9.6. random
— 生成伪随机数¶
源码: Lib/random.py
该模块实现了各种分布的伪随机数生成器。
对于整数,从范围中有统一的选择。 对于序列,存在随机元素的统一选择、用于生成列表的随机排列的函数、以及用于随机抽样而无需替换的函数。
在实数轴上,有计算均匀、正态(高斯)、对数正态、负指数、伽马和贝塔分布的函数。 为了生成角度分布,可以使用 von Mises 分布。
几乎所有模块函数都依赖于基本函数 random()
,它在半开放区间 [0.0,1.0) 内均匀生成随机浮点数。 Python 使用 Mersenne Twister 作为核心生成器。 它产生 53 位精度浮点数,周期为 2**19937-1 ,其在 C 中的底层实现既快又线程安全。 Mersenne Twister 是现存最广泛测试的随机数发生器之一。 但是,因为完全确定性,它不适用于所有目的,并且完全不适合加密目的。
这个模块提供的函数实际上是 random.Random
类的隐藏实例的绑定方法。 你可以实例化自己的 Random
类实例以获取不共享状态的生成器。
如果你想使用自己设计的不同基础生成器,类 Random
也可以作为子类:在这种情况下,重载 random()
、 seed()
、 getstate()
以及 setstate()
方法。可选地,新生成器可以提供 getrandbits()
方法——这允许 randrange()
在任意大的范围内产生选择。
random
模块还提供 SystemRandom
类,它使用系统函数 os.urandom()
从操作系统提供的源生成随机数。
警告
The pseudo-random generators of this module should not be used for security purposes.
Bookkeeping functions:
-
random.
seed
(a=None, version=2)¶ 初始化随机数生成器。
如果 a 被省略或为
None
,则使用当前系统时间。 如果操作系统提供随机源,则使用它们而不是系统时间(有关可用性的详细信息,请参阅os.urandom()
函数)。如果 a 是 int 类型,则直接使用。
对于版本2(默认的),
str
、bytes
或bytearray
对象转换为int
并使用它的所有位。对于版本1(用于从旧版本的Python再现随机序列),用于
str
和bytes
的算法生成更窄的种子范围。在 3.2 版更改: 已移至版本2方案,该方案使用字符串种子中的所有位。
-
random.
getstate
()¶ 返回捕获生成器当前内部状态的对象。 这个对象可以传递给
setstate()
来恢复状态。
-
random.
setstate
(state)¶ state 应该是从之前调用
getstate()
获得的,并且setstate()
将生成器的内部状态恢复到getstate()
被调用时的状态。
-
random.
getrandbits
(k)¶ 返回带有 k 位随机的Python整数。 此方法随 MersenneTwister 生成器一起提供,其他一些生成器也可以将其作为API的可选部分提供。 如果可用,
getrandbits()
启用randrange()
来处理任意大范围。
Functions for integers:
-
random.
randrange
(stop)¶ -
random.
randrange
(start, stop[, step]) 从
range(start, stop, step)
返回一个随机选择的元素。 这相当于choice(range(start, stop, step))
,但实际上并没有构建一个 range 对象。位置参数模式匹配
range()
。不应使用关键字参数,因为该函数可能以意外的方式使用它们。在 3.2 版更改:
randrange()
在生成均匀分布的值方面更为复杂。 以前它使用了像``int(random()*n)``这样的形式,它可以产生稍微不均匀的分布。
-
random.
randint
(a, b)¶ 返回随机整数 N 满足
a <= N <= b
。相当于randrange(a, b+1)
。
Functions for sequences:
-
random.
choice
(seq)¶ 从非空序列 seq 返回一个随机元素。 如果 seq 为空,则引发
IndexError
。
-
random.
shuffle
(x[, random])¶ Shuffle the sequence x in place. The optional argument random is a 0-argument function returning a random float in [0.0, 1.0); by default, this is the function
random()
.Note that for even rather small
len(x)
, the total number of permutations of x is larger than the period of most random number generators; this implies that most permutations of a long sequence can never be generated.
-
random.
sample
(population, k)¶ 返回从总体序列或集合中选择的唯一元素的 k 长度列表。 用于无重复的随机抽样。
返回包含来自总体的元素的新列表,同时保持原始总体不变。 结果列表按选择顺序排列,因此所有子切片也将是有效的随机样本。 这允许抽奖获奖者(样本)被划分为大奖和第二名获胜者(子切片)。
总体成员不必是 hashable 或 unique 。 如果总体包含重复,则每次出现都是样本中可能的选择。
To choose a sample from a range of integers, use an
range()
object as an argument. This is especially fast and space efficient for sampling from a large population:sample(range(10000000), 60)
.如果样本大小大于总体大小,则引发
ValueError
。
以下函数生成特定的实值分布。如常用数学实践中所使用的那样, 函数参数以分布方程中的相应变量命名;大多数这些方程都可以在任何统计学教材中找到。
-
random.
random
()¶ 返回 [0.0, 1.0) 范围内的下一个随机浮点数。
-
random.
uniform
(a, b)¶ 返回一个随机浮点数 N ,当
a <= b
时a <= N <= b
,当b < a
时b <= N <= a
。取决于等式
a + (b-a) * random()
中的浮点舍入,终点b
可以包括或不包括在该范围内。
-
random.
triangular
(low, high, mode)¶ 返回一个随机浮点数 N ,使得
low <= N <= high
并在这些边界之间使用指定的 mode 。 low 和 high 边界默认为零和一。 mode 参数默认为边界之间的中点,给出对称分布。
-
random.
betavariate
(alpha, beta)¶ Beta 分布。 参数的条件是
alpha > 0
和beta > 0
。 返回值的范围介于 0 和 1 之间。
-
random.
expovariate
(lambd)¶ 指数分布。 lambd 是 1.0 除以所需的平均值,它应该是非零的。 (该参数本应命名为 “lambda” ,但这是 Python 中的保留字。)如果 lambd 为正,则返回值的范围为 0 到正无穷大;如果 lambd 为负,则返回值从负无穷大到 0。
-
random.
gammavariate
(alpha, beta)¶ Gamma 分布。 ( 不是 gamma 函数! ) 参数的条件是
alpha > 0
和beta > 0
。概率分布函数是:
x ** (alpha - 1) * math.exp(-x / beta) pdf(x) = -------------------------------------- math.gamma(alpha) * beta ** alpha
-
random.
gauss
(mu, sigma)¶ 高斯分布。 mu 是平均值,sigma 是标准差。 这比下面定义的
normalvariate()
函数略快。
-
random.
lognormvariate
(mu, sigma)¶ 对数正态分布。 如果你采用这个分布的自然对数,你将得到一个正态分布,平均值为 mu 和标准差为 sigma 。 mu 可以是任何值,sigma 必须大于零。
-
random.
normalvariate
(mu, sigma)¶ 正态分布。 mu 是平均值,sigma 是标准差。
-
random.
vonmisesvariate
(mu, kappa)¶ 冯·米塞斯(von Mises)分布。 mu 是平均角度,以弧度表示,介于0和 2*pi 之间,kappa 是浓度参数,必须大于或等于零。 如果 kappa 等于零,则该分布在 0 到 2*pi 的范围内减小到均匀的随机角度。
-
random.
paretovariate
(alpha)¶ 帕累托分布。 alpha 是形状参数。
-
random.
weibullvariate
(alpha, beta)¶ 威布尔分布。 alpha 是比例参数,beta 是形状参数。
Alternative Generator:
-
class
random.
SystemRandom
([seed])¶ 使用
os.urandom()
函数的类,用从操作系统提供的源生成随机数。 这并非适用于所有系统。 也不依赖于软件状态,序列不可重现。 因此,seed()
方法没有效果而被忽略。getstate()
和setstate()
方法如果被调用则引发NotImplementedError
。
参见
M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3–30 1998.
Complementary-Multiply-with-Carry recipe 用于兼容的替代随机数发生器,具有长周期和相对简单的更新操作。
9.6.1. 关于再现性的说明¶
有时能够重现伪随机数生成器给出的序列是有用的。 通过重新使用种子值,只要多个线程没有运行,相同的序列就可以在两次不同运行之间重现。
大多数随机模块的算法和种子函数都会在 Python 版本中发生变化,但保证两个方面不会改变:
- 如果添加了新的播种方法,则将提供向后兼容的播种机。
- 当兼容的播种机被赋予相同的种子时,生成器的
random()
方法将继续产生相同的序列。
9.6.2. 例子和配方¶
Basic usage:
>>> random.random() # Random float x, 0.0 <= x < 1.0
0.37444887175646646
>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523
>>> random.randrange(10) # Integer from 0 to 9
7
>>> random.randrange(0, 101, 2) # Even integer from 0 to 100
26
>>> random.choice('abcdefghij') # Single random element
'c'
>>> items = [1, 2, 3, 4, 5, 6, 7]
>>> random.shuffle(items)
>>> items
[7, 3, 2, 5, 6, 4, 1]
>>> random.sample([1, 2, 3, 4, 5], 3) # Three samples without replacement
[4, 1, 5]
A common task is to make a random.choice()
with weighted probabilities.
If the weights are small integer ratios, a simple technique is to build a sample population with repeats:
>>> weighted_choices = [('Red', 3), ('Blue', 2), ('Yellow', 1), ('Green', 4)]
>>> population = [val for val, cnt in weighted_choices for i in range(cnt)]
>>> population
['Red', 'Red', 'Red', 'Blue', 'Blue', 'Yellow', 'Green', 'Green', 'Green', 'Green']
>>> random.choice(population)
'Green'
A more general approach is to arrange the weights in a cumulative distribution
with itertools.accumulate()
, and then locate the random value with
bisect.bisect()
:
>>> choices, weights = zip(*weighted_choices)
>>> cumdist = list(itertools.accumulate(weights))
>>> cumdist # [3, 3+2, 3+2+1, 3+2+1+4]
[3, 5, 6, 10]
>>> x = random.random() * cumdist[-1]
>>> choices[bisect.bisect(cumdist, x)]
'Blue'