
实现描述器
发布 3.7.5

Guido van Rossum
and the Python development team

十二月 11, 2019
Python Software Foundation

Email: docs@python.org

Contents

1 摘要 2

2 定义和简介 2

3 描述器协议 2

4 发起调用描述器 2

5 描述符示例 3

6 Properties 4

7 函数和方法 5

8 Static Methods and Class Methods 6

作者 Raymond Hettinger
联系方式 <python at rcn dot com>

目录

• 实现描述器
– 摘要
– 定义和简介
– 描述器协议
– 发起调用描述器
– 描述符示例
– Properties

– 函数和方法

1

– Static Methods and Class Methods

1 摘要

Defines descriptors, summarizes the protocol, and shows how descriptors are called. Examines a custom descriptor
and several built-in Python descriptors including functions, properties, static methods, and class methods. Shows how
each works by giving a pure Python equivalent and a sample application.
学习描述器不仅能提供接触到更多工具集的途径，还能更深地理解 Python工作的原理并更加体会到其设
计的优雅性。

2 定义和简介

一般地，一个描述器是一个包含“绑定行为”的对象，对其属性的访问被描述器协议中定义的方法覆盖。
这些方法有：__get__()，__set__()和 __delete__()。如果某个对象中定义了这些方法中的任意
一个，那么这个对象就可以被称为一个描述器。

属性访问的默认行为是从一个对象的字典中获取、设置或删除属性。例如，a.x 的查找顺序会从 a.
__dict__['x']开始，然后是 type(a).__dict__['x']，接下来依次查找 type(a)的基类，不包
括元类。如果找到的值是定义了某个描述器方法的对象，则 Python可能会重载默认行为并转而发起调用
描述器方法。这具体发生在优先级链的哪个环节则要根据所定义的描述器方法及其被调用的方式来决定。

Descriptors are a powerful, general purpose protocol. They are the mechanism behind properties, methods, static
methods, class methods, and super(). They are used throughout Python itself to implement the new style classes
introduced in version 2.2. Descriptors simplify the underlying C-code and offer a flexible set of new tools for everyday
Python programs.

3 描述器协议

descr.__get__(self, obj, type=None) -> value

descr.__set__(self, obj, value) -> None

descr.__delete__(self, obj) -> None

That is all there is to it. Define any of these methods and an object is considered a descriptor and can override default
behavior upon being looked up as an attribute.
If an object defines both __get__() and __set__(), it is considered a data descriptor. Descriptors that only
define __get__() are called non-data descriptors (they are typically used for methods but other uses are possible).
Data and non-data descriptors differ in how overrides are calculated with respect to entries in an instance’s dictionary.
If an instance’s dictionary has an entry with the same name as a data descriptor, the data descriptor takes precedence.
If an instance’s dictionary has an entry with the same name as a non-data descriptor, the dictionary entry takes
precedence.
To make a read-only data descriptor, define both __get__() and __set__() with the __set__() raising
an AttributeError when called. Defining the __set__() method with an exception raising placeholder is
enough to make it a data descriptor.

4 发起调用描述器

A descriptor can be called directly by its method name. For example, d.__get__(obj).

2

Alternatively, it is more common for a descriptor to be invoked automatically upon attribute access. For example,
obj.d looks up d in the dictionary of obj. If d defines the method __get__(), then d.__get__(obj) is
invoked according to the precedence rules listed below.
The details of invocation depend on whether obj is an object or a class.
For objects, the machinery is in object.__getattribute__() which transforms b.x into type(b).
__dict__['x'].__get__(b, type(b)). The implementation works through a precedence chain that
gives data descriptors priority over instance variables, instance variables priority over non-data descriptors,
and assigns lowest priority to __getattr__() if provided. The full C implementation can be found in
PyObject_GenericGetAttr() in Objects/object.c.
For classes, the machinery is in type.__getattribute__() which transforms B.x into B.
__dict__['x'].__get__(None, B). In pure Python, it looks like:

def __getattribute__(self, key):
"Emulate type_getattro() in Objects/typeobject.c"
v = object.__getattribute__(self, key)
if hasattr(v, '__get__'):

return v.__get__(None, self)
return v

The important points to remember are:
• descriptors are invoked by the __getattribute__() method
• overriding __getattribute__() prevents automatic descriptor calls
• object.__getattribute__() and type.__getattribute__() make different calls to
__get__().

• data descriptors always override instance dictionaries.
• non-data descriptors may be overridden by instance dictionaries.

The object returned by super() also has a custom __getattribute__() method for invoking descriptors.
The call super(B, obj).m() searches obj.__class__.__mro__ for the base class A immediately follow-
ing B and then returns A.__dict__['m'].__get__(obj, B). If not a descriptor, m is returned unchanged.
If not in the dictionary, m reverts to a search using object.__getattribute__().
The implementation details are in super_getattro() in Objects/typeobject.c. and a pure Python equivalent can
be found in Guido’s Tutorial.
The details above show that the mechanism for descriptors is embedded in the __getattribute__() methods
for object, type, and super(). Classes inherit this machinery when they derive from object or if they
have a meta-class providing similar functionality. Likewise, classes can turn-off descriptor invocation by overriding
__getattribute__().

5 描述符示例

The following code creates a class whose objects are data descriptors which print a message for each get or set.
Overriding __getattribute__() is alternate approach that could do this for every attribute. However, this
descriptor is useful for monitoring just a few chosen attributes:

class RevealAccess(object):
"""A data descriptor that sets and returns values

normally and prints a message logging their access.
"""

def __init__(self, initval=None, name='var'):
self.val = initval
self.name = name

(下页继续)

3

https://github.com/python/cpython/tree/3.7/Objects/object.c
https://github.com/python/cpython/tree/3.7/Objects/typeobject.c
https://www.python.org/download/releases/2.2.3/descrintro/#cooperation

(续上页)
def __get__(self, obj, objtype):

print('Retrieving', self.name)
return self.val

def __set__(self, obj, val):
print('Updating', self.name)
self.val = val

>>> class MyClass(object):
... x = RevealAccess(10, 'var "x"')
... y = 5
...
>>> m = MyClass()
>>> m.x
Retrieving var "x"
10
>>> m.x = 20
Updating var "x"
>>> m.x
Retrieving var "x"
20
>>> m.y
5

The protocol is simple and offers exciting possibilities. Several use cases are so common that they have been packaged
into individual function calls. Properties, bound methods, static methods, and class methods are all based on the
descriptor protocol.

6 Properties

Calling property() is a succinct way of building a data descriptor that triggers function calls upon access to an
attribute. Its signature is:

property(fget=None, fset=None, fdel=None, doc=None) -> property attribute

The documentation shows a typical use to define a managed attribute x:

class C(object):
def getx(self): return self.__x
def setx(self, value): self.__x = value
def delx(self): del self.__x
x = property(getx, setx, delx, "I'm the 'x' property.")

To see how property() is implemented in terms of the descriptor protocol, here is a pure Python equivalent:

class Property(object):
"Emulate PyProperty_Type() in Objects/descrobject.c"

def __init__(self, fget=None, fset=None, fdel=None, doc=None):
self.fget = fget
self.fset = fset
self.fdel = fdel
if doc is None and fget is not None:

doc = fget.__doc__
self.__doc__ = doc

def __get__(self, obj, objtype=None):
if obj is None:

(下页继续)

4

(续上页)
return self

if self.fget is None:
raise AttributeError("unreadable attribute")

return self.fget(obj)

def __set__(self, obj, value):
if self.fset is None:

raise AttributeError("can't set attribute")
self.fset(obj, value)

def __delete__(self, obj):
if self.fdel is None:

raise AttributeError("can't delete attribute")
self.fdel(obj)

def getter(self, fget):
return type(self)(fget, self.fset, self.fdel, self.__doc__)

def setter(self, fset):
return type(self)(self.fget, fset, self.fdel, self.__doc__)

def deleter(self, fdel):
return type(self)(self.fget, self.fset, fdel, self.__doc__)

The property() builtin helps whenever a user interface has granted attribute access and then subsequent changes
require the intervention of a method.
For instance, a spreadsheet class may grant access to a cell value through Cell('b10').value. Subsequent
improvements to the program require the cell to be recalculated on every access; however, the programmer does not
want to affect existing client code accessing the attribute directly. The solution is to wrap access to the value attribute
in a property data descriptor:

class Cell(object):
. . .
def getvalue(self):

"Recalculate the cell before returning value"
self.recalc()
return self._value

value = property(getvalue)

7 函数和方法

Python’s object oriented features are built upon a function based environment. Using non-data descriptors, the two
are merged seamlessly.
Class dictionaries store methods as functions. In a class definition, methods are written using def or lambda, the
usual tools for creating functions. Methods only differ from regular functions in that the first argument is reserved for
the object instance. By Python convention, the instance reference is called self but may be called this or any other
variable name.
To support method calls, functions include the __get__() method for binding methods during attribute access.
This means that all functions are non-data descriptors which return bound methods when they are invoked from an
object. In pure Python, it works like this:

class Function(object):
. . .
def __get__(self, obj, objtype=None):

"Simulate func_descr_get() in Objects/funcobject.c"
if obj is None:

(下页继续)

5

(续上页)
return self

return types.MethodType(self, obj)

Running the interpreter shows how the function descriptor works in practice:

>>> class D(object):
... def f(self, x):
... return x
...
>>> d = D()

Access through the class dictionary does not invoke __get__.
It just returns the underlying function object.
>>> D.__dict__['f']
<function D.f at 0x00C45070>

Dotted access from a class calls __get__() which just returns
the underlying function unchanged.
>>> D.f
<function D.f at 0x00C45070>

The function has a __qualname__ attribute to support introspection
>>> D.f.__qualname__
'D.f'

Dotted access from an instance calls __get__() which returns the
function wrapped in a bound method object
>>> d.f
<bound method D.f of <__main__.D object at 0x00B18C90>>

Internally, the bound method stores the underlying function,
the bound instance, and the class of the bound instance.
>>> d.f.__func__
<function D.f at 0x1012e5ae8>
>>> d.f.__self__
<__main__.D object at 0x1012e1f98>
>>> d.f.__class__
<class 'method'>

8 Static Methods and Class Methods

Non-data descriptors provide a simple mechanism for variations on the usual patterns of binding functions into meth-
ods.
To recap, functions have a __get__() method so that they can be converted to a method when accessed as at-
tributes. The non-data descriptor transforms an obj.f(*args) call into f(obj, *args). Calling klass.
f(*args) becomes f(*args).
This chart summarizes the binding and its two most useful variants:

Transformation Called from an Object Called from a Class
function –函数 f(obj, *args) f(*args)
静态方法 f(*args) f(*args)
类方法 f(type(obj), *args) f(klass, *args)

Static methods return the underlying function without changes. Calling either c.f or C.f is the equivalent of a direct
lookup into object.__getattribute__(c, "f") or object.__getattribute__(C, "f"). As
a result, the function becomes identically accessible from either an object or a class.

6

Good candidates for static methods are methods that do not reference the self variable.
For instance, a statistics package may include a container class for experimental data. The class provides normal
methods for computing the average, mean, median, and other descriptive statistics that depend on the data. However,
there may be useful functions which are conceptually related but do not depend on the data. For instance, erf(x) is
handy conversion routine that comes up in statistical work but does not directly depend on a particular dataset. It can
be called either from an object or the class: s.erf(1.5) --> .9332 or Sample.erf(1.5) --> .9332.
Since staticmethods return the underlying function with no changes, the example calls are unexciting:

>>> class E(object):
... def f(x):
... print(x)
... f = staticmethod(f)
...
>>> E.f(3)
3
>>> E().f(3)
3

Using the non-data descriptor protocol, a pure Python version of staticmethod() would look like this:

class StaticMethod(object):
"Emulate PyStaticMethod_Type() in Objects/funcobject.c"

def __init__(self, f):
self.f = f

def __get__(self, obj, objtype=None):
return self.f

Unlike static methods, class methods prepend the class reference to the argument list before calling the function. This
format is the same for whether the caller is an object or a class:

>>> class E(object):
... def f(klass, x):
... return klass.__name__, x
... f = classmethod(f)
...
>>> print(E.f(3))
('E', 3)
>>> print(E().f(3))
('E', 3)

This behavior is useful whenever the function only needs to have a class reference and does not care about any
underlying data. One use for classmethods is to create alternate class constructors. In Python 2.3, the classmethod
dict.fromkeys() creates a new dictionary from a list of keys. The pure Python equivalent is:

class Dict(object):
. . .
def fromkeys(klass, iterable, value=None):

"Emulate dict_fromkeys() in Objects/dictobject.c"
d = klass()
for key in iterable:

d[key] = value
return d

fromkeys = classmethod(fromkeys)

Now a new dictionary of unique keys can be constructed like this:

>>> Dict.fromkeys('abracadabra')
{'a': None, 'r': None, 'b': None, 'c': None, 'd': None}

7

Using the non-data descriptor protocol, a pure Python version of classmethod() would look like this:

class ClassMethod(object):
"Emulate PyClassMethod_Type() in Objects/funcobject.c"

def __init__(self, f):
self.f = f

def __get__(self, obj, klass=None):
if klass is None:

klass = type(obj)
def newfunc(*args):

return self.f(klass, *args)
return newfunc

8

	摘要
	定义和简介
	描述器协议
	发起调用描述器
	描述符示例
	Properties
	函数和方法
	Static Methods and Class Methods

