The Python/C API
%75 3.6.12

Guido van Rossum
and the Python development team

+ A 06, 2020

Python Software Foundation
Email: docs@python.org

Contents

A3
1.1
1.2
1.3
1.4
15

BT

G, RAAMT VL

D T T T T T S
A Python
PEREE . .

R RS T k4 1

The Very High Level Layer

5V

L il

5.1

5.2

53

5.4 Querying the error indicator
55

5.6

5.7

5.8 Unicode Exception Objects
59

5.10

5.11

TH

6.1

6.2

6.3

6.4

6.5 %td marshal #4f: 58

6.6
6.7
6.8
6.9

Printingand clearing, ..

WS ..

Issuing warnings

Signal Handling
Exception Classes
Exception Objects

BEUAEEG] .
FRUESE®E . .
FRUEESIESRR .

BAERGSHRETE
BRI . . oo
RERRREW] ..o
SR

TS HOT I A R

ARG
P
i AR 5 SCRF U RE

10

11

12

G %)
7.1

A B .
T2 BB . o e e
R T - 17
T4 BEFIL . .
7.5 EACERPMIL . e
7.6 B . .
7T IHZEMPL .
FLRR 5)2
8.1 ELANIG
82 BUELNIZL . .
83 NG . . e
8.4 AN L e
8.5 ERBNIZ . . e
8.6 HABAFGL . ..
Initialization, Finalization, and Threads
9.1 Initializing and finalizing the interpretero e
0.2 Process-wide parameters i e
9.3 Thread State and the Global Interpreter Lock
9.4 Sub-interpreter SUpPport L. e e e e e e e e e e
95 BIEHAL . . .
9.6 AHTFIEREE . . o o o
9.7 mOIRER T .
MAFE B
101 ARaR e e
102 JFUHAITFIELL © o o
103 IAEEELT o o
104 SFRATIRE © o o e e e e e
105 HEXINIETTEZE o o e e e e e
10.6 pymalloc 7] Hgs - . o o o e e e e e e
107 Bl o e e e e e
RSB Ry
L1 FEHE BB .« o e e e
11.2 Common Object SIrUCIUIES v v v v e o e
113 BAIRFG e
11.4 Number Object StrUCtUIES« . ottt e ettt e e e e e e e e e
11.5 Mapping Object Structures o v v i it et e e e e e e e e e e e e
11.6 Sequence Object StruCtUres o o v vt i e e e e e e e e e
11.7 Buffer Object Structures 0 i e e e e e e e e e e e
11.8 Async Object Structures o v i v v e
119 At SRR . . o o
API il ABI jig AR 4581
ENTCEES
SCRS L]

B.1 Python SCESIUTTERE o o e
P A lE
C.l o ZERIERIPTE o

53
53
58
61
62
63
64
70

73
73
75
80
106
110
113

129
129
130
133
138
139
140
141

143
143
144
145
146
147
148
149

151
151
152
156
170
171
171
172
173
174

177

179

191
191

193

C2 FRERE PAHA A Python FOZRERAIAE - o o o o o e

C3 BB VFATIE S i
D Copyright
#yl

The Python/C API, &5 3.6.12

AT IR T A B S TR Python MRRESHIA LB FEF Y C Al C++ FE/F ST Y APL. [] i}
A PAZ: 7 extending-index , A T g H I —BUEN, (HEATEANEIE APT K%L

Contents 1

The Python/C API, %5 3.6.12

2 Contents

CHAPTER 1

Python [i e 11 (APL) fiif5 C Al C++ F2fy R AT ATEZ A2 L F 151 Python f# s . % APLTE C++
HEFERT AL, RN TR LA, B HRFHAR Python/C APL. i] Python/C APL A7 PN EEARHY PR o 58—~
HURN THEE IS &7 Rk BN B Python MEREARDIAEN C L. X n] B fiei W BT 37 5
55 " ANPRER JERF Python MRS CHBER HI Y15 XA 9 38 5 AR AE— 1B) Y embedding Python..

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

VFZ APT BRI A B Python sX PR NARREAEIE I BN, KR A Python [1Y I FE 7
WHRERALEE YR, A RS FR Y H i A Python 2 B Je B S RV X &2 15

1.1 BaXH

{71} Python/C API It 2R 4l eR . AU E SCRTd 1 T i AT v A 4 35 2) AR 2 o

’ #include "Python.h"

XEWREC SN REL S <stdio.h>, <string.h>, <errno.h>, <limits.h>, <assert.h>
Ml <stdlib.h> (WEEFH).

{EfE: T Python W RES E L —LURBAEIL LY R G LS MAR ik SRR TIAL PiLAR 2 S, IR AR A S AT A f
K2 HT, AR L RSERLE Python . h,

Python.h s SCHY AR Fa] LAAAR (il A 3 AR Sk SCPRRTE SLRRR AN) B A RIS Py 2% _Py. DA _Py
TR PRt Python SCELNERGE IR, ARG g 52 (U o S5A4 R4 PRIAT PR B RS
Important: user code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes

the portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

The Python/C API, %5 3.6.12

BT 45 Python —i 7% . fF Unix |, BV TLPANHD: prefix/include/pythonversion/
M exec_prefix/include/pythonversion/, H W prefix il exec_prefix +& Hi [a] Python [
configure I AE AIXT K ST € X, T version Wk '%d.%d' % sys.version_info[:2]. fE
Windows |, KIFL4T prefix/include, HH prefix g 45 e 4% H .

TSSO, WA H R (MR) #CEIRBT i as it SRR P o 3 R20F5CH R
REARRGM] #include <pythonX.Y/Python.h>; XIFMMREF-EHIFATN, HAprefix T
BIKRALSFHF LM TR A exec_prefix FHEEFGHILIIT.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry points
to be extern "C",so there is no need to do anything special to use the API from C++.

1.2 g, FBF05| AT

KZ# Python/C API REERE — PN ZNSEPA K — A Pyobject * KRR EME . BRAUE—ANFRE, 48
6] /R — ML Python Xt R AN BEIABIE XA, HTFFERZSEIEN T (BIANRIE. 7500 A2 5 tL
%) Python iE 5 #8< AR RER 7 AL BEFTA Python XF 42581 M EATH — B C AR TR 2R
EHE . JLFFrf Python Xf AR A e e b R4 RSB —A4-Pyobject RAK Bl SARE, H
HPyobject * BEUKFRE AL BT AR . ME—RF1 42 type XF52; BT AT Gk AN RERRERL, FTPA
BATEE RSPy TypeObject W4,

P Python X4t (F & Python B%y) #H —1 type Fl—A> reference count . X4 HIZEAE 2 AT
Xtge (BAnEEg.)Tk e XEREG AL, A types TR) o XFFREAS AR FNAG2EAL, #H —A%
RGN R BT ETZEA; i, X4 (HAY) a FriERXT4)2 Python 51 Af PyList_Check (a) HE.

1.21 S|RHH

The reference count is important because today’ s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or a
global (or static) C variable, or a local variable in some C function. When an object’ s reference count becomes zero, the
object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects
may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’ s an obvious
problem with objects that reference each other here; for now, the solution is “don’ t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ TNCREF () to increment an
object’ s reference count by one, and Py_ DECREF () to decrement it by one. The Py DECREF () macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the object’
s deallocator to be called. The deallocator is a function pointer contained in the object’ s type structure. The type-specific
deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a compound
object type, such as a list, as well as performing any additional finalization that’ s needed. There’ s no chance that
the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count
increment is a simple operation.

It is not necessary to increment an object’ s reference count for every local variable that contains a pointer to an object.
In theory, the object’ s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’ t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

4 Chapter 1. #iR

The Python/C API, &5 3.6.12

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_ DECREF (), so almost
any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py DECREF () when they are done with the result; this soon becomes
second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a reference”
means being responsible for calling Py_DECREEF on it when the reference is no longer needed. Ownership can also be
transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually decref’
ing it by calling Py_DECREF () or Py_XDECREF () when it’ s no longer needed—or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_ SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

3

t, 0, PyLong_FromLong (1lL));

t, 1, PyLong_FromLong(2L));

t, 2, PyUnicode_FromString("three"));

Here, PyLong_FromLong () returns a new reference which is immediately stolen by Py Tuple_Set Item (). When
you want to keep using an object although the reference to it will be stolen, use Py_ INCREF () to grab another reference
before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem () for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’ s a generic function,
Py_BuildValue (), that can create most common objects from C values, directed by a format string. For example,
the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildvValue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

12. &, %EF03| Bt 5

The Python/C API, %5 3.6.12

It is much more common to use PyObject_Set Item () and friends with items whose references you are only borrow-
ing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’ t have to increment a reference count so you can give a reference away (“have it
be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length (target);
if (n < 0)
return -1;

for (i = 0; 1 < n; i++) |
PyObject *index = PyLong_FromSsize_t (i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
t
Py_DECREF (index) ;
;

return 0;

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the
only reference to the object. Therefore, the generic functions that return object references, like PyObject_GetItem ()

and PySequence_GetItem (), always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call only
—the plumage (the type of the object passed as an argument to the function) doesn’ t enter into it! Thus, if you extract
an item from a list using PyList_GetItem(),youdon’ town the reference —but if you obtain the same item from
the same list using PySequence_GetItem () (which happens to take exactly the same arguments), you do own a
reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(),and once using PySequence_GetItem().

long

sum_list (PyObject *list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;

(Rt

6 Chapter 1. #i&

The Python/C API, &5 3.6.12

(£ 50

total += value;

}

return total;

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence);
if (n < 0)
return -1; /* Has no length */

for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong (item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += wvalue;
}
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

1.2.2 #®

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 &

Python /7 S A 5 BAL PIURE & T3 ZAL PRI S D0 RALBER S & A sl ey R, SRS b VA
WA, WIS, BRI MITRA TGRS, A LR AT s 45 P PRl A [991

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’ s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or —1, depending on the function’ s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr_ Occurred (). These exceptions
are always explicitly documented.

1.3. &% 7

The Python/C API, %5 3.6.12

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred () canbe used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr SetString () is the most common
(though not the most general) function to set the exception state, and PyErr_Clear () clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; however,
they are not the same: the Python objects represent the last exception being handled by a Python try ---except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’ s main loop, which takes care of transferring it to sys.exc_info () and
friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’ s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should not set another exception —that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It
so happens that this example doesn’ t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item (PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;

(Rt

8 Chapter 1. #i&

The Python/C API, &5 3.6.12

(£ 50

const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one);

Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches () and PyErr_Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X' in the name; Py _DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to
success after the final call made is successful.

1.4 #& A Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, __main__,and sys. It also initializes the module search path (sys.path).

Py_TInitialize () doesnotsetthe “scriptargumentlist”(sys .argv). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv, updatepath)
after the call to Py_Tnitialize ().

On most systems (in particular, on Unix and Windows, although the details are slightly different), Py_Tnitialize ()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named 1ib/pythonX. Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX. Y. (In fact, this particular path is also the “fallback” location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

1.4. #& A\ Python 9

The Python/C API, %5 3.6.12

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath (),
Py _GetPrefix (), Py GetExecPrefix (), and Py_GetProgramFullPath () (all defined in Modules/
getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another call
to Py_Initialize ())or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py_FinalizeEx (). The function Py IsInitialized () returns
true if Python is currently in the initialized state. More information about these functions is given in a later chapter.
Notice that Py_FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory allocated
by extension modules currently cannot be released.

1.5 A

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this
section.

Compiling the interpreter with the Py_ DEBUG macro defined produces what is generally meant by “a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugtothe . /configure command. Itis
also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the Unix build,
compiler optimization is disabled.

B T AT AT T ROR 2 AL, AT A T B M A -
o BOME ARSI B 53 Bi s -
BN ARSI 2 AT a8 A 2 i o
* Downcasts from wide types to narrow types are checked for loss of information.
s FZWE PR MB IR G LI d . Ji5h, RAEXNRAUE test_c_api () Tiks
A AS R e B A B2 A
B B TS IR AL B TR, AR RGBS T
o INIRJZ IR ERANBS) S AR A 2 R B AT
 Extra checks are added to the memory arena implementation.
o USIMAENE R LA
X HLATREVCA B 2 A MG A

Defining Py_ TRACE_REF'S enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.

A REZEAEE, W25 Python JFAH) Misc/SpecialBuilds. txt .

10 Chapter 1. #Li&

CHAPTER 2

TR EH R B2 Fr — i O

&4 I, Python) C APLIFRfiRENUAN I ZE (b . KRB HCA S IR Az, % HAs i APL, I A2 B
BA APTEUMER AP (A28 5 0 2| Je i AR IR) .

RNEME, APTIREERA Y R i HIas I (ABL). JR R 32 2@ 8540 @ EAE , 78k BB Ing 7 Brak
WM F BRI BEAR SR APL, {HAJRESHER ABL, I, 44> Python fUASH T S B B iy etk (EP
e A AT A 32 52 R B2 AR LR, Unix BB RESHEILRH). BL4h, #E Windows I, ¥ EiH 5 4E
FE) pythonXY.dIl #5482, FFEEHH A B S5 pythonXY.dll £z .

M Python3.2 2, ELFEH] T4~ APLRY T4, PAWGPREER) ABL. WISR{AT L AP (Hhalfrhy “sZFR APTY)
9 AR BTG 2L X “Py_LIMITED_API*, -2 MR REAR 411 R M3 AR P IGRG: PR, AEARAT 3.x A
(x>=2) _F A ARSI AN TG 2 B 1

ERLEERT, FEARMIT R Y B E R ABL. 7 2 H] X 25 APL /Y 9 @ 11 B 95 228
Py_LIMITED_APT ik B A {148 35 & %5 1Y &% ik Python iR A< PY_VERSION_HEX {H (fi: Python 3.3
4 0x03030000) (SWAPI o ABI jp A 32) o WRBIHCREE T 0T J54¢ Python JiUAS, {HIGYEFEIHMRAS I
m#E (F R 0555) .

M Python 3.2 JF 41, 52 APL W] B HLAEICTAE PEP 384 . 5 C APLSCHYh, R T32 APL {1y APTIEH
FRiZh “RETZH AP,

11

https://www.python.org/dev/peps/pep-0384

The Python/C API, %5 3.6.12

12 Chapter 2. F2EBIN ARERFZ#H#ED

CHAPTER 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input,Py_file_input,andPy_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take F ILE * parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.

int Py_Main (int argc, wechar_t **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The argc
and argv parameters should be prepared exactly as those which are passed to a C program’ s main () function
(converted to wchar_t according to the user’ s locale). It is important to note that the argument list may be modified
(but the contents of the strings pointed to by the argument list are not). The return value will be 0 if the interpreter
exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or 2 if the parameter list
does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),

13

The Python/C API, %5 3.6.12

return the value of PyRun_TnteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys .getfilesystemencoding ()). If filenameis NULL,
this function uses " 2?2 ?" as the filename.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags* argu-
ment set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main___ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or —1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemEx1it is raised, this function will not return —1, but exit the process,
aslong as Py_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExF1lags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_SimpleFileExFlags returns.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding
(sys.getfilesystemencoding()).

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode.h is not
included by Python . h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook) (void)
Can be set to point to a function with the prototype int func (void). The function will be called when Python’
s interpreter prompt is about to become idle and wait for user input from the terminal. The return value is ignored.
Overriding this hook can be used to integrate the interpreter’ s prompt with other event loops, as done in the
Modules/_tkinter. c in the Python source code.

char* (*PyOS_ReadlineFunctionPointer) (FILE * FILE *, const char *)
Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’ s prompt.
The function is expected to output the string prompt if it’ s not NULL, and then read a line of input from the
provided standard input file, returning the resulting string. For example, The readline module sets this hook to
provide line-editing and tab-completion features.

14 Chapter 3. The Very High Level Layer

The Python/C API, &5 3.6.12

The result must be a string allocated by PyMem_RawMalloc () or PyMem RawRealloc (), or NULL if an
error occurred.

TE 3.4 iR B : The result must be allocated by PyMem_RawMalloc () or PyMem RawRealloc (), instead
of being allocated by PyMem Malloc () or PyMem_Realloc ().

struct _node* PyParser_SimpleParseString (const char *swr, int start)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL and flags set to 0.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *filename,
int start, int flags)
Parse Python source code from st using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times. filename is decoded from the filesystem encoding (sys.getfilesystemencoding ()).

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_SimpleParseFileFlags () below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flags)
Similar to PyParser_SimpleParseStringFlagsFilename (),butthe Python source code is read from
fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags set
to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompiler-
Flags *flags)
Return value: New reference. Execute Python source code from st in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse the
source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0 and flags set to NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags set

to NULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
(sys.getfilesystemencoding ()). If closeit is true, the file is closed before PyRun_FileExFlags ()
returns.

15

The Python/C API, %5 3.6.12

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py_CompileStringFlags () below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference. This is a simplified interface to Py_CompileStringExFlags () below, with
optimize set to —1.

PyObject* Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompiler-
Flags *flags, int optimize)
Parse and compile the Python source code in str, returning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and should be Py_eval_input,
Py_file_input, or Py_single_input. The filename specified by filename is used to construct the code
object and may appear in tracebacks or SyntaxError exception messages. This returns NULL if the code cannot
be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of —1 selects the optimization level of
the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is true), 1 (asserts are
removed, ___debug___is false) or 2 (docstrings are removed too).

3.4 BRI HE.

PyObject* Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags, int optimize)
Like Py CompileStringObject (), but filename is a byte string decoded from the filesystem encoding (os .
fsdecode ()).

3.2 BRI RE.

PyObject* PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_ FEvalCodeEx (), with just the code
object, and global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject **args,
int argcount, PyObject **kws, int kwcount, PyObject **defs, int defcount,
PyObject *kwdefs, PyObject *closure)
Evaluate a precompiled code object, given a particular environment for its evaluation. This environment consists
of a dictionary of global variables, a mapping object of local variables, arrays of arguments, keywords and defaults,
a dictionary of default values for keyword-only arguments and a closure tuple of cells.

PyFrameObject
The C structure of the objects used to describe frame objects. The fields of this type are subject to change at any
time.

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Evaluate an execution frame. This is a simplified interface to PyEval_ EvalFrameEx (), for backward com-
patibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code object
associated with the execution frame f is executed, interpreting bytecode and executing calls as needed. The addi-
tional throwflag parameter can mostly be ignored - if true, then it causes an exception to immediately be thrown;
this is used for the throw () methods of generator objects.

TE 3.4 iR ¥ This function now includes a debug assertion to help ensure that it does not silently discard an
active exception.

int PyEval_MergeCompilerF1lags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

16 Chapter 3. The Very High Level Layer

The Python/C API, &5 3.6.12

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source code.

int Py_single_input

The start symbol from the Python grammar for a single statement; for use with Py CompileString (). This
is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __future__ import can modify flags.

Whenever PyCompilerFlags *flagsis NULL, cf_flags is treated as equal to 0, and any modification
dueto from _ future_ import is discarded.

struct PyCompilerFlags {
int cf_flags;
}

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP 238.

17

https://www.python.org/dev/peps/pep-0238

The Python/C API, %5 3.6.12

18 Chapter 3. The Very High Level Layer

cHAPTER 4

51 AT

AT ZAR RN T HE Python R YT AL

void Py_ INCREF (PyObject *0)
Increment the reference count for object 0. The object must not be NULL; if you aren’ t sure thatitisn’ t NULL,
use Py_XINCREF ().

void Py_XINCREF (PyObject *0)
Increment the reference count for object 0. The object may be NULL, in which case the macro has no effect.

void Py_DECREF (PyObject *0)
Decrement the reference count for object 0. The object must not be NULL; if you aren’ t sure thatitisn’ t NULL,
use Py_XDECREF (). If the reference count reaches zero, the object’ s type’ s deallocation function (which must
not be NULL) is invoked.

Bl BEOR BT S EUL R Python AU BUAGETA N (HIHINY— Ml __del () JrikAg2EILHIHE
RN NIE) o EIRBERACHD T F WA S, ERI TR RERS [Hi1J517 BT Python
ArJr SR XA AT AL I 4 R AL BRI RAEPy_DECREF () AR 2 BT R. 24 4T
FERFRAS . BT, 503 I IR 0 G 14 AR B2 224 K7 R B3 e R A 5 | P 9 DL 81— A i 2
OB R AR, ARG AN R i Py _DECREF ()

void Py_XDECREF (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), and the same warning applies.

void Py_ CLEAR (PyObject *o)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), except that the argument is also set to NULL. The warning
for Py_DECREF () does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before decrementing its reference count.

2SR LI WA [T R Sl I B AL BRI, B e — M

DA BB %50E T Python Bz TR 8 &k A: Py_IncRef (PyObject *o), Py_DecRef (PyObject *o).
TV MR Py XINCREF () FlPy XDECREF () [{fa A5 H BB AR

19

The Python/C API, %5 3.6.12

PAR B BB A v FE R ORE S B 0 N IR B H: _Py_Dealloc(), _Py_ForgetReference(),
_Py_NewReference () ANAFE Py_RefTotal,

20 Chapter 4. S|Hit#

CHAPTER D

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’ t clear this on success, but will set it to
indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if they are
supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* () functions return 1 for success
and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’ s type, the exception’ s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for example
you can’ t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’ t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

{Ef#: The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not
yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

21

The Python/C API, %5 3.6.12

5.1 Printing and clearing

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)
Print a standard traceback to sy s . stderr and clear the error indicator. Unless the errorisa SystemExit. In
that case the no traceback is printed and Python process will exit with the error code specified by the SystemExit
instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print ()
Alias for PyErr_PrintEx (1).

void PyErr_WriteUnraisable (PyObject *obyj)
This utility function prints a warning message to sy s . stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

5.2 filth &%

These functions help you set the current thread’ s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is decoded from 'ut£-8’ .

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr_SetString () butlets you specify an arbitrary Python object for the “value’
of the exception.

)

PyObject* PyErr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a Python
exception class. The format and subsequent parameters help format the error message; they have the same meaning
and values as in PyUnicode_FromFormat (). format is an ASCII-encoded string.

PyObject* PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Same as PyErr_Format (),buttakingava_11st argument rather than a variable
number of arguments.

3.5 B RE.

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

22 Chapter 5. RE4IE

The Python/C API, &5 3.6.12

PyObject* PyErr_NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr_SetNone (PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory () ; when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *type)

Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the inte-
ger errno value and whose second item is the corresponding error message (gotten from strerror ()), and
then calls PyErr_SetObject (type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
Similar to PyErr_SetFromErrno (), with the additional behavior that if filenameObject is not NULL, it is
passed to the constructor of fype as a third parameter. In the case of OSError exception, this is used to define
the £ilename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)
Similar to PyErr_SetFromErrnoWithFilenameObject (), but takes a second filename object, for rais-
ing errors when a function that takes two filenames fails.

3.4 B fE.

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject (), but the file-
name is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()).

PyObject* PyErr_SetFromWindowsErr (int ierr)

Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with ierr of 0, the error code returned by a call to GetLastError () is used instead. It calls
the Win32 function FormatMessage () to retrieve the Windows description of error code given by
ierr or GetLastError (), then it constructs a tuple object whose first item is the ierr value and
whose second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL. Availabil-
ity: Windows.

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErr (), with an additional parameter spec-
ifying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (), butthe
filename is given as a C string. filename is decoded from the filesystem encoding (os . fsdecode ()). Availabil-
ity: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyOb-
Ject *filename)
Similar to PyErr_SetFromWindowsErrWithFilenameObject (), with an additional parameter speci-
fying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyOb-
Ject *filename, PyObject *file-

name2)
Similar to PyErr_SetExcFromWindowsErrWithFilenameObject (), but accepts a second filename

object. Availability: Windows.

3.4 BN fE.

52. H%&E 23

The Python/C API, %5 3.6.12

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *file-

name)
Return value: Always NULL. Similar to PyErr_ SetFromWindowsErrWithFilename (), with an addi-

tional parameter specifying the exception type to be raised. Availability: Windows.

PyObject* PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
This is a convenience function to raise ImportError. msg will be set as the exception’ s message string. name
and path, both of which can be NULL, will be set as the ImportError’ srespective name and path attributes.

3.3 B fE.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exceptionisnota SyntaxError, then
it sets additional attributes, which make the exception printing subsystem think the exceptionisa SyntaxError.

3.4 B fE.

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Like PyErr SyntaxLocationObject (),but filename is a byte string decoded from the filesystem encoding
(0os.fsdecode ()).

3.2 B fE.

void PyErr_SyntaxLocation (const char *filename, int lineno)
Like PyErr SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified that
warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the functions
raise an exception because of a problem with the warning machinery. The return value is O if no exception is raised, or
-1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor what the
reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py_ DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message argument
is a UTF-8 encoded string. stack_level is a positive number giving a number of stack frames; the warning will be
issued from the currently executing line of code in that stack frame. A stack_level of 1 is the function calling
PyErr WarnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception;the default warning category is PyExc_Runt imeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at 47 /& 224 3% 1.

For information about warning control, see the documentation for the warnings module and the —W option in
the command line documentation. There is no C API for warning control.

PyObject* PyErr_SetImportErrorSubclass (PyObject *msg, PyObject *name, PyObject *path)
Much like PyErr SetImportError () but this function allows for specifying a subclass of ImportError
to raise.

3.6 B RE.

24 Chapter 5. RE4IE

The Python/C API, &5 3.6.12

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit (), see there for more information. The module and registry
arguments may be set to NULL to get the default effect described there.

3.4 B fE.

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)
Similarto PyErr_WarnExplicitObject () exceptthat message and module are UTF-8 encoded strings, and
filename is decoded from the filesystem encoding (os . fsdecode ()).

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnEx (), but use PyUnicode_FromFormat () to format the warning mes-
sage. format is an ASClII-encoded string.

3.2 B RE.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Function similar to PyErr_WarnFormat (), but category is ResourceWarning and pass source to
warnings.WarningMessage ().

3.6 B RE.

5.4 Querying the error indicator

PyObject* PyErr_Occurred ()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception fype (the first
argument to the last call to one of the PyErr_Set* () functions or to PyErr_Restore ()). If not set, return
NULL. You do not own a reference to the return value, so you do not need to Py DECREF () it.

{H:f#: Do not compare the return value to a specific exception; use PyErr_ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception type in exc. If exc is a class object, this also returns true
when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and recursively in subtuples)
are searched for a match.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all
three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

{Efit: This function is normally only used by code that needs to catch exceptions or by code that needs to save
and restore the error indicator temporarily, e.g.:

5.4. Querying the error indicator 25

The Python/C API, %5 3.6.12

PyObject *type, *value, *traceback;
PyErr_Fetch(&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects are
NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The exception
type should be a class. Do not pass an invalid exception type or value. (Violating these rules will cause subtle
problems later.) This call takes away a reference to each object: you must own a reference to each object before the
call and after the call you no longer own these references. (If you don’ t understand this, don’ t use this function.
I warned you.)

Mg This function is normally only used by code that needs to save and restore the error indicator temporarily.
Use PyErr_Fetch () to save the current error indicator.

void PyErr NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr_Fetch () below can be “unnormalized” , meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

{:fi#: This function does not implicitly set the __traceback___ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);
}

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the exception info, as known from sys.exc_info (). This refers to an exception that was already
caught, not to an exception that was freshly raised. Returns new references for the three objects, any of which may
be NULL. Does not modify the exception info state.

{fft: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_ SetExcInfo () to restore or clear
the exception state.

3.3 B RE.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)
Set the exception info, as known from sys . exc_info (). This refers to an exception that was already caught, not
to an exception that was freshly raised. This function steals the references of the arguments. To clear the exception
state, pass NULL for all three arguments. For general rules about the three arguments, see PyErr_Restore ().

{¥f#: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code

The Python/C API, &5 3.6.12

needs to save and restore the exception state temporarily. Use PyErr GetExcInfo () to read the exception
state.

3.3 B

5.5 Signal Handling

int PyErr_CheckSignals ()
This function interacts with Python’ s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns —1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt ()
This function simulates the effect of a STGINT signal arriving —the next time PyErr_ CheckSignals () is
called, KeyboardInterrupt will be raised. It may be called without holding the interpreter lock.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever a
signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_£fd ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.

TE 3.5 f s #it: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject* PyErr_NewException (const char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base
classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyOb-
Ject *dict)
Return value: New reference. Same as PyErr_NewException (),except that the new exception class can easily
be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.

3.2 B fE.

5.5. Signal Handling 27

The Python/C API, %5 3.6.12

5.7 Exception Objects

PyObject* PyException_GetTraceback (PyObject *ex)
Return value: New reference. Return the traceback associated with the exception as a new reference, as accessible
from Python through __traceback__. If there is no traceback associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Set the traceback associated with the exception to th. Use Py_None to clear it.

PyObject* PyException_GetContext (PyObject *ex)
Return the context (another exception instance during whose handling ex was raised) associated with the exception
as a new reference, as accessible from Python through __context__. If there is no context associated, this
returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Set the context associated with the exception to ctx. Use NULL to clear it. There is no type check to make sure
that ctx is an exception instance. This steals a reference to ctx.

PyObject* PyException_GetCause (PyObject *ex)
Return the cause (either an exception instance, or None, set by raise ... from .. .) associated with the
exception as a new reference, as accessible from Python through ___cause__.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Set the cause associated with the exception to cause. Use NULL to clear it. There is no type check to make sure
that cause is either an exception instance or None. This steals a reference to cause.

__suppress_context___ isimplicitly set to True by this function.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject* PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeDecodeError object with the attributes encoding, object, length, start, end and reason. en-

coding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeEncodeError_Create (const char *encoding, const Py UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const

) _char *reason)
Create a UnicodeEncodeError object with the attributes encoding, object, length, start, end and reason. en-

coding and reason are UTF-8 encoded strings.

PyObject* PyUnicodeTranslateError_Create (const Py UNICODE *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeTranslateError object with the attributes object, length, start, end and reason. reason is a

UTF-8 encoded string.

PyObject* PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError_GetObject (PyObject *exc)

PyObject* PyUnicodeEncodeError_GetObject (PyObject *exc)

PyObject* PyUnicodeTranslateError_GetObject (PyObject *exc)
Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

28 Chapter 5. RE4IE

The Python/C API, &5 3.6.12

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Set the start attribute of the given exception object to start. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return O on
success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Set the end attribute of the given exception object to end. Return 0 on success, —1 on failure.

PyObject* PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeTranslateError_GetReason (PyObject *exc)
Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return 0 on success, —1 on failure.

5.9 I

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mod-
ules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically).

int Py_EnterRecursiveCall (const char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack ().
In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a string such as " in instance check" to be concatenated to the RecursionError
message caused by the recursion depth limit.

void Py_LeaveRecursiveCall ()
Ends a Py EnterRecursiveCall/(). Must be called once for each successful invocation of
Py EnterRecursiveCall ().

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().

5.9. I 29

The Python/C API, %5 3.6.12

int Py_ReprEnter (PyObject *object)

Called at the beginning of the tp_ repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_repr imple-
mentation should return a string object indicating a cycle. As examples, dict objects return { ...} and 1ist

objects return [...].

The function will return a negative integer if the recursion limit is reached. In that case the t p_ repr implemen-

tation should typically return NULL.

Otherwise, the function returns zero and the t p_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)

Endsa Py _ReprEnter (). Must be called once for each invocation of Py ReprEnter () that returns zero.

510 IrERE

All standard Python exceptions are available as global variables whose names are PyExc__ followed by the Python ex-
ception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

C AR Python Z#R EZ L]
PyExc_BaseException BaseException (1)
PyExc_Exception Exception (D)
PyExc_ArithmeticError ArithmeticError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError
PyExc_ChildProcessError ChildProcessError
PyExc_ConnectionAbortedError | ConnectionAbortedError
PyExc_ConnectionError ConnectionError
PyExc_ConnectionRefusedError | ConnectionRefusedError
PyExc_ConnectionResetError ConnectionResetError
PyExc_EOFError EOFError
PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError FileNotFoundError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError
PyExc_IsADirectoryError IsADirectoryError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError (1)
PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundError ModuleNotFoundError
PyExc_NameError NameError
PyExc_NotADirectoryError NotADirectoryError
PyExc_NotImplementedError NotImplementedError
ThidREt

30

Chapter 5. RE4IE

The Python/C API, &5 3.6.12

R1-ZEW

C &R Python Z#R EZ L]
PyExc_OSError OSError (1)
PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError 2)
PyExc_RuntimeError RuntimeError
PyExc_StopAsynclIteration StopAsyncIteration
PyExc_StopIteration StopIlteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit

PyExc_TabError TabError
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError
PyExc_UnboundLocalError UnboundLocalError
PyExc_UnicodeDecodeError UnicodeDecodeError
PyExc_UnicodeEncodeError UnicodeEncodeError
PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateError UnicodeTranslateError
PyExc_ValueError ValueError
PyExc_ZeroDivisionError ZeroDivisionError

33 pen R T fE: PyExc_BlockingIOQError, PyExc_BrokenPipeError,
PyExc_ChildProcessError, PyExc_ConnectionError, PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError, PyExc_ConnectionResetError, PyExc_FileExistsError,
PyExc_FileNotFoundError, PyExc_InterruptedError, PyExc_IsADirectoryError,
PyExc_NotADirectoryError, PyExc_PermissionError, PyExc_ProcessLookupError and
PyExc_TimeoutError /MU PEP 3151.

3.5 FiEhfE: PyExc_StopAsyncIteration #ll PyExc_RecursionError.
Yy PASY Yy
3.6 FRIEE: PyExc_ModuleNotFoundError.

XL R4 PyExc_OSError:

C & EZ
PyExc_EnvironmentError
PyExc_TIOError

PyExc_WindowsError 3)

TE 3.3 JRCE I K 85044 1 28 12 BRI S i 2R 28
HRE:
(1) X2 HABRIE .
(2) This is the same as weakref .ReferenceError

(3) Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is
defined.

5.10. IRERE 31

https://www.python.org/dev/peps/pep-3151

The Python/C API, %5 3.6.12

5.11 FREEE LS

All standard Python warning categories are available as global variables whose names are PyExc__followed by the Python
exception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

C &R Python Z#R E
PyExc_Warning Warning D
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning | PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

3.2 Hi Ik PyExc_ResourceWarning

(1) X2 HAt bR 4

PR

32

Chapter 5. RE4IE

CHAPTER O

ARFE PRI T S S] T RAR S, wdRAT) C AU SETHES -Gl B AR, 7E C P A Python A58, DA
L @R R B S HOT AR C (B4 7 Python HH (B AF4E

6.1 RIERFHER

PyObject* PyOS_FSPath (PyObject *path)
Return value: New reference. Return the file system representation for parh. If the object is a str or bytes
object, then its reference count is incremented. If the object implements the os.PathLike interface, then
__fspath__ () is returned as long as it is a str or bytes object. Otherwise TypeError is raised and
NULL is returned.

3.6 BRI HE.

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty (fileno (fp)) is true. If the global flag Py_InteractiveFlag is true, this function

also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"' or
1o

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not need
to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only avail-
able when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction () or signal ().
Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void (*) (int).

33

The Python/C API, %5 3.6.12

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t /)

Set the signal handler for signal i to be %; return the old signal handler. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef alias
for void (*) (int).

wchar_t* Py _DecodeLocale (const char* arg, size_t *size)

Decode a byte string from the locale encoding with the surrogateescape error handler: undecodable bytes are
decoded as characters in range U+DC80..U+DCFF. If a byte sequence can be decoded as a surrogate character,
escape the bytes using the surrogateescape error handler instead of decoding them.

Encoding, highest priority to lowest priority:
e UTF-8 ¥F macOS #1 Android I;

e ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCIT encoding (or an
alias), and mbstowcs () and wcstombs () functions use the ISO-8859-1 encoding.

e the current locale encoding (LC_CTYPE locale).

Return a pointer to a newly allocated wide character string, use PyMem_RawFree () to free the memory. If size
is not NULL, write the number of wide characters excluding the null character into *size.

Return NULL on decoding error or memory allocation error. If size is not NULL, *sizeissetto (size_t) -1
on memory error or set to (size_t) -2 on decoding error.

Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale () function to encode the character string back to a byte string.
L

=

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize ()
functions.

3.5 B RE.

char* Py_EncodeLocale (const wchar_t *fext, size_t *error_pos)

Encode a wide character string to the locale encoding with the surrogateescape error handler: surrogate characters
in the range U+DC80..U+DCFF are converted to bytes 0x80..0xFF.

Encoding, highest priority to lowest priority:
e UTF-8 ¥E macOS # Android F;

e ASCITI if the LC_CTYPE localeis "C",nl_langinfo (CODESET) returns the ASCII encoding (or an
alias), and mbstowcs () and wecstombs () functions uses the ISO-8859-1 encoding.

* the current locale encoding.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error

If error_pos is not NULL, *error_pos is set to the index of the invalid character on encoding error, or set to
(size_t) —1 otherwise.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.
S W
The PyUnicode_ EncodeFSDefault () and PyUnicode_ EncodelLocale () functions.

3.5 B RE.

34

Chapter6. TH

The Python/C API, &5 3.6.12

6.2 RGiThAE

These are utility functions that make functionality from the sy s module accessible to C code. They all work with the
current interpreter thread’ s sys module’ s dict, which is contained in the internal thread state structure.

PyObject *PySys_GetObject (const char *name)
Return value: Borrowed reference. Return the object name from the sys module or NULL if it does not exist,
without setting an exception.

int PySys_SetObject (const char *name, PyObject *v)
Set name in the sys module to v unless v is NULL, in which case name is deleted from the sys module. Returns 0
on success, —1 on error.

void PySys_ResetWarnOptions ()
Reset sys.warnoptions to an empty list.

void PySys_AddWarnOption (wchar_t *s)
Append s to sys .warnoptions.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Append unicode to sys .warnoptions.

void PySys_SetPath (wchar_t *path)
Set sys.path to a list object of paths found in path which should be a list of paths separated with the platform’
s search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Write the output string described by format to sys . stdout. No exceptions are raised, even if truncation occurs
(see below).

format should limit the total size of the formatted output string to 1000 bytes or less —after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should be
limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of other
formatted text does not exceed 1000 bytes. Also watch out for “%f” , which can print hundreds of digits for very
large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
As PySys_WriteStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)
Function similar to PySys_WriteStdout() but format the message using PyUnicode_FromFormatV () and
don’ t truncate the message to an arbitrary length.

3.2 B RE.

void PySys_FormatStderr (const char *format, ...)
As PySys_FormatStdout (), but write to sys.stderr or stderr instead.

3.2 BRI HE.

void PySys_AddXOption (const wchar_t *s)
Parse s as a set of —-X options and add them to the current options mapping as returned by
PySys_GetXOptions ().

3.2 BRI HE.

PyObject *PySys_GetXOptions ()
Return value: Borrowed reference. Return the current dictionary of —X options, similarly to sys._xoptions.
On error, NULL is returned and an exception is set.

6.2. RYiYhEE 35

The Python/C API, %5 3.6.12

6.3

3.2 BRI RE.

T2

void Py_FatalError (const char *message)

Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when the
object administration appears to be corrupted. On Unix, the standard C library function abort () is called which
will attempt to produce a core file.

void Py_Exit (int status)

Exit the current process. This calls Py _FinalizeEx () and then calls the standard C library function
exit (status).If Py _FinalizeEx () indicates an error, the exit status is set to 120.

TE 3.6 fi 5 2 Errors from finalization no longer ignored.

int Py_AtExit (void (*func)())

Register a cleanup function to be called by Py FinalizeEx (). The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration is
successful, Py_ AtExit () returns 0; on failure, it returns —1. The cleanup function registered last is called first.
Each cleanup function will be called at most once. Since Python’ s internal finalization will have completed before
the cleanup function, no Python APIs should be called by func.

6.4 SR

PyObject* PyImport_ImportModule (const char *name)

Return value: New reference. This is a simplified interface to Py Import_ImportModuleEx () below, leaving
the globals and locals arguments set to NULL and level set to 0. When the name argument contains a dot (when
it specifies a submodule of a package), the fromlist argument is set to the list [' * '] so that the return value is
the named module rather than the top-level package containing it as would otherwise be the case. (Unfortunately,
this has an additional side effect when name in fact specifies a subpackage instead of a submodule: the submodules
specified in the package’ s __all__ variable are loaded.) Return a new reference to the imported module, or
NULL with an exception set on failure. A failing import of a module doesn’ t leave the module in sys.modules.

AR B X AR T

PyObject* PyImport_ImportModuleNoBlock (const char *name)

ZEHRE R Py Import_ImportModule () H— A F 1 H14 o

JE 3.3 Jit B8 2 This function used to fail immediately when the import lock was held by another thread. In
Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this function’ s special
behaviour isn’ t needed anymore.

PyObject* PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyOb-

Ject *fromlist)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Import_ImportModule ().

36

Chapter6. TH

The Python/C API, &5 3.6.12

PyObject* PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyObject *lo-
cals, PyObject *fromlist, int level)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ (), asthestandard __import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception set

on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.
3.3 Fri e

PyObject* PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals, PyOb-
Ject *fromlist, int level)
Return value: New reference. Similar to Py Import_ImportModuleLevelObject (), but the name is a
UTF-8 encoded string instead of a Unicode object.

£ 3.3 IR B i Negative values for level are no longer accepted.

PyObject* PyImport_Import (PyObject *name)
Return value: New reference. This is a higher-level interface that calls the current “import hook function” (with an
explicit level of 0, meaning absolute import). It invokes the __import__ () functionfromthe __builtins_
of the current globals. This means that the import is done using whatever import hooks are installed in the current
environment.

ZREUE R B R AR T

PyObject* PyImport_ReloadModule (PyObject *m)
Return value: New reference. Reload a module. Return a new reference to the reloaded module, or NULL with an
exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModuleObject (PyObject *name)
Return value: Borrowed reference. Return the module object corresponding to a module name. The name argument
may be of the form package.module. First check the modules dictionary if there’ s one there, and if not,
create a new one and insert it in the modules dictionary. Return NULL with an exception set on failure.

{:fft: This function does not load or import the module; if the module wasn’ t already loaded, you will get an
empty module object. Use Py Import_ImportModule () or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

3.3 B fE.

PyObject* PyImport_AddModule (const char *name)
Return value: Borrowed reference. Similar to Py Import_AddModuleObject (), but the name is a UTF-8
encoded string instead of a Unicode object.

PyObject* PyImport_ExecCodeModule (const char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form package.module) and a code
object read from a Python bytecode file or obtained from the built-in function compile (), load the mod-
ule. Return a new reference to the module object, or NULL with an exception set if an error occurred. name
is removed from sys.modules in error cases, even if name was already in sys.modules on entry to
PyImport_ExecCodeModule (). Leaving incompletely initialized modules in sys .modules is dangerous,
as imports of such modules have no way to know that the module object is an unknown (and probably damaged
with respect to the module author’ s intents) state.

The module’ s __spec___and __loader___ will be set, if not set already, with the appropriate values. The
spec’ s loader will be set to the module’ s ___loader__ (if set) and to an instance of SourceFilelLoader
otherwise.

6.4. AR 37

The Python/C API, %5 3.6.12

Themodule’s ___file__attribute will be set to the code object’s co_filename. If applicable, ___cached___
will also be set.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created will
still not be created.

See also Py Import_ExecCodeModuleEx () and PyImport_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)
Return value: New reference. Like PyTImport_ExecCodeModule (), butthe __file_ attribute of the
module object is set to pathname if it is non-NULL.

Z: L PyImport_ExecCodeModuleWithPathnames ().

PyObject* PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname, Py-
Object *cpathname)
Return value: New reference. Like Py Tmport_ExecCodeModuleEx (), butthe __ _cached_ _ attribute of
the module object is set to cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.

3.3 B fE.

PyObject* PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const

char *pathname, const char *cpathname)
Return value: New reference. Like Py Import_ExecCodeModuleObject (), but name, pathname and cpath-

name are UTF-8 encoded strings. Attempts are also made to figure out what the value for pathname should be from
cpathname if the former is set to NULL.

3.2 B RE.

7 3.3 R P Uses imp . source_from_cache () in calculating the source path if only the bytecode path
is provided.

long PyImport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a. . pyc file). The magic number should be present in the
first four bytes of the bytecode file, in little-endian byte order. Returns —1 on error.

1E 3.3 BOE M KRR EE -1,

const char * PyImport_GetMagicTag ()
Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in mind that the value at
sys.implementation.cache_tag is authoritative and should be used instead of this function.

3.2 B fE.

PyObject* PyImport_GetModuleDict ()
Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a. sys.
modules). Note that this is a per-interpreter variable.

PyObject* PyImport_GetImporter (PyObject *path)
Return value: New reference. Return a finder object for a sys.path/pkg.__path___ item path, possibly by
fetching it from the sys.path_importer_cache dict. If it wasn’ t yet cached, traverse sys . path_hooks
until a hook is found that can handle the path item. Return None if no hook could; this tells our caller that the
path based finder could not find a finder for this path item. Cache the resultin sys.path_importer_cache.
Return a new reference to the finder object.

void _PyImport_Init ()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup ()
Empty the module table. For internal use only.

38 Chapter6. TH

https://www.python.org/dev/peps/pep-3147

The Python/C API, &5 3.6.12

void _PyImport_Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension (char * char *)
For internal use only.

int PyImport_ImportFrozenModuleObject (PyObject *name)
Return value: New reference. Load a frozen module named name. Return 1 for success, O if the module is not
found, and -1 with an exception set if the initialization failed. To access the imported module on a successful
load, use Py Import_ImportModule (). (Note the misnomer —this function would reload the module if it
was already imported.)

3.3 B Uie.
16 3.4 JRTE M The _ file_ attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)
Similar to Py Import_ImportFrozenModuleObject (), but the name is a UTF-8 encoded string instead
of a Unicode object.

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the £reeze utility (see Tools/
freeze/ in the Python source distribution). Its definition, found in Include/import . h,is:

struct _frozen {
char *name;
unsigned char *code;
int size;

bi

const struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject* (¥initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab (), returning —1 if the table could not be extended. The new module can be
imported by the name name, and uses the function initfunc as the initialization function called on the first attempted
import. This should be called before Py Tnitialize ().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. The name is an ASCII encoded string. Programs
which embed Python may use an array of these structures in conjunction with Py Import_ExtendInittab ()
to provide additional built-in modules. The structure is defined in Include/import .h as:

struct _inittab {
char *name; /* ASCII encoded string */
PyObject* (*initfunc) (void);

bi

int PyImport_ExtendInittab (struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0
on success or —1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This should be called before Py Tnitialize ().

6.4. SAER 39

The Python/C API, %5 3.6.12

6.5 #i#E marshal i#{Exx#F

X LEBiRE FeiF C AV AL S marshal BT AT REAR s e 21 Ax G . oA S ek 50n] I ARRF A 5
ANEMFPBIRE, 55— L8 s O] A O B . 1T 77 6 marshal B i) SCPF 2 A~ E il A
1%

BOAHEAEAF I SR B ARG 1 RT3k o

The module supports two versions of the data format: version O is the historical version, version 1 shares interned strings
in the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers. Py_MARSHAL_VERSION
indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)
F—A> Long BEHY value PA marshal 5 NE A file. XK HE A value FAKH 32 £ ToiRAHL Long FH
HC AN o version $8BH SCEERS R AR o

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)
Ff—~ Python %f 4 value D\ marshal }8 X5 A file. version $§W]SCAA& A .

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version)
Return value: New reference. i [1]—/~3% value 1] marshal Z5R R FETTERXTE . version YU UL
XAIIAR .

PATR BB R VRSO I S A7 il marshal #55XR1E

long PyMarshal_ReadLongFromFile (FILE *file)
MATTE AT B0 FTLE* BRI EAR IR A —A~ C Long. (LR % BN 32 fEM(E, ToigAHL
long KA BEAIf .
KAEERRIY, R BRI M 7 H (EOFError) k] -1,

int PyMarshal_ReadShortFromFile (FILE *file)
MFTF T8 FILE* BXF R B B4~ C short. i BLeR UL BEEEER 16 MLAOME, ToigAs
Bl short K AT,
KAEERRI, R BRI M 7 H (EOFError) k] -1,

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference. MFT I T E2HUHY) FILE* AYXT R EUHE 7% [7]—~ Python X4 .

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference. MFTIF T 2B FILE* {9 %5 N B0 86 7 4% [l — 4~ Python ¥ 4. A [H
TPyMarshal ReadObjectFromFile (), MpREBEREATFEMIZSCHRICE Z %14, ARrHRG
SCUFER BRI A A, PAE ST 2 A R W] DATE A s 48R TS 2 B R SO s i — A
FAT o HUA MR B AN 2 B SCHBEERAT A P9 25) AT A oty =K

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)
Return value: New reference. ML 1510 data W len -5 B35 5 0 X %F B B9 8038 7L 1% 9] —> Python
POE -3

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

40 Chapter6. TH

The Python/C API, &5 3.6.12

6.6 BTSHHMBELE

TERVEIRH CHY FERRECRITI AR, XL Boe 7 FI0. HERIE BFIFEG] L extending-index .
X B R B HE AR W BT = 4>, PyvArg ParseTuple (), PyArg ParseTupleAndKeywords (), DA

JepyArg Parse (), BN 46 XA 5 45 B o5 o8 00 15 19 2 808 0 ek 4 3 28 R 2509 6 71 A
[l TR R A A AT R

6.6.1 BEITS

— AR F AR 0 B 2 AR IC. — MRS TR IA 4> Python X4 EilH 27
PFEE RIS SRR R ITTA . B T ARBISL, — ARG S PSS 2 BTGl 0 X 28 e By By
IR SR FERE TRl T, WG 15 A FEAGRE G B O W X A8 BT
Python XfRFEA; Trii's (1 Wi feidng C ALkt (Ieiide) 2.,

FHBNZFEX

X LA 2 SRV RF X G 4% B 2L B N AF S AT 1) o ARV B AER 0] Y unicode 45 5 & 17 IX Y IR 4R
BT -

— By, YRR E—AREHER R X, XSGRk AT AR R Y Python X445 88, - HaX A4~
Getp RIL XA R AE R . RARR E N REAT A NAEZSE] . B TiXEE es, es#, et and et #.
SR, M4—"Py_buffer Z5MPRIE, HAEMZE XS, BT AR & 7R 5 (0 X A~ o X, B
TEPy_BEGIN_ALLOW_THREADS HtH, W DAEA w]AZ B R AR B/ INBS a5 1 55 iy R g XUz . PRI, IR
AW PyBuffer Release () TEMRGEARAR AL LT ECEAEZ AR W ff)

BRAES A, ZrpRERNSPASL LK.

Some formats require a read-only bytes-like object, and set a pointer instead of a buffer structure. They work by checking
that the object’ s PyBufferProcs.bf_releasebuffer field is NULL, which disallows mutable objects such as
bytearray.

R A # WAL (s#, v#, %), KESHMIET (BIEE py_ssize_t) fEfLH Python.h
L2 Bt PY_SSIZE_T_CLEAN ZZ [XAl WA 9w L, KER— Py_ssize_t Python
JCR/NEAMA R — int B, FEARRKN Python AP RF&MAE, HIkE Py _ssize_t MisF3CHF int
A Bif—HE N PY _SSIZE_T_CLEAN X%,

s (str) [const char *] Kf—4> Unicode X G54 il— M8 M FAFEHE I C F55F. —ANREHE I — DN EAFEN
TR, XN FRBRIEE B N TR B . C PR RO SE9R K. Python PR EEAREML S
AR TR RS s, —4> ValueError F# 245 % . Unicode XL @E LA 'utf-8" 4
Mo C 4. WSRHEIREIK, —4> UnicodeError RH#HI K.

W XN FIB A B Z bytes-like objects . WHRARIREEZ ARG R ENFALL C F4578, il
i os EERAEEGPyUnicode FSConverter () VEN #10J%,

15 3.5 UM VAR, 24 Python FAFH il E THRARY null {05 & 5% TypeError .

s* (str or byfes-like object) [Py_buffer] x5 14252 Unicode X 4 32K F A R AN 4 . B i E
HARHER Py buffer Z5MIRIE. X BERAY C FAFER T REAL & ik AR NUL “#45, Unicode %} 48 i
"ut £-8" il C FAFER

6.6. BITSHHLEETE M

The Python/C API, %5 3.6.12

s# (str, Hiftbytes-like object) [const char *, int or Py_ssize_t] 1 s*, BT ERNEZL WXL, 45817
HEEMAS C AR R, S— 2481 C FAFR RS, B MR EMKE. PR TR & i A/ null
F7. Unicode XJR#PHE LT 'ut £-8" galbibal C FA4FH .

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is set to
NULL.

z* (str, bytes-like object or None) [Py_buffer] Like s*, but the Python object may also be None, in which case the
buf member of the Py_buf fer structure is set to NULL.

z# (str, read-only byfes-like object or None) [const char *, int] Like s#, but the Python object may also be None,
in which case the C pointer is set to NULL.

y (read-only bytes-like object) [const char *] X Fk G — DI FEAT RS ZEAL R — 8 1 T4 19 C F5
BFi ERHER Unicode XH4. WL AUR B A HEAR mull 475 HURELA T null 47, 5] %—
4~ valueError JH .

AE 3.5 BCEHC PART, 457 b KRB 2] 7 AR null 745 25| % TypeError .

y* (bytes-like object) [Py_buffer] s* A5, A$23Z Unicode %4, N2 Rmar g, dodd2 Eh

y# (read-only bytes-like object) [const char *, int] This variant on s# doesn’ t accept Unicode objects, only bytes-like
objects.

S (bytes) [PyBytesObject *] ZK Python Xf R 2 —>bytes KRR, BA MM, WIRAR—
PMFRRBNR AT K TypeError . CAREMURERN]PyObject * KA,

Y (bytearray) [PyByteArrayObject *] ZizK Python X} % @& —A> bytearray FHIX 4, A R M 5
oo WMRAZ—A bytearray RENR LTk TypeError 7FH . CARWWEEFEW HPyobject
HA,

u (str) [Py_UNICODE *] f—~ Python Unicode X} 5544k 18 [n]— A~ PAZS 2 1LY Unicode 4728 i X [48
Efo ARG N—~Py_UNICODE 85145 Btk , #76& T — 48 B SAF7E Unicode ZZnf X145
o TR Py_UNICODE B FAF S B RT 4 R 6T (16 A7k 32 fir). Python FAFHRUAM
RNEEAL R AN null 15,5 WIRAE, 51K —4 ValueError ¥ .

1E 3.5 HUCH M PATIT, 24 Python “FAFEE A% T i A null fR7Y 5 255]& TypeError .

Deprecated since version 3.3, will be removed in version 4.0: X &2 [H R £t =Py UNICODE API; i iF #%
ZPyUnicode_AsWideCharString/().

u# (str) [Py_UNICODE *, int] u {72850, FAEmi4> C 285, 25— D855 1—4> Unicode HHRZAFX,
TASREREE. BV null AR
Deprecated since version 3.3, will be removed in version 4.0: X &2 |H R £t :,Py_UNICODE API; i iF #
ZPyUnicode_AsWideCharString/().

Z (str or None) [Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: X & [H R X Py_UNICODE API; it %
ZPyUnicode_AsWideCharString/().

Z# (str or None) [Py_UNICODE *, int] Like u#, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: X & [H R FE X Py_UNICODE API; i iT %
FPyUnicode_AsWideCharString().

U (str) [PyObject ¥] %K Python X5 jg—> Unicode X5, A L ULMAYHA . WA Z—4> Unicode Xf
Z25| Kk TypeError JFH . CARWARESEWNPyobject « KA,

42 Chapter 6. TH

The Python/C API, &5 3.6.12

w* (W[55 bytes-like object) [Py_buffer] X >3 15 3 32 A1] 52 B AT 525 G A7 D3 LI IR R BT &
fefbfipy_burfer FiMIRIE. ot KT REFFAEIRA MY null T35, 24 Zeof DX 5 i) 1 3 7 2508
HPyBuffer Release (),

es (str) [const char *encoding, char **buffer] s 17255, ‘B¥ 4551 Unicode FRHFEAFHENIX ., B H
ARV A NUL 45 2 g i 5 ds

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char* *; the
value of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument.

PyArg ParseTuple () S Bi—1 RS R/NGMIX, K89 b0 f5 ALt +5 DUE A Geh X HicE:
“buffer 5| X AHr 2 FEHI AAFEE] T E A SHEAEME ST Pyiem_Free () RREIRC LRI
WX,

et (str,bytes or bytearray) [const char *encoding, char **buffer] F1 es fH[F], % T A M EHMEE AK
TR M, BRBIEARNSERSEM G T4 AL,

es# (str) [const char *encoding, char **buffer, int *buffer_length] s# (255, 4T 4Ly Unicode 45
FANTFRZ X, AME es KKK, BEARFEARENE S NUL F4F,
It requires three arguments. The first is only used as input, and must be a const char* which points to the name
of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument must be a char * *; the value of the
pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in the
encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced integer
will be set to the number of bytes in the output buffer.

A PR

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be set.

TEX PG, *buffer_length RSt B4 o 4 A NUL i8R i) K JEE

et# (str, bytes or bytearray) [const char *encoding, char **buffer, int *buffer_length] fil es# [, &%
TAHERSE AR FEIFRNS. Mk, BIREANSECE R IA.

s
b (int) [unsigned char] Ff—/~E17 1) Python B RUEE AL)l — N TCAF5 O AL, fAAEFE— 1> C unsigned
char 258y,

B (int) [unsigned char] §—~ Python #& B340 Bl — M B ARG A i 8T, (FAEFE—1 C unsigned
char R,

h (int) [short int] > Python B AUV i —4> C short int 487,

H (int) [unsigned short int] }f—~ Python 3 ZU%£4k ii—4~ C unsigned short int JTLAFSEREAL, HA
A Y) A

i (int) [int] $f—> Python FERFEA Y —~ C int FEHL,
I (int) [unsigned int] $§—> Python FAUELAL i —4~ C unsigned int JEFFSHEAL, HNA A A

6.6. BITSHHLEETE 43

The Python/C API, %5 3.6.12

1 (int) [long int] > Python ¥ AUH 4k 4 C long int KEEHY,

k (int) [unsigned long] §—> Python ¥R (L i— 1> C unsigned long int JEAFS KB, JEAKA
it AR

L (int) [long long] f—> Python BAULAY I{—4> C long long KRB,

K (int) [unsigned long long] ¥—> Python #&Z%£4k ili—4~> Cunsigned long long LS KKIEAL,
AN AT i 4 TV A

n (int) [Py_ssize_t] §—> Python 3HU%E4k il —/~ C Py_ssize_t Python JuRK/NJEHL,

c (bytes s bytearray KJ¥h 1) [char] Ff—> Python Fi7 KM, f— KK 1 1) bytes B #H
bytearray %2, ALK —1 C char F&H5LH,

1E 3.3 U fuif bytearray KRB .

C(str KIEHM D) [int] £F—4> Python F4F, W—PKEN LAY str FRFHXIR, FAM—4 C int $ARE
it

f (float) [float] }§—~ Python 3% S5 —14> C float %A%,
d (float) [double] ¥~ Python 7% S 8444 A4 C double AU TR SEL.
D (complex) [Py_complex] — Python &g B4 Il,— 1 C Py_complex Python &g 425,

HipatxR

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’ s reference count is not increased. The pointer stored is not
NULL.

o! (object) [typeobject, PyObject *] Kf—~ Python Xf RAEA—A> C $84F. Fl 0), (HE2FEMWA C 34
H5— 42 Python AN bk, 55 — AR AFMEXT R85 C A2 & (PyObject * A8 &) bl W2
Python X} JBURN}, &l TypeError 5.

0& (object) [converter, anything] i —> converter BREF—> Python %t G4 # fi— 4~ C 48 &, XFEIHA
SH BN R REL, BN A CAR R HE (R ZRAAY), #44bkh void * AL, converter
PR IR X FER IR FH -

status = converter (object, address);

object* 7% 1555 184 Python 3t %5 B *address Zf5 A\PyArg Parse* () B void* KEISH . kA
(1) status j2 1 RGBT, O FCFEARRI . BFARTING, converter™ J3 251 X —N 77 B &1E
7% *address [N2

If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value as in the original call.

1E 3.1 JiF Ek: Py_CLEANUP_SUPPORTED ¥ .

p (bool) [int] KL AMMERT HE (—AFE/RAIED I ERFEE S AT C true/false BERI(E . QISR
FRANEE “1¢, BWE “0“. BIEZAEMAYAR Python {. 2 I truth ZREUE £ 5T Python 411 faf i
RN ENEE.

3.3 FrhR T RE.

(items) (tuple) [matching-items] X5 0755& Python [¥ 31, BERKEIE items g HITH AR C 4

IAATKF Y. items Fdg— AL RS TE . 8 kg R TR BE A i E

44 Chapter 6. TH

The Python/C API, &5 3.6.12

i R B CBRAAEEE TSR LONG_MAX FRiE) ZRIRERT, SR EAT B TIE 24 B JE AR ——4
BT BRSO BIERS 5 S G R AT (SEPs b, C iR 5 S7EE AR 1 BLAt_E 3 i 282
et —— W ME T RE & KAL) -

AT AT H b Ay — LA AT B RR AR S . XN R AR EAE R S . B

| FHITE Python ZH5| K | N S ECER @ ATk Ry . C A8 8 B Al SR EWI b B ——4—
PMAESHAATREN, PyArg ParseTuple () AREVFFIMINAY C AL H (L H) KINA

$ PyArg ParseTupleAndKeywords () only: FEBAYE Python Z:4i4 3% th) R S BN Z 00] X EF S50
T, ARG R ETF SR RS, ST AR | U —EAE S BT .

3.3 B .
o A BITHIPIRE AR B B TR T KA N BRI B P B BB (PyArg_ParseTuple () B
BEIRR) “RERE” 5.
i REUEICIPIRERAR A S SR AT R B RAE N B D B RBOA R BRI R .« A1 HIEHER .
FERAEAT] 2 B it Python XfR 5 HIE 45 Rka9 5115 AZLEBENHIT HTE

2 K L8 pR RS RIS b e A AL T4 H il s) A SR s X e IR AT il A G, A
—SufEL, 0 ETE AR R TS R AR, XSS B B X OLT, BATM A ICREC RS
E AR AT

N TN, arg XS IEBCAE 2O HAS AR . Wi, PyArg parse* () s¥LRIA true, X
ZENTRN false H HE K—AE@H R . YPyArg Parse* () BB AR X BT AL 2R M 25 K
I, RS R A DA K JE S A% s B el A) AE B AS g B

APl

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
ST — BRI 24, KB SEAS BB F AN R AL B . IR IE] true; KRR] false
I H5 1 ZAMH I 575

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
MpyArg_ParseTuple () M, SRIMIEHEZ A va_list BRSO A i RIS L.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], ...)
Parse the parameters of a function that takes both positional and keyword parameters into local variables. The

keywords argument is a NULL-terminated array of keyword parameter names. Empty names denote positional-
only parameters. Returns true on success; on failure, it returns false and raises the appropriate exception.

T 3.6 IREEH: ¥R T positional-only parameters W) 3 15 .

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-
words(], va_list vargs)

MPyArg ParseTupleAndKeywords () FIE], SR EREZ—> va_list 2B S50 A 2 v A5 B E 1Y)
SRk

int PyArg_ValidateKeywordArguments (PyObject *)
R M Y KB SRR AR . XA BRECA N T PyArg ParseTupleAndKeywords () A
PR, J5# C &N XAk A .
3.2 FrihRE.

int PyArg_Parse (PyObject *args, const char *format, ...)
BRECH T R AT “IHZRALY R S H R X U Bl) METH_OLDARGS SHEHT 7 kM
Python 3 WS IR . IXRAERE A TR ARSI S @ pT, I+ HAE R EMPRES Ty RZ B e piigek, 2
ANEHTZEW . B8R BT ocd, SRmn] 5e R XA~ B rgidkee i i

6.6. BITSHHLEETE 45

The Python/C API, %5 3.6.12

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

— AT 7 E SRR R LA SRR . SRR RS L R B %
TR E T kB W METH_VARARGS . W SBR S TCHI AR IA args TR BAE N B il —
ASEERICAL . JCALR R AL 2 A2 min I HANEIE max; min 71 max Al REAATH . ONK S Hn e
B REL, B NSRRI PyObject « RAVERIIIEE EATRHBIRIEN args BIH; E
PR EL S RG] . ATE args BRI AT S BN BRI & 58 AT IR 1L . BR B0 S iR 1]
true F HANR args A2 ol ol 00 & 55 B TR IR] false; A1RKIN T 251 K —1P R

KRR B R B, BUA _weakref i BIAHUTI R LT | A IR TR :

static PyObject *
weakref_ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_ NewRef (object, callback);

}

return result;

}

EAME TP PyArg UnpackTuple () 5B T PyArg ParseTuple():

’PyArg_ParseTuple(args, "O[O:ref", &object, &callback)

6.6.2 BIETE

PyObject* Py_BuildValue (const char *format, ...)

Return value: New reference. Create a new value based on a format string similar to those accepted by the
PyArg_Parse* () family of functions and a sequence of values. Returns the value or NULL in the case of
an error; an exception will be raised if NULL is returned.

Py_BuildValue () #A—HAE I, HAYEREAMMTRS A ECES R RICA
Aol RS R R SS, BRE None; MR B AEG—MEIT, BRI g
TCRIR BT —XE 5. I 5 (s A 4 Al ARl &R [l — SR/ 0 303 1 gocdl

Y N AFGAE X B A S RO UM 38 R M BT bt 0 s Al s# AR BoT, &3 TR B
. EHEZRMAENSEH XXM EEARA S HPy _Buildvalue () BN RS H., A,
R AT malloc () H HAFELM NS L 845 Py_Buildvalue (), WRIFISHEA TTE
FEPy _BuildValue () IREIBEM free ()

TE R, G 5 i RIE AT, B35S O WA RA% IR 2R [Python X467 ;
TS 0 NItk C AL i (ER4R) sl

TREBIINES S, WIEAT, B oM SAER A AT T S P2 (B AT, Wst). Xn]
PABEAR A (A% A A A LA S Py AT B

s (str or None) [char *] Convert a null-terminated C string to a Python st r object using 'ut £-8"' encoding.
If the C string pointer is NULL, None is used.

s# (str or None) [char *, int] Convert a C string and its length to a Python st r object using 'ut£-8"' en-
coding. If the C string pointer is NULL, the length is ignored and None is returned.

y (bytes) [char *] This converts a C string to a Python bytes object. If the C string pointer is NULL, None
is returned.

46

Chapter6. TH

The Python/C API, &5 3.6.12

y# (bytes) [char *, int] This converts a C string and its lengths to a Python object. If the C string pointer is
NULL, None is returned.

z (str or None) [char *] FI “s“—%.
z# (str or None) [char *, int] F “s#“—FF,

u (str) [wchar_t *] Convert anull-terminated wchar_ t buffer of Unicode (UTF-16 or UCS-4) data to a Python
Unicode object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [wchar_t *, int] Convert a Unicode (UTF-16 or UCS-4) data buffer and its length to a Python Unicode
object. If the Unicode buffer pointer is NULL, the length is ignored and None is returned.

U (str or None) [char *] FI “s“—kf,

U# (str or None) [char *, int] I “s#“—FFf.

i (int) [int] Ff—4> C int BEAELAY F{ Python BRI 5L,

b (int) [char] §—4> C char “FAFAEL (LAY Python FEAIXF R

h (int) [short int] #f—> C short int SFR&AUHEAL i Python BEAUN 4

1 (int) [long int] $—4 C long int KEEAELAY A Python BEHIN 4,

B (int) [unsigned char] ¥/~ Cunsigned char L5 F5FAHAL I Python B AUN 42 .
H (int) [unsigned short int] ¥—{> C unsigned long JLAFS 4R AL A Python #E NI 4 ,
I (int) [unsigned int] }f—/> C unsigned long JLAFS 4R RIELAY il Python XA 4 ,

k (int) [unsigned long] ¥—/ C unsigned long JLf5K BRI AL B Python 3 AU 42
L (int) [long long] 5 4 C Long long K KHETHE{LA Python B4 .

K (int) [unsigned long long] ¥—> C unsigned long long JLfF 5K KIEREE(L L Python B}
%

n (int) [Py_ssize_t] ¥—14> CPy_ssize_t J5HI%E4k A Python #&7Y

c (bytes KA 1) [char] Ff—4> C int BEAU R FAFFE LN Python bytes KN 1 IFIX L.
C(str KD D) [int] Kf—4> C int BAARRYFAFEN Python str KN 1 IFRFHRXTS .

d (float) [double] K~ C double WU AT s AU ALk Python 77 ;S AR AR .

£ (£loat) [float] Kf—/> C float HURGREIF ML A Python 7 SR IUAF .

D (£ #0) [Py_complex *] f—4> C Py_complex KA RN Python 247

O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented by
one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception. Therefore, Py_BuildValue () will return NULL but
won’ t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] F1 “O“fH A .
N (object) [PyObject *] F1 “O“fH[A], SR B FH AIEMXTZB95] T M@/ HSH0 £ H x5
Fa i B T e AR S

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The function
is called with anything (which should be compatible with void *) as its argument and should returna “new”
Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Fi—A~ C 42 & 74§54 i Python JCZH I CRFpAH R 1 e R AR
[items] (list) [MRMICEK] K4 C A E 7550 K Python 51| I LRHFH [¥ T R A &

6.6. BITSHHLEETE 47

The Python/C API, %5 3.6.12

{items} (dict) [HIRIITH] KA CASHFHFAR AL Python 7l &—XFHELER) C AL N —
ATCEBAT A, 7B TR

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject* Py_VaBuildValue (const char *format, va_list vargs)
Mpy_Buildvalue () fld, SRIMEHEZ—A va_list B SHOMAZ 0 AL BRI S8

6.7 FHFRERSHEIt

TR AR A 5 H i 4 R
int PyOS_snprint £ (char *str, size_t size, const char *format, ...)
WRYEARFAFER formar MBINSEL, b AL size P58 str . HZ UL Unix P I snprintf (2) o

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)
PR X FAF R formar FNAS B S 55 R va , ANEef T size FF35 8] str o 52 W Unix F M} 50
vsnprintf (2) .

PyOS_snprintf () and PyOS_vsnprintf () wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

FLREARPR str¥[*size-1] FER IR AR '\O" o BAIMAG AL size F35 (RFELERA '\0") FIF4FH
PR B ERE T/ str = NULL, size > O fll format !'= NULL.

If the platform doesn’ t have vsnprintf () and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts with a Py_FatalError.

SRR (rv) I DA T U AR
c M0 <= rv < size, iMEEEINTIH v ANFAREA sr (RS skl 1 N0)

e Yrv >= size, HHFEHREENIF BT E—AWH ov + 1 FIHEPIX. FEXMELT,
str¥[*size-1] B{EE "\0"' .

* YMrv < 0, XRELERFRYFN . TEXFMEFILT, sor¥[*size-11 FEALZ "'\0" , {E2 str FHARTR
IIARYCE o BRI U IR T IRZ 5
PATR BRI 5 TR PR T R B A ER B R e
double PyOS_string_to_double (const char *s, char **endptr, PyObject *overflow_exception)
AT s fdfly double KA, RGNS % Python 524 . 1232 19~#4F R AL A% 1. T4 Python
fﬁéoat () MEREFEEZI AR ES, IRT s LA N FERHE M . Hl U T 4 mir X

If endptr is NULL, convert the whole string. Raise ValueError and return —1 . 0 if the string is not a valid
representation of a floating-point number.

WA endptr A& NULL , RUJREEZ M IFAF I/ *endptr BB TS M85 — DR 09 F4F
AR AR IR BN 277 WA S Rk 7, fF * endptr WE NIEMFEMAR K, 5lK
ValueError 745, - HiRME -1.0 .

WA s FoR—DRKMABAEHE—MFRBCTIE (Lrt, "1e500" FEFZ & ER— 14T
H) RGUR overflow_exception f& NULL iR 4| Py_HUGE_VAL (H@EM4MWAS) HHAREL
a5 o FEHAM 5 TH, overflow_exception dhJifE [—> Python R4 5k R IRl 1.0
o TERXWFMEIL T, &E *endptr FRIFRELZ BN H— P4

USRAE SIS) B AR AT A FeAd R i (R — NP RIS R) , BCEE 2 Y Python S I HLik [l
-1.0,

48 Chapter6. TH

The Python/C API, &5 3.6.12

3.1 FTR I RE.

char* PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)
e double val —AME format_code, precision Fl1 flags W) 545 ER

e XA AN T Z—, re, "E', £, 'FY, "g", G B Tt R e 4R AR L
0. 'r' BAHRE TARMEREL repr () #45K,
flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed to-
gether:

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-negative.

e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

e Py_DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf () '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE, Py_DTST_INFINITE, or
Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem Free ().

3.1 B fE.

int PyOS_stricmp (const char *s/, const char *s2)

FRERARD KNG . ZREJLFS stremp O BT S AME, LR2EZR T RN,

int PyOS_strnicmp (const char *s/, const char *s2, Py_ssize_t size)

TAHRARD KNG . ZRBILFS strnemp O LA AME, 2B TN,

6.8 5

PyObject* PyEval_GetBuiltins ()
Return value: Borrowed reference. 3 [4 HitAATITH P &R0 L, A0SR Y BT WUEZESAT, R M)
LIRS ERERS -

PyObject* PyEval_GetLocals ()
Return value: Borrowed reference. Return a dictionary of the local variables in the current execution frame, or
NULL if no frame is currently executing.

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution frame, or
NULL if no frame is currently executing.

PyFrameObject* PyEval_GetFrame ()
Return value: Borrowed reference. Return the current thread state’ s frame, which is NULL if no frame is currently
executing.

int PyFrame_GetLineNumber (PyFrameObject *frame)
R frame 4B IEAEIATHIATS o

const char* PyEval_GetFuncName (PyObject *func)

AR fune e R0, REEEBIN G, WEREIERAFR, BIERE func BRI K.

const char* PyEval_GetFuncDesc (PyObject *func)
ARG func ZRBLR MRS o 1R BYEEFE RSO R “0”, 7 constructor” , ” instance” F1” object”,
YpPyEval_GetFuncName () BIZERZER:, 4552 func FIFHIAR.

6.8. R 49

The Python/C API, %5 3.6.12

6.9 mAFEDREMSZIRThEE

int PyCodec_Register (PyObject *search_function)

WA B) AR T R 2R eR

TERREIER, HEm#k encodings 0, WEPRMARTEM, R ERACTRRREIERH L.
int PyCodec_KnownEncoding (const char *encoding)

AWML E encoding W ZwfEISGAS & 75 CAFAEM IR 1 8¢ 0. BLRREUE RENIZN .
PyObject* PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)

2 B g B AR i Y APL.

object is passed through the encoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

PyObject* PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)

17 B G fir i g B A RS APL,

object is passed through the decoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

6.9.1 Codec &1k API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes encodings
looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set and NULL
returned.

PyObject* PyCodec_Encoder (const char *encoding)
N4 ERY encoding BRI — G T3 R AL -

PyObject* PyCodec_Decoder (const char *encoding)
NEREN encoding BRI— RIS R KL -

PyObject* PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
R ERY encoding 3Bl—4~ IncrementalEncoder X4,

PyObject* PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
SHZE E W) encoding $El—-~ IncrementalDecoder X4,

PyObject* PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
WY E) encoding $EL— St reamReader) L.

PyObject* PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)
NS EW encoding FEL— StreamWriter] K%L,

50 Chapter6. TH

The Python/C API, &5 3.6.12

6.9.2 FF Unicode 4wt IBIEFRYEME API

int PyCodec_RegisterError (const char *name, PyObject *error)
TELR FE W name 21 JE MRS 1R A0 38 5] pR KR error o 2 [R1 %] R BSCRFAE — 1> J R A 71 388 3] 0 Y5 4 S 1)
PFITCIE SRS 0 7 s I HL name B4 %€ 4 encode/decode b KT I 1Y) error JEZ I pht 2 2 ¢ it s A 1A
e

Z | O KR K & ¥ % — 4 UnicodeEncodeError, UnicodeDecodeError &}
UnicodeTranslateError I SEBifE N B S50, H b & X T M85 A5 8CF 1 7 9 S
TR T A A RS B (1S 4 Unicode Exception Objects T fEFEBUNAE B BREEN) o 2% 0l R £
WG| KGR W S, B AR Bl — AN)87 8 S B R i A i e, AR — N RR Im S
IREEL, 2B I AR AT 26 E RS i/ AR 4

B R A <O SR [m] -1

PyObject* PyCodec_LookupError (const char *name)
Lookup the error handling callback function registered under name. As a special case NULL can be passed, in
which case the error handling callback for “strict” will be returned.

PyObject* PyCodec_StrictErrors (PyObject *exc)
Gk exc VEh 4
PyObject* PyCodec_IgnoreErrors (PyObject *exc)

2 unicode 1%, BRI RAVEIA .

PyObject* PyCodec_ReplaceErrors (PyObject *exc)
i 2 B U+FFFD %4 unicode 2 iB4E 1%

PyObject* PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
i XML 455 | 4 unicode 2% .

PyObject* PyCodec_BackslashReplaceErrors (PyObject *exc)
(P RS SUAF (\x, \u Hl \U) 4 unicode Zi 4% .

PyObject* PyCodec_NameReplaceErrors (PyObject *exc)
AT AN .y B SCRPE G unicode St A %

3.5 B .

6.9. JRARILSEEMEXISThEE o1

The Python/C API, %5 3.6.12

52 Chapter6. TH

CHAPTER /

MERE

AF PRI Python XIRACH,, Fib HRM, LA Z RIS R (Flan, Prafuadesy, Sy
FIRR) . MR GRBIEATE I, 1474 —4 Python 54 .

XL R R AN AT B TR IE WAL AT B 0, In— B Ry List_New () A, (HH ARG H 3%
AWK E 2 “NULL“fA{E.

7.1 HRMY

PyObject* Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type combi-
nation.

Py RETURN_NOTIMPLEMENTED
Properly handle returning Py_Not Implemented from within a C function (that is, increment the reference
count of NotImplemented and return it).

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns —1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the str () of the object is written instead of
the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

Note that exceptions which occur while calling __getattr__ () and __getattribute__ () methods will
get suppressed. To get error reporting use PyObject_GetAttr () instead.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

53

The Python/C API, %5 3.6.12

Note that exceptions which occur while calling _ getattr__ () and __getattribute__ ()
methods and creating a temporary string object will get suppressed. To get error reporting use
PyObject_GetAttrString () instead.

PyObject* PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named atfr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString (PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named atfr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Generic attribute getter function that is meant to be put into a type object’ s tp_getattro slot. It looks for a
descriptor in the dictionary of classes in the object’ s MRO as well as an attribute in the object’ s __dict___
(if present). As outlined in descriptors, data descriptors take preference over instance attributes, while non-data
descriptors don’ t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return O on success. This is the equivalent of the Python statement o.attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttr ().

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return O on success. This is the equivalent of the Python statement o.attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object’ s tp_setattroslot. It
looks for a data descriptor in the dictionary of classes in the object’ s MRO, and if found it takes preference over
setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the object’ s
__dict__ (if present). On success, O is returned, otherwise an At t ributeError is raised and -1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

PyObject* PyObject_GenericGetDict (PyObject *o, void *context)
A generic implementation for the getter of a ___dict__ descriptor. It creates the dictionary if necessary.

3.3 BRI HE.

int PyObject_GenericSetDict (PyObject *o, void *context)
A generic implementation for the setter of a ___dict__ descriptor. This implementation does not allow the
dictionary to be deleted.

3.3 BRI HE.

PyObject* PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Return value: New reference. Compare the values of ol and 02 using the operation specified by opid, which must
be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, > or >=

54 Chapter 7. #HIRWRE

The Python/C API, &5 3.6.12

respectively. This is the equivalent of the Python expression o1 op 02, where op is the operator corresponding
to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Compare the values of o/ and 02 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ,Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, ! =, >, or >= respectively. Returns -1 on error,
0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op 02, where op is the
operator corresponding to opid.

{Ef#: If ol and 02 are the same object, PyObject_RichCompareBool () will always return 1 for Py_EQ and 0
for Py_NE.

PyObject* PyObject_Repr (PyObject *0)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression repr (o). Called by the repr ()
built-in function.

TE 3.4 it ¥ This function now includes a debug assertion to help ensure that it does not silently discard an
active exception.

PyObject* PyObject_ASCII (PyObject *o)
As PyObject_Repr (), compute a string representation of object o, but escape the non-ASCII characters in
the string returned by PyObject_Repr () with \x, \u or \U escapes. This generates a string similar to that
returned by PyObject_Repr () in Python 2. Called by the ascii () built-in function.

PyObject* PyObject_Str (PyObject *o)
Return value: New reference. Compute a string representation of object 0. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression st r (o). Called by the str () built-in
function and, therefore, by the print () function.

JE 3.4 Jiu B 2 This function now includes a debug assertion to help ensure that it does not silently discard an
active exception.

PyObject* PyObject_Bytes (PyObject *0)
Compute a bytes representation of object o. NULL is returned on failure and a bytes object on success. This is
equivalent to the Python expression bytes (o), when o is not an integer. Unlike bytes (o), a TypeError is
raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Return 1 if the class derived is identical to or derived from the class cls, otherwise return 0. In case of an error,
return —1.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

If cls hasa ___subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in cls.
mro

Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns —1 and sets an
exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

7.1, &N 55

https://www.python.org/dev/peps/pep-3119

The Python/C API, %5 3.6.12

If clshasa___instancecheck__ () method, it will be called to determine the subclass status as described in
PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.

An instance inst can override what is considered its class by havinga ___class___ attribute.

An object cls can override if it is considered a class, and what its base classes are, by havinga ___bases___ attribute
(which must be a tuple of base classes).

int PyCallable_Check (PyObject *0)
Determine if the object o is callable. Return 1 if the object is callable and O otherwise. This function always
succeeds.

PyObject* PyObject_Call (PyObject *callable_object, PyObject *args, PyObject *kw)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tuple args,
and named arguments given by the dictionary kw. If no named arguments are needed, kw may be NULL. args must
not be NULL, use an empty tuple if no arguments are needed. Returns the result of the call on success, or NULL
on failure. This is the equivalent of the Python expression callable_object (*args, **kw).

PyObject* PyObject_CallObject (PyObject *callable_object, PyObject *args)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tuple args.
If no arguments are needed, then args may be NULL. Returns the result of the call on success, or NULL on failure.
This is the equivalent of the Python expression callable_object (*args).

PyObject* PyObject_CallFunction (PyObject *callable, const char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments.
The C arguments are described using a Py_BuildValue () style format string. The format may be NULL,
indicating that no arguments are provided. Returns the result of the call on success, or NULL on failure. This is
the equivalent of the Python expression callable (*args). Note that if you only pass PyObject * args,
PyObject_CallFunctionObjArgs () is a faster alternative.

TE 3.4 {4 The type of format was changed from char *.

PyObject* PyObject_CallMethod (PyObject *o, const char *method, const char *format, ...)
Return value: New reference. Call the method named method of object o with a variable number of C arguments.
The C arguments are described by a Py BuildValue () format string that should produce a tuple. The format
may be NULL, indicating that no arguments are provided. Returns the result of the call on success, or NULL on fail-
ure. This is the equivalent of the Python expression o .method (args) . Note that if you only pass PyObject
*args, PyObject_CallMethodObjArgs () is a faster alternative.

TE 3.4 JRFE L The types of method and format were changed from char *.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyObject *
arguments. The arguments are provided as a variable number of parameters followed by NULL. Returns the result
of the call on success, or NULL on failure.

PyObject* PyObject_CallMethodObjArgs (PyObject *o, PyObject *name, ..., NULL)
Return value: New reference. Calls a method of the object o, where the name of the method is given as a Python
string object in name. It is called with a variable number of PyOb ject * arguments. The arguments are provided
as a variable number of parameters followed by NULL. Returns the result of the call on success, or NULL on failure.

Py_hash_t PyObject_Hash (PyObject *0)
Compute and return the hash value of an object 0. On failure, return —1. This is the equivalent of the Python
expression hash (o) .

TF 3.2 iR B4 The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

Py_hash_t PyObject_HashNot Implemented (PyObject *0)
Seta TypeError indicating that t ype (o) is not hashable and return — 1. This function receives special treatment
when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not hashable.

56 Chapter 7. #HIRWRE

https://www.python.org/dev/peps/pep-3119

The Python/C API, &5 3.6.12

int PyObject_IsTrue (PyObject *0)
Returns 1 if the object o is considered to be true, and O otherwise. This is equivalent to the Python expression not
not o. On failure, return —1.

int PyObject_Not (PyObject *0)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression not
o. On failure, return —1.

PyObject* PyObject_Type (PyObject *0)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type of object
o. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression type (o).
This function increments the reference count of the return value. There’ s really no reason to use this function
instead of the common expression o—>ob_type, which returns a pointer of type PyTypeOb ject *, except
when the incremented reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of type. Both parameters must be non-NULL.

Py_ssize_t PyObject_Size (PyObject *o)

Py_ssize_t PyObject_Length (PyObject *0)
Return the length of object 0. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, —1 is returned. This is the equivalent to the Python expression 1en (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t default)
Return an estimated length for the object o. First try to return its actual length, then an estimate using

__length_hint__ (), and finally return the default value. On error return —1. This is the equivalent to the
Python expression operator.length_hint (o, default).
3.4 FrhIEE.

PyObject* PyObject_GetItem (PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is the
equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return —1 on failure; return O on success. This is the
equivalent of the Python statement o [key] = wv.

int PyObject_DelItem (PyObject *o, PyObject *key)
Remove the mapping for the object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del ol[key].

PyObject* PyObject_Dir (PyObject *o)
Return value: New reference. This is equivalent to the Python expression dir (o), returning a (possibly empty)
list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL, this is
like the Python dir (), returning the names of the current locals; in this case, if no execution frame is active then
NULL is returned but PyErr Occurred () will return false.

PyObject* PyObject_GetIter (PyObject *0)
Return value: New reference. This is equivalent to the Python expression iter (o). It returns a new iterator for
the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns NULL
if the object cannot be iterated.

7.1, &N 57

The Python/C API, %5 3.6.12

7.2 il

int PyNumber_Check (PyObject *0)
MRG0 FRAECARIPINN, IRIIE 1, BWEREMER. XA RO 2 R

PyObject* PyNumber_Add (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. This is the equivalent of
the Python expression o1 + o2.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from o/, or NULL on failure. This is the equivalent
of the Python expression o1 - o2.

PyObject* PyNumber_Multiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. This is the equivalent
of the Python expression o1 * o02.

PyObject* PyNumber_MatrixMultiply (PyObject *ol, PyObject *02)
Returns the result of matrix multiplication on o/ and 02, or NULL on failure. This is the equivalent of the Python
expression ol @ o2.

3.5 B fE.

PyObject* PyNumber_FloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return the floor of o/ divided by 02, or NULL on failure. This is equivalent to the
“classic” division of integers.

PyObject* PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is ‘“approximate” because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers.

PyObject* PyNumber_Remainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. This is the equivalent
of the Python expression o1 % o2.

PyObject* PyNumber_Divmod (PyObject *o0l, PyObject *02)
Return value: New reference. See the built-in function divmod () . Returns NULL on failure. This is the equivalent
of the Python expression divmod (01, 02).

PyObject* PyNumber_Power (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. This is the equivalent of
the Python expression pow (01, 02, 03), where 03 is optional. If 03 is to be ignored, pass Py_None in its
place (passing NULL for 03 would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *0)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent of
the Python expression —o.

PyObject* PyNumber_Positive (PyObject *0)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python
expression +o.

PyObject* PyNumber_Absolute (PyObject *0)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs (o) .

58 Chapter 7. #HIRWRE

The Python/C API, &5 3.6.12

PyObject* PyNumber_Invert (PyObject *0)
Return value: New reference. Returns the bitwise negation of o on success, or NULL on failure. This is the equivalent
of the Python expression ~o.

PyObject* PyNumber_Lshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. This is the
equivalent of the Python expression o1 << o02.

PyObject* PyNumber_Rshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. This is
the equivalent of the Python expression o1 >> o02.

PyObject* PyNumber_And (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise and” of o/ and 02 on success and NULL on failure. This is the
equivalent of the Python expression o1 & o2.

PyObject* PyNumber_Xorx (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise exclusive or” of ol by 02 on success, or NULL on failure. This
is the equivalent of the Python expression o1 ~ o2.

PyObject* PyNumber_Or (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of ol and 02 on success, or NULL on failure. This is the
equivalent of the Python expression 01 | o02.

PyObject* PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement o1 += o02.

PyObject* PyNumber_InPlaceSubtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from o/, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 —-= o02.

PyObject* PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 *= 02.

PyObject* PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)
Returns the result of matrix multiplication on o/ and 02, or NULL on failure. The operation is done in-place when
ol supports it. This is the equivalent of the Python statement 01 @= o2.

3.5 HRge.

PyObject* PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Returns the mathematical floor of dividing ol by 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 //= 02.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is “approximate” because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers. The operation is done in-place when ol supports it.

PyObject* PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 %= o02.

PyObject* PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow (). Returns NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 **= o2 wheno3is Py_None, or
an in-place variant of pow (01, 02, o03) otherwise. If 03 is to be ignored, pass Py_ None in its place (passing
NULL for 03 would cause an illegal memory access).

7.2. ¥l 59

The Python/C API, %5 3.6.12

PyObject* PyNumber_InPlaceLshift (PyObject *o0l, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 <<= 02.

PyObject* PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 >>= 02.

PyObject* PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise and” of o/ and 02 on success and NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 &= o02.

PyObject* PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise exclusive or” of ol by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 "= o02.

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of o/ and 02 on success, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement 01 |= o2.

PyObject* PyNumber_Long (PyObject *0)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. This is
the equivalent of the Python expression int (o).

PyObject* PyNumber_Float (PyObject *o)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is the
equivalent of the Python expression f1loat (o).

PyObject* PyNumber_Index (PyObject *0)
Returns the o converted to a Python int on success or NULL with a TypeError exception raised on failure.

PyObject* PyNumber_ToBase (PyObject *n, int base)
AR [RERY n FEASR LA base BB FATHR IR IR . XA base ZHLLIE 2, 8, 10 8 16 o XT3k
%z, 8, @16, R FAFERE AN EEEARH obY, *00", or "0x ' MR n g Python Hf L
Boine 2880 ghdeiE i PyNumber Tndex () KB LB T,

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
R 0 R— MR RREAL, IR o Fedfe ii—A> Py_ssize_t (USSR . AR KRN, &1l
-1 51Kk
If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError or

OverflowError). If exc is NULL, then the exception is cleared and the value is clipped to PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check (PyObject *0)
IR 02— DRGIEEEL (f74 nb_index i B I tp_as_number JLAFLH) MLRIE 1, AHIGRIE 0 o X
AR TR R

60 Chapter 7. #HIRWRE

The Python/C API, &5 3.6.12

7.3 FR5IiY

int PySequence_Check (PyObject *0)
WX SLARMEF I, REORI] 1, HWERE 0. HEEERNAA __getitem () JyiAHY Python
FKaR 1, BRAFENTR dict B2, PRUNTE— g OL T JoiRsi e B B SCRi 8. IR B2 2l
A7,

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *0)
JEIFR 51 v *o* BIRF G, SRR 0] -1, 4124 Python [“len(0)“Fik k.

PyObject* PySequence_Concat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. This is the
equivalent of the Python expression o1 + o2.

PyObject* PySequence_Repeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
This is the equivalent of the Python expression o * count.

PyObject* PySequence_InPlaceConcat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python expression o1 += 02.

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
The operation is done in-place when o supports it. This is the equivalent of the Python expression o *= count.

PyObject* PySequence_GetItem (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent of the Python
expression o [1].

PyObject* PySequence_GetSlice (PyObject *o, Py_ssize_til, Py_ssize_ti2)
Return value: New reference. Return the slice of sequence object o between i/ and i2, or NULL on failure. This is
the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *v)
FERIGE v IR(EST 0 WU5R i e . RN 251 R E IR E -1; JRZhRHR[E 0, 5XAH4 T Python 1]
oli] = v. BLEREL & BB v 5.

If v is NULL, the element is deleted, however this feature is deprecated in favour of using
PySequence_DelItem().

int PySequence_DelItem (PyObject *o, Py_ssize_ti)
MIERXTSE 0 B95E i ZoeK . RIMEHRE] -1, XAH24 T Python iE/4] del olil.

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2, PyObject *v)
RIS v IAEZE P A5 o BIM il B 2 Y]y XA T Python ififi] o[11:12] = v

int PySequence_DelSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
BB FEFUAT 5 0 WM i1 3] i2 BYT R . RIGIHR] -1, XA 24F Python 141 del o[il:i2],

Py_ssize_t PySequence_Count (PyObject *o, PyObject *value)
R[] value 75 o W I REL, BIRIEETS o [key] == value WHEMEE . RIGEHRF -1, XA
F Python ik 0. count (value).

int PySequence_Contains (PyObject *o, PyObject *value)
i€ o R value, AR o "PIYIE—TTET value, MR 1, FHIGRIE 0o HIFEHS, &0 -1, XAH
4 F Python A, value in o.

Py_ssize_t PySequence_Index (PyObject *o, PyObject *value)
RAIZE—AEG] *i*, Hp o[i] == value. H45HT, 121 —1. #124TF Python) “o.index(value)“ZFik=.

7.3. FliL 61

The Python/C API, %5 3.6.12

PyObject* PySequence_List (PyObject *0)
Return value: New reference. Return a list object with the same contents as the sequence or iterable o, or NULL on
failure. The returned list is guaranteed to be new. This is equivalent to the Python expression 1ist (o).

PyObject* PySequence_Tuple (PyObject *o)
Return value: New reference. Return a tuple object with the same contents as the sequence or iterable o, or NULL on
failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with the appropriate
contents. This is equivalent to the Python expression tuple (o).

PyObject* PySequence_Fast (PyObject *o, const char *m)
Return value: New reference. Return the sequence or iterable o as a list, unless it is already a tuple or list, in which
case oisreturned. Use PySequence_Fast_GET_TITEM () to access the members of the result. Returns NULL
on failure. If the object is not a sequence or iterable, raises TypeError with m as the message text.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that o was returned by PySequence_Fast () and that o is not NULL. The
size can also be gotten by calling PySequence_Size () on o, but PySequence_Fast_GET_SIZE () is
faster because it can assume o is a list or tuple.

PyObject* PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. ~ Return the ith element of o, assuming that o was returned by
PySequence_Fast (), ois not NULL, and that i is within bounds.

PyObject** PySequence_Fast_ITEMS (PyObject *0)
Return the underlying array of PyObject pointers. Assumes that o was returned by Py Sequence_Fast () and
ois not NULL.

THTERE, WERSZRHE IS, FT 70 Bl vl e 2 R E (7 items B4 PRI, 7R 81 ok BB R S0
EOIEE-T ki edikiga

PyObject* PySequence_ITEM (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. = Macro form of
PySequence_GetItem () but without checking that PySequence_Check () on o is true and without ad-
justment for negative indices.

7.4 BRG Y

Z W PyObject_GetItem(). PyObject_SetItem() 5PyObject_DelItem(),

int PyMapping_Check (PyObject *o)
Return 1 if the object provides mapping protocol or supports slicing, and O otherwise. Note that it returns 1 for
Python classes witha __getitem__ () method since in general case it is impossible to determine what the type
of keys it supports. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

Py_ssize_t PyMapping_Length (PyObject *0)
JEENIN IR IR o AR, RIGINTIR] -1, 53X 4T Python #3A3 1en (o) .

PyObject* PyMapping_ GetItemString (PyObject *o, const char *key)
Return value: New reference. Return element of o corresponding to the string key or NULL on failure. This is the
equivalent of the Python expression o [key]. See also PyObject_GetItem().

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
TEXR o TRFFAFER key WU FIE v RIS A -1, JXAH2 T Python if541) o [key] = v. 7S
WPyObject_SetItem(),

62 Chapter 7. #HIRWRE

The Python/C API, &5 3.6.12

int PyMapping_DelItem (PyObject *o, PyObject *key)
MXFG o PRI R key HYBEGF. RIS IR M) -1, XA 24T Python i /4] del olkey]. X

BPyobject_DelItem() H—" 514,

int PyMapping_DelItemString (PyObject *o, const char *key)

MAFE o MREERTF AT H key BRI . RIGINHRIA] -1 3XAH24T Python i541) del o[key].

int PyMapping_HasKey (PyObject *o, PyObject *key)
WRWLNS G B AT B key WIR] 1, FRIER[E] 0. JEXAH 24T Python Kk key in o. BLERELE RS
AT

WHEBEWA _getitem__ () &M E K EMN S H R/ 200500 2208 BUAT 32455 &
HPyObject_GetItem().

int PyMapping_HasKeyString (PyObject *o, const char *key)
TRWLS G BAT B key IR] 1, A3 UR[E] 0. 3XAH 24T Python %Kik key in oo BUERELE RS
kT
WHEBEEWMM _getitem () Ty YK A K A2 B R ORE 2 BlBR WC. SEAR RO OIS U
fﬂPyMappingﬁGetItemString()o
PyObject* PyMapping_Keys (PyObject *0)
Return value: New reference. On success, return a list or tuple of the keys in object 0. On failure, return NULL.
PyObject* PyMapping_Values (PyObject *0)
Return value: New reference. On success, return a list or tuple of the values in object 0. On failure, return NULL.
PyObject* PyMapping_Items (PyObject *o0)
Return value: New reference. On success, return a list or tuple of the items in object o, where each item is a tuple
containing a key-value pair. On failure, return NULL.

ER 2R

A P BR L
int PyIter_Check (PyObject *0)
R true , QRIS o STRFEEAAR AT .
PyObject* PyIter_Next (PyObject *o)
Return value: New reference. Return the next value from the iteration o. The object must be an iterator (it is up to

the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error occurs
while retrieving the item, returns NULL and passes along the exception.

BREREGERE — A DEER, C AU NI%E R,

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while (item = PyIter_Next (iterator)) {
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;

(FItgkss)

7.5. XMW 63

The Python/C API, %5 3.6.12

Py_DECREF (iterator);

if (PyErr_Occurred()) |
/* propagate error */
}
else {
/* continue doing useful work */

}

7.6 Gl

1t Python Hf m] fiff Fj — L2305 R A B 0 iR J2= N AR B BFR 42 0P D7 1) USRS RAFE N B) bytes Ml
bytearray W&—284ll array.array AP IR, 5 =J7 AT BB T HFIARY H A 2 L ENTH
CRRAL, BTN T GBI 4 .

BRI A & — R E CAYIE S, (BEATRA th T REROR A WA Gt X SRR S AR o PR L
OUT, A BRI I G DX T 75 R A A o

Python PAZZ # ¥ FEAAE C JZ LR MEXFERIRE . LML EL 38T 1

o T, DR TS RN, A ATFERRRER K (G . %
1 38 IA8ME ELAE Buffer Object Structures —5 713

o TEIHSRE M, A JURN AR T PSRRI 0 0 R R = A i ha 5 (BIan—AIrikmiges) .«

BRI R bytes Al bytearray UL T HITE A ATFE 1HIKEZE K. (T A2 i H Al
R BIA array . array FRAFHITEE AT RS T (L.

iR DB TTH B I — T2 ORI wreite () D5k ARMIRT DA H A — R E)F 45 AR 5 ol LA
AN SR write () JiERAGEXTEAX R A AR, HALRT L, W readinto () FESHN
BB ARR . Zeuh X 0 AR 0] AREREMEH A v sl A 5 U B8 X Y S 1

XFZpE OESRE TS, AW AR H X SR % .
o HHIEHMMSEORHPyOobject_GetBuffer () B
s Wl PyArg ParseTuple () (SEFFIZLZ—) HAEA y*, wr or s* 44X KA H—,

TEXPAE LT, YAFFEZMX A pyBuffer_Release () . WIRMEAERK, WHeS SELS
AR, 31 G0 YR R

7.6.1 ZRXLEH

e X G (ol o) SRR “buffers”) XFTF1F OB R B M 75— AR ATT4 Python F2/7 RAERA M. €
AR AFIVEE P DL R AL BEEATS I N AFBREIRE TS, AT AR 5 HUREAE AT &5 24 JT 47 Python 2 /7
5o WAFRTLAE C ¥R — R BRI, tnT DURTERG 13 B B R G0 P 2 i 1 TR AR LR N AR
oE AT DA RAL BB AL N AR A S A AL B -

5 Python fFREAR A TTHY R ZHREAEIAUAE, G XA g Pyobject HigfH e B C 45, X B EA]
A PAARF R RN . MFREO G O B B gR)y, AR —AS A AL XA .

ARXWMMHEHFFHNROEEUWY, HSHE PR3 24848, BRREPRENE, S
RlPyObject_GetBuffer ().

Py_buffer

64 Chapter 7. #HIRWRE

The Python/C API, &5 3.6.12

void *buf
T8 1) i v X 7 B) 2 S g5 A AR I 48 EE . X T DA S5 R 7 IS 2 P PR N A7 B v R AT A 07 B
Bihn, MR st rides (HPTREFR I NAEIRIOARE o

X Fcontiguous , AR Hed, {EAS WALk .

void *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically decre-
mented and set to NULL by PyBuffer Release (). The field is the equivalent of the return value of any
standard C-API function.

As a special case, for femporary buffers that are wrapped by PyMemoryView_ FromBuffer () or
PyBuffer FillInfo () thisfield is NULL. In general, exporting objects MUST NOT use this scheme.

Py_ssize_t 1en
product (shape) * itemsize, X TIELEAH, X 2R KE . X TIRES%0H, 0
KB R B ELFREX, WZKERFEAZKE.
24 2% o X 2 38 oF PR IE 7% 22 P 09 SR AR BUEF, A 5 M ((char *)buf) [0] up to

((char *)buf) [len-1] B A H M. FERZEHWE LT, LW KK HPyBUF_SIMPLE
B PyBUF_WRITABLE.,

int readonly
Zh X N R e es . W FBt PyBUF_WRITABLE Frifatil .

Py_ssize_t itemsize
Item size in bytes of a single element. Same as the value of struct.calcsize () called on non-NULL
format values.

Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will be
set to NULL, but i tems i ze still has the value for the original format.

MR shape F£1E, MAHZEN) product (shape) * itemsize == len {RIELE, HHETTLA
{fifitemsize EFHFE X,

If shapeis NULL as aresult of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer must
disregard i temsize and assume itemsize ==

const char *format
A NUL terminated string in st ruct module style syntax describing the contents of a single item. If this is
NULL, "B" (unsigned bytes) is assumed.

WF Bt PyBUF_FORMAT Frida il .

int ndim
The number of dimensions the memory represents as an n-dimensional array. If itis O, bu £ points to a single
item representing a scalar. In this case, shape, strides and suboffsets MUST be NULL.

The macro PyBUF_MAX_NDIM limits the maximum number of dimensions to 64. Exporters MUST respect
this limit, consumers of multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_NDIM
dimensions.

Py_ssize_t *shape
An array of Py_ssize_t of length ndim indicating the shape of the memory as an n-dimensional array.
Note that shape[0] * ... * shape[ndim-1] * itemsize MUST beequal to Ien.

Shape JEARECA T I(EM PR Z#E shape[n] >= 0. shape[n] == 0 X—EEFREFRHIER.
W25 B Z W complex arrays

shape ZCZH X100 H K i H i

7.6. iy 65

The Python/C API, %5 3.6.12

Py_ssize_t *strides

An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element in
each dimension.

Stride A MRECEH AP (AT DUORATATRE R X T 5 HUEE, AP IREH o R 5L, (HR U A Ress Ak
M strides[n] <= 0 BEN. BL(EBIE S Fcomplex arrays .

The strides array is read-only for the consumer.

Py_ssize_t *suboffsets

An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the nth
dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after de-
referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding in a
contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

Python Imaging Library (PIL) F{#] T X M H AT XK. S Hcomplex arrays T fRANAT X
FE— N PR T .

suboffsets £ 20T F ki 2 H i .

void *internal

This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer MUST NOT alter this value.

7.6.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyOb ject_GetBuffer (). Since
the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument to specify
the exact buffer type it can handle.

All Py_buf fer fields are unambiguously defined by the request type.

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: ob 7, buf, len,
itemsize, ndim.

readonly, format

PyBUF_WRITABLE

Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers.

PyBUF_FORMAT

Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field MUST
be NULL.

PyBUF_WRITABLE can be |’ d to any of the flags in the next section. Since PyBUF_SIMPLE is defined as O,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT canbe |’ d to any of the flags except PyBUF_STMPLE. The latter already implies format B (unsigned

bytes).

66

Chapter 7. S HRE

The Python/C API, &5 3.6.12

AR, HiE FRBE

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each flag
contains all bits of the flags below it.

ik 3 % | B | TREE
B[R | WRERE

PyBUF_INDIRECT

=] =] LL
PyBUF_STRIDES = = NU

NULL | NULL

P

PyBUF_ND

NULL | NULL | NULL
PyBUF_SIMPLE

ELEMRIER

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information, the
buffer must be C-contiguous.

LES R | 5k | TRBE | 08

= =
PyBUF_C_CONTIGUOUS & = NULL C

= =
PyBUF_F_CONTIGUOUS = = NULL F

| NULL CiF

PyBUF_ANY_ CONTIGUOUS

PyBUF_ND 2 | NULL | NULL C

Ty
B TR RS L bR L (15 2 S SR IR, ER I HLBR B IO ALty
.

In the following table U stands for undefined contiguity. The consumer would have to call
PyBuffer IsContiguous () todetermine contiguity.

7.6. ZEHihiY 67

The Python/C API, %5 3.6.12

5K K | iR | FIRBE | Rk | %X
PyBUF_FULL = 2 MR | U 0 =
PyBUF_FULL_RO = | WARFTEMI | U | 1500 | &2
PyBUF_RECORDS = | R NULL U |0 "
PyBUF_RECORDS_RO 2| NULL U ETRE
PyBUF_STRIDED | e NULL U 0 NULL
PyBUF_STRIDED_RO =R NULL U 15{ 0 [NULL
PyBUF_CONTIG & | NULL | NULL C 0 NULL
PyBUF_CONTIG_RO & | NULL | NULL C 150 | NULL

7.6.3 EZH4A
NumPy-Ritg: FRF0LIE

The logical structure of NumPy-style arrays is defined by i temsize, ndim, shape and strides.

If ndim == 0, the memory location pointed to by bu £ is interpreted as a scalar of size i temsize. In that case, both
shape and strides are NULL.

If st ridesis NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must access
an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] *
strides[n-1] item = * ((typeof (item) *)ptr);

As noted above, bu £ can point to any location within the actual memory block. An exporter can check the validity of a
buffer with this function:

def verify_structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v % itemsize for v in strides):
return False

(F ks

68 Chapter 7. #HIRWRE

The Python/C API, &5 3.6.12

(£ 50

if ndim <= 0:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[j]* (shape[j]-1) for j in range (ndim)
if strides[j] <= 0)
imax = sum(strides[j]* (shape[j]-1) for j in range (ndim)

if strides[j] > 0)

return 0 <= offset+imin and offset+imaxt+itemsize <= memlen

PIL-RU#&: #K, SIENFIRBE

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the next
element in a dimension. For example, the regular three-dimensional C-array char v [2] [2] [3] can also be viewed
as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2]) [2] [3]. Insuboffsets representation, those two
pointers can be embedded at the start of bu £, pointing to two char x[2] [3] arrays that can be located anywhere in
memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when there
are both non-NULL strides and suboffsets:

void *get_item_pointer (int ndim, wvoid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; 1 < ndim; i++) |

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = *((char**)pointer) + suboffsets[i];

}

return (void*)pointer;

7.6.4 ZHPXHEXER

int PyObject_CheckBuffer (PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0. When 1 is returned, it doesn’ t guarantee that
PyObject_GetBuffer () will succeed. This function always succeeds.

int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)
Send a request to exporter to fill in view as specified by flags. If the exporter cannot provide a buffer of the exact
type, it MUST raise PyExc_BufferError, set view—>obj to NULL and return - 1.

On success, fill in view, set view—>ob7j to a new reference to exporter and return 0. In the case of chained buffer
providers that redirect requests to a single object, view—>obj MAY refer to this object instead of exporter (See
Buffer Object Structures).

Successful calls to PyOb ject_GetBuffer () must be paired with calls to PyBuffer_ Release (), similar
tomalloc () and free (). Thus, after the consumer is done with the buffer, PyBuffer Release () must
be called exactly once.

7.6. iy 69

The Python/C API, %5 3.6.12

void PyBuffer_ Release (Py_buffer *view)
Release the buffer view and decrement the reference count for view—>obj. This function MUST be called when
the buffer is no longer being used, otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer ().

Py_ssize_t PyBuffer SizeFromFormat (constchar *)
Return the implied i temsize from format. This function is not yet implemented.

int PyBuffer_IsContiguous (Py_buffer *view, char order)
Return 1 if the memory defined by the view is C-style (order is ' C ') or Fortran-style (order is ' F ') contiguous or
either one (order is 'A"). Return 0 otherwise. This function always succeeds.

int PyBuffer_ ToContiguous (void *buf, Py_buffer *src, Py_ssize_t len, char order)
Copy len bytes from src to its contiguous representation in buf. order canbe 'C' or 'F' (for C-style or Fortran-
style ordering). O is returned on success, —1 on error.

This function fails if len != src->len.

void PyBuffer_FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize,

char order)
Fill the strides array with byte-strides of a contiguous (C-style if orderis ' C' or Fortran-style if order is 'F ') array

of the given shape with the given number of bytes per element.

int PyBuffer_ FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly,

int flags)
Handle buffer requests for an exporter that wants to expose buf of size len with writability set according to readonly.

buf is interpreted as a sequence of unsigned bytes.

The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf
has been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view—>obj to a new reference to exporter and return O. Otherwise, raise
PyExc_BufferError, set view—>o0b]j to NULL and return —1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must be
passed unmodified. Otherwise, exporter MUST be NULL.

7.7 1B Al

3.0 5 E AR,

X LEpR AU Python 2 “IHZenhtfi” AP BZLMER S 1E Python 3w, MUPMNEAREAAAE, (HIX LR)
RPN TF MBS 2.x (RS . BANIRRIMER 22 0 Wil BISE Ry, (BN R SRR b g S i AR
PRASERT T SR T YR A i o] S04 1
B, HEFARE Pyobject GetBuffer () (SERAPyArg ParseTuple () BEURMER y* 8w #4 X
) R — ARG, FAEG L AT PR pyBuf fer_Release (),
int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
A] — AT R T A A R BN AF I 485 . obf SECLAUC R B FAF Gl e 1 . I}
R[] O, K buffer SR N AFHBIETFRF buffer_len R et XA JE o R IR] -1 FF E—A> TypeError.
int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
IR B A8 A AR A 0 R AR 5L . obf S SR BB R i 11 o B R]
0, 3 buffer YR INAFHHEIEAT buffer_len BN KK . HESRHER ~1 I E— TypeError,
int PyObject_CheckReadBuffer (PyObject *0)
W o SCRF LB AT R e P IR] 10 IR 0. MR E 2 AT -

70 Chapter 7. #HIRWRE

The Python/C API, &5 3.6.12

Note that this function tries to get and release a buffer, and exceptions which occur while calling correspoding
functions will get suppressed. To get error reporting use PyOb ject_GetBuffer () instead.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)

AR Bl A)]G N AP R B . oby MR BC AT S5 1 . WIS [O, Ff buffer B
AL FHAF buffer_len B Zerh XA Z . IR 9] -1 H¥ B —4> TypeError.

7.7. |BZ Y 4

The Python/C API, %5 3.6.12

72 Chapter 7. HIERMHRE

CHAPTER 8

BEFRXRE

A I BRI BURR 2 TR 28 Python X 4 388, IR BB SAL A EADEAR B — N s R EM
Python & FH2IE]— X%, (HAHE T B4 BA IEMAERL, WM e a8 88 B, Baxt
SRAERNTH, EHHPyDict_Check (), ARIEAYLEMIZET Python X5 IERIM) “ Kt

#x .. While the functions described in this chapter carefully check the type of the objects which are passed in, many
of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can cause
memory access violations and immediate termination of the interpreter.

8.1 BEAMR

AATHHIA Python ZERXH G A —SLHIXNFR 5 None.

8.1.1 HEMKR

PyTypeObject
XA C Z544 1 T4 built-in 2878
PyObject* PyType_Type
X2JE T type X4 type object, EFE Python 2T type s [HIXI 4L
int PyType_Check (PyObject *0)
?H%Xﬁ% 0 —NRASG, WIRAAR TARMERAN R LRSLH], REE. 7EHE AL TR
.
int PyType_CheckExact (PyObject *o)
WERM LR 0 @—PMRAXS G, (A RIRHESAR R TR, IRIEH. EHEFTA L TIREE.

unsigned int PyType_ClearCache ()
Clear the internal lookup cache. Return the current version tag.

73

The Python/C API, %5 3.6.12

unsigned long PyType_GetFlags (PyTypeObject* type)
Return the tp_ f1ags member of fype. This function is primarily meant for use with Py_LIMITED_API; the
individual flag bits are guaranteed to be stable across Python releases, but access to tp_ f1ags itself is not part
of the limited API.

3.2 B fE.
Tr 3.4 MU PR The return type is now unsigned long rather than long.

void PyType_Modified (PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type.

int PyType_HasFeature (PyTypeObject *o, int feature)
Return true if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC (PyTypeObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS_HAVE_ GC.

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.

This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on b.
Call PyObject_TIsSubclass () todo the same check that issubclass () would do.

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Generic handler for the tp_alloc slot of a type object. Use Python’ s default
memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.

PyObject* PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. Generic handler for the t p_new slot of a type object. Create a new instance using
the type’ s tp_allocslot.

int PyType_Ready (PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’ s base class. Return O on success, or return —1 and sets an
exception on error.

PyObject* PyType_FromSpec (PyType_Spec *spec)
Creates and returns a heap type object from the spec passed to the function.

PyObject* PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)
Creates and returns a heap type object from the spec. In addition to that, the created heap type contains all types
contained by the bases tuple as base types. This allows the caller to reference other heap types as base types.

3.3 B fE.

void* PyType_GetSlot (PyTypeObject *type, int slot)
Return the function pointer stored in the given slot. If the result is NULL, this indicates that either the slot is
NULL, or that the function was called with invalid parameters. Callers will typically cast the result pointer into the
appropriate function type.

3.4 B fE.

74 Chapter 8. E#HMRE

The Python/C API, &5 3.6.12

8.1.2 None Y&

WYER, None fJPyTypeOb ject A HAEFE Python / C API H/AFF. fT None ZHf, WX EARR (#8
CHiH ==) MAE®T. BTHENER, %4 PyNone_Check () %L,

PyObject* Py_None
Python None ¥4, FRhZ(H. X MMREATE. EFERT TR PULATH AR 52

Py_RETURN_NONE
IERALRER B C RN Py _None 3R] (HEZYE, I None 95| HiHE0FREIE.)

8.2 F{EMR

8.2.1 ERBMR

P A B CER H DMEER N RBE B 30

R, KZ%H PyLong_As* APL R[] (REE X A)-1 , BLES - BWEFEX Ik, WM
W PyErr_Occurred () FX4y.

PyLongObject
7 Python BE [PyObject F2AL,

PyTypeObject PyLong_Type
XAPyTypeObject KSR Python A, 5 Python JZ2H1 () int AH[H .

int PyLong_Check (PyObject *p)
MRS E PyLongObject B{PyLongObject WA, 1&[A| true ,

int PyLong_CheckExact (PyObject *p)
AR SHIEPyLongObject (HANZPyLongObject WFAL, R[] true,

PyObject* PyLong_FromLong (long v)
Return value: New reference. Return a new PyLongObject object from v, or NULL on failure.

The current implementation keeps an array of integer objects for all integers between —5 and 256, when you create
an int in that range you actually just get back a reference to the existing object. So it should be possible to change
the value of 1. I suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyLong_FromUnsignedLong (unsigned long v)
Return value: New reference. Return a new PyLongOb ject object from a C unsigned long, or NULL on
failure.

PyObject* PyLong_FromSsize_t (Py_ssize_t v)
Return a new PyLongObject object froma C Py_ssize_t, or NULL on failure.

PyObject* PyLong_FromSize_t (size_tv)
Return anew PyLongObject object from a C size_t, or NULL on failure.

PyObject* PyLong_FromLongLong (long long v)
Return value: New reference. Return a new PyLongObject object froma C long long, or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned long long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long long, or
NULL on failure.

PyObject* PyLong_FromDouble (double v)
Return value: New reference. Return anew PyLongOb ject object from the integer part of v, or NULL on failure.

8.2. HEMR 75

The Python/C API, %5 3.6.12

PyObject* PyLong_FromString (const char *str, char **pend, int base)
Return value: New reference. Return a new PyLongOb ject based on the string value in str, which is interpreted
according to the radix in base. If pend is non-NULL, *pend will point to the first character in st which follows the
representation of the number. If base is 0, str is interpreted using the integers definition; in this case, leading zeros
in a non-zero decimal number raises a ValueError. If base is not 0, it must be between 2 and 36, inclusive.
Leading spaces and single underscores after a base specifier and between digits are ignored. If there are no digits,
ValueError will be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. Convert a sequence of Unicode digits to a Python integer value. The Unicode
string is first encoded to a byte string using PyUnicode_EncodeDecimal () and then converted using
PyLong_FromString().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNTCODE API; please
migrate to using PyLong_FromUnicodeObject ().

PyObject* PyLong_FromUnicodeObject (PyObject *u, int base)
Convert a sequence of Unicode digits in the string u to a Python integer value. The Unicode string is first encoded to
a byte string using PyUnicode_EncodeDecimal () and then converted using PyLong_FromString ().

3.3 BN fE.

PyObject* PyLong_FromVoidPtr (void *p)
Return value: New reference. M54t p B —4> Python #%§. W[PAff/IPyLong _AsvVoidPtr () iRIAIH
FRETMH

long PyLong_AsLong (PyObject *obj)
Return a C 1ong representation of obj. If obj is not an instance of PyLongObject, firstcall its __int__ ()
method (if present) to convert it to a PyLongObject.

W obj EESH T long MUTERE, & overflowError,
RAFSRERE] -1 o i PyErr Occurred () FiHibi L.

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)
Return a C 1ong representation of obj. If obj is not an instance of PyLongObject, first call its __int__ ()
method (if present) to convert it to a PyLongObject.

If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or —1, respectively, and
return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to O and return —1 as usual.

KRR -1 . M PyErr Occurred () SRIHE X,

long long PyLong_AsLongLong (PyObject *obj)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
int__ () method (if present) to convertittoa PyLongObject.

sk obj e T Llong UFER], &b overflowError.
KRR E] -1 o [PyErr_Occurred () iyl X,

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)
Return a C long long representation of obj. If obj is not an instance of PyLongObject, first call its
int__ () method (if present) to convert it to a PyLongObject.

If the value of obj is greater than PY_LLONG_MAX or less than PY_LLONG_MIN, set *overflow to 1 or —1,
respectively, and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and
return —1 as usual.

RAEREREHRE] -1 . fifPyErr_Occurred () RiHE X,
3.2 R EE.

76 Chapter 8. EFRIMRE

The Python/C API, &5 3.6.12

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)
Return a C Py_ssize_t representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range fora Py_ssize_t.
KAGERRN -1 .] PyErr_Occurred () RiHE L.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)
Return a C unsigned long representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a unsigned long.
Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.

size_t PyLong_AsSize_t (PyObject *pylong)
Return a C size_t representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range fora size_t.
Returns (size_t) -1 onerror. Use PyErr_Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong (PyObject *pylong)
Returna Cunsigned long long representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long) -1 onerror. Use PyErr_Occurred () to disambiguate.
TE 3.1 MU PR A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)
Return a C unsigned long representation of obj. If obj is not an instance of PyLongObject, first call its
int__ () method (if present) to convertittoa PyLongObject.

If the value of obj is out of range for an unsigned long, return the reduction of that value modulo ULONG_MAX
+ 1.

KRR E] -1 . i PyErr_Occurred () RIHE X,

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obyj)
Return a C unsigned long long representation of obj. If obj is not an instance of PyLongObject, first
callits __int__ () method (if present) to convertitto a PyLongObject.

If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
PY ULLONG_MAX + 1.

AR RRRE] -1 . i PyErr_Occurred () RIHE X,

double PyLong_AsDouble (PyObject *pylong)
Return a C double representation of pylong. pylong must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a double.
Returns —1. 0 on error. Use PyErr_Occurred () to disambiguate.

void* PyLong_AsVoidPtr (PyObject *pylong)
Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an OverflowError
will be raised. = This is only assured to produce a usable void pointer for values created with
PyLong_FromVoidPtr ().

Returns NULL on error. Use PyErr_Occurred () to disambiguate.

8.2. HEMR 77

The Python/C API, %5 3.6.12

8.2.2 RIMKR

Python *Fi T RIER AN BEY TR . A Py_False fll Py_True WN/R{H. B, IEHRYE)E
ARSI REAE I TR fE. (22, FAERTH.
int PyBool_Check (PyObject *o)

2k o & PyBool_Type KA, MR [true,
PyObject* Py_False

Python [“False“ Xt % . ZAREAEM . ENIZZHEEMHE] TS PRR —FE .
PyObject* Py_True

Python [“True“Xf 4. X REA AT 5. B NIZZHEH S| TR Z— 0 .
Py_RETURN_FALSE

MEREGRI Py_False I, SREIGMERNTIHIHTEL

Py_RETURN_TRUE
MEREGRE] Py_True W, FFEEIMEREIHITEL

PyObject* PyBool_FromLong (long v)
Return value: New reference. 134 v ISEFR(E, 1REl—4> Py_True 8{# Py_False HIH5I -

8.2.3 FR¥MMR

PyFloatObject
XA C A pyobject B FHRAMFK A Python iF Fi N 4.
PyTypeObject PyFloat_Type
XRMNET CFRAMpyTypeobject HUFK Python ¥ RSB, FE Python JZTHIFZEAL float 2]
— 5.
int PyFloat_Check (PyObject *p)
L) SHE—A C KB pyrloatobject i# & C KMpyFrloatobject WFAHRMET, REH.

int PyFloat_CheckExact (PyObject *p)
Dby SR —A C KB pyFloatobject (HAE C KM pyFloatObject RN, R&IFH.
PyObject* PyFloat_FromString (PyObject *str)
Return value: New reference. Create a PyF'loatObject object based on the string value in str, or NULL on
failure.

PyObject* PyFloat_FromDouble (double v)
Return value: New reference. Create a PyF1oatOb ject object from v, or NULL on failure.

double PyFloat_AsDouble (PyObject *pyfloat)
& il — K pyfloat WS C 2K AL double, MR float A —~> Python ¥ mi % &, (H 2t &
__float__ () Jrik, XIS EEHIIM, 5 pyfloar Feife ili— 7 i R I XS J7 ¥R]
-1.0, FrPANIZIEM C REkPyErr_Occurred () ftrbiz.
double PyFloat_AS_DOUBLE (PyObject *pyfloat)
&[] —A> pyfloat W% C double i, EEAHT AL A
PyObject* PyFloat_GetInfo (void)
Rl —A> structseq L0, H AL EA K float BURTEE . S/ MERIERMERIEE . Bkt float .h iy
AT A
NGIEROE
double PyFloat_GetMax ()
AR [1] f5e K P i A FRPE i 8 DBL_MAX 4 C double .

78 Chapter 8. EFRIMRE

The Python/C API, &5 3.6.12

double PyFloat_GetMin ()
i Al fge /N KRR A — AL IE I 58 DBL_MIN “} C double .

int PyFloat_ClearFreeList ()

ERERE IR € ClIE AT PN GRS k4@

8.2.4 BHMR

M CAPIF, Python [N G il P AR HR > SE B : —@FE Python A2)3l /il 1) Python X4, 55 4h#Y
e MR EIEESEY) C Z5H1k . APTHRAE T s B M BRI .

RREHW C &k

s BE R R 2 XS R REA SHOT YA R T R R B, #Refeid “(EH” TS5 ST, s
1T HEAS APL

Py_complex
X — A, Python 52 BOG RAIERR 311 C G A . 28073 BRI 0N G 14 R B3CHTS 1 i S AU 4544
WA A B RS, e TRl S8 :

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)

REIPHA LA,] CRBPy complex iR,

Py_complex _Py_c_dif£ (Py_complex left, Py_complex right)
R EA SR 2E,] CRAPy complex FIR,

Py_complex _Py_c_neg (Py_complex complex)
IR B complex I TE, F C 2Py complex Fin.

Py_complex _Py_c_prod (Py_complex left, Py_complex right)
R EPA SRR, B C KB Py complex F£iR.

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)

BB, M CEBpy _complex FoR.
W divisor 25, XA TTEIREBIZEHRE errno S5 EDOM,

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
1R8] num) exp K&, i C2EBpy complex IR,

ISR num N7s H exp R IESLEL, XA R EIZE I errno S EDOM,

8.2. HEMR 79

The Python/C API, %5 3.6.12

FRE#HH) Python &

PyComplexObject
XA CE A Pyobject HTIAAEK—> Python ZHXIR .

PyTypeObject PyComplex_Type
K@ T Py Typeobject K Python SZ HRAU S, 7E Python JZHIYZEAL complex Jg [fl—4
POE-3

int PyComplex_Check (PyObject *p)
MR EMERRE—A CRMpyComplexObject i F & C KMpyComplexObject HFHM, iR[u|
H.

int PyComplex_CheckExact (PyObject *p)

WREMSEGZ A CEKBlpycomplexObject (HAR C FBPyComplexObject FAHAL, kA
B,

==

PyObject* PyComplex_FromCComplex (Py_complex v)
Return value: New reference. 131 C 258 py complex WA B— 1Y Python & 5ixt4 .

PyObject* PyComplex_FromDoubles (double real, double imag)
Return value: New reference. 1R real 1 imag 12 [8]—/ N8 C 22 pyComplexObject R4 .

double PyComplex_RealAsDouble (PyObject *op)
PA C 2% double iR A op [SEH.

double PyComplex_ImagAsDouble (PyObject *op)
PA C 2K# double iR [8] op FAIREES.

Py_complex PyComplex_AsCComplex (PyObject *op)
BRIEE op 1) C 2K pPy_complex {H,

WK op Ajg—> Python SN, (HZF A __complex_ () Tk, EANTIESELBOAM, *F
op FeHe)i —A~ Python SR G o ARIUNF, BTk 1] -1 . 0 15 LB (H.

8.3 FFIIRR

FPAR G — B AEAE T — T e 4595744 Python i35 B AR E R PSR R

8.3.1 bytes %

B DT R ESEAE AR R RS gAY, X5 K TypeError,
PyBytesObject

XFhPyobject 1§ RAFKIR—> Python “FATXIR.
PyTypeObject PyBytes_Type

PyTypeObject [HFFIHZF—> Python F{5JEAL, ¥E Python JZTHI'E 5 bytes @AlRIIXT 4.
int PyBytes_Check (PyObject *0)

WERXFR 0 2 A RE 1 28 AU TR S, R A true.
int PyBytes_CheckExact (PyObject *0)

WX 0 BT IR, (AR PRI TIAAYSLH], WIRME true,

PyObject* PyBytes_FromString (const char *v)
Return a new bytes object with a copy of the string v as value on success, and NULL on failure. The parameter v
must not be NULL; it will not be checked.

80 Chapter 8. EFRIMRE

The Python/C API, &5 3.6.12

PyObject* PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)
Return a new bytes object with a copy of the string v as value and length len on success, and NULL on failure. If v
is NULL, the contents of the bytes object are uninitialized.

PyObject* PyBytes_FromFormat (const char *format, ...)
#Z—A> Cprintf () WAKHY formar “FAFERAIMT AL RS R SEL, TS5 Python TR AR/ NIF
R P SHUEAAF A SE R FATER R GR . ARG I SEL A C A HAMUE IS format 755
R TR Y. . VPR TR A S A e

BAFA | £8 Eid

%% iE A CF% FAF

$c Al — AT, WEOR N ClE IR

%d A Exactly equivalent to print £ ("%d").

$u TefF- = 7T Exactly equivalent to printf ("$u").

$1d R Exactly equivalent to print £ ("$1d").

$lu T 5 K3 | Exactly equivalent to print f ("$1u").

%$zd Py_ssize_t Exactly equivalent to printf ("$zd").

%zu size_t Exactly equivalent to printf ("$zu").

%1 A Exactly equivalent to print f ("%i").

$x A Exactly equivalent to printf ("$x").

%s char* PA null 2% (5 C FAFEUEH .

$p void* —A~ CHE M T ABERFRIEA . HASSN T print £ ("sp") HE
PRATFIE 0x 3k, NMBRGFH L print £ 14,

%E‘Eiiﬂ%‘ﬂB‘Ji‘%ﬁ?%‘“é‘%ﬁﬂ%%ﬁ?ﬁ%E’J/H-%Fﬁﬁ WHEERE HIZISERN R, HEFTEZRNS

PyObject* PyBytes_FromFormatV (const char *format, va_list vargs)
HPyBytes_FromFormat () SEAAHE, BT ERENNSEL.

PyObject* PyBytes_FromObject (PyObject *0)

IR A RSB DR G o
Py_ssize_t PyBytes_Size (PyObject *0)

MR ARG *o* AT
Py_ssize_t PyBytes_GET_SIZE (PyObject *0)

FEWAN PyBytes_size () (HRRIAEIRIAT .

char* PyBytes_AsString (PyObject *o)
Return a pointer to the contents of 0. The pointer refers to the internal buffer of o, which consists of 1en (o) + 1
bytes. The last byte in the buffer is always null, regardless of whether there are any other null bytes. The data must
not be modified in any way, unless the object was just created using PyBytes_FromStringAndSize (NULL,
size). It must not be deallocated. If o is not a bytes object at all, PyBytes_AsString () returns NULL and
raises TypeError.

char* PyBytes_AS_STRING (PyObject *string)
WA PyBytes_AsString () {HEAWH AL .

int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)
AL H A 5 buffer 71 length 3R 81 DA null Sy 28 [ERFIIRTS obj NS o

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns —1 and a
ValueError is raised.

G X AR) obj FINTRGEM, ERRRBAE—MIUMYZE T (RRTE length 240) o ZEHR AT
AT AR S, BRI PyBytes_FromStringAndSize (NULL, size) BIEZXIS. ©

8.3. FRIINigR 81

The Python/C API, %5 3.6.12

AT TC . WIR obj ARAA R —DFHRAS, WrPyBytes AsStringAndSize () $fikln] -1
H5| % TypeError.

TE 3.5 JRE R PART, M7 XS R IR A 2 FAT 5 & TypeError,

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)
Create a new bytes object in *bytes containing the contents of newpart appended to bytes; the caller will own the
new reference. The reference to the old value of byfes will be stolen. If the new object cannot be created, the old
reference to byfes will still be discarded and the value of *bytes will be set to NULL; the appropriate exception will
be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)
TE *bytes WRIEH TG, HAp U E] bytes () newpart BN . MRAS 2 W/D newpart (175
iR

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)
A way to resize a bytes object even though itis “immutable” . Only use this to build up a brand new bytes object;
don’ t use this if the bytes may already be known in other parts of the code. It is an error to call this function
if the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an lvalue (it
may be written into), and the new size desired. On success, *bytes holds the resized bytes object and 0 is returned;
the address in *byfes may differ from its input value. If the reallocation fails, the original bytes object at *bytes is
deallocated, *bytes is set to NULL, MemoryError is set, and —1 is returned.

8.3.2 FTRAMR
PyByteArrayObject
XAPyobject [TIAFEIR—A Python FH HAIN R .

PyTypeObject PyByteArray_Type
Python bytearray 257K Py TypeObject HISEHI; X5 Python 2 bytearray EAHE N4,

KBRER

int PyByteArray_Check (PyObject *o)

BXFR 0 AT ARG Fg— AP WA IR 2R RSB, R .
int PyByteArray_CheckExact (PyObject *0)

BXFR 0 2 —NFHHARNMNER, (AR — DT EAHRAR 7RG, RIE.

EH#= APl B%

PyObject* PyByteArray FromObject (PyObject *0)
FRAFAEATSLIL T 2% F R0 BIXTR o, 3R Wl —ASE) 8N R

PyObject* PyByteArray_FromStringAndSize (const char *string, Py_ssize_t len)
Create a new bytearray object from string and its length, len. On failure, NULL is returned.

PyObject* PyByteArray Concat (PyObject *a, PyObject *b)
BRIV a F b IR A — AN G5 R HT 7
Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.

char* PyByteArray_AsString (PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer. The returned array always has
an extra null byte appended.

82 Chapter 8. EFRIMRE

The Python/C API, &5 3.6.12

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
Ft bytearray 1] NFBZE DX K/ INJEHE A len,

Mt

XTI AR AEVE AU RS, ENTA AR
char* PyByteArray_AS_STRING (PyObject *bytearray)
C ¥ PyByteArray AsString () WIZEMAS.

Py_ssize_t PyByteArray_ GET_SIZE (PyObject *bytearray)
C ¥ (PyByteArray Size () WA .

8.3.3 Unicode Objects and Codecs

Unicode &

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in order
to allow handling the complete range of Unicode characters while staying memory efficient. There are special cases for
strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112 (which is the
full Unicode range).

Py_UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE * representation is deprecated and inefficient; it should be avoided in performance- or memory-sensitive
situations.

Due to the transition between the old APIs and the new APIs, unicode objects can internally be in two states depending
on how they were created:

* “canonical” unicode objects are all objects created by a non-deprecated unicode API. They use the most efficient
representation allowed by the implementation.

¢ “legacy” unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode ()) and only bear the Py_UNICODE* representation; you will have to call
PyUnicode_READY () on them before calling any other APL

Unicode 3£#Y

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UCS4

Py_UCS2

Py_UCS1
These types are typedefs for unsigned integer types wide enough to contain characters of 32 bits, 16 bits and 8 bits,
respectively. When dealing with single Unicode characters, use Py_ UCS4.

3.3 Fge.

Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

JE 3.3 iR In previous versions, this was a 16-bit type or a 32-bit type depending on whether you selected a
“narrow” or “wide” Unicode version of Python at build time.

PyASCIIObject
PyCompactUnicodeObject

8.3. FFIIMZR 83

https://www.python.org/dev/peps/pep-0393

The Python/C API, %5 3.6.12

PyUnicodeObject
These subtypes of PyObject represent a Python Unicode object. In almost all cases, they shouldn’ t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

3.3 B fE.

PyTypeObject PyUnicode_Type
This instance of Py TypeOb ject represents the Python Unicode type. It is exposed to Python code as str.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of Unicode
objects:

int PyUnicode_Check (PyObject *0)
Return true if the object o is a Unicode object or an instance of a Unicode subtype.

int PyUnicode_CheckExact (PyObject *o)
Return true if the object o is a Unicode object, but not an instance of a subtype.

int PyUnicode_READY (PyObject *0)
Ensure the string object o is in the ‘“canonical” representation. This is required before using any of the access
macros described below.

Returns O on success and —1 with an exception set on failure, which in particular happens if memory allocation
fails.

3.3 BRI HE.

Py_ssize_t PyUnicode_GET_LENGTH (PyObject *0)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the “canonical” repre-
sentation (not checked).

3.3 B .

Py_UCSI* PyUnicode_1BYTE_DATA (PyObject *0)

Py_UCS2* PyUnicode_2BYTE_DATA (PyObject *0)

Py_UCS4* PyUnicode_4BYTE_DATA (PyObject *o)
Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct char-
acter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_ KIND () to select the right macro. Make sure PyUnicode READY () has been called before
accessing this.

3.3 FRge.

PyUnicode_WCHAR_KIND
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode_ KIND () macro.

3.3 B fie.

int PyUnicode_KIND (PyObject *o)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Unicode
object uses to store its data. o has to be a Unicode object in the “canonical” representation (not checked).

3.3 B

void* PyUnicode_DATA (PyObject *o)
Return a void pointer to the raw unicode buffer. o has to be a Unicode object in the ‘“canonical” representation
(not checked).

3.3 B e

The Python/C API, &5 3.6.12

void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This macro does not do
any sanity checks and is intended for usage in loops. The caller should cache the kind value and data pointer as
obtained from other macro calls. index is the index in the string (starts at 0) and value is the new code point value
which should be written to that location.

3.3 BRI HE.

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks or
ready calls are performed.

3.3 BRI HE.

Py_UCS4 PyUnicode_READ_CHAR (PyObject *o, Py_ssize_t index)
Read a character from a Unicode object o, which must be in the “canonical” representation. This is less efficient
than PyUnicode_READ () if you do multiple consecutive reads.

3.3 B .

PyUnicode_MAX_CHAR_VALUE (PyObject *0)
Return the maximum code point that is suitable for creating another string based on o, which must be in the
“canonical” representation. This is always an approximation but more efficient than iterating over the string.

3.3 B .

int PyUnicode_ClearFreeList ()
R IR [PR 2% H 4L

Py_ssize_t PyUnicode_GET_SIZE (PyObject *0)
Return the size of the deprecated Py_ UNICODE representation, in code units (this includes surrogate pairs as 2
units). o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_ GET_LENGTH ().

Py_ssize_t PyUnicode_GET_DATA_SIZE (PyObject *o)
Return the size of the deprecated Py_ UNICODE representation in bytes. o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using PyUnicode_GET_LENGTH().

Py_UNICODE* PyUnicode_AS_UNICODE (PyObject *0)

const char* PyUnicode_AS_DATA (PyObject *0)
Return a pointer to a Py_ UNICODE representation of the object. The returned buffer is always terminated with an
extra null code point. It may also contain embedded null code points, which would cause the string to be truncated
when used in most C functions. The AS_DATA form casts the pointer to const char *. The o argument has
to be a Unicode object (not checked).

TE 3.3 MU B This macro is now inefficient —because in many cases the Py UNTCODE representation does not
exist and needs to be created —and can fail (return NULL with an exception set). Try to port the code to use the
new PyUnicode_nBYTE_DATA () macros or use PyUnicode WRITE () or PyUnicode READ ().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Unicode API, please migrate to
using the PyUnicode_nBYTE_DATA () family of macros.

8.3. FIIFtg 85

The Python/C API, %5 3.6.12

Unicode =&

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a whitespace character.

int Py_UNICODE_ISLOWER (Py_UNICODE ch)
Return 1 or 0 depending on whether c/ is a lowercase character.

int Py_UNICODE_ISUPPER (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is an uppercase character.

int Py_UNICODE_ISTITLE (Py UNICODE ch)
Return 1 or 0 depending on whether c# is a titlecase character.

int Py_UNICODE_ISLINEBREAK (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a linebreak character.

int Py_UNICODE_ISDECIMAL (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a decimal character.

int Py _UNICODE_ISDIGIT (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a digit character.

int Py_UNICODE_ISNUMERIC (Py UNICODE ch)
Return 1 or 0 depending on whether ch is a numeric character.

int Py _UNICODE_ISALPHA (Py_UNICODE ch)
Return 1 or 0 depending on whether c#/ is an alphabetic character.

int Py _UNICODE_ISALNUM (Py_ UNICODE ch)
Return 1 or 0 depending on whether ch is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as “Other” or “Separator” , excepting the ASCII space (0x20) which
is considered printable. (Note that printable characters in this context are those which should not be escaped when
repr () is invoked on a string. It has no bearing on the handling of strings written to sys.stdout or sys.
stderr.)

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE_TOLOWER (Py UNICODE ch)
Return the character ¢ converted to lower case.

3.3 s E.#8%: This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOUPPER (Py_UNICODE ch)
Return the character ch converted to upper case.

3.3 iR J5 E#5%: This function uses simple case mappings.

Py_UNICODE Py_UNICODE_TOTITLE (Py_UNICODE ch)
Return the character ch converted to title case.

3.3 {5 EL #8048 This function uses simple case mappings.

int Py_UNICODE_TODECIMAL (Py_UNICODE ch)
Return the character ch converted to a decimal positive integer. Return —1 if this is not possible. This macro does
not raise exceptions.

86 Chapter 8. EFRIMRE

The Python/C API, &5 3.6.12

int Py_UNICODE_TODIGIT (Py_UNICODE ch)
Return the character ch converted to a single digit integer. Return —1 if this is not possible. This macro does not
raise exceptions.

double Py_UNICODE_TONUMERIC (Py_UNICODE ch)
Return the character ch converted to a double. Return -1 .0 if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:

Py _UNICODE_IS_SURROGATE (ch)
Check if ch is a surrogate (0xD800 <= ch <= 0xDFFF).

Py_UNICODE_IS_HIGH_SURROGATE (ch)
Check if ch is a high surrogate (0xD800 <= ch <= 0xDBFF).

Py _UNICODE_IS_LOW_SURROGATE (ch)
Check if ch is a low surrogate (0xDC0O0 <= ch <= O0xDFFF).

Py_UNICODE_JOIN_SURROGATES (high, low)
Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair.

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)
Create a new Unicode object. maxchar should be the true maximum code point to be placed in the string. As an
approximation, it can be rounded up to the nearest value in the sequence 127, 255, 65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not resizable.
3.3 BRI HE.

PyObject* PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)
Create a new Unicode object with the given kind (possible values are PyUnicode_1BYTE_KIND etc., as returned
by PyUnicode_ KIND ()). The buffer must point to an array of size units of 1, 2 or 4 bytes per character, as
given by the kind.

3.3 BRI HE.

PyObject* PyUnicode_FromStringAndSize (const char *u, Py_ssize_t size)
Create a Unicode object from the char buffer u. The bytes will be interpreted as being UTF-8 encoded. The buffer
is copied into the new object. If the buffer is not NULL, the return value might be a shared object, i.e. modification
of the data is not allowed.

If u is NULL, this function behaves like PyUnicode_FromUnicode () with the buffer set to NULL. This usage
is deprecated in favor of PyUnicode New ().

PyObject *PyUnicode_FromString (const char *u)
Create a Unicode object from a UTF-8 encoded null-terminated char buffer u.

PyObject* PyUnicode_FromFormat (const char *format, ...)
Take a C printf () -style format string and a variable number of arguments, calculate the size of the resulting
Python unicode string and return a string with the values formatted into it. The variable arguments must be C types
and must correspond exactly to the format characters in the format ASCII-encoded string. The following format
characters are allowed:

8.3. FRIINigR 87

The Python/C API, %5 3.6.12

2% T %

%C kil PR, Tl Cilg L,

%d E%| Exactly equivalent to print f ("$d").

Su T 5k Exactly equivalent to printf ("$u").

%1d | Exactly equivalent to printf ("$1d").

511 AL Exactly equivalent to print £ ("$1i").

$lu B AL Exactly equivalent to printf ("$1u").

$11d long long Exactly equivalent to printf ("$11d").

$111i long long Exactly equivalent to printf ("$11i").

$11lu JofF5 long long | Exactly equivalent to printf ("$11u").

%zd Py_ssize_t Exactly equivalent to printf ("$zd").

$zi Py_ssize_t Exactly equivalent to printf ("$zi").

%zu size_t Exactly equivalent to printf ("$zu").

%i ES| Exactly equivalent to printf ("$i").

$x A Exactly equivalent to printf ("$x").

%s char* PA null S92 (EFFHY C FAFEAL

$p void* —A CHEH I T AERIFOR B . HASEN T print £ ("sp") (H
E%Eﬁ%bﬂ\?ﬁﬁ 0x I3k, MERGFH L printf it
Ao

SA PyObject* ascii () JHMEIR.

$U PyObject* A unicode object.

SV PyObject*, char * | A unicode object (which may be NULL) and a null-terminated C character
array as a second parameter (which will be used, if the first parameter is
NULL).

%S PyObject* The result of calling PyObject_Str().

%R PyObject* The result of calling PyObject_Repr ().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

{Ef#: The width formatter unit is number of characters rather than bytes. The precision formatter unit is number
of bytes for "$s" and "$V" (if the PyObject* argument is NULL), and a number of characters for "$A",
"$U", "$S", "$R" and "$V" (if the PyObject* argument is not NULL).

TE 3.2 iR HE PR Support for "$11d" and "$11u" added.
TE 3.3 fRHE 2 Support for "$14", "$11i" and "$zi" added.
JE 3.4 JRFEPL: Support width and precision formatter for "$s™", "$A", "SU", "$V", "$S", "$R" added.

PyObject* PyUnicode_FromFormatV (const char *format, va_list vargs)

Identical to PyUnicode_FromFormat () except that it takes exactly two arguments.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)

Return value: New reference. Decode an encoded object obj to a Unicode object.

bytes, bytearray and other byfes-like objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in Codecs for
details).

All other objects, including Unicode objects, cause a TypeError to be set.

The API returns NULL if there was an error. The caller is responsible for decref’ ing the returned objects.

88

Chapter 8. EFRIMRE

The Python/C API, &5 3.6.12

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Return the length of the Unicode object, in code points.

3.3 B fE.

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t fto_start, PyObject *from,
Py_ssize_t from_start, Py_ssize_t how_many)
Copy characters from one Unicode object into another. This function performs character conversion when necessary
and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise returns the number
of copied characters.

3.3 Bl ise.
Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].

Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.

Return the number of written character, or return —1 and raise an exception on error.
3.3 Fri e

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Write a character to a string. The string must have been created through PyUnicode_New (). Since Unicode
strings are supposed to be immutable, the string must not be shared, or have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object can
be modified safely (i.e. that it its reference count is one).

3.3 B

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)
Read a character from a string. This function checks that unicode is a Unicode object and the index is not out of
bounds, in contrast to the macro version PyUnicode_READ_CHAR ().

3.3 B

PyObject* PyUnicode_Substring (PyObject *str, Py_ssize_t start, Py_ssize_t end)
Return a substring of sz, from character index start (included) to character index end (excluded). Negative indices
are not supported.

3.3 Hge.

Py_UCS4* PyUnicode_AsUCS4 (PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Copy the string « into a UCS4 buffer, including a null character, if copy_null is set. Returns NULL and sets an
exception on error (in particular, a SystemError if buflen is smaller than the length of). buffer is returned on
success.

3.3 B

Py_UCS4* PyUnicode_AsUCS4Copy (PyObject *u)
Copy the string u into a new UCS4 buffer that is allocated using PyMem Malloc (). If this fails, NULL is
returned with a MemoryError set. The returned buffer always has an extra null code point appended.

3.3 B fE.

8.3. FIIFtg 89

The Python/C API, %5 3.6.12

Deprecated Py_UNICODE APIs

Deprecated since version 3.3, will be removed in version 4.0.

These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using them,
as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and memory
hits.

PyObject* PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u may
be NULL which causes the contents to be undefined. It is the user’ s responsibility to fill in the needed data. The
buffer is copied into the new object.

If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.

If the buffer is NULL, PyUnicode_READY () must be called once the string content has been filled before using
any of the access macros such as PyUnicode KIND ().

Please migrate to using PyUnicode_FromKindAndData (), PyUnicode_ FromWideChar () or
PyUnicode_New ().

Py_UNICODE* PyUnicode_AsUnicode (PyObject *unicode)
Return a read-only pointer to the Unicode object’ s internal Py UNICODE buffer, or NULL on error. This will
create the Py UNICODE * representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py_ UNICODE string may also contain embedded null code
points, which would cause the string to be truncated when used in most C functions.

Please migrate to using PyUnicode_ AsUCS4 (), PyUnicode_AsWideChar (),
PyUnicode_ReadChar () or similar new APIs.

PyObject* PyUnicode_TransformDecimalToASCII (Py_UNICODE *s, Py_ssize_t size)
Create a Unicode object by replacing all decimal digits in Py UNICODE buffer of the given size by ASCII digits
0-9 according to their decimal value. Return NULL if an exception occurs.

Py_UNICODE* PyUnicode_AsUnicodeAndSize (PyObject *unicode, Py_ssize_t *size)
Like PyUnicode_AsUnicode (), but also saves the Py_ UNTCODE () array length (excluding the extra null
terminator) in size. Note that the resulting Py UNICODE * string may contain embedded null code points, which
would cause the string to be truncated when used in most C functions.

3.3 BRI HE.

Py_UNICODE* PyUnicode_AsUnicodeCopy (PyObject *unicode)
Create a copy of a Unicode string ending with a null code point. Return NULL and raise a MemoryError
exception on memory allocation failure, otherwise return a new allocated buffer (use PyMem Free () to free the
buffer). Note that the resulting Py_ UNICODE * string may contain embedded null code points, which would cause
the string to be truncated when used in most C functions.

3.2 FriR e
Please migrate to using PyUnicode_AsUCS4Copy () or similar new APIs.

Py_ssize_t PyUnicode_GetSize (PyObject *unicode)
Return the size of the deprecated Py_ UNICODE representation, in code units (this includes surrogate pairs as 2
units).

Please migrate to using PyUnicode_GetLength ().

PyObject* PyUnicode_FromObject (PyObject *obj)
Return value: New reference. Copy an instance of a Unicode subtype to a new true Unicode object if necessary. If
obj is already a true Unicode object (not a subtype), return the reference with incremented refcount.

90 Chapter 8. EFRIMRE

https://www.python.org/dev/peps/pep-0393

The Python/C API, &5 3.6.12

Objects other than Unicode or its subtypes will cause a TypeError.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject* PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t len, const char *errors)
Decode a string from the current locale encoding. The supported error handlers are "strict" and
"surrogateescape" (PEP 383). The decoder uses "strict" error handler if errors is NULL. str must
end with a null character but cannot contain embedded null characters.

Use PyUnicode_DecodeFSDefaultAndSize () to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).

S

The Py_DecodeLocale () function.

3.3 B fE.

T 3.6.5 U B ¥ The function now also uses the current locale encoding for the surrogateescape error
handler. Previously, Py_DecodeLocale () was used for the surrogateescape, and the current locale
encoding was used for strict.

PyObject* PyUnicode_DecodeLocale (const char *str, const char *errors)
Similar to PyUnicode_DecodeLocaleAndSize (), but compute the string length using strlen ().

3.3 BRI HE.

PyObject* PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)
Encode a Unicode object to the current locale encoding. The supported error handlers are "strict" and
"surrogateescape" (PEP 383). The encoder uses "strict" error handler if errors is NULL. Return
a bytes object. unicode cannot contain embedded null characters.

Use PyUnicode_EncodeFSDefault () toencodeastringtoPy_FileSystemDefaultEncoding (the
locale encoding read at Python startup).

W

=

The Py_EncodeLocale () function.
3.3 B Uie.

I 3.6.5 JiR FE ¥ The function now also uses the current locale encoding for the surrogateescape error
handler. Previously, Py_EncodeLocale () was used for the surrogateescape, and the current locale
encoding was used for strict.

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemDefaultEncoding should be
used as the encoding, and Py_FileSystemDefaultEncodeErrors should be used as the error handler (PEP
383 and PEP 529). To encode file names to bytes during argument parsing, the "O&" converter should be used,
passing PyUnicode_FSConverter () asthe conversion function:

int PyUnicode_FSConverter (PyObject* obj, void* result)
ParseTuple converter: encode str objects —obtained directly or through the os.PathLike interface —to
bytes using PyUnicode_EncodeFSDefault (); bytes objects are output as-is. result must be a
PyBytesObject * which must be released when it is no longer used.

3.1 B .

8.3. FFIIMZR 91

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0529

The Python/C API, %5 3.6.12

T 3.6 MUHE IR 3252 —~path-like object ,

To decode file names to str during argument parsing, the "O&" converter should be used, passing

PyUnicode_FSDecoder () as the conversion function:

int PyUnicode_FSDecoder (PyObject* obj, void* result)

ParseTuple converter: decode bytes objects —obtained either directly or indirectly through the os .PathLike
interface —to str using PyUnicode_DecodeFSDefaultAndSize (); str objects are output as-is. result

must be a PyUnicodeObject * which must be released when it is no longer used.
3.2 FrhRE.
TE 3.6 RS 52— path-like object ,

PyObject* PyUnicode_DecodeFSDefaultAndSize (const char *s, Py_ssize_t size)
Decode a string using Py_FileSystemDefaultEncoding and
Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

the

Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-

not be modified later. If you need to decode a string from the current locale encoding,
PyUnicode_DecodeLocaleAndSize ().

S W
The Py _DecodelLocale () function.
FE 3.6 fRHE P Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_DecodeFSDefault (const char *s)
Decode a null-terminated string using Py_FileSystemDefaultEncoding and
Py_FileSystemDefaultEncodeErrors error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode_DecodeFSDefaultAndSize () if you know the string length.
JE 3.6 fREE L Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject* PyUnicode_EncodeFSDefault (PyObject *unicode)
Encode a Unicode object to Py_FileSystemDefaultEncoding with

use

the

the

Py_FileSystemDefaultEncodeErrors error handler, and return bytes. Note that the resulting

bytes object may contain null bytes.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding isinitialized at startup from the locale encoding and cannot be modified

later. If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale ().
W

The Py _EncodeLocale () function.

3.2 FrihtE.

JE 3.6 RPN Use Py_FileSystemDefaultEncodeErrors error handler.

92 Chapter 8. EFRIMRE

The Python/C API, &5 3.6.12

wchar_t Support

wchar_t support for platforms which support it:

PyObject* PyUnicode_FromWideChar (const wchar_t *w, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Passing —1
as the size indicates that the function must itself compute the length, using wcslen. Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing null termination character). Return the number of wchar_t characters copied or
-1 in case of an error. Note that the resulting wchar_t* string may or may not be null-terminated. It is the
responsibility of the caller to make sure that the wchar_t * string is null-terminated in case this is required by the
application. Also, note that the wchar_t * string might contain null characters, which would cause the string to
be truncated when used with most C functions.

wchar_t* PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)
Convert the Unicode object to a wide character string. The output string always ends with a null character. If size
is not NULL, write the number of wide characters (excluding the trailing null termination character) into *size.

Returns a buffer allocated by PyMem_Alloc () (use PyMem_Free () to free it) on success. On error, returns
NULL, *size is undefined and raises a MemoryError. Note that the resulting wchar_t string might contain null
characters, which would cause the string to be truncated when used with most C functions.

3.2 B fE.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in st r () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is ASCII. The file system
calls should use PyUnicode_FSConverter () for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some sys-
tems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes
setlocale).

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec.
Default error handling for all built-in codecs is “strict” (ValueError is raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:

PyObject* PyUnicode_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding and
errors have the same meaning as the parameters of the same name in the st r () built-in function. The codec to
be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference. Encode a Unicode object and return the result as Python bytes object. encoding and

8.3. FIIFtg 93

The Python/C API, %5 3.6.12

errors have the same meaning as the parameters of the same name in the Unicode encode () method. The codec
to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_Encode (const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const char *er-

rors)
Return value: New reference. Encode the Py_ UNTCODE buffer s of the given size and return a Python bytes object.

encoding and errors have the same meaning as the parameters of the same name in the Unicode encode () method.
The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API,; please
migrate to using PyUnicode AsEncodedString ().

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py_ssize t size, const char *errors,

Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTFS8 (). If consumed

is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF8String (PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python bytes object.
Error handling is “strict” . Return NULL if an exception was raised by the codec.

char* PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)
Return a pointer to the UTF-8 encoding of the Unicode object, and store the size of the encoded representation (in
bytes) in size. The size argument can be NULL; in this case no size will be stored. The returned buffer always has
an extra null byte appended (not included in size), regardless of whether there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a pointer
to the same buffer. The caller is not responsible for deallocating the buffer.

3.3 iR e

char* PyUnicode_AsUTF8 (PyObject *unicode)
As PyUnicode_AsUTF8AndSize (), but does not store the size.
3.3 B fE.

PyObject* PyUnicode_EncodeUTF8 (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNTCODE buffer s of the given size using UTF-8 and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE
API; please migrate to using PyUnicode_ AsUTF8String (), PyUnicode AsUTEF8AndSize () or
PyUnicode_AsEncodedString().

The Python/C API, &5 3.6.12

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject* PyUnicode_DecodeUTF32 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Decode size bytes from a UTF-32 encoded buffer string and return the corresponding Unicode object. errors (if
non-NULL) defines the error handling. It defaults to “strict” .

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
If consumed is NULL, behave like PyUnicode_DecodeUTEF32 (). If consumed is not NULL,

PyUnicode_DecodeUTF32Stateful () will not treat trailing incomplete UTF-32 byte sequences (such
as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF32String (PyObject *unicode)
Return a Python byte string using the UTF-32 encoding in native byte order. The string always starts with a BOM
mark. Error handling is “strict” . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUTF32 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-

order)
Return a Python bytes object holding the UTF-32 encoded value of the Unicode data in s. Output is written

according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_ AsUTF32String () or PyUnicode_AsEncodedString ().

8.3. FIIFtg 95

The Python/C API, %5 3.6.12

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict” .

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \uf f fe character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF16Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16 (). If consumed

is not NULL, PyUnicode_DecodeUTF16Stateful () will not treat trailing incomplete UTF-16 byte se-
quences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and
the number of bytes that have been decoded will be stored in consumed.

PyObject* PyUnicode_AsUTF16String (PyObject *unicode)
Return value: New reference. Return a Python byte string using the UTF-16 encoding in native byte order. The
string always starts with a BOM mark. Error handling is “strict” . Return NULL if an exception was raised by
the codec.

PyObject* PyUnicode_EncodeUTF16 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-

order)
Return value: New reference. Return a Python bytes object holding the UTF-16 encoded value of the Unicode data

in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is defined, a single Py_ UNICODE value may get represented as a surrogate pair. If it is
not defined, each Py_ UNICODE values is interpreted as a UCS-2 character.

Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode AsUTF16String () or PyUnicode_ AsEncodedString ().

96 Chapter 8. EFRIMRE

The Python/C API, &5 3.6.12

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject* PyUnicode_DecodeUTF7 (const char *s, Py_ssize_t size, const char *errors)
Create a Unicode object by decoding size bytes of the UTF-7 encoded string s. Return NULL if an exception was
raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful (const char *s, Py_ssize_t size, const char *errors,

Py_ssize_t *consumed)
If consumed is NULL, behave like PyUnicode_DecodeUTF 7 (). If consumed is not NULL, trailing incomplete

UTF-7 base-64 sections will not be treated as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7 (const Py UNICODE *s, Py_ssize_t size, int base64SetO,
int base64 WhiteSpace, const char *errors)
Encode the Py_ UNTCODE buffer of the given size using UTF-7 and return a Python bytes object. Return NULL

if an exception was raised by the codec.

If base64SetO is nonzero, “Set O” (punctuation that has no otherwise special meaning) will be encoded in base-64.
If base64 WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the Python “utf-7”
codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsEncodedString ().

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded string
s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as a bytes object.
Error handling is “strict” . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Unicode-Escape and return
a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode_AsUnicodeEscapeString().

Raw-Unicode-Escape Codecs

These are the “Raw Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape encoded
string s. Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as a bytes
object. Error handling is “strict” . Return NULL if an exception was raised by the codec.

8.3. FRIINigR 97

The Python/C API, %5 3.6.12

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Raw-Unicode-Escape and
return a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style
Py_UNICODE API; please migrate to using PyUnicode_AsRawUnicodeEscapeString() or
PyUnicode_AsEncodedString ().

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by
the codecs during encoding.

PyObject* PyUnicode_DecodeLatinl (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsLatinlString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python bytes object.
Error handling is “strict” . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeLatinl (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNTCODE buffer of the given size using Latin-1 and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsLatinlString () or PyUnicode_ AsEncodedString().

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCITI (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python bytes object.
Error handling is “strict” . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeASCII (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using ASCII and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsASCIIString () or PyUnicode_AsEncodedString ().

98 Chapter 8. EFRIMRE

The Python/C API, &5 3.6.12

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mapping to encode and
decode characters. The mapping objects provided must support the __getitem__ () mapping interface; dictionaries
and sequences work well.

These are the mapping codec APIs:

PyObject* PyUnicode_DecodeCharmap (const char *data, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using the given

mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the range
from O to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None. Unmapped
data bytes —ones which cause a LookupError, as well as ones which get mapped to None, OxFFFE or '\
ufffe', are treated as undefined mappings and cause an error.

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as a
bytes object. Error handling is “strict” . Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are treated
as “undefined mapping” and cause an error.

PyObject* PyUnicode_EncodeCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using the given mapping object

and return the result as a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNTCODE API; please
migrate to using PyUnicode_AsCharmapString () or PyUnicode_AsEncodedString().

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode_Translate (PyObject *unicode, PyObject *mapping, const char *errors)
Return value: New reference. Translate a Unicode object using the given mapping object and return the resulting
Unicode object. Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to Unicode strings, integers (which are then interpreted as
Unicode ordinals) or None (causing deletion of the character). Unmapped character ordinals (ones which cause a
LookupError) are left untouched and are copied as-is.

PyObject* PyUnicode_TranslateCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping,

const char *errors)
Return value: New reference. Translate a Py UNICODE buffer of the given size by applying a character mapping

table to it and return the resulting Unicode object. Return NULL when an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNTCODE API,; please
migrate to using PyUnicode_Translate (). or generic codec based API

8.3. FFIIMZR 99

The Python/C API, %5 3.6.12

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is
defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the MBCS encoded string s. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful (const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)
If consumed is NULL, behave like PyUnicode_DecodeMBCS (). If consumed is not NULL,
PyUnicode_DecodeMBCSStateful () will not decode trailing lead byte and the number of bytes that have
been decoded will be stored in consumed.

PyObject* PyUnicode_AsMBCSString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python bytes object.
Error handling is “strict” . Return NULL if an exception was raised by the codec.

PyObject* PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)
Encode the Unicode object using the specified code page and return a Python bytes object. Return NULL if an
exception was raised by the codec. Use CP_ACP code page to get the MBCS encoder.

3.3 B fE.

PyObject* PyUnicode_EncodeMBCS (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using MBCS and return a Python
bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE
API; please migrate to using PyUnicode_AsMBCSString (), PyUnicode_EncodeCodePage () or
PyUnicode_AsEncodedString ().

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or -1 if an exception occurs.

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right)
Return value: New reference. Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done
at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If
negative, no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines (PyObject *s, int keepend)
Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is
considered to be one line break. If keepend is 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errors)
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

100 Chapter 8. A#FHMMRE

The Python/C API, &5 3.6.12

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the __getitem__ () interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_Join (PyObject *separator, PyObject *seq)
Return value: New reference. Join a sequence of strings using the given separator and return the resulting Unicode
string.

Py_ssize_t PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int di-

rection)
Return 1 if substr matches str [start :end] at the given tail end (direction == —1 means to do a prefix match,

direction == 1 a suffix match), O otherwise. Return —1 if an error occurred.

Py_ssize_t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of substr in str [start :end] using the given direction (direction == 1 means to do a
forward search, direction == —1 a backward search). The return value is the index of the first match; a value of —1
indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

Py_ssize_t PyUnicode_FindChar (PyObject *str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of the character chin str [start :end] using the given direction (direction == 1 means
to do a forward search, direction == —1 a backward search). The return value is the index of the first match; a value
of —1 indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

3.3 Frge.

Py_ssize_t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str [start:end]. Return -1 if an error oc-
curred.

PyObject* PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the
resulting Unicode object. maxcount == —1 means replace all occurrences.

int PyUnicode_Compare (PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

This function returns —1 upon failure, so one should call PyErr_ Occurred () to check for errors.

int PyUnicode_CompareWithASCIIString (PyObject *uni, const char *string)
Compare a unicode object, uni, with string and return —1, 0, 1 for less than, equal, and greater than, respectively. It
is best to pass only ASCII-encoded strings, but the function interprets the input string as ISO-8859-1 if it contains
non-ASCII characters.

This function does not raise exceptions.

PyObject* PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Rich compare two unicode strings and return one of the following:

* NULL in case an exception was raised
e Py_True or Py_False for successful comparisons
e Py_NotImplemented in case the type combination is unknown
Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_LE.

PyObject* PyUnicode_Format (PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to format %
args.

8.3. FRIINigR 101

The Python/C API, %5 3.6.12

int PyUnicode_Contains (PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.

element has to coerce to a one element Unicode string. -1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a Python
unicode string object. If there is an existing interned string that is the same as *string, it sets *string to it (decre-
menting the reference count of the old string object and incrementing the reference count of the interned string
object), otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification: even
though there is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the
object after the call if and only if you owned it before the call.)

PyObject* PyUnicode_InternFromString (const char *v)
A combination of PyUnicode FromString () and PyUnicode_InternInPlace (), returning either a
new unicode string object that has been interned, or a new (“owned”) reference to an earlier interned string object
with the same value.

8.3.4 LMK

PyTupleObject
XAPyobject FRIZE— Python T4 .
PyTypeObject PyTuple_Type
pyTypeObject KB L —1 Python JLAH LA, XY Python ZH) tuple ZHFIXILR.

int PyTuple_Check (PyObject *p)
MR p Je— DI R B TCH IR T IRAU L), 3 A A

int PyTuple_CheckExact (PyObject *p)
Wk p R—DICHN G, AR —DICH TRAR B, R B

PyObject* PyTuple_New (Py_ssize_t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.

PyObject* PyTuple_Pack (Py_ssize_tn, ...)
Return value: New reference. Return a new tuple object of size n, or NULL on failure. The tuple values are initialized
to the subsequent n C arguments pointing to Python objects. PyTuple_Pack (2, a, b) is equivalent to
Py_Buildvalue (" (OO)", a, b).

Py_ssize_t PyTuple_Size (PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.

Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.
PyObject* PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out of
bounds, return NULL and sets an IndexError exception.
PyObject* PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple_GetItem (), but does no checking of its arguments.

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Take a slice of the tuple pointed to by p from low to high and return it as a new tuple.

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *o)
Insert a reference to object o at position pos of the tuple pointed to by p. Return O on success.

102 Chapter 8. A#FHMMRE

The Python/C API, &5 3.6.12

{:f#: This function “steals” a reference to o.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *0)
Like PyTuple_ SetItem (), butdoes no error checking, and should only be used to fill in brand new tuples.

/iR This function “steals” a reference to o.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of
this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code
should never assume that the resulting value of *p will be the same as before calling this function. If the object
referenced by *p is replaced, the original *p is destroyed. On failure, returns —1 and sets *p to NULL, and raises
MemoryError or SystemError.

int PyTuple_ClearFreeList ()

R R PR 2% H 2.

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.

PyTypeObject* PyStruct Sequence_NewType (PyStructSequence_Desc *desc)
Create a new struct sequence type from the data in desc, described below. Instances of the resulting type can be
created with Py St ruct Sequence_New ().

void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type type from desc in place.

int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)
The same as PySt ruct Sequence_InitType, but returns O on success and —1 on failure.

3.4 BRI HE.

PyStructSequence_Desc

(RSl S I BN PTR Y SE

2 C & aX
name char * LR ES GBS
doc char * pointer to docstring for the type or NULL to omit
fields PyStructSequence_Fieldpointer to NULL-terminated array with field names of the
* new type
n_in_sequenceint number of fields visible to the Python side (if used as
tuple)

PyStructSequence_Field
Describes a field of a struct sequence. As a struct sequence is modeled as a tuple, all fields are typed as
PyObject*. The index in the fields array of the PySt ruct Sequence_Desc determines which field
of the struct sequence is described.

8.3. FIIMR 103

The Python/C API, %5 3.6.12

15 C %|&aX
il

name| char name for the field or NULL to end the list of named fields, set to PyStructSe-
* quence_UnnamedField to leave unnamed

doc | char | field docstring or NULL to omit
*

char* PyStructSequence_UnnamedField
Special value for a field name to leave it unnamed.

PyObject* PyStruct Sequence_New (PyTypeObject *type)

Creates an instance of fype, which must have been created with Py St