8. 错误和异常

到目前为止,我们还没有提到错误消息,但是如果你已经尝试过那些例子,你可能已经看过了一些错误消息。 目前(至少)有两种可区分的错误:语法错误异常

8.1. 语法错误

语法错误又称解析错误,可能是你在学习Python 时最容易遇到的错误:

>>> while True print 'Hello world'
  File "<stdin>", line 1
    while True print 'Hello world'
                   ^
SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest point in the line where the error was detected. The error is caused by (or at least detected at) the token preceding the arrow: in the example, the error is detected at the keyword print, since a colon (':') is missing before it. File name and line number are printed so you know where to look in case the input came from a script.

8.2. 异常

即使语句或表达式在语法上是正确的,但在尝试执行时,它仍可能会引发错误。 在执行时检测到的错误被称为 异常,异常不一定会导致严重后果:你将很快学会如何在 Python 程序中处理它们。 但是,大多数异常并不会被程序处理,此时会显示如下所示的错误信息:

>>> 10 * (1/0)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects

错误信息的最后一行告诉我们程序遇到了什么类型的错误。异常有不同的类型,而其类型名称将会作为错误信息的一部分中打印出来:上述示例中的异常类型依次是:ZeroDivisionErrorNameErrorTypeError。作为异常类型打印的字符串是发生的内置异常的名称。对于所有内置异常都是如此,但对于用户定义的异常则不一定如此(虽然这是一个有用的规范)。标准的异常类型是内置的标识符(而不是保留关键字)。

这一行的剩下的部分根据异常类型及其原因提供详细信息。

错误信息的前一部分以堆栈回溯的形式显示发生异常时的上下文。通常它包含列出源代码行的堆栈回溯;但是它不会显示从标准输入中读取的行。

内置异常 列出了内置异常和它们的含义。

8.3. 处理异常

可以编写处理所选异常的程序。请看下面的例子,它会要求用户一直输入,直到输入的是一个有效的整数,但允许用户中断程序(使用 Control-C 或操作系统支持的其他操作);请注意用户引起的中断可以通过引发 KeyboardInterrupt 异常来指示。:

>>> while True:
...     try:
...         x = int(raw_input("Please enter a number: "))
...         break
...     except ValueError:
...         print "Oops!  That was no valid number.  Try again..."
...

try 语句的工作原理如下。

  • 首先,执行 try 子句tryexcept 关键字之间的(多行)语句)。

  • 如果没有异常发生,则跳过 except 子句 并完成 try 语句的执行。

  • 如果在执行try 子句时发生了异常,则跳过该子句中剩下的部分。然后,如果异常的类型和 except 关键字后面的异常匹配,则执行 except 子句 ,然后继续执行 try 语句之后的代码。

  • 如果发生的异常和 except 子句中指定的异常不匹配,则将其传递到外部的 try 语句中;如果没有找到处理程序,则它是一个 未处理异常,执行将停止并显示如上所示的消息。

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one handler will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other handlers of the same try statement. An except clause may name multiple exceptions as a parenthesized tuple, for example:

... except (RuntimeError, TypeError, NameError):
...     pass

Note that the parentheses around this tuple are required, because except ValueError, e: was the syntax used for what is normally written as except ValueError as e: in modern Python (described below). The old syntax is still supported for backwards compatibility. This means except RuntimeError, TypeError is not equivalent to except (RuntimeError, TypeError): but to except RuntimeError as TypeError: which is not what you want.

最后的 except 子句可以省略异常名,以用作通配符。但请谨慎使用,因为以这种方式很容易掩盖真正的编程错误!它还可用于打印错误消息,然后重新引发异常(同样允许调用者处理异常):

import sys

try:
    f = open('myfile.txt')
    s = f.readline()
    i = int(s.strip())
except IOError as e:
    print "I/O error({0}): {1}".format(e.errno, e.strerror)
except ValueError:
    print "Could not convert data to an integer."
except:
    print "Unexpected error:", sys.exc_info()[0]
    raise

tryexcept 语句有一个可选的 else 子句,在使用时必须放在所有的 except 子句后面。对于在try 子句不引发异常时必须执行的代码来说很有用。例如:

for arg in sys.argv[1:]:
    try:
        f = open(arg, 'r')
    except IOError:
        print 'cannot open', arg
    else:
        print arg, 'has', len(f.readlines()), 'lines'
        f.close()

The use of the else clause is better than adding additional code to the try clause because it avoids accidentally catching an exception that wasn’t raised by the code being protected by the tryexcept statement.

发生异常时,它可能具有关联值,也称为异常 参数 。参数的存在和类型取决于异常类型。

The except clause may specify a variable after the exception name (or tuple). The variable is bound to an exception instance with the arguments stored in instance.args. For convenience, the exception instance defines __str__() so the arguments can be printed directly without having to reference .args.

One may also instantiate an exception first before raising it and add any attributes to it as desired.

>>> try:
...     raise Exception('spam', 'eggs')
... except Exception as inst:
...     print type(inst)     # the exception instance
...     print inst.args      # arguments stored in .args
...     print inst           # __str__ allows args to be printed directly
...     x, y = inst.args
...     print 'x =', x
...     print 'y =', y
...
<type 'exceptions.Exception'>
('spam', 'eggs')
('spam', 'eggs')
x = spam
y = eggs

If an exception has an argument, it is printed as the last part (‘detail’) of the message for unhandled exceptions.

异常处理程序不仅处理 try 子句中遇到的异常,还处理 try 子句中调用(即使是间接地)的函数内部发生的异常。例如:

>>> def this_fails():
...     x = 1/0
...
>>> try:
...     this_fails()
... except ZeroDivisionError as detail:
...     print 'Handling run-time error:', detail
...
Handling run-time error: integer division or modulo by zero

8.4. 抛出异常

raise 语句允许程序员强制发生指定的异常。例如:

>>> raise NameError('HiThere')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: HiThere

The sole argument to raise indicates the exception to be raised. This must be either an exception instance or an exception class (a class that derives from Exception).

如果你需要确定是否引发了异常但不打算处理它,则可以使用更简单的 raise 语句形式重新引发异常

>>> try:
...     raise NameError('HiThere')
... except NameError:
...     print 'An exception flew by!'
...     raise
...
An exception flew by!
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
NameError: HiThere

8.5. 用户自定义异常

Programs may name their own exceptions by creating a new exception class (see for more about Python classes). Exceptions should typically be derived from the Exception class, either directly or indirectly. For example:

>>> class MyError(Exception):
...     def __init__(self, value):
...         self.value = value
...     def __str__(self):
...         return repr(self.value)
...
>>> try:
...     raise MyError(2*2)
... except MyError as e:
...     print 'My exception occurred, value:', e.value
...
My exception occurred, value: 4
>>> raise MyError('oops!')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
__main__.MyError: 'oops!'

In this example, the default __init__() of Exception has been overridden. The new behavior simply creates the value attribute. This replaces the default behavior of creating the args attribute.

可以定义异常类,它可以执行任何其他类可以执行的任何操作,但通常保持简单,通常只提供许多属性,这些属性允许处理程序为异常提取有关错误的信息。在创建可能引发多个不同错误的模块时,通常的做法是为该模块定义的异常创建基类,并为不同错误条件创建特定异常类的子类:

class Error(Exception):
    """Base class for exceptions in this module."""
    pass

class InputError(Error):
    """Exception raised for errors in the input.

    Attributes:
        expr -- input expression in which the error occurred
        msg  -- explanation of the error
    """

    def __init__(self, expr, msg):
        self.expr = expr
        self.msg = msg

class TransitionError(Error):
    """Raised when an operation attempts a state transition that's not
    allowed.

    Attributes:
        prev -- state at beginning of transition
        next -- attempted new state
        msg  -- explanation of why the specific transition is not allowed
    """

    def __init__(self, prev, next, msg):
        self.prev = prev
        self.next = next
        self.msg = msg

大多数异常都定义为名称以“Error”结尾,类似于标准异常的命名。

许多标准模块定义了它们自己的异常,以报告它们定义的函数中可能出现的错误。有关类的更多信息,请参见类

8.6. 定义清理操作

try 语句有另一个可选子句,用于定义必须在所有情况下执行的清理操作。例如:

>>> try:
...     raise KeyboardInterrupt
... finally:
...     print 'Goodbye, world!'
...
Goodbye, world!
KeyboardInterrupt
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>

A finally clause is always executed before leaving the try statement, whether an exception has occurred or not. When an exception has occurred in the try clause and has not been handled by an except clause (or it has occurred in an except or else clause), it is re-raised after the finally clause has been executed. The finally clause is also executed “on the way out” when any other clause of the try statement is left via a break, continue or return statement. A more complicated example (having except and finally clauses in the same try statement works as of Python 2.5):

>>> def divide(x, y):
...     try:
...         result = x / y
...     except ZeroDivisionError:
...         print "division by zero!"
...     else:
...         print "result is", result
...     finally:
...         print "executing finally clause"
...
>>> divide(2, 1)
result is 2
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 3, in divide
TypeError: unsupported operand type(s) for /: 'str' and 'str'

As you can see, the finally clause is executed in any event. The TypeError raised by dividing two strings is not handled by the except clause and therefore re-raised after the finally clause has been executed.

在实际应用程序中,finally 子句对于释放外部资源(例如文件或者网络连接)非常有用,无论是否成功使用资源。

8.7. 预定义的清理操作

某些对象定义了在不再需要该对象时要执行的标准清理操作,无论使用该对象的操作是成功还是失败。请查看下面的示例,它尝试打开一个文件并把其内容打印到屏幕上。:

for line in open("myfile.txt"):
    print line,

The problem with this code is that it leaves the file open for an indeterminate amount of time after the code has finished executing. This is not an issue in simple scripts, but can be a problem for larger applications. The with statement allows objects like files to be used in a way that ensures they are always cleaned up promptly and correctly.

with open("myfile.txt") as f:
    for line in f:
        print line,

After the statement is executed, the file f is always closed, even if a problem was encountered while processing the lines. Other objects which provide predefined clean-up actions will indicate this in their documentation.