
用 Python进行 Curses编程
发布 2.7.18

Guido van Rossum
and the Python development team

五月 20, 2020
Python Software Foundation

Email: docs@python.org

Contents

1 curses是什么？ 2
1.1 Python的 curses模块 . 2

2 开始和结束 curses应用程序 2

3 Windows和 Pad 3

4 显示文字 4
4.1 属性和颜色 . 5

5 用户输入 6

6 更多的信息 7

作者 A.M. Kuchling, Eric S. Raymond
发布版本 2.03

摘要

This document describes how to write text-mode programs with Python 2.x, using the curses extension module to
control the display.

1

1 curses是什么？

The curses library supplies a terminal-independent screen-painting and keyboard-handling facility for text-based termi-
nals; such terminals include VT100s, the Linux console, and the simulated terminal provided by X11 programs such
as xterm and rxvt. Display terminals support various control codes to perform common operations such as moving the
cursor, scrolling the screen, and erasing areas. Different terminals use widely differing codes, and often have their own
minor quirks.
In a world of X displays, one might ask“why bother”? It’s true that character-cell display terminals are an obsolete
technology, but there are niches in which being able to do fancy things with them are still valuable. One is on small-
footprint or embedded Unixes that don’t carry an X server. Another is for tools like OS installers and kernel configurators
that may have to run before X is available.
The curses library hides all the details of different terminals, and provides the programmer with an abstraction of a display,
containing multiple non-overlapping windows. The contents of a window can be changed in various ways—adding text,
erasing it, changing its appearance—and the curses library will automagically figure out what control codes need to be
sent to the terminal to produce the right output.
curses库最初是为 BSD Unix编写的。AT＆ T的 Unix的后来的 System V版本增加了许多增强功能和新功能。
如今 BSD curses不再维护，被 ncurses取代，ncurses是 AT＆ T接口的开源实现。如果您使用的是 Linux或
FreeBSD等开源 Unix，则您的系统几乎肯定会使用 ncurses。由于大多数当前的商业 Unix版本都基于 System
V代码，因此这里描述的所有功能可能都可用。但是，某些专有 Unix所带来的较早版本的 curses可能无法
支持所有功能。

No one has made a Windows port of the curses module. On a Windows platform, try the Console module written by
Fredrik Lundh. The Console module provides cursor-addressable text output, plus full support for mouse and keyboard
input, and is available from http://effbot.org/zone/console-index.htm.

1.1 Python的 curses模块

Thy Python module is a fairly simple wrapper over the C functions provided by curses; if you’re already familiar with
curses programming in C, it’s really easy to transfer that knowledge to Python. The biggest difference is that the Python
interface makes things simpler, by merging different C functions such as addstr(), mvaddstr(), mvwaddstr(),
into a single addstr() method. You’ll see this covered in more detail later.
This HOWTO is simply an introduction to writing text-mode programs with curses and Python. It doesn’t attempt to be
a complete guide to the curses API; for that, see the Python library guide’s section on ncurses, and the C manual pages
for ncurses. It will, however, give you the basic ideas.

2 开始和结束 curses应用程序

Before doing anything, curses must be initialized. This is done by calling the initscr() function, which will determine
the terminal type, send any required setup codes to the terminal, and create various internal data structures. If successful,
initscr() returns a window object representing the entire screen; this is usually called stdscr, after the name of
the corresponding C variable.

import curses
stdscr = curses.initscr()

Usually curses applications turn off automatic echoing of keys to the screen, in order to be able to read keys and only
display them under certain circumstances. This requires calling the noecho() function.

curses.noecho()

2

http://effbot.org/zone/console-index.htm

应用程序也会广泛地需要立即响应按键，而不需要按下回车键；这被称为“cbreak”模式，与通常的缓冲输
入模式相对：

curses.cbreak()

终端通常会以多字节转义序列的形式返回特殊按键，比如光标键和导航键比如 Page Up键和 Home键。尽
管你可以编写你的程序来应对这些序列，curses 能够代替你做到这件事，返回一个特殊值比如 curses.
KEY_LEFT。为了让 curses做这项工作，你需要启用 keypad模式：

stdscr.keypad(1)

Terminating a curses application is much easier than starting one. You’ll need to call

curses.nocbreak(); stdscr.keypad(0); curses.echo()

to reverse the curses-friendly terminal settings. Then call the endwin() function to restore the terminal to its original
operating mode.

curses.endwin()

调试一个 curses应用程序时常会出现，一个应用程序还未能还原终端到原本的状态就意外退出了，这会搅乱
你的终端。在 Python中这常常会发生在你的代码中有 bug并抛出了一个未捕获的异常。当你尝试输入时按键
不会上屏，这使得使用终端变得困难。

In Python you can avoid these complications and make debugging much easier by importing the curses.wrapper()
function. It takes a callable and does the initializations described above, also initializing colors if color support is present.
It then runs your provided callable and finally deinitializes appropriately. The callable is called inside a try-catch clause
which catches exceptions, performs curses deinitialization, and then passes the exception upwards. Thus, your terminal
won’t be left in a funny state on exception.

3 Windows和 Pad

Windows are the basic abstraction in curses. A window object represents a rectangular area of the screen, and supports
various methods to display text, erase it, allow the user to input strings, and so forth.
The stdscr object returned by the initscr() function is a window object that covers the entire screen. Many
programs may need only this single window, but you might wish to divide the screen into smaller windows, in order
to redraw or clear them separately. The newwin() function creates a new window of a given size, returning the new
window object.

begin_x = 20; begin_y = 7
height = 5; width = 40
win = curses.newwin(height, width, begin_y, begin_x)

A word about the coordinate system used in curses: coordinates are always passed in the order y,x, and the top-left corner
of a window is coordinate (0,0). This breaks a common convention for handling coordinates, where the x coordinate
usually comes first. This is an unfortunate difference from most other computer applications, but it’s been part of curses
since it was first written, and it’s too late to change things now.
When you call a method to display or erase text, the effect doesn’t immediately show up on the display. This is because
curses was originally written with slow 300-baud terminal connections in mind; with these terminals, minimizing the time
required to redraw the screen is very important. This lets curses accumulate changes to the screen, and display them in the
most efficient manner. For example, if your program displays some characters in a window, and then clears the window,
there’s no need to send the original characters because they’d never be visible.

3

Accordingly, curses requires that you explicitly tell it to redraw windows, using the refresh() method of window
objects. In practice, this doesn’t really complicate programming with curses much. Most programs go into a flurry of
activity, and then pause waiting for a keypress or some other action on the part of the user. All you have to do is to be
sure that the screen has been redrawn before pausing to wait for user input, by simply calling stdscr.refresh() or
the refresh() method of some other relevant window.
A pad is a special case of a window; it can be larger than the actual display screen, and only a portion of it displayed at a
time. Creating a pad simply requires the pad’s height and width, while refreshing a pad requires giving the coordinates
of the on-screen area where a subsection of the pad will be displayed.

pad = curses.newpad(100, 100)
These loops fill the pad with letters; this is
explained in the next section
for y in range(0, 100):

for x in range(0, 100):
try:

pad.addch(y,x, ord('a') + (x*x+y*y) % 26)
except curses.error:

pass

Displays a section of the pad in the middle of the screen
pad.refresh(0,0, 5,5, 20,75)

The refresh() call displays a section of the pad in the rectangle extending from coordinate (5,5) to coordinate (20,75)
on the screen; the upper left corner of the displayed section is coordinate (0,0) on the pad. Beyond that difference, pads
are exactly like ordinary windows and support the same methods.
If you have multiple windows and pads on screen there is a more efficient way to go, which will prevent annoying screen
flicker at refresh time. Use the noutrefresh() method of each window to update the data structure representing
the desired state of the screen; then change the physical screen to match the desired state in one go with the function
doupdate(). The normal refresh() method calls doupdate() as its last act.

4 显示文字

From a C programmer’s point of view, curses may sometimes look like a twisty maze of functions, all subtly different. For
example, addstr() displays a string at the current cursor location in the stdscrwindow, while mvaddstr()moves
to a given y,x coordinate first before displaying the string. waddstr() is just like addstr(), but allows specifying a
window to use, instead of using stdscr by default. mvwaddstr() follows similarly.
Fortunately the Python interface hides all these details; stdscr is a window object like any other, and methods like
addstr() accept multiple argument forms. Usually there are four different forms.

形式 描述
str或 ch 在当前位置显示字符串 str或字符 ch
str或 ch, attr 在当前位置使用 attr属性显示字符串 str或字符 ch
y, x, str或 ch 移动到窗口内的 y,x位置，并显示 str或 ch
y, x, str或 ch, attr 移至窗口内的 y,x位置，并使用 attr属性显示 str或 ch

Attributes allow displaying text in highlighted forms, such as in boldface, underline, reverse code, or in color. They’ll
be explained in more detail in the next subsection.
Theaddstr() function takes a Python string as the value to be displayed, while theaddch() functions take a character,
which can be either a Python string of length 1 or an integer. If it’s a string, you’re limited to displaying characters
between 0 and 255. SVr4 curses provides constants for extension characters; these constants are integers greater than

4

255. For example, ACS_PLMINUS is a +/- symbol, and ACS_ULCORNER is the upper left corner of a box (handy for
drawing borders).
窗口会记住上次操作之后光标所在位置，所以如果你忽略 y,x坐标，字符串和字符会出现在上次操作结束的
位置。你也可以通过 move(y,x)的方法来移动光标。因为一些终端始终会显示一个闪烁的光标，你可能会
想要保证光标处于一些不会让人感到分心的位置。在看似随机的位置出现一个闪烁的光标会令人非常迷惑。

If your application doesn’t need a blinking cursor at all, you can call curs_set(0) to make it invisible. Equivalently,
and for compatibility with older curses versions, there’s a leaveok(bool) function. When bool is true, the curses
library will attempt to suppress the flashing cursor, and you won’t need to worry about leaving it in odd locations.

4.1 属性和颜色

Characters can be displayed in different ways. Status lines in a text-based application are commonly shown in reverse
video; a text viewer may need to highlight certain words. curses supports this by allowing you to specify an attribute for
each cell on the screen.
属性值是一个整数，它的每一个二进制位代表一个不同的属性。你可以尝试以多种不属性位组合来显示文
本，但 curses不保证所有的组合都是有效的，或者看上去有明显不同。这一点取决于用户终端的能力，所以
最稳妥的方式是只采用最常见的有效属性，见下表。

属性 描述
A_BLINK 闪烁文字
A_BOLD 超亮或粗体文字
A_DIM 半明亮的文字
A_REVERSE 反向视频文本
A_STANDOUT 可用的最佳突出显示模式
A_UNDERLINE 带下划线的文字

所以，为了在屏幕顶部显示一个反相的状态行，你可以这么编写：

stdscr.addstr(0, 0, "Current mode: Typing mode",
curses.A_REVERSE)

stdscr.refresh()

curses库还支持在提供了颜色功能的终端上显示颜色的功能。最常见的提供颜色的终端很可能是 Linux控制
台，采用了 xterms配色方案。
To use color, you must call the start_color() function soon after calling initscr(), to initialize the default color
set (the curses.wrapper.wrapper() function does this automatically). Once that’s done, the has_colors()
function returns TRUE if the terminal in use can actually display color. (Note: curses uses the American spelling‘color’
, instead of the Canadian/British spelling‘colour’. If you’re used to the British spelling, you’ll have to resign yourself
to misspelling it for the sake of these functions.)
The curses library maintains a finite number of color pairs, containing a foreground (or text) color and a background color.
You can get the attribute value corresponding to a color pair with the color_pair() function; this can be bitwise-OR’
ed with other attributes such as A_REVERSE, but again, such combinations are not guaranteed to work on all terminals.
一个样例，用 1号颜色对显示一行文本：

stdscr.addstr("Pretty text", curses.color_pair(1))
stdscr.refresh()

As I said before, a color pair consists of a foreground and background color. start_color() initializes 8 basic colors
when it activates color mode. They are: 0:black, 1:red, 2:green, 3:yellow, 4:blue, 5:magenta, 6:cyan, and 7:white. The

5

curses module defines named constants for each of these colors: curses.COLOR_BLACK, curses.COLOR_RED,
and so forth.
The init_pair(n, f, b) function changes the definition of color pair n, to foreground color f and background
color b. Color pair 0 is hard-wired to white on black, and cannot be changed.
Let’s put all this together. To change color 1 to red text on a white background, you would call:

curses.init_pair(1, curses.COLOR_RED, curses.COLOR_WHITE)

When you change a color pair, any text already displayed using that color pair will change to the new colors. You can also
display new text in this color with:

stdscr.addstr(0,0, "RED ALERT!", curses.color_pair(1))

Very fancy terminals can change the definitions of the actual colors to a given RGB value. This lets you change color 1,
which is usually red, to purple or blue or any other color you like. Unfortunately, the Linux console doesn’t support
this, so I’m unable to try it out, and can’t provide any examples. You can check if your terminal can do this by calling
can_change_color(), which returns TRUE if the capability is there. If you’re lucky enough to have such a talented
terminal, consult your system’s man pages for more information.

5 用户输入

The curses library itself offers only very simple input mechanisms. Python’s support adds a text-input widget that makes
up some of the lack.
The most common way to get input to a window is to use its getch()method. getch() pauses and waits for the user
to hit a key, displaying it if echo() has been called earlier. You can optionally specify a coordinate to which the cursor
should be moved before pausing.
It’s possible to change this behavior with the method nodelay(). After nodelay(1), getch() for the window
becomes non-blocking and returns curses.ERR (a value of -1) when no input is ready. There’s also a halfdelay()
function, which can be used to (in effect) set a timer on each getch(); if no input becomes available within a specified
delay (measured in tenths of a second), curses raises an exception.
The getch() method returns an integer; if it’s between 0 and 255, it represents the ASCII code of the key pressed.
Values greater than 255 are special keys such as Page Up, Home, or the cursor keys. You can compare the value returned
to constants such as curses.KEY_PPAGE, curses.KEY_HOME, or curses.KEY_LEFT. Usually the main loop
of your program will look something like this:

while 1:
c = stdscr.getch()
if c == ord('p'):

PrintDocument()
elif c == ord('q'):

break # Exit the while()
elif c == curses.KEY_HOME:

x = y = 0

The curses.ascii module supplies ASCII class membership functions that take either integer or 1-character-string
arguments; these may be useful in writing more readable tests for your command interpreters. It also supplies conversion
functions that take either integer or 1-character-string arguments and return the same type. For example, curses.
ascii.ctrl() returns the control character corresponding to its argument.
There’s also a method to retrieve an entire string, getstr(). It isn’t used very often, because its functionality is
quite limited; the only editing keys available are the backspace key and the Enter key, which terminates the string. It can
optionally be limited to a fixed number of characters.

6

curses.echo() # Enable echoing of characters

Get a 15-character string, with the cursor on the top line
s = stdscr.getstr(0,0, 15)

The Python curses.textpad module supplies something better. With it, you can turn a window into a text box that
supports an Emacs-like set of keybindings. Various methods of Textbox class support editing with input validation and
gathering the edit results either with or without trailing spaces. See the library documentation on curses.textpad
for the details.

6 更多的信息

This HOWTO didn’t cover some advanced topics, such as screen-scraping or capturing mouse events from an xterm
instance. But the Python library page for the curses modules is now pretty complete. You should browse it next.
If you’re in doubt about the detailed behavior of any of the ncurses entry points, consult the manual pages for your curses
implementation, whether it’s ncurses or a proprietary Unix vendor’s. The manual pages will document any quirks, and
provide complete lists of all the functions, attributes, and ACS_* characters available to you.
Because the curses API is so large, some functions aren’t supported in the Python interface, not because they’re difficult
to implement, but because no one has needed them yet. Feel free to add them and then submit a patch. Also, we don’t
yet have support for the menu library associated with ncurses; feel free to add that.
If you write an interesting little program, feel free to contribute it as another demo. We can always use more of them!
The ncurses FAQ: http://invisible-island.net/ncurses/ncurses.faq.html

7

http://invisible-island.net/ncurses/ncurses.faq.html

	curses 是什么？
	Python 的 curses 模块

	开始和结束curses应用程序
	Windows 和 Pad
	显示文字
	属性和颜色

	用户输入
	更多的信息

