Unicode '}E’ 3]
%75 3.6.14

Guido van Rossum
and the Python development team

7~ H 28, 2021

Python Software Foundation
Email: docs@python.org

Contents

1 Unicode fiftiA 2
1.1 History of Character Codes i e e 2
1.2 B 3
L3 il . o o, 3
| &/ 4

2 Python %} Unicode [t 3%+ 4
2.0 FERFEREIL 5
22 BN L 6
2.3 Python JFACAEHAY Unicode U . 0 . o o o o e e 6
2.4 Unicode JETE . . . o o o e 7
2.5 Unicode IEMZEIETN .« o o o 8
2.6 BEIER . 8

3 Unicode H#iiMi% s 8
3.1 Unicode STEEDL © o o o o e 9
32 R Unicode BIZRFRIETT . . e 10
33 ZBETHR . . s, 11

4 i 1

#5l 12

BARA 1.12

This HOWTO discusses Python support for Unicode, and explains various problems that people commonly encounter
when trying to work with Unicode.

1 Unicode #fiA

1.1 History of Character Codes

In 1968, the American Standard Code for Information Interchange, better known by its acronym ASCII, was standardized.
ASCII defined numeric codes for various characters, with the numeric values running from O to 127. For example, the

4)

lowercase letter ‘a’ is assigned 97 as its code value.

<) [

ASCII was an American-developed standard, so it only defined unaccented characters. There wasan ‘e’ ,butno ‘é
or ‘I’ . This meant that languages which required accented characters couldn’ t be faithfully represented in ASCIL.
(Actually the missing accents matter for English, too, which contains words such as ‘naive’ and ‘café’ , and some
publications have house styles which require spellings such as ‘codperate’ .)

For a while people just wrote programs that didn’ t display accents. In the mid-1980s an Apple II BASIC program written
by a French speaker might have lines like these:

PRINT "MISE A JOUR TERMINEE"
PRINT "PARAMETRES ENREGISTRES"

Those messages should contain accents (terminée, parametre, enregistrés) and they just look wrong to someone who can
read French.

In the 1980s, almost all personal computers were 8-bit, meaning that bytes could hold values ranging from O to 255.
ASCII codes only went up to 127, so some machines assigned values between 128 and 255 to accented characters.
Different machines had different codes, however, which led to problems exchanging files. Eventually various commonly
used sets of values for the 128-255 range emerged. Some were true standards, defined by the International Organization
for Standardization, and some were de facto conventions that were invented by one company or another and managed to
catch on.

255 characters aren’ t very many. For example, you can’ t fit both the accented characters used in Western Europe and
the Cyrillic alphabet used for Russian into the 128-255 range because there are more than 128 such characters.

You could write files using different codes (all your Russian files in a coding system called KOIS, all your French files in
a different coding system called Latinl), but what if you wanted to write a French document that quotes some Russian
text? In the 1980s people began to want to solve this problem, and the Unicode standardization effort began.

Unicode started out using 16-bit characters instead of 8-bit characters. 16 bits means you have 216 = 65,536 distinct
values available, making it possible to represent many different characters from many different alphabets; an initial goal
was to have Unicode contain the alphabets for every single human language. It turns out that even 16 bits isn’ t enough
to meet that goal, and the modern Unicode specification uses a wider range of codes, O through 1,114,111 (0Ox10FFFF
in base 16).

There’ s a related ISO standard, ISO 10646. Unicode and ISO 10646 were originally separate efforts, but the specifications
were merged with the 1.1 revision of Unicode.

(This discussion of Unicode’s history is highly simplified. The precise historical details aren’ t necessary for understanding
how to use Unicode effectively, but if you’ re curious, consult the Unicode consortium site listed in the References or the
Wikipedia entry for Unicode for more information.)

https://en.wikipedia.org/wiki/Unicode#History

1.2 X

A character is the smallest possible component of a text. ‘A’ , ‘B’ , ‘C’ , etc., are all different characters. So are
‘B’ and ‘I’ . Characters are abstractions, and vary depending on the language or context you’ re talking about. For
example, the symbol for ohms () is usually drawn much like the capital letter omega (Q2) in the Greek alphabet (they
may even be the same in some fonts), but these are two different characters that have different meanings.

The Unicode standard describes how characters are represented by code points. A code point is an integer value, usually
denoted in base 16. In the standard, a code point is written using the notation U+12CA to mean the character with value
Ox12ca (4,810 decimal). The Unicode standard contains a lot of tables listing characters and their corresponding code
points:

0061 'a'; LATIN SMALL LETTER A
0062 'b'; LATIN SMALL LETTER B
0063 'c'; LATIN SMALL LETTER C
007B '{'; LEFT CURLY BRACKET

Strictly, these definitions imply that it’ s meaningless to say ‘this is character U+12CA’ . U+12CA is a code point,
which represents some particular character; in this case, it represents the character ‘ETHIOPIC SYLLABLE WI’ . In
informal contexts, this distinction between code points and characters will sometimes be forgotten.

O R W 1 ok R R N B PVIVE S0 7 Bl o 7 e NN i 5 N) A = S
AP ERIK-AY— 2, TER BT BT B 6 Y 71K . KiE7) Python AU ALMHLLIE , B Mg R/R
4 I I — IR P IR ST T RAR el 2 s Y - AR TR e i) AR

1.3 %RiL

To summarize the previous section: a Unicode string is a sequence of code points, which are numbers from O through
O0x10FFFF (1,114,111 decimal). This sequence needs to be represented as a set of bytes (meaning, values from O through
255) in memory. The rules for translating a Unicode string into a sequence of bytes are called an encoding.

The first encoding you might think of is an array of 32-bit integers. In this representation, the string “Python” would
look like this:

P vy t h o n
0x50 00 00 00 79 00 0O OO 74 00 00 00 68 00 00 00 6f 00 00 00 6e 00 00 00
o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23

XAFIRIT AR R, (HFE R LR
L R T5E R AL B g R T 1 A HE A]
2. AFHIR A . ZEEMISEVNT 127, B0 255, FrAMRZ 25 E#Z 0x00. LI F4FH takes 24 bytes

compared to the 6 bytes needed for an ASCII representation. Increased RAM usage doesn’ t matter too much
(desktop computers have gigabytes of RAM, and strings aren’ t usually that large), but expanding our usage of
disk and network bandwidth by a factor of 4 is intolerable.

3. HBAM C %L (W strlen()) AAE, NILTZOR M —E00 74T B AL
4. Many Internet standards are defined in terms of textual data, and can’ t handle content with embedded zero bytes.

Generally people don’ t use this encoding, instead choosing other encodings that are more efficient and convenient. UTF-8
is probably the most commonly supported encoding; it will be discussed below.

Encodings don’ t have to handle every possible Unicode character, and most encodings don’ t. The rules for converting
a Unicode string into the ASCII encoding, for example, are simple; for each code point:

1. If the code point is < 128, each byte is the same as the value of the code point.

2. If the code point is 128 or greater, the Unicode string can’ t be represented in this encoding. (Python raises a
UnicodeEncodeError exception in this case.)

Latin-1, also known as ISO-8859-1, is a similar encoding. Unicode code points 0-255 are identical to the Latin-1 values,
so converting to this encoding simply requires converting code points to byte values; if a code point larger than 255 is
encountered, the string can’ t be encoded into Latin-1.

Encodings don’ t have to be simple one-to-one mappings like Latin-1. Consider IBM’ s EBCDIC, which was used on
IBM mainframes. Letter values weren’ tin one block: ‘a’ through ‘i’ had values from 129 to 137, but ‘j’ through
‘r’ were 145 through 153. If you wanted to use EBCDIC as an encoding, you’ d probably use some sort of lookup table
to perform the conversion, but this is largely an internal detail.

UTF-8 is one of the most commonly used encodings. UTF stands for “Unicode Transformation Format” , and the 8’
means that 8-bit numbers are used in the encoding. (There are also a UTF-16 and UTF-32 encodings, but they are less
frequently used than UTF-8.) UTF-8 uses the following rules:

1 QSRS < 128, DU E 2 F 6 B A = (H s

2. WNSRRSAL >= 128, WAL 2. 3. 4 DNFRTA, ARG T 128 F1 255 2 [A].
UTE-8 A JU/MR 5 AR -

1. A RAAEFRATAR] Unicode 57

2. A Unicode string is turned into a sequence of bytes containing no embedded zero bytes. This avoids byte-ordering
issues, and means UTF-8 strings can be processed by C functions such as st rcpy () and sent through protocols
that can’ t handle zero bytes.

3. ASCIL P47 th e o o VAR UTF-8 SUAR,
4. UTF-8 M4 %% REHH Al 1 — P #om.

5. MR TR RELR, WATVAFR T —A UTF-8 3 ST U6 L8 BRI IR 47 . BENLAY 8 £
il th A KT RER 2 A2 UTF-8 4ifity .

14 SEH
The Unicode Consortium site has character charts, a glossary, and PDF versions of the Unicode specification. Be prepared
for some difficult reading. A chronology of the origin and development of Unicode is also available on the site.

To help understand the standard, Jukka Korpela has written an introductory guide to reading the Unicode character tables.

Another good introductory article was written by Joel Spolsky. If this introduction didn’ t make things clear to you, you
should try reading this alternate article before continuing.

Wikipedia 2% H i AR WS 745 4i04” M UTE-8 f2H , Bl

2 Python 3t Unicode By% %

BAERE A Tf# T Unicode [3EAfHIE, RATLAE T Python) Unicode HF1: .

http://www.unicode.org
http://www.unicode.org/history/
https://www.cs.tut.fi/~jkorpela/unicode/guide.html
http://www.joelonsoftware.com/articles/Unicode.html
https://en.wikipedia.org/wiki/Character_encoding
https://en.wikipedia.org/wiki/UTF-8

21 FRRRT

Since Python 3.0, the language features a st r type that contain Unicode characters, meaning any string created using

"unicode rocks!", 'unicode rocks! "', or the triple-quoted string syntax is stored as Unicode.
Python JEA TS BRIN G2 UTF-8, [H] ABHAEF A+ 42 & Unicode 17 :
try:

with open('/tmp/input.txt', 'r') as f:

except OSError:
'File not found' error message.
print ("Fichier non trouvé")

You can use a different encoding from UTF-8 by putting a specially-formatted comment as the first or second line of the
source code:

—*- coding: <encoding name> —*-—

S7E: Python 3 36 3 FFEARIU I 1] Unicode 74

répertoire = "/tmp/records.log"
with open(répertoire, "w") as f:
f.write("test\n")

WERTCRAE i TP AJEA AT, B0 T AR AU OR B ASCIL 4 A ACRS G] DAYE 545 5 i
JAFSCFPH) . (RAE RS, FTRESEBIEA RS Delta PRI A u e AT,) :

>>> "\N{GREEK CAPITAL LETTER DELTA}" # Using the character name

'"\u0394"
>>> "\u0394" # Using a 16-bit hex value
'"\u0394"
>>> "\U00000394" # Using a 32-bit hex value
'"\u0394"

AN, ATPAH bytes i decode () FERIE— N FAFF o A ERFTLAFEZ encoding %, HANRTPASH UTF-8
. PAJTHERY errors 235,

Fr JCEAR I S RS A AT R EA T80T , errors ZHL4EE T WV KRS . ES B EVEEFIAZ "strict”
(fii% UnicodeDecodeError J¥). 'replace' (Jl U+FFFD., REPLACEMENT CHARACTER), 'ignore'
U247 Unicode 55 i 2:48), 8 'backslashreplace' (i A— \xNN % J¥5). PAF/RBIE R
TIXEERF S5

>>> b'\x80abc'.decode ("utf-8", "strict")
Traceback (most recent call last):

UnicodeDecodeError: 'utf-8' codec can't decode byte 0x80 in position O:
invalid start byte
>>> b'\x80abc'.decode ("utf-8", "replace")

"\ufffdabc'

>>> b'\x80abc'.decode ("utf-8", "backslashreplace")
"\\x80abc"

>>> b'\x80abc'.decode ("utf-8", "ignore")

'abc!

Encodings are specified as strings containing the encoding’ s name. Python 3.2 comes with roughly 100 different en-
codings; see the Python Library Reference at standard-encodings for a list. Some encodings have multiple names; for
example, ' latin-1"', 'iso_8859_1"and '8859’ are all synonyms for the same encoding.

FIH N EBREL chr () AT AR EAFY Unicode “FAFHR , X eRE AT 52 B854, HaR [0 60 B0 B i (67 1Y
KJZ R 119 Unicode “FAFHR . WEKE ord () BHIHEAE, SHCN RN FRFN Unicode FAFH, IR BITEAL
=

>>> chr (57344)
"\ue000"'

>>> ord('\ue000"')
57344

2.2 BiAFT

bytes.decode () Wi 2 str.encode () , B £k [Unicode FfFH) bytes B, B HERK
encoding AT T Hit .

S errors I E X5 decode () FEME, (B E L0 HER) handler, [T 'strict' . 'ignore'
'replace' (XHBf&HHA NS EHbi TEREWFERF) , 0F 'xmlcharrefreplace' (A —4> XML
FE5). backslashreplace (3fi A—4> \uNNNN & ¥ J¥%1) il namereplace (FHA—4 \N{...}
5 UTPA)

LA BT 1A R 4

>>> u = chr(40960) + 'abcd' + chr(1972)
>>> u.encode ('utf-8")
b'\xea\x80\x80abcd\xde\xb4'

>>> u.encode ('ascii')

Traceback (most recent call last):

UnicodeEncodeError: 'ascii' codec can't encode character '\ua000' in
position 0: ordinal not in range (128)

>>> u.encode('ascii', 'ignore')

b'abcd'

>>> u.encode('ascii', 'replace')

b'?abcd?"’

>>> u.encode('ascii', 'xmlcharrefreplace')

b'ꀀ abcd޴ "

>>> u.encode('ascii', 'backslashreplace')

b'\\ua000abcd\\u07b4"

>>> u.encode('ascii', 'namereplace')

b'"\\N{YI SYLLABLE IT}abcd\\uO7b4'

FAFFEM A5 170] e B A A IRZ B AL, (2T codecs B, & BSCBUBAY SR AR 30, WA R 2T %
codecs FibR, AT IRILER IR 0] 1) i 5 0 AR R RE # HEOAIRE — 28, AR, S 5B s =2 — T
AT SS . A SUR S8 Sz i,

2.3 Python {84 aY Unicode =

1t Python JEACHH, AIDAM] \u B SUFSIH 545 E) Unicode Iz, %75 R 4 MR AAY 7N BEHIEL
Fo \UFESUFHIELRML, HEH 8 Ao b fildles, mAR 44

>>> s = "a\xac\ul234\u20ac\U00008000"

MM two-digit hex escape

ANANAAN four—-digit Unicode escape

ANANNANAAN eight—-digit Unicode escape
[

e

>>> [ord(c) for c in s]
[97, 172, 4660, 8364, 32768]

KERT 127 BRSSO, B AR Z At A m R, (Ha R s 2R L2 E5 74, XEBEMREA,
BUFREFHERRAEERHEMEAESNES SN . WaTAH N ERE chr () SEEFAH, (HEE
=z k.

HAROLS , #A S RE N BHE R A0 AS 135 SO . S0 RE T B4 1 25 v 2 4 Python JRACRS , ZAR4s2EAE H 2R
RREFLRE, FAEIB T E R4

BOATEOLR , Python SZRFPA UTF-8 A4 SURACHS , (HANR A IS A9 9afS , WLF-a] DAGE AT 4ihS .
BRI SR S — AT AT S — DRk R R A -

#!/usr/bin/env python
—*— coding: latin-1 —*-

u = 'abcdé'
print (ord(ul[-1]))

bIRTERA) RIFOR H T Emacs 1487 U RHAS ST . Emacs SCRRFZ AN [FBYAS&E, {H Python {0 HF
“HiRd” . —*— 5 n] Emacs ARBHIZ R EFIRIT : XX Python {& A (A X, Hig—FZyE. Python 7E71RE
1, coding: name 5{ coding=name ,

URBAT AR, BRI F 2 BT 2 21 UTE-8., B2 {F R 24 PEP 263 .

2.4 Unicode B4

The Unicode specification includes a database of information about code points. For each defined code point, the infor-
mation includes the character’ s name, its category, the numeric value if applicable (Unicode has characters representing
the Roman numerals and fractions such as one-third and four-fifths). There are also properties related to the code point’
s use in bidirectional text and other display-related properties.

PAT R 7R TIUDN AR, T B — R AR

import unicodedata
u = chr(233) + chr(0x0bf2) + chr(3972) + chr(6000) + chr(13231)
for i, c in enumerate(u):

print (i, ' ' % ord(c), unicodedata.category(c), end=" ")

print (unicodedata.name (c))

Get numeric value of second character
print (unicodedata.numeric (ufll]))

Has T, XARFHTEIH

0 00e9 L1 LATIN SMALL LETTER E WITH ACUTE
1 Obf2 No TAMIL NUMBER ONE THOUSAND

2 0f84 Mn TIBETAN MARK HALANTA

3 1770 Lo TAGBANWA LETTER SA

4 33af So SQUARE RAD OVER S SQUARED
1000.0

The category codes are abbreviations describing the nature of the character. These are grouped into categories such as
“Letter” , “Number” , “Punctuation” ,or “Symbol” , which in turn are broken up into subcategories. To take the
codes from the above output, 'L1' means ‘Letter, lowercase’ , 'No' means “Number, other” , 'Mn'is “Mark,
nonspacing” , and 'So' is “Symbol, other” . See the General Category Values section of the Unicode Character
Database documentation for a list of category codes.

https://www.python.org/dev/peps/pep-0263
http://www.unicode.org/reports/tr44/#General_Category_Values
http://www.unicode.org/reports/tr44/#General_Category_Values

2.5 Unicode FEMFiER

re FEH T FR K IE M Fk 28] DU F35 B sl F A e Rt . A — SRk A4, Hean \d i \w B
AR S, BB T VU EC A 202 DL BRI 2 FAF R TR I . B, \d K5 DR 235 5 W i AT
[0-91 , (HXFFRFERAILR 'Nd " BRI AR 74T .

IR B R ER AL S T BRI R T B S R 5T

import re
p = re.compile (r'\d+")

s = "Over \uOe55\u0e57 57 flavours"
m = p.search(s)
print (repr (m.group()))

PATIS, \d+ RFPEAC EFRELCT TR R . 4121 compile () 2BEHYE re . ASCIT f5idi, \d+ ML
%% “577’0

FAHth, \w FFPLAC L Fh Unicode FA4F, (HXF T8 M AL ULHE (a-2zA-20-9_1 , WIR$EE re.ASCIT,
\s *° FILE Unicode EMLH [\t\n\r\f\v],

2.6 S0

#F Python [Unicode 37Ff, HAtif A —LEAREFIYIFIE :
* J{] Python 3 4bFSZAS S, {3 Nick Coghlan,
* Pragmatic Unicode, a PyCon 2012 presentation by Ned Batchelder.
str ZEAIHE Python JE S22 WY textseq HH N .
unicodedata B SCRY
codecs BB SOR

Marc-André Lemburg ¥£ EuroPython 2002 i 7 —M8i 4 “Python i Unicode” (PDF £J4T i) <https://downloads.
egenix.com/python/Unicode-EPC2002-Talk.pdf>‘_ {7~ SChR - %4140 i R i A% d5 T Python 2) Unicode 3
BT (o Unicode “FAFH AR A unicode, SCFEPA u HF3k).

3 Unicode #iEHNiES

BESR AL Unicode BB E L 1, T MBHUZ M A/ 1. W{ARRF Unicode FAFHR AR, Nfa
f Unicode 4 Al T4l ol e i) T g ?

FRH S AR AN B HARBOARTR], SO 28 T kA — T R H B89 2 2 15)5 A 3 FF Unicode
Bidn, XML fEbr#sfE 4 2R [5] Unicode % . 148 2% ¢ R Ed8 1211 5 Be . 32 #F Unicode {H, 7 H. SQL £ ifjth
HE1R [1] Unicode {H.,

TES N L B B4 7 2% 2 i, Unicode Bl i 2AE O R E I it . nTAH C5e Ui TAE: $1JF
—AICF, AR 8 AR5, ARG bytes. decode (encoding) XFIrHRabfTicd. HE, A
EFER AR AR N TR 5

RS 2 AT 2 — D ME; — Unicode FAF AT AL FATHE R WEIRZELMERZER/ANREL (Flan
1024 8 4096 7745 FEHOCCHE, BB ATEHAY AR R AT AE H 23] AN Unicode “FAFAYTRAT 771, X ol oh B0 5 i
PRACHATD . A —Fh R T RPN SO A AT, ARG TR, (X AR A AR KIWSCE T 2
BIEEHL 2 GB W30, sEFRE 2 GB i) RAM., (HALFEH NS E L [E /A — B a5 BAE A
[v] ISP A7 L 2 A 745 Hf B L Unicode A% .)

http://python-notes.curiousefficiency.org/en/latest/python3/text_file_processing.html
http://nedbatchelder.com/text/unipain.html
https://downloads.egenix.com/python/Unicode-EPC2002-Talk.pdf
https://downloads.egenix.com/python/Unicode-EPC2002-Talk.pdf

fidt oy 222 M) G2 MRS 2 1 KAl AR i AL) AN SE B G L o X R RS E 22 B : N E PR EL open ()
AT PUAR [— A SO R 4, XTI SR N R IR E M HIS, read () fl write () Sk
5% Unicode Z:%k. H%iH] open () Y encoding 1 errors Z{R1 0], S50 U [F] str.encode () fl bytes.
decode ()

UM SCFEEH Unicode 5 HEA i8R T

with open('unicode.txt', encoding='utf-8') as f:
for line in f:
print (repr (line))

WA DAE DR TIR SO, PAMERI SR S A

with open('test', encoding='utf-8', mode='w+') as f:
f.write ('\u4500 blah blah blah\n')
f.seek (0)
print (repr (f.readline() [:1]))

Unicode #ff U+FEFF JAEFITMIFIRIC (BOM) , Gl HAE N SUIFRIEE — D FARFS A, LATEIY A Sl I SCfF
AT o L2 (A0 UTF-16) JTEAESCEIT Sk H B BOM; 1R il AR iy, BOM Xf [S 45
—AFRFHA, FHAEBHOCO I SN R . XL gmis A 2RI, B4 T little-endian Al big-endian %3
Y “utf-16-le” HI “utf-16-be”, i —FFFE I T T H HA & 20 BOM.

In some areas, it is also convention to use a “BOM?” at the start of UTF-8 encoded files; the name is misleading since
UTF-8 is not byte-order dependent. The mark simply announces that the file is encoded in UTF-8. Use the ‘utf-8-sig’
codec to automatically skip the mark if present for reading such files.

3.1 Unicode {44

Most of the operating systems in common use today support filenames that contain arbitrary Unicode characters. Usually
this is implemented by converting the Unicode string into some encoding that varies depending on the system. For
example, Mac OS X uses UTF-8 while Windows uses a configurable encoding; on Windows, Python uses the name
“mbcs” to refer to whatever the currently configured encoding is. On Unix systems, there will only be a filesystem
encoding if you’ ve set the LANG or LC_CTYPE environment variables; if you haven’ t, the default encoding is UTF-8.

sys.getfilesystemencoding () PRAECRFIR B EAE Y[RGR H WGy, AT 33T gmad st B A 2,
BLXELIE. TETFF SO TR R, il L aRE AL Unicode SEAFERVE R U4, £ B Bk &3 i 4
i

= 'filename\u4500abc’
with open(filename, 'w') as f:
f.write('blah\n")

filename

os B R F L BB 42 Unicode SCF44, Wl os.stat () »

The os.listdir () function returns filenames and raises an issue: should it return the Unicode version of filenames,
or should it return bytes containing the encoded versions? os.listdir () will do both, depending on whether you
provided the directory path as bytes or a Unicode string. If you pass a Unicode string as the path, filenames will be
decoded using the filesystem’ s encoding and a list of Unicode strings will be returned, while passing a byte path will
return the filenames as bytes. For example, assuming the default filesystem encoding is UTF-8, running the following
program:

fn = 'filename\ud4500abc'
f = open(fn, 'w')
f.close()

(QA)

(£ 50

import os
print (os.listdir(b'."))
print (os.listdir('."))

AP T

amk:~$ python t.py
[b'filename\xed4\x94\x80abc', ...]
['filename\u4500abc', ...]

B PR E UTF-8 Sty Scfh44, 28 A5 N E Unicode AR .

Note that on most occasions, the Unicode APIs should be used. The bytes APIs should only be used on systems where
undecodable file names can be present, i.e. Unix systems.

3.2 iA%l Unicode BymiZHI5

AL T 22T 445 Unicode ARPRERPF) HDL .
REE I
FEFP R A A RAR B Unicode P47 Hf , RV AR UEATARRS I PR SR o it 0EA T 20 8«

AR A 5) AL LR Koet Unicode M5 ep AN AT R BESR 52, & A AL & (8 P b oAS [R 28) 5
FRERIS, o228 . WIMAME] A S s #es: RIAT str + bytes, W&k TypeError,
MR R 5 Web S BTSSR S2 (5 R URIS 5 AR NR P AR A iy 47 2 1, BT
NEHREZ AL, e B AR R A ARET A . AR ARSI AR, A2 g a1y AR
Wl AL] RER s — LA RAYSRIE, BIANS ASCILA @ —— R s Se e . Wb AR it 45 &
T HmAAEC, MIJEHAN, ROl T DAt P i) 5 R SO B e 2o g i 7 e

X mEDE 2 8 E TR

StreamRecoder JEn] PATEPI ARG (8] i HUEA TR, RO FitRs 200 #1 MBHRAL, BT MR
Z AR = #2 PR .

st A SCH: f SR Latin-1 4fid#%a, BIn[] streamRecoder f3& 51k [0] UTF-8 4 Al 7175 :

new_f = codecs.StreamRecoder (f,
en/decoder: used by read() to encode its results and
by write() to decode its input.
codecs.getencoder ('utf-8"'), codecs.getdecoder ('utf-8"),

reader/writer: used to read and write to the stream.
codecs.getreader ('latin-1"), codecs.getwriter ('latin-1"))

10

mEDAR AR F8Y L

Fra A ST, AROREE SO S, % /B 2087 R E Aiisig=S ASCI 3%, If H HAHAE
Fi B ASCIL#4r, WIRTFIH surrogateescape FHiRACHFEFF] 301

with open(fname, 'r', encoding="ascii", errors="surrogateescape") as f:
data = f.read()

make changes to the string 'data'
with open(fname + '.new', 'w',

encoding="ascii", errors="surrogateescape") as f:
f.write(data)

The surrogateescape error handler will decode any non-ASCII bytes as code points in the Unicode Private Use
Area ranging from U+DC80 to U+DCFF. These private code points will then be turned back into the same bytes when
the surrogateescape error handler is used when encoding the data and writing it back out.

3.3 &E MK

David Beazley 7. PyCon 2010 /i iJf 242 Python 3 fp A/t o, A —T3he 7 SCARM — b fl Bk r b 2 .

Marc-André Lemburg {75 () PDF ZJ%T i~ “ft Python #1455 343 Unicode R AR, WHE T T4 15 1H)
FIA KA [B AL AN A AL AR . X 28L04T (i Python 2.x.

Python Unicode 5L)i 42 Benjamin Peterson 7£ PyCon 2013 /i3, /18T Unicode £ Python 3.3 H¥ 3R
TN o

4 Fist

AW F 1 Andrew Kuchling 5 , J5, Alexander Belopolsky. Georg Brandl, Andrew Kuchling Fl Ezio Melotti
fET #1817,

Thanks to the following people who have noted errors or offered suggestions on this article: Eric Araujo, Nicholas Bastin,
Nick Coghlan, Marius Gedminas, Kent Johnson, Ken Krugler, Marc-André Lemburg, Martin von Lowis, Terry J. Reedy,
Chad Whitacre.

11

http://pyvideo.org/video/289/pycon-2010--mastering-python-3-io
https://downloads.egenix.com/python/LSM2005-Developing-Unicode-aware-applications-in-Python.pdf
http://pyvideo.org/video/1768/the-guts-of-unicode-in-python

#5l

P

Python #EFEN
PEP 263,7

12

	Unicode 概述
	History of Character Codes
	定义
	编码
	参考文献

	Python对Unicode的支持
	字符串类型
	转换为字节
	Python 源代码中的 Unicode 文字
	Unicode属性
	Unicode 正则表达式
	参考文献

	Unicode 数据的读写
	Unicode 文件名
	识别 Unicode 的编程技巧
	参考文献

	致谢
	索引

