenSSL's default with strict settings.

	bpo-38271 [https://bugs.python.org/issue38271]: The private keys for test_ssl were encrypted with 3DES in
traditional PKCS#5 format. 3DES and the digest algorithm of PKCS#5 are
blocked by some strict crypto policies. Use PKCS#8 format with AES256
encryption instead.

	bpo-37123 [https://bugs.python.org/issue37123]: Multiprocessing test test_mymanager() now also expects
-SIGTERM, not only exitcode 0. BaseManager._finalize_manager() sends
SIGTERM to the manager process if it takes longer than 1 second to stop,
which happens on slow buildbots.

	bpo-38212 [https://bugs.python.org/issue38212]: Multiprocessing tests: increase
test_queue_feeder_donot_stop_onexc() timeout from 1 to 60 seconds.

	bpo-38117 [https://bugs.python.org/issue38117]: 使用OpenSSL 1.1.1d进行测试

	bpo-37805 [https://bugs.python.org/issue37805]: Add tests for json.dump(..., skipkeys=True). Patch by Dong-hee
Na.

	bpo-37531 [https://bugs.python.org/issue37531]: Enhance regrtest multiprocess timeout: write a message when
killing a worker process, catch popen.kill() and popen.wait() exceptions,
put a timeout on the second call to popen.communicate().

	bpo-37335 [https://bugs.python.org/issue37335]: Improve locale coercion tests by using codec lookup instead of
more fragile replace().

	bpo-37411 [https://bugs.python.org/issue37411]: Fix test_wsgiref.testEnviron() to no longer depend on the
environment variables (don't fail if "X" variable is set).

	bpo-37400 [https://bugs.python.org/issue37400]: Fix test_os.test_chown(): use os.getgroups() rather than
grp.getgrall() to get groups. Rename also the test to test_chown_gid().

	bpo-37359 [https://bugs.python.org/issue37359]: Add --cleanup option to python3 -m test to remove
test_python_* directories of previous failed jobs. Add "make
cleantest" to run python3 -m test --cleanup.

	bpo-37362 [https://bugs.python.org/issue37362]: test_gdb no longer fails if it gets an "unexpected" message on
stderr: it now ignores stderr. The purpose of test_gdb is to test that
python-gdb.py commands work as expected, not to test gdb.

	bpo-36919 [https://bugs.python.org/issue36919]: Make test_source_encoding.test_issue2301 implementation
independent. The test will work now for both CPython and IronPython.

	bpo-34720 [https://bugs.python.org/issue34720]: Assert m_state != NULL to mimic GC traversal functions that do
not correctly handle module creation when the module state has not been
created.

	bpo-34347 [https://bugs.python.org/issue34347]: Fix test_utf8_mode.test_cmd_line for AIX. Patch by M. Felt

构建

	bpo-38301 [https://bugs.python.org/issue38301]: In Solaris family, we must be sure to use -D_REENTRANT.
Patch by Jesús Cea Avión.

	bpo-36002 [https://bugs.python.org/issue36002]: Locate llvm-profdata and llvm-ar binaries using
AC_PATH_TOOL rather than AC_PATH_TARGET_TOOL.

	bpo-37936 [https://bugs.python.org/issue37936]: The .gitignore file no longer applies to any files that
are in fact tracked in the Git repository. Patch by Greg Price.

Windows

	bpo-38117 [https://bugs.python.org/issue38117]: 将绑定的OpenSSL更新到1.1.1d

	bpo-36634 [https://bugs.python.org/issue36634]: venv activate.bat now works when the existing variables contain
double quote characters.

	bpo-38087 [https://bugs.python.org/issue38087]: Fix case sensitivity in test_pathlib and test_ntpath.

	bpo-38088 [https://bugs.python.org/issue38088]: Fixes distutils not finding vcruntime140.dll with only the v142
toolset installed.

	bpo-37283 [https://bugs.python.org/issue37283]: Ensure command-line and unattend.xml setting override
previously detected states in Windows installer.

	bpo-37705 [https://bugs.python.org/issue37705]: Improve the implementation of winerror_to_errno().

	bpo-37549 [https://bugs.python.org/issue37549]: os.dup() no longer fails for standard streams on Windows
7.

	bpo-37702 [https://bugs.python.org/issue37702]: Fix memory leak on Windows in creating an SSLContext object or
running urllib.request.urlopen('https://...').

	bpo-10945 [https://bugs.python.org/issue10945]: 正式放弃对在非Windows系统上创建 bdist_wininst 安装程序的支持。

	bpo-37445 [https://bugs.python.org/issue37445]: Include the FORMAT_MESSAGE_IGNORE_INSERTS flag in
FormatMessageW() calls.

	bpo-37380 [https://bugs.python.org/issue37380]: Don't collect unfinished processes with subprocess._active
on Windows to cleanup later. Patch by Ruslan Kuprieiev.

	bpo-32587 [https://bugs.python.org/issue32587]: Make winreg.REG_MULTI_SZ support zero-length strings.

macOS

	更新MacOS installer中的OpenSSL为1.1.1d。

	bpo-38089 [https://bugs.python.org/issue38089]: Move Azure Pipelines to latest VM versions and make macOS tests
optional

IDLE

	bpo-35379 [https://bugs.python.org/issue35379]: When exiting IDLE, catch any AttributeError. One happens when
EditorWindow.close is called twice. Printing a traceback, when IDLE is
run from a terminal, is useless and annoying.

	bpo-38183 [https://bugs.python.org/issue38183]: To avoid problems, test_idle ignores the user config directory.
It no longer tries to create or access .idlerc or any files within. Users
must run IDLE to discover problems with saving settings.

	bpo-38077 [https://bugs.python.org/issue38077]: IDLE no longer adds 'argv' to the user namespace when
initializing it. This bug only affected 3.7.4 and 3.8.0b2 to 3.8.0b4.

	bpo-38041 [https://bugs.python.org/issue38041]: Shell restart lines now fill the window width, always start
with '=', and avoid wrapping unnecessarily. The line will still wrap if
the included file name is long relative to the width.

	bpo-35771 [https://bugs.python.org/issue35771]: To avoid occasional spurious test_idle failures on slower
machines, increase the hover_delay in test_tooltip.

	bpo-37824 [https://bugs.python.org/issue37824]: Properly handle user input warnings in IDLE shell. Cease
turning SyntaxWarnings into SyntaxErrors.

	bpo-37929 [https://bugs.python.org/issue37929]: IDLE Settings dialog now closes properly when there is no shell
window.

	bpo-37902 [https://bugs.python.org/issue37902]: Add mousewheel scrolling for IDLE module, path, and stack
browsers. Patch by George Zhang.

	bpo-37849 [https://bugs.python.org/issue37849]: Fixed completions list appearing too high or low when shown
above the current line.

	bpo-36419 [https://bugs.python.org/issue36419]: Refactor IDLE autocomplete and improve testing.

	bpo-37748 [https://bugs.python.org/issue37748]: Reorder the Run menu. Put the most common choice, Run Module,
at the top.

	bpo-37692 [https://bugs.python.org/issue37692]: Improve highlight config sample with example shell interaction
and better labels for shell elements.

	bpo-37628 [https://bugs.python.org/issue37628]: Settings dialog no longer expands with font size.

	bpo-37627 [https://bugs.python.org/issue37627]: Initialize the Customize Run dialog with the command line
arguments most recently entered before. The user can optionally edit
before submitting them.

	bpo-33610 [https://bugs.python.org/issue33610]: Fix code context not showing the correct context when first
toggled on.

	bpo-37530 [https://bugs.python.org/issue37530]: Optimize code context to reduce unneeded background activity.
Font and highlight changes now occur along with text changes instead of
after a random delay.

	bpo-27452 [https://bugs.python.org/issue27452]: Cleanup config.py by inlining RemoveFile and
simplifying the handling of file in CreateConfigHandlers.

	bpo-37325 [https://bugs.python.org/issue37325]: Fix tab focus traversal order for help source and custom run
dialogs.

	bpo-17535 [https://bugs.python.org/issue17535]: Add optional line numbers for IDLE editor windows. Windows
open without line numbers unless set otherwise in the General tab of the
configuration dialog.

	bpo-26806 [https://bugs.python.org/issue26806]: To compensate for stack frames added by IDLE and avoid possible
problems with low recursion limits, add 30 to limits in the user code
execution process. Subtract 30 when reporting recursion limits to make
this addition mostly transparent.

	bpo-36390 [https://bugs.python.org/issue36390]: Gather Format menu functions into format.py. Combine
paragraph.py, rstrip.py, and format methods from editor.py.

工具/示例

	bpo-37803 [https://bugs.python.org/issue37803]: pdb's --help and --version long options now work.

	bpo-37675 [https://bugs.python.org/issue37675]: 2to3 now works when run from a zipped standard library.

Python 3.7.4 final

Release date: 2019-07-08

核心与内置

	bpo-37500 [https://bugs.python.org/issue37500]: Due to unintended side effects, revert the change introduced by
bpo-1875 [https://bugs.python.org/issue1875] in 3.7.4rc1 to check for syntax errors in dead conditional
code blocks.

文档

	bpo-37149 [https://bugs.python.org/issue37149]: Replace the dead link to the Tkinter 8.5 reference by John
Shipman, New Mexico Tech, with a link to the archive.org copy.

Python 3.7.4 release candidate 2

Release date: 2019-07-02

安全

	bpo-37463 [https://bugs.python.org/issue37463]: ssl.match_hostname() no longer accepts IPv4 addresses with
additional text after the address and only quad-dotted notation without
trailing whitespaces. Some inet_aton() implementations ignore whitespace
and all data after whitespace, e.g. '127.0.0.1 whatever'.

核心与内置

	bpo-24214 [https://bugs.python.org/issue24214]: Improved support of the surrogatepass error handler in the
UTF-8 and UTF-16 incremental decoders.

库

	bpo-37440 [https://bugs.python.org/issue37440]: http.client now enables TLS 1.3 post-handshake authentication
for default context or if a cert_file is passed to HTTPSConnection.

	bpo-37437 [https://bugs.python.org/issue37437]: Update vendorized expat version to 2.2.7.

	bpo-37428 [https://bugs.python.org/issue37428]: SSLContext.post_handshake_auth = True no longer sets
SSL_VERIFY_POST_HANDSHAKE verify flag for client connections. Although the
option is documented as ignored for clients, OpenSSL implicitly enables
cert chain validation when the flag is set.

	bpo-32627 [https://bugs.python.org/issue32627]: Fix compile error when _uuid headers conflicting included.

Windows

	bpo-37369 [https://bugs.python.org/issue37369]: Fixes path for sys.executable when running from the
Microsoft Store.

	bpo-35360 [https://bugs.python.org/issue35360]: 更新 Windows 构建以使用 SQLite 3.28.0.

macOS

	bpo-34602 [https://bugs.python.org/issue34602]: Avoid test suite failures on macOS by no longer calling
resource.setrlimit to increase the process stack size limit at runtime.
The runtime change is no longer needed since the interpreter is being
built with a larger default stack size.

Python 3.7.4 release candidate 1

Release date: 2019-06-18

安全

	bpo-35907 [https://bugs.python.org/issue35907]: CVE-2019-9948: Avoid file reading by disallowing
local-file:// and local_file:// URL schemes in
URLopener().open() and URLopener().retrieve() of
urllib.request.

	bpo-36742 [https://bugs.python.org/issue36742]: 于函数 urlsplit() 中修复了对于预规格化字符的不当处理过程。

	bpo-30458 [https://bugs.python.org/issue30458]: Address CVE-2019-9740 by disallowing URL paths with embedded
whitespace or control characters through into the underlying http client
request. Such potentially malicious header injection URLs now cause an
http.client.InvalidURL exception to be raised.

	bpo-33529 [https://bugs.python.org/issue33529]: Prevent fold function used in email header encoding from
entering infinite loop when there are too many non-ASCII characters in a
header.

	bpo-35755 [https://bugs.python.org/issue35755]: shutil.which() now uses os.confstr("CS_PATH") if
available and if the PATH environment variable is not set.
Remove also the current directory from posixpath.defpath. On Unix,
shutil.which() and the subprocess module no longer search the
executable in the current directory if the PATH environment
variable is not set.

核心与内置

	bpo-37269 [https://bugs.python.org/issue37269]: Fix a bug in the peephole optimizer that was not treating
correctly constant conditions with binary operators. Patch by Pablo
Galindo.

	bpo-37219 [https://bugs.python.org/issue37219]: Remove errorneous optimization for empty set differences.

	bpo-26423 [https://bugs.python.org/issue26423]: Fix possible overflow in wrap_lenfunc() when sizeof(long)
< sizeof(Py_ssize_t) (e.g., 64-bit Windows).

	bpo-36829 [https://bugs.python.org/issue36829]: PyErr_WriteUnraisable() now displays the exception even
if displaying the traceback failed. Moreover, hold a strong reference to
sys.stderr while using it. Document that an exception must be set
when calling PyErr_WriteUnraisable().

	bpo-36907 [https://bugs.python.org/issue36907]: Fix a crash when calling a C function with a keyword dict
(f(**kwargs)) and changing the dict kwargs while that function is
running.

	bpo-36946 [https://bugs.python.org/issue36946]: Fix possible signed integer overflow when handling slices.

	bpo-27987 [https://bugs.python.org/issue27987]: PyGC_Head structure is aligned to long double. This is
needed to ensure GC-ed objects are aligned properly. Patch by Inada
Naoki.

	bpo-1875 [https://bugs.python.org/issue1875]: A SyntaxError is now raised if a code blocks that will be
optimized away (e.g. if conditions that are always false) contains syntax
errors. Patch by Pablo Galindo. (Reverted in 3.7.4 final by
bpo-37500 [https://bugs.python.org/issue37500].)

	bpo-28866 [https://bugs.python.org/issue28866]: Avoid caching attributes of classes which type defines mro() to
avoid a hard cache invalidation problem.

	bpo-27639 [https://bugs.python.org/issue27639]: Correct return type for UserList slicing operations. Patch by
Michael Blahay, Erick Cervantes, and vaultah

	bpo-32849 [https://bugs.python.org/issue32849]: Fix Python Initialization code on FreeBSD to detect properly
when stdin file descriptor (fd 0) is invalid.

	bpo-27987 [https://bugs.python.org/issue27987]: pymalloc returns memory blocks aligned by 16 bytes, instead of
8 bytes, on 64-bit platforms to conform x86-64 ABI. Recent compilers
assume this alignment more often. Patch by Inada Naoki.

	bpo-36504 [https://bugs.python.org/issue36504]: 在 _ctypes.c's PyCArrayType_new() 中修复了“有符号整数”类型的溢出。

	bpo-20844 [https://bugs.python.org/issue20844]: 修复了含有经编码的 cookie 和换行符的脚本位于 Windows 平台可能运行失败的问题。

	bpo-24214 [https://bugs.python.org/issue24214]: 修复了UTF-8增量解码器对surrogatepass的错误回调方法的支持

	bpo-36459 [https://bugs.python.org/issue36459]: 修复了由于tokenizer.c中的 tok_nextc() 方法可能导致的两次 PyMem_FREE() 调用。

	bpo-36433 [https://bugs.python.org/issue36433]: 修复了位于 classmethoddescr_call 的类型错误信息

	bpo-36430 [https://bugs.python.org/issue36430]: 修复了函数 itertools.count() 中的潜在引用对象泄漏。

	bpo-36440 [https://bugs.python.org/issue36440]: Include node names in ParserError messages, instead of
numeric IDs. Patch by A. Skrobov.

	bpo-36421 [https://bugs.python.org/issue36421]: Fix a possible double decref in _ctypes.c's
PyCArrayType_new().

	bpo-36256 [https://bugs.python.org/issue36256]: Fix bug in parsermodule when parsing a state in a DFA that has
two or more arcs with labels of the same type. Patch by Pablo Galindo.

	bpo-36236 [https://bugs.python.org/issue36236]: 在 Python 初始化时，如果当前目录被移除，则它将不再会被添加到 sys.path 中。

	bpo-36262 [https://bugs.python.org/issue36262]: 修复了在 float(str), complex(str), pickle.load(), marshal.load() 等所用的函数 _Py_dg_strtod() 中进行从字符串到浮点数的转换时偶有发生的一个内存泄漏问题。

	bpo-36218 [https://bugs.python.org/issue36218]: Fix a segfault occuring when sorting a list of heterogeneous
values. Patch contributed by Rémi Lapeyre and Elliot Gorokhovsky.

	bpo-36035 [https://bugs.python.org/issue36035]: Added fix for broken symlinks in combination with pathlib

	bpo-18372 [https://bugs.python.org/issue18372]: Add missing PyObject_GC_Track() calls in the
pickle module. Patch by Zackery Spytz.

	bpo-34408 [https://bugs.python.org/issue34408]: Prevent a null pointer dereference and resource leakage in
PyInterpreterState_New().

库

	bpo-37280 [https://bugs.python.org/issue37280]: Use threadpool for reading from file for sendfile fallback
mode.

	bpo-37279 [https://bugs.python.org/issue37279]: Fix asyncio sendfile support when sendfile sends extra data in
fallback mode.

	bpo-19865 [https://bugs.python.org/issue19865]: ctypes.create_unicode_buffer() now also supports
non-BMP characters on platforms with 16-bit wchar_t (for
example, Windows and AIX).

	bpo-35922 [https://bugs.python.org/issue35922]: Fix RobotFileParser.crawl_delay() and
RobotFileParser.request_rate() to return None rather than raise
AttributeError when no relevant rule is defined in the robots.txt
file. Patch by Rémi Lapeyre.

	bpo-36607 [https://bugs.python.org/issue36607]: Eliminate RuntimeError raised by
asyncio.all_tasks() if internal tasks weak set is changed by
another thread during iteration.

	bpo-36402 [https://bugs.python.org/issue36402]: Fix a race condition at Python shutdown when waiting for
threads. Wait until the Python thread state of all non-daemon threads get
deleted (join all non-daemon threads), rather than just wait until
non-daemon Python threads complete.

	bpo-34886 [https://bugs.python.org/issue34886]: Fix an unintended ValueError from subprocess.run() when
checking for conflicting input and stdin or capture_output and
stdout or stderr args when they were explicitly provided but with
None values within a passed in **kwargs dict rather than as passed
directly by name. Patch contributed by Rémi Lapeyre.

	bpo-37173 [https://bugs.python.org/issue37173]: The exception message for inspect.getfile() now correctly
reports the passed class rather than the builtins module.

	bpo-12639 [https://bugs.python.org/issue12639]: msilib.Directory.start_component() no longer fails if
keyfile is not None.

	bpo-36520 [https://bugs.python.org/issue36520]: Lengthy email headers with UTF-8 characters are now properly
encoded when they are folded. Patch by Jeffrey Kintscher.

	bpo-37054 [https://bugs.python.org/issue37054]: Fix destructor _pyio.BytesIO and
_pyio.TextIOWrapper: initialize their _buffer attribute as
soon as possible (in the class body), because it's used by __del__()
which calls close().

	bpo-30835 [https://bugs.python.org/issue30835]: Fixed a bug in email parsing where a message with invalid bytes
in content-transfer-encoding of a multipart message can cause an
AttributeError. Patch by Andrew Donnellan.

	bpo-37035 [https://bugs.python.org/issue37035]: Don't log OSError based exceptions if a fatal error has
occurred in asyncio transport. Peer can generate almost any OSError, user
cannot avoid these exceptions by fixing own code. Errors are still
propagated to user code, it's just logging them is pointless and pollute
asyncio logs.

	bpo-37008 [https://bugs.python.org/issue37008]: Add support for calling next() with the mock resulting
from unittest.mock.mock_open()

	bpo-27737 [https://bugs.python.org/issue27737]: Allow whitespace only header encoding in email.header - by
Batuhan Taskaya

	bpo-36969 [https://bugs.python.org/issue36969]: PDB command args now display keyword only arguments. Patch
contributed by Rémi Lapeyre.

	bpo-36983 [https://bugs.python.org/issue36983]: Add missing names to typing.__all__: ChainMap,
ForwardRef, OrderedDict - by Anthony Sottile.

	bpo-21315 [https://bugs.python.org/issue21315]: Email headers containing RFC2047 encoded words are parsed
despite the missing whitespace, and a defect registered. Also missing
trailing whitespace after encoded words is now registered as a defect.

	bpo-33524 [https://bugs.python.org/issue33524]: Fix the folding of email header when the max_line_length is 0
or None and the header contains non-ascii characters. Contributed by
Licht Takeuchi (@Licht-T).

	bpo-24564 [https://bugs.python.org/issue24564]: shutil.copystat() now ignores errno.EINVAL on
os.setxattr() which may occur when copying files on filesystems
without extended attributes support.

Original patch by Giampaolo Rodola, updated by Ying Wang.

	bpo-36845 [https://bugs.python.org/issue36845]: Added validation of integer prefixes to the construction of IP
networks and interfaces in the ipaddress module.

	bpo-35545 [https://bugs.python.org/issue35545]: Fix asyncio discarding IPv6 scopes when ensuring hostname
resolutions internally

	bpo-35070 [https://bugs.python.org/issue35070]: posix.getgrouplist() now works correctly when the user belongs
to NGROUPS_MAX supplemental groups. Patch by Jeffrey Kintscher.

	bpo-24538 [https://bugs.python.org/issue24538]: In shutil.copystat(), first copy extended file attributes and
then file permissions, since extended attributes can only be set on the
destination while it is still writeable.

	bpo-33110 [https://bugs.python.org/issue33110]: Handle exceptions raised by functions added by
concurrent.futures add_done_callback correctly when the Future has already
completed.

	bpo-26903 [https://bugs.python.org/issue26903]: Limit max_workers in ProcessPoolExecutor to 61 to work
around a WaitForMultipleObjects limitation.

	bpo-36813 [https://bugs.python.org/issue36813]: Fix QueueListener to call
queue.task_done() upon stopping. Patch by Bar Harel.

	bpo-36734 [https://bugs.python.org/issue36734]: Fix compilation of faulthandler.c on HP-UX. Initialize
stack_t current_stack to zero using memset().

	bpo-29183 [https://bugs.python.org/issue29183]: Fix double exceptions in wsgiref.handlers.BaseHandler
by calling its close() method only
when no exception is raised.

	bpo-36650 [https://bugs.python.org/issue36650]: The C version of functools.lru_cache() was treating calls with
an empty **kwargs dictionary as being distinct from calls with no
keywords at all. This did not result in an incorrect answer, but it did
trigger an unexpected cache miss.

	bpo-28552 [https://bugs.python.org/issue28552]: Fix distutils.sysconfig if sys.executable is
None or an empty string: use os.getcwd() to initialize
project_base. Fix also the distutils build command: don't use
sys.executable if it is None or an empty string.

	bpo-35755 [https://bugs.python.org/issue35755]: shutil.which() and
distutils.spawn.find_executable() now use os.confstr("CS_PATH")
if available instead of os.defpath, if the PATH environment
variable is not set. Moreover, don't use os.confstr("CS_PATH") nor
os.defpath if the PATH environment variable is set to an empty
string.

	bpo-36613 [https://bugs.python.org/issue36613]: Fix asyncio wait() not removing callback if exception

	bpo-36598 [https://bugs.python.org/issue36598]: Fix isinstance check for Mock objects with spec when the
code is executed under tracing. Patch by Karthikeyan Singaravelan.

	bpo-36533 [https://bugs.python.org/issue36533]: Reinitialize logging.Handler locks in forked child processes
instead of attempting to acquire them all in the parent before forking
only to be released in the child process. The acquire/release pattern was
leading to deadlocks in code that has implemented any form of chained
logging handlers that depend upon one another as the lock acquision order
cannot be guaranteed.

	bpo-36522 [https://bugs.python.org/issue36522]: If debuglevel is set to >0 in http.client, print all
values for headers with multiple values for the same header name. Patch by
Matt Houglum.

	bpo-36492 [https://bugs.python.org/issue36492]: Arbitrary keyword arguments (even with names "self" and "func")
can now be passed to some functions which should accept arbitrary keyword
arguments and pass them to other function (for example partialmethod(),
TestCase.addCleanup() and Profile.runcall()) if the required arguments are
passed as positional arguments.

	bpo-36434 [https://bugs.python.org/issue36434]: Errors during writing to a ZIP file no longer prevent to
properly close it.

	bpo-34745 [https://bugs.python.org/issue34745]: Fix asyncio ssl memory issues caused by circular
references

	bpo-36321 [https://bugs.python.org/issue36321]: collections.namedtuple() misspelled the name of an attribute.
To be consistent with typing.NamedTuple, the attribute name should have
been "_field_defaults" instead of "_fields_defaults". For backwards
compatibility, both spellings are now created. The misspelled version may
be removed in the future.

	bpo-36272 [https://bugs.python.org/issue36272]: logging does not silently ignore RecursionError anymore.
Patch contributed by Rémi Lapeyre.

	bpo-36235 [https://bugs.python.org/issue36235]: Fix CFLAGS in customize_compiler() of
distutils.sysconfig: when the CFLAGS environment variable is
defined, don't override CFLAGS variable with the OPT variable
anymore. Initial patch written by David Malcolm.

	bpo-35125 [https://bugs.python.org/issue35125]: Asyncio: Remove inner callback on outer cancellation in shield

	bpo-35802 [https://bugs.python.org/issue35802]: Clean up code which checked presence of os.stat /
os.lstat / os.chmod which are always present. Patch by Anthony
Sottile.

	bpo-23078 [https://bugs.python.org/issue23078]: Add support for classmethod() and staticmethod() to
unittest.mock.create_autospec(). Initial patch by Felipe Ochoa.

	bpo-35721 [https://bugs.python.org/issue35721]: Fix asyncio.SelectorEventLoop.subprocess_exec() leaks
file descriptors if Popen fails and called with
stdin=subprocess.PIPE. Patch by Niklas Fiekas.

	bpo-35726 [https://bugs.python.org/issue35726]: QueueHandler.prepare() now makes a copy of the record before
modifying and enqueueing it, to avoid affecting other handlers in the
chain.

	bpo-31855 [https://bugs.python.org/issue31855]: unittest.mock.mock_open() results now respects the
argument of read([size]). Patch contributed by Rémi Lapeyre.

	bpo-35082 [https://bugs.python.org/issue35082]: Don't return deleted attributes when calling dir on a
unittest.mock.Mock.

	bpo-34547 [https://bugs.python.org/issue34547]: wsgiref.handlers.BaseHandler now handles abrupt client
connection terminations gracefully. Patch by Petter Strandmark.

	bpo-34424 [https://bugs.python.org/issue34424]: Fix serialization of messages containing encoded strings when
the policy.linesep is set to a multi-character string. Patch by Jens
Troeger.

	bpo-33361 [https://bugs.python.org/issue33361]: Fix a bug in codecs.StreamRecoder where seeking might
leave old data in a buffer and break subsequent read calls. Patch by Ammar
Askar.

	bpo-31922 [https://bugs.python.org/issue31922]: asyncio.AbstractEventLoop.create_datagram_endpoint(): Do
not connect UDP socket when broadcast is allowed. This allows to receive
replies after a UDP broadcast.

	bpo-22102 [https://bugs.python.org/issue22102]: Added support for ZIP files with disks set to 0. Such files are
commonly created by builtin tools on Windows when use ZIP64 extension.
Patch by Francisco Facioni.

	bpo-27141 [https://bugs.python.org/issue27141]: Added a __copy__() to collections.UserList and
collections.UserDict in order to correctly implement shallow copying
of the objects. Patch by Bar Harel.

	bpo-31829 [https://bugs.python.org/issue31829]: \r, \0 and \x1a (end-of-file on Windows) are now
escaped in protocol 0 pickles of Unicode strings. This allows to load them
without loss from files open in text mode in Python 2.

	bpo-31292 [https://bugs.python.org/issue31292]: 为包含 include 指令的文件修复 setup.py check --restructuredtext。

	bpo-23395 [https://bugs.python.org/issue23395]: _thread.interrupt_main() now avoids setting the Python
error status if the SIGINT signal is ignored or not handled by Python.

文档

	bpo-34903 [https://bugs.python.org/issue34903]: Documented that in datetime.datetime.strptime(), the
leading zero in some two-digit formats is optional. Patch by Mike Gleen.

	bpo-36984 [https://bugs.python.org/issue36984]: Improve version added references in typing module - by
Anthony Sottile.

	bpo-36868 [https://bugs.python.org/issue36868]: What's new now mentions SSLContext.hostname_checks_common_name
instead of SSLContext.host_flags.

	bpo-36783 [https://bugs.python.org/issue36783]: Added C API Documentation for Time_FromTimeAndFold and
PyDateTime_FromDateAndTimeAndFold as per PEP 495. Patch by Edison
Abahurire.

	bpo-30840 [https://bugs.python.org/issue30840]: Document relative imports

	bpo-36523 [https://bugs.python.org/issue36523]: Add docstring for io.IOBase.writelines().

	bpo-36425 [https://bugs.python.org/issue36425]: 新增的文档翻译: 简体中文 [https://docs.python.org/zh-cn/].

	bpo-36157 [https://bugs.python.org/issue36157]: Added Documention for PyInterpreterState_Main().

	bpo-36138 [https://bugs.python.org/issue36138]: Improve documentation about converting datetime.timedelta to
scalars.

	bpo-22865 [https://bugs.python.org/issue22865]: Add detail to the documentation on the pty.spawn function.

	bpo-35581 [https://bugs.python.org/issue35581]: @typing.type_check_only now allows type stubs to mark functions
and classes not available during runtime.

	bpo-35564 [https://bugs.python.org/issue35564]: Explicitly set master_doc variable in conf.py for compliance
with Sphinx 2.0

	bpo-10536 [https://bugs.python.org/issue10536]: Enhance the gettext docs. Patch by Éric Araujo

	bpo-32995 [https://bugs.python.org/issue32995]: Added the context variable in glossary.

	bpo-33832 [https://bugs.python.org/issue33832]: Add glossary entry for 'magic method'.

	bpo-33482 [https://bugs.python.org/issue33482]: Make codecs.StreamRecoder.writelines take a list of bytes.

	bpo-25735 [https://bugs.python.org/issue25735]: Added documentation for func factorial to indicate that returns
integer values

测试

	bpo-35998 [https://bugs.python.org/issue35998]: Avoid TimeoutError in test_asyncio: test_start_tls_server_1()

	bpo-37153 [https://bugs.python.org/issue37153]: test_venv.test_mutiprocessing() now explicitly calls
pool.terminate() to wait until the pool completes.

	bpo-37081 [https://bugs.python.org/issue37081]: 使用OpenSSL 1.1.1c进行测试

	bpo-36915 [https://bugs.python.org/issue36915]: The main regrtest process now always removes all temporary
directories of worker processes even if they crash or if they are killed
on KeyboardInterrupt (CTRL+c).

	bpo-36719 [https://bugs.python.org/issue36719]: "python3 -m test -jN ..." now continues the execution of next
tests when a worker process crash (CHILD_ERROR state). Previously, the
test suite stopped immediately. Use --failfast to stop at the first error.

	bpo-36816 [https://bugs.python.org/issue36816]: Update Lib/test/selfsigned_pythontestdotnet.pem to match
self-signed.pythontest.net's new TLS certificate.

	bpo-35925 [https://bugs.python.org/issue35925]: Skip httplib and nntplib networking tests when they would
otherwise fail due to a modern OS or distro with a default OpenSSL policy
of rejecting connections to servers with weak certificates.

	bpo-36719 [https://bugs.python.org/issue36719]: regrtest now always detects uncollectable objects. Previously,
the check was only enabled by --findleaks. The check now also works
with -jN/--multiprocess N. --findleaks becomes a deprecated alias
to --fail-env-changed.

	bpo-36725 [https://bugs.python.org/issue36725]: When using mulitprocessing mode (-jN), regrtest now better
reports errors if a worker process fails, and it exits immediately on a
worker thread failure or when interrupted.

	bpo-36454 [https://bugs.python.org/issue36454]: Change test_time.test_monotonic() to test only the lower bound
of elapsed time after a sleep command rather than the upper bound. This
prevents unnecessary test failures on slow buildbots. Patch by Victor
Stinner.

	bpo-36629 [https://bugs.python.org/issue36629]: Fix test_imap4_host_default_value() of test_imaplib:
catch also errno.ENETUNREACH error.

	bpo-36611 [https://bugs.python.org/issue36611]: Fix test_sys.test_getallocatedblocks() when
tracemalloc is enabled.

	bpo-36560 [https://bugs.python.org/issue36560]: Fix reference leak hunting in regrtest: compute also deltas (of
reference count, allocated memory blocks, file descriptor count) during
warmup, to ensure that everything is initialized before starting to hunt
reference leaks.

	bpo-36565 [https://bugs.python.org/issue36565]: Fix reference hunting (python3 -m test -R 3:3) when Python
has no built-in abc module.

	bpo-36436 [https://bugs.python.org/issue36436]: Fix _testcapi.pymem_buffer_overflow(): handle memory
allocation failure.

构建

	bpo-36605 [https://bugs.python.org/issue36605]: make tags and make TAGS now also parse
Modules/_io/*.c and Modules/_io/*.h.

	bpo-36508 [https://bugs.python.org/issue36508]: python-config --ldflags no longer includes flags of the
LINKFORSHARED variable. The LINKFORSHARED variable must only be
used to build executables.

Windows

	bpo-34631 [https://bugs.python.org/issue34631]: 在Windows安装程序中将OpenSSL更新为1.1.1c

	bpo-37267 [https://bugs.python.org/issue37267]: On Windows, os.dup() no longer creates an inheritable fd
when handling a character file.

	bpo-36779 [https://bugs.python.org/issue36779]: Ensure time.tzname is correct on Windows when the active
code page is set to CP_UTF7 or CP_UTF8.

	bpo-36965 [https://bugs.python.org/issue36965]: include of STATUS_CONTROL_C_EXIT without depending on MSC
compiler

	bpo-36649 [https://bugs.python.org/issue36649]: Remove trailing spaces for registry keys when installed via the
Store.

	bpo-34144 [https://bugs.python.org/issue34144]: Fixed activate.bat to correctly update codepage when chcp.com
returns dots in output. Patch by Lorenz Mende.

	bpo-35941 [https://bugs.python.org/issue35941]: enum_certificates function of the ssl module now returns
certificates from all available certificate stores inside windows in a
query instead of returning only certificates from the system wide
certificate store. This includes certificates from these certificate
stores: local machine, local machine enterprise, local machine group
policy, current user, current user group policy, services, users.
ssl.enum_crls() function is changed in the same way to return all
certificate revocation lists inside the windows certificate revocation
list stores.

	bpo-36441 [https://bugs.python.org/issue36441]: Fixes creating a venv when debug binaries are installed.

	bpo-36312 [https://bugs.python.org/issue36312]: Fixed decoders for the following code pages: 50220, 50221,
50222, 50225, 50227, 50229, 57002 through 57011, 65000 and 42.

	bpo-36010 [https://bugs.python.org/issue36010]: Add the venv standard library module to the nuget distribution
for Windows.

	bpo-34060 [https://bugs.python.org/issue34060]: Report system load when running test suite on Windows. Patch by
Ammar Askar. Based on prior work by Jeremy Kloth.

macOS

	bpo-35360 [https://bugs.python.org/issue35360]: 更新macOS安装程序以使用SQLite 3.28.0.

	bpo-34631 [https://bugs.python.org/issue34631]: 在MacOS安装程序中将OpenSSL更新为1.1.1c。

	bpo-36231 [https://bugs.python.org/issue36231]: Support building Python on macOS without /usr/include
installed. As of macOS 10.14, system header files are only available
within an SDK provided by either the Command Line Tools or the Xcode app.

	bpo-34602 [https://bugs.python.org/issue34602]: Avoid failures setting macOS stack resource limit with
resource.setrlimit. This reverts an earlier fix for bpo-18075 [https://bugs.python.org/issue18075] which forced
a non-default stack size when building the interpreter executable on
macOS.

IDLE

	bpo-37321 [https://bugs.python.org/issue37321]: Both subprocess connection error messages now refer to the
'Startup failure' section of the IDLE doc.

	bpo-37177 [https://bugs.python.org/issue37177]: Properly 'attach' search dialogs to their main window so that
they behave like other dialogs and do not get hidden behind their main
window.

	bpo-37039 [https://bugs.python.org/issue37039]: Adjust "Zoom Height" to individual screens by momemtarily
maximizing the window on first use with a particular screen. Changing
screen settings may invalidate the saved height. While a window is
maximized, "Zoom Height" has no effect.

	bpo-35763 [https://bugs.python.org/issue35763]: Make calltip reminder about '/' meaning positional-only less
obtrusive by only adding it when there is room on the first line.

	bpo-5680 [https://bugs.python.org/issue5680]: Add 'Run... Customized' to the Run menu to run a module with
customized settings. Any 'command line arguments' entered are added to
sys.argv. One can suppress the normal Shell main module restart.

	bpo-35610 [https://bugs.python.org/issue35610]: Replace now redundant .context_use_ps1 with .prompt_last_line.
This finishes change started in bpo-31858 [https://bugs.python.org/issue31858].

	bpo-37038 [https://bugs.python.org/issue37038]: Make idlelib.run runnable; add test clause.

	bpo-36958 [https://bugs.python.org/issue36958]: Print any argument other than None or int passed to SystemExit
or sys.exit().

	bpo-13102 [https://bugs.python.org/issue13102]: When saving a file, call os.fsync() so bits are flushed to e.g.
USB drive.

	bpo-36429 [https://bugs.python.org/issue36429]: Fix starting IDLE with pyshell. Add idlelib.pyshell alias at
top; remove pyshell alias at bottom. Remove obsolete __name__=='__main__'
command.

	bpo-36405 [https://bugs.python.org/issue36405]: Use dict unpacking in idlelib.

	bpo-36396 [https://bugs.python.org/issue36396]: Remove fgBg param of idlelib.config.GetHighlight(). This param
was only used twice and changed the return type.

	bpo-23205 [https://bugs.python.org/issue23205]: For the grep module, add tests for findfiles, refactor
findfiles to be a module-level function, and refactor findfiles to use
os.walk.

	bpo-23216 [https://bugs.python.org/issue23216]: 将文档字符串添加到IDLE 的搜索模块。

	bpo-30348 [https://bugs.python.org/issue30348]: 增加了 30% 的 idlelib.autocomplete 的测试覆盖率。

	bpo-32411 [https://bugs.python.org/issue32411]: In browser.py, remove extraneous sorting by line number since
dictionary was created in line number order.

工具/示例

	bpo-14546 [https://bugs.python.org/issue14546]: Fix the argument handling in Tools/scripts/lll.py.

	bpo-32217 [https://bugs.python.org/issue32217]: Fix freeze script on Windows.

C API

	bpo-28805 [https://bugs.python.org/issue28805]: The METH_FASTCALL calling convention has been
documented.

	bpo-37170 [https://bugs.python.org/issue37170]: Fix the cast on error in
PyLong_AsUnsignedLongLongMask().

	bpo-36389 [https://bugs.python.org/issue36389]: Change the value of CLEANBYTE, DEADDYTE and
FORBIDDENBYTE internal constants used by debug hooks on Python memory
allocators (PyMem_SetupDebugHooks() function). Byte patterns
0xCB, 0xDB and 0xFB have been replaced with 0xCD, 0xDD
and 0xFD to use the same values than Windows CRT debug malloc()
and free().

Python 3.7.3 最终版

发布日期： 2019-03-25

在 3.7.3 版本中没有新的修改。

Python 3.7.3 发布候选版 1

发布日期： 2019-03-12

安全

	bpo-36216 [https://bugs.python.org/issue36216]: Changes urlsplit() to raise ValueError when the URL contains
characters that decompose under IDNA encoding (NFKC-normalization) into
characters that affect how the URL is parsed.

	bpo-35746 [https://bugs.python.org/issue35746]: [CVE-2019-5010] Fix a NULL pointer deref in ssl module. The
cert parser did not handle CRL distribution points with empty DP or URI
correctly. A malicious or buggy certificate can result into segfault.
Vulnerability (TALOS-2018-0758) reported by Colin Read and Nicolas Edet of
Cisco.

	bpo-35121 [https://bugs.python.org/issue35121]: Don't send cookies of domain A without Domain attribute to
domain B when domain A is a suffix match of domain B while using a
cookiejar with http.cookiejar.DefaultCookiePolicy policy. Patch
by Karthikeyan Singaravelan.

核心与内置

	bpo-35942 [https://bugs.python.org/issue35942]: The error message emitted when returning invalid types from
__fspath__ in interfaces that allow passing PathLike
objects has been improved and now it does explain the origin of the error.

	bpo-35992 [https://bugs.python.org/issue35992]: Fix __class_getitem__() not being called on a class with a
custom non-subscriptable metaclass.

	bpo-35991 [https://bugs.python.org/issue35991]: Fix a potential double free in Modules/_randommodule.c.

	bpo-35961 [https://bugs.python.org/issue35961]: Fix a crash in slice_richcompare(): use strong references
rather than stolen references for the two temporary internal tuples.

	bpo-31506 [https://bugs.python.org/issue31506]: Clarify the errors reported when object.__new__ and
object.__init__ receive more than one argument. Contributed by Sanyam
Khurana.

	bpo-35720 [https://bugs.python.org/issue35720]: Fixed a minor memory leak in pymain_parse_cmdline_impl function
in Modules/main.c

	bpo-35623 [https://bugs.python.org/issue35623]: 修复了在排序超长列表时崩溃的问题。 补丁作者 Stephan Hohe。

	bpo-35214 [https://bugs.python.org/issue35214]: 添加了 clang Memory Sanitizer 构建工具以绕过来自 posix, socket, time, test_io 和 test_faulthandler 的误报问题。

	bpo-35560 [https://bugs.python.org/issue35560]: 修复了在调试版中使用 "n" 格式进行零留空和小宽度的浮点格式化时 format() 内的一个断言错误。 发布版未受影响。 补丁作者 Karthikeyan Singaravelan。

	bpo-35552 [https://bugs.python.org/issue35552]: Format characters %s and %V in
PyUnicode_FromFormat() and %s in PyBytes_FromFormat()
no longer read memory past the limit if precision is specified.

	bpo-35504 [https://bugs.python.org/issue35504]: 修复了在删除特定属性时的段错误和 SystemError 问题。 补丁作者 Zackery Spytz。

	bpo-33989 [https://bugs.python.org/issue33989]: Fix a possible crash in list.sort() when sorting objects
with ob_type->tp_richcompare == NULL. Patch by Zackery Spytz.

库

	bpo-35931 [https://bugs.python.org/issue35931]: The pdb debug command now gracefully handles all
exceptions.

	bpo-36251 [https://bugs.python.org/issue36251]: Fix format strings used for stderrprinter and re.Match reprs.
Patch by Stephan Hohe.

	bpo-35807 [https://bugs.python.org/issue35807]: Update ensurepip to install pip 19.0.3 and setuptools 40.8.0.

	bpo-36179 [https://bugs.python.org/issue36179]: Fix two unlikely reference leaks in _hashopenssl. The leaks
only occur in out-of-memory cases.

	bpo-35178 [https://bugs.python.org/issue35178]: Ensure custom warnings.formatwarning() function can
receive line as positional argument. Based on patch by Tashrif Billah.

	bpo-36106 [https://bugs.python.org/issue36106]: Resolve potential name clash with libm's sinpi(). Patch by
Dmitrii Pasechnik.

	bpo-35512 [https://bugs.python.org/issue35512]: unittest.mock.patch.dict() used as a decorator with
string target resolves the target during function call instead of during
decorator construction. Patch by Karthikeyan Singaravelan.

	bpo-36091 [https://bugs.python.org/issue36091]: Clean up reference to async generator in Lib/types. Patch by
Henry Chen.

	bpo-35899 [https://bugs.python.org/issue35899]: Enum has been fixed to correctly handle empty strings and
strings with non-Latin characters (ie. 'α', 'א') without crashing.
Original patch contributed by Maxwell. Assisted by Stéphane Wirtel.

	bpo-35918 [https://bugs.python.org/issue35918]: Removed broken has_key method from
multiprocessing.managers.SyncManager.dict. Contributed by Rémi Lapeyre.

	bpo-35960 [https://bugs.python.org/issue35960]: Fix dataclasses.field() throwing away empty mapping
objects passed as metadata.

	bpo-35847 [https://bugs.python.org/issue35847]: RISC-V needed the CTYPES_PASS_BY_REF_HACK. Fixes ctypes
Structure test_pass_by_value.

	bpo-35780 [https://bugs.python.org/issue35780]: Fix lru_cache() errors arising in recursive, reentrant, or
multi-threaded code. These errors could result in orphan links and in the
cache being trapped in a state with fewer than the specified maximum
number of links. Fix handling of negative maxsize which should have been
treated as zero. Fix errors in toggling the "full" status flag. Fix
misordering of links when errors are encountered. Sync-up the C code and
pure Python code for the space saving path in functions with a single
positional argument. In this common case, the space overhead of an lru
cache entry is reduced by almost half. Fix counting of cache misses. In
error cases, the miss count was out of sync with the actual number of
times the underlying user function was called.

	bpo-23846 [https://bugs.python.org/issue23846]: asyncio.ProactorEventLoop now catches and logs send
errors when the self-pipe is full.

	bpo-34323 [https://bugs.python.org/issue34323]: asyncio: Enhance IocpProactor.close() log: wait 1
second before the first log, then log every second. Log also the number of
seconds since close() was called.

	bpo-34294 [https://bugs.python.org/issue34294]: re module, fix wrong capturing groups in rare cases.
re.search(), re.findall(), re.sub() and other functions
that scan through string looking for a match, should reset capturing
groups between two match attempts. Patch by Ma Lin.

	bpo-35717 [https://bugs.python.org/issue35717]: Fix KeyError exception raised when using enums and compile.
Patch contributed by Rémi Lapeyre.

	bpo-35699 [https://bugs.python.org/issue35699]: Fixed detection of Visual Studio Build Tools 2017 in distutils

	bpo-32710 [https://bugs.python.org/issue32710]: Fix memory leaks in asyncio ProactorEventLoop on overlapped
operation failure.

	bpo-32710 [https://bugs.python.org/issue32710]: Fix a memory leak in asyncio in the ProactorEventLoop when
ReadFile() or WSASend() overlapped operation fail immediately:
release the internal buffer.

	bpo-35682 [https://bugs.python.org/issue35682]: Fix asyncio.ProactorEventLoop.sendfile(): don't attempt to
set the result of an internal future if it's already done.

	bpo-35283 [https://bugs.python.org/issue35283]: Add a pending deprecated warning for the
threading.Thread.isAlive() method. Patch by Dong-hee Na.

	bpo-35643 [https://bugs.python.org/issue35643]: 修复了 Modules/_sha3/cleanup.py 中的一个 SyntaxWarning: invalid escape sequence。 补丁作者 Mickaël Schoentgen。

	bpo-35615 [https://bugs.python.org/issue35615]: weakref: Fix a RuntimeError when copying a
WeakKeyDictionary or a WeakValueDictionary, due to some keys or values
disappearing while iterating.

	bpo-28503 [https://bugs.python.org/issue28503]: 当库函数可用时 crypt 模块现在将在内部使用 crypt_r() 而非 crypt()。

	bpo-35121 [https://bugs.python.org/issue35121]: Don't set cookie for a request when the request path is a
prefix match of the cookie's path attribute but doesn't end with "/".
Patch by Karthikeyan Singaravelan.

	bpo-35585 [https://bugs.python.org/issue35585]: 加快构建按值枚举的速度，例如 http.HTTPStatus(200)。

	bpo-21478 [https://bugs.python.org/issue21478]: Calls to a child function created with
unittest.mock.create_autospec() should propagate to the parent.
Patch by Karthikeyan Singaravelan.

	bpo-35513 [https://bugs.python.org/issue35513]: unittest.runner 的 TextTestRunner 现在将使用 time.perf_counter() 而非 time.time() 来计量一个测试的执行时间: time.time() 可以回退，而 time.perf_counter() 为单调递增。

	bpo-35502 [https://bugs.python.org/issue35502]: 修复了构建树未完成的情况下 xml.etree.ElementTree.TreeBuilder 中的引用泄漏（特别是在解析 XML 期间引发错误的时候）。

	bpo-31446 [https://bugs.python.org/issue31446]: 复制被传递给 CreateProcessW 的命令行，因为此函数能改变输入缓存的内容。

	bpo-20239 [https://bugs.python.org/issue20239]: Allow repeated assignment deletion of
unittest.mock.Mock attributes. Patch by Pablo Galindo.

	bpo-17185 [https://bugs.python.org/issue17185]: 在 mock 上设置 __signature__ 以便 inspect 能获得签名。 补丁作者为 Karthikeyan Singaravelan。

	bpo-10496 [https://bugs.python.org/issue10496]: check_environ() of
distutils.utils now catches KeyError on calling
pwd.getpwuid(): don't create the HOME environment variable in
this case.

	bpo-35066 [https://bugs.python.org/issue35066]: Previously, calling the strftime() method on a datetime object
with a trailing '%' in the format string would result in an exception.
However, this only occured when the datetime C module was being used; the
python implementation did not match this behavior. Datetime is now PEP-399
compliant, and will not throw an exception on a trailing '%'.

	bpo-24746 [https://bugs.python.org/issue24746]: Avoid stripping trailing whitespace in doctest fancy diff.
Orignial patch by R. David Murray & Jairo Trad. Enhanced by Sanyam
Khurana.

	bpo-35198 [https://bugs.python.org/issue35198]: Fix C++ extension compilation on AIX

	bpo-28441 [https://bugs.python.org/issue28441]: On Cygwin and MinGW, ensure that sys.executable always
includes the full filename in the path, including the .exe suffix
(unless it is a symbolic link).

	bpo-34572 [https://bugs.python.org/issue34572]: Fix C implementation of pickle.loads to use importlib's locking
mechanisms, and thereby avoid using partially-loaded modules. Patch by Tim
Burgess.

	bpo-33687 [https://bugs.python.org/issue33687]: Fix the call to os.chmod() for uu.decode() if a mode is
given or decoded. Patch by Timo Furrer.

	bpo-32146 [https://bugs.python.org/issue32146]: Document the interaction between frozen executables and the
spawn and forkserver start methods in multiprocessing.

文档

	bpo-36083 [https://bugs.python.org/issue36083]: Fix formatting of --check-hash-based-pycs options in the
manpage Synopsis.

	bpo-34764 [https://bugs.python.org/issue34764]: Improve example of iter() with 2nd sentinel argument.

	bpo-21314 [https://bugs.python.org/issue21314]: A new entry was added to the Core Language Section of the
Programming FAQ, which explaines the usage of slash(/) in the signature of
a function. Patch by Lysandros Nikolaou

	bpo-22062 [https://bugs.python.org/issue22062]: Update documentation and docstrings for pathlib. Original patch
by Mike Short.

测试

	bpo-36234 [https://bugs.python.org/issue36234]: test_posix.PosixUidGidTests: add tests for invalid uid/gid type
(str). Initial patch written by David Malcolm.

	bpo-29571 [https://bugs.python.org/issue29571]: Fix test_re.test_locale_flag(): use
locale.getpreferredencoding() rather than locale.getlocale() to
get the locale encoding. With some locales, locale.getlocale() returns
the wrong encoding. On Windows, set temporarily the LC_CTYPE locale to
the user preferred encoding to ensure that it uses the ANSI code page, to
be consistent with locale.getpreferredencoding().

	bpo-36123 [https://bugs.python.org/issue36123]: Fix race condition in test_socket.

	bpo-27313 [https://bugs.python.org/issue27313]: Avoid test_ttk_guionly ComboboxTest failure with macOS Cocoa
Tk.

	bpo-36019 [https://bugs.python.org/issue36019]: Add test.support.TEST_HTTP_URL and replace references of
http://www.example.com by this new constant. Contributed by Stéphane
Wirtel.

	bpo-36037 [https://bugs.python.org/issue36037]: Fix test_ssl for strict OpenSSL configuration like RHEL8 strict
crypto policy. Use older TLS version for minimum TLS version of the server
SSL context if needed, to test TLS version older than default minimum TLS
version.

	bpo-35505 [https://bugs.python.org/issue35505]: Make test_imap4_host_default_value independent on whether the
local IMAP server is running.

	bpo-35917 [https://bugs.python.org/issue35917]: multiprocessing: provide unit tests for SyncManager and
SharedMemoryManager classes + all the shareable types which are supposed
to be supported by them. (patch by Giampaolo Rodola)

	bpo-35772 [https://bugs.python.org/issue35772]: Fix sparse file tests of test_tarfile on ppc64 with the tmpfs
filesystem. Fix the function testing if the filesystem supports sparse
files: create a file which contains data and "holes", instead of creating
a file which contains no data. tmpfs effective block size is a page size
(tmpfs lives in the page cache). RHEL uses 64 KiB pages on aarch64, ppc64,
ppc64le, only s390x and x86_64 use 4 KiB pages, whereas the test punch
holes of 4 KiB.

	bpo-35045 [https://bugs.python.org/issue35045]: Make ssl tests less strict and also accept TLSv1 as system
default. The changes unbreaks test_min_max_version on Fedora 29.

	bpo-31731 [https://bugs.python.org/issue31731]: Fix a race condition in check_interrupted_write() of
test_io: create directly the thread with SIGALRM signal blocked, rather
than blocking the signal later from the thread. Previously, it was
possible that the thread gets the signal before the signal is blocked.

	bpo-35424 [https://bugs.python.org/issue35424]: Fix test_multiprocessing_main_handling: use
multiprocessing.Pool with a context manager and then explicitly
join the pool.

	bpo-35519 [https://bugs.python.org/issue35519]: Rename test.bisect module to test.bisect_cmd to
avoid conflict with bisect module when running directly a test like
./python Lib/test/test_xmlrpc.py.

	bpo-35513 [https://bugs.python.org/issue35513]: Replace time.time() with time.monotonic() in tests
to measure time delta.

	bpo-34279 [https://bugs.python.org/issue34279]: test.support.run_unittest() no longer raise
TestDidNotRun if the test result contains skipped tests. The
exception is now only raised if no test have been run and no test have
been skipped.

	bpo-35412 [https://bugs.python.org/issue35412]: Add testcase to test_future4: check unicode literal.

	bpo-26704 [https://bugs.python.org/issue26704]: 添加了对一个实例方法进行双重修补的测试演示。 补丁作者为 Anthony Sottile。

构建

	bpo-34691 [https://bugs.python.org/issue34691]: The _contextvars module is now built into the core Python
library on Windows.

	bpo-35683 [https://bugs.python.org/issue35683]: Improved Azure Pipelines build steps and now verifying layouts
correctly

	bpo-35642 [https://bugs.python.org/issue35642]: Remove asynciomodule.c from pythoncore.vcxproj

	bpo-35550 [https://bugs.python.org/issue35550]: Fix incorrect Solaris #ifdef checks to look for __sun && __SVR4
instead of sun when compiling.

Windows

	bpo-24643 [https://bugs.python.org/issue24643]: Fix name collisions due to #define timezone _timezone in
PC/pyconfig.h.

	bpo-35692 [https://bugs.python.org/issue35692]: pathlib no longer raises when checking file and directory
existence on drives that are not ready

	bpo-35872 [https://bugs.python.org/issue35872]: Uses the base Python executable when invoking venv in a virtual
environment

	bpo-35873 [https://bugs.python.org/issue35873]: Prevents venv paths being inherited by child processes

	bpo-35299 [https://bugs.python.org/issue35299]: Fix sysconfig detection of the source directory and distutils
handling of pyconfig.h during PGO profiling

	bpo-32560 [https://bugs.python.org/issue32560]: The py launcher now forwards its STARTUPINFO structure
to child processes.

	bpo-35854 [https://bugs.python.org/issue35854]: Fix EnvBuilder and --symlinks in venv on Windows

	bpo-35811 [https://bugs.python.org/issue35811]: Avoid propagating venv settings when launching via py.exe

	bpo-35797 [https://bugs.python.org/issue35797]: Fix default executable used by the multiprocessing module

	bpo-29734 [https://bugs.python.org/issue29734]: Fix handle leaks in os.stat on Windows.

	bpo-35596 [https://bugs.python.org/issue35596]: Use unchecked PYCs for the embeddable distro to avoid zipimport
restrictions.

	bpo-35596 [https://bugs.python.org/issue35596]: Fix vcruntime140.dll being added to embeddable distro multiple
times.

	bpo-35402 [https://bugs.python.org/issue35402]: 更新 Windows 构建以使用 Tcl 和 Tk 8.6.9

	bpo-33316 [https://bugs.python.org/issue33316]: PyThread_release_lock always fails

	bpo-1104 [https://bugs.python.org/issue1104]: Correctly handle string length in
msilib.SummaryInfo.GetProperty() to prevent it from truncating the
last character.

IDLE

	bpo-36176 [https://bugs.python.org/issue36176]: 修复 IDLE 自动补全和 calltip 悬浮窗的颜色. 避免与 Linux 暗色主题冲突 (略微加深了calltip 的背景颜色).

	bpo-36152 [https://bugs.python.org/issue36152]: Remove colorizer.ColorDelegator.close_when_done and the
corresponding argument of .close(). In IDLE, both have always been None
or False since 2007.

	bpo-32129 [https://bugs.python.org/issue32129]: Avoid blurry IDLE application icon on macOS with Tk 8.6. Patch
by Kevin Walzer.

	bpo-24310 [https://bugs.python.org/issue24310]: IDLE -- 文档设置对话框字体选项卡示例。

	bpo-36096 [https://bugs.python.org/issue36096]: Refactor class variables to instance variables in colorizer.

	bpo-35833 [https://bugs.python.org/issue35833]: Revise IDLE doc for control codes sent to Shell. Add a code
example block.

	bpo-35770 [https://bugs.python.org/issue35770]: IDLE macosx deletes Options => Configure IDLE. It previously
deleted Window => Zoom Height by mistake. (Zoom Height is now on the
Options menu). On Mac, the settings dialog is accessed via Preferences on
the IDLE menu.

	bpo-35769 [https://bugs.python.org/issue35769]: 将 IDLE 的新文件名从 'Untitled' 更改为 'untitled'

	bpo-35689 [https://bugs.python.org/issue35689]: Add docstrings and unittests for colorizer.py.

	bpo-35660 [https://bugs.python.org/issue35660]: Fix imports in idlelib.window.

	bpo-35641 [https://bugs.python.org/issue35641]: 当函数没有文档字符串时正确地格式化 calltip。

	bpo-33987 [https://bugs.python.org/issue33987]: Use ttk Frame for ttk widgets.

	bpo-34055 [https://bugs.python.org/issue34055]: Fix erroneous 'smart' indents and newlines in IDLE Shell.

	bpo-35591 [https://bugs.python.org/issue35591]: Find Selection now works when selection not found.

	bpo-35196 [https://bugs.python.org/issue35196]: Speed up squeezer line counting.

	bpo-35598 [https://bugs.python.org/issue35598]: Update config_key: use PEP 8 names and ttk widgets, make some
objects global, and add tests.

	bpo-28097 [https://bugs.python.org/issue28097]: Add Previous/Next History entries to Shell menu.

	bpo-35208 [https://bugs.python.org/issue35208]: Squeezer now properly counts wrapped lines before newlines.

	bpo-35555 [https://bugs.python.org/issue35555]: Gray out Code Context menu entry when it's not applicable.

	bpo-35521 [https://bugs.python.org/issue35521]: Document the IDLE editor code context feature. Add some
internal references within the IDLE doc.

	bpo-22703 [https://bugs.python.org/issue22703]: The Code Context menu label now toggles between Show/Hide Code
Context. The Zoom Height menu now toggles between Zoom/Restore Height.
Zoom Height has moved from the Window menu to the Options menu.

工具/示例

	bpo-35132 [https://bugs.python.org/issue35132]: Fix py-list and py-bt commands of python-gdb.py on gdb7.

C API

	bpo-33817 [https://bugs.python.org/issue33817]: Fixed _PyBytes_Resize() for empty bytes objects.

Python 3.7.2 最终版

发布日期: 2018-12-23

库

	bpo-31715 [https://bugs.python.org/issue31715]: Associate .mjs file extension with
application/javascript MIME Type.

构建

	bpo-35499 [https://bugs.python.org/issue35499]: make profile-opt no longer replaces CFLAGS_NODIST with
CFLAGS. It now adds profile-guided optimization (PGO) flags to
CFLAGS_NODIST: existing CFLAGS_NODIST flags are kept.

	bpo-35257 [https://bugs.python.org/issue35257]: Avoid leaking the linker flags from Link Time Optimizations
(LTO) into distutils when compiling C extensions.

C API

	bpo-35259 [https://bugs.python.org/issue35259]: 基于 Py_LIMITED_API 有条件地声明 Py_FinalizeEx() (3.6 中新增)。 补丁作者 Arthur Neufeld。

Python 3.7.2 发布候选版 1

发布日期: 2018-12-11

安全

	bpo-34812 [https://bugs.python.org/issue34812]: The -I command line option (run Python in isolated
mode) is now also copied by the multiprocessing and
distutils modules when spawning child processes. Previously, only
-E and -s options (enabled by -I) were
copied.

	bpo-34791 [https://bugs.python.org/issue34791]: The xml.sax and xml.dom.domreg no longer use environment
variables to override parser implementations when
sys.flags.ignore_environment is set by -E or -I arguments.

核心与内置

	bpo-35444 [https://bugs.python.org/issue35444]: Fixed error handling in pickling methods when fail to look up
builtin "getattr".

	bpo-35436 [https://bugs.python.org/issue35436]: Fix various issues with memory allocation error handling.
Patch by Zackery Spytz.

	bpo-35357 [https://bugs.python.org/issue35357]: Internal attributes' names of unittest.mock._Call and
unittest.mock.MagicProxy (name, parent & from_kall) are now prefixed with
mock in order to prevent clashes with widely used object attributes.
Fixed minor typo in test function name.

	bpo-35372 [https://bugs.python.org/issue35372]: Fixed the code page decoder for input longer than 2 GiB
containing undecodable bytes.

	bpo-35336 [https://bugs.python.org/issue35336]: Fix PYTHONCOERCECLOCALE=1 environment variable: only coerce the
C locale if the LC_CTYPE locale is "C".

	bpo-33954 [https://bugs.python.org/issue33954]: For str.format(), float.__format__() and
complex.__format__() methods for non-ASCII decimal point when using
the "n" formatter.

	bpo-35269 [https://bugs.python.org/issue35269]: Fix a possible segfault involving a newly-created coroutine.
Patch by Zackery Spytz.

	bpo-35214 [https://bugs.python.org/issue35214]: Fixed an out of bounds memory access when parsing a truncated
unicode escape sequence at the end of a string such as '\N'. It would
read one byte beyond the end of the memory allocation.

	bpo-35214 [https://bugs.python.org/issue35214]: The interpreter and extension modules have had annotations
added so that they work properly under clang's Memory Sanitizer. A new
configure flag --with-memory-sanitizer has been added to make test builds
of this nature easier to perform.

	bpo-35193 [https://bugs.python.org/issue35193]: Fix an off by one error in the bytecode peephole optimizer
where it could read bytes beyond the end of bounds of an array when
removing unreachable code. This bug was present in every release of Python
3.6 and 3.7 until now.

	bpo-29341 [https://bugs.python.org/issue29341]: Clarify in the docstrings of os methods that path-like
objects are also accepted as input parameters.

	bpo-35050 [https://bugs.python.org/issue35050]: socket: Fix off-by-one bug in length check for
AF_ALG name and type.

	bpo-34974 [https://bugs.python.org/issue34974]: bytes and bytearray constructors no longer
convert unexpected exceptions (e.g. MemoryError and
KeyboardInterrupt) to TypeError.

	bpo-34973 [https://bugs.python.org/issue34973]: Fixed crash in bytes() when the list argument is
mutated while it is iterated.

	bpo-34824 [https://bugs.python.org/issue34824]: Fix a possible null pointer dereference in Modules/_ssl.c.
Patch by Zackery Spytz.

	bpo-1621 [https://bugs.python.org/issue1621]: Do not assume signed integer overflow behavior (C undefined
behavior) when performing set hash table resizing.

库

	bpo-35052 [https://bugs.python.org/issue35052]: Fix xml.dom.minidom cloneNode() on a document with an entity:
pass the correct arguments to the user data handler of an entity.

	bpo-35330 [https://bugs.python.org/issue35330]: When a Mock instance was used to wrap an object, if
side_effect is used in one of the mocks of it methods, don't call the
original implementation and return the result of using the side effect the
same way that it is done with return_value.

	bpo-34172 [https://bugs.python.org/issue34172]: Revert the fix for this issue previously released in 3.7.1
pending further investigation: Fix a reference issue inside
multiprocessing.Pool that caused the pool to remain alive if it was
deleted without being closed or terminated explicitly.

	bpo-10496 [https://bugs.python.org/issue10496]: posixpath.expanduser() now returns the input path
unchanged if the HOME environment variable is not set and the current
user has no home directory (if the current user identifier doesn't exist
in the password database). This change fix the site module if the
current user doesn't exist in the password database (if the user has no
home directory).

	bpo-35310 [https://bugs.python.org/issue35310]: Fix a bug in select.select() where, in some cases, the
file descriptor sequences were returned unmodified after a signal
interruption, even though the file descriptors might not be ready yet.
select.select() will now always return empty lists if a timeout has
occurred. Patch by Oran Avraham.

	bpo-35380 [https://bugs.python.org/issue35380]: Enable TCP_NODELAY on Windows for proactor asyncio event loop.

	bpo-35341 [https://bugs.python.org/issue35341]: Add generic version of collections.OrderedDict to the
typing module. Patch by Ismo Toijala.

	bpo-35371 [https://bugs.python.org/issue35371]: Fixed possible crash in os.utime() on Windows when pass
incorrect arguments.

	bpo-27903 [https://bugs.python.org/issue27903]: Fix ResourceWarning in platform.dist() on SuSE and
Caldera OpenLinux. Patch by Ville Skyttä.

	bpo-35308 [https://bugs.python.org/issue35308]: Fix regression in webbrowser where default browsers may be
preferred over browsers in the BROWSER environment variable.

	bpo-28604 [https://bugs.python.org/issue28604]: locale.localeconv() now sets temporarily the LC_CTYPE
locale to the LC_MONETARY locale if the two locales are different and
monetary strings are non-ASCII. This temporary change affects other
threads.

	bpo-35277 [https://bugs.python.org/issue35277]: Update ensurepip to install pip 18.1 and setuptools 40.6.2.

	bpo-35226 [https://bugs.python.org/issue35226]: Recursively check arguments when testing for equality of
unittest.mock.call objects and add note that tracking of
parameters used to create ancestors of mocks in mock_calls is not
possible.

	bpo-29564 [https://bugs.python.org/issue29564]: The warnings module now suggests to enable tracemalloc if the
source is specified, the tracemalloc module is available, but tracemalloc
is not tracing memory allocations.

	bpo-35189 [https://bugs.python.org/issue35189]: Modify the following fnctl function to retry if interrupted by
a signal (EINTR): flock, lockf, fnctl

	bpo-35062 [https://bugs.python.org/issue35062]: Fix incorrect parsing of
_io.IncrementalNewlineDecoder's translate argument.

	bpo-35079 [https://bugs.python.org/issue35079]: Improve difflib.SequenceManager.get_matching_blocks doc by
adding 'non-overlapping' and changing '!=' to '<'.

	bpo-35017 [https://bugs.python.org/issue35017]: socketserver.BaseServer.serve_forever() now exits
immediately if it's shutdown() method is
called while it is polling for new events.

	bpo-31047 [https://bugs.python.org/issue31047]: Fix ntpath.abspath regression where it didn't remove a
trailing separator on Windows. Patch by Tim Graham.

	bpo-34794 [https://bugs.python.org/issue34794]: Fixed a leak in Tkinter when pass the Python wrapper around
Tcl_Obj back to Tcl/Tk.

	bpo-35008 [https://bugs.python.org/issue35008]: Fixed references leaks when call the __setstate__() method
of xml.etree.ElementTree.Element in the C implementation for
already initialized element.

	bpo-23420 [https://bugs.python.org/issue23420]: Verify the value for the parameter '-s' of the cProfile CLI.
Patch by Robert Kuska

	bpo-33947 [https://bugs.python.org/issue33947]: dataclasses now handle recursive reprs without raising
RecursionError.

	bpo-16965 [https://bugs.python.org/issue16965]: The 2to3 execfile fixer now opens the file
with mode 'rb'. Patch by Zackery Spytz.

	bpo-34966 [https://bugs.python.org/issue34966]: pydoc now supports aliases not only to methods defined
in the end class, but also to inherited methods. The docstring is not
duplicated for aliases.

	bpo-34941 [https://bugs.python.org/issue34941]: Methods find(), findtext() and findall() of the
Element class in the xml.etree.ElementTree module are now able
to find children which are instances of Element subclasses.

	bpo-34936 [https://bugs.python.org/issue34936]: Fix TclError in tkinter.Spinbox.selection_element().
Patch by Juliette Monsel.

	bpo-34866 [https://bugs.python.org/issue34866]: Adding max_num_fields to cgi.FieldStorage to make DOS
attacks harder by limiting the number of MiniFieldStorage objects
created by FieldStorage.

	bpo-34022 [https://bugs.python.org/issue34022]: The SOURCE_DATE_EPOCH environment variable no longer
overrides the value of the invalidation_mode argument to
py_compile.compile(), and determines its default value instead.

	bpo-34738 [https://bugs.python.org/issue34738]: ZIP files created by distutils will now include entries
for directories.

	bpo-31177 [https://bugs.python.org/issue31177]: Fix bug that prevented using reset_mock on mock instances with deleted attributes

	bpo-34536 [https://bugs.python.org/issue34536]: Enum._missing_: raise ValueError if None returned and
TypeError if non-member is returned.

	bpo-34604 [https://bugs.python.org/issue34604]: Fix possible mojibake in the error message of pwd.getpwnam
and grp.getgrnam using string representation because of invisible
characters or trailing whitespaces. Patch by William Grzybowski.

	bpo-34574 [https://bugs.python.org/issue34574]: OrderedDict iterators are not exhausted during pickling
anymore. Patch by Sergey Fedoseev.

	bpo-34052 [https://bugs.python.org/issue34052]: sqlite3.Connection.create_aggregate(),
sqlite3.Connection.create_function(),
sqlite3.Connection.set_authorizer(),
sqlite3.Connection.set_progress_handler() methods raises TypeError
when unhashable objects are passed as callable. These methods now don't
pass such objects to SQLite API. Previous behavior could lead to
segfaults. Patch by Sergey Fedoseev.

	bpo-29877 [https://bugs.python.org/issue29877]: compileall: import ProcessPoolExecutor only when needed,
preventing hangs on low resource platforms

	bpo-22005 [https://bugs.python.org/issue22005]: Implemented unpickling instances of
datetime, date and
time pickled by Python 2. encoding='latin1' should
be used for successful decoding.

文档

	bpo-35089 [https://bugs.python.org/issue35089]: Remove mention of typing.io and typing.re. Their types
should be imported from typing directly.

	bpo-35038 [https://bugs.python.org/issue35038]: Fix the documentation about an unexisting f_restricted
attribute in the frame object. Patch by Stéphane Wirtel

	bpo-35044 [https://bugs.python.org/issue35044]: Fix the documentation with the role exc for the
appropriated exception. Patch by Stéphane Wirtel

	bpo-35035 [https://bugs.python.org/issue35035]: Rename documentation for email.utils to
email.utils.rst.

	bpo-34967 [https://bugs.python.org/issue34967]: Use app.add_object_type() instead of the deprecated Sphinx
function app.description_unit()

	bpo-11233 [https://bugs.python.org/issue11233]: Create availability directive for documentation. Original
patch by Georg Brandl.

	bpo-33594 [https://bugs.python.org/issue33594]: Document getargspec, from_function and from_builtin
as deprecated in their respective docstring, and include version since
deprecation in DeprecationWarning message.

	bpo-32613 [https://bugs.python.org/issue32613]: Update the faq/windows.html to use the py command from PEP 397
instead of python.

测试

	bpo-33725 [https://bugs.python.org/issue33725]: test_multiprocessing_fork may crash on recent versions of
macOS. Until the issue is resolved, skip the test on macOS.

	bpo-35352 [https://bugs.python.org/issue35352]: Modify test_asyncio to use the certificate set from the test
directory.

	bpo-35317 [https://bugs.python.org/issue35317]: Fix mktime() overflow error in test_email: run
test_localtime_daylight_true_dst_true() and
test_localtime_daylight_false_dst_true() with a specific timezone.

	bpo-21263 [https://bugs.python.org/issue21263]: After several reports that test_gdb does not work properly on
macOS and since gdb is not shipped by default anymore, test_gdb is now
skipped on macOS when LLVM Clang has been used to compile Python. Patch by
Lysandros Nikolaou

	bpo-34279 [https://bugs.python.org/issue34279]: regrtest issue a warning when no tests have been executed in a
particular test file. Also, a new final result state is issued if no test
have been executed across all test files. Patch by Pablo Galindo.

构建

	bpo-35296 [https://bugs.python.org/issue35296]: The Windows installer (MSI) now also install internal header
files (Include/internal/ subdirectory).

	bpo-35351 [https://bugs.python.org/issue35351]: When building Python with clang and LTO, LTO flags are no
longer passed into CFLAGS to build third-party C extensions through
distutils.

	bpo-35139 [https://bugs.python.org/issue35139]: Fix a compiler error when statically linking pyexpat in
Modules/Setup.

	bpo-35011 [https://bugs.python.org/issue35011]: Restores the use of pyexpatns.h to isolate our embedded copy of
the expat C library so that its symbols do not conflict at link or dynamic
loading time with an embedding application or other extension modules with
their own version of libexpat.

	bpo-28015 [https://bugs.python.org/issue28015]: Have --with-lto works correctly with clang.

	bpo-33015 [https://bugs.python.org/issue33015]: Fix an undefined behaviour in the pthread implementation of
PyThread_start_new_thread(): add a function wrapper to always
return NULL.

Windows

	bpo-35401 [https://bugs.python.org/issue35401]: 在Windows安装程序中将OpenSSL更新为1.1.0j

	bpo-34977 [https://bugs.python.org/issue34977]: venv on Windows will now use a python.exe redirector rather
than copying the actual binaries from the base environment.

	bpo-34977 [https://bugs.python.org/issue34977]: Adds support for building a Windows App Store package

	bpo-35067 [https://bugs.python.org/issue35067]: Remove _distutils_findvs module and use vswhere.exe instead.

	bpo-34532 [https://bugs.python.org/issue34532]: Fixes exit code of list version arguments for py.exe.

	bpo-32890 [https://bugs.python.org/issue32890]: Fix usage of GetLastError() instead of errno in os.execve() and
os.truncate().

macOS

	bpo-35402 [https://bugs.python.org/issue35402]: Update macOS installer to use Tcl/Tk 8.6.9.1. [NOTE: This
change was reverted for the released python.org 3.7.2 macOS installers due
to regressions found in Tk 8.6.9.1. For now, the installers provide
Tcl/Tk 8.6.8.]

	bpo-35401 [https://bugs.python.org/issue35401]: 在MacOS安装程序中将OpenSSL更新为1.1.1j。

	bpo-35025 [https://bugs.python.org/issue35025]: Properly guard the use of the CLOCK_GETTIME et al. macros
in timemodule on macOS.

	bpo-24658 [https://bugs.python.org/issue24658]: On macOS, fix reading from and writing into a file with a size
larger than 2 GiB.

IDLE

	bpo-35213 [https://bugs.python.org/issue35213]: Where appropriate, use 'macOS' in idlelib.

	bpo-34864 [https://bugs.python.org/issue34864]: On macOS, warn if the system preference "Prefer tabs when
opening documents" is set to "Always".

	bpo-34864 [https://bugs.python.org/issue34864]: Document two IDLE on MacOS issues. The System Preferences Dock
"prefer tabs always" setting disables some IDLE features. Menus are a bit
different than as described for Windows and Linux.

	bpo-35202 [https://bugs.python.org/issue35202]: Remove unused imports from lib/idlelib

	bpo-33000 [https://bugs.python.org/issue33000]: Document that IDLE's shell has no line limit. A program that
runs indefinitely can overfill memory.

	bpo-23220 [https://bugs.python.org/issue23220]: Explain how IDLE's Shell displays output.

	bpo-35099 [https://bugs.python.org/issue35099]: Improve the doc about IDLE running user code. The section is
renamed from "IDLE -- console differences" is renamed "Running user code".
It mostly covers the implications of using custom sys.stdxxx objects.

	bpo-35097 [https://bugs.python.org/issue35097]: Add IDLE doc subsection explaining editor windows. Topics
include opening, title and status bar, .py* extension, and running.

	bpo-35093 [https://bugs.python.org/issue35093]: Document the IDLE document viewer in the IDLE doc. Add a
paragraph in "Help and preferences", "Help sources" subsection.

	bpo-35088 [https://bugs.python.org/issue35088]: Update idlelib.help.copy_string docstring. We now use git and
backporting instead of hg and forward merging.

	bpo-35087 [https://bugs.python.org/issue35087]: Update idlelib help files for the current doc build. The main
change is the elimination of chapter-section numbers.

工具/示例

	bpo-34989 [https://bugs.python.org/issue34989]: python-gdb.py now handles errors on computing the line number
of a Python frame.

C API

	bpo-35322 [https://bugs.python.org/issue35322]: Fix memory leak in PyUnicode_EncodeLocale() and
PyUnicode_EncodeFSDefault() on error handling.

	bpo-35296 [https://bugs.python.org/issue35296]: make install now also installs the internal API:
Include/internal/*.h header files.

	bpo-34725 [https://bugs.python.org/issue34725]: Adds _Py_SetProgramFullPath so embedders may override
sys.executable

Python 3.7.1 最终版

发布日期: 2018-10-20

库

	bpo-34970 [https://bugs.python.org/issue34970]: Protect tasks weak set manipulation in asyncio.all_tasks()

Python 3.7.1 RC 2版本

发布日期: 2018-10-13

核心与内置

	bpo-34879 [https://bugs.python.org/issue34879]: Fix a possible null pointer dereference in bytesobject.c.
Patch by Zackery Spytz.

	bpo-34854 [https://bugs.python.org/issue34854]: 修复问题——当编译包含一个没有默认值的关键字参数的 lambda 的字符串注解时可导致崩溃。

	bpo-34320 [https://bugs.python.org/issue34320]: 修复问题——dict(od) 不会复制 OrderedDict 的迭代顺序。

库

	bpo-34769 [https://bugs.python.org/issue34769]: Fix for async generators not finalizing when event loop is in
debug mode and garbage collector runs in another thread.

	bpo-34922 [https://bugs.python.org/issue34922]: Fixed integer overflow in the digest()
and hexdigest() methods for the SHAKE algorithm in
the hashlib module.

	bpo-34909 [https://bugs.python.org/issue34909]: Enum: fix grandchildren subclassing when parent mixed with
concrete data types.

	bpo-34900 [https://bugs.python.org/issue34900]: Fixed unittest.TestCase.debug() when used to call test
methods with subtests. Patch by Bruno Oliveira.

	bpo-34871 [https://bugs.python.org/issue34871]: Fix inspect module polluted sys.modules when parsing
__text_signature__ of callable.

	bpo-34872 [https://bugs.python.org/issue34872]: Fix self-cancellation in C implementation of asyncio.Task

	bpo-34819 [https://bugs.python.org/issue34819]: 使用一个单一时钟计算 Executor.map() 和 as_completed() 中的超时，以防止当系统时钟被修改时因偏离导致的超时。

	bpo-34521 [https://bugs.python.org/issue34521]: Use socket.CMSG_SPACE() to calculate ancillary data size
instead of socket.CMSG_LEN() in
multiprocessing.reduction.recvfds() as RFC 3542 [https://tools.ietf.org/html/rfc3542.html] requires the use
of the former for portable applications.

	bpo-34334 [https://bugs.python.org/issue34334]: In QueueHandler, clear exc_text from
LogRecord to prevent traceback from being written twice.

	bpo-6721 [https://bugs.python.org/issue6721]: Acquire the logging module's commonly used internal locks while
fork()ing to avoid deadlocks in the child process.

	bpo-34172 [https://bugs.python.org/issue34172]: Fix a reference issue inside multiprocessing.Pool that caused
the pool to remain alive if it was deleted without being closed or
terminated explicitly.

文档

	bpo-32174 [https://bugs.python.org/issue32174]: chm document displays non-ASCII charaters properly on some MBCS
Windows systems.

测试

	bpo-32962 [https://bugs.python.org/issue32962]: Fixed test_gdb when Python is compiled with flags -mcet
-fcf-protection -O0.

macOS

	bpo-34370 [https://bugs.python.org/issue34370]: Revert to using the released Tk 8.6.8 with macOS installers
instead of the Tk 8.6.x development snapshot used with 3.7.1rc1 and
3.6.7rc1. The snapshot introduced at least one significant regression
(bpo-34927 [https://bugs.python.org/issue34927]).

C API

	bpo-34910 [https://bugs.python.org/issue34910]: Ensure that PyObject_Print() always returns -1 on
error. Patch by Zackery Spytz.

Python 3.7.1 发布候选版 1

发布日期: 2018-09-26

安全

	bpo-17239 [https://bugs.python.org/issue17239]: The xml.sax and xml.dom.minidom parsers no longer processes
external entities by default. External DTD and ENTITY declarations no
longer load files or create network connections.

	bpo-34623 [https://bugs.python.org/issue34623]: CVE-2018-14647: The C accelerated _elementtree module now
initializes hash randomization salt from _Py_HashSecret instead of
libexpat's default CSPRNG.

	bpo-34405 [https://bugs.python.org/issue34405]: 在Windows安装程序中将OpenSSL更新为1.1.1i

	bpo-33871 [https://bugs.python.org/issue33871]: 修复了使用 os.sendfile() 在macOS上发送部分文件的错误。使用 trailers 参数可能导致从输入文件发送的字节数多于指定的数量。

	bpo-32533 [https://bugs.python.org/issue32533]: Fixed thread-safety of error handling in _ssl.

核心与内置

	bpo-34783 [https://bugs.python.org/issue34783]: Fix a crash with musl libc (on Alpine Linux) when the script
filename specified on the command line doesn't exist.

	bpo-34762 [https://bugs.python.org/issue34762]: Fix contextvars C API to use PyObject* pointer types.

	bpo-34735 [https://bugs.python.org/issue34735]: Fix a memory leak in Modules/timemodule.c. Patch by Zackery
Spytz.

	bpo-34588 [https://bugs.python.org/issue34588]: Fix an off-by-one in the recursive call pruning feature of
traceback formatting.

	bpo-34485 [https://bugs.python.org/issue34485]: Standard streams like sys.stdout now use the "surrogateescape"
error handler, instead of "strict", on the POSIX locale (when the C locale
is not coerced and the UTF-8 Mode is disabled).

	bpo-34485 [https://bugs.python.org/issue34485]: Fix the error handler of standard streams like sys.stdout:
PYTHONIOENCODING=":" is now ignored instead of setting the error handler
to "strict".

	bpo-34527 [https://bugs.python.org/issue34527]: On FreeBSD, Py_DecodeLocale() and Py_EncodeLocale() now also
forces the ASCII encoding if the LC_CTYPE locale is "POSIX", not only if
the LC_CTYPE locale is "C".

	bpo-34527 [https://bugs.python.org/issue34527]: The UTF-8 Mode is now also enabled by the "POSIX" locale, not
only by the "C" locale.

	bpo-34400 [https://bugs.python.org/issue34400]: Fix undefined behavior in parsetok.c. Patch by Zackery Spytz.

	bpo-34377 [https://bugs.python.org/issue34377]: 更新valgrind的抑制列表，使用 _PyObject_Free/_PyObject_Realloc 代替 PyObject_Free/PyObject_Realloc 。

	bpo-34170 [https://bugs.python.org/issue34170]: -X dev: 即使启用了开发模式，现在也可以使用PYTHONMALLOC重载内存分配器。

	bpo-34126 [https://bugs.python.org/issue34126]: 修复在分析某些未绑定的方法的无效调用时崩溃的问题。由Jeroen Demeyer修复。

	bpo-24618 [https://bugs.python.org/issue24618]: 修复了当创建代码对象时使用的变量名元组太小或参数太多导致读取无效内存的问题。

	bpo-34068 [https://bugs.python.org/issue34068]: 在调用 io.IOBase.close() 时确保 closed 属性未设置有效的异常。 由Zackery Spytz和Serhiy Storchaka修复。

	bpo-34087 [https://bugs.python.org/issue34087]: 修复由unicode转换为数值类型时缓冲区溢出的问题。

	bpo-34080 [https://bugs.python.org/issue34080]: 修复了编译器在标记化过程中引发一些不常见错误时内存泄漏的问题。

	bpo-34066 [https://bugs.python.org/issue34066]: 调用 open() 和进入 with open() 的 with 语句块内时禁止使用 Ctrl-C 中断。

	bpo-34042 [https://bugs.python.org/issue34042]: 修复 dict.copy() 以维护正确的总引用计数（由sys.gettotalrefcount()报告）。

	bpo-33985 [https://bugs.python.org/issue33985]: 实现contextvars.ContextVar.name 属性。

	bpo-33956 [https://bugs.python.org/issue33956]: Update vendored Expat library copy to version 2.2.5.

	bpo-24596 [https://bugs.python.org/issue24596]: 执行 PyErr_Print() 之前，在 PyRun_SimpleFileExFlags() 内减少模块对象的引用。 由Zackery Spytz修复。

	bpo-33451 [https://bugs.python.org/issue33451]: 执行 PyEval_EvalCode() 前先关闭直接执行的pyc文件。

	bpo-33824 [https://bugs.python.org/issue33824]: 修复"LC_ALL=C python3.7 -V"：在读取Python配置后编码发生更改时，正确重置命令行解析器。

	bpo-25750 [https://bugs.python.org/issue25750]: Fix rare Python crash due to bad refcounting in
type_getattro() if a descriptor deletes itself from the class. Patch
by Jeroen Demeyer.

	bpo-31902 [https://bugs.python.org/issue31902]: Fix the col_offset attribute for ast nodes
ast.AsyncFor, ast.AsyncFunctionDef, and ast.AsyncWith.
Previously, col_offset pointed to the keyword after async.

	bpo-25862 [https://bugs.python.org/issue25862]: 修复 io.TextIOWrapper 的 tell() 方法内的错误断言。

	bpo-31577 [https://bugs.python.org/issue31577]: Fix a crash in os.utime() in case of a bad ns argument. Patch
by Oren Milman.

库

	bpo-29577 [https://bugs.python.org/issue29577]: Support multiple mixin classes when creating Enums.

	bpo-34670 [https://bugs.python.org/issue34670]: Add SSLContext.post_handshake_auth and
SSLSocket.verify_client_post_handshake for TLS 1.3's post handshake
authentication feature.

	bpo-34658 [https://bugs.python.org/issue34658]: Fix a rare interpreter unhandled exception state SystemError
only seen when using subprocess with a preexec_fn while an after_parent
handler has been registered with os.register_at_fork and the fork system
call fails.

	bpo-34652 [https://bugs.python.org/issue34652]: Ensure os.lchmod() is never defined on Linux.

	bpo-34363 [https://bugs.python.org/issue34363]: dataclasses.asdict() and .astuple() now handle namedtuples
correctly.

	bpo-34625 [https://bugs.python.org/issue34625]: Update vendorized expat library version to 2.2.6.

	bpo-34621 [https://bugs.python.org/issue34621]: Fix un/pickling compatbility of uuid.UUID objects with older
versions of Python (<3.7).

	bpo-32270 [https://bugs.python.org/issue32270]: The subprocess module no longer mistakenly closes redirected
fds even when they were in pass_fds when outside of the default {0, 1, 2}
set.

	bpo-34610 [https://bugs.python.org/issue34610]: Fixed iterator of multiprocessing.managers.DictProxy.

	bpo-34421 [https://bugs.python.org/issue34421]: Fix distutils logging for non-ASCII strings. This caused
installation issues on Windows.

	bpo-34604 [https://bugs.python.org/issue34604]: Fix possible mojibake in the error message of pwd.getpwnam
and grp.getgrnam. Patch by William Grzybowski.

	bpo-34530 [https://bugs.python.org/issue34530]: distutils.spawn.find_executable() now falls back on
os.defpath if the PATH environment variable is not set.

	bpo-34282 [https://bugs.python.org/issue34282]: Fix enum members getting shadowed by parent attributes.

	bpo-34563 [https://bugs.python.org/issue34563]: On Windows, fix multiprocessing.Connection for very large read:
fix _winapi.PeekNamedPipe() and _winapi.ReadFile() for read larger than
INT_MAX (usually 2^31-1).

	bpo-34558 [https://bugs.python.org/issue34558]: Correct typo in Lib/ctypes/_aix.py

	bpo-34515 [https://bugs.python.org/issue34515]: Fix parsing non-ASCII identifiers in
lib2to3.pgen2.tokenize (PEP 3131).

	bpo-13312 [https://bugs.python.org/issue13312]: Avoids a possible integer underflow (undefined behavior) in the
time module's year handling code when passed a very low negative year
value.

	bpo-34472 [https://bugs.python.org/issue34472]: Improved compatibility for streamed files in zipfile.
Previously an optional signature was not being written and certain ZIP
applications were not supported. Patch by Silas Sewell.

	bpo-34454 [https://bugs.python.org/issue34454]: Fix the .fromisoformat() methods of datetime types crashing
when given unicode with non-UTF-8-encodable code points. Specifically,
datetime.fromisoformat() now accepts surrogate unicode code points used as
the separator. Report and tests by Alexey Izbyshev, patch by Paul Ganssle.

	bpo-6700 [https://bugs.python.org/issue6700]: Fix inspect.getsourcelines for module level frames/tracebacks.
Patch by Vladimir Matveev.

	bpo-34171 [https://bugs.python.org/issue34171]: Running the trace module no longer creates the
trace.cover file.

	bpo-34441 [https://bugs.python.org/issue34441]: Fix crash when an ABC-derived class with invalid
__subclasses__ is passed as the second argument to
issubclass(). Patch by Alexey Izbyshev.

	bpo-34341 [https://bugs.python.org/issue34341]: Appending to the ZIP archive with the ZIP64 extension no longer
grows the size of extra fields of existing entries.

	bpo-34333 [https://bugs.python.org/issue34333]: 修复在 pathlib.PurePath.with_suffix() 内使用%-formatting 格式化错误信息的错误。

	bpo-18540 [https://bugs.python.org/issue18540]: The imaplib.IMAP4 and imaplib.IMAP4_SSL
classes now resolve to the local host IP correctly when the default value
of host parameter ('') is used.

	bpo-34246 [https://bugs.python.org/issue34246]: smtplib.SMTP.send_message() no longer modifies the
content of the mail_options argument. Patch by Pablo S. Blum de Aguiar.

	bpo-31047 [https://bugs.python.org/issue31047]: Fix ntpath.abspath for invalid paths on windows. Patch by
Franz Woellert.

	bpo-34263 [https://bugs.python.org/issue34263]: asyncio's event loop will not pass timeouts longer than one day
to epoll/select etc.

	bpo-34035 [https://bugs.python.org/issue34035]: Fix several AttributeError in zipfile seek() methods. Patch by
Mickaël Schoentgen.

	bpo-32215 [https://bugs.python.org/issue32215]: Fix performance regression in sqlite3 when a DML
statement appeared in a different line than the rest of the SQL query.

	bpo-34251 [https://bugs.python.org/issue34251]: Restore msilib.Win64 to preserve backwards compatibility
since it's already used by distutils' bdist_msi command.

	bpo-19891 [https://bugs.python.org/issue19891]: Ignore errors caused by missing / non-writable homedir while
writing history during exit of an interactive session. Patch by Anthony
Sottile.

	bpo-34213 [https://bugs.python.org/issue34213]: Allow frozen dataclasses to have a field named "object".
Previously this conflicted with an internal use of "object".

	bpo-21446 [https://bugs.python.org/issue21446]: The reload fixer now uses importlib.reload()
instead of deprecated imp.reload().

	bpo-940286 [https://bugs.python.org/issue940286]: pydoc's Helper.showtopic() method now prints the cross
references of a topic correctly.

	bpo-34164 [https://bugs.python.org/issue34164]: base64.b32decode() could raise UnboundLocalError or
OverflowError for incorrect padding. Now it always raises
base64.Error in these cases.

	bpo-33729 [https://bugs.python.org/issue33729]: Fixed issues with arguments parsing in hashlib.

	bpo-34108 [https://bugs.python.org/issue34108]: Remove extraneous CR in 2to3 refactor.

	bpo-27494 [https://bugs.python.org/issue27494]: Reverted bpo-27494 [https://bugs.python.org/issue27494]. 2to3 rejects now a trailing comma in
generator expressions.

	bpo-33967 [https://bugs.python.org/issue33967]: functools.singledispatch now raises TypeError instead of
IndexError when no positional arguments are passed.

	bpo-34056 [https://bugs.python.org/issue34056]: Ensure the loader shim created by imp.load_module always
returns bytes from its get_data() function. This fixes using
imp.load_module with PEP 552 [https://www.python.org/dev/peps/pep-0552] hash-based pycs.

	bpo-34054 [https://bugs.python.org/issue34054]: The multiprocessing module now uses the monotonic clock
time.monotonic() instead of the system clock time.time() to
implement timeout.

	bpo-34044 [https://bugs.python.org/issue34044]: subprocess.Popen now copies the startupinfo argument to
leave it unchanged: it will modify the copy, so that the same
STARTUPINFO object can be used multiple times.

	bpo-34010 [https://bugs.python.org/issue34010]: Fixed a performance regression for reading streams with
tarfile. The buffered read should use a list, instead of appending to a
bytes object.

	bpo-34019 [https://bugs.python.org/issue34019]: webbrowser: Correct the arguments passed to Opera Browser when
opening a new URL using the webbrowser module. Patch by Bumsik Kim.

	bpo-33978 [https://bugs.python.org/issue33978]: Closed existing logging handlers before reconfiguration via
fileConfig and dictConfig. Patch by Karthikeyan Singaravelan.

	bpo-14117 [https://bugs.python.org/issue14117]: Make minor tweaks to turtledemo. The 'wikipedia' example is now
'rosette', decribing what it draws. The 'penrose' print output is
reduced. The'1024' output of 'tree' is eliminated.

	bpo-33974 [https://bugs.python.org/issue33974]: Fixed passing lists and tuples of strings containing special
characters ", \, {, } and \n as options to
ttk widgets.

	bpo-27500 [https://bugs.python.org/issue27500]: Fix getaddrinfo to resolve IPv6 addresses correctly.

	bpo-24567 [https://bugs.python.org/issue24567]: Improve random.choices() to handle subnormal input weights that
could occasionally trigger an IndexError.

	bpo-33871 [https://bugs.python.org/issue33871]: Fixed integer overflow in os.readv(), os.writev(),
os.preadv() and os.pwritev() and in os.sendfile() with
headers or trailers arguments (on BSD-based OSes and macOS).

	bpo-33899 [https://bugs.python.org/issue33899]: Tokenize module now implicitly emits a NEWLINE when provided
with input that does not have a trailing new line. This behavior now
matches what the C tokenizer does internally. Contributed by Ammar Askar.

	bpo-33916 [https://bugs.python.org/issue33916]: bz2 and lzma: When Decompressor.__init__() is called twice,
free the old lock to not leak memory.

	bpo-32568 [https://bugs.python.org/issue32568]: Make select.epoll() and its documentation consistent regarding
sizehint and flags.

	bpo-33833 [https://bugs.python.org/issue33833]: Fixed bug in asyncio where ProactorSocketTransport logs
AssertionError if force closed during write.

	bpo-33663 [https://bugs.python.org/issue33663]: Convert content length to string before putting to header.

	bpo-26544 [https://bugs.python.org/issue26544]: Fixed implementation of platform.libc_ver(). It almost
always returned version '2.9' for glibc.

	bpo-33805 [https://bugs.python.org/issue33805]: Improve error message of dataclasses.replace() when an InitVar
is not specified

	bpo-27397 [https://bugs.python.org/issue27397]: Make email module properly handle invalid-length base64
strings.

	bpo-33476 [https://bugs.python.org/issue33476]: Fix _header_value_parser.py when address group is missing final
';'. Contributed by Enrique Perez-Terron

	bpo-31014 [https://bugs.python.org/issue31014]: Fixed creating a controller for webbrowser when a user
specifies a path to an entry in the BROWSER environment variable. Based
on patch by John Still.

	bpo-33365 [https://bugs.python.org/issue33365]: Print the header values besides the header keys instead just
the header keys if debuglevel is set to >0 in http.client. Patch
by Marco Strigl.

	bpo-32933 [https://bugs.python.org/issue32933]: unittest.mock.mock_open() now supports iteration over the
file contents. Patch by Tony Flury.

	bpo-33336 [https://bugs.python.org/issue33336]: imaplib now allows MOVE command in IMAP4.uid() (RFC
6851: IMAP MOVE Extension) and potentially as a name of supported method
of IMAP4 object.

	bpo-31608 [https://bugs.python.org/issue31608]: Raise a TypeError instead of crashing if a
collections.deque subclass returns a non-deque from __new__. Patch
by Oren Milman.

	bpo-29456 [https://bugs.python.org/issue29456]: Fix bugs in hangul normalization: u1176, u11a7 and u11c3

文档

	bpo-34790 [https://bugs.python.org/issue34790]: Document how passing coroutines to asyncio.wait() can be
confusing.

	bpo-28617 [https://bugs.python.org/issue28617]: Fixed info in the stdtypes docs concerning the types that
support membership tests.

	bpo-34065 [https://bugs.python.org/issue34065]: Fix wrongly written basicConfig documentation markup syntax

	bpo-33460 [https://bugs.python.org/issue33460]: replaced ellipsis with correct error codes in tutorial chapter
3.

	bpo-33847 [https://bugs.python.org/issue33847]: Add '@' operator entry to index.

	bpo-25041 [https://bugs.python.org/issue25041]: Document AF_PACKET in the socket module.

测试

	bpo-34537 [https://bugs.python.org/issue34537]: Fix test_gdb.test_strings() when LC_ALL=C and GDB was
compiled with Python 3.6 or earlier.

	bpo-34587 [https://bugs.python.org/issue34587]: test_socket: Remove RDSTest.testCongestion(). The test tries to
fill the receiver's socket buffer and expects an error. But the RDS
protocol doesn't require that. Moreover, the Linux implementation of RDS
expects that the producer of the messages reduces its rate, it's not the
role of the receiver to trigger an error. The test fails on Fedora 28 by
design, so just remove it.

	bpo-34661 [https://bugs.python.org/issue34661]: Fix test_shutil if unzip doesn't support -t.

	bpo-34200 [https://bugs.python.org/issue34200]: Fixed non-deterministic flakiness of test_pkg by not using the
scary test.support.module_cleanup() logic to save and restore sys.modules
contents between test cases.

	bpo-34594 [https://bugs.python.org/issue34594]: Fix usage of hardcoded errno values in the tests.

	bpo-34542 [https://bugs.python.org/issue34542]: Use 3072 RSA keys and SHA-256 signature for test certs and
keys.

	bpo-11193 [https://bugs.python.org/issue11193]: Remove special condition for AIX in
test_subprocess.test_undecodable_env

	bpo-34490 [https://bugs.python.org/issue34490]: On AIX with AF_UNIX family sockets getsockname() does not
provide 'sockname', so skip calls to transport.get_extra_info('sockname')

	bpo-34391 [https://bugs.python.org/issue34391]: Fix ftplib test for TLS 1.3 by reading from data socket.

	bpo-34399 [https://bugs.python.org/issue34399]: Update all RSA keys and DH params to use at least 2048 bits.

	bpo-33746 [https://bugs.python.org/issue33746]: Fix test_unittest when run in verbose mode.

	bpo-33901 [https://bugs.python.org/issue33901]: Fix test_dbm_gnu on macOS with gdbm 1.15: add a larger value to
make sure that the file size changes.

	bpo-33873 [https://bugs.python.org/issue33873]: Fix a bug in regrtest that caused an extra test to run if
--huntrleaks/-R was used. Exit with error in case that invalid parameters
are specified to --huntrleaks/-R (at least one warmup run and one
repetition must be used).

	bpo-32663 [https://bugs.python.org/issue32663]: Making sure the SMTPUTF8SimTests class of tests gets run in
test_smtplib.py.

构建

	bpo-34710 [https://bugs.python.org/issue34710]: Fixed SSL module build with OpenSSL & pedantic CFLAGS.

	bpo-34582 [https://bugs.python.org/issue34582]: Add JUnit XML output for regression tests and update Azure
DevOps builds.

	bpo-34555 [https://bugs.python.org/issue34555]: Fix for case where it was not possible to have both
HAVE_LINUX_VM_SOCKETS_H and HAVE_SOCKADDR_ALG be undefined.

	bpo-34121 [https://bugs.python.org/issue34121]: Fix detection of C11 atomic support on clang.

	bpo-30345 [https://bugs.python.org/issue30345]: Add -g to LDFLAGS when compiling with LTO to get debug symbols.

	bpo-33648 [https://bugs.python.org/issue33648]: The --with-c-locale-warning configuration flag has been
removed. It has had no effect for about a year.

Windows

	bpo-34770 [https://bugs.python.org/issue34770]: Fix a possible null pointer dereference in pyshellext.cpp.

	bpo-34603 [https://bugs.python.org/issue34603]: Fix returning structs from functions produced by MSVC

	bpo-34581 [https://bugs.python.org/issue34581]: Guard MSVC-specific code in socketmodule.c with #ifdef
_MSC_VER.

	bpo-34062 [https://bugs.python.org/issue34062]: Fixed the '--list' and '--list-paths' arguments for the py.exe
launcher

	bpo-34225 [https://bugs.python.org/issue34225]: Ensure INCLUDE and LIB directories do not end with a backslash.

	bpo-34006 [https://bugs.python.org/issue34006]: Revert line length limit for Windows help docs. The line-length
limit is not needed because the pages appear in a separate app rather than
on a browser tab. It can also interact badly with the DPI setting.

	bpo-31546 [https://bugs.python.org/issue31546]: Restore running PyOS_InputHook while waiting for user input at
the prompt. The restores integration of interactive GUI windows (such as
Matplotlib figures) with the prompt on Windows.

	bpo-30237 [https://bugs.python.org/issue30237]: Output error when ReadConsole is canceled by
CancelSynchronousIo instead of crashing.

	bpo-29097 [https://bugs.python.org/issue29097]: Fix bug where datetime.fromtimestamp() erronously throws
an OSError on Windows for values between 0 and 86400. Patch by
Ammar Askar.

macOS

	bpo-34370 [https://bugs.python.org/issue34370]: Have macOS 10.9+ installer builds for 3.7.1rc and 3.6.7rc use a
development snapshot of Tk 8.6 (post-8.6.8) to mitigate certain scroller
issues seen with IDLE and tkinter apps.

	bpo-34405 [https://bugs.python.org/issue34405]: 在MacOS安装程序中将OpenSSL更新为1.1.1i。

	bpo-33635 [https://bugs.python.org/issue33635]: In macOS stat on some file descriptors (/dev/fd/3 f.e) will
result in bad file descriptor OSError. Guard against this exception was
added in is_dir, is_file and similar methods. DirEntry.is_dir can also
throw this exception so _RecursiveWildcardSelector._iterate_directories
was also extended with the same error ignoring pattern.

	bpo-31903 [https://bugs.python.org/issue31903]: In _scproxy, drop the GIL when calling into
SystemConfiguration to avoid deadlocks.

IDLE

	bpo-34548 [https://bugs.python.org/issue34548]: Use configured color theme for read-only text views.

	bpo-1529353 [https://bugs.python.org/issue1529353]: Enable "squeezing" of long outputs in the shell, to avoid
performance degradation and to clean up the history without losing it.
Squeezed outputs may be copied, viewed in a separate window, and
"unsqueezed".

	bpo-34047 [https://bugs.python.org/issue34047]: Fixed mousewheel scrolling direction on macOS.

	bpo-34275 [https://bugs.python.org/issue34275]: Make IDLE calltips always visible on Mac. Some MacOS-tk
combinations need .update_idletasks(). Patch by Kevin Walzer.

	bpo-34120 [https://bugs.python.org/issue34120]: Fix unresponsiveness after closing certain windows and dialogs.

	bpo-33975 [https://bugs.python.org/issue33975]: Avoid small type when running htests. Since part of the purpose
of human-viewed tests is to determine that widgets look right, it is
important that they look the same for testing as when running IDLE.

	bpo-33905 [https://bugs.python.org/issue33905]: Add test for idlelib.stackview.StackBrowser.

	bpo-33924 [https://bugs.python.org/issue33924]: Change mainmenu.menudefs key 'windows' to 'window'. Every other
menudef key is lowercase version of main menu entry.

	bpo-33906 [https://bugs.python.org/issue33906]: Rename idlelib.windows as window Match Window on the main menu
and remove last plural module name.

	bpo-33917 [https://bugs.python.org/issue33917]: Fix and document idlelib/idle_test/template.py. The revised
file compiles, runs, and tests OK. idle_test/README.txt explains how to
use it to create new IDLE test files.

	bpo-33904 [https://bugs.python.org/issue33904]: IDLE: In rstrip, rename class RstripExtension as Rstrip

	bpo-33907 [https://bugs.python.org/issue33907]: For consistency and clarity, rename an IDLE module and classes.
Module calltips and its class CallTips are now calltip and Calltip. In
module calltip_w, class CallTip is now CalltipWindow.

	bpo-33856 [https://bugs.python.org/issue33856]: Add "help" in the welcome message of IDLE

	bpo-33839 [https://bugs.python.org/issue33839]: IDLE: refactor ToolTip and CallTip and add documentation and
tests

	bpo-33855 [https://bugs.python.org/issue33855]: Minimally test all IDLE modules. Add missing files, import
module, instantiate classes, and check coverage. Check existing files.

工具/示例

	bpo-32962 [https://bugs.python.org/issue32962]: python-gdb now catches UnicodeDecodeError exceptions when
calling string().

	bpo-32962 [https://bugs.python.org/issue32962]: python-gdb now catches ValueError on read_var(): when Python
has no debug symbols for example.

C API

	bpo-34247 [https://bugs.python.org/issue34247]: Fix Py_Initialize() regression introduced in 3.7.0: read
environment variables like PYTHONOPTIMIZE.

	bpo-23927 [https://bugs.python.org/issue23927]: Fixed SystemError in
PyArg_ParseTupleAndKeywords() when the w* format unit is used
for optional parameter.

	bpo-34008 [https://bugs.python.org/issue34008]: Py_Main() can again be called after Py_Initialize(), as in
Python 3.6.

Python 3.7.0 正式版

发布日期: 2018-06-27

库

	bpo-33851 [https://bugs.python.org/issue33851]: Fix ast.get_docstring() for a node that lacks a
docstring.

C API

	bpo-33932 [https://bugs.python.org/issue33932]: Calling Py_Initialize() twice does nothing, instead of failing
with a fatal error: restore the Python 3.6 behaviour.

Python 3.7.0 release candidate 1

发布日期: 2018-06-12

核心与内置

	bpo-33803 [https://bugs.python.org/issue33803]: Fix a crash in hamt.c caused by enabling GC tracking for an
object that hadn't all of its fields set to NULL.

	bpo-33706 [https://bugs.python.org/issue33706]: Fix a crash in Python initialization when parsing the command
line options. Thanks Christoph Gohlke for the bug report and the fix!

	bpo-30654 [https://bugs.python.org/issue30654]: Fixed reset of the SIGINT handler to SIG_DFL on interpreter
shutdown even when there was a custom handler set previously. Patch by
Philipp Kerling.

	bpo-31849 [https://bugs.python.org/issue31849]: Fix signed/unsigned comparison warning in pyhash.c.

库

	bpo-30167 [https://bugs.python.org/issue30167]: Prevent site.main() exception if PYTHONSTARTUP is set. Patch by
Steve Weber.

	bpo-33812 [https://bugs.python.org/issue33812]: Datetime instance d with non-None tzinfo, but with
d.tzinfo.utcoffset(d) returning None is now treated as naive by the
astimezone() method.

	bpo-30805 [https://bugs.python.org/issue30805]: Avoid race condition with debug logging

	bpo-33694 [https://bugs.python.org/issue33694]: asyncio: Fix a race condition causing data loss on
pause_reading()/resume_reading() when using the ProactorEventLoop.

	bpo-32493 [https://bugs.python.org/issue32493]: Correct test for uuid_enc_be availability in
configure.ac. Patch by Michael Felt.

	bpo-33792 [https://bugs.python.org/issue33792]: Add asyncio.WindowsSelectorEventLoopPolicy and
asyncio.WindowsProactorEventLoopPolicy.

	bpo-33778 [https://bugs.python.org/issue33778]: Update unicodedata's database to Unicode version 11.0.0.

	bpo-33770 [https://bugs.python.org/issue33770]: improve base64 exception message for encoded inputs of invalid
length

	bpo-33769 [https://bugs.python.org/issue33769]: asyncio/start_tls: Fix error message; cancel callbacks in case
of an unhandled error; mark SSLTransport as closed if it is aborted.

	bpo-33767 [https://bugs.python.org/issue33767]: The concatenation (+) and repetition (*) sequence
operations now raise TypeError instead of SystemError when
performed on mmap.mmap objects. Patch by Zackery Spytz.

	bpo-33734 [https://bugs.python.org/issue33734]: asyncio/ssl: Fix AttributeError, increase default handshake
timeout

	bpo-11874 [https://bugs.python.org/issue11874]: Use a better regex when breaking usage into wrappable parts.
Avoids bogus assertion errors from custom metavar strings.

	bpo-33582 [https://bugs.python.org/issue33582]: Emit a deprecation warning for inspect.formatargspec

文档

	bpo-33409 [https://bugs.python.org/issue33409]: Clarified the relationship between PEP 538's
PYTHONCOERCECLOCALE and PEP 540's PYTHONUTF8 mode.

	bpo-33736 [https://bugs.python.org/issue33736]: Improve the documentation of asyncio.open_connection(),
asyncio.start_server() and their UNIX socket counterparts.

	bpo-31432 [https://bugs.python.org/issue31432]: Clarify meaning of CERT_NONE, CERT_OPTIONAL, and CERT_REQUIRED
flags for ssl.SSLContext.verify_mode.

构建

	bpo-5755 [https://bugs.python.org/issue5755]: Move -Wstrict-prototypes option to CFLAGS_NODIST from
OPT. This option emitted annoying warnings when building extension
modules written in C++.

Windows

	bpo-33720 [https://bugs.python.org/issue33720]: Reduces maximum marshal recursion depth on release builds.

IDLE

	bpo-33656 [https://bugs.python.org/issue33656]: On Windows, add API call saying that tk scales for DPI. On
Windows 8.1+ or 10, with DPI compatibility properties of the Python binary
unchanged, and a monitor resolution greater than 96 DPI, this should make
text and lines sharper. It should otherwise have no effect.

	bpo-33768 [https://bugs.python.org/issue33768]: Clicking on a context line moves that line to the top of the
editor window.

	bpo-33763 [https://bugs.python.org/issue33763]: IDLE: Use read-only text widget for code context instead of
label widget.

	bpo-33664 [https://bugs.python.org/issue33664]: Scroll IDLE editor text by lines. Previously, the mouse wheel
and scrollbar slider moved text by a fixed number of pixels, resulting in
partial lines at the top of the editor box. The change also applies to
the shell and grep output windows, but not to read-only text views.

	bpo-33679 [https://bugs.python.org/issue33679]: Enable theme-specific color configuration for Code Context. Use
the Highlights tab to see the setting for built-in themes or add settings
to custom themes.

	bpo-33642 [https://bugs.python.org/issue33642]: Display up to maxlines non-blank lines for Code Context. If
there is no current context, show a single blank line.

Python 3.7.0 beta 5

发布日期: 2018-05-30

核心与内置

	bpo-33622 [https://bugs.python.org/issue33622]: Fixed a leak when the garbage collector fails to add an object
with the __del__ method or referenced by it into the
gc.garbage list. PyGC_Collect() can now be called when an
exception is set and preserves it.

	bpo-33509 [https://bugs.python.org/issue33509]: Fix module_globals parameter of warnings.warn_explicit(): don't
crash if module_globals is not a dict.

	bpo-20104 [https://bugs.python.org/issue20104]: The new os.posix_spawn added in 3.7.0b1 was removed as we are
still working on what the API should look like. Expect this in 3.8
instead.

	bpo-33475 [https://bugs.python.org/issue33475]: Fixed miscellaneous bugs in converting annotations to strings
and optimized parentheses in the string representation.

	bpo-33391 [https://bugs.python.org/issue33391]: Fix a leak in set_symmetric_difference().

	bpo-28055 [https://bugs.python.org/issue28055]: Fix unaligned accesses in siphash24(). Patch by Rolf Eike Beer.

	bpo-32911 [https://bugs.python.org/issue32911]: Due to unexpected compatibility issues discovered during
downstream beta testing, reverted bpo-29463 [https://bugs.python.org/issue29463]. docstring field is
removed from Module, ClassDef, FunctionDef, and AsyncFunctionDef ast nodes
which was added in 3.7a1. Docstring expression is restored as a first
statement in their body. Based on patch by Inada Naoki.

	bpo-21983 [https://bugs.python.org/issue21983]: Fix a crash in ctypes.cast() in case the type argument is a
ctypes structured data type. Patch by Eryk Sun and Oren Milman.

库

	bpo-32751 [https://bugs.python.org/issue32751]: When cancelling the task due to a timeout,
asyncio.wait_for() will now wait until the cancellation is complete.

	bpo-32684 [https://bugs.python.org/issue32684]: Fix gather to propagate cancellation of itself even with
return_exceptions.

	bpo-33654 [https://bugs.python.org/issue33654]: Support protocol type switching in SSLTransport.set_protocol().

	bpo-33674 [https://bugs.python.org/issue33674]: Pause the transport as early as possible to further reduce the
risk of data_received() being called before connection_made().

	bpo-33674 [https://bugs.python.org/issue33674]: Fix a race condition in SSLProtocol.connection_made() of
asyncio.sslproto: start immediately the handshake instead of using
call_soon(). Previously, data_received() could be called before the
handshake started, causing the handshake to hang or fail.

	bpo-31647 [https://bugs.python.org/issue31647]: Fixed bug where calling write_eof() on a
_SelectorSocketTransport after it's already closed raises AttributeError.

	bpo-32610 [https://bugs.python.org/issue32610]: Make asyncio.all_tasks() return only pending tasks.

	bpo-32410 [https://bugs.python.org/issue32410]: Avoid blocking on file IO in sendfile fallback code

	bpo-33469 [https://bugs.python.org/issue33469]: Fix RuntimeError after closing loop that used run_in_executor

	bpo-33672 [https://bugs.python.org/issue33672]: Fix Task.__repr__ crash with Cython's bogus coroutines

	bpo-33654 [https://bugs.python.org/issue33654]: Fix transport.set_protocol() to support switching between
asyncio.Protocol and asyncio.BufferedProtocol. Fix loop.start_tls() to
work with asyncio.BufferedProtocols.

	bpo-33652 [https://bugs.python.org/issue33652]: Pickles of type variables and subscripted generics are now
future-proof and compatible with older Python versions.

	bpo-32493 [https://bugs.python.org/issue32493]: Fixed uuid.uuid1() on FreeBSD.

	bpo-33618 [https://bugs.python.org/issue33618]: Finalize and document preliminary and experimental TLS 1.3
support with OpenSSL 1.1.1

	bpo-33623 [https://bugs.python.org/issue33623]: Fix possible SIGSGV when asyncio.Future is created in __del__

	bpo-30877 [https://bugs.python.org/issue30877]: Fixed a bug in the Python implementation of the JSON decoder
that prevented the cache of parsed strings from clearing after finishing
the decoding. Based on patch by c-fos.

	bpo-33570 [https://bugs.python.org/issue33570]: Change TLS 1.3 cipher suite settings for compatibility with
OpenSSL 1.1.1-pre6 and newer. OpenSSL 1.1.1 will have TLS 1.3 ciphers
enabled by default.

	bpo-28556 [https://bugs.python.org/issue28556]: Do not simplify arguments to typing.Union. Now
Union[Manager, Employee] is not simplified to Employee at runtime.
Such simplification previously caused several bugs and limited
possibilities for introspection.

	bpo-33540 [https://bugs.python.org/issue33540]: Add a new block_on_close class attribute to
ForkingMixIn and ThreadingMixIn classes of socketserver.

	bpo-33548 [https://bugs.python.org/issue33548]: tempfile._candidate_tempdir_list should consider common TEMP
locations

	bpo-33109 [https://bugs.python.org/issue33109]: argparse subparsers are once again not required by default,
reverting the change in behavior introduced by bpo-26510 [https://bugs.python.org/issue26510] in 3.7.0a2.

	bpo-33536 [https://bugs.python.org/issue33536]: dataclasses.make_dataclass now checks for invalid field names
and duplicate fields. Also, added a check for invalid field
specifications.

	bpo-33542 [https://bugs.python.org/issue33542]: Prevent uuid.get_node from using a DUID instead of a MAC on
Windows. Patch by Zvi Effron

	bpo-26819 [https://bugs.python.org/issue26819]: Fix race condition with ReadTransport.resume_reading in
Windows proactor event loop.

	Fix failure in typing.get_type_hints() when ClassVar was provided as a
string forward reference.

	bpo-33505 [https://bugs.python.org/issue33505]: Optimize asyncio.ensure_future() by reordering if checks: 1.17x
faster.

	bpo-33497 [https://bugs.python.org/issue33497]: Add errors param to cgi.parse_multipart and make an encoding in
FieldStorage use the given errors (needed for Twisted). Patch by Amber
Brown.

	bpo-33495 [https://bugs.python.org/issue33495]: Change dataclasses.Fields repr to use the repr of each of its
members, instead of str. This makes it more clear what each field
actually represents. This is especially true for the 'type' member.

	bpo-33453 [https://bugs.python.org/issue33453]: Fix dataclasses to work if using literal string type
annotations or if using PEP 563 "Postponed Evaluation of Annotations".
Only specific string prefixes are detected for both ClassVar ("ClassVar"
and "typing.ClassVar") and InitVar ("InitVar" and "dataclasses.InitVar").

	bpo-28556 [https://bugs.python.org/issue28556]: Minor fixes in typing module: add annotations to
NamedTuple.__new__, pass *args and **kwds in
Generic.__new__. Original PRs by Paulius Šarka and Chad Dombrova.

	bpo-20087 [https://bugs.python.org/issue20087]: Updated alias mapping with glibc 2.27 supported locales.

	bpo-33422 [https://bugs.python.org/issue33422]: Fix trailing quotation marks getting deleted when looking up
byte/string literals on pydoc. Patch by Andrés Delfino.

	bpo-28167 [https://bugs.python.org/issue28167]: The function platform.linux_distribution and
platform.dist now trigger a DeprecationWarning and have been
marked for removal in Python 3.8

	bpo-33197 [https://bugs.python.org/issue33197]: Update error message when constructing invalid
inspect.Parameters Patch by Dong-hee Na.

	bpo-33263 [https://bugs.python.org/issue33263]: Fix FD leak in _SelectorSocketTransport Patch by Vlad
Starostin.

	bpo-32861 [https://bugs.python.org/issue32861]: The urllib.robotparser's __str__ representation now
includes wildcard entries and the "Crawl-delay" and "Request-rate" fields.
Patch by Michael Lazar.

	bpo-32257 [https://bugs.python.org/issue32257]: The ssl module now contains OP_NO_RENEGOTIATION constant,
available with OpenSSL 1.1.0h or 1.1.1.

	bpo-16865 [https://bugs.python.org/issue16865]: Support arrays >=2GiB in ctypes. Patch by Segev Finer.

文档

	bpo-23859 [https://bugs.python.org/issue23859]: Document that asyncio.wait() does not cancel its futures on
timeout.

	bpo-32436 [https://bugs.python.org/issue32436]: Document PEP 567 changes to asyncio.

	bpo-33604 [https://bugs.python.org/issue33604]: 更新HMAC md5默认报告DeprecationWarning，并将在3.8移除。

	bpo-33503 [https://bugs.python.org/issue33503]: 修复错误的pypi链接

	bpo-33421 [https://bugs.python.org/issue33421]: 为``typing.AsyncContextManager``添加缺失的文档。

测试

	bpo-33655 [https://bugs.python.org/issue33655]: 忽略运行在BSD平台的ZFS上时test_posix_fallocate的失败。

	bpo-32604 [https://bugs.python.org/issue32604]: 删除_xxsubinterpreters模块（用于测试）和相关的帮助程序。该模块最初最初是在3.7b1中添加的。

构建

	bpo-33614 [https://bugs.python.org/issue33614]: Ensures module definition files for the stable ABI on Windows
are correctly regenerated.

	bpo-33522 [https://bugs.python.org/issue33522]: Enable CI builds on Visual Studio Team Services at
https://python.visualstudio.com/cpython

	bpo-33012 [https://bugs.python.org/issue33012]: Add -Wno-cast-function-type for gcc 8 for silencing
warnings about function casts like casting to PyCFunction in method
definition lists.

macOS

	bpo-13631 [https://bugs.python.org/issue13631]: The .editrc file in user's home directory is now processed
correctly during the readline initialization through editline emulation on
macOS.

IDLE

	bpo-33628 [https://bugs.python.org/issue33628]: IDLE: Cleanup codecontext.py and its test.

	bpo-33564 [https://bugs.python.org/issue33564]: IDLE's code context now recognizes async as a block opener.

	bpo-32831 [https://bugs.python.org/issue32831]: Add docstrings and tests for codecontext.

Python 3.7.0 beta 4

发布日期: 2018-05-02

核心与内置

	bpo-33363 [https://bugs.python.org/issue33363]: 在异步函数外使用``async with`` 和 async for 时抛出SyntaxError异常。

	bpo-33128 [https://bugs.python.org/issue33128]: 修复导致PathFinder在sys.meta_path上出现两次的错误。由Pablo Galindo Salgado提供补丁。

	bpo-33312 [https://bugs.python.org/issue33312]: Fixed clang ubsan (undefined behavior sanitizer) warnings in
dictobject.c by adjusting how the internal struct _dictkeysobject shared
keys structure is declared.

	bpo-33231 [https://bugs.python.org/issue33231]: 修复 normalizestring() 中潜在的内存泄漏。

	bpo-33205 [https://bugs.python.org/issue33205]: Change dict growth function from
round_up_to_power_2(used*2+hashtable_size/2) to
round_up_to_power_2(used*3). Previously, dict is shrinked only when
used == 0. Now dict has more chance to be shrinked.

	bpo-29922 [https://bugs.python.org/issue29922]: Improved error messages in 'async with' when __aenter__()
or __aexit__() return non-awaitable object.

	bpo-33199 [https://bugs.python.org/issue33199]: Fix ma_version_tag in dict implementation is uninitialized
when copying from key-sharing dict.

库

	bpo-33281 [https://bugs.python.org/issue33281]: Fix ctypes.util.find_library regression on macOS.

	bpo-33383 [https://bugs.python.org/issue33383]: Fixed crash in the get() method of the dbm.ndbm database
object when it is called with a single argument.

	bpo-33329 [https://bugs.python.org/issue33329]: Fix multiprocessing regression on newer glibcs

	bpo-991266 [https://bugs.python.org/issue991266]: Fix quoting of the Comment attribute of
http.cookies.SimpleCookie.

	bpo-33131 [https://bugs.python.org/issue33131]: Upgrade bundled version of pip to 10.0.1.

	bpo-33308 [https://bugs.python.org/issue33308]: Fixed a crash in the parser module when converting an ST
object to a tree of tuples or lists with line_info=False and
col_info=True.

	bpo-33266 [https://bugs.python.org/issue33266]: lib2to3 now recognizes rf'...' strings.

	bpo-11594 [https://bugs.python.org/issue11594]: Ensure line-endings are respected when using lib2to3.

	bpo-33254 [https://bugs.python.org/issue33254]: Have importlib.resources.contents() and
importlib.abc.ResourceReader.contents() return an iterable
instead of an iterator.

	bpo-33256 [https://bugs.python.org/issue33256]: Fix display of <module> call in the html produced by
cgitb.html(). Patch by Stéphane Blondon.

	bpo-33185 [https://bugs.python.org/issue33185]: Fixed regression when running pydoc with the -m
switch. (The regression was introduced in 3.7.0b3 by the resolution of
bpo-33053 [https://bugs.python.org/issue33053])

This fix also changed pydoc to add os.getcwd() to sys.path
when necessary, rather than adding ".".

	bpo-33169 [https://bugs.python.org/issue33169]: Delete entries of None in sys.path_importer_cache
when importlib.machinery.invalidate_caches() is called.

	bpo-33217 [https://bugs.python.org/issue33217]: Deprecate looking up non-Enum objects in Enum classes and Enum
members (will raise TypeError in 3.8+).

	bpo-33203 [https://bugs.python.org/issue33203]: random.Random.choice() now raises IndexError for empty
sequences consistently even when called from subclasses without a
getrandbits() implementation.

	bpo-33224 [https://bugs.python.org/issue33224]: Update difflib.mdiff() for PEP 479. Convert an uncaught
StopIteration in a generator into a return-statement.

	bpo-33209 [https://bugs.python.org/issue33209]: End framing at the end of C implementation of
pickle.Pickler.dump().

	bpo-20104 [https://bugs.python.org/issue20104]: Improved error handling and fixed a reference leak in
os.posix_spawn().

	bpo-33175 [https://bugs.python.org/issue33175]: In dataclasses, Field.__set_name__ now looks up the
__set_name__ special method on the class, not the instance, of the default
value.

	bpo-33097 [https://bugs.python.org/issue33097]: Raise RuntimeError when executor.submit is called during
interpreter shutdown.

	bpo-31908 [https://bugs.python.org/issue31908]: Fix output of cover files for trace module command-line
tool. Previously emitted cover files only when --missing option was
used. Patch by Michael Selik.

文档

	bpo-33378 [https://bugs.python.org/issue33378]: Add Korean language switcher for https://docs.python.org/3/

	bpo-33276 [https://bugs.python.org/issue33276]: Clarify that the __path__ attribute on modules cannot be
just any value.

	bpo-33201 [https://bugs.python.org/issue33201]: Modernize documentation for writing C extension types.

	bpo-33195 [https://bugs.python.org/issue33195]: Deprecate Py_UNICODE usage in c-api/arg document.
Py_UNICODE related APIs are deprecated since Python 3.3, but it is
missed in the document.

	bpo-8243 [https://bugs.python.org/issue8243]: Add a note about curses.addch and curses.addstr exception
behavior when writing outside a window, or pad.

	bpo-32337 [https://bugs.python.org/issue32337]: Update documentation related with dict order.

测试

	bpo-33358 [https://bugs.python.org/issue33358]: Fix test_embed.test_pre_initialization_sys_options() when
the interpreter is built with --enable-shared.

构建

	bpo-33394 [https://bugs.python.org/issue33394]: Enable the verbose build for extension modules, when GNU make
is passed macros on the command line.

	bpo-33393 [https://bugs.python.org/issue33393]: Update config.guess and config.sub files.

	bpo-33377 [https://bugs.python.org/issue33377]: Add new triplets for mips r6 and riscv variants (used in
extension suffixes).

	bpo-32232 [https://bugs.python.org/issue32232]: By default, modules configured in Modules/Setup are no longer
built with -DPy_BUILD_CORE. Instead, modules that specifically need that
preprocessor definition include it in their individual entries.

	bpo-33182 [https://bugs.python.org/issue33182]: The embedding tests can once again be built with clang 6.0

Windows

	bpo-33184 [https://bugs.python.org/issue33184]: 在Windows安装程序中将OpenSSL更新为1.1.0h.

macOS

	bpo-33184 [https://bugs.python.org/issue33184]: 在MacOS安装程序中将OpenSSL更新为1.1.1h。

IDLE

	bpo-21474 [https://bugs.python.org/issue21474]: Update word/identifier definition from ascii to unicode. In
text and entry boxes, this affects selection by double-click, movement
left/right by control-left/right, and deletion left/right by
control-BACKSPACE/DEL.

	bpo-33204 [https://bugs.python.org/issue33204]: IDLE: consistently color invalid string prefixes. A 'u' string
prefix cannot be paired with either 'r' or 'f'. Consistently color as much
of the prefix, starting at the right, as is valid. Revise and extend
colorizer test.

工具/示例

	bpo-33189 [https://bugs.python.org/issue33189]: pygettext.py now recognizes only literal strings as
docstrings and translatable strings, and rejects bytes literals and
f-string expressions.

	bpo-31920 [https://bugs.python.org/issue31920]: Fixed handling directories as arguments in the pygettext
script. Based on patch by Oleg Krasnikov.

	bpo-29673 [https://bugs.python.org/issue29673]: Fix pystackv and pystack gdbinit macros.

	bpo-31583 [https://bugs.python.org/issue31583]: Fix 2to3 for using with --add-suffix option but without
--output-dir option for relative path to files in current directory.

Python 3.7.0 beta 3

发布日期: 2018-03-29

安全

	bpo-33136 [https://bugs.python.org/issue33136]: Harden ssl module against LibreSSL CVE-2018-8970.
X509_VERIFY_PARAM_set1_host() is called with an explicit namelen. A new
test ensures that NULL bytes are not allowed.

	bpo-33001 [https://bugs.python.org/issue33001]: Minimal fix to prevent buffer overrun in os.symlink on Windows

	bpo-32981 [https://bugs.python.org/issue32981]: Regexes in difflib and poplib were vulnerable to catastrophic
backtracking. These regexes formed potential DOS vectors (REDOS). They
have been refactored. This resolves CVE-2018-1060 and CVE-2018-1061. Patch
by Jamie Davis.

核心与内置

	bpo-33053 [https://bugs.python.org/issue33053]: When using the -m switch, sys.path[0] is now explicitly
expanded as the starting working directory, rather than being left as
the empty path (which allows imports from the current working directory at
the time of the import)

	bpo-33018 [https://bugs.python.org/issue33018]: Improve consistency of errors raised by issubclass() when
called with a non-class and an abstract base class as the first and second
arguments, respectively. Patch by Josh Bronson.

	bpo-33041 [https://bugs.python.org/issue33041]: Fixed jumping when the function contains an async for loop.

	bpo-33026 [https://bugs.python.org/issue33026]: Fixed jumping out of "with" block by setting f_lineno.

	bpo-33005 [https://bugs.python.org/issue33005]: Fix a crash on fork when using a custom memory allocator (ex:
using PYTHONMALLOC env var). _PyGILState_Reinit() and
_PyInterpreterState_Enable() now use the default RAW memory allocator to
allocate a new interpreters mutex on fork.

	bpo-17288 [https://bugs.python.org/issue17288]: Prevent jumps from 'return' and 'exception' trace events.

	bpo-32836 [https://bugs.python.org/issue32836]: Don't use temporary variables in cases of list/dict/set
comprehensions

库

	bpo-33141 [https://bugs.python.org/issue33141]: Have Field objects pass through __set_name__ to their default
values, if they have their own __set_name__.

	bpo-33096 [https://bugs.python.org/issue33096]: Allow ttk.Treeview.insert to insert iid that has a false
boolean value. Note iid=0 and iid=False would be same. Patch by Garvit
Khatri.

	bpo-32873 [https://bugs.python.org/issue32873]: Treat type variables and special typing forms as immutable by
copy and pickle. This fixes several minor issues and inconsistencies, and
improves backwards compatibility with Python 3.6.

	bpo-33134 [https://bugs.python.org/issue33134]: When computing dataclass's __hash__, use the lookup table to
contain the function which returns the __hash__ value. This is an
improvement over looking up a string, and then testing that string to see
what to do.

	bpo-33127 [https://bugs.python.org/issue33127]: ssl模块现在使用LibreSSL 2.7.1编译。

	bpo-32505 [https://bugs.python.org/issue32505]: 如果数据类的成员变量的类型为Field，但没有类型注解，则引发TypeError。

	bpo-33078 [https://bugs.python.org/issue33078]: 修复在OSX平台因为依赖sem_getvalue而导致的失败。

	bpo-33116 [https://bugs.python.org/issue33116]: 将'Field'添加到dataclasses.__all__。

	bpo-32896 [https://bugs.python.org/issue32896]: Fix an error where subclassing a dataclass with a field that
uses a default_factory would generate an incorrect class.

	bpo-33100 [https://bugs.python.org/issue33100]: Dataclasses: If a field has a default value that's a
MemberDescriptorType, then it's from that field being in __slots__, not an
actual default value.

	bpo-32953 [https://bugs.python.org/issue32953]: If a non-dataclass inherits from a frozen dataclass, allow
attributes to be added to the derived class. Only attributes from the
frozen dataclass cannot be assigned to. Require all dataclasses in a
hierarchy to be either all frozen or all non-frozen.

	bpo-33061 [https://bugs.python.org/issue33061]: 添加丢失的 NoReturn 到typing.py的 __all__

	bpo-33078 [https://bugs.python.org/issue33078]: Fix the size handling in multiprocessing.Queue when a pickling
error occurs.

	bpo-33064 [https://bugs.python.org/issue33064]: lib2to3 now properly supports trailing commas after *args
and **kwargs in function signatures.

	bpo-33056 [https://bugs.python.org/issue33056]: FIX properly close leaking fds in
concurrent.futures.ProcessPoolExecutor.

	bpo-33021 [https://bugs.python.org/issue33021]: Release the GIL during fstat() calls, avoiding hang of all
threads when calling mmap.mmap(), os.urandom(), and random.seed(). Patch
by Nir Soffer.

	bpo-31804 [https://bugs.python.org/issue31804]: Avoid failing in multiprocessing.Process if the standard
streams are closed or None at exit.

	bpo-33037 [https://bugs.python.org/issue33037]: Skip sending/receiving data after SSL transport closing.

	bpo-27683 [https://bugs.python.org/issue27683]: Fix a regression in ipaddress that result of
hosts() is empty when the network is constructed by a tuple
containing an integer mask and only 1 bit left for addresses.

	bpo-32999 [https://bugs.python.org/issue32999]: Fix C implementation of ABC.__subclasscheck__(cls,
subclass) crashed when subclass is not a type object.

	bpo-33009 [https://bugs.python.org/issue33009]: Fix inspect.signature() for single-parameter partialmethods.

	bpo-32969 [https://bugs.python.org/issue32969]: Expose several missing constants in zlib and fix corresponding
documentation.

	bpo-32056 [https://bugs.python.org/issue32056]: Improved exceptions raised for invalid number of channels and
sample width when read an audio file in modules aifc, wave
and sunau.

	bpo-32844 [https://bugs.python.org/issue32844]: Fix wrong redirection of a low descriptor (0 or 1) to stderr in
subprocess if another low descriptor is closed.

	bpo-32857 [https://bugs.python.org/issue32857]: In tkinter, after_cancel(None) now raises a
ValueError instead of canceling the first scheduled function.
Patch by Cheryl Sabella.

	bpo-31639 [https://bugs.python.org/issue31639]: http.server now exposes a ThreadedHTTPServer class and uses it
when the module is run with -m to cope with web browsers pre-opening
sockets.

	bpo-27645 [https://bugs.python.org/issue27645]: sqlite3.Connection now exposes a
backup method, if the underlying SQLite
library is at version 3.6.11 or higher. Patch by Lele Gaifax.

文档

	bpo-33126 [https://bugs.python.org/issue33126]: Document PyBuffer_ToContiguous().

	bpo-27212 [https://bugs.python.org/issue27212]: Modify documentation for the islice() recipe to consume
initial values up to the start index.

	bpo-28247 [https://bugs.python.org/issue28247]: Update zipapp documentation to describe how to make
standalone applications.

	bpo-18802 [https://bugs.python.org/issue18802]: Documentation changes for ipaddress. Patch by Jon Foster and
Berker Peksag.

	bpo-27428 [https://bugs.python.org/issue27428]: Update documentation to clarify that WindowsRegistryFinder
implements MetaPathFinder. (Patch by Himanshu Lakhara)

测试

	bpo-32872 [https://bugs.python.org/issue32872]: Avoid regrtest compatibility issue with namespace packages.

	bpo-32517 [https://bugs.python.org/issue32517]: Fix failing test_asyncio on macOS 10.12.2+ due to transport
of KqueueSelector loop was not being closed.

	bpo-19417 [https://bugs.python.org/issue19417]: Add test_bdb.py.

构建

	bpo-33163 [https://bugs.python.org/issue33163]: Upgrade pip to 9.0.3 and setuptools to v39.0.1.

Windows

	bpo-33016 [https://bugs.python.org/issue33016]: Fix potential use of uninitialized memory in
nt._getfinalpathname

	bpo-32903 [https://bugs.python.org/issue32903]: Fix a memory leak in os.chdir() on Windows if the current
directory is set to a UNC path.

macOS

	bpo-32726 [https://bugs.python.org/issue32726]: Build and link with private copy of Tcl/Tk 8.6 for the macOS
10.6+ installer. The 10.9+ installer variant already does this. This
means that the Python 3.7 provided by the python.org macOS installers no
longer need or use any external versions of Tcl/Tk, either system-provided
or user-installed, such as ActiveTcl.

IDLE

	bpo-32984 [https://bugs.python.org/issue32984]: Set __file__ while running a startup file. Like Python,
IDLE optionally runs one startup file in the Shell window before
presenting the first interactive input prompt. For IDLE, -s runs a
file named in environmental variable IDLESTARTUP or
PYTHONSTARTUP; -r file runs file. Python sets
__file__ to the startup file name before running the file and unsets
it before the first prompt. IDLE now does the same when run normally,
without the -n option.

	bpo-32940 [https://bugs.python.org/issue32940]: Simplify and rename StringTranslatePseudoMapping in pyparse.

工具/示例

	bpo-32885 [https://bugs.python.org/issue32885]: Add an -n flag for Tools/scripts/pathfix.py to disable
automatic backup creation (files with ~ suffix).

C API

	bpo-33042 [https://bugs.python.org/issue33042]: Embedding applications may once again call
PySys_ResetWarnOptions, PySys_AddWarnOption, and PySys_AddXOption prior to
calling Py_Initialize.

	bpo-32374 [https://bugs.python.org/issue32374]: Document that m_traverse for multi-phase initialized modules
can be called with m_state=NULL, and add a sanity check

Python 3.7.0 beta 2

发布日期: 2018-02-27

安全

	bpo-28414 [https://bugs.python.org/issue28414]: The ssl module now allows users to perform their own IDN
en/decoding when using SNI.

核心与内置

	bpo-32889 [https://bugs.python.org/issue32889]: Update Valgrind suppression list to account for the rename of
Py_ADDRESS_IN_RANG to address_in_range.

	bpo-31356 [https://bugs.python.org/issue31356]: Remove the new API added in bpo-31356 [https://bugs.python.org/issue31356] (gc.ensure_disabled()
context manager).

	bpo-32305 [https://bugs.python.org/issue32305]: For namespace packages, ensure that both __file__ and
__spec__.origin are set to None.

	bpo-32303 [https://bugs.python.org/issue32303]: Make sure __spec__.loader matches __loader__ for
namespace packages.

	bpo-32711 [https://bugs.python.org/issue32711]: Fix the warning messages for Python/ast_unparse.c. Patch by
Stéphane Wirtel

	bpo-32583 [https://bugs.python.org/issue32583]: Fix possible crashing in builtin Unicode decoders caused by
write out-of-bound errors when using customized decode error handlers.

库

	bpo-32960 [https://bugs.python.org/issue32960]: For dataclasses, disallow inheriting frozen from non-frozen
classes, and also disallow inheriting non-frozen from frozen classes. This
restriction will be relaxed at a future date.

	bpo-32713 [https://bugs.python.org/issue32713]: Fixed tarfile.itn handling of out-of-bounds float values. Patch
by Joffrey Fuhrer.

	bpo-32951 [https://bugs.python.org/issue32951]: Direct instantiation of SSLSocket and SSLObject objects is now
prohibited. The constructors were never documented, tested, or designed as
public constructors. Users were suppose to use ssl.wrap_socket() or
SSLContext.

	bpo-32929 [https://bugs.python.org/issue32929]: Remove the tri-state parameter "hash", and add the boolean
"unsafe_hash". If unsafe_hash is True, add a __hash__ function, but if a
__hash__ exists, raise TypeError. If unsafe_hash is False, add a __hash__
based on the values of eq= and frozen=. The unsafe_hash=False behavior is
the same as the old hash=None behavior. unsafe_hash=False is the default,
just as hash=None used to be.

	bpo-32947 [https://bugs.python.org/issue32947]: Add OP_ENABLE_MIDDLEBOX_COMPAT and test workaround for TLSv1.3
for future compatibility with OpenSSL 1.1.1.

	bpo-30622 [https://bugs.python.org/issue30622]: The ssl module now detects missing NPN support in LibreSSL.

	bpo-32922 [https://bugs.python.org/issue32922]: dbm.open() now encodes filename with the filesystem encoding
rather than default encoding.

	bpo-32859 [https://bugs.python.org/issue32859]: In os.dup2, don't check every call whether the dup3
syscall exists or not.

	bpo-32556 [https://bugs.python.org/issue32556]: nt._getfinalpathname, nt._getvolumepathname and
nt._getdiskusage now correctly convert from bytes.

	bpo-25988 [https://bugs.python.org/issue25988]: Emit a DeprecationWarning when using or importing an ABC
directly from collections rather than from collections.abc.

	bpo-21060 [https://bugs.python.org/issue21060]: Rewrite confusing message from setup.py upload from "No dist
file created in earlier command" to the more helpful "Must create and
upload files in one command".

	bpo-32852 [https://bugs.python.org/issue32852]: Make sure sys.argv remains as a list when running trace.

	bpo-31333 [https://bugs.python.org/issue31333]: _abc module is added. It is a speedup module with C
implementations for various functions and methods in abc. Creating an
ABC subclass and calling isinstance or issubclass with an ABC
subclass are up to 1.5x faster. In addition, this makes Python start-up up
to 10% faster.

Note that the new implementation hides internal registry and caches,
previously accessible via private attributes _abc_registry,
_abc_cache, and _abc_negative_cache. There are three debugging
helper methods that can be used instead _dump_registry,
_abc_registry_clear, and _abc_caches_clear.

	bpo-32841 [https://bugs.python.org/issue32841]: Fixed asyncio.Condition issue which silently ignored
cancellation after notifying and cancelling a conditional lock. Patch by
Bar Harel.

	bpo-32819 [https://bugs.python.org/issue32819]: ssl.match_hostname() has been simplified and no longer depends
on re and ipaddress module for wildcard and IP addresses. Error reporting
for invalid wildcards has been improved.

	bpo-32394 [https://bugs.python.org/issue32394]: socket: Remove
TCP_FASTOPEN,TCP_KEEPCNT,TCP_KEEPIDLE,TCP_KEEPINTVL flags on older version
Windows during run-time.

	bpo-31787 [https://bugs.python.org/issue31787]: Fixed refleaks of __init__() methods in various modules.
(Contributed by Oren Milman)

	bpo-30157 [https://bugs.python.org/issue30157]: Fixed guessing quote and delimiter in csv.Sniffer.sniff() when
only the last field is quoted. Patch by Jake Davis.

	bpo-32792 [https://bugs.python.org/issue32792]: collections.ChainMap() preserves the order of the underlying
mappings.

	bpo-32775 [https://bugs.python.org/issue32775]: fnmatch.translate() no longer produces patterns which
contain set operations. Sets starting with '[' or containing '--', '&&',
'~~' or '||' will be interpreted differently in regular expressions in
future versions. Currently they emit warnings. fnmatch.translate() now
avoids producing patterns containing such sets by accident.

	bpo-32622 [https://bugs.python.org/issue32622]: Implement native fast sendfile for Windows proactor event loop.

	bpo-32777 [https://bugs.python.org/issue32777]: Fix a rare but potential pre-exec child process deadlock in
subprocess on POSIX systems when marking file descriptors inheritable on
exec in the child process. This bug appears to have been introduced in
3.4.

	bpo-32647 [https://bugs.python.org/issue32647]: The ctypes module used to depend on indirect linking for
dlopen. The shared extension is now explicitly linked against libdl on
platforms with dl.

	bpo-32741 [https://bugs.python.org/issue32741]: Implement asyncio.TimerHandle.when() method.

	bpo-32691 [https://bugs.python.org/issue32691]: Use mod_spec.parent when running modules with pdb

	bpo-32734 [https://bugs.python.org/issue32734]: Fixed asyncio.Lock() safety issue which allowed acquiring
and locking the same lock multiple times, without it being free. Patch by
Bar Harel.

	bpo-32727 [https://bugs.python.org/issue32727]: Do not include name field in SMTP envelope from address. Patch
by Stéphane Wirtel

	bpo-31453 [https://bugs.python.org/issue31453]: Add TLSVersion constants and SSLContext.maximum_version /
minimum_version attributes. The new API wraps OpenSSL 1.1
https://www.openssl.org/docs/man1.1.0/ssl/SSL_CTX_set_min_proto_version.html
feature.

	bpo-24334 [https://bugs.python.org/issue24334]: Internal implementation details of ssl module were cleaned up.
The SSLSocket has one less layer of indirection. Owner and session
information are now handled by the SSLSocket and SSLObject constructor.
Channel binding implementation has been simplified.

	bpo-31848 [https://bugs.python.org/issue31848]: Fix the error handling in Aifc_read.initfp() when the SSND
chunk is not found. Patch by Zackery Spytz.

	bpo-32585 [https://bugs.python.org/issue32585]: Add Ttk spinbox widget to tkinter.ttk. Patch by Alan D
Moore.

	bpo-32221 [https://bugs.python.org/issue32221]: Various functions returning tuple containing IPv6 addresses now
omit %scope part since the same information is already encoded in
scopeid tuple item. Especially this speeds up socket.recvfrom()
when it receives multicast packet since useless resolving of network
interface name is omitted.

	bpo-30693 [https://bugs.python.org/issue30693]: The TarFile class now recurses directories in a reproducible
way.

	bpo-30693 [https://bugs.python.org/issue30693]: The ZipFile class now recurses directories in a reproducible
way.

文档

	bpo-28124 [https://bugs.python.org/issue28124]: The ssl module function ssl.wrap_socket() has been
de-emphasized and deprecated in favor of the more secure and efficient
SSLContext.wrap_socket() method.

	bpo-17232 [https://bugs.python.org/issue17232]: Clarify docs for -O and -OO. Patch by Terry Reedy.

	bpo-32436 [https://bugs.python.org/issue32436]: Add documentation for the contextvars module (PEP 567).

	bpo-32800 [https://bugs.python.org/issue32800]: Update link to w3c doc for xml default namespaces.

	bpo-11015 [https://bugs.python.org/issue11015]: Update test.support documentation.

	bpo-8722 [https://bugs.python.org/issue8722]: Document __getattr__() behavior when property get()
method raises AttributeError.

	bpo-32614 [https://bugs.python.org/issue32614]: Modify RE examples in documentation to use raw strings to
prevent DeprecationWarning and add text to REGEX HOWTO to highlight
the deprecation.

	bpo-31972 [https://bugs.python.org/issue31972]: Improve docstrings for pathlib.PurePath subclasses.

测试

	bpo-31809 [https://bugs.python.org/issue31809]: Add tests to verify connection with secp ECDH curves.

构建

	bpo-32898 [https://bugs.python.org/issue32898]: Fix the python debug build when using COUNT_ALLOCS.

Windows

	bpo-32901 [https://bugs.python.org/issue32901]: Update Tcl and Tk versions to 8.6.8

	bpo-31966 [https://bugs.python.org/issue31966]: Fixed WindowsConsoleIO.write() for writing empty data.

	bpo-32409 [https://bugs.python.org/issue32409]: Ensures activate.bat can handle Unicode contents.

	bpo-32457 [https://bugs.python.org/issue32457]: Improves handling of denormalized executable path when
launching Python.

	bpo-32370 [https://bugs.python.org/issue32370]: Use the correct encoding for ipconfig output in the uuid
module. Patch by Segev Finer.

	bpo-29248 [https://bugs.python.org/issue29248]: Fix os.readlink() on Windows, which was mistakenly
treating the PrintNameOffset field of the reparse data buffer as a
number of characters instead of bytes. Patch by Craig Holmquist and SSE4.

macOS

	bpo-32901 [https://bugs.python.org/issue32901]: Update macOS 10.9+ installer to Tcl/Tk 8.6.8.

IDLE

	bpo-32916 [https://bugs.python.org/issue32916]: Change str to code in pyparse.

	bpo-32905 [https://bugs.python.org/issue32905]: Remove unused code in pyparse module.

	bpo-32874 [https://bugs.python.org/issue32874]: Add tests for pyparse.

	bpo-32837 [https://bugs.python.org/issue32837]: Using the system and place-dependent default encoding for
open() is a bad idea for IDLE's system and location-independent files.

	bpo-32826 [https://bugs.python.org/issue32826]: Add "encoding=utf-8" to open() in IDLE's test_help_about. GUI
test test_file_buttons() only looks at initial ascii-only lines, but
failed on systems where open() defaults to 'ascii' because readline()
internally reads and decodes far enough ahead to encounter a non-ascii
character in CREDITS.txt.

	bpo-32765 [https://bugs.python.org/issue32765]: Update configdialog General tab docstring to add new widgets to
the widget list.

工具/示例

	bpo-32222 [https://bugs.python.org/issue32222]: Fix pygettext not extracting docstrings for functions with type
annotated arguments. Patch by Toby Harradine.

Python 3.7.0 beta 1

发布日期: 2018-01-30

核心与内置

	bpo-32703 [https://bugs.python.org/issue32703]: Fix coroutine's ResourceWarning when there's an active error
set when it's being finalized.

	bpo-32650 [https://bugs.python.org/issue32650]: Pdb and other debuggers dependent on bdb.py will correctly step
over (next command) native coroutines. Patch by Pablo Galindo.

	bpo-28685 [https://bugs.python.org/issue28685]: Optimize list.sort() and sorted() by using type specialized
comparisons when possible.

	bpo-32685 [https://bugs.python.org/issue32685]: Improve suggestion when the Python 2 form of print statement is
either present on the same line as the header of a compound statement or
else terminated by a semi-colon instead of a newline. Patch by Nitish
Chandra.

	bpo-32697 [https://bugs.python.org/issue32697]: Python now explicitly preserves the definition order of
keyword-only parameters. It's always preserved their order, but this
behavior was never guaranteed before; this behavior is now guaranteed and
tested.

	bpo-32690 [https://bugs.python.org/issue32690]: The locals() dictionary now displays in the lexical order that
variables were defined. Previously, the order was reversed.

	bpo-32677 [https://bugs.python.org/issue32677]: Add .isascii() method to str, bytes and
bytearray. It can be used to test that string contains only ASCII
characters.

	bpo-32670 [https://bugs.python.org/issue32670]: Enforce PEP 479 [https://www.python.org/dev/peps/pep-0479] for all code.

This means that manually raising a StopIteration exception from a
generator is prohibited for all code, regardless of whether 'from
__future__ import generator_stop' was used or not.

	bpo-32591 [https://bugs.python.org/issue32591]: Added built-in support for tracking the origin of coroutine
objects; see sys.set_coroutine_origin_tracking_depth and
CoroutineType.cr_origin. This replaces the asyncio debug mode's use of
coroutine wrapping for native coroutine objects.

	bpo-31368 [https://bugs.python.org/issue31368]: Expose preadv and pwritev system calls in the os module. Patch
by Pablo Galindo

	bpo-32544 [https://bugs.python.org/issue32544]: hasattr(obj, name) and getattr(obj, name, default) are
about 4 times faster than before when name is not found and obj
doesn't override __getattr__ or __getattribute__.

	bpo-26163 [https://bugs.python.org/issue26163]: Improved frozenset() hash to create more distinct hash values
when faced with datasets containing many similar values.

	bpo-32550 [https://bugs.python.org/issue32550]: Remove the STORE_ANNOTATION bytecode.

	bpo-20104 [https://bugs.python.org/issue20104]: Expose posix_spawn as a low level API in the os module.
(removed before 3.7.0rc1)

	bpo-24340 [https://bugs.python.org/issue24340]: Fixed estimation of the code stack size.

	bpo-32436 [https://bugs.python.org/issue32436]: Implement PEP 567 [https://www.python.org/dev/peps/pep-0567] Context Variables.

	bpo-18533 [https://bugs.python.org/issue18533]: repr() on a dict containing its own values() or
items() no longer raises RecursionError; OrderedDict similarly.
Instead, use ..., as for other recursive structures. Patch by Ben
North.

	bpo-20891 [https://bugs.python.org/issue20891]: Py_Initialize() now creates the GIL. The GIL is no longer
created "on demand" to fix a race condition when PyGILState_Ensure() is
called in a non-Python thread.

	bpo-32028 [https://bugs.python.org/issue32028]: Leading whitespace is now correctly ignored when generating
suggestions for converting Py2 print statements to Py3 builtin print
function calls. Patch by Sanyam Khurana.

	bpo-31179 [https://bugs.python.org/issue31179]: Make dict.copy() up to 5.5 times faster.

	bpo-31113 [https://bugs.python.org/issue31113]: Get rid of recursion in the compiler for normal control flow.

库

	bpo-25988 [https://bugs.python.org/issue25988]: Deprecate exposing the contents of collections.abc in the
regular collections module.

	bpo-31429 [https://bugs.python.org/issue31429]: The default cipher suite selection of the ssl module now uses a
blacklist approach rather than a hard-coded whitelist. Python no longer
re-enables ciphers that have been blocked by OpenSSL security update.
Default cipher suite selection can be configured on compile time.

	bpo-30306 [https://bugs.python.org/issue30306]: contextlib.contextmanager now releases the arguments passed to
the underlying generator as soon as the context manager is entered.
Previously it would keep them alive for as long as the context manager was
alive, even when not being used as a function decorator. Patch by Martin
Teichmann.

	bpo-21417 [https://bugs.python.org/issue21417]: Added support for setting the compression level for
zipfile.ZipFile.

	bpo-32251 [https://bugs.python.org/issue32251]: Implement asyncio.BufferedProtocol (provisional API).

	bpo-32513 [https://bugs.python.org/issue32513]: In dataclasses, allow easier overriding of dunder methods
without specifying decorator parameters.

	bpo-32660 [https://bugs.python.org/issue32660]: termios makes available FIONREAD, FIONCLEX,
FIOCLEX, FIOASYNC and FIONBIO also under Solaris/derivatives.

	bpo-27931 [https://bugs.python.org/issue27931]: Fix email address header parsing error when the username is an
empty quoted string. Patch by Xiang Zhang.

	bpo-32659 [https://bugs.python.org/issue32659]: Under Solaris and derivatives, os.stat_result provides
a st_fstype attribute.

	bpo-32662 [https://bugs.python.org/issue32662]: Implement Server.start_serving(), Server.serve_forever(), and
Server.is_serving() methods. Add 'start_serving' keyword parameter to
loop.create_server() and loop.create_unix_server().

	bpo-32391 [https://bugs.python.org/issue32391]: Implement asyncio.StreamWriter.wait_closed() and
asyncio.StreamWriter.is_closing() methods

	bpo-32643 [https://bugs.python.org/issue32643]: Make Task._step, Task._wakeup and Future._schedule_callbacks
methods private.

	bpo-32630 [https://bugs.python.org/issue32630]: Refactor decimal module to use contextvars to store decimal
context.

	bpo-32622 [https://bugs.python.org/issue32622]: Add asyncio.AbstractEventLoop.sendfile() method.

	bpo-32304 [https://bugs.python.org/issue32304]: distutils' upload command no longer corrupts tar files ending
with a CR byte, and no longer tries to convert CR to CRLF in any of the
upload text fields.

	bpo-32502 [https://bugs.python.org/issue32502]: uuid.uuid1 no longer raises an exception if a 64-bit hardware
address is encountered.

	bpo-32596 [https://bugs.python.org/issue32596]: concurrent.futures imports ThreadPoolExecutor and
ProcessPoolExecutor lazily (using PEP 562 [https://www.python.org/dev/peps/pep-0562]). It makes import
asyncio about 15% faster because asyncio uses only
ThreadPoolExecutor by default.

	bpo-31801 [https://bugs.python.org/issue31801]: Add _ignore_ to Enum so temporary variables can be used
during class construction without being turned into members.

	bpo-32576 [https://bugs.python.org/issue32576]: Use queue.SimpleQueue() in places where it can be invoked from
a weakref callback.

	bpo-32574 [https://bugs.python.org/issue32574]: Fix memory leak in asyncio.Queue, when the queue has limited
size and it is full, the cancelation of queue.put() can cause a memory
leak. Patch by: José Melero.

	bpo-32521 [https://bugs.python.org/issue32521]: The nis module is now compatible with new libnsl and headers
location.

	bpo-32467 [https://bugs.python.org/issue32467]: collections.abc.ValuesView now inherits from
collections.abc.Collection.

	bpo-32473 [https://bugs.python.org/issue32473]: Improve ABCMeta._dump_registry() output readability

	bpo-32102 [https://bugs.python.org/issue32102]: New argument capture_output for subprocess.run

	bpo-32521 [https://bugs.python.org/issue32521]: glibc has removed Sun RPC. Use replacement libtirpc headers and
library in nis module.

	bpo-32493 [https://bugs.python.org/issue32493]: UUID module fixes build for FreeBSD/OpenBSD

	bpo-32503 [https://bugs.python.org/issue32503]: Pickling with protocol 4 no longer creates too small frames.

	bpo-29237 [https://bugs.python.org/issue29237]: Create enum for pstats sorting options

	bpo-32454 [https://bugs.python.org/issue32454]: Add close(fd) function to the socket module.

	bpo-25942 [https://bugs.python.org/issue25942]: The subprocess module is now more graceful when handling a
Ctrl-C KeyboardInterrupt during subprocess.call, subprocess.run, or a
Popen context manager. It now waits a short amount of time for the child
(presumed to have also gotten the SIGINT) to exit, before continuing the
KeyboardInterrupt exception handling. This still includes a SIGKILL in
the call() and run() APIs, but at least the child had a chance first.

	bpo-32433 [https://bugs.python.org/issue32433]: The hmac module now has hmac.digest(), which provides an
optimized HMAC digest.

	bpo-28134 [https://bugs.python.org/issue28134]: Sockets now auto-detect family, type and protocol from file
descriptor by default.

	bpo-32404 [https://bugs.python.org/issue32404]: Fix bug where datetime.datetime.fromtimestamp() did not
call __new__ in datetime.datetime subclasses.

	bpo-32403 [https://bugs.python.org/issue32403]: Improved speed of datetime.date and
datetime.datetime alternate constructors.

	bpo-32228 [https://bugs.python.org/issue32228]: Ensure that truncate() preserves the file position (as
reported by tell()) after writes longer than the buffer size.

	bpo-32410 [https://bugs.python.org/issue32410]: Implement loop.sock_sendfile for asyncio event loop.

	bpo-22908 [https://bugs.python.org/issue22908]: Added seek and tell to the ZipExtFile class. This only works if
the file object used to open the zipfile is seekable.

	bpo-32373 [https://bugs.python.org/issue32373]: Add socket.getblocking() method.

	bpo-32248 [https://bugs.python.org/issue32248]: Add importlib.resources and
importlib.abc.ResourceReader as the unified API for reading
resources contained within packages. Loaders wishing to support resource
reading must implement the get_resource_reader() method.
File-based and zipimport-based loaders both implement these APIs.
importlib.abc.ResourceLoader is deprecated in favor of these new
APIs.

	bpo-32320 [https://bugs.python.org/issue32320]: collections.namedtuple() now supports default values.

	bpo-29302 [https://bugs.python.org/issue29302]: Add contextlib.AsyncExitStack. Patch by Alexander Mohr and Ilya
Kulakov.

	bpo-31961 [https://bugs.python.org/issue31961]: Removed in Python 3.7.0b2. The args argument of
subprocess.Popen can now be a path-like object. If args is given
as a sequence, it's first element can now be a path-like object as
well.

	bpo-31900 [https://bugs.python.org/issue31900]: The locale.localeconv() function now sets temporarily the
LC_CTYPE locale to the LC_NUMERIC locale to decode
decimal_point and thousands_sep byte strings if they are non-ASCII
or longer than 1 byte, and the LC_NUMERIC locale is different than the
LC_CTYPE locale. This temporary change affects other threads.

Same change for the str.format() method when formatting a number
(int, float, float and subclasses) with the
n type (ex: '{:n}'.format(1234)).

	bpo-31853 [https://bugs.python.org/issue31853]: Use super().method instead of socket.method in SSLSocket. They
were there most likely for legacy reasons.

	bpo-31399 [https://bugs.python.org/issue31399]: The ssl module now uses OpenSSL's X509_VERIFY_PARAM_set1_host()
and X509_VERIFY_PARAM_set1_ip() API to verify hostname and IP addresses.
Subject common name fallback can be disabled with
SSLContext.hostname_checks_common_name.

	bpo-14976 [https://bugs.python.org/issue14976]: Add a queue.SimpleQueue class, an unbounded FIFO queue with a
reentrant C implementation of put().

文档

	bpo-32724 [https://bugs.python.org/issue32724]: Add references to some commands in the documentation of Pdb.
Patch by Stéphane Wirtel

	bpo-32649 [https://bugs.python.org/issue32649]: Complete the C API documentation, profiling and tracing part
with the newly added per-opcode events.

	bpo-17799 [https://bugs.python.org/issue17799]: Explain real behaviour of sys.settrace and sys.setprofile and
their C-API counterparts regarding which type of events are received in
each function. Patch by Pablo Galindo Salgado.

测试

	bpo-32721 [https://bugs.python.org/issue32721]: Fix test_hashlib to not fail if the _md5 module is not built.

	bpo-28414 [https://bugs.python.org/issue28414]: Add test cases for IDNA 2003 and 2008 host names. IDNA 2003
internationalized host names are working since bpo-31399 [https://bugs.python.org/issue31399] has landed. IDNA
2008 are still broken.

	bpo-32604 [https://bugs.python.org/issue32604]: Add a new "_xxsubinterpreters" extension module that exposes
the existing subinterpreter C-API and a new cross-interpreter data sharing
mechanism. The module is primarily intended for more thorough testing of
the existing subinterpreter support.

Note that the _xxsubinterpreters module has been removed in 3.7.0rc1.

	bpo-32602 [https://bugs.python.org/issue32602]: Add test certs and test for ECDSA cert and EC/RSA dual mode.

	bpo-32549 [https://bugs.python.org/issue32549]: On Travis CI, Python now Compiles and uses a local copy of
OpenSSL 1.1.0g for testing.

构建

	bpo-32635 [https://bugs.python.org/issue32635]: Fix segfault of the crypt module when libxcrypt is provided
instead of libcrypt at the system.

	bpo-32598 [https://bugs.python.org/issue32598]: Use autoconf to detect OpenSSL libs, headers and supported
features. The ax_check_openssl M4 macro uses pkg-config to locate OpenSSL
and falls back to manual search.

	bpo-32593 [https://bugs.python.org/issue32593]: 放弃对 FreeBSD 9 及更早版本的支持。

	bpo-29708 [https://bugs.python.org/issue29708]: If the SOURCE_DATE_EPOCH environment variable is set,
py_compile will always create hash-based .pyc files.

Windows

	bpo-32588 [https://bugs.python.org/issue32588]: Create standalone _distutils_findvs module and add missing
_queue module to installer.

	bpo-29911 [https://bugs.python.org/issue29911]: Ensure separate Modify and Uninstall buttons are displayed.

	bpo-32507 [https://bugs.python.org/issue32507]: Use app-local UCRT install rather than the proper update for
old versions of Windows.

macOS

	bpo-32726 [https://bugs.python.org/issue32726]: Provide an additional, more modern macOS installer variant that
supports macOS 10.9+ systems in 64-bit mode only. Upgrade the supplied
third-party libraries to OpenSSL 1.1.0g and to SQLite 3.22.0. The 10.9+
installer now links with and supplies its own copy of Tcl/Tk 8.6.

	bpo-28440 [https://bugs.python.org/issue28440]: No longer add /Library/Python/3.x/site-packages to sys.path for
macOS framework builds to avoid future conflicts.

C API

	bpo-32681 [https://bugs.python.org/issue32681]: Fix uninitialized variable 'res' in the C implementation of
os.dup2. Patch by Stéphane Wirtel

	bpo-10381 [https://bugs.python.org/issue10381]: Add C API access to the datetime.timezone constructor and
datetime.timzone.UTC singleton.

Python 3.7.0 alpha 4

发布日期: 2018-01-08

核心与内置

	bpo-31975 [https://bugs.python.org/issue31975]: The default warning filter list now starts with a
"default::DeprecationWarning:__main__" entry, so deprecation warnings are
once again shown by default in single-file scripts and at the interactive
prompt.

	bpo-32226 [https://bugs.python.org/issue32226]: __class_getitem__ is now an automatic class method.

	bpo-32399 [https://bugs.python.org/issue32399]: Add AIX uuid library support for RFC4122 using uuid_create() in
libc.a

	bpo-32390 [https://bugs.python.org/issue32390]: Fix the compilation failure on AIX after the f_fsid field has
been added to the object returned by os.statvfs() (bpo-32143 [https://bugs.python.org/issue32143]). Original
patch by Michael Felt.

	bpo-32379 [https://bugs.python.org/issue32379]: Make MRO computation faster when a class inherits from a single
base.

	bpo-32259 [https://bugs.python.org/issue32259]: The error message of a TypeError raised when unpack
non-iterable is now more specific.

	bpo-27169 [https://bugs.python.org/issue27169]: The __debug__ constant is now optimized out at compile
time. This fixes also bpo-22091 [https://bugs.python.org/issue22091].

	bpo-32329 [https://bugs.python.org/issue32329]: The -R option now turns on hash randomization when
the PYTHONHASHSEED environment variable is set to 0.
Previously, the option was ignored. Moreover,
sys.flags.hash_randomization is now properly set to 0 when hash
randomization is turned off by PYTHONHASHSEED=0.

	bpo-30416 [https://bugs.python.org/issue30416]: The optimizer is now protected from spending much time doing
complex calculations and consuming much memory for creating large
constants in constant folding. Increased limits for constants that can be
produced in constant folding.

	bpo-32282 [https://bugs.python.org/issue32282]: Fix an unnecessary ifdef in the include of VersionHelpers.h in
socketmodule on Windows.

	bpo-30579 [https://bugs.python.org/issue30579]: Implement TracebackType.__new__ to allow Python-level creation
of traceback objects, and make TracebackType.tb_next mutable.

	bpo-32260 [https://bugs.python.org/issue32260]: Don't byte swap the input keys to the SipHash algorithm on
big-endian platforms. This should ensure siphash gives consistent results
across platforms.

	bpo-31506 [https://bugs.python.org/issue31506]: Improve the error message logic for object.__new__ and
object.__init__. Patch by Sanyam Khurana.

	bpo-20361 [https://bugs.python.org/issue20361]: -b and -bb now inject 'default::BytesWarning' and
error::BytesWarning entries into sys.warnoptions, ensuring that
they take precedence over any other warning filters configured via the
-W option or the PYTHONWARNINGS environment variable.

	bpo-32230 [https://bugs.python.org/issue32230]: -X dev now injects a 'default' entry into
sys.warnoptions, ensuring that it behaves identically to actually passing
-Wdefault at the command line.

	bpo-29240 [https://bugs.python.org/issue29240]: Add a new UTF-8 mode: implementation of the PEP 540 [https://www.python.org/dev/peps/pep-0540].

	bpo-32226 [https://bugs.python.org/issue32226]: PEP 560 [https://www.python.org/dev/peps/pep-0560]: Add support for __mro_entries__ and
__class_getitem__. Implemented by Ivan Levkivskyi.

	bpo-32225 [https://bugs.python.org/issue32225]: PEP 562 [https://www.python.org/dev/peps/pep-0562]: Add support for module __getattr__ and
__dir__. Implemented by Ivan Levkivskyi.

	bpo-31901 [https://bugs.python.org/issue31901]: The atexit module now has its callback stored per
interpreter.

	bpo-31650 [https://bugs.python.org/issue31650]: Implement PEP 552 [https://www.python.org/dev/peps/pep-0552] (Deterministic pycs). Python now supports
invalidating bytecode cache files bashed on a source content hash rather
than source last-modified time.

	bpo-29469 [https://bugs.python.org/issue29469]: Move constant folding from bytecode layer to AST layer.
Original patch by Eugene Toder.

库

	bpo-32506 [https://bugs.python.org/issue32506]: Now that dict is defined as keeping insertion order, drop
OrderedDict and just use plain dict.

	bpo-32279 [https://bugs.python.org/issue32279]: Add params to dataclasses.make_dataclasses(): init, repr, eq,
order, hash, and frozen. Pass them through to dataclass().

	bpo-32278 [https://bugs.python.org/issue32278]: Make type information optional on dataclasses.make_dataclass().
If omitted, the string 'typing.Any' is used.

	bpo-32499 [https://bugs.python.org/issue32499]: Add dataclasses.is_dataclass(obj), which returns True if obj is
a dataclass or an instance of one.

	bpo-32468 [https://bugs.python.org/issue32468]: Improve frame repr() to mention filename, code name and current
line number.

	bpo-23749 [https://bugs.python.org/issue23749]: asyncio: Implement loop.start_tls()

	bpo-32441 [https://bugs.python.org/issue32441]: Return the new file descriptor (i.e., the second argument) from
os.dup2. Previously, None was always returned.

	bpo-32422 [https://bugs.python.org/issue32422]: functools.lru_cache uses less memory (3 words for each
cached key) and takes about 1/3 time for cyclic GC.

	bpo-31721 [https://bugs.python.org/issue31721]: Prevent Python crash from happening when Future._log_traceback
is set to True manually. Now it can only be set to False, or a ValueError
is raised.

	bpo-32415 [https://bugs.python.org/issue32415]: asyncio: Add Task.get_loop() and Future.get_loop()

	bpo-26133 [https://bugs.python.org/issue26133]: Don't unsubscribe signals in asyncio UNIX event loop on
interpreter shutdown.

	bpo-32363 [https://bugs.python.org/issue32363]: Make asyncio.Task.set_exception() and set_result() raise
NotImplementedError. Task._step() and Future.__await__() raise proper
exceptions when they are in an invalid state, instead of raising an
AssertionError.

	bpo-32357 [https://bugs.python.org/issue32357]: Optimize asyncio.iscoroutine() and loop.create_task() for
non-native coroutines (e.g. async/await compiled with Cython).

'loop.create_task(python_coroutine)' used to be 20% faster than
'loop.create_task(cython_coroutine)'. Now, the latter is as fast.

	bpo-32356 [https://bugs.python.org/issue32356]: asyncio.transport.resume_reading() and pause_reading() are now
idempotent. New transport.is_reading() method is added.

	bpo-32355 [https://bugs.python.org/issue32355]: Optimize asyncio.gather(); now up to 15% faster.

	bpo-32351 [https://bugs.python.org/issue32351]: Use fastpath in asyncio.sleep if delay<0 (2x boost)

	bpo-32348 [https://bugs.python.org/issue32348]: Optimize asyncio.Future schedule/add/remove callback. The
optimization shows 3-6% performance improvements of async/await code.

	bpo-32331 [https://bugs.python.org/issue32331]: Fix socket.settimeout() and socket.setblocking() to keep
socket.type as is. Fix socket.socket() constructor to reset any bit flags
applied to socket's type. This change only affects OSes that have
SOCK_NONBLOCK and/or SOCK_CLOEXEC.

	bpo-32248 [https://bugs.python.org/issue32248]: Add importlib.abc.ResourceReader as an ABC for loaders
to provide a unified API for reading resources contained within packages.
Also add importlib.resources as the port of
importlib_resources.

	bpo-32311 [https://bugs.python.org/issue32311]: Implement asyncio.create_task(coro) shortcut

	bpo-32327 [https://bugs.python.org/issue32327]: Convert asyncio functions that were documented as coroutines to
coroutines. Affected functions: loop.sock_sendall, loop.sock_recv,
loop.sock_accept, loop.getaddrinfo, loop.getnameinfo.

	bpo-32323 [https://bugs.python.org/issue32323]: urllib.parse.urlsplit() does not convert zone-id
(scope) to lower case for scoped IPv6 addresses in hostnames now.

	bpo-32302 [https://bugs.python.org/issue32302]: Fix bdist_wininst of distutils for CRT v142: it binary
compatible with CRT v140.

	bpo-29711 [https://bugs.python.org/issue29711]: Fix stop_serving in asyncio proactor loop kill all
listening servers

	bpo-32308 [https://bugs.python.org/issue32308]: re.sub() now replaces empty matches adjacent to a
previous non-empty match.

	bpo-29970 [https://bugs.python.org/issue29970]: Abort asyncio SSLProtocol connection if handshake not complete
within 10s

	bpo-32314 [https://bugs.python.org/issue32314]: Implement asyncio.run().

	bpo-17852 [https://bugs.python.org/issue17852]: Revert incorrect fix based on misunderstanding of
_Py_PyAtExit() semantics.

	bpo-32296 [https://bugs.python.org/issue32296]: Implement asyncio._get_running_loop() and get_event_loop() in
C. This makes them 4x faster.

	bpo-32250 [https://bugs.python.org/issue32250]: Implement asyncio.current_task() and
asyncio.all_tasks(). Add helpers intended to be used by alternative
task implementations: asyncio._register_task, asyncio._enter_task,
asyncio._leave_task and asyncio._unregister_task. Deprecate
asyncio.Task.current_task() and asyncio.Task.all_tasks().

	bpo-32255 [https://bugs.python.org/issue32255]: A single empty field is now always quoted when written into a
CSV file. This allows to distinguish an empty row from a row consisting of
a single empty field. Patch by Licht Takeuchi.

	bpo-32277 [https://bugs.python.org/issue32277]: Raise NotImplementedError instead of SystemError on
platforms where chmod(..., follow_symlinks=False) is not supported.
Patch by Anthony Sottile.

	bpo-30050 [https://bugs.python.org/issue30050]: New argument warn_on_full_buffer to signal.set_wakeup_fd lets
you control whether Python prints a warning on stderr when the wakeup fd
buffer overflows.

	bpo-29137 [https://bugs.python.org/issue29137]: The fpectl library has been removed. It was never enabled
by default, never worked correctly on x86-64, and it changed the Python
ABI in ways that caused unexpected breakage of C extensions.

	bpo-32273 [https://bugs.python.org/issue32273]: Move asyncio.test_utils to test.test_asyncio.

	bpo-32272 [https://bugs.python.org/issue32272]: Remove asyncio.async() function.

	bpo-32269 [https://bugs.python.org/issue32269]: Add asyncio.get_running_loop() function.

	bpo-32265 [https://bugs.python.org/issue32265]: All class and static methods of builtin types now are correctly
classified by inspect.classify_class_attrs() and grouped in pydoc ouput.
Added types.ClassMethodDescriptorType for unbound class methods of builtin
types.

	bpo-32253 [https://bugs.python.org/issue32253]: Deprecate yield from lock, await lock, with (yield
from lock) and with await lock for asyncio synchronization
primitives.

	bpo-22589 [https://bugs.python.org/issue22589]: Changed MIME type of .bmp from 'image/x-ms-bmp' to 'image/bmp'

	bpo-32193 [https://bugs.python.org/issue32193]: Convert asyncio to use async/await syntax. Old styled yield
from is still supported too.

	bpo-32206 [https://bugs.python.org/issue32206]: Add support to run modules with pdb

	bpo-32227 [https://bugs.python.org/issue32227]: functools.singledispatch now supports registering
implementations using type annotations.

	bpo-15873 [https://bugs.python.org/issue15873]: Added new alternate constructors
datetime.datetime.fromisoformat(),
datetime.time.fromisoformat() and
datetime.date.fromisoformat() as the inverse operation of each
classes's respective isoformat methods.

	bpo-32199 [https://bugs.python.org/issue32199]: The getnode() ip getter now uses 'ip link' instead of 'ip link
list'.

	bpo-32143 [https://bugs.python.org/issue32143]: os.statvfs() includes the f_fsid field from statvfs(2)

	bpo-26439 [https://bugs.python.org/issue26439]: Fix ctypes.util.find_library() for AIX by implementing
ctypes._aix.find_library() Patch by: Michael Felt

	bpo-31993 [https://bugs.python.org/issue31993]: The pickler now uses less memory when serializing large bytes
and str objects into a file. Pickles created with protocol 4 will require
less memory for unpickling large bytes and str objects.

	bpo-27456 [https://bugs.python.org/issue27456]: Ensure TCP_NODELAY is set on Linux. Tests by Victor Stinner.

	bpo-31778 [https://bugs.python.org/issue31778]: ast.literal_eval() is now more strict. Addition and subtraction
of arbitrary numbers no longer allowed.

	bpo-31802 [https://bugs.python.org/issue31802]: Importing native path module (posixpath, ntpath) now
works even if the os module still is not imported.

	bpo-30241 [https://bugs.python.org/issue30241]: Add contextlib.AbstractAsyncContextManager. Patch by Jelle
Zijlstra.

	bpo-31699 [https://bugs.python.org/issue31699]: Fix deadlocks in
concurrent.futures.ProcessPoolExecutor when task arguments or
results cause pickling or unpickling errors. This should make sure that
calls to the ProcessPoolExecutor API always eventually return.

	bpo-15216 [https://bugs.python.org/issue15216]: TextIOWrapper.reconfigure() supports changing encoding,
errors, and newline.

文档

	bpo-32418 [https://bugs.python.org/issue32418]: Add get_loop() method to Server and AbstractServer classes.

测试

	bpo-32252 [https://bugs.python.org/issue32252]: Fix faulthandler_suppress_crash_report() used to prevent core
dump files when testing crashes. getrlimit() returns zero on success.

	bpo-32002 [https://bugs.python.org/issue32002]: Adjust C locale coercion testing for the empty locale and POSIX
locale cases to more readily adjust to platform dependent behaviour.

Windows

	bpo-19764 [https://bugs.python.org/issue19764]: Implement support for subprocess.Popen(close_fds=True) on
Windows. Patch by Segev Finer.

工具/示例

	bpo-24960 [https://bugs.python.org/issue24960]: 2to3 and lib2to3 can now read pickled grammar files using
pkgutil.get_data() rather than probing the filesystem. This lets 2to3 and
lib2to3 work when run from a zipfile.

C API

	bpo-32030 [https://bugs.python.org/issue32030]: Py_Initialize() doesn't reset the memory allocators to default
if the PYTHONMALLOC environment variable is not set.

	bpo-29084 [https://bugs.python.org/issue29084]: Undocumented C API for OrderedDict has been excluded from the
limited C API. It was added by mistake and actually never worked in the
limited C API.

	bpo-32264 [https://bugs.python.org/issue32264]: Moved the pygetopt.h header into internal/, since it has no
public APIs.

	bpo-32241 [https://bugs.python.org/issue32241]: Py_SetProgramName() and Py_SetPythonHome() now
take the const wchar * arguments instead of wchar *.

Python 3.7.0 alpha 3

发布日期: 2017-12-05

核心与内置

	bpo-32176 [https://bugs.python.org/issue32176]: co_flags.CO_NOFREE is now always set correctly by the code
object constructor based on freevars and cellvars, rather than needing to
be set correctly by the caller. This ensures it will be cleared
automatically when additional cell references are injected into a modified
code object and function.

	bpo-10544 [https://bugs.python.org/issue10544]: Yield expressions are now deprecated in comprehensions and
generator expressions. They are still permitted in the definition of the
outermost iterable, as that is evaluated directly in the enclosing scope.

	bpo-32137 [https://bugs.python.org/issue32137]: The repr of deeply nested dict now raises a RecursionError
instead of crashing due to a stack overflow.

	bpo-32096 [https://bugs.python.org/issue32096]: Revert memory allocator changes in the C API: move structures
back from _PyRuntime to Objects/obmalloc.c. The memory allocators are once
again initialized statically, and so PyMem_RawMalloc() and
Py_DecodeLocale() can be called before _PyRuntime_Initialize().

	bpo-32043 [https://bugs.python.org/issue32043]: Add a new "developer mode": new "-X dev" command line option to
enable debug checks at runtime.

	bpo-32023 [https://bugs.python.org/issue32023]: SyntaxError is now correctly raised when a generator expression
without parenthesis is used instead of an inheritance list in a class
definition. The duplication of the parentheses can be omitted only on
calls.

	bpo-32012 [https://bugs.python.org/issue32012]: SyntaxError is now correctly raised when a generator expression
without parenthesis is passed as an argument, but followed by a trailing
comma. A generator expression always needs to be directly inside a set of
parentheses and cannot have a comma on either side.

	bpo-28180 [https://bugs.python.org/issue28180]: A new internal _Py_SetLocaleFromEnv(category) helper
function has been added in order to improve the consistency of behaviour
across different libc implementations (e.g. Android doesn't support
setting the locale from the environment by default).

	bpo-31949 [https://bugs.python.org/issue31949]: Fixed several issues in printing tracebacks
(PyTraceBack_Print()).

	Setting sys.tracebacklimit to 0 or less now suppresses printing tracebacks.

	Setting sys.tracebacklimit to None now causes using the default limit.

	Setting sys.tracebacklimit to an integer larger than LONG_MAX now means using
the limit LONG_MAX rather than the default limit.

	Fixed integer overflows in the case of more than 2**31 traceback items on
Windows.

	Fixed output errors handling.

	bpo-30696 [https://bugs.python.org/issue30696]: Fix the interactive interpreter looping endlessly when no
memory.

	bpo-20047 [https://bugs.python.org/issue20047]: Bytearray methods partition() and rpartition() now accept only
bytes-like objects as separator, as documented. In particular they now
raise TypeError rather of returning a bogus result when an integer is
passed as a separator.

	bpo-21720 [https://bugs.python.org/issue21720]: BytesWarning no longer emitted when the fromlist argument of
__import__() or the __all__ attribute of the module contain bytes
instances.

	bpo-31845 [https://bugs.python.org/issue31845]: Environment variables are once more read correctly at
interpreter startup.

	bpo-28936 [https://bugs.python.org/issue28936]: Ensure that lexically first syntax error involving a parameter
and global or nonlocal is detected first at a given scope. Patch
by Ivan Levkivskyi.

	bpo-31825 [https://bugs.python.org/issue31825]: Fixed OverflowError in the 'unicode-escape' codec and in
codecs.escape_decode() when decode an escaped non-ascii byte.

	bpo-31618 [https://bugs.python.org/issue31618]: The per-frame tracing logic added in 3.7a1 has been altered so
that frame->f_lineno is updated before either "line" or
"opcode" events are emitted. Previously, opcode events were emitted
first, and therefore would occasionally see stale line numbers on the
frame. The behavior of this feature has changed slightly as a result: when
both f_trace_lines and f_trace_opcodes are enabled, line events
now occur first.

	bpo-28603 [https://bugs.python.org/issue28603]: Print the full context/cause chain of exceptions on interpreter
exit, even if an exception in the chain is unhashable or compares equal to
later ones. Patch by Zane Bitter.

	bpo-31786 [https://bugs.python.org/issue31786]: Fix timeout rounding in the select module to round correctly
negative timeouts between -1.0 and 0.0. The functions now block waiting
for events as expected. Previously, the call was incorrectly non-blocking.
Patch by Pablo Galindo.

	bpo-31781 [https://bugs.python.org/issue31781]: Prevent crashes when calling methods of an uninitialized
zipimport.zipimporter object. Patch by Oren Milman.

	bpo-30399 [https://bugs.python.org/issue30399]: Standard repr() of BaseException with a single argument no
longer contains redundant trailing comma.

	bpo-31626 [https://bugs.python.org/issue31626]: Fixed a bug in debug memory allocator. There was a write to
freed memory after shrinking a memory block.

	bpo-30817 [https://bugs.python.org/issue30817]: PyErr_PrintEx() clears now the ignored exception that may be
raised by _PySys_SetObjectId(), for example when no memory.

库

	bpo-28556 [https://bugs.python.org/issue28556]: Two minor fixes for typing module: allow shallow copying
instances of generic classes, improve interaction of __init_subclass__
with generics. Original PRs by Ivan Levkivskyi.

	bpo-32214 [https://bugs.python.org/issue32214]: PEP 557, Data Classes. Provides a decorator which adds
boilerplate methods to classes which use type annotations so specify
fields.

	bpo-27240 [https://bugs.python.org/issue27240]: The header folding algorithm for the new email policies has
been rewritten, which also fixes bpo-30788 [https://bugs.python.org/issue30788], bpo-31831 [https://bugs.python.org/issue31831], and bpo-32182 [https://bugs.python.org/issue32182]. In
particular, RFC2231 folding is now done correctly.

	bpo-32186 [https://bugs.python.org/issue32186]: io.FileIO.readall() and io.FileIO.read() now release the GIL
when getting the file size. Fixed hang of all threads with inaccessible
NFS server. Patch by Nir Soffer.

	bpo-321010 [https://bugs.python.org/issue321010]: Add sys.flags.dev_mode flag

	bpo-32154 [https://bugs.python.org/issue32154]: The asyncio.windows_utils.socketpair() function has been
removed: use directly socket.socketpair() which is available on all
platforms since Python 3.5 (before, it wasn't available on Windows).
asyncio.windows_utils.socketpair() was just an alias to
socket.socketpair on Python 3.5 and newer.

	bpo-32089 [https://bugs.python.org/issue32089]: warnings: In development (-X dev) and debug mode (pydebug
build), use the "default" action for ResourceWarning, rather than the
"always" action, in the default warnings filters.

	bpo-32107 [https://bugs.python.org/issue32107]: uuid.getnode() now preferentially returns universally
administered MAC addresses if available, over locally administered MAC
addresses. This makes a better guarantee for global uniqueness of UUIDs
returned from uuid.uuid1(). If only locally administered MAC
addresses are available, the first such one found is returned.

	bpo-23033 [https://bugs.python.org/issue23033]: Wildcard is now supported in hostname when it is one and only
character in the left most segment of hostname in second argument of
ssl.match_hostname(). Patch by Mandeep Singh.

	bpo-12239 [https://bugs.python.org/issue12239]: Make msilib.SummaryInformation.GetProperty() return
None when the value of property is VT_EMPTY. Initial patch by
Mark Mc Mahon.

	bpo-28334 [https://bugs.python.org/issue28334]: Use os.path.expanduser() to find the ~/.netrc file in
netrc.netrc. If it does not exist, FileNotFoundError is
raised. Patch by Dimitri Merejkowsky.

	bpo-32121 [https://bugs.python.org/issue32121]: Made tracemalloc.Traceback behave more like the traceback
module, sorting the frames from oldest to most recent.
Traceback.format() now accepts negative limit, truncating the result
to the abs(limit) oldest frames. To get the old behaviour, one can use
the new most_recent_first argument to Traceback.format(). (Patch by
Jesse Bakker.)

	bpo-31325 [https://bugs.python.org/issue31325]: Fix wrong usage of collections.namedtuple() in the
RobotFileParser.parse()
method.

Initial patch by Robin Wellner.

	bpo-12382 [https://bugs.python.org/issue12382]: msilib.OpenDatabase() now raises a better exception
message when it couldn't open or create an MSI file. Initial patch by
William Tisäter.

	bpo-19610 [https://bugs.python.org/issue19610]: setup() now warns about invalid types for some fields.

The distutils.dist.Distribution class now warns when classifiers,
keywords and platforms fields are not specified as a list or a
string.

	bpo-32071 [https://bugs.python.org/issue32071]: Added the -k command-line option to python -m unittest
to run only tests that match the given pattern(s).

	bpo-10049 [https://bugs.python.org/issue10049]: Added nullcontext no-op context manager to contextlib. This
provides a simpler and faster alternative to ExitStack() when handling
optional context managers.

	bpo-28684 [https://bugs.python.org/issue28684]: The new test.support.skip_unless_bind_unix_socket() decorator
is used here to skip asyncio tests that fail because the platform lacks a
functional bind() function for unix domain sockets (as it is the case for
non root users on the recent Android versions that run now SELinux in
enforcing mode).

	bpo-32110 [https://bugs.python.org/issue32110]: codecs.StreamReader.read(n) now returns not more than n
characters/bytes for non-negative n. This makes it compatible with
read() methods of other file-like objects.

	bpo-27535 [https://bugs.python.org/issue27535]: The warnings module doesn't leak memory anymore in the hidden
warnings registry for the "ignore" action of warnings filters.
warn_explicit() function doesn't add the warning key to the registry
anymore for the "ignore" action.

	bpo-32088 [https://bugs.python.org/issue32088]: warnings: When Python is build is debug mode (Py_DEBUG),
DeprecationWarning, PendingDeprecationWarning and
ImportWarning warnings are now displayed by default.

	bpo-1647489 [https://bugs.python.org/issue1647489]: Fixed searching regular expression patterns that could match
an empty string. Non-empty string can now be correctly found after
matching an empty string.

	bpo-25054 [https://bugs.python.org/issue25054]: Added support of splitting on a pattern that could match an
empty string.

	bpo-32072 [https://bugs.python.org/issue32072]: Fixed issues with binary plists:

	Fixed saving bytearrays.

	Identical objects will be saved only once.

	Equal references will be load as identical objects.

	Added support for saving and loading recursive data structures.

	bpo-32069 [https://bugs.python.org/issue32069]: Drop legacy SSL transport from asyncio, ssl.MemoryBIO is always
used anyway.

	bpo-32066 [https://bugs.python.org/issue32066]: asyncio: Support pathlib.Path in create_unix_connection; sock
arg should be optional

	bpo-32046 [https://bugs.python.org/issue32046]: Updates 2to3 to convert from operator.isCallable(obj) to
callable(obj). Patch by Dong-hee Na.

	bpo-32018 [https://bugs.python.org/issue32018]: inspect.signature should follow PEP 8, if the parameter has an
annotation and a default value. Patch by Dong-hee Na.

	bpo-32025 [https://bugs.python.org/issue32025]: Add time.thread_time() and time.thread_time_ns()

	bpo-32037 [https://bugs.python.org/issue32037]: Integers that fit in a signed 32-bit integer will be now
pickled with protocol 0 using the INT opcode. This will decrease the size
of a pickle, speed up pickling and unpickling, and make these integers be
unpickled as int instances in Python 2.

	bpo-32034 [https://bugs.python.org/issue32034]: Make asyncio.IncompleteReadError and LimitOverrunError
pickleable.

	bpo-32015 [https://bugs.python.org/issue32015]: Fixed the looping of asyncio in the case of reconnection the
socket during waiting async read/write from/to the socket.

	bpo-32011 [https://bugs.python.org/issue32011]: Restored support of loading marshal files with the TYPE_INT64
code. These files can be produced in Python 2.7.

	bpo-28369 [https://bugs.python.org/issue28369]: Enhance add_reader/writer check that socket is not used by some
transport. Before, only cases when add_reader/writer were called with an
int FD were supported. Now the check is implemented correctly for all
file-like objects.

	bpo-31976 [https://bugs.python.org/issue31976]: Fix race condition when flushing a file is slow, which can
cause a segfault if closing the file from another thread.

	bpo-31985 [https://bugs.python.org/issue31985]: Formally deprecated aifc.openfp, sunau.openfp, and wave.openfp.
Since change 7bc817d5ba917528e8bd07ec461c635291e7b06a in 1993, openfp in
each of the three modules had been pointing to that module's open function
as a matter of backwards compatibility, though it had been both untested
and undocumented.

	bpo-21862 [https://bugs.python.org/issue21862]: cProfile command line now accepts -m module_name as an
alternative to script path. Patch by Sanyam Khurana.

	bpo-31970 [https://bugs.python.org/issue31970]: Reduce performance overhead of asyncio debug mode.

	bpo-31843 [https://bugs.python.org/issue31843]: database argument of sqlite3.connect() now accepts a
path-like object, instead of just a string.

	bpo-31945 [https://bugs.python.org/issue31945]: Add Configurable blocksize to HTTPConnection and
HTTPSConnection for improved upload throughput. Patch by Nir Soffer.

	bpo-31943 [https://bugs.python.org/issue31943]: Add a cancelled() method to asyncio.Handle. Patch
by Marat Sharafutdinov.

	bpo-9678 [https://bugs.python.org/issue9678]: Fixed determining the MAC address in the uuid module:

	在NetBSD和OpenBSD系统上使用ifconfig命令

	Using arp on Linux, FreeBSD, NetBSD and OpenBSD.

Based on patch by Takayuki Shimizukawa.

	bpo-30057 [https://bugs.python.org/issue30057]: Fix potential missed signal in signal.signal().

	bpo-31933 [https://bugs.python.org/issue31933]: Fix Blake2 params leaf_size and node_offset on big endian
platforms. Patch by Jack O'Connor.

	bpo-21423 [https://bugs.python.org/issue21423]: Add an initializer argument to {Process,Thread}PoolExecutor

	bpo-31927 [https://bugs.python.org/issue31927]: Fixed compilation of the socket module on NetBSD 8. Fixed
assertion failure or reading arbitrary data when parse a AF_BLUETOOTH
address on NetBSD and DragonFly BSD.

	bpo-27666 [https://bugs.python.org/issue27666]: Fixed stack corruption in curses.box() and curses.ungetmouse()
when the size of types chtype or mmask_t is less than the size of C long.
curses.box() now accepts characters as arguments. Based on patch by Steve
Fink.

	bpo-31917 [https://bugs.python.org/issue31917]: Add 3 new clock identifiers: time.CLOCK_BOOTTIME,
time.CLOCK_PROF and time.CLOCK_UPTIME.

	bpo-31897 [https://bugs.python.org/issue31897]: plistlib now catches more errors when read binary plists and
raises InvalidFileException instead of unexpected exceptions.

	bpo-25720 [https://bugs.python.org/issue25720]: Fix the method for checking pad state of curses WINDOW. Patch
by Masayuki Yamamoto.

	bpo-31893 [https://bugs.python.org/issue31893]: Fixed the layout of the kqueue_event structure on OpenBSD and
NetBSD. Fixed the comparison of the kqueue_event objects.

	bpo-31891 [https://bugs.python.org/issue31891]: Fixed building the curses module on NetBSD.

	bpo-31884 [https://bugs.python.org/issue31884]: added required constants to subprocess module for setting
priority on windows

	bpo-28281 [https://bugs.python.org/issue28281]: Remove year (1-9999) limits on the Calendar.weekday() function.

Patch by Mark Gollahon.

	bpo-31702 [https://bugs.python.org/issue31702]: crypt.mksalt() now allows to specify the number of rounds for
SHA-256 and SHA-512 hashing.

	bpo-30639 [https://bugs.python.org/issue30639]: inspect.getfile() no longer computes the repr of unknown
objects to display in an error message, to protect against badly behaved
custom reprs.

	bpo-30768 [https://bugs.python.org/issue30768]: Fix the pthread+semaphore implementation of
PyThread_acquire_lock_timed() when called with timeout > 0 and
intr_flag=0: recompute the timeout if sem_timedwait() is interrupted by a
signal (EINTR). See also the PEP 475 [https://www.python.org/dev/peps/pep-0475].

	bpo-31854 [https://bugs.python.org/issue31854]: Add mmap.ACCESS_DEFAULT constant.

	bpo-31834 [https://bugs.python.org/issue31834]: Use optimized code for BLAKE2 only with SSSE3+. The pure SSE2
implementation is slower than the pure C reference implementation.

	bpo-28292 [https://bugs.python.org/issue28292]: Calendar.itermonthdates() will now consistently raise an
exception when a date falls outside of the 0001-01-01 through 9999-12-31
range. To support applications that cannot tolerate such exceptions, the
new methods itermonthdays3() and itermonthdays4() are added. The new
methods return tuples and are not restricted by the range supported by
datetime.date.

	bpo-28564 [https://bugs.python.org/issue28564]: The shutil.rmtree() function has been sped up to 20--40%. This
was done using the os.scandir() function.

	bpo-28416 [https://bugs.python.org/issue28416]: Instances of pickle.Pickler subclass with the persistent_id()
method and pickle.Unpickler subclass with the persistent_load() method no
longer create reference cycles.

	bpo-31653 [https://bugs.python.org/issue31653]: Don't release the GIL if we can acquire a multiprocessing
semaphore immediately.

	bpo-28326 [https://bugs.python.org/issue28326]: Fix multiprocessing.Process when stdout and/or stderr is closed
or None.

	bpo-20825 [https://bugs.python.org/issue20825]: Add subnet_of and superset_of containment tests to
ipaddress.IPv6Network and ipaddress.IPv4Network. Patch
by Michel Albert and Cheryl Sabella.

	bpo-31827 [https://bugs.python.org/issue31827]: Remove the os.stat_float_times() function. It was introduced in
Python 2.3 for backward compatibility with Python 2.2, and was deprecated
since Python 3.1.

	bpo-31756 [https://bugs.python.org/issue31756]: Add a subprocess.Popen(text=False) keyword argument to
subprocess functions to be more explicit about when the library should
attempt to decode outputs into text. Patch by Andrew Clegg.

	bpo-31819 [https://bugs.python.org/issue31819]: Add AbstractEventLoop.sock_recv_into().

	bpo-31457 [https://bugs.python.org/issue31457]: If nested log adapters are used, the inner process()
methods are no longer omitted.

	bpo-31457 [https://bugs.python.org/issue31457]: The manager property on LoggerAdapter objects is now
properly settable.

	bpo-31806 [https://bugs.python.org/issue31806]: Fix timeout rounding in time.sleep(), threading.Lock.acquire()
and socket.socket.settimeout() to round correctly negative timeouts
between -1.0 and 0.0. The functions now block waiting for events as
expected. Previously, the call was incorrectly non-blocking. Patch by
Pablo Galindo.

	bpo-31803 [https://bugs.python.org/issue31803]: time.clock() and time.get_clock_info('clock') now emit a
DeprecationWarning warning.

	bpo-31800 [https://bugs.python.org/issue31800]: Extended support for parsing UTC offsets. strptime '%z' can now
parse the output generated by datetime.isoformat, including seconds and
microseconds.

	bpo-28603 [https://bugs.python.org/issue28603]: traceback: Fix a TypeError that occurred during printing of
exception tracebacks when either the current exception or an exception in
its context/cause chain is unhashable. Patch by Zane Bitter.

	bpo-30541 [https://bugs.python.org/issue30541]: Add new function to seal a mock and prevent the automatically
creation of child mocks. Patch by Mario Corchero.

	bpo-31784 [https://bugs.python.org/issue31784]: Implement the PEP 564 [https://www.python.org/dev/peps/pep-0564], add new 6 new functions with
nanosecond resolution to the time module:
clock_gettime_ns(), clock_settime_ns(),
monotonic_ns(), perf_counter_ns(),
process_time_ns(), time_ns().

	bpo-30143 [https://bugs.python.org/issue30143]: 2to3 now generates a code that uses abstract collection classes
from collections.abc rather than collections.

	bpo-31770 [https://bugs.python.org/issue31770]: Prevent a crash when calling the __init__() method of a
sqlite3.Cursor object more than once. Patch by Oren Milman.

	bpo-31764 [https://bugs.python.org/issue31764]: Prevent a crash in sqlite3.Cursor.close() in case the
Cursor object is uninitialized. Patch by Oren Milman.

	bpo-31752 [https://bugs.python.org/issue31752]: Fix possible crash in timedelta constructor called with custom
integers.

	bpo-31620 [https://bugs.python.org/issue31620]: an empty asyncio.Queue now doesn't leak memory when queue.get
pollers timeout

	bpo-31690 [https://bugs.python.org/issue31690]: Allow the flags re.ASCII, re.LOCALE, and re.UNICODE to be used
as group flags for regular expressions.

	bpo-30349 [https://bugs.python.org/issue30349]: FutureWarning is now emitted if a regular expression contains
character set constructs that will change semantically in the future
(nested sets and set operations).

	bpo-31664 [https://bugs.python.org/issue31664]: Added support for the Blowfish hashing in the crypt module.

	bpo-31632 [https://bugs.python.org/issue31632]: Fix method set_protocol() of class _SSLProtocolTransport in
asyncio module. This method was previously modifying a wrong reference to
the protocol.

	bpo-15037 [https://bugs.python.org/issue15037]: Added a workaround for getkey() in curses for ncurses 5.7 and
earlier.

	bpo-31307 [https://bugs.python.org/issue31307]: Allow use of bytes objects for arguments to
configparser.ConfigParser.read(). Patch by Vincent Michel.

	bpo-31334 [https://bugs.python.org/issue31334]: Fix poll.poll([timeout]) in the select module for
arbitrary negative timeouts on all OSes where it can only be a
non-negative integer or -1. Patch by Riccardo Coccioli.

	bpo-31310 [https://bugs.python.org/issue31310]: multiprocessing's semaphore tracker should be launched again if
crashed.

	bpo-31308 [https://bugs.python.org/issue31308]: Make multiprocessing's forkserver process immune to Ctrl-C and
other user interruptions. If it crashes, restart it when necessary.

	bpo-31245 [https://bugs.python.org/issue31245]: Added support for AF_UNIX socket in asyncio
create_datagram_endpoint.

	bpo-30553 [https://bugs.python.org/issue30553]: Add HTTP/2 status code 421 (Misdirected Request) to
http.HTTPStatus. Patch by Vitor Pereira.

文档

	bpo-32105 [https://bugs.python.org/issue32105]: Added asyncio.BaseEventLoop.connect_accepted_socket
versionadded marker.

测试

	bpo-31380 [https://bugs.python.org/issue31380]: Skip test_httpservers test_undecodable_file on macOS: fails on
APFS.

	bpo-31705 [https://bugs.python.org/issue31705]: Skip test_socket.test_sha256() on Linux kernel older than 4.5.
The test fails with ENOKEY on kernel 3.10 (on ppc64le). A fix was merged
into the kernel 4.5.

	bpo-32138 [https://bugs.python.org/issue32138]: Skip on Android test_faulthandler tests that raise SIGSEGV and
remove the test.support.requires_android_level decorator.

	bpo-32136 [https://bugs.python.org/issue32136]: The runtime embedding tests have been split out from
Lib/test/test_capi.py into a new Lib/test/test_embed.py file.

	bpo-28668 [https://bugs.python.org/issue28668]: test.support.requires_multiprocessing_queue is removed. Skip
tests with test.support.import_module('multiprocessing.synchronize')
instead when the semaphore implementation is broken or missing.

	bpo-32126 [https://bugs.python.org/issue32126]: Skip test_get_event_loop_new_process in
test.test_asyncio.test_events when sem_open() is not functional.

	bpo-31174 [https://bugs.python.org/issue31174]: Fix test_tools.test_unparse: DirectoryTestCase now stores the
names sample to always test the same files. It prevents false alarms when
hunting reference leaks.

构建

	bpo-28538 [https://bugs.python.org/issue28538]: Revert the previous changes, the if_nameindex structure is
defined by Unified Headers.

	bpo-28762 [https://bugs.python.org/issue28762]: Revert the last commit, the F_LOCK macro is defined by Android
Unified Headers.

	bpo-29040 [https://bugs.python.org/issue29040]: Support building Android with Unified Headers. The first NDK
release to support Unified Headers is android-ndk-r14.

	bpo-32059 [https://bugs.python.org/issue32059]: detect_modules() in setup.py now also searches the
sysroot paths when cross-compiling.

	bpo-31957 [https://bugs.python.org/issue31957]: Fixes Windows SDK version detection when building for Windows.

	bpo-31609 [https://bugs.python.org/issue31609]: Fixes quotes in PCbuild/clean.bat

	bpo-31934 [https://bugs.python.org/issue31934]: Abort the build when building out of a not clean source tree.

	bpo-31926 [https://bugs.python.org/issue31926]: Fixed Argument Clinic sometimes causing compilation errors when
there was more than one function and/or method in a .c file with the same
name.

	bpo-28791 [https://bugs.python.org/issue28791]: 更新 Windows 构建以使用 SQLite 3.21.0.

	bpo-28791 [https://bugs.python.org/issue28791]: 更新 OS X 安装程序以使用 SQLite 3.21.0.

	bpo-28643 [https://bugs.python.org/issue28643]: Record profile-opt build progress with stamp files.

	bpo-31866 [https://bugs.python.org/issue31866]: Finish removing support for AtheOS.

Windows

	bpo-1102 [https://bugs.python.org/issue1102]: Return None when View.Fetch() returns
ERROR_NO_MORE_ITEMS instead of raising MSIError.

Initial patch by Anthony Tuininga.

	bpo-31944 [https://bugs.python.org/issue31944]: Fixes Modify button in Apps and Features dialog.

	bpo-20486 [https://bugs.python.org/issue20486]: Implement the Database.Close() method to help closing MSI
database objects.

	bpo-31857 [https://bugs.python.org/issue31857]: Make the behavior of USE_STACKCHECK deterministic in a
multi-threaded environment.

macOS

	bpo-31392 [https://bugs.python.org/issue31392]: 在MacOS安装程序中将OpenSSL更新为1.0.2m。

IDLE

	bpo-32207 [https://bugs.python.org/issue32207]: Improve tk event exception tracebacks in IDLE. When tk event
handling is driven by IDLE's run loop, a confusing and distracting
queue.EMPTY traceback context is no longer added to tk event exception
tracebacks. The traceback is now the same as when event handling is
driven by user code. Patch based on a suggestion by Serhiy Storchaka.

	bpo-32164 [https://bugs.python.org/issue32164]: Delete unused file idlelib/tabbedpages.py. Use of TabbedPageSet
in configdialog was replaced by ttk.Notebook.

	bpo-32100 [https://bugs.python.org/issue32100]: IDLE: Fix old and new bugs in pathbrowser; improve tests. Patch
mostly by Cheryl Sabella.

	bpo-31858 [https://bugs.python.org/issue31858]: IDLE -- Restrict shell prompt manipulation to the shell. Editor
and output windows only see an empty last prompt line. This simplifies
the code and fixes a minor bug when newline is inserted. Sys.ps1, if
present, is read on Shell start-up, but is not set or changed.

	bpo-31860 [https://bugs.python.org/issue31860]: The font sample in the IDLE configuration dialog is now
editable. Changes persist while IDLE remains open

	bpo-31836 [https://bugs.python.org/issue31836]: Test_code_module now passes if run after test_idle, which sets
ps1.

The code module uses sys.ps1 if present or sets it to '>>> ' if not.
Test_code_module now properly tests both behaviors. Ditto for ps2.

	bpo-28603 [https://bugs.python.org/issue28603]: Fix a TypeError that caused a shell restart when printing a
traceback that includes an exception that is unhashable. Patch by Zane
Bitter.

	bpo-13802 [https://bugs.python.org/issue13802]: Use non-Latin characters in the IDLE's Font settings sample.
Even if one selects a font that defines a limited subset of the unicode
Basic Multilingual Plane, tcl/tk will use other fonts that define a
character. The expanded example give users of non-Latin characters a
better idea of what they might see in IDLE's shell and editors.

To make room for the expanded sample, frames on the Font tab are
re-arranged. The Font/Tabs help explains a bit about the additions.

工具/示例

	bpo-32159 [https://bugs.python.org/issue32159]: Remove CVS and Subversion tools: remove svneol.py and
treesync.py scripts. CPython migrated from CVS to Subversion, to
Mercurial, and then to Git. CVS and Subversion are no longer used to
develop CPython.

	bpo-30722 [https://bugs.python.org/issue30722]: Make redemo work with Python 3.6 and newer versions.

Also, remove the LOCALE option since it doesn't work with string
patterns in Python 3.

Patch by Christoph Sarnowski.

C API

	bpo-20891 [https://bugs.python.org/issue20891]: Fix PyGILState_Ensure(). When PyGILState_Ensure() is called in
a non-Python thread before PyEval_InitThreads(), only call
PyEval_InitThreads() after calling PyThreadState_New() to fix a crash.

	bpo-32125 [https://bugs.python.org/issue32125]: The Py_UseClassExceptionsFlag flag has been removed. It was
deprecated and wasn't used anymore since Python 2.0.

	bpo-25612 [https://bugs.python.org/issue25612]: Move the current exception state from the frame object to the
co-routine. This simplifies the interpreter and fixes a couple of obscure
bugs caused by having swap exception state when entering or exiting a
generator.

	bpo-23699 [https://bugs.python.org/issue23699]: Add Py_RETURN_RICHCOMPARE macro to reduce boilerplate code in
rich comparison functions.

	bpo-30697 [https://bugs.python.org/issue30697]: The PyExc_RecursionErrorInst singleton is removed and
PyErr_NormalizeException() does not use it anymore. This singleton is
persistent and its members being never cleared may cause a segfault during
finalization of the interpreter. See also bpo-22898 [https://bugs.python.org/issue22898].

Python 3.7.0 alpha 2

发布日期: 2017-10-16

核心与内置

	bpo-31558 [https://bugs.python.org/issue31558]: gc.freeze() is a new API that allows for moving all objects
currently tracked by the garbage collector to a permanent generation,
effectively removing them from future collection events. This can be used
to protect those objects from having their PyGC_Head mutated. In effect,
this enables great copy-on-write stability at fork().

	bpo-31642 [https://bugs.python.org/issue31642]: Restored blocking "from package import module" by setting
sys.modules["package.module"] to None.

	bpo-31708 [https://bugs.python.org/issue31708]: Allow use of asynchronous generator expressions in synchronous
functions.

	bpo-31709 [https://bugs.python.org/issue31709]: 取消对异步__Aiter__的支持。

	bpo-30404 [https://bugs.python.org/issue30404]: The -u option now makes the stdout and stderr streams
unbuffered rather than line-buffered.

	bpo-31619 [https://bugs.python.org/issue31619]: Fixed a ValueError when convert a string with large number of
underscores to integer with binary base.

	bpo-31602 [https://bugs.python.org/issue31602]: Fix an assertion failure in zipimporter.get_source() in case
of a bad zlib.decompress(). Patch by Oren Milman.

	bpo-31592 [https://bugs.python.org/issue31592]: Fixed an assertion failure in Python parser in case of a bad
unicodedata.normalize(). Patch by Oren Milman.

	bpo-31588 [https://bugs.python.org/issue31588]: Raise a TypeError with a helpful error message when class
creation fails due to a metaclass with a bad __prepare__() method.
Patch by Oren Milman.

	bpo-31574 [https://bugs.python.org/issue31574]: Importlib was instrumented with two dtrace probes to profile
import timing.

	bpo-31566 [https://bugs.python.org/issue31566]: Fix an assertion failure in _warnings.warn() in case of a bad
__name__ global. Patch by Oren Milman.

	bpo-31506 [https://bugs.python.org/issue31506]: Improved the error message logic for object.__new__ and
object.__init__.

	bpo-31505 [https://bugs.python.org/issue31505]: Fix an assertion failure in json, in case
_json.make_encoder() received a bad encoder() argument. Patch by Oren
Milman.

	bpo-31492 [https://bugs.python.org/issue31492]: Fix assertion failures in case of failing to import from a
module with a bad __name__ attribute, and in case of failing to access
an attribute of such a module. Patch by Oren Milman.

	bpo-31478 [https://bugs.python.org/issue31478]: Fix an assertion failure in _random.Random.seed() in case the
argument has a bad __abs__() method. Patch by Oren Milman.

	bpo-31336 [https://bugs.python.org/issue31336]: Speed up class creation by 10-20% by reducing the overhead in
the necessary special method lookups. Patch by Stefan Behnel.

	bpo-31415 [https://bugs.python.org/issue31415]: Add -X importtime option to show how long each import
takes. It can be used to optimize application's startup time. Support the
PYTHONPROFILEIMPORTTIME as an equivalent way to enable this.

	bpo-31410 [https://bugs.python.org/issue31410]: Optimized calling wrapper and classmethod descriptors.

	bpo-31353 [https://bugs.python.org/issue31353]: PEP 553 [https://www.python.org/dev/peps/pep-0553] - Add a new built-in called breakpoint() which
calls sys.breakpointhook(). By default this imports pdb and calls
pdb.set_trace(), but users may override sys.breakpointhook() to
call whatever debugger they want. The original value of the hook is saved
in sys.__breakpointhook__.

	bpo-17852 [https://bugs.python.org/issue17852]: Maintain a list of open buffered files, flush them before
exiting the interpreter. Based on a patch from Armin Rigo.

	bpo-31315 [https://bugs.python.org/issue31315]: Fix an assertion failure in imp.create_dynamic(), when
spec.name is not a string. Patch by Oren Milman.

	bpo-31311 [https://bugs.python.org/issue31311]: Fix a crash in the __setstate__() method of
ctypes._CData, in case of a bad __dict__. Patch by Oren Milman.

	bpo-31293 [https://bugs.python.org/issue31293]: Fix crashes in true division and multiplication of a timedelta
object by a float with a bad as_integer_ratio() method. Patch by Oren
Milman.

	bpo-31285 [https://bugs.python.org/issue31285]: Fix an assertion failure in warnings.warn_explicit, when the
return value of the received loader's get_source() has a bad splitlines()
method. Patch by Oren Milman.

	bpo-30406 [https://bugs.python.org/issue30406]: Make async and await proper keywords, as specified in
PEP 492.

库

	bpo-30058 [https://bugs.python.org/issue30058]: Fixed buffer overflow in select.kqueue.control().

	bpo-31672 [https://bugs.python.org/issue31672]: idpattern in string.Template matched some non-ASCII
characters. Now it uses -i regular expression local flag to avoid
non-ASCII characters.

	bpo-31701 [https://bugs.python.org/issue31701]: On Windows, faulthandler.enable() now ignores MSC and COM
exceptions.

	bpo-31728 [https://bugs.python.org/issue31728]: Prevent crashes in _elementtree due to unsafe cleanup of
Element.text and Element.tail. Patch by Oren Milman.

	bpo-31671 [https://bugs.python.org/issue31671]: Now re.compile() converts passed RegexFlag to normal int
object before compiling. bm_regex_compile benchmark shows 14% performance
improvements.

	bpo-30397 [https://bugs.python.org/issue30397]: The types of compiled regular objects and match objects are now
exposed as re.Pattern and re.Match. This adds information in pydoc
output for the re module.

	bpo-31675 [https://bugs.python.org/issue31675]: Fixed memory leaks in Tkinter's methods splitlist() and split()
when pass a string larger than 2 GiB.

	bpo-31673 [https://bugs.python.org/issue31673]: Fixed typo in the name of Tkinter's method adderrorinfo().

	bpo-31648 [https://bugs.python.org/issue31648]: Improvements to path predicates in ElementTree:

	Allow whitespace around predicate parts, i.e. "[a = 'text']" instead of requiring the less readable "[a='text']".

	Add support for text comparison of the current node, like "[.='text']".

Patch by Stefan Behnel.

	bpo-30806 [https://bugs.python.org/issue30806]: Fix the string representation of a netrc object.

	bpo-31638 [https://bugs.python.org/issue31638]: Add optional argument compressed to
zipapp.create_archive, and add option --compress to the command
line interface of zipapp.

	bpo-25351 [https://bugs.python.org/issue25351]: Avoid venv activate failures with undefined variables

	bpo-20519 [https://bugs.python.org/issue20519]: Avoid ctypes use (if possible) and improve import time for
uuid.

	bpo-28293 [https://bugs.python.org/issue28293]: The regular expression cache is no longer completely dumped
when it is full.

	bpo-31596 [https://bugs.python.org/issue31596]: Added pthread_getcpuclockid() to the time module

	bpo-27494 [https://bugs.python.org/issue27494]: Make 2to3 accept a trailing comma in generator expressions. For
example, set(x for x in [],) is now allowed.

	bpo-30347 [https://bugs.python.org/issue30347]: Stop crashes when concurrently iterate over itertools.groupby()
iterators.

	bpo-30346 [https://bugs.python.org/issue30346]: An iterator produced by itertools.groupby() iterator now
becomes exhausted after advancing the groupby iterator.

	bpo-31556 [https://bugs.python.org/issue31556]: Cancel asyncio.wait_for future faster if timeout <= 0

	bpo-31540 [https://bugs.python.org/issue31540]: Allow passing a context object in
concurrent.futures.ProcessPoolExecutor constructor. Also, free
job resources in concurrent.futures.ProcessPoolExecutor earlier
to improve memory usage when a worker waits for new jobs.

	bpo-31516 [https://bugs.python.org/issue31516]: threading.current_thread() should not return a dummy thread
at shutdown.

	bpo-31525 [https://bugs.python.org/issue31525]: In the sqlite module, require the sqlite3_prepare_v2 API. Thus,
the sqlite module now requires sqlite version at least 3.3.9.

	bpo-26510 [https://bugs.python.org/issue26510]: argparse subparsers are now required by default. This matches
behaviour in Python 2. For optional subparsers, use the new parameter
add_subparsers(required=False). Patch by Anthony Sottile. (As of
3.7.0rc1, the default was changed to not required as had been the case
since Python 3.3.)

	bpo-27541 [https://bugs.python.org/issue27541]: Reprs of subclasses of some collection and iterator classes
(bytearray, array.array, collections.deque,
collections.defaultdict, itertools.count, itertools.repeat) now
contain actual type name insteads of hardcoded name of the base class.

	bpo-31351 [https://bugs.python.org/issue31351]: python -m ensurepip now exits with non-zero exit code if pip
bootstrapping has failed.

	bpo-31389 [https://bugs.python.org/issue31389]: pdb.set_trace() now takes an optional keyword-only argument
header. If given, this is printed to the console just before debugging
begins.

文档

	bpo-31537 [https://bugs.python.org/issue31537]: Fix incorrect usage of get_history_length in readline
documentation example code. Patch by Brad Smith.

	bpo-30085 [https://bugs.python.org/issue30085]: The operator functions without double underscores are preferred
for clarity. The one with underscores are only kept for
back-compatibility.

构建

	bpo-31696 [https://bugs.python.org/issue31696]: Improve compiler version information in sys.version
when Python is built with Clang.

	bpo-31625 [https://bugs.python.org/issue31625]: Stop using ranlib on static libraries. Instead, we assume ar
supports the 's' flag.

	bpo-31624 [https://bugs.python.org/issue31624]: 删除对 BSD/OS 的支持。

	bpo-22140 [https://bugs.python.org/issue22140]: Prevent double substitution of prefix in python-config.sh.

	bpo-31569 [https://bugs.python.org/issue31569]: Correct PCBuild/ case to PCbuild/ in build scripts and
documentation.

	bpo-31536 [https://bugs.python.org/issue31536]: Avoid wholesale rebuild after make regen-all if nothing
changed.

IDLE

	bpo-31460 [https://bugs.python.org/issue31460]: Simplify the API of IDLE's Module Browser.

Passing a widget instead of an flist with a root widget opens the option
of creating a browser frame that is only part of a window. Passing a full
file name instead of pieces assumed to come from a .py file opens the
possibility of browsing python files that do not end in .py.

	bpo-31649 [https://bugs.python.org/issue31649]: IDLE - Make _htest, _utest parameters keyword only.

	bpo-31559 [https://bugs.python.org/issue31559]: Remove test order dependence in idle_test.test_browser.

	bpo-31459 [https://bugs.python.org/issue31459]: Rename IDLE's module browser from Class Browser to Module
Browser. The original module-level class and method browser became a
module browser, with the addition of module-level functions, years ago.
Nested classes and functions were added yesterday. For
back-compatibility, the virtual event <<open-class-browser>>, which
appears on the Keys tab of the Settings dialog, is not changed. Patch by
Cheryl Sabella.

	bpo-31500 [https://bugs.python.org/issue31500]: Default fonts now are scaled on HiDPI displays.

	bpo-1612262 [https://bugs.python.org/issue1612262]: IDLE module browser now shows nested classes and functions.
Original patches for code and tests by Guilherme Polo and Cheryl Sabella,
respectively.

C API

	bpo-28280 [https://bugs.python.org/issue28280]: Make PyMapping_Keys(), PyMapping_Values() and
PyMapping_Items() always return a list (rather than a list or a
tuple). Patch by Oren Milman.

	bpo-31532 [https://bugs.python.org/issue31532]: Fix memory corruption due to allocator mix in getpath.c between
Py_GetPath() and Py_SetPath()

	bpo-25658 [https://bugs.python.org/issue25658]: Implement PEP 539 for Thread Specific Storage (TSS) API: it is
a new Thread Local Storage (TLS) API to CPython which would supersede use
of the existing TLS API within the CPython interpreter, while deprecating
the existing API. PEP written by Erik M. Bray, patch by Masayuki Yamamoto.

Python 3.7.0 alpha 1

发布日期: 2017-09-19

安全

	bpo-29781 [https://bugs.python.org/issue29781]: SSLObject.version() now correctly returns None when handshake
over BIO has not been performed yet.

	bpo-29505 [https://bugs.python.org/issue29505]: Add fuzz tests for float(str), int(str), unicode(str); for
oss-fuzz.

	bpo-30947 [https://bugs.python.org/issue30947]: Upgrade libexpat embedded copy from version 2.2.1 to 2.2.3 to
get security fixes.

	bpo-30730 [https://bugs.python.org/issue30730]: Prevent environment variables injection in subprocess on
Windows. Prevent passing other environment variables and command
arguments.

	bpo-30694 [https://bugs.python.org/issue30694]: Upgrade expat copy from 2.2.0 to 2.2.1 to get fixes of multiple
security vulnerabilities including: CVE-2017-9233 (External entity
infinite loop DoS), CVE-2016-9063 (Integer overflow, re-fix),
CVE-2016-0718 (Fix regression bugs from 2.2.0's fix to CVE-2016-0718) and
CVE-2012-0876 (Counter hash flooding with SipHash). Note: the
CVE-2016-5300 (Use os-specific entropy sources like getrandom) doesn't
impact Python, since Python already gets entropy from the OS to set the
expat secret using XML_SetHashSalt().

	bpo-30500 [https://bugs.python.org/issue30500]: Fix urllib.parse.splithost() to correctly parse fragments. For
example, splithost('//127.0.0.1#@evil.com/') now correctly returns the
127.0.0.1 host, instead of treating @evil.com as the host in an
authentication (login@host).

	bpo-29591 [https://bugs.python.org/issue29591]: Update expat copy from 2.1.1 to 2.2.0 to get fixes of
CVE-2016-0718 and CVE-2016-4472. See
https://sourceforge.net/p/expat/bugs/537/ for more information.

核心与内置

	bpo-31490 [https://bugs.python.org/issue31490]: Fix an assertion failure in ctypes class definition, in case
the class has an attribute whose name is specified in _anonymous_ but
not in _fields_. Patch by Oren Milman.

	bpo-31471 [https://bugs.python.org/issue31471]: Fix an assertion failure in subprocess.Popen() on Windows, in
case the env argument has a bad keys() method. Patch by Oren Milman.

	bpo-31418 [https://bugs.python.org/issue31418]: Fix an assertion failure in PyErr_WriteUnraisable() in case
of an exception with a bad __module__ attribute. Patch by Oren Milman.

	bpo-31416 [https://bugs.python.org/issue31416]: Fix assertion failures in case of a bad warnings.filters or
warnings.defaultaction. Patch by Oren Milman.

	bpo-28411 [https://bugs.python.org/issue28411]: Change direct usage of PyInterpreterState.modules to
PyImport_GetModuleDict(). Also introduce more uniformity in other code
that deals with sys.modules. This helps reduce complications when working
on sys.modules.

	bpo-28411 [https://bugs.python.org/issue28411]: Switch to the abstract API when dealing with
PyInterpreterState.modules. This allows later support for all dict
subclasses and other Mapping implementations. Also add a
PyImport_GetModule() function to reduce a bunch of duplicated code.

	bpo-31411 [https://bugs.python.org/issue31411]: Raise a TypeError instead of SystemError in case
warnings.onceregistry is not a dictionary. Patch by Oren Milman.

	bpo-31344 [https://bugs.python.org/issue31344]: For finer control of tracing behaviour when testing the
interpreter, two new frame attributes have been added to control the
emission of particular trace events: f_trace_lines (True by
default) to turn off per-line trace events; and f_trace_opcodes
(False by default) to turn on per-opcode trace events.

	bpo-31373 [https://bugs.python.org/issue31373]: Fix several possible instances of undefined behavior due to
floating-point demotions.

	bpo-30465 [https://bugs.python.org/issue30465]: Location information (lineno and col_offset) in
f-strings is now (mostly) correct. This fixes tools like flake8 from
showing warnings on the wrong line (typically the first line of the file).

	bpo-30860 [https://bugs.python.org/issue30860]: Consolidate CPython's global runtime state under a single
struct. This improves discoverability of the runtime state.

	bpo-31347 [https://bugs.python.org/issue31347]: Fix possible undefined behavior in _PyObject_FastCall_Prepend.

	bpo-31343 [https://bugs.python.org/issue31343]: Include sys/sysmacros.h for major(), minor(), and makedev().
GNU C libray plans to remove the functions from sys/types.h.

	bpo-31291 [https://bugs.python.org/issue31291]: Fix an assertion failure in zipimport.zipimporter.get_data on
Windows, when the return value of pathname.replace('/','\\') isn't a
string. Patch by Oren Milman.

	bpo-31271 [https://bugs.python.org/issue31271]: Fix an assertion failure in the write() method of
io.TextIOWrapper, when the encoder doesn't return a bytes object. Patch
by Oren Milman.

	bpo-31243 [https://bugs.python.org/issue31243]: Fix a crash in some methods of io.TextIOWrapper, when the
decoder's state is invalid. Patch by Oren Milman.

	bpo-30721 [https://bugs.python.org/issue30721]: print now shows correct usage hint for using Python 2
redirection syntax. Patch by Sanyam Khurana.

	bpo-31070 [https://bugs.python.org/issue31070]: Fix a race condition in importlib _get_module_lock().

	bpo-30747 [https://bugs.python.org/issue30747]: Add a non-dummy implementation of _Py_atomic_store and
_Py_atomic_load on MSVC.

	bpo-31095 [https://bugs.python.org/issue31095]: Fix potential crash during GC caused by tp_dealloc which
doesn't call PyObject_GC_UnTrack().

	bpo-31071 [https://bugs.python.org/issue31071]: Avoid masking original TypeError in call with * unpacking when
other arguments are passed.

	bpo-30978 [https://bugs.python.org/issue30978]: str.format_map() now passes key lookup exceptions through.
Previously any exception was replaced with a KeyError exception.

	bpo-30808 [https://bugs.python.org/issue30808]: Use _Py_atomic API for concurrency-sensitive signal state.

	bpo-30876 [https://bugs.python.org/issue30876]: Relative import from unloaded package now reimports the package
instead of failing with SystemError. Relative import from non-package now
fails with ImportError rather than SystemError.

	bpo-30703 [https://bugs.python.org/issue30703]: Improve signal delivery.

Avoid using Py_AddPendingCall from signal handler, to avoid calling
signal-unsafe functions. The tests I'm adding here fail without the rest
of the patch, on Linux and OS X. This means our signal delivery logic had
defects (some signals could be lost).

	bpo-30765 [https://bugs.python.org/issue30765]: Avoid blocking in pthread_mutex_lock() when
PyThread_acquire_lock() is asked not to block.

	bpo-31161 [https://bugs.python.org/issue31161]: Make sure the 'Missing parentheses' syntax error message is
only applied to SyntaxError, not to subclasses. Patch by Martijn Pieters.

	bpo-30814 [https://bugs.python.org/issue30814]: Fixed a race condition when import a submodule from a package.

	bpo-30736 [https://bugs.python.org/issue30736]: The internal unicodedata database has been upgraded to Unicode
10.0.

	bpo-30604 [https://bugs.python.org/issue30604]: Move co_extra_freefuncs from per-thread to per-interpreter to
avoid crashes.

	bpo-30597 [https://bugs.python.org/issue30597]: print now shows expected input in custom error message when
used as a Python 2 statement. Patch by Sanyam Khurana.

	bpo-30682 [https://bugs.python.org/issue30682]: Removed a too-strict assertion that failed for certain
f-strings, such as eval("f'\n'") and eval("f'\r'").

	bpo-30501 [https://bugs.python.org/issue30501]: The compiler now produces more optimal code for complex
condition expressions in the "if", "while" and "assert" statement, the
"if" expression, and generator expressions and comprehensions.

	bpo-28180 [https://bugs.python.org/issue28180]: Implement PEP 538 (legacy C locale coercion). This means that
when a suitable coercion target locale is available, both the core
interpreter and locale-aware C extensions will assume the use of UTF-8 as
the default text encoding, rather than ASCII.

	bpo-30486 [https://bugs.python.org/issue30486]: Allows setting cell values for __closure__. Patch by Lisa
Roach.

	bpo-30537 [https://bugs.python.org/issue30537]: itertools.islice now accepts integer-like objects (having an
__index__ method) as start, stop, and slice arguments

	bpo-25324 [https://bugs.python.org/issue25324]: Tokens needed for parsing in Python moved to C. COMMENT,
NL and ENCODING. This way the tokens and tok_names in the token
module don't get changed when you import the tokenize module.

	bpo-29104 [https://bugs.python.org/issue29104]: Fixed parsing backslashes in f-strings.

	bpo-27945 [https://bugs.python.org/issue27945]: Fixed various segfaults with dict when input collections are
mutated during searching, inserting or comparing. Based on patches by
Duane Griffin and Tim Mitchell.

	bpo-25794 [https://bugs.python.org/issue25794]: Fixed type.__setattr__() and type.__delattr__() for
non-interned attribute names. Based on patch by Eryk Sun.

	bpo-30039 [https://bugs.python.org/issue30039]: If a KeyboardInterrupt happens when the interpreter is in the
middle of resuming a chain of nested 'yield from' or 'await' calls, it's
now correctly delivered to the innermost frame.

	bpo-28974 [https://bugs.python.org/issue28974]: object.__format__(x, '') is now equivalent to str(x)
rather than format(str(self), '').

	bpo-30024 [https://bugs.python.org/issue30024]: Circular imports involving absolute imports with binding a
submodule to a name are now supported.

	bpo-12414 [https://bugs.python.org/issue12414]: sys.getsizeof() on a code object now returns the sizes which
includes the code struct and sizes of objects which it references. Patch
by Dong-hee Na.

	bpo-29839 [https://bugs.python.org/issue29839]: len() now raises ValueError rather than OverflowError if
__len__() returned a large negative integer.

	bpo-11913 [https://bugs.python.org/issue11913]: README.rst is now included in the list of distutils standard
READMEs and therefore included in source distributions.

	bpo-29914 [https://bugs.python.org/issue29914]: Fixed default implementations of __reduce__ and
__reduce_ex__(). object.__reduce__() no longer takes arguments,
object.__reduce_ex__() now requires one argument.

	bpo-29949 [https://bugs.python.org/issue29949]: Fix memory usage regression of set and frozenset object.

	bpo-29935 [https://bugs.python.org/issue29935]: Fixed error messages in the index() method of tuple, list and
deque when pass indices of wrong type.

	bpo-29816 [https://bugs.python.org/issue29816]: Shift operation now has less opportunity to raise
OverflowError. ValueError always is raised rather than OverflowError for
negative counts. Shifting zero with non-negative count always returns
zero.

	bpo-24821 [https://bugs.python.org/issue24821]: Fixed the slowing down to 25 times in the searching of some
unlucky Unicode characters.

	bpo-29102 [https://bugs.python.org/issue29102]: Add a unique ID to PyInterpreterState. This makes it easier to
identify each subinterpreter.

	bpo-29894 [https://bugs.python.org/issue29894]: The deprecation warning is emitted if __complex__ returns an
instance of a strict subclass of complex. In a future versions of Python
this can be an error.

	bpo-29859 [https://bugs.python.org/issue29859]: Show correct error messages when any of the pthread_* calls in
thread_pthread.h fails.

	bpo-29849 [https://bugs.python.org/issue29849]: Fix a memory leak when an ImportError is raised during from
import.

	bpo-28856 [https://bugs.python.org/issue28856]: Fix an oversight that %b format for bytes should support
objects follow the buffer protocol.

	bpo-29723 [https://bugs.python.org/issue29723]: The sys.path[0] initialization change for bpo-29139 [https://bugs.python.org/issue29139] caused
a regression by revealing an inconsistency in how sys.path is initialized
when executing __main__ from a zipfile, directory, or other import
location. The interpreter now consistently avoids ever adding the import
location's parent directory to sys.path, and ensures no other
sys.path entries are inadvertently modified when inserting the import
location named on the command line.

	bpo-29568 [https://bugs.python.org/issue29568]: Escaped percent "%%" in the format string for classic string
formatting no longer allows any characters between two percents.

	bpo-29714 [https://bugs.python.org/issue29714]: Fix a regression that bytes format may fail when containing
zero bytes inside.

	bpo-29695 [https://bugs.python.org/issue29695]: bool(), float(), list() and tuple() no longer take keyword
arguments. The first argument of int() can now be passes only as
positional argument.

	bpo-28893 [https://bugs.python.org/issue28893]: Set correct __cause__ for errors about invalid awaitables
returned from __aiter__ and __anext__.

	bpo-28876 [https://bugs.python.org/issue28876]: bool(range) works even if len(range) raises
OverflowError.

	bpo-29683 [https://bugs.python.org/issue29683]: Fixes to memory allocation in _PyCode_SetExtra. Patch by Brian
Coleman.

	bpo-29684 [https://bugs.python.org/issue29684]: Fix minor regression of PyEval_CallObjectWithKeywords. It
should raise TypeError when kwargs is not a dict. But it might cause segv
when args=NULL and kwargs is not a dict.

	bpo-28598 [https://bugs.python.org/issue28598]: Support __rmod__ for subclasses of str being called before
str.__mod__. Patch by Martijn Pieters.

	bpo-29607 [https://bugs.python.org/issue29607]: Fix stack_effect computation for CALL_FUNCTION_EX. Patch by
Matthieu Dartiailh.

	bpo-29602 [https://bugs.python.org/issue29602]: Fix incorrect handling of signed zeros in complex constructor
for complex subclasses and for inputs having a __complex__ method. Patch
by Serhiy Storchaka.

	bpo-29347 [https://bugs.python.org/issue29347]: Fixed possibly dereferencing undefined pointers when creating
weakref objects.

	bpo-29463 [https://bugs.python.org/issue29463]: Add docstring field to Module, ClassDef, FunctionDef, and
AsyncFunctionDef ast nodes. docstring is not first stmt in their body
anymore. It affects co_firstlineno and co_lnotab of code object
for module and class. (Reverted in bpo-32911 [https://bugs.python.org/issue32911].)

	bpo-29438 [https://bugs.python.org/issue29438]: Fixed use-after-free problem in key sharing dict.

	bpo-29546 [https://bugs.python.org/issue29546]: Set the 'path' and 'name' attribute on ImportError for from
... import

	bpo-29546 [https://bugs.python.org/issue29546]: Improve from-import error message with location

	bpo-29478 [https://bugs.python.org/issue29478]: If max_line_length=None is specified while using the Compat32
policy, it is no longer ignored. Patch by Mircea Cosbuc.

	bpo-29319 [https://bugs.python.org/issue29319]: Prevent RunMainFromImporter overwriting sys.path[0].

	bpo-29337 [https://bugs.python.org/issue29337]: Fixed possible BytesWarning when compare the code objects.
Warnings could be emitted at compile time.

	bpo-29327 [https://bugs.python.org/issue29327]: Fixed a crash when pass the iterable keyword argument to
sorted().

	bpo-29034 [https://bugs.python.org/issue29034]: Fix memory leak and use-after-free in os module
(path_converter).

	bpo-29159 [https://bugs.python.org/issue29159]: Fix regression in bytes(x) when x.__index__() raises Exception.

	bpo-29049 [https://bugs.python.org/issue29049]: Call _PyObject_GC_TRACK() lazily when calling Python function.
Calling function is up to 5% faster.

	bpo-28927 [https://bugs.python.org/issue28927]: bytes.fromhex() and bytearray.fromhex() now ignore all ASCII
whitespace, not only spaces. Patch by Robert Xiao.

	bpo-28932 [https://bugs.python.org/issue28932]: Do not include <sys/random.h> if it does not exist.

	bpo-25677 [https://bugs.python.org/issue25677]: Correct the positioning of the syntax error caret for indented
blocks. Based on patch by Michael Layzell.

	bpo-29000 [https://bugs.python.org/issue29000]: Fixed bytes formatting of octals with zero padding in alternate
form.

	bpo-18896 [https://bugs.python.org/issue18896]: Python function can now have more than 255 parameters.
collections.namedtuple() now supports tuples with more than 255 elements.

	bpo-28596 [https://bugs.python.org/issue28596]: The preferred encoding is UTF-8 on Android. Patch written by
Chi Hsuan Yen.

	bpo-22257 [https://bugs.python.org/issue22257]: Clean up interpreter startup (see PEP 432).

	bpo-26919 [https://bugs.python.org/issue26919]: On Android, operating system data is now always encoded/decoded
to/from UTF-8, instead of the locale encoding to avoid inconsistencies
with os.fsencode() and os.fsdecode() which are already using UTF-8.

	bpo-28991 [https://bugs.python.org/issue28991]: functools.lru_cache() was susceptible to an obscure reentrancy
bug triggerable by a monkey-patched len() function.

	bpo-28147 [https://bugs.python.org/issue28147]: Fix a memory leak in split-table dictionaries: setattr() must
not convert combined table into split table. Patch written by INADA Naoki.

	bpo-28739 [https://bugs.python.org/issue28739]: f-string expressions are no longer accepted as docstrings and
by ast.literal_eval() even if they do not include expressions.

	bpo-28512 [https://bugs.python.org/issue28512]: Fixed setting the offset attribute of SyntaxError by
PyErr_SyntaxLocationEx() and PyErr_SyntaxLocationObject().

	bpo-28918 [https://bugs.python.org/issue28918]: Fix the cross compilation of xxlimited when Python has been
built with Py_DEBUG defined.

	bpo-23722 [https://bugs.python.org/issue23722]: Rather than silently producing a class that doesn't support
zero-argument super() in methods, failing to pass the new
__classcell__ namespace entry up to type.__new__ now results in a
DeprecationWarning and a class that supports zero-argument
super().

	bpo-28797 [https://bugs.python.org/issue28797]: Modifying the class __dict__ inside the __set_name__ method of
a descriptor that is used inside that class no longer prevents calling the
__set_name__ method of other descriptors.

	bpo-28799 [https://bugs.python.org/issue28799]: Remove the PyEval_GetCallStats() function and deprecate the
untested and undocumented sys.callstats() function. Remove the
CALL_PROFILE special build: use the sys.setprofile() function,
cProfile or profile to profile function calls.

	bpo-12844 [https://bugs.python.org/issue12844]: More than 255 arguments can now be passed to a function.

	bpo-28782 [https://bugs.python.org/issue28782]: Fix a bug in the implementation yield from when checking if
the next instruction is YIELD_FROM. Regression introduced by WORDCODE
(bpo-26647 [https://bugs.python.org/issue26647]).

	bpo-28774 [https://bugs.python.org/issue28774]: Fix error position of the unicode error in ASCII and Latin1
encoders when a string returned by the error handler contains multiple
non-encodable characters (non-ASCII for the ASCII codec, characters out of
the U+0000-U+00FF range for Latin1).

	bpo-28731 [https://bugs.python.org/issue28731]: Optimize _PyDict_NewPresized() to create correct size dict.
Improve speed of dict literal with constant keys up to 30%.

	bpo-28532 [https://bugs.python.org/issue28532]: Show sys.version when -V option is supplied twice.

	bpo-27100 [https://bugs.python.org/issue27100]: The with-statement now checks for __enter__ before it checks
for __exit__. This gives less confusing error messages when both methods
are missing. Patch by Jonathan Ellington.

	bpo-28746 [https://bugs.python.org/issue28746]: Fix the set_inheritable() file descriptor method on platforms
that do not have the ioctl FIOCLEX and FIONCLEX commands.

	bpo-26920 [https://bugs.python.org/issue26920]: Fix not getting the locale's charset upon initializing the
interpreter, on platforms that do not have langinfo.

	bpo-28648 [https://bugs.python.org/issue28648]: Fixed crash in Py_DecodeLocale() in debug build on Mac OS X
when decode astral characters. Patch by Xiang Zhang.

	bpo-28665 [https://bugs.python.org/issue28665]: Improve speed of the STORE_DEREF opcode by 40%.

	bpo-19398 [https://bugs.python.org/issue19398]: Extra slash no longer added to sys.path components in case of
empty compile-time PYTHONPATH components.

	bpo-28621 [https://bugs.python.org/issue28621]: Sped up converting int to float by reusing faster bits counting
implementation. Patch by Adrian Wielgosik.

	bpo-28580 [https://bugs.python.org/issue28580]: Optimize iterating split table values. Patch by Xiang Zhang.

	bpo-28583 [https://bugs.python.org/issue28583]: PyDict_SetDefault didn't combine split table when needed. Patch
by Xiang Zhang.

	bpo-28128 [https://bugs.python.org/issue28128]: Deprecation warning for invalid str and byte escape sequences
now prints better information about where the error occurs. Patch by
Serhiy Storchaka and Eric Smith.

	bpo-28509 [https://bugs.python.org/issue28509]: dict.update() no longer allocate unnecessary large memory.

	bpo-28426 [https://bugs.python.org/issue28426]: Fixed potential crash in PyUnicode_AsDecodedObject() in debug
build.

	bpo-28517 [https://bugs.python.org/issue28517]: Fixed of-by-one error in the peephole optimizer that caused
keeping unreachable code.

	bpo-28214 [https://bugs.python.org/issue28214]: Improved exception reporting for problematic __set_name__
attributes.

	bpo-23782 [https://bugs.python.org/issue23782]: Fixed possible memory leak in _PyTraceback_Add() and exception
loss in PyTraceBack_Here().

	bpo-28183 [https://bugs.python.org/issue28183]: Optimize and cleanup dict iteration.

	bpo-26081 [https://bugs.python.org/issue26081]: Added C implementation of asyncio.Future. Original patch by
Yury Selivanov.

	bpo-28379 [https://bugs.python.org/issue28379]: Added sanity checks and tests for PyUnicode_CopyCharacters().
Patch by Xiang Zhang.

	bpo-28376 [https://bugs.python.org/issue28376]: The type of long range iterator is now registered as Iterator.
Patch by Oren Milman.

	bpo-28376 [https://bugs.python.org/issue28376]: Creating instances of range_iterator by calling range_iterator
type now is disallowed. Calling iter() on range instance is the only way.
Patch by Oren Milman.

	bpo-26906 [https://bugs.python.org/issue26906]: Resolving special methods of uninitialized type now causes
implicit initialization of the type instead of a fail.

	bpo-18287 [https://bugs.python.org/issue18287]: PyType_Ready() now checks that tp_name is not NULL. Original
patch by Niklas Koep.

	bpo-24098 [https://bugs.python.org/issue24098]: Fixed possible crash when AST is changed in process of
compiling it.

	bpo-28201 [https://bugs.python.org/issue28201]: Dict reduces possibility of 2nd conflict in hash table when
hashes have same lower bits.

	bpo-28350 [https://bugs.python.org/issue28350]: String constants with null character no longer interned.

	bpo-26617 [https://bugs.python.org/issue26617]: Fix crash when GC runs during weakref callbacks.

	bpo-27942 [https://bugs.python.org/issue27942]: String constants now interned recursively in tuples and
frozensets.

	bpo-28289 [https://bugs.python.org/issue28289]: ImportError.__init__ now resets not specified attributes.

	bpo-21578 [https://bugs.python.org/issue21578]: Fixed misleading error message when ImportError called with
invalid keyword args.

	bpo-28203 [https://bugs.python.org/issue28203]: Fix incorrect type in complex(1.0, {2:3}) error message. Patch
by Soumya Sharma.

	bpo-28086 [https://bugs.python.org/issue28086]: Single var-positional argument of tuple subtype was passed
unscathed to the C-defined function. Now it is converted to exact tuple.

	bpo-28214 [https://bugs.python.org/issue28214]: Now __set_name__ is looked up on the class instead of the
instance.

	bpo-27955 [https://bugs.python.org/issue27955]: Fallback on reading /dev/urandom device when the getrandom()
syscall fails with EPERM, for example when blocked by SECCOMP.

	bpo-28192 [https://bugs.python.org/issue28192]: Don't import readline in isolated mode.

	bpo-27441 [https://bugs.python.org/issue27441]: Remove some redundant assignments to ob_size in longobject.c.
Thanks Oren Milman.

	bpo-27222 [https://bugs.python.org/issue27222]: Clean up redundant code in long_rshift function. Thanks Oren
Milman.

	Upgrade internal unicode databases to Unicode version 9.0.0.

	bpo-28131 [https://bugs.python.org/issue28131]: Fix a regression in zipimport's compile_source(). zipimport
should use the same optimization level as the interpreter.

	bpo-28126 [https://bugs.python.org/issue28126]: Replace Py_MEMCPY with memcpy(). Visual Studio can properly
optimize memcpy().

	bpo-28120 [https://bugs.python.org/issue28120]: Fix dict.pop() for splitted dictionary when trying to remove a
"pending key" (Not yet inserted in split-table). Patch by Xiang Zhang.

	bpo-26182 [https://bugs.python.org/issue26182]: Raise DeprecationWarning when async and await keywords are used
as variable/attribute/class/function name.

	bpo-26182 [https://bugs.python.org/issue26182]: Fix a refleak in code that raises DeprecationWarning.

	bpo-28721 [https://bugs.python.org/issue28721]: Fix asynchronous generators aclose() and athrow() to handle
StopAsyncIteration propagation properly.

	bpo-26110 [https://bugs.python.org/issue26110]: Speed-up method calls: add LOAD_METHOD and CALL_METHOD opcodes.

库

	bpo-31499 [https://bugs.python.org/issue31499]: xml.etree: Fix a crash when a parser is part of a reference
cycle.

	bpo-31482 [https://bugs.python.org/issue31482]: random.seed() now works with bytes in version=1

	bpo-28556 [https://bugs.python.org/issue28556]: typing.get_type_hints now finds the right globalns for classes
and modules by default (when no globalns was specified by the caller).

	bpo-28556 [https://bugs.python.org/issue28556]: Speed improvements to the typing module. Original PRs by
Ivan Levkivskyi and Mitar.

	bpo-31544 [https://bugs.python.org/issue31544]: The C accelerator module of ElementTree ignored exceptions
raised when looking up TreeBuilder target methods in XMLParser().

	bpo-31234 [https://bugs.python.org/issue31234]: socket.create_connection() now fixes manually a reference
cycle: clear the variable storing the last exception on success.

	bpo-31457 [https://bugs.python.org/issue31457]: LoggerAdapter objects can now be nested.

	bpo-31431 [https://bugs.python.org/issue31431]: SSLContext.check_hostname now automatically sets
SSLContext.verify_mode to ssl.CERT_REQUIRED instead of failing with a
ValueError.

	bpo-31233 [https://bugs.python.org/issue31233]: socketserver.ThreadingMixIn now keeps a list of non-daemonic
threads to wait until all these threads complete in server_close().

	bpo-28638 [https://bugs.python.org/issue28638]: Changed the implementation strategy for
collections.namedtuple() to substantially reduce the use of exec() in
favor of precomputed methods. As a result, the verbose parameter and
_source attribute are no longer supported. The benefits include 1)
having a smaller memory footprint for applications using multiple named
tuples, 2) faster creation of the named tuple class (approx 4x to 6x
depending on how it is measured), and 3) minor speed-ups for instance
creation using __new__, _make, and _replace. (The primary patch
contributor is Jelle Zijlstra with further improvements by INADA Naoki,
Serhiy Storchaka, and Raymond Hettinger.)

	bpo-31400 [https://bugs.python.org/issue31400]: Improves SSL error handling to avoid losing error numbers.

	bpo-27629 [https://bugs.python.org/issue27629]: Make return types of SSLContext.wrap_bio() and
SSLContext.wrap_socket() customizable.

	bpo-28958 [https://bugs.python.org/issue28958]: ssl.SSLContext() now uses OpenSSL error information when a
context cannot be instantiated.

	bpo-28182 [https://bugs.python.org/issue28182]: The SSL module now raises SSLCertVerificationError when OpenSSL
fails to verify the peer's certificate. The exception contains more
information about the error.

	bpo-27340 [https://bugs.python.org/issue27340]: SSLSocket.sendall() now uses memoryview to create slices of
data. This fixes support for all bytes-like object. It is also more
efficient and avoids costly copies.

	bpo-14191 [https://bugs.python.org/issue14191]: A new function
argparse.ArgumentParser.parse_intermixed_args provides the ability to
parse command lines where there user intermixes options and positional
arguments.

	bpo-31178 [https://bugs.python.org/issue31178]: Fix string concatenation bug in rare error path in the
subprocess module

	bpo-31350 [https://bugs.python.org/issue31350]: Micro-optimize asyncio._get_running_loop() to become up
to 10% faster.

	bpo-31170 [https://bugs.python.org/issue31170]: expat: Update libexpat from 2.2.3 to 2.2.4. Fix copying of
partial characters for UTF-8 input (libexpat bug 115):
https://github.com/libexpat/libexpat/issues/115

	bpo-29136 [https://bugs.python.org/issue29136]: Add TLS 1.3 cipher suites and OP_NO_TLSv1_3.

	bpo-1198569 [https://bugs.python.org/issue1198569]: string.Template subclasses can optionally define
braceidpattern if they want to specify different placeholder patterns
inside and outside the braces. If None (the default) it falls back to
idpattern.

	bpo-31326 [https://bugs.python.org/issue31326]: concurrent.futures.ProcessPoolExecutor.shutdown() now
explicitly closes the call queue. Moreover, shutdown(wait=True) now also
join the call queue thread, to prevent leaking a dangling thread.

	bpo-27144 [https://bugs.python.org/issue27144]: The map() and as_completed() iterators in
concurrent.futures now avoid keeping a reference to yielded objects.

	bpo-31281 [https://bugs.python.org/issue31281]: Fix fileinput.FileInput(files, inplace=True) when files
contain pathlib.Path objects.

	bpo-10746 [https://bugs.python.org/issue10746]: Fix ctypes producing wrong PEP 3118 type codes for integer
types.

	bpo-27584 [https://bugs.python.org/issue27584]: AF_VSOCK has been added to the socket interface which
allows communication between virtual machines and their host.

	bpo-22536 [https://bugs.python.org/issue22536]: The subprocess module now sets the filename when
FileNotFoundError is raised on POSIX systems due to the executable or cwd
not being found.

	bpo-29741 [https://bugs.python.org/issue29741]: Update some methods in the _pyio module to also accept integer
types. Patch by Oren Milman.

	bpo-31249 [https://bugs.python.org/issue31249]: concurrent.futures: WorkItem.run() used by ThreadPoolExecutor
now breaks a reference cycle between an exception object and the WorkItem
object.

	bpo-31247 [https://bugs.python.org/issue31247]: xmlrpc.server now explicitly breaks reference cycles when using
sys.exc_info() in code handling exceptions.

	bpo-23835 [https://bugs.python.org/issue23835]: configparser: reading defaults in the ConfigParser()
constructor is now using read_dict(), making its behavior consistent
with the rest of the parser. Non-string keys and values in the defaults
dictionary are now being implicitly converted to strings. Patch by James
Tocknell.

	bpo-31238 [https://bugs.python.org/issue31238]: pydoc: the stop() method of the private ServerThread class now
waits until DocServer.serve_until_quit() completes and then explicitly
sets its docserver attribute to None to break a reference cycle.

	bpo-5001 [https://bugs.python.org/issue5001]: Many asserts in multiprocessing are now more informative, and
some error types have been changed to more specific ones.

	bpo-31109 [https://bugs.python.org/issue31109]: Convert zipimport to use Argument Clinic.

	bpo-30102 [https://bugs.python.org/issue30102]: The ssl and hashlib modules now call
OPENSSL_add_all_algorithms_noconf() on OpenSSL < 1.1.0. The function
detects CPU features and enables optimizations on some CPU architectures
such as POWER8. Patch is based on research from Gustavo Serra Scalet.

	bpo-18966 [https://bugs.python.org/issue18966]: Non-daemonic threads created by a multiprocessing.Process are
now joined on child exit.

	bpo-31183 [https://bugs.python.org/issue31183]: dis now works with asynchronous generator and coroutine
objects. Patch by George Collins based on diagnosis by Luciano Ramalho.

	bpo-5001 [https://bugs.python.org/issue5001]: There are a number of uninformative asserts in the
multiprocessing module, as noted in issue 5001. This change fixes two of
the most potentially problematic ones, since they are in error-reporting
code, in the multiprocessing.managers.convert_to_error function. (It
also makes more informative a ValueError message.) The only potentially
problematic change is that the AssertionError is now a TypeError; however,
this should also help distinguish it from an AssertionError being
reported by the function/its caller (such as in issue 31169). - Patch by
Allen W. Smith (drallensmith on github).

	bpo-31185 [https://bugs.python.org/issue31185]: Fixed miscellaneous errors in asyncio speedup module.

	bpo-31151 [https://bugs.python.org/issue31151]: socketserver.ForkingMixIn.server_close() now waits until all
child processes completed to prevent leaking zombie processes.

	bpo-31072 [https://bugs.python.org/issue31072]: Add an include_file parameter to
zipapp.create_archive()

	bpo-24700 [https://bugs.python.org/issue24700]: Optimize array.array comparison. It is now from 10x up to 70x
faster when comparing arrays holding values of the same integer type.

	bpo-31135 [https://bugs.python.org/issue31135]: ttk: fix the destroy() method of LabeledScale and OptionMenu
classes. Call the parent destroy() method even if the used attribute
doesn't exist. The LabeledScale.destroy() method now also explicitly
clears label and scale attributes to help the garbage collector to destroy
all widgets.

	bpo-31107 [https://bugs.python.org/issue31107]: Fix copyreg._slotnames() mangled attribute calculation for
classes whose name begins with an underscore. Patch by Shane Harvey.

	bpo-31080 [https://bugs.python.org/issue31080]: Allow logging.config.fileConfig to accept kwargs and/or args.

	bpo-30897 [https://bugs.python.org/issue30897]: pathlib.Path objects now include an is_mount() method
(only implemented on POSIX). This is similar to os.path.ismount(p).
Patch by Cooper Ry Lees.

	bpo-31061 [https://bugs.python.org/issue31061]: Fixed a crash when using asyncio and threads.

	bpo-30987 [https://bugs.python.org/issue30987]: Added support for CAN ISO-TP protocol in the socket module.

	bpo-30522 [https://bugs.python.org/issue30522]: Added a setStream method to logging.StreamHandler to
allow the stream to be set after creation.

	bpo-30502 [https://bugs.python.org/issue30502]: Fix handling of long oids in ssl. Based on patch by Christian
Heimes.

	bpo-5288 [https://bugs.python.org/issue5288]: Support tzinfo objects with sub-minute offsets.

	bpo-30919 [https://bugs.python.org/issue30919]: Fix shared memory performance regression in multiprocessing in
3.x.

Shared memory used anonymous memory mappings in 2.x, while 3.x mmaps
actual files. Try to be careful to do as little disk I/O as possible.

	bpo-26732 [https://bugs.python.org/issue26732]: Fix too many fds in processes started with the "forkserver"
method.

A child process would inherit as many fds as the number of still-running
children.

	bpo-29403 [https://bugs.python.org/issue29403]: Fix unittest.mock's autospec to not fail on method-bound
builtin functions. Patch by Aaron Gallagher.

	bpo-30961 [https://bugs.python.org/issue30961]: Fix decrementing a borrowed reference in tracemalloc.

	bpo-19896 [https://bugs.python.org/issue19896]: Fix multiprocessing.sharedctypes to recognize typecodes 'q'
and 'Q'.

	bpo-30946 [https://bugs.python.org/issue30946]: Remove obsolete code in readline module for platforms where GNU
readline is older than 2.1 or where select() is not available.

	bpo-25684 [https://bugs.python.org/issue25684]: Change ttk.OptionMenu radiobuttons to be unique across
instances of OptionMenu.

	bpo-30886 [https://bugs.python.org/issue30886]: Fix multiprocessing.Queue.join_thread(): it now waits until the
thread completes, even if the thread was started by the same process which
created the queue.

	bpo-29854 [https://bugs.python.org/issue29854]: Fix segfault in readline when using readline's history-size
option. Patch by Nir Soffer.

	bpo-30794 [https://bugs.python.org/issue30794]: Added multiprocessing.Process.kill method to terminate using
the SIGKILL signal on Unix.

	bpo-30319 [https://bugs.python.org/issue30319]: socket.close() now ignores ECONNRESET error.

	bpo-30828 [https://bugs.python.org/issue30828]: Fix out of bounds write in
asyncio.CFuture.remove_done_callback().

	bpo-30302 [https://bugs.python.org/issue30302]: Use keywords in the repr of datetime.timedelta.

	bpo-30807 [https://bugs.python.org/issue30807]: signal.setitimer() may disable the timer when passed a tiny
value.

Tiny values (such as 1e-6) are valid non-zero values for setitimer(),
which is specified as taking microsecond-resolution intervals. However, on
some platform, our conversion routine could convert 1e-6 into a zero
interval, therefore disabling the timer instead of (re-)scheduling it.

	bpo-30441 [https://bugs.python.org/issue30441]: Fix bug when modifying os.environ while iterating over it

	bpo-29585 [https://bugs.python.org/issue29585]: Avoid importing sysconfig from site to improve startup
speed. Python startup is about 5% faster on Linux and 30% faster on macOS.

	bpo-29293 [https://bugs.python.org/issue29293]: Add missing parameter "n" on
multiprocessing.Condition.notify().

The doc claims multiprocessing.Condition behaves like threading.Condition,
but its notify() method lacked the optional "n" argument (to specify the
number of sleepers to wake up) that threading.Condition.notify() accepts.

	bpo-30532 [https://bugs.python.org/issue30532]: Fix email header value parser dropping folding white space in
certain cases.

	bpo-30596 [https://bugs.python.org/issue30596]: Add a close() method to multiprocessing.Process.

	bpo-9146 [https://bugs.python.org/issue9146]: Fix a segmentation fault in _hashopenssl when standard hash
functions such as md5 are not available in the linked OpenSSL library. As
in some special FIPS-140 build environments.

	bpo-29169 [https://bugs.python.org/issue29169]: Update zlib to 1.2.11.

	bpo-30119 [https://bugs.python.org/issue30119]: ftplib.FTP.putline() now throws ValueError on commands that
contains CR or LF. Patch by Dong-hee Na.

	bpo-30879 [https://bugs.python.org/issue30879]: os.listdir() and os.scandir() now emit bytes names when called
with bytes-like argument.

	bpo-30746 [https://bugs.python.org/issue30746]: Prohibited the '=' character in environment variable names in
os.putenv() and os.spawn*().

	bpo-30664 [https://bugs.python.org/issue30664]: The description of a unittest subtest now preserves the order
of keyword arguments of TestCase.subTest().

	bpo-21071 [https://bugs.python.org/issue21071]: struct.Struct.format type is now str instead of
bytes.

	bpo-29212 [https://bugs.python.org/issue29212]: Fix concurrent.futures.thread.ThreadPoolExecutor threads to
have a non repr() based thread name by default when no thread_name_prefix
is supplied. They will now identify themselves as
"ThreadPoolExecutor-y_n".

	bpo-29755 [https://bugs.python.org/issue29755]: Fixed the lgettext() family of functions in the gettext module.
They now always return bytes.

	bpo-30616 [https://bugs.python.org/issue30616]: Functional API of enum allows to create empty enums. Patched by
Dong-hee Na

	bpo-30038 [https://bugs.python.org/issue30038]: Fix race condition between signal delivery and wakeup file
descriptor. Patch by Nathaniel Smith.

	bpo-23894 [https://bugs.python.org/issue23894]: lib2to3 now recognizes rb'...' and f'...' strings.

	bpo-24744 [https://bugs.python.org/issue24744]: pkgutil.walk_packages function now raises ValueError if path
is a string. Patch by Sanyam Khurana.

	bpo-24484 [https://bugs.python.org/issue24484]: Avoid race condition in multiprocessing cleanup.

	bpo-30589 [https://bugs.python.org/issue30589]: Fix multiprocessing.Process.exitcode to return the opposite of
the signal number when the process is killed by a signal (instead of 255)
when using the "forkserver" method.

	bpo-28994 [https://bugs.python.org/issue28994]: The traceback no longer displayed for SystemExit raised in a
callback registered by atexit.

	bpo-30508 [https://bugs.python.org/issue30508]: Don't log exceptions if Task/Future "cancel()" method was
called.

	bpo-30645 [https://bugs.python.org/issue30645]: Fix path calculation in imp.load_package(), fixing it for
cases when a package is only shipped with bytecodes. Patch by Alexandru
Ardelean.

	bpo-11822 [https://bugs.python.org/issue11822]: The dis.dis() function now is able to disassemble nested code
objects.

	bpo-30624 [https://bugs.python.org/issue30624]: selectors does not take KeyboardInterrupt and SystemExit into
account, leaving a fd in a bad state in case of error. Patch by Giampaolo
Rodola'.

	bpo-30595 [https://bugs.python.org/issue30595]: multiprocessing.Queue.get() with a timeout now polls its reader
in non-blocking mode if it succeeded to acquire the lock but the acquire
took longer than the timeout.

	bpo-28556 [https://bugs.python.org/issue28556]: Updates to typing module: Add generic AsyncContextManager, add
support for ContextManager on all versions. Original PRs by Jelle Zijlstra
and Ivan Levkivskyi

	bpo-30605 [https://bugs.python.org/issue30605]: re.compile() no longer raises a BytesWarning when compiling a
bytes instance with misplaced inline modifier. Patch by Roy Williams.

	bpo-29870 [https://bugs.python.org/issue29870]: Fix ssl sockets leaks when connection is aborted in asyncio/ssl
implementation. Patch by Michaël Sghaïer.

	bpo-29743 [https://bugs.python.org/issue29743]: Closing transport during handshake process leaks open socket.
Patch by Nikolay Kim

	bpo-27585 [https://bugs.python.org/issue27585]: Fix waiter cancellation in asyncio.Lock. Patch by Mathieu
Sornay.

	bpo-30014 [https://bugs.python.org/issue30014]: modify() method of poll(), epoll() and devpoll() based classes
of selectors module is around 10% faster. Patch by Giampaolo Rodola'.

	bpo-30418 [https://bugs.python.org/issue30418]: On Windows, subprocess.Popen.communicate() now also ignore
EINVAL on stdin.write() if the child process is still running but closed
the pipe.

	bpo-30463 [https://bugs.python.org/issue30463]: Addded empty __slots__ to abc.ABC. This allows subclassers to
deny __dict__ and __weakref__ creation. Patch by Aaron Hall.

	bpo-30520 [https://bugs.python.org/issue30520]: Loggers are now pickleable.

	bpo-30557 [https://bugs.python.org/issue30557]: faulthandler now correctly filters and displays exception codes
on Windows

	bpo-30526 [https://bugs.python.org/issue30526]: Add TextIOWrapper.reconfigure() and a
TextIOWrapper.write_through attribute.

	bpo-30245 [https://bugs.python.org/issue30245]: Fix possible overflow when organize struct.pack_into error
message. Patch by Yuan Liu.

	bpo-30378 [https://bugs.python.org/issue30378]: Fix the problem that logging.handlers.SysLogHandler cannot
handle IPv6 addresses.

	bpo-16500 [https://bugs.python.org/issue16500]: Allow registering at-fork handlers.

	bpo-30470 [https://bugs.python.org/issue30470]: Deprecate invalid ctypes call protection on Windows. Patch by
Mariatta Wijaya.

	bpo-30414 [https://bugs.python.org/issue30414]: multiprocessing.Queue._feed background running thread do not
break from main loop on exception.

	bpo-30003 [https://bugs.python.org/issue30003]: Fix handling escape characters in HZ codec. Based on patch by
Ma Lin.

	bpo-30149 [https://bugs.python.org/issue30149]: inspect.signature() now supports callables with
variable-argument parameters wrapped with partialmethod. Patch by Dong-hee
Na.

	bpo-30436 [https://bugs.python.org/issue30436]: importlib.find_spec() raises ModuleNotFoundError instead of
AttributeError if the specified parent module is not a package (i.e. lacks
a __path__ attribute).

	bpo-30301 [https://bugs.python.org/issue30301]: Fix AttributeError when using SimpleQueue.empty() under spawn
and forkserver start methods.

	bpo-30375 [https://bugs.python.org/issue30375]: Warnings emitted when compile a regular expression now always
point to the line in the user code. Previously they could point into
inners of the re module if emitted from inside of groups or conditionals.

	bpo-30329 [https://bugs.python.org/issue30329]: imaplib and poplib now catch the Windows socket WSAEINVAL error
(code 10022) on shutdown(SHUT_RDWR): An invalid operation was attempted.
This error occurs sometimes on SSL connections.

	bpo-29196 [https://bugs.python.org/issue29196]: Removed previously deprecated in Python 2.4 classes Plist, Dict
and _InternalDict in the plistlib module. Dict values in the result of
functions readPlist() and readPlistFromBytes() are now normal dicts. You
no longer can use attribute access to access items of these dictionaries.

	bpo-9850 [https://bugs.python.org/issue9850]: The macpath is now deprecated and will be removed in
Python 3.8.

	bpo-30299 [https://bugs.python.org/issue30299]: Compiling regular expression in debug mode on CPython now
displays the compiled bytecode in human readable form.

	bpo-30048 [https://bugs.python.org/issue30048]: Fixed Task.cancel() can be ignored when the task is running
coroutine and the coroutine returned without any more await.

	bpo-30266 [https://bugs.python.org/issue30266]: contextlib.AbstractContextManager now supports
anti-registration by setting __enter__ = None or __exit__ = None,
following the pattern introduced in bpo-25958 [https://bugs.python.org/issue25958]. Patch by Jelle Zijlstra.

	bpo-30340 [https://bugs.python.org/issue30340]: Enhanced regular expressions optimization. This increased the
performance of matching some patterns up to 25 times.

	bpo-30298 [https://bugs.python.org/issue30298]: Weaken the condition of deprecation warnings for inline
modifiers. Now allowed several subsequential inline modifiers at the start
of the pattern (e.g. '(?i)(?s)...'). In verbose mode whitespaces and
comments now are allowed before and between inline modifiers (e.g. '(?x)
(?i) (?s)...').

	bpo-30285 [https://bugs.python.org/issue30285]: Optimized case-insensitive matching and searching of regular
expressions.

	bpo-29990 [https://bugs.python.org/issue29990]: Fix range checking in GB18030 decoder. Original patch by Ma
Lin.

	bpo-29979 [https://bugs.python.org/issue29979]: rewrite cgi.parse_multipart, reusing the FieldStorage class and
making its results consistent with those of FieldStorage for
multipart/form-data requests. Patch by Pierre Quentel.

	bpo-30243 [https://bugs.python.org/issue30243]: Removed the __init__ methods of _json's scanner and encoder.
Misusing them could cause memory leaks or crashes. Now scanner and
encoder objects are completely initialized in the __new__ methods.

	bpo-30215 [https://bugs.python.org/issue30215]: Compiled regular expression objects with the re.LOCALE flag no
longer depend on the locale at compile time. Only the locale at matching
time affects the result of matching.

	bpo-30185 [https://bugs.python.org/issue30185]: Avoid KeyboardInterrupt tracebacks in forkserver helper process
when Ctrl-C is received.

	bpo-30103 [https://bugs.python.org/issue30103]: binascii.b2a_uu() and uu.encode() now support using '`' as
zero instead of space.

	bpo-28556 [https://bugs.python.org/issue28556]: Various updates to typing module: add typing.NoReturn type, use
WrapperDescriptorType, minor bug-fixes. Original PRs by Jim
Fasarakis-Hilliard and Ivan Levkivskyi.

	bpo-30205 [https://bugs.python.org/issue30205]: Fix getsockname() for unbound AF_UNIX sockets on Linux.

	bpo-30228 [https://bugs.python.org/issue30228]: The seek() and tell() methods of io.FileIO now set the internal
seekable attribute to avoid one syscall on open() (in buffered or text
mode).

	bpo-30190 [https://bugs.python.org/issue30190]: unittest's assertAlmostEqual and assertNotAlmostEqual provide a
better message in case of failure which includes the difference between
left and right arguments. (patch by Giampaolo Rodola')

	bpo-30101 [https://bugs.python.org/issue30101]: Add support for curses.A_ITALIC.

	bpo-29822 [https://bugs.python.org/issue29822]: inspect.isabstract() now works during __init_subclass__. Patch
by Nate Soares.

	bpo-29960 [https://bugs.python.org/issue29960]: Preserve generator state when _random.Random.setstate() raises
an exception. Patch by Bryan Olson.

	bpo-30070 [https://bugs.python.org/issue30070]: Fixed leaks and crashes in errors handling in the parser
module.

	bpo-22352 [https://bugs.python.org/issue22352]: Column widths in the output of dis.dis() are now adjusted for
large line numbers and instruction offsets.

	bpo-30061 [https://bugs.python.org/issue30061]: Fixed crashes in IOBase methods __next__() and readlines() when
readline() or __next__() respectively return non-sizeable object. Fixed
possible other errors caused by not checking results of PyObject_Size(),
PySequence_Size(), or PyMapping_Size().

	bpo-30218 [https://bugs.python.org/issue30218]: Fix PathLike support for shutil.unpack_archive. Patch by Jelle
Zijlstra.

	bpo-10076 [https://bugs.python.org/issue10076]: Compiled regular expression and match objects in the re module
now support copy.copy() and copy.deepcopy() (they are considered atomic).

	bpo-30068 [https://bugs.python.org/issue30068]: _io._IOBase.readlines will check if it's closed first when hint
is present.

	bpo-29694 [https://bugs.python.org/issue29694]: Fixed race condition in pathlib mkdir with flags parents=True.
Patch by Armin Rigo.

	bpo-29692 [https://bugs.python.org/issue29692]: Fixed arbitrary unchaining of RuntimeError exceptions in
contextlib.contextmanager. Patch by Siddharth Velankar.

	bpo-26187 [https://bugs.python.org/issue26187]: Test that sqlite3 trace callback is not called multiple times
when schema is changing. Indirectly fixed by switching to use
sqlite3_prepare_v2() in bpo-9303 [https://bugs.python.org/issue9303]. Patch by Aviv Palivoda.

	bpo-30017 [https://bugs.python.org/issue30017]: Allowed calling the close() method of the zip entry writer
object multiple times. Writing to a closed writer now always produces a
ValueError.

	bpo-29998 [https://bugs.python.org/issue29998]: Pickling and copying ImportError now preserves name and path
attributes.

	bpo-29995 [https://bugs.python.org/issue29995]: re.escape() now escapes only regex special characters.

	bpo-29962 [https://bugs.python.org/issue29962]: Add math.remainder operation, implementing remainder as
specified in IEEE 754.

	bpo-29649 [https://bugs.python.org/issue29649]: Improve struct.pack_into() exception messages for problems with
the buffer size and offset. Patch by Andrew Nester.

	bpo-29654 [https://bugs.python.org/issue29654]: Support If-Modified-Since HTTP header (browser cache). Patch
by Pierre Quentel.

	bpo-29931 [https://bugs.python.org/issue29931]: Fixed comparison check for ipaddress.ip_interface objects.
Patch by Sanjay Sundaresan.

	bpo-29953 [https://bugs.python.org/issue29953]: Fixed memory leaks in the replace() method of datetime and time
objects when pass out of bound fold argument.

	bpo-29942 [https://bugs.python.org/issue29942]: Fix a crash in itertools.chain.from_iterable when encountering
long runs of empty iterables.

	bpo-10030 [https://bugs.python.org/issue10030]: Sped up reading encrypted ZIP files by 2 times.

	bpo-29204 [https://bugs.python.org/issue29204]: Element.getiterator() and the html parameter of XMLParser()
were deprecated only in the documentation (since Python 3.2 and 3.4
correspondintly). Now using them emits a deprecation warning.

	bpo-27863 [https://bugs.python.org/issue27863]: Fixed multiple crashes in ElementTree caused by race conditions
and wrong types.

	bpo-25996 [https://bugs.python.org/issue25996]: Added support of file descriptors in os.scandir() on Unix.
os.fwalk() is sped up by 2 times by using os.scandir().

	bpo-28699 [https://bugs.python.org/issue28699]: Fixed a bug in pools in multiprocessing.pool that raising an
exception at the very first of an iterable may swallow the exception or
make the program hang. Patch by Davin Potts and Xiang Zhang.

	bpo-23890 [https://bugs.python.org/issue23890]: unittest.TestCase.assertRaises() now manually breaks a
reference cycle to not keep objects alive longer than expected.

	bpo-29901 [https://bugs.python.org/issue29901]: The zipapp module now supports general path-like objects, not
just pathlib.Path.

	bpo-25803 [https://bugs.python.org/issue25803]: Avoid incorrect errors raised by Path.mkdir(exist_ok=True) when
the OS gives priority to errors such as EACCES over EEXIST.

	bpo-29861 [https://bugs.python.org/issue29861]: Release references to tasks, their arguments and their results
as soon as they are finished in multiprocessing.Pool.

	bpo-19930 [https://bugs.python.org/issue19930]: The mode argument of os.makedirs() no longer affects the file
permission bits of newly-created intermediate-level directories.

	bpo-29884 [https://bugs.python.org/issue29884]: faulthandler: Restore the old sigaltstack during teardown.
Patch by Christophe Zeitouny.

	bpo-25455 [https://bugs.python.org/issue25455]: Fixed crashes in repr of recursive buffered file-like objects.

	bpo-29800 [https://bugs.python.org/issue29800]: Fix crashes in partial.__repr__ if the keys of partial.keywords
are not strings. Patch by Michael Seifert.

	bpo-8256 [https://bugs.python.org/issue8256]: Fixed possible failing or crashing input() if attributes
"encoding" or "errors" of sys.stdin or sys.stdout are not set or are not
strings.

	bpo-28692 [https://bugs.python.org/issue28692]: Using non-integer value for selecting a plural form in gettext
is now deprecated.

	bpo-26121 [https://bugs.python.org/issue26121]: Use C library implementation for math functions erf() and
erfc().

	bpo-29619 [https://bugs.python.org/issue29619]: os.stat() and os.DirEntry.inode() now convert inode (st_ino)
using unsigned integers.

	bpo-28298 [https://bugs.python.org/issue28298]: Fix a bug that prevented array 'Q', 'L' and 'I' from accepting
big intables (objects that have __int__) as elements.

	bpo-29645 [https://bugs.python.org/issue29645]: Speed up importing the webbrowser module.
webbrowser.register() is now thread-safe.

	bpo-28231 [https://bugs.python.org/issue28231]: The zipfile module now accepts path-like objects for external
paths.

	bpo-26915 [https://bugs.python.org/issue26915]: index() and count() methods of collections.abc.Sequence now
check identity before checking equality when do comparisons.

	bpo-28682 [https://bugs.python.org/issue28682]: Added support for bytes paths in os.fwalk().

	bpo-29728 [https://bugs.python.org/issue29728]: Add new socket.TCP_NOTSENT_LOWAT (Linux 3.12) constant.
Patch by Nathaniel J. Smith.

	bpo-29623 [https://bugs.python.org/issue29623]: Allow use of path-like object as a single argument in
ConfigParser.read(). Patch by David Ellis.

	bpo-9303 [https://bugs.python.org/issue9303]: Migrate sqlite3 module to _v2 API. Patch by Aviv Palivoda.

	bpo-28963 [https://bugs.python.org/issue28963]: Fix out of bound iteration in
asyncio.Future.remove_done_callback implemented in C.

	bpo-29704 [https://bugs.python.org/issue29704]: asyncio.subprocess.SubprocessStreamProtocol no longer closes
before all pipes are closed.

	bpo-29271 [https://bugs.python.org/issue29271]: Fix Task.current_task and Task.all_tasks implemented in C to
accept None argument as their pure Python implementation.

	bpo-29703 [https://bugs.python.org/issue29703]: Fix asyncio to support instantiation of new event loops in
child processes.

	bpo-29615 [https://bugs.python.org/issue29615]: SimpleXMLRPCDispatcher no longer chains KeyError (or any other
exception) to exception(s) raised in the dispatched methods. Patch by Petr
Motejlek.

	bpo-7769 [https://bugs.python.org/issue7769]: Method register_function() of
xmlrpc.server.SimpleXMLRPCDispatcher and its subclasses can now be used as
a decorator.

	bpo-29376 [https://bugs.python.org/issue29376]: Fix assertion error in threading._DummyThread.is_alive().

	bpo-28624 [https://bugs.python.org/issue28624]: Add a test that checks that cwd parameter of Popen() accepts
PathLike objects. Patch by Sayan Chowdhury.

	bpo-28518 [https://bugs.python.org/issue28518]: Start a transaction implicitly before a DML statement. Patch by
Aviv Palivoda.

	bpo-29742 [https://bugs.python.org/issue29742]: get_extra_info() raises exception if get called on closed ssl
transport. Patch by Nikolay Kim.

	bpo-16285 [https://bugs.python.org/issue16285]: urllib.parse.quote is now based on RFC 3986 and hence includes
'~' in the set of characters that is not quoted by default. Patch by
Christian Theune and Ratnadeep Debnath.

	bpo-29532 [https://bugs.python.org/issue29532]: Altering a kwarg dictionary passed to functools.partial() no
longer affects a partial object after creation.

	bpo-29110 [https://bugs.python.org/issue29110]: Fix file object leak in aifc.open() when file is given as a
filesystem path and is not in valid AIFF format. Patch by Anthony Zhang.

	bpo-22807 [https://bugs.python.org/issue22807]: Add uuid.SafeUUID and uuid.UUID.is_safe to relay information
from the platform about whether generated UUIDs are generated with a
multiprocessing safe method.

	bpo-29576 [https://bugs.python.org/issue29576]: Improve some deprecations in importlib. Some deprecated methods
now emit DeprecationWarnings and have better descriptive messages.

	bpo-29534 [https://bugs.python.org/issue29534]: Fixed different behaviour of Decimal.from_float() for _decimal
and _pydecimal. Thanks Andrew Nester.

	bpo-10379 [https://bugs.python.org/issue10379]: locale.format_string now supports the 'monetary' keyword
argument, and locale.format is deprecated.

	bpo-29851 [https://bugs.python.org/issue29851]: importlib.reload() now raises ModuleNotFoundError if the module
lacks a spec.

	bpo-28556 [https://bugs.python.org/issue28556]: Various updates to typing module: typing.Counter,
typing.ChainMap, improved ABC caching, etc. Original PRs by Jelle
Zijlstra, Ivan Levkivskyi, Manuel Krebber, and Łukasz Langa.

	bpo-29100 [https://bugs.python.org/issue29100]: Fix datetime.fromtimestamp() regression introduced in Python
3.6.0: check minimum and maximum years.

	bpo-29416 [https://bugs.python.org/issue29416]: Prevent infinite loop in pathlib.Path.mkdir

	bpo-29444 [https://bugs.python.org/issue29444]: Fixed out-of-bounds buffer access in the group() method of the
match object. Based on patch by WGH.

	bpo-29377 [https://bugs.python.org/issue29377]: Add WrapperDescriptorType, MethodWrapperType, and
MethodDescriptorType built-in types to types module. Original patch by
Manuel Krebber.

	bpo-29218 [https://bugs.python.org/issue29218]: Unused install_misc command is now removed. It has been
documented as unused since 2000. Patch by Eric N. Vander Weele.

	bpo-29368 [https://bugs.python.org/issue29368]: The extend() method is now called instead of the append()
method when unpickle collections.deque and other list-like objects. This
can speed up unpickling to 2 times.

	bpo-29338 [https://bugs.python.org/issue29338]: The help of a builtin or extension class now includes the
constructor signature if __text_signature__ is provided for the class.

	bpo-29335 [https://bugs.python.org/issue29335]: Fix subprocess.Popen.wait() when the child process has exited
to a stopped instead of terminated state (ex: when under ptrace).

	bpo-29290 [https://bugs.python.org/issue29290]: Fix a regression in argparse that help messages would wrap at
non-breaking spaces.

	bpo-28735 [https://bugs.python.org/issue28735]: Fixed the comparison of mock.MagickMock with mock.ANY.

	bpo-29197 [https://bugs.python.org/issue29197]: Removed deprecated function ntpath.splitunc().

	bpo-29210 [https://bugs.python.org/issue29210]: Removed support of deprecated argument "exclude" in
tarfile.TarFile.add().

	bpo-29219 [https://bugs.python.org/issue29219]: Fixed infinite recursion in the repr of uninitialized
ctypes.CDLL instances.

	bpo-29192 [https://bugs.python.org/issue29192]: Removed deprecated features in the http.cookies module.

	bpo-29193 [https://bugs.python.org/issue29193]: A format string argument for string.Formatter.format() is now
positional-only.

	bpo-29195 [https://bugs.python.org/issue29195]: Removed support of deprecated undocumented keyword arguments in
methods of regular expression objects.

	bpo-28969 [https://bugs.python.org/issue28969]: Fixed race condition in C implementation of
functools.lru_cache. KeyError could be raised when cached function with
full cache was simultaneously called from differen threads with the same
uncached arguments.

	bpo-20804 [https://bugs.python.org/issue20804]: The unittest.mock.sentinel attributes now preserve their
identity when they are copied or pickled.

	bpo-29142 [https://bugs.python.org/issue29142]: In urllib.request, suffixes in no_proxy environment variable
with leading dots could match related hostnames again (e.g. .b.c matches
a.b.c). Patch by Milan Oberkirch.

	bpo-28961 [https://bugs.python.org/issue28961]: Fix unittest.mock._Call helper: don't ignore the name parameter
anymore. Patch written by Jiajun Huang.

	bpo-15812 [https://bugs.python.org/issue15812]: inspect.getframeinfo() now correctly shows the first line of a
context. Patch by Sam Breese.

	bpo-28985 [https://bugs.python.org/issue28985]: Update authorizer constants in sqlite3 module. Patch by
Dingyuan Wang.

	bpo-29079 [https://bugs.python.org/issue29079]: Prevent infinite loop in pathlib.resolve() on Windows

	bpo-13051 [https://bugs.python.org/issue13051]: Fixed recursion errors in large or resized
curses.textpad.Textbox. Based on patch by Tycho Andersen.

	bpo-9770 [https://bugs.python.org/issue9770]: curses.ascii predicates now work correctly with negative
integers.

	bpo-28427 [https://bugs.python.org/issue28427]: old keys should not remove new values from WeakValueDictionary
when collecting from another thread.

	bpo-28923 [https://bugs.python.org/issue28923]: Remove editor artifacts from Tix.py.

	bpo-28871 [https://bugs.python.org/issue28871]: Fixed a crash when deallocate deep ElementTree.

	bpo-19542 [https://bugs.python.org/issue19542]: Fix bugs in WeakValueDictionary.setdefault() and
WeakValueDictionary.pop() when a GC collection happens in another thread.

	bpo-20191 [https://bugs.python.org/issue20191]: Fixed a crash in resource.prlimit() when passing a sequence
that doesn't own its elements as limits.

	bpo-16255 [https://bugs.python.org/issue16255]: subprocess.Popen uses /system/bin/sh on Android as the shell,
instead of /bin/sh.

	bpo-28779 [https://bugs.python.org/issue28779]: multiprocessing.set_forkserver_preload() would crash the
forkserver process if a preloaded module instantiated some multiprocessing
objects such as locks.

	bpo-26937 [https://bugs.python.org/issue26937]: The chown() method of the tarfile.TarFile class does not fail
now when the grp module cannot be imported, as for example on Android
platforms.

	bpo-28847 [https://bugs.python.org/issue28847]: dbm.dumb now supports reading read-only files and no longer
writes the index file when it is not changed. A deprecation warning is
now emitted if the index file is missed and recreated in the 'r' and 'w'
modes (will be an error in future Python releases).

	bpo-27030 [https://bugs.python.org/issue27030]: Unknown escapes consisting of '\' and an ASCII letter in
re.sub() replacement templates regular expressions now are errors.

	bpo-28835 [https://bugs.python.org/issue28835]: Fix a regression introduced in warnings.catch_warnings(): call
warnings.showwarning() if it was overridden inside the context manager.

	bpo-27172 [https://bugs.python.org/issue27172]: To assist with upgrades from 2.7, the previously documented
deprecation of inspect.getfullargspec() has been reversed. This
decision may be revisited again after the Python 2.7 branch is no longer
officially supported.

	bpo-28740 [https://bugs.python.org/issue28740]: Add sys.getandroidapilevel(): return the build time API version
of Android as an integer. Function only available on Android.

	bpo-26273 [https://bugs.python.org/issue26273]: Add new socket.TCP_CONGESTION (Linux 2.6.13) and
socket.TCP_USER_TIMEOUT (Linux 2.6.37) constants. Patch written by
Omar Sandoval.

	bpo-28752 [https://bugs.python.org/issue28752]: Restored the __reduce__() methods of datetime objects.

	bpo-28727 [https://bugs.python.org/issue28727]: Regular expression patterns, _sre.SRE_Pattern objects created
by re.compile(), become comparable (only x==y and x!=y operators). This
change should fix the bpo-18383 [https://bugs.python.org/issue18383]: don't duplicate warning filters when
the warnings module is reloaded (thing usually only done in unit tests).

	bpo-20572 [https://bugs.python.org/issue20572]: Remove the subprocess.Popen.wait endtime parameter. It was
deprecated in 3.4 and undocumented prior to that.

	bpo-25659 [https://bugs.python.org/issue25659]: In ctypes, prevent a crash calling the from_buffer() and
from_buffer_copy() methods on abstract classes like Array.

	bpo-28548 [https://bugs.python.org/issue28548]: In the "http.server" module, parse the protocol version if
possible, to avoid using HTTP 0.9 in some error responses.

	bpo-19717 [https://bugs.python.org/issue19717]: Makes Path.resolve() succeed on paths that do not exist. Patch
by Vajrasky Kok

	bpo-28563 [https://bugs.python.org/issue28563]: Fixed possible DoS and arbitrary code execution when handle
plural form selections in the gettext module. The expression parser now
supports exact syntax supported by GNU gettext.

	bpo-28387 [https://bugs.python.org/issue28387]: Fixed possible crash in _io.TextIOWrapper deallocator when the
garbage collector is invoked in other thread. Based on patch by Sebastian
Cufre.

	bpo-27517 [https://bugs.python.org/issue27517]: LZMA compressor and decompressor no longer raise exceptions if
given empty data twice. Patch by Benjamin Fogle.

	bpo-28549 [https://bugs.python.org/issue28549]: Fixed segfault in curses's addch() with ncurses6.

	bpo-28449 [https://bugs.python.org/issue28449]: tarfile.open() with mode "r" or "r:" now tries to open a tar
file with compression before trying to open it without compression.
Otherwise it had 50% chance failed with ignore_zeros=True.

	bpo-23262 [https://bugs.python.org/issue23262]: The webbrowser module now supports Firefox 36+ and derived
browsers. Based on patch by Oleg Broytman.

	bpo-24241 [https://bugs.python.org/issue24241]: The webbrowser in an X environment now prefers using the
default browser directly. Also, the webbrowser register() function now has
a documented 'preferred' argument, to specify browsers to be returned by
get() with no arguments. Patch by David Steele

	bpo-27939 [https://bugs.python.org/issue27939]: Fixed bugs in tkinter.ttk.LabeledScale and tkinter.Scale caused
by representing the scale as float value internally in Tk. tkinter.IntVar
now works if float value is set to underlying Tk variable.

	bpo-28255 [https://bugs.python.org/issue28255]: calendar.TextCalendar.prweek() no longer prints a space after a
weeks's calendar. calendar.TextCalendar.pryear() no longer prints
redundant newline after a year's calendar. Based on patch by Xiang Zhang.

	bpo-28255 [https://bugs.python.org/issue28255]: calendar.TextCalendar.prmonth() no longer prints a space at the
start of new line after printing a month's calendar. Patch by Xiang
Zhang.

	bpo-20491 [https://bugs.python.org/issue20491]: The textwrap.TextWrapper class now honors non-breaking spaces.
Based on patch by Kaarle Ritvanen.

	bpo-28353 [https://bugs.python.org/issue28353]: os.fwalk() no longer fails on broken links.

	bpo-28430 [https://bugs.python.org/issue28430]: Fix iterator of C implemented asyncio.Future doesn't accept
non-None value is passed to it.send(val).

	bpo-27025 [https://bugs.python.org/issue27025]: Generated names for Tkinter widgets now start by the "!" prefix
for readability.

	bpo-25464 [https://bugs.python.org/issue25464]: Fixed HList.header_exists() in tkinter.tix module by addin a
workaround to Tix library bug.

	bpo-28488 [https://bugs.python.org/issue28488]: shutil.make_archive() no longer adds entry "./" to ZIP archive.

	bpo-25953 [https://bugs.python.org/issue25953]: re.sub() now raises an error for invalid numerical group
reference in replacement template even if the pattern is not found in the
string. Error message for invalid group reference now includes the group
index and the position of the reference. Based on patch by SilentGhost.

	bpo-28469 [https://bugs.python.org/issue28469]: timeit now uses the sequence 1, 2, 5, 10, 20, 50,... instead of
1, 10, 100,... for autoranging.

	bpo-28115 [https://bugs.python.org/issue28115]: Command-line interface of the zipfile module now uses argparse.
Added support of long options.

	bpo-18219 [https://bugs.python.org/issue18219]: Optimize csv.DictWriter for large number of columns. Patch by
Mariatta Wijaya.

	bpo-28448 [https://bugs.python.org/issue28448]: Fix C implemented asyncio.Future didn't work on Windows.

	bpo-23214 [https://bugs.python.org/issue23214]: In the "io" module, the argument to BufferedReader and
BytesIO's read1() methods is now optional and can be -1, matching the
BufferedIOBase specification.

	bpo-28480 [https://bugs.python.org/issue28480]: Fix error building socket module when multithreading is
disabled.

	bpo-28240 [https://bugs.python.org/issue28240]: timeit: remove -c/--clock and -t/--time command line
options which were deprecated since Python 3.3.

	bpo-28240 [https://bugs.python.org/issue28240]: timeit now repeats the benchmarks 5 times instead of only 3 to
make benchmarks more reliable.

	bpo-28240 [https://bugs.python.org/issue28240]: timeit autorange now uses a single loop iteration if the
benchmark takes less than 10 seconds, instead of 10 iterations. "python3
-m timeit -s 'import time' 'time.sleep(1)'" now takes 4 seconds instead of
40 seconds.

	Distutils.sdist now looks for README and setup.py files with case
sensitivity. This behavior matches that found in Setuptools 6.0 and later.
See setuptools 100 [https://github.com/pypa/setuptools/issues/100] for
rationale.

	bpo-24452 [https://bugs.python.org/issue24452]: Make webbrowser support Chrome on Mac OS X. Patch by Ned
Batchelder.

	bpo-20766 [https://bugs.python.org/issue20766]: Fix references leaked by pdb in the handling of SIGINT
handlers.

	bpo-27998 [https://bugs.python.org/issue27998]: Fixed bytes path support in os.scandir() on Windows. Patch by
Eryk Sun.

	bpo-28317 [https://bugs.python.org/issue28317]: The disassembler now decodes FORMAT_VALUE argument.

	bpo-28380 [https://bugs.python.org/issue28380]: unittest.mock Mock autospec functions now properly support
assert_called, assert_not_called, and assert_called_once.

	bpo-28229 [https://bugs.python.org/issue28229]: lzma module now supports pathlib.

	bpo-28321 [https://bugs.python.org/issue28321]: Fixed writing non-BMP characters with binary format in
plistlib.

	bpo-28225 [https://bugs.python.org/issue28225]: bz2 module now supports pathlib. Initial patch by Ethan
Furman.

	bpo-28227 [https://bugs.python.org/issue28227]: gzip now supports pathlib. Patch by Ethan Furman.

	bpo-28332 [https://bugs.python.org/issue28332]: Deprecated silent truncations in socket.htons and socket.ntohs.
Original patch by Oren Milman.

	bpo-27358 [https://bugs.python.org/issue27358]: Optimized merging var-keyword arguments and improved error
message when passing a non-mapping as a var-keyword argument.

	bpo-28257 [https://bugs.python.org/issue28257]: Improved error message when passing a non-iterable as a
var-positional argument. Added opcode BUILD_TUPLE_UNPACK_WITH_CALL.

	bpo-28322 [https://bugs.python.org/issue28322]: Fixed possible crashes when unpickle itertools objects from
incorrect pickle data. Based on patch by John Leitch.

	bpo-28228 [https://bugs.python.org/issue28228]: imghdr now supports pathlib.

	bpo-28226 [https://bugs.python.org/issue28226]: compileall now supports pathlib.

	bpo-28314 [https://bugs.python.org/issue28314]: Fix function declaration (C flags) for the getiterator() method
of xml.etree.ElementTree.Element.

	bpo-28148 [https://bugs.python.org/issue28148]: Stop using localtime() and gmtime() in the time module.

Introduced platform independent _PyTime_localtime API that is similar to
POSIX localtime_r, but available on all platforms. Patch by Ed Schouten.

	bpo-28253 [https://bugs.python.org/issue28253]: Fixed calendar functions for extreme months: 0001-01 and
9999-12.

Methods itermonthdays() and itermonthdays2() are reimplemented so that
they don't call itermonthdates() which can cause datetime.date
under/overflow.

	bpo-28275 [https://bugs.python.org/issue28275]: Fixed possible use after free in the decompress() methods of
the LZMADecompressor and BZ2Decompressor classes. Original patch by John
Leitch.

	bpo-27897 [https://bugs.python.org/issue27897]: Fixed possible crash in sqlite3.Connection.create_collation()
if pass invalid string-like object as a name. Patch by Xiang Zhang.

	bpo-18844 [https://bugs.python.org/issue18844]: random.choices() now has k as a keyword-only argument to
improve the readability of common cases and come into line with the
signature used in other languages.

	bpo-18893 [https://bugs.python.org/issue18893]: Fix invalid exception handling in Lib/ctypes/macholib/dyld.py.
Patch by Madison May.

	bpo-27611 [https://bugs.python.org/issue27611]: Fixed support of default root window in the tkinter.tix module.
Added the master parameter in the DisplayStyle constructor.

	bpo-27348 [https://bugs.python.org/issue27348]: In the traceback module, restore the formatting of exception
messages like "Exception: None". This fixes a regression introduced in
3.5a2.

	bpo-25651 [https://bugs.python.org/issue25651]: Allow falsy values to be used for msg parameter of subTest().

	bpo-27778 [https://bugs.python.org/issue27778]: Fix a memory leak in os.getrandom() when the getrandom() is
interrupted by a signal and a signal handler raises a Python exception.

	bpo-28200 [https://bugs.python.org/issue28200]: Fix memory leak on Windows in the os module (fix
path_converter() function).

	bpo-25400 [https://bugs.python.org/issue25400]: RobotFileParser now correctly returns default values for
crawl_delay and request_rate. Initial patch by Peter Wirtz.

	bpo-27932 [https://bugs.python.org/issue27932]: Prevent memory leak in win32_ver().

	Fix UnboundLocalError in socket._sendfile_use_sendfile.

	bpo-28075 [https://bugs.python.org/issue28075]: Check for ERROR_ACCESS_DENIED in Windows implementation of
os.stat(). Patch by Eryk Sun.

	bpo-22493 [https://bugs.python.org/issue22493]: Warning message emitted by using inline flags in the middle of
regular expression now contains a (truncated) regex pattern. Patch by Tim
Graham.

	bpo-25270 [https://bugs.python.org/issue25270]: Prevent codecs.escape_encode() from raising SystemError when an
empty bytestring is passed.

	bpo-28181 [https://bugs.python.org/issue28181]: Get antigravity over HTTPS. Patch by Kaartic Sivaraam.

	bpo-25895 [https://bugs.python.org/issue25895]: Enable WebSocket URL schemes in urllib.parse.urljoin. Patch by
Gergely Imreh and Markus Holtermann.

	bpo-28114 [https://bugs.python.org/issue28114]: Fix a crash in parse_envlist() when env contains byte strings.
Patch by Eryk Sun.

	bpo-27599 [https://bugs.python.org/issue27599]: Fixed buffer overrun in binascii.b2a_qp() and
binascii.a2b_qp().

	bpo-27906 [https://bugs.python.org/issue27906]: Fix socket accept exhaustion during high TCP traffic. Patch by
Kevin Conway.

	bpo-28174 [https://bugs.python.org/issue28174]: Handle when SO_REUSEPORT isn't properly supported. Patch by
Seth Michael Larson.

	bpo-26654 [https://bugs.python.org/issue26654]: Inspect functools.partial in asyncio.Handle.__repr__. Patch by
iceboy.

	bpo-26909 [https://bugs.python.org/issue26909]: Fix slow pipes IO in asyncio. Patch by INADA Naoki.

	bpo-28176 [https://bugs.python.org/issue28176]: Fix callbacks race in asyncio.SelectorLoop.sock_connect.

	bpo-27759 [https://bugs.python.org/issue27759]: Fix selectors incorrectly retain invalid file descriptors.
Patch by Mark Williams.

	bpo-28325 [https://bugs.python.org/issue28325]: Remove vestigial MacOS 9 macurl2path module and its tests.

	bpo-28368 [https://bugs.python.org/issue28368]: Refuse monitoring processes if the child watcher has no loop
attached. Patch by Vincent Michel.

	bpo-28369 [https://bugs.python.org/issue28369]: Raise RuntimeError when transport's FD is used with add_reader,
add_writer, etc.

	bpo-28370 [https://bugs.python.org/issue28370]: Speedup asyncio.StreamReader.readexactly. Patch by Коренберг
Марк.

	bpo-28371 [https://bugs.python.org/issue28371]: Deprecate passing asyncio.Handles to run_in_executor.

	bpo-28372 [https://bugs.python.org/issue28372]: Fix asyncio to support formatting of non-python coroutines.

	bpo-28399 [https://bugs.python.org/issue28399]: Remove UNIX socket from FS before binding. Patch by Коренберг
Марк.

	bpo-27972 [https://bugs.python.org/issue27972]: Prohibit Tasks to await on themselves.

	bpo-24142 [https://bugs.python.org/issue24142]: Reading a corrupt config file left configparser in an invalid
state. Original patch by Florian Höch.

	bpo-29581 [https://bugs.python.org/issue29581]: ABCMeta.__new__ now accepts **kwargs, allowing abstract
base classes to use keyword parameters in __init_subclass__. Patch by Nate
Soares.

	bpo-25532 [https://bugs.python.org/issue25532]: inspect.unwrap() will now only try to unwrap an object
sys.getrecursionlimit() times, to protect against objects which create a
new object on every attribute access.

	bpo-30177 [https://bugs.python.org/issue30177]: path.resolve(strict=False) no longer cuts the path after the
first element not present in the filesystem. Patch by Antoine Pietri.

文档

	bpo-31294 [https://bugs.python.org/issue31294]: Fix incomplete code snippet in the ZeroMQSocketListener and
ZeroMQSocketHandler examples and adapt them to Python 3.

	bpo-21649 [https://bugs.python.org/issue21649]: Add RFC 7525 and Mozilla server side TLS links to SSL
documentation.

	bpo-31128 [https://bugs.python.org/issue31128]: Allow the pydoc server to bind to arbitrary hostnames.

	bpo-30803 [https://bugs.python.org/issue30803]: Clarify doc on truth value testing. Original patch by Peter
Thomassen.

	bpo-30176 [https://bugs.python.org/issue30176]: Add missing attribute related constants in curses
documentation.

	bpo-30052 [https://bugs.python.org/issue30052]: the link targets for bytes() and bytearray() are
now their respective type definitions, rather than the corresponding
builtin function entries. Use bytes and
bytearray to reference the latter.

In order to ensure this and future cross-reference updates are applied
automatically, the daily documentation builds now disable the default
output caching features in Sphinx.

	bpo-26985 [https://bugs.python.org/issue26985]: Add missing info of code object in inspect documentation.

	bpo-19824 [https://bugs.python.org/issue19824]: Improve the documentation for, and links to, template strings
by emphasizing their utility for internationalization, and by clarifying
some usage constraints. (See also: bpo-20314 [https://bugs.python.org/issue20314], bpo-12518 [https://bugs.python.org/issue12518])

	bpo-28929 [https://bugs.python.org/issue28929]: Link the documentation to its source file on GitHub.

	bpo-25008 [https://bugs.python.org/issue25008]: Document smtpd.py as effectively deprecated and add a pointer
to aiosmtpd, a third-party asyncio-based replacement.

	bpo-26355 [https://bugs.python.org/issue26355]: Add canonical header link on each page to corresponding major
version of the documentation. Patch by Matthias Bussonnier.

	bpo-29349 [https://bugs.python.org/issue29349]: Fix Python 2 syntax in code for building the documentation.

	bpo-23722 [https://bugs.python.org/issue23722]: The data model reference and the porting section in the 3.6
What's New guide now cover the additional __classcell__ handling
needed for custom metaclasses to fully support PEP 487 and zero-argument
super().

	bpo-28513 [https://bugs.python.org/issue28513]: Documented command-line interface of zipfile.

测试

	bpo-29639 [https://bugs.python.org/issue29639]: test.support.HOST is now "localhost", a new HOSTv4 constant has
been added for your 127.0.0.1 needs, similar to the existing HOSTv6
constant.

	bpo-31320 [https://bugs.python.org/issue31320]: Silence traceback in test_ssl

	bpo-31346 [https://bugs.python.org/issue31346]: Prefer PROTOCOL_TLS_CLIENT and PROTOCOL_TLS_SERVER protocols
for SSLContext.

	bpo-25674 [https://bugs.python.org/issue25674]: Remove sha256.tbs-internet.com ssl test

	bpo-30715 [https://bugs.python.org/issue30715]: Address ALPN callback changes for OpenSSL 1.1.0f. The latest
version behaves like OpenSSL 1.0.2 and no longer aborts handshake.

	bpo-30822 [https://bugs.python.org/issue30822]: regrtest: Exclude tzdata from regrtest --all. When running the
test suite using --use=all / -u all, exclude tzdata since it makes
test_datetime too slow (15-20 min on some buildbots) which then times out
on some buildbots. Fix also regrtest command line parser to allow passing
-u extralargefile to run test_zipfile64.

	bpo-30695 [https://bugs.python.org/issue30695]: Add the set_nomemory(start, stop) and remove_mem_hooks()
functions to the _testcapi module.

	bpo-30357 [https://bugs.python.org/issue30357]: test_thread: setUp() now uses support.threading_setup() and
support.threading_cleanup() to wait until threads complete to avoid random
side effects on following tests. Initial patch written by Grzegorz
Grzywacz.

	bpo-30197 [https://bugs.python.org/issue30197]: Enhanced functions swap_attr() and swap_item() in the
test.support module. They now work when delete replaced attribute or item
inside the with statement. The old value of the attribute or item (or
None if it doesn't exist) now will be assigned to the target of the "as"
clause, if there is one.

	bpo-24932 [https://bugs.python.org/issue24932]: Use proper command line parsing in _testembed

	bpo-28950 [https://bugs.python.org/issue28950]: Disallow -j0 to be combined with -T/-l in regrtest command line
arguments.

	bpo-28683 [https://bugs.python.org/issue28683]: Fix the tests that bind() a unix socket and raise
PermissionError on Android for a non-root user.

	bpo-26936 [https://bugs.python.org/issue26936]: Fix the test_socket failures on Android - getservbyname(),
getservbyport() and getaddrinfo() are broken on some Android API levels.

	bpo-28666 [https://bugs.python.org/issue28666]: Now test.support.rmtree is able to remove unwritable or
unreadable directories.

	bpo-23839 [https://bugs.python.org/issue23839]: Various caches now are cleared before running every test file.

	bpo-26944 [https://bugs.python.org/issue26944]: Fix test_posix for Android where 'id -G' is entirely wrong or
missing the effective gid.

	bpo-28409 [https://bugs.python.org/issue28409]: regrtest: fix the parser of command line arguments.

	bpo-28217 [https://bugs.python.org/issue28217]: Adds _testconsole module to test console input.

	bpo-26939 [https://bugs.python.org/issue26939]: Add the support.setswitchinterval() function to fix
test_functools hanging on the Android armv7 qemu emulator.

构建

	bpo-31354 [https://bugs.python.org/issue31354]: Allow --with-lto to be used on all builds, not just make
profile-opt.

	bpo-31370 [https://bugs.python.org/issue31370]: Remove support for building --without-threads.

This option is not really useful anymore in the 21st century. Removing
lots of conditional paths allows us to simplify the code base, including
in difficult to maintain low-level internal code.

	bpo-31341 [https://bugs.python.org/issue31341]: Per PEP 11, support for the IRIX operating system was removed.

	bpo-30854 [https://bugs.python.org/issue30854]: Fix compile error when compiling --without-threads. Patch by
Masayuki Yamamoto.

	bpo-30687 [https://bugs.python.org/issue30687]: Locate msbuild.exe on Windows when building rather than
vcvarsall.bat

	bpo-20210 [https://bugs.python.org/issue20210]: Support the disabled marker in Setup files. Extension modules
listed after this marker are not built at all, neither by the Makefile nor
by setup.py.

	bpo-29941 [https://bugs.python.org/issue29941]: Add --with-assertions configure flag to explicitly enable C
assert() checks. Defaults to off. --with-pydebug implies
--with-assertions.

	bpo-28787 [https://bugs.python.org/issue28787]: Fix out-of-tree builds of Python when configured with
--with--dtrace.

	bpo-29243 [https://bugs.python.org/issue29243]: Prevent unnecessary rebuilding of Python during make test,
make install and some other make targets when configured with
--enable-optimizations.

	bpo-23404 [https://bugs.python.org/issue23404]: Don't regenerate generated files based on file modification
time anymore: the action is now explicit. Replace make touch with
make regen-all.

	bpo-29643 [https://bugs.python.org/issue29643]: Fix --enable-optimization didn't work.

	bpo-27593 [https://bugs.python.org/issue27593]: sys.version and the platform module python_build(),
python_branch(), and python_revision() functions now use git information
rather than hg when building from a repo.

	bpo-29572 [https://bugs.python.org/issue29572]: 更新Windows 构建和OS X安装程序以使用OpenSSL 1.0.2k。

	bpo-27659 [https://bugs.python.org/issue27659]: Prohibit implicit C function declarations: use
-Werror=implicit-function-declaration when possible (GCC and Clang,
but it depends on the compiler version). Patch written by Chi Hsuan Yen.

	bpo-29384 [https://bugs.python.org/issue29384]: Remove old Be OS helper scripts.

	bpo-26851 [https://bugs.python.org/issue26851]: Set Android compilation and link flags.

	bpo-28768 [https://bugs.python.org/issue28768]: Fix implicit declaration of function _setmode. Patch by
Masayuki Yamamoto

	bpo-29080 [https://bugs.python.org/issue29080]: Removes hard dependency on hg.exe from PCBuild/build.bat

	bpo-23903 [https://bugs.python.org/issue23903]: Added missed names to PC/python3.def.

	bpo-28762 [https://bugs.python.org/issue28762]: lockf() is available on Android API level 24, but the F_LOCK
macro is not defined in android-ndk-r13.

	bpo-28538 [https://bugs.python.org/issue28538]: Fix the compilation error that occurs because if_nameindex() is
available on Android API level 24, but the if_nameindex structure is not
defined.

	bpo-20211 [https://bugs.python.org/issue20211]: Do not add the directory for installing C header files and the
directory for installing object code libraries to the cross compilation
search paths. Original patch by Thomas Petazzoni.

	bpo-28849 [https://bugs.python.org/issue28849]: Do not define sys.implementation._multiarch on Android.

	bpo-10656 [https://bugs.python.org/issue10656]: Fix out-of-tree building on AIX. Patch by Tristan Carel and
Michael Haubenwallner.

	bpo-26359 [https://bugs.python.org/issue26359]: Rename --with-optimiations to --enable-optimizations.

	bpo-28444 [https://bugs.python.org/issue28444]: Fix missing extensions modules when cross compiling.

	bpo-28208 [https://bugs.python.org/issue28208]: 更新Windows 构建和OS X 安装程序以使用SQLite 3.14.2.

	bpo-28248 [https://bugs.python.org/issue28248]: 更新Windows 构建和OS X安装程序以使用OpenSSL 1.0.2j.

	bpo-21124 [https://bugs.python.org/issue21124]: Fix building the _struct module on Cygwin by passing NULL
instead of &PyType_Type to PyVarObject_HEAD_INIT. Patch by Masayuki
Yamamoto.

	bpo-13756 [https://bugs.python.org/issue13756]: Fix building extensions modules on Cygwin. Patch by Roumen
Petrov, based on original patch by Jason Tishler.

	bpo-21085 [https://bugs.python.org/issue21085]: Add configure check for siginfo_t.si_band, which Cygwin does
not provide. Patch by Masayuki Yamamoto with review and rebase by Erik
Bray.

	bpo-28258 [https://bugs.python.org/issue28258]: Fixed build with Estonian locale (python-config and distclean
targets in Makefile). Patch by Arfrever Frehtes Taifersar Arahesis.

	bpo-26661 [https://bugs.python.org/issue26661]: setup.py now detects system libffi with multiarch wrapper.

	bpo-27979 [https://bugs.python.org/issue27979]: A full copy of libffi is no longer bundled for use when
building _ctypes on non-OSX UNIX platforms. An installed copy of libffi
is now required when building _ctypes on such platforms.

	bpo-15819 [https://bugs.python.org/issue15819]: Remove redundant include search directory option for building
outside the source tree.

	bpo-28676 [https://bugs.python.org/issue28676]: Prevent missing 'getentropy' declaration warning on macOS.
Patch by Gareth Rees.

Windows

	bpo-31392 [https://bugs.python.org/issue31392]: 更新Windows 构建以使用OpenSSL 1.1.0f

	bpo-30389 [https://bugs.python.org/issue30389]: Adds detection of Visual Studio 2017 to distutils on Windows.

	bpo-31358 [https://bugs.python.org/issue31358]: zlib is no longer bundled in the CPython source, instead it is
downloaded on demand just like bz2, lzma, OpenSSL, Tcl/Tk, and SQLite.

	bpo-31340 [https://bugs.python.org/issue31340]: Change to building with MSVC v141 (included with Visual Studio
2017)

	bpo-30581 [https://bugs.python.org/issue30581]: os.cpu_count() now returns the correct number of processors on
Windows when the number of logical processors is greater than 64.

	bpo-30916 [https://bugs.python.org/issue30916]: Pre-build OpenSSL, Tcl and Tk and include the binaries in the
build.

	bpo-30731 [https://bugs.python.org/issue30731]: Add a missing xmlns to python.manifest so that it matches the
schema.

	bpo-30291 [https://bugs.python.org/issue30291]: Allow requiring 64-bit interpreters from py.exe using -64
suffix. Contributed by Steve (Gadget) Barnes.

	bpo-30362 [https://bugs.python.org/issue30362]: Adds list options (-0, -0p) to py.exe launcher. Contributed by
Steve Barnes.

	bpo-23451 [https://bugs.python.org/issue23451]: Fix socket deprecation warnings in socketmodule.c. Patch by
Segev Finer.

	bpo-30450 [https://bugs.python.org/issue30450]: The build process on Windows no longer depends on Subversion,
instead pulling external code from GitHub via a Python script. If Python
3.6 is not found on the system (via py -3.6), NuGet is used to
download a copy of 32-bit Python.

	bpo-29579 [https://bugs.python.org/issue29579]: Removes readme.txt from the installer.

	bpo-25778 [https://bugs.python.org/issue25778]: winreg does not truncate string correctly (Patch by Eryk Sun)

	bpo-28896 [https://bugs.python.org/issue28896]: Deprecate WindowsRegistryFinder and disable it by default

	bpo-28522 [https://bugs.python.org/issue28522]: Fixes mishandled buffer reallocation in getpathp.c

	bpo-28402 [https://bugs.python.org/issue28402]: Adds signed catalog files for stdlib on Windows.

	bpo-28333 [https://bugs.python.org/issue28333]: Enables Unicode for ps1/ps2 and input() prompts. (Patch by Eryk
Sun)

	bpo-28251 [https://bugs.python.org/issue28251]: Improvements to help manuals on Windows.

	bpo-28110 [https://bugs.python.org/issue28110]: launcher.msi has different product codes between 32-bit and
64-bit

	bpo-28161 [https://bugs.python.org/issue28161]: Opening CON for write access fails

	bpo-28162 [https://bugs.python.org/issue28162]: WindowsConsoleIO readall() fails if first line starts with
Ctrl+Z

	bpo-28163 [https://bugs.python.org/issue28163]: WindowsConsoleIO fileno() passes wrong flags to _open_osfhandle

	bpo-28164 [https://bugs.python.org/issue28164]: _PyIO_get_console_type fails for various paths

	bpo-28137 [https://bugs.python.org/issue28137]: Renames Windows path file to ._pth

	bpo-28138 [https://bugs.python.org/issue28138]: Windows ._pth file should allow import site

IDLE

	bpo-31493 [https://bugs.python.org/issue31493]: IDLE code context -- fix code update and font update timers.

Canceling timers prevents a warning message when test_idle completes.

	bpo-31488 [https://bugs.python.org/issue31488]: IDLE - Update non-key options in former extension classes. When
applying configdialog changes, call .reload for each feature class. Change
ParenMatch so updated options affect existing instances attached to
existing editor windows.

	bpo-31477 [https://bugs.python.org/issue31477]: IDLE - Improve rstrip entry in doc. Strip trailing whitespace
strips more than blank spaces. Multiline string literals are not skipped.

	bpo-31480 [https://bugs.python.org/issue31480]: IDLE - make tests pass with zzdummy extension disabled by
default.

	bpo-31421 [https://bugs.python.org/issue31421]: Document how IDLE runs tkinter programs. IDLE calls tcl/tk
update in the background in order to make live

interaction and experimentation with tkinter applications much easier.

	bpo-31414 [https://bugs.python.org/issue31414]: IDLE -- fix tk entry box tests by deleting first. Adding to an
int entry is not the same as deleting and inserting because int('') will
fail.

	bpo-31051 [https://bugs.python.org/issue31051]: Rearrange IDLE configdialog GenPage into Window, Editor, and
Help sections.

	bpo-30617 [https://bugs.python.org/issue30617]: IDLE - Add docstrings and tests for outwin subclass of editor.

Move some data and functions from the class to module level. Patch by
Cheryl Sabella.

	bpo-31287 [https://bugs.python.org/issue31287]: IDLE - Do not modify tkinter.message in test_configdialog.

	bpo-27099 [https://bugs.python.org/issue27099]: Convert IDLE's built-in 'extensions' to regular features.

About 10 IDLE features were implemented as supposedly optional extensions.
Their different behavior could be confusing or worse for users and not
good for maintenance. Hence the conversion.

The main difference for users is that user configurable key bindings for
builtin features are now handled uniformly. Now, editing a binding in a
keyset only affects its value in the keyset. All bindings are defined
together in the system-specific default keysets in config-extensions.def.
All custom keysets are saved as a whole in config-extension.cfg. All take
effect as soon as one clicks Apply or Ok.

The affected events are '<<force-open-completions>>', '<<expand-word>>',
'<<force-open-calltip>>', '<<flash-paren>>', '<<format-paragraph>>',
'<<run-module>>', '<<check-module>>', and '<<zoom-height>>'. Any (global)
customizations made before 3.6.3 will not affect their keyset-specific
customization after 3.6.3. and vice versa.

Initial patch by Charles Wohlganger.

	bpo-31206 [https://bugs.python.org/issue31206]: IDLE: Factor HighPage(Frame) class from ConfigDialog. Patch by
Cheryl Sabella.

	bpo-31001 [https://bugs.python.org/issue31001]: Add tests for configdialog highlight tab. Patch by Cheryl
Sabella.

	bpo-31205 [https://bugs.python.org/issue31205]: IDLE: Factor KeysPage(Frame) class from ConfigDialog. The
slightly modified tests continue to pass. Patch by Cheryl Sabella.

	bpo-31130 [https://bugs.python.org/issue31130]: IDLE -- stop leaks in test_configdialog. Initial patch by
Victor Stinner.

	bpo-31002 [https://bugs.python.org/issue31002]: Add tests for configdialog keys tab. Patch by Cheryl Sabella.

	bpo-19903 [https://bugs.python.org/issue19903]: IDLE: Calltips use inspect.signature instead of
inspect.getfullargspec. This improves calltips for builtins converted to
use Argument Clinic. Patch by Louie Lu.

	bpo-31083 [https://bugs.python.org/issue31083]: IDLE - Add an outline of a TabPage class in configdialog.
Update existing classes to match outline. Initial patch by Cheryl Sabella.

	bpo-31050 [https://bugs.python.org/issue31050]: Factor GenPage(Frame) class from ConfigDialog. The slightly
modified tests continue to pass. Patch by Cheryl Sabella.

	bpo-31004 [https://bugs.python.org/issue31004]: IDLE - Factor FontPage(Frame) class from ConfigDialog.

Slightly modified tests continue to pass. Fix General tests. Patch mostly
by Cheryl Sabella.

	bpo-30781 [https://bugs.python.org/issue30781]: IDLE - Use ttk widgets in ConfigDialog. Patches by Terry Jan
Reedy and Cheryl Sabella.

	bpo-31060 [https://bugs.python.org/issue31060]: IDLE - Finish rearranging methods of ConfigDialog Grouping
methods pertaining to each tab and the buttons will aid writing tests and
improving the tabs and will enable splitting the groups into classes.

	bpo-30853 [https://bugs.python.org/issue30853]: IDLE -- Factor a VarTrace class out of ConfigDialog.

Instance tracers manages pairs consisting of a tk variable and a callback
function. When tracing is turned on, setting the variable calls the
function. Test coverage for the new class is 100%.

	bpo-31003 [https://bugs.python.org/issue31003]: IDLE: Add more tests for General tab.

	bpo-30993 [https://bugs.python.org/issue30993]: IDLE - Improve configdialog font page and tests.

In configdialog: Document causal pathways in create_font_tab docstring.
Simplify some attribute names. Move set_samples calls to var_changed_font
(idea from Cheryl Sabella). Move related functions to positions after the
create widgets function.

In test_configdialog: Fix test_font_set so not order dependent. Fix
renamed test_indent_scale so it tests the widget. Adjust tests for
movement of set_samples call. Add tests for load functions. Put all font
tests in one class and tab indent tests in another. Except for two lines,
these tests completely cover the related functions.

	bpo-30981 [https://bugs.python.org/issue30981]: IDLE -- Add more configdialog font page tests.

	bpo-28523 [https://bugs.python.org/issue28523]: IDLE: replace 'colour' with 'color' in configdialog.

	bpo-30917 [https://bugs.python.org/issue30917]: Add tests for idlelib.config.IdleConf. Increase coverage from
46% to 96%. Patch by Louie Lu.

	bpo-30934 [https://bugs.python.org/issue30934]: Document coverage details for idlelib tests.

	Add section to idlelib/idle-test/README.txt.

	Include check that branches are taken both ways.

	Exclude IDLE-specific code that does not run during unit tests.

	bpo-30913 [https://bugs.python.org/issue30913]: IDLE: Document ConfigDialog tk Vars, methods, and widgets in
docstrings This will facilitate improving the dialog and splitting up the
class. Original patch by Cheryl Sabella.

	bpo-30899 [https://bugs.python.org/issue30899]: IDLE: Add tests for ConfigParser subclasses in config. Patch by
Louie Lu.

	bpo-30881 [https://bugs.python.org/issue30881]: IDLE: Add docstrings to browser.py. Patch by Cheryl Sabella.

	bpo-30851 [https://bugs.python.org/issue30851]: IDLE: Remove unused variables in configdialog. One is a
duplicate, one is set but cannot be altered by users. Patch by Cheryl
Sabella.

	bpo-30870 [https://bugs.python.org/issue30870]: IDLE: In Settings dialog, select font with Up, Down keys as
well as mouse. Initial patch by Louie Lu.

	bpo-8231 [https://bugs.python.org/issue8231]: IDLE: call config.IdleConf.GetUserCfgDir only once.

	bpo-30779 [https://bugs.python.org/issue30779]: IDLE: Factor ConfigChanges class from configdialog, put in
config; test. * In config, put dump test code in a function; run it and
unittest in 'if __name__ == '__main__'. * Add class config.ConfigChanges
based on changes_class_v4.py on bpo issue. * Add class
test_config.ChangesTest, partly using configdialog_tests_v1.py. * Revise
configdialog to use ConfigChanges; see tracker msg297804. * Revise
test_configdialog to match configdialog changes. * Remove configdialog
functions unused or moved to ConfigChanges. Cheryl Sabella contributed
parts of the patch.

	bpo-30777 [https://bugs.python.org/issue30777]: IDLE: configdialog - Add docstrings and fix comments. Patch by
Cheryl Sabella.

	bpo-30495 [https://bugs.python.org/issue30495]: IDLE: Improve textview with docstrings, PEP8 names, and more
tests. Patch by Cheryl Sabella.

	bpo-30723 [https://bugs.python.org/issue30723]: IDLE: Make several improvements to parenmatch. Add 'parens'
style to highlight both opener and closer. Make 'default' style, which is
not default, a synonym for 'opener'. Make time-delay work the same with
all styles. Add help for config dialog extensions tab, including help for
parenmatch. Add new tests. Original patch by Charles Wohlganger.

	bpo-30674 [https://bugs.python.org/issue30674]: IDLE: add docstrings to grep module. Patch by Cheryl Sabella

	bpo-21519 [https://bugs.python.org/issue21519]: IDLE's basic custom key entry dialog now detects duplicates
properly. Original patch by Saimadhav Heblikar.

	bpo-29910 [https://bugs.python.org/issue29910]: IDLE no longer deletes a character after commenting out a
region by a key shortcut. Add return 'break' for this and other
potential conflicts between IDLE and default key bindings.

	bpo-30728 [https://bugs.python.org/issue30728]: Review and change idlelib.configdialog names. Lowercase method
and attribute names. Replace 'colour' with 'color', expand overly cryptic
names, delete unneeded underscores. Replace import * with specific
imports. Patches by Cheryl Sabella.

	bpo-6739 [https://bugs.python.org/issue6739]: IDLE: Verify user-entered key sequences by trying to bind them
with tk. Add tests for all 3 validation functions. Original patch by G
Polo. Tests added by Cheryl Sabella.

	bpo-15786 [https://bugs.python.org/issue15786]: Fix several problems with IDLE's autocompletion box. The
following should now work: clicking on selection box items; using the
scrollbar; selecting an item by hitting Return. Hangs on MacOSX should no
longer happen. Patch by Louie Lu.

	bpo-25514 [https://bugs.python.org/issue25514]: Add doc subsubsection about IDLE failure to start. Popup
no-connection message directs users to this section.

	bpo-30642 [https://bugs.python.org/issue30642]: Fix reference leaks in IDLE tests. Patches by Louie Lu and
Terry Jan Reedy.

	bpo-30495 [https://bugs.python.org/issue30495]: Add docstrings for textview.py and use PEP8 names. Patches by
Cheryl Sabella and Terry Jan Reedy.

	bpo-30290 [https://bugs.python.org/issue30290]: Help-about: use pep8 names and add tests. Increase coverage to
100%. Patches by Louie Lu, Cheryl Sabella, and Terry Jan Reedy.

	bpo-30303 [https://bugs.python.org/issue30303]: Add _utest option to textview; add new tests. Increase coverage
to 100%. Patches by Louie Lu and Terry Jan Reedy.

	bpo-29071 [https://bugs.python.org/issue29071]: IDLE colors f-string prefixes (but not invalid ur prefixes).

	bpo-28572 [https://bugs.python.org/issue28572]: Add 10% to coverage of IDLE's test_configdialog. Update and
augment description of the configuration system.

工具/示例

	bpo-30983 [https://bugs.python.org/issue30983]: gdb integration commands (py-bt, etc.) work on optimized shared
builds now, too. PEP 523 introduced _PyEval_EvalFrameDefault which
inlines PyEval_EvalFrameEx on non-debug shared builds. This broke the
ability to use py-bt, py-up, and a few other Python-specific gdb
integrations. The problem is fixed by only looking for
_PyEval_EvalFrameDefault frames in python-gdb.py. Original patch by Bruno
"Polaco" Penteado.

	bpo-29748 [https://bugs.python.org/issue29748]: Added the slice index converter in Argument Clinic.

	bpo-24037 [https://bugs.python.org/issue24037]: Argument Clinic now uses the converter bool(accept={int})
rather than int for semantical booleans. This avoids repeating the
default value for Python and C and will help in converting to bool in
future.

	bpo-29367 [https://bugs.python.org/issue29367]: python-gdb.py now supports also method-wrapper
(wrapperobject) objects.

	bpo-28023 [https://bugs.python.org/issue28023]: Fix python-gdb.py didn't support new dict implementation.

	bpo-15369 [https://bugs.python.org/issue15369]: The pybench and pystone microbenchmark have been removed from
Tools. Please use the new Python benchmark suite
https://github.com/python/performance which is more reliable and includes
a portable version of pybench working on Python 2 and Python 3.

	bpo-28102 [https://bugs.python.org/issue28102]: The zipfile module CLI now prints usage to stderr. Patch by
Stephen J. Turnbull.

C API

	bpo-31338 [https://bugs.python.org/issue31338]: Added the Py_UNREACHABLE() macro for code paths which are
never expected to be reached. This and a few other useful macros are now
documented in the C API manual.

	bpo-30832 [https://bugs.python.org/issue30832]: Remove own implementation for thread-local storage.

CPython has provided the own implementation for thread-local storage (TLS)
on Python/thread.c, it's used in the case which a platform has not
supplied native TLS. However, currently all supported platforms (Windows
and pthreads) have provided native TLS and defined the Py_HAVE_NATIVE_TLS
macro with unconditional in any case.

	bpo-30708 [https://bugs.python.org/issue30708]: PyUnicode_AsWideCharString() now raises a ValueError if the
second argument is NULL and the wchar_t* string contains null characters.

	bpo-16500 [https://bugs.python.org/issue16500]: Deprecate PyOS_AfterFork() and add PyOS_BeforeFork(),
PyOS_AfterFork_Parent() and PyOS_AfterFork_Child().

	bpo-6532 [https://bugs.python.org/issue6532]: The type of results of PyThread_start_new_thread() and
PyThread_get_thread_ident(), and the id parameter of
PyThreadState_SetAsyncExc() changed from "long" to "unsigned long".

	bpo-27867 [https://bugs.python.org/issue27867]: Function PySlice_GetIndicesEx() is deprecated and replaced with
a macro if Py_LIMITED_API is not set or set to the value between
0x03050400 and 0x03060000 (not including) or 0x03060100 or higher. Added
functions PySlice_Unpack() and PySlice_AdjustIndices().

	bpo-29083 [https://bugs.python.org/issue29083]: Fixed the declaration of some public API functions.
PyArg_VaParse() and PyArg_VaParseTupleAndKeywords() were not available in
limited API. PyArg_ValidateKeywordArguments(), PyArg_UnpackTuple() and
Py_BuildValue() were not available in limited API of version < 3.3 when
PY_SSIZE_T_CLEAN is defined.

	bpo-28769 [https://bugs.python.org/issue28769]: The result of PyUnicode_AsUTF8AndSize() and PyUnicode_AsUTF8()
is now of type const char * rather of char *.

	bpo-29058 [https://bugs.python.org/issue29058]: All stable API extensions added after Python 3.2 are now
available only when Py_LIMITED_API is set to the PY_VERSION_HEX value of
the minimum Python version supporting this API.

	bpo-28822 [https://bugs.python.org/issue28822]: The index parameters start and end of PyUnicode_FindChar()
are now adjusted to behave like str[start:end].

	bpo-28808 [https://bugs.python.org/issue28808]: PyUnicode_CompareWithASCIIString() now never raises exceptions.

	bpo-28761 [https://bugs.python.org/issue28761]: The fields name and doc of structures PyMemberDef, PyGetSetDef,
PyStructSequence_Field, PyStructSequence_Desc, and wrapperbase are now of
type const char * rather of char *.

	bpo-28748 [https://bugs.python.org/issue28748]: Private variable _Py_PackageContext is now of type const char
* rather of char *.

	bpo-19569 [https://bugs.python.org/issue19569]: Compiler warnings are now emitted if use most of deprecated
functions.

	bpo-28426 [https://bugs.python.org/issue28426]: Deprecated undocumented functions PyUnicode_AsEncodedObject(),
PyUnicode_AsDecodedObject(), PyUnicode_AsDecodedUnicode() and
PyUnicode_AsEncodedUnicode().

Python 3.6.6 正式版

发布日期: 2018-06-27

在 3.6.6 版本中没有新的更改。

Python 3.6.6 RC 1

发布日期: 2018-06-11

核心与内置

	bpo-33786 [https://bugs.python.org/issue33786]: Fix asynchronous generators to handle GeneratorExit in athrow()
correctly

	bpo-30654 [https://bugs.python.org/issue30654]: Fixed reset of the SIGINT handler to SIG_DFL on interpreter
shutdown even when there was a custom handler set previously. Patch by
Philipp Kerling.

	bpo-33622 [https://bugs.python.org/issue33622]: Fixed a leak when the garbage collector fails to add an object
with the __del__ method or referenced by it into the
gc.garbage list. PyGC_Collect() can now be called when an
exception is set and preserves it.

	bpo-31849 [https://bugs.python.org/issue31849]: Fix signed/unsigned comparison warning in pyhash.c.

	bpo-33391 [https://bugs.python.org/issue33391]: Fix a leak in set_symmetric_difference().

	bpo-28055 [https://bugs.python.org/issue28055]: Fix unaligned accesses in siphash24(). Patch by Rolf Eike Beer.

	bpo-33231 [https://bugs.python.org/issue33231]: 修复 normalizestring() 中潜在的内存泄漏。

	bpo-29922 [https://bugs.python.org/issue29922]: Improved error messages in 'async with' when __aenter__()
or __aexit__() return non-awaitable object.

	bpo-33199 [https://bugs.python.org/issue33199]: Fix ma_version_tag in dict implementation is uninitialized
when copying from key-sharing dict.

	bpo-33041 [https://bugs.python.org/issue33041]: Fixed jumping when the function contains an async for loop.

	bpo-32282 [https://bugs.python.org/issue32282]: Fix an unnecessary ifdef in the include of VersionHelpers.h in
socketmodule on Windows.

	bpo-21983 [https://bugs.python.org/issue21983]: Fix a crash in ctypes.cast() in case the type argument is a
ctypes structured data type. Patch by Eryk Sun and Oren Milman.

库

	bpo-30167 [https://bugs.python.org/issue30167]: Prevent site.main() exception if PYTHONSTARTUP is set. Patch by
Steve Weber.

	bpo-33812 [https://bugs.python.org/issue33812]: Datetime instance d with non-None tzinfo, but with
d.tzinfo.utcoffset(d) returning None is now treated as naive by the
astimezone() method.

	bpo-30805 [https://bugs.python.org/issue30805]: Avoid race condition with debug logging

	bpo-33767 [https://bugs.python.org/issue33767]: The concatenation (+) and repetition (*) sequence
operations now raise TypeError instead of SystemError when
performed on mmap.mmap objects. Patch by Zackery Spytz.

	bpo-32684 [https://bugs.python.org/issue32684]: Fix gather to propagate cancellation of itself even with
return_exceptions.

	bpo-33674 [https://bugs.python.org/issue33674]: Fix a race condition in SSLProtocol.connection_made() of
asyncio.sslproto: start immediately the handshake instead of using
call_soon(). Previously, data_received() could be called before the
handshake started, causing the handshake to hang or fail.

	bpo-31647 [https://bugs.python.org/issue31647]: Fixed bug where calling write_eof() on a
_SelectorSocketTransport after it's already closed raises AttributeError.

	bpo-33672 [https://bugs.python.org/issue33672]: Fix Task.__repr__ crash with Cython's bogus coroutines

	bpo-33469 [https://bugs.python.org/issue33469]: Fix RuntimeError after closing loop that used run_in_executor

	bpo-11874 [https://bugs.python.org/issue11874]: Use a better regex when breaking usage into wrappable parts.
Avoids bogus assertion errors from custom metavar strings.

	bpo-30877 [https://bugs.python.org/issue30877]: Fixed a bug in the Python implementation of the JSON decoder
that prevented the cache of parsed strings from clearing after finishing
the decoding. Based on patch by c-fos.

	bpo-33548 [https://bugs.python.org/issue33548]: tempfile._candidate_tempdir_list should consider common TEMP
locations

	bpo-33542 [https://bugs.python.org/issue33542]: Prevent uuid.get_node from using a DUID instead of a MAC on
Windows. Patch by Zvi Effron

	bpo-26819 [https://bugs.python.org/issue26819]: Fix race condition with ReadTransport.resume_reading in
Windows proactor event loop.

	bpo-28556 [https://bugs.python.org/issue28556]: Minor fixes in typing module: add annotations to
NamedTuple.__new__, pass *args and **kwds in
Generic.__new__. Original PRs by Paulius Šarka and Chad Dombrova.

	bpo-20087 [https://bugs.python.org/issue20087]: Updated alias mapping with glibc 2.27 supported locales.

	bpo-33422 [https://bugs.python.org/issue33422]: Fix trailing quotation marks getting deleted when looking up
byte/string literals on pydoc. Patch by Andrés Delfino.

	bpo-33197 [https://bugs.python.org/issue33197]: Update error message when constructing invalid
inspect.Parameters Patch by Dong-hee Na.

	bpo-33383 [https://bugs.python.org/issue33383]: Fixed crash in the get() method of the dbm.ndbm database
object when it is called with a single argument.

	bpo-33329 [https://bugs.python.org/issue33329]: Fix multiprocessing regression on newer glibcs

	bpo-991266 [https://bugs.python.org/issue991266]: Fix quoting of the Comment attribute of
http.cookies.SimpleCookie.

	bpo-33131 [https://bugs.python.org/issue33131]: Upgrade bundled version of pip to 10.0.1.

	bpo-33308 [https://bugs.python.org/issue33308]: Fixed a crash in the parser module when converting an ST
object to a tree of tuples or lists with line_info=False and
col_info=True.

	bpo-33263 [https://bugs.python.org/issue33263]: Fix FD leak in _SelectorSocketTransport Patch by Vlad
Starostin.

	bpo-33256 [https://bugs.python.org/issue33256]: Fix display of <module> call in the html produced by
cgitb.html(). Patch by Stéphane Blondon.

	bpo-33203 [https://bugs.python.org/issue33203]: random.Random.choice() now raises IndexError for empty
sequences consistently even when called from subclasses without a
getrandbits() implementation.

	bpo-33224 [https://bugs.python.org/issue33224]: Update difflib.mdiff() for PEP 479. Convert an uncaught
StopIteration in a generator into a return-statement.

	bpo-33209 [https://bugs.python.org/issue33209]: End framing at the end of C implementation of
pickle.Pickler.dump().

	bpo-32861 [https://bugs.python.org/issue32861]: The urllib.robotparser's __str__ representation now
includes wildcard entries and the "Crawl-delay" and "Request-rate" fields.
Patch by Michael Lazar.

	bpo-33096 [https://bugs.python.org/issue33096]: Allow ttk.Treeview.insert to insert iid that has a false
boolean value. Note iid=0 and iid=False would be same. Patch by Garvit
Khatri.

	bpo-33127 [https://bugs.python.org/issue33127]: ssl模块现在使用LibreSSL 2.7.1编译。

	bpo-33021 [https://bugs.python.org/issue33021]: Release the GIL during fstat() calls, avoiding hang of all
threads when calling mmap.mmap(), os.urandom(), and random.seed(). Patch
by Nir Soffer.

	bpo-27683 [https://bugs.python.org/issue27683]: Fix a regression in ipaddress that result of
hosts() is empty when the network is constructed by a tuple
containing an integer mask and only 1 bit left for addresses.

	bpo-32844 [https://bugs.python.org/issue32844]: Fix wrong redirection of a low descriptor (0 or 1) to stderr in
subprocess if another low descriptor is closed.

	bpo-31908 [https://bugs.python.org/issue31908]: Fix output of cover files for trace module command-line
tool. Previously emitted cover files only when --missing option was
used. Patch by Michael Selik.

	bpo-31457 [https://bugs.python.org/issue31457]: If nested log adapters are used, the inner process()
methods are no longer omitted.

	bpo-16865 [https://bugs.python.org/issue16865]: Support arrays >=2GiB in ctypes. Patch by Segev Finer.

	bpo-31238 [https://bugs.python.org/issue31238]: pydoc: the stop() method of the private ServerThread class now
waits until DocServer.serve_until_quit() completes and then explicitly
sets its docserver attribute to None to break a reference cycle.

文档

	bpo-33503 [https://bugs.python.org/issue33503]: 修复错误的pypi链接

	bpo-33421 [https://bugs.python.org/issue33421]: 为``typing.AsyncContextManager``添加缺失的文档。

	bpo-33378 [https://bugs.python.org/issue33378]: Add Korean language switcher for https://docs.python.org/3/

	bpo-33276 [https://bugs.python.org/issue33276]: Clarify that the __path__ attribute on modules cannot be
just any value.

	bpo-33201 [https://bugs.python.org/issue33201]: Modernize documentation for writing C extension types.

	bpo-33195 [https://bugs.python.org/issue33195]: Deprecate Py_UNICODE usage in c-api/arg document.
Py_UNICODE related APIs are deprecated since Python 3.3, but it is
missed in the document.

	bpo-33126 [https://bugs.python.org/issue33126]: Document PyBuffer_ToContiguous().

	bpo-27212 [https://bugs.python.org/issue27212]: Modify documentation for the islice() recipe to consume
initial values up to the start index.

	bpo-28247 [https://bugs.python.org/issue28247]: Update zipapp documentation to describe how to make
standalone applications.

	bpo-18802 [https://bugs.python.org/issue18802]: Documentation changes for ipaddress. Patch by Jon Foster and
Berker Peksag.

	bpo-27428 [https://bugs.python.org/issue27428]: Update documentation to clarify that WindowsRegistryFinder
implements MetaPathFinder. (Patch by Himanshu Lakhara)

	bpo-8243 [https://bugs.python.org/issue8243]: Add a note about curses.addch and curses.addstr exception
behavior when writing outside a window, or pad.

	bpo-31432 [https://bugs.python.org/issue31432]: Clarify meaning of CERT_NONE, CERT_OPTIONAL, and CERT_REQUIRED
flags for ssl.SSLContext.verify_mode.

测试

	bpo-33655 [https://bugs.python.org/issue33655]: 忽略运行在BSD平台的ZFS上时test_posix_fallocate的失败。

	bpo-19417 [https://bugs.python.org/issue19417]: Add test_bdb.py.

构建

	bpo-5755 [https://bugs.python.org/issue5755]: Move -Wstrict-prototypes option to CFLAGS_NODIST from
OPT. This option emitted annoying warnings when building extension
modules written in C++.

	bpo-33614 [https://bugs.python.org/issue33614]: Ensures module definition files for the stable ABI on Windows
are correctly regenerated.

	bpo-33522 [https://bugs.python.org/issue33522]: Enable CI builds on Visual Studio Team Services at
https://python.visualstudio.com/cpython

	bpo-33012 [https://bugs.python.org/issue33012]: Add -Wno-cast-function-type for gcc 8 for silencing
warnings about function casts like casting to PyCFunction in method
definition lists.

	bpo-33394 [https://bugs.python.org/issue33394]: Enable the verbose build for extension modules, when GNU make
is passed macros on the command line.

Windows

	bpo-33184 [https://bugs.python.org/issue33184]: 更新Windows 构建以使用OpenSSL 1.0.2o.

macOS

	bpo-33184 [https://bugs.python.org/issue33184]: 在MacOS安装程序中将OpenSSL更新为1.0.2o.

IDLE

	bpo-33656 [https://bugs.python.org/issue33656]: On Windows, add API call saying that tk scales for DPI. On
Windows 8.1+ or 10, with DPI compatibility properties of the Python binary
unchanged, and a monitor resolution greater than 96 DPI, this should make
text and lines sharper. It should otherwise have no effect.

	bpo-33768 [https://bugs.python.org/issue33768]: Clicking on a context line moves that line to the top of the
editor window.

	bpo-33763 [https://bugs.python.org/issue33763]: IDLE: Use read-only text widget for code context instead of
label widget.

	bpo-33664 [https://bugs.python.org/issue33664]: Scroll IDLE editor text by lines. Previously, the mouse wheel
and scrollbar slider moved text by a fixed number of pixels, resulting in
partial lines at the top of the editor box. The change also applies to
the shell and grep output windows, but not to read-only text views.

	bpo-33679 [https://bugs.python.org/issue33679]: Enable theme-specific color configuration for Code Context. Use
the Highlights tab to see the setting for built-in themes or add settings
to custom themes.

	bpo-33642 [https://bugs.python.org/issue33642]: Display up to maxlines non-blank lines for Code Context. If
there is no current context, show a single blank line.

	bpo-33628 [https://bugs.python.org/issue33628]: IDLE: Cleanup codecontext.py and its test.

	bpo-33564 [https://bugs.python.org/issue33564]: IDLE's code context now recognizes async as a block opener.

	bpo-29706 [https://bugs.python.org/issue29706]: IDLE now colors async and await as keywords in 3.6. They become
full keywords in 3.7.

	bpo-21474 [https://bugs.python.org/issue21474]: Update word/identifier definition from ascii to unicode. In
text and entry boxes, this affects selection by double-click, movement
left/right by control-left/right, and deletion left/right by
control-BACKSPACE/DEL.

	bpo-33204 [https://bugs.python.org/issue33204]: IDLE: consistently color invalid string prefixes. A 'u' string
prefix cannot be paired with either 'r' or 'f'. Consistently color as much
of the prefix, starting at the right, as is valid. Revise and extend
colorizer test.

	bpo-32831 [https://bugs.python.org/issue32831]: Add docstrings and tests for codecontext.

工具/示例

	bpo-33189 [https://bugs.python.org/issue33189]: pygettext.py now recognizes only literal strings as
docstrings and translatable strings, and rejects bytes literals and
f-string expressions.

	bpo-31920 [https://bugs.python.org/issue31920]: Fixed handling directories as arguments in the pygettext
script. Based on patch by Oleg Krasnikov.

	bpo-29673 [https://bugs.python.org/issue29673]: Fix pystackv and pystack gdbinit macros.

	bpo-32885 [https://bugs.python.org/issue32885]: Add an -n flag for Tools/scripts/pathfix.py to disable
automatic backup creation (files with ~ suffix).

	bpo-31583 [https://bugs.python.org/issue31583]: Fix 2to3 for using with --add-suffix option but without
--output-dir option for relative path to files in current directory.

C API

	bpo-32374 [https://bugs.python.org/issue32374]: Document that m_traverse for multi-phase initialized modules
can be called with m_state=NULL, and add a sanity check

Python 3.6.5 正式版

发布日期: 2018-03-28

测试

	bpo-32872 [https://bugs.python.org/issue32872]: Avoid regrtest compatibility issue with namespace packages.

构建

	bpo-33163 [https://bugs.python.org/issue33163]: Upgrade pip to 9.0.3 and setuptools to v39.0.1.

Python 3.6.5 rc1

发布日期: 2018-03-13

安全

	bpo-33001 [https://bugs.python.org/issue33001]: Minimal fix to prevent buffer overrun in os.symlink on Windows

	bpo-32981 [https://bugs.python.org/issue32981]: Regexes in difflib and poplib were vulnerable to catastrophic
backtracking. These regexes formed potential DOS vectors (REDOS). They
have been refactored. This resolves CVE-2018-1060 and CVE-2018-1061. Patch
by Jamie Davis.

核心与内置

	bpo-33026 [https://bugs.python.org/issue33026]: Fixed jumping out of "with" block by setting f_lineno.

	bpo-17288 [https://bugs.python.org/issue17288]: Prevent jumps from 'return' and 'exception' trace events.

	bpo-32889 [https://bugs.python.org/issue32889]: Update Valgrind suppression list to account for the rename of
Py_ADDRESS_IN_RANG to address_in_range.

	bpo-32650 [https://bugs.python.org/issue32650]: Pdb and other debuggers dependent on bdb.py will correctly step
over (next command) native coroutines. Patch by Pablo Galindo.

	bpo-32685 [https://bugs.python.org/issue32685]: Improve suggestion when the Python 2 form of print statement is
either present on the same line as the header of a compound statement or
else terminated by a semi-colon instead of a newline. Patch by Nitish
Chandra.

	bpo-32583 [https://bugs.python.org/issue32583]: Fix possible crashing in builtin Unicode decoders caused by
write out-of-bound errors when using customized decode error handlers.

	bpo-26163 [https://bugs.python.org/issue26163]: Improved frozenset() hash to create more distinct hash values
when faced with datasets containing many similar values.

	bpo-27169 [https://bugs.python.org/issue27169]: The __debug__ constant is now optimized out at compile
time. This fixes also bpo-22091 [https://bugs.python.org/issue22091].

	bpo-32329 [https://bugs.python.org/issue32329]: sys.flags.hash_randomization is now properly set to 0 when
hash randomization is turned off by PYTHONHASHSEED=0.

	bpo-30416 [https://bugs.python.org/issue30416]: The optimizer is now protected from spending much time doing
complex calculations and consuming much memory for creating large
constants in constant folding.

	bpo-18533 [https://bugs.python.org/issue18533]: repr() on a dict containing its own values() or
items() no longer raises RecursionError; OrderedDict similarly.
Instead, use ..., as for other recursive structures. Patch by Ben
North.

	bpo-32028 [https://bugs.python.org/issue32028]: Leading whitespace is now correctly ignored when generating
suggestions for converting Py2 print statements to Py3 builtin print
function calls. Patch by Sanyam Khurana.

	bpo-32137 [https://bugs.python.org/issue32137]: The repr of deeply nested dict now raises a RecursionError
instead of crashing due to a stack overflow.

库

	bpo-33064 [https://bugs.python.org/issue33064]: lib2to3 now properly supports trailing commas after *args
and **kwargs in function signatures.

	bpo-31804 [https://bugs.python.org/issue31804]: Avoid failing in multiprocessing.Process if the standard
streams are closed or None at exit.

	bpo-33037 [https://bugs.python.org/issue33037]: Skip sending/receiving data after SSL transport closing.

	bpo-30353 [https://bugs.python.org/issue30353]: Fix ctypes pass-by-value for structs on 64-bit Cygwin/MinGW.

	bpo-33009 [https://bugs.python.org/issue33009]: Fix inspect.signature() for single-parameter partialmethods.

	bpo-32969 [https://bugs.python.org/issue32969]: Expose several missing constants in zlib and fix corresponding
documentation.

	bpo-32713 [https://bugs.python.org/issue32713]: Fixed tarfile.itn handling of out-of-bounds float values. Patch
by Joffrey Fuhrer.

	bpo-30622 [https://bugs.python.org/issue30622]: The ssl module now detects missing NPN support in LibreSSL.

	bpo-32922 [https://bugs.python.org/issue32922]: dbm.open() now encodes filename with the filesystem encoding
rather than default encoding.

	bpo-32859 [https://bugs.python.org/issue32859]: In os.dup2, don't check every call whether the dup3
syscall exists or not.

	bpo-21060 [https://bugs.python.org/issue21060]: Rewrite confusing message from setup.py upload from "No dist
file created in earlier command" to the more helpful "Must create and
upload files in one command".

	bpo-32857 [https://bugs.python.org/issue32857]: In tkinter, after_cancel(None) now raises a
ValueError instead of canceling the first scheduled function.
Patch by Cheryl Sabella.

	bpo-32852 [https://bugs.python.org/issue32852]: Make sure sys.argv remains as a list when running trace.

	bpo-32841 [https://bugs.python.org/issue32841]: Fixed asyncio.Condition issue which silently ignored
cancellation after notifying and cancelling a conditional lock. Patch by
Bar Harel.

	bpo-31787 [https://bugs.python.org/issue31787]: Fixed refleaks of __init__() methods in various modules.
(Contributed by Oren Milman)

	bpo-30157 [https://bugs.python.org/issue30157]: Fixed guessing quote and delimiter in csv.Sniffer.sniff() when
only the last field is quoted. Patch by Jake Davis.

	bpo-32394 [https://bugs.python.org/issue32394]: socket: Remove TCP_FASTOPEN, TCP_KEEPCNT flags on older version
Windows during run-time.

	bpo-32777 [https://bugs.python.org/issue32777]: Fix a rare but potential pre-exec child process deadlock in
subprocess on POSIX systems when marking file descriptors inheritable on
exec in the child process. This bug appears to have been introduced in
3.4.

	bpo-32647 [https://bugs.python.org/issue32647]: The ctypes module used to depend on indirect linking for
dlopen. The shared extension is now explicitly linked against libdl on
platforms with dl.

	bpo-32734 [https://bugs.python.org/issue32734]: Fixed asyncio.Lock() safety issue which allowed acquiring
and locking the same lock multiple times, without it being free. Patch by
Bar Harel.

	bpo-32727 [https://bugs.python.org/issue32727]: Do not include name field in SMTP envelope from address. Patch
by Stéphane Wirtel

	bpo-27931 [https://bugs.python.org/issue27931]: Fix email address header parsing error when the username is an
empty quoted string. Patch by Xiang Zhang.

	bpo-32304 [https://bugs.python.org/issue32304]: distutils' upload command no longer corrupts tar files ending
with a CR byte, and no longer tries to convert CR to CRLF in any of the
upload text fields.

	bpo-32502 [https://bugs.python.org/issue32502]: uuid.uuid1 no longer raises an exception if a 64-bit hardware
address is encountered.

	bpo-31848 [https://bugs.python.org/issue31848]: Fix the error handling in Aifc_read.initfp() when the SSND
chunk is not found. Patch by Zackery Spytz.

	bpo-32555 [https://bugs.python.org/issue32555]: On FreeBSD and Solaris, os.strerror() now always decode the
byte string from the current locale encoding, rather than using
ASCII/surrogateescape in some cases.

	bpo-32521 [https://bugs.python.org/issue32521]: The nis module is now compatible with new libnsl and headers
location.

	bpo-32473 [https://bugs.python.org/issue32473]: Improve ABCMeta._dump_registry() output readability

	bpo-32521 [https://bugs.python.org/issue32521]: glibc has removed Sun RPC. Use replacement libtirpc headers and
library in nis module.

	bpo-32228 [https://bugs.python.org/issue32228]: Ensure that truncate() preserves the file position (as
reported by tell()) after writes longer than the buffer size.

	bpo-26133 [https://bugs.python.org/issue26133]: Don't unsubscribe signals in asyncio UNIX event loop on
interpreter shutdown.

	bpo-32185 [https://bugs.python.org/issue32185]: The SSL module no longer sends IP addresses in SNI TLS
extension on platforms with OpenSSL 1.0.2+ or inet_pton.

	bpo-32323 [https://bugs.python.org/issue32323]: urllib.parse.urlsplit() does not convert zone-id
(scope) to lower case for scoped IPv6 addresses in hostnames now.

	bpo-32302 [https://bugs.python.org/issue32302]: Fix bdist_wininst of distutils for CRT v142: it binary
compatible with CRT v140.

	bpo-32255 [https://bugs.python.org/issue32255]: A single empty field is now always quoted when written into a
CSV file. This allows to distinguish an empty row from a row consisting of
a single empty field. Patch by Licht Takeuchi.

	bpo-32277 [https://bugs.python.org/issue32277]: Raise NotImplementedError instead of SystemError on
platforms where chmod(..., follow_symlinks=False) is not supported.
Patch by Anthony Sottile.

	bpo-32199 [https://bugs.python.org/issue32199]: The getnode() ip getter now uses 'ip link' instead of 'ip link
list'.

	bpo-27456 [https://bugs.python.org/issue27456]: Ensure TCP_NODELAY is set on Linux. Tests by Victor Stinner.

	bpo-31900 [https://bugs.python.org/issue31900]: The locale.localeconv() function now sets temporarily the
LC_CTYPE locale to the LC_NUMERIC locale to decode
decimal_point and thousands_sep byte strings if they are non-ASCII
or longer than 1 byte, and the LC_NUMERIC locale is different than the
LC_CTYPE locale. This temporary change affects other threads.

Same change for the str.format() method when formatting a number
(int, float, float and subclasses) with the
n type (ex: '{:n}'.format(1234)).

	bpo-31802 [https://bugs.python.org/issue31802]: Importing native path module (posixpath, ntpath) now
works even if the os module still is not imported.

文档

	bpo-17232 [https://bugs.python.org/issue17232]: Clarify docs for -O and -OO. Patch by Terry Reedy.

	bpo-32800 [https://bugs.python.org/issue32800]: Update link to w3c doc for xml default namespaces.

	bpo-8722 [https://bugs.python.org/issue8722]: Document __getattr__() behavior when property get()
method raises AttributeError.

	bpo-32614 [https://bugs.python.org/issue32614]: Modify RE examples in documentation to use raw strings to
prevent DeprecationWarning and add text to REGEX HOWTO to highlight
the deprecation.

	bpo-31972 [https://bugs.python.org/issue31972]: Improve docstrings for pathlib.PurePath subclasses.

	bpo-17799 [https://bugs.python.org/issue17799]: Explain real behaviour of sys.settrace and sys.setprofile and
their C-API counterparts regarding which type of events are received in
each function. Patch by Pablo Galindo Salgado.

测试

	bpo-32517 [https://bugs.python.org/issue32517]: Fix failing test_asyncio on macOS 10.12.2+ due to transport
of KqueueSelector loop was not being closed.

	bpo-32721 [https://bugs.python.org/issue32721]: Fix test_hashlib to not fail if the _md5 module is not built.

	bpo-32252 [https://bugs.python.org/issue32252]: Fix faulthandler_suppress_crash_report() used to prevent core
dump files when testing crashes. getrlimit() returns zero on success.

	bpo-31518 [https://bugs.python.org/issue31518]: Debian Unstable has disabled TLS 1.0 and 1.1 for
SSLv23_METHOD(). Change TLS/SSL protocol of some tests to PROTOCOL_TLS or
PROTOCOL_TLSv1_2 to make them pass on Debian.

构建

	bpo-32635 [https://bugs.python.org/issue32635]: Fix segfault of the crypt module when libxcrypt is provided
instead of libcrypt at the system.

Windows

	bpo-33016 [https://bugs.python.org/issue33016]: Fix potential use of uninitialized memory in
nt._getfinalpathname

	bpo-32903 [https://bugs.python.org/issue32903]: Fix a memory leak in os.chdir() on Windows if the current
directory is set to a UNC path.

	bpo-31966 [https://bugs.python.org/issue31966]: Fixed WindowsConsoleIO.write() for writing empty data.

	bpo-32409 [https://bugs.python.org/issue32409]: Ensures activate.bat can handle Unicode contents.

	bpo-32457 [https://bugs.python.org/issue32457]: Improves handling of denormalized executable path when
launching Python.

	bpo-32370 [https://bugs.python.org/issue32370]: Use the correct encoding for ipconfig output in the uuid
module. Patch by Segev Finer.

	bpo-29248 [https://bugs.python.org/issue29248]: Fix os.readlink() on Windows, which was mistakenly
treating the PrintNameOffset field of the reparse data buffer as a
number of characters instead of bytes. Patch by Craig Holmquist and SSE4.

	bpo-32588 [https://bugs.python.org/issue32588]: Create standalone _distutils_findvs module.

macOS

	bpo-32726 [https://bugs.python.org/issue32726]: Provide an additional, more modern macOS installer variant that
supports macOS 10.9+ systems in 64-bit mode only. Upgrade the supplied
third-party libraries to OpenSSL 1.0.2n, XZ 5.2.3, and SQLite 3.22.0. The
10.9+ installer now links with and supplies its own copy of Tcl/Tk 8.6.8.

IDLE

	bpo-32984 [https://bugs.python.org/issue32984]: Set __file__ while running a startup file. Like Python,
IDLE optionally runs one startup file in the Shell window before
presenting the first interactive input prompt. For IDLE, -s runs a
file named in environmental variable IDLESTARTUP or
PYTHONSTARTUP; -r file runs file. Python sets
__file__ to the startup file name before running the file and unsets
it before the first prompt. IDLE now does the same when run normally,
without the -n option.

	bpo-32940 [https://bugs.python.org/issue32940]: Simplify and rename StringTranslatePseudoMapping in pyparse.

	bpo-32916 [https://bugs.python.org/issue32916]: Change str to code in pyparse.

	bpo-32905 [https://bugs.python.org/issue32905]: Remove unused code in pyparse module.

	bpo-32874 [https://bugs.python.org/issue32874]: Add tests for pyparse.

	bpo-32837 [https://bugs.python.org/issue32837]: Using the system and place-dependent default encoding for
open() is a bad idea for IDLE's system and location-independent files.

	bpo-32826 [https://bugs.python.org/issue32826]: Add "encoding=utf-8" to open() in IDLE's test_help_about. GUI
test test_file_buttons() only looks at initial ascii-only lines, but
failed on systems where open() defaults to 'ascii' because readline()
internally reads and decodes far enough ahead to encounter a non-ascii
character in CREDITS.txt.

	bpo-32765 [https://bugs.python.org/issue32765]: Update configdialog General tab docstring to add new widgets to
the widget list.

工具/示例

	bpo-24960 [https://bugs.python.org/issue24960]: 2to3 and lib2to3 can now read pickled grammar files using
pkgutil.get_data() rather than probing the filesystem. This lets 2to3 and
lib2to3 work when run from a zipfile.

	bpo-32222 [https://bugs.python.org/issue32222]: Fix pygettext not extracting docstrings for functions with type
annotated arguments. Patch by Toby Harradine.

C API

	bpo-29084 [https://bugs.python.org/issue29084]: Undocumented C API for OrderedDict has been excluded from the
limited C API. It was added by mistake and actually never worked in the
limited C API.

Python 3.6.4 正式版

发布日期: 2017-12-18

从 3.6.4 rc1 到 3.6.4 正式版中没有新的代码更改。

Python 3.6.4 rc1

发布日期: 2017-12-05

核心与内置

	bpo-32176 [https://bugs.python.org/issue32176]: co_flags.CO_NOFREE is now always set correctly by the code
object constructor based on freevars and cellvars, rather than needing to
be set correctly by the caller. This ensures it will be cleared
automatically when additional cell references are injected into a modified
code object and function.

	bpo-31949 [https://bugs.python.org/issue31949]: Fixed several issues in printing tracebacks
(PyTraceBack_Print()).

	Setting sys.tracebacklimit to 0 or less now suppresses printing tracebacks.

	Setting sys.tracebacklimit to None now causes using the default limit.

	Setting sys.tracebacklimit to an integer larger than LONG_MAX now means using
the limit LONG_MAX rather than the default limit.

	Fixed integer overflows in the case of more than 2**31 traceback items on
Windows.

	Fixed output errors handling.

	bpo-30696 [https://bugs.python.org/issue30696]: Fix the interactive interpreter looping endlessly when no
memory.

	bpo-20047 [https://bugs.python.org/issue20047]: Bytearray methods partition() and rpartition() now accept only
bytes-like objects as separator, as documented. In particular they now
raise TypeError rather of returning a bogus result when an integer is
passed as a separator.

	bpo-31852 [https://bugs.python.org/issue31852]: Fix a segmentation fault caused by a combination of the async
soft keyword and continuation lines.

	bpo-21720 [https://bugs.python.org/issue21720]: BytesWarning no longer emitted when the fromlist argument of
__import__() or the __all__ attribute of the module contain bytes
instances.

	bpo-31825 [https://bugs.python.org/issue31825]: Fixed OverflowError in the 'unicode-escape' codec and in
codecs.escape_decode() when decode an escaped non-ascii byte.

	bpo-28603 [https://bugs.python.org/issue28603]: Print the full context/cause chain of exceptions on interpreter
exit, even if an exception in the chain is unhashable or compares equal to
later ones. Patch by Zane Bitter.

	bpo-31786 [https://bugs.python.org/issue31786]: Fix timeout rounding in the select module to round correctly
negative timeouts between -1.0 and 0.0. The functions now block waiting
for events as expected. Previously, the call was incorrectly non-blocking.
Patch by Pablo Galindo.

	bpo-31642 [https://bugs.python.org/issue31642]: Restored blocking "from package import module" by setting
sys.modules["package.module"] to None.

	bpo-31626 [https://bugs.python.org/issue31626]: Fixed a bug in debug memory allocator. There was a write to
freed memory after shrinking a memory block.

	bpo-31619 [https://bugs.python.org/issue31619]: Fixed a ValueError when convert a string with large number of
underscores to integer with binary base.

	bpo-31592 [https://bugs.python.org/issue31592]: Fixed an assertion failure in Python parser in case of a bad
unicodedata.normalize(). Patch by Oren Milman.

	bpo-31588 [https://bugs.python.org/issue31588]: Raise a TypeError with a helpful error message when class
creation fails due to a metaclass with a bad __prepare__() method.
Patch by Oren Milman.

	bpo-31566 [https://bugs.python.org/issue31566]: Fix an assertion failure in _warnings.warn() in case of a bad
__name__ global. Patch by Oren Milman.

	bpo-31505 [https://bugs.python.org/issue31505]: Fix an assertion failure in json, in case
_json.make_encoder() received a bad encoder() argument. Patch by Oren
Milman.

	bpo-31492 [https://bugs.python.org/issue31492]: Fix assertion failures in case of failing to import from a
module with a bad __name__ attribute, and in case of failing to access
an attribute of such a module. Patch by Oren Milman.

	bpo-31490 [https://bugs.python.org/issue31490]: Fix an assertion failure in ctypes class definition, in case
the class has an attribute whose name is specified in _anonymous_ but
not in _fields_. Patch by Oren Milman.

	bpo-31478 [https://bugs.python.org/issue31478]: Fix an assertion failure in _random.Random.seed() in case the
argument has a bad __abs__() method. Patch by Oren Milman.

	bpo-31315 [https://bugs.python.org/issue31315]: Fix an assertion failure in imp.create_dynamic(), when
spec.name is not a string. Patch by Oren Milman.

	bpo-31311 [https://bugs.python.org/issue31311]: Fix a crash in the __setstate__() method of
ctypes._CData, in case of a bad __dict__. Patch by Oren Milman.

	bpo-31293 [https://bugs.python.org/issue31293]: Fix crashes in true division and multiplication of a timedelta
object by a float with a bad as_integer_ratio() method. Patch by Oren
Milman.

	bpo-31285 [https://bugs.python.org/issue31285]: Fix an assertion failure in warnings.warn_explicit, when the
return value of the received loader's get_source() has a bad splitlines()
method. Patch by Oren Milman.

	bpo-30817 [https://bugs.python.org/issue30817]: PyErr_PrintEx() clears now the ignored exception that may be
raised by _PySys_SetObjectId(), for example when no memory.

库

	bpo-28556 [https://bugs.python.org/issue28556]: Two minor fixes for typing module: allow shallow copying
instances of generic classes, improve interaction of __init_subclass__
with generics. Original PRs by Ivan Levkivskyi.

	bpo-27240 [https://bugs.python.org/issue27240]: The header folding algorithm for the new email policies has
been rewritten, which also fixes bpo-30788 [https://bugs.python.org/issue30788], bpo-31831 [https://bugs.python.org/issue31831], and bpo-32182 [https://bugs.python.org/issue32182]. In
particular, RFC2231 folding is now done correctly.

	bpo-32186 [https://bugs.python.org/issue32186]: io.FileIO.readall() and io.FileIO.read() now release the GIL
when getting the file size. Fixed hang of all threads with inaccessible
NFS server. Patch by Nir Soffer.

	bpo-12239 [https://bugs.python.org/issue12239]: Make msilib.SummaryInformation.GetProperty() return
None when the value of property is VT_EMPTY. Initial patch by
Mark Mc Mahon.

	bpo-31325 [https://bugs.python.org/issue31325]: Fix wrong usage of collections.namedtuple() in the
RobotFileParser.parse()
method.

Initial patch by Robin Wellner.

	bpo-12382 [https://bugs.python.org/issue12382]: msilib.OpenDatabase() now raises a better exception
message when it couldn't open or create an MSI file. Initial patch by
William Tisäter.

	bpo-32110 [https://bugs.python.org/issue32110]: codecs.StreamReader.read(n) now returns not more than n
characters/bytes for non-negative n. This makes it compatible with
read() methods of other file-like objects.

	bpo-32072 [https://bugs.python.org/issue32072]: Fixed issues with binary plists:

	Fixed saving bytearrays.

	Identical objects will be saved only once.

	Equal references will be load as identical objects.

	Added support for saving and loading recursive data structures.

	bpo-32034 [https://bugs.python.org/issue32034]: Make asyncio.IncompleteReadError and LimitOverrunError
pickleable.

	bpo-32015 [https://bugs.python.org/issue32015]: Fixed the looping of asyncio in the case of reconnection the
socket during waiting async read/write from/to the socket.

	bpo-32011 [https://bugs.python.org/issue32011]: Restored support of loading marshal files with the TYPE_INT64
code. These files can be produced in Python 2.7.

	bpo-31970 [https://bugs.python.org/issue31970]: Reduce performance overhead of asyncio debug mode.

	bpo-9678 [https://bugs.python.org/issue9678]: Fixed determining the MAC address in the uuid module:

	在NetBSD和OpenBSD系统上使用ifconfig命令

	Using arp on Linux, FreeBSD, NetBSD and OpenBSD.

Based on patch by Takayuki Shimizukawa.

	bpo-30057 [https://bugs.python.org/issue30057]: Fix potential missed signal in signal.signal().

	bpo-31933 [https://bugs.python.org/issue31933]: Fix Blake2 params leaf_size and node_offset on big endian
platforms. Patch by Jack O'Connor.

	bpo-31927 [https://bugs.python.org/issue31927]: Fixed compilation of the socket module on NetBSD 8. Fixed
assertion failure or reading arbitrary data when parse a AF_BLUETOOTH
address on NetBSD and DragonFly BSD.

	bpo-27666 [https://bugs.python.org/issue27666]: Fixed stack corruption in curses.box() and curses.ungetmouse()
when the size of types chtype or mmask_t is less than the size of C long.
curses.box() now accepts characters as arguments. Based on patch by Steve
Fink.

	bpo-31897 [https://bugs.python.org/issue31897]: plistlib now catches more errors when read binary plists and
raises InvalidFileException instead of unexpected exceptions.

	bpo-25720 [https://bugs.python.org/issue25720]: Fix the method for checking pad state of curses WINDOW. Patch
by Masayuki Yamamoto.

	bpo-31893 [https://bugs.python.org/issue31893]: Fixed the layout of the kqueue_event structure on OpenBSD and
NetBSD. Fixed the comparison of the kqueue_event objects.

	bpo-31891 [https://bugs.python.org/issue31891]: Fixed building the curses module on NetBSD.

	bpo-28416 [https://bugs.python.org/issue28416]: Instances of pickle.Pickler subclass with the persistent_id()
method and pickle.Unpickler subclass with the persistent_load() method no
longer create reference cycles.

	bpo-28326 [https://bugs.python.org/issue28326]: Fix multiprocessing.Process when stdout and/or stderr is closed
or None.

	bpo-31457 [https://bugs.python.org/issue31457]: If nested log adapters are used, the inner process()
methods are no longer omitted.

	bpo-31457 [https://bugs.python.org/issue31457]: The manager property on LoggerAdapter objects is now
properly settable.

	bpo-31806 [https://bugs.python.org/issue31806]: Fix timeout rounding in time.sleep(), threading.Lock.acquire()
and socket.socket.settimeout() to round correctly negative timeouts
between -1.0 and 0.0. The functions now block waiting for events as
expected. Previously, the call was incorrectly non-blocking. Patch by
Pablo Galindo.

	bpo-28603 [https://bugs.python.org/issue28603]: traceback: Fix a TypeError that occurred during printing of
exception tracebacks when either the current exception or an exception in
its context/cause chain is unhashable. Patch by Zane Bitter.

	bpo-30058 [https://bugs.python.org/issue30058]: Fixed buffer overflow in select.kqueue.control().

	bpo-31770 [https://bugs.python.org/issue31770]: Prevent a crash when calling the __init__() method of a
sqlite3.Cursor object more than once. Patch by Oren Milman.

	bpo-31672 [https://bugs.python.org/issue31672]: idpattern in string.Template matched some non-ASCII
characters. Now it uses -i regular expression local flag to avoid
non-ASCII characters.

	bpo-31764 [https://bugs.python.org/issue31764]: Prevent a crash in sqlite3.Cursor.close() in case the
Cursor object is uninitialized. Patch by Oren Milman.

	bpo-31752 [https://bugs.python.org/issue31752]: Fix possible crash in timedelta constructor called with custom
integers.

	bpo-31701 [https://bugs.python.org/issue31701]: On Windows, faulthandler.enable() now ignores MSC and COM
exceptions.

	bpo-31728 [https://bugs.python.org/issue31728]: Prevent crashes in _elementtree due to unsafe cleanup of
Element.text and Element.tail. Patch by Oren Milman.

	bpo-31620 [https://bugs.python.org/issue31620]: an empty asyncio.Queue now doesn't leak memory when queue.get
pollers timeout

	bpo-31632 [https://bugs.python.org/issue31632]: Fix method set_protocol() of class _SSLProtocolTransport in
asyncio module. This method was previously modifying a wrong reference to
the protocol.

	bpo-31675 [https://bugs.python.org/issue31675]: Fixed memory leaks in Tkinter's methods splitlist() and split()
when pass a string larger than 2 GiB.

	bpo-31673 [https://bugs.python.org/issue31673]: Fixed typo in the name of Tkinter's method adderrorinfo().

	bpo-30806 [https://bugs.python.org/issue30806]: Fix the string representation of a netrc object.

	bpo-15037 [https://bugs.python.org/issue15037]: Added a workaround for getkey() in curses for ncurses 5.7 and
earlier.

	bpo-25351 [https://bugs.python.org/issue25351]: Avoid venv activate failures with undefined variables

	bpo-25532 [https://bugs.python.org/issue25532]: inspect.unwrap() will now only try to unwrap an object
sys.getrecursionlimit() times, to protect against objects which create a
new object on every attribute access.

	bpo-30347 [https://bugs.python.org/issue30347]: Stop crashes when concurrently iterate over itertools.groupby()
iterators.

	bpo-31516 [https://bugs.python.org/issue31516]: threading.current_thread() should not return a dummy thread
at shutdown.

	bpo-31351 [https://bugs.python.org/issue31351]: python -m ensurepip now exits with non-zero exit code if pip
bootstrapping has failed.

	bpo-31482 [https://bugs.python.org/issue31482]: random.seed() now works with bytes in version=1

	bpo-31334 [https://bugs.python.org/issue31334]: Fix poll.poll([timeout]) in the select module for
arbitrary negative timeouts on all OSes where it can only be a
non-negative integer or -1. Patch by Riccardo Coccioli.

	bpo-31310 [https://bugs.python.org/issue31310]: multiprocessing's semaphore tracker should be launched again if
crashed.

	bpo-31308 [https://bugs.python.org/issue31308]: Make multiprocessing's forkserver process immune to Ctrl-C and
other user interruptions. If it crashes, restart it when necessary.

文档

	bpo-32105 [https://bugs.python.org/issue32105]: Added asyncio.BaseEventLoop.connect_accepted_socket
versionadded marker.

	bpo-31537 [https://bugs.python.org/issue31537]: Fix incorrect usage of get_history_length in readline
documentation example code. Patch by Brad Smith.

	bpo-30085 [https://bugs.python.org/issue30085]: The operator functions without double underscores are preferred
for clarity. The one with underscores are only kept for
back-compatibility.

测试

	bpo-31380 [https://bugs.python.org/issue31380]: Skip test_httpservers test_undecodable_file on macOS: fails on
APFS.

	bpo-31705 [https://bugs.python.org/issue31705]: Skip test_socket.test_sha256() on Linux kernel older than 4.5.
The test fails with ENOKEY on kernel 3.10 (on ppc64le). A fix was merged
into the kernel 4.5.

	bpo-31174 [https://bugs.python.org/issue31174]: Fix test_tools.test_unparse: DirectoryTestCase now stores the
names sample to always test the same files. It prevents false alarms when
hunting reference leaks.

	bpo-30695 [https://bugs.python.org/issue30695]: Add the set_nomemory(start, stop) and remove_mem_hooks()
functions to the _testcapi module.

构建

	bpo-32059 [https://bugs.python.org/issue32059]: detect_modules() in setup.py now also searches the
sysroot paths when cross-compiling.

	bpo-31957 [https://bugs.python.org/issue31957]: Fixes Windows SDK version detection when building for Windows.

	bpo-31609 [https://bugs.python.org/issue31609]: Fixes quotes in PCbuild/clean.bat

	bpo-31934 [https://bugs.python.org/issue31934]: Abort the build when building out of a not clean source tree.

	bpo-31926 [https://bugs.python.org/issue31926]: Fixed Argument Clinic sometimes causing compilation errors when
there was more than one function and/or method in a .c file with the same
name.

	bpo-28791 [https://bugs.python.org/issue28791]: 更新 Windows 构建以使用 SQLite 3.21.0.

	bpo-28791 [https://bugs.python.org/issue28791]: 更新 OS X 安装程序以使用 SQLite 3.21.0.

	bpo-22140 [https://bugs.python.org/issue22140]: Prevent double substitution of prefix in python-config.sh.

	bpo-31536 [https://bugs.python.org/issue31536]: Avoid wholesale rebuild after make regen-all if nothing
changed.

Windows

	bpo-1102 [https://bugs.python.org/issue1102]: Return None when View.Fetch() returns
ERROR_NO_MORE_ITEMS instead of raising MSIError.

Initial patch by Anthony Tuininga.

	bpo-31944 [https://bugs.python.org/issue31944]: Fixes Modify button in Apps and Features dialog.

macOS

	bpo-31392 [https://bugs.python.org/issue31392]: 在MacOS安装程序中将OpenSSL更新为1.0.2m。

IDLE

	bpo-32207 [https://bugs.python.org/issue32207]: Improve tk event exception tracebacks in IDLE. When tk event
handling is driven by IDLE's run loop, a confusing and distracting
queue.EMPTY traceback context is no longer added to tk event exception
tracebacks. The traceback is now the same as when event handling is
driven by user code. Patch based on a suggestion by Serhiy Storchaka.

	bpo-32164 [https://bugs.python.org/issue32164]: Delete unused file idlelib/tabbedpages.py. Use of TabbedPageSet
in configdialog was replaced by ttk.Notebook.

	bpo-32100 [https://bugs.python.org/issue32100]: IDLE: Fix old and new bugs in pathbrowser; improve tests. Patch
mostly by Cheryl Sabella.

	bpo-31858 [https://bugs.python.org/issue31858]: IDLE -- Restrict shell prompt manipulation to the shell. Editor
and output windows only see an empty last prompt line. This simplifies
the code and fixes a minor bug when newline is inserted. Sys.ps1, if
present, is read on Shell start-up, but is not set or changed.

	bpo-31860 [https://bugs.python.org/issue31860]: The font sample in the IDLE configuration dialog is now
editable. Changes persist while IDLE remains open

	bpo-31836 [https://bugs.python.org/issue31836]: Test_code_module now passes if run after test_idle, which sets
ps1.

The code module uses sys.ps1 if present or sets it to '>>> ' if not.
Test_code_module now properly tests both behaviors. Ditto for ps2.

	bpo-28603 [https://bugs.python.org/issue28603]: Fix a TypeError that caused a shell restart when printing a
traceback that includes an exception that is unhashable. Patch by Zane
Bitter.

	bpo-13802 [https://bugs.python.org/issue13802]: Use non-Latin characters in the IDLE's Font settings sample.
Even if one selects a font that defines a limited subset of the unicode
Basic Multilingual Plane, tcl/tk will use other fonts that define a
character. The expanded example give users of non-Latin characters a
better idea of what they might see in IDLE's shell and editors. To make
room for the expanded sample, frames on the Font tab are re-arranged. The
Font/Tabs help explains a bit about the additions.

	bpo-31460 [https://bugs.python.org/issue31460]: Simplify the API of IDLE's Module Browser.

Passing a widget instead of an flist with a root widget opens the option
of creating a browser frame that is only part of a window. Passing a full
file name instead of pieces assumed to come from a .py file opens the
possibility of browsing python files that do not end in .py.

	bpo-31649 [https://bugs.python.org/issue31649]: IDLE - Make _htest, _utest parameters keyword only.

	bpo-31559 [https://bugs.python.org/issue31559]: Remove test order dependence in idle_test.test_browser.

	bpo-31459 [https://bugs.python.org/issue31459]: Rename IDLE's module browser from Class Browser to Module
Browser. The original module-level class and method browser became a
module browser, with the addition of module-level functions, years ago.
Nested classes and functions were added yesterday. For
back-compatibility, the virtual event <<open-class-browser>>, which
appears on the Keys tab of the Settings dialog, is not changed. Patch by
Cheryl Sabella.

	bpo-31500 [https://bugs.python.org/issue31500]: Default fonts now are scaled on HiDPI displays.

	bpo-1612262 [https://bugs.python.org/issue1612262]: IDLE module browser now shows nested classes and functions.
Original patches for code and tests by Guilherme Polo and Cheryl Sabella,
respectively.

工具/示例

	bpo-30722 [https://bugs.python.org/issue30722]: Make redemo work with Python 3.6 and newer versions.

Also, remove the LOCALE option since it doesn't work with string
patterns in Python 3.

Patch by Christoph Sarnowski.

C API

	bpo-20891 [https://bugs.python.org/issue20891]: Fix PyGILState_Ensure(). When PyGILState_Ensure() is called in
a non-Python thread before PyEval_InitThreads(), only call
PyEval_InitThreads() after calling PyThreadState_New() to fix a crash.

	bpo-31532 [https://bugs.python.org/issue31532]: Fix memory corruption due to allocator mix in getpath.c between
Py_GetPath() and Py_SetPath()

	bpo-30697 [https://bugs.python.org/issue30697]: The PyExc_RecursionErrorInst singleton is removed and
PyErr_NormalizeException() does not use it anymore. This singleton is
persistent and its members being never cleared may cause a segfault during
finalization of the interpreter. See also bpo-22898 [https://bugs.python.org/issue22898].

Python 3.6.3 正式版

发布日期: 2017-10-03

库

	bpo-31641 [https://bugs.python.org/issue31641]: Re-allow arbitrary iterables in
concurrent.futures.as_completed(). Fixes regression in 3.6.3rc1.

构建

	bpo-31662 [https://bugs.python.org/issue31662]: Fix typos in Windows uploadrelease.bat script. Fix Windows
Doc build issues in Doc/make.bat.

	bpo-31423 [https://bugs.python.org/issue31423]: Fix building the PDF documentation with newer versions of
Sphinx.

Python 3.6.3 rc1

发布日期: 2017-09-18

安全

	bpo-29781 [https://bugs.python.org/issue29781]: SSLObject.version() now correctly returns None when handshake
over BIO has not been performed yet.

	bpo-30947 [https://bugs.python.org/issue30947]: Upgrade libexpat embedded copy from version 2.2.1 to 2.2.3 to
get security fixes.

核心与内置

	bpo-31471 [https://bugs.python.org/issue31471]: Fix an assertion failure in subprocess.Popen() on Windows, in
case the env argument has a bad keys() method. Patch by Oren Milman.

	bpo-31418 [https://bugs.python.org/issue31418]: Fix an assertion failure in PyErr_WriteUnraisable() in case
of an exception with a bad __module__ attribute. Patch by Oren Milman.

	bpo-31416 [https://bugs.python.org/issue31416]: Fix assertion failures in case of a bad warnings.filters or
warnings.defaultaction. Patch by Oren Milman.

	bpo-31411 [https://bugs.python.org/issue31411]: Raise a TypeError instead of SystemError in case
warnings.onceregistry is not a dictionary. Patch by Oren Milman.

	bpo-31373 [https://bugs.python.org/issue31373]: Fix several possible instances of undefined behavior due to
floating-point demotions.

	bpo-30465 [https://bugs.python.org/issue30465]: Location information (lineno and col_offset) in
f-strings is now (mostly) correct. This fixes tools like flake8 from
showing warnings on the wrong line (typically the first line of the file).

	bpo-31343 [https://bugs.python.org/issue31343]: Include sys/sysmacros.h for major(), minor(), and makedev().
GNU C libray plans to remove the functions from sys/types.h.

	bpo-31291 [https://bugs.python.org/issue31291]: Fix an assertion failure in zipimport.zipimporter.get_data on
Windows, when the return value of pathname.replace('/','\\') isn't a
string. Patch by Oren Milman.

	bpo-31271 [https://bugs.python.org/issue31271]: Fix an assertion failure in the write() method of
io.TextIOWrapper, when the encoder doesn't return a bytes object. Patch
by Oren Milman.

	bpo-31243 [https://bugs.python.org/issue31243]: Fix a crash in some methods of io.TextIOWrapper, when the
decoder's state is invalid. Patch by Oren Milman.

	bpo-30721 [https://bugs.python.org/issue30721]: print now shows correct usage hint for using Python 2
redirection syntax. Patch by Sanyam Khurana.

	bpo-31070 [https://bugs.python.org/issue31070]: Fix a race condition in importlib _get_module_lock().

	bpo-31095 [https://bugs.python.org/issue31095]: Fix potential crash during GC caused by tp_dealloc which
doesn't call PyObject_GC_UnTrack().

	bpo-31071 [https://bugs.python.org/issue31071]: Avoid masking original TypeError in call with * unpacking when
other arguments are passed.

	bpo-30978 [https://bugs.python.org/issue30978]: str.format_map() now passes key lookup exceptions through.
Previously any exception was replaced with a KeyError exception.

	bpo-30808 [https://bugs.python.org/issue30808]: Use _Py_atomic API for concurrency-sensitive signal state.

	bpo-30876 [https://bugs.python.org/issue30876]: Relative import from unloaded package now reimports the package
instead of failing with SystemError. Relative import from non-package now
fails with ImportError rather than SystemError.

	bpo-30703 [https://bugs.python.org/issue30703]: Improve signal delivery.

Avoid using Py_AddPendingCall from signal handler, to avoid calling
signal-unsafe functions. The tests I'm adding here fail without the rest
of the patch, on Linux and OS X. This means our signal delivery logic had
defects (some signals could be lost).

	bpo-30765 [https://bugs.python.org/issue30765]: Avoid blocking in pthread_mutex_lock() when
PyThread_acquire_lock() is asked not to block.

	bpo-31161 [https://bugs.python.org/issue31161]: Make sure the 'Missing parentheses' syntax error message is
only applied to SyntaxError, not to subclasses. Patch by Martijn Pieters.

	bpo-30814 [https://bugs.python.org/issue30814]: Fixed a race condition when import a submodule from a package.

	bpo-30597 [https://bugs.python.org/issue30597]: print now shows expected input in custom error message when
used as a Python 2 statement. Patch by Sanyam Khurana.

库

	bpo-31499 [https://bugs.python.org/issue31499]: xml.etree: Fix a crash when a parser is part of a reference
cycle.

	bpo-28556 [https://bugs.python.org/issue28556]: typing.get_type_hints now finds the right globalns for classes
and modules by default (when no globalns was specified by the caller).

	bpo-28556 [https://bugs.python.org/issue28556]: Speed improvements to the typing module. Original PRs by
Ivan Levkivskyi and Mitar.

	bpo-31544 [https://bugs.python.org/issue31544]: The C accelerator module of ElementTree ignored exceptions
raised when looking up TreeBuilder target methods in XMLParser().

	bpo-31234 [https://bugs.python.org/issue31234]: socket.create_connection() now fixes manually a reference
cycle: clear the variable storing the last exception on success.

	bpo-31457 [https://bugs.python.org/issue31457]: LoggerAdapter objects can now be nested.

	bpo-31400 [https://bugs.python.org/issue31400]: Improves SSL error handling to avoid losing error numbers.

	bpo-28958 [https://bugs.python.org/issue28958]: ssl.SSLContext() now uses OpenSSL error information when a
context cannot be instantiated.

	bpo-27340 [https://bugs.python.org/issue27340]: SSLSocket.sendall() now uses memoryview to create slices of
data. This fixes support for all bytes-like object. It is also more
efficient and avoids costly copies.

	bpo-31178 [https://bugs.python.org/issue31178]: Fix string concatenation bug in rare error path in the
subprocess module

	bpo-31350 [https://bugs.python.org/issue31350]: Micro-optimize asyncio._get_running_loop() to become up
to 10% faster.

	bpo-31170 [https://bugs.python.org/issue31170]: expat: Update libexpat from 2.2.3 to 2.2.4. Fix copying of
partial characters for UTF-8 input (libexpat bug 115):
https://github.com/libexpat/libexpat/issues/115

	bpo-29136 [https://bugs.python.org/issue29136]: Add TLS 1.3 cipher suites and OP_NO_TLSv1_3.

	bpo-29212 [https://bugs.python.org/issue29212]: Fix concurrent.futures.thread.ThreadPoolExecutor threads to
have a non repr() based thread name by default when no thread_name_prefix
is supplied. They will now identify themselves as
"ThreadPoolExecutor-y_n".

	bpo-9146 [https://bugs.python.org/issue9146]: Fix a segmentation fault in _hashopenssl when standard hash
functions such as md5 are not available in the linked OpenSSL library. As
in some special FIPS-140 build environments.

	bpo-27144 [https://bugs.python.org/issue27144]: The map() and as_completed() iterators in
concurrent.futures now avoid keeping a reference to yielded objects.

	bpo-10746 [https://bugs.python.org/issue10746]: Fix ctypes producing wrong PEP 3118 type codes for integer
types.

	bpo-22536 [https://bugs.python.org/issue22536]: The subprocess module now sets the filename when
FileNotFoundError is raised on POSIX systems due to the executable or cwd
not being found.

	bpo-31249 [https://bugs.python.org/issue31249]: concurrent.futures: WorkItem.run() used by ThreadPoolExecutor
now breaks a reference cycle between an exception object and the WorkItem
object.

	bpo-31247 [https://bugs.python.org/issue31247]: xmlrpc.server now explicitly breaks reference cycles when using
sys.exc_info() in code handling exceptions.

	bpo-30102 [https://bugs.python.org/issue30102]: The ssl and hashlib modules now call
OPENSSL_add_all_algorithms_noconf() on OpenSSL < 1.1.0. The function
detects CPU features and enables optimizations on some CPU architectures
such as POWER8. Patch is based on research from Gustavo Serra Scalet.

	bpo-31185 [https://bugs.python.org/issue31185]: Fixed miscellaneous errors in asyncio speedup module.

	bpo-31135 [https://bugs.python.org/issue31135]: ttk: fix the destroy() method of LabeledScale and OptionMenu
classes. Call the parent destroy() method even if the used attribute
doesn't exist. The LabeledScale.destroy() method now also explicitly
clears label and scale attributes to help the garbage collector to destroy
all widgets.

	bpo-31107 [https://bugs.python.org/issue31107]: Fix copyreg._slotnames() mangled attribute calculation for
classes whose name begins with an underscore. Patch by Shane Harvey.

	bpo-31061 [https://bugs.python.org/issue31061]: Fixed a crash when using asyncio and threads.

	bpo-30502 [https://bugs.python.org/issue30502]: Fix handling of long oids in ssl. Based on patch by Christian
Heimes.

	bpo-30119 [https://bugs.python.org/issue30119]: ftplib.FTP.putline() now throws ValueError on commands that
contains CR or LF. Patch by Dong-hee Na.

	bpo-30595 [https://bugs.python.org/issue30595]: multiprocessing.Queue.get() with a timeout now polls its reader
in non-blocking mode if it succeeded to acquire the lock but the acquire
took longer than the timeout.

	bpo-29403 [https://bugs.python.org/issue29403]: Fix unittest.mock's autospec to not fail on method-bound
builtin functions. Patch by Aaron Gallagher.

	bpo-30961 [https://bugs.python.org/issue30961]: Fix decrementing a borrowed reference in tracemalloc.

	bpo-25684 [https://bugs.python.org/issue25684]: Change ttk.OptionMenu radiobuttons to be unique across
instances of OptionMenu.

	bpo-30886 [https://bugs.python.org/issue30886]: Fix multiprocessing.Queue.join_thread(): it now waits until the
thread completes, even if the thread was started by the same process which
created the queue.

	bpo-29854 [https://bugs.python.org/issue29854]: Fix segfault in readline when using readline's history-size
option. Patch by Nir Soffer.

	bpo-30319 [https://bugs.python.org/issue30319]: socket.close() now ignores ECONNRESET error.

	bpo-30828 [https://bugs.python.org/issue30828]: Fix out of bounds write in
asyncio.CFuture.remove_done_callback().

	bpo-30807 [https://bugs.python.org/issue30807]: signal.setitimer() may disable the timer when passed a tiny
value.

Tiny values (such as 1e-6) are valid non-zero values for setitimer(),
which is specified as taking microsecond-resolution intervals. However, on
some platform, our conversion routine could convert 1e-6 into a zero
interval, therefore disabling the timer instead of (re-)scheduling it.

	bpo-30441 [https://bugs.python.org/issue30441]: Fix bug when modifying os.environ while iterating over it

	bpo-30532 [https://bugs.python.org/issue30532]: Fix email header value parser dropping folding white space in
certain cases.

	bpo-30879 [https://bugs.python.org/issue30879]: os.listdir() and os.scandir() now emit bytes names when called
with bytes-like argument.

	bpo-30746 [https://bugs.python.org/issue30746]: Prohibited the '=' character in environment variable names in
os.putenv() and os.spawn*().

	bpo-29755 [https://bugs.python.org/issue29755]: Fixed the lgettext() family of functions in the gettext module.
They now always return bytes.

文档

	bpo-31294 [https://bugs.python.org/issue31294]: Fix incomplete code snippet in the ZeroMQSocketListener and
ZeroMQSocketHandler examples and adapt them to Python 3.

	bpo-21649 [https://bugs.python.org/issue21649]: Add RFC 7525 and Mozilla server side TLS links to SSL
documentation.

	bpo-30803 [https://bugs.python.org/issue30803]: Clarify doc on truth value testing. Original patch by Peter
Thomassen.

测试

	bpo-31320 [https://bugs.python.org/issue31320]: Silence traceback in test_ssl

	bpo-25674 [https://bugs.python.org/issue25674]: Remove sha256.tbs-internet.com ssl test

	bpo-30715 [https://bugs.python.org/issue30715]: Address ALPN callback changes for OpenSSL 1.1.0f. The latest
version behaves like OpenSSL 1.0.2 and no longer aborts handshake.

	bpo-30822 [https://bugs.python.org/issue30822]: regrtest: Exclude tzdata from regrtest --all. When running the
test suite using --use=all / -u all, exclude tzdata since it makes
test_datetime too slow (15-20 min on some buildbots) which then times out
on some buildbots. Fix also regrtest command line parser to allow passing
-u extralargefile to run test_zipfile64.

构建

	bpo-30854 [https://bugs.python.org/issue30854]: Fix compile error when compiling --without-threads. Patch by
Masayuki Yamamoto.

Windows

	bpo-30389 [https://bugs.python.org/issue30389]: Adds detection of Visual Studio 2017 to distutils on Windows.

	bpo-31340 [https://bugs.python.org/issue31340]: Change to building with MSVC v141 (included with Visual Studio
2017)

	bpo-30581 [https://bugs.python.org/issue30581]: os.cpu_count() now returns the correct number of processors on
Windows when the number of logical processors is greater than 64.

	bpo-30731 [https://bugs.python.org/issue30731]: Add a missing xmlns to python.manifest so that it matches the
schema.

IDLE

	bpo-31493 [https://bugs.python.org/issue31493]: IDLE code context -- fix code update and font update timers.

Canceling timers prevents a warning message when test_idle completes.

	bpo-31488 [https://bugs.python.org/issue31488]: IDLE - Update non-key options in former extension classes. When
applying configdialog changes, call .reload for each feature class. Change
ParenMatch so updated options affect existing instances attached to
existing editor windows.

	bpo-31477 [https://bugs.python.org/issue31477]: IDLE - Improve rstrip entry in doc. Strip trailing whitespace
strips more than blank spaces. Multiline string literals are not skipped.

	bpo-31480 [https://bugs.python.org/issue31480]: IDLE - make tests pass with zzdummy extension disabled by
default.

	bpo-31421 [https://bugs.python.org/issue31421]: Document how IDLE runs tkinter programs. IDLE calls tcl/tk
update in the background in order to make live

interaction and experimentation with tkinter applications much easier.

	bpo-31414 [https://bugs.python.org/issue31414]: IDLE -- fix tk entry box tests by deleting first. Adding to an
int entry is not the same as deleting and inserting because int('') will
fail.

	bpo-31051 [https://bugs.python.org/issue31051]: Rearrange IDLE configdialog GenPage into Window, Editor, and
Help sections.

	bpo-30617 [https://bugs.python.org/issue30617]: IDLE - Add docstrings and tests for outwin subclass of editor.

Move some data and functions from the class to module level. Patch by
Cheryl Sabella.

	bpo-31287 [https://bugs.python.org/issue31287]: IDLE - Do not modify tkinter.message in test_configdialog.

	bpo-27099 [https://bugs.python.org/issue27099]: Convert IDLE's built-in 'extensions' to regular features.

About 10 IDLE features were implemented as supposedly optional extensions.
Their different behavior could be confusing or worse for users and not
good for maintenance. Hence the conversion.

The main difference for users is that user configurable key bindings for
builtin features are now handled uniformly. Now, editing a binding in a
keyset only affects its value in the keyset. All bindings are defined
together in the system-specific default keysets in config-extensions.def.
All custom keysets are saved as a whole in config-extension.cfg. All take
effect as soon as one clicks Apply or Ok.

The affected events are '<<force-open-completions>>', '<<expand-word>>',
'<<force-open-calltip>>', '<<flash-paren>>', '<<format-paragraph>>',
'<<run-module>>', '<<check-module>>', and '<<zoom-height>>'. Any (global)
customizations made before 3.6.3 will not affect their keyset-specific
customization after 3.6.3. and vice versa. Initial patch by Charles
Wohlganger.

	bpo-31206 [https://bugs.python.org/issue31206]: IDLE: Factor HighPage(Frame) class from ConfigDialog. Patch by
Cheryl Sabella.

	bpo-31001 [https://bugs.python.org/issue31001]: Add tests for configdialog highlight tab. Patch by Cheryl
Sabella.

	bpo-31205 [https://bugs.python.org/issue31205]: IDLE: Factor KeysPage(Frame) class from ConfigDialog. The
slightly modified tests continue to pass. Patch by Cheryl Sabella.

	bpo-31130 [https://bugs.python.org/issue31130]: IDLE -- stop leaks in test_configdialog. Initial patch by
Victor Stinner.

	bpo-31002 [https://bugs.python.org/issue31002]: Add tests for configdialog keys tab. Patch by Cheryl Sabella.

	bpo-19903 [https://bugs.python.org/issue19903]: IDLE: Calltips use inspect.signature instead of
inspect.getfullargspec. This improves calltips for builtins converted to
use Argument Clinic. Patch by Louie Lu.

	bpo-31083 [https://bugs.python.org/issue31083]: IDLE - Add an outline of a TabPage class in configdialog.
Update existing classes to match outline. Initial patch by Cheryl Sabella.

	bpo-31050 [https://bugs.python.org/issue31050]: Factor GenPage(Frame) class from ConfigDialog. The slightly
modified tests continue to pass. Patch by Cheryl Sabella.

	bpo-31004 [https://bugs.python.org/issue31004]: IDLE - Factor FontPage(Frame) class from ConfigDialog.

Slightly modified tests continue to pass. Fix General tests. Patch mostly
by Cheryl Sabella.

	bpo-30781 [https://bugs.python.org/issue30781]: IDLE - Use ttk widgets in ConfigDialog. Patches by Terry Jan
Reedy and Cheryl Sabella.

	bpo-31060 [https://bugs.python.org/issue31060]: IDLE - Finish rearranging methods of ConfigDialog Grouping
methods pertaining to each tab and the buttons will aid writing tests and
improving the tabs and will enable splitting the groups into classes.

	bpo-30853 [https://bugs.python.org/issue30853]: IDLE -- Factor a VarTrace class out of ConfigDialog.

Instance tracers manages pairs consisting of a tk variable and a callback
function. When tracing is turned on, setting the variable calls the
function. Test coverage for the new class is 100%.

	bpo-31003 [https://bugs.python.org/issue31003]: IDLE: Add more tests for General tab.

	bpo-30993 [https://bugs.python.org/issue30993]: IDLE - Improve configdialog font page and tests.

In configdialog: Document causal pathways in create_font_tab docstring.
Simplify some attribute names. Move set_samples calls to var_changed_font
(idea from Cheryl Sabella). Move related functions to positions after the
create widgets function.

In test_configdialog: Fix test_font_set so not order dependent. Fix
renamed test_indent_scale so it tests the widget. Adjust tests for
movement of set_samples call. Add tests for load functions. Put all font
tests in one class and tab indent tests in another. Except for two lines,
these tests completely cover the related functions.

	bpo-30981 [https://bugs.python.org/issue30981]: IDLE -- Add more configdialog font page tests.

	bpo-28523 [https://bugs.python.org/issue28523]: IDLE: replace 'colour' with 'color' in configdialog.

	bpo-30917 [https://bugs.python.org/issue30917]: Add tests for idlelib.config.IdleConf. Increase coverage from
46% to 96%. Patch by Louie Lu.

	bpo-30934 [https://bugs.python.org/issue30934]: Document coverage details for idlelib tests.

	Add section to idlelib/idle-test/README.txt.

	Include check that branches are taken both ways.

	Exclude IDLE-specific code that does not run during unit tests.

	bpo-30913 [https://bugs.python.org/issue30913]: IDLE: Document ConfigDialog tk Vars, methods, and widgets in
docstrings This will facilitate improving the dialog and splitting up the
class. Original patch by Cheryl Sabella.

	bpo-30899 [https://bugs.python.org/issue30899]: IDLE: Add tests for ConfigParser subclasses in config. Patch by
Louie Lu.

	bpo-30881 [https://bugs.python.org/issue30881]: IDLE: Add docstrings to browser.py. Patch by Cheryl Sabella.

	bpo-30851 [https://bugs.python.org/issue30851]: IDLE: Remove unused variables in configdialog. One is a
duplicate, one is set but cannot be altered by users. Patch by Cheryl
Sabella.

	bpo-30870 [https://bugs.python.org/issue30870]: IDLE: In Settings dialog, select font with Up, Down keys as
well as mouse. Initial patch by Louie Lu.

	bpo-8231 [https://bugs.python.org/issue8231]: IDLE: call config.IdleConf.GetUserCfgDir only once.

	bpo-30779 [https://bugs.python.org/issue30779]: IDLE: Factor ConfigChanges class from configdialog, put in
config; test. * In config, put dump test code in a function; run it and
unittest in 'if __name__ == '__main__'. * Add class config.ConfigChanges
based on changes_class_v4.py on bpo issue. * Add class
test_config.ChangesTest, partly using configdialog_tests_v1.py. * Revise
configdialog to use ConfigChanges; see tracker msg297804. * Revise
test_configdialog to match configdialog changes. * Remove configdialog
functions unused or moved to ConfigChanges. Cheryl Sabella contributed
parts of the patch.

	bpo-30777 [https://bugs.python.org/issue30777]: IDLE: configdialog - Add docstrings and fix comments. Patch by
Cheryl Sabella.

	bpo-30495 [https://bugs.python.org/issue30495]: IDLE: Improve textview with docstrings, PEP8 names, and more
tests. Patch by Cheryl Sabella.

	bpo-30723 [https://bugs.python.org/issue30723]: IDLE: Make several improvements to parenmatch. Add 'parens'
style to highlight both opener and closer. Make 'default' style, which is
not default, a synonym for 'opener'. Make time-delay work the same with
all styles. Add help for config dialog extensions tab, including help for
parenmatch. Add new tests. Original patch by Charles Wohlganger.

	bpo-30674 [https://bugs.python.org/issue30674]: IDLE: add docstrings to grep module. Patch by Cheryl Sabella

	bpo-21519 [https://bugs.python.org/issue21519]: IDLE's basic custom key entry dialog now detects duplicates
properly. Original patch by Saimadhav Heblikar.

	bpo-29910 [https://bugs.python.org/issue29910]: IDLE no longer deletes a character after commenting out a
region by a key shortcut. Add return 'break' for this and other
potential conflicts between IDLE and default key bindings.

	bpo-30728 [https://bugs.python.org/issue30728]: Review and change idlelib.configdialog names. Lowercase method
and attribute names. Replace 'colour' with 'color', expand overly cryptic
names, delete unneeded underscores. Replace import * with specific
imports. Patches by Cheryl Sabella.

	bpo-6739 [https://bugs.python.org/issue6739]: IDLE: Verify user-entered key sequences by trying to bind them
with tk. Add tests for all 3 validation functions. Original patch by G
Polo. Tests added by Cheryl Sabella.

工具/示例

	bpo-30983 [https://bugs.python.org/issue30983]: gdb integration commands (py-bt, etc.) work on optimized shared
builds now, too. PEP 523 introduced _PyEval_EvalFrameDefault which
inlines PyEval_EvalFrameEx on non-debug shared builds. This broke the
ability to use py-bt, py-up, and a few other Python-specific gdb
integrations. The problem is fixed by only looking for
_PyEval_EvalFrameDefault frames in python-gdb.py. Original patch by Bruno
"Polaco" Penteado.

Python 3.6.2 正式版

发布日期: 2017-07-17

No changes since release candidate 2

Python 3.6.2 rc2

发布日期: 2017-07-07

安全

	bpo-30730 [https://bugs.python.org/issue30730]: Prevent environment variables injection in subprocess on
Windows. Prevent passing other environment variables and command
arguments.

	bpo-30694 [https://bugs.python.org/issue30694]: Upgrade expat copy from 2.2.0 to 2.2.1 to get fixes of multiple
security vulnerabilities including: CVE-2017-9233 (External entity
infinite loop DoS), CVE-2016-9063 (Integer overflow, re-fix),
CVE-2016-0718 (Fix regression bugs from 2.2.0's fix to CVE-2016-0718) and
CVE-2012-0876 (Counter hash flooding with SipHash). Note: the
CVE-2016-5300 (Use os-specific entropy sources like getrandom) doesn't
impact Python, since Python already gets entropy from the OS to set the
expat secret using XML_SetHashSalt().

	bpo-30500 [https://bugs.python.org/issue30500]: Fix urllib.parse.splithost() to correctly parse fragments. For
example, splithost('//127.0.0.1#@evil.com/') now correctly returns the
127.0.0.1 host, instead of treating @evil.com as the host in an
authentication (login@host).

Python 3.6.2 rc1

发布日期: 2017-06-17

核心与内置

	bpo-30682 [https://bugs.python.org/issue30682]: Removed a too-strict assertion that failed for certain
f-strings, such as eval("f'\n'") and eval("f'\r'").

	bpo-30604 [https://bugs.python.org/issue30604]: Move co_extra_freefuncs to not be per-thread to avoid crashes

	bpo-29104 [https://bugs.python.org/issue29104]: Fixed parsing backslashes in f-strings.

	bpo-27945 [https://bugs.python.org/issue27945]: Fixed various segfaults with dict when input collections are
mutated during searching, inserting or comparing. Based on patches by
Duane Griffin and Tim Mitchell.

	bpo-25794 [https://bugs.python.org/issue25794]: Fixed type.__setattr__() and type.__delattr__() for
non-interned attribute names. Based on patch by Eryk Sun.

	bpo-30039 [https://bugs.python.org/issue30039]: If a KeyboardInterrupt happens when the interpreter is in the
middle of resuming a chain of nested 'yield from' or 'await' calls, it's
now correctly delivered to the innermost frame.

	bpo-12414 [https://bugs.python.org/issue12414]: sys.getsizeof() on a code object now returns the sizes which
includes the code struct and sizes of objects which it references. Patch
by Dong-hee Na.

	bpo-29949 [https://bugs.python.org/issue29949]: Fix memory usage regression of set and frozenset object.

	bpo-29935 [https://bugs.python.org/issue29935]: Fixed error messages in the index() method of tuple, list and
deque when pass indices of wrong type.

	bpo-29859 [https://bugs.python.org/issue29859]: Show correct error messages when any of the pthread_* calls in
thread_pthread.h fails.

	bpo-28876 [https://bugs.python.org/issue28876]: bool(range) works even if len(range) raises
OverflowError.

	bpo-29600 [https://bugs.python.org/issue29600]: Fix wrapping coroutine return values in StopIteration.

	bpo-28856 [https://bugs.python.org/issue28856]: Fix an oversight that %b format for bytes should support
objects follow the buffer protocol.

	bpo-29714 [https://bugs.python.org/issue29714]: Fix a regression that bytes format may fail when containing
zero bytes inside.

	bpo-29478 [https://bugs.python.org/issue29478]: If max_line_length=None is specified while using the Compat32
policy, it is no longer ignored. Patch by Mircea Cosbuc.

库

	bpo-30616 [https://bugs.python.org/issue30616]: Functional API of enum allows to create empty enums. Patched by
Dong-hee Na

	bpo-30038 [https://bugs.python.org/issue30038]: Fix race condition between signal delivery and wakeup file
descriptor. Patch by Nathaniel Smith.

	bpo-23894 [https://bugs.python.org/issue23894]: lib2to3 now recognizes rb'...' and f'...' strings.

	bpo-23890 [https://bugs.python.org/issue23890]: unittest.TestCase.assertRaises() now manually breaks a
reference cycle to not keep objects alive longer than expected.

	bpo-30149 [https://bugs.python.org/issue30149]: inspect.signature() now supports callables with
variable-argument parameters wrapped with partialmethod. Patch by Dong-hee
Na.

	bpo-30645 [https://bugs.python.org/issue30645]: Fix path calculation in imp.load_package(), fixing it for cases
when a package is only shipped with bytecodes. Patch by Alexandru
Ardelean.

	bpo-29931 [https://bugs.python.org/issue29931]: Fixed comparison check for ipaddress.ip_interface objects.
Patch by Sanjay Sundaresan.

	bpo-30605 [https://bugs.python.org/issue30605]: re.compile() no longer raises a BytesWarning when compiling a
bytes instance with misplaced inline modifier. Patch by Roy Williams.

安全

	bpo-29591 [https://bugs.python.org/issue29591]: Update expat copy from 2.1.1 to 2.2.0 to get fixes of
CVE-2016-0718 and CVE-2016-4472. See
https://sourceforge.net/p/expat/bugs/537/ for more information.

库

	bpo-24484 [https://bugs.python.org/issue24484]: Avoid race condition in multiprocessing cleanup (#2159)

	bpo-28994 [https://bugs.python.org/issue28994]: The traceback no longer displayed for SystemExit raised in a
callback registered by atexit.

	bpo-30508 [https://bugs.python.org/issue30508]: Don't log exceptions if Task/Future "cancel()" method was
called.

	bpo-28556 [https://bugs.python.org/issue28556]: Updates to typing module: Add generic AsyncContextManager, add
support for ContextManager on all versions. Original PRs by Jelle Zijlstra
and Ivan Levkivskyi

	bpo-29870 [https://bugs.python.org/issue29870]: Fix ssl sockets leaks when connection is aborted in asyncio/ssl
implementation. Patch by Michaël Sghaïer.

	bpo-29743 [https://bugs.python.org/issue29743]: Closing transport during handshake process leaks open socket.
Patch by Nikolay Kim

	bpo-27585 [https://bugs.python.org/issue27585]: Fix waiter cancellation in asyncio.Lock. Patch by Mathieu
Sornay.

	bpo-30418 [https://bugs.python.org/issue30418]: On Windows, subprocess.Popen.communicate() now also ignore
EINVAL on stdin.write() if the child process is still running but closed
the pipe.

	bpo-29822 [https://bugs.python.org/issue29822]: inspect.isabstract() now works during __init_subclass__. Patch
by Nate Soares.

	bpo-29581 [https://bugs.python.org/issue29581]: ABCMeta.__new__ now accepts **kwargs, allowing abstract
base classes to use keyword parameters in __init_subclass__. Patch by Nate
Soares.

	bpo-30557 [https://bugs.python.org/issue30557]: faulthandler now correctly filters and displays exception codes
on Windows

	bpo-30378 [https://bugs.python.org/issue30378]: Fix the problem that logging.handlers.SysLogHandler cannot
handle IPv6 addresses.

	bpo-29960 [https://bugs.python.org/issue29960]: Preserve generator state when _random.Random.setstate() raises
an exception. Patch by Bryan Olson.

	bpo-30414 [https://bugs.python.org/issue30414]: multiprocessing.Queue._feed background running thread do not
break from main loop on exception.

	bpo-30003 [https://bugs.python.org/issue30003]: Fix handling escape characters in HZ codec. Based on patch by
Ma Lin.

	bpo-30301 [https://bugs.python.org/issue30301]: Fix AttributeError when using SimpleQueue.empty() under spawn
and forkserver start methods.

	bpo-30329 [https://bugs.python.org/issue30329]: imaplib and poplib now catch the Windows socket WSAEINVAL error
(code 10022) on shutdown(SHUT_RDWR): An invalid operation was attempted.
This error occurs sometimes on SSL connections.

	bpo-30375 [https://bugs.python.org/issue30375]: Warnings emitted when compile a regular expression now always
point to the line in the user code. Previously they could point into
inners of the re module if emitted from inside of groups or conditionals.

	bpo-30048 [https://bugs.python.org/issue30048]: Fixed Task.cancel() can be ignored when the task is running
coroutine and the coroutine returned without any more await.

	bpo-30266 [https://bugs.python.org/issue30266]: contextlib.AbstractContextManager now supports
anti-registration by setting __enter__ = None or __exit__ = None,
following the pattern introduced in bpo-25958 [https://bugs.python.org/issue25958]. Patch by Jelle Zijlstra.

	bpo-30298 [https://bugs.python.org/issue30298]: Weaken the condition of deprecation warnings for inline
modifiers. Now allowed several subsequential inline modifiers at the start
of the pattern (e.g. '(?i)(?s)...'). In verbose mode whitespaces and
comments now are allowed before and between inline modifiers (e.g. '(?x)
(?i) (?s)...').

	bpo-29990 [https://bugs.python.org/issue29990]: Fix range checking in GB18030 decoder. Original patch by Ma
Lin.

	bpo-26293 [https://bugs.python.org/issue26293]: Change resulted because of zipfile breakage. (See also:
bpo-29094 [https://bugs.python.org/issue29094])

	bpo-30243 [https://bugs.python.org/issue30243]: Removed the __init__ methods of _json's scanner and encoder.
Misusing them could cause memory leaks or crashes. Now scanner and
encoder objects are completely initialized in the __new__ methods.

	bpo-30185 [https://bugs.python.org/issue30185]: Avoid KeyboardInterrupt tracebacks in forkserver helper process
when Ctrl-C is received.

	bpo-28556 [https://bugs.python.org/issue28556]: Various updates to typing module: add typing.NoReturn type, use
WrapperDescriptorType, minor bug-fixes. Original PRs by Jim
Fasarakis-Hilliard and Ivan Levkivskyi.

	bpo-30205 [https://bugs.python.org/issue30205]: Fix getsockname() for unbound AF_UNIX sockets on Linux.

	bpo-30070 [https://bugs.python.org/issue30070]: Fixed leaks and crashes in errors handling in the parser
module.

	bpo-30061 [https://bugs.python.org/issue30061]: Fixed crashes in IOBase methods __next__() and readlines() when
readline() or __next__() respectively return non-sizeable object. Fixed
possible other errors caused by not checking results of PyObject_Size(),
PySequence_Size(), or PyMapping_Size().

	bpo-30017 [https://bugs.python.org/issue30017]: Allowed calling the close() method of the zip entry writer
object multiple times. Writing to a closed writer now always produces a
ValueError.

	bpo-30068 [https://bugs.python.org/issue30068]: _io._IOBase.readlines will check if it's closed first when hint
is present.

	bpo-29694 [https://bugs.python.org/issue29694]: Fixed race condition in pathlib mkdir with flags parents=True.
Patch by Armin Rigo.

	bpo-29692 [https://bugs.python.org/issue29692]: Fixed arbitrary unchaining of RuntimeError exceptions in
contextlib.contextmanager. Patch by Siddharth Velankar.

	bpo-29998 [https://bugs.python.org/issue29998]: Pickling and copying ImportError now preserves name and path
attributes.

	bpo-29953 [https://bugs.python.org/issue29953]: Fixed memory leaks in the replace() method of datetime and time
objects when pass out of bound fold argument.

	bpo-29942 [https://bugs.python.org/issue29942]: Fix a crash in itertools.chain.from_iterable when encountering
long runs of empty iterables.

	bpo-27863 [https://bugs.python.org/issue27863]: Fixed multiple crashes in ElementTree caused by race conditions
and wrong types.

	bpo-28699 [https://bugs.python.org/issue28699]: Fixed a bug in pools in multiprocessing.pool that raising an
exception at the very first of an iterable may swallow the exception or
make the program hang. Patch by Davin Potts and Xiang Zhang.

	bpo-25803 [https://bugs.python.org/issue25803]: Avoid incorrect errors raised by Path.mkdir(exist_ok=True) when
the OS gives priority to errors such as EACCES over EEXIST.

	bpo-29861 [https://bugs.python.org/issue29861]: Release references to tasks, their arguments and their results
as soon as they are finished in multiprocessing.Pool.

	bpo-29884 [https://bugs.python.org/issue29884]: faulthandler: Restore the old sigaltstack during teardown.
Patch by Christophe Zeitouny.

	bpo-25455 [https://bugs.python.org/issue25455]: Fixed crashes in repr of recursive buffered file-like objects.

	bpo-29800 [https://bugs.python.org/issue29800]: Fix crashes in partial.__repr__ if the keys of partial.keywords
are not strings. Patch by Michael Seifert.

	bpo-29742 [https://bugs.python.org/issue29742]: get_extra_info() raises exception if get called on closed ssl
transport. Patch by Nikolay Kim.

	bpo-8256 [https://bugs.python.org/issue8256]: Fixed possible failing or crashing input() if attributes
"encoding" or "errors" of sys.stdin or sys.stdout are not set or are not
strings.

	bpo-28298 [https://bugs.python.org/issue28298]: Fix a bug that prevented array 'Q', 'L' and 'I' from accepting
big intables (objects that have __int__) as elements. Patch by Oren
Milman.

	bpo-28231 [https://bugs.python.org/issue28231]: The zipfile module now accepts path-like objects for external
paths.

	bpo-26915 [https://bugs.python.org/issue26915]: index() and count() methods of collections.abc.Sequence now
check identity before checking equality when do comparisons.

	bpo-29615 [https://bugs.python.org/issue29615]: SimpleXMLRPCDispatcher no longer chains KeyError (or any other
exception) to exception(s) raised in the dispatched methods. Patch by Petr
Motejlek.

	bpo-30177 [https://bugs.python.org/issue30177]: path.resolve(strict=False) no longer cuts the path after the
first element not present in the filesystem. Patch by Antoine Pietri.

IDLE

	bpo-15786 [https://bugs.python.org/issue15786]: Fix several problems with IDLE's autocompletion box. The
following should now work: clicking on selection box items; using the
scrollbar; selecting an item by hitting Return. Hangs on MacOSX should no
longer happen. Patch by Louie Lu.

	bpo-25514 [https://bugs.python.org/issue25514]: Add doc subsubsection about IDLE failure to start. Popup
no-connection message directs users to this section.

	bpo-30642 [https://bugs.python.org/issue30642]: Fix reference leaks in IDLE tests. Patches by Louie Lu and
Terry Jan Reedy.

	bpo-30495 [https://bugs.python.org/issue30495]: Add docstrings for textview.py and use PEP8 names. Patches by
Cheryl Sabella and Terry Jan Reedy.

	bpo-30290 [https://bugs.python.org/issue30290]: Help-about: use pep8 names and add tests. Increase coverage to
100%. Patches by Louie Lu, Cheryl Sabella, and Terry Jan Reedy.

	bpo-30303 [https://bugs.python.org/issue30303]: Add _utest option to textview; add new tests. Increase coverage
to 100%. Patches by Louie Lu and Terry Jan Reedy.

C API

	bpo-27867 [https://bugs.python.org/issue27867]: Function PySlice_GetIndicesEx() no longer replaced with a macro
if Py_LIMITED_API is not set.

构建

	bpo-29941 [https://bugs.python.org/issue29941]: Add --with-assertions configure flag to explicitly enable C
assert() checks. Defaults to off. --with-pydebug implies
--with-assertions.

	bpo-28787 [https://bugs.python.org/issue28787]: Fix out-of-tree builds of Python when configured with
--with--dtrace.

	bpo-29243 [https://bugs.python.org/issue29243]: Prevent unnecessary rebuilding of Python during make test,
make install and some other make targets when configured with
--enable-optimizations.

	bpo-23404 [https://bugs.python.org/issue23404]: Don't regenerate generated files based on file modification
time anymore: the action is now explicit. Replace make touch with
make regen-all.

	bpo-29643 [https://bugs.python.org/issue29643]: Fix --enable-optimization didn't work.

文档

	bpo-30176 [https://bugs.python.org/issue30176]: Add missing attribute related constants in curses
documentation.

	bpo-30052 [https://bugs.python.org/issue30052]: the link targets for bytes() and bytearray() are
now their respective type definitions, rather than the corresponding
builtin function entries. Use bytes and
bytearray to reference the latter.

In order to ensure this and future cross-reference updates are applied
automatically, the daily documentation builds now disable the default
output caching features in Sphinx.

	bpo-26985 [https://bugs.python.org/issue26985]: Add missing info of code object in inspect documentation.

工具/示例

	bpo-29367 [https://bugs.python.org/issue29367]: python-gdb.py now supports also method-wrapper
(wrapperobject) objects.

测试

	bpo-30357 [https://bugs.python.org/issue30357]: test_thread: setUp() now uses support.threading_setup() and
support.threading_cleanup() to wait until threads complete to avoid random
side effects on following tests. Initial patch written by Grzegorz
Grzywacz.

	bpo-30197 [https://bugs.python.org/issue30197]: Enhanced functions swap_attr() and swap_item() in the
test.support module. They now work when delete replaced attribute or item
inside the with statement. The old value of the attribute or item (or
None if it doesn't exist) now will be assigned to the target of the "as"
clause, if there is one.

Windows

	bpo-30687 [https://bugs.python.org/issue30687]: Locate msbuild.exe on Windows when building rather than
vcvarsall.bat

	bpo-30450 [https://bugs.python.org/issue30450]: The build process on Windows no longer depends on Subversion,
instead pulling external code from GitHub via a Python script. If Python
3.6 is not found on the system (via py -3.6), NuGet is used to
download a copy of 32-bit Python.

Python 3.6.1 正式版

发布日期: 2017-03-21

核心与内置

	bpo-29723 [https://bugs.python.org/issue29723]: The sys.path[0] initialization change for bpo-29139 [https://bugs.python.org/issue29139] caused
a regression by revealing an inconsistency in how sys.path is initialized
when executing __main__ from a zipfile, directory, or other import
location. The interpreter now consistently avoids ever adding the import
location's parent directory to sys.path, and ensures no other
sys.path entries are inadvertently modified when inserting the import
location named on the command line.

构建

	bpo-27593 [https://bugs.python.org/issue27593]: fix format of git information used in sys.version

	Fix incompatible comment in python.h

Python 3.6.1 rc1

发布日期: 2017-03-04

核心与内置

	bpo-28893 [https://bugs.python.org/issue28893]: Set correct __cause__ for errors about invalid awaitables
returned from __aiter__ and __anext__.

	bpo-29683 [https://bugs.python.org/issue29683]: Fixes to memory allocation in _PyCode_SetExtra. Patch by Brian
Coleman.

	bpo-29684 [https://bugs.python.org/issue29684]: Fix minor regression of PyEval_CallObjectWithKeywords. It
should raise TypeError when kwargs is not a dict. But it might cause segv
when args=NULL and kwargs is not a dict.

	bpo-28598 [https://bugs.python.org/issue28598]: Support __rmod__ for subclasses of str being called before
str.__mod__. Patch by Martijn Pieters.

	bpo-29607 [https://bugs.python.org/issue29607]: Fix stack_effect computation for CALL_FUNCTION_EX. Patch by
Matthieu Dartiailh.

	bpo-29602 [https://bugs.python.org/issue29602]: Fix incorrect handling of signed zeros in complex constructor
for complex subclasses and for inputs having a __complex__ method. Patch
by Serhiy Storchaka.

	bpo-29347 [https://bugs.python.org/issue29347]: Fixed possibly dereferencing undefined pointers when creating
weakref objects.

	bpo-29438 [https://bugs.python.org/issue29438]: Fixed use-after-free problem in key sharing dict.

	bpo-29319 [https://bugs.python.org/issue29319]: Prevent RunMainFromImporter overwriting sys.path[0].

	bpo-29337 [https://bugs.python.org/issue29337]: Fixed possible BytesWarning when compare the code objects.
Warnings could be emitted at compile time.

	bpo-29327 [https://bugs.python.org/issue29327]: Fixed a crash when pass the iterable keyword argument to
sorted().

	bpo-29034 [https://bugs.python.org/issue29034]: Fix memory leak and use-after-free in os module
(path_converter).

	bpo-29159 [https://bugs.python.org/issue29159]: Fix regression in bytes(x) when x.__index__() raises Exception.

	bpo-28932 [https://bugs.python.org/issue28932]: Do not include <sys/random.h> if it does not exist.

	bpo-25677 [https://bugs.python.org/issue25677]: Correct the positioning of the syntax error caret for indented
blocks. Based on patch by Michael Layzell.

	bpo-29000 [https://bugs.python.org/issue29000]: Fixed bytes formatting of octals with zero padding in alternate
form.

	bpo-26919 [https://bugs.python.org/issue26919]: On Android, operating system data is now always encoded/decoded
to/from UTF-8, instead of the locale encoding to avoid inconsistencies
with os.fsencode() and os.fsdecode() which are already using UTF-8.

	bpo-28991 [https://bugs.python.org/issue28991]: functools.lru_cache() was susceptible to an obscure reentrancy
bug triggerable by a monkey-patched len() function.

	bpo-28739 [https://bugs.python.org/issue28739]: f-string expressions are no longer accepted as docstrings and
by ast.literal_eval() even if they do not include expressions.

	bpo-28512 [https://bugs.python.org/issue28512]: Fixed setting the offset attribute of SyntaxError by
PyErr_SyntaxLocationEx() and PyErr_SyntaxLocationObject().

	bpo-28918 [https://bugs.python.org/issue28918]: Fix the cross compilation of xxlimited when Python has been
built with Py_DEBUG defined.

	bpo-28731 [https://bugs.python.org/issue28731]: Optimize _PyDict_NewPresized() to create correct size dict.
Improve speed of dict literal with constant keys up to 30%.

库

	bpo-29169 [https://bugs.python.org/issue29169]: Update zlib to 1.2.11.

	bpo-29623 [https://bugs.python.org/issue29623]: Allow use of path-like object as a single argument in
ConfigParser.read(). Patch by David Ellis.

	bpo-28963 [https://bugs.python.org/issue28963]: Fix out of bound iteration in
asyncio.Future.remove_done_callback implemented in C.

	bpo-29704 [https://bugs.python.org/issue29704]: asyncio.subprocess.SubprocessStreamProtocol no longer closes
before all pipes are closed.

	bpo-29271 [https://bugs.python.org/issue29271]: Fix Task.current_task and Task.all_tasks implemented in C to
accept None argument as their pure Python implementation.

	bpo-29703 [https://bugs.python.org/issue29703]: Fix asyncio to support instantiation of new event loops in
child processes.

	bpo-29376 [https://bugs.python.org/issue29376]: Fix assertion error in threading._DummyThread.is_alive().

	bpo-28624 [https://bugs.python.org/issue28624]: Add a test that checks that cwd parameter of Popen() accepts
PathLike objects. Patch by Sayan Chowdhury.

	bpo-28518 [https://bugs.python.org/issue28518]: Start a transaction implicitly before a DML statement. Patch by
Aviv Palivoda.

	bpo-29532 [https://bugs.python.org/issue29532]: Altering a kwarg dictionary passed to functools.partial() no
longer affects a partial object after creation.

	bpo-29110 [https://bugs.python.org/issue29110]: Fix file object leak in aifc.open() when file is given as a
filesystem path and is not in valid AIFF format. Patch by Anthony Zhang.

	bpo-28556 [https://bugs.python.org/issue28556]: Various updates to typing module: typing.Counter,
typing.ChainMap, improved ABC caching, etc. Original PRs by Jelle
Zijlstra, Ivan Levkivskyi, Manuel Krebber, and Łukasz Langa.

	bpo-29100 [https://bugs.python.org/issue29100]: Fix datetime.fromtimestamp() regression introduced in Python
3.6.0: check minimum and maximum years.

	bpo-29519 [https://bugs.python.org/issue29519]: Fix weakref spewing exceptions during interpreter shutdown when
used with a rare combination of multiprocessing and custom codecs.

	bpo-29416 [https://bugs.python.org/issue29416]: Prevent infinite loop in pathlib.Path.mkdir

	bpo-29444 [https://bugs.python.org/issue29444]: Fixed out-of-bounds buffer access in the group() method of the
match object. Based on patch by WGH.

	bpo-29335 [https://bugs.python.org/issue29335]: Fix subprocess.Popen.wait() when the child process has exited
to a stopped instead of terminated state (ex: when under ptrace).

	bpo-29290 [https://bugs.python.org/issue29290]: Fix a regression in argparse that help messages would wrap at
non-breaking spaces.

	bpo-28735 [https://bugs.python.org/issue28735]: Fixed the comparison of mock.MagickMock with mock.ANY.

	bpo-29316 [https://bugs.python.org/issue29316]: Restore the provisional status of typing module, add
corresponding note to documentation. Patch by Ivan L.

	bpo-29219 [https://bugs.python.org/issue29219]: Fixed infinite recursion in the repr of uninitialized
ctypes.CDLL instances.

	bpo-29011 [https://bugs.python.org/issue29011]: Fix an important omission by adding Deque to the typing module.

	bpo-28969 [https://bugs.python.org/issue28969]: Fixed race condition in C implementation of
functools.lru_cache. KeyError could be raised when cached function with
full cache was simultaneously called from differen threads with the same
uncached arguments.

	bpo-29142 [https://bugs.python.org/issue29142]: In urllib.request, suffixes in no_proxy environment variable
with leading dots could match related hostnames again (e.g. .b.c matches
a.b.c). Patch by Milan Oberkirch.

	bpo-28961 [https://bugs.python.org/issue28961]: Fix unittest.mock._Call helper: don't ignore the name parameter
anymore. Patch written by Jiajun Huang.

	bpo-29203 [https://bugs.python.org/issue29203]: functools.lru_cache() now respects PEP 468 and preserves the
order of keyword arguments. f(a=1, b=2) is now cached separately from
f(b=2, a=1) since both calls could potentially give different results.

	bpo-15812 [https://bugs.python.org/issue15812]: inspect.getframeinfo() now correctly shows the first line of a
context. Patch by Sam Breese.

	bpo-29094 [https://bugs.python.org/issue29094]: Offsets in a ZIP file created with extern file object and modes
"w" and "x" now are relative to the start of the file.

	bpo-29085 [https://bugs.python.org/issue29085]: Allow random.Random.seed() to use high quality OS randomness
rather than the pid and time.

	bpo-29061 [https://bugs.python.org/issue29061]: Fixed bug in secrets.randbelow() which would hang when given a
negative input. Patch by Brendan Donegan.

	bpo-29079 [https://bugs.python.org/issue29079]: Prevent infinite loop in pathlib.resolve() on Windows

	bpo-13051 [https://bugs.python.org/issue13051]: Fixed recursion errors in large or resized
curses.textpad.Textbox. Based on patch by Tycho Andersen.

	bpo-29119 [https://bugs.python.org/issue29119]: Fix weakrefs in the pure python version of
collections.OrderedDict move_to_end() method. Contributed by Andra
Bogildea.

	bpo-9770 [https://bugs.python.org/issue9770]: curses.ascii predicates now work correctly with negative
integers.

	bpo-28427 [https://bugs.python.org/issue28427]: old keys should not remove new values from WeakValueDictionary
when collecting from another thread.

	bpo-28923 [https://bugs.python.org/issue28923]: Remove editor artifacts from Tix.py.

	bpo-29055 [https://bugs.python.org/issue29055]: Neaten-up empty population error on random.choice() by
suppressing the upstream exception.

	bpo-28871 [https://bugs.python.org/issue28871]: Fixed a crash when deallocate deep ElementTree.

	bpo-19542 [https://bugs.python.org/issue19542]: Fix bugs in WeakValueDictionary.setdefault() and
WeakValueDictionary.pop() when a GC collection happens in another thread.

	bpo-20191 [https://bugs.python.org/issue20191]: Fixed a crash in resource.prlimit() when passing a sequence
that doesn't own its elements as limits.

	bpo-28779 [https://bugs.python.org/issue28779]: multiprocessing.set_forkserver_preload() would crash the
forkserver process if a preloaded module instantiated some multiprocessing
objects such as locks.

	bpo-28847 [https://bugs.python.org/issue28847]: dbm.dumb now supports reading read-only files and no longer
writes the index file when it is not changed.

	bpo-26937 [https://bugs.python.org/issue26937]: The chown() method of the tarfile.TarFile class does not fail
now when the grp module cannot be imported, as for example on Android
platforms.

IDLE

	bpo-29071 [https://bugs.python.org/issue29071]: IDLE colors f-string prefixes (but not invalid ur prefixes).

	bpo-28572 [https://bugs.python.org/issue28572]: Add 10% to coverage of IDLE's test_configdialog. Update and
augment description of the configuration system.

Windows

	bpo-29579 [https://bugs.python.org/issue29579]: Removes readme.txt from the installer

	bpo-29326 [https://bugs.python.org/issue29326]: Ignores blank lines in ._pth files (Patch by Alexey Izbyshev)

	bpo-28164 [https://bugs.python.org/issue28164]: Correctly handle special console filenames (patch by Eryk Sun)

	bpo-29409 [https://bugs.python.org/issue29409]: Implement PEP 529 for io.FileIO (Patch by Eryk Sun)

	bpo-29392 [https://bugs.python.org/issue29392]: Prevent crash when passing invalid arguments into msvcrt
module.

	bpo-25778 [https://bugs.python.org/issue25778]: winreg does not truncate string correctly (Patch by Eryk Sun)

	bpo-28896 [https://bugs.python.org/issue28896]: Deprecate WindowsRegistryFinder and disable it by default.

C API

	bpo-27867 [https://bugs.python.org/issue27867]: Function PySlice_GetIndicesEx() is replaced with a macro if
Py_LIMITED_API is not set or set to the value between 0x03050400 and
0x03060000 (not including) or 0x03060100 or higher.

	bpo-29083 [https://bugs.python.org/issue29083]: Fixed the declaration of some public API functions.
PyArg_VaParse() and PyArg_VaParseTupleAndKeywords() were not available in
limited API. PyArg_ValidateKeywordArguments(), PyArg_UnpackTuple() and
Py_BuildValue() were not available in limited API of version < 3.3 when
PY_SSIZE_T_CLEAN is defined.

	bpo-29058 [https://bugs.python.org/issue29058]: All stable API extensions added after Python 3.2 are now
available only when Py_LIMITED_API is set to the PY_VERSION_HEX value of
the minimum Python version supporting this API.

文档

	bpo-28929 [https://bugs.python.org/issue28929]: Link the documentation to its source file on GitHub.

	bpo-25008 [https://bugs.python.org/issue25008]: Document smtpd.py as effectively deprecated and add a pointer
to aiosmtpd, a third-party asyncio-based replacement.

	bpo-26355 [https://bugs.python.org/issue26355]: Add canonical header link on each page to corresponding major
version of the documentation. Patch by Matthias Bussonnier.

	bpo-29349 [https://bugs.python.org/issue29349]: Fix Python 2 syntax in code for building the documentation.

测试

	bpo-28087 [https://bugs.python.org/issue28087]: Skip test_asyncore and test_eintr poll failures on macOS. Skip
some tests of select.poll when running on macOS due to unresolved issues
with the underlying system poll function on some macOS versions.

	bpo-29571 [https://bugs.python.org/issue29571]: to match the behaviour of the re.LOCALE flag,
test_re.test_locale_flag now uses locale.getpreferredencoding(False)
to determine the candidate encoding for the test regex (allowing it to
correctly skip the test when the default locale encoding is a multi-byte
encoding)

	bpo-28950 [https://bugs.python.org/issue28950]: Disallow -j0 to be combined with -T/-l in regrtest command line
arguments.

	bpo-28683 [https://bugs.python.org/issue28683]: Fix the tests that bind() a unix socket and raise
PermissionError on Android for a non-root user.

	bpo-26939 [https://bugs.python.org/issue26939]: Add the support.setswitchinterval() function to fix
test_functools hanging on the Android armv7 qemu emulator.

构建

	bpo-27593 [https://bugs.python.org/issue27593]: sys.version and the platform module python_build(),
python_branch(), and python_revision() functions now use git information
rather than hg when building from a repo.

	bpo-29572 [https://bugs.python.org/issue29572]: 更新Windows 构建和OS X安装程序以使用OpenSSL 1.0.2k。

	bpo-26851 [https://bugs.python.org/issue26851]: Set Android compilation and link flags.

	bpo-28768 [https://bugs.python.org/issue28768]: Fix implicit declaration of function _setmode. Patch by
Masayuki Yamamoto

	bpo-29080 [https://bugs.python.org/issue29080]: Removes hard dependency on hg.exe from PCBuild/build.bat

	bpo-23903 [https://bugs.python.org/issue23903]: Added missed names to PC/python3.def.

	bpo-28762 [https://bugs.python.org/issue28762]: lockf() is available on Android API level 24, but the F_LOCK
macro is not defined in android-ndk-r13.

	bpo-28538 [https://bugs.python.org/issue28538]: Fix the compilation error that occurs because if_nameindex() is
available on Android API level 24, but the if_nameindex structure is not
defined.

	bpo-20211 [https://bugs.python.org/issue20211]: Do not add the directory for installing C header files and the
directory for installing object code libraries to the cross compilation
search paths. Original patch by Thomas Petazzoni.

	bpo-28849 [https://bugs.python.org/issue28849]: Do not define sys.implementation._multiarch on Android.

Python 3.6.0 正式版

发布日期: 2016-12-23

No changes since release candidate 2

Python 3.6.0 rc2

发布日期: 2016-12-16

核心与内置

	bpo-28147 [https://bugs.python.org/issue28147]: Fix a memory leak in split-table dictionaries: setattr() must
not convert combined table into split table. Patch written by INADA Naoki.

	bpo-28990 [https://bugs.python.org/issue28990]: Fix asyncio SSL hanging if connection is closed before
handshake is completed. (Patch by HoHo-Ho)

工具/示例

	bpo-28770 [https://bugs.python.org/issue28770]: Fix python-gdb.py for fastcalls.

Windows

	bpo-28896 [https://bugs.python.org/issue28896]: Deprecate WindowsRegistryFinder.

构建

	bpo-28898 [https://bugs.python.org/issue28898]: Prevent gdb build errors due to HAVE_LONG_LONG redefinition.

Python 3.6.0 rc1

发布日期: 2016-12-06

核心与内置

	bpo-23722 [https://bugs.python.org/issue23722]: Rather than silently producing a class that doesn't support
zero-argument super() in methods, failing to pass the new
__classcell__ namespace entry up to type.__new__ now results in a
DeprecationWarning and a class that supports zero-argument
super().

	bpo-28797 [https://bugs.python.org/issue28797]: Modifying the class __dict__ inside the __set_name__ method of
a descriptor that is used inside that class no longer prevents calling the
__set_name__ method of other descriptors.

	bpo-28782 [https://bugs.python.org/issue28782]: Fix a bug in the implementation yield from when checking if
the next instruction is YIELD_FROM. Regression introduced by WORDCODE
(bpo-26647 [https://bugs.python.org/issue26647]).

库

	bpo-27030 [https://bugs.python.org/issue27030]: Unknown escapes in re.sub() replacement template are allowed
again. But they still are deprecated and will be disabled in 3.7.

	bpo-28835 [https://bugs.python.org/issue28835]: Fix a regression introduced in warnings.catch_warnings(): call
warnings.showwarning() if it was overriden inside the context manager.

	bpo-27172 [https://bugs.python.org/issue27172]: To assist with upgrades from 2.7, the previously documented
deprecation of inspect.getfullargspec() has been reversed. This
decision may be revisited again after the Python 2.7 branch is no longer
officially supported.

	bpo-26273 [https://bugs.python.org/issue26273]: Add new socket.TCP_CONGESTION (Linux 2.6.13) and
socket.TCP_USER_TIMEOUT (Linux 2.6.37) constants. Patch written by
Omar Sandoval.

	bpo-24142 [https://bugs.python.org/issue24142]: Reading a corrupt config file left configparser in an invalid
state. Original patch by Florian Höch.

	bpo-28843 [https://bugs.python.org/issue28843]: Fix asyncio C Task to handle exceptions __traceback__.

C API

	bpo-28808 [https://bugs.python.org/issue28808]: PyUnicode_CompareWithASCIIString() now never raises exceptions.

文档

	bpo-23722 [https://bugs.python.org/issue23722]: The data model reference and the porting section in the What's
New guide now cover the additional __classcell__ handling needed for
custom metaclasses to fully support PEP 487 and zero-argument super().

工具/示例

	bpo-28023 [https://bugs.python.org/issue28023]: Fix python-gdb.py didn't support new dict implementation.

Python 3.6.0 beta 4

发布日期: 2016-11-21

核心与内置

	bpo-28532 [https://bugs.python.org/issue28532]: Show sys.version when -V option is supplied twice.

	bpo-27100 [https://bugs.python.org/issue27100]: The with-statement now checks for __enter__ before it checks
for __exit__. This gives less confusing error messages when both methods
are missing. Patch by Jonathan Ellington.

	bpo-28746 [https://bugs.python.org/issue28746]: Fix the set_inheritable() file descriptor method on platforms
that do not have the ioctl FIOCLEX and FIONCLEX commands.

	bpo-26920 [https://bugs.python.org/issue26920]: Fix not getting the locale's charset upon initializing the
interpreter, on platforms that do not have langinfo.

	bpo-28648 [https://bugs.python.org/issue28648]: Fixed crash in Py_DecodeLocale() in debug build on Mac OS X
when decode astral characters. Patch by Xiang Zhang.

	bpo-19398 [https://bugs.python.org/issue19398]: Extra slash no longer added to sys.path components in case of
empty compile-time PYTHONPATH components.

	bpo-28665 [https://bugs.python.org/issue28665]: Improve speed of the STORE_DEREF opcode by 40%.

	bpo-28583 [https://bugs.python.org/issue28583]: PyDict_SetDefault didn't combine split table when needed. Patch
by Xiang Zhang.

	bpo-27243 [https://bugs.python.org/issue27243]: Change PendingDeprecationWarning -> DeprecationWarning. As it
was agreed in the issue, __aiter__ returning an awaitable should result in
PendingDeprecationWarning in 3.5 and in DeprecationWarning in 3.6.

	bpo-26182 [https://bugs.python.org/issue26182]: Fix a refleak in code that raises DeprecationWarning.

	bpo-28721 [https://bugs.python.org/issue28721]: Fix asynchronous generators aclose() and athrow() to handle
StopAsyncIteration propagation properly.

库

	bpo-28752 [https://bugs.python.org/issue28752]: Restored the __reduce__() methods of datetime objects.

	bpo-28727 [https://bugs.python.org/issue28727]: Regular expression patterns, _sre.SRE_Pattern objects created
by re.compile(), become comparable (only x==y and x!=y operators). This
change should fix the bpo-18383 [https://bugs.python.org/issue18383]: don't duplicate warning filters when
the warnings module is reloaded (thing usually only done in unit tests).

	bpo-20572 [https://bugs.python.org/issue20572]: The subprocess.Popen.wait method's undocumented endtime
parameter now raises a DeprecationWarning.

	bpo-25659 [https://bugs.python.org/issue25659]: In ctypes, prevent a crash calling the from_buffer() and
from_buffer_copy() methods on abstract classes like Array.

	bpo-19717 [https://bugs.python.org/issue19717]: Makes Path.resolve() succeed on paths that do not exist. Patch
by Vajrasky Kok

	bpo-28563 [https://bugs.python.org/issue28563]: Fixed possible DoS and arbitrary code execution when handle
plural form selections in the gettext module. The expression parser now
supports exact syntax supported by GNU gettext.

	bpo-28387 [https://bugs.python.org/issue28387]: Fixed possible crash in _io.TextIOWrapper deallocator when the
garbage collector is invoked in other thread. Based on patch by Sebastian
Cufre.

	bpo-28600 [https://bugs.python.org/issue28600]: Optimize loop.call_soon.

	bpo-28613 [https://bugs.python.org/issue28613]: Fix get_event_loop() return the current loop if called from
coroutines/callbacks.

	bpo-28634 [https://bugs.python.org/issue28634]: Fix asyncio.isfuture() to support unittest.Mock.

	bpo-26081 [https://bugs.python.org/issue26081]: Fix refleak in _asyncio.Future.__iter__().throw.

	bpo-28639 [https://bugs.python.org/issue28639]: Fix inspect.isawaitable to always return bool Patch by Justin
Mayfield.

	bpo-28652 [https://bugs.python.org/issue28652]: Make loop methods reject socket kinds they do not support.

	bpo-28653 [https://bugs.python.org/issue28653]: Fix a refleak in functools.lru_cache.

	bpo-28703 [https://bugs.python.org/issue28703]: Fix asyncio.iscoroutinefunction to handle Mock objects.

	bpo-28704 [https://bugs.python.org/issue28704]: Fix create_unix_server to support Path-like objects (PEP 519).

	bpo-28720 [https://bugs.python.org/issue28720]: Add collections.abc.AsyncGenerator.

文档

	bpo-28513 [https://bugs.python.org/issue28513]: Documented command-line interface of zipfile.

测试

	bpo-28666 [https://bugs.python.org/issue28666]: Now test.support.rmtree is able to remove unwritable or
unreadable directories.

	bpo-23839 [https://bugs.python.org/issue23839]: Various caches now are cleared before running every test file.

构建

	bpo-10656 [https://bugs.python.org/issue10656]: Fix out-of-tree building on AIX. Patch by Tristan Carel and
Michael Haubenwallner.

	bpo-26359 [https://bugs.python.org/issue26359]: Rename --with-optimiations to --enable-optimizations.

	bpo-28676 [https://bugs.python.org/issue28676]: Prevent missing 'getentropy' declaration warning on macOS.
Patch by Gareth Rees.

Python 3.6.0 beta 3

发布日期: 2016-10-31

核心与内置

	bpo-28128 [https://bugs.python.org/issue28128]: Deprecation warning for invalid str and byte escape sequences
now prints better information about where the error occurs. Patch by
Serhiy Storchaka and Eric Smith.

	bpo-28509 [https://bugs.python.org/issue28509]: dict.update() no longer allocate unnecessary large memory.

	bpo-28426 [https://bugs.python.org/issue28426]: Fixed potential crash in PyUnicode_AsDecodedObject() in debug
build.

	bpo-28517 [https://bugs.python.org/issue28517]: Fixed of-by-one error in the peephole optimizer that caused
keeping unreachable code.

	bpo-28214 [https://bugs.python.org/issue28214]: Improved exception reporting for problematic __set_name__
attributes.

	bpo-23782 [https://bugs.python.org/issue23782]: Fixed possible memory leak in _PyTraceback_Add() and exception
loss in PyTraceBack_Here().

	bpo-28471 [https://bugs.python.org/issue28471]: Fix "Python memory allocator called without holding the GIL"
crash in socket.setblocking.

库

	bpo-27517 [https://bugs.python.org/issue27517]: LZMA compressor and decompressor no longer raise exceptions if
given empty data twice. Patch by Benjamin Fogle.

	bpo-28549 [https://bugs.python.org/issue28549]: Fixed segfault in curses's addch() with ncurses6.

	bpo-28449 [https://bugs.python.org/issue28449]: tarfile.open() with mode "r" or "r:" now tries to open a tar
file with compression before trying to open it without compression.
Otherwise it had 50% chance failed with ignore_zeros=True.

	bpo-23262 [https://bugs.python.org/issue23262]: The webbrowser module now supports Firefox 36+ and derived
browsers. Based on patch by Oleg Broytman.

	bpo-27939 [https://bugs.python.org/issue27939]: Fixed bugs in tkinter.ttk.LabeledScale and tkinter.Scale caused
by representing the scale as float value internally in Tk. tkinter.IntVar
now works if float value is set to underlying Tk variable.

	bpo-18844 [https://bugs.python.org/issue18844]: The various ways of specifying weights for random.choices() now
produce the same result sequences.

	bpo-28255 [https://bugs.python.org/issue28255]: calendar.TextCalendar().prmonth() no longer prints a space at
the start of new line after printing a month's calendar. Patch by Xiang
Zhang.

	bpo-20491 [https://bugs.python.org/issue20491]: The textwrap.TextWrapper class now honors non-breaking spaces.
Based on patch by Kaarle Ritvanen.

	bpo-28353 [https://bugs.python.org/issue28353]: os.fwalk() no longer fails on broken links.

	bpo-28430 [https://bugs.python.org/issue28430]: Fix iterator of C implemented asyncio.Future doesn't accept
non-None value is passed to it.send(val).

	bpo-27025 [https://bugs.python.org/issue27025]: Generated names for Tkinter widgets now start by the "!" prefix
for readability.

	bpo-25464 [https://bugs.python.org/issue25464]: Fixed HList.header_exists() in tkinter.tix module by addin a
workaround to Tix library bug.

	bpo-28488 [https://bugs.python.org/issue28488]: shutil.make_archive() no longer adds entry "./" to ZIP archive.

	bpo-25953 [https://bugs.python.org/issue25953]: re.sub() now raises an error for invalid numerical group
reference in replacement template even if the pattern is not found in the
string. Error message for invalid group reference now includes the group
index and the position of the reference. Based on patch by SilentGhost.

	bpo-18219 [https://bugs.python.org/issue18219]: Optimize csv.DictWriter for large number of columns. Patch by
Mariatta Wijaya.

	bpo-28448 [https://bugs.python.org/issue28448]: Fix C implemented asyncio.Future didn't work on Windows.

	bpo-28480 [https://bugs.python.org/issue28480]: Fix error building socket module when multithreading is
disabled.

	bpo-24452 [https://bugs.python.org/issue24452]: Make webbrowser support Chrome on Mac OS X.

	bpo-20766 [https://bugs.python.org/issue20766]: Fix references leaked by pdb in the handling of SIGINT
handlers.

	bpo-28492 [https://bugs.python.org/issue28492]: Fix how StopIteration exception is raised in _asyncio.Future.

	bpo-28500 [https://bugs.python.org/issue28500]: Fix asyncio to handle async gens GC from another thread.

	bpo-26923 [https://bugs.python.org/issue26923]: Fix asyncio.Gather to refuse being cancelled once all children
are done. Patch by Johannes Ebke.

	bpo-26796 [https://bugs.python.org/issue26796]: Don't configure the number of workers for default threadpool
executor. Initial patch by Hans Lawrenz.

	bpo-28544 [https://bugs.python.org/issue28544]: Implement asyncio.Task in C.

Windows

	bpo-28522 [https://bugs.python.org/issue28522]: Fixes mishandled buffer reallocation in getpathp.c

构建

	bpo-28444 [https://bugs.python.org/issue28444]: Fix missing extensions modules when cross compiling.

	bpo-28208 [https://bugs.python.org/issue28208]: 更新Windows 构建和OS X 安装程序以使用SQLite 3.14.2.

	bpo-28248 [https://bugs.python.org/issue28248]: 更新Windows 构建和OS X安装程序以使用OpenSSL 1.0.2j.

测试

	bpo-26944 [https://bugs.python.org/issue26944]: Fix test_posix for Android where 'id -G' is entirely wrong or
missing the effective gid.

	bpo-28409 [https://bugs.python.org/issue28409]: regrtest: fix the parser of command line arguments.

Python 3.6.0 beta 2

发布日期: 2016-10-10

核心与内置

	bpo-28183 [https://bugs.python.org/issue28183]: Optimize and cleanup dict iteration.

	bpo-26081 [https://bugs.python.org/issue26081]: Added C implementation of asyncio.Future. Original patch by
Yury Selivanov.

	bpo-28379 [https://bugs.python.org/issue28379]: Added sanity checks and tests for PyUnicode_CopyCharacters().
Patch by Xiang Zhang.

	bpo-28376 [https://bugs.python.org/issue28376]: The type of long range iterator is now registered as Iterator.
Patch by Oren Milman.

	bpo-28376 [https://bugs.python.org/issue28376]: Creating instances of range_iterator by calling range_iterator
type now is deprecated. Patch by Oren Milman.

	bpo-28376 [https://bugs.python.org/issue28376]: The constructor of range_iterator now checks that step is not
0. Patch by Oren Milman.

	bpo-26906 [https://bugs.python.org/issue26906]: Resolving special methods of uninitialized type now causes
implicit initialization of the type instead of a fail.

	bpo-18287 [https://bugs.python.org/issue18287]: PyType_Ready() now checks that tp_name is not NULL. Original
patch by Niklas Koep.

	bpo-24098 [https://bugs.python.org/issue24098]: Fixed possible crash when AST is changed in process of
compiling it.

	bpo-28201 [https://bugs.python.org/issue28201]: Dict reduces possibility of 2nd conflict in hash table when
hashes have same lower bits.

	bpo-28350 [https://bugs.python.org/issue28350]: String constants with null character no longer interned.

	bpo-26617 [https://bugs.python.org/issue26617]: Fix crash when GC runs during weakref callbacks.

	bpo-27942 [https://bugs.python.org/issue27942]: String constants now interned recursively in tuples and
frozensets.

	bpo-21578 [https://bugs.python.org/issue21578]: Fixed misleading error message when ImportError called with
invalid keyword args.

	bpo-28203 [https://bugs.python.org/issue28203]: Fix incorrect type in complex(1.0, {2:3}) error message. Patch
by Soumya Sharma.

	bpo-28086 [https://bugs.python.org/issue28086]: Single var-positional argument of tuple subtype was passed
unscathed to the C-defined function. Now it is converted to exact tuple.

	bpo-28214 [https://bugs.python.org/issue28214]: Now __set_name__ is looked up on the class instead of the
instance.

	bpo-27955 [https://bugs.python.org/issue27955]: Fallback on reading /dev/urandom device when the getrandom()
syscall fails with EPERM, for example when blocked by SECCOMP.

	bpo-28192 [https://bugs.python.org/issue28192]: Don't import readline in isolated mode.

	Upgrade internal unicode databases to Unicode version 9.0.0.

	bpo-28131 [https://bugs.python.org/issue28131]: Fix a regression in zipimport's compile_source(). zipimport
should use the same optimization level as the interpreter.

	bpo-28126 [https://bugs.python.org/issue28126]: Replace Py_MEMCPY with memcpy(). Visual Studio can properly
optimize memcpy().

	bpo-28120 [https://bugs.python.org/issue28120]: Fix dict.pop() for splitted dictionary when trying to remove a
"pending key" (Not yet inserted in split-table). Patch by Xiang Zhang.

	bpo-26182 [https://bugs.python.org/issue26182]: Raise DeprecationWarning when async and await keywords are used
as variable/attribute/class/function name.

库

	bpo-27998 [https://bugs.python.org/issue27998]: Fixed bytes path support in os.scandir() on Windows. Patch by
Eryk Sun.

	bpo-28317 [https://bugs.python.org/issue28317]: The disassembler now decodes FORMAT_VALUE argument.

	bpo-26293 [https://bugs.python.org/issue26293]: Fixed writing ZIP files that starts not from the start of the
file. Offsets in ZIP file now are relative to the start of the archive in
conforming to the specification.

	bpo-28380 [https://bugs.python.org/issue28380]: unittest.mock Mock autospec functions now properly support
assert_called, assert_not_called, and assert_called_once.

	bpo-27181 [https://bugs.python.org/issue27181]: remove statistics.geometric_mean and defer until 3.7.

	bpo-28229 [https://bugs.python.org/issue28229]: lzma module now supports pathlib.

	bpo-28321 [https://bugs.python.org/issue28321]: Fixed writing non-BMP characters with binary format in
plistlib.

	bpo-28225 [https://bugs.python.org/issue28225]: bz2 module now supports pathlib. Initial patch by Ethan
Furman.

	bpo-28227 [https://bugs.python.org/issue28227]: gzip now supports pathlib. Patch by Ethan Furman.

	bpo-27358 [https://bugs.python.org/issue27358]: Optimized merging var-keyword arguments and improved error
message when passing a non-mapping as a var-keyword argument.

	bpo-28257 [https://bugs.python.org/issue28257]: Improved error message when passing a non-iterable as a
var-positional argument. Added opcode BUILD_TUPLE_UNPACK_WITH_CALL.

	bpo-28322 [https://bugs.python.org/issue28322]: Fixed possible crashes when unpickle itertools objects from
incorrect pickle data. Based on patch by John Leitch.

	bpo-28228 [https://bugs.python.org/issue28228]: imghdr now supports pathlib.

	bpo-28226 [https://bugs.python.org/issue28226]: compileall now supports pathlib.

	bpo-28314 [https://bugs.python.org/issue28314]: Fix function declaration (C flags) for the getiterator() method
of xml.etree.ElementTree.Element.

	bpo-28148 [https://bugs.python.org/issue28148]: Stop using localtime() and gmtime() in the time module.

Introduced platform independent _PyTime_localtime API that is similar to
POSIX localtime_r, but available on all platforms. Patch by Ed Schouten.

	bpo-28253 [https://bugs.python.org/issue28253]: Fixed calendar functions for extreme months: 0001-01 and
9999-12.

Methods itermonthdays() and itermonthdays2() are reimplemented so that
they don't call itermonthdates() which can cause datetime.date
under/overflow.

	bpo-28275 [https://bugs.python.org/issue28275]: Fixed possible use after free in the decompress() methods of
the LZMADecompressor and BZ2Decompressor classes. Original patch by John
Leitch.

	bpo-27897 [https://bugs.python.org/issue27897]: Fixed possible crash in sqlite3.Connection.create_collation()
if pass invalid string-like object as a name. Patch by Xiang Zhang.

	bpo-18844 [https://bugs.python.org/issue18844]: random.choices() now has k as a keyword-only argument to
improve the readability of common cases and come into line with the
signature used in other languages.

	bpo-18893 [https://bugs.python.org/issue18893]: Fix invalid exception handling in Lib/ctypes/macholib/dyld.py.
Patch by Madison May.

	bpo-27611 [https://bugs.python.org/issue27611]: Fixed support of default root window in the tkinter.tix module.
Added the master parameter in the DisplayStyle constructor.

	bpo-27348 [https://bugs.python.org/issue27348]: In the traceback module, restore the formatting of exception
messages like "Exception: None". This fixes a regression introduced in
3.5a2.

	bpo-25651 [https://bugs.python.org/issue25651]: Allow falsy values to be used for msg parameter of subTest().

	bpo-27778 [https://bugs.python.org/issue27778]: Fix a memory leak in os.getrandom() when the getrandom() is
interrupted by a signal and a signal handler raises a Python exception.

	bpo-28200 [https://bugs.python.org/issue28200]: Fix memory leak on Windows in the os module (fix
path_converter() function).

	bpo-25400 [https://bugs.python.org/issue25400]: RobotFileParser now correctly returns default values for
crawl_delay and request_rate. Initial patch by Peter Wirtz.

	bpo-27932 [https://bugs.python.org/issue27932]: Prevent memory leak in win32_ver().

	Fix UnboundLocalError in socket._sendfile_use_sendfile.

	bpo-28075 [https://bugs.python.org/issue28075]: Check for ERROR_ACCESS_DENIED in Windows implementation of
os.stat(). Patch by Eryk Sun.

	bpo-22493 [https://bugs.python.org/issue22493]: Warning message emitted by using inline flags in the middle of
regular expression now contains a (truncated) regex pattern. Patch by Tim
Graham.

	bpo-25270 [https://bugs.python.org/issue25270]: Prevent codecs.escape_encode() from raising SystemError when an
empty bytestring is passed.

	bpo-28181 [https://bugs.python.org/issue28181]: Get antigravity over HTTPS. Patch by Kaartic Sivaraam.

	bpo-25895 [https://bugs.python.org/issue25895]: Enable WebSocket URL schemes in urllib.parse.urljoin. Patch by
Gergely Imreh and Markus Holtermann.

	bpo-28114 [https://bugs.python.org/issue28114]: Fix a crash in parse_envlist() when env contains byte strings.
Patch by Eryk Sun.

	bpo-27599 [https://bugs.python.org/issue27599]: Fixed buffer overrun in binascii.b2a_qp() and
binascii.a2b_qp().

	bpo-27906 [https://bugs.python.org/issue27906]: Fix socket accept exhaustion during high TCP traffic. Patch by
Kevin Conway.

	bpo-28174 [https://bugs.python.org/issue28174]: Handle when SO_REUSEPORT isn't properly supported. Patch by
Seth Michael Larson.

	bpo-26654 [https://bugs.python.org/issue26654]: Inspect functools.partial in asyncio.Handle.__repr__. Patch by
iceboy.

	bpo-26909 [https://bugs.python.org/issue26909]: Fix slow pipes IO in asyncio. Patch by INADA Naoki.

	bpo-28176 [https://bugs.python.org/issue28176]: Fix callbacks race in asyncio.SelectorLoop.sock_connect.

	bpo-27759 [https://bugs.python.org/issue27759]: Fix selectors incorrectly retain invalid file descriptors.
Patch by Mark Williams.

	bpo-28368 [https://bugs.python.org/issue28368]: Refuse monitoring processes if the child watcher has no loop
attached. Patch by Vincent Michel.

	bpo-28369 [https://bugs.python.org/issue28369]: Raise RuntimeError when transport's FD is used with add_reader,
add_writer, etc.

	bpo-28370 [https://bugs.python.org/issue28370]: Speedup asyncio.StreamReader.readexactly. Patch by Коренберг
Марк.

	bpo-28371 [https://bugs.python.org/issue28371]: Deprecate passing asyncio.Handles to run_in_executor.

	bpo-28372 [https://bugs.python.org/issue28372]: Fix asyncio to support formatting of non-python coroutines.

	bpo-28399 [https://bugs.python.org/issue28399]: Remove UNIX socket from FS before binding. Patch by Коренберг
Марк.

	bpo-27972 [https://bugs.python.org/issue27972]: Prohibit Tasks to await on themselves.

Windows

	bpo-28402 [https://bugs.python.org/issue28402]: Adds signed catalog files for stdlib on Windows.

	bpo-28333 [https://bugs.python.org/issue28333]: Enables Unicode for ps1/ps2 and input() prompts. (Patch by Eryk
Sun)

	bpo-28251 [https://bugs.python.org/issue28251]: Improvements to help manuals on Windows.

	bpo-28110 [https://bugs.python.org/issue28110]: launcher.msi has different product codes between 32-bit and
64-bit

	bpo-28161 [https://bugs.python.org/issue28161]: Opening CON for write access fails

	bpo-28162 [https://bugs.python.org/issue28162]: WindowsConsoleIO readall() fails if first line starts with
Ctrl+Z

	bpo-28163 [https://bugs.python.org/issue28163]: WindowsConsoleIO fileno() passes wrong flags to _open_osfhandle

	bpo-28164 [https://bugs.python.org/issue28164]: _PyIO_get_console_type fails for various paths

	bpo-28137 [https://bugs.python.org/issue28137]: Renames Windows path file to ._pth

	bpo-28138 [https://bugs.python.org/issue28138]: Windows ._pth file should allow import site

C API

	bpo-28426 [https://bugs.python.org/issue28426]: Deprecated undocumented functions PyUnicode_AsEncodedObject(),
PyUnicode_AsDecodedObject(), PyUnicode_AsDecodedUnicode() and
PyUnicode_AsEncodedUnicode().

构建

	bpo-28258 [https://bugs.python.org/issue28258]: Fixed build with Estonian locale (python-config and distclean
targets in Makefile). Patch by Arfrever Frehtes Taifersar Arahesis.

	bpo-26661 [https://bugs.python.org/issue26661]: setup.py now detects system libffi with multiarch wrapper.

	bpo-15819 [https://bugs.python.org/issue15819]: Remove redundant include search directory option for building
outside the source tree.

测试

	bpo-28217 [https://bugs.python.org/issue28217]: Adds _testconsole module to test console input.

Python 3.6.0 beta 1

发布日期： 2016-09-12

核心与内置

	bpo-23722 [https://bugs.python.org/issue23722]: The __class__ cell used by zero-argument super() is now
initialized from type.__new__ rather than __build_class__, so class
methods relying on that will now work correctly when called from metaclass
methods during class creation. Patch by Martin Teichmann.

	bpo-25221 [https://bugs.python.org/issue25221]: Fix corrupted result from PyLong_FromLong(0) when Python is
compiled with NSMALLPOSINTS = 0.

	bpo-27080 [https://bugs.python.org/issue27080]: Implement formatting support for PEP 515. Initial patch by
Chris Angelico.

	bpo-27199 [https://bugs.python.org/issue27199]: In tarfile, expose copyfileobj bufsize to improve throughput.
Patch by Jason Fried.

	bpo-27948 [https://bugs.python.org/issue27948]: In f-strings, only allow backslashes inside the braces (where
the expressions are). This is a breaking change from the 3.6 alpha
releases, where backslashes are allowed anywhere in an f-string. Also,
require that expressions inside f-strings be enclosed within literal
braces, and not escapes like f'\x7b"hi"\x7d'.

	bpo-28046 [https://bugs.python.org/issue28046]: Remove platform-specific directories from sys.path.

	bpo-28071 [https://bugs.python.org/issue28071]: Add early-out for differencing from an empty set.

	bpo-25758 [https://bugs.python.org/issue25758]: Prevents zipimport from unnecessarily encoding a filename
(patch by Eryk Sun)

	bpo-25856 [https://bugs.python.org/issue25856]: The __module__ attribute of extension classes and functions now
is interned. This leads to more compact pickle data with protocol 4.

	bpo-27213 [https://bugs.python.org/issue27213]: Rework CALL_FUNCTION* opcodes to produce shorter and more
efficient bytecode. Patch by Demur Rumed, design by Serhiy Storchaka,
reviewed by Serhiy Storchaka and Victor Stinner.

	bpo-26331 [https://bugs.python.org/issue26331]: Implement tokenizing support for PEP 515. Patch by Georg
Brandl.

	bpo-27999 [https://bugs.python.org/issue27999]: Make "global after use" a SyntaxError, and ditto for nonlocal.
Patch by Ivan Levkivskyi.

	bpo-28003 [https://bugs.python.org/issue28003]: Implement PEP 525 -- Asynchronous Generators.

	bpo-27985 [https://bugs.python.org/issue27985]: Implement PEP 526 -- Syntax for Variable Annotations. Patch by
Ivan Levkivskyi.

	bpo-26058 [https://bugs.python.org/issue26058]: Add a new private version to the builtin dict type, incremented
at each dictionary creation and at each dictionary change. Implementation
of the PEP 509.

	bpo-27364 [https://bugs.python.org/issue27364]: A backslash-character pair that is not a valid escape sequence
now generates a DeprecationWarning. Patch by Emanuel Barry.

	bpo-27350 [https://bugs.python.org/issue27350]: dict implementation is changed like PyPy. It is more compact
and preserves insertion order. (Concept developed by Raymond Hettinger and
patch by Inada Naoki.)

	bpo-27911 [https://bugs.python.org/issue27911]: Remove unnecessary error checks in
exec_builtin_or_dynamic().

	bpo-27078 [https://bugs.python.org/issue27078]: Added BUILD_STRING opcode. Optimized f-strings evaluation.

	bpo-17884 [https://bugs.python.org/issue17884]: Python now requires systems with inttypes.h and stdint.h

	bpo-27961 [https://bugs.python.org/issue27961]: Require platforms to support long long. Python hasn't
compiled without long long for years, so this is basically a
formality.

	bpo-27355 [https://bugs.python.org/issue27355]: Removed support for Windows CE. It was never finished, and
Windows CE is no longer a relevant platform for Python.

	Implement PEP 523.

	bpo-27870 [https://bugs.python.org/issue27870]: A left shift of zero by a large integer no longer attempts to
allocate large amounts of memory.

	bpo-25402 [https://bugs.python.org/issue25402]: In int-to-decimal-string conversion, improve the estimate of
the intermediate memory required, and remove an unnecessarily strict
overflow check. Patch by Serhiy Storchaka.

	bpo-27214 [https://bugs.python.org/issue27214]: In long_invert, be more careful about modifying object returned
by long_add, and remove an unnecessary check for small longs. Thanks Oren
Milman for analysis and patch.

	bpo-27506 [https://bugs.python.org/issue27506]: Support passing the bytes/bytearray.translate() "delete"
argument by keyword.

	bpo-27812 [https://bugs.python.org/issue27812]: Properly clear out a generator's frame's backreference to the
generator to prevent crashes in frame.clear().

	bpo-27811 [https://bugs.python.org/issue27811]: Fix a crash when a coroutine that has not been awaited is
finalized with warnings-as-errors enabled.

	bpo-27587 [https://bugs.python.org/issue27587]: Fix another issue found by PVS-Studio: Null pointer check after
use of 'def' in _PyState_AddModule(). Initial patch by Christian Heimes.

	bpo-27792 [https://bugs.python.org/issue27792]: The modulo operation applied to bool and other int
subclasses now always returns an int. Previously the return type
depended on the input values. Patch by Xiang Zhang.

	bpo-26984 [https://bugs.python.org/issue26984]: int() now always returns an instance of exact int.

	bpo-25604 [https://bugs.python.org/issue25604]: Fix a minor bug in integer true division; this bug could
potentially have caused off-by-one-ulp results on platforms with
unreliable ldexp implementations.

	bpo-24254 [https://bugs.python.org/issue24254]: Make class definition namespace ordered by default.

	bpo-27662 [https://bugs.python.org/issue27662]: Fix an overflow check in List_New: the original code was
checking against Py_SIZE_MAX instead of the correct upper bound of
Py_SSIZE_T_MAX. Patch by Xiang Zhang.

	bpo-27782 [https://bugs.python.org/issue27782]: Multi-phase extension module import now correctly allows the
m_methods field to be used to add module level functions to instances
of non-module types returned from Py_create_mod. Patch by Xiang Zhang.

	bpo-27936 [https://bugs.python.org/issue27936]: The round() function accepted a second None argument for some
types but not for others. Fixed the inconsistency by accepting None for
all numeric types.

	bpo-27487 [https://bugs.python.org/issue27487]: Warn if a submodule argument to "python -m" or
runpy.run_module() is found in sys.modules after parent packages are
imported, but before the submodule is executed.

	bpo-27157 [https://bugs.python.org/issue27157]: Make only type() itself accept the one-argument form. Patch by
Eryk Sun and Emanuel Barry.

	bpo-27558 [https://bugs.python.org/issue27558]: Fix a SystemError in the implementation of "raise" statement.
In a brand new thread, raise a RuntimeError since there is no active
exception to reraise. Patch written by Xiang Zhang.

	bpo-28008 [https://bugs.python.org/issue28008]: Implement PEP 530 -- asynchronous comprehensions.

	bpo-27942 [https://bugs.python.org/issue27942]: Fix memory leak in codeobject.c

库

	bpo-28732 [https://bugs.python.org/issue28732]: Fix crash in os.spawnv() with no elements in args

	bpo-28485 [https://bugs.python.org/issue28485]: Always raise ValueError for negative
compileall.compile_dir(workers=...) parameter, even when multithreading is
unavailable.

	bpo-28037 [https://bugs.python.org/issue28037]: Use sqlite3_get_autocommit() instead of setting
Connection->inTransaction manually.

	bpo-25283 [https://bugs.python.org/issue25283]: Attributes tm_gmtoff and tm_zone are now available on all
platforms in the return values of time.localtime() and time.gmtime().

	bpo-24454 [https://bugs.python.org/issue24454]: Regular expression match object groups are now accessible using
__getitem__. "mo[x]" is equivalent to "mo.group(x)".

	bpo-10740 [https://bugs.python.org/issue10740]: sqlite3 no longer implicitly commit an open transaction before
DDL statements.

	bpo-17941 [https://bugs.python.org/issue17941]: Add a module parameter to collections.namedtuple().

	bpo-22493 [https://bugs.python.org/issue22493]: Inline flags now should be used only at the start of the
regular expression. Deprecation warning is emitted if uses them in the
middle of the regular expression.

	bpo-26885 [https://bugs.python.org/issue26885]: xmlrpc now supports unmarshalling additional data types used by
Apache XML-RPC implementation for numerics and None.

	bpo-28070 [https://bugs.python.org/issue28070]: Fixed parsing inline verbose flag in regular expressions.

	bpo-19500 [https://bugs.python.org/issue19500]: Add client-side SSL session resumption to the ssl module.

	bpo-28022 [https://bugs.python.org/issue28022]: Deprecate ssl-related arguments in favor of SSLContext. The
deprecation include manual creation of SSLSocket and certfile/keyfile (or
similar) in ftplib, httplib, imaplib, smtplib, poplib and urllib.

	bpo-28043 [https://bugs.python.org/issue28043]: SSLContext has improved default settings: OP_NO_SSLv2,
OP_NO_SSLv3, OP_NO_COMPRESSION, OP_CIPHER_SERVER_PREFERENCE,
OP_SINGLE_DH_USE, OP_SINGLE_ECDH_USE and HIGH ciphers without MD5.

	bpo-24693 [https://bugs.python.org/issue24693]: Changed some RuntimeError's in the zipfile module to more
appropriate types. Improved some error messages and debugging output.

	bpo-17909 [https://bugs.python.org/issue17909]: json.load and json.loads now support binary input
encoded as UTF-8, UTF-16 or UTF-32. Patch by Serhiy Storchaka.

	bpo-27137 [https://bugs.python.org/issue27137]: the pure Python fallback implementation of
functools.partial now matches the behaviour of its accelerated C
counterpart for subclassing, pickling and text representation purposes.
Patch by Emanuel Barry and Serhiy Storchaka.

	Fix possible integer overflows and crashes in the mmap module with unusual
usage patterns.

	bpo-1703178 [https://bugs.python.org/issue1703178]: Fix the ability to pass the --link-objects option to the
distutils build_ext command.

	bpo-28019 [https://bugs.python.org/issue28019]: itertools.count() no longer rounds non-integer step in range
between 1.0 and 2.0 to 1.

	bpo-18401 [https://bugs.python.org/issue18401]: Pdb now supports the 'readrc' keyword argument to control
whether .pdbrc files should be read. Patch by Martin Matusiak and Sam
Kimbrel.

	bpo-25969 [https://bugs.python.org/issue25969]: Update the lib2to3 grammar to handle the unpacking
generalizations added in 3.5.

	bpo-14977 [https://bugs.python.org/issue14977]: mailcap now respects the order of the lines in the mailcap
files ("first match"), as required by RFC 1542. Patch by Michael Lazar.

	bpo-28082 [https://bugs.python.org/issue28082]: Convert re flag constants to IntFlag.

	bpo-28025 [https://bugs.python.org/issue28025]: Convert all ssl module constants to IntEnum and IntFlags.
SSLContext properties now return flags and enums.

	bpo-23591 [https://bugs.python.org/issue23591]: Add Flag, IntFlag, and auto() to enum module.

	bpo-433028 [https://bugs.python.org/issue433028]: Added support of modifier spans in regular expressions.

	bpo-24594 [https://bugs.python.org/issue24594]: Validates persist parameter when opening MSI database

	bpo-17582 [https://bugs.python.org/issue17582]: xml.etree.ElementTree nows preserves whitespaces in attributes
(Patch by Duane Griffin. Reviewed and approved by Stefan Behnel.)

	bpo-28047 [https://bugs.python.org/issue28047]: Fixed calculation of line length used for the base64 CTE in the
new email policies.

	bpo-27576 [https://bugs.python.org/issue27576]: Fix call order in OrderedDict.__init__().

	email.generator.DecodedGenerator now supports the policy keyword.

	bpo-28027 [https://bugs.python.org/issue28027]: Remove undocumented modules from Lib/plat-*: IN, CDROM,
DLFCN, TYPES, CDIO, and STROPTS.

	bpo-27445 [https://bugs.python.org/issue27445]: Don't pass str(_charset) to MIMEText.set_payload(). Patch by
Claude Paroz.

	bpo-24277 [https://bugs.python.org/issue24277]: The new email API is no longer provisional, and the docs have
been reorganized and rewritten to emphasize the new API.

	bpo-22450 [https://bugs.python.org/issue22450]: urllib now includes an Accept: */* header among the default
headers. This makes the results of REST API requests more consistent and
predictable especially when proxy servers are involved.

	lib2to3.pgen3.driver.load_grammar() now creates a stable cache file
between runs given the same Grammar.txt input regardless of the hash
randomization setting.

	bpo-28005 [https://bugs.python.org/issue28005]: Allow ImportErrors in encoding implementation to propagate.

	bpo-26667 [https://bugs.python.org/issue26667]: Support path-like objects in importlib.util.

	bpo-27570 [https://bugs.python.org/issue27570]: Avoid zero-length memcpy() etc calls with null source pointers
in the "ctypes" and "array" modules.

	bpo-22233 [https://bugs.python.org/issue22233]: Break email header lines only on the RFC specified CR and LF
characters, not on arbitrary unicode line breaks. This also fixes a bug
in HTTP header parsing.

	bpo-27331 [https://bugs.python.org/issue27331]: The email.mime classes now all accept an optional policy
keyword.

	bpo-27988 [https://bugs.python.org/issue27988]: Fix email iter_attachments incorrect mutation of payload list.

	bpo-16113 [https://bugs.python.org/issue16113]: Add SHA-3 and SHAKE support to hashlib module.

	Eliminate a tautological-pointer-compare warning in _scproxy.c.

	bpo-27776 [https://bugs.python.org/issue27776]: The os.urandom() function does now block on Linux 3.17
and newer until the system urandom entropy pool is initialized to increase
the security. This change is part of the PEP 524 [https://www.python.org/dev/peps/pep-0524].

	bpo-27778 [https://bugs.python.org/issue27778]: Expose the Linux getrandom() syscall as a new
os.getrandom() function. This change is part of the PEP 524 [https://www.python.org/dev/peps/pep-0524].

	bpo-27691 [https://bugs.python.org/issue27691]: Fix ssl module's parsing of GEN_RID subject alternative name
fields in X.509 certs.

	bpo-18844 [https://bugs.python.org/issue18844]: Add random.choices().

	bpo-25761 [https://bugs.python.org/issue25761]: Improved error reporting about truncated pickle data in C
implementation of unpickler. UnpicklingError is now raised instead of
AttributeError and ValueError in some cases.

	bpo-26798 [https://bugs.python.org/issue26798]: Add BLAKE2 (blake2b and blake2s) to hashlib.

	bpo-26032 [https://bugs.python.org/issue26032]: Optimized globbing in pathlib by using os.scandir(); it is now
about 1.5--4 times faster.

	bpo-25596 [https://bugs.python.org/issue25596]: Optimized glob() and iglob() functions in the glob module; they
are now about 3--6 times faster.

	bpo-27928 [https://bugs.python.org/issue27928]: Add scrypt (password-based key derivation function) to hashlib
module (requires OpenSSL 1.1.0).

	bpo-27850 [https://bugs.python.org/issue27850]: Remove 3DES from ssl module's default cipher list to counter
measure sweet32 attack (CVE-2016-2183).

	bpo-27766 [https://bugs.python.org/issue27766]: Add ChaCha20 Poly1305 to ssl module's default cipher list.
(Required OpenSSL 1.1.0 or LibreSSL).

	bpo-25387 [https://bugs.python.org/issue25387]: Check return value of winsound.MessageBeep.

	bpo-27866 [https://bugs.python.org/issue27866]: Add SSLContext.get_ciphers() method to get a list of all
enabled ciphers.

	bpo-27744 [https://bugs.python.org/issue27744]: Add AF_ALG (Linux Kernel crypto) to socket module.

	bpo-26470 [https://bugs.python.org/issue26470]: Port ssl and hashlib module to OpenSSL 1.1.0.

	bpo-11620 [https://bugs.python.org/issue11620]: Fix support for SND_MEMORY in winsound.PlaySound. Based on a
patch by Tim Lesher.

	bpo-11734 [https://bugs.python.org/issue11734]: Add support for IEEE 754 half-precision floats to the struct
module. Based on a patch by Eli Stevens.

	bpo-27919 [https://bugs.python.org/issue27919]: Deprecated extra_path distribution option in distutils
packaging.

	bpo-23229 [https://bugs.python.org/issue23229]: Add new cmath constants: cmath.inf and cmath.nan to
match math.inf and math.nan, and also cmath.infj and
cmath.nanj to match the format used by complex repr.

	bpo-27842 [https://bugs.python.org/issue27842]: The csv.DictReader now returns rows of type OrderedDict.
(Contributed by Steve Holden.)

	Remove support for passing a file descriptor to os.access. It never worked
but previously didn't raise.

	bpo-12885 [https://bugs.python.org/issue12885]: Fix error when distutils encounters symlink.

	bpo-27881 [https://bugs.python.org/issue27881]: Fixed possible bugs when setting
sqlite3.Connection.isolation_level. Based on patch by Xiang Zhang.

	bpo-27861 [https://bugs.python.org/issue27861]: Fixed a crash in sqlite3.Connection.cursor() when a factory
creates not a cursor. Patch by Xiang Zhang.

	bpo-19884 [https://bugs.python.org/issue19884]: Avoid spurious output on OS X with Gnu Readline.

	bpo-27706 [https://bugs.python.org/issue27706]: Restore deterministic behavior of random.Random().seed() for
string seeds using seeding version 1. Allows sequences of calls to
random() to exactly match those obtained in Python 2. Patch by Nofar
Schnider.

	bpo-10513 [https://bugs.python.org/issue10513]: Fix a regression in Connection.commit(). Statements should not
be reset after a commit.

	bpo-12319 [https://bugs.python.org/issue12319]: Chunked transfer encoding support added to
http.client.HTTPConnection requests. The
urllib.request.AbstractHTTPHandler class does not enforce a Content-Length
header any more. If a HTTP request has a file or iterable body, but no
Content-Length header, the library now falls back to use chunked
transfer-encoding.

	A new version of typing.py from https://github.com/python/typing: -
Collection (only for 3.6) (bpo-27598 [https://bugs.python.org/issue27598]) - Add FrozenSet to __all__
(upstream #261) - fix crash in _get_type_vars() (upstream #259) - Remove
the dict constraint in ForwardRef._eval_type (upstream #252)

	bpo-27832 [https://bugs.python.org/issue27832]: Make _normalize parameter to Fraction constuctor
keyword-only, so that Fraction(2, 3, 4) now raises TypeError.

	bpo-27539 [https://bugs.python.org/issue27539]: Fix unnormalised Fraction.__pow__ result in the case of
negative exponent and negative base.

	bpo-21718 [https://bugs.python.org/issue21718]: cursor.description is now available for queries using CTEs.

	bpo-27819 [https://bugs.python.org/issue27819]: In distutils sdists, simply produce the "gztar" (gzipped tar
format) distributions on all platforms unless "formats" is supplied.

	bpo-2466 [https://bugs.python.org/issue2466]: posixpath.ismount now correctly recognizes mount points which
the user does not have permission to access.

	bpo-9998 [https://bugs.python.org/issue9998]: On Linux, ctypes.util.find_library now looks in LD_LIBRARY_PATH
for shared libraries.

	bpo-27573 [https://bugs.python.org/issue27573]: exit message for code.interact is now configurable.

	bpo-27930 [https://bugs.python.org/issue27930]: Improved behaviour of logging.handlers.QueueListener. Thanks to
Paulo Andrade and Petr Viktorin for the analysis and patch.

	bpo-6766 [https://bugs.python.org/issue6766]: Distributed reference counting added to multiprocessing to
support nesting of shared values / proxy objects.

	bpo-21201 [https://bugs.python.org/issue21201]: Improves readability of multiprocessing error message. Thanks
to Wojciech Walczak for patch.

	asyncio: 在各Transport类中添加了 set_protocol / get_protocol 方法

	bpo-27456 [https://bugs.python.org/issue27456]: asyncio: Set TCP_NODELAY by default.

IDLE

	bpo-15308 [https://bugs.python.org/issue15308]: Add 'interrupt execution' (^C) to Shell menu. Patch by Roger
Serwy, updated by Bayard Randel.

	bpo-27922 [https://bugs.python.org/issue27922]: Stop IDLE tests from 'flashing' gui widgets on the screen.

	bpo-27891 [https://bugs.python.org/issue27891]: Consistently group and sort imports within idlelib modules.

	bpo-17642 [https://bugs.python.org/issue17642]: add larger font sizes for classroom projection.

	在 IDLE 帮助窗口的标题中加入版本号

	bpo-25564 [https://bugs.python.org/issue25564]: In section on IDLE -- console differences, mention that using
exec means that __builtins__ is defined for each statement.

	bpo-27821 [https://bugs.python.org/issue27821]: Fix 3.6.0a3 regression that prevented custom key sets from
being selected when no custom theme was defined.

C API

	bpo-26900 [https://bugs.python.org/issue26900]: Excluded underscored names and other private API from limited
API.

	bpo-26027 [https://bugs.python.org/issue26027]: Add support for path-like objects in PyUnicode_FSConverter() &
PyUnicode_FSDecoder().

测试

	bpo-27427 [https://bugs.python.org/issue27427]: Additional tests for the math module. Patch by Francisco Couzo.

	bpo-27953 [https://bugs.python.org/issue27953]: Skip math and cmath tests that fail on OS X 10.4 due to a poor
libm implementation of tan.

	bpo-26040 [https://bugs.python.org/issue26040]: Improve test_math and test_cmath coverage and rigour. Patch by
Jeff Allen.

	bpo-27787 [https://bugs.python.org/issue27787]: Call gc.collect() before checking each test for "dangling
threads", since the dangling threads are weak references.

构建

	bpo-27566 [https://bugs.python.org/issue27566]: Fix clean target in freeze makefile (patch by Lisa Roach)

	bpo-27705 [https://bugs.python.org/issue27705]: Update message in validate_ucrtbase.py

	bpo-27976 [https://bugs.python.org/issue27976]: Deprecate building _ctypes with the bundled copy of libffi on
non-OSX UNIX platforms.

	bpo-27983 [https://bugs.python.org/issue27983]: Cause lack of llvm-profdata tool when using clang as required
for PGO linking to be a configure time error rather than make time when
--with-optimizations is enabled. Also improve our ability to find the
llvm-profdata tool on MacOS and some Linuxes.

	bpo-21590 [https://bugs.python.org/issue21590]: Support for DTrace and SystemTap probes.

	bpo-26307 [https://bugs.python.org/issue26307]: The profile-opt build now applies PGO to the built-in modules.

	bpo-26359 [https://bugs.python.org/issue26359]: Add the --with-optimizations flag to turn on LTO and PGO build
support when available.

	bpo-27917 [https://bugs.python.org/issue27917]: Set platform triplets for Android builds.

	bpo-25825 [https://bugs.python.org/issue25825]: Update references to the $(LIBPL) installation path on AIX.
This path was changed in 3.2a4.

	更新 OS X 安装包，使用SQLite 3.14.1 和 XZ 5.2.2版本。

	bpo-21122 [https://bugs.python.org/issue21122]: Fix LTO builds on OS X.

	bpo-17128 [https://bugs.python.org/issue17128]: Build OS X installer with a private copy of OpenSSL. Also
provide a sample Install Certificates command script to install a set of
root certificates from the third-party certifi module.

工具/示例

	bpo-27952 [https://bugs.python.org/issue27952]: Get Tools/scripts/fixcid.py working with Python 3 and the
current "re" module, avoid invalid Python backslash escapes, and fix a bug
parsing escaped C quote signs.

Windows

	bpo-28065 [https://bugs.python.org/issue28065]: Update xz dependency to 5.2.2 and build it from source.

	bpo-25144 [https://bugs.python.org/issue25144]: Ensures TargetDir is set before continuing with custom install.

	bpo-1602 [https://bugs.python.org/issue1602]: Windows console doesn't input or print Unicode (PEP 528)

	bpo-27781 [https://bugs.python.org/issue27781]: Change file system encoding on Windows to UTF-8 (PEP 529)

	bpo-27731 [https://bugs.python.org/issue27731]: Opt-out of MAX_PATH on Windows 10

	bpo-6135 [https://bugs.python.org/issue6135]: Adds encoding and errors parameters to subprocess.

	bpo-27959 [https://bugs.python.org/issue27959]: Adds oem encoding, alias ansi to mbcs, move aliasmbcs to codec
lookup.

	bpo-27982 [https://bugs.python.org/issue27982]: The functions of the winsound module now accept keyword
arguments.

	bpo-20366 [https://bugs.python.org/issue20366]: Build full text search support into SQLite on Windows.

	bpo-27756 [https://bugs.python.org/issue27756]: Adds new icons for Python files and processes on Windows.
Designs by Cherry Wang.

	bpo-27883 [https://bugs.python.org/issue27883]: 在Windows上将sqlite更新到3.14.1.0

Python 3.6.0 alpha 4

发布日期: 2016-08-15

核心与内置

	bpo-27704 [https://bugs.python.org/issue27704]: Optimized creating bytes and bytearray from byte-like objects
and iterables. Speed up to 3 times for short objects. Original patch by
Naoki Inada.

	bpo-26823 [https://bugs.python.org/issue26823]: Large sections of repeated lines in tracebacks are now
abbreviated as "[Previous line repeated {count} more times]" by the
builtin traceback rendering. Patch by Emanuel Barry.

	bpo-27574 [https://bugs.python.org/issue27574]: Decreased an overhead of parsing keyword arguments in functions
implemented with using Argument Clinic.

	bpo-22557 [https://bugs.python.org/issue22557]: Now importing already imported modules is up to 2.5 times
faster.

	bpo-17596 [https://bugs.python.org/issue17596]: Include <wincrypt.h> to help with Min GW building.

	bpo-17599 [https://bugs.python.org/issue17599]: On Windows, rename the privately defined REPARSE_DATA_BUFFER
structure to avoid conflicting with the definition from Min GW.

	bpo-27507 [https://bugs.python.org/issue27507]: Add integer overflow check in bytearray.extend(). Patch by
Xiang Zhang.

	bpo-27581 [https://bugs.python.org/issue27581]: Don't rely on wrapping for overflow check in
PySequence_Tuple(). Patch by Xiang Zhang.

	bpo-1621 [https://bugs.python.org/issue1621]: Avoid signed integer overflow in list and tuple operations.
Patch by Xiang Zhang.

	bpo-27419 [https://bugs.python.org/issue27419]: Standard __import__() no longer look up "__import__" in globals
or builtins for importing submodules or "from import". Fixed a crash if
raise a warning about unabling to resolve package from __spec__ or
__package__.

	bpo-27083 [https://bugs.python.org/issue27083]: Respect the PYTHONCASEOK environment variable under Windows.

	bpo-27514 [https://bugs.python.org/issue27514]: Make having too many statically nested blocks a SyntaxError
instead of SystemError.

	bpo-27366 [https://bugs.python.org/issue27366]: Implemented PEP 487 (Simpler customization of class creation).
Upon subclassing, the __init_subclass__ classmethod is called on the base
class. Descriptors are initialized with __set_name__ after class creation.

库

	bpo-26027 [https://bugs.python.org/issue26027]: Add PEP 519/__fspath__() support to the os and os.path modules.
Includes code from Jelle Zijlstra. (See also: bpo-27524 [https://bugs.python.org/issue27524])

	bpo-27598 [https://bugs.python.org/issue27598]: Add Collections to collections.abc. Patch by Ivan Levkivskyi,
docs by Neil Girdhar.

	bpo-25958 [https://bugs.python.org/issue25958]: Support "anti-registration" of special methods from various
ABCs, like __hash__, __iter__ or __len__. All these (and several more)
can be set to None in an implementation class and the behavior will be as
if the method is not defined at all. (Previously, this mechanism existed
only for __hash__, to make mutable classes unhashable.) Code contributed
by Andrew Barnert and Ivan Levkivskyi.

	bpo-16764 [https://bugs.python.org/issue16764]: Support keyword arguments to zlib.decompress(). Patch by Xiang
Zhang.

	bpo-27736 [https://bugs.python.org/issue27736]: Prevent segfault after interpreter re-initialization due to ref
count problem introduced in code for bpo-27038 [https://bugs.python.org/issue27038] in 3.6.0a3. Patch by
Xiang Zhang.

	bpo-25628 [https://bugs.python.org/issue25628]: The verbose and rename parameters for
collections.namedtuple are now keyword-only.

	bpo-12345 [https://bugs.python.org/issue12345]: Add mathematical constant tau to math and cmath. See also PEP
628.

	bpo-26823 [https://bugs.python.org/issue26823]: traceback.StackSummary.format now abbreviates large sections of
repeated lines as "[Previous line repeated {count} more times]" (this
change then further affects other traceback display operations in the
module). Patch by Emanuel Barry.

	bpo-27664 [https://bugs.python.org/issue27664]: Add to concurrent.futures.thread.ThreadPoolExecutor() the
ability to specify a thread name prefix.

	bpo-27181 [https://bugs.python.org/issue27181]: Add geometric_mean and harmonic_mean to statistics module.

	bpo-27573 [https://bugs.python.org/issue27573]: code.interact now prints an message when exiting.

	bpo-6422 [https://bugs.python.org/issue6422]: Add autorange method to timeit.Timer objects.

	bpo-27773 [https://bugs.python.org/issue27773]: Correct some memory management errors server_hostname in
_ssl.wrap_socket().

	bpo-26750 [https://bugs.python.org/issue26750]: unittest.mock.create_autospec() now works properly for
subclasses of property() and other data descriptors. Removes the never
publicly used, never documented unittest.mock.DescriptorTypes tuple.

	bpo-26754 [https://bugs.python.org/issue26754]: Undocumented support of general bytes-like objects as path in
compile() and similar functions is now deprecated.

	bpo-26800 [https://bugs.python.org/issue26800]: Undocumented support of general bytes-like objects as paths in
os functions is now deprecated.

	bpo-26981 [https://bugs.python.org/issue26981]: Add _order_ compatibility shim to enum.Enum for Python 2/3 code
bases.

	bpo-27661 [https://bugs.python.org/issue27661]: Added tzinfo keyword argument to datetime.combine.

	In the curses module, raise an error if window.getstr() or window.instr()
is passed a negative value.

	bpo-27783 [https://bugs.python.org/issue27783]: Fix possible usage of uninitialized memory in
operator.methodcaller.

	bpo-27774 [https://bugs.python.org/issue27774]: Fix possible Py_DECREF on unowned object in _sre.

	bpo-27760 [https://bugs.python.org/issue27760]: Fix possible integer overflow in binascii.b2a_qp.

	bpo-27758 [https://bugs.python.org/issue27758]: Fix possible integer overflow in the _csv module for large
record lengths.

	bpo-27568 [https://bugs.python.org/issue27568]: Prevent HTTPoxy attack (CVE-2016-1000110). Ignore the
HTTP_PROXY variable when REQUEST_METHOD environment is set, which
indicates that the script is in CGI mode.

	bpo-7063 [https://bugs.python.org/issue7063]: Remove dead code from the "array" module's slice handling. Patch
by Chuck.

	bpo-27656 [https://bugs.python.org/issue27656]: Do not assume sched.h defines any SCHED_* constants.

	bpo-27130 [https://bugs.python.org/issue27130]: In the "zlib" module, fix handling of large buffers (typically
4 GiB) when compressing and decompressing. Previously, inputs were
limited to 4 GiB, and compression and decompression operations did not
properly handle results of 4 GiB.

	bpo-24773 [https://bugs.python.org/issue24773]: Implemented PEP 495 (Local Time Disambiguation).

	Expose the EPOLLEXCLUSIVE constant (when it is defined) in the select
module.

	bpo-27567 [https://bugs.python.org/issue27567]: Expose the EPOLLRDHUP and POLLRDHUP constants in the select
module.

	bpo-1621 [https://bugs.python.org/issue1621]: Avoid signed int negation overflow in the "audioop" module.

	bpo-27533 [https://bugs.python.org/issue27533]: Release GIL in nt._isdir

	bpo-17711 [https://bugs.python.org/issue17711]: Fixed unpickling by the persistent ID with protocol 0. Original
patch by Alexandre Vassalotti.

	bpo-27522 [https://bugs.python.org/issue27522]: Avoid an unintentional reference cycle in email.feedparser.

	bpo-27512 [https://bugs.python.org/issue27512]: Fix a segfault when os.fspath() called an __fspath__() method
that raised an exception. Patch by Xiang Zhang.

IDLE

	bpo-27714 [https://bugs.python.org/issue27714]: text_textview and test_autocomplete now pass when re-run in the
same process. This occurs when test_idle fails when run with the -w
option but without -jn. Fix warning from test_config.

	bpo-27621 [https://bugs.python.org/issue27621]: Put query response validation error messages in the query box
itself instead of in a separate messagebox. Redo tests to match. Add Mac
OSX refinements. Original patch by Mark Roseman.

	bpo-27620 [https://bugs.python.org/issue27620]: Escape key now closes Query box as cancelled.

	bpo-27609 [https://bugs.python.org/issue27609]: IDLE: tab after initial whitespace should tab, not
autocomplete. This fixes problem with writing docstrings at least twice
indented.

	bpo-27609 [https://bugs.python.org/issue27609]: Explicitly return None when there are also non-None returns. In
a few cases, reverse a condition and eliminate a return.

	bpo-25507 [https://bugs.python.org/issue25507]: IDLE no longer runs buggy code because of its tkinter imports.
Users must include the same imports required to run directly in Python.

	bpo-27173 [https://bugs.python.org/issue27173]: Add 'IDLE Modern Unix' to the built-in key sets. Make the
default key set depend on the platform. Add tests for the changes to the
config module.

	bpo-27452 [https://bugs.python.org/issue27452]: add line counter and crc to IDLE configHandler test dump.

测试

	bpo-25805 [https://bugs.python.org/issue25805]: Skip a test in test_pkgutil as needed that doesn't work when
__name__ == __main__. Patch by SilentGhost.

	bpo-27472 [https://bugs.python.org/issue27472]: Add test.support.unix_shell as the path to the default shell.

	bpo-27369 [https://bugs.python.org/issue27369]: In test_pyexpat, avoid testing an error message detail that
changed in Expat 2.2.0.

	bpo-27594 [https://bugs.python.org/issue27594]: Prevent assertion error when running test_ast with coverage
enabled: ensure code object has a valid first line number. Patch suggested
by Ivan Levkivskyi.

Windows

	bpo-27647 [https://bugs.python.org/issue27647]: Update bundled Tcl/Tk to 8.6.6.

	bpo-27610 [https://bugs.python.org/issue27610]: Adds PEP 514 metadata to Windows installer

	bpo-27469 [https://bugs.python.org/issue27469]: Adds a shell extension to the launcher so that drag and drop
works correctly.

	bpo-27309 [https://bugs.python.org/issue27309]: Enables proper Windows styles in python[w].exe manifest.

构建

	bpo-27713 [https://bugs.python.org/issue27713]: Suppress spurious build warnings when updating importlib's
bootstrap files. Patch by Xiang Zhang

	bpo-25825 [https://bugs.python.org/issue25825]: Correct the references to Modules/python.exp, which is required
on AIX. The references were accidentally changed in 3.5.0a1.

	bpo-27453 [https://bugs.python.org/issue27453]: CPP invocation in configure must use CPPFLAGS. Patch by Chi
Hsuan Yen.

	bpo-27641 [https://bugs.python.org/issue27641]: The configure script now inserts comments into the makefile to
prevent the pgen and _freeze_importlib executables from being
cross-compiled.

	bpo-26662 [https://bugs.python.org/issue26662]: Set PYTHON_FOR_GEN in configure as the Python program to be
used for file generation during the build.

	bpo-10910 [https://bugs.python.org/issue10910]: Avoid C++ compilation errors on FreeBSD and OS X. Also update
FreedBSD version checks for the original ctype UTF-8 workaround.

Python 3.6.0 alpha 3

发布日期: 2016-07-11

核心与内置

	bpo-27473 [https://bugs.python.org/issue27473]: Fixed possible integer overflow in bytes and bytearray
concatenations. Patch by Xiang Zhang.

	bpo-23034 [https://bugs.python.org/issue23034]: The output of a special Python build with defined COUNT_ALLOCS,
SHOW_ALLOC_COUNT or SHOW_TRACK_COUNT macros is now off by default. It
can be re-enabled using the "-X showalloccount" option. It now outputs to
stderr instead of stdout.

	bpo-27443 [https://bugs.python.org/issue27443]: __length_hint__() of bytearray iterators no longer return a
negative integer for a resized bytearray.

	bpo-27007 [https://bugs.python.org/issue27007]: The fromhex() class methods of bytes and bytearray subclasses
now return an instance of corresponding subclass.

库

	bpo-26844 [https://bugs.python.org/issue26844]: Fix error message for imp.find_module() to refer to 'path'
instead of 'name'. Patch by Lev Maximov.

	bpo-23804 [https://bugs.python.org/issue23804]: Fix SSL zero-length recv() calls to not block and not raise an
error about unclean EOF.

	bpo-27466 [https://bugs.python.org/issue27466]: Change time format returned by http.cookie.time2netscape,
confirming the netscape cookie format and making it consistent with
documentation.

	bpo-21708 [https://bugs.python.org/issue21708]: Deprecated dbm.dumb behavior that differs from common dbm
behavior: creating a database in 'r' and 'w' modes and modifying a
database in 'r' mode.

	bpo-26721 [https://bugs.python.org/issue26721]: Change the socketserver.StreamRequestHandler.wfile attribute to
implement BufferedIOBase. In particular, the write() method no longer does
partial writes.

	bpo-22115 [https://bugs.python.org/issue22115]: Added methods trace_add, trace_remove and trace_info in the
tkinter.Variable class. They replace old methods trace_variable, trace,
trace_vdelete and trace_vinfo that use obsolete Tcl commands and might not
work in future versions of Tcl. Fixed old tracing methods:
trace_vdelete() with wrong mode no longer break tracing, trace_vinfo() now
always returns a list of pairs of strings, tracing in the "u" mode now
works.

	bpo-26243 [https://bugs.python.org/issue26243]: Only the level argument to zlib.compress() is keyword argument
now. The first argument is positional-only.

	bpo-27038 [https://bugs.python.org/issue27038]: Expose the DirEntry type as os.DirEntry. Code patch by Jelle
Zijlstra.

	bpo-27186 [https://bugs.python.org/issue27186]: Update os.fspath()/PyOS_FSPath() to check the return value of
__fspath__() to be either str or bytes.

	bpo-18726 [https://bugs.python.org/issue18726]: All optional parameters of the dump(), dumps(), load() and
loads() functions and JSONEncoder and JSONDecoder class constructors in
the json module are now keyword-only.

	bpo-27319 [https://bugs.python.org/issue27319]: Methods selection_set(), selection_add(), selection_remove()
and selection_toggle() of ttk.TreeView now allow passing multiple items as
multiple arguments instead of passing them as a tuple. Deprecated
undocumented ability of calling the selection() method with arguments.

	bpo-27079 [https://bugs.python.org/issue27079]: Fixed curses.ascii functions isblank(), iscntrl() and
ispunct().

	bpo-27294 [https://bugs.python.org/issue27294]: Numerical state in the repr for Tkinter event objects is now
represented as a combination of known flags.

	bpo-27177 [https://bugs.python.org/issue27177]: Match objects in the re module now support index-like objects
as group indices. Based on patches by Jeroen Demeyer and Xiang Zhang.

	bpo-26754 [https://bugs.python.org/issue26754]: Some functions (compile() etc) accepted a filename argument
encoded as an iterable of integers. Now only strings and byte-like objects
are accepted.

	bpo-26536 [https://bugs.python.org/issue26536]: socket.ioctl now supports SIO_LOOPBACK_FAST_PATH. Patch by
Daniel Stokes.

	bpo-27048 [https://bugs.python.org/issue27048]: Prevents distutils failing on Windows when environment
variables contain non-ASCII characters

	bpo-27330 [https://bugs.python.org/issue27330]: Fixed possible leaks in the ctypes module.

	bpo-27238 [https://bugs.python.org/issue27238]: Got rid of bare excepts in the turtle module. Original patch
by Jelle Zijlstra.

	bpo-27122 [https://bugs.python.org/issue27122]: When an exception is raised within the context being managed by
a contextlib.ExitStack() and one of the exit stack generators catches and
raises it in a chain, do not re-raise the original exception when exiting,
let the new chained one through. This avoids the PEP 479 bug described in
issue25782.

安全

	bpo-27278 [https://bugs.python.org/issue27278]: Fix os.urandom() implementation using getrandom() on Linux.
Truncate size to INT_MAX and loop until we collected enough random bytes,
instead of casting a directly Py_ssize_t to int.

库

	bpo-16864 [https://bugs.python.org/issue16864]: sqlite3.Cursor.lastrowid now supports REPLACE statement.
Initial patch by Alex LordThorsen.

	bpo-26386 [https://bugs.python.org/issue26386]: Fixed ttk.TreeView selection operations with item id's
containing spaces.

	bpo-8637 [https://bugs.python.org/issue8637]: Honor a pager set by the env var MANPAGER (in preference to one
set by the env var PAGER).

安全

	bpo-22636 [https://bugs.python.org/issue22636]: Avoid shell injection problems with ctypes.util.find_library().

库

	bpo-16182 [https://bugs.python.org/issue16182]: Fix various functions in the "readline" module to use the
locale encoding, and fix get_begidx() and get_endidx() to return code
point indexes.

	bpo-27392 [https://bugs.python.org/issue27392]: Add loop.connect_accepted_socket(). Patch by Jim Fulton.

IDLE

	bpo-27477 [https://bugs.python.org/issue27477]: IDLE search dialogs now use ttk widgets.

	bpo-27173 [https://bugs.python.org/issue27173]: Add 'IDLE Modern Unix' to the built-in key sets. Make the
default key set depend on the platform. Add tests for the changes to the
config module.

	bpo-27452 [https://bugs.python.org/issue27452]: make command line "idle-test> python test_help.py" work.
__file__ is relative when python is started in the file's directory.

	bpo-27452 [https://bugs.python.org/issue27452]: add line counter and crc to IDLE configHandler test dump.

	bpo-27380 [https://bugs.python.org/issue27380]: IDLE: add query.py with base Query dialog and ttk widgets.
Module had subclasses SectionName, ModuleName, and HelpSource, which are
used to get information from users by configdialog and file =>Load Module.
Each subclass has itw own validity checks. Using ModuleName allows users
to edit bad module names instead of starting over. Add tests and delete
the two files combined into the new one.

	bpo-27372 [https://bugs.python.org/issue27372]: Test_idle no longer changes the locale.

	bpo-27365 [https://bugs.python.org/issue27365]: Allow non-ascii chars in IDLE NEWS.txt, for contributor names.

	bpo-27245 [https://bugs.python.org/issue27245]: IDLE: Cleanly delete custom themes and key bindings.
Previously, when IDLE was started from a console or by import, a cascade
of warnings was emitted. Patch by Serhiy Storchaka.

	bpo-24137 [https://bugs.python.org/issue24137]: Run IDLE, test_idle, and htest with tkinter default root
disabled. Fix code and tests that fail with this restriction. Fix htests
to not create a second and redundant root and mainloop.

	bpo-27310 [https://bugs.python.org/issue27310]: Fix IDLE.app failure to launch on OS X due to vestigial import.

C API

	bpo-26754 [https://bugs.python.org/issue26754]: PyUnicode_FSDecoder() accepted a filename argument encoded as
an iterable of integers. Now only strings and byte-like objects are
accepted.

构建

	bpo-28066 [https://bugs.python.org/issue28066]: Fix the logic that searches build directories for generated
include files when building outside the source tree.

	bpo-27442 [https://bugs.python.org/issue27442]: Expose the Android API level that python was built against, in
sysconfig.get_config_vars() as 'ANDROID_API_LEVEL'.

	bpo-27434 [https://bugs.python.org/issue27434]: The interpreter that runs the cross-build, found in PATH, must
now be of the same feature version (e.g. 3.6) as the source being built.

	bpo-26930 [https://bugs.python.org/issue26930]: 更新Windows 构建以使用OpenSSL OpenSSL 1.0.2h.

	bpo-23968 [https://bugs.python.org/issue23968]: Rename the platform directory from plat-$(MACHDEP) to
plat-$(PLATFORM_TRIPLET). Rename the config directory (LIBPL) from
config-$(LDVERSION) to config-$(LDVERSION)-$(PLATFORM_TRIPLET). Install
the platform specific _sysconfigdata module into the platform directory
and rename it to include the ABIFLAGS.

	在 GNU/Hurd 系统中不使用大文件支持。

工具/示例

	bpo-27332 [https://bugs.python.org/issue27332]: Fixed the type of the first argument of module-level functions
generated by Argument Clinic. Patch by Petr Viktorin.

	bpo-27418 [https://bugs.python.org/issue27418]: Fixed Tools/importbench/importbench.py.

文档

	bpo-19489 [https://bugs.python.org/issue19489]: Moved the search box from the sidebar to the header and footer
of each page. Patch by Ammar Askar.

	bpo-27285 [https://bugs.python.org/issue27285]: Update documentation to reflect the deprecation of pyvenv
and normalize on the term "virtual environment". Patch by Steve Piercy.

测试

	bpo-27027 [https://bugs.python.org/issue27027]: Added test.support.is_android that is True when this is an
Android build.

Python 3.6.0 alpha 2

发布日期: 2016-06-13

核心与内置

	bpo-27095 [https://bugs.python.org/issue27095]: Simplified MAKE_FUNCTION and removed MAKE_CLOSURE opcodes.
Patch by Demur Rumed.

	bpo-27190 [https://bugs.python.org/issue27190]: Raise NotSupportedError if sqlite3 is older than 3.3.1. Patch
by Dave Sawyer.

	bpo-27286 [https://bugs.python.org/issue27286]: Fixed compiling BUILD_MAP_UNPACK_WITH_CALL opcode. Calling
function with generalized unpacking (PEP 448) and conflicting keyword
names could cause undefined behavior.

	bpo-27140 [https://bugs.python.org/issue27140]: Added BUILD_CONST_KEY_MAP opcode.

	bpo-27186 [https://bugs.python.org/issue27186]: Add support for os.PathLike objects to open() (part of PEP
519).

	bpo-27066 [https://bugs.python.org/issue27066]: Fixed SystemError if a custom opener (for open()) returns a
negative number without setting an exception.

	bpo-26983 [https://bugs.python.org/issue26983]: float() now always return an instance of exact float. The
deprecation warning is emitted if __float__ returns an instance of a
strict subclass of float. In a future versions of Python this can be an
error.

	bpo-27097 [https://bugs.python.org/issue27097]: Python interpreter is now about 7% faster due to optimized
instruction decoding. Based on patch by Demur Rumed.

	bpo-26647 [https://bugs.python.org/issue26647]: Python interpreter now uses 16-bit wordcode instead of
bytecode. Patch by Demur Rumed.

	bpo-23275 [https://bugs.python.org/issue23275]: Allow assigning to an empty target list in round brackets: () =
iterable.

	bpo-27243 [https://bugs.python.org/issue27243]: Update the __aiter__ protocol: instead of returning an
awaitable that resolves to an asynchronous iterator, the asynchronous
iterator should be returned directly. Doing the former will trigger a
PendingDeprecationWarning.

库

	Comment out socket (SO_REUSEPORT) and posix (O_SHLOCK, O_EXLOCK) constants
exposed on the API which are not implemented on GNU/Hurd. They would not
work at runtime anyway.

	bpo-27025 [https://bugs.python.org/issue27025]: Generated names for Tkinter widgets are now more meaningful and
recognizable.

	bpo-25455 [https://bugs.python.org/issue25455]: Fixed crashes in repr of recursive ElementTree.Element and
functools.partial objects.

	bpo-27294 [https://bugs.python.org/issue27294]: Improved repr for Tkinter event objects.

	bpo-20508 [https://bugs.python.org/issue20508]: Improve exception message of IPv{4,6}Network.__getitem__. Patch
by Gareth Rees.

安全

	bpo-26556 [https://bugs.python.org/issue26556]: Update expat to 2.1.1, fixes CVE-2015-1283.

	Fix TLS stripping vulnerability in smtplib, CVE-2016-0772. Reported by
Team Oststrom.

库

	bpo-21386 [https://bugs.python.org/issue21386]: Implement missing IPv4Address.is_global property. It was
documented since 07a5610bae9d. Initial patch by Roger Luethi.

	bpo-27029 [https://bugs.python.org/issue27029]: Removed deprecated support of universal newlines mode from
ZipFile.open().

	bpo-27030 [https://bugs.python.org/issue27030]: Unknown escapes consisting of '\' and an ASCII letter in
regular expressions now are errors. The re.LOCALE flag now can be used
only with bytes patterns.

	bpo-27186 [https://bugs.python.org/issue27186]: Add os.PathLike support to DirEntry (part of PEP 519). Initial
patch by Jelle Zijlstra.

	bpo-20900 [https://bugs.python.org/issue20900]: distutils register command now decodes HTTP responses
correctly. Initial patch by ingrid.

	bpo-27186 [https://bugs.python.org/issue27186]: Add os.PathLike support to pathlib, removing its provisional
status (part of PEP 519). Initial patch by Dusty Phillips.

	bpo-27186 [https://bugs.python.org/issue27186]: Add support for os.PathLike objects to os.fsencode() and
os.fsdecode() (part of PEP 519).

	bpo-27186 [https://bugs.python.org/issue27186]: Introduce os.PathLike and os.fspath() (part of PEP 519).

	A new version of typing.py provides several new classes and features:
@overload outside stubs, Reversible, DefaultDict, Text, ContextManager,
Type[], NewType(), TYPE_CHECKING, and numerous bug fixes (note that some
of the new features are not yet implemented in mypy or other static
analyzers). Also classes for PEP 492 (Awaitable, AsyncIterable,
AsyncIterator) have been added (in fact they made it into 3.5.1 but were
never mentioned).

	bpo-25738 [https://bugs.python.org/issue25738]: Stop http.server.BaseHTTPRequestHandler.send_error() from
sending a message body for 205 Reset Content. Also, don't send Content
header fields in responses that don't have a body. Patch by Susumu
Koshiba.

	bpo-21313 [https://bugs.python.org/issue21313]: Fix the "platform" module to tolerate when sys.version contains
truncated build information.

安全

	bpo-26839 [https://bugs.python.org/issue26839]: On Linux, os.urandom() now calls getrandom() with
GRND_NONBLOCK to fall back on reading /dev/urandom if the urandom
entropy pool is not initialized yet. Patch written by Colm Buckley.

库

	bpo-23883 [https://bugs.python.org/issue23883]: Added missing APIs to __all__ to match the documented APIs for
the following modules: cgi, mailbox, mimetypes, plistlib and smtpd.
Patches by Jacek Kołodziej.

	bpo-27164 [https://bugs.python.org/issue27164]: In the zlib module, allow decompressing raw Deflate streams
with a predefined zdict. Based on patch by Xiang Zhang.

	bpo-24291 [https://bugs.python.org/issue24291]: Fix wsgiref.simple_server.WSGIRequestHandler to completely
write data to the client. Previously it could do partial writes and
truncate data. Also, wsgiref.handler.ServerHandler can now handle stdout
doing partial writes, but this is deprecated.

	bpo-21272 [https://bugs.python.org/issue21272]: Use _sysconfigdata.py to initialize distutils.sysconfig.

	bpo-19611 [https://bugs.python.org/issue19611]: inspect now reports the implicit .0 parameters
generated by the compiler for comprehension and generator expression
scopes as if they were positional-only parameters called implicit0.
Patch by Jelle Zijlstra.

	bpo-26809 [https://bugs.python.org/issue26809]: Add __all__ to string. Patch by Emanuel Barry.

	bpo-26373 [https://bugs.python.org/issue26373]: subprocess.Popen.communicate now correctly ignores
BrokenPipeError when the child process dies before .communicate() is
called in more/all circumstances.

	signal, socket, and ssl module IntEnum constant name lookups now return a
consistent name for values having multiple names. Ex: signal.Signals(6)
now refers to itself as signal.SIGALRM rather than flipping between that
and signal.SIGIOT based on the interpreter's hash randomization seed.

	bpo-27167 [https://bugs.python.org/issue27167]: Clarify the subprocess.CalledProcessError error message text
when the child process died due to a signal.

	bpo-25931 [https://bugs.python.org/issue25931]: Don't define socketserver.Forking* names on platforms such as
Windows that do not support os.fork().

	bpo-21776 [https://bugs.python.org/issue21776]: distutils.upload now correctly handles HTTPError. Initial patch
by Claudiu Popa.

	bpo-26526 [https://bugs.python.org/issue26526]: Replace custom parse tree validation in the parser module with
a simple DFA validator.

	bpo-27114 [https://bugs.python.org/issue27114]: Fix SSLContext._load_windows_store_certs fails with
PermissionError

	bpo-18383 [https://bugs.python.org/issue18383]: Avoid creating duplicate filters when using filterwarnings and
simplefilter. Based on patch by Alex Shkop.

	bpo-23026 [https://bugs.python.org/issue23026]: winreg.QueryValueEx() now return an integer for REG_QWORD type.

	bpo-26741 [https://bugs.python.org/issue26741]: subprocess.Popen destructor now emits a ResourceWarning warning
if the child process is still running.

	bpo-27056 [https://bugs.python.org/issue27056]: Optimize pickle.load() and pickle.loads(), up to 10% faster to
deserialize a lot of small objects.

	bpo-21271 [https://bugs.python.org/issue21271]: New keyword only parameters in reset_mock call.

IDLE

	bpo-5124 [https://bugs.python.org/issue5124]: Paste with text selected now replaces the selection on X11. This
matches how paste works on Windows, Mac, most modern Linux apps, and ttk
widgets. Original patch by Serhiy Storchaka.

	bpo-24750 [https://bugs.python.org/issue24750]: Switch all scrollbars in IDLE to ttk versions. Where needed,
minimal tests are added to cover changes.

	bpo-24759 [https://bugs.python.org/issue24759]: IDLE requires tk 8.5 and availability ttk widgets. Delete now
unneeded tk version tests and code for older versions. Add test for IDLE
syntax colorizer.

	bpo-27239 [https://bugs.python.org/issue27239]: idlelib.macosx.isXyzTk functions initialize as needed.

	bpo-27262 [https://bugs.python.org/issue27262]: move Aqua unbinding code, which enable context menus, to
macosx.

	bpo-24759 [https://bugs.python.org/issue24759]: Make clear in idlelib.idle_test.__init__ that the directory is
a private implementation of test.test_idle and tool for maintainers.

	bpo-27196 [https://bugs.python.org/issue27196]: Stop 'ThemeChanged' warnings when running IDLE tests. These
persisted after other warnings were suppressed in #20567. Apply Serhiy
Storchaka's update_idletasks solution to four test files. Record this
additional advice in idle_test/README.txt

	bpo-20567 [https://bugs.python.org/issue20567]: Revise idle_test/README.txt with advice about avoiding tk
warning messages from tests. Apply advice to several IDLE tests.

	bpo-24225 [https://bugs.python.org/issue24225]: Update idlelib/README.txt with new file names and event
handlers.

	bpo-27156 [https://bugs.python.org/issue27156]: Remove obsolete code not used by IDLE.

	bpo-27117 [https://bugs.python.org/issue27117]: Make colorizer htest and turtledemo work with dark themes. Move
code for configuring text widget colors to a new function.

	bpo-24225 [https://bugs.python.org/issue24225]: Rename many idlelib/*.py and idle_test/test_*.py files.
Edit files to replace old names with new names when the old name referred
to the module rather than the class it contained. See the issue and IDLE
section in What's New in 3.6 for more.

	bpo-26673 [https://bugs.python.org/issue26673]: When tk reports font size as 0, change to size 10. Such fonts
on Linux prevented the configuration dialog from opening.

	bpo-21939 [https://bugs.python.org/issue21939]: Add test for IDLE's percolator. Original patch by Saimadhav
Heblikar.

	bpo-21676 [https://bugs.python.org/issue21676]: Add test for IDLE's replace dialog. Original patch by Saimadhav
Heblikar.

	bpo-18410 [https://bugs.python.org/issue18410]: Add test for IDLE's search dialog. Original patch by Westley
Martínez.

	bpo-21703 [https://bugs.python.org/issue21703]: Add test for undo delegator. Patch mostly by Saimadhav
Heblikar .

	bpo-27044 [https://bugs.python.org/issue27044]: Add ConfigDialog.remove_var_callbacks to stop memory leaks.

	bpo-23977 [https://bugs.python.org/issue23977]: Add more asserts to test_delegator.

文档

	bpo-16484 [https://bugs.python.org/issue16484]: Change the default PYTHONDOCS URL to "https:", and fix the
resulting links to use lowercase. Patch by Sean Rodman, test by Kaushik
Nadikuditi.

	bpo-24136 [https://bugs.python.org/issue24136]: Document the new PEP 448 unpacking syntax of 3.5.

	bpo-22558 [https://bugs.python.org/issue22558]: Add remaining doc links to source code for Python-coded
modules. Patch by Yoni Lavi.

测试

	bpo-25285 [https://bugs.python.org/issue25285]: regrtest now uses subprocesses when the -j1 command line option
is used: each test file runs in a fresh child process. Before, the -j1
option was ignored.

	bpo-25285 [https://bugs.python.org/issue25285]: Tools/buildbot/test.bat script now uses -j1 by default to run
each test file in fresh child process.

Windows

	bpo-27064 [https://bugs.python.org/issue27064]: The py.exe launcher now defaults to Python 3. The Windows
launcher py.exe no longer prefers an installed Python 2 version over
Python 3 by default when used interactively.

构建

	bpo-27229 [https://bugs.python.org/issue27229]: Fix the cross-compiling pgen rule for in-tree builds. Patch by
Xavier de Gaye.

	bpo-26930 [https://bugs.python.org/issue26930]: 更新OS X 10.5+（仅32位）安装程序以构建并链接OpenSSL 1.0.2h。

Windows

	bpo-17500 [https://bugs.python.org/issue17500]: Remove unused and outdated icons. (See also:
https://github.com/python/pythondotorg/issues/945)

C API

	bpo-27186 [https://bugs.python.org/issue27186]: Add the PyOS_FSPath() function (part of PEP 519).

	bpo-26282 [https://bugs.python.org/issue26282]: PyArg_ParseTupleAndKeywords() now supports positional-only
parameters.

工具/示例

	bpo-26282 [https://bugs.python.org/issue26282]: Argument Clinic now supports positional-only and keyword
parameters in the same function.

Python 3.6.0 alpha 1

发布日期: 2016-05-16

核心与内置

	bpo-20041 [https://bugs.python.org/issue20041]: Fixed TypeError when frame.f_trace is set to None. Patch by
Xavier de Gaye.

	bpo-26168 [https://bugs.python.org/issue26168]: Fixed possible refleaks in failing Py_BuildValue() with the "N"
format unit.

	bpo-26991 [https://bugs.python.org/issue26991]: Fix possible refleak when creating a function with annotations.

	bpo-27039 [https://bugs.python.org/issue27039]: Fixed bytearray.remove() for values greater than 127. Based on
patch by Joe Jevnik.

	bpo-23640 [https://bugs.python.org/issue23640]: int.from_bytes() no longer bypasses constructors for
subclasses.

	bpo-27005 [https://bugs.python.org/issue27005]: Optimized the float.fromhex() class method for exact float. It
is now 2 times faster.

	bpo-18531 [https://bugs.python.org/issue18531]: Single var-keyword argument of dict subtype was passed
unscathed to the C-defined function. Now it is converted to exact dict.

	bpo-26811 [https://bugs.python.org/issue26811]: gc.get_objects() no longer contains a broken tuple with NULL
pointer.

	bpo-20120 [https://bugs.python.org/issue20120]: Use RawConfigParser for .pypirc parsing, removing support for
interpolation unintentionally added with move to Python 3. Behavior no
longer does any interpolation in .pypirc files, matching behavior in
Python 2.7 and Setuptools 19.0.

	bpo-26249 [https://bugs.python.org/issue26249]: Memory functions of the PyMem_Malloc() domain
(PYMEM_DOMAIN_MEM) now use the pymalloc allocator rather than system malloc(). Applications calling
PyMem_Malloc() without holding the GIL can now crash: use
PYTHONMALLOC=debug environment variable to validate the usage of
memory allocators in your application.

	bpo-26802 [https://bugs.python.org/issue26802]: Optimize function calls only using unpacking like
func(*tuple) (no other positional argument, no keyword): avoid copying
the tuple. Patch written by Joe Jevnik.

	bpo-26659 [https://bugs.python.org/issue26659]: Make the builtin slice type support cycle collection.

	bpo-26718 [https://bugs.python.org/issue26718]: super.__init__ no longer leaks memory if called multiple times.
NOTE: A direct call of super.__init__ is not endorsed!

	bpo-27138 [https://bugs.python.org/issue27138]: Fix the doc comment for FileFinder.find_spec().

	bpo-27147 [https://bugs.python.org/issue27147]: Mention PEP 420 in the importlib docs.

	bpo-25339 [https://bugs.python.org/issue25339]: PYTHONIOENCODING now has priority over locale in setting the
error handler for stdin and stdout.

	bpo-26494 [https://bugs.python.org/issue26494]: Fixed crash on iterating exhausting iterators. Affected classes
are generic sequence iterators, iterators of str, bytes, bytearray, list,
tuple, set, frozenset, dict, OrderedDict, corresponding views and
os.scandir() iterator.

	bpo-26574 [https://bugs.python.org/issue26574]: Optimize bytes.replace(b'', b'.') and
bytearray.replace(b'', b'.'). Patch written by Josh Snider.

	bpo-26581 [https://bugs.python.org/issue26581]: If coding cookie is specified multiple times on a line in
Python source code file, only the first one is taken to account.

	bpo-19711 [https://bugs.python.org/issue19711]: Add tests for reloading namespace packages.

	bpo-21099 [https://bugs.python.org/issue21099]: Switch applicable importlib tests to use PEP 451 API.

	bpo-26563 [https://bugs.python.org/issue26563]: Debug hooks on Python memory allocators now raise a fatal error
if functions of the PyMem_Malloc() family are called without
holding the GIL.

	bpo-26564 [https://bugs.python.org/issue26564]: On error, the debug hooks on Python memory allocators now use
the tracemalloc module to get the traceback where a memory block
was allocated.

	bpo-26558 [https://bugs.python.org/issue26558]: The debug hooks on Python memory allocator
PyObject_Malloc() now detect when functions are called without
holding the GIL.

	bpo-26516 [https://bugs.python.org/issue26516]: Add PYTHONMALLOC environment variable to set the
Python memory allocators and/or install debug hooks.

	bpo-26516 [https://bugs.python.org/issue26516]: The PyMem_SetupDebugHooks() function can now also be
used on Python compiled in release mode.

	bpo-26516 [https://bugs.python.org/issue26516]: The PYTHONMALLOCSTATS environment variable can now
also be used on Python compiled in release mode. It now has no effect if
set to an empty string.

	bpo-26516 [https://bugs.python.org/issue26516]: In debug mode, debug hooks are now also installed on Python
memory allocators when Python is configured without pymalloc.

	bpo-26464 [https://bugs.python.org/issue26464]: Fix str.translate() when string is ASCII and first replacements
removes character, but next replacement uses a non-ASCII character or a
string longer than 1 character. Regression introduced in Python 3.5.0.

	bpo-22836 [https://bugs.python.org/issue22836]: Ensure exception reports from PyErr_Display() and
PyErr_WriteUnraisable() are sensible even when formatting them produces
secondary errors. This affects the reports produced by
sys.__excepthook__() and when __del__() raises an exception.

	bpo-26302 [https://bugs.python.org/issue26302]: Correct behavior to reject comma as a legal character for
cookie names.

	bpo-26136 [https://bugs.python.org/issue26136]: Upgrade the warning when a generator raises StopIteration from
PendingDeprecationWarning to DeprecationWarning. Patch by Anish Shah.

	bpo-26204 [https://bugs.python.org/issue26204]: The compiler now ignores all constant statements: bytes, str,
int, float, complex, name constants (None, False, True), Ellipsis and
ast.Constant; not only str and int. For example, 1.0 is now ignored in
def f(): 1.0.

	bpo-4806 [https://bugs.python.org/issue4806]: Avoid masking the original TypeError exception when using star
(*) unpacking in function calls. Based on patch by Hagen Fürstenau
and Daniel Urban.

	bpo-26146 [https://bugs.python.org/issue26146]: Add a new kind of AST node: ast.Constant. It can be used by
external AST optimizers, but the compiler does not emit directly such
node.

	bpo-23601 [https://bugs.python.org/issue23601]: Sped-up allocation of dict key objects by using Python's small
object allocator. (Contributed by Julian Taylor.)

	bpo-18018 [https://bugs.python.org/issue18018]: Import raises ImportError instead of SystemError if a relative
import is attempted without a known parent package.

	bpo-25843 [https://bugs.python.org/issue25843]: When compiling code, don't merge constants if they are equal
but have a different types. For example, f1, f2 = lambda: 1, lambda:
1.0 is now correctly compiled to two different functions: f1()
returns 1 (int) and f2() returns 1.0 (float), even if
1 and 1.0 are equal.

	bpo-26107 [https://bugs.python.org/issue26107]: The format of the co_lnotab attribute of code objects
changes to support negative line number delta.

	bpo-26154 [https://bugs.python.org/issue26154]: Add a new private _PyThreadState_UncheckedGet() function to get
the current Python thread state, but don't issue a fatal error if it is
NULL. This new function must be used instead of accessing directly the
_PyThreadState_Current variable. The variable is no more exposed since
Python 3.5.1 to hide the exact implementation of atomic C types, to avoid
compiler issues.

	bpo-25791 [https://bugs.python.org/issue25791]: If __package__ != __spec__.parent or if neither __package__ or
__spec__ are defined then ImportWarning is raised.

	bpo-22995 [https://bugs.python.org/issue22995]: [UPDATE] Comment out the one of the pickleability tests in
_PyObject_GetState() due to regressions observed in Cython-based projects.

	bpo-25961 [https://bugs.python.org/issue25961]: Disallowed null characters in the type name.

	bpo-25973 [https://bugs.python.org/issue25973]: Fix segfault when an invalid nonlocal statement binds a name
starting with two underscores.

	bpo-22995 [https://bugs.python.org/issue22995]: Instances of extension types with a state that aren't
subclasses of list or dict and haven't implemented any pickle-related
methods (__reduce__, __reduce_ex__, __getnewargs__, __getnewargs_ex__, or
__getstate__), can no longer be pickled. Including memoryview.

	bpo-20440 [https://bugs.python.org/issue20440]: Massive replacing unsafe attribute setting code with special
macro Py_SETREF.

	bpo-25766 [https://bugs.python.org/issue25766]: Special method __bytes__() now works in str subclasses.

	bpo-25421 [https://bugs.python.org/issue25421]: __sizeof__ methods of builtin types now use dynamic basic size.
This allows sys.getsize() to work correctly with their subclasses with
__slots__ defined.

	bpo-25709 [https://bugs.python.org/issue25709]: Fixed problem with in-place string concatenation and utf-8
cache.

	bpo-5319 [https://bugs.python.org/issue5319]: New Py_FinalizeEx() API allowing Python to set an exit status of
120 on failure to flush buffered streams.

	bpo-25485 [https://bugs.python.org/issue25485]: telnetlib.Telnet is now a context manager.

	bpo-24097 [https://bugs.python.org/issue24097]: Fixed crash in object.__reduce__() if slot name is freed inside
__getattr__.

	bpo-24731 [https://bugs.python.org/issue24731]: Fixed crash on converting objects with special methods
__bytes__, __trunc__, and __float__ returning instances of subclasses of
bytes, int, and float to subclasses of bytes, int, and float
correspondingly.

	bpo-25630 [https://bugs.python.org/issue25630]: Fix a possible segfault during argument parsing in functions
that accept filesystem paths.

	bpo-23564 [https://bugs.python.org/issue23564]: Fixed a partially broken sanity check in the _posixsubprocess
internals regarding how fds_to_pass were passed to the child. The bug had
no actual impact as subprocess.py already avoided it.

	bpo-25388 [https://bugs.python.org/issue25388]: Fixed tokenizer crash when processing undecodable source code
with a null byte.

	bpo-25462 [https://bugs.python.org/issue25462]: The hash of the key now is calculated only once in most
operations in C implementation of OrderedDict.

	bpo-22995 [https://bugs.python.org/issue22995]: Default implementation of __reduce__ and __reduce_ex__ now
rejects builtin types with not defined __new__.

	bpo-24802 [https://bugs.python.org/issue24802]: Avoid buffer overreads when int(), float(), compile(), exec()
and eval() are passed bytes-like objects. These objects are not
necessarily terminated by a null byte, but the functions assumed they
were.

	bpo-25555 [https://bugs.python.org/issue25555]: Fix parser and AST: fill lineno and col_offset of "arg" node
when compiling AST from Python objects.

	bpo-24726 [https://bugs.python.org/issue24726]: Fixed a crash and leaking NULL in repr() of OrderedDict that
was mutated by direct calls of dict methods.

	bpo-25449 [https://bugs.python.org/issue25449]: Iterating OrderedDict with keys with unstable hash now raises
KeyError in C implementations as well as in Python implementation.

	bpo-25395 [https://bugs.python.org/issue25395]: Fixed crash when highly nested OrderedDict structures were
garbage collected.

	bpo-25401 [https://bugs.python.org/issue25401]: Optimize bytes.fromhex() and bytearray.fromhex(): they are now
between 2x and 3.5x faster.

	bpo-25399 [https://bugs.python.org/issue25399]: Optimize bytearray % args using the new private _PyBytesWriter
API. Formatting is now between 2.5 and 5 times faster.

	bpo-25274 [https://bugs.python.org/issue25274]: sys.setrecursionlimit() now raises a RecursionError if the new
recursion limit is too low depending at the current recursion depth.
Modify also the "lower-water mark" formula to make it monotonic. This mark
is used to decide when the overflowed flag of the thread state is reset.

	bpo-24402 [https://bugs.python.org/issue24402]: Fix input() to prompt to the redirected stdout when
sys.stdout.fileno() fails.

	bpo-25349 [https://bugs.python.org/issue25349]: Optimize bytes % args using the new private _PyBytesWriter API.
Formatting is now up to 2 times faster.

	bpo-24806 [https://bugs.python.org/issue24806]: Prevent builtin types that are not allowed to be subclassed
from being subclassed through multiple inheritance.

	bpo-25301 [https://bugs.python.org/issue25301]: The UTF-8 decoder is now up to 15 times as fast for error
handlers: ignore, replace and surrogateescape.

	bpo-24848 [https://bugs.python.org/issue24848]: Fixed a number of bugs in UTF-7 decoding of misformed data.

	bpo-25267 [https://bugs.python.org/issue25267]: The UTF-8 encoder is now up to 75 times as fast for error
handlers: ignore, replace, surrogateescape, surrogatepass.
Patch co-written with Serhiy Storchaka.

	bpo-25280 [https://bugs.python.org/issue25280]: Import trace messages emitted in verbose (-v) mode are no
longer formatted twice.

	bpo-25227 [https://bugs.python.org/issue25227]: Optimize ASCII and latin1 encoders with the surrogateescape
error handler: the encoders are now up to 3 times as fast. Initial patch
written by Serhiy Storchaka.

	bpo-25003 [https://bugs.python.org/issue25003]: On Solaris 11.3 or newer, os.urandom() now uses the getrandom()
function instead of the getentropy() function. The getentropy() function
is blocking to generate very good quality entropy, os.urandom() doesn't
need such high-quality entropy.

	bpo-9232 [https://bugs.python.org/issue9232]: Modify Python's grammar to allow trailing commas in the argument
list of a function declaration. For example, "def f(*, a = 3,): pass" is
now legal. Patch from Mark Dickinson.

	bpo-24965 [https://bugs.python.org/issue24965]: Implement PEP 498 "Literal String Interpolation". This allows
you to embed expressions inside f-strings, which are converted to normal
strings at run time. Given x=3, then f'value={x}' == 'value=3'. Patch by
Eric V. Smith.

	bpo-26478 [https://bugs.python.org/issue26478]: Fix semantic bugs when using binary operators with dictionary
views and tuples.

	bpo-26171 [https://bugs.python.org/issue26171]: Fix possible integer overflow and heap corruption in
zipimporter.get_data().

	bpo-25660 [https://bugs.python.org/issue25660]: Fix TAB key behaviour in REPL with readline.

	bpo-26288 [https://bugs.python.org/issue26288]: Optimize PyLong_AsDouble.

	bpo-26289 [https://bugs.python.org/issue26289]: Optimize floor and modulo division for single-digit longs.
Microbenchmarks show 2-2.5x improvement. Built-in 'divmod' function is
now also ~10% faster. (See also: bpo-26315 [https://bugs.python.org/issue26315])

	bpo-25887 [https://bugs.python.org/issue25887]: Raise a RuntimeError when a coroutine object is awaited more
than once.

库

	bpo-27057 [https://bugs.python.org/issue27057]: Fix os.set_inheritable() on Android, ioctl() is blocked by
SELinux and fails with EACCESS. The function now falls back to fcntl().
Patch written by Michał Bednarski.

	bpo-27014 [https://bugs.python.org/issue27014]: Fix infinite recursion using typing.py. Thanks to Kalle Tuure!

	bpo-27031 [https://bugs.python.org/issue27031]: Removed dummy methods in Tkinter widget classes: tk_menuBar()
and tk_bindForTraversal().

	bpo-14132 [https://bugs.python.org/issue14132]: Fix urllib.request redirect handling when the target only has a
query string. Original fix by Ján Janech.

	bpo-17214 [https://bugs.python.org/issue17214]: The "urllib.request" module now percent-encodes non-ASCII bytes
found in redirect target URLs. Some servers send Location header fields
with non-ASCII bytes, but "http.client" requires the request target to be
ASCII-encodable, otherwise a UnicodeEncodeError is raised. Based on patch
by Christian Heimes.

	bpo-27033 [https://bugs.python.org/issue27033]: The default value of the decode_data parameter for
smtpd.SMTPChannel and smtpd.SMTPServer constructors is changed to False.

	bpo-27034 [https://bugs.python.org/issue27034]: Removed deprecated class asynchat.fifo.

	bpo-26870 [https://bugs.python.org/issue26870]: Added readline.set_auto_history(), which can stop entries being
automatically added to the history list. Based on patch by Tyler
Crompton.

	bpo-26039 [https://bugs.python.org/issue26039]: zipfile.ZipFile.open() can now be used to write data into a ZIP
file, as well as for extracting data. Patch by Thomas Kluyver.

	bpo-26892 [https://bugs.python.org/issue26892]: Honor debuglevel flag in urllib.request.HTTPHandler. Patch
contributed by Chi Hsuan Yen.

	bpo-22274 [https://bugs.python.org/issue22274]: In the subprocess module, allow stderr to be redirected to
stdout even when stdout is not redirected. Patch by Akira Li.

	bpo-26807 [https://bugs.python.org/issue26807]: mock_open 'files' no longer error on readline at end of file.
Patch from Yolanda Robla.

	bpo-25745 [https://bugs.python.org/issue25745]: Fixed leaking a userptr in curses panel destructor.

	bpo-26977 [https://bugs.python.org/issue26977]: Removed unnecessary, and ignored, call to sum of squares helper
in statistics.pvariance.

	bpo-26002 [https://bugs.python.org/issue26002]: Use bisect in statistics.median instead of a linear search.
Patch by Upendra Kuma.

	bpo-25974 [https://bugs.python.org/issue25974]: Make use of new Decimal.as_integer_ratio() method in statistics
module. Patch by Stefan Krah.

	bpo-26996 [https://bugs.python.org/issue26996]: Add secrets module as described in PEP 506.

	bpo-26881 [https://bugs.python.org/issue26881]: The modulefinder module now supports extended opcode arguments.

	bpo-23815 [https://bugs.python.org/issue23815]: Fixed crashes related to directly created instances of types in
_tkinter and curses.panel modules.

	bpo-17765 [https://bugs.python.org/issue17765]: weakref.ref() no longer silently ignores keyword arguments.
Patch by Georg Brandl.

	bpo-26873 [https://bugs.python.org/issue26873]: xmlrpc now raises ResponseError on unsupported type tags
instead of silently return incorrect result.

	bpo-26915 [https://bugs.python.org/issue26915]: The __contains__ methods in the collections ABCs now check for
identity before checking equality. This better matches the behavior of
the concrete classes, allows sensible handling of NaNs, and makes it
easier to reason about container invariants.

	bpo-26711 [https://bugs.python.org/issue26711]: Fixed the comparison of plistlib.Data with other types.

	bpo-24114 [https://bugs.python.org/issue24114]: Fix an uninitialized variable in ctypes.util.

The bug only occurs on SunOS when the ctypes implementation searches for
the crle program. Patch by Xiang Zhang. Tested on SunOS by Kees Bos.

	bpo-26864 [https://bugs.python.org/issue26864]: In urllib.request, change the proxy bypass host checking
against no_proxy to be case-insensitive, and to not match unrelated host
names that happen to have a bypassed hostname as a suffix. Patch by Xiang
Zhang.

	bpo-24902 [https://bugs.python.org/issue24902]: Print server URL on http.server startup. Initial patch by
Felix Kaiser.

	bpo-25788 [https://bugs.python.org/issue25788]: fileinput.hook_encoded() now supports an "errors" argument for
passing to open. Original patch by Joseph Hackman.

	bpo-26634 [https://bugs.python.org/issue26634]: recursive_repr() now sets __qualname__ of wrapper. Patch by
Xiang Zhang.

	bpo-26804 [https://bugs.python.org/issue26804]: urllib.request will prefer lower_case proxy environment
variables over UPPER_CASE or Mixed_Case ones. Patch contributed by
Hans-Peter Jansen.

	bpo-26837 [https://bugs.python.org/issue26837]: assertSequenceEqual() now correctly outputs non-stringified
differing items (like bytes in the -b mode). This affects
assertListEqual() and assertTupleEqual().

	bpo-26041 [https://bugs.python.org/issue26041]: Remove "will be removed in Python 3.7" from deprecation
messages of platform.dist() and platform.linux_distribution(). Patch by
Kumaripaba Miyurusara Athukorala.

	bpo-26822 [https://bugs.python.org/issue26822]: itemgetter, attrgetter and methodcaller objects no longer
silently ignore keyword arguments.

	bpo-26733 [https://bugs.python.org/issue26733]: Disassembling a class now disassembles class and static
methods. Patch by Xiang Zhang.

	bpo-26801 [https://bugs.python.org/issue26801]: Fix error handling in shutil.get_terminal_size(), catch
AttributeError instead of NameError. Patch written by
Emanuel Barry.

	bpo-24838 [https://bugs.python.org/issue24838]: tarfile's ustar and gnu formats now correctly calculate name
and link field limits for multibyte character encodings like utf-8.

安全

	bpo-26657 [https://bugs.python.org/issue26657]: Fix directory traversal vulnerability with http.server on
Windows. This fixes a regression that was introduced in 3.3.4rc1 and
3.4.0rc1. Based on patch by Philipp Hagemeister.

库

	bpo-26717 [https://bugs.python.org/issue26717]: Stop encoding Latin-1-ized WSGI paths with UTF-8. Patch by
Anthony Sottile.

	bpo-26782 [https://bugs.python.org/issue26782]: Add STARTUPINFO to subprocess.__all__ on Windows.

	bpo-26404 [https://bugs.python.org/issue26404]: Add context manager to socketserver. Patch by Aviv Palivoda.

	bpo-26735 [https://bugs.python.org/issue26735]: Fix os.urandom() on Solaris 11.3 and newer when reading
more than 1,024 bytes: call getrandom() multiple times with a limit of
1024 bytes per call.

	bpo-26585 [https://bugs.python.org/issue26585]: Eliminate http.server._quote_html() and use
html.escape(quote=False). Patch by Xiang Zhang.

	bpo-26685 [https://bugs.python.org/issue26685]: Raise OSError if closing a socket fails.

	bpo-16329 [https://bugs.python.org/issue16329]: Add .webm to mimetypes.types_map. Patch by Giampaolo Rodola'.

	bpo-13952 [https://bugs.python.org/issue13952]: Add .csv to mimetypes.types_map. Patch by Geoff Wilson.

	bpo-26587 [https://bugs.python.org/issue26587]: the site module now allows .pth files to specify files to be
added to sys.path (e.g. zip files).

	bpo-25609 [https://bugs.python.org/issue25609]: Introduce contextlib.AbstractContextManager and
typing.ContextManager.

	bpo-26709 [https://bugs.python.org/issue26709]: Fixed Y2038 problem in loading binary PLists.

	bpo-23735 [https://bugs.python.org/issue23735]: Handle terminal resizing with Readline 6.3+ by installing our
own SIGWINCH handler. Patch by Eric Price.

	bpo-25951 [https://bugs.python.org/issue25951]: Change SSLSocket.sendall() to return None, as explicitly
documented for plain socket objects. Patch by Aviv Palivoda.

	bpo-26586 [https://bugs.python.org/issue26586]: In http.server, respond with "413 Request header fields too
large" if there are too many header fields to parse, rather than killing
the connection and raising an unhandled exception. Patch by Xiang Zhang.

	bpo-26676 [https://bugs.python.org/issue26676]: Added missing XMLPullParser to ElementTree.__all__.

	bpo-22854 [https://bugs.python.org/issue22854]: Change BufferedReader.writable() and BufferedWriter.readable()
to always return False.

	bpo-26492 [https://bugs.python.org/issue26492]: Exhausted iterator of array.array now conforms with the
behavior of iterators of other mutable sequences: it lefts exhausted even
if iterated array is extended.

	bpo-26641 [https://bugs.python.org/issue26641]: doctest.DocFileTest and doctest.testfile() now support packages
(module splitted into multiple directories) for the package parameter.

	bpo-25195 [https://bugs.python.org/issue25195]: Fix a regression in mock.MagicMock. _Call is a subclass of
tuple (changeset 3603bae63c13 only works for classes) so we need to
implement __ne__ ourselves. Patch by Andrew Plummer.

	bpo-26644 [https://bugs.python.org/issue26644]: Raise ValueError rather than SystemError when a negative length
is passed to SSLSocket.recv() or read().

	bpo-23804 [https://bugs.python.org/issue23804]: Fix SSL recv(0) and read(0) methods to return zero bytes
instead of up to 1024.

	bpo-26616 [https://bugs.python.org/issue26616]: Fixed a bug in datetime.astimezone() method.

	bpo-26637 [https://bugs.python.org/issue26637]: The importlib module now emits an ImportError
rather than a TypeError if __import__() is tried during the
Python shutdown process but sys.path is already cleared (set to
None).

	bpo-21925 [https://bugs.python.org/issue21925]: warnings.formatwarning() now catches exceptions when
calling linecache.getline() and
tracemalloc.get_object_traceback() to be able to log
ResourceWarning emitted late during the Python shutdown process.

	bpo-23848 [https://bugs.python.org/issue23848]: On Windows, faulthandler.enable() now also installs an
exception handler to dump the traceback of all Python threads on any
Windows exception, not only on UNIX signals (SIGSEGV, SIGFPE, SIGABRT).

	bpo-26530 [https://bugs.python.org/issue26530]: Add C functions _PyTraceMalloc_Track() and
_PyTraceMalloc_Untrack() to track memory blocks using the
tracemalloc module. Add _PyTraceMalloc_GetTraceback() to
get the traceback of an object.

	bpo-26588 [https://bugs.python.org/issue26588]: The _tracemalloc now supports tracing memory allocations of
multiple address spaces (domains).

	bpo-24266 [https://bugs.python.org/issue24266]: Ctrl+C during Readline history search now cancels the search
mode when compiled with Readline 7.

	bpo-26590 [https://bugs.python.org/issue26590]: Implement a safe finalizer for the _socket.socket type. It now
releases the GIL to close the socket.

	bpo-18787 [https://bugs.python.org/issue18787]: spwd.getspnam() now raises a PermissionError if the user
doesn't have privileges.

	bpo-26560 [https://bugs.python.org/issue26560]: Avoid potential ValueError in BaseHandler.start_response.
Initial patch by Peter Inglesby.

	bpo-26567 [https://bugs.python.org/issue26567]: Add a new function PyErr_ResourceWarning() function to
pass the destroyed object. Add a source attribute to
warnings.WarningMessage. Add warnings._showwarnmsg() which uses
tracemalloc to get the traceback where source object was allocated.

安全

	bpo-26313 [https://bugs.python.org/issue26313]: ssl.py _load_windows_store_certs fails if windows cert store is
empty. Patch by Baji.

库

	bpo-26569 [https://bugs.python.org/issue26569]: Fix pyclbr.readmodule() and pyclbr.readmodule_ex()
to support importing packages.

	bpo-26499 [https://bugs.python.org/issue26499]: Account for remaining Content-Length in HTTPResponse.readline()
and read1(). Based on patch by Silent Ghost. Also document that
HTTPResponse now supports these methods.

	bpo-25320 [https://bugs.python.org/issue25320]: Handle sockets in directories unittest discovery is scanning.
Patch from Victor van den Elzen.

	bpo-16181 [https://bugs.python.org/issue16181]: cookiejar.http2time() now returns None if year is higher than
datetime.MAXYEAR.

	bpo-26513 [https://bugs.python.org/issue26513]: Fixes platform module detection of Windows Server

	bpo-23718 [https://bugs.python.org/issue23718]: Fixed parsing time in week 0 before Jan 1. Original patch by
Tamás Bence Gedai.

	bpo-26323 [https://bugs.python.org/issue26323]: Add Mock.assert_called() and Mock.assert_called_once() methods
to unittest.mock. Patch written by Amit Saha.

	bpo-20589 [https://bugs.python.org/issue20589]: Invoking Path.owner() and Path.group() on Windows now raise
NotImplementedError instead of ImportError.

	bpo-26177 [https://bugs.python.org/issue26177]: Fixed the keys() method for Canvas and Scrollbar widgets.

	bpo-15068 [https://bugs.python.org/issue15068]: Got rid of excessive buffering in fileinput. The bufsize
parameter is now deprecated and ignored.

	bpo-19475 [https://bugs.python.org/issue19475]: Added an optional argument timespec to the datetime isoformat()
method to choose the precision of the time component.

	bpo-2202 [https://bugs.python.org/issue2202]: Fix UnboundLocalError in
AbstractDigestAuthHandler.get_algorithm_impls. Initial patch by Mathieu
Dupuy.

	bpo-26167 [https://bugs.python.org/issue26167]: Minimized overhead in copy.copy() and copy.deepcopy().
Optimized copying and deepcopying bytearrays, NotImplemented, slices,
short lists, tuples, dicts, sets.

	bpo-25718 [https://bugs.python.org/issue25718]: Fixed pickling and copying the accumulate() iterator with total
is None.

	bpo-26475 [https://bugs.python.org/issue26475]: Fixed debugging output for regular expressions with the (?x)
flag.

	bpo-26482 [https://bugs.python.org/issue26482]: Allowed pickling recursive dequeues.

	bpo-26335 [https://bugs.python.org/issue26335]: Make mmap.write() return the number of bytes written like other
write methods. Patch by Jakub Stasiak.

	bpo-26457 [https://bugs.python.org/issue26457]: Fixed the subnets() methods in IP network classes for the case
when resulting prefix length is equal to maximal prefix length. Based on
patch by Xiang Zhang.

	bpo-26385 [https://bugs.python.org/issue26385]: Remove the file if the internal open() call in
NamedTemporaryFile() fails. Patch by Silent Ghost.

	bpo-26402 [https://bugs.python.org/issue26402]: Fix XML-RPC client to retry when the server shuts down a
persistent connection. This was a regression related to the new
http.client.RemoteDisconnected exception in 3.5.0a4.

	bpo-25913 [https://bugs.python.org/issue25913]: Leading <~ is optional now in base64.a85decode() with
adobe=True. Patch by Swati Jaiswal.

	bpo-26186 [https://bugs.python.org/issue26186]: Remove an invalid type check in importlib.util.LazyLoader.

	bpo-26367 [https://bugs.python.org/issue26367]: importlib.__import__() raises ImportError like
builtins.__import__() when level is specified but without an
accompanying package specified.

	bpo-26309 [https://bugs.python.org/issue26309]: In the "socketserver" module, shut down the request (closing
the connected socket) when verify_request() returns false. Patch by Aviv
Palivoda.

	bpo-23430 [https://bugs.python.org/issue23430]: Change the socketserver module to only catch exceptions raised
from a request handler that are derived from Exception (instead of
BaseException). Therefore SystemExit and KeyboardInterrupt no longer
trigger the handle_error() method, and will now to stop a single-threaded
server.

安全

	bpo-25939 [https://bugs.python.org/issue25939]: On Windows open the cert store readonly in
ssl.enum_certificates.

库

	bpo-25995 [https://bugs.python.org/issue25995]: os.walk() no longer uses FDs proportional to the tree depth.

	bpo-25994 [https://bugs.python.org/issue25994]: Added the close() method and the support of the context manager
protocol for the os.scandir() iterator.

	bpo-23992 [https://bugs.python.org/issue23992]: multiprocessing: make MapResult not fail-fast upon exception.

	bpo-26243 [https://bugs.python.org/issue26243]: Support keyword arguments to zlib.compress(). Patch by Aviv
Palivoda.

	bpo-26117 [https://bugs.python.org/issue26117]: The os.scandir() iterator now closes file descriptor not only
when the iteration is finished, but when it was failed with error.

	bpo-25949 [https://bugs.python.org/issue25949]: __dict__ for an OrderedDict instance is now created only when
needed.

	bpo-25911 [https://bugs.python.org/issue25911]: Restored support of bytes paths in os.walk() on Windows.

	bpo-26045 [https://bugs.python.org/issue26045]: Add UTF-8 suggestion to error message when posting a
non-Latin-1 string with http.client.

	bpo-26039 [https://bugs.python.org/issue26039]: Added zipfile.ZipInfo.from_file() and zipinfo.ZipInfo.is_dir().
Patch by Thomas Kluyver.

	bpo-12923 [https://bugs.python.org/issue12923]: Reset FancyURLopener's redirect counter even if there is an
exception. Based on patches by Brian Brazil and Daniel Rocco.

	bpo-25945 [https://bugs.python.org/issue25945]: Fixed a crash when unpickle the functools.partial object with
wrong state. Fixed a leak in failed functools.partial constructor. "args"
and "keywords" attributes of functools.partial have now always types tuple
and dict correspondingly.

	bpo-26202 [https://bugs.python.org/issue26202]: copy.deepcopy() now correctly copies range() objects with
non-atomic attributes.

	bpo-23076 [https://bugs.python.org/issue23076]: Path.glob() now raises a ValueError if it's called with an
invalid pattern. Patch by Thomas Nyberg.

	bpo-19883 [https://bugs.python.org/issue19883]: Fixed possible integer overflows in zipimport.

	bpo-26227 [https://bugs.python.org/issue26227]: On Windows, getnameinfo(), gethostbyaddr() and
gethostbyname_ex() functions of the socket module now decode the hostname
from the ANSI code page rather than UTF-8.

	bpo-26099 [https://bugs.python.org/issue26099]: The site module now writes an error into stderr if
sitecustomize module can be imported but executing the module raise an
ImportError. Same change for usercustomize.

	bpo-26147 [https://bugs.python.org/issue26147]: xmlrpc now works with strings not encodable with used non-UTF-8
encoding.

	bpo-25935 [https://bugs.python.org/issue25935]: Garbage collector now breaks reference loops with OrderedDict.

	bpo-16620 [https://bugs.python.org/issue16620]: Fixed AttributeError in msilib.Directory.glob().

	bpo-26013 [https://bugs.python.org/issue26013]: Added compatibility with broken protocol 2 pickles created in
old Python 3 versions (3.4.3 and lower).

	bpo-26129 [https://bugs.python.org/issue26129]: Deprecated accepting non-integers in grp.getgrgid().

	bpo-25850 [https://bugs.python.org/issue25850]: Use cross-compilation by default for 64-bit Windows.

	bpo-25822 [https://bugs.python.org/issue25822]: Add docstrings to the fields of urllib.parse results. Patch
contributed by Swati Jaiswal.

	bpo-22642 [https://bugs.python.org/issue22642]: Convert trace module option parsing mechanism to argparse.
Patch contributed by SilentGhost.

	bpo-24705 [https://bugs.python.org/issue24705]: Fix sysconfig._parse_makefile not expanding ${} vars appearing
before $() vars.

	bpo-26069 [https://bugs.python.org/issue26069]: Remove the deprecated apis in the trace module.

	bpo-22138 [https://bugs.python.org/issue22138]: Fix mock.patch behavior when patching descriptors. Restore
original values after patching. Patch contributed by Sean McCully.

	bpo-25672 [https://bugs.python.org/issue25672]: In the ssl module, enable the SSL_MODE_RELEASE_BUFFERS mode
option if it is safe to do so.

	bpo-26012 [https://bugs.python.org/issue26012]: Don't traverse into symlinks for ** pattern in
pathlib.Path.[r]glob().

	bpo-24120 [https://bugs.python.org/issue24120]: Ignore PermissionError when traversing a tree with
pathlib.Path.[r]glob(). Patch by Ulrich Petri.

	bpo-21815 [https://bugs.python.org/issue21815]: Accept] characters in the data portion of imap responses, in
order to handle the flags with square brackets accepted and produced by
servers such as gmail.

	bpo-25447 [https://bugs.python.org/issue25447]: fileinput now uses sys.stdin as-is if it does not have a buffer
attribute (restores backward compatibility).

	bpo-25971 [https://bugs.python.org/issue25971]: Optimized creating Fractions from floats by 2 times and from
Decimals by 3 times.

	bpo-25802 [https://bugs.python.org/issue25802]: Document as deprecated the remaining implementations of
importlib.abc.Loader.load_module().

	bpo-25928 [https://bugs.python.org/issue25928]: Add Decimal.as_integer_ratio().

	bpo-25447 [https://bugs.python.org/issue25447]: Copying the lru_cache() wrapper object now always works,
independently from the type of the wrapped object (by returning the
original object unchanged).

	bpo-25768 [https://bugs.python.org/issue25768]: Have the functions in compileall return booleans instead of
ints and add proper documentation and tests for the return values.

	bpo-24103 [https://bugs.python.org/issue24103]: Fixed possible use after free in ElementTree.XMLPullParser.

	bpo-25860 [https://bugs.python.org/issue25860]: os.fwalk() no longer skips remaining directories when error
occurs. Original patch by Samson Lee.

	bpo-25914 [https://bugs.python.org/issue25914]: Fixed and simplified OrderedDict.__sizeof__.

	bpo-25869 [https://bugs.python.org/issue25869]: Optimized deepcopying ElementTree; it is now 20 times faster.

	bpo-25873 [https://bugs.python.org/issue25873]: Optimized iterating ElementTree. Iterating elements
Element.iter() is now 40% faster, iterating text Element.itertext() is now
up to 2.5 times faster.

	bpo-25902 [https://bugs.python.org/issue25902]: Fixed various refcount issues in ElementTree iteration.

	bpo-22227 [https://bugs.python.org/issue22227]: The TarFile iterator is reimplemented using generator. This
implementation is simpler that using class.

	bpo-25638 [https://bugs.python.org/issue25638]: Optimized ElementTree.iterparse(); it is now 2x faster.
Optimized ElementTree parsing; it is now 10% faster.

	bpo-25761 [https://bugs.python.org/issue25761]: Improved detecting errors in broken pickle data.

	bpo-25717 [https://bugs.python.org/issue25717]: Restore the previous behaviour of tolerating most fstat()
errors when opening files. This was a regression in 3.5a1, and stopped
anonymous temporary files from working in special cases.

	bpo-24903 [https://bugs.python.org/issue24903]: Fix regression in number of arguments compileall accepts when
'-d' is specified. The check on the number of arguments has been dropped
completely as it never worked correctly anyway.

	bpo-25764 [https://bugs.python.org/issue25764]: In the subprocess module, preserve any exception caused by
fork() failure when preexec_fn is used.

	bpo-25771 [https://bugs.python.org/issue25771]: Tweak the exception message for importlib.util.resolve_name()
when 'package' isn't specified but necessary.

	bpo-6478 [https://bugs.python.org/issue6478]: _strptime's regexp cache now is reset after changing timezone
with time.tzset().

	bpo-14285 [https://bugs.python.org/issue14285]: When executing a package with the "python -m package" option,
and package initialization fails, a proper traceback is now reported. The
"runpy" module now lets exceptions from package initialization pass back
to the caller, rather than raising ImportError.

	bpo-19771 [https://bugs.python.org/issue19771]: Also in runpy and the "-m" option, omit the irrelevant message
". . . is a package and cannot be directly executed" if the package could
not even be initialized (e.g. due to a bad *.pyc file).

	bpo-25177 [https://bugs.python.org/issue25177]: Fixed problem with the mean of very small and very large
numbers. As a side effect, statistics.mean and statistics.variance should
be significantly faster.

	bpo-25718 [https://bugs.python.org/issue25718]: Fixed copying object with state with boolean value is false.

	bpo-10131 [https://bugs.python.org/issue10131]: Fixed deep copying of minidom documents. Based on patch by
Marian Ganisin.

	bpo-7990 [https://bugs.python.org/issue7990]: dir() on ElementTree.Element now lists properties: "tag",
"text", "tail" and "attrib". Original patch by Santoso Wijaya.

	bpo-25725 [https://bugs.python.org/issue25725]: Fixed a reference leak in pickle.loads() when unpickling
invalid data including tuple instructions.

	bpo-25663 [https://bugs.python.org/issue25663]: In the Readline completer, avoid listing duplicate global
names, and search the global namespace before searching builtins.

	bpo-25688 [https://bugs.python.org/issue25688]: Fixed file leak in ElementTree.iterparse() raising an error.

	bpo-23914 [https://bugs.python.org/issue23914]: Fixed SystemError raised by unpickler on broken pickle data.

	bpo-25691 [https://bugs.python.org/issue25691]: Fixed crash on deleting ElementTree.Element attributes.

	bpo-25624 [https://bugs.python.org/issue25624]: ZipFile now always writes a ZIP_STORED header for directory
entries. Patch by Dingyuan Wang.

	bpo-25626 [https://bugs.python.org/issue25626]: Change three zlib functions to accept sizes that fit in
Py_ssize_t, but internally cap those sizes to UINT_MAX. This resolves a
regression in 3.5 where GzipFile.read() failed to read chunks larger than
2 or 4 GiB. The change affects the zlib.Decompress.decompress()
max_length parameter, the zlib.decompress() bufsize parameter, and the
zlib.Decompress.flush() length parameter.

	bpo-25583 [https://bugs.python.org/issue25583]: Avoid incorrect errors raised by os.makedirs(exist_ok=True)
when the OS gives priority to errors such as EACCES over EEXIST.

	bpo-25593 [https://bugs.python.org/issue25593]: Change semantics of EventLoop.stop() in asyncio.

	bpo-6973 [https://bugs.python.org/issue6973]: When we know a subprocess.Popen process has died, do not allow
the send_signal(), terminate(), or kill() methods to do anything as they
could potentially signal a different process.

	bpo-23883 [https://bugs.python.org/issue23883]: Added missing APIs to __all__ to match the documented APIs for
the following modules: calendar, csv, enum, fileinput, ftplib, logging,
optparse, tarfile, threading and wave. Also added a
test.support.check__all__() helper. Patches by Jacek Kołodziej, Mauro S.
M. Rodrigues and Joel Taddei.

	bpo-25590 [https://bugs.python.org/issue25590]: In the Readline completer, only call getattr() once per
attribute. Also complete names of attributes such as properties and slots
which are listed by dir() but not yet created on an instance.

	bpo-25498 [https://bugs.python.org/issue25498]: Fix a crash when garbage-collecting ctypes objects created by
wrapping a memoryview. This was a regression made in 3.5a1. Based on
patch by Eryksun.

	bpo-25584 [https://bugs.python.org/issue25584]: Added "escape" to the __all__ list in the glob module.

	bpo-25584 [https://bugs.python.org/issue25584]: Fixed recursive glob() with patterns starting with **.

	bpo-25446 [https://bugs.python.org/issue25446]: Fix regression in smtplib's AUTH LOGIN support.

	bpo-18010 [https://bugs.python.org/issue18010]: Fix the pydoc web server's module search function to handle
exceptions from importing packages.

	bpo-25554 [https://bugs.python.org/issue25554]: Got rid of circular references in regular expression parsing.

	bpo-18973 [https://bugs.python.org/issue18973]: Command-line interface of the calendar module now uses argparse
instead of optparse.

	bpo-25510 [https://bugs.python.org/issue25510]: fileinput.FileInput.readline() now returns b'' instead of '' at
the end if the FileInput was opened with binary mode. Patch by Ryosuke
Ito.

	bpo-25503 [https://bugs.python.org/issue25503]: Fixed inspect.getdoc() for inherited docstrings of properties.
Original patch by John Mark Vandenberg.

	bpo-25515 [https://bugs.python.org/issue25515]: Always use os.urandom as a source of randomness in uuid.uuid4.

	bpo-21827 [https://bugs.python.org/issue21827]: Fixed textwrap.dedent() for the case when largest common
whitespace is a substring of smallest leading whitespace. Based on patch
by Robert Li.

	bpo-25447 [https://bugs.python.org/issue25447]: The lru_cache() wrapper objects now can be copied and pickled
(by returning the original object unchanged).

	bpo-25390 [https://bugs.python.org/issue25390]: typing: Don't crash on Union[str, Pattern].

	bpo-25441 [https://bugs.python.org/issue25441]: asyncio: Raise error from drain() when socket is closed.

	bpo-25410 [https://bugs.python.org/issue25410]: Cleaned up and fixed minor bugs in C implementation of
OrderedDict.

	bpo-25411 [https://bugs.python.org/issue25411]: Improved Unicode support in SMTPHandler through better use of
the email package. Thanks to user simon04 for the patch.

	Move the imp module from a PendingDeprecationWarning to
DeprecationWarning.

	bpo-25407 [https://bugs.python.org/issue25407]: Remove mentions of the formatter module being removed in Python
3.6.

	bpo-25406 [https://bugs.python.org/issue25406]: Fixed a bug in C implementation of OrderedDict.move_to_end()
that caused segmentation fault or hang in iterating after moving several
items to the start of ordered dict.

	bpo-25382 [https://bugs.python.org/issue25382]: pickletools.dis() now outputs implicit memo index for the
MEMOIZE opcode.

	bpo-25357 [https://bugs.python.org/issue25357]: Add an optional newline parameter to binascii.b2a_base64().
base64.b64encode() uses it to avoid a memory copy.

	bpo-24164 [https://bugs.python.org/issue24164]: Objects that need calling __new__ with keyword arguments,
can now be pickled using pickle protocols older than protocol version 4.

	bpo-25364 [https://bugs.python.org/issue25364]: zipfile now works in threads disabled builds.

	bpo-25328 [https://bugs.python.org/issue25328]: smtpd's SMTPChannel now correctly raises a ValueError if both
decode_data and enable_SMTPUTF8 are set to true.

	bpo-16099 [https://bugs.python.org/issue16099]: RobotFileParser now supports Crawl-delay and Request-rate
extensions. Patch by Nikolay Bogoychev.

	bpo-25316 [https://bugs.python.org/issue25316]: distutils raises OSError instead of DistutilsPlatformError when
MSVC is not installed.

	bpo-25380 [https://bugs.python.org/issue25380]: Fixed protocol for the STACK_GLOBAL opcode in
pickletools.opcodes.

	bpo-23972 [https://bugs.python.org/issue23972]: Updates asyncio datagram create method allowing reuseport and
reuseaddr socket options to be set prior to binding the socket. Mirroring
the existing asyncio create_server method the reuseaddr option for
datagram sockets defaults to True if the O/S is 'posix' (except if the
platform is Cygwin). Patch by Chris Laws.

	bpo-25304 [https://bugs.python.org/issue25304]: Add asyncio.run_coroutine_threadsafe(). This lets you submit a
coroutine to a loop from another thread, returning a
concurrent.futures.Future. By Vincent Michel.

	bpo-25232 [https://bugs.python.org/issue25232]: Fix CGIRequestHandler to split the query from the URL at the
first question mark (?) rather than the last. Patch from Xiang Zhang.

	bpo-24657 [https://bugs.python.org/issue24657]: Prevent CGIRequestHandler from collapsing slashes in the query
part of the URL as if it were a path. Patch from Xiang Zhang.

	bpo-25287 [https://bugs.python.org/issue25287]: Don't add crypt.METHOD_CRYPT to crypt.methods if it's not
supported. Check if it is supported, it may not be supported on OpenBSD
for example.

	bpo-23600 [https://bugs.python.org/issue23600]: Default implementation of tzinfo.fromutc() was returning wrong
results in some cases.

	bpo-25203 [https://bugs.python.org/issue25203]: Failed readline.set_completer_delims() no longer left the
module in inconsistent state.

	bpo-25011 [https://bugs.python.org/issue25011]: rlcompleter now omits private and special attribute names
unless the prefix starts with underscores.

	bpo-25209 [https://bugs.python.org/issue25209]: rlcompleter now can add a space or a colon after completed
keyword.

	bpo-22241 [https://bugs.python.org/issue22241]: timezone.utc name is now plain 'UTC', not 'UTC-00:00'.

	bpo-23517 [https://bugs.python.org/issue23517]: fromtimestamp() and utcfromtimestamp() methods of
datetime.datetime now round microseconds to nearest with ties going to
nearest even integer (ROUND_HALF_EVEN), as round(float), instead of
rounding towards -Infinity (ROUND_FLOOR).

	bpo-23552 [https://bugs.python.org/issue23552]: Timeit now warns when there is substantial (4x) variance
between best and worst times. Patch from Serhiy Storchaka.

	bpo-24633 [https://bugs.python.org/issue24633]: site-packages/README -> README.txt.

	bpo-24879 [https://bugs.python.org/issue24879]: help() and pydoc can now list named tuple fields in the order
they were defined rather than alphabetically. The ordering is determined
by the _fields attribute if present.

	bpo-24874 [https://bugs.python.org/issue24874]: Improve speed of itertools.cycle() and make its pickle more
compact.

	Fix crash in itertools.cycle.__setstate__() when the first argument wasn't
a list.

	bpo-20059 [https://bugs.python.org/issue20059]: urllib.parse raises ValueError on all invalid ports. Patch by
Martin Panter.

	bpo-24360 [https://bugs.python.org/issue24360]: Improve __repr__ of argparse.Namespace() for invalid
identifiers. Patch by Matthias Bussonnier.

	bpo-23426 [https://bugs.python.org/issue23426]: run_setup was broken in distutils. Patch from Alexander
Belopolsky.

	bpo-13938 [https://bugs.python.org/issue13938]: 2to3 converts StringTypes to a tuple. Patch from Mark Hammond.

	bpo-2091 [https://bugs.python.org/issue2091]: open() accepted a 'U' mode string containing '+', but 'U' can
only be used with 'r'. Patch from Jeff Balogh and John O'Connor.

	bpo-8585 [https://bugs.python.org/issue8585]: improved tests for zipimporter2. Patch from Mark Lawrence.

	bpo-18622 [https://bugs.python.org/issue18622]: unittest.mock.mock_open().reset_mock would recurse infinitely.
Patch from Nicola Palumbo and Laurent De Buyst.

	bpo-24426 [https://bugs.python.org/issue24426]: Fast searching optimization in regular expressions now works
for patterns that starts with capturing groups. Fast searching
optimization now can't be disabled at compile time.

	bpo-23661 [https://bugs.python.org/issue23661]: unittest.mock side_effects can now be exceptions again. This
was a regression vs Python 3.4. Patch from Ignacio Rossi

	bpo-13248 [https://bugs.python.org/issue13248]: Remove deprecated inspect.getmoduleinfo function.

	bpo-25578 [https://bugs.python.org/issue25578]: Fix (another) memory leak in SSLSocket.getpeercer().

	bpo-25530 [https://bugs.python.org/issue25530]: Disable the vulnerable SSLv3 protocol by default when creating
ssl.SSLContext.

	bpo-25569 [https://bugs.python.org/issue25569]: Fix memory leak in SSLSocket.getpeercert().

	bpo-25471 [https://bugs.python.org/issue25471]: Sockets returned from accept() shouldn't appear to be
nonblocking.

	bpo-25319 [https://bugs.python.org/issue25319]: When threading.Event is reinitialized, the underlying condition
should use a regular lock rather than a recursive lock.

	Skip getaddrinfo if host is already resolved. Patch by A. Jesse Jiryu
Davis.

	bpo-26050 [https://bugs.python.org/issue26050]: Add asyncio.StreamReader.readuntil() method. Patch by Марк
Коренберг.

	bpo-25924 [https://bugs.python.org/issue25924]: Avoid unnecessary serialization of getaddrinfo(3) calls on OS X
versions 10.5 or higher. Original patch by A. Jesse Jiryu Davis.

	bpo-26406 [https://bugs.python.org/issue26406]: Avoid unnecessary serialization of getaddrinfo(3) calls on
current versions of OpenBSD and NetBSD. Patch by A. Jesse Jiryu Davis.

	bpo-26848 [https://bugs.python.org/issue26848]: Fix asyncio/subprocess.communicate() to handle empty input.
Patch by Jack O'Connor.

	bpo-27040 [https://bugs.python.org/issue27040]: Add loop.get_exception_handler method

	bpo-27041 [https://bugs.python.org/issue27041]: asyncio: Add loop.create_future method

IDLE

	bpo-20640 [https://bugs.python.org/issue20640]: Add tests for idlelib.configHelpSourceEdit. Patch by Saimadhav
Heblikar.

	In the 'IDLE-console differences' section of the IDLE doc, clarify how
running with IDLE affects sys.modules and the standard streams.

	bpo-25507 [https://bugs.python.org/issue25507]: fix incorrect change in IOBinding that prevented printing.
Augment IOBinding htest to include all major IOBinding functions.

	bpo-25905 [https://bugs.python.org/issue25905]: Revert unwanted conversion of ' to ’ RIGHT SINGLE QUOTATION
MARK in README.txt and open this and NEWS.txt with 'ascii'. Re-encode
CREDITS.txt to utf-8 and open it with 'utf-8'.

	bpo-15348 [https://bugs.python.org/issue15348]: Stop the debugger engine (normally in a user process) before
closing the debugger window (running in the IDLE process). This prevents
the RuntimeErrors that were being caught and ignored.

	bpo-24455 [https://bugs.python.org/issue24455]: Prevent IDLE from hanging when a) closing the shell while the
debugger is active (15347); b) closing the debugger with the [X] button
(15348); and c) activating the debugger when already active (24455). The
patch by Mark Roseman does this by making two changes. 1. Suspend and
resume the gui.interaction method with the tcl vwait mechanism intended
for this purpose (instead of root.mainloop & .quit). 2. In gui.run, allow
any existing interaction to terminate first.

	Change 'The program' to 'Your program' in an IDLE 'kill program?' message
to make it clearer that the program referred to is the currently running
user program, not IDLE itself.

	bpo-24750 [https://bugs.python.org/issue24750]: Improve the appearance of the IDLE editor window status bar.
Patch by Mark Roseman.

	bpo-25313 [https://bugs.python.org/issue25313]: Change the handling of new built-in text color themes to better
address the compatibility problem introduced by the addition of IDLE Dark.
Consistently use the revised idleConf.CurrentTheme everywhere in idlelib.

	bpo-24782 [https://bugs.python.org/issue24782]: Extension configuration is now a tab in the IDLE Preferences
dialog rather than a separate dialog. The former tabs are now a sorted
list. Patch by Mark Roseman.

	bpo-22726 [https://bugs.python.org/issue22726]: Re-activate the config dialog help button with some content
about the other buttons and the new IDLE Dark theme.

	bpo-24820 [https://bugs.python.org/issue24820]: IDLE now has an 'IDLE Dark' built-in text color theme. It is
more or less IDLE Classic inverted, with a cobalt blue background.
Strings, comments, keywords, ... are still green, red, orange, To
use it with IDLEs released before November 2015, hit the 'Save as New
Custom Theme' button and enter a new name, such as 'Custom Dark'. The
custom theme will work with any IDLE release, and can be modified.

	bpo-25224 [https://bugs.python.org/issue25224]: README.txt is now an idlelib index for IDLE developers and
curious users. The previous user content is now in the IDLE doc chapter.
'IDLE' now means 'Integrated Development and Learning Environment'.

	bpo-24820 [https://bugs.python.org/issue24820]: Users can now set breakpoint colors in Settings -> Custom
Highlighting. Original patch by Mark Roseman.

	bpo-24972 [https://bugs.python.org/issue24972]: Inactive selection background now matches active selection
background, as configured by users, on all systems. Found items are now
always highlighted on Windows. Initial patch by Mark Roseman.

	bpo-24570 [https://bugs.python.org/issue24570]: Idle: make calltip and completion boxes appear on Macs affected
by a tk regression. Initial patch by Mark Roseman.

	bpo-24988 [https://bugs.python.org/issue24988]: Idle ScrolledList context menus (used in debugger) now work on
Mac Aqua. Patch by Mark Roseman.

	bpo-24801 [https://bugs.python.org/issue24801]: Make right-click for context menu work on Mac Aqua. Patch by
Mark Roseman.

	bpo-25173 [https://bugs.python.org/issue25173]: Associate tkinter messageboxes with a specific widget. For Mac
OSX, make them a 'sheet'. Patch by Mark Roseman.

	bpo-25198 [https://bugs.python.org/issue25198]: Enhance the initial html viewer now used for Idle Help.
Properly indent fixed-pitch text (patch by Mark Roseman). Give code
snippet a very Sphinx-like light blueish-gray background. Re-use initial
width and height set by users for shell and editor. When the Table of
Contents (TOC) menu is used, put the section header at the top of the
screen.

	bpo-25225 [https://bugs.python.org/issue25225]: Condense and rewrite Idle doc section on text colors.

	bpo-21995 [https://bugs.python.org/issue21995]: Explain some differences between IDLE and console Python.

	bpo-22820 [https://bugs.python.org/issue22820]: Explain need for print when running file from Idle editor.

	bpo-25224 [https://bugs.python.org/issue25224]: Doc: augment Idle feature list and no-subprocess section.

	bpo-25219 [https://bugs.python.org/issue25219]: Update doc for Idle command line options. Some were missing and
notes were not correct.

	bpo-24861 [https://bugs.python.org/issue24861]: Most of idlelib is private and subject to change. Use
idleib.idle.* to start Idle. See idlelib.__init__.__doc__.

	bpo-25199 [https://bugs.python.org/issue25199]: Idle: add synchronization comments for future maintainers.

	bpo-16893 [https://bugs.python.org/issue16893]: Replace help.txt with help.html for Idle doc display. The new
idlelib/help.html is rstripped Doc/build/html/library/idle.html. It looks
better than help.txt and will better document Idle as released. The
tkinter html viewer that works for this file was written by Rose Roseman.
The now unused EditorWindow.HelpDialog class and helt.txt file are
deprecated.

	bpo-24199 [https://bugs.python.org/issue24199]: Deprecate unused idlelib.idlever with possible removal in 3.6.

	bpo-24790 [https://bugs.python.org/issue24790]: Remove extraneous code (which also create 2 & 3 conflicts).

文档

	bpo-26736 [https://bugs.python.org/issue26736]: Used HTTPS for external links in the documentation if possible.

	bpo-6953 [https://bugs.python.org/issue6953]: Rework the Readline module documentation to group related
functions together, and add more details such as what underlying Readline
functions and variables are accessed.

	bpo-23606 [https://bugs.python.org/issue23606]: Adds note to ctypes documentation regarding cdll.msvcrt.

	bpo-24952 [https://bugs.python.org/issue24952]: Clarify the default size argument of stack_size() in the
"threading" and "_thread" modules. Patch from Mattip.

	bpo-26014 [https://bugs.python.org/issue26014]: Update 3.x packaging documentation: * "See also" links to the
new docs are now provided in the legacy pages * links to setuptools
documentation have been updated

测试

	bpo-21916 [https://bugs.python.org/issue21916]: Added tests for the turtle module. Patch by ingrid, Gregory
Loyse and Jelle Zijlstra.

	bpo-26295 [https://bugs.python.org/issue26295]: When using "python3 -m test --testdir=TESTDIR", regrtest
doesn't add "test." prefix to test module names.

	bpo-26523 [https://bugs.python.org/issue26523]: The multiprocessing thread pool (multiprocessing.dummy.Pool)
was untested.

	bpo-26015 [https://bugs.python.org/issue26015]: Added new tests for pickling iterators of mutable sequences.

	bpo-26325 [https://bugs.python.org/issue26325]: Added test.support.check_no_resource_warning() to check that no
ResourceWarning is emitted.

	bpo-25940 [https://bugs.python.org/issue25940]: Changed test_ssl to use its internal local server more. This
avoids relying on svn.python.org, which recently changed root certificate.

	bpo-25616 [https://bugs.python.org/issue25616]: Tests for OrderedDict are extracted from test_collections into
separate file test_ordered_dict.

	bpo-25449 [https://bugs.python.org/issue25449]: Added tests for OrderedDict subclasses.

	bpo-25188 [https://bugs.python.org/issue25188]: Add -P/--pgo to test.regrtest to suppress error output when
running the test suite for the purposes of a PGO build. Initial patch by
Alecsandru Patrascu.

	bpo-22806 [https://bugs.python.org/issue22806]: Add python -m test --list-tests command to list tests.

	bpo-18174 [https://bugs.python.org/issue18174]: python -m test --huntrleaks ... now also checks for leak of
file descriptors. Patch written by Richard Oudkerk.

	bpo-25260 [https://bugs.python.org/issue25260]: Fix python -m test --coverage on Windows. Remove the list
of ignored directories.

	PCbuild\rt.bat now accepts an unlimited number of arguments to pass
along to regrtest.py. Previously there was a limit of 9.

	bpo-26583 [https://bugs.python.org/issue26583]: Skip test_timestamp_overflow in test_import if bytecode files
cannot be written.

构建

	bpo-21277 [https://bugs.python.org/issue21277]: Don't try to link _ctypes with a ffi_convenience library.

	bpo-26884 [https://bugs.python.org/issue26884]: Fix linking extension modules for cross builds. Patch by Xavier
de Gaye.

	bpo-26932 [https://bugs.python.org/issue26932]: Fixed support of RTLD_* constants defined as enum values, not
via macros (in particular on Android). Patch by Chi Hsuan Yen.

	bpo-22359 [https://bugs.python.org/issue22359]: Disable the rules for running _freeze_importlib and pgen when
cross-compiling. The output of these programs is normally saved with the
source code anyway, and is still regenerated when doing a native build.
Patch by Xavier de Gaye.

	bpo-21668 [https://bugs.python.org/issue21668]: Link audioop, _datetime, _ctypes_test modules to libm, except
on Mac OS X. Patch written by Chi Hsuan Yen.

	bpo-25702 [https://bugs.python.org/issue25702]: A --with-lto configure option has been added that will enable
link time optimizations at build time during a make profile-opt. Some
compilers and toolchains are known to not produce stable code when using
LTO, be sure to test things thoroughly before relying on it. It can
provide a few % speed up over profile-opt alone.

	bpo-26624 [https://bugs.python.org/issue26624]: Adds validation of ucrtbase[d].dll version with warning for old
versions.

	bpo-17603 [https://bugs.python.org/issue17603]: Avoid error about nonexistent fileblocks.o file by using a
lower-level check for st_blocks in struct stat.

	bpo-26079 [https://bugs.python.org/issue26079]: Fixing the build output folder for tix-8.4.3.6. Patch by Bjoern
Thiel.

	bpo-26465 [https://bugs.python.org/issue26465]: 更新Windows 构建OpenSSL 1.0.2g.

	bpo-25348 [https://bugs.python.org/issue25348]: Added --pgo and --pgo-job arguments to
PCbuild\build.bat for building with Profile-Guided Optimization. The
old PCbuild\build_pgo.bat script is removed.

	bpo-25827 [https://bugs.python.org/issue25827]: Add support for building with ICC to configure, including a
new --with-icc flag.

	bpo-25696 [https://bugs.python.org/issue25696]: Fix installation of Python on UNIX with make -j9.

	bpo-24986 [https://bugs.python.org/issue24986]: It is now possible to build Python on Windows without errors
when external libraries are not available.

	bpo-24421 [https://bugs.python.org/issue24421]: Compile Modules/_math.c once, before building extensions.
Previously it could fail to compile properly if the math and cmath builds
were concurrent.

	bpo-26465 [https://bugs.python.org/issue26465]: 更新 OS X 10.5+（仅32位）安装程序以构建并链接 OpenSSL 1.0.2g.

	bpo-26268 [https://bugs.python.org/issue26268]: 更新Windows 构建OpenSSL 1.0.2f.

	bpo-25136 [https://bugs.python.org/issue25136]: Support Apple Xcode 7's new textual SDK stub libraries.

	bpo-24324 [https://bugs.python.org/issue24324]: Do not enable unreachable code warnings when using gcc as the
option does not work correctly in older versions of gcc and has been
silently removed as of gcc-4.5.

Windows

	bpo-27053 [https://bugs.python.org/issue27053]: Updates make_zip.py to correctly generate library ZIP file.

	bpo-26268 [https://bugs.python.org/issue26268]: Update the prepare_ssl.py script to handle OpenSSL releases
that don't include the contents of the include directory (that is, 1.0.2e
and later).

	bpo-26071 [https://bugs.python.org/issue26071]: bdist_wininst created binaries fail to start and find 32bit
Python

	bpo-26073 [https://bugs.python.org/issue26073]: Update the list of magic numbers in launcher

	bpo-26065 [https://bugs.python.org/issue26065]: Excludes venv from library when generating embeddable distro.

	bpo-25022 [https://bugs.python.org/issue25022]: Removed very outdated PC/example_nt/ directory.

工具/示例

	bpo-26799 [https://bugs.python.org/issue26799]: Fix python-gdb.py: don't get C types once when the Python code
is loaded, but get C types on demand. The C types can change if
python-gdb.py is loaded before the Python executable. Patch written by
Thomas Ilsche.

	bpo-26271 [https://bugs.python.org/issue26271]: Fix the Freeze tool to properly use flags passed through
configure. Patch by Daniel Shaulov.

	bpo-26489 [https://bugs.python.org/issue26489]: Add dictionary unpacking support to Tools/parser/unparse.py.
Patch by Guo Ci Teo.

	bpo-26316 [https://bugs.python.org/issue26316]: Fix variable name typo in Argument Clinic.

	bpo-25440 [https://bugs.python.org/issue25440]: Fix output of python-config --extension-suffix.

	bpo-25154 [https://bugs.python.org/issue25154]: The pyvenv script has been deprecated in favour of python3 -m
venv.

C API

	bpo-26312 [https://bugs.python.org/issue26312]: SystemError is now raised in all programming bugs with using
PyArg_ParseTupleAndKeywords(). RuntimeError did raised before in some
programming bugs.

	bpo-26198 [https://bugs.python.org/issue26198]: ValueError is now raised instead of TypeError on buffer
overflow in parsing "es#" and "et#" format units. SystemError is now
raised instead of TypeError on programmatical error in parsing format
string.

Python 3.5.5 正式版

发布日期e: 2018-02-04

在 3.5.5 版本中没有新的更改。

Python 3.5.5 rc1

发布日期: 2018-01-23

安全

	bpo-32551 [https://bugs.python.org/issue32551]: The sys.path[0] initialization change for bpo-29139 [https://bugs.python.org/issue29139] caused
a regression by revealing an inconsistency in how sys.path is initialized
when executing __main__ from a zipfile, directory, or other import
location. This is considered a potential security issue, as it may lead to
privileged processes unexpectedly loading code from user controlled
directories in situations where that was not previously the case.

The interpreter now consistently avoids ever adding the import location's
parent directory to sys.path, and ensures no other sys.path
entries are inadvertently modified when inserting the import location
named on the command line. (Originally reported as bpo-29723 [https://bugs.python.org/issue29723] against
Python 3.6rc1, but it was missed at the time that the then upcoming Python
3.5.4 release would also be affected)

	bpo-30657 [https://bugs.python.org/issue30657]: Fixed possible integer overflow in PyBytes_DecodeEscape,
CVE-2017-1000158. Original patch by Jay Bosamiya; rebased to Python 3 by
Miro Hrončok.

	bpo-30947 [https://bugs.python.org/issue30947]: Upgrade libexpat embedded copy from version 2.2.1 to 2.2.3 to
get security fixes.

核心与内置

	bpo-31095 [https://bugs.python.org/issue31095]: Fix potential crash during GC caused by tp_dealloc which
doesn't call PyObject_GC_UnTrack().

库

	bpo-32072 [https://bugs.python.org/issue32072]: Fixed issues with binary plists:

	Fixed saving bytearrays.

	Identical objects will be saved only once.

	Equal references will be load as identical objects.

	Added support for saving and loading recursive data structures.

	bpo-31170 [https://bugs.python.org/issue31170]: expat: Update libexpat from 2.2.3 to 2.2.4. Fix copying of
partial characters for UTF-8 input (libexpat bug 115):
https://github.com/libexpat/libexpat/issues/115

Python 3.5.4 正式版

发布日期: 2017-08-07

库

	bpo-30119 [https://bugs.python.org/issue30119]: ftplib.FTP.putline() now throws ValueError on commands that
contains CR or LF. Patch by Dong-hee Na.

Python 3.5.4 rc1

发布日期: 2017-07-23

安全

	bpo-30730 [https://bugs.python.org/issue30730]: Prevent environment variables injection in subprocess on
Windows. Prevent passing other environment variables and command
arguments.

	bpo-30694 [https://bugs.python.org/issue30694]: Upgrade expat copy from 2.2.0 to 2.2.1 to get fixes of multiple
security vulnerabilities including: CVE-2017-9233 (External entity
infinite loop DoS), CVE-2016-9063 (Integer overflow, re-fix),
CVE-2016-0718 (Fix regression bugs from 2.2.0's fix to CVE-2016-0718) and
CVE-2012-0876 (Counter hash flooding with SipHash). Note: the
CVE-2016-5300 (Use os-specific entropy sources like getrandom) doesn't
impact Python, since Python already gets entropy from the OS to set the
expat secret using XML_SetHashSalt().

	bpo-30500 [https://bugs.python.org/issue30500]: Fix urllib.parse.splithost() to correctly parse fragments. For
example, splithost('//127.0.0.1#@evil.com/') now correctly returns the
127.0.0.1 host, instead of treating @evil.com as the host in an
authentication (login@host).

	bpo-29591 [https://bugs.python.org/issue29591]: Update expat copy from 2.1.1 to 2.2.0 to get fixes of
CVE-2016-0718 and CVE-2016-4472. See
https://sourceforge.net/p/expat/bugs/537/ for more information.

核心与内置

	bpo-30876 [https://bugs.python.org/issue30876]: Relative import from unloaded package now reimports the package
instead of failing with SystemError. Relative import from non-package now
fails with ImportError rather than SystemError.

	bpo-30765 [https://bugs.python.org/issue30765]: Avoid blocking in pthread_mutex_lock() when
PyThread_acquire_lock() is asked not to block.

	bpo-27945 [https://bugs.python.org/issue27945]: Fixed various segfaults with dict when input collections are
mutated during searching, inserting or comparing. Based on patches by
Duane Griffin and Tim Mitchell.

	bpo-25794 [https://bugs.python.org/issue25794]: Fixed type.__setattr__() and type.__delattr__() for
non-interned attribute names. Based on patch by Eryk Sun.

	bpo-29935 [https://bugs.python.org/issue29935]: Fixed error messages in the index() method of tuple, list and
deque when pass indices of wrong type.

	bpo-28876 [https://bugs.python.org/issue28876]: bool(range) works even if len(range) raises
OverflowError.

	bpo-29600 [https://bugs.python.org/issue29600]: Fix wrapping coroutine return values in StopIteration.

	bpo-29537 [https://bugs.python.org/issue29537]: Restore runtime compatibility with bytecode files generated by
CPython 3.5.0 to 3.5.2, and adjust the eval loop to avoid the problems
that could be caused by the malformed variant of the
BUILD_MAP_UNPACK_WITH_CALL opcode that they may contain. Patch by Petr
Viktorin, Serhiy Storchaka, and Nick Coghlan.

	bpo-28598 [https://bugs.python.org/issue28598]: Support __rmod__ for subclasses of str being called before
str.__mod__. Patch by Martijn Pieters.

	bpo-29602 [https://bugs.python.org/issue29602]: Fix incorrect handling of signed zeros in complex constructor
for complex subclasses and for inputs having a __complex__ method. Patch
by Serhiy Storchaka.

	bpo-29347 [https://bugs.python.org/issue29347]: Fixed possibly dereferencing undefined pointers when creating
weakref objects.

	bpo-29438 [https://bugs.python.org/issue29438]: Fixed use-after-free problem in key sharing dict.

	bpo-29319 [https://bugs.python.org/issue29319]: Prevent RunMainFromImporter overwriting sys.path[0].

	bpo-29337 [https://bugs.python.org/issue29337]: Fixed possible BytesWarning when compare the code objects.
Warnings could be emitted at compile time.

	bpo-29478 [https://bugs.python.org/issue29478]: If max_line_length=None is specified while using the Compat32
policy, it is no longer ignored. Patch by Mircea Cosbuc.

库

	bpo-29403 [https://bugs.python.org/issue29403]: Fix unittest.mock's autospec to not fail on method-bound
builtin functions. Patch by Aaron Gallagher.

	bpo-30961 [https://bugs.python.org/issue30961]: Fix decrementing a borrowed reference in tracemalloc.

	bpo-30886 [https://bugs.python.org/issue30886]: Fix multiprocessing.Queue.join_thread(): it now waits until the
thread completes, even if the thread was started by the same process which
created the queue.

	bpo-29854 [https://bugs.python.org/issue29854]: Fix segfault in readline when using readline's history-size
option. Patch by Nir Soffer.

	bpo-30807 [https://bugs.python.org/issue30807]: signal.setitimer() may disable the timer when passed a tiny
value.

Tiny values (such as 1e-6) are valid non-zero values for setitimer(),
which is specified as taking microsecond-resolution intervals. However, on
some platform, our conversion routine could convert 1e-6 into a zero
interval, therefore disabling the timer instead of (re-)scheduling it.

	bpo-30441 [https://bugs.python.org/issue30441]: Fix bug when modifying os.environ while iterating over it

	bpo-30532 [https://bugs.python.org/issue30532]: Fix email header value parser dropping folding white space in
certain cases.

	bpo-29169 [https://bugs.python.org/issue29169]: Update zlib to 1.2.11.

	bpo-30879 [https://bugs.python.org/issue30879]: os.listdir() and os.scandir() now emit bytes names when called
with bytes-like argument.

	bpo-30746 [https://bugs.python.org/issue30746]: Prohibited the '=' character in environment variable names in
os.putenv() and os.spawn*().

	bpo-29755 [https://bugs.python.org/issue29755]: Fixed the lgettext() family of functions in the gettext module.
They now always return bytes.

	bpo-30645 [https://bugs.python.org/issue30645]: Fix path calculation in imp.load_package(), fixing it for cases
when a package is only shipped with bytecodes. Patch by Alexandru
Ardelean.

	bpo-23890 [https://bugs.python.org/issue23890]: unittest.TestCase.assertRaises() now manually breaks a
reference cycle to not keep objects alive longer than expected.

	bpo-30149 [https://bugs.python.org/issue30149]: inspect.signature() now supports callables with
variable-argument parameters wrapped with partialmethod. Patch by Dong-hee
Na.

	bpo-29931 [https://bugs.python.org/issue29931]: Fixed comparison check for ipaddress.ip_interface objects.
Patch by Sanjay Sundaresan.

	bpo-24484 [https://bugs.python.org/issue24484]: Avoid race condition in multiprocessing cleanup.

	bpo-28994 [https://bugs.python.org/issue28994]: The traceback no longer displayed for SystemExit raised in a
callback registered by atexit.

	bpo-30508 [https://bugs.python.org/issue30508]: Don't log exceptions if Task/Future "cancel()" method was
called.

	bpo-28556 [https://bugs.python.org/issue28556]: Updates to typing module: Add generic AsyncContextManager, add
support for ContextManager on all versions. Original PRs by Jelle Zijlstra
and Ivan Levkivskyi

	bpo-29870 [https://bugs.python.org/issue29870]: Fix ssl sockets leaks when connection is aborted in asyncio/ssl
implementation. Patch by Michaël Sghaïer.

	bpo-29743 [https://bugs.python.org/issue29743]: Closing transport during handshake process leaks open socket.
Patch by Nikolay Kim

	bpo-27585 [https://bugs.python.org/issue27585]: Fix waiter cancellation in asyncio.Lock. Patch by Mathieu
Sornay.

	bpo-30418 [https://bugs.python.org/issue30418]: On Windows, subprocess.Popen.communicate() now also ignore
EINVAL on stdin.write() if the child process is still running but closed
the pipe.

	bpo-30378 [https://bugs.python.org/issue30378]: Fix the problem that logging.handlers.SysLogHandler cannot
handle IPv6 addresses.

	bpo-29960 [https://bugs.python.org/issue29960]: Preserve generator state when _random.Random.setstate() raises
an exception. Patch by Bryan Olson.

	bpo-30414 [https://bugs.python.org/issue30414]: multiprocessing.Queue._feed background running thread do not
break from main loop on exception.

	bpo-30003 [https://bugs.python.org/issue30003]: Fix handling escape characters in HZ codec. Based on patch by
Ma Lin.

	bpo-30301 [https://bugs.python.org/issue30301]: Fix AttributeError when using SimpleQueue.empty() under spawn
and forkserver start methods.

	bpo-30329 [https://bugs.python.org/issue30329]: imaplib and poplib now catch the Windows socket WSAEINVAL error
(code 10022) on shutdown(SHUT_RDWR): An invalid operation was attempted.
This error occurs sometimes on SSL connections.

	bpo-30375 [https://bugs.python.org/issue30375]: Warnings emitted when compile a regular expression now always
point to the line in the user code. Previously they could point into
inners of the re module if emitted from inside of groups or conditionals.

	bpo-30048 [https://bugs.python.org/issue30048]: Fixed Task.cancel() can be ignored when the task is running
coroutine and the coroutine returned without any more await.

	bpo-29990 [https://bugs.python.org/issue29990]: Fix range checking in GB18030 decoder. Original patch by Ma
Lin.

	bpo-26293 [https://bugs.python.org/issue26293]: Change resulted because of zipfile breakage. (See also:
bpo-29094 [https://bugs.python.org/issue29094])

	bpo-30243 [https://bugs.python.org/issue30243]: Removed the __init__ methods of _json's scanner and encoder.
Misusing them could cause memory leaks or crashes. Now scanner and
encoder objects are completely initialized in the __new__ methods.

	bpo-30185 [https://bugs.python.org/issue30185]: Avoid KeyboardInterrupt tracebacks in forkserver helper process
when Ctrl-C is received.

	bpo-28556 [https://bugs.python.org/issue28556]: Various updates to typing module: add typing.NoReturn type, use
WrapperDescriptorType, minor bug-fixes. Original PRs by Jim
Fasarakis-Hilliard and Ivan Levkivskyi.

	bpo-30205 [https://bugs.python.org/issue30205]: Fix getsockname() for unbound AF_UNIX sockets on Linux.

	bpo-30070 [https://bugs.python.org/issue30070]: Fixed leaks and crashes in errors handling in the parser
module.

	bpo-30061 [https://bugs.python.org/issue30061]: Fixed crashes in IOBase methods __next__() and readlines() when
readline() or __next__() respectively return non-sizeable object. Fixed
possible other errors caused by not checking results of PyObject_Size(),
PySequence_Size(), or PyMapping_Size().

	bpo-30068 [https://bugs.python.org/issue30068]: _io._IOBase.readlines will check if it's closed first when hint
is present.

	bpo-29694 [https://bugs.python.org/issue29694]: Fixed race condition in pathlib mkdir with flags parents=True.
Patch by Armin Rigo.

	bpo-29692 [https://bugs.python.org/issue29692]: Fixed arbitrary unchaining of RuntimeError exceptions in
contextlib.contextmanager. Patch by Siddharth Velankar.

	bpo-29998 [https://bugs.python.org/issue29998]: Pickling and copying ImportError now preserves name and path
attributes.

	bpo-29942 [https://bugs.python.org/issue29942]: Fix a crash in itertools.chain.from_iterable when encountering
long runs of empty iterables.

	bpo-27863 [https://bugs.python.org/issue27863]: Fixed multiple crashes in ElementTree caused by race conditions
and wrong types.

	bpo-28699 [https://bugs.python.org/issue28699]: Fixed a bug in pools in multiprocessing.pool that raising an
exception at the very first of an iterable may swallow the exception or
make the program hang. Patch by Davin Potts and Xiang Zhang.

	bpo-25803 [https://bugs.python.org/issue25803]: Avoid incorrect errors raised by Path.mkdir(exist_ok=True) when
the OS gives priority to errors such as EACCES over EEXIST.

	bpo-29861 [https://bugs.python.org/issue29861]: Release references to tasks, their arguments and their results
as soon as they are finished in multiprocessing.Pool.

	bpo-29884 [https://bugs.python.org/issue29884]: faulthandler: Restore the old sigaltstack during teardown.
Patch by Christophe Zeitouny.

	bpo-25455 [https://bugs.python.org/issue25455]: Fixed crashes in repr of recursive buffered file-like objects.

	bpo-29800 [https://bugs.python.org/issue29800]: Fix crashes in partial.__repr__ if the keys of partial.keywords
are not strings. Patch by Michael Seifert.

	bpo-29742 [https://bugs.python.org/issue29742]: get_extra_info() raises exception if get called on closed ssl
transport. Patch by Nikolay Kim.

	bpo-8256 [https://bugs.python.org/issue8256]: Fixed possible failing or crashing input() if attributes
"encoding" or "errors" of sys.stdin or sys.stdout are not set or are not
strings.

	bpo-28298 [https://bugs.python.org/issue28298]: Fix a bug that prevented array 'Q', 'L' and 'I' from accepting
big intables (objects that have __int__) as elements. Patch by Oren
Milman.

	bpo-29615 [https://bugs.python.org/issue29615]: SimpleXMLRPCDispatcher no longer chains KeyError (or any other
exception) to exception(s) raised in the dispatched methods. Patch by Petr
Motejlek.

	bpo-29704 [https://bugs.python.org/issue29704]: asyncio.subprocess.SubprocessStreamProtocol no longer closes
before all pipes are closed.

	bpo-29703 [https://bugs.python.org/issue29703]: Fix asyncio to support instantiation of new event loops in
child processes.

	bpo-29376 [https://bugs.python.org/issue29376]: Fix assertion error in threading._DummyThread.is_alive().

	bpo-29110 [https://bugs.python.org/issue29110]: Fix file object leak in aifc.open() when file is given as a
filesystem path and is not in valid AIFF format. Patch by Anthony Zhang.

	bpo-28961 [https://bugs.python.org/issue28961]: Fix unittest.mock._Call helper: don't ignore the name parameter
anymore. Patch written by Jiajun Huang.

	bpo-29532 [https://bugs.python.org/issue29532]: Altering a kwarg dictionary passed to functools.partial() no
longer affects a partial object after creation.

	bpo-28556 [https://bugs.python.org/issue28556]: Various updates to typing module: typing.Counter,
typing.ChainMap, improved ABC caching, etc. Original PRs by Jelle
Zijlstra, Ivan Levkivskyi, Manuel Krebber, and Łukasz Langa.

	bpo-29100 [https://bugs.python.org/issue29100]: Fix datetime.fromtimestamp() regression introduced in Python
3.6.0: check minimum and maximum years.

	bpo-29519 [https://bugs.python.org/issue29519]: Fix weakref spewing exceptions during interpreter shutdown when
used with a rare combination of multiprocessing and custom codecs.

	bpo-29416 [https://bugs.python.org/issue29416]: Prevent infinite loop in pathlib.Path.mkdir

	bpo-29444 [https://bugs.python.org/issue29444]: Fixed out-of-bounds buffer access in the group() method of the
match object. Based on patch by WGH.

	bpo-29335 [https://bugs.python.org/issue29335]: Fix subprocess.Popen.wait() when the child process has exited
to a stopped instead of terminated state (ex: when under ptrace).

	bpo-29290 [https://bugs.python.org/issue29290]: Fix a regression in argparse that help messages would wrap at
non-breaking spaces.

	bpo-28735 [https://bugs.python.org/issue28735]: Fixed the comparison of mock.MagickMock with mock.ANY.

	bpo-29011 [https://bugs.python.org/issue29011]: Fix an important omission by adding Deque to the typing module.

	bpo-29219 [https://bugs.python.org/issue29219]: Fixed infinite recursion in the repr of uninitialized
ctypes.CDLL instances.

	bpo-28969 [https://bugs.python.org/issue28969]: Fixed race condition in C implementation of
functools.lru_cache. KeyError could be raised when cached function with
full cache was simultaneously called from differen threads with the same
uncached arguments.

	bpo-29142 [https://bugs.python.org/issue29142]: In urllib.request, suffixes in no_proxy environment variable
with leading dots could match related hostnames again (e.g. .b.c matches
a.b.c). Patch by Milan Oberkirch.

文档

	bpo-30176 [https://bugs.python.org/issue30176]: Add missing attribute related constants in curses
documentation.

	bpo-26985 [https://bugs.python.org/issue26985]: Add missing info of code object in inspect documentation.

	bpo-28929 [https://bugs.python.org/issue28929]: Link the documentation to its source file on GitHub.

	bpo-25008 [https://bugs.python.org/issue25008]: Document smtpd.py as effectively deprecated and add a pointer
to aiosmtpd, a third-party asyncio-based replacement.

	bpo-26355 [https://bugs.python.org/issue26355]: Add canonical header link on each page to corresponding major
version of the documentation. Patch by Matthias Bussonnier.

	bpo-29349 [https://bugs.python.org/issue29349]: Fix Python 2 syntax in code for building the documentation.

测试

	bpo-30822 [https://bugs.python.org/issue30822]: Fix regrtest command line parser to allow passing -u
extralargefile to run test_zipfile64.

	bpo-30383 [https://bugs.python.org/issue30383]: regrtest: Enhance regrtest and backport features from the
master branch.

Add options: --coverage, --testdir, --list-tests (list test files, don't
run them), --list-cases (list test identifiers, don't run them,
bpo-30523 [https://bugs.python.org/issue30523]), --matchfile (load a list of test filters from a text
file, bpo-30540 [https://bugs.python.org/issue30540]), --slowest (alias to --slow).

Enhance output: add timestamp, test result, currently running tests,
"Tests result: xxx" summary with total duration, etc.

Fix reference leak hunting in regrtest, --huntrleaks: regrtest now warms
up caches, create explicitly all internal singletons which are created on
demand to prevent false positives when checking for reference leaks.
(bpo-30675 [https://bugs.python.org/issue30675]).

	bpo-30357 [https://bugs.python.org/issue30357]: test_thread: setUp() now uses support.threading_setup() and
support.threading_cleanup() to wait until threads complete to avoid random
side effects on following tests. Initial patch written by Grzegorz
Grzywacz.

	bpo-28087 [https://bugs.python.org/issue28087]: Skip test_asyncore and test_eintr poll failures on macOS. Skip
some tests of select.poll when running on macOS due to unresolved issues
with the underlying system poll function on some macOS versions.

	bpo-30197 [https://bugs.python.org/issue30197]: Enhanced functions swap_attr() and swap_item() in the
test.support module. They now work when delete replaced attribute or item
inside the with statement. The old value of the attribute or item (or
None if it doesn't exist) now will be assigned to the target of the "as"
clause, if there is one.

	bpo-29571 [https://bugs.python.org/issue29571]: to match the behaviour of the re.LOCALE flag,
test_re.test_locale_flag now uses locale.getpreferredencoding(False)
to determine the candidate encoding for the test regex (allowing it to
correctly skip the test when the default locale encoding is a multi-byte
encoding)

构建

	bpo-29243 [https://bugs.python.org/issue29243]: Prevent unnecessary rebuilding of Python during make test,
make install and some other make targets when configured with
--enable-optimizations.

	bpo-23404 [https://bugs.python.org/issue23404]: Don't regenerate generated files based on file modification
time anymore: the action is now explicit. Replace make touch with
make regen-all.

	bpo-29643 [https://bugs.python.org/issue29643]: Fix --enable-optimization didn't work.

Windows

	bpo-30687 [https://bugs.python.org/issue30687]: Locate msbuild.exe on Windows when building rather than
vcvarsall.bat

	bpo-29392 [https://bugs.python.org/issue29392]: Prevent crash when passing invalid arguments into msvcrt
module.

C API

	bpo-27867 [https://bugs.python.org/issue27867]: Function PySlice_GetIndicesEx() is replaced with a macro if
Py_LIMITED_API is set to the value between 0x03050400 and 0x03060000 (not
including) or 0x03060100 or higher.

	bpo-29083 [https://bugs.python.org/issue29083]: Fixed the declaration of some public API functions.
PyArg_VaParse() and PyArg_VaParseTupleAndKeywords() were not available in
limited API. PyArg_ValidateKeywordArguments(), PyArg_UnpackTuple() and
Py_BuildValue() were not available in limited API of version < 3.3 when
PY_SSIZE_T_CLEAN is defined.

Python 3.5.3 正式版

发布日期: 2017-01-17

There were no code changes between 3.5.3rc1 and 3.5.3 final.

Python 3.5.3 rc1

发布日期: 2017-01-02

核心与内置

	bpo-29073 [https://bugs.python.org/issue29073]: bytearray formatting no longer truncates on first null byte.

	bpo-28932 [https://bugs.python.org/issue28932]: Do not include <sys/random.h> if it does not exist.

	bpo-28147 [https://bugs.python.org/issue28147]: Fix a memory leak in split-table dictionaries: setattr() must
not convert combined table into split table.

	bpo-25677 [https://bugs.python.org/issue25677]: Correct the positioning of the syntax error caret for indented
blocks. Based on patch by Michael Layzell.

	bpo-29000 [https://bugs.python.org/issue29000]: Fixed bytes formatting of octals with zero padding in alternate
form.

	bpo-28512 [https://bugs.python.org/issue28512]: Fixed setting the offset attribute of SyntaxError by
PyErr_SyntaxLocationEx() and PyErr_SyntaxLocationObject().

	bpo-28991 [https://bugs.python.org/issue28991]: functools.lru_cache() was susceptible to an obscure reentrancy
bug caused by a monkey-patched len() function.

	bpo-28648 [https://bugs.python.org/issue28648]: Fixed crash in Py_DecodeLocale() in debug build on Mac OS X
when decode astral characters. Patch by Xiang Zhang.

	bpo-19398 [https://bugs.python.org/issue19398]: Extra slash no longer added to sys.path components in case of
empty compile-time PYTHONPATH components.

	bpo-28426 [https://bugs.python.org/issue28426]: Fixed potential crash in PyUnicode_AsDecodedObject() in debug
build.

	bpo-23782 [https://bugs.python.org/issue23782]: Fixed possible memory leak in _PyTraceback_Add() and exception
loss in PyTraceBack_Here().

	bpo-28379 [https://bugs.python.org/issue28379]: Added sanity checks and tests for PyUnicode_CopyCharacters().
Patch by Xiang Zhang.

	bpo-28376 [https://bugs.python.org/issue28376]: The type of long range iterator is now registered as Iterator.
Patch by Oren Milman.

	bpo-28376 [https://bugs.python.org/issue28376]: The constructor of range_iterator now checks that step is not
0. Patch by Oren Milman.

	bpo-26906 [https://bugs.python.org/issue26906]: Resolving special methods of uninitialized type now causes
implicit initialization of the type instead of a fail.

	bpo-18287 [https://bugs.python.org/issue18287]: PyType_Ready() now checks that tp_name is not NULL. Original
patch by Niklas Koep.

	bpo-24098 [https://bugs.python.org/issue24098]: Fixed possible crash when AST is changed in process of
compiling it.

	bpo-28350 [https://bugs.python.org/issue28350]: String constants with null character no longer interned.

	bpo-26617 [https://bugs.python.org/issue26617]: Fix crash when GC runs during weakref callbacks.

	bpo-27942 [https://bugs.python.org/issue27942]: String constants now interned recursively in tuples and
frozensets.

	bpo-21578 [https://bugs.python.org/issue21578]: Fixed misleading error message when ImportError called with
invalid keyword args.

	bpo-28203 [https://bugs.python.org/issue28203]: Fix incorrect type in error message from complex(1.0,
{2:3}). Patch by Soumya Sharma.

	bpo-27955 [https://bugs.python.org/issue27955]: Fallback on reading /dev/urandom device when the getrandom()
syscall fails with EPERM, for example when blocked by SECCOMP.

	bpo-28131 [https://bugs.python.org/issue28131]: Fix a regression in zipimport's compile_source(). zipimport
should use the same optimization level as the interpreter.

	bpo-25221 [https://bugs.python.org/issue25221]: Fix corrupted result from PyLong_FromLong(0) when Python is
compiled with NSMALLPOSINTS = 0.

	bpo-25758 [https://bugs.python.org/issue25758]: Prevents zipimport from unnecessarily encoding a filename
(patch by Eryk Sun)

	bpo-28189 [https://bugs.python.org/issue28189]: dictitems_contains no longer swallows compare errors. (Patch by
Xiang Zhang)

	bpo-27812 [https://bugs.python.org/issue27812]: Properly clear out a generator's frame's backreference to the
generator to prevent crashes in frame.clear().

	bpo-27811 [https://bugs.python.org/issue27811]: Fix a crash when a coroutine that has not been awaited is
finalized with warnings-as-errors enabled.

	bpo-27587 [https://bugs.python.org/issue27587]: Fix another issue found by PVS-Studio: Null pointer check after
use of 'def' in _PyState_AddModule(). Initial patch by Christian Heimes.

	bpo-26020 [https://bugs.python.org/issue26020]: set literal evaluation order did not match documented
behaviour.

	bpo-27782 [https://bugs.python.org/issue27782]: Multi-phase extension module import now correctly allows the
m_methods field to be used to add module level functions to instances
of non-module types returned from Py_create_mod. Patch by Xiang Zhang.

	bpo-27936 [https://bugs.python.org/issue27936]: The round() function accepted a second None argument for some
types but not for others. Fixed the inconsistency by accepting None for
all numeric types.

	bpo-27487 [https://bugs.python.org/issue27487]: Warn if a submodule argument to "python -m" or
runpy.run_module() is found in sys.modules after parent packages are
imported, but before the submodule is executed.

	bpo-27558 [https://bugs.python.org/issue27558]: Fix a SystemError in the implementation of "raise" statement.
In a brand new thread, raise a RuntimeError since there is no active
exception to reraise. Patch written by Xiang Zhang.

	bpo-27419 [https://bugs.python.org/issue27419]: Standard __import__() no longer look up "__import__" in globals
or builtins for importing submodules or "from import". Fixed handling an
error of non-string package name.

	bpo-27083 [https://bugs.python.org/issue27083]: Respect the PYTHONCASEOK environment variable under Windows.

	bpo-27514 [https://bugs.python.org/issue27514]: Make having too many statically nested blocks a SyntaxError
instead of SystemError.

	bpo-27473 [https://bugs.python.org/issue27473]: Fixed possible integer overflow in bytes and bytearray
concatenations. Patch by Xiang Zhang.

	bpo-27507 [https://bugs.python.org/issue27507]: Add integer overflow check in bytearray.extend(). Patch by
Xiang Zhang.

	bpo-27581 [https://bugs.python.org/issue27581]: Don't rely on wrapping for overflow check in
PySequence_Tuple(). Patch by Xiang Zhang.

	bpo-27443 [https://bugs.python.org/issue27443]: __length_hint__() of bytearray iterators no longer return a
negative integer for a resized bytearray.

	bpo-27942 [https://bugs.python.org/issue27942]: Fix memory leak in codeobject.c

库

	bpo-15812 [https://bugs.python.org/issue15812]: inspect.getframeinfo() now correctly shows the first line of a
context. Patch by Sam Breese.

	bpo-29094 [https://bugs.python.org/issue29094]: Offsets in a ZIP file created with extern file object and modes
"w" and "x" now are relative to the start of the file.

	bpo-13051 [https://bugs.python.org/issue13051]: Fixed recursion errors in large or resized
curses.textpad.Textbox. Based on patch by Tycho Andersen.

	bpo-29119 [https://bugs.python.org/issue29119]: Fix weakrefs in the pure python version of
collections.OrderedDict move_to_end() method. Contributed by Andra
Bogildea.

	bpo-9770 [https://bugs.python.org/issue9770]: curses.ascii predicates now work correctly with negative
integers.

	bpo-28427 [https://bugs.python.org/issue28427]: old keys should not remove new values from WeakValueDictionary
when collecting from another thread.

	bpo-28923 [https://bugs.python.org/issue28923]: Remove editor artifacts from Tix.py.

	bpo-28871 [https://bugs.python.org/issue28871]: Fixed a crash when deallocate deep ElementTree.

	bpo-19542 [https://bugs.python.org/issue19542]: Fix bugs in WeakValueDictionary.setdefault() and
WeakValueDictionary.pop() when a GC collection happens in another thread.

	bpo-20191 [https://bugs.python.org/issue20191]: Fixed a crash in resource.prlimit() when pass a sequence that
doesn't own its elements as limits.

	bpo-28779 [https://bugs.python.org/issue28779]: multiprocessing.set_forkserver_preload() would crash the
forkserver process if a preloaded module instantiated some multiprocessing
objects such as locks.

	bpo-28847 [https://bugs.python.org/issue28847]: dbm.dumb now supports reading read-only files and no longer
writes the index file when it is not changed.

	bpo-25659 [https://bugs.python.org/issue25659]: In ctypes, prevent a crash calling the from_buffer() and
from_buffer_copy() methods on abstract classes like Array.

	bpo-28732 [https://bugs.python.org/issue28732]: Fix crash in os.spawnv() with no elements in args

	bpo-28485 [https://bugs.python.org/issue28485]: Always raise ValueError for negative
compileall.compile_dir(workers=...) parameter, even when multithreading is
unavailable.

	bpo-28387 [https://bugs.python.org/issue28387]: Fixed possible crash in _io.TextIOWrapper deallocator when the
garbage collector is invoked in other thread. Based on patch by Sebastian
Cufre.

	bpo-27517 [https://bugs.python.org/issue27517]: LZMA compressor and decompressor no longer raise exceptions if
given empty data twice. Patch by Benjamin Fogle.

	bpo-28549 [https://bugs.python.org/issue28549]: Fixed segfault in curses's addch() with ncurses6.

	bpo-28449 [https://bugs.python.org/issue28449]: tarfile.open() with mode "r" or "r:" now tries to open a tar
file with compression before trying to open it without compression.
Otherwise it had 50% chance failed with ignore_zeros=True.

	bpo-23262 [https://bugs.python.org/issue23262]: The webbrowser module now supports Firefox 36+ and derived
browsers. Based on patch by Oleg Broytman.

	bpo-27939 [https://bugs.python.org/issue27939]: Fixed bugs in tkinter.ttk.LabeledScale and tkinter.Scale caused
by representing the scale as float value internally in Tk. tkinter.IntVar
now works if float value is set to underlying Tk variable.

	bpo-28255 [https://bugs.python.org/issue28255]: calendar.TextCalendar().prmonth() no longer prints a space at
the start of new line after printing a month's calendar. Patch by Xiang
Zhang.

	bpo-20491 [https://bugs.python.org/issue20491]: The textwrap.TextWrapper class now honors non-breaking spaces.
Based on patch by Kaarle Ritvanen.

	bpo-28353 [https://bugs.python.org/issue28353]: os.fwalk() no longer fails on broken links.

	bpo-25464 [https://bugs.python.org/issue25464]: Fixed HList.header_exists() in tkinter.tix module by addin a
workaround to Tix library bug.

	bpo-28488 [https://bugs.python.org/issue28488]: shutil.make_archive() no longer add entry "./" to ZIP archive.

	bpo-24452 [https://bugs.python.org/issue24452]: Make webbrowser support Chrome on Mac OS X.

	bpo-20766 [https://bugs.python.org/issue20766]: Fix references leaked by pdb in the handling of SIGINT
handlers.

	bpo-26293 [https://bugs.python.org/issue26293]: Fixed writing ZIP files that starts not from the start of the
file. Offsets in ZIP file now are relative to the start of the archive in
conforming to the specification.

	bpo-28321 [https://bugs.python.org/issue28321]: Fixed writing non-BMP characters with binary format in
plistlib.

	bpo-28322 [https://bugs.python.org/issue28322]: Fixed possible crashes when unpickle itertools objects from
incorrect pickle data. Based on patch by John Leitch.

	Fix possible integer overflows and crashes in the mmap module with unusual
usage patterns.

	bpo-1703178 [https://bugs.python.org/issue1703178]: Fix the ability to pass the --link-objects option to the
distutils build_ext command.

	bpo-28253 [https://bugs.python.org/issue28253]: Fixed calendar functions for extreme months: 0001-01 and
9999-12.

Methods itermonthdays() and itermonthdays2() are reimplemented so that
they don't call itermonthdates() which can cause datetime.date
under/overflow.

	bpo-28275 [https://bugs.python.org/issue28275]: Fixed possible use after free in the decompress() methods of
the LZMADecompressor and BZ2Decompressor classes. Original patch by John
Leitch.

	bpo-27897 [https://bugs.python.org/issue27897]: Fixed possible crash in sqlite3.Connection.create_collation()
if pass invalid string-like object as a name. Patch by Xiang Zhang.

	bpo-18893 [https://bugs.python.org/issue18893]: Fix invalid exception handling in Lib/ctypes/macholib/dyld.py.
Patch by Madison May.

	bpo-27611 [https://bugs.python.org/issue27611]: Fixed support of default root window in the tkinter.tix module.

	bpo-27348 [https://bugs.python.org/issue27348]: In the traceback module, restore the formatting of exception
messages like "Exception: None". This fixes a regression introduced in
3.5a2.

	bpo-25651 [https://bugs.python.org/issue25651]: Allow falsy values to be used for msg parameter of subTest().

	bpo-27932 [https://bugs.python.org/issue27932]: Prevent memory leak in win32_ver().

	Fix UnboundLocalError in socket._sendfile_use_sendfile.

	bpo-28075 [https://bugs.python.org/issue28075]: Check for ERROR_ACCESS_DENIED in Windows implementation of
os.stat(). Patch by Eryk Sun.

	bpo-25270 [https://bugs.python.org/issue25270]: Prevent codecs.escape_encode() from raising SystemError when an
empty bytestring is passed.

	bpo-28181 [https://bugs.python.org/issue28181]: Get antigravity over HTTPS. Patch by Kaartic Sivaraam.

	bpo-25895 [https://bugs.python.org/issue25895]: Enable WebSocket URL schemes in urllib.parse.urljoin. Patch by
Gergely Imreh and Markus Holtermann.

	bpo-27599 [https://bugs.python.org/issue27599]: Fixed buffer overrun in binascii.b2a_qp() and
binascii.a2b_qp().

	bpo-19003 [https://bugs.python.org/issue19003]: m email.generator now replaces only \r and/or \n line
endings, per the RFC, instead of all unicode line endings.

	bpo-28019 [https://bugs.python.org/issue28019]: itertools.count() no longer rounds non-integer step in range
between 1.0 and 2.0 to 1.

	bpo-25969 [https://bugs.python.org/issue25969]: Update the lib2to3 grammar to handle the unpacking
generalizations added in 3.5.

	bpo-14977 [https://bugs.python.org/issue14977]: mailcap now respects the order of the lines in the mailcap
files ("first match"), as required by RFC 1542. Patch by Michael Lazar.

	bpo-24594 [https://bugs.python.org/issue24594]: Validates persist parameter when opening MSI database

	bpo-17582 [https://bugs.python.org/issue17582]: xml.etree.ElementTree nows preserves whitespaces in attributes
(Patch by Duane Griffin. Reviewed and approved by Stefan Behnel.)

	bpo-28047 [https://bugs.python.org/issue28047]: Fixed calculation of line length used for the base64 CTE in the
new email policies.

	bpo-27445 [https://bugs.python.org/issue27445]: Don't pass str(_charset) to MIMEText.set_payload(). Patch by
Claude Paroz.

	bpo-22450 [https://bugs.python.org/issue22450]: urllib now includes an Accept: */* header among the default
headers. This makes the results of REST API requests more consistent and
predictable especially when proxy servers are involved.

	lib2to3.pgen3.driver.load_grammar() now creates a stable cache file
between runs given the same Grammar.txt input regardless of the hash
randomization setting.

	bpo-27570 [https://bugs.python.org/issue27570]: Avoid zero-length memcpy() etc calls with null source pointers
in the "ctypes" and "array" modules.

	bpo-22233 [https://bugs.python.org/issue22233]: Break email header lines only on the RFC specified CR and LF
characters, not on arbitrary unicode line breaks. This also fixes a bug
in HTTP header parsing.

	bpo-27988 [https://bugs.python.org/issue27988]: Fix email iter_attachments incorrect mutation of payload list.

	bpo-27691 [https://bugs.python.org/issue27691]: Fix ssl module's parsing of GEN_RID subject alternative name
fields in X.509 certs.

	bpo-27850 [https://bugs.python.org/issue27850]: Remove 3DES from ssl module's default cipher list to counter
measure sweet32 attack (CVE-2016-2183).

	bpo-27766 [https://bugs.python.org/issue27766]: Add ChaCha20 Poly1305 to ssl module's default cipher list.
(Required OpenSSL 1.1.0 or LibreSSL).

	bpo-26470 [https://bugs.python.org/issue26470]: Port ssl and hashlib module to OpenSSL 1.1.0.

	Remove support for passing a file descriptor to os.access. It never worked
but previously didn't raise.

	bpo-12885 [https://bugs.python.org/issue12885]: Fix error when distutils encounters symlink.

	bpo-27881 [https://bugs.python.org/issue27881]: Fixed possible bugs when setting
sqlite3.Connection.isolation_level. Based on patch by Xiang Zhang.

	bpo-27861 [https://bugs.python.org/issue27861]: Fixed a crash in sqlite3.Connection.cursor() when a factory
creates not a cursor. Patch by Xiang Zhang.

	bpo-19884 [https://bugs.python.org/issue19884]: Avoid spurious output on OS X with Gnu Readline.

	bpo-27706 [https://bugs.python.org/issue27706]: Restore deterministic behavior of random.Random().seed() for
string seeds using seeding version 1. Allows sequences of calls to
random() to exactly match those obtained in Python 2. Patch by Nofar
Schnider.

	bpo-10513 [https://bugs.python.org/issue10513]: Fix a regression in Connection.commit(). Statements should not
be reset after a commit.

	A new version of typing.py from https://github.com/python/typing:
Collection (only for 3.6) (bpo-27598 [https://bugs.python.org/issue27598]). Add FrozenSet to __all__
(upstream #261). Fix crash in _get_type_vars() (upstream #259). Remove the
dict constraint in ForwardRef._eval_type (upstream #252).

	bpo-27539 [https://bugs.python.org/issue27539]: Fix unnormalised Fraction.__pow__ result in the case of
negative exponent and negative base.

	bpo-21718 [https://bugs.python.org/issue21718]: cursor.description is now available for queries using CTEs.

	bpo-2466 [https://bugs.python.org/issue2466]: posixpath.ismount now correctly recognizes mount points which
the user does not have permission to access.

	bpo-27773 [https://bugs.python.org/issue27773]: Correct some memory management errors server_hostname in
_ssl.wrap_socket().

	bpo-26750 [https://bugs.python.org/issue26750]: unittest.mock.create_autospec() now works properly for
subclasses of property() and other data descriptors.

	In the curses module, raise an error if window.getstr() or window.instr()
is passed a negative value.

	bpo-27783 [https://bugs.python.org/issue27783]: Fix possible usage of uninitialized memory in
operator.methodcaller.

	bpo-27774 [https://bugs.python.org/issue27774]: Fix possible Py_DECREF on unowned object in _sre.

	bpo-27760 [https://bugs.python.org/issue27760]: Fix possible integer overflow in binascii.b2a_qp.

	bpo-27758 [https://bugs.python.org/issue27758]: Fix possible integer overflow in the _csv module for large
record lengths.

	bpo-27568 [https://bugs.python.org/issue27568]: Prevent HTTPoxy attack (CVE-2016-1000110). Ignore the
HTTP_PROXY variable when REQUEST_METHOD environment is set, which
indicates that the script is in CGI mode.

	bpo-27656 [https://bugs.python.org/issue27656]: Do not assume sched.h defines any SCHED_* constants.

	bpo-27130 [https://bugs.python.org/issue27130]: In the "zlib" module, fix handling of large buffers (typically
4 GiB) when compressing and decompressing. Previously, inputs were
limited to 4 GiB, and compression and decompression operations did not
properly handle results of 4 GiB.

	bpo-27533 [https://bugs.python.org/issue27533]: Release GIL in nt._isdir

	bpo-17711 [https://bugs.python.org/issue17711]: Fixed unpickling by the persistent ID with protocol 0. Original
patch by Alexandre Vassalotti.

	bpo-27522 [https://bugs.python.org/issue27522]: Avoid an unintentional reference cycle in email.feedparser.

	bpo-26844 [https://bugs.python.org/issue26844]: Fix error message for imp.find_module() to refer to 'path'
instead of 'name'. Patch by Lev Maximov.

	bpo-23804 [https://bugs.python.org/issue23804]: Fix SSL zero-length recv() calls to not block and not raise an
error about unclean EOF.

	bpo-27466 [https://bugs.python.org/issue27466]: Change time format returned by http.cookie.time2netscape,
confirming the netscape cookie format and making it consistent with
documentation.

	bpo-26664 [https://bugs.python.org/issue26664]: Fix activate.fish by removing mis-use of $.

	bpo-22115 [https://bugs.python.org/issue22115]: Fixed tracing Tkinter variables: trace_vdelete() with wrong
mode no longer break tracing, trace_vinfo() now always returns a list of
pairs of strings, tracing in the "u" mode now works.

	Fix a scoping issue in importlib.util.LazyLoader which triggered an
UnboundLocalError when lazy-loading a module that was already put into
sys.modules.

	bpo-27079 [https://bugs.python.org/issue27079]: Fixed curses.ascii functions isblank(), iscntrl() and
ispunct().

	bpo-26754 [https://bugs.python.org/issue26754]: Some functions (compile() etc) accepted a filename argument
encoded as an iterable of integers. Now only strings and byte-like objects
are accepted.

	bpo-27048 [https://bugs.python.org/issue27048]: Prevents distutils failing on Windows when environment
variables contain non-ASCII characters

	bpo-27330 [https://bugs.python.org/issue27330]: Fixed possible leaks in the ctypes module.

	bpo-27238 [https://bugs.python.org/issue27238]: Got rid of bare excepts in the turtle module. Original patch
by Jelle Zijlstra.

	bpo-27122 [https://bugs.python.org/issue27122]: When an exception is raised within the context being managed by
a contextlib.ExitStack() and one of the exit stack generators catches and
raises it in a chain, do not re-raise the original exception when exiting,
let the new chained one through. This avoids the PEP 479 bug described in
issue25782.

安全

	bpo-27278 [https://bugs.python.org/issue27278]: Fix os.urandom() implementation using getrandom() on Linux.
Truncate size to INT_MAX and loop until we collected enough random bytes,
instead of casting a directly Py_ssize_t to int.

库

	bpo-26386 [https://bugs.python.org/issue26386]: Fixed ttk.TreeView selection operations with item id's
containing spaces.

安全

	bpo-22636 [https://bugs.python.org/issue22636]: Avoid shell injection problems with ctypes.util.find_library().

库

	bpo-16182 [https://bugs.python.org/issue16182]: Fix various functions in the "readline" module to use the
locale encoding, and fix get_begidx() and get_endidx() to return code
point indexes.

	bpo-27392 [https://bugs.python.org/issue27392]: Add loop.connect_accepted_socket(). Patch by Jim Fulton.

	bpo-27930 [https://bugs.python.org/issue27930]: Improved behaviour of logging.handlers.QueueListener. Thanks to
Paulo Andrade and Petr Viktorin for the analysis and patch.

	bpo-21201 [https://bugs.python.org/issue21201]: Improves readability of multiprocessing error message. Thanks
to Wojciech Walczak for patch.

	bpo-27456 [https://bugs.python.org/issue27456]: asyncio: Set TCP_NODELAY by default.

	bpo-27906 [https://bugs.python.org/issue27906]: Fix socket accept exhaustion during high TCP traffic. Patch by
Kevin Conway.

	bpo-28174 [https://bugs.python.org/issue28174]: Handle when SO_REUSEPORT isn't properly supported. Patch by
Seth Michael Larson.

	bpo-26654 [https://bugs.python.org/issue26654]: Inspect functools.partial in asyncio.Handle.__repr__. Patch by
iceboy.

	bpo-26909 [https://bugs.python.org/issue26909]: Fix slow pipes IO in asyncio. Patch by INADA Naoki.

	bpo-28176 [https://bugs.python.org/issue28176]: Fix callbacks race in asyncio.SelectorLoop.sock_connect.

	bpo-27759 [https://bugs.python.org/issue27759]: Fix selectors incorrectly retain invalid file descriptors.
Patch by Mark Williams.

	bpo-28368 [https://bugs.python.org/issue28368]: Refuse monitoring processes if the child watcher has no loop
attached. Patch by Vincent Michel.

	bpo-28369 [https://bugs.python.org/issue28369]: Raise RuntimeError when transport's FD is used with add_reader,
add_writer, etc.

	bpo-28370 [https://bugs.python.org/issue28370]: Speedup asyncio.StreamReader.readexactly. Patch by Коренберг
Марк.

	bpo-28371 [https://bugs.python.org/issue28371]: Deprecate passing asyncio.Handles to run_in_executor.

	bpo-28372 [https://bugs.python.org/issue28372]: Fix asyncio to support formatting of non-python coroutines.

	bpo-28399 [https://bugs.python.org/issue28399]: Remove UNIX socket from FS before binding. Patch by Коренберг
Марк.

	bpo-27972 [https://bugs.python.org/issue27972]: Prohibit Tasks to await on themselves.

	bpo-26923 [https://bugs.python.org/issue26923]: Fix asyncio.Gather to refuse being cancelled once all children
are done. Patch by Johannes Ebke.

	bpo-26796 [https://bugs.python.org/issue26796]: Don't configure the number of workers for default threadpool
executor. Initial patch by Hans Lawrenz.

	bpo-28600 [https://bugs.python.org/issue28600]: Optimize loop.call_soon().

	bpo-28613 [https://bugs.python.org/issue28613]: Fix get_event_loop() return the current loop if called from
coroutines/callbacks.

	bpo-28639 [https://bugs.python.org/issue28639]: Fix inspect.isawaitable to always return bool Patch by Justin
Mayfield.

	bpo-28652 [https://bugs.python.org/issue28652]: Make loop methods reject socket kinds they do not support.

	bpo-28653 [https://bugs.python.org/issue28653]: Fix a refleak in functools.lru_cache.

	bpo-28703 [https://bugs.python.org/issue28703]: Fix asyncio.iscoroutinefunction to handle Mock objects.

	bpo-24142 [https://bugs.python.org/issue24142]: Reading a corrupt config file left the parser in an invalid
state. Original patch by Florian Höch.

	bpo-28990 [https://bugs.python.org/issue28990]: Fix SSL hanging if connection is closed before handshake
completed. (Patch by HoHo-Ho)

IDLE

	bpo-15308 [https://bugs.python.org/issue15308]: Add 'interrupt execution' (^C) to Shell menu. Patch by Roger
Serwy, updated by Bayard Randel.

	bpo-27922 [https://bugs.python.org/issue27922]: Stop IDLE tests from 'flashing' gui widgets on the screen.

	在 IDLE 帮助窗口的标题中加入版本号

	bpo-25564 [https://bugs.python.org/issue25564]: In section on IDLE -- console differences, mention that using
exec means that __builtins__ is defined for each statement.

	bpo-27714 [https://bugs.python.org/issue27714]: text_textview and test_autocomplete now pass when re-run in the
same process. This occurs when test_idle fails when run with the -w
option but without -jn. Fix warning from test_config.

	bpo-25507 [https://bugs.python.org/issue25507]: IDLE no longer runs buggy code because of its tkinter imports.
Users must include the same imports required to run directly in Python.

	bpo-27452 [https://bugs.python.org/issue27452]: add line counter and crc to IDLE configHandler test dump.

	bpo-27365 [https://bugs.python.org/issue27365]: Allow non-ascii chars in IDLE NEWS.txt, for contributor names.

	bpo-27245 [https://bugs.python.org/issue27245]: IDLE: Cleanly delete custom themes and key bindings.
Previously, when IDLE was started from a console or by import, a cascade
of warnings was emitted. Patch by Serhiy Storchaka.

C API

	bpo-28808 [https://bugs.python.org/issue28808]: PyUnicode_CompareWithASCIIString() now never raises exceptions.

	bpo-26754 [https://bugs.python.org/issue26754]: PyUnicode_FSDecoder() accepted a filename argument encoded as
an iterable of integers. Now only strings and bytes-like objects are
accepted.

文档

	bpo-28513 [https://bugs.python.org/issue28513]: Documented command-line interface of zipfile.

测试

	bpo-28950 [https://bugs.python.org/issue28950]: Disallow -j0 to be combined with -T/-l/-M in regrtest command
line arguments.

	bpo-28666 [https://bugs.python.org/issue28666]: Now test.support.rmtree is able to remove unwritable or
unreadable directories.

	bpo-23839 [https://bugs.python.org/issue23839]: Various caches now are cleared before running every test file.

	bpo-28409 [https://bugs.python.org/issue28409]: regrtest: fix the parser of command line arguments.

	bpo-27787 [https://bugs.python.org/issue27787]: Call gc.collect() before checking each test for "dangling
threads", since the dangling threads are weak references.

	bpo-27369 [https://bugs.python.org/issue27369]: In test_pyexpat, avoid testing an error message detail that
changed in Expat 2.2.0.

工具/示例

	bpo-27952 [https://bugs.python.org/issue27952]: Get Tools/scripts/fixcid.py working with Python 3 and the
current "re" module, avoid invalid Python backslash escapes, and fix a bug
parsing escaped C quote signs.

	bpo-27332 [https://bugs.python.org/issue27332]: Fixed the type of the first argument of module-level functions
generated by Argument Clinic. Patch by Petr Viktorin.

	bpo-27418 [https://bugs.python.org/issue27418]: Fixed Tools/importbench/importbench.py.

Windows

	bpo-28251 [https://bugs.python.org/issue28251]: Improvements to help manuals on Windows.

	bpo-28110 [https://bugs.python.org/issue28110]: launcher.msi has different product codes between 32-bit and
64-bit

	bpo-25144 [https://bugs.python.org/issue25144]: Ensures TargetDir is set before continuing with custom install.

	bpo-27469 [https://bugs.python.org/issue27469]: Adds a shell extension to the launcher so that drag and drop
works correctly.

	bpo-27309 [https://bugs.python.org/issue27309]: Enabled proper Windows styles in python[w].exe manifest.

构建

	bpo-29080 [https://bugs.python.org/issue29080]: Removes hard dependency on hg.exe from PCBuild/build.bat

	bpo-23903 [https://bugs.python.org/issue23903]: Added missed names to PC/python3.def.

	bpo-10656 [https://bugs.python.org/issue10656]: Fix out-of-tree building on AIX. Patch by Tristan Carel and
Michael Haubenwallner.

	bpo-26359 [https://bugs.python.org/issue26359]: Rename --with-optimiations to --enable-optimizations.

	bpo-28444 [https://bugs.python.org/issue28444]: Fix missing extensions modules when cross compiling.

	bpo-28248 [https://bugs.python.org/issue28248]: 更新Windows 构建和OS X安装程序以使用OpenSSL 1.0.2j.

	bpo-28258 [https://bugs.python.org/issue28258]: Fixed build with Estonian locale (python-config and distclean
targets in Makefile). Patch by Arfrever Frehtes Taifersar Arahesis.

	bpo-26661 [https://bugs.python.org/issue26661]: setup.py now detects system libffi with multiarch wrapper.

	bpo-28066 [https://bugs.python.org/issue28066]: Fix the logic that searches build directories for generated
include files when building outside the source tree.

	bpo-15819 [https://bugs.python.org/issue15819]: Remove redundant include search directory option for building
outside the source tree.

	bpo-27566 [https://bugs.python.org/issue27566]: Fix clean target in freeze makefile (patch by Lisa Roach)

	bpo-27705 [https://bugs.python.org/issue27705]: Update message in validate_ucrtbase.py

	bpo-27983 [https://bugs.python.org/issue27983]: Cause lack of llvm-profdata tool when using clang as required
for PGO linking to be a configure time error rather than make time when
--with-optimizations is enabled. Also improve our ability to find the
llvm-profdata tool on MacOS and some Linuxes.

	bpo-26307 [https://bugs.python.org/issue26307]: The profile-opt build now applies PGO to the built-in modules.

	bpo-26359 [https://bugs.python.org/issue26359]: Add the --with-optimizations configure flag.

	bpo-27713 [https://bugs.python.org/issue27713]: Suppress spurious build warnings when updating importlib's
bootstrap files. Patch by Xiang Zhang

	bpo-25825 [https://bugs.python.org/issue25825]: Correct the references to Modules/python.exp and ld_so_aix,
which are required on AIX. This updates references to an installation
path that was changed in 3.2a4, and undoes changed references to the build
tree that were made in 3.5.0a1.

	bpo-27453 [https://bugs.python.org/issue27453]: CPP invocation in configure must use CPPFLAGS. Patch by Chi
Hsuan Yen.

	bpo-27641 [https://bugs.python.org/issue27641]: The configure script now inserts comments into the makefile to
prevent the pgen and _freeze_importlib executables from being
cross-compiled.

	bpo-26662 [https://bugs.python.org/issue26662]: Set PYTHON_FOR_GEN in configure as the Python program to be
used for file generation during the build.

	bpo-10910 [https://bugs.python.org/issue10910]: Avoid C++ compilation errors on FreeBSD and OS X. Also update
FreedBSD version checks for the original ctype UTF-8 workaround.

	bpo-28676 [https://bugs.python.org/issue28676]: Prevent missing 'getentropy' declaration warning on macOS.
Patch by Gareth Rees.

Python 3.5.2 正式版

发布日期: 2016-06-26

核心与内置

	bpo-26930 [https://bugs.python.org/issue26930]: 更新Windows 构建以使用OpenSSL OpenSSL 1.0.2h.

测试

	bpo-26867 [https://bugs.python.org/issue26867]: Ubuntu's openssl OP_NO_SSLv3 is forced on by default; fix test.

IDLE

	bpo-27365 [https://bugs.python.org/issue27365]: Allow non-ascii in idlelib/NEWS.txt - minimal part for 3.5.2.

Python 3.5.2 rc1

发布日期: 2016-06-12

核心与内置

	bpo-27066 [https://bugs.python.org/issue27066]: Fixed SystemError if a custom opener (for open()) returns a
negative number without setting an exception.

	bpo-20041 [https://bugs.python.org/issue20041]: Fixed TypeError when frame.f_trace is set to None. Patch by
Xavier de Gaye.

	bpo-26168 [https://bugs.python.org/issue26168]: Fixed possible refleaks in failing Py_BuildValue() with the "N"
format unit.

	bpo-26991 [https://bugs.python.org/issue26991]: Fix possible refleak when creating a function with annotations.

	bpo-27039 [https://bugs.python.org/issue27039]: Fixed bytearray.remove() for values greater than 127. Patch by
Joe Jevnik.

	bpo-23640 [https://bugs.python.org/issue23640]: int.from_bytes() no longer bypasses constructors for
subclasses.

	bpo-26811 [https://bugs.python.org/issue26811]: gc.get_objects() no longer contains a broken tuple with NULL
pointer.

	bpo-20120 [https://bugs.python.org/issue20120]: Use RawConfigParser for .pypirc parsing, removing support for
interpolation unintentionally added with move to Python 3. Behavior no
longer does any interpolation in .pypirc files, matching behavior in
Python 2.7 and Setuptools 19.0.

	bpo-26659 [https://bugs.python.org/issue26659]: Make the builtin slice type support cycle collection.

	bpo-26718 [https://bugs.python.org/issue26718]: super.__init__ no longer leaks memory if called multiple times.
NOTE: A direct call of super.__init__ is not endorsed!

	bpo-25339 [https://bugs.python.org/issue25339]: PYTHONIOENCODING now has priority over locale in setting the
error handler for stdin and stdout.

	bpo-26494 [https://bugs.python.org/issue26494]: Fixed crash on iterating exhausting iterators. Affected classes
are generic sequence iterators, iterators of str, bytes, bytearray, list,
tuple, set, frozenset, dict, OrderedDict, corresponding views and
os.scandir() iterator.

	bpo-26581 [https://bugs.python.org/issue26581]: If coding cookie is specified multiple times on a line in
Python source code file, only the first one is taken to account.

	bpo-26464 [https://bugs.python.org/issue26464]: Fix str.translate() when string is ASCII and first replacements
removes character, but next replacement uses a non-ASCII character or a
string longer than 1 character. Regression introduced in Python 3.5.0.

	bpo-22836 [https://bugs.python.org/issue22836]: Ensure exception reports from PyErr_Display() and
PyErr_WriteUnraisable() are sensible even when formatting them produces
secondary errors. This affects the reports produced by
sys.__excepthook__() and when __del__() raises an exception.

	bpo-26302 [https://bugs.python.org/issue26302]: Correct behavior to reject comma as a legal character for
cookie names.

	bpo-4806 [https://bugs.python.org/issue4806]: Avoid masking the original TypeError exception when using star
(*) unpacking in function calls. Based on patch by Hagen Fürstenau
and Daniel Urban.

	bpo-27138 [https://bugs.python.org/issue27138]: Fix the doc comment for FileFinder.find_spec().

	bpo-26154 [https://bugs.python.org/issue26154]: Add a new private _PyThreadState_UncheckedGet() function to get
the current Python thread state, but don't issue a fatal error if it is
NULL. This new function must be used instead of accessing directly the
_PyThreadState_Current variable. The variable is no more exposed since
Python 3.5.1 to hide the exact implementation of atomic C types, to avoid
compiler issues.

	bpo-26194 [https://bugs.python.org/issue26194]: Deque.insert() gave odd results for bounded deques that had
reached their maximum size. Now an IndexError will be raised when
attempting to insert into a full deque.

	bpo-25843 [https://bugs.python.org/issue25843]: When compiling code, don't merge constants if they are equal
but have a different types. For example, f1, f2 = lambda: 1, lambda:
1.0 is now correctly compiled to two different functions: f1()
returns 1 (int) and f2() returns 1.0 (int), even if
1 and 1.0 are equal.

	bpo-22995 [https://bugs.python.org/issue22995]: [UPDATE] Comment out the one of the pickleability tests in
_PyObject_GetState() due to regressions observed in Cython-based projects.

	bpo-25961 [https://bugs.python.org/issue25961]: Disallowed null characters in the type name.

	bpo-25973 [https://bugs.python.org/issue25973]: Fix segfault when an invalid nonlocal statement binds a name
starting with two underscores.

	bpo-22995 [https://bugs.python.org/issue22995]: Instances of extension types with a state that aren't
subclasses of list or dict and haven't implemented any pickle-related
methods (__reduce__, __reduce_ex__, __getnewargs__, __getnewargs_ex__, or
__getstate__), can no longer be pickled. Including memoryview.

	bpo-20440 [https://bugs.python.org/issue20440]: Massive replacing unsafe attribute setting code with special
macro Py_SETREF.

	bpo-25766 [https://bugs.python.org/issue25766]: Special method __bytes__() now works in str subclasses.

	bpo-25421 [https://bugs.python.org/issue25421]: __sizeof__ methods of builtin types now use dynamic basic size.
This allows sys.getsize() to work correctly with their subclasses with
__slots__ defined.

	bpo-25709 [https://bugs.python.org/issue25709]: Fixed problem with in-place string concatenation and utf-8
cache.

	bpo-27147 [https://bugs.python.org/issue27147]: Mention PEP 420 in the importlib docs.

	bpo-24097 [https://bugs.python.org/issue24097]: Fixed crash in object.__reduce__() if slot name is freed inside
__getattr__.

	bpo-24731 [https://bugs.python.org/issue24731]: Fixed crash on converting objects with special methods
__bytes__, __trunc__, and __float__ returning instances of subclasses of
bytes, int, and float to subclasses of bytes, int, and float
correspondingly.

	bpo-26478 [https://bugs.python.org/issue26478]: Fix semantic bugs when using binary operators with dictionary
views and tuples.

	bpo-26171 [https://bugs.python.org/issue26171]: Fix possible integer overflow and heap corruption in
zipimporter.get_data().

	bpo-25660 [https://bugs.python.org/issue25660]: Fix TAB key behaviour in REPL with readline.

	bpo-25887 [https://bugs.python.org/issue25887]: Raise a RuntimeError when a coroutine object is awaited more
than once.

	bpo-27243 [https://bugs.python.org/issue27243]: Update the __aiter__ protocol: instead of returning an
awaitable that resolves to an asynchronous iterator, the asynchronous
iterator should be returned directly. Doing the former will trigger a
PendingDeprecationWarning.

安全

	bpo-26556 [https://bugs.python.org/issue26556]: Update expat to 2.1.1, fixes CVE-2015-1283.

	Fix TLS stripping vulnerability in smtplib, CVE-2016-0772. Reported by
Team Oststrom

库

	bpo-21386 [https://bugs.python.org/issue21386]: Implement missing IPv4Address.is_global property. It was
documented since 07a5610bae9d. Initial patch by Roger Luethi.

	bpo-20900 [https://bugs.python.org/issue20900]: distutils register command now decodes HTTP responses
correctly. Initial patch by ingrid.

	A new version of typing.py provides several new classes and features:
@overload outside stubs, Reversible, DefaultDict, Text, ContextManager,
Type[], NewType(), TYPE_CHECKING, and numerous bug fixes (note that some
of the new features are not yet implemented in mypy or other static
analyzers). Also classes for PEP 492 (Awaitable, AsyncIterable,
AsyncIterator) have been added (in fact they made it into 3.5.1 but were
never mentioned).

	bpo-25738 [https://bugs.python.org/issue25738]: Stop http.server.BaseHTTPRequestHandler.send_error() from
sending a message body for 205 Reset Content. Also, don't send Content
header fields in responses that don't have a body. Patch by Susumu
Koshiba.

	bpo-21313 [https://bugs.python.org/issue21313]: Fix the "platform" module to tolerate when sys.version contains
truncated build information.

安全

	bpo-26839 [https://bugs.python.org/issue26839]: On Linux, os.urandom() now calls getrandom() with
GRND_NONBLOCK to fall back on reading /dev/urandom if the urandom
entropy pool is not initialized yet. Patch written by Colm Buckley.

库

	bpo-27164 [https://bugs.python.org/issue27164]: In the zlib module, allow decompressing raw Deflate streams
with a predefined zdict. Based on patch by Xiang Zhang.

	bpo-24291 [https://bugs.python.org/issue24291]: Fix wsgiref.simple_server.WSGIRequestHandler to completely
write data to the client. Previously it could do partial writes and
truncate data. Also, wsgiref.handler.ServerHandler can now handle stdout
doing partial writes, but this is deprecated.

	bpo-26809 [https://bugs.python.org/issue26809]: Add __all__ to string. Patch by Emanuel Barry.

	bpo-26373 [https://bugs.python.org/issue26373]: subprocess.Popen.communicate now correctly ignores
BrokenPipeError when the child process dies before .communicate() is
called in more/all circumstances.

	bpo-21776 [https://bugs.python.org/issue21776]: distutils.upload now correctly handles HTTPError. Initial patch
by Claudiu Popa.

	bpo-27114 [https://bugs.python.org/issue27114]: Fix SSLContext._load_windows_store_certs fails with
PermissionError

	bpo-18383 [https://bugs.python.org/issue18383]: Avoid creating duplicate filters when using filterwarnings and
simplefilter. Based on patch by Alex Shkop.

	bpo-27057 [https://bugs.python.org/issue27057]: Fix os.set_inheritable() on Android, ioctl() is blocked by
SELinux and fails with EACCESS. The function now falls back to fcntl().
Patch written by Michał Bednarski.

	bpo-27014 [https://bugs.python.org/issue27014]: Fix infinite recursion using typing.py. Thanks to Kalle Tuure!

	bpo-14132 [https://bugs.python.org/issue14132]: Fix urllib.request redirect handling when the target only has a
query string. Original fix by Ján Janech.

	bpo-17214 [https://bugs.python.org/issue17214]: The "urllib.request" module now percent-encodes non-ASCII bytes
found in redirect target URLs. Some servers send Location header fields
with non-ASCII bytes, but "http.client" requires the request target to be
ASCII-encodable, otherwise a UnicodeEncodeError is raised. Based on patch
by Christian Heimes.

	bpo-26892 [https://bugs.python.org/issue26892]: Honor debuglevel flag in urllib.request.HTTPHandler. Patch
contributed by Chi Hsuan Yen.

	bpo-22274 [https://bugs.python.org/issue22274]: In the subprocess module, allow stderr to be redirected to
stdout even when stdout is not redirected. Patch by Akira Li.

	bpo-26807 [https://bugs.python.org/issue26807]: mock_open 'files' no longer error on readline at end of file.
Patch from Yolanda Robla.

	bpo-25745 [https://bugs.python.org/issue25745]: Fixed leaking a userptr in curses panel destructor.

	bpo-26977 [https://bugs.python.org/issue26977]: Removed unnecessary, and ignored, call to sum of squares helper
in statistics.pvariance.

	bpo-26881 [https://bugs.python.org/issue26881]: The modulefinder module now supports extended opcode arguments.

	bpo-23815 [https://bugs.python.org/issue23815]: Fixed crashes related to directly created instances of types in
_tkinter and curses.panel modules.

	bpo-17765 [https://bugs.python.org/issue17765]: weakref.ref() no longer silently ignores keyword arguments.
Patch by Georg Brandl.

	bpo-26873 [https://bugs.python.org/issue26873]: xmlrpc now raises ResponseError on unsupported type tags
instead of silently return incorrect result.

	bpo-26711 [https://bugs.python.org/issue26711]: Fixed the comparison of plistlib.Data with other types.

	bpo-24114 [https://bugs.python.org/issue24114]: Fix an uninitialized variable in ctypes.util.

The bug only occurs on SunOS when the ctypes implementation searches for
the crle program. Patch by Xiang Zhang. Tested on SunOS by Kees Bos.

	bpo-26864 [https://bugs.python.org/issue26864]: In urllib.request, change the proxy bypass host checking
against no_proxy to be case-insensitive, and to not match unrelated host
names that happen to have a bypassed hostname as a suffix. Patch by Xiang
Zhang.

	bpo-26634 [https://bugs.python.org/issue26634]: recursive_repr() now sets __qualname__ of wrapper. Patch by
Xiang Zhang.

	bpo-26804 [https://bugs.python.org/issue26804]: urllib.request will prefer lower_case proxy environment
variables over UPPER_CASE or Mixed_Case ones. Patch contributed by
Hans-Peter Jansen.

	bpo-26837 [https://bugs.python.org/issue26837]: assertSequenceEqual() now correctly outputs non-stringified
differing items (like bytes in the -b mode). This affects
assertListEqual() and assertTupleEqual().

	bpo-26041 [https://bugs.python.org/issue26041]: Remove "will be removed in Python 3.7" from deprecation
messages of platform.dist() and platform.linux_distribution(). Patch by
Kumaripaba Miyurusara Athukorala.

	bpo-26822 [https://bugs.python.org/issue26822]: itemgetter, attrgetter and methodcaller objects no longer
silently ignore keyword arguments.

	bpo-26733 [https://bugs.python.org/issue26733]: Disassembling a class now disassembles class and static
methods. Patch by Xiang Zhang.

	bpo-26801 [https://bugs.python.org/issue26801]: Fix error handling in shutil.get_terminal_size(), catch
AttributeError instead of NameError. Patch written by
Emanuel Barry.

	bpo-24838 [https://bugs.python.org/issue24838]: tarfile's ustar and gnu formats now correctly calculate name
and link field limits for multibyte character encodings like utf-8.

安全

	bpo-26657 [https://bugs.python.org/issue26657]: Fix directory traversal vulnerability with http.server on
Windows. This fixes a regression that was introduced in 3.3.4rc1 and
3.4.0rc1. Based on patch by Philipp Hagemeister.

库

	bpo-26717 [https://bugs.python.org/issue26717]: Stop encoding Latin-1-ized WSGI paths with UTF-8. Patch by
Anthony Sottile.

	bpo-26735 [https://bugs.python.org/issue26735]: Fix os.urandom() on Solaris 11.3 and newer when reading
more than 1,024 bytes: call getrandom() multiple times with a limit of
1024 bytes per call.

	bpo-16329 [https://bugs.python.org/issue16329]: Add .webm to mimetypes.types_map. Patch by Giampaolo Rodola'.

	bpo-13952 [https://bugs.python.org/issue13952]: Add .csv to mimetypes.types_map. Patch by Geoff Wilson.

	bpo-26709 [https://bugs.python.org/issue26709]: Fixed Y2038 problem in loading binary PLists.

	bpo-23735 [https://bugs.python.org/issue23735]: Handle terminal resizing with Readline 6.3+ by installing our
own SIGWINCH handler. Patch by Eric Price.

	bpo-26586 [https://bugs.python.org/issue26586]: In http.server, respond with "413 Request header fields too
large" if there are too many header fields to parse, rather than killing
the connection and raising an unhandled exception. Patch by Xiang Zhang.

	bpo-22854 [https://bugs.python.org/issue22854]: Change BufferedReader.writable() and BufferedWriter.readable()
to always return False.

	bpo-25195 [https://bugs.python.org/issue25195]: Fix a regression in mock.MagicMock. _Call is a subclass of
tuple (changeset 3603bae63c13 only works for classes) so we need to
implement __ne__ ourselves. Patch by Andrew Plummer.

	bpo-26644 [https://bugs.python.org/issue26644]: Raise ValueError rather than SystemError when a negative length
is passed to SSLSocket.recv() or read().

	bpo-23804 [https://bugs.python.org/issue23804]: Fix SSL recv(0) and read(0) methods to return zero bytes
instead of up to 1024.

	bpo-26616 [https://bugs.python.org/issue26616]: Fixed a bug in datetime.astimezone() method.

	bpo-21925 [https://bugs.python.org/issue21925]: warnings.formatwarning() now catches exceptions on
linecache.getline(...) to be able to log ResourceWarning
emitted late during the Python shutdown process.

	bpo-24266 [https://bugs.python.org/issue24266]: Ctrl+C during Readline history search now cancels the search
mode when compiled with Readline 7.

	bpo-26560 [https://bugs.python.org/issue26560]: Avoid potential ValueError in BaseHandler.start_response.
Initial patch by Peter Inglesby.

安全

	bpo-26313 [https://bugs.python.org/issue26313]: ssl.py _load_windows_store_certs fails if windows cert store is
empty. Patch by Baji.

库

	bpo-26569 [https://bugs.python.org/issue26569]: Fix pyclbr.readmodule() and pyclbr.readmodule_ex()
to support importing packages.

	bpo-26499 [https://bugs.python.org/issue26499]: Account for remaining Content-Length in HTTPResponse.readline()
and read1(). Based on patch by Silent Ghost. Also document that
HTTPResponse now supports these methods.

	bpo-25320 [https://bugs.python.org/issue25320]: Handle sockets in directories unittest discovery is scanning.
Patch from Victor van den Elzen.

	bpo-16181 [https://bugs.python.org/issue16181]: cookiejar.http2time() now returns None if year is higher than
datetime.MAXYEAR.

	bpo-26513 [https://bugs.python.org/issue26513]: Fixes platform module detection of Windows Server

	bpo-23718 [https://bugs.python.org/issue23718]: Fixed parsing time in week 0 before Jan 1. Original patch by
Tamás Bence Gedai.

	bpo-20589 [https://bugs.python.org/issue20589]: Invoking Path.owner() and Path.group() on Windows now raise
NotImplementedError instead of ImportError.

	bpo-26177 [https://bugs.python.org/issue26177]: Fixed the keys() method for Canvas and Scrollbar widgets.

	bpo-15068 [https://bugs.python.org/issue15068]: Got rid of excessive buffering in the fileinput module. The
bufsize parameter is no longer used.

	bpo-2202 [https://bugs.python.org/issue2202]: Fix UnboundLocalError in
AbstractDigestAuthHandler.get_algorithm_impls. Initial patch by Mathieu
Dupuy.

	bpo-25718 [https://bugs.python.org/issue25718]: Fixed pickling and copying the accumulate() iterator with total
is None.

	bpo-26475 [https://bugs.python.org/issue26475]: Fixed debugging output for regular expressions with the (?x)
flag.

	bpo-26457 [https://bugs.python.org/issue26457]: Fixed the subnets() methods in IP network classes for the case
when resulting prefix length is equal to maximal prefix length. Based on
patch by Xiang Zhang.

	bpo-26385 [https://bugs.python.org/issue26385]: Remove the file if the internal open() call in
NamedTemporaryFile() fails. Patch by Silent Ghost.

	bpo-26402 [https://bugs.python.org/issue26402]: Fix XML-RPC client to retry when the server shuts down a
persistent connection. This was a regression related to the new
http.client.RemoteDisconnected exception in 3.5.0a4.

	bpo-25913 [https://bugs.python.org/issue25913]: Leading <~ is optional now in base64.a85decode() with
adobe=True. Patch by Swati Jaiswal.

	bpo-26186 [https://bugs.python.org/issue26186]: Remove an invalid type check in importlib.util.LazyLoader.

	bpo-26367 [https://bugs.python.org/issue26367]: importlib.__import__() raises SystemError like
builtins.__import__() when level is specified but without an
accompanying package specified.

	bpo-26309 [https://bugs.python.org/issue26309]: In the "socketserver" module, shut down the request (closing
the connected socket) when verify_request() returns false. Patch by Aviv
Palivoda.

安全

	bpo-25939 [https://bugs.python.org/issue25939]: On Windows open the cert store readonly in
ssl.enum_certificates.

库

	bpo-25995 [https://bugs.python.org/issue25995]: os.walk() no longer uses FDs proportional to the tree depth.

	bpo-26117 [https://bugs.python.org/issue26117]: The os.scandir() iterator now closes file descriptor not only
when the iteration is finished, but when it was failed with error.

	bpo-25911 [https://bugs.python.org/issue25911]: Restored support of bytes paths in os.walk() on Windows.

	bpo-26045 [https://bugs.python.org/issue26045]: Add UTF-8 suggestion to error message when posting a
non-Latin-1 string with http.client.

	bpo-12923 [https://bugs.python.org/issue12923]: Reset FancyURLopener's redirect counter even if there is an
exception. Based on patches by Brian Brazil and Daniel Rocco.

	bpo-25945 [https://bugs.python.org/issue25945]: Fixed a crash when unpickle the functools.partial object with
wrong state. Fixed a leak in failed functools.partial constructor. "args"
and "keywords" attributes of functools.partial have now always types tuple
and dict correspondingly.

	bpo-26202 [https://bugs.python.org/issue26202]: copy.deepcopy() now correctly copies range() objects with
non-atomic attributes.

	bpo-23076 [https://bugs.python.org/issue23076]: Path.glob() now raises a ValueError if it's called with an
invalid pattern. Patch by Thomas Nyberg.

	bpo-19883 [https://bugs.python.org/issue19883]: Fixed possible integer overflows in zipimport.

	bpo-26227 [https://bugs.python.org/issue26227]: On Windows, getnameinfo(), gethostbyaddr() and
gethostbyname_ex() functions of the socket module now decode the hostname
from the ANSI code page rather than UTF-8.

	bpo-26147 [https://bugs.python.org/issue26147]: xmlrpc now works with strings not encodable with used non-UTF-8
encoding.

	bpo-25935 [https://bugs.python.org/issue25935]: Garbage collector now breaks reference loops with OrderedDict.

	bpo-16620 [https://bugs.python.org/issue16620]: Fixed AttributeError in msilib.Directory.glob().

	bpo-26013 [https://bugs.python.org/issue26013]: Added compatibility with broken protocol 2 pickles created in
old Python 3 versions (3.4.3 and lower).

	bpo-25850 [https://bugs.python.org/issue25850]: Use cross-compilation by default for 64-bit Windows.

	bpo-17633 [https://bugs.python.org/issue17633]: Improve zipimport's support for namespace packages.

	bpo-24705 [https://bugs.python.org/issue24705]: Fix sysconfig._parse_makefile not expanding ${} vars appearing
before $() vars.

	bpo-22138 [https://bugs.python.org/issue22138]: Fix mock.patch behavior when patching descriptors. Restore
original values after patching. Patch contributed by Sean McCully.

	bpo-25672 [https://bugs.python.org/issue25672]: In the ssl module, enable the SSL_MODE_RELEASE_BUFFERS mode
option if it is safe to do so.

	bpo-26012 [https://bugs.python.org/issue26012]: Don't traverse into symlinks for ** pattern in
pathlib.Path.[r]glob().

	bpo-24120 [https://bugs.python.org/issue24120]: Ignore PermissionError when traversing a tree with
pathlib.Path.[r]glob(). Patch by Ulrich Petri.

	bpo-25447 [https://bugs.python.org/issue25447]: fileinput now uses sys.stdin as-is if it does not have a buffer
attribute (restores backward compatibility).

	bpo-25447 [https://bugs.python.org/issue25447]: Copying the lru_cache() wrapper object now always works,
independently from the type of the wrapped object (by returning the
original object unchanged).

	bpo-24103 [https://bugs.python.org/issue24103]: Fixed possible use after free in ElementTree.XMLPullParser.

	bpo-25860 [https://bugs.python.org/issue25860]: os.fwalk() no longer skips remaining directories when error
occurs. Original patch by Samson Lee.

	bpo-25914 [https://bugs.python.org/issue25914]: Fixed and simplified OrderedDict.__sizeof__.

	bpo-25902 [https://bugs.python.org/issue25902]: Fixed various refcount issues in ElementTree iteration.

	bpo-25717 [https://bugs.python.org/issue25717]: Restore the previous behaviour of tolerating most fstat()
errors when opening files. This was a regression in 3.5a1, and stopped
anonymous temporary files from working in special cases.

	bpo-24903 [https://bugs.python.org/issue24903]: Fix regression in number of arguments compileall accepts when
'-d' is specified. The check on the number of arguments has been dropped
completely as it never worked correctly anyway.

	bpo-25764 [https://bugs.python.org/issue25764]: In the subprocess module, preserve any exception caused by
fork() failure when preexec_fn is used.

	bpo-6478 [https://bugs.python.org/issue6478]: _strptime's regexp cache now is reset after changing timezone
with time.tzset().

	bpo-14285 [https://bugs.python.org/issue14285]: When executing a package with the "python -m package" option,
and package initialization fails, a proper traceback is now reported. The
"runpy" module now lets exceptions from package initialization pass back
to the caller, rather than raising ImportError.

	bpo-19771 [https://bugs.python.org/issue19771]: Also in runpy and the "-m" option, omit the irrelevant message
". . . is a package and cannot be directly executed" if the package could
not even be initialized (e.g. due to a bad *.pyc file).

	bpo-25177 [https://bugs.python.org/issue25177]: Fixed problem with the mean of very small and very large
numbers. As a side effect, statistics.mean and statistics.variance should
be significantly faster.

	bpo-25718 [https://bugs.python.org/issue25718]: Fixed copying object with state with boolean value is false.

	bpo-10131 [https://bugs.python.org/issue10131]: Fixed deep copying of minidom documents. Based on patch by
Marian Ganisin.

	bpo-25725 [https://bugs.python.org/issue25725]: Fixed a reference leak in pickle.loads() when unpickling
invalid data including tuple instructions.

	bpo-25663 [https://bugs.python.org/issue25663]: In the Readline completer, avoid listing duplicate global
names, and search the global namespace before searching builtins.

	bpo-25688 [https://bugs.python.org/issue25688]: Fixed file leak in ElementTree.iterparse() raising an error.

	bpo-23914 [https://bugs.python.org/issue23914]: Fixed SystemError raised by unpickler on broken pickle data.

	bpo-25691 [https://bugs.python.org/issue25691]: Fixed crash on deleting ElementTree.Element attributes.

	bpo-25624 [https://bugs.python.org/issue25624]: ZipFile now always writes a ZIP_STORED header for directory
entries. Patch by Dingyuan Wang.

	Skip getaddrinfo if host is already resolved. Patch by A. Jesse Jiryu
Davis.

	bpo-26050 [https://bugs.python.org/issue26050]: Add asyncio.StreamReader.readuntil() method. Patch by Марк
Коренберг.

	bpo-25924 [https://bugs.python.org/issue25924]: Avoid unnecessary serialization of getaddrinfo(3) calls on OS X
versions 10.5 or higher. Original patch by A. Jesse Jiryu Davis.

	bpo-26406 [https://bugs.python.org/issue26406]: Avoid unnecessary serialization of getaddrinfo(3) calls on
current versions of OpenBSD and NetBSD. Patch by A. Jesse Jiryu Davis.

	bpo-26848 [https://bugs.python.org/issue26848]: Fix asyncio/subprocess.communicate() to handle empty input.
Patch by Jack O'Connor.

	bpo-27040 [https://bugs.python.org/issue27040]: Add loop.get_exception_handler method

	bpo-27041 [https://bugs.python.org/issue27041]: asyncio: Add loop.create_future method

	bpo-27223 [https://bugs.python.org/issue27223]: asyncio: Fix _read_ready and _write_ready to respect
_conn_lost. Patch by Łukasz Langa.

	bpo-22970 [https://bugs.python.org/issue22970]: asyncio: Fix inconsistency cancelling Condition.wait. Patch by
David Coles.

IDLE

	bpo-5124 [https://bugs.python.org/issue5124]: Paste with text selected now replaces the selection on X11. This
matches how paste works on Windows, Mac, most modern Linux apps, and ttk
widgets. Original patch by Serhiy Storchaka.

	bpo-24759 [https://bugs.python.org/issue24759]: Make clear in idlelib.idle_test.__init__ that the directory is
a private implementation of test.test_idle and tool for maintainers.

	bpo-27196 [https://bugs.python.org/issue27196]: Stop 'ThemeChanged' warnings when running IDLE tests. These
persisted after other warnings were suppressed in #20567. Apply Serhiy
Storchaka's update_idletasks solution to four test files. Record this
additional advice in idle_test/README.txt

	bpo-20567 [https://bugs.python.org/issue20567]: Revise idle_test/README.txt with advice about avoiding tk
warning messages from tests. Apply advice to several IDLE tests.

	bpo-27117 [https://bugs.python.org/issue27117]: Make colorizer htest and turtledemo work with dark themes. Move
code for configuring text widget colors to a new function.

	bpo-26673 [https://bugs.python.org/issue26673]: When tk reports font size as 0, change to size 10. Such fonts
on Linux prevented the configuration dialog from opening.

	bpo-21939 [https://bugs.python.org/issue21939]: Add test for IDLE's percolator. Original patch by Saimadhav
Heblikar.

	bpo-21676 [https://bugs.python.org/issue21676]: Add test for IDLE's replace dialog. Original patch by Saimadhav
Heblikar.

	bpo-18410 [https://bugs.python.org/issue18410]: Add test for IDLE's search dialog. Original patch by Westley
Martínez.

	bpo-21703 [https://bugs.python.org/issue21703]: Add test for IDLE's undo delegator. Original patch by Saimadhav
Heblikar .

	bpo-27044 [https://bugs.python.org/issue27044]: Add ConfigDialog.remove_var_callbacks to stop memory leaks.

	bpo-23977 [https://bugs.python.org/issue23977]: Add more asserts to test_delegator.

	bpo-20640 [https://bugs.python.org/issue20640]: Add tests for idlelib.configHelpSourceEdit. Patch by Saimadhav
Heblikar.

	In the 'IDLE-console differences' section of the IDLE doc, clarify how
running with IDLE affects sys.modules and the standard streams.

	bpo-25507 [https://bugs.python.org/issue25507]: fix incorrect change in IOBinding that prevented printing.
Augment IOBinding htest to include all major IOBinding functions.

	bpo-25905 [https://bugs.python.org/issue25905]: Revert unwanted conversion of ' to ’ RIGHT SINGLE QUOTATION
MARK in README.txt and open this and NEWS.txt with 'ascii'. Re-encode
CREDITS.txt to utf-8 and open it with 'utf-8'.

文档

	bpo-19489 [https://bugs.python.org/issue19489]: Moved the search box from the sidebar to the header and footer
of each page. Patch by Ammar Askar.

	bpo-24136 [https://bugs.python.org/issue24136]: Document the new PEP 448 unpacking syntax of 3.5.

	bpo-26736 [https://bugs.python.org/issue26736]: Used HTTPS for external links in the documentation if possible.

	bpo-6953 [https://bugs.python.org/issue6953]: Rework the Readline module documentation to group related
functions together, and add more details such as what underlying Readline
functions and variables are accessed.

	bpo-23606 [https://bugs.python.org/issue23606]: Adds note to ctypes documentation regarding cdll.msvcrt.

	bpo-25500 [https://bugs.python.org/issue25500]: Fix documentation to not claim that __import__ is searched for
in the global scope.

	bpo-26014 [https://bugs.python.org/issue26014]: Update 3.x packaging documentation: * "See also" links to the
new docs are now provided in the legacy pages * links to setuptools
documentation have been updated

测试

	bpo-21916 [https://bugs.python.org/issue21916]: Added tests for the turtle module. Patch by ingrid, Gregory
Loyse and Jelle Zijlstra.

	bpo-26523 [https://bugs.python.org/issue26523]: The multiprocessing thread pool (multiprocessing.dummy.Pool)
was untested.

	bpo-26015 [https://bugs.python.org/issue26015]: Added new tests for pickling iterators of mutable sequences.

	bpo-26325 [https://bugs.python.org/issue26325]: Added test.support.check_no_resource_warning() to check that no
ResourceWarning is emitted.

	bpo-25940 [https://bugs.python.org/issue25940]: Changed test_ssl to use self-signed.pythontest.net. This
avoids relying on svn.python.org, which recently changed root certificate.

	bpo-25616 [https://bugs.python.org/issue25616]: Tests for OrderedDict are extracted from test_collections into
separate file test_ordered_dict.

	bpo-26583 [https://bugs.python.org/issue26583]: Skip test_timestamp_overflow in test_import if bytecode files
cannot be written.

构建

	bpo-26884 [https://bugs.python.org/issue26884]: Fix linking extension modules for cross builds. Patch by Xavier
de Gaye.

	bpo-22359 [https://bugs.python.org/issue22359]: Disable the rules for running _freeze_importlib and pgen when
cross-compiling. The output of these programs is normally saved with the
source code anyway, and is still regenerated when doing a native build.
Patch by Xavier de Gaye.

	bpo-27229 [https://bugs.python.org/issue27229]: Fix the cross-compiling pgen rule for in-tree builds. Patch by
Xavier de Gaye.

	bpo-21668 [https://bugs.python.org/issue21668]: Link audioop, _datetime, _ctypes_test modules to libm, except
on Mac OS X. Patch written by Xavier de Gaye.

	bpo-25702 [https://bugs.python.org/issue25702]: A --with-lto configure option has been added that will enable
link time optimizations at build time during a make profile-opt. Some
compilers and toolchains are known to not produce stable code when using
LTO, be sure to test things thoroughly before relying on it. It can
provide a few % speed up over profile-opt alone.

	bpo-26624 [https://bugs.python.org/issue26624]: Adds validation of ucrtbase[d].dll version with warning for old
versions.

	bpo-17603 [https://bugs.python.org/issue17603]: Avoid error about nonexistent fileblocks.o file by using a
lower-level check for st_blocks in struct stat.

	bpo-26079 [https://bugs.python.org/issue26079]: Fixing the build output folder for tix-8.4.3.6. Patch by Bjoern
Thiel.

	bpo-26465 [https://bugs.python.org/issue26465]: 更新Windows 构建OpenSSL 1.0.2g.

	bpo-24421 [https://bugs.python.org/issue24421]: Compile Modules/_math.c once, before building extensions.
Previously it could fail to compile properly if the math and cmath builds
were concurrent.

	bpo-25348 [https://bugs.python.org/issue25348]: Added --pgo and --pgo-job arguments to
PCbuild\build.bat for building with Profile-Guided Optimization. The
old PCbuild\build_pgo.bat script is now deprecated, and simply calls
PCbuild\build.bat --pgo %*.

	bpo-25827 [https://bugs.python.org/issue25827]: Add support for building with ICC to configure, including a
new --with-icc flag.

	bpo-25696 [https://bugs.python.org/issue25696]: Fix installation of Python on UNIX with make -j9.

	bpo-26930 [https://bugs.python.org/issue26930]: 更新OS X 10.5+（仅32位）安装程序以构建并链接OpenSSL 1.0.2h。

	bpo-26268 [https://bugs.python.org/issue26268]: 更新Windows 构建OpenSSL 1.0.2f.

	bpo-25136 [https://bugs.python.org/issue25136]: Support Apple Xcode 7's new textual SDK stub libraries.

	bpo-24324 [https://bugs.python.org/issue24324]: Do not enable unreachable code warnings when using gcc as the
option does not work correctly in older versions of gcc and has been
silently removed as of gcc-4.5.

Windows

	bpo-27053 [https://bugs.python.org/issue27053]: Updates make_zip.py to correctly generate library ZIP file.

	bpo-26268 [https://bugs.python.org/issue26268]: Update the prepare_ssl.py script to handle OpenSSL releases
that don't include the contents of the include directory (that is, 1.0.2e
and later).

	bpo-26071 [https://bugs.python.org/issue26071]: bdist_wininst created binaries fail to start and find 32bit
Python

	bpo-26073 [https://bugs.python.org/issue26073]: Update the list of magic numbers in launcher

	bpo-26065 [https://bugs.python.org/issue26065]: Excludes venv from library when generating embeddable distro.

工具/示例

	bpo-26799 [https://bugs.python.org/issue26799]: Fix python-gdb.py: don't get C types once when the Python code
is loaded, but get C types on demand. The C types can change if
python-gdb.py is loaded before the Python executable. Patch written by
Thomas Ilsche.

	bpo-26271 [https://bugs.python.org/issue26271]: Fix the Freeze tool to properly use flags passed through
configure. Patch by Daniel Shaulov.

	bpo-26489 [https://bugs.python.org/issue26489]: Add dictionary unpacking support to Tools/parser/unparse.py.
Patch by Guo Ci Teo.

	bpo-26316 [https://bugs.python.org/issue26316]: Fix variable name typo in Argument Clinic.

Windows

	bpo-17500 [https://bugs.python.org/issue17500]: Remove unused and outdated icons. (See also:
https://github.com/python/pythondotorg/issues/945)

Python 3.5.1 正式版

发布日期: 2015-12-06

核心与内置

	bpo-25709 [https://bugs.python.org/issue25709]: Fixed problem with in-place string concatenation and utf-8
cache.

Windows

	bpo-25715 [https://bugs.python.org/issue25715]: Python 3.5.1 installer shows wrong upgrade path and incorrect
logic for launcher detection.

Python 3.5.1 rc1

发布日期: 2015-11-22

核心与内置

	bpo-25630 [https://bugs.python.org/issue25630]: Fix a possible segfault during argument parsing in functions
that accept filesystem paths.

	bpo-23564 [https://bugs.python.org/issue23564]: Fixed a partially broken sanity check in the _posixsubprocess
internals regarding how fds_to_pass were passed to the child. The bug had
no actual impact as subprocess.py already avoided it.

	bpo-25388 [https://bugs.python.org/issue25388]: Fixed tokenizer crash when processing undecodable source code
with a null byte.

	bpo-25462 [https://bugs.python.org/issue25462]: The hash of the key now is calculated only once in most
operations in C implementation of OrderedDict.

	bpo-22995 [https://bugs.python.org/issue22995]: Default implementation of __reduce__ and __reduce_ex__ now
rejects builtin types with not defined __new__.

	bpo-25555 [https://bugs.python.org/issue25555]: Fix parser and AST: fill lineno and col_offset of "arg" node
when compiling AST from Python objects.

	bpo-24802 [https://bugs.python.org/issue24802]: Avoid buffer overreads when int(), float(), compile(), exec()
and eval() are passed bytes-like objects. These objects are not
necessarily terminated by a null byte, but the functions assumed they
were.

	bpo-24726 [https://bugs.python.org/issue24726]: Fixed a crash and leaking NULL in repr() of OrderedDict that
was mutated by direct calls of dict methods.

	bpo-25449 [https://bugs.python.org/issue25449]: Iterating OrderedDict with keys with unstable hash now raises
KeyError in C implementations as well as in Python implementation.

	bpo-25395 [https://bugs.python.org/issue25395]: Fixed crash when highly nested OrderedDict structures were
garbage collected.

	bpo-25274 [https://bugs.python.org/issue25274]: sys.setrecursionlimit() now raises a RecursionError if the new
recursion limit is too low depending at the current recursion depth.
Modify also the "lower-water mark" formula to make it monotonic. This mark
is used to decide when the overflowed flag of the thread state is reset.

	bpo-24402 [https://bugs.python.org/issue24402]: Fix input() to prompt to the redirected stdout when
sys.stdout.fileno() fails.

	bpo-24806 [https://bugs.python.org/issue24806]: Prevent builtin types that are not allowed to be subclassed
from being subclassed through multiple inheritance.

	bpo-24848 [https://bugs.python.org/issue24848]: Fixed a number of bugs in UTF-7 decoding of misformed data.

	bpo-25280 [https://bugs.python.org/issue25280]: Import trace messages emitted in verbose (-v) mode are no
longer formatted twice.

	bpo-25003 [https://bugs.python.org/issue25003]: On Solaris 11.3 or newer, os.urandom() now uses the getrandom()
function instead of the getentropy() function. The getentropy() function
is blocking to generate very good quality entropy, os.urandom() doesn't
need such high-quality entropy.

	bpo-25182 [https://bugs.python.org/issue25182]: The stdprinter (used as sys.stderr before the io module is
imported at startup) now uses the backslashreplace error handler.

	bpo-25131 [https://bugs.python.org/issue25131]: Make the line number and column offset of set/dict literals and
comprehensions correspond to the opening brace.

	bpo-25150 [https://bugs.python.org/issue25150]: Hide the private _Py_atomic_xxx symbols from the public
Python.h header to fix a compilation error with OpenMP.
PyThreadState_GET() becomes an alias to PyThreadState_Get() to avoid ABI
incompatibilities.

库

	bpo-25626 [https://bugs.python.org/issue25626]: Change three zlib functions to accept sizes that fit in
Py_ssize_t, but internally cap those sizes to UINT_MAX. This resolves a
regression in 3.5 where GzipFile.read() failed to read chunks larger than
2 or 4 GiB. The change affects the zlib.Decompress.decompress()
max_length parameter, the zlib.decompress() bufsize parameter, and the
zlib.Decompress.flush() length parameter.

	bpo-25583 [https://bugs.python.org/issue25583]: Avoid incorrect errors raised by os.makedirs(exist_ok=True)
when the OS gives priority to errors such as EACCES over EEXIST.

	bpo-25593 [https://bugs.python.org/issue25593]: Change semantics of EventLoop.stop() in asyncio.

	bpo-6973 [https://bugs.python.org/issue6973]: When we know a subprocess.Popen process has died, do not allow
the send_signal(), terminate(), or kill() methods to do anything as they
could potentially signal a different process.

	bpo-25590 [https://bugs.python.org/issue25590]: In the Readline completer, only call getattr() once per
attribute.

	bpo-25498 [https://bugs.python.org/issue25498]: Fix a crash when garbage-collecting ctypes objects created by
wrapping a memoryview. This was a regression made in 3.5a1. Based on
patch by Eryksun.

	bpo-25584 [https://bugs.python.org/issue25584]: Added "escape" to the __all__ list in the glob module.

	bpo-25584 [https://bugs.python.org/issue25584]: Fixed recursive glob() with patterns starting with **.

	bpo-25446 [https://bugs.python.org/issue25446]: Fix regression in smtplib's AUTH LOGIN support.

	bpo-18010 [https://bugs.python.org/issue18010]: Fix the pydoc web server's module search function to handle
exceptions from importing packages.

	bpo-25554 [https://bugs.python.org/issue25554]: Got rid of circular references in regular expression parsing.

	bpo-25510 [https://bugs.python.org/issue25510]: fileinput.FileInput.readline() now returns b'' instead of '' at
the end if the FileInput was opened with binary mode. Patch by Ryosuke
Ito.

	bpo-25503 [https://bugs.python.org/issue25503]: Fixed inspect.getdoc() for inherited docstrings of properties.
Original patch by John Mark Vandenberg.

	bpo-25515 [https://bugs.python.org/issue25515]: Always use os.urandom as a source of randomness in uuid.uuid4.

	bpo-21827 [https://bugs.python.org/issue21827]: Fixed textwrap.dedent() for the case when largest common
whitespace is a substring of smallest leading whitespace. Based on patch
by Robert Li.

	bpo-25447 [https://bugs.python.org/issue25447]: The lru_cache() wrapper objects now can be copied and pickled
(by returning the original object unchanged).

	bpo-25390 [https://bugs.python.org/issue25390]: typing: Don't crash on Union[str, Pattern].

	bpo-25441 [https://bugs.python.org/issue25441]: asyncio: Raise error from drain() when socket is closed.

	bpo-25410 [https://bugs.python.org/issue25410]: Cleaned up and fixed minor bugs in C implementation of
OrderedDict.

	bpo-25411 [https://bugs.python.org/issue25411]: Improved Unicode support in SMTPHandler through better use of
the email package. Thanks to user simon04 for the patch.

	bpo-25407 [https://bugs.python.org/issue25407]: Remove mentions of the formatter module being removed in Python
3.6.

	bpo-25406 [https://bugs.python.org/issue25406]: Fixed a bug in C implementation of OrderedDict.move_to_end()
that caused segmentation fault or hang in iterating after moving several
items to the start of ordered dict.

	bpo-25364 [https://bugs.python.org/issue25364]: zipfile now works in threads disabled builds.

	bpo-25328 [https://bugs.python.org/issue25328]: smtpd's SMTPChannel now correctly raises a ValueError if both
decode_data and enable_SMTPUTF8 are set to true.

	bpo-25316 [https://bugs.python.org/issue25316]: distutils raises OSError instead of DistutilsPlatformError when
MSVC is not installed.

	bpo-25380 [https://bugs.python.org/issue25380]: Fixed protocol for the STACK_GLOBAL opcode in
pickletools.opcodes.

	bpo-23972 [https://bugs.python.org/issue23972]: Updates asyncio datagram create method allowing reuseport and
reuseaddr socket options to be set prior to binding the socket. Mirroring
the existing asyncio create_server method the reuseaddr option for
datagram sockets defaults to True if the O/S is 'posix' (except if the
platform is Cygwin). Patch by Chris Laws.

	bpo-25304 [https://bugs.python.org/issue25304]: Add asyncio.run_coroutine_threadsafe(). This lets you submit a
coroutine to a loop from another thread, returning a
concurrent.futures.Future. By Vincent Michel.

	bpo-25232 [https://bugs.python.org/issue25232]: Fix CGIRequestHandler to split the query from the URL at the
first question mark (?) rather than the last. Patch from Xiang Zhang.

	bpo-24657 [https://bugs.python.org/issue24657]: Prevent CGIRequestHandler from collapsing slashes in the query
part of the URL as if it were a path. Patch from Xiang Zhang.

	bpo-24483 [https://bugs.python.org/issue24483]: C implementation of functools.lru_cache() now calculates key's
hash only once.

	bpo-22958 [https://bugs.python.org/issue22958]: Constructor and update method of weakref.WeakValueDictionary
now accept the self and the dict keyword arguments.

	bpo-22609 [https://bugs.python.org/issue22609]: Constructor of collections.UserDict now accepts the self
keyword argument.

	bpo-25111 [https://bugs.python.org/issue25111]: Fixed comparison of traceback.FrameSummary.

	bpo-25262 [https://bugs.python.org/issue25262]: Added support for BINBYTES8 opcode in Python implementation of
unpickler. Highest 32 bits of 64-bit size for BINUNICODE8 and BINBYTES8
opcodes no longer silently ignored on 32-bit platforms in C
implementation.

	bpo-25034 [https://bugs.python.org/issue25034]: Fix string.Formatter problem with auto-numbering and nested
format_specs. Patch by Anthon van der Neut.

	bpo-25233 [https://bugs.python.org/issue25233]: Rewrite the guts of asyncio.Queue and asyncio.Semaphore to be
more understandable and correct.

	bpo-25203 [https://bugs.python.org/issue25203]: Failed readline.set_completer_delims() no longer left the
module in inconsistent state.

	bpo-23600 [https://bugs.python.org/issue23600]: Default implementation of tzinfo.fromutc() was returning wrong
results in some cases.

	bpo-23329 [https://bugs.python.org/issue23329]: Allow the ssl module to be built with older versions of
LibreSSL.

	Prevent overflow in _Unpickler_Read.

	bpo-25047 [https://bugs.python.org/issue25047]: The XML encoding declaration written by Element Tree now
respects the letter case given by the user. This restores the ability to
write encoding names in uppercase like "UTF-8", which worked in Python 2.

	bpo-25135 [https://bugs.python.org/issue25135]: Make deque_clear() safer by emptying the deque before clearing.
This helps avoid possible reentrancy issues.

	bpo-19143 [https://bugs.python.org/issue19143]: platform module now reads Windows version from kernel32.dll to
avoid compatibility shims.

	bpo-25092 [https://bugs.python.org/issue25092]: Fix datetime.strftime() failure when errno was already set to
EINVAL.

	bpo-23517 [https://bugs.python.org/issue23517]: Fix rounding in fromtimestamp() and utcfromtimestamp() methods
of datetime.datetime: microseconds are now rounded to nearest with ties
going to nearest even integer (ROUND_HALF_EVEN), instead of being rounding
towards minus infinity (ROUND_FLOOR). It's important that these methods
use the same rounding mode than datetime.timedelta to keep the property:
(datetime(1970,1,1) + timedelta(seconds=t)) ==
datetime.utcfromtimestamp(t). It also the rounding mode used by
round(float) for example.

	bpo-25155 [https://bugs.python.org/issue25155]: Fix datetime.datetime.now() and datetime.datetime.utcnow() on
Windows to support date after year 2038. It was a regression introduced in
Python 3.5.0.

	bpo-25108 [https://bugs.python.org/issue25108]: Omitted internal frames in traceback functions print_stack(),
format_stack(), and extract_stack() called without arguments.

	bpo-25118 [https://bugs.python.org/issue25118]: Fix a regression of Python 3.5.0 in os.waitpid() on Windows.

	bpo-24684 [https://bugs.python.org/issue24684]: socket.socket.getaddrinfo() now calls
PyUnicode_AsEncodedString() instead of calling the encode() method of the
host, to handle correctly custom string with an encode() method which
doesn't return a byte string. The encoder of the IDNA codec is now called
directly instead of calling the encode() method of the string.

	bpo-25060 [https://bugs.python.org/issue25060]: Correctly compute stack usage of the BUILD_MAP opcode.

	bpo-24857 [https://bugs.python.org/issue24857]: Comparing call_args to a long sequence now correctly returns a
boolean result instead of raising an exception. Patch by A Kaptur.

	bpo-23144 [https://bugs.python.org/issue23144]: Make sure that HTMLParser.feed() returns all the data, even
when convert_charrefs is True.

	bpo-24982 [https://bugs.python.org/issue24982]: shutil.make_archive() with the "zip" format now adds entries
for directories (including empty directories) in ZIP file.

	bpo-25019 [https://bugs.python.org/issue25019]: Fixed a crash caused by setting non-string key of expat parser.
Based on patch by John Leitch.

	bpo-16180 [https://bugs.python.org/issue16180]: Exit pdb if file has syntax error, instead of trapping user in
an infinite loop. Patch by Xavier de Gaye.

	bpo-24891 [https://bugs.python.org/issue24891]: Fix a race condition at Python startup if the file descriptor
of stdin (0), stdout (1) or stderr (2) is closed while Python is creating
sys.stdin, sys.stdout and sys.stderr objects. These attributes are now set
to None if the creation of the object failed, instead of raising an
OSError exception. Initial patch written by Marco Paolini.

	bpo-24992 [https://bugs.python.org/issue24992]: Fix error handling and a race condition (related to garbage
collection) in collections.OrderedDict constructor.

	bpo-24881 [https://bugs.python.org/issue24881]: Fixed setting binary mode in Python implementation of FileIO on
Windows and Cygwin. Patch from Akira Li.

	bpo-25578 [https://bugs.python.org/issue25578]: Fix (another) memory leak in SSLSocket.getpeercer().

	bpo-25530 [https://bugs.python.org/issue25530]: Disable the vulnerable SSLv3 protocol by default when creating
ssl.SSLContext.

	bpo-25569 [https://bugs.python.org/issue25569]: Fix memory leak in SSLSocket.getpeercert().

	bpo-25471 [https://bugs.python.org/issue25471]: Sockets returned from accept() shouldn't appear to be
nonblocking.

	bpo-25319 [https://bugs.python.org/issue25319]: When threading.Event is reinitialized, the underlying condition
should use a regular lock rather than a recursive lock.

	bpo-21112 [https://bugs.python.org/issue21112]: Fix regression in unittest.expectedFailure on subclasses. Patch
from Berker Peksag.

	bpo-24764 [https://bugs.python.org/issue24764]: cgi.FieldStorage.read_multi() now ignores the Content-Length
header in part headers. Patch written by Peter Landry and reviewed by
Pierre Quentel.

	bpo-24913 [https://bugs.python.org/issue24913]: Fix overrun error in deque.index(). Found by John Leitch and
Bryce Darling.

	bpo-24774 [https://bugs.python.org/issue24774]: Fix docstring in http.server.test. Patch from Chiu-Hsiang Hsu.

	bpo-21159 [https://bugs.python.org/issue21159]: Improve message in
configparser.InterpolationMissingOptionError. Patch from Łukasz Langa.

	bpo-20362 [https://bugs.python.org/issue20362]: Honour TestCase.longMessage correctly in assertRegex. Patch
from Ilia Kurenkov.

	bpo-23572 [https://bugs.python.org/issue23572]: Fixed functools.singledispatch on classes with falsy
metaclasses. Patch by Ethan Furman.

	asyncio: ensure_future() now accepts awaitable objects.

IDLE

	bpo-15348 [https://bugs.python.org/issue15348]: Stop the debugger engine (normally in a user process) before
closing the debugger window (running in the IDLE process). This prevents
the RuntimeErrors that were being caught and ignored.

	bpo-24455 [https://bugs.python.org/issue24455]: Prevent IDLE from hanging when a) closing the shell while the
debugger is active (15347); b) closing the debugger with the [X] button
(15348); and c) activating the debugger when already active (24455). The
patch by Mark Roseman does this by making two changes. 1. Suspend and
resume the gui.interaction method with the tcl vwait mechanism intended
for this purpose (instead of root.mainloop & .quit). 2. In gui.run, allow
any existing interaction to terminate first.

	Change 'The program' to 'Your program' in an IDLE 'kill program?' message
to make it clearer that the program referred to is the currently running
user program, not IDLE itself.

	bpo-24750 [https://bugs.python.org/issue24750]: Improve the appearance of the IDLE editor window status bar.
Patch by Mark Roseman.

	bpo-25313 [https://bugs.python.org/issue25313]: Change the handling of new built-in text color themes to better
address the compatibility problem introduced by the addition of IDLE Dark.
Consistently use the revised idleConf.CurrentTheme everywhere in idlelib.

	bpo-24782 [https://bugs.python.org/issue24782]: Extension configuration is now a tab in the IDLE Preferences
dialog rather than a separate dialog. The former tabs are now a sorted
list. Patch by Mark Roseman.

	bpo-22726 [https://bugs.python.org/issue22726]: Re-activate the config dialog help button with some content
about the other buttons and the new IDLE Dark theme.

	bpo-24820 [https://bugs.python.org/issue24820]: IDLE now has an 'IDLE Dark' built-in text color theme. It is
more or less IDLE Classic inverted, with a cobalt blue background.
Strings, comments, keywords, ... are still green, red, orange, To
use it with IDLEs released before November 2015, hit the 'Save as New
Custom Theme' button and enter a new name, such as 'Custom Dark'. The
custom theme will work with any IDLE release, and can be modified.

	bpo-25224 [https://bugs.python.org/issue25224]: README.txt is now an idlelib index for IDLE developers and
curious users. The previous user content is now in the IDLE doc chapter.
'IDLE' now means 'Integrated Development and Learning Environment'.

	bpo-24820 [https://bugs.python.org/issue24820]: Users can now set breakpoint colors in Settings -> Custom
Highlighting. Original patch by Mark Roseman.

	bpo-24972 [https://bugs.python.org/issue24972]: Inactive selection background now matches active selection
background, as configured by users, on all systems. Found items are now
always highlighted on Windows. Initial patch by Mark Roseman.

	bpo-24570 [https://bugs.python.org/issue24570]: Idle: make calltip and completion boxes appear on Macs affected
by a tk regression. Initial patch by Mark Roseman.

	bpo-24988 [https://bugs.python.org/issue24988]: Idle ScrolledList context menus (used in debugger) now work on
Mac Aqua. Patch by Mark Roseman.

	bpo-24801 [https://bugs.python.org/issue24801]: Make right-click for context menu work on Mac Aqua. Patch by
Mark Roseman.

	bpo-25173 [https://bugs.python.org/issue25173]: Associate tkinter messageboxes with a specific widget. For Mac
OSX, make them a 'sheet'. Patch by Mark Roseman.

	bpo-25198 [https://bugs.python.org/issue25198]: Enhance the initial html viewer now used for Idle Help.
Properly indent fixed-pitch text (patch by Mark Roseman). Give code
snippet a very Sphinx-like light blueish-gray background. Re-use initial
width and height set by users for shell and editor. When the Table of
Contents (TOC) menu is used, put the section header at the top of the
screen.

	bpo-25225 [https://bugs.python.org/issue25225]: Condense and rewrite Idle doc section on text colors.

	bpo-21995 [https://bugs.python.org/issue21995]: Explain some differences between IDLE and console Python.

	bpo-22820 [https://bugs.python.org/issue22820]: Explain need for print when running file from Idle editor.

	bpo-25224 [https://bugs.python.org/issue25224]: Doc: augment Idle feature list and no-subprocess section.

	bpo-25219 [https://bugs.python.org/issue25219]: Update doc for Idle command line options. Some were missing and
notes were not correct.

	bpo-24861 [https://bugs.python.org/issue24861]: Most of idlelib is private and subject to change. Use
idleib.idle.* to start Idle. See idlelib.__init__.__doc__.

	bpo-25199 [https://bugs.python.org/issue25199]: Idle: add synchronization comments for future maintainers.

	bpo-16893 [https://bugs.python.org/issue16893]: Replace help.txt with help.html for Idle doc display. The new
idlelib/help.html is rstripped Doc/build/html/library/idle.html. It looks
better than help.txt and will better document Idle as released. The
tkinter html viewer that works for this file was written by Mark Roseman.
The now unused EditorWindow.HelpDialog class and helt.txt file are
deprecated.

	bpo-24199 [https://bugs.python.org/issue24199]: Deprecate unused idlelib.idlever with possible removal in 3.6.

	bpo-24790 [https://bugs.python.org/issue24790]: Remove extraneous code (which also create 2 & 3 conflicts).

文档

	bpo-22558 [https://bugs.python.org/issue22558]: Add remaining doc links to source code for Python-coded
modules. Patch by Yoni Lavi.

	bpo-12067 [https://bugs.python.org/issue12067]: Rewrite Comparisons section in the Expressions chapter of the
language reference. Some of the details of comparing mixed types were
incorrect or ambiguous. NotImplemented is only relevant at a lower level
than the Expressions chapter. Added details of comparing range() objects,
and default behaviour and consistency suggestions for user-defined
classes. Patch from Andy Maier.

	bpo-24952 [https://bugs.python.org/issue24952]: Clarify the default size argument of stack_size() in the
"threading" and "_thread" modules. Patch from Mattip.

	bpo-23725 [https://bugs.python.org/issue23725]: Overhaul tempfile docs. Note deprecated status of mktemp. Patch
from Zbigniew Jędrzejewski-Szmek.

	bpo-24808 [https://bugs.python.org/issue24808]: Update the types of some PyTypeObject fields. Patch by Joseph
Weston.

	bpo-22812 [https://bugs.python.org/issue22812]: Fix unittest discovery examples. Patch from Pam McA'Nulty.

测试

	bpo-25449 [https://bugs.python.org/issue25449]: Added tests for OrderedDict subclasses.

	bpo-25099 [https://bugs.python.org/issue25099]: Make test_compileall not fail when an entry on sys.path cannot
be written to (commonly seen in administrative installs on Windows).

	bpo-23919 [https://bugs.python.org/issue23919]: Prevents assert dialogs appearing in the test suite.

	PCbuild\rt.bat now accepts an unlimited number of arguments to pass
along to regrtest.py. Previously there was a limit of 9.

构建

	bpo-24915 [https://bugs.python.org/issue24915]: Add LLVM support for PGO builds and use the test suite to
generate the profile data. Initial patch by Alecsandru Patrascu of Intel.

	bpo-24910 [https://bugs.python.org/issue24910]: Windows MSIs now have unique display names.

	bpo-24986 [https://bugs.python.org/issue24986]: It is now possible to build Python on Windows without errors
when external libraries are not available.

Windows

	bpo-25450 [https://bugs.python.org/issue25450]: Updates shortcuts to start Python in installation directory.

	bpo-25164 [https://bugs.python.org/issue25164]: Changes default all-users install directory to match per-user
directory.

	bpo-25143 [https://bugs.python.org/issue25143]: Improves installer error messages for unsupported platforms.

	bpo-25163 [https://bugs.python.org/issue25163]: Display correct directory in installer when using non-default
settings.

	bpo-25361 [https://bugs.python.org/issue25361]: Disables use of SSE2 instructions in Windows 32-bit build

	bpo-25089 [https://bugs.python.org/issue25089]: Adds logging to installer for case where launcher is not
selected on upgrade.

	bpo-25165 [https://bugs.python.org/issue25165]: Windows uninstallation should not remove launcher if other
versions remain

	bpo-25112 [https://bugs.python.org/issue25112]: py.exe launcher is missing icons

	bpo-25102 [https://bugs.python.org/issue25102]: Windows installer does not precompile for -O or -OO.

	bpo-25081 [https://bugs.python.org/issue25081]: Makes Back button in installer go back to upgrade page when
upgrading.

	bpo-25091 [https://bugs.python.org/issue25091]: Increases font size of the installer.

	bpo-25126 [https://bugs.python.org/issue25126]: Clarifies that the non-web installer will download some
components.

	bpo-25213 [https://bugs.python.org/issue25213]: Restores requestedExecutionLevel to manifest to disable UAC
virtualization.

	bpo-25022 [https://bugs.python.org/issue25022]: Removed very outdated PC/example_nt/ directory.

工具/示例

	bpo-25440 [https://bugs.python.org/issue25440]: Fix output of python-config --extension-suffix.

Python 3.5.0 正式版

发布日期: 2015-09-13

构建

	bpo-25071 [https://bugs.python.org/issue25071]: Windows installer should not require TargetDir parameter when
installing quietly.

Python 3.5.0 rc4

发布日期: 2015-09-09

库

	bpo-25029 [https://bugs.python.org/issue25029]: Fixes MemoryError in test_strptime.

构建

	bpo-25027 [https://bugs.python.org/issue25027]: Reverts partial-static build options and adds vcruntime140.dll
to Windows installation.

Python 3.5.0 rc3

发布日期: 2015-09-07

核心与内置

	bpo-24305 [https://bugs.python.org/issue24305]: Prevent import subsystem stack frames from being counted by the
warnings.warn(stacklevel=) parameter.

	bpo-24912 [https://bugs.python.org/issue24912]: Prevent __class__ assignment to immutable built-in objects.

	bpo-24975 [https://bugs.python.org/issue24975]: Fix AST compilation for PEP 448 syntax.

库

	bpo-24917 [https://bugs.python.org/issue24917]: time_strftime() buffer over-read.

	bpo-24748 [https://bugs.python.org/issue24748]: To resolve a compatibility problem found with py2exe and
pywin32, imp.load_dynamic() once again ignores previously loaded modules
to support Python modules replacing themselves with extension modules.
Patch by Petr Viktorin.

	bpo-24635 [https://bugs.python.org/issue24635]: Fixed a bug in typing.py where isinstance([], typing.Iterable)
would return True once, then False on subsequent calls.

	bpo-24989 [https://bugs.python.org/issue24989]: Fixed buffer overread in BytesIO.readline() if a position is
set beyond size. Based on patch by John Leitch.

	bpo-24913 [https://bugs.python.org/issue24913]: Fix overrun error in deque.index(). Found by John Leitch and
Bryce Darling.

Python 3.5.0 rc2

发布日期: 2015-08-25

核心与内置

	bpo-24769 [https://bugs.python.org/issue24769]: Interpreter now starts properly when dynamic loading is
disabled. Patch by Petr Viktorin.

	bpo-21167 [https://bugs.python.org/issue21167]: NAN operations are now handled correctly when python is
compiled with ICC even if -fp-model strict is not specified.

	bpo-24492 [https://bugs.python.org/issue24492]: A "package" lacking a __name__ attribute when trying to perform
a from .. import ... statement will trigger an ImportError instead of
an AttributeError.

库

	bpo-24847 [https://bugs.python.org/issue24847]: Removes vcruntime140.dll dependency from Tcl/Tk.

	bpo-24839 [https://bugs.python.org/issue24839]: platform._syscmd_ver raises DeprecationWarning

	bpo-24867 [https://bugs.python.org/issue24867]: Fix Task.get_stack() for 'async def' coroutines

Python 3.5.0 rc1

发布日期: 2015-08-09

核心与内置

	bpo-24667 [https://bugs.python.org/issue24667]: Resize odict in all cases that the underlying dict resizes.

库

	bpo-24824 [https://bugs.python.org/issue24824]: Signatures of codecs.encode() and codecs.decode() now are
compatible with pydoc.

	bpo-24634 [https://bugs.python.org/issue24634]: Importing uuid should not try to load libc on Windows

	bpo-24798 [https://bugs.python.org/issue24798]: _msvccompiler.py doesn't properly support manifests

	bpo-4395 [https://bugs.python.org/issue4395]: Better testing and documentation of binary operators. Patch by
Martin Panter.

	bpo-23973 [https://bugs.python.org/issue23973]: Update typing.py from GitHub repo.

	bpo-23004 [https://bugs.python.org/issue23004]: mock_open() now reads binary data correctly when the type of
read_data is bytes. Initial patch by Aaron Hill.

	bpo-23888 [https://bugs.python.org/issue23888]: Handle fractional time in cookie expiry. Patch by ssh.

	bpo-23652 [https://bugs.python.org/issue23652]: Make it possible to compile the select module against the libc
headers from the Linux Standard Base, which do not include some EPOLL
macros. Patch by Matt Frank.

	bpo-22932 [https://bugs.python.org/issue22932]: Fix timezones in email.utils.formatdate. Patch from Dmitry
Shachnev.

	bpo-23779 [https://bugs.python.org/issue23779]: imaplib raises TypeError if authenticator tries to abort. Patch
from Craig Holmquist.

	bpo-23319 [https://bugs.python.org/issue23319]: Fix ctypes.BigEndianStructure, swap correctly bytes. Patch
written by Matthieu Gautier.

	bpo-23254 [https://bugs.python.org/issue23254]: Document how to close the TCPServer listening socket. Patch
from Martin Panter.

	bpo-19450 [https://bugs.python.org/issue19450]: 更新Windows和OS X安装程序以使用SQLite 3.8.11

	bpo-17527 [https://bugs.python.org/issue17527]: Add PATCH to wsgiref.validator. Patch from Luca Sbardella.

	bpo-24791 [https://bugs.python.org/issue24791]: Fix grammar regression for call syntax: 'g(*a or b)'.

IDLE

	bpo-23672 [https://bugs.python.org/issue23672]: Allow Idle to edit and run files with astral chars in name.
Patch by Mohd Sanad Zaki Rizvi.

	bpo-24745 [https://bugs.python.org/issue24745]: Idle editor default font. Switch from Courier to
platform-sensitive TkFixedFont. This should not affect current customized
font selections. If there is a problem, edit
$HOME/.idlerc/config-main.cfg and remove 'fontxxx' entries from [Editor
Window]. Patch by Mark Roseman.

	bpo-21192 [https://bugs.python.org/issue21192]: Idle editor. When a file is run, put its name in the restart
bar. Do not print false prompts. Original patch by Adnan Umer.

	bpo-13884 [https://bugs.python.org/issue13884]: Idle menus. Remove tearoff lines. Patch by Roger Serwy.

文档

	bpo-24129 [https://bugs.python.org/issue24129]: Clarify the reference documentation for name resolution. This
includes removing the assumption that readers will be familiar with the
name resolution scheme Python used prior to the introduction of lexical
scoping for function namespaces. Patch by Ivan Levkivskyi.

	bpo-20769 [https://bugs.python.org/issue20769]: Improve reload() docs. Patch by Dorian Pula.

	bpo-23589 [https://bugs.python.org/issue23589]: Remove duplicate sentence from the FAQ. Patch by Yongzhi Pan.

	bpo-24729 [https://bugs.python.org/issue24729]: Correct IO tutorial to match implementation regarding encoding
parameter to open function.

测试

	bpo-24751 [https://bugs.python.org/issue24751]: When running regrtest with the -w command line option, a
test run is no longer marked as a failure if all tests succeed when
re-run.

Python 3.5.0 beta 4

发布日期: 2015-07-26

核心与内置

	bpo-23573 [https://bugs.python.org/issue23573]: Restored optimization of bytes.rfind() and bytearray.rfind()
for single-byte argument on Linux.

	bpo-24569 [https://bugs.python.org/issue24569]: Make PEP 448 dictionary evaluation more consistent.

	bpo-24583 [https://bugs.python.org/issue24583]: Fix crash when set is mutated while being updated.

	bpo-24407 [https://bugs.python.org/issue24407]: Fix crash when dict is mutated while being updated.

	bpo-24619 [https://bugs.python.org/issue24619]: New approach for tokenizing async/await. As a consequence, it
is now possible to have one-line 'async def foo(): await ..' functions.

	bpo-24687 [https://bugs.python.org/issue24687]: Plug refleak on SyntaxError in function parameters annotations.

	bpo-15944 [https://bugs.python.org/issue15944]: memoryview: Allow arbitrary formats when casting to bytes.
Patch by Martin Panter.

库

	bpo-23441 [https://bugs.python.org/issue23441]: rcompleter now prints a tab character instead of displaying
possible completions for an empty word. Initial patch by Martin Sekera.

	bpo-24683 [https://bugs.python.org/issue24683]: Fixed crashes in _json functions called with arguments of
inappropriate type.

	bpo-21697 [https://bugs.python.org/issue21697]: shutil.copytree() now correctly handles symbolic links that
point to directories. Patch by Eduardo Seabra and Thomas Kluyver.

	bpo-14373 [https://bugs.python.org/issue14373]: Fixed segmentation fault when gc.collect() is called during
constructing lru_cache (C implementation).

	bpo-24695 [https://bugs.python.org/issue24695]: Fix a regression in traceback.print_exception(). If
exc_traceback is None we shouldn't print a traceback header like described
in the documentation.

	bpo-24620 [https://bugs.python.org/issue24620]: Random.setstate() now validates the value of state last
element.

	bpo-22485 [https://bugs.python.org/issue22485]: Fixed an issue that caused inspect.getsource to return
incorrect results on nested functions.

	bpo-22153 [https://bugs.python.org/issue22153]: Improve unittest docs. Patch from Martin Panter and evilzero.

	bpo-24580 [https://bugs.python.org/issue24580]: Symbolic group references to open group in re patterns now are
explicitly forbidden as well as numeric group references.

	bpo-24206 [https://bugs.python.org/issue24206]: Fixed __eq__ and __ne__ methods of inspect classes.

	bpo-24631 [https://bugs.python.org/issue24631]: Fixed regression in the timeit module with multiline setup.

	bpo-18622 [https://bugs.python.org/issue18622]: unittest.mock.mock_open().reset_mock would recurse infinitely.
Patch from Nicola Palumbo and Laurent De Buyst.

	bpo-23661 [https://bugs.python.org/issue23661]: unittest.mock side_effects can now be exceptions again. This
was a regression vs Python 3.4. Patch from Ignacio Rossi

	bpo-24608 [https://bugs.python.org/issue24608]: chunk.Chunk.read() now always returns bytes, not str.

	bpo-18684 [https://bugs.python.org/issue18684]: Fixed reading out of the buffer in the re module.

	bpo-24259 [https://bugs.python.org/issue24259]: tarfile now raises a ReadError if an archive is truncated
inside a data segment.

	bpo-15014 [https://bugs.python.org/issue15014]: SMTP.auth() and SMTP.login() now support RFC 4954's optional
initial-response argument to the SMTP AUTH command.

	bpo-24669 [https://bugs.python.org/issue24669]: Fix inspect.getsource() for 'async def' functions. Patch by Kai
Groner.

	bpo-24688 [https://bugs.python.org/issue24688]: ast.get_docstring() for 'async def' functions.

构建

	bpo-24603 [https://bugs.python.org/issue24603]: 更新Windows 构建和OS X 10.5 安装程序以使用OpenSSL 1.0.2d.

Python 3.5.0 beta 3

发布日期: 2015-07-05

核心与内置

	bpo-24467 [https://bugs.python.org/issue24467]: Fixed possible buffer over-read in bytearray. The bytearray
object now always allocates place for trailing null byte and it's buffer
now is always null-terminated.

	Upgrade to Unicode 8.0.0.

	bpo-24345 [https://bugs.python.org/issue24345]: Add Py_tp_finalize slot for the stable ABI.

	bpo-24400 [https://bugs.python.org/issue24400]: Introduce a distinct type for PEP 492 coroutines; add
types.CoroutineType, inspect.getcoroutinestate,
inspect.getcoroutinelocals; coroutines no longer use CO_GENERATOR flag;
sys.set_coroutine_wrapper works only for 'async def' coroutines;
inspect.iscoroutine no longer uses collections.abc.Coroutine, it's
intended to test for pure 'async def' coroutines only; add new opcode:
GET_YIELD_FROM_ITER; fix generators wrapper used in types.coroutine to be
instance of collections.abc.Generator; collections.abc.Awaitable and
collections.abc.Coroutine can no longer be used to detect generator-based
coroutines--use inspect.isawaitable instead.

	bpo-24450 [https://bugs.python.org/issue24450]: Add gi_yieldfrom to generators and cr_await to coroutines.
Contributed by Benno Leslie and Yury Selivanov.

	bpo-19235 [https://bugs.python.org/issue19235]: Add new RecursionError exception. Patch by Georg Brandl.

库

	bpo-21750 [https://bugs.python.org/issue21750]: mock_open.read_data can now be read from each instance, as it
could in Python 3.3.

	bpo-24552 [https://bugs.python.org/issue24552]: Fix use after free in an error case of the _pickle module.

	bpo-24514 [https://bugs.python.org/issue24514]: tarfile now tolerates number fields consisting of only
whitespace.

	bpo-19176 [https://bugs.python.org/issue19176]: Fixed doctype() related bugs in C implementation of
ElementTree. A deprecation warning no longer issued by XMLParser subclass
with default doctype() method. Direct call of doctype() now issues a
warning. Parser's doctype() now is not called if target's doctype() is
called. Based on patch by Martin Panter.

	bpo-20387 [https://bugs.python.org/issue20387]: Restore semantic round-trip correctness in tokenize/untokenize
for tab-indented blocks.

	bpo-24456 [https://bugs.python.org/issue24456]: Fixed possible buffer over-read in adpcm2lin() and lin2adpcm()
functions of the audioop module.

	bpo-24336 [https://bugs.python.org/issue24336]: The contextmanager decorator now works with functions with
keyword arguments called "func" and "self". Patch by Martin Panter.

	bpo-24522 [https://bugs.python.org/issue24522]: Fix possible integer overflow in json accelerator module.

	bpo-24489 [https://bugs.python.org/issue24489]: ensure a previously set C errno doesn't disturb cmath.polar().

	bpo-24408 [https://bugs.python.org/issue24408]: Fixed AttributeError in measure() and metrics() methods of
tkinter.Font.

	bpo-14373 [https://bugs.python.org/issue14373]: C implementation of functools.lru_cache() now can be used with
methods.

	bpo-24347 [https://bugs.python.org/issue24347]: Set KeyError if PyDict_GetItemWithError returns NULL.

	bpo-24348 [https://bugs.python.org/issue24348]: Drop superfluous incref/decref.

	bpo-24359 [https://bugs.python.org/issue24359]: Check for changed OrderedDict size during iteration.

	bpo-24368 [https://bugs.python.org/issue24368]: Support keyword arguments in OrderedDict methods.

	bpo-24362 [https://bugs.python.org/issue24362]: Simplify the C OrderedDict fast nodes resize logic.

	bpo-24377 [https://bugs.python.org/issue24377]: Fix a ref leak in OrderedDict.__repr__.

	bpo-24369 [https://bugs.python.org/issue24369]: Defend against key-changes during iteration.

测试

	bpo-24373 [https://bugs.python.org/issue24373]: _testmultiphase and xxlimited now use tp_traverse and
tp_finalize to avoid reference leaks encountered when combining tp_dealloc
with PyType_FromSpec (see bpo-16690 [https://bugs.python.org/issue16690] for details)

文档

	bpo-24458 [https://bugs.python.org/issue24458]: Update documentation to cover multi-phase initialization for
extension modules (PEP 489). Patch by Petr Viktorin.

	bpo-24351 [https://bugs.python.org/issue24351]: Clarify what is meant by "identifier" in the context of
string.Template instances.

构建

	bpo-24432 [https://bugs.python.org/issue24432]: 更新Windows 构建和OS X 10.5 安装程序以使用OpenSSL 1.0.2c.

Python 3.5.0 beta 2

发布日期: 2015-05-31

核心与内置

	bpo-24284 [https://bugs.python.org/issue24284]: The startswith and endswith methods of the str class no longer
return True when finding the empty string and the indexes are completely
out of range.

	bpo-24115 [https://bugs.python.org/issue24115]: Update uses of PyObject_IsTrue(), PyObject_Not(),
PyObject_IsInstance(), PyObject_RichCompareBool() and _PyDict_Contains()
to check for and handle errors correctly.

	bpo-24328 [https://bugs.python.org/issue24328]: Fix importing one character extension modules.

	bpo-11205 [https://bugs.python.org/issue11205]: In dictionary displays, evaluate the key before the value.

	bpo-24285 [https://bugs.python.org/issue24285]: Fixed regression that prevented importing extension modules
from inside packages. Patch by Petr Viktorin.

库

	bpo-23247 [https://bugs.python.org/issue23247]: Fix a crash in the StreamWriter.reset() of CJK codecs.

	bpo-24270 [https://bugs.python.org/issue24270]: Add math.isclose() and cmath.isclose() functions as per PEP
485. Contributed by Chris Barker and Tal Einat.

	bpo-5633 [https://bugs.python.org/issue5633]: Fixed timeit when the statement is a string and the setup is
not.

	bpo-24326 [https://bugs.python.org/issue24326]: Fixed audioop.ratecv() with non-default weightB argument.
Original patch by David Moore.

	bpo-16991 [https://bugs.python.org/issue16991]: Add a C implementation of OrderedDict.

	bpo-23934 [https://bugs.python.org/issue23934]: Fix inspect.signature to fail correctly for builtin types
lacking signature information. Initial patch by James Powell.

Python 3.5.0 beta 1

发布日期: 2015-05-24

核心与内置

	bpo-24276 [https://bugs.python.org/issue24276]: Fixed optimization of property descriptor getter.

	bpo-24268 [https://bugs.python.org/issue24268]: PEP 489: Multi-phase extension module initialization. Patch by
Petr Viktorin.

	bpo-23955 [https://bugs.python.org/issue23955]: Add pyvenv.cfg option to suppress registry/environment lookup
for generating sys.path on Windows.

	bpo-24257 [https://bugs.python.org/issue24257]: Fixed system error in the comparison of faked
types.SimpleNamespace.

	bpo-22939 [https://bugs.python.org/issue22939]: Fixed integer overflow in iterator object. Patch by Clement
Rouault.

	bpo-23985 [https://bugs.python.org/issue23985]: Fix a possible buffer overrun when deleting a slice from the
front of a bytearray and then appending some other bytes data.

	bpo-24102 [https://bugs.python.org/issue24102]: Fixed exception type checking in standard error handlers.

	bpo-15027 [https://bugs.python.org/issue15027]: The UTF-32 encoder is now 3x to 7x faster.

	bpo-23290 [https://bugs.python.org/issue23290]: Optimize set_merge() for cases where the target is empty.
(Contributed by Serhiy Storchaka.)

	bpo-2292 [https://bugs.python.org/issue2292]: PEP 448: Additional Unpacking Generalizations.

	bpo-24096 [https://bugs.python.org/issue24096]: Make warnings.warn_explicit more robust against mutation of the
warnings.filters list.

	bpo-23996 [https://bugs.python.org/issue23996]: Avoid a crash when a delegated generator raises an unnormalized
StopIteration exception. Patch by Stefan Behnel.

	bpo-23910 [https://bugs.python.org/issue23910]: Optimize property() getter calls. Patch by Joe Jevnik.

	bpo-23911 [https://bugs.python.org/issue23911]: Move path-based importlib bootstrap code to a separate frozen
module.

	bpo-24192 [https://bugs.python.org/issue24192]: Fix namespace package imports.

	bpo-24022 [https://bugs.python.org/issue24022]: Fix tokenizer crash when processing undecodable source code.

	bpo-9951 [https://bugs.python.org/issue9951]: Added a hex() method to bytes, bytearray, and memoryview.

	bpo-22906 [https://bugs.python.org/issue22906]: PEP 479: Change StopIteration handling inside generators.

	bpo-24017 [https://bugs.python.org/issue24017]: PEP 492: Coroutines with async and await syntax.

库

	bpo-14373 [https://bugs.python.org/issue14373]: Added C implementation of functools.lru_cache(). Based on
patches by Matt Joiner and Alexey Kachayev.

	bpo-24230 [https://bugs.python.org/issue24230]: The tempfile module now accepts bytes for prefix, suffix and
dir parameters and returns bytes in such situations (matching the os
module APIs).

	bpo-22189 [https://bugs.python.org/issue22189]: collections.UserString now supports __getnewargs__(),
__rmod__(), casefold(), format_map(), isprintable(), and maketrans().
Patch by Joe Jevnik.

	bpo-24244 [https://bugs.python.org/issue24244]: Prevents termination when an invalid format string is
encountered on Windows in strftime.

	bpo-23973 [https://bugs.python.org/issue23973]: PEP 484: Add the typing module.

	bpo-23086 [https://bugs.python.org/issue23086]: The collections.abc.Sequence() abstract base class added
start and stop parameters to the index() mixin. Patch by Devin
Jeanpierre.

	bpo-20035 [https://bugs.python.org/issue20035]: Replaced the tkinter._fix module used for setting up the
Tcl/Tk environment on Windows with a private function in the _tkinter
module that makes no permanent changes to the environment.

	bpo-24257 [https://bugs.python.org/issue24257]: Fixed segmentation fault in sqlite3.Row constructor with faked
cursor type.

	bpo-15836 [https://bugs.python.org/issue15836]: assertRaises(), assertRaisesRegex(), assertWarns() and
assertWarnsRegex() assertments now check the type of the first argument to
prevent possible user error. Based on patch by Daniel Wagner-Hall.

	bpo-9858 [https://bugs.python.org/issue9858]: Add missing method stubs to _io.RawIOBase. Patch by Laura
Rupprecht.

	bpo-22955 [https://bugs.python.org/issue22955]: attrgetter, itemgetter and methodcaller objects in the operator
module now support pickling. Added readable and evaluable repr for these
objects. Based on patch by Josh Rosenberg.

	bpo-22107 [https://bugs.python.org/issue22107]: tempfile.gettempdir() and tempfile.mkdtemp() now try again when
a directory with the chosen name already exists on Windows as well as on
Unix. tempfile.mkstemp() now fails early if parent directory is not valid
(not exists or is a file) on Windows.

	bpo-23780 [https://bugs.python.org/issue23780]: Improved error message in os.path.join() with single argument.

	bpo-6598 [https://bugs.python.org/issue6598]: Increased time precision and random number range in
email.utils.make_msgid() to strengthen the uniqueness of the message ID.

	bpo-24091 [https://bugs.python.org/issue24091]: Fixed various crashes in corner cases in C implementation of
ElementTree.

	bpo-21931 [https://bugs.python.org/issue21931]: msilib.FCICreate() now raises TypeError in the case of a bad
argument instead of a ValueError with a bogus FCI error number. Patch by
Jeffrey Armstrong.

	bpo-13866 [https://bugs.python.org/issue13866]: quote_via argument added to urllib.parse.urlencode.

	bpo-20098 [https://bugs.python.org/issue20098]: New mangle_from policy option for email, default True for
compat32, but False for all other policies.

	bpo-24211 [https://bugs.python.org/issue24211]: The email library now supports RFC 6532: it can generate
headers using utf-8 instead of encoded words.

	bpo-16314 [https://bugs.python.org/issue16314]: Added support for the LZMA compression in distutils.

	bpo-21804 [https://bugs.python.org/issue21804]: poplib now supports RFC 6856 (UTF8).

	bpo-18682 [https://bugs.python.org/issue18682]: Optimized pprint functions for builtin scalar types.

	bpo-22027 [https://bugs.python.org/issue22027]: smtplib now supports RFC 6531 (SMTPUTF8).

	bpo-23488 [https://bugs.python.org/issue23488]: Random generator objects now consume 2x less memory on 64-bit.

	bpo-1322 [https://bugs.python.org/issue1322]: platform.dist() and platform.linux_distribution() functions are
now deprecated. Initial patch by Vajrasky Kok.

	bpo-22486 [https://bugs.python.org/issue22486]: Added the math.gcd() function. The fractions.gcd() function
now is deprecated. Based on patch by Mark Dickinson.

	bpo-24064 [https://bugs.python.org/issue24064]: Property() docstrings are now writeable. (Patch by Berker
Peksag.)

	bpo-22681 [https://bugs.python.org/issue22681]: Added support for the koi8_t encoding.

	bpo-22682 [https://bugs.python.org/issue22682]: Added support for the kz1048 encoding.

	bpo-23796 [https://bugs.python.org/issue23796]: peek and read1 methods of BufferedReader now raise ValueError
if they called on a closed object. Patch by John Hergenroeder.

	bpo-21795 [https://bugs.python.org/issue21795]: smtpd now supports the 8BITMIME extension whenever the new
decode_data constructor argument is set to False.

	bpo-24155 [https://bugs.python.org/issue24155]: optimize heapq.heapify() for better cache performance when
heapifying large lists.

	bpo-21800 [https://bugs.python.org/issue21800]: imaplib now supports RFC 5161 (enable), RFC 6855
(utf8/internationalized email) and automatically encodes non-ASCII
usernames and passwords to UTF8.

	bpo-20274 [https://bugs.python.org/issue20274]: When calling a _sqlite.Connection, it now complains if passed
any keyword arguments. Previously it silently ignored them.

	bpo-20274 [https://bugs.python.org/issue20274]: Remove ignored and erroneous "kwargs" parameters from three
METH_VARARGS methods on _sqlite.Connection.

	bpo-24134 [https://bugs.python.org/issue24134]: assertRaises(), assertRaisesRegex(), assertWarns() and
assertWarnsRegex() checks now emits a deprecation warning when callable is
None or keyword arguments except msg is passed in the context manager
mode.

	bpo-24018 [https://bugs.python.org/issue24018]: Add a collections.abc.Generator abstract base class.
Contributed by Stefan Behnel.

	bpo-23880 [https://bugs.python.org/issue23880]: Tkinter's getint() and getdouble() now support Tcl_Obj.
Tkinter's getdouble() now supports any numbers (in particular int).

	bpo-22619 [https://bugs.python.org/issue22619]: Added negative limit support in the traceback module. Based on
patch by Dmitry Kazakov.

	bpo-24094 [https://bugs.python.org/issue24094]: Fix possible crash in json.encode with poorly behaved dict
subclasses.

	bpo-9246 [https://bugs.python.org/issue9246]: On POSIX, os.getcwd() now supports paths longer than 1025 bytes.
Patch written by William Orr.

	bpo-17445 [https://bugs.python.org/issue17445]: add difflib.diff_bytes() to support comparison of byte strings
(fixes a regression from Python 2).

	bpo-23917 [https://bugs.python.org/issue23917]: Fall back to sequential compilation when ProcessPoolExecutor
doesn't exist. Patch by Claudiu Popa.

	bpo-23008 [https://bugs.python.org/issue23008]: Fixed resolving attributes with boolean value is False in
pydoc.

	Fix asyncio issue 235: LifoQueue and PriorityQueue's put didn't increment
unfinished tasks (this bug was introduced when JoinableQueue was merged
with Queue).

	bpo-23908 [https://bugs.python.org/issue23908]: os functions now reject paths with embedded null character on
Windows instead of silently truncating them.

	bpo-23728 [https://bugs.python.org/issue23728]: binascii.crc_hqx() could return an integer outside of the range
0-0xffff for empty data.

	bpo-23887 [https://bugs.python.org/issue23887]: urllib.error.HTTPError now has a proper repr() representation.
Patch by Berker Peksag.

	asyncio: New event loop APIs: set_task_factory() and get_task_factory().

	asyncio: async() function is deprecated in favour of ensure_future().

	bpo-24178 [https://bugs.python.org/issue24178]: asyncio.Lock, Condition, Semaphore, and BoundedSemaphore
support new 'async with' syntax. Contributed by Yury Selivanov.

	bpo-24179 [https://bugs.python.org/issue24179]: Support 'async for' for asyncio.StreamReader. Contributed by
Yury Selivanov.

	bpo-24184 [https://bugs.python.org/issue24184]: Add AsyncIterator and AsyncIterable ABCs to collections.abc.
Contributed by Yury Selivanov.

	bpo-22547 [https://bugs.python.org/issue22547]: Implement informative __repr__ for inspect.BoundArguments.
Contributed by Yury Selivanov.

	bpo-24190 [https://bugs.python.org/issue24190]: Implement inspect.BoundArgument.apply_defaults() method.
Contributed by Yury Selivanov.

	bpo-20691 [https://bugs.python.org/issue20691]: Add 'follow_wrapped' argument to
inspect.Signature.from_callable() and inspect.signature(). Contributed by
Yury Selivanov.

	bpo-24248 [https://bugs.python.org/issue24248]: Deprecate inspect.Signature.from_function() and
inspect.Signature.from_builtin().

	bpo-23898 [https://bugs.python.org/issue23898]: Fix inspect.classify_class_attrs() to support attributes with
overloaded __eq__ and __bool__. Patch by Mike Bayer.

	bpo-24298 [https://bugs.python.org/issue24298]: Fix inspect.signature() to correctly unwrap wrappers around
bound methods.

IDLE

	bpo-23184 [https://bugs.python.org/issue23184]: remove unused names and imports in idlelib. Initial patch by Al
Sweigart.

测试

	bpo-21520 [https://bugs.python.org/issue21520]: test_zipfile no longer fails if the word 'bad' appears anywhere
in the name of the current directory.

	bpo-9517 [https://bugs.python.org/issue9517]: Move script_helper into the support package. Patch by Christie
Wilson.

文档

	bpo-22155 [https://bugs.python.org/issue22155]: Add File Handlers subsection with createfilehandler to tkinter
doc. Remove obsolete example from FAQ. Patch by Martin Panter.

	bpo-24029 [https://bugs.python.org/issue24029]: Document the name binding behavior for submodule imports.

	bpo-24077 [https://bugs.python.org/issue24077]: Fix typo in man page for -I command option: -s, not -S

工具/示例

	bpo-24000 [https://bugs.python.org/issue24000]: Improved Argument Clinic's mapping of converters to legacy
"format units". Updated the documentation to match.

	bpo-24001 [https://bugs.python.org/issue24001]: Argument Clinic converters now use accept={type} instead of
types={'type'} to specify the types the converter accepts.

	bpo-23330 [https://bugs.python.org/issue23330]: h2py now supports arbitrary filenames in #include.

	bpo-24031 [https://bugs.python.org/issue24031]: make patchcheck now supports git checkouts, too.

Python 3.5.0 alpha 4

发布日期: 2015-04-19

核心与内置

	bpo-22980 [https://bugs.python.org/issue22980]: Under Linux, GNU/KFreeBSD and the Hurd, C extensions now
include the architecture triplet in the extension name, to make it easy to
test builds for different ABIs in the same working tree. Under OS X, the
extension name now includes PEP 3149-style information.

	bpo-22631 [https://bugs.python.org/issue22631]: Added Linux-specific socket constant CAN_RAW_FD_FRAMES. Patch
courtesy of Joe Jevnik.

	bpo-23731 [https://bugs.python.org/issue23731]: Implement PEP 488: removal of .pyo files.

	bpo-23726 [https://bugs.python.org/issue23726]: Don't enable GC for user subclasses of non-GC types that don't
add any new fields. Patch by Eugene Toder.

	bpo-23309 [https://bugs.python.org/issue23309]: Avoid a deadlock at shutdown if a daemon thread is aborted
while it is holding a lock to a buffered I/O object, and the main thread
tries to use the same I/O object (typically stdout or stderr). A fatal
error is emitted instead.

	bpo-22977 [https://bugs.python.org/issue22977]: Fixed formatting Windows error messages on Wine. Patch by
Martin Panter.

	bpo-23466 [https://bugs.python.org/issue23466]: %c, %o, %x, and %X in bytes formatting now raise TypeError on
non-integer input.

	bpo-24044 [https://bugs.python.org/issue24044]: Fix possible null pointer dereference in list.sort in out of
memory conditions.

	bpo-21354 [https://bugs.python.org/issue21354]: PyCFunction_New function is exposed by python DLL again.

库

	bpo-23840 [https://bugs.python.org/issue23840]: tokenize.open() now closes the temporary binary file on error
to fix a resource warning.

	bpo-16914 [https://bugs.python.org/issue16914]: new debuglevel 2 in smtplib adds timestamps to debug output.

	bpo-7159 [https://bugs.python.org/issue7159]: urllib.request now supports sending auth credentials
automatically after the first 401. This enhancement is a superset of the
enhancement from bpo-19494 [https://bugs.python.org/issue19494] and supersedes that change.

	bpo-23703 [https://bugs.python.org/issue23703]: Fix a regression in urljoin() introduced in 901e4e52b20a. Patch
by Demian Brecht.

	bpo-4254 [https://bugs.python.org/issue4254]: Adds _curses.update_lines_cols(). Patch by Arnon Yaari

	bpo-19933 [https://bugs.python.org/issue19933]: Provide default argument for ndigits in round. Patch by
Vajrasky Kok.

	bpo-23193 [https://bugs.python.org/issue23193]: Add a numeric_owner parameter to tarfile.TarFile.extract and
tarfile.TarFile.extractall. Patch by Michael Vogt and Eric Smith.

	bpo-23342 [https://bugs.python.org/issue23342]: Add a subprocess.run() function than returns a CalledProcess
instance for a more consistent API than the existing call* functions.

	bpo-21217 [https://bugs.python.org/issue21217]: inspect.getsourcelines() now tries to compute the start and end
lines from the code object, fixing an issue when a lambda function is used
as decorator argument. Patch by Thomas Ballinger and Allison Kaptur.

	bpo-24521 [https://bugs.python.org/issue24521]: Fix possible integer overflows in the pickle module.

	bpo-22931 [https://bugs.python.org/issue22931]: Allow '[' and ']' in cookie values.

	The keywords attribute of functools.partial is now always a dictionary.

	bpo-23811 [https://bugs.python.org/issue23811]: Add missing newline to the PyCompileError error message. Patch
by Alex Shkop.

	bpo-21116 [https://bugs.python.org/issue21116]: Avoid blowing memory when allocating a multiprocessing shared
array that's larger than 50% of the available RAM. Patch by Médéric
Boquien.

	bpo-22982 [https://bugs.python.org/issue22982]: Improve BOM handling when seeking to multiple positions of a
writable text file.

	bpo-23464 [https://bugs.python.org/issue23464]: Removed deprecated asyncio JoinableQueue.

	bpo-23529 [https://bugs.python.org/issue23529]: Limit the size of decompressed data when reading from GzipFile,
BZ2File or LZMAFile. This defeats denial of service attacks using
compressed bombs (i.e. compressed payloads which decompress to a huge
size). Patch by Martin Panter and Nikolaus Rath.

	bpo-21859 [https://bugs.python.org/issue21859]: Added Python implementation of io.FileIO.

	bpo-23865 [https://bugs.python.org/issue23865]: close() methods in multiple modules now are idempotent and more
robust at shutdown. If they need to release multiple resources, all are
released even if errors occur.

	bpo-23400 [https://bugs.python.org/issue23400]: Raise same exception on both Python 2 and 3 if sem_open is not
available. Patch by Davin Potts.

	bpo-10838 [https://bugs.python.org/issue10838]: The subprocess now module includes SubprocessError and
TimeoutError in its list of exported names for the users wild enough to
use from subprocess import *.

	bpo-23411 [https://bugs.python.org/issue23411]: Added DefragResult, ParseResult, SplitResult,
DefragResultBytes, ParseResultBytes, and SplitResultBytes to
urllib.parse.__all__. Patch by Martin Panter.

	bpo-23881 [https://bugs.python.org/issue23881]: urllib.request.ftpwrapper constructor now closes the socket if
the FTP connection failed to fix a ResourceWarning.

	bpo-23853 [https://bugs.python.org/issue23853]: socket.socket.sendall() does no more reset the socket
timeout each time data is sent successfully. The socket timeout is now the
maximum total duration to send all data.

	bpo-22721 [https://bugs.python.org/issue22721]: An order of multiline pprint output of set or dict containing
orderable and non-orderable elements no longer depends on iteration order
of set or dict.

	bpo-15133 [https://bugs.python.org/issue15133]: _tkinter.tkapp.getboolean() now supports Tcl_Obj and always
returns bool. tkinter.BooleanVar now validates input values (accepted
bool, int, str, and Tcl_Obj). tkinter.BooleanVar.get() now always returns
bool.

	bpo-10590 [https://bugs.python.org/issue10590]: xml.sax.parseString() now supports string argument.

	bpo-23338 [https://bugs.python.org/issue23338]: Fixed formatting ctypes error messages on Cygwin. Patch by
Makoto Kato.

	bpo-15582 [https://bugs.python.org/issue15582]: inspect.getdoc() now follows inheritance chains.

	bpo-2175 [https://bugs.python.org/issue2175]: SAX parsers now support a character stream of InputSource
object.

	bpo-16840 [https://bugs.python.org/issue16840]: Tkinter now supports 64-bit integers added in Tcl 8.4 and
arbitrary precision integers added in Tcl 8.5.

	bpo-23834 [https://bugs.python.org/issue23834]: Fix socket.sendto(), use the C Py_ssize_t type to store the
result of sendto() instead of the C int type.

	bpo-23618 [https://bugs.python.org/issue23618]: socket.socket.connect() now waits until the connection
completes instead of raising InterruptedError if the connection is
interrupted by signals, signal handlers don't raise an exception and the
socket is blocking or has a timeout. socket.socket.connect() still
raise InterruptedError for non-blocking sockets.

	bpo-21526 [https://bugs.python.org/issue21526]: Tkinter now supports new boolean type in Tcl 8.5.

	bpo-23836 [https://bugs.python.org/issue23836]: Fix the faulthandler module to handle reentrant calls to its
signal handlers.

	bpo-23838 [https://bugs.python.org/issue23838]: linecache now clears the cache and returns an empty result on
MemoryError.

	bpo-10395 [https://bugs.python.org/issue10395]: Added os.path.commonpath(). Implemented in posixpath and
ntpath. Based on patch by Rafik Draoui.

	bpo-23611 [https://bugs.python.org/issue23611]: Serializing more "lookupable" objects (such as unbound methods
or nested classes) now are supported with pickle protocols < 4.

	bpo-13583 [https://bugs.python.org/issue13583]: sqlite3.Row now supports slice indexing.

	bpo-18473 [https://bugs.python.org/issue18473]: Fixed 2to3 and 3to2 compatible pickle mappings. Fixed
ambiguous reverse mappings. Added many new mappings. Import mapping is
no longer applied to modules already mapped with full name mapping.

	bpo-23485 [https://bugs.python.org/issue23485]: select.select() is now retried automatically with the
recomputed timeout when interrupted by a signal, except if the signal
handler raises an exception. This change is part of the PEP 475.

	bpo-23752 [https://bugs.python.org/issue23752]: When built from an existing file descriptor, io.FileIO() now
only calls fstat() once. Before fstat() was called twice, which was not
necessary.

	bpo-23704 [https://bugs.python.org/issue23704]: collections.deque() objects now support __add__, __mul__, and
__imul__().

	bpo-23171 [https://bugs.python.org/issue23171]: csv.Writer.writerow() now supports arbitrary iterables.

	bpo-23745 [https://bugs.python.org/issue23745]: The new email header parser now handles duplicate MIME
parameter names without error, similar to how get_param behaves.

	bpo-22117 [https://bugs.python.org/issue22117]: Fix os.utime(), it now rounds the timestamp towards minus
infinity (-inf) instead of rounding towards zero.

	bpo-23310 [https://bugs.python.org/issue23310]: Fix MagicMock's initializer to work with __methods__, just like
configure_mock(). Patch by Kasia Jachim.

构建

	bpo-23817 [https://bugs.python.org/issue23817]: FreeBSD now uses "1.0" in the SOVERSION as other operating
systems, instead of just "1".

	bpo-23501 [https://bugs.python.org/issue23501]: Argument Clinic now generates code into separate files by
default.

测试

	bpo-23799 [https://bugs.python.org/issue23799]: Added test.support.start_threads() for running and cleaning up
multiple threads.

	bpo-22390 [https://bugs.python.org/issue22390]: test.regrtest now emits a warning if temporary files or
directories are left after running a test.

工具/示例

	bpo-18128 [https://bugs.python.org/issue18128]: pygettext now uses standard +NNNN format in the
POT-Creation-Date header.

	bpo-23935 [https://bugs.python.org/issue23935]: Argument Clinic's understanding of format units accepting
bytes, bytearrays, and buffers is now consistent with both the
documentation and the implementation.

	bpo-23944 [https://bugs.python.org/issue23944]: Argument Clinic now wraps long impl prototypes at column 78.

	bpo-20586 [https://bugs.python.org/issue20586]: Argument Clinic now ensures that functions without docstrings
have signatures.

	bpo-23492 [https://bugs.python.org/issue23492]: Argument Clinic now generates argument parsing code with
PyArg_Parse instead of PyArg_ParseTuple if possible.

	bpo-23500 [https://bugs.python.org/issue23500]: Argument Clinic is now smarter about generating the "#ifndef"
(empty) definition of the methoddef macro: it's only generated once, even
if Argument Clinic processes the same symbol multiple times, and it's
emitted at the end of all processing rather than immediately after the
first use.

C API

	bpo-23998 [https://bugs.python.org/issue23998]: PyImport_ReInitLock() now checks for lock allocation error

Python 3.5.0 alpha 3

发布日期: 2015-03-28

核心与内置

	bpo-23573 [https://bugs.python.org/issue23573]: Increased performance of string search operations (str.find,
str.index, str.count, the in operator, str.split, str.partition) with
arguments of different kinds (UCS1, UCS2, UCS4).

	bpo-23753 [https://bugs.python.org/issue23753]: Python doesn't support anymore platforms without stat() or
fstat(), these functions are always required.

	bpo-23681 [https://bugs.python.org/issue23681]: The -b option now affects comparisons of bytes with int.

	bpo-23632 [https://bugs.python.org/issue23632]: Memoryviews now allow tuple indexing (including for
multi-dimensional memoryviews).

	bpo-23192 [https://bugs.python.org/issue23192]: Fixed generator lambdas. Patch by Bruno Cauet.

	bpo-23629 [https://bugs.python.org/issue23629]: Fix the default __sizeof__ implementation for variable-sized
objects.

库

	bpo-14260 [https://bugs.python.org/issue14260]: The groupindex attribute of regular expression pattern object
now is non-modifiable mapping.

	bpo-23792 [https://bugs.python.org/issue23792]: Ignore KeyboardInterrupt when the pydoc pager is active. This
mimics the behavior of the standard unix pagers, and prevents pipepager
from shutting down while the pager itself is still running.

	bpo-23775 [https://bugs.python.org/issue23775]: pprint() of OrderedDict now outputs the same representation as
repr().

	bpo-23765 [https://bugs.python.org/issue23765]: Removed IsBadStringPtr calls in ctypes

	bpo-22364 [https://bugs.python.org/issue22364]: Improved some re error messages using regex for hints.

	bpo-23742 [https://bugs.python.org/issue23742]: ntpath.expandvars() no longer loses unbalanced single quotes.

	bpo-21717 [https://bugs.python.org/issue21717]: The zipfile.ZipFile.open function now supports 'x' (exclusive
creation) mode.

	bpo-21802 [https://bugs.python.org/issue21802]: The reader in BufferedRWPair now is closed even when closing
writer failed in BufferedRWPair.close().

	bpo-23622 [https://bugs.python.org/issue23622]: Unknown escapes in regular expressions that consist of '\'
and ASCII letter now raise a deprecation warning and will be forbidden in
Python 3.6.

	bpo-23671 [https://bugs.python.org/issue23671]: string.Template now allows specifying the "self" parameter as a
keyword argument. string.Formatter now allows specifying the "self" and
the "format_string" parameters as keyword arguments.

	bpo-23502 [https://bugs.python.org/issue23502]: The pprint module now supports mapping proxies.

	bpo-17530 [https://bugs.python.org/issue17530]: pprint now wraps long bytes objects and bytearrays.

	bpo-22687 [https://bugs.python.org/issue22687]: Fixed some corner cases in breaking words in tetxtwrap. Got rid
of quadratic complexity in breaking long words.

	bpo-4727 [https://bugs.python.org/issue4727]: The copy module now uses pickle protocol 4 (PEP 3154) and
supports copying of instances of classes whose __new__ method takes
keyword-only arguments.

	bpo-23491 [https://bugs.python.org/issue23491]: Added a zipapp module to support creating executable zip file
archives of Python code. Registered ".pyz" and ".pyzw" extensions on
Windows for these archives (PEP 441).

	bpo-23657 [https://bugs.python.org/issue23657]: Avoid explicit checks for str in zipapp, adding support for
pathlib.Path objects as arguments.

	bpo-23688 [https://bugs.python.org/issue23688]: Added support of arbitrary bytes-like objects and avoided
unnecessary copying of memoryview in gzip.GzipFile.write(). Original patch
by Wolfgang Maier.

	bpo-23252 [https://bugs.python.org/issue23252]: Added support for writing ZIP files to unseekable streams.

	bpo-23647 [https://bugs.python.org/issue23647]: Increase imaplib's MAXLINE to accommodate modern mailbox sizes.

	bpo-23539 [https://bugs.python.org/issue23539]: If body is None, http.client.HTTPConnection.request now sets
Content-Length to 0 for PUT, POST, and PATCH headers to avoid 411 errors
from some web servers.

	bpo-22351 [https://bugs.python.org/issue22351]: The nntplib.NNTP constructor no longer leaves the connection
and socket open until the garbage collector cleans them up. Patch by
Martin Panter.

	bpo-23704 [https://bugs.python.org/issue23704]: collections.deque() objects now support methods for index(),
insert(), and copy(). This allows deques to be registered as a
MutableSequence and it improves their substitutability for lists.

	bpo-23715 [https://bugs.python.org/issue23715]: signal.sigwaitinfo() and signal.sigtimedwait() are
now retried when interrupted by a signal not in the sigset parameter, if
the signal handler does not raise an exception. signal.sigtimedwait()
recomputes the timeout with a monotonic clock when it is retried.

	bpo-23001 [https://bugs.python.org/issue23001]: Few functions in modules mmap, ossaudiodev, socket, ssl, and
codecs, that accepted only read-only bytes-like object now accept writable
bytes-like object too.

	bpo-23646 [https://bugs.python.org/issue23646]: If time.sleep() is interrupted by a signal, the sleep is now
retried with the recomputed delay, except if the signal handler raises an
exception (PEP 475).

	bpo-23136 [https://bugs.python.org/issue23136]: _strptime now uniformly handles all days in week 0, including
Dec 30 of previous year. Based on patch by Jim Carroll.

	bpo-23700 [https://bugs.python.org/issue23700]: Iterator of NamedTemporaryFile now keeps a reference to
NamedTemporaryFile instance. Patch by Bohuslav Kabrda.

	bpo-22903 [https://bugs.python.org/issue22903]: The fake test case created by unittest.loader when it fails
importing a test module is now picklable.

	bpo-22181 [https://bugs.python.org/issue22181]: On Linux, os.urandom() now uses the new getrandom() syscall if
available, syscall introduced in the Linux kernel 3.17. It is more
reliable and more secure, because it avoids the need of a file descriptor
and waits until the kernel has enough entropy.

	bpo-2211 [https://bugs.python.org/issue2211]: Updated the implementation of the http.cookies.Morsel class.
Setting attributes key, value and coded_value directly now is deprecated.
update() and setdefault() now transform and check keys. Comparing for
equality now takes into account attributes key, value and coded_value.
copy() now returns a Morsel, not a dict. repr() now contains all
attributes. Optimized checking keys and quoting values. Added new tests.
Original patch by Demian Brecht.

	bpo-18983 [https://bugs.python.org/issue18983]: Allow selection of output units in timeit. Patch by Julian
Gindi.

	bpo-23631 [https://bugs.python.org/issue23631]: Fix traceback.format_list when a traceback has been mutated.

	bpo-23568 [https://bugs.python.org/issue23568]: Add rdivmod support to MagicMock() objects. Patch by Håkan
Lövdahl.

	bpo-2052 [https://bugs.python.org/issue2052]: Add charset parameter to HtmlDiff.make_file().

	bpo-23668 [https://bugs.python.org/issue23668]: Support os.truncate and os.ftruncate on Windows.

	bpo-23138 [https://bugs.python.org/issue23138]: Fixed parsing cookies with absent keys or values in cookiejar.
Patch by Demian Brecht.

	bpo-23051 [https://bugs.python.org/issue23051]: multiprocessing.Pool methods imap() and imap_unordered() now
handle exceptions raised by an iterator. Patch by Alon Diamant and Davin
Potts.

	bpo-23581 [https://bugs.python.org/issue23581]: Add matmul support to MagicMock. Patch by Håkan Lövdahl.

	bpo-23566 [https://bugs.python.org/issue23566]: enable(), register(), dump_traceback() and
dump_traceback_later() functions of faulthandler now accept file
descriptors. Patch by Wei Wu.

	bpo-22928 [https://bugs.python.org/issue22928]: Disabled HTTP header injections in http.client. Original patch
by Demian Brecht.

	bpo-23615 [https://bugs.python.org/issue23615]: Modules bz2, tarfile and tokenize now can be reloaded with
imp.reload(). Patch by Thomas Kluyver.

	bpo-23605 [https://bugs.python.org/issue23605]: os.walk() now calls os.scandir() instead of os.listdir(). The
usage of os.scandir() reduces the number of calls to os.stat(). Initial
patch written by Ben Hoyt.

构建

	bpo-23585 [https://bugs.python.org/issue23585]: make patchcheck will ensure the interpreter is built.

测试

	bpo-23583 [https://bugs.python.org/issue23583]: Added tests for standard IO streams in IDLE.

	bpo-22289 [https://bugs.python.org/issue22289]: Prevent test_urllib2net failures due to ftp connection timeout.

工具/示例

	bpo-22826 [https://bugs.python.org/issue22826]: The result of open() in Tools/freeze/bkfile.py is now better
compatible with regular files (in particular it now supports the context
management protocol).

Python 3.5.0 alpha 2

发布日期: 2015-03-09

核心与内置

	bpo-23571 [https://bugs.python.org/issue23571]: PyObject_Call() and PyCFunction_Call() now raise a SystemError
if a function returns a result and raises an exception. The SystemError is
chained to the previous exception.

库

	bpo-22524 [https://bugs.python.org/issue22524]: New os.scandir() function, part of the PEP 471: "os.scandir()
function -- a better and faster directory iterator". Patch written by Ben
Hoyt.

	bpo-23103 [https://bugs.python.org/issue23103]: Reduced the memory consumption of IPv4Address and IPv6Address.

	bpo-21793 [https://bugs.python.org/issue21793]: BaseHTTPRequestHandler again logs response code as numeric, not
as stringified enum. Patch by Demian Brecht.

	bpo-23476 [https://bugs.python.org/issue23476]: In the ssl module, enable OpenSSL's X509_V_FLAG_TRUSTED_FIRST
flag on certificate stores when it is available.

	bpo-23576 [https://bugs.python.org/issue23576]: Avoid stalling in SSL reads when EOF has been reached in the
SSL layer but the underlying connection hasn't been closed.

	bpo-23504 [https://bugs.python.org/issue23504]: Added an __all__ to the types module.

	bpo-23563 [https://bugs.python.org/issue23563]: Optimized utility functions in urllib.parse.

	bpo-7830 [https://bugs.python.org/issue7830]: Flatten nested functools.partial.

	bpo-20204 [https://bugs.python.org/issue20204]: Added the __module__ attribute to _tkinter classes.

	bpo-19980 [https://bugs.python.org/issue19980]: Improved help() for non-recognized strings. help('') now shows
the help on str. help('help') now shows the help on help(). Original
patch by Mark Lawrence.

	bpo-23521 [https://bugs.python.org/issue23521]: Corrected pure python implementation of timedelta division.

Eliminated OverflowError from timedelta * float for some floats;
Corrected rounding in timedelta true division.

	bpo-21619 [https://bugs.python.org/issue21619]: Popen objects no longer leave a zombie after exit in the with
statement if the pipe was broken. Patch by Martin Panter.

	bpo-22936 [https://bugs.python.org/issue22936]: Make it possible to show local variables in tracebacks for both
the traceback module and unittest.

	bpo-15955 [https://bugs.python.org/issue15955]: Add an option to limit the output size in bz2.decompress().
Patch by Nikolaus Rath.

	bpo-6639 [https://bugs.python.org/issue6639]: Module-level turtle functions no longer raise TclError after
closing the window.

	bpo-814253 [https://bugs.python.org/issue814253]: Group references and conditional group references now work in
lookbehind assertions in regular expressions. (See also: bpo-9179 [https://bugs.python.org/issue9179])

	bpo-23215 [https://bugs.python.org/issue23215]: Multibyte codecs with custom error handlers that ignores errors
consumed too much memory and raised SystemError or MemoryError. Original
patch by Aleksi Torhamo.

	bpo-5700 [https://bugs.python.org/issue5700]: io.FileIO() called flush() after closing the file. flush() was
not called in close() if closefd=False.

	bpo-23374 [https://bugs.python.org/issue23374]: Fixed pydoc failure with non-ASCII files when stdout encoding
differs from file system encoding (e.g. on Mac OS).

	bpo-23481 [https://bugs.python.org/issue23481]: Remove RC4 from the SSL module's default cipher list.

	bpo-21548 [https://bugs.python.org/issue21548]: Fix pydoc.synopsis() and pydoc.apropos() on modules with empty
docstrings.

	bpo-22885 [https://bugs.python.org/issue22885]: Fixed arbitrary code execution vulnerability in the dbm.dumb
module. Original patch by Claudiu Popa.

	bpo-23239 [https://bugs.python.org/issue23239]: ssl.match_hostname() now supports matching of IP addresses.

	bpo-23146 [https://bugs.python.org/issue23146]: Fix mishandling of absolute Windows paths with forward slashes
in pathlib.

	bpo-23096 [https://bugs.python.org/issue23096]: Pickle representation of floats with protocol 0 now is the same
for both Python and C implementations.

	bpo-19105 [https://bugs.python.org/issue19105]: pprint now more efficiently uses free space at the right.

	bpo-14910 [https://bugs.python.org/issue14910]: Add allow_abbrev parameter to argparse.ArgumentParser. Patch by
Jonathan Paugh, Steven Bethard, paul j3 and Daniel Eriksson.

	bpo-21717 [https://bugs.python.org/issue21717]: tarfile.open() now supports 'x' (exclusive creation) mode.

	bpo-23344 [https://bugs.python.org/issue23344]: marshal.dumps() is now 20-25% faster on average.

	bpo-20416 [https://bugs.python.org/issue20416]: marshal.dumps() with protocols 3 and 4 is now 40-50% faster on
average.

	bpo-23421 [https://bugs.python.org/issue23421]: Fixed compression in tarfile CLI. Patch by wdv4758h.

	bpo-23367 [https://bugs.python.org/issue23367]: Fix possible overflows in the unicodedata module.

	bpo-23361 [https://bugs.python.org/issue23361]: Fix possible overflow in Windows subprocess creation code.

	logging.handlers.QueueListener now takes a respect_handler_level keyword
argument which, if set to True, will pass messages to handlers taking
handler levels into account.

	bpo-19705 [https://bugs.python.org/issue19705]: turtledemo now has a visual sorting algorithm demo. Original
patch from Jason Yeo.

	bpo-23801 [https://bugs.python.org/issue23801]: Fix issue where cgi.FieldStorage did not always ignore the
entire preamble to a multipart body.

构建

	bpo-23445 [https://bugs.python.org/issue23445]: pydebug builds now use "gcc -Og" where possible, to make the
resulting executable faster.

	bpo-23686 [https://bugs.python.org/issue23686]: 在OS X 10.5 安装程序中将OpenSSL更新为1.0.2a.

C API

	bpo-20204 [https://bugs.python.org/issue20204]: Deprecation warning is now raised for builtin types without the
__module__ attribute.

Windows

	bpo-23465 [https://bugs.python.org/issue23465]: Implement PEP 486 - Make the Python Launcher aware of virtual
environments. Patch by Paul Moore.

	bpo-23437 [https://bugs.python.org/issue23437]: Make user scripts directory versioned on Windows. Patch by Paul
Moore.

Python 3.5.0 alpha 1

发布日期: 2015-02-08

核心与内置

	bpo-23285 [https://bugs.python.org/issue23285]: PEP 475 - EINTR handling.

	bpo-22735 [https://bugs.python.org/issue22735]: Fix many edge cases (including crashes) involving custom mro()
implementations.

	bpo-22896 [https://bugs.python.org/issue22896]: Avoid using PyObject_AsCharBuffer(), PyObject_AsReadBuffer()
and PyObject_AsWriteBuffer().

	bpo-21295 [https://bugs.python.org/issue21295]: Revert some changes (bpo-16795 [https://bugs.python.org/issue16795]) to AST line numbers and
column offsets that constituted a regression.

	bpo-22986 [https://bugs.python.org/issue22986]: Allow changing an object's __class__ between a dynamic type and
static type in some cases.

	bpo-15859 [https://bugs.python.org/issue15859]: PyUnicode_EncodeFSDefault(), PyUnicode_EncodeMBCS() and
PyUnicode_EncodeCodePage() now raise an exception if the object is not a
Unicode object. For PyUnicode_EncodeFSDefault(), it was already the case
on platforms other than Windows. Patch written by Campbell Barton.

	bpo-21408 [https://bugs.python.org/issue21408]: The default __ne__() now returns NotImplemented if __eq__()
returned NotImplemented. Original patch by Martin Panter.

	bpo-23321 [https://bugs.python.org/issue23321]: Fixed a crash in str.decode() when error handler returned
replacement string longer than malformed input data.

	bpo-22286 [https://bugs.python.org/issue22286]: The "backslashreplace" error handlers now works with decoding
and translating.

	bpo-23253 [https://bugs.python.org/issue23253]: Delay-load ShellExecute[AW] in os.startfile for reduced startup
overhead on Windows.

	bpo-22038 [https://bugs.python.org/issue22038]: pyatomic.h now uses stdatomic.h or GCC built-in functions for
atomic memory access if available. Patch written by Vitor de Lima and
Gustavo Temple.

	bpo-20284 [https://bugs.python.org/issue20284]: %-interpolation (aka printf) formatting added for bytes and
bytearray.

	bpo-23048 [https://bugs.python.org/issue23048]: Fix jumping out of an infinite while loop in the pdb.

	bpo-20335 [https://bugs.python.org/issue20335]: bytes constructor now raises TypeError when encoding or errors
is specified with non-string argument. Based on patch by Renaud Blanch.

	bpo-22834 [https://bugs.python.org/issue22834]: If the current working directory ends up being set to a
non-existent directory then import will no longer raise FileNotFoundError.

	bpo-22869 [https://bugs.python.org/issue22869]: Move the interpreter startup & shutdown code to a new dedicated
pylifecycle.c module

	bpo-22847 [https://bugs.python.org/issue22847]: Improve method cache efficiency.

	bpo-22335 [https://bugs.python.org/issue22335]: Fix crash when trying to enlarge a bytearray to 0x7fffffff
bytes on a 32-bit platform.

	bpo-22653 [https://bugs.python.org/issue22653]: Fix an assertion failure in debug mode when doing a reentrant
dict insertion in debug mode.

	bpo-22643 [https://bugs.python.org/issue22643]: Fix integer overflow in Unicode case operations (upper, lower,
title, swapcase, casefold).

	bpo-17636 [https://bugs.python.org/issue17636]: Circular imports involving relative imports are now supported.

	bpo-22604 [https://bugs.python.org/issue22604]: Fix assertion error in debug mode when dividing a complex
number by (nan+0j).

	bpo-21052 [https://bugs.python.org/issue21052]: Do not raise ImportWarning when sys.path_hooks or sys.meta_path
are set to None.

	bpo-16518 [https://bugs.python.org/issue16518]: Use 'bytes-like object required' in error messages that
previously used the far more cryptic "'x' does not support the buffer
protocol.

	bpo-22470 [https://bugs.python.org/issue22470]: Fixed integer overflow issues in "backslashreplace",
"xmlcharrefreplace", and "surrogatepass" error handlers.

	bpo-22540 [https://bugs.python.org/issue22540]: speed up PyObject_IsInstance and PyObject_IsSubclass in the
common case that the second argument has metaclass type.

	bpo-18711 [https://bugs.python.org/issue18711]: Add a new PyErr_FormatV function, similar to PyErr_Format
but accepting a va_list argument.

	bpo-22520 [https://bugs.python.org/issue22520]: Fix overflow checking when generating the repr of a unicode
object.

	bpo-22519 [https://bugs.python.org/issue22519]: Fix overflow checking in PyBytes_Repr.

	bpo-22518 [https://bugs.python.org/issue22518]: Fix integer overflow issues in latin-1 encoding.

	bpo-16324 [https://bugs.python.org/issue16324]: _charset parameter of MIMEText now also accepts
email.charset.Charset instances. Initial patch by Claude Paroz.

	bpo-1764286 [https://bugs.python.org/issue1764286]: Fix inspect.getsource() to support decorated functions. Patch
by Claudiu Popa.

	bpo-18554 [https://bugs.python.org/issue18554]: os.__all__ includes posix functions.

	bpo-21391 [https://bugs.python.org/issue21391]: Use os.path.abspath in the shutil module.

	bpo-11471 [https://bugs.python.org/issue11471]: avoid generating a JUMP_FORWARD instruction at the end of an
if-block if there is no else-clause. Original patch by Eugene Toder.

	bpo-22215 [https://bugs.python.org/issue22215]: Now ValueError is raised instead of TypeError when str or bytes
argument contains not permitted null character or byte.

	bpo-22258 [https://bugs.python.org/issue22258]: Fix the internal function set_inheritable() on Illumos. This
platform exposes the function ioctl(FIOCLEX), but calling it fails
with errno is ENOTTY: "Inappropriate ioctl for device". set_inheritable()
now falls back to the slower fcntl() (F_GETFD and then
F_SETFD).

	bpo-21389 [https://bugs.python.org/issue21389]: Displaying the __qualname__ of the underlying function in the
repr of a bound method.

	bpo-22206 [https://bugs.python.org/issue22206]: Using pthread, PyThread_create_key() now sets errno to ENOMEM
and returns -1 (error) on integer overflow.

	bpo-20184 [https://bugs.python.org/issue20184]: Argument Clinic based signature introspection added for 30 of
the builtin functions.

	bpo-22116 [https://bugs.python.org/issue22116]: C functions and methods (of the 'builtin_function_or_method'
type) can now be weakref'ed. Patch by Wei Wu.

	bpo-22077 [https://bugs.python.org/issue22077]: Improve index error messages for bytearrays, bytes, lists, and
tuples by adding 'or slices'. Added ', not <typename>' for bytearrays.
Original patch by Claudiu Popa.

	bpo-20179 [https://bugs.python.org/issue20179]: Apply Argument Clinic to bytes and bytearray. Patch by Tal
Einat.

	bpo-22082 [https://bugs.python.org/issue22082]: Clear interned strings in slotdefs.

	升级 Unicode 数据库到 7.0.0 版本。

	bpo-21897 [https://bugs.python.org/issue21897]: Fix a crash with the f_locals attribute with closure variables
when frame.clear() has been called.

	bpo-21205 [https://bugs.python.org/issue21205]: Add a new __qualname__ attribute to generator, the
qualified name, and use it in the representation of a generator
(repr(gen)). The default name of the generator (__name__
attribute) is now get from the function instead of the code. Use
gen.gi_code.co_name to get the name of the code.

	bpo-21669 [https://bugs.python.org/issue21669]: With the aid of heuristics in SyntaxError.__init__, the parser
now attempts to generate more meaningful (or at least more search engine
friendly) error messages when "exec" and "print" are used as statements.

	bpo-21642 [https://bugs.python.org/issue21642]: In the conditional if-else expression, allow an integer written
with no space between itself and the else keyword (e.g. True if
42else False) to be valid syntax.

	bpo-21523 [https://bugs.python.org/issue21523]: Fix over-pessimistic computation of the stack effect of some
opcodes in the compiler. This also fixes a quadratic compilation time
issue noticeable when compiling code with a large number of "and" and "or"
operators.

	bpo-21418 [https://bugs.python.org/issue21418]: Fix a crash in the builtin function super() when called without
argument and without current frame (ex: embedded Python).

	bpo-21425 [https://bugs.python.org/issue21425]: Fix flushing of standard streams in the interactive
interpreter.

	bpo-21435 [https://bugs.python.org/issue21435]: In rare cases, when running finalizers on objects in cyclic
trash a bad pointer dereference could occur due to a subtle flaw in
internal iteration logic.

	bpo-21377 [https://bugs.python.org/issue21377]: PyBytes_Concat() now tries to concatenate in-place when the
first argument has a reference count of 1. Patch by Nikolaus Rath.

	bpo-20355 [https://bugs.python.org/issue20355]: -W command line options now have higher priority than the
PYTHONWARNINGS environment variable. Patch by Arfrever.

	bpo-21274 [https://bugs.python.org/issue21274]: Define PATH_MAX for GNU/Hurd in Python/pythonrun.c.

	bpo-20904 [https://bugs.python.org/issue20904]: Support setting FPU precision on m68k.

	bpo-21209 [https://bugs.python.org/issue21209]: Fix sending tuples to custom generator objects with the yield
from syntax.

	bpo-21193 [https://bugs.python.org/issue21193]: pow(a, b, c) now raises ValueError rather than TypeError when b
is negative. Patch by Josh Rosenberg.

	bpo-21176 [https://bugs.python.org/issue21176]: PEP 465: Add the '@' operator for matrix multiplication.

	bpo-21134 [https://bugs.python.org/issue21134]: Fix segfault when str is called on an uninitialized
UnicodeEncodeError, UnicodeDecodeError, or UnicodeTranslateError object.

	bpo-19537 [https://bugs.python.org/issue19537]: Fix PyUnicode_DATA() alignment under m68k. Patch by Andreas
Schwab.

	bpo-20929 [https://bugs.python.org/issue20929]: Add a type cast to avoid shifting a negative number.

	bpo-20731 [https://bugs.python.org/issue20731]: Properly position in source code files even if they are opened
in text mode. Patch by Serhiy Storchaka.

	bpo-20637 [https://bugs.python.org/issue20637]: Key-sharing now also works for instance dictionaries of
subclasses. Patch by Peter Ingebretson.

	bpo-8297 [https://bugs.python.org/issue8297]: Attributes missing from modules now include the module name in
the error text. Original patch by ysj.ray.

	bpo-19995 [https://bugs.python.org/issue19995]: %c, %o, %x, and %X now raise TypeError on non-integer input.

	bpo-19655 [https://bugs.python.org/issue19655]: The ASDL parser - used by the build process to generate code
for managing the Python AST in C - was rewritten. The new parser is self
contained and does not require to carry long the spark.py parser-generator
library; spark.py was removed from the source base.

	bpo-12546 [https://bugs.python.org/issue12546]: Allow \x00 to be used as a fill character when using str,
int, float, and complex __format__ methods.

	bpo-20480 [https://bugs.python.org/issue20480]: Add ipaddress.reverse_pointer. Patch by Leon Weber.

	bpo-13598 [https://bugs.python.org/issue13598]: Modify string.Formatter to support auto-numbering of
replacement fields. It now matches the behavior of str.format() in this
regard. Patches by Phil Elson and Ramchandra Apte.

	bpo-8931 [https://bugs.python.org/issue8931]: Make alternate formatting ('#') for type 'c' raise an exception.
In versions prior to 3.5, '#' with 'c' had no effect. Now specifying it is
an error. Patch by Torsten Landschoff.

	bpo-23165 [https://bugs.python.org/issue23165]: Perform overflow checks before allocating memory in the
_Py_char2wchar function.

库

	bpo-23399 [https://bugs.python.org/issue23399]: pyvenv creates relative symlinks where possible.

	bpo-20289 [https://bugs.python.org/issue20289]: cgi.FieldStorage() now supports the context management
protocol.

	bpo-13128 [https://bugs.python.org/issue13128]: Print response headers for CONNECT requests when debuglevel >
0. Patch by Demian Brecht.

	bpo-15381 [https://bugs.python.org/issue15381]: Optimized io.BytesIO to make less allocations and copyings.

	bpo-22818 [https://bugs.python.org/issue22818]: Splitting on a pattern that could match an empty string now
raises a warning. Patterns that can only match empty strings are now
rejected.

	bpo-23099 [https://bugs.python.org/issue23099]: Closing io.BytesIO with exported buffer is rejected now to
prevent corrupting exported buffer.

	bpo-23326 [https://bugs.python.org/issue23326]: Removed __ne__ implementations. Since fixing default __ne__
implementation in bpo-21408 [https://bugs.python.org/issue21408] they are redundant.

	bpo-23363 [https://bugs.python.org/issue23363]: Fix possible overflow in itertools.permutations.

	bpo-23364 [https://bugs.python.org/issue23364]: Fix possible overflow in itertools.product.

	bpo-23366 [https://bugs.python.org/issue23366]: Fixed possible integer overflow in itertools.combinations.

	bpo-23369 [https://bugs.python.org/issue23369]: Fixed possible integer overflow in
_json.encode_basestring_ascii.

	bpo-23353 [https://bugs.python.org/issue23353]: Fix the exception handling of generators in
PyEval_EvalFrameEx(). At entry, save or swap the exception state even if
PyEval_EvalFrameEx() is called with throwflag=0. At exit, the exception
state is now always restored or swapped, not only if why is WHY_YIELD or
WHY_RETURN. Patch co-written with Antoine Pitrou.

	bpo-14099 [https://bugs.python.org/issue14099]: Restored support of writing ZIP files to tellable but
non-seekable streams.

	bpo-14099 [https://bugs.python.org/issue14099]: Writing to ZipFile and reading multiple ZipExtFiles is
threadsafe now.

	bpo-19361 [https://bugs.python.org/issue19361]: JSON decoder now raises JSONDecodeError instead of ValueError.

	bpo-18518 [https://bugs.python.org/issue18518]: timeit now rejects statements which can't be compiled outside a
function or a loop (e.g. "return" or "break").

	bpo-23094 [https://bugs.python.org/issue23094]: Fixed readline with frames in Python implementation of pickle.

	bpo-23268 [https://bugs.python.org/issue23268]: Fixed bugs in the comparison of ipaddress classes.

	bpo-21408 [https://bugs.python.org/issue21408]: Removed incorrect implementations of __ne__() which didn't
returned NotImplemented if __eq__() returned NotImplemented. The default
__ne__() now works correctly.

	bpo-19996 [https://bugs.python.org/issue19996]: email.feedparser.FeedParser now handles (malformed)
headers with no key rather than assuming the body has started.

	bpo-20188 [https://bugs.python.org/issue20188]: Support Application-Layer Protocol Negotiation (ALPN) in the
ssl module.

	bpo-23133 [https://bugs.python.org/issue23133]: Pickling of ipaddress objects now produces more compact and
portable representation.

	bpo-23248 [https://bugs.python.org/issue23248]: 从最新的OpenSSL git master更新SSL错误代码。

	bpo-23266 [https://bugs.python.org/issue23266]: Much faster implementation of ipaddress.collapse_addresses()
when there are many non-consecutive addresses.

	bpo-23098 [https://bugs.python.org/issue23098]: 64-bit dev_t is now supported in the os module.

	bpo-21817 [https://bugs.python.org/issue21817]: When an exception is raised in a task submitted to a
ProcessPoolExecutor, the remote traceback is now displayed in the parent
process. Patch by Claudiu Popa.

	bpo-15955 [https://bugs.python.org/issue15955]: Add an option to limit output size when decompressing LZMA
data. Patch by Nikolaus Rath and Martin Panter.

	bpo-23250 [https://bugs.python.org/issue23250]: In the http.cookies module, capitalize "HttpOnly" and "Secure"
as they are written in the standard.

	bpo-23063 [https://bugs.python.org/issue23063]: In the distutils' check command, fix parsing of reST with code
or code-block directives.

	bpo-23209 [https://bugs.python.org/issue23209]: selectors.BaseSelector.get_key() now raises a RuntimeError if
the selector is closed. And selectors.BaseSelector.close() now clears its
internal reference to the selector mapping to break a reference cycle.
Initial patch written by Martin Richard. (See also: bpo-23225 [https://bugs.python.org/issue23225])

	bpo-17911 [https://bugs.python.org/issue17911]: Provide a way to seed the linecache for a PEP-302 module
without actually loading the code.

	bpo-17911 [https://bugs.python.org/issue17911]: Provide a new object API for traceback, including the ability
to not lookup lines at all until the traceback is actually rendered,
without any trace of the original objects being kept alive.

	bpo-19777 [https://bugs.python.org/issue19777]: Provide a home() classmethod on Path objects. Contributed by
Victor Salgado and Mayank Tripathi.

	bpo-23206 [https://bugs.python.org/issue23206]: Make json.dumps(..., ensure_ascii=False) as fast as the
default case of ensure_ascii=True. Patch by Naoki Inada.

	bpo-23185 [https://bugs.python.org/issue23185]: Add math.inf and math.nan constants.

	bpo-23186 [https://bugs.python.org/issue23186]: Add ssl.SSLObject.shared_ciphers() and
ssl.SSLSocket.shared_ciphers() to fetch the client's list ciphers sent at
handshake.

	bpo-23143 [https://bugs.python.org/issue23143]: Remove compatibility with OpenSSLs older than 0.9.8.

	bpo-23132 [https://bugs.python.org/issue23132]: Improve performance and introspection support of comparison
methods created by functool.total_ordering.

	bpo-19776 [https://bugs.python.org/issue19776]: Add an expanduser() method on Path objects.

	bpo-23112 [https://bugs.python.org/issue23112]: Fix SimpleHTTPServer to correctly carry the query string and
fragment when it redirects to add a trailing slash.

	bpo-21793 [https://bugs.python.org/issue21793]: Added http.HTTPStatus enums (i.e. HTTPStatus.OK,
HTTPStatus.NOT_FOUND). Patch by Demian Brecht.

	bpo-23093 [https://bugs.python.org/issue23093]: In the io, module allow more operations to work on detached
streams.

	bpo-23111 [https://bugs.python.org/issue23111]: In the ftplib, make ssl.PROTOCOL_SSLv23 the default protocol
version.

	bpo-22585 [https://bugs.python.org/issue22585]: On OpenBSD 5.6 and newer, os.urandom() now calls getentropy(),
instead of reading /dev/urandom, to get pseudo-random bytes.

	bpo-19104 [https://bugs.python.org/issue19104]: pprint now produces evaluable output for wrapped strings.

	bpo-23071 [https://bugs.python.org/issue23071]: Added missing names to codecs.__all__. Patch by Martin Panter.

	bpo-22783 [https://bugs.python.org/issue22783]: Pickling now uses the NEWOBJ opcode instead of the NEWOBJ_EX
opcode if possible.

	bpo-15513 [https://bugs.python.org/issue15513]: Added a __sizeof__ implementation for pickle classes.

	bpo-19858 [https://bugs.python.org/issue19858]: pickletools.optimize() now aware of the MEMOIZE opcode, can
produce more compact result and no longer produces invalid output if input
data contains MEMOIZE opcodes together with PUT or BINPUT opcodes.

	bpo-22095 [https://bugs.python.org/issue22095]: Fixed HTTPConnection.set_tunnel with default port. The port
value in the host header was set to "None". Patch by Demian Brecht.

	bpo-23016 [https://bugs.python.org/issue23016]: A warning no longer produces an AttributeError when the program
is run with pythonw.exe.

	bpo-21775 [https://bugs.python.org/issue21775]: shutil.copytree(): fix crash when copying to VFAT. An exception
handler assumed that OSError objects always have a 'winerror' attribute.
That is not the case, so the exception handler itself raised
AttributeError when run on Linux (and, presumably, any other non-Windows
OS). Patch by Greg Ward.

	bpo-1218234 [https://bugs.python.org/issue1218234]: Fix inspect.getsource() to load updated source of reloaded
module. Initial patch by Berker Peksag.

	bpo-21740 [https://bugs.python.org/issue21740]: Support wrapped callables in doctest. Patch by Claudiu Popa.

	bpo-23009 [https://bugs.python.org/issue23009]: Make sure selectors.EpollSelecrtor.select() works when no FD is
registered.

	bpo-22959 [https://bugs.python.org/issue22959]: In the constructor of http.client.HTTPSConnection, prefer the
context's check_hostname attribute over the check_hostname parameter.

	bpo-22696 [https://bugs.python.org/issue22696]: Add function sys.is_finalizing() to know about
interpreter shutdown.

	bpo-16043 [https://bugs.python.org/issue16043]: Add a default limit for the amount of data
xmlrpclib.gzip_decode will return. This resolves CVE-2013-1753.

	bpo-14099 [https://bugs.python.org/issue14099]: ZipFile.open() no longer reopen the underlying file. Objects
returned by ZipFile.open() can now operate independently of the ZipFile
even if the ZipFile was created by passing in a file-like object as the
first argument to the constructor.

	bpo-22966 [https://bugs.python.org/issue22966]: Fix __pycache__ pyc file name clobber when pyc_compile is asked
to compile a source file containing multiple dots in the source file name.

	bpo-21971 [https://bugs.python.org/issue21971]: Update turtledemo doc and add module to the index.

	bpo-21032 [https://bugs.python.org/issue21032]: Fixed socket leak if HTTPConnection.getresponse() fails.
Original patch by Martin Panter.

	bpo-22407 [https://bugs.python.org/issue22407]: Deprecated the use of re.LOCALE flag with str patterns or
re.ASCII. It was newer worked.

	bpo-22902 [https://bugs.python.org/issue22902]: The "ip" command is now used on Linux to determine MAC address
in uuid.getnode(). Pach by Bruno Cauet.

	bpo-22960 [https://bugs.python.org/issue22960]: Add a context argument to xmlrpclib.ServerProxy constructor.

	bpo-22389 [https://bugs.python.org/issue22389]: Add contextlib.redirect_stderr().

	bpo-21356 [https://bugs.python.org/issue21356]: Make ssl.RAND_egd() optional to support LibreSSL. The
availability of the function is checked during the compilation. Patch
written by Bernard Spil.

	bpo-22915 [https://bugs.python.org/issue22915]: SAX parser now supports files opened with file descriptor or
bytes path.

	bpo-22609 [https://bugs.python.org/issue22609]: Constructors and update methods of mapping classes in the
collections module now accept the self keyword argument.

	bpo-22940 [https://bugs.python.org/issue22940]: Add readline.append_history_file.

	bpo-19676 [https://bugs.python.org/issue19676]: Added the "namereplace" error handler.

	bpo-22788 [https://bugs.python.org/issue22788]: Add context parameter to logging.handlers.HTTPHandler.

	bpo-22921 [https://bugs.python.org/issue22921]: Allow SSLContext to take the hostname parameter even if
OpenSSL doesn't support SNI.

	bpo-22894 [https://bugs.python.org/issue22894]: TestCase.subTest() would cause the test suite to be stopped
when in failfast mode, even in the absence of failures.

	bpo-22796 [https://bugs.python.org/issue22796]: HTTP cookie parsing is now stricter, in order to protect
against potential injection attacks.

	bpo-22370 [https://bugs.python.org/issue22370]: Windows detection in pathlib is now more robust.

	bpo-22841 [https://bugs.python.org/issue22841]: Reject coroutines in asyncio add_signal_handler(). Patch by
Ludovic.Gasc.

	bpo-19494 [https://bugs.python.org/issue19494]: Added urllib.request.HTTPBasicPriorAuthHandler. Patch by Matej
Cepl.

	bpo-22578 [https://bugs.python.org/issue22578]: Added attributes to the re.error class.

	bpo-22849 [https://bugs.python.org/issue22849]: Fix possible double free in the io.TextIOWrapper constructor.

	bpo-12728 [https://bugs.python.org/issue12728]: Different Unicode characters having the same uppercase but
different lowercase are now matched in case-insensitive regular
expressions.

	bpo-22821 [https://bugs.python.org/issue22821]: Fixed fcntl() with integer argument on 64-bit big-endian
platforms.

	bpo-21650 [https://bugs.python.org/issue21650]: Add an --sort-keys option to json.tool CLI.

	bpo-22824 [https://bugs.python.org/issue22824]: Updated reprlib output format for sets to use set literals.
Patch contributed by Berker Peksag.

	bpo-22824 [https://bugs.python.org/issue22824]: Updated reprlib output format for arrays to display empty
arrays without an unnecessary empty list. Suggested by Serhiy Storchaka.

	bpo-22406 [https://bugs.python.org/issue22406]: Fixed the uu_codec codec incorrectly ported to 3.x. Based on
patch by Martin Panter.

	bpo-17293 [https://bugs.python.org/issue17293]: uuid.getnode() now determines MAC address on AIX using netstat.
Based on patch by Aivars Kalvāns.

	bpo-22769 [https://bugs.python.org/issue22769]: Fixed ttk.Treeview.tag_has() when called without arguments.

	bpo-22417 [https://bugs.python.org/issue22417]: Verify certificates by default in httplib (PEP 476).

	bpo-22775 [https://bugs.python.org/issue22775]: Fixed unpickling of http.cookies.SimpleCookie with protocol 2
and above. Patch by Tim Graham.

	bpo-22776 [https://bugs.python.org/issue22776]: Brought excluded code into the scope of a try block in
SysLogHandler.emit().

	bpo-22665 [https://bugs.python.org/issue22665]: Add missing get_terminal_size and SameFileError to
shutil.__all__.

	bpo-6623 [https://bugs.python.org/issue6623]: Remove deprecated Netrc class in the ftplib module. Patch by
Matt Chaput.

	bpo-17381 [https://bugs.python.org/issue17381]: Fixed handling of case-insensitive ranges in regular
expressions.

	bpo-22410 [https://bugs.python.org/issue22410]: Module level functions in the re module now cache compiled
locale-dependent regular expressions taking into account the locale.

	bpo-22759 [https://bugs.python.org/issue22759]: Query methods on pathlib.Path() (exists(), is_dir(), etc.) now
return False when the underlying stat call raises NotADirectoryError.

	bpo-8876 [https://bugs.python.org/issue8876]: distutils now falls back to copying files when hard linking
doesn't work. This allows use with special filesystems such as VirtualBox
shared folders.

	bpo-22217 [https://bugs.python.org/issue22217]: Implemented reprs of classes in the zipfile module.

	bpo-22457 [https://bugs.python.org/issue22457]: Honour load_tests in the start_dir of discovery.

	bpo-18216 [https://bugs.python.org/issue18216]: gettext now raises an error when a .mo file has an unsupported
major version number. Patch by Aaron Hill.

	bpo-13918 [https://bugs.python.org/issue13918]: Provide a locale.delocalize() function which can remove
locale-specific number formatting from a string representing a number,
without then converting it to a specific type. Patch by Cédric Krier.

	bpo-22676 [https://bugs.python.org/issue22676]: Make the pickling of global objects which don't have a
__module__ attribute less slow.

	bpo-18853 [https://bugs.python.org/issue18853]: Fixed ResourceWarning in shlex.__nain__.

	bpo-9351 [https://bugs.python.org/issue9351]: Defaults set with set_defaults on an argparse subparser are no
longer ignored when also set on the parent parser.

	bpo-7559 [https://bugs.python.org/issue7559]: unittest test loading ImportErrors are reported as import errors
with their import exception rather than as attribute errors after the
import has already failed.

	bpo-19746 [https://bugs.python.org/issue19746]: Make it possible to examine the errors from unittest discovery
without executing the test suite. The new errors attribute on TestLoader
exposes these non-fatal errors encountered during discovery.

	bpo-21991 [https://bugs.python.org/issue21991]: Make email.headerregistry's header 'params' attributes be
read-only (MappingProxyType). Previously the dictionary was modifiable
but a new one was created on each access of the attribute.

	bpo-22638 [https://bugs.python.org/issue22638]: SSLv3 is now disabled throughout the standard library. It can
still be enabled by instantiating a SSLContext manually.

	bpo-22641 [https://bugs.python.org/issue22641]: In asyncio, the default SSL context for client connections is
now created using ssl.create_default_context(), for stronger security.

	bpo-17401 [https://bugs.python.org/issue17401]: Include closefd in io.FileIO repr.

	bpo-21338 [https://bugs.python.org/issue21338]: Add silent mode for compileall. quiet parameters of
compile_{dir, file, path} functions now have a multilevel value. Also, -q
option of the CLI now have a multilevel value. Patch by Thomas Kluyver.

	bpo-20152 [https://bugs.python.org/issue20152]: Convert the array and cmath modules to Argument Clinic.

	bpo-18643 [https://bugs.python.org/issue18643]: Add socket.socketpair() on Windows.

	bpo-22435 [https://bugs.python.org/issue22435]: Fix a file descriptor leak when socketserver bind fails.

	bpo-13096 [https://bugs.python.org/issue13096]: Fixed segfault in CTypes POINTER handling of large values.

	bpo-11694 [https://bugs.python.org/issue11694]: Raise ConversionError in xdrlib as documented. Patch by Filip
Gruszczyński and Claudiu Popa.

	bpo-19380 [https://bugs.python.org/issue19380]: Optimized parsing of regular expressions.

	bpo-1519638 [https://bugs.python.org/issue1519638]: Now unmatched groups are replaced with empty strings in
re.sub() and re.subn().

	bpo-18615 [https://bugs.python.org/issue18615]: sndhdr.what/whathdr now return a namedtuple.

	bpo-22462 [https://bugs.python.org/issue22462]: Fix pyexpat's creation of a dummy frame to make it appear in
exception tracebacks.

	bpo-21965 [https://bugs.python.org/issue21965]: Add support for in-memory SSL to the ssl module. Patch by
Geert Jansen.

	bpo-21173 [https://bugs.python.org/issue21173]: Fix len() on a WeakKeyDictionary when .clear() was called with
an iterator alive.

	bpo-11866 [https://bugs.python.org/issue11866]: Eliminated race condition in the computation of names for new
threads.

	bpo-21905 [https://bugs.python.org/issue21905]: Avoid RuntimeError in pickle.whichmodule() when sys.modules is
mutated while iterating. Patch by Olivier Grisel.

	bpo-11271 [https://bugs.python.org/issue11271]: concurrent.futures.Executor.map() now takes a chunksize
argument to allow batching of tasks in child processes and improve
performance of ProcessPoolExecutor. Patch by Dan O'Reilly.

	bpo-21883 [https://bugs.python.org/issue21883]: os.path.join() and os.path.relpath() now raise a TypeError with
more helpful error message for unsupported or mismatched types of
arguments.

	bpo-22219 [https://bugs.python.org/issue22219]: The zipfile module CLI now adds entries for directories
(including empty directories) in ZIP file.

	bpo-22449 [https://bugs.python.org/issue22449]: In the ssl.SSLContext.load_default_certs, consult the
environmental variables SSL_CERT_DIR and SSL_CERT_FILE on Windows.

	bpo-22508 [https://bugs.python.org/issue22508]: The email.__version__ variable has been removed; the email code
is no longer shipped separately from the stdlib, and __version__ hasn't
been updated in several releases.

	bpo-20076 [https://bugs.python.org/issue20076]: Added non derived UTF-8 aliases to locale aliases table.

	bpo-20079 [https://bugs.python.org/issue20079]: Added locales supported in glibc 2.18 to locale alias table.

	bpo-20218 [https://bugs.python.org/issue20218]: Added convenience methods read_text/write_text and read_bytes/
write_bytes to pathlib.Path objects.

	bpo-22396 [https://bugs.python.org/issue22396]: On 32-bit AIX platform, don't expose os.posix_fadvise() nor
os.posix_fallocate() because their prototypes in system headers are wrong.

	bpo-22517 [https://bugs.python.org/issue22517]: When an io.BufferedRWPair object is deallocated, clear its
weakrefs.

	bpo-22437 [https://bugs.python.org/issue22437]: Number of capturing groups in regular expression is no longer
limited by 100.

	bpo-17442 [https://bugs.python.org/issue17442]: InteractiveInterpreter now displays the full chained traceback
in its showtraceback method, to match the built in interactive
interpreter.

	bpo-23392 [https://bugs.python.org/issue23392]: Added tests for marshal C API that works with FILE*.

	bpo-10510 [https://bugs.python.org/issue10510]: distutils register and upload methods now use HTML standards
compliant CRLF line endings.

	bpo-9850 [https://bugs.python.org/issue9850]: Fixed macpath.join() for empty first component. Patch by Oleg
Oshmyan.

	bpo-5309 [https://bugs.python.org/issue5309]: distutils' build and build_ext commands now accept a -j
option to enable parallel building of extension modules.

	bpo-22448 [https://bugs.python.org/issue22448]: Improve canceled timer handles cleanup to prevent unbound
memory usage. Patch by Joshua Moore-Oliva.

	bpo-22427 [https://bugs.python.org/issue22427]: TemporaryDirectory no longer attempts to clean up twice when
used in the with statement in generator.

	bpo-22362 [https://bugs.python.org/issue22362]: Forbidden ambiguous octal escapes out of range 0-0o377 in
regular expressions.

	bpo-20912 [https://bugs.python.org/issue20912]: Now directories added to ZIP file have correct Unix and MS-DOS
directory attributes.

	bpo-21866 [https://bugs.python.org/issue21866]: ZipFile.close() no longer writes ZIP64 central directory
records if allowZip64 is false.

	bpo-22278 [https://bugs.python.org/issue22278]: Fix urljoin problem with relative urls, a regression observed
after changes to issue22118 were submitted.

	bpo-22415 [https://bugs.python.org/issue22415]: Fixed debugging output of the GROUPREF_EXISTS opcode in the re
module. Removed trailing spaces in debugging output.

	bpo-22423 [https://bugs.python.org/issue22423]: Unhandled exception in thread no longer causes unhandled
AttributeError when sys.stderr is None.

	bpo-21332 [https://bugs.python.org/issue21332]: Ensure that bufsize=1 in subprocess.Popen() selects line
buffering, rather than block buffering. Patch by Akira Li.

	bpo-21091 [https://bugs.python.org/issue21091]: Fix API bug: email.message.EmailMessage.is_attachment is now a
method.

	bpo-21079 [https://bugs.python.org/issue21079]: Fix email.message.EmailMessage.is_attachment to return the
correct result when the header has parameters as well as a value.

	bpo-22247 [https://bugs.python.org/issue22247]: Add NNTPError to nntplib.__all__.

	bpo-22366 [https://bugs.python.org/issue22366]: urllib.request.urlopen will accept a context object
(SSLContext) as an argument which will then be used for HTTPS connection.
Patch by Alex Gaynor.

	bpo-4180 [https://bugs.python.org/issue4180]: The warnings registries are now reset when the filters are
modified.

	bpo-22419 [https://bugs.python.org/issue22419]: Limit the length of incoming HTTP request in wsgiref server to
65536 bytes and send a 414 error code for higher lengths. Patch
contributed by Devin Cook.

	Lax cookie parsing in http.cookies could be a security issue when combined
with non-standard cookie handling in some Web browsers. Reported by
Sergey Bobrov.

	bpo-20537 [https://bugs.python.org/issue20537]: logging methods now accept an exception instance as well as a
Boolean value or exception tuple. Thanks to Yury Selivanov for the patch.

	bpo-22384 [https://bugs.python.org/issue22384]: An exception in Tkinter callback no longer crashes the program
when it is run with pythonw.exe.

	bpo-22168 [https://bugs.python.org/issue22168]: Prevent turtle AttributeError with non-default Canvas on OS X.

	bpo-21147 [https://bugs.python.org/issue21147]: sqlite3 now raises an exception if the request contains a null
character instead of truncating it. Based on patch by Victor Stinner.

	bpo-13968 [https://bugs.python.org/issue13968]: The glob module now supports recursive search in subdirectories
using the ** pattern.

	bpo-21951 [https://bugs.python.org/issue21951]: Fixed a crash in Tkinter on AIX when called Tcl command with
empty string or tuple argument.

	bpo-21951 [https://bugs.python.org/issue21951]: Tkinter now most likely raises MemoryError instead of crash if
the memory allocation fails.

	bpo-22338 [https://bugs.python.org/issue22338]: Fix a crash in the json module on memory allocation failure.

	bpo-12410 [https://bugs.python.org/issue12410]: imaplib.IMAP4 now supports the context management protocol.
Original patch by Tarek Ziadé.

	bpo-21270 [https://bugs.python.org/issue21270]: We now override tuple methods in mock.call objects so that they
can be used as normal call attributes.

	bpo-16662 [https://bugs.python.org/issue16662]: load_tests() is now unconditionally run when it is present in a
package's __init__.py. TestLoader.loadTestsFromModule() still accepts
use_load_tests, but it is deprecated and ignored. A new keyword-only
attribute pattern is added and documented. Patch given by Robert
Collins, tweaked by Barry Warsaw.

	bpo-22226 [https://bugs.python.org/issue22226]: First letter no longer is stripped from the "status" key in the
result of Treeview.heading().

	bpo-19524 [https://bugs.python.org/issue19524]: Fixed resource leak in the HTTP connection when an invalid
response is received. Patch by Martin Panter.

	bpo-20421 [https://bugs.python.org/issue20421]: Add a .version() method to SSL sockets exposing the actual
protocol version in use.

	bpo-19546 [https://bugs.python.org/issue19546]: configparser exceptions no longer expose implementation
details. Chained KeyErrors are removed, which leads to cleaner tracebacks.
Patch by Claudiu Popa.

	bpo-22051 [https://bugs.python.org/issue22051]: turtledemo no longer reloads examples to re-run them.
Initialization of variables and gui setup should be done in main(), which
is called each time a demo is run, but not on import.

	bpo-21933 [https://bugs.python.org/issue21933]: Turtledemo users can change the code font size with a menu
selection or control(command) '-' or '+' or control-mousewheel. Original
patch by Lita Cho.

	bpo-21597 [https://bugs.python.org/issue21597]: The separator between the turtledemo text pane and the drawing
canvas can now be grabbed and dragged with a mouse. The code text pane
can be widened to easily view or copy the full width of the text. The
canvas can be widened on small screens. Original patches by Jan Kanis and
Lita Cho.

	bpo-18132 [https://bugs.python.org/issue18132]: Turtledemo buttons no longer disappear when the window is
shrunk. Original patches by Jan Kanis and Lita Cho.

	bpo-22043 [https://bugs.python.org/issue22043]: time.monotonic() is now always available.
threading.Lock.acquire(), threading.RLock.acquire() and socket
operations now use a monotonic clock, instead of the system clock, when a
timeout is used.

	bpo-21527 [https://bugs.python.org/issue21527]: Add a default number of workers to ThreadPoolExecutor equal to
5 times the number of CPUs. Patch by Claudiu Popa.

	bpo-22216 [https://bugs.python.org/issue22216]: smtplib now resets its state more completely after a quit. The
most obvious consequence of the previous behavior was a STARTTLS failure
during a connect/starttls/quit/connect/starttls sequence.

	bpo-22098 [https://bugs.python.org/issue22098]: ctypes' BigEndianStructure and LittleEndianStructure now define
an empty __slots__ so that subclasses don't always get an instance dict.
Patch by Claudiu Popa.

	bpo-22185 [https://bugs.python.org/issue22185]: Fix an occasional RuntimeError in threading.Condition.wait()
caused by mutation of the waiters queue without holding the lock. Patch
by Doug Zongker.

	bpo-22287 [https://bugs.python.org/issue22287]: On UNIX, _PyTime_gettimeofday() now uses
clock_gettime(CLOCK_REALTIME) if available. As a side effect, Python now
depends on the librt library on Solaris and on Linux (only with glibc
older than 2.17).

	bpo-22182 [https://bugs.python.org/issue22182]: Use e.args to unpack exceptions correctly in
distutils.file_util.move_file. Patch by Claudiu Popa.

	The webbrowser module now uses subprocess's start_new_session=True rather
than a potentially risky preexec_fn=os.setsid call.

	bpo-22042 [https://bugs.python.org/issue22042]: signal.set_wakeup_fd(fd) now raises an exception if the file
descriptor is in blocking mode.

	bpo-16808 [https://bugs.python.org/issue16808]: inspect.stack() now returns a named tuple instead of a tuple.
Patch by Daniel Shahaf.

	bpo-22236 [https://bugs.python.org/issue22236]: Fixed Tkinter images copying operations in NoDefaultRoot mode.

	bpo-2527 [https://bugs.python.org/issue2527]: Add a globals argument to timeit functions, in order to
override the globals namespace in which the timed code is executed. Patch
by Ben Roberts.

	bpo-22118 [https://bugs.python.org/issue22118]: Switch urllib.parse to use RFC 3986 semantics for the
resolution of relative URLs, rather than RFCs 1808 and 2396. Patch by
Demian Brecht.

	bpo-21549 [https://bugs.python.org/issue21549]: Added the "members" parameter to TarFile.list().

	bpo-19628 [https://bugs.python.org/issue19628]: Allow compileall recursion depth to be specified with a -r
option.

	bpo-15696 [https://bugs.python.org/issue15696]: Add a __sizeof__ implementation for mmap objects on Windows.

	bpo-22068 [https://bugs.python.org/issue22068]: Avoided reference loops with Variables and Fonts in Tkinter.

	bpo-22165 [https://bugs.python.org/issue22165]: SimpleHTTPRequestHandler now supports undecodable file names.

	bpo-15381 [https://bugs.python.org/issue15381]: Optimized line reading in io.BytesIO.

	bpo-8797 [https://bugs.python.org/issue8797]: Raise HTTPError on failed Basic Authentication immediately.
Initial patch by Sam Bull.

	bpo-20729 [https://bugs.python.org/issue20729]: Restored the use of lazy iterkeys()/itervalues()/iteritems() in
the mailbox module.

	bpo-21448 [https://bugs.python.org/issue21448]: Changed FeedParser feed() to avoid O(N**2) behavior when
parsing long line. Original patch by Raymond Hettinger.

	bpo-22184 [https://bugs.python.org/issue22184]: The functools LRU Cache decorator factory now gives an earlier
and clearer error message when the user forgets the required parameters.

	bpo-17923 [https://bugs.python.org/issue17923]: glob() patterns ending with a slash no longer match non-dirs on
AIX. Based on patch by Delhallt.

	bpo-21725 [https://bugs.python.org/issue21725]: Added support for RFC 6531 (SMTPUTF8) in smtpd.

	bpo-22176 [https://bugs.python.org/issue22176]: Update the ctypes module's libffi to v3.1. This release adds
support for the Linux AArch64 and POWERPC ELF ABIv2 little endian
architectures.

	bpo-5411 [https://bugs.python.org/issue5411]: Added support for the "xztar" format in the shutil module.

	bpo-21121 [https://bugs.python.org/issue21121]: Don't force 3rd party C extensions to be built with
-Werror=declaration-after-statement.

	bpo-21975 [https://bugs.python.org/issue21975]: Fixed crash when using uninitialized sqlite3.Row (in particular
when unpickling pickled sqlite3.Row). sqlite3.Row is now initialized in
the __new__() method.

	bpo-20170 [https://bugs.python.org/issue20170]: Convert posixmodule to use Argument Clinic.

	bpo-21539 [https://bugs.python.org/issue21539]: Add an exists_ok argument to Pathlib.mkdir() to mimic
mkdir -p and os.makedirs() functionality. When true, ignore
FileExistsErrors. Patch by Berker Peksag.

	bpo-22127 [https://bugs.python.org/issue22127]: Bypass IDNA for pure-ASCII host names in the socket module (in
particular for numeric IPs).

	bpo-21047 [https://bugs.python.org/issue21047]: set the default value for the convert_charrefs argument of
HTMLParser to True. Patch by Berker Peksag.

	在 html.entities 包中增加 __all__ 变量。

	bpo-15114 [https://bugs.python.org/issue15114]: the strict mode and argument of HTMLParser, HTMLParser.error,
and the HTMLParserError exception have been removed.

	bpo-22085 [https://bugs.python.org/issue22085]: 在 Tkinter 中删除了对 TK 8.3 的支持。

	bpo-21580 [https://bugs.python.org/issue21580]: Now Tkinter correctly handles bytes arguments passed to Tk. In
particular this allows initializing images from binary data.

	bpo-22003 [https://bugs.python.org/issue22003]: When initialized from a bytes object, io.BytesIO() now defers
making a copy until it is mutated, improving performance and memory use on
some use cases. Patch by David Wilson.

	bpo-22018 [https://bugs.python.org/issue22018]: On Windows, signal.set_wakeup_fd() now also supports sockets. A
side effect is that Python depends to the WinSock library.

	bpo-22054 [https://bugs.python.org/issue22054]: Add os.get_blocking() and os.set_blocking() functions to get
and set the blocking mode of a file descriptor (False if the O_NONBLOCK
flag is set, True otherwise). These functions are not available on
Windows.

	bpo-17172 [https://bugs.python.org/issue17172]: Make turtledemo start as active on OS X even when run with
subprocess. Patch by Lita Cho.

	bpo-21704 [https://bugs.python.org/issue21704]: Fix build error for _multiprocessing when semaphores are not
available. Patch by Arfrever Frehtes Taifersar Arahesis.

	bpo-20173 [https://bugs.python.org/issue20173]: Convert sha1, sha256, sha512 and md5 to ArgumentClinic. Patch
by Vajrasky Kok.

	Fix repr(_socket.socket) on Windows 64-bit: don't fail with OverflowError
on closed socket. repr(socket.socket) already works fine.

	bpo-22033 [https://bugs.python.org/issue22033]: Reprs of most Python implemented classes now contain actual
class name instead of hardcoded one.

	bpo-21947 [https://bugs.python.org/issue21947]: The dis module can now disassemble generator-iterator objects
based on their gi_code attribute. Patch by Clement Rouault.

	bpo-16133 [https://bugs.python.org/issue16133]: The asynchat.async_chat.handle_read() method now ignores
BlockingIOError exceptions.

	bpo-22044 [https://bugs.python.org/issue22044]: Fixed premature DECREF in call_tzinfo_method. Patch by Tom
Flanagan.

	bpo-19884 [https://bugs.python.org/issue19884]: readline: Disable the meta modifier key if stdout is not a
terminal to not write the ANSI sequence "\033[1034h" into stdout. This
sequence is used on some terminal (ex: TERM=xterm-256color") to enable
support of 8 bit characters.

	bpo-4350 [https://bugs.python.org/issue4350]: Removed a number of out-of-dated and non-working for a long time
Tkinter methods.

	bpo-6167 [https://bugs.python.org/issue6167]: Scrollbar.activate() now returns the name of active element if
the argument is not specified. Scrollbar.set() now always accepts only 2
arguments.

	bpo-15275 [https://bugs.python.org/issue15275]: Clean up and speed up the ntpath module.

	bpo-21888 [https://bugs.python.org/issue21888]: plistlib's load() and loads() now work if the fmt parameter is
specified.

	bpo-22032 [https://bugs.python.org/issue22032]: __qualname__ instead of __name__ is now always used to format
fully qualified class names of Python implemented classes.

	bpo-22031 [https://bugs.python.org/issue22031]: Reprs now always use hexadecimal format with the "0x" prefix
when contain an id in form " at 0x...".

	bpo-22018 [https://bugs.python.org/issue22018]: signal.set_wakeup_fd() now raises an OSError instead of a
ValueError on fstat() failure.

	bpo-21044 [https://bugs.python.org/issue21044]: tarfile.open() now handles fileobj with an integer 'name'
attribute. Based on patch by Antoine Pietri.

	bpo-21966 [https://bugs.python.org/issue21966]: Respect -q command-line option when code module is ran.

	bpo-19076 [https://bugs.python.org/issue19076]: Don't pass the redundant 'file' argument to self.error().

	bpo-16382 [https://bugs.python.org/issue16382]: Improve exception message of warnings.warn() for bad category.
Initial patch by Phil Elson.

	bpo-21932 [https://bugs.python.org/issue21932]: os.read() now uses a Py_ssize_t() type instead of
int for the size to support reading more than 2 GB at once. On
Windows, the size is truncated to INT_MAX. As any call to os.read(), the
OS may read less bytes than the number of requested bytes.

	bpo-21942 [https://bugs.python.org/issue21942]: Fixed source file viewing in pydoc's server mode on Windows.

	bpo-11259 [https://bugs.python.org/issue11259]: asynchat.async_chat().set_terminator() now raises a ValueError
if the number of received bytes is negative.

	bpo-12523 [https://bugs.python.org/issue12523]: asynchat.async_chat.push() now raises a TypeError if it doesn't
get a bytes string

	bpo-21707 [https://bugs.python.org/issue21707]: Add missing kwonlyargcount argument to
ModuleFinder.replace_paths_in_code().

	bpo-20639 [https://bugs.python.org/issue20639]: calling Path.with_suffix('') allows removing the suffix again.
Patch by July Tikhonov.

	bpo-21714 [https://bugs.python.org/issue21714]: Disallow the construction of invalid paths using
Path.with_name(). Original patch by Antony Lee.

	bpo-15014 [https://bugs.python.org/issue15014]: Added 'auth' method to smtplib to make implementing auth
mechanisms simpler, and used it internally in the login method.

	bpo-21151 [https://bugs.python.org/issue21151]: Fixed a segfault in the winreg module when None is passed
as a REG_BINARY value to SetValueEx. Patch by John Ehresman.

	bpo-21090 [https://bugs.python.org/issue21090]: io.FileIO.readall() does not ignore I/O errors anymore. Before,
it ignored I/O errors if at least the first C call read() succeed.

	bpo-5800 [https://bugs.python.org/issue5800]: headers parameter of wsgiref.headers.Headers is now optional.
Initial patch by Pablo Torres Navarrete and SilentGhost.

	bpo-21781 [https://bugs.python.org/issue21781]: ssl.RAND_add() now supports strings longer than 2 GB.

	bpo-21679 [https://bugs.python.org/issue21679]: Prevent extraneous fstat() calls during open(). Patch by
Bohuslav Kabrda.

	bpo-21863 [https://bugs.python.org/issue21863]: cProfile now displays the module name of C extension functions,
in addition to their own name.

	bpo-11453 [https://bugs.python.org/issue11453]: asyncore: emit a ResourceWarning when an unclosed file_wrapper
object is destroyed. The destructor now closes the file if needed. The
close() method can now be called twice: the second call does nothing.

	bpo-21858 [https://bugs.python.org/issue21858]: Better handling of Python exceptions in the sqlite3 module.

	bpo-21476 [https://bugs.python.org/issue21476]: Make sure the email.parser.BytesParser TextIOWrapper is
discarded after parsing, so the input file isn't unexpectedly closed.

	bpo-20295 [https://bugs.python.org/issue20295]: imghdr now recognizes OpenEXR format images.

	bpo-21729 [https://bugs.python.org/issue21729]: Used the "with" statement in the dbm.dumb module to ensure
files closing. Patch by Claudiu Popa.

	bpo-21491 [https://bugs.python.org/issue21491]: socketserver: Fix a race condition in child processes reaping.

	bpo-21719 [https://bugs.python.org/issue21719]: Added the st_file_attributes field to os.stat_result on
Windows.

	bpo-21832 [https://bugs.python.org/issue21832]: Require named tuple inputs to be exact strings.

	bpo-21722 [https://bugs.python.org/issue21722]: The distutils "upload" command now exits with a non-zero return
code when uploading fails. Patch by Martin Dengler.

	bpo-21723 [https://bugs.python.org/issue21723]: asyncio.Queue: support any type of number (ex: float) for the
maximum size. Patch written by Vajrasky Kok.

	bpo-21711 [https://bugs.python.org/issue21711]: support for "site-python" directories has now been removed from
the site module (it was deprecated in 3.4).

	bpo-17552 [https://bugs.python.org/issue17552]: new socket.sendfile() method allowing a file to be sent over a
socket by using high-performance os.sendfile() on UNIX. Patch by Giampaolo
Rodola'.

	bpo-18039 [https://bugs.python.org/issue18039]: dbm.dump.open() now always creates a new database when the flag
has the value 'n'. Patch by Claudiu Popa.

	bpo-21326 [https://bugs.python.org/issue21326]: Add a new is_closed() method to asyncio.BaseEventLoop.
run_forever() and run_until_complete() methods of asyncio.BaseEventLoop
now raise an exception if the event loop was closed.

	bpo-21766 [https://bugs.python.org/issue21766]: Prevent a security hole in CGIHTTPServer by URL unquoting paths
before checking for a CGI script at that path.

	bpo-21310 [https://bugs.python.org/issue21310]: Fixed possible resource leak in failed open().

	bpo-21256 [https://bugs.python.org/issue21256]: Printout of keyword args should be in deterministic order in a
mock function call. This will help to write better doctests.

	bpo-21677 [https://bugs.python.org/issue21677]: Fixed chaining nonnormalized exceptions in io close() methods.

	bpo-11709 [https://bugs.python.org/issue11709]: Fix the pydoc.help function to not fail when sys.stdin is not a
valid file.

	bpo-21515 [https://bugs.python.org/issue21515]: tempfile.TemporaryFile now uses os.O_TMPFILE flag is available.

	bpo-13223 [https://bugs.python.org/issue13223]: Fix pydoc.writedoc so that the HTML documentation for methods
that use 'self' in the example code is generated correctly.

	bpo-21463 [https://bugs.python.org/issue21463]: In urllib.request, fix pruning of the FTP cache.

	bpo-21618 [https://bugs.python.org/issue21618]: The subprocess module could fail to close open fds that were
inherited by the calling process and already higher than POSIX resource
limits would otherwise allow. On systems with a functioning /proc/self/fd
or /dev/fd interface the max is now ignored and all fds are closed.

	bpo-20383 [https://bugs.python.org/issue20383]: Introduce importlib.util.module_from_spec() as the preferred
way to create a new module.

	bpo-21552 [https://bugs.python.org/issue21552]: Fixed possible integer overflow of too long string lengths in
the tkinter module on 64-bit platforms.

	bpo-14315 [https://bugs.python.org/issue14315]: The zipfile module now ignores extra fields in the central
directory that are too short to be parsed instead of letting a
struct.unpack error bubble up as this "bad data" appears in many real
world zip files in the wild and is ignored by other zip tools.

	bpo-13742 [https://bugs.python.org/issue13742]: Added "key" and "reverse" parameters to heapq.merge(). (First
draft of patch contributed by Simon Sapin.)

	bpo-21402 [https://bugs.python.org/issue21402]: tkinter.ttk now works when default root window is not set.

	bpo-3015 [https://bugs.python.org/issue3015]: _tkinter.create() now creates tkapp object with wantobject=1 by
default.

	bpo-10203 [https://bugs.python.org/issue10203]: sqlite3.Row now truly supports sequence protocol. In
particular it supports reverse() and negative indices. Original patch by
Claudiu Popa.

	bpo-18807 [https://bugs.python.org/issue18807]: If copying (no symlinks) specified for a venv, then the python
interpreter aliases (python, python3) are now created by copying rather
than symlinking.

	bpo-20197 [https://bugs.python.org/issue20197]: Added support for the WebP image type in the imghdr module.
Patch by Fabrice Aneche and Claudiu Popa.

	bpo-21513 [https://bugs.python.org/issue21513]: Speedup some properties of IP addresses (IPv4Address,
IPv6Address) such as .is_private or .is_multicast.

	bpo-21137 [https://bugs.python.org/issue21137]: Improve the repr for threading.Lock() and its variants by
showing the "locked" or "unlocked" status. Patch by Berker Peksag.

	bpo-21538 [https://bugs.python.org/issue21538]: The plistlib module now supports loading of binary plist files
when reference or offset size is not a power of two.

	bpo-21455 [https://bugs.python.org/issue21455]: Add a default backlog to socket.listen().

	bpo-21525 [https://bugs.python.org/issue21525]: Most Tkinter methods which accepted tuples now accept lists
too.

	bpo-22166 [https://bugs.python.org/issue22166]: With the assistance of a new internal _codecs._forget_codec
helping function, test_codecs now clears the encoding caches to avoid the
appearance of a reference leak

	bpo-22236 [https://bugs.python.org/issue22236]: Tkinter tests now don't reuse default root window. New root
window is created for every test class.

	bpo-10744 [https://bugs.python.org/issue10744]: Fix PEP 3118 format strings on ctypes objects with a nontrivial
shape.

	bpo-20826 [https://bugs.python.org/issue20826]: Optimize ipaddress.collapse_addresses().

	bpo-21487 [https://bugs.python.org/issue21487]: Optimize ipaddress.summarize_address_range() and
ipaddress.{IPv4Network,IPv6Network}.subnets().

	bpo-21486 [https://bugs.python.org/issue21486]: Optimize parsing of netmasks in ipaddress.IPv4Network and
ipaddress.IPv6Network.

	bpo-13916 [https://bugs.python.org/issue13916]: Disallowed the surrogatepass error handler for non UTF-*
encodings.

	bpo-20998 [https://bugs.python.org/issue20998]: Fixed re.fullmatch() of repeated single character pattern with
ignore case. Original patch by Matthew Barnett.

	bpo-21075 [https://bugs.python.org/issue21075]: fileinput.FileInput now reads bytes from standard stream if
binary mode is specified. Patch by Sam Kimbrel.

	bpo-19775 [https://bugs.python.org/issue19775]: Add a samefile() method to pathlib Path objects. Initial patch
by Vajrasky Kok.

	bpo-21226 [https://bugs.python.org/issue21226]: Set up modules properly in PyImport_ExecCodeModuleObject (and
friends).

	bpo-21398 [https://bugs.python.org/issue21398]: Fix a unicode error in the pydoc pager when the documentation
contains characters not encodable to the stdout encoding.

	bpo-16531 [https://bugs.python.org/issue16531]: ipaddress.IPv4Network and ipaddress.IPv6Network now accept an
(address, netmask) tuple argument, so as to easily construct network
objects from existing addresses.

	bpo-21156 [https://bugs.python.org/issue21156]: importlib.abc.InspectLoader.source_to_code() is now a
staticmethod.

	bpo-21424 [https://bugs.python.org/issue21424]: Simplified and optimized heaqp.nlargest() and nmsmallest() to
make fewer tuple comparisons.

	bpo-21396 [https://bugs.python.org/issue21396]: Fix TextIOWrapper(..., write_through=True) to not force a
flush() on the underlying binary stream. Patch by akira.

	bpo-18314 [https://bugs.python.org/issue18314]: Unlink now removes junctions on Windows. Patch by Kim Gräsman

	bpo-21088 [https://bugs.python.org/issue21088]: Bugfix for curses.window.addch() regression in 3.4.0. In
porting to Argument Clinic, the first two arguments were reversed.

	bpo-21407 [https://bugs.python.org/issue21407]: _decimal: The module now supports function signatures.

	bpo-10650 [https://bugs.python.org/issue10650]: Remove the non-standard 'watchexp' parameter from the
Decimal.quantize() method in the Python version. It had never been
present in the C version.

	bpo-21469 [https://bugs.python.org/issue21469]: Reduced the risk of false positives in robotparser by checking
to make sure that robots.txt has been read or does not exist prior to
returning True in can_fetch().

	bpo-19414 [https://bugs.python.org/issue19414]: Have the OrderedDict mark deleted links as unusable. This gives
an early failure if the link is deleted during iteration.

	bpo-21421 [https://bugs.python.org/issue21421]: Add __slots__ to the MappingViews ABC. Patch by Josh Rosenberg.

	bpo-21101 [https://bugs.python.org/issue21101]: Eliminate double hashing in the C speed-up code for
collections.Counter().

	bpo-21321 [https://bugs.python.org/issue21321]: itertools.islice() now releases the reference to the source
iterator when the slice is exhausted. Patch by Anton Afanasyev.

	bpo-21057 [https://bugs.python.org/issue21057]: TextIOWrapper now allows the underlying binary stream's read()
or read1() method to return an arbitrary bytes-like object (such as a
memoryview). Patch by Nikolaus Rath.

	bpo-20951 [https://bugs.python.org/issue20951]: SSLSocket.send() now raises either SSLWantReadError or
SSLWantWriteError on a non-blocking socket if the operation would block.
Previously, it would return 0. Patch by Nikolaus Rath.

	bpo-13248 [https://bugs.python.org/issue13248]: removed previously deprecated asyncore.dispatcher __getattr__
cheap inheritance hack.

	bpo-9815 [https://bugs.python.org/issue9815]: assertRaises now tries to clear references to local variables in
the exception's traceback.

	bpo-19940 [https://bugs.python.org/issue19940]: ssl.cert_time_to_seconds() now interprets the given time string
in the UTC timezone (as specified in RFC 5280), not the local timezone.

	bpo-13204 [https://bugs.python.org/issue13204]: Calling sys.flags.__new__ would crash the interpreter, now it
raises a TypeError.

	bpo-19385 [https://bugs.python.org/issue19385]: Make operations on a closed dbm.dumb database always raise the
same exception.

	bpo-21207 [https://bugs.python.org/issue21207]: Detect when the os.urandom cached fd has been closed or
replaced, and open it anew.

	bpo-21291 [https://bugs.python.org/issue21291]: subprocess's Popen.wait() is now thread safe so that multiple
threads may be calling wait() or poll() on a Popen instance at the same
time without losing the Popen.returncode value.

	bpo-21127 [https://bugs.python.org/issue21127]: Path objects can now be instantiated from str subclass
instances (such as numpy.str_).

	bpo-15002 [https://bugs.python.org/issue15002]: urllib.response object to use _TemporaryFileWrapper (and
_TemporaryFileCloser) facility. Provides a better way to handle file
descriptor close. Patch contributed by Christian Theune.

	bpo-12220 [https://bugs.python.org/issue12220]: mindom now raises a custom ValueError indicating it doesn't
support spaces in URIs instead of letting a 'split' ValueError bubble up.

	bpo-21068 [https://bugs.python.org/issue21068]: The ssl.PROTOCOL* constants are now enum members.

	bpo-21276 [https://bugs.python.org/issue21276]: posixmodule: Don't define USE_XATTRS on KFreeBSD and the Hurd.

	bpo-21262 [https://bugs.python.org/issue21262]: New method assert_not_called for Mock. It raises AssertionError
if the mock has been called.

	bpo-21238 [https://bugs.python.org/issue21238]: New keyword argument unsafe to Mock. It raises
AttributeError incase of an attribute startswith assert or assret.

	bpo-20896 [https://bugs.python.org/issue20896]: ssl.get_server_certificate() now uses PROTOCOL_SSLv23, not
PROTOCOL_SSLv3, for maximum compatibility.

	bpo-21239 [https://bugs.python.org/issue21239]: patch.stopall() didn't work deterministically when the same
name was patched more than once.

	bpo-21203 [https://bugs.python.org/issue21203]: Updated fileConfig and dictConfig to remove inconsistencies.
Thanks to Jure Koren for the patch.

	bpo-21222 [https://bugs.python.org/issue21222]: Passing name keyword argument to mock.create_autospec now
works.

	bpo-21197 [https://bugs.python.org/issue21197]: Add lib64 -> lib symlink in venvs on 64-bit non-OS X POSIX.

	bpo-17498 [https://bugs.python.org/issue17498]: Some SMTP servers disconnect after certain errors, violating
strict RFC conformance. Instead of losing the error code when we issue
the subsequent RSET, smtplib now returns the error code and defers raising
the SMTPServerDisconnected error until the next command is issued.

	bpo-17826 [https://bugs.python.org/issue17826]: setting an iterable side_effect on a mock function created by
create_autospec now works. Patch by Kushal Das.

	bpo-7776 [https://bugs.python.org/issue7776]: Fix Host: header and reconnection when using
http.client.HTTPConnection.set_tunnel(). Patch by Nikolaus Rath.

	bpo-20968 [https://bugs.python.org/issue20968]: unittest.mock.MagicMock now supports division. Patch by
Johannes Baiter.

	bpo-21529 [https://bugs.python.org/issue21529]: Fix arbitrary memory access in JSONDecoder.raw_decode with a
negative second parameter. Bug reported by Guido Vranken. (See also:
CVE-2014-4616)

	bpo-21169 [https://bugs.python.org/issue21169]: getpass now handles non-ascii characters that the input stream
encoding cannot encode by re-encoding using the replace error handler.

	bpo-21171 [https://bugs.python.org/issue21171]: Fixed undocumented filter API of the rot13 codec. Patch by
Berker Peksag.

	bpo-20539 [https://bugs.python.org/issue20539]: Improved math.factorial error message for large positive inputs
and changed exception type (OverflowError -> ValueError) for large
negative inputs.

	bpo-21172 [https://bugs.python.org/issue21172]: isinstance check relaxed from dict to collections.Mapping.

	bpo-21155 [https://bugs.python.org/issue21155]: asyncio.EventLoop.create_unix_server() now raises a ValueError
if path and sock are specified at the same time.

	bpo-21136 [https://bugs.python.org/issue21136]: Avoid unnecessary normalization of Fractions resulting from
power and other operations. Patch by Raymond Hettinger.

	bpo-17621 [https://bugs.python.org/issue17621]: Introduce importlib.util.LazyLoader.

	bpo-21076 [https://bugs.python.org/issue21076]: signal module constants were turned into enums. Patch by
Giampaolo Rodola'.

	bpo-20636 [https://bugs.python.org/issue20636]: Improved the repr of Tkinter widgets.

	bpo-19505 [https://bugs.python.org/issue19505]: The items, keys, and values views of OrderedDict now support
reverse iteration using reversed().

	bpo-21149 [https://bugs.python.org/issue21149]: Improved thread-safety in logging cleanup during interpreter
shutdown. Thanks to Devin Jeanpierre for the patch.

	bpo-21058 [https://bugs.python.org/issue21058]: Fix a leak of file descriptor in
tempfile.NamedTemporaryFile(), close the file descriptor if
io.open() fails

	bpo-21200 [https://bugs.python.org/issue21200]: Return None from pkgutil.get_loader() when __spec__ is missing.

	bpo-21013 [https://bugs.python.org/issue21013]: Enhance ssl.create_default_context() when used for server side
sockets to provide better security by default.

	bpo-20145 [https://bugs.python.org/issue20145]: assertRaisesRegex and assertWarnsRegex now raise a
TypeError if the second argument is not a string or compiled regex.

	bpo-20633 [https://bugs.python.org/issue20633]: Replace relative import by absolute import.

	bpo-20980 [https://bugs.python.org/issue20980]: Stop wrapping exception when using ThreadPool.

	bpo-21082 [https://bugs.python.org/issue21082]: In os.makedirs, do not set the process-wide umask. Note this
changes behavior of makedirs when exist_ok=True.

	bpo-20990 [https://bugs.python.org/issue20990]: Fix issues found by pyflakes for multiprocessing.

	bpo-21015 [https://bugs.python.org/issue21015]: SSL contexts will now automatically select an elliptic curve
for ECDH key exchange on OpenSSL 1.0.2 and later, and otherwise default to
"prime256v1".

	bpo-21000 [https://bugs.python.org/issue21000]: Improve the command-line interface of json.tool.

	bpo-20995 [https://bugs.python.org/issue20995]: Enhance default ciphers used by the ssl module to enable better
security and prioritize perfect forward secrecy.

	bpo-20884 [https://bugs.python.org/issue20884]: Don't assume that __file__ is defined on importlib.__init__.

	bpo-21499 [https://bugs.python.org/issue21499]: Ignore __builtins__ in several test_importlib.test_api tests.

	bpo-20627 [https://bugs.python.org/issue20627]: xmlrpc.client.ServerProxy is now a context manager.

	bpo-19165 [https://bugs.python.org/issue19165]: The formatter module now raises DeprecationWarning instead of
PendingDeprecationWarning.

	bpo-13936 [https://bugs.python.org/issue13936]: Remove the ability of datetime.time instances to be considered
false in boolean contexts.

	bpo-18931 [https://bugs.python.org/issue18931]: selectors module now supports /dev/poll on Solaris. Patch by
Giampaolo Rodola'.

	bpo-19977 [https://bugs.python.org/issue19977]: When the LC_TYPE locale is the POSIX locale (C locale),
sys.stdin and sys.stdout are now using the
surrogateescape error handler, instead of the strict error
handler.

	bpo-20574 [https://bugs.python.org/issue20574]: Implement incremental decoder for cp65001 code (Windows code
page 65001, Microsoft UTF-8).

	bpo-20879 [https://bugs.python.org/issue20879]: Delay the initialization of encoding and decoding tables for
base32, ascii85 and base85 codecs in the base64 module, and delay the
initialization of the unquote_to_bytes() table of the urllib.parse module,
to not waste memory if these modules are not used.

	bpo-19157 [https://bugs.python.org/issue19157]: Include the broadcast address in the usuable hosts for IPv6 in
ipaddress.

	bpo-11599 [https://bugs.python.org/issue11599]: When an external command (e.g. compiler) fails, distutils now
prints out the whole command line (instead of just the command name) if
the environment variable DISTUTILS_DEBUG is set.

	bpo-4931 [https://bugs.python.org/issue4931]: distutils should not produce unhelpful "error: None" messages
anymore. distutils.util.grok_environment_error is kept but doc-deprecated.

	bpo-20875 [https://bugs.python.org/issue20875]: Prevent possible gzip "'read' is not defined" NameError. Patch
by Claudiu Popa.

	bpo-11558 [https://bugs.python.org/issue11558]: email.message.Message.attach now returns a more useful
error message if attach is called on a message for which
is_multipart is False.

	bpo-20283 [https://bugs.python.org/issue20283]: RE pattern methods now accept the string keyword parameters as
documented. The pattern and source keyword parameters are left as
deprecated aliases.

	bpo-20778 [https://bugs.python.org/issue20778]: Fix modulefinder to work with bytecode-only modules.

	bpo-20791 [https://bugs.python.org/issue20791]: copy.copy() now doesn't make a copy when the input is a bytes
object. Initial patch by Peter Otten.

	bpo-19748 [https://bugs.python.org/issue19748]: On AIX, time.mktime() now raises an OverflowError for year
outsize range [1902; 2037].

	bpo-19573 [https://bugs.python.org/issue19573]: inspect.signature: Use enum for parameter kind constants.

	bpo-20726 [https://bugs.python.org/issue20726]: inspect.signature: Make Signature and Parameter picklable.

	bpo-17373 [https://bugs.python.org/issue17373]: Add inspect.Signature.from_callable method.

	bpo-20378 [https://bugs.python.org/issue20378]: Improve repr of inspect.Signature and inspect.Parameter.

	bpo-20816 [https://bugs.python.org/issue20816]: Fix inspect.getcallargs() to raise correct TypeError for
missing keyword-only arguments. Patch by Jeremiah Lowin.

	bpo-20817 [https://bugs.python.org/issue20817]: Fix inspect.getcallargs() to fail correctly if more than 3
arguments are missing. Patch by Jeremiah Lowin.

	bpo-6676 [https://bugs.python.org/issue6676]: Ensure a meaningful exception is raised when attempting to parse
more than one XML document per pyexpat xmlparser instance. (Original
patches by Hirokazu Yamamoto and Amaury Forgeot d'Arc, with suggested
wording by David Gutteridge)

	bpo-21117 [https://bugs.python.org/issue21117]: Fix inspect.signature to better support functools.partial. Due
to the specifics of functools.partial implementation,
positional-or-keyword arguments passed as keyword arguments become
keyword-only.

	bpo-20334 [https://bugs.python.org/issue20334]: inspect.Signature and inspect.Parameter are now hashable.
Thanks to Antony Lee for bug reports and suggestions.

	bpo-15916 [https://bugs.python.org/issue15916]: doctest.DocTestSuite returns an empty unittest.TestSuite
instead of raising ValueError if it finds no tests

	bpo-21209 [https://bugs.python.org/issue21209]: Fix asyncio.tasks.CoroWrapper to workaround a bug in yield-from
implementation in CPythons prior to 3.4.1.

	asyncio: Add gi_{frame,running,code} properties to CoroWrapper (upstream
bpo-163 [https://bugs.python.org/issue163]).

	bpo-21311 [https://bugs.python.org/issue21311]: Avoid exception in _osx_support with non-standard compiler
configurations. Patch by John Szakmeister.

	bpo-11571 [https://bugs.python.org/issue11571]: Ensure that the turtle window becomes the topmost window when
launched on OS X.

	bpo-21801 [https://bugs.python.org/issue21801]: Validate that __signature__ is None or an instance of
Signature.

	bpo-21923 [https://bugs.python.org/issue21923]: Prevent AttributeError in
distutils.sysconfig.customize_compiler due to possible uninitialized
_config_vars.

	bpo-21323 [https://bugs.python.org/issue21323]: Fix http.server to again handle scripts in CGI subdirectories,
broken by the fix for security bpo-19435 [https://bugs.python.org/issue19435]. Patch by Zach Byrne.

	bpo-22733 [https://bugs.python.org/issue22733]: Fix ffi_prep_args not zero-extending argument values correctly
on 64-bit Windows.

	bpo-23302 [https://bugs.python.org/issue23302]: Default to TCP_NODELAY=1 upon establishing an HTTPConnection.
Removed use of hard-coded MSS as it's an optimization that's no longer
needed with Nagle disabled.

IDLE

	bpo-20577 [https://bugs.python.org/issue20577]: Configuration of the max line length for the FormatParagraph
extension has been moved from the General tab of the Idle preferences
dialog to the FormatParagraph tab of the Config Extensions dialog. Patch
by Tal Einat.

	bpo-16893 [https://bugs.python.org/issue16893]: Update Idle doc chapter to match current Idle and add new
information.

	bpo-3068 [https://bugs.python.org/issue3068]: Add Idle extension configuration dialog to Options menu. Changes
are written to HOME/.idlerc/config-extensions.cfg. Original patch by Tal
Einat.

	bpo-16233 [https://bugs.python.org/issue16233]: A module browser (File : Class Browser, Alt+C) requires an
editor window with a filename. When Class Browser is requested otherwise,
from a shell, output window, or 'Untitled' editor, Idle no longer displays
an error box. It now pops up an Open Module box (Alt+M). If a valid name
is entered and a module is opened, a corresponding browser is also opened.

	bpo-4832 [https://bugs.python.org/issue4832]: Save As to type Python files automatically adds .py to the name
you enter (even if your system does not display it). Some systems
automatically add .txt when type is Text files.

	bpo-21986 [https://bugs.python.org/issue21986]: Code objects are not normally pickled by the pickle module. To
match this, they are no longer pickled when running under Idle.

	bpo-17390 [https://bugs.python.org/issue17390]: Adjust Editor window title; remove 'Python', move version to
end.

	bpo-14105 [https://bugs.python.org/issue14105]: Idle debugger breakpoints no longer disappear when inserting or
deleting lines.

	bpo-17172 [https://bugs.python.org/issue17172]: Turtledemo can now be run from Idle. Currently, the entry is on
the Help menu, but it may move to Run. Patch by Ramchandra Apt and Lita
Cho.

	bpo-21765 [https://bugs.python.org/issue21765]: Add support for non-ascii identifiers to HyperParser.

	bpo-21940 [https://bugs.python.org/issue21940]: Add unittest for WidgetRedirector. Initial patch by Saimadhav
Heblikar.

	bpo-18592 [https://bugs.python.org/issue18592]: Add unittest for SearchDialogBase. Patch by Phil Webster.

	bpo-21694 [https://bugs.python.org/issue21694]: Add unittest for ParenMatch. Patch by Saimadhav Heblikar.

	bpo-21686 [https://bugs.python.org/issue21686]: add unittest for HyperParser. Original patch by Saimadhav
Heblikar.

	bpo-12387 [https://bugs.python.org/issue12387]: Add missing upper(lower)case versions of default Windows key
bindings for Idle so Caps Lock does not disable them. Patch by Roger
Serwy.

	bpo-21695 [https://bugs.python.org/issue21695]: Closing a Find-in-files output window while the search is still
in progress no longer closes Idle.

	bpo-18910 [https://bugs.python.org/issue18910]: Add unittest for textView. Patch by Phil Webster.

	bpo-18292 [https://bugs.python.org/issue18292]: Add unittest for AutoExpand. Patch by Saihadhav Heblikar.

	bpo-18409 [https://bugs.python.org/issue18409]: Add unittest for AutoComplete. Patch by Phil Webster.

	bpo-21477 [https://bugs.python.org/issue21477]: htest.py - Improve framework, complete set of tests. Patches by
Saimadhav Heblikar

	bpo-18104 [https://bugs.python.org/issue18104]: Add idlelib/idle_test/htest.py with a few sample tests to begin
consolidating and improving human-validated tests of Idle. Change other
files as needed to work with htest. Running the module as __main__ runs
all tests.

	bpo-21139 [https://bugs.python.org/issue21139]: Change default paragraph width to 72, the PEP 8 recommendation.

	bpo-21284 [https://bugs.python.org/issue21284]: Paragraph reformat test passes after user changes reformat
width.

	bpo-17654 [https://bugs.python.org/issue17654]: Ensure IDLE menus are customized properly on OS X for
non-framework builds and for all variants of Tk.

	bpo-23180 [https://bugs.python.org/issue23180]: Rename IDLE "Windows" menu item to "Window". Patch by Al
Sweigart.

构建

	bpo-15506 [https://bugs.python.org/issue15506]: Use standard PKG_PROG_PKG_CONFIG autoconf macro in the
configure script.

	bpo-22935 [https://bugs.python.org/issue22935]: Allow the ssl module to be compiled if openssl doesn't support
SSL 3.

	bpo-22592 [https://bugs.python.org/issue22592]: 放弃对 Borland C 编译器构建Python的支持。distutils模块仍然支持它来构建扩展。

	bpo-22591 [https://bugs.python.org/issue22591]: 放弃对 MS-DOS 的支持，尤其是 DJGPP 编译器（GCC的MS-DOS端口）。

	bpo-16537 [https://bugs.python.org/issue16537]: Check whether self.extensions is empty in setup.py. Patch by
Jonathan Hosmer.

	bpo-22359 [https://bugs.python.org/issue22359]: Remove incorrect uses of recursive make. Patch by Jonas
Wagner.

	bpo-21958 [https://bugs.python.org/issue21958]: Define HAVE_ROUND when building with Visual Studio 2013 and
above. Patch by Zachary Turner.

	bpo-18093 [https://bugs.python.org/issue18093]: the programs that embed the CPython runtime are now in a
separate "Programs" directory, rather than being kept in the Modules
directory.

	bpo-15759 [https://bugs.python.org/issue15759]: "make suspicious", "make linkcheck" and "make doctest" in Doc/
now display special message when and only when there are failures.

	bpo-21141 [https://bugs.python.org/issue21141]: The Windows build process no longer attempts to find Perl,
instead relying on OpenSSL source being configured and ready to build.
The PCbuild\build_ssl.py script has been re-written and re-named to
PCbuild\prepare_ssl.py, and takes care of configuring OpenSSL source
for both 32 and 64 bit platforms. OpenSSL sources obtained from
svn.python.org will always be pre-configured and ready to build.

	bpo-21037 [https://bugs.python.org/issue21037]: Add a build option to enable AddressSanitizer support.

	bpo-19962 [https://bugs.python.org/issue19962]: The Windows build process now creates "python.bat" in the root
of the source tree, which passes all arguments through to the most
recently built interpreter.

	bpo-21285 [https://bugs.python.org/issue21285]: Refactor and fix curses configure check to always search in a
ncursesw directory.

	bpo-15234 [https://bugs.python.org/issue15234]: For BerkelyDB and Sqlite, only add the found library and
include directories if they aren't already being searched. This avoids an
explicit runtime library dependency.

	bpo-17861 [https://bugs.python.org/issue17861]: Tools/scripts/generate_opcode_h.py automatically regenerates
Include/opcode.h from Lib/opcode.py if the latter gets any change.

	bpo-20644 [https://bugs.python.org/issue20644]: OS X installer build support for documentation build changes in
3.4.1: assume externally supplied sphinx-build is available in /usr/bin.

	bpo-20022 [https://bugs.python.org/issue20022]: Eliminate use of deprecated bundlebuilder in OS X builds.

	bpo-15968 [https://bugs.python.org/issue15968]: Incorporated Tcl, Tk, and Tix builds into the Windows build
solution.

	bpo-17095 [https://bugs.python.org/issue17095]: Fix Modules/Setup shared support.

	bpo-21811 [https://bugs.python.org/issue21811]: Anticipated fixes to support OS X versions > 10.9.

	bpo-21166 [https://bugs.python.org/issue21166]: Prevent possible segfaults and other random failures of python
--generate-posix-vars in pybuilddir.txt build target.

	bpo-18096 [https://bugs.python.org/issue18096]: Fix library order returned by python-config.

	bpo-17219 [https://bugs.python.org/issue17219]: Add library build dir for Python extension cross-builds.

	bpo-22919 [https://bugs.python.org/issue22919]: Windows build updated to support VC 14.0 (Visual Studio 2015),
which will be used for the official release.

	bpo-21236 [https://bugs.python.org/issue21236]: Build _msi.pyd with cabinet.lib instead of fci.lib

	bpo-17128 [https://bugs.python.org/issue17128]: Use private version of OpenSSL for OS X 10.5+ installer.

C API

	bpo-14203 [https://bugs.python.org/issue14203]: Remove obsolete support for view==NULL in PyBuffer_FillInfo(),
bytearray_getbuffer(), bytesiobuf_getbuffer() and array_buffer_getbuf().
All functions now raise BufferError in that case.

	bpo-22445 [https://bugs.python.org/issue22445]: PyBuffer_IsContiguous() now implements precise contiguity
tests, compatible with NumPy's NPY_RELAXED_STRIDES_CHECKING compilation
flag. Previously the function reported false negatives for corner cases.

	bpo-22079 [https://bugs.python.org/issue22079]: PyType_Ready() now checks that statically allocated type has no
dynamically allocated bases.

	bpo-22453 [https://bugs.python.org/issue22453]: Removed non-documented macro PyObject_REPR().

	bpo-18395 [https://bugs.python.org/issue18395]: Rename _Py_char2wchar() to Py_DecodeLocale(),
rename _Py_wchar2char() to Py_EncodeLocale(), and document
these functions.

	bpo-21233 [https://bugs.python.org/issue21233]: Add new C functions: PyMem_RawCalloc(), PyMem_Calloc(),
PyObject_Calloc(), _PyObject_GC_Calloc(). bytes(int) is now using
calloc() instead of malloc() for large objects which is faster and
use less memory.

	bpo-20942 [https://bugs.python.org/issue20942]: PyImport_ImportFrozenModuleObject() no longer sets __file__ to
match what importlib does; this affects _frozen_importlib as well as any
module loaded using imp.init_frozen().

文档

	bpo-19548 [https://bugs.python.org/issue19548]: Update the codecs module documentation to better cover the
distinction between text encodings and other codecs, together with other
clarifications. Patch by Martin Panter.

	bpo-22394 [https://bugs.python.org/issue22394]: Doc/Makefile now supports make venv PYTHON=../python to
create a venv for generating the documentation, e.g., make html
PYTHON=venv/bin/python3.

	bpo-21514 [https://bugs.python.org/issue21514]: The documentation of the json module now refers to new JSON RFC
7159 instead of obsoleted RFC 4627.

	bpo-21777 [https://bugs.python.org/issue21777]: The binary sequence methods on bytes and bytearray are now
documented explicitly, rather than assuming users will be able to derive
the expected behaviour from the behaviour of the corresponding str
methods.

	bpo-6916 [https://bugs.python.org/issue6916]: undocument deprecated asynchat.fifo class.

	bpo-17386 [https://bugs.python.org/issue17386]: Expanded functionality of the Doc/make.bat script to make
it much more comparable to Doc/Makefile.

	bpo-21312 [https://bugs.python.org/issue21312]: Update the thread_foobar.h template file to include newer
threading APIs. Patch by Jack McCracken.

	bpo-21043 [https://bugs.python.org/issue21043]: Remove the recommendation for specific CA organizations and to
mention the ability to load the OS certificates.

	bpo-20765 [https://bugs.python.org/issue20765]: Add missing documentation for PurePath.with_name() and
PurePath.with_suffix().

	bpo-19407 [https://bugs.python.org/issue19407]: New package installation and distribution guides based on the
Python Packaging Authority tools. Existing guides have been retained as
legacy links from the distutils docs, as they still contain some required
reference material for tool developers that isn't recorded anywhere else.

	bpo-19697 [https://bugs.python.org/issue19697]: Document cases where __main__.__spec__ is None.

测试

	bpo-18982 [https://bugs.python.org/issue18982]: Add tests for CLI of the calendar module.

	bpo-19548 [https://bugs.python.org/issue19548]: Added some additional checks to test_codecs to ensure that
statements in the updated documentation remain accurate. Patch by Martin
Panter.

	bpo-22838 [https://bugs.python.org/issue22838]: All test_re tests now work with unittest test discovery.

	bpo-22173 [https://bugs.python.org/issue22173]: Update lib2to3 tests to use unittest test discovery.

	bpo-16000 [https://bugs.python.org/issue16000]: Convert test_curses to use unittest.

	bpo-21456 [https://bugs.python.org/issue21456]: Skip two tests in test_urllib2net.py if _ssl module not
present. Patch by Remi Pointel.

	bpo-20746 [https://bugs.python.org/issue20746]: Fix test_pdb to run in refleak mode (-R). Patch by Xavier de
Gaye.

	bpo-22060 [https://bugs.python.org/issue22060]: test_ctypes has been somewhat cleaned up and simplified; it now
uses unittest test discovery to find its tests.

	bpo-22104 [https://bugs.python.org/issue22104]: regrtest.py no longer holds a reference to the suite of tests
loaded from test modules that don't define test_main().

	bpo-22111 [https://bugs.python.org/issue22111]: Assorted cleanups in test_imaplib. Patch by Milan Oberkirch.

	bpo-22002 [https://bugs.python.org/issue22002]: Added load_package_tests function to test.support and used
it to implement/augment test discovery in test_asyncio, test_email,
test_importlib, test_json, and test_tools.

	bpo-21976 [https://bugs.python.org/issue21976]: Fix test_ssl to accept LibreSSL version strings. Thanks to
William Orr.

	bpo-21918 [https://bugs.python.org/issue21918]: Converted test_tools from a module to a package containing
separate test files for each tested script.

	bpo-9554 [https://bugs.python.org/issue9554]: Use modern unittest features in test_argparse. Initial patch by
Denver Coneybeare and Radu Voicilas.

	bpo-20155 [https://bugs.python.org/issue20155]: Changed HTTP method names in failing tests in test_httpservers
so that packet filtering software (specifically Windows Base Filtering
Engine) does not interfere with the transaction semantics expected by the
tests.

	bpo-19493 [https://bugs.python.org/issue19493]: Refactored the ctypes test package to skip tests explicitly
rather than silently.

	bpo-18492 [https://bugs.python.org/issue18492]: All resources are now allowed when tests are not run by
regrtest.py.

	bpo-21634 [https://bugs.python.org/issue21634]: Fix pystone micro-benchmark: use floor division instead of true
division to benchmark integers instead of floating point numbers. Set
pystone version to 1.2. Patch written by Lennart Regebro.

	bpo-21605 [https://bugs.python.org/issue21605]: Added tests for Tkinter images.

	bpo-21493 [https://bugs.python.org/issue21493]: Added test for ntpath.expanduser(). Original patch by Claudiu
Popa.

	bpo-19925 [https://bugs.python.org/issue19925]: Added tests for the spwd module. Original patch by Vajrasky
Kok.

	bpo-21522 [https://bugs.python.org/issue21522]: Added Tkinter tests for Listbox.itemconfigure(),
PanedWindow.paneconfigure(), and Menu.entryconfigure().

	bpo-17756 [https://bugs.python.org/issue17756]: Fix test_code test when run from the installed location.

	bpo-17752 [https://bugs.python.org/issue17752]: Fix distutils tests when run from the installed location.

	bpo-18604 [https://bugs.python.org/issue18604]: Consolidated checks for GUI availability. All platforms now at
least check whether Tk can be instantiated when the GUI resource is
requested.

	bpo-21275 [https://bugs.python.org/issue21275]: 修复KFreeBSD上的套接字测试。

	bpo-21223 [https://bugs.python.org/issue21223]: Pass test_site/test_startup_imports when some of the extensions
are built as builtins.

	bpo-20635 [https://bugs.python.org/issue20635]: 添加了针对Tk几何管理器的测试。

	增加freeze包的测试用例。

	bpo-20743 [https://bugs.python.org/issue20743]: 修复test_tcl中的引用泄漏。

	bpo-21097 [https://bugs.python.org/issue21097]: 将test_namespace_pkgs 移至 test_importlib。

	bpo-21503 [https://bugs.python.org/issue21503]: Use test_both() consistently in test_importlib.

	bpo-20939 [https://bugs.python.org/issue20939]: Avoid various network test failures due to new redirect of
http://www.python.org/ to https://www.python.org: use
http://www.example.com instead.

	bpo-20668 [https://bugs.python.org/issue20668]: asyncio tests no longer rely on tests.txt file. (Patch by
Vajrasky Kok)

	bpo-21093 [https://bugs.python.org/issue21093]: Prevent failures of ctypes test_macholib on OS X if a copy of
libz exists in $HOME/lib or /usr/local/lib.

	bpo-22770 [https://bugs.python.org/issue22770]: Prevent some Tk segfaults on OS X when running gui tests.

	bpo-23211 [https://bugs.python.org/issue23211]: Workaround test_logging failure on some OS X 10.6 systems.

	bpo-23345 [https://bugs.python.org/issue23345]: Prevent test_ssl failures with large OpenSSL patch level values
(like 0.9.8zc).

工具/示例

	bpo-22314 [https://bugs.python.org/issue22314]: pydoc now works when the LINES environment variable is set.

	bpo-22615 [https://bugs.python.org/issue22615]: Argument Clinic now supports the "type" argument for the int
converter. This permits using the int converter with enums and typedefs.

	bpo-20076 [https://bugs.python.org/issue20076]: The makelocalealias.py script no longer ignores UTF-8 mapping.

	bpo-20079 [https://bugs.python.org/issue20079]: The makelocalealias.py script now can parse the SUPPORTED file
from glibc sources and supports command line options for source paths.

	bpo-22201 [https://bugs.python.org/issue22201]: Command-line interface of the zipfile module now correctly
extracts ZIP files with directory entries. Patch by Ryan Wilson.

	bpo-22120 [https://bugs.python.org/issue22120]: For functions using an unsigned integer return converter,
Argument Clinic now generates a cast to that type for the comparison to -1
in the generated code. (This suppresses a compilation warning.)

	bpo-18974 [https://bugs.python.org/issue18974]: Tools/scripts/diff.py now uses argparse instead of optparse.

	bpo-21906 [https://bugs.python.org/issue21906]: 让Tools/scripts/md5sum.py可以工作在Python 3。由Zachary Ware提供补丁。

	bpo-21629 [https://bugs.python.org/issue21629]: Fix Argument Clinic's "--converters" feature.

	为2to3添加 yield from 的支持。

	为2to3添加对PEP 465矩阵乘法运算符的支持。

	bpo-16047 [https://bugs.python.org/issue16047]: Fix module exception list and __file__ handling in freeze.
Patch by Meador Inge.

	bpo-11824 [https://bugs.python.org/issue11824]: Consider ABI tags in freeze. Patch by Meador Inge.

	bpo-20535 [https://bugs.python.org/issue20535]: PYTHONWARNING no longer affects the run_tests.py script. Patch
by Arfrever Frehtes Taifersar Arahesis.

Windows

	bpo-23260 [https://bugs.python.org/issue23260]: 更新Windows安装器

	The bundled version of Tcl/Tk has been updated to 8.6.3. The most visible
result of this change is the addition of new native file dialogs when
running on Windows Vista or newer. See Tcl/Tk's TIP 432 for more
information. Also, this version of Tcl/Tk includes support for Windows
10.

	bpo-17896 [https://bugs.python.org/issue17896]: The Windows build scripts now expect external library sources
to be in PCbuild\..\externals rather than PCbuild\..\...

	bpo-17717 [https://bugs.python.org/issue17717]: The Windows build scripts now use a copy of NASM pulled from
svn.python.org to build OpenSSL.

	bpo-21907 [https://bugs.python.org/issue21907]: Improved the batch scripts provided for building Python.

	bpo-22644 [https://bugs.python.org/issue22644]: OpenSSL的捆绑版本已更新到1.0.1j。

	bpo-10747 [https://bugs.python.org/issue10747]: Use versioned labels in the Windows start menu. Patch by Olive
Kilburn.

	bpo-22980 [https://bugs.python.org/issue22980]: .pyd files with a version and platform tag (for example,
".cp35-win32.pyd") will now be loaded in preference to those without tags.

（有关旧版本的信息，请参阅HISTORY文件。)

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python的新变化 »

 	

 |

 Python 教程

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	

 |

Python 教程

Python 是一种易于学习又功能强大的编程语言。它提供了高效的高层次的数据结构，还有简单有效的面向对象编程。Python 优雅的语法和动态类型，以及解释型语言的本质，使它成为在很多领域多数平台上写脚本和快速开发应用的理想语言。

多数平台上的 Python 解释器以及丰富的标准库的源码和可执行文件，都可以在 Python 官网 https://www.python.org/ 免费自由地下载并分享。这个网站上也提供一些链接，包括第三方 Python 模块、程序、工具等，以及额外的文档。

Python 解释器易于扩展，可以使用 C 或 C++（或者其他可以从 C 调用的语言）扩展新的功能和数据类型。Python 也可用作可定制化软件中的扩展程序语言。

这个教程非正式地介绍 Python 语言和系统的基本概念和功能。最好在阅读的时候有一个 Python 解释器做一些练习，不过所有的例子都是相互独立的，所以这个教程也可以离线阅读。

有关标准的对象和模块，参阅 Python 标准库。Python语言参考 提供了更正式的语言定义。要写 C 或者 C++ 扩展，参考 扩展和嵌入 Python 解释器 和 Python/C API 参考手册。也有不少书籍深入讲解 Python。

这个教程并不试图完整包含每一个功能，甚至常用功能可能也没有全部涉及。这个教程只介绍 Python 中最值得注意的功能，也会让你体会到这个语言的风格特色。学习完这个教程，你将能够阅读和编写 Python 模块和程序，也可以开始学习更多的 Python 库模块，详见 Python 标准库。

术语对照表 也很值得一读。

	1. 课前甜点

	2. 使用 Python 解释器
	2.1. 调用解释器
	2.1.1. 传入参数

	2.1.2. 交互模式

	2.2. 解释器的运行环境
	2.2.1. 源文件的字符编码

	3. Python 的非正式介绍
	3.1. Python 作为计算器使用
	3.1.1. 数字

	3.1.2. 字符串

	3.1.3. 列表

	3.2. 走向编程的第一步

	4. 其他流程控制工具
	4.1. if 语句

	4.2. for 语句

	4.3. range() 函数

	4.4. break 和 continue 语句，以及循环中的 else 子句

	4.5. pass 语句

	4.6. 定义函数

	4.7. 函数定义的更多形式
	4.7.1. 参数默认值

	4.7.2. 关键字参数

	4.7.3. 任意的参数列表

	4.7.4. 解包参数列表

	4.7.5. Lambda 表达式

	4.7.6. 文档字符串

	4.7.7. 函数标注

	4.8. 小插曲：编码风格

	5. 数据结构
	5.1. 列表的更多特性
	5.1.1. 列表作为栈使用

	5.1.2. 列表作为队列使用

	5.1.3. 列表推导式

	5.1.4. 嵌套的列表推导式

	5.2. del 语句

	5.3. 元组和序列

	5.4. 集合

	5.5. 字典

	5.6. 循环的技巧

	5.7. 深入条件控制

	5.8. 比较序列和其他类型

	6. 模块
	6.1. 更多有关模块的信息
	6.1.1. 以脚本的方式执行模块

	6.1.2. 模块搜索路径

	6.1.3. “编译过的”Python文件

	6.2. 标准模块

	6.3. dir() 函数

	6.4. 包
	6.4.1. 从包中导入 *

	6.4.2. 子包参考

	6.4.3. 多个目录中的包

	7. 输入输出
	7.1. 更漂亮的输出格式
	7.1.1. 格式化字符串文字

	7.1.2. 字符串的 format() 方法

	7.1.3. 手动格式化字符串

	7.1.4. 旧的字符串格式化方法

	7.2. 读写文件
	7.2.1. 文件对象的方法

	7.2.2. 使用 json 保存结构化数据

	8. 错误和异常
	8.1. 语法错误

	8.2. 异常

	8.3. 处理异常

	8.4. 抛出异常

	8.5. 用户自定义异常

	8.6. 定义清理操作

	8.7. 预定义的清理操作

	9. 类
	9.1. 名称和对象

	9.2. Python 作用域和命名空间
	9.2.1. 作用域和命名空间示例

	9.3. 初探类
	9.3.1. 类定义语法

	9.3.2. 类对象

	9.3.3. 实例对象

	9.3.4. 方法对象

	9.3.5. 类和实例变量

	9.4. 补充说明

	9.5. 继承
	9.5.1. 多重继承

	9.6. 私有变量

	9.7. 杂项说明

	9.8. 迭代器

	9.9. 生成器

	9.10. 生成器表达式

	10. 标准库简介
	10.1. 操作系统接口

	10.2. 文件通配符

	10.3. 命令行参数

	10.4. 错误输出重定向和程序终止

	10.5. 字符串模式匹配

	10.6. 数学

	10.7. 互联网访问

	10.8. 日期和时间

	10.9. 数据压缩

	10.10. 性能测量

	10.11. 质量控制

	10.12. 自带电池

	11. 标准库简介 —— 第二部分
	11.1. 格式化输出

	11.2. 模板

	11.3. 使用二进制数据记录格式

	11.4. 多线程

	11.5. 日志记录

	11.6. 弱引用

	11.7. 用于操作列表的工具

	11.8. 十进制浮点运算

	12. 虚拟环境和包
	12.1. 概述

	12.2. 创建虚拟环境

	12.3. 使用pip管理包

	13. 接下来？

	14. 交互式编辑和编辑历史
	14.1. Tab 补全和编辑历史

	14.2. 默认交互式解释器的替代品

	15. 浮点算术：争议和限制
	15.1. 表示性错误

	16. 附录
	16.1. 交互模式
	16.1.1. 错误处理

	16.1.2. 可执行的Python脚本

	16.1.3. 交互式启动文件

	16.1.4. 定制模块

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	

 |

 1. 课前甜点

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

1. 课前甜点

如果你经常在电脑上工作，总会有些任务会想让它自动化。比如，对一大堆文本文件进行查找替换，对很多照片文件按照比较复杂的规则重命名并放入不同的文件夹。也可能你想写一个小型的数据库应用，一个特定的图形界面应用，或者一个简单的游戏。

如果你是专业的软件开发人员，你可能需要编写一些 C/C++/Java 库，但总觉得通常的 编写、编译、测试、再次编译 流程太慢了。可能给这样的库写一组测试，就是很麻烦的工作了。或许你写了个软件，可以支持插件扩展语言，但你不想为了自己这一个应用，专门设计和实现一种新语言了。

那么，Python 正好能满足你的需要。

对于这些任务，你也可以写 Unix shell 脚本或者 Windows 批处理完成，但是 shell 脚本最擅长移动文件和替换文本，并不适合 GUI 界面或者游戏开发。你可以写一个 C/C++/Java 程序，但是可能初稿都要很长的开发时间。Python 的使用则更加简单，可以在 Windows，Mac OS X，以及 Unix 操作系统上使用，而且可以帮你更快地完成工作。

Python 很容易使用，但它是一种真正的编程语言，提供了很多数据结构，也支持大型程序，远超 shell 脚本或批处理文件的功能。Python 还提供比 C 语言更多的错误检查，而且作为一种 “超高级语言”，它有高级的内置数据类型，比如灵活的数组和字典。正因为这些更加通用的数据类型，Python 能够应付更多的问题，超过 Awk 甚至 Perl，而且很多东西在 Python 中至少和那些语言同样简单。

Python 允许你将程序划分为能在其他的 Python 程序中重复利用的模块。它内置了很多的标准模块，你可以在此基础上开发程序——也可以作为例子，开始学习 Python 编程。例如，一切内置模块提供诸如文件输入输出、系统调用、套接字、甚至图形界面接口工作包比如 Tk。

Python 是一种解释型语言，在程序开发阶段可以为你节省大量时间，因为不需要编译和链接。解释器可以交互式使用，这样就可以方便地尝试语言特性，写一些一次性的程序，或者在自底向上的程序开发中测试功能。它也是一个顺手的桌面计算器。

Python 程序的书写是紧凑而易读的。Python 代码通常比同样功能的 C，C++，Java 代码要短很多，有如下几个原因：

	高级数据类型允许在一个表达式中表示复杂的操作；

	代码块的划分是按照缩进而不是成对的花括号；

	不需要预先定义变量或参数。

Python 是 “可扩展的”：如果你知道怎么写 C 语言程序，就能很容易地给解释器添加新的内置函数或模块，不论是让关键的操作以最高速度运行，还是把 Python 程序链接到只提供预编译程序的库（比如硬件相关的图形库）。一旦你真正链接上了，就能在 Python 解释器中扩展或者控制 C 语言编写的应用了。

顺便提一下，这种语言的名字（python 一词直译为 “蟒蛇”）得名自 BBC 节目 “Monty Python的飞行马戏团” ，而与爬行动物没有关系。在文档中用 Monty Python 来开玩笑不只是被允许的，还是被推荐的！

现在你已经对 Python 跃跃欲试了，想要深入了解一些细节了。因为学习语言的最佳方式是使用它，本教程邀请你一边阅读，一边在 Python 解释器中玩耍。

在下一章节，会讲解使用解释器的方法。看起来相当枯燥，但是对于尝试后续的例子来说，是非常关键的。

教程的其他部分将通过示例介绍 Python 语言和系统中的不同功能，开始是比较简单的表达式、语句和数据类型，然后是函数和模块，最终接触一些高级概念，比如异常、用户定义的类。

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

 2. 使用 Python 解释器

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

2. 使用 Python 解释器

2.1. 调用解释器

在Python可用的机器上，Python解释器通常放在 /usr/local/bin/python3.7 ; 把 /usr/local/bin 放到你 Unix shell 的搜索路径当中 , 这样就能键入命令:

python3.7

就能运行了 1 。安装时可以选择安装目录，所以解释器也可能在别的地方；可以问问你身边的 Python 大牛，或者你的系统管理员。（比如 /usr/local/python 也是比较常用的备选路径）

在 Windows 机器上当你从 Microsoft Store 安装 Python 之后，python3.7 命令将可使用。 如果你安装了 py.exe 启动器，你将可以使用 py 命令。 参阅 附录：设置环境变量 了解其他启动 Python 的方式。

在主提示符中输入文件结束字符（在 Unix 系统中是 Control-D，Windows 系统中是 Control-Z）就退出解释器并返回退出状态为0。如果这样不管用，你还可以写这个命令退出：quit()。

解释器的行编辑功能在支持 GNU Readline [https://tiswww.case.edu/php/chet/readline/rltop.html] 库的系统中也包括交互式编辑，历史替换和代码补全等。 检测是否支持行编辑最快速的方式是在首次出现 Python 提示符时输入 Control-P。 如果听到“哔”提示音，就说明支持行编辑；请参阅附录 交互式编辑和编辑历史 了解有关功能键的介绍。 如果什么都没发生，或是回显了 ^P，说明不支持行编辑；你只能用退格键从当前行中删除字符。

解释器运行的时候有点像 Unix 命令行：在一个标准输入 tty 设备上调用，它能交互式地读取和执行命令；调用时提供文件名参数，或者有个文件重定向到标准输入的话，它就会读取和执行文件中的 脚本。

另一种启动解释器的方式是 python -c command [arg] ...，其中 command 要换成想执行的指令，就像命令行的 -c 选项。由于 Python 代码中经常会包含对终端来说比较特殊的字符，通常情况下都建议用英文单引号把 command 括起来。

有些 Python 模块也可以作为脚本使用。可以这样输入：python -m module [arg] ...，这会执行 module 的源文件，就跟你在命令行把路径写全了一样。

在运行脚本的时候，有时可能也会需要在运行后进入交互模式。这种时候在文件参数前，加上选项 -i 就可以了。

关于所有的命令行选项，请参考 命令行与环境。

2.1.1. 传入参数

如果可能的话，解释器会读取命令行参数，转化为字符串列表存入 sys 模块中的 argv 变量中。执行命令 import sys 你可以导入这个模块并访问这个列表。这个列表最少也会有一个元素；如果没有给定输入参数，sys.argv[0] 就是个空字符串。如果脚本名是 '-'``（标准输入）时，``sys.argv[0] 就是 '-'。使用 -c 命令 时，sys.argv[0] 就会是 '-c'。如果使用选项 -m module，sys.argv[0] 就是包含目录的模块全名。在 -c command 或 -m module 之后的选项不会被解释器处理，而会直接留在 sys.argv 中给命令或模块来处理。

2.1.2. 交互模式

在终端（tty）输入并执行指令时，我们说解释器是运行在 交互模式（interactive mode）。在这种模式中，它会显示 主提示符（primary prompt），提示输入下一条指令，通常用三个大于号（>>>）表示；连续输入行的时候，它会显示 次要提示符，默认是三个点（...）。进入解释器时，它会先显示欢迎信息、版本信息、版权声明，然后就会出现提示符：

$ python3.7
Python 3.7 (default, Sep 16 2015, 09:25:04)
[GCC 4.8.2] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

多行指令需要在连续的多行中输入。比如，以 if 为例：

>>> the_world_is_flat = True
>>> if the_world_is_flat:
... print("Be careful not to fall off!")
...
Be careful not to fall off!

有关交互模式的更多内容，请见 交互模式。

2.2. 解释器的运行环境

2.2.1. 源文件的字符编码

默认情况下，Python 源码文件以 UTF-8 编码方式处理。在这种编码方式中，世界上大多数语言的字符都可以同时用于字符串字面值、变量或函数名称以及注释中——尽管标准库中只用常规的 ASCII 字符作为变量或函数名，而且任何可移植的代码都应该遵守此约定。要正确显示这些字符，你的编辑器必须能识别 UTF-8 编码，而且必须使用能支持打开的文件中所有字符的字体。

如果不使用默认编码，要声明文件所使用的编码，文件的 第一 行要写成特殊的注释。语法如下所示：

-*- coding: encoding -*-

其中 encoding 可以是 Python 支持的任意一种 codecs。

比如，要声明使用 Windows-1252 编码，你的源码文件要写成：

-*- coding: cp1252 -*-

关于 第一行 规则的一种例外情况是，源码以 UNIX "shebang" 行 开头。这种情况下，编码声明就要写在文件的第二行。例如：

#!/usr/bin/env python3
-*- coding: cp1252 -*-

备注

	1

	在Unix系统中，Python 3.x解释器默认安装后的执行文件并不叫作 python，这样才不会与同时安装的Python 2.x冲突。

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

 3. Python 的非正式介绍

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

3. Python 的非正式介绍

在下面的例子中，通过提示符 (>>> 与 ...) 的出现与否来区分输入和输出：如果你想复现这些例子，当提示符出现后，你必须在提示符后键入例子中的每一个词；不以提示符开头的那些行是解释器的输出。注意例子中某行中出现第二个提示符意味着你必须键入一个空白行；这是用来结束多行命令的。

这个手册中的许多例子都包含注释，甚至交互性命令中也有。Python中的注释以井号 # 开头，并且一直延伸到该文本行结束为止。注释可以出现在一行的开头或者是空白和代码的后边，但是不能出现在字符串中间。字符串中的井号就是井号。因为注释是用来阐明代码的，不会被 Python 解释，所以在键入这些例子时，注释是可以被忽略的。

几个例子:

this is the first comment
spam = 1 # and this is the second comment
 # ... and now a third!
text = "# This is not a comment because it's inside quotes."

3.1. Python 作为计算器使用

让我们尝试一些简单的 Python 命令。启动解释器，等待界面中的提示符，>>> （这应该花不了多少时间）。

3.1.1. 数字

解释器就像一个简单的计算器一样：你可以在里面输入一个表达式然后它会写出答案。 表达式的语法很直接：运算符 +、-、*、/ 的用法和其他大部分语言一样（比如 Pascal 或者 C 语言）；括号 (()) 用来分组。比如:

>>> 2 + 2
4
>>> 50 - 5*6
20
>>> (50 - 5*6) / 4
5.0
>>> 8 / 5 # division always returns a floating point number
1.6

整数（比如 2、4、20 ）有 int 类型，有小数部分的（比如 5.0、1.6 ）有 float 类型。在这个手册的后半部分我们会看到更多的数值类型。

除法运算 (/) 永远返回浮点数类型。如果要做 floor division 得到一个整数结果（忽略小数部分）你可以使用 // 运算符；如果要计算余数，可以使用 %

>>> 17 / 3 # classic division returns a float
5.666666666666667
>>>
>>> 17 // 3 # floor division discards the fractional part
5
>>> 17 % 3 # the % operator returns the remainder of the division
2
>>> 5 * 3 + 2 # result * divisor + remainder
17

在Python中，可以使用 ** 运算符来计算乘方 1

>>> 5 ** 2 # 5 squared
25
>>> 2 ** 7 # 2 to the power of 7
128

等号 (=) 用于给一个变量赋值。然后在下一个交互提示符之前不会有结果显示出来:

>>> width = 20
>>> height = 5 * 9
>>> width * height
900

如果一个变量未定义（未赋值），试图使用它时会向你提示错误:

>>> n # try to access an undefined variable
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'n' is not defined

Python中提供浮点数的完整支持；包含多种混合类型运算数的运算会把整数转换为浮点数:

>>> 4 * 3.75 - 1
14.0

在交互模式下，上一次打印出来的表达式被赋值给变量 _。这意味着当你把Python用作桌面计算器时，继续计算会相对简单，比如:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625
>>> price + _
113.0625
>>> round(_, 2)
113.06

这个变量应该被使用者当作是只读类型。不要向它显式地赋值——你会创建一个和它名字相同独立的本地变量，它会使用魔法行为屏蔽内部变量。

除了 int 和 float，Python也支持其他类型的数字，例如 Decimal 或者 Fraction。Python 也内置对 复数 的支持，使用后缀 j 或者 J 就可以表示虚数部分（例如 3+5j ）。

3.1.2. 字符串

除了数字，Python 也可以操作字符串。字符串有多种形式，可以使用单引号（'...'），双引号（"..."）都可以获得同样的结果 2。反斜杠 \ 可以用来转义:

>>> 'spam eggs' # single quotes
'spam eggs'
>>> 'doesn\'t' # use \' to escape the single quote...
"doesn't"
>>> "doesn't" # ...or use double quotes instead
"doesn't"
>>> '"Yes," they said.'
'"Yes," they said.'
>>> "\"Yes,\" they said."
'"Yes," they said.'
>>> '"Isn\'t," they said.'
'"Isn\'t," they said.'

在交互式解释器中，输出的字符串外面会加上引号，特殊字符会使用反斜杠来转义。 虽然有时这看起来会与输入不一样（外面所加的引号可能会改变），但两个字符串是相同的。 如果字符串中有单引号而没有双引号，该字符串外将加双引号来表示，否则就加单引号。 print() 函数会生成可读性更强的输出，即略去两边的引号，并且打印出经过转义的特殊字符:

>>> '"Isn\'t," they said.'
'"Isn\'t," they said.'
>>> print('"Isn\'t," they said.')
"Isn't," they said.
>>> s = 'First line.\nSecond line.' # \n means newline
>>> s # without print(), \n is included in the output
'First line.\nSecond line.'
>>> print(s) # with print(), \n produces a new line
First line.
Second line.

如果你不希望前置了 \ 的字符转义成特殊字符，可以使用 原始字符串 方式，在引号前添加 r 即可:

>>> print('C:\some\name') # here \n means newline!
C:\some
ame
>>> print(r'C:\some\name') # note the r before the quote
C:\some\name

字符串字面值可以跨行连续输入。一种方式是用三重引号："""...""" 或 '''...'''。字符串中的回车换行会自动包含到字符串中，如果不想包含，在行尾添加一个 \ 即可。如下例:

print("""\
Usage: thingy [OPTIONS]
 -h Display this usage message
 -H hostname Hostname to connect to
""")

将产生如下输出（注意最开始的换行没有包括进来）:

Usage: thingy [OPTIONS]
 -h Display this usage message
 -H hostname Hostname to connect to

字符串可以用 + 进行连接（粘到一起），也可以用 * 进行重复:

>>> # 3 times 'un', followed by 'ium'
>>> 3 * 'un' + 'ium'
'unununium'

相邻的两个或多个 字符串字面值 （引号引起来的字符）将会自动连接到一起.

>>> 'Py' 'thon'
'Python'

把很长的字符串拆开分别输入的时候尤其有用:

>>> text = ('Put several strings within parentheses '
... 'to have them joined together.')
>>> text
'Put several strings within parentheses to have them joined together.'

只能对两个字面值这样操作，变量或表达式不行:

>>> prefix = 'Py'
>>> prefix 'thon' # can't concatenate a variable and a string literal
 File "<stdin>", line 1
 prefix 'thon'
 ^
SyntaxError: invalid syntax
>>> ('un' * 3) 'ium'
 File "<stdin>", line 1
 ('un' * 3) 'ium'
 ^
SyntaxError: invalid syntax

如果你想连接变量，或者连接变量和字面值，可以用 + 号:

>>> prefix + 'thon'
'Python'

字符串是可以被 索引 （下标访问）的，第一个字符索引是 0。单个字符并没有特殊的类型，只是一个长度为一的字符串:

>>> word = 'Python'
>>> word[0] # character in position 0
'P'
>>> word[5] # character in position 5
'n'

索引也可以用负数，这种会从右边开始数:

>>> word[-1] # last character
'n'
>>> word[-2] # second-last character
'o'
>>> word[-6]
'P'

注意 -0 和 0 是一样的，所以负数索引从 -1 开始。

除了索引，字符串还支持 切片。索引可以得到单个字符，而 切片 可以获取子字符串:

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)
'Py'
>>> word[2:5] # characters from position 2 (included) to 5 (excluded)
'tho'

注意切片的开始总是被包括在结果中，而结束不被包括。这使得 s[:i] + s[i:] 总是等于 s

>>> word[:2] + word[2:]
'Python'
>>> word[:4] + word[4:]
'Python'

切片的索引有默认值；省略开始索引时默认为0，省略结束索引时默认为到字符串的结束:

>>> word[:2] # character from the beginning to position 2 (excluded)
'Py'
>>> word[4:] # characters from position 4 (included) to the end
'on'
>>> word[-2:] # characters from the second-last (included) to the end
'on'

您也可以这么理解切片：将索引视作指向字符 之间 ，第一个字符的左侧标为0，最后一个字符的右侧标为 n ，其中 n 是字符串长度。例如:

 +---+---+---+---+---+---+
 | P | y | t | h | o | n |
 +---+---+---+---+---+---+
 0 1 2 3 4 5 6
-6 -5 -4 -3 -2 -1

第一行数标注了字符串 0...6 的索引的位置，第二行标注了对应的负的索引。那么从 i 到 j 的切片就包括了标有 i 和 j 的位置之间的所有字符。

对于使用非负索引的切片，如果索引不越界，那么得到的切片长度就是起止索引之差。例如， word[1:3] 的长度为2。

试图使用过大的索引会产生一个错误:

>>> word[42] # the word only has 6 characters
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range

但是，切片中的越界索引会被自动处理:

>>> word[4:42]
'on'
>>> word[42:]
''

Python 中的字符串不能被修改，它们是 immutable 的。因此，向字符串的某个索引位置赋值会产生一个错误:

>>> word[0] = 'J'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment
>>> word[2:] = 'py'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

如果需要一个不同的字符串，应当新建一个:

>>> 'J' + word[1:]
'Jython'
>>> word[:2] + 'py'
'Pypy'

内建函数 len() 返回一个字符串的长度:

>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)
34

参见

	文本序列类型 --- str
	字符串是一种 序列类型 ，因此也支持序列类型的各种操作。

	字符串的方法
	字符串支持许多变换和查找的方法。

	格式化字符串字面值
	内嵌表达式的字符串字面值。

	格式字符串语法
	使用 str.format() 进行字符串格式化。

	printf 风格的字符串格式化
	这里详述了使用 % 运算符进行字符串格式化。

3.1.3. 列表

Python 中可以通过组合一些值得到多种 复合 数据类型。其中最常用的 列表 ，可以通过方括号括起、逗号分隔的一组值（元素）得到。一个 列表 可以包含不同类型的元素，但通常使用时各个元素类型相同:

>>> squares = [1, 4, 9, 16, 25]
>>> squares
[1, 4, 9, 16, 25]

和字符串（以及各种内置的 sequence 类型）一样，列表也支持索引和切片:

>>> squares[0] # indexing returns the item
1
>>> squares[-1]
25
>>> squares[-3:] # slicing returns a new list
[9, 16, 25]

所有的切片操作都返回一个新列表，这个新列表包含所需要的元素。就是说，如下的切片会返回列表的一个新的(浅)拷贝:

>>> squares[:]
[1, 4, 9, 16, 25]

列表同样支持拼接操作:

>>> squares + [36, 49, 64, 81, 100]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

与 immutable 的字符串不同, 列表是一个 mutable 类型，就是说，它自己的内容可以改变:

>>> cubes = [1, 8, 27, 65, 125] # something's wrong here
>>> 4 ** 3 # the cube of 4 is 64, not 65!
64
>>> cubes[3] = 64 # replace the wrong value
>>> cubes
[1, 8, 27, 64, 125]

你也可以在列表末尾通过 append() 方法 来添加新元素（我们将在后面介绍有关方法的详情）:

>>> cubes.append(216) # add the cube of 6
>>> cubes.append(7 ** 3) # and the cube of 7
>>> cubes
[1, 8, 27, 64, 125, 216, 343]

给切片赋值也是可以的，这样甚至可以改变列表大小，或者把列表整个清空:

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> letters
['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> # replace some values
>>> letters[2:5] = ['C', 'D', 'E']
>>> letters
['a', 'b', 'C', 'D', 'E', 'f', 'g']
>>> # now remove them
>>> letters[2:5] = []
>>> letters
['a', 'b', 'f', 'g']
>>> # clear the list by replacing all the elements with an empty list
>>> letters[:] = []
>>> letters
[]

内置函数 len() 也可以作用到列表上:

>>> letters = ['a', 'b', 'c', 'd']
>>> len(letters)
4

也可以嵌套列表 (创建包含其他列表的列表), 比如说:

>>> a = ['a', 'b', 'c']
>>> n = [1, 2, 3]
>>> x = [a, n]
>>> x
[['a', 'b', 'c'], [1, 2, 3]]
>>> x[0]
['a', 'b', 'c']
>>> x[0][1]
'b'

3.2. 走向编程的第一步

当然，我们可以将 Python 用于更复杂的任务，而不是仅仅两个和两个一起添加。 例如，我们可以编写 斐波那契数列 [https://en.wikipedia.org/wiki/Fibonacci_number] 的初始子序列，如下所示:

>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while a < 10:
... print(a)
... a, b = b, a+b
...
0
1
1
2
3
5
8

这个例子引入了几个新的特性。

	第一行含有一个 多重赋值: 变量 a 和 b 同时得到了新值 0 和 1. 最后一行又用了一次多重赋值, 这展示出了右手边的表达式，在任何赋值发生之前就被求值了。右手边的表达式是从左到右被求值的。

	while 循环只要它的条件（这里指： a < 10）保持为真就会一直执行。Python 和 C 一样，任何非零整数都为真；零为假。这个条件也可以是字符串或是列表的值，事实上任何序列都可以；长度非零就为真，空序列就为假。在这个例子里，判断条件是一个简单的比较。标准的比较操作符的写法和 C 语言里是一样： < （小于）、 > （大于）、 == （等于）、 <= （小于或等于)、 >= （大于或等于）以及 != （不等于）。

	循环体 是 缩进的 ：缩进是 Python 组织语句的方式。在交互式命令行里，你得给每个缩进的行敲下 Tab 键或者（多个）空格键。实际上用文本编辑器的话，你要准备更复杂的输入方式；所有像样的文本编辑器都有自动缩进的设置。交互式命令行里，当一个组合的语句输入时, 需要在最后敲一个空白行表示完成（因为语法分析器猜不出来你什么时候打的是最后一行）。注意，在同一块语句中的每一行，都要缩进相同的长度。

	print() 函数将所有传进来的参数值打印出来. 它和直接输入你要显示的表达式(比如我们之前在计算器的例子里做的)不一样， print() 能处理多个参数，包括浮点数，字符串。 字符串会打印不带引号的内容, 并且在参数项之间会插入一个空格, 这样你就可以很好的把东西格式化, 像这样:

>>> i = 256*256
>>> print('The value of i is', i)
The value of i is 65536

关键字参数 end 可以用来取消输出后面的换行, 或使用另外一个字符串来结尾:

>>> a, b = 0, 1
>>> while a < 1000:
... print(a, end=',')
... a, b = b, a+b
...
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,

备注

	1

	因为 ** 比 - 有更高的优先级, 所以 -3**2 会被解释成 -(3**2) ，因此结果是 -9. 为了避免这个并且得到结果 9, 你可以用这个式子 (-3)**2.

	2

	和其他语言不一样的是, 特殊字符比如说 \n 在单引号 ('...') 和双引号 ("...") 里有一样的意义. 这两种引号唯一的区别是，你不需要在单引号里转义双引号 " (但是你必须把单引号转义成 \') ， 反之亦然.

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

 4. 其他流程控制工具

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

4. 其他流程控制工具

除了刚刚介绍过的 while 语句，Python 中也会使用其他语言中常见的流程控制语句，只是稍有变化。

4.1. if 语句

可能最为人所熟知的编程语句就是 if 语句了。例如

>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
... x = 0
... print('Negative changed to zero')
... elif x == 0:
... print('Zero')
... elif x == 1:
... print('Single')
... else:
... print('More')
...
More

可以有零个或多个 elif 部分，以及一个可选的 else 部分。 关键字 'elif' 是 'else if' 的缩写，适合用于避免过多的缩进。 一个 if ... elif ... elif ... 序列可以看作是其他语言中的 switch 或 case 语句的替代。

4.2. for 语句

Python 中的 for 语句与你在 C 或 Pascal 中可能用到的有所不同。 Python 中的 for 语句并不总是对算术递增的数值进行迭代（如同 Pascal），或是给予用户定义迭代步骤和暂停条件的能力（如同 C），而是对任意序列进行迭代（例如列表或字符串），条目的迭代顺序与它们在序列中出现的顺序一致。 例如（此处英文为双关语）:

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
... print(w, len(w))
...
cat 3
window 6
defenestrate 12

如果在循环内需要修改序列中的值（比如重复某些选中的元素），推荐你先拷贝一份副本。对序列进行循环不代表制作了一个副本进行操作。切片操作使这件事非常简单：

>>> for w in words[:]: # Loop over a slice copy of the entire list.
... if len(w) > 6:
... words.insert(0, w)
...
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']

如果写成 for w in words:，这个示例就会创建无限长的列表，一次又一次重复地插入 defenestrate。

4.3. range() 函数

如果你确实需要遍历一个数字序列，内置函数 range() 会派上用场。它生成算术级数:

>>> for i in range(5):
... print(i)
...
0
1
2
3
4

给定的终止数值并不在要生成的序列里；range(10) 会生成10个值，并且是以合法的索引生成一个长度为10的序列。range也可以以另一个数字开头，或者以指定的幅度增加（甚至是负数；有时这也被叫做 '步进'）

range(5, 10)
 5, 6, 7, 8, 9

range(0, 10, 3)
 0, 3, 6, 9

range(-10, -100, -30)
 -10, -40, -70

要以序列的索引来迭代，您可以将 range() 和 len() 组合如下:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
... print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb

然而，在大多数这类情况下，使用 enumerate() 函数比较方便，请参见 循环的技巧 。

如果你只打印 range，会出现奇怪的结果:

>>> print(range(10))
range(0, 10)

range() 所返回的对象在许多方面表现得像一个列表，但实际上却并不是。此对象会在你迭代它时基于所希望的序列返回连续的项，但它没有真正生成列表，这样就能节省空间。

我们说这样的对象是 可迭代的 ，也就是说，适合作为函数和结构体的参数，这些函数和结构体期望在迭代结束之前可以从中获取连续的元素。我们已经看到 for 语句就是这样一个迭代器。函数 list() 是另外一个；它从可迭代对象中创建列表。

>>> list(range(5))
[0, 1, 2, 3, 4]

后面，我们会看到更多返回可迭代对象的函数，和以可迭代对象作为参数的函数。

4.4. break 和 continue 语句，以及循环中的 else 子句

break 语句，和 C 中的类似，用于跳出最近的 for 或 while 循环.

循环语句可能带有一个 else 子句；它会在循环遍历完列表 (使用 for) 或是在条件变为假 (使用 while) 的时候被执行，但是不会在循环被 break 语句终止时被执行。 这可以通过以下搜索素数的循环为例来进行说明:

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print(n, 'equals', x, '*', n//x)
... break
... else:
... # loop fell through without finding a factor
... print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

（是的，这是正确的代码。仔细看： else 子句属于 for 循环， 不属于 if 语句。）

当和循环一起使用时，else 子句与 try 语句中的 else 子句的共同点多于 if 语句中的子句: try 语句中的 else 子句会在未发生异常时执行，而循环中的 else 子句则会在未发生 break 时执行。 有关 try 语句和异常的更多信息，请参阅 处理异常。

continue 语句也是借鉴自 C 语言，表示继续循环中的下一次迭代:

>>> for num in range(2, 10):
... if num % 2 == 0:
... print("Found an even number", num)
... continue
... print("Found a number", num)
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9

4.5. pass 语句

pass 语句什么也不做。当语法上需要一个语句，但程序需要什么动作也不做时，可以使用它。例如:

>>> while True:
... pass # Busy-wait for keyboard interrupt (Ctrl+C)
...

这通常用于创建最小的类:

>>> class MyEmptyClass:
... pass
...

pass 的另一个可以使用的场合是在你编写新的代码时作为一个函数或条件子句体的占位符，允许你保持在更抽象的层次上进行思考。 pass 会被静默地忽略:

>>> def initlog(*args):
... pass # Remember to implement this!
...

4.6. 定义函数

我们可以创建一个输出任意范围内 Fibonacci 数列的函数:

>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while a < n:
... print(a, end=' ')
... a, b = b, a+b
... print()
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

关键字 def 引入一个函数 定义。它必须后跟函数名称和带括号的形式参数列表。构成函数体的语句从下一行开始，并且必须缩进。

函数体的第一个语句可以（可选的）是字符串文字；这个字符串文字是函数的文档字符串或 docstring 。（有关文档字符串的更多信息，请参阅 文档字符串 部分）有些工具使用文档字符串自动生成在线或印刷文档，或者让用户以交互式的形式浏览代码；在你编写的代码中包含文档字符串是一种很好的做法，所以要养成习惯。

函数的 执行 会引入一个用于函数局部变量的新符号表。 更确切地说，函数中所有的变量赋值都将存储在局部符号表中；而变量引用会首先在局部符号表中查找，然后是外层函数的局部符号表，再然后是全局符号表，最后是内置名称的符号表。 因此，全局变量和外层函数的变量不能在函数内部直接赋值（除非是在 global 语句中定义的全局变量，或者是在 nonlocal 语句中定义的外层函数的变量），尽管它们可以被引用。

在函数被调用时，实际参数（实参）会被引入被调用函数的本地符号表中；因此，实参是通过 按值调用 传递的（其中 值 始终是对象 引用 而不是对象的值）。1 当一个函数调用另外一个函数时，将会为该调用创建一个新的本地符号表。

函数定义会把函数名引入当前的符号表中。函数名称的值具有解释器将其识别为用户定义函数的类型。这个值可以分配给另一个名称，该名称也可以作为一个函数使用。这用作一般的重命名机制:

>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89

如果你学过其他语言，你可能会认为 fib 不是函数而是一个过程，因为它并不返回值。事实上，即使没有 return 语句的函数也会返回一个值，尽管它是一个相当无聊的值。这个值称为 None （它是内置名称）。一般来说解释器不会打印出单独的返回值 None ，如果你真想看到它，你可以使用 print()

>>> fib(0)
>>> print(fib(0))
None

写一个返回斐波那契数列的列表（而不是把它打印出来）的函数，非常简单:

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while a < n:
... result.append(a) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

此示例中，像往常一样，演示了一些新的 Python 功能:

	return 语句会从函数内部返回一个值。 不带表达式参数的 return 会返回 None。 函数执行完毕退出也会返回 None。

	result.append(a) 语句调用了列表对象 result 的 方法 。方法是“属于”一个对象的函数，它被命名为 obj.methodname ，其中 obj 是某个对象（也可能是一个表达式）， methodname 是由对象类型中定义的方法的名称。不同的类型可以定义不同的方法。不同类型的方法可以有相同的名称而不会引起歧义。（可以使用 类 定义自己的对象类型和方法，请参阅 类 ）示例中的方法 append() 是为列表对象定义的；它会在列表的最后添加一个新的元素。在这个示例中它相当于 result = result + [a] ，但更高效。

4.7. 函数定义的更多形式

给函数定义有可变数目的参数也是可行的。这里有三种形式，可以组合使用。

4.7.1. 参数默认值

最有用的形式是对一个或多个参数指定一个默认值。这样创建的函数，可以用比定义时允许的更少的参数调用，比如:

def ask_ok(prompt, retries=4, reminder='Please try again!'):
 while True:
 ok = input(prompt)
 if ok in ('y', 'ye', 'yes'):
 return True
 if ok in ('n', 'no', 'nop', 'nope'):
 return False
 retries = retries - 1
 if retries < 0:
 raise ValueError('invalid user response')
 print(reminder)

这个函数可以通过几种方式调用:

	只给出必需的参数：ask_ok('Do you really want to quit?')

	给出一个可选的参数：ask_ok('OK to overwrite the file?', 2)

	或者给出所有的参数：ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!')

这个示例还介绍了 in 关键字。它可以测试一个序列是否包含某个值。

默认值是在 定义过程 中在函数定义处计算的，所以

i = 5

def f(arg=i):
 print(arg)

i = 6
f()

会打印 5。

重要警告： 默认值只会执行一次。这条规则在默认值为可变对象（列表、字典以及大多数类实例）时很重要。比如，下面的函数会存储在后续调用中传递给它的参数:

def f(a, L=[]):
 L.append(a)
 return L

print(f(1))
print(f(2))
print(f(3))

这将打印出

[1]
[1, 2]
[1, 2, 3]

如果你不想要在后续调用之间共享默认值，你可以这样写这个函数:

def f(a, L=None):
 if L is None:
 L = []
 L.append(a)
 return L

4.7.2. 关键字参数

也可以使用形如 kwarg=value 的 关键字参数 来调用函数。例如下面的函数:

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
 print("-- This parrot wouldn't", action, end=' ')
 print("if you put", voltage, "volts through it.")
 print("-- Lovely plumage, the", type)
 print("-- It's", state, "!")

接受一个必需的参数（voltage）和三个可选的参数（state, action，和 type）。这个函数可以通过下面的任何一种方式调用:

parrot(1000) # 1 positional argument
parrot(voltage=1000) # 1 keyword argument
parrot(voltage=1000000, action='VOOOOOM') # 2 keyword arguments
parrot(action='VOOOOOM', voltage=1000000) # 2 keyword arguments
parrot('a million', 'bereft of life', 'jump') # 3 positional arguments
parrot('a thousand', state='pushing up the daisies') # 1 positional, 1 keyword

但下面的函数调用都是无效的:

parrot() # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument after a keyword argument
parrot(110, voltage=220) # duplicate value for the same argument
parrot(actor='John Cleese') # unknown keyword argument

在函数调用中，关键字参数必须跟随在位置参数的后面。传递的所有关键字参数必须与函数接受的其中一个参数匹配（比如 actor 不是函数 parrot 的有效参数），它们的顺序并不重要。这也包括非可选参数，（比如 parrot(voltage=1000) 也是有效的）。不能对同一个参数多次赋值。下面是一个因为此限制而失败的例子:

>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: function() got multiple values for keyword argument 'a'

当存在一个形式为 **name 的最后一个形参时，它会接收一个字典 (参见 映射类型 --- dict)，其中包含除了与已有形参相对应的关键字参数以外的所有关键字参数。 这可以与一个形式为 *name，接收一个包含除了已有形参列表以外的位置参数的 元组 的形参 (将在下一小节介绍) 组合使用 (*name 必须出现在 **name 之前。) 例如，如果我们这样定义一个函数:

def cheeseshop(kind, *arguments, **keywords):
 print("-- Do you have any", kind, "?")
 print("-- I'm sorry, we're all out of", kind)
 for arg in arguments:
 print(arg)
 print("-" * 40)
 for kw in keywords:
 print(kw, ":", keywords[kw])

它可以像这样调用:

cheeseshop("Limburger", "It's very runny, sir.",
 "It's really very, VERY runny, sir.",
 shopkeeper="Michael Palin",
 client="John Cleese",
 sketch="Cheese Shop Sketch")

当然它会打印:

-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
--
shopkeeper : Michael Palin
client : John Cleese
sketch : Cheese Shop Sketch

注意打印时关键字参数的顺序保证与调用函数时提供它们的顺序是相匹配的。

4.7.3. 任意的参数列表

最后，最不常用的选项是可以使用任意数量的参数调用函数。这些参数会被包含在一个元组里（参见 元组和序列 ）。在可变数量的参数之前，可能会出现零个或多个普通参数。:

def write_multiple_items(file, separator, *args):
 file.write(separator.join(args))

一般来说，这些 可变参数 将在形式参数列表的末尾，因为它们收集传递给函数的所有剩余输入参数。出现在 *args 参数之后的任何形式参数都是 ‘仅关键字参数’，也就是说它们只能作为关键字参数而不能是位置参数。:

>>> def concat(*args, sep="/"):
... return sep.join(args)
...
>>> concat("earth", "mars", "venus")
'earth/mars/venus'
>>> concat("earth", "mars", "venus", sep=".")
'earth.mars.venus'

4.7.4. 解包参数列表

当参数已经在列表或元组中但需要为需要单独位置参数的函数调用解包时，会发生相反的情况。例如，内置的 range() 函数需要单独的 start 和 stop 参数。如果它们不能单独使用，请使用 * 运算符编写函数调用以从列表或元组中解包参数:

>>> list(range(3, 6)) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> list(range(*args)) # call with arguments unpacked from a list
[3, 4, 5]

以同样的方式，字典可以使用 ** 运算符来提供关键字参数:

>>> def parrot(voltage, state='a stiff', action='voom'):
... print("-- This parrot wouldn't", action, end=' ')
... print("if you put", voltage, "volts through it.", end=' ')
... print("E's", state, "!")
...
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !

4.7.5. Lambda 表达式

可以用 lambda 关键字来创建一个小的匿名函数。这个函数返回两个参数的和： lambda a, b: a+b 。Lambda函数可以在需要函数对象的任何地方使用。它们在语法上限于单个表达式。从语义上来说，它们只是正常函数定义的语法糖。与嵌套函数定义一样，lambda函数可以引用所包含域的变量:

>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43

上面的例子使用一个lambda表达式来返回一个函数。另一个用法是传递一个小函数作为参数:

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort(key=lambda pair: pair[1])
>>> pairs
[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]

4.7.6. 文档字符串

以下是有关文档字符串的内容和格式的一些约定。

第一行应该是对象目的的简要概述。为简洁起见，它不应显式声明对象的名称或类型，因为这些可通过其他方式获得（除非名称恰好是描述函数操作的动词）。这一行应以大写字母开头，以句点结尾。

如果文档字符串中有更多行，则第二行应为空白，从而在视觉上将摘要与其余描述分开。后面几行应该是一个或多个段落，描述对象的调用约定，它的副作用等。

Python 解析器不会从 Python 中删除多行字符串文字的缩进，因此处理文档的工具必须在需要时删除缩进。 这是使用以下约定完成的。 文档字符串第一行 之后 的第一个非空行确定整个文档字符串的缩进量。（我们不能使用第一行，因为它通常与字符串的开头引号相邻，因此它的缩进在字符串文字中不明显。）然后从字符串的所有行的开头剥离与该缩进 "等效" 的空格。 缩进更少的行不应该出现，但是如果它们出现，则应该剥离它们的所有前导空格。 应在转化制表符为空格后测试空格的等效性（通常转化为8个空格）。

下面是一个多行文档字符串的例子:

>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn't do anything.
... """
... pass
...
>>> print(my_function.__doc__)
Do nothing, but document it.

 No, really, it doesn't do anything.

4.7.7. 函数标注

函数标注 是关于用户自定义函数中使用的类型的完全可选元数据信息（有关详情请参阅 PEP 3107 [https://www.python.org/dev/peps/pep-3107] 和 PEP 484 [https://www.python.org/dev/peps/pep-0484] ）。

函数标注 以字典的形式存放在函数的 __annotations__ 属性中，并且不会影响函数的任何其他部分。 形参标注的定义方式是在形参名称后加上冒号，后面跟一个表达式，该表达式会被求值为标注的值。 返回值标注的定义方式是加上一个组合符号 ->，后面跟一个表达式，该标注位于形参列表和表示 def 语句结束的冒号之间。 下面的示例有一个位置参数，一个关键字参数以及返回值带有相应标注:

>>> def f(ham: str, eggs: str = 'eggs') -> str:
... print("Annotations:", f.__annotations__)
... print("Arguments:", ham, eggs)
... return ham + ' and ' + eggs
...
>>> f('spam')
Annotations: {'ham': <class 'str'>, 'return': <class 'str'>, 'eggs': <class 'str'>}
Arguments: spam eggs
'spam and eggs'

4.8. 小插曲：编码风格

现在你将要写更长，更复杂的 Python 代码，是时候讨论一下 代码风格 了。 大多数语言都能以不同的风格被编写（或更准确地说，被格式化）；有些比其他的更具有可读性。 能让其他人轻松阅读你的代码总是一个好主意，采用一种好的编码风格对此有很大帮助。

对于Python，PEP 8 [https://www.python.org/dev/peps/pep-0008] 已经成为大多数项目所遵循的风格指南；它促进了一种非常易读且令人赏心悦目的编码风格。每个Python开发人员都应该在某个时候阅读它；以下是为你提取的最重要的几个要点：

	使用4个空格缩进，不要使用制表符。

4个空格是一个在小缩进（允许更大的嵌套深度）和大缩进（更容易阅读）的一种很好的折中方案。制表符会引入混乱，最好不要使用它。

	换行，使一行不超过79个字符。

这有助于使用小型显示器的用户，并且可以在较大的显示器上并排放置多个代码文件。

	使用空行分隔函数和类，以及函数内的较大的代码块。

	如果可能，把注释放到单独的一行。

	使用文档字符串。

	在运算符前后和逗号后使用空格，但不能直接在括号内使用： a = f(1, 2) + g(3, 4)。

	以一致的规则为你的类和函数命名；按照惯例应使用 UpperCamelCase 来命名类，而以 lowercase_with_underscores 来命名函数和方法。 始终应使用 self 来命名第一个方法参数 (有关类和方法的更多信息请参阅 初探类)。

	如果你的代码旨在用于国际环境，请不要使用花哨的编码。Python 默认的 UTF-8 或者纯 ASCII 在任何情况下都能有最好的表现。

	同样，哪怕只有很小的可能，遇到说不同语言的人阅读或维护代码，也不要在标识符中使用非ASCII字符。

备注

	1

	实际上，通过对象引用调用 会是一个更好的表述，因为如果传递的是可变对象，则调用者将看到被调用者对其做出的任何更改（插入到列表中的元素）。

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

 5. 数据结构

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

5. 数据结构

本章节将详细介绍一些您已经了解的内容，并添加了一些新内容。

5.1. 列表的更多特性

列表数据类型还有很多的方法。这里是列表对象方法的清单：

	
list.append(x)

	在列表的末尾添加一个元素。相当于 a[len(a):] = [x] 。

	
list.extend(iterable)

	使用可迭代对象中的所有元素来扩展列表。相当于 a[len(a):] = iterable 。

	
list.insert(i, x)

	在给定的位置插入一个元素。第一个参数是要插入的元素的索引，所以 a.insert(0, x) 插入列表头部， a.insert(len(a), x) 等同于 a.append(x) 。

	
list.remove(x)

	移除列表中第一个值为 x 的元素。如果没有这样的元素，则抛出 ValueError 异常。

	
list.pop([i])

	删除列表中给定位置的元素并返回它。如果没有给定位置，a.pop() 将会删除并返回列表中的最后一个元素。（ 方法签名中 i 两边的方括号表示这个参数是可选的，而不是要你输入方括号。你会在 Python 参考库中经常看到这种表示方法)。

	
list.clear()

	移除列表中的所有元素。等价于``del a[:]``

	
list.index(x[, start[, end]])

	返回列表中第一个值为 x 的元素的从零开始的索引。如果没有这样的元素将会抛出 ValueError 异常。

可选参数 start 和 end 是切片符号，用于将搜索限制为列表的特定子序列。返回的索引是相对于整个序列的开始计算的，而不是 start 参数。

	
list.count(x)

	返回元素 x 在列表中出现的次数。

	
list.sort(key=None, reverse=False)

	对列表中的元素进行排序（参数可用于自定义排序，解释请参见 sorted()）。

	
list.reverse()

	翻转列表中的元素。

	
list.copy()

	返回列表的一个浅拷贝，等价于 a[:]。

多数列表方法示例：

>>> fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
>>> fruits.count('apple')
2
>>> fruits.count('tangerine')
0
>>> fruits.index('banana')
3
>>> fruits.index('banana', 4) # Find next banana starting a position 4
6
>>> fruits.reverse()
>>> fruits
['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange']
>>> fruits.append('grape')
>>> fruits
['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange', 'grape']
>>> fruits.sort()
>>> fruits
['apple', 'apple', 'banana', 'banana', 'grape', 'kiwi', 'orange', 'pear']
>>> fruits.pop()
'pear'

你可能已经注意到，像 insert ，remove 或者 sort 方法，只修改列表，没有打印出返回值——它们返回默认值 None 。1 这是Python中所有可变数据结构的设计原则。

5.1.1. 列表作为栈使用

列表方法使得列表作为堆栈非常容易，最后一个插入，最先取出（“后进先出”）。要添加一个元素到堆栈的顶端，使用 append() 。要从堆栈顶部取出一个元素，使用 pop() ，不用指定索引。例如

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

5.1.2. 列表作为队列使用

列表也可以用作队列，其中先添加的元素被最先取出 (“先进先出”)；然而列表用作这个目的相当低效。因为在列表的末尾添加和弹出元素非常快，但是在列表的开头插入或弹出元素却很慢 (因为所有的其他元素都必须移动一位)。

若要实现一个队列，可使用 collections.deque，它被设计成可以快速地从两端添加或弹出元素。例如

>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.popleft() # The first to arrive now leaves
'Eric'
>>> queue.popleft() # The second to arrive now leaves
'John'
>>> queue # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])

5.1.3. 列表推导式

列表推导式提供了一个更简单的创建列表的方法。常见的用法是把某种操作应用于序列或可迭代对象的每个元素上，然后使用其结果来创建列表，或者通过满足某些特定条件元素来创建子序列。

例如，假设我们想创建一个平方列表，像这样

>>> squares = []
>>> for x in range(10):
... squares.append(x**2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

注意这里创建（或被重写）的名为 x 的变量在for循环后仍然存在。我们可以计算平方列表的值而不会产生任何副作用

squares = list(map(lambda x: x**2, range(10)))

或者，等价于

squares = [x**2 for x in range(10)]

上面这种写法更加简洁易读。

列表推导式的结构是由一对方括号所包含的以下内容：一个表达式，后面跟一个 for 子句，然后是零个或多个 for 或 if 子句。 其结果将是一个新列表，由对表达式依据后面的 for 和 if 子句的内容进行求值计算而得出。 举例来说，以下列表推导式会将两个列表中不相等的元素组合起来:

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

而它等价于

>>> combs = []
>>> for x in [1,2,3]:
... for y in [3,1,4]:
... if x != y:
... combs.append((x, y))
...
>>> combs
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

注意在上面两个代码片段中， for 和 if 的顺序是相同的。

如果表达式是一个元组（例如上面的 (x, y)），那么就必须加上括号

>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]
[-8, -4, 0, 4, 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
[4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x**2) for x in range(6)]
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
>>> # the tuple must be parenthesized, otherwise an error is raised
>>> [x, x**2 for x in range(6)]
 File "<stdin>", line 1, in <module>
 [x, x**2 for x in range(6)]
 ^
SyntaxError: invalid syntax
>>> # flatten a list using a listcomp with two 'for'
>>> vec = [[1,2,3], [4,5,6], [7,8,9]]
>>> [num for elem in vec for num in elem]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

列表推导式可以使用复杂的表达式和嵌套函数

>>> from math import pi
>>> [str(round(pi, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

5.1.4. 嵌套的列表推导式

列表推导式中的初始表达式可以是任何表达式，包括另一个列表推导式。

考虑下面这个 3x4的矩阵，它由3个长度为4的列表组成

>>> matrix = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
...]

下面的列表推导式将交换其行和列

>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

如上节所示，嵌套的列表推导式是基于跟随其后的 for 进行求值的，所以这个例子等价于:

>>> transposed = []
>>> for i in range(4):
... transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

反过来说，也等价于

>>> transposed = []
>>> for i in range(4):
... # the following 3 lines implement the nested listcomp
... transposed_row = []
... for row in matrix:
... transposed_row.append(row[i])
... transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

实际应用中，你应该会更喜欢使用内置函数去组成复杂的流程语句。 zip() 函数将会很好地处理这种情况

>>> list(zip(*matrix))
[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]

关于本行中星号的详细说明，参见 解包参数列表。

5.2. del 语句

有一种方式可以从列表按照给定的索引而不是值来移除一个元素: 那就是 del 语句。 它不同于会返回一个值的 pop() 方法。 del 语句也可以用来从列表中移除切片或者清空整个列表（我们之前用过的方式是将一个空列表赋值给指定的切片）。 例如:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

del 也可以删除整个变量

>>> del a

此后再引用 a 时会报错（直到另一个值被赋给它）。我们会在后面了解到 del 的其他用法。

5.3. 元组和序列

我们看到列表和字符串有很多共同特性，例如索引和切片操作。他们是 序列 数据类型（参见 序列类型 --- list, tuple, range）中的两种。随着 Python 语言的发展，其他的序列类型也会被加入其中。这里介绍另一种标准序列类型: 元组。

一个元组由几个被逗号隔开的值组成，例如

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
>>> # Tuples are immutable:
... t[0] = 88888
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> # but they can contain mutable objects:
... v = ([1, 2, 3], [3, 2, 1])
>>> v
([1, 2, 3], [3, 2, 1])

如你所见，元组在输出时总是被圆括号包围的，以便正确表示嵌套元组。输入时圆括号可有可无，不过经常会是必须的（如果这个元组是一个更大的表达式的一部分）。给元组中的一个单独的元素赋值是不允许的，当然你可以创建包含可变对象的元组，例如列表。

虽然元组可能看起来与列表很像，但它们通常是在不同的场景被使用，并且有着不同的用途。元组是 immutable ，其序列通常包含不同种类的元素，并且通过解包（这一节下面会解释）或者索引来访问（如果是 namedtuples 的话甚至还可以通过属性访问）。列表是 mutable ，并且列表中的元素一般是同种类型的，并且通过迭代访问。

一个特殊的问题是构造包含0个或1个元素的元组：为了适应这种情况，语法有一些额外的改变。空元组可以直接被一对空圆括号创建，含有一个元素的元组可以通过在这个元素后添加一个逗号来构建（圆括号里只有一个值的话不够明确）。丑陋，但是有效。例如

>>> empty = ()
>>> singleton = 'hello', # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)

语句 t = 12345, 54321, 'hello!' 是 元组打包 的一个例子：值 12345, 54321 和 'hello!' 被打包进元组。其逆操作也是允许的

>>> x, y, z = t

这被称为 序列解包 也是很恰当的，因为解包操作的等号右侧可以是任何序列。序列解包要求等号左侧的变量数与右侧序列里所含的元素数相同。注意多重赋值其实也只是元组打包和序列解包的组合。

5.4. 集合

Python也包含有 集合 类型。集合是由不重复元素组成的无序的集。它的基本用法包括成员检测和消除重复元素。集合对象也支持像 联合，交集，差集，对称差分等数学运算。

花括号或 set() 函数可以用来创建集合。注意：要创建一个空集合你只能用 set() 而不能用 {}，因为后者是创建一个空字典，这种数据结构我们会在下一节进行讨论。

以下是一些简单的示例

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket) # show that duplicates have been removed
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # fast membership testing
True
>>> 'crabgrass' in basket
False

>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
{'a', 'r', 'b', 'c', 'd'}
>>> a - b # letters in a but not in b
{'r', 'd', 'b'}
>>> a | b # letters in a or b or both
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b # letters in both a and b
{'a', 'c'}
>>> a ^ b # letters in a or b but not both
{'r', 'd', 'b', 'm', 'z', 'l'}

类似于 列表推导式，集合也支持推导式形式

>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{'r', 'd'}

5.5. 字典

另一个非常有用的 Python 內置数据类型是 字典 (参见 映射类型 --- dict)。字典在其他语言里可能会被叫做 联合内存 或 联合数组。与以连续整数为索引的序列不同，字典是以 关键字 为索引的，关键字可以是任意不可变类型，通常是字符串或数字。如果一个元组只包含字符串、数字或元组，那么这个元组也可以用作关键字。但如果元组直接或间接地包含了可变对象，那么它就不能用作关键字。列表不能用作关键字，因为列表可以通过索引、切片或 append() 和 extend() 之类的方法来改变。

理解字典的最好方式，就是将它看做是一个 键: 值 对的集合，键必须是唯一的（在一个字典中）。一对花括号可以创建一个空字典：{} 。另一种初始化字典的方式是在一对花括号里放置一些以逗号分隔的键值对，而这也是字典输出的方式。

字典主要的操作是使用关键字存储和解析值。也可以用 del 来删除一个键值对。如果你使用了一个已经存在的关键字来存储值，那么之前与这个关键字关联的值就会被遗忘。用一个不存在的键来取值则会报错。

对一个字典执行 list(d) 将返回包含该字典中所有键的列表，按插入次序排列 (如需其他排序，则要使用 sorted(d))。要检查字典中是否存在一个特定键，可使用 in 关键字。

以下是使用字典的一些简单示例

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'jack': 4098, 'sape': 4139, 'guido': 4127}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'jack': 4098, 'guido': 4127, 'irv': 4127}
>>> list(tel)
['jack', 'guido', 'irv']
>>> sorted(tel)
['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False

dict() 构造函数可以直接从键值对序列里创建字典。

>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'guido': 4127, 'jack': 4098}

此外，字典推导式可以从任意的键值表达式中创建字典

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

当关键字是简单字符串时，有时直接通过关键字参数来指定键值对更方便

>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'guido': 4127, 'jack': 4098}

5.6. 循环的技巧

当在字典中循环时，用 items() 方法可将关键字和对应的值同时取出

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
... print(k, v)
...
gallahad the pure
robin the brave

当在序列中循环时，用 enumerate() 函数可以将索引位置和其对应的值同时取出

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
... print(i, v)
...
0 tic
1 tac
2 toe

当同时在两个或更多序列中循环时，可以用 zip() 函数将其内元素一一匹配。

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print('What is your {0}? It is {1}.'.format(q, a))
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

如果要逆向循环一个序列，可以先正向定位序列，然后调用 reversed() 函数

>>> for i in reversed(range(1, 10, 2)):
... print(i)
...
9
7
5
3
1

如果要按某个指定顺序循环一个序列，可以用 sorted() 函数，它可以在不改动原序列的基础上返回一个新的排好序的序列

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
... print(f)
...
apple
banana
orange
pear

有时可能会想在循环时修改列表内容，一般来说改为创建一个新列表是比较简单且安全的

>>> import math
>>> raw_data = [56.2, float('NaN'), 51.7, 55.3, 52.5, float('NaN'), 47.8]
>>> filtered_data = []
>>> for value in raw_data:
... if not math.isnan(value):
... filtered_data.append(value)
...
>>> filtered_data
[56.2, 51.7, 55.3, 52.5, 47.8]

5.7. 深入条件控制

while 和 if 条件句中可以使用任意操作，而不仅仅是比较操作。

比较操作符 in 和 not in 校验一个值是否在（或不在）一个序列里。操作符 is 和 is not 比较两个对象是不是同一个对象，这只对像列表这样的可变对象比较重要。所有的比较操作符都有相同的优先级，且这个优先级比数值运算符低。

比较操作可以传递。例如 a < b == c 会校验是否 a 小于 b 并且 b 等于 c。

比较操作可以通过布尔运算符 and 和 or 来组合，并且比较操作（或其他任何布尔运算）的结果都可以用 not 来取反。这些操作符的优先级低于比较操作符；在它们之中，not 优先级最高， or 优先级最低，因此 A and not B or C 等价于 (A and (not B)) or C。和之前一样，你也可以在这种式子里使用圆括号。

布尔运算符 and 和 or 也被称为 短路 运算符：它们的参数从左至右解析，一旦可以确定结果解析就会停止。例如，如果 A 和 C 为真而 B 为假，那么 A and B and C 不会解析 C。当用作普通值而非布尔值时，短路操作符的返回值通常是最后一个变量。

也可以把比较操作或者逻辑表达式的结果赋值给一个变量，例如

>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = string1 or string2 or string3
>>> non_null
'Trondheim'

注意 Python 与 C 不同，赋值操作不能发生在表达式内部。C程序员可能会对此抱怨，但它避免了一类C程序中常见的错误：想在表达式中写 == 时却写成了 =。

5.8. 比较序列和其他类型

序列对象可以与相同类型的其他对象比较。它们使用 字典顺序 进行比较：首先比较两个序列的第一个元素，如果不同，那么这就决定了比较操作的结果。如果它们相同，就再比较每个序列的第二个元素，以此类推，直到有一个序列被耗尽。如果要比较的两个元素本身就是相同类型的序列，那么就递归进行字典顺序比较。如果两个序列中所有的元素都相等，那么我们认为这两个序列相等。如果一个序列是另一个序列的初始子序列，那么短序列就小于（少于）另一个。字典顺序对字符串来说，是使用单字符的 Unicode 码的顺序。下面是同类型序列之间比较的例子

(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)

注意对不同类型对象来说，只要待比较对象提供了合适的比较方法，就可以使用 < 和 > 来比较。例如，混合数值类型是通过他们的数值进行比较的，所以 0 等于 0.0，等等。否则，解释器将抛出一个 TypeError 异常，而不是随便给出一个结果。

备注

	1

	别的语言可能会返回一个可变对象，他们允许方法连续执行，例如 d->insert("a")->remove("b")->sort();。

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

 6. 模块

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

6. 模块

如果你从Python解释器退出并再次进入，之前的定义（函数和变量）都会丢失。因此，如果你想编写一个稍长些的程序，最好使用文本编辑器为解释器准备输入并将该文件作为输入运行。这被称作编写 脚本 。随着程序变得越来越长，你或许会想把它拆分成几个文件，以方便维护。你亦或想在不同的程序中使用一个便捷的函数， 而不必把这个函数复制到每一个程序中去。

为支持这些，Python有一种方法可以把定义放在一个文件里，并在脚本或解释器的交互式实例中使用它们。这样的文件被称作 模块 ；模块中的定义可以 导入 到其它模块或者 主 模块（你在顶级和计算器模式下执行的脚本中可以访问的变量集合）。

模块是一个包含Python定义和语句的文件。文件名就是模块名后跟文件后缀 .py 。在一个模块内部，模块名（作为一个字符串）可以通过全局变量 __name__ 的值获得。例如，使用你最喜爱的文本编辑器在当前目录下创建一个名为 fibo.py 的文件， 文件中含有以下内容:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
 a, b = 0, 1
 while a < n:
 print(a, end=' ')
 a, b = b, a+b
 print()

def fib2(n): # return Fibonacci series up to n
 result = []
 a, b = 0, 1
 while a < n:
 result.append(a)
 a, b = b, a+b
 return result

现在进入Python解释器，并用以下命令导入该模块:

>>> import fibo

在当前的符号表中，这并不会直接进入到定义在 fibo 函数内的名称；它只是进入到模块名 fibo 中。你可以用模块名访问这些函数:

>>> fibo.fib(1000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'

如果你想经常使用某个函数，你可以把它赋值给一个局部变量:

>>> fib = fibo.fib
>>> fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

6.1. 更多有关模块的信息

模块可以包含可执行的语句以及函数定义。这些语句用于初始化模块。它们仅在模块 第一次 在 import 语句中被导入时才执行。 1 (当文件被当作脚本运行时，它们也会执行。)

每个模块都有它自己的私有符号表，该表用作模块中定义的所有函数的全局符号表。因此，模块的作者可以在模块内使用全局变量，而不必担心与用户的全局变量发生意外冲突。另一方面，如果你知道自己在做什么，则可以用跟访问模块内的函数的同样标记方法，去访问一个模块的全局变量，modname.itemname。

模块可以导入其它模块。习惯上但不要求把所有 import 语句放在模块（或脚本）的开头。被导入的模块名存放在调入模块的全局符号表中。

import 语句有一个变体，它可以把名字从一个被调模块内直接导入到现模块的符号表里。例如:

>>> from fibo import fib, fib2
>>> fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

这并不会把被调模块名引入到局部变量表里（因此在这个例子里，fibo 是未被定义的）。

还有一个变体甚至可以导入模块内定义的所有名称:

>>> from fibo import *
>>> fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

这会调入所有非以下划线（_）开头的名称。 在多数情况下，Python程序员都不会使用这个功能，因为它在解释器中引入了一组未知的名称，而它们很可能会覆盖一些你已经定义过的东西。

注意通常情况下从一个模块或者包内调入 * 的做法是不太被接受的， 因为这通常会导致代码的可读性很差。不过，在交互式编译器中为了节省打字可以这么用。

如果模块名称之后带有 as，则跟在 as 之后的名称将直接绑定到所导入的模块。

>>> import fibo as fib
>>> fib.fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

这会和 import fibo 方式一样有效地调入模块， 唯一的区别是它以 fib 的名称存在的。

这种方式也可以在用到 from 的时候使用，并会有类似的效果:

>>> from fibo import fib as fibonacci
>>> fibonacci(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

注解

出于效率的考虑，每个模块在每个解释器会话中只被导入一次。因此，如果你更改了你的模块，则必须重新启动解释器， 或者，如果它只是一个要交互式地测试的模块，请使用 importlib.reload()，例如 import importlib; importlib.reload(modulename)。

6.1.1. 以脚本的方式执行模块

当你用下面方式运行一个Python模块:

python fibo.py <arguments>

模块里的代码会被执行，就好像你导入了模块一样，但是 __name__ 被赋值为 "__main__"。 这意味着通过在你的模块末尾添加这些代码:

if __name__ == "__main__":
 import sys
 fib(int(sys.argv[1]))

你既可以把这个文件当作脚本又可当作一个可调入的模块来使用， 因为那段解析命令行的代码只有在当模块是以“main”文件的方式执行的时候才会运行:

$ python fibo.py 50
0 1 1 2 3 5 8 13 21 34

如果模块是被导入的，那些代码是不运行的:

>>> import fibo
>>>

这经常用于为模块提供一个方便的用户接口，或用于测试（以脚本的方式运行模块从而执行一些测试套件）。

6.1.2. 模块搜索路径

当一个名为 spam 的模块被导入的时候，解释器首先寻找具有该名称的内置模块。如果没有找到，然后解释器从 sys.path 变量给出的目录列表里寻找名为 spam.py 的文件。sys.path 初始有这些目录地址:

	包含输入脚本的目录（或者未指定文件时的当前目录）。

	PYTHONPATH （一个包含目录名称的列表，它和shell变量 PATH 有一样的语法）。

	取决于安装的默认设置

注解

在支持符号链接的文件系统上，包含输入脚本的目录是在追加符号链接后才计算出来的。换句话说，包含符号链接的目录并 没有 被添加到模块的搜索路径上。

在初始化后，Python程序可以更改 sys.path。包含正在运行脚本的文件目录被放在搜索路径的开头处， 在标准库路径之前。这意味着将加载此目录里的脚本，而不是标准库中的同名模块。 除非有意更换，否则这是错误。更多信息请参阅 标准模块。

6.1.3. “编译过的”Python文件

为了加速模块载入，Python在 __pycache__ 目录里缓存了每个模块的编译后版本，名称为 module.version.pyc ，其中名称中的版本字段对编译文件的格式进行编码； 它一般使用Python版本号。例如，在CPython版本3.3中，spam.py的编译版本将被缓存为 __pycache__/spam.cpython-33.pyc。此命名约定允许来自不同发行版和不同版本的Python的已编译模块共存。

Python根据编译版本检查源的修改日期，以查看它是否已过期并需要重新编译。这是一个完全自动化的过程。此外，编译的模块与平台无关，因此可以在具有不同体系结构的系统之间共享相同的库。

Python在两种情况下不会检查缓存。首先，对于从命令行直接载入的模块，它从来都是重新编译并且不存储编译结果；其次，如果没有源模块，它不会检查缓存。为了支持无源文件（仅编译）发行版本， 编译模块必须是在源目录下，并且绝对不能有源模块。

给专业人士的一些小建议:

	你可以在Python命令中使用 -O 或者 -OO 开关， 以减小编译后模块的大小。 -O 开关去除断言语句，-OO 开关同时去除断言语句和 __doc__ 字符串。由于有些程序可能依赖于这些，你应当只在清楚自己在做什么时才使用这个选项。“优化过的”模块有一个 opt- 标签并且通常小些。将来的发行版本或许会更改优化的效果。

	一个从 .pyc 文件读出的程序并不会比它从 .py 读出时运行的更快，.pyc 文件唯一快的地方在于载入速度。

	compileall 模块可以为一个目录下的所有模块创建.pyc文件。

	关于这个过程，PEP 3147 [https://www.python.org/dev/peps/pep-3147] 中有更多细节，包括一个决策流程图。

6.2. 标准模块

Python附带了一个标准模块库，在单独的文档Python库参考（以下称为“库参考”）中进行了描述。一些模块内置于解释器中；它们提供对不属于语言核心但仍然内置的操作的访问，以提高效率或提供对系统调用等操作系统原语的访问。这些模块的集合是一个配置选项，它也取决于底层平台。例如，winreg 模块只在Windows操作系统上提供。一个特别值得注意的模块 sys，它被内嵌到每一个Python解释器中。变量 sys.ps1 和 sys.ps2 定义用作主要和辅助提示的字符串:

>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '
>>> sys.ps1 = 'C> '
C> print('Yuck!')
Yuck!
C>

这两个变量只有在编译器是交互模式下才被定义。

sys.path 变量是一个字符串列表，用于确定解释器的模块搜索路径。该变量被初始化为从环境变量 PYTHONPATH 获取的默认路径，或者如果 PYTHONPATH 未设置，则从内置默认路径初始化。你可以使用标准列表操作对其进行修改:

>>> import sys
>>> sys.path.append('/ufs/guido/lib/python')

6.3. dir() 函数

内置函数 dir() 用于查找模块定义的名称。 它返回一个排序过的字符串列表:

>>> import fibo, sys
>>> dir(fibo)
['__name__', 'fib', 'fib2']
>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', '__loader__', '__name__',
 '__package__', '__stderr__', '__stdin__', '__stdout__',
 '_clear_type_cache', '_current_frames', '_debugmallocstats', '_getframe',
 '_home', '_mercurial', '_xoptions', 'abiflags', 'api_version', 'argv',
 'base_exec_prefix', 'base_prefix', 'builtin_module_names', 'byteorder',
 'call_tracing', 'callstats', 'copyright', 'displayhook',
 'dont_write_bytecode', 'exc_info', 'excepthook', 'exec_prefix',
 'executable', 'exit', 'flags', 'float_info', 'float_repr_style',
 'getcheckinterval', 'getdefaultencoding', 'getdlopenflags',
 'getfilesystemencoding', 'getobjects', 'getprofile', 'getrecursionlimit',
 'getrefcount', 'getsizeof', 'getswitchinterval', 'gettotalrefcount',
 'gettrace', 'hash_info', 'hexversion', 'implementation', 'int_info',
 'intern', 'maxsize', 'maxunicode', 'meta_path', 'modules', 'path',
 'path_hooks', 'path_importer_cache', 'platform', 'prefix', 'ps1',
 'setcheckinterval', 'setdlopenflags', 'setprofile', 'setrecursionlimit',
 'setswitchinterval', 'settrace', 'stderr', 'stdin', 'stdout',
 'thread_info', 'version', 'version_info', 'warnoptions']

如果没有参数，dir() 会列出你当前定义的名称:

>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir()
['__builtins__', '__name__', 'a', 'fib', 'fibo', 'sys']

注意：它列出所有类型的名称：变量，模块，函数，等等。

dir() 不会列出内置函数和变量的名称。如果你想要这些，它们的定义是在标准模块 builtins 中:

>>> import builtins
>>> dir(builtins)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
 'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',
 'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',
 'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',
 'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
 'FileExistsError', 'FileNotFoundError', 'FloatingPointError',
 'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',
 'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError',
 'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError',
 'MemoryError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented',
 'NotImplementedError', 'OSError', 'OverflowError',
 'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError',
 'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning',
 'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',
 'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError',
 'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',
 'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning',
 'ValueError', 'Warning', 'ZeroDivisionError', '_', '__build_class__',
 '__debug__', '__doc__', '__import__', '__name__', '__package__', 'abs',
 'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable',
 'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits',
 'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit',
 'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr',
 'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass',
 'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview',
 'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property',
 'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice',
 'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars',
 'zip']

6.4. 包

包是一种通过用“带点号的模块名”来构造 Python 模块命名空间的方法。 例如，模块名 A.B 表示 A 包中名为 B 的子模块。正如模块的使用使得不同模块的作者不必担心彼此的全局变量名称一样，使用加点的模块名可以使得 NumPy 或 Pillow 等多模块软件包的作者不必担心彼此的模块名称一样。

假设你想为声音文件和声音数据的统一处理，设计一个模块集合（一个“包”）。由于存在很多不同的声音文件格式（通常由它们的扩展名来识别，例如：.wav， .aiff， .au），因此为了不同文件格式间的转换，你可能需要创建和维护一个不断增长的模块集合。 你可能还想对声音数据还做很多不同的处理（例如，混声，添加回声，使用均衡器功能，创造人工立体声效果）， 因此为了实现这些处理，你将另外写一个无穷尽的模块流。这是你的包的可能结构（以分层文件系统的形式表示）：

sound/ Top-level package
 __init__.py Initialize the sound package
 formats/ Subpackage for file format conversions
 __init__.py
 wavread.py
 wavwrite.py
 aiffread.py
 aiffwrite.py
 auread.py
 auwrite.py
 ...
 effects/ Subpackage for sound effects
 __init__.py
 echo.py
 surround.py
 reverse.py
 ...
 filters/ Subpackage for filters
 __init__.py
 equalizer.py
 vocoder.py
 karaoke.py
 ...

当导入这个包时，Python搜索 sys.path 里的目录，查找包的子目录。

必须要有 __init__.py 文件才能让 Python 将包含该文件的目录当作包。 这样可以防止具有通常名称例如 string 的目录在无意中隐藏稍后在模块搜索路径上出现的有效模块。 在最简单的情况下，__init__.py 可以只是一个空文件，但它也可以执行包的初始化代码或设置 __all__ 变量，具体将在后文介绍。

包的用户可以从包中导入单个模块，例如:

import sound.effects.echo

这会加载子模块 sound.effects.echo 。但引用它时必须使用它的全名。

sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

导入子模块的另一种方法是

from sound.effects import echo

这也会加载子模块 echo ，并使其在没有包前缀的情况下可用，因此可以按如下方式使用:

echo.echofilter(input, output, delay=0.7, atten=4)

另一种形式是直接导入所需的函数或变量:

from sound.effects.echo import echofilter

同样，这也会加载子模块 echo，但这会使其函数 echofilter() 直接可用:

echofilter(input, output, delay=0.7, atten=4)

请注意，当使用 from package import item 时，item可以是包的子模块（或子包），也可以是包中定义的其他名称，如函数，类或变量。 import 语句首先测试是否在包中定义了item；如果没有，它假定它是一个模块并尝试加载它。如果找不到它，则引发 ImportError 异常。

相反，当使用 import item.subitem.subsubitem 这样的语法时，除了最后一项之外的每一项都必须是一个包；最后一项可以是模块或包，但不能是前一项中定义的类或函数或变量。

6.4.1. 从包中导入 *

当用户写 from sound.effects import * 会发生什么？理想情况下，人们希望这会以某种方式传递给文件系统，找到包中存在哪些子模块，并将它们全部导入。这可能需要很长时间，导入子模块可能会产生不必要的副作用，这种副作用只有在显式导入子模块时才会发生。

唯一的解决方案是让包作者提供一个包的显式索引。import 语句使用下面的规范：如果一个包的 __init__.py 代码定义了一个名为 __all__ 的列表，它会被视为在遇到 from package import * 时应该导入的模块名列表。在发布该包的新版本时，包作者可以决定是否让此列表保持更新。包作者如果认为从他们的包中导入 * 的操作没有必要被使用，也可以决定不支持此列表。例如，文件 sound/effects/__init__.py 可以包含以下代码:

__all__ = ["echo", "surround", "reverse"]

这意味着 from sound.effects import * 将导入 sound 包的三个命名子模块。

如果没有定义 __all__，from sound.effects import * 语句 不 会从包 sound.effects 中导入所有子模块到当前命名空间；它只确保导入了包 sound.effects （可能运行任何在 __init__.py 中的初始化代码），然后导入包中定义的任何名称。这包括 __init__.py` 定义的任何名称（以及显式加载的子模块）。它还包括由之前的 import 语句显式加载的包的任何子模块。思考下面的代码:

import sound.effects.echo
import sound.effects.surround
from sound.effects import *

在这个例子中， echo 和 surround 模块是在执行 from...import 语句时导入到当前命名空间中的，因为它们定义在 sound.effects 包中。（这在定义了 __all__ 时也有效。）

虽然某些模块被设计为在使用 import * 时只导出遵循某些模式的名称，但在生产代码中它仍然被认为是不好的做法。

请记住，使用 from package import specific_submodule 没有任何问题！ 实际上，除非导入的模块需要使用来自不同包的同名子模块，否则这是推荐的表示法。

6.4.2. 子包参考

当包被构造成子包时（与示例中的 sound 包一样），你可以使用绝对导入来引用兄弟包的子模块。例如，如果模块 sound.filters.vocoder 需要在 sound.effects 包中使用 echo 模块，它可以使用 from sound.effects import echo 。

你还可以使用import语句的 from module import name 形式编写相对导入。这些导入使用前导点来指示相对导入中涉及的当前包和父包。例如，从 surround 模块，你可以使用:

from . import echo
from .. import formats
from ..filters import equalizer

请注意，相对导入是基于当前模块的名称进行导入的。由于主模块的名称总是 "__main__" ，因此用作Python应用程序主模块的模块必须始终使用绝对导入。

6.4.3. 多个目录中的包

包支持另一个特殊属性， __path__ 。它被初始化为一个列表，其中包含在执行该文件中的代码之前保存包的文件 __init__.py 的目录的名称。这个变量可以修改；这样做会影响将来对包中包含的模块和子包的搜索。

虽然通常不需要此功能，但它可用于扩展程序包中的模块集。

备注

	1

	实际上，函数定义也是“被执行”的“语句”；模块级函数定义的执行在模块的全局符号表中输入该函数名。

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

 7. 输入输出

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

7. 输入输出

有几种方法可以显示程序的输出；数据可以以人类可读的形式打印出来，或者写入文件以供将来使用。本章将讨论一些可能性。

7.1. 更漂亮的输出格式

到目前为止，我们遇到了两种写入值的方法：表达式语句 和 print() 函数。（第三种是使用文件对象的 write() 方法；标准输出文件可以作为 sys.stdout 引用。更多相关信息可参考标准库指南。）

通常，你需要更多地控制输出的格式，而不仅仅是打印空格分隔的值。有几种格式化输出的方法。

	要使用 格式化字符串字面值 ，请在字符串的开始引号或三引号之前加上一个 f 或 F 。在此字符串中，你可以在 { 和 } 字符之间写可以引用的变量或字面值的 Python 表达式。

>>> year = 2016
>>> event = 'Referendum'
>>> f'Results of the {year} {event}'
'Results of the 2016 Referendum'

	字符串的 str.format() 方法需要更多的手动操作。你仍将使用 { 和 } 来标记变量将被替换的位置，并且可以提供详细的格式化指令，但你还需要提供要格式化的信息。

>>> yes_votes = 42_572_654
>>> no_votes = 43_132_495
>>> percentage = yes_votes / (yes_votes + no_votes)
>>> '{:-9} YES votes {:2.2%}'.format(yes_votes, percentage)
' 42572654 YES votes 49.67%'

	最后，你可以使用字符串切片和连接操作自己完成所有的字符串处理，以创建你可以想象的任何布局。字符串类型有一些方法可以执行将字符串填充到给定列宽的有用操作。

当你不需要花哨的输出而只是想快速显示某些变量以进行调试时，可以使用 repr() or str() 函数将任何值转化为字符串。

str() 函数是用于返回人类可读的值的表示，而 repr() 是用于生成解释器可读的表示（如果没有等效的语法，则会强制执行 SyntaxError）对于没有人类可读性的表示的对象， str() 将返回和 repr() 一样的值。很多值使用任一函数都具有相同的表示，比如数字或类似列表和字典的结构。特殊的是字符串有两个不同的表示。

几个例子:

>>> s = 'Hello, world.'
>>> str(s)
'Hello, world.'
>>> repr(s)
"'Hello, world.'"
>>> str(1/7)
'0.14285714285714285'
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'
>>> print(s)
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:
... hello = 'hello, world\n'
>>> hellos = repr(hello)
>>> print(hellos)
'hello, world\n'
>>> # The argument to repr() may be any Python object:
... repr((x, y, ('spam', 'eggs')))
"(32.5, 40000, ('spam', 'eggs'))"

string 模块包含一个 Template 类，它提供了另一种将值替换为字符串的方法，使用类似 $x 的占位符并用字典中的值替换它们，但对格式的控制要少的多。

7.1.1. 格式化字符串文字

格式化字符串字面值 （常简称为 f-字符串）能让你在字符串前加上 f 和 F 并将表达式写成 {expression} 来在字符串中包含 Python 表达式的值。

可选的格式说明符可以跟在表达式后面。这样可以更好地控制值的格式化方式。以下示例将pi舍入到小数点后三位:

>>> import math
>>> print(f'The value of pi is approximately {math.pi:.3f}.')
The value of pi is approximately 3.142.

在 ':' 后传递一个整数可以让该字段成为最小字符宽度。这在使列对齐时很有用。:

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():
... print(f'{name:10} ==> {phone:10d}')
...
Sjoerd ==> 4127
Jack ==> 4098
Dcab ==> 7678

其他的修饰符可用于在格式化之前转化值。 '!a' 应用 ascii() ，'!s' 应用 str()，还有 '!r' 应用 repr():

>>> animals = 'eels'
>>> print(f'My hovercraft is full of {animals}.')
My hovercraft is full of eels.
>>> print(f'My hovercraft is full of {animals!r}.')
My hovercraft is full of 'eels'.

有关这些格式规范的参考，请参阅参考指南 格式规格迷你语言。

7.1.2. 字符串的 format() 方法

str.format() 方法的基本用法如下所示:

>>> print('We are the {} who say "{}!"'.format('knights', 'Ni'))
We are the knights who say "Ni!"

花括号和其中的字符（称为格式字段）将替换为传递给 str.format() 方法的对象。花括号中的数字可用来表示传递给 str.format() 方法的对象的位置。

>>> print('{0} and {1}'.format('spam', 'eggs'))
spam and eggs
>>> print('{1} and {0}'.format('spam', 'eggs'))
eggs and spam

如果在 str.format() 方法中使用关键字参数，则使用参数的名称引用它们的值。:

>>> print('This {food} is {adjective}.'.format(
... food='spam', adjective='absolutely horrible'))
This spam is absolutely horrible.

位置和关键字参数可以任意组合:

>>> print('The story of {0}, {1}, and {other}.'.format('Bill', 'Manfred',
 other='Georg'))
The story of Bill, Manfred, and Georg.

如果你有一个非常长的格式字符串，你不想把它拆开，那么你最好是按名称而不是按位置引用变量来进行格式化。 这可以通过简单地传递字典并使用方括号 '[]' 访问键来完成。

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print('Jack: {0[Jack]:d}; Sjoerd: {0[Sjoerd]:d}; '
... 'Dcab: {0[Dcab]:d}'.format(table))
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

这也可以通过使用 '**' 符号将 table 作为关键字参数传递。

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print('Jack: {Jack:d}; Sjoerd: {Sjoerd:d}; Dcab: {Dcab:d}'.format(**table))
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

这在与内置函数 vars() 结合使用时非常有用，它会返回包含所有局部变量的字典。

例如，下面几行代码生成一组整齐的列，其中包含给定的整数和它的平方以及立方:

>>> for x in range(1, 11):
... print('{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x))
...
 1 1 1
 2 4 8
 3 9 27
 4 16 64
 5 25 125
 6 36 216
 7 49 343
 8 64 512
 9 81 729
10 100 1000

关于使用 str.format() 进行字符串格式化的完整概述，请参阅 格式字符串语法 。

7.1.3. 手动格式化字符串

这是同一个平方和立方的表，手动格式化的:

>>> for x in range(1, 11):
... print(repr(x).rjust(2), repr(x*x).rjust(3), end=' ')
... # Note use of 'end' on previous line
... print(repr(x*x*x).rjust(4))
...
 1 1 1
 2 4 8
 3 9 27
 4 16 64
 5 25 125
 6 36 216
 7 49 343
 8 64 512
 9 81 729
10 100 1000

（注意每列之间的一个空格是通过使用 print() 的方式添加的：它总是在其参数间添加空格。）

字符串对象的 str.rjust() 方法通过在左侧填充空格来对给定宽度的字段中的字符串进行右对齐。类似的方法还有 str.ljust() 和 str.center() 。这些方法不会写入任何东西，它们只是返回一个新的字符串，如果输入的字符串太长，它们不会截断字符串，而是原样返回；这虽然会弄乱你的列布局，但这通常比另一种方法好，后者会在显示值时可能不准确（如果你真的想截断，你可以添加一个切片操作，例如 x.ljust(n)[:n] 。）

还有另外一个方法，str.zfill() ，它会在数字字符串的左边填充零。它能识别正负号:

>>> '12'.zfill(5)
'00012'
>>> '-3.14'.zfill(7)
'-003.14'
>>> '3.14159265359'.zfill(5)
'3.14159265359'

7.1.4. 旧的字符串格式化方法

% 运算符（求余）也可用于字符串格式化。 给定 'string' % values，则 string 中的 % 实例会以零个或多个 values 元素替换。 此操作通常被称为字符串插值。 例如:

>>> import math
>>> print('The value of pi is approximately %5.3f.' % math.pi)
The value of pi is approximately 3.142.

可在 printf 风格的字符串格式化 部分找到更多信息。

7.2. 读写文件

open() 返回一个 file object，最常用的有两个参数： open(filename, mode)。

>>> f = open('workfile', 'w')

第一个参数是包含文件名的字符串。第二个参数是另一个字符串，其中包含一些描述文件使用方式的字符。mode 可以是 'r' ，表示文件只能读取，'w' 表示只能写入（已存在的同名文件会被删除），还有 'a' 表示打开文件以追加内容；任何写入的数据会自动添加到文件的末尾。'r+' 表示打开文件进行读写。mode 参数是可选的；省略时默认为 'r'。

通常文件是以 text mode 打开的，这意味着从文件中读取或写入字符串时，都会以指定的编码方式进行编码。如果未指定编码格式，默认值与平台相关 (参见 open())。在mode 中追加的 'b' 则以 binary mode 打开文件：现在数据是以字节对象的形式进行读写的。这个模式应该用于所有不包含文本的文件。

在文本模式下读取时，默认会把平台特定的行结束符 (Unix 上的 \n, Windows 上的 \r\n) 转换为 \n。在文本模式下写入时，默认会把出现的 \n 转换回平台特定的结束符。这样在幕后修改文件数据对文本文件来说没有问题，但是会破坏二进制数据例如 JPEG 或 EXE 文件中的数据。请一定要注意在读写此类文件时应使用二进制模式。

在处理文件对象时，最好使用 with 关键字。 优点是当子句体结束后文件会正确关闭，即使在某个时刻引发了异常。 而且使用 with 相比等效的 try-finally 代码块要简短得多:

>>> with open('workfile') as f:
... read_data = f.read()
>>> f.closed
True

如果你没有使用 with 关键字，那么你应该调用 f.close() 来关闭文件并立即释放它使用的所有系统资源。如果你没有显式地关闭文件，Python的垃圾回收器最终将销毁该对象并为你关闭打开的文件，但这个文件可能会保持打开状态一段时间。另外一个风险是不同的Python实现会在不同的时间进行清理。

通过 with 语句或者调用 f.close() 关闭文件对象后，尝试使用该文件对象将自动失败。:

>>> f.close()
>>> f.read()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: I/O operation on closed file.

7.2.1. 文件对象的方法

本节中剩下的例子将假定你已创建名为 f 的文件对象。

要读取文件内容，请调用 f.read(size)，它会读取一些数据并将其作为字符串（在文本模式下）或字节串对象（在二进制模式下）返回。 size 是一个可选的数值参数。 当 size 被省略或者为负数时，将读取并返回整个文件的内容；如果文件的大小是你的机器内存的两倍就会出现问题。 当取其他值时，将读取并返回至多 size 个字符（在文本模式下）或 size 个字节（在二进制模式下）。 如果已到达文件末尾，f.read() 将返回一个空字符串 ('')。

>>> f.read()
'This is the entire file.\n'
>>> f.read()
''

f.readline() 从文件中读取一行；换行符（\n）留在字符串的末尾，如果文件不以换行符结尾，则在文件的最后一行省略。这使得返回值明确无误；如果 f.readline() 返回一个空的字符串，则表示已经到达了文件末尾，而空行使用 '\n' 表示，该字符串只包含一个换行符。:

>>> f.readline()
'This is the first line of the file.\n'
>>> f.readline()
'Second line of the file\n'
>>> f.readline()
''

要从文件中读取行，你可以循环遍历文件对象。这是内存高效，快速的，并简化代码:

>>> for line in f:
... print(line, end='')
...
This is the first line of the file.
Second line of the file

如果你想以列表的形式读取文件中的所有行，你也可以使用 list(f) 或 f.readlines()。

f.write(string) 会把 string 的内容写入到文件中，并返回写入的字符数。:

>>> f.write('This is a test\n')
15

在写入其他类型的对象之前，需要先把它们转化为字符串（在文本模式下）或者字节对象（在二进制模式下）:

>>> value = ('the answer', 42)
>>> s = str(value) # convert the tuple to string
>>> f.write(s)
18

f.tell() 返回一个整数，给出文件对象在文件中的当前位置，表示为二进制模式下时从文件开始的字节数，以及文本模式下的意义不明的数字。

要改变文件对象的位置，请使用 f.seek(offset, whence)。 通过向一个参考点添加 offset 来计算位置；参考点由 whence 参数指定。 whence 的 0 值表示从文件开头起算，1 表示使用当前文件位置，2 表示使用文件末尾作为参考点。 whence 如果省略则默认值为 0，即使用文件开头作为参考点。

>>> f = open('workfile', 'rb+')
>>> f.write(b'0123456789abcdef')
16
>>> f.seek(5) # Go to the 6th byte in the file
5
>>> f.read(1)
b'5'
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
13
>>> f.read(1)
b'd'

在文本文件（那些在模式字符串中没有 b 的打开的文件）中，只允许相对于文件开头搜索（使用 seek(0, 2) 搜索到文件末尾是个例外）并且唯一有效的 offset 值是那些能从 f.tell() 中返回的或者是零。其他 offset 值都会产生未定义的行为。

文件对象有一些额外的方法，例如 isatty() 和 truncate() ，它们使用频率较低；有关文件对象的完整指南请参阅库参考。

7.2.2. 使用 json 保存结构化数据

字符串可以很轻松地写入文件并从文件中读取出来。数字可能会费点劲，因为 read() 方法只能返回字符串，这些字符串必须传递给类似 int() 的函数，它会接受类似 '123' 这样的字符串并返回其数字值 123。当你想保存诸如嵌套列表和字典这样更复杂的数据类型时，手动解析和序列化会变得复杂。

Python 允许你使用称为 JSON (JavaScript Object Notation) [http://json.org] 的流行数据交换格式，而不是让用户不断的编写和调试代码以将复杂的数据类型保存到文件中。名为 json 的标准模块可以采用 Python 数据层次结构，并将它们转化为字符串表示形式；这个过程称为 serializing 。从字符串表示中重建数据称为 deserializing 。在序列化和反序列化之间，表示对象的字符串可能已存储在文件或数据中，或通过网络连接发送到某个远程机器。

注解

JSON格式通常被现代应用程序用于允许数据交换。许多程序员已经熟悉它，这使其成为互操作性的良好选择。

如果你有一个对象 x ，你可以用一行简单的代码来查看它的 JSON 字符串表示:

>>> import json
>>> json.dumps([1, 'simple', 'list'])
'[1, "simple", "list"]'

dumps() 函数的另一个变体叫做 dump() ，它只是将对象序列化为 text file 。因此，如果 f 是一个 text file 对象，我们可以这样做:

json.dump(x, f)

要再次解码对象，如果 f 是一个打开的以供阅读的 text file 对象:

x = json.load(f)

这种简单的序列化技术可以处理列表和字典，但是在JSON中序列化任意类的实例需要额外的努力。 json 模块的参考包含对此的解释。

参见

pickle - 封存模块

与 JSON 不同，pickle 是一种允许对任意复杂 Python 对象进行序列化的协议。因此，它为 Python 所特有，不能用于与其他语言编写的应用程序通信。默认情况下它也是不安全的：如果数据是由熟练的攻击者精心设计的，则反序列化来自不受信任来源的 pickle 数据可以执行任意代码。

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

 8. 错误和异常

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

8. 错误和异常

到目前为止，我们还没有提到错误消息，但是如果你已经尝试过那些例子，你可能已经看过了一些错误消息。 目前（至少）有两种可区分的错误：语法错误 和 异常。

8.1. 语法错误

语法错误又称解析错误，可能是你在学习Python 时最容易遇到的错误:

>>> while True print('Hello world')
 File "<stdin>", line 1
 while True print('Hello world')
 ^
SyntaxError: invalid syntax

解析器会输出出现语法错误的那一行，并显示一个“箭头”，指向这行里面检测到第一个错误。 错误是由箭头指示的位置 上面 的 token 引起的（或者至少是在这里被检测出的）：在示例中，在 print() 这个函数中检测到了错误，因为在它前面少了个冒号 (':') 。文件名和行号也会被输出，以便输入来自脚本文件时你能知道去哪检查。

8.2. 异常

即使语句或表达式在语法上是正确的，但在尝试执行时，它仍可能会引发错误。 在执行时检测到的错误被称为 异常，异常不一定会导致严重后果：你将很快学会如何在 Python 程序中处理它们。 但是，大多数异常并不会被程序处理，此时会显示如下所示的错误信息:

>>> 10 * (1/0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> 4 + spam*3
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly

错误信息的最后一行告诉我们程序遇到了什么类型的错误。异常有不同的类型，而其类型名称将会作为错误信息的一部分中打印出来：上述示例中的异常类型依次是：ZeroDivisionError， NameError 和 TypeError。作为异常类型打印的字符串是发生的内置异常的名称。对于所有内置异常都是如此，但对于用户定义的异常则不一定如此（虽然这是一个有用的规范）。标准的异常类型是内置的标识符（而不是保留关键字）。

这一行的剩下的部分根据异常类型及其原因提供详细信息。

错误信息的前一部分以堆栈回溯的形式显示发生异常时的上下文。通常它包含列出源代码行的堆栈回溯；但是它不会显示从标准输入中读取的行。

内置异常 列出了内置异常和它们的含义。

8.3. 处理异常

可以编写处理所选异常的程序。请看下面的例子，它会要求用户一直输入，直到输入的是一个有效的整数，但允许用户中断程序（使用 Control-C 或操作系统支持的其他操作）；请注意用户引起的中断可以通过引发 KeyboardInterrupt 异常来指示。:

>>> while True:
... try:
... x = int(input("Please enter a number: "))
... break
... except ValueError:
... print("Oops! That was no valid number. Try again...")
...

try 语句的工作原理如下。

	首先，执行 try 子句 （try 和 except 关键字之间的（多行）语句）。

	如果没有异常发生，则跳过 except 子句 并完成 try 语句的执行。

	如果在执行try 子句时发生了异常，则跳过该子句中剩下的部分。然后，如果异常的类型和 except 关键字后面的异常匹配，则执行 except 子句 ，然后继续执行 try 语句之后的代码。

	如果发生的异常和 except 子句中指定的异常不匹配，则将其传递到外部的 try 语句中；如果没有找到处理程序，则它是一个 未处理异常，执行将停止并显示如上所示的消息。

一个 try 语句可能有多个 except 子句，以指定不同异常的处理程序。 最多会执行一个处理程序。 处理程序只处理相应的 try 子句中发生的异常，而不处理同一 try 语句内其他处理程序中的异常。 一个 except 子句可以将多个异常命名为带括号的元组，例如:

... except (RuntimeError, TypeError, NameError):
... pass

如果发生的异常和 except 子句中的类是同一个类或者是它的基类，则异常和 except 子句中的类是兼容的（但反过来则不成立 --- 列出派生类的 except 子句与基类不兼容）。 例如，下面的代码将依次打印 B, C, D

class B(Exception):
 pass

class C(B):
 pass

class D(C):
 pass

for cls in [B, C, D]:
 try:
 raise cls()
 except D:
 print("D")
 except C:
 print("C")
 except B:
 print("B")

请注意如果 except 子句被颠倒（把 except B 放到第一个），它将打印 B，B，B --- 即第一个匹配的 except 子句被触发。

最后的 except 子句可以省略异常名，以用作通配符。但请谨慎使用，因为以这种方式很容易掩盖真正的编程错误！它还可用于打印错误消息，然后重新引发异常（同样允许调用者处理异常）:

import sys

try:
 f = open('myfile.txt')
 s = f.readline()
 i = int(s.strip())
except OSError as err:
 print("OS error: {0}".format(err))
except ValueError:
 print("Could not convert data to an integer.")
except:
 print("Unexpected error:", sys.exc_info()[0])
 raise

try ... except 语句有一个可选的 else 子句，在使用时必须放在所有的 except 子句后面。对于在try 子句不引发异常时必须执行的代码来说很有用。例如:

for arg in sys.argv[1:]:
 try:
 f = open(arg, 'r')
 except OSError:
 print('cannot open', arg)
 else:
 print(arg, 'has', len(f.readlines()), 'lines')
 f.close()

使用 else 子句比向 try 子句添加额外的代码要好，因为它避免了意外捕获由 try ... except 语句保护的代码未引发的异常。

发生异常时，它可能具有关联值，也称为异常 参数 。参数的存在和类型取决于异常类型。

except 子句可以在异常名称后面指定一个变量。这个变量和一个异常实例绑定，它的参数存储在 instance.args 中。为了方便起见，异常实例定义了 __str__() ，因此可以直接打印参数而无需引用 .args 。也可以在抛出之前首先实例化异常，并根据需要向其添加任何属性。:

>>> try:
... raise Exception('spam', 'eggs')
... except Exception as inst:
... print(type(inst)) # the exception instance
... print(inst.args) # arguments stored in .args
... print(inst) # __str__ allows args to be printed directly,
... # but may be overridden in exception subclasses
... x, y = inst.args # unpack args
... print('x =', x)
... print('y =', y)
...
<class 'Exception'>
('spam', 'eggs')
('spam', 'eggs')
x = spam
y = eggs

如果异常有参数，则它们将作为未处理异常的消息的最后一部分（'详细信息'）打印。

异常处理程序不仅处理 try 子句中遇到的异常，还处理 try 子句中调用（即使是间接地）的函数内部发生的异常。例如:

>>> def this_fails():
... x = 1/0
...
>>> try:
... this_fails()
... except ZeroDivisionError as err:
... print('Handling run-time error:', err)
...
Handling run-time error: division by zero

8.4. 抛出异常

raise 语句允许程序员强制发生指定的异常。例如:

>>> raise NameError('HiThere')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: HiThere

raise 唯一的参数就是要抛出的异常。这个参数必须是一个异常实例或者是一个异常类（派生自 Exception 的类）。如果传递的是一个异常类，它将通过调用没有参数的构造函数来隐式实例化:

raise ValueError # shorthand for 'raise ValueError()'

如果你需要确定是否引发了异常但不打算处理它，则可以使用更简单的 raise 语句形式重新引发异常

>>> try:
... raise NameError('HiThere')
... except NameError:
... print('An exception flew by!')
... raise
...
An exception flew by!
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
NameError: HiThere

8.5. 用户自定义异常

程序可以通过创建新的异常类来命名它们自己的异常（有关Python 类的更多信息，请参阅 类）。异常通常应该直接或间接地从 Exception 类派生。

可以定义异常类，它可以执行任何其他类可以执行的任何操作，但通常保持简单，通常只提供许多属性，这些属性允许处理程序为异常提取有关错误的信息。在创建可能引发多个不同错误的模块时，通常的做法是为该模块定义的异常创建基类，并为不同错误条件创建特定异常类的子类:

class Error(Exception):
 """Base class for exceptions in this module."""
 pass

class InputError(Error):
 """Exception raised for errors in the input.

 Attributes:
 expression -- input expression in which the error occurred
 message -- explanation of the error
 """

 def __init__(self, expression, message):
 self.expression = expression
 self.message = message

class TransitionError(Error):
 """Raised when an operation attempts a state transition that's not
 allowed.

 Attributes:
 previous -- state at beginning of transition
 next -- attempted new state
 message -- explanation of why the specific transition is not allowed
 """

 def __init__(self, previous, next, message):
 self.previous = previous
 self.next = next
 self.message = message

大多数异常都定义为名称以“Error”结尾，类似于标准异常的命名。

许多标准模块定义了它们自己的异常，以报告它们定义的函数中可能出现的错误。有关类的更多信息，请参见类 类。

8.6. 定义清理操作

try 语句有另一个可选子句，用于定义必须在所有情况下执行的清理操作。例如:

>>> try:
... raise KeyboardInterrupt
... finally:
... print('Goodbye, world!')
...
Goodbye, world!
KeyboardInterrupt
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>

如果存在 finally 子句，则 finally 子句将作为 try 语句结束前的最后一项任务被执行。 finally 子句不论 try 语句是否产生了异常都会被执行。 以下几点讨论了当异常发生时一些更复杂的情况：

	如果在执行 try 子句期间发生了异常，该异常可由一个 except 子句进行处理。 如果异常没有被某个 except 子句所处理，则该异常会在 finally 子句执行之后被重新引发。

	异常也可能在 except 或 else 子句执行期间发生。 同样地，该异常会在 finally 子句执行之后被重新引发。

	如果在执行 try 语句时遇到一个 break, continue 或 return 语句，则 finally 子句将在执行 break, continue 或 return 语句之前被执行。

	如果 finally 子句中包含一个 return 语句，则返回值将来自 finally 子句的某个 return 语句的返回值，而非来自 try 子句的 return 语句的返回值。

例如

>>> def bool_return():
... try:
... return True
... finally:
... return False
...
>>> bool_return()
False

一个更为复杂的例子:

>>> def divide(x, y):
... try:
... result = x / y
... except ZeroDivisionError:
... print("division by zero!")
... else:
... print("result is", result)
... finally:
... print("executing finally clause")
...
>>> divide(2, 1)
result is 2.0
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in divide
TypeError: unsupported operand type(s) for /: 'str' and 'str'

正如你所看到的，finally 子句在任何情况下都会被执行。 两个字符串相除所引发的 TypeError 不会由 except 子句处理，因此会在 finally 子句执行后被重新引发。

在实际应用程序中，finally 子句对于释放外部资源（例如文件或者网络连接）非常有用，无论是否成功使用资源。

8.7. 预定义的清理操作

某些对象定义了在不再需要该对象时要执行的标准清理操作，无论使用该对象的操作是成功还是失败。请查看下面的示例，它尝试打开一个文件并把其内容打印到屏幕上。:

for line in open("myfile.txt"):
 print(line, end="")

这个代码的问题在于，它在这部分代码执行完后，会使文件在一段不确定的时间内处于打开状态。这在简单脚本中不是问题，但对于较大的应用程序来说可能是个问题。 with 语句允许像文件这样的对象能够以一种确保它们得到及时和正确的清理的方式使用。:

with open("myfile.txt") as f:
 for line in f:
 print(line, end="")

执行完语句后，即使在处理行时遇到问题，文件 f 也始终会被关闭。和文件一样，提供预定义清理操作的对象将在其文档中指出这一点。

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

 9. 类

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

9. 类

类提供了一种组合数据和功能的方法。 创建一个新类意味着创建一个新的对象 类型，从而允许创建一个该类型的新 实例 。 每个类的实例可以拥有保存自己状态的属性。 一个类的实例也可以有改变自己状态的（定义在类中的）方法。

和其他编程语言相比，Python 用非常少的新语法和语义将类加入到语言中。它是 C++ 和 Modula-3 中类机制的结合。Python 的类提供了面向对象编程的所有标准特性：类继承机制允许多个基类，派生类可以覆盖它基类的任何方法，一个方法可以调用基类中相同名称的的方法。对象可以包含任意数量和类型的数据。和模块一样，类也拥有 Python 天然的动态特性：它们在运行时创建，可以在创建后修改。

在 C++ 术语中，通常类成员（包括数据成员）是 public (例外见下文 私有变量)，所有成员函数都是 virtual。 与在 Modula-3 中一样，没有用于从其方法引用对象成员的简写：方法函数使用表示对象的显式第一个参数声明，该参数由调用隐式提供。 与 Smalltalk 一样，类本身也是对象。 这为导入和重命名提供了语义。 与 C++ 和 Modula-3 不同，内置类型可以用作用户扩展的基类。 此外，与 C++ 一样，大多数具有特殊语法（算术运算符，下标等）的内置运算符都可以为类实例而重新定义。

（由于缺乏关于类的公认术语，我会偶尔使用 Smalltalk 和 C++ 的用辞。 我还会使用 Modula-3 的术语，因为其面向对象的语义比 C++ 更接近 Python，但我预计少有读者听说过它。）

9.1. 名称和对象

对象具有个性，多个名称（在多个作用域内）可以绑定到同一个对象。这在其他语言中称为别名。乍一看Python时通常不会理解这一点，在处理不可变的基本类型（数字，字符串，元组）时可以安全地忽略它。但是，别名对涉及可变对象，如列表，字典和大多数其他类型，的Python代码的语义可能会产生惊人的影响。这通常用于程序的好处，因为别名在某些方面表现得像指针。例如，传递一个对象很便宜，因为实现只传递一个指针；如果函数修改了作为参数传递的对象，调用者将看到更改 --- 这就不需要像 Pascal 中那样使用两个不同的参数传递机制。

9.2. Python 作用域和命名空间

在介绍类之前，我首先要告诉你一些Python的作用域规则。类定义对命名空间有一些巧妙的技巧，你需要知道作用域和命名空间如何工作才能完全理解正在发生的事情。顺便说一下，关于这个主题的知识对任何高级Python程序员都很有用。

让我们从一些定义开始。

namespace （命名空间）是一个从名字到对象的映射。 大部分命名空间当前都由 Python 字典实现，但一般情况下基本不会去关注它们（除了要面对性能问题时），而且也有可能在将来更改。 下面是几个命名空间的例子：存放内置函数的集合（包含 abs() 这样的函数，和内建的异常等）；模块中的全局名称；函数调用中的局部名称。 从某种意义上说，对象的属性集合也是一种命名空间的形式。 关于命名空间的重要一点是，不同命名空间中的名称之间绝对没有关系；例如，两个不同的模块都可以定义一个 maximize 函数而不会产生混淆 --- 模块的用户必须在其前面加上模块名称。

顺便说明一下，我把任何跟在一个点号之后的名称都称为 属性 --- 例如，在表达式 z.real 中，real 是对象 z 的一个属性。按严格的说法，对模块中名称的引用属于属性引用：在表达式 modname.funcname 中，modname 是一个模块对象而 funcname 是它的一个属性。在此情况下在模块的属性和模块中定义的全局名称之间正好存在一个直观的映射：它们共享相同的命名空间！ 1

属性可以是只读或者可写的。如果为后者，那么对属性的赋值是可行的。模块属性是可以写，你可以写出 modname.the_answer = 42 。可写的属性同样可以用 del 语句删除。例如， del modname.the_answer 将会从名为 modname 的对象中移除 the_answer 属性。

在不同时刻创建的命名空间拥有不同的生存期。包含内置名称的命名空间是在 Python 解释器启动时创建的，永远不会被删除。模块的全局命名空间在模块定义被读入时创建；通常，模块命名空间也会持续到解释器退出。被解释器的顶层调用执行的语句，从一个脚本文件读取或交互式地读取，被认为是 __main__ 模块调用的一部分，因此它们拥有自己的全局命名空间。（内置名称实际上也存在于一个模块中；这个模块称作 builtins 。）

一个函数的本地命名空间在这个函数被调用时创建，并在函数返回或抛出一个不在函数内部处理的错误时被删除。（事实上，比起描述到底发生了什么，忘掉它更好。）当然，每次递归调用都会有它自己的本地命名空间。

一个 作用域 是一个命名空间可直接访问的 Python 程序的文本区域。 这里的 “可直接访问” 意味着对名称的非限定引用会尝试在命名空间中查找名称。

作用域被静态确定，但被动态使用。 在程序运行的任何时间，至少有三个命名空间可被直接访问的嵌套作用域：

	最先搜索的最内部作用域包含局部名称

	从最近的封闭作用域开始搜索的任何封闭函数的作用域包含非局部名称，也包括非全局名称

	倒数第二个作用域包含当前模块的全局名称

	最外面的作用域（最后搜索）是包含内置名称的命名空间

如果一个名称被声明为全局变量，则所有引用和赋值将直接指向包含该模块的全局名称的中间作用域。 要重新绑定在最内层作用域以外找到的变量，可以使用 nonlocal 语句声明为非本地变量。 如果没有被声明为非本地变量，这些变量将是只读的（尝试写入这样的变量只会在最内层作用域中创建一个 新的 局部变量，而同名的外部变量保持不变）。

通常，当前局部作为域将（按字面文本）引用当前函数的局部名称。 在函数以外，局部作用域将引用与全局作用域相一致的命名空间：模块的命名空间。 类定义将在局部命名空间内再放置另一个命名空间。

重要的是应该意识到作用域是按字面文本来确定的：在一个模块内定义的函数的全局作用域就是该模块的命名空间，无论该函数从什么地方或以什么别名被调用。 另一方面，实际的名称搜索是在运行时动态完成的 --- 但是，Python 正在朝着“编译时静态名称解析”的方向发展，因此不要过于依赖动态名称解析！ （事实上，局部变量已经是被静态确定了。）

Python 的一个特殊规定是这样的 -- 如果不存在生效的 global 或 nonlocal 语句 -- 则对名称的赋值总是会进入最内层作用域。 赋值不会复制数据 --- 它们只是将名称绑定到对象。 删除也是如此：语句 del x 会从局部作用域所引用的命名空间中移除对 x 的绑定。 事实上，所有引入新名称的操作都是使用局部作用域：特别地，import 语句和函数定义会在局部作用域中绑定模块或函数名称。

global 语句可被用来表明特定变量生存于全局作用域并且应当在其中被重新绑定；nonlocal 语句表明特定变量生存于外层作用域中并且应当在其中被重新绑定。

9.2.1. 作用域和命名空间示例

这个例子演示了如何引用不同作用域和名称空间，以及 global 和 nonlocal 会如何影响变量绑定:

def scope_test():
 def do_local():
 spam = "local spam"

 def do_nonlocal():
 nonlocal spam
 spam = "nonlocal spam"

 def do_global():
 global spam
 spam = "global spam"

 spam = "test spam"
 do_local()
 print("After local assignment:", spam)
 do_nonlocal()
 print("After nonlocal assignment:", spam)
 do_global()
 print("After global assignment:", spam)

scope_test()
print("In global scope:", spam)

示例代码的输出是：

After local assignment: test spam
After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam
In global scope: global spam

请注意 局部 赋值（这是默认状态）不会改变 scope_test 对 spam 的绑定。 nonlocal 赋值会改变 scope_test 对 spam 的绑定，而 global 赋值会改变模块层级的绑定。

您还可以在 global 赋值之前看到之前没有 spam 的绑定。

9.3. 初探类

类引入了一些新语法，三种新对象类型和一些新语义。

9.3.1. 类定义语法

最简单的类定义看起来像这样:

class ClassName:
 <statement-1>
 .
 .
 .
 <statement-N>

类定义与函数定义 (def 语句) 一样必须被执行才会起作用。 （你可以尝试将类定义放在 if 语句的一个分支或是函数的内部。）

在实践中，类定义内的语句通常都是函数定义，但也允许有其他语句，有时还很有用 --- 我们会稍后再回来说明这个问题。 在类内部的函数定义通常具有一种特别形式的参数列表，这是方法调用的约定规范所指明的 --- 这个问题也将在稍后再说明。

当进入类定义时，将创建一个新的命名空间，并将其用作局部作用域 --- 因此，所有对局部变量的赋值都是在这个新命名空间之内。 特别的，函数定义会绑定到这里的新函数名称。

当（从结尾处）正常离开类定义时，将创建一个 类对象。 这基本上是一个包围在类定义所创建命名空间内容周围的包装器；我们将在下一节了解有关类对象的更多信息。 原始的（在进入类定义之前起作用的）局部作用域将重新生效，类对象将在这里被绑定到类定义头所给出的类名称 (在这个示例中为 ClassName)。

9.3.2. 类对象

类对象支持两种操作：属性引用和实例化。

属性引用 使用 Python 中所有属性引用所使用的标准语法: obj.name。 有效的属性名称是类对象被创建时存在于类命名空间中的所有名称。 因此，如果类定义是这样的:

class MyClass:
 """A simple example class"""
 i = 12345

 def f(self):
 return 'hello world'

那么 MyClass.i 和 MyClass.f 就是有效的属性引用，将分别返回一个整数和一个函数对象。 类属性也可以被赋值，因此可以通过赋值来更改 MyClass.i 的值。 __doc__ 也是一个有效的属性，将返回所属类的文档字符串: "A simple example class"。

类的 实例化 使用函数表示法。 可以把类对象视为是返回该类的一个新实例的不带参数的函数。 举例来说（假设使用上述的类）:

x = MyClass()

创建类的新 实例 并将此对象分配给局部变量 x。

实例化操作（“调用”类对象）会创建一个空对象。 许多类喜欢创建带有特定初始状态的自定义实例。 为此类定义可能包含一个名为 __init__() 的特殊方法，就像这样:

def __init__(self):
 self.data = []

当一个类定义了 __init__() 方法时，类的实例化操作会自动为新创建的类实例发起调用 __init__()。 因此在这个示例中，可以通过以下语句获得一个经初始化的新实例:

x = MyClass()

当然，__init__() 方法还可以有额外参数以实现更高灵活性。 在这种情况下，提供给类实例化运算符的参数将被传递给 __init__()。 例如，:

>>> class Complex:
... def __init__(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
>>> x = Complex(3.0, -4.5)
>>> x.r, x.i
(3.0, -4.5)

9.3.3. 实例对象

现在我们能用实例对象做什么？ 实例对象理解的唯一操作是属性引用。 有两种有效的属性名称：数据属性和方法。

数据属性 对应于 Smalltalk 中的“实例变量”，以及 C++ 中的“数据成员”。 数据属性不需要声明；像局部变量一样，它们将在第一次被赋值时产生。 例如，如果 x 是上面创建的 MyClass 的实例，则以下代码段将打印数值 16，且不保留任何追踪信息:

x.counter = 1
while x.counter < 10:
 x.counter = x.counter * 2
print(x.counter)
del x.counter

另一类实例属性引用称为 方法。 方法是“从属于”对象的函数。 （在 Python 中，方法这个术语并不是类实例所特有的：其他对象也可以有方法。 例如，列表对象具有 append, insert, remove, sort 等方法。 然而，在以下讨论中，我们使用方法一词将专指类实例对象的方法，除非另外显式地说明。）

实例对象的有效方法名称依赖于其所属的类。 根据定义，一个类中所有是函数对象的属性都是定义了其实例的相应方法。 因此在我们的示例中，x.f 是有效的方法引用，因为 MyClass.f 是一个函数，而 x.i 不是方法，因为 MyClass.i 不是一个函数。 但是 x.f 与 MyClass.f 并不是一回事 --- 它是一个 方法对象，不是函数对象。

9.3.4. 方法对象

通常，方法在绑定后立即被调用:

x.f()

在 MyClass 示例中，这将返回字符串 'hello world'。 但是，立即调用一个方法并不是必须的: x.f 是一个方法对象，它可以被保存起来以后再调用。 例如:

xf = x.f
while True:
 print(xf())

将继续打印 hello world，直到结束。

当一个方法被调用时到底发生了什么？ 你可能已经注意到上面调用 x.f() 时并没有带参数，虽然 f() 的函数定义指定了一个参数。 这个参数发生了什么事？ 当不带参数地调用一个需要参数的函数时 Python 肯定会引发异常 --- 即使参数实际未被使用...

实际上，你可能已经猜到了答案：方法的特殊之处就在于实例对象会作为函数的第一个参数被传入。 在我们的示例中，调用 x.f() 其实就相当于 MyClass.f(x)。 总之，调用一个具有 n 个参数的方法就相当于调用再多一个参数的对应函数，这个参数值为方法所属实例对象，位置在其他参数之前。

如果你仍然无法理解方法的运作原理，那么查看实现细节可能会澄清问题。 当一个实例的非数据属性被引用时，将搜索实例所属的类。 如果名称表示一个属于函数对象的有效类属性，会通过合并打包（指向）实例对象和函数对象到一个抽象对象中的方式来创建一个方法对象：这个抽象对象就是方法对象。 当附带参数列表调用方法对象时，将基于实例对象和参数列表构建一个新的参数列表，并使用这个新参数列表调用相应的函数对象。

9.3.5. 类和实例变量

一般来说，实例变量用于每个实例的唯一数据，而类变量用于类的所有实例共享的属性和方法:

class Dog:

 kind = 'canine' # class variable shared by all instances

 def __init__(self, name):
 self.name = name # instance variable unique to each instance

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.kind # shared by all dogs
'canine'
>>> e.kind # shared by all dogs
'canine'
>>> d.name # unique to d
'Fido'
>>> e.name # unique to e
'Buddy'

正如 名称和对象 中已讨论过的，共享数据可能在涉及 mutable 对象例如列表和字典的时候导致令人惊讶的结果。 例如以下代码中的 tricks 列表不应该被用作类变量，因为所有的 Dog 实例将只共享一个单独的列表:

class Dog:

 tricks = [] # mistaken use of a class variable

 def __init__(self, name):
 self.name = name

 def add_trick(self, trick):
 self.tricks.append(trick)

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.add_trick('roll over')
>>> e.add_trick('play dead')
>>> d.tricks # unexpectedly shared by all dogs
['roll over', 'play dead']

正确的类设计应该使用实例变量:

class Dog:

 def __init__(self, name):
 self.name = name
 self.tricks = [] # creates a new empty list for each dog

 def add_trick(self, trick):
 self.tricks.append(trick)

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.add_trick('roll over')
>>> e.add_trick('play dead')
>>> d.tricks
['roll over']
>>> e.tricks
['play dead']

9.4. 补充说明

数据属性会覆盖掉具有相同名称的方法属性；为了避免会在大型程序中导致难以发现的错误的意外名称冲突，明智的做法是使用某种约定来最小化冲突的发生几率。 可能的约定包括方法名称使用大写字母，属性名称加上独特的短字符串前缀（或许只加一个下划线），或者是用动词来命名方法，而用名词来命名数据属性。

数据属性可以被方法以及一个对象的普通用户（“客户端”）所引用。 换句话说，类不能用于实现纯抽象数据类型。 实际上，在 Python 中没有任何东西能强制隐藏数据 --- 它是完全基于约定的。 （而在另一方面，用 C 语言编写的 Python 实现则可以完全隐藏实现细节，并在必要时控制对象的访问；此特性可以通过用 C 编写 Python 扩展来使用。）

客户端应当谨慎地使用数据属性 --- 客户端可能通过直接操作数据属性的方式破坏由方法所维护的固定变量。 请注意客户端可以向一个实例对象添加他们自己的数据属性而不会影响方法的可用性，只要保证避免名称冲突 --- 再次提醒，在此使用命名约定可以省去许多令人头痛的麻烦。

在方法内部引用数据属性（或其他方法！）并没有简便方式。 我发现这实际上提升了方法的可读性：当浏览一个方法代码时，不会存在混淆局部变量和实例变量的机会。

方法的第一个参数常常被命名为 self。 这也不过就是一个约定: self 这一名称在 Python 中绝对没有特殊含义。 但是要注意，不遵循此约定会使得你的代码对其他 Python 程序员来说缺乏可读性，而且也可以想像一个 类浏览器 程序的编写可能会依赖于这样的约定。

任何一个作为类属性的函数都为该类的实例定义了一个相应方法。 函数定义的文本并非必须包含于类定义之内：将一个函数对象赋值给一个局部变量也是可以的。 例如:

Function defined outside the class
def f1(self, x, y):
 return min(x, x+y)

class C:
 f = f1

 def g(self):
 return 'hello world'

 h = g

现在 f, g 和 h 都是 C 类的引用函数对象的属性，因而它们就都是 C 的实例的方法 --- 其中 h 完全等同于 g。 但请注意，本示例的做法通常只会令程序的阅读者感到迷惑。

方法可以通过使用 self 参数的方法属性调用其他方法:

class Bag:
 def __init__(self):
 self.data = []

 def add(self, x):
 self.data.append(x)

 def addtwice(self, x):
 self.add(x)
 self.add(x)

方法可以通过与普通函数相同的方式引用全局名称。 与方法相关联的全局作用域就是包含其定义的模块。 （类永远不会被作为全局作用域。） 虽然我们很少会有充分的理由在方法中使用全局作用域，但全局作用域存在许多合法的使用场景：举个例子，导入到全局作用域的函数和模块可以被方法所使用，在其中定义的函数和类也一样。 通常，包含该方法的类本身是在全局作用域中定义的，而在下一节中我们将会发现为何方法需要引用其所属类的很好的理由。

每个值都是一个对象，因此具有 类 （也称为 类型），并存储为 object.__class__ 。

9.5. 继承

当然，如果不支持继承，语言特性就不值得称为“类”。派生类定义的语法如下所示:

class DerivedClassName(BaseClassName):
 <statement-1>
 .
 .
 .
 <statement-N>

名称 BaseClassName 必须定义于包含派生类定义的作用域中。 也允许用其他任意表达式代替基类名称所在的位置。 这有时也可能会用得上，例如，当基类定义在另一个模块中的时候:

class DerivedClassName(modname.BaseClassName):

派生类定义的执行过程与基类相同。 当构造类对象时，基类会被记住。 此信息将被用来解析属性引用：如果请求的属性在类中找不到，搜索将转往基类中进行查找。 如果基类本身也派生自其他某个类，则此规则将被递归地应用。

派生类的实例化没有任何特殊之处: DerivedClassName() 会创建该类的一个新实例。 方法引用将按以下方式解析：搜索相应的类属性，如有必要将按基类继承链逐步向下查找，如果产生了一个函数对象则方法引用就生效。

派生类可能会重载其基类的方法。 因为方法在调用同一对象的其他方法时没有特殊权限，调用同一基类中定义的另一方法的基类方法最终可能会调用覆盖它的派生类的方法。 （对 C++ 程序员的提示：Python 中所有的方法实际上都是 virtual 方法。）

在派生类中的重载方法实际上可能想要扩展而非简单地替换同名的基类方法。 有一种方式可以简单地直接调用基类方法：即调用 BaseClassName.methodname(self, arguments)。 有时这对客户端来说也是有用的。 （请注意仅当此基类可在全局作用域中以 BaseClassName 的名称被访问时方可使用此方式。）

Python有两个内置函数可被用于继承机制：

	使用 isinstance() 来检查一个实例的类型: isinstance(obj, int) 仅会在 obj.__class__ 为 int 或某个派生自 int 的类时为 True。

	使用 issubclass() 来检查类的继承关系: issubclass(bool, int) 为 True，因为 bool 是 int 的子类。 但是，issubclass(float, int) 为 False，因为 float 不是 int 的子类。

9.5.1. 多重继承

Python supports a form of multiple inheritance as well. A class definition with
multiple base classes looks like this:

class DerivedClassName(Base1, Base2, Base3):
 <statement-1>
 .
 .
 .
 <statement-N>

对于多数应用来说，在最简单的情况下，你可以认为搜索从父类所继承属性的操作是深度优先、从左至右的，当层次结构中存在重叠时不会在同一个类中搜索两次。 因此，如果某一属性在 DerivedClassName 中未找到，则会到 Base1 中搜索它，然后（递归地）到 Base1 的基类中搜索，如果在那里未找到，再到 Base2 中搜索，依此类推。

真实情况比这个更复杂一些；方法解析顺序会动态改变以支持对 super() 的协同调用。 这种方式在某些其他多重继承型语言中被称为后续方法调用，它比单继承型语言中的 super 调用更强大。

动态改变顺序是有必要的，因为所有多重继承的情况都会显示出一个或更多的菱形关联（即至少有一个父类可通过多条路径被最底层类所访问）。 例如，所有类都是继承自 object，因此任何多重继承的情况都提供了一条以上的路径可以通向 object。 为了确保基类不会被访问一次以上，动态算法会用一种特殊方式将搜索顺序线性化， 保留每个类所指定的从左至右的顺序，只调用每个父类一次，并且保持单调（即一个类可以被子类化而不影响其父类的优先顺序）。 总而言之，这些特性使得设计具有多重继承的可靠且可扩展的类成为可能。 要了解更多细节，请参阅 https://www.python.org/download/releases/2.3/mro/。

9.6. 私有变量

那种仅限从一个对象内部访问的“私有”实例变量在 Python 中并不存在。 但是，大多数 Python 代码都遵循这样一个约定：带有一个下划线的名称 (例如 _spam) 应该被当作是 API 的非公有部分 (无论它是函数、方法或是数据成员)。 这应当被视为一个实现细节，可能不经通知即加以改变。

由于存在对于类私有成员的有效使用场景（例如避免名称与子类所定义的名称相冲突），因此存在对此种机制的有限支持，称为 名称改写。 任何形式为 __spam 的标识符（至少带有两个前缀下划线，至多一个后缀下划线）的文本将被替换为 _classname__spam，其中 classname 为去除了前缀下划线的当前类名称。 这种改写不考虑标识符的句法位置，只要它出现在类定义内部就会进行。

名称改写有助于让子类重载方法而不破坏类内方法调用。例如:

class Mapping:
 def __init__(self, iterable):
 self.items_list = []
 self.__update(iterable)

 def update(self, iterable):
 for item in iterable:
 self.items_list.append(item)

 __update = update # private copy of original update() method

class MappingSubclass(Mapping):

 def update(self, keys, values):
 # provides new signature for update()
 # but does not break __init__()
 for item in zip(keys, values):
 self.items_list.append(item)

上面的示例即使在 MappingSubclass 引入了一个 __update 标识符的情况下也不会出错，因为它会在 Mapping 类中被替换为 _Mapping__update 而在 MappingSubclass 类中被替换为 _MappingSubclass__update。

请注意，改写规则的设计主要是为了避免意外冲突；访问或修改被视为私有的变量仍然是可能的。这在特殊情况下甚至会很有用，例如在调试器中。

请注意传递给 exec() 或 eval() 的代码不会将发起调用类的类名视作当前类；这类似于 global 语句的效果，因此这种效果仅限于同时经过字节码编译的代码。 同样的限制也适用于 getattr(), setattr() 和 delattr()，以及对于 __dict__ 的直接引用。

9.7. 杂项说明

有时会需要使用类似于 Pascal 的“record”或 C 的“struct”这样的数据类型，将一些命名数据项捆绑在一起。 这种情况适合定义一个空类:

class Employee:
 pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000

一段需要特定抽象数据类型的 Python 代码往往可以被传入一个模拟了该数据类型的方法的类作为替代。 例如，如果你有一个基于文件对象来格式化某些数据的函数，你可以定义一个带有 read() 和 readline() 方法从字符串缓存获取数据的类，并将其作为参数传入。

实例方法对象也具有属性: m.__self__ 就是带有 m() 方法的实例对象，而 m.__func__ 则是该方法所对应的函数对象。

9.8. 迭代器

到目前为止，您可能已经注意到大多数容器对象都可以使用 for 语句:

for element in [1, 2, 3]:
 print(element)
for element in (1, 2, 3):
 print(element)
for key in {'one':1, 'two':2}:
 print(key)
for char in "123":
 print(char)
for line in open("myfile.txt"):
 print(line, end='')

这种访问风格清晰、简洁又方便。 迭代器的使用非常普遍并使得 Python 成为一个统一的整体。 在幕后，for 语句会在容器对象上调用 iter()。 该函数返回一个定义了 __next__() 方法的迭代器对象，此方法将逐一访问容器中的元素。 当元素用尽时，__next__() 将引发 StopIteration 异常来通知终止 for 循环。 你可以使用 next() 内置函数来调用 __next__() 方法；这个例子显示了它的运作方式:

>>> s = 'abc'
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> next(it)
'a'
>>> next(it)
'b'
>>> next(it)
'c'
>>> next(it)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 next(it)
StopIteration

看过迭代器协议的幕后机制，给你的类添加迭代器行为就很容易了。 定义一个 __iter__() 方法来返回一个带有 __next__() 方法的对象。 如果类已定义了 __next__()，则 __iter__() 可以简单地返回 self:

class Reverse:
 """Iterator for looping over a sequence backwards."""
 def __init__(self, data):
 self.data = data
 self.index = len(data)

 def __iter__(self):
 return self

 def __next__(self):
 if self.index == 0:
 raise StopIteration
 self.index = self.index - 1
 return self.data[self.index]

>>> rev = Reverse('spam')
>>> iter(rev)
<__main__.Reverse object at 0x00A1DB50>
>>> for char in rev:
... print(char)
...
m
a
p
s

9.9. 生成器

Generator 是一个用于创建迭代器的简单而强大的工具。 它们的写法类似标准的函数，但当它们要返回数据时会使用 yield 语句。 每次对生成器调用 next() 时，它会从上次离开位置恢复执行（它会记住上次执行语句时的所有数据值）。 显示如何非常容易地创建生成器的示例如下:

def reverse(data):
 for index in range(len(data)-1, -1, -1):
 yield data[index]

>>> for char in reverse('golf'):
... print(char)
...
f
l
o
g

可以用生成器来完成的操作同样可以用前一节所描述的基于类的迭代器来完成。 但生成器的写法更为紧凑，因为它会自动创建 __iter__() 和 __next__() 方法。

另一个关键特性在于局部变量和执行状态会在每次调用之间自动保存。 这使得该函数相比使用 self.index 和 self.data 这种实例变量的方式更易编写且更为清晰。

除了会自动创建方法和保存程序状态，当生成器终结时，它们还会自动引发 StopIteration。 这些特性结合在一起，使得创建迭代器能与编写常规函数一样容易。

9.10. 生成器表达式

某些简单的生成器可以写成简洁的表达式代码，所用语法类似列表推导式，将外层为圆括号而非方括号。 这种表达式被设计用于生成器将立即被外层函数所使用的情况。 生成器表达式相比完整的生成器更紧凑但较不灵活，相比等效的列表推导式则更为节省内存。

示例:

>>> sum(i*i for i in range(10)) # sum of squares
285

>>> xvec = [10, 20, 30]
>>> yvec = [7, 5, 3]
>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin
>>> sine_table = {x: sin(x*pi/180) for x in range(0, 91)}

>>> unique_words = set(word for line in page for word in line.split())

>>> valedictorian = max((student.gpa, student.name) for student in graduates)

>>> data = 'golf'
>>> list(data[i] for i in range(len(data)-1, -1, -1))
['f', 'l', 'o', 'g']

备注

	1

	存在一个例外。 模块对象有一个秘密的只读属性 __dict__，它返回用于实现模块命名空间的字典；__dict__ 是属性但不是全局名称。 显然，使用这个将违反命名空间实现的抽象，应当仅被用于事后调试器之类的场合。

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

 10. 标准库简介

 导航

 	
 索引

 	
 模块 |

 	
 下一页 |

 	
 上一页 |

 	[image:]

 	Python »

 	
 zh_CN
 3.7.7
 文档 »

 	Python 教程 »

 	

 |

10. 标准库简介

10.1. 操作系统接口

os 模块提供了许多与操作系统交互的函数:

>>> import os
>>> os.getcwd() # Return the current working directory
'C:\\Python37'
>>> os.chdir('/server/accesslogs') # Change current working directory
>>> os.system('mkdir today') # Run the command mkdir in the system shell
0

一定要使用 import os 而不是 from os import * 。这将避免内建的 open() 函数被 os.open() 隐式替换掉，它们的使用方式大不相同。

内置的 dir() 和 help() 函数可用作交互式辅助工具，用于处理大型模块，如 os:

>>> import os
>>> dir(os)
<returns a list of all module functions>
>>> help(os)
<returns an extensive manual page created from the module's docstrings>

对于日常文件和目录管理任务， shutil 模块提供了更易于使用的更高级别的接口:

>>> import shutil
>>> shutil.copyfile('data.db', 'archive.db')
'archive.db'
>>> shutil.move('/build/executables', 'installdir')
'installdir'

10.2. 文件通配符

glob 模块提供了一个在目录中使用通配符搜索创建文件列表的函数:

>>> import glob
>>> glob.glob('*.py')
['primes.py', 'random.py', 'quote.py']

10.3. 命令行参数

通用实用程序脚本通常需要处理命令行参数。这些参数作为列表存储在 sys 模块的 argv 属性中。例如，以下输出来自在命令行运行 python demo.py one two three

>>> import sys
>>> print(sys.argv)
['demo.py', 'one', 'two', 'three']

argparse 模块提供了一种更复杂的机制来处理命令行参数。 以下脚本可提取一个或多个文件名，并可选择要显示的行数:

import argparse

parser = argparse.ArgumentParser(prog = 'top',
 description = 'Show top lines from each file')
parser.add_argument('filenames', nargs='+')
parser.add_argument('-l', '--lines', type=int, default=10)
args = parser.parse_args()
print(args)

当在通过 python top.py --lines=5 alpha.txt beta.txt 在命令行运行时，该脚本会将 args.lines 设为 5 并将 args.filenames 设为 ['alpha.txt', 'beta.txt']。

10.4. 错误输出重定向和程序终止

sys 模块还具有 stdin ， stdout 和 stderr 的属性。后者对于发出警告和错误消息非常有用，即使在 stdout 被重定向后也可以看到它们:

>>> sys.stderr.write('Warning, log file not found starting a new one\n')
Warning, log file not found starting a new one

终止脚本的最直接方法是使用 sys.exit() 。

10.5. 字符串模式匹配

re 模块为高级字符串处理提供正则表达式工具。对于复杂的匹配和操作，正则表达式提供简洁，优化的解决方案:

>>> import re
>>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')
['foot', 'fell', 'fastest']
>>> re.sub(r'(\b[a-z]+) \1', r'\1', 'cat in the the hat')
'cat in the hat'

当只需要简单的功能时，首选字符串方法因为它们更容易阅读和调试:

>>> 'tea for too'.replace('too', 'two')
'tea for two'

10.6. 数学

math 模块提供对浮点数学的底层C库函数的访问:

>>> import math
>>> math.cos(math.pi / 4)
0.70710678118654757
>>> math.log(1024, 2)
10.0

random 模块提供了进行随机选择的工具:

>>> import random
>>> random.choice(['apple', 'pear', 'banana'])
'apple'
>>> random.sample(range(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
>>> random.random() # random float
0.17970987693706186
>>> random.randrange(6) # random integer chosen from range(6)
4

statistics 模块计算数值数据的基本统计属性（均值，中位数，方差等）:

>>> import statistics
>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>> statistics.mean(data)
1.6071428571428572
>>> statistics.median(data)
1.25
>>> statistics.variance(data)
1.3720238095238095

SciPy项目 <https://scipy.org> 有许多其他模块用于数值计算。

10.7. 互联网访问

有许多模块可用于访问互联网和处理互联网协议。其中两个最简单的 urllib.request 用于从URL检索数据，以及 smtplib 用于发送邮件:

>>> from urllib.request import urlopen
>>> with urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl') as response:
... for line in response:
... line = line.decode('utf-8') # Decoding the binary data to text.
... if 'EST' in line or 'EDT' in line: # look for Eastern Time
... print(line)

Nov. 25, 09:43:32 PM EST

>>> import smtplib
>>> server = smtplib.SMTP('localhost')
>>> server.sendmail('soothsayer@example.org', 'jcaesar@example.org',
... """To: jcaesar@example.org
... From: soothsayer@example.org
...
... Beware the Ides of March.
... """)
>>> server.quit()

（请注意，第二个示例需要在localhost上运行的邮件服务器。）

10.8. 日期和时间

datetime 模块提供了以简单和复杂的方式操作日期和时间的类。虽然支持日期和时间算法，但实现的重点是有效的成员提取以进行输出格式化和操作。该模块还支持可感知时区的对象。

>>> # dates are easily constructed and formatted
>>> from datetime import date
>>> now = date.today()
>>> now
datetime.date(2003, 12, 2)
>>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")
'12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'

>>> # dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday
>>> age.days
14368

10.9. 数据压缩

常见的数据存档和压缩格式由模块直接支持，包括：zlib, gzip, bz2, lzma, zipfile 和 tarfile。:

>>> import zlib
>>> s = b'witch which has which witches wrist watch'
>>> len(s)
41
>>> t = zlib.compress(s)
>>> len(t)
37
>>> zlib.decompress(t)
b'witch which has which witches wrist watch'
>>> zlib.crc32(s)
226805979

10.10. 性能测量

一些Python用户对了解同一问题的不同方法的相对性能产生了浓厚的兴趣。 Python提供了一种可以立即回答这些问题的测量工具。

例如，元组封包和拆包功能相比传统的交换参数可能更具吸引力。timeit 模块可以快速演示在运行效率方面一定的优势:

>>> from timeit import Timer
>>> Timer('t=a; a=b; b=t', 'a=1; b=2').timeit()
0.57535828626024577
>>> Timer('a,b = b,a', 'a=1; b=2').timeit()
0.54962537085770791

与 timeit 的精细粒度级别相反， profile 和 pstats 模块提供了用于在较大的代码块中识别时间关键部分的工具。

10.11. 质量控制

开发高质量软件的一种方法是在开发过程中为每个函数编写测试，并在开发过程中经常运行这些测试。

doctest 模块提供了一个工具，用于扫描模块并验证程序文档字符串中嵌入的