
The Python/C API
发布 2.7.18

Guido van Rossum
and the Python development team

五月 20, 2020

Python Software Foundation
Email: docs@python.org

Contents

1 概述 3
1.1 包含文件 . 3
1.2 对象、类型和引用计数 . 4
1.3 异常 . 7
1.4 嵌入 Python . 9
1.5 调试构建 . 10

2 The Very High Level Layer 11

3 引用计数 15

4 异常处理 17
4.1 Unicode Exception Objects . 21
4.2 Recursion Control . 22
4.3 标准异常 . 23
4.4 标准警告类别 . 24
4.5 String Exceptions . 24

5 工具 25
5.1 操作系统实用程序 . 25
5.2 系统功能 . 26
5.3 过程控制 . 26
5.4 导入模块 . 27
5.5 数据 marshal操作支持 . 30
5.6 解析参数并构建值变量 . 31
5.7 字符串转换与格式化 . 37
5.8 反射 . 39
5.9 编解码器注册与支持功能 . 39

6 抽象对象层 41
6.1 对象协议 . 41
6.2 数字协议 . 45
6.3 序列协议 . 49
6.4 映射协议 . 51
6.5 迭代器协议 . 52
6.6 旧缓冲协议 . 53

i

7 具体的对象层 55
7.1 基本对象 . 55
7.2 数值对象 . 57
7.3 序列对象 . 63
7.4 Mapping Objects . 90
7.5 其他对象 . 93

8 Initialization, Finalization, and Threads 111
8.1 Initializing and finalizing the interpreter . 111
8.2 Process-wide parameters . 112
8.3 Thread State and the Global Interpreter Lock . 114
8.4 Sub-interpreter support . 120
8.5 异步通知 . 121
8.6 分析和跟踪 . 121
8.7 高级调试器支持 . 123

9 内存管理 125
9.1 概述 . 125
9.2 内存接口 . 126
9.3 对象分配器 . 127
9.4 The pymalloc allocator . 128
9.5 例子 . 128

10 对象实现支持 131
10.1 在堆上分配对象 . 131
10.2 Common Object Structures . 132
10.3 类型对象 . 136
10.4 Number Object Structures . 151
10.5 Mapping Object Structures . 152
10.6 Sequence Object Structures . 152
10.7 Buffer Object Structures . 153
10.8 使对象类型支持循环垃圾回收 . 154

A 术语对照表 157

B 文档说明 165
B.1 Python文档的贡献者 . 165

C 历史和许可证 167
C.1 该软件的历史 . 167
C.2 获取或以其他方式使用 Python的条款和条件 . 168
C.3 被收录软件的许可证与鸣谢 . 171

D Copyright 183

索引 185

ii

The Python/C API,发布 2.7.18

本手册描述了希望编写扩展模块并将 Python解释器嵌入其应用程序中的 C和 C++程序员可用的 API。同时
可以参阅 extending-index，其中描述了扩展编写的一般原则，但没有详细描述 API函数。

Contents 1

The Python/C API,发布 2.7.18

2 Contents

CHAPTER1

概述

Python的应用编程接口（API）使得 C和 C++程序员可以在多个层级上访问 Python解释器。该 API在 C++
中同样可用，但为简化描述，通常将其称为 Python/C API。使用 Python/C API有两个基本的理由。第一个理
由是为了特定目的而编写扩展模块；它们是扩展 Python解释器功能的 C模块。这可能是最常见的使用场景。
第二个理由是将 Python用作更大规模应用的组件；这种技巧通常被称为在一个应用中 embedding Python。
Writing an extension module is a relatively well-understood process, where a“cookbook”approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.
许多 API函数在你嵌入或是扩展 Python这两种场景下都能发挥作用；此外，大多数嵌入 Python的应用程序
也需要提供自定义扩展，因此在尝试在实际应用中嵌入 Python之前先熟悉编写扩展应该会是个好主意。

1.1 包含文件

使用 Python/C API所需要的全部函数、类型和宏定义可通过下面这行语句包含到你的代码之中：

#include "Python.h"

这意味着包含以下标准头文件：<stdio.h>，<string.h>，<errno.h>，<limits.h>，<assert.h>
和 <stdlib.h>（如果可用）。

注解: 由于 Python可能会定义一些能在某些系统上影响标准头文件的预处理器定义，因此在包含任何标准
头文件之前，你必须先包含 Python.h。

Python.h所定义的全部用户可见名称（由包含的标准头文件所定义的除外）都带有前缀 Py或者 _Py。以 _Py
打头的名称是供 Python实现内部使用的，不应被扩展编写者使用。结构成员名称没有保留前缀。
Important: user code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes
the portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

3

The Python/C API,发布 2.7.18

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix are
defined by the corresponding parameters to Python’s configure script and version is sys.version[:3]. On
Windows, the headers are installed in prefix/include, where prefix is the installation directory specified to the
installer.
要包含头文件，请将两个目录（如果不同）都放到你所用编译器的包含搜索路径中。请不要将父目录放入搜
索路径然后使用 #include <pythonX.Y/Python.h>；这将使得多平台编译不可用，因为 prefix下平
台无关的头文件需要包含来自 exec_prefix下特定平台的头文件。

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry points
to be extern "C", so there is no need to do anything special to use the API from C++.

1.2 对象、类型和引用计数

大多数 Python/C API函数都有一个或多个参数以及一个PyObject*类型的返回值。此类型是一个指针，指
向表示一个任意 Python 对象的不透明数据类型。由于在大多数情况下（例如赋值、作用域规则和参数传
递）Python语言都会以同样的方式处理所有 Python 对象类型，因此它们由一个单独的 C 类型来表示是很
适宜的。几乎所有 Python 对象都生存在堆上：你绝不会声明一个PyObject 类型的自动或静态变量，只
有PyObject*类型的指针变量可以被声明。唯一的例外是 type对象；由于此种对象永远不能被释放，所以
它们通常是静态PyTypeObject对象。

所有 Python对象（甚至 Python整数）都有一个 type和一个 reference count。对象的类型确定它是什么类型的
对象（例如整数、列表或用户定义函数；还有更多，如 types中所述）。对于每个众所周知的类型，都有一个宏
来检查对象是否属于该类型；例如，当（且仅当）a所指的对象是 Python列表时 PyList_Check(a)为真。

1.2.1 引用计数

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or a
global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero, the
object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects
may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an obvious
problem with objects that reference each other here; for now, the solution is“don’t do that.”)
Reference counts are always manipulated explicitly. The normal way is to use the macro Py_INCREF() to increment an
object’s reference count by one, and Py_DECREF() to decrement it by one. The Py_DECREF()macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the object’
s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure. The type-specific
deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a compound
object type, such as a list, as well as performing any additional finalization that’s needed. There’s no chance that
the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof(Py_ssize_t) >= sizeof(void*)). Thus, the reference count
increment is a simple operation.
It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

4 Chapter 1. 概述

The Python/C API,发布 2.7.18

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_DECREF(), so almost
any operation is potentially dangerous.
A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py_DECREF()when they are done with the result; this soon becomes
second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared).“Owning a reference”
means being responsible for calling Py_DECREF on it when the reference is no longer needed. Ownership can also be
transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually decref’
ing it by calling Py_DECREF() or Py_XDECREF() when it’s no longer needed—or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.
Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a referencemeans that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.
Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyInt_FromLong(1L));
PyTuple_SetItem(t, 1, PyInt_FromLong(2L));
PyTuple_SetItem(t, 2, PyString_FromString("three"));

Here, PyInt_FromLong() returns a new reference which is immediately stolen by PyTuple_SetItem(). When
you want to keep using an object although the reference to it will be stolen, use Py_INCREF() to grab another reference
before calling the reference-stealing function.
Incidentally, PyTuple_SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem() for tuples that you are creating yourself.
Equivalent code for populating a list can be written using PyList_New() and PyList_SetItem().
However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py_BuildValue(), that can create most common objects from C values, directed by a format string. For example,
the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildValue("(iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");

1.2. 对象、类型和引用计数 5

The Python/C API,发布 2.7.18

It is much more common to use PyObject_SetItem() and friends with items whose references you are only borrow-
ing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’t have to increment a reference count so you can give a reference away (“have it
be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all(PyObject *target, PyObject *item)
{

int i, n;

n = PyObject_Length(target);
if (n < 0)

return -1;
for (i = 0; i < n; i++) {

PyObject *index = PyInt_FromLong(i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {

Py_DECREF(index);
return -1;

}
Py_DECREF(index);

}
return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the
only reference to the object. Therefore, the generic functions that return object references, likePyObject_GetItem()
and PySequence_GetItem(), always return a new reference (the caller becomes the owner of the reference).
It is important to realize that whether you own a reference returned by a function depends on which function you call only
—the plumage (the type of the object passed as an argument to the function) doesn’t enter into it! Thus, if you extract
an item from a list using PyList_GetItem(), you don’t own the reference—but if you obtain the same item from
the same list using PySequence_GetItem() (which happens to take exactly the same arguments), you do own a
reference to the returned object.
Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(), and once using PySequence_GetItem().

long
sum_list(PyObject *list)
{

int i, n;
long total = 0;
PyObject *item;

n = PyList_Size(list);
if (n < 0)

return -1; /* Not a list */
for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can't fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);

}
return total;

}

6 Chapter 1. 概述

The Python/C API,发布 2.7.18

long
sum_sequence(PyObject *sequence)
{

int i, n;
long total = 0;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)

return -1; /* Has no length */
for (i = 0; i < n; i++) {

item = PySequence_GetItem(sequence, i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))

total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */

}
return total;

}

1.2.2 类型

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 异常

Python程序员只需要处理特定需要处理的错误异常；未处理的异常会自动传递给调用者，然后传递给调用者
的调用者，依此类推，直到他们到达顶级解释器，在那里将它们报告给用户并伴随堆栈回溯。

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred(). These exceptions
are always explicitly documented.
Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred() can be used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr_SetString() is the most common
(though not the most general) function to set the exception state, and PyErr_Clear() clears the exception state.
The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python objects sys.exc_type, sys.
exc_value, and sys.exc_traceback; however, they are not the same: the Python objects represent the last
exception being handled by a Python try⋯except statement, while the C level exception state only exists while an
exception is being passed on between C functions until it reaches the Python bytecode interpreter’s main loop, which
takes care of transferring it to sys.exc_type and friends.

1.3. 异常 7

The Python/C API,发布 2.7.18

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info(), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.
As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should not set another exception—that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.
A simple example of detecting exceptions and passing them on is shown in the sum_sequence() example above. It
so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:

item = dict[key]
except KeyError:

item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item(PyObject *dict, PyObject *key)
{

/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {

/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError))

goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(0L);
if (item == NULL)

goto error;
}
const_one = PyInt_FromLong(1L);
if (const_one == NULL)

goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)

goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */
/* Continue with cleanup code */

(下页继续)

8 Chapter 1. 概述

The Python/C API,发布 2.7.18

(续上页)
error:

/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, 0 for success */
}

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches() and PyErr_Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that may be NULL (note the 'X' in the name; Py_DECREF()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to -1 (failure) and only set to
success after the final call made is successful.

1.4 嵌入 Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.
The basic initialization function is Py_Initialize(). This initializes the table of loaded modules, and creates the
fundamental modules __builtin__, __main__, sys, and exceptions. It also initializes the module search path
(sys.path).
Py_Initialize() does not set the“script argument list”(sys.argv). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to PySys_SetArgvEx(argc, argv, updatepath)
after the call to Py_Initialize().
On most systems (in particular, on Unix and Windows, although the details are slightly different), Py_Initialize()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named lib/pythonX.Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).
For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX.Y. (In fact, this particular path is also the“fallback”location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.
The embedding application can steer the search by calling Py_SetProgramName(file) before calling
Py_Initialize(). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath(),
Py_GetPrefix(), Py_GetExecPrefix(), and Py_GetProgramFullPath() (all defined in Modules/
getpath.c).
Sometimes, it is desirable to“uninitialize”Python. For instance, the application may want to start over (make another call
to Py_Initialize()) or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py_Finalize(). The function Py_IsInitialized() returns true
if Python is currently in the initialized state. More information about these functions is given in a later chapter. Notice
that Py_Finalize() does not free all memory allocated by the Python interpreter, e.g. memory allocated by extension
modules currently cannot be released.

1.4. 嵌入 Python 9

The Python/C API,发布 2.7.18

1.5 调试构建

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.
A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this
section.
Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by“a debug build”of
Python. Py_DEBUG is enabled in the Unix build by adding --with-pydebug to the ./configure command. It is
also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the Unix build,
compiler optimization is disabled.
除了前面描述的引用计数调试之外，还执行以下额外检查：

• 额外检查将添加到对象分配器。
• 额外的检查将添加到解析器和编译器中。
• Downcasts from wide types to narrow types are checked for loss of information.
• 许多断言被添加到字典和集合实现中。另外，集合对象包含 test_c_api()方法。

• 添加输入参数的完整性检查到框架创建中。
• The storage for long ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
• 添加底层跟踪和额外的异常检查到虚拟机的运行时中。
• Extra checks are added to the memory arena implementation.
• 添加额外调试到线程模块。

这里可能没有提到的额外的检查。

Defining Py_TRACE_REFS enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.
有关更多详细信息，请参阅 Python源代码中的 Misc/SpecialBuilds.txt。

10 Chapter 1. 概述

CHAPTER2

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.
Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions which
accept them as parameters.
Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.
int Py_Main(int argc, char **argv)

The main program for the standard interpreter. This is made available for programs which embed Python. The argc
and argv parameters should be prepared exactly as those which are passed to a C program’s main() function.
It is important to note that the argument list may be modified (but the contents of the strings pointed to by the
argument list are not). The return value will be 0 if the interpreter exits normally (ie, without an exception), 1 if
the interpreter exits due to an exception, or 2 if the parameter list does not represent a valid Python command line.
Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
as long as Py_InspectFlag is not set.

int PyRun_AnyFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),

11

The Python/C API,发布 2.7.18

return the value of PyRun_InteractiveLoop(), otherwise return the result of PyRun_SimpleFile().
If filename is NULL, this function uses "???" as the filename.

int PyRun_SimpleString(const char *command)
This is a simplified interface to PyRun_SimpleStringFlags() below, leaving the PyCompilerFlags* argu-
ment set to NULL.

int PyRun_SimpleStringFlags(const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main__ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or -1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.
Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the process,
as long as Py_InspectFlag is not set.

int PyRun_SimpleFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving closeit set to 0.

int PyRun_SimpleFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags(), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file. If closeit is true, the file is closed before
PyRun_SimpleFileExFlags returns.

int PyRun_InteractiveOne(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags() below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.ps1 and sys.ps2. Returns 0 when the input was executed successfully,
-1 if there was an exception, or an error code from the errcode.h include file distributed as part of Python if
there was a parse error. (Note that errcode.h is not included by Python.h, so must be included specifically
if needed.)

int PyRun_InteractiveLoop(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags() below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user will
be prompted using sys.ps1 and sys.ps2. Returns 0 at EOF.

struct _node* PyParser_SimpleParseString(const char *str, int start)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename() below, leaving file-
name set to NULL and flags set to 0.

struct _node* PyParser_SimpleParseStringFlags(const char *str, int start, int flags)
This is a simplified interface to PyParser_SimpleParseStringFlagsFilename() below, leaving file-
name set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename(const char *str, const char *filename,
int start, int flags)

Parse Python source code from str using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times.

12 Chapter 2. The Very High Level Layer

The Python/C API,发布 2.7.18

struct _node* PyParser_SimpleParseFile(FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_SimpleParseFileFlags() below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags(FILE *fp, const char *filename, int start, int flags)
Similar to PyParser_SimpleParseStringFlagsFilename(), but the Python source code is read from
fp instead of an in-memory string.

PyObject* PyRun_String(const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags() below, leaving flags set
to NULL.

PyObject* PyRun_StringFlags(const char *str, int start, PyObject *globals, PyObject *locals, PyCompiler-
Flags *flags)

Return value: New reference. Execute Python source code from str in the context specified by the dictionaries
globals and locals with the compiler flags specified by flags. The parameter start specifies the start token that
should be used to parse the source code.
Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving closeit
set to 0 and flags set to NULL.

PyObject* PyRun_FileEx(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
int closeit)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving flags set
to NULL.

PyObject* PyRun_FileFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving closeit
set to 0.

PyObject* PyRun_FileExFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)

Return value: New reference. Similar to PyRun_StringFlags(), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file. If closeit is true, the file is closed before
PyRun_FileExFlags() returns.

PyObject* Py_CompileString(const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py_CompileStringFlags() below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags(const char *str, const char *filename, int start, PyCompiler-
Flags *flags)

Return value: New reference. Parse and compile the Python source code in str, returning the resulting code object.
The start token is given by start; this can be used to constrain the code which can be compiled and should be
Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename is used
to construct the code object and may appear in tracebacks or SyntaxError exception messages. This returns
NULL if the code cannot be parsed or compiled.

PyObject* PyEval_EvalCode(PyCodeObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_EvalCodeEx(), with just the code
object, and the dictionaries of global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx(PyCodeObject *co, PyObject *globals, PyObject *locals, PyObject **args,
int argcount, PyObject **kws, int kwcount, PyObject **defs, int defcount,
PyObject *closure)

Evaluate a precompiled code object, given a particular environment for its evaluation. This environment consists of
dictionaries of global and local variables, arrays of arguments, keywords and defaults, and a closure tuple of cells.

13

The Python/C API,发布 2.7.18

PyObject* PyEval_EvalFrame(PyFrameObject *f)
Evaluate an execution frame. This is a simplified interface to PyEval_EvalFrameEx, for backward compatibility.

PyObject* PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code object
associated with the execution frame f is executed, interpreting bytecode and executing calls as needed. The addi-
tional throwflag parameter can mostly be ignored - if true, then it causes an exception to immediately be thrown;
this is used for the throw() methods of generator objects.

int PyEval_MergeCompilerFlags(PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py_CompileString().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString(). This is the symbol to use when compiling arbitrarily long Python source code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString(). This
is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __future__ import can modify flags.
Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to 0, and any modification
due to from __future__ import is discarded.

struct PyCompilerFlags {
int cf_flags;

}

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as“true division”according to PEP 238.

14 Chapter 2. The Very High Level Layer

https://www.python.org/dev/peps/pep-0238

CHAPTER3

引用计数

本节介绍的宏被用于管理 Python对象的引用计数。
void Py_INCREF(PyObject *o)

Increment the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_XINCREF().

void Py_XINCREF(PyObject *o)
Increment the reference count for object o. The object may be NULL, in which case the macro has no effect.

void Py_DECREF(PyObject *o)
Decrement the reference count for object o. The object must not be NULL; if you aren’t sure that it isn’t NULL,
use Py_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function (which must
not be NULL) is invoked.

警告: 释放函数可导致任意 Python代码被发起调用（例如当一个带有 __del__()方法的类实例被
释放时就是如此）。虽然此类代码中的异常不会被传播，但被执行的代码能够自由访问所有 Python
全局变量。这意味着任何可通过全局变量获取的对象在Py_DECREF()被发起调用之前都应当处于
完好状态。例如，从一个列表中删除对象的代码应当将被删除对象的引用拷贝到一个临时变量中，
更新列表数据结构，然后再为临时变量调用Py_DECREF()。

void Py_XDECREF(PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF(), and the same warning applies.

void Py_CLEAR(PyObject *o)
Decrement the reference count for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_DECREF(), except that the argument is also set to NULL. The warning
for Py_DECREF() does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before decrementing its reference count.
当要减少在垃圾回收期间可能会被遍历的变量的值时，使用该宏是一个好主意。

2.4新版功能.

15

The Python/C API,发布 2.7.18

以下函数适用于 Python 的运行时动态嵌入: Py_IncRef(PyObject *o), Py_DecRef(PyObject *o)。
它们分别只是Py_XINCREF()和Py_XDECREF()的简单导出函数版本。

以 下 函 数 或 宏 仅 可 在 解 释 器 核 心 内 部 使 用: _Py_Dealloc(), _Py_ForgetReference(),
_Py_NewReference()以及全局变量 _Py_RefTotal。

16 Chapter 3. 引用计数

CHAPTER4

异常处理

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand some
of the basics of Python exception handling. It works somewhat like the Unix errno variable: there is a global indicator
(per thread) of the last error that occurred. Most functions don’t clear this on success, but will set it to indicate the
cause of the error on failure. Most functions also return an error indicator, usually NULL if they are supposed to return a
pointer, or -1 if they return an integer (exception: the PyArg_*() functions return 1 for success and 0 for failure).
When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.
The error indicator consists of three Python objects corresponding to the Python variables sys.exc_type, sys.
exc_value and sys.exc_traceback. API functions exist to interact with the error indicator in various ways.
There is a separate error indicator for each thread.
void PyErr_PrintEx(int set_sys_last_vars)

Print a standard traceback to sys.stderr and clear the error indicator. Unless the error is a SystemExit. In
that case the no traceback is printed and Python process will exit with the error code specified by the SystemExit
instance.
Call this function only when the error indicator is set. Otherwise it will cause a fatal error!
If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print()
Alias for PyErr_PrintEx(1).

PyObject* PyErr_Occurred()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception type (the first
argument to the last call to one of the PyErr_Set*() functions or to PyErr_Restore()). If not set, return
NULL. You do not own a reference to the return value, so you do not need to Py_DECREF() it.

17

The Python/C API,发布 2.7.18

注解: Do not compare the return value to a specific exception; use PyErr_ExceptionMatches() instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches(PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches(PyErr_Occurred(), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches(PyObject *given, PyObject *exc)
Return true if the given exception matches the exception in exc. If exc is a class object, this also returns true when
given is an instance of a subclass. If exc is a tuple, all exceptions in the tuple (and recursively in subtuples) are
searched for a match.

void PyErr_NormalizeException(PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr_Fetch() below can be“unnormalized”, meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

void PyErr_Clear()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_Fetch(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all
three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

注解: This function is normally only used by code that needs to handle exceptions or by code that needs to save
and restore the error indicator temporarily.

void PyErr_Restore(PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects are
NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The exception
type should be a class. Do not pass an invalid exception type or value. (Violating these rules will cause subtle
problems later.) This call takes away a reference to each object: you must own a reference to each object before the
call and after the call you no longer own these references. (If you don’t understand this, don’t use this function.
I warned you.)

注解: This function is normally only used by code that needs to save and restore the error indicator temporarily;
use PyErr_Fetch() to save the current exception state.

void PyErr_SetString(PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is converted to a string object.

void PyErr_SetObject(PyObject *type, PyObject *value)
This function is similar to PyErr_SetString() but lets you specify an arbitrary Python object for the“value”
of the exception.

PyObject* PyErr_Format(PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a Python

18 Chapter 4. 异常处理

The Python/C API,发布 2.7.18

exception class. The format and subsequent parameters help format the error message; they have the same meaning
and values as in PyString_FromFormat().

void PyErr_SetNone(PyObject *type)
This is a shorthand for PyErr_SetObject(type, Py_None).

int PyErr_BadArgument()
This is a shorthand for PyErr_SetString(PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory()
Return value: Always NULL. This is a shorthand for PyErr_SetNone(PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory(); when it runs out of memory.

PyObject* PyErr_SetFromErrno(PyObject *type)
Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the inte-
ger errno value and whose second item is the corresponding error message (gotten from strerror()), and
then calls PyErr_SetObject(type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_CheckSignals(), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno(type); when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject(PyObject *type, PyObject *filenameObject)
Similar to PyErr_SetFromErrno(), with the additional behavior that if filenameObject is not NULL, it is
passed to the constructor of type as a third parameter. In the case of exceptions such as IOError and OSError,
this is used to define the filename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilename(PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnoWithFilenameObject(), but the file-
name is given as a C string.

PyObject* PyErr_SetFromWindowsErr(int ierr)
Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with ierr of 0, the error code returned by a call to GetLastError() is used instead. It calls
the Win32 function FormatMessage() to retrieve the Windows description of error code given by
ierr or GetLastError(), then it constructs a tuple object whose first item is the ierr value and
whose second item is the corresponding error message (gotten from FormatMessage()), and then calls
PyErr_SetObject(PyExc_WindowsError, object). This function always returns NULL. Availabil-
ity: Windows.

PyObject* PyErr_SetExcFromWindowsErr(PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErr(), with an additional parameter spec-
ifying the exception type to be raised. Availability: Windows.
2.3新版功能.

PyObject* PyErr_SetFromWindowsErrWithFilenameObject(int ierr, PyObject *filenameObject)
Similar to PyErr_SetFromWindowsErr(), with the additional behavior that if filenameObject is not NULL,
it is passed to the constructor of WindowsError as a third parameter. Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename(int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject(), but the
filename is given as a C string. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject(PyObject *type, int ierr, PyOb-
ject *filename)

Similar to PyErr_SetFromWindowsErrWithFilenameObject(), with an additional parameter speci-
fying the exception type to be raised. Availability: Windows.
2.3新版功能.

19

The Python/C API,发布 2.7.18

PyObject* PyErr_SetExcFromWindowsErrWithFilename(PyObject *type, int ierr, const char *file-
name)

Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilename(), with an addi-
tional parameter specifying the exception type to be raised. Availability: Windows.
2.3新版功能.

void PyErr_BadInternalCall()
This is a shorthand for PyErr_SetString(PyExc_SystemError, message), wheremessage indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

int PyErr_WarnEx(PyObject *category, char *message, int stacklevel)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message ar-
gument is a message string. stacklevel is a positive number giving a number of stack frames; the warning will
be issued from the currently executing line of code in that stack frame. A stacklevel of 1 is the function calling
PyErr_WarnEx(), 2 is the function above that, and so forth.
This function normally prints a warning message to sys.stderr; however, it is also possible that the user has specified
that warnings are to be turned into errors, and in that case this will raise an exception. It is also possible that the
function raises an exception because of a problem with the warning machinery (the implementation imports the
warnings module to do the heavy lifting). The return value is 0 if no exception is raised, or -1 if an exception
is raised. (It is not possible to determine whether a warning message is actually printed, nor what the reason is for
the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling (for
example, Py_DECREF() owned references and return an error value).
Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_RuntimeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at标准警告类别.
For information about warning control, see the documentation for the warnings module and the -W option in
the command line documentation. There is no C API for warning control.

int PyErr_Warn(PyObject *category, char *message)
Issue a warning message. The category argument is a warning category (see below) orNULL; themessage argument
is a message string. The warning will appear to be issued from the function calling PyErr_Warn(), equivalent
to calling PyErr_WarnEx() with a stacklevel of 1.
Deprecated; use PyErr_WarnEx() instead.

int PyErr_WarnExplicit(PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit(), see there for more information. The module and registry
arguments may be set to NULL to get the default effect described there.

int PyErr_WarnPy3k(char *message, int stacklevel)
Issue a DeprecationWarning with the given message and stacklevel if the Py_Py3kWarningFlag flag is
enabled.
2.6新版功能.

int PyErr_CheckSignals()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns -1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt()
This function simulates the effect of a SIGINT signal arriving—the next time PyErr_CheckSignals() is

20 Chapter 4. 异常处理

The Python/C API,发布 2.7.18

called, KeyboardInterrupt will be raised. It may be called without holding the interpreter lock.
int PySignal_SetWakeupFd(int fd)

This utility function specifies a file descriptor to which a '\0' byte will be written whenever a signal is received. It
returns the previous such file descriptor. The value -1 disables the feature; this is the initial state. This is equivalent
to signal.set_wakeup_fd() in Python, but without any error checking. fd should be a valid file descriptor.
The function should only be called from the main thread.
2.6新版功能.

PyObject* PyErr_NewException(char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).
The __module__ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base
classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc(char *name, char *doc, PyObject *base, PyObject *dict)
Return value: New reference. Same as PyErr_NewException(), except that the new exception class can easily
be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.
2.7新版功能.

void PyErr_WriteUnraisable(PyObject *obj)
This utility function prints a warning message to sys.stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del__() method.
The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

4.1 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.
PyObject* PyUnicodeDecodeError_Create(const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeDecodeError object with the attributes encoding, object, length, start, end and reason.

PyObject* PyUnicodeEncodeError_Create(const char *encoding, const Py_UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const
char *reason)

Create a UnicodeEncodeError object with the attributes encoding, object, length, start, end and reason.
PyObject* PyUnicodeTranslateError_Create(const Py_UNICODE *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeTranslateError object with the attributes object, length, start, end and reason.

PyObject* PyUnicodeDecodeError_GetEncoding(PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding(PyObject *exc)

Return the encoding attribute of the given exception object.
PyObject* PyUnicodeDecodeError_GetObject(PyObject *exc)
PyObject* PyUnicodeEncodeError_GetObject(PyObject *exc)

4.1. Unicode Exception Objects 21

The Python/C API,发布 2.7.18

PyObject* PyUnicodeTranslateError_GetObject(PyObject *exc)
Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart(PyObject *exc, Py_ssize_t *start)
int PyUnicodeEncodeError_GetStart(PyObject *exc, Py_ssize_t *start)
int PyUnicodeTranslateError_GetStart(PyObject *exc, Py_ssize_t *start)

Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0 on
success, -1 on failure.

int PyUnicodeDecodeError_SetStart(PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart(PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart(PyObject *exc, Py_ssize_t start)

Set the start attribute of the given exception object to start. Return 0 on success, -1 on failure.
int PyUnicodeDecodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
int PyUnicodeEncodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
int PyUnicodeTranslateError_GetEnd(PyObject *exc, Py_ssize_t *end)

Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return 0 on
success, -1 on failure.

int PyUnicodeDecodeError_SetEnd(PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd(PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd(PyObject *exc, Py_ssize_t end)

Set the end attribute of the given exception object to end. Return 0 on success, -1 on failure.
PyObject* PyUnicodeDecodeError_GetReason(PyObject *exc)
PyObject* PyUnicodeEncodeError_GetReason(PyObject *exc)
PyObject* PyUnicodeTranslateError_GetReason(PyObject *exc)

Return the reason attribute of the given exception object.
int PyUnicodeDecodeError_SetReason(PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason(PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason(PyObject *exc, const char *reason)

Set the reason attribute of the given exception object to reason. Return 0 on success, -1 on failure.

4.2 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mod-
ules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically).
int Py_EnterRecursiveCall(const char *where)

Marks a point where a recursive C-level call is about to be performed.
If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack().
In this is the case, it sets a MemoryError and returns a nonzero value.
The function then checks if the recursion limit is reached. If this is the case, a RuntimeError is set and a
nonzero value is returned. Otherwise, zero is returned.
where should be a string such as " in instance check" to be concatenated to the RuntimeError mes-
sage caused by the recursion depth limit.

void Py_LeaveRecursiveCall()
Ends a Py_EnterRecursiveCall(). Must be called once for each successful invocation of
Py_EnterRecursiveCall().

22 Chapter 4. 异常处理

The Python/C API,发布 2.7.18

4.3 标准异常

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python ex-
ception name. These have the type PyObject*; they are all class objects. For completeness, here are all the variables:

C名称 Python名称 注释
PyExc_BaseException BaseException (1), (4)
PyExc_Exception Exception (1)
PyExc_StandardError StandardError (1)
PyExc_ArithmeticError ArithmeticError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BufferError BufferError
PyExc_EnvironmentError EnvironmentError (1)
PyExc_EOFError EOFError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_IOError IOError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError (1)
PyExc_MemoryError MemoryError
PyExc_NameError NameError
PyExc_NotImplementedError NotImplementedError
PyExc_OSError OSError
PyExc_OverflowError OverflowError
PyExc_ReferenceError ReferenceError (2)
PyExc_RuntimeError RuntimeError
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError
PyExc_TypeError TypeError
PyExc_UnboundLocalError UnboundLocalError
PyExc_UnicodeDecodeError UnicodeDecodeError
PyExc_UnicodeEncodeError UnicodeEncodeError
PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateError UnicodeTranslateError
PyExc_VMSError VMSError (5)
PyExc_ValueError ValueError
PyExc_WindowsError WindowsError (3)
PyExc_ZeroDivisionError ZeroDivisionError

注释:
(1) 这是其他标准异常的基类。
(2) This is the same as weakref.ReferenceError.

4.3. 标准异常 23

The Python/C API,发布 2.7.18

(3) Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is
defined.

(4) 2.5新版功能.
(5) Only defined on VMS; protect code that uses this by testing that the preprocessor macro __VMS is defined.

4.4 标准警告类别

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyObject*; they are all class objects. For completeness, here are all the variables:

C名称 Python名称 注释
PyExc_Warning Warning (1)
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning PendingDeprecationWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

注释:
(1) 这是其他标准警告类别的基类。

4.5 String Exceptions

在 2.6版更改: All exceptions to be raised or caught must be derived from BaseException. Trying to raise a string
exception now raises TypeError.

24 Chapter 4. 异常处理

CHAPTER5

工具

本章中的函数执行各种实用工具任务，包括帮助 C代码提升跨平台可移植性，在 C中使用 Python模块，以
及解析函数参数并根据 C中的值构建 Python中的值等等。

5.1 操作系统实用程序

int Py_FdIsInteractive(FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty(fileno(fp)) is true. If the global flag Py_InteractiveFlag is true, this function
also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>' or
'???'.

void PyOS_AfterFork()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not need
to be called.

int PyOS_CheckStack()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only avail-
able when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig(int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction() or signal().
Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void (*)(int).

PyOS_sighandler_t PyOS_setsig(int i, PyOS_sighandler_t h)
Set the signal handler for signal i to be h; return the old signal handler. This is a thin wrapper around either
sigaction() or signal(). Do not call those functions directly! PyOS_sighandler_t is a typedef alias
for void (*)(int).

25

The Python/C API,发布 2.7.18

5.2 系统功能

These are utility functions that make functionality from the sys module accessible to C code. They all work with the
current interpreter thread’s sys module’s dict, which is contained in the internal thread state structure.
PyObject *PySys_GetObject(char *name)

Return value: Borrowed reference. Return the object name from the sys module or NULL if it does not exist,
without setting an exception.

FILE *PySys_GetFile(char *name, FILE *def)
Return the FILE* associated with the object name in the sys module, or def if name is not in the module or is
not associated with a FILE*.

int PySys_SetObject(char *name, PyObject *v)
Set name in the sys module to v unless v is NULL, in which case name is deleted from the sys module. Returns 0
on success, -1 on error.

void PySys_ResetWarnOptions()
Reset sys.warnoptions to an empty list.

void PySys_AddWarnOption(char *s)
Append s to sys.warnoptions.

void PySys_SetPath(char *path)
Set sys.path to a list object of paths found in path which should be a list of paths separated with the platform’
s search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout(const char *format, ...)
Write the output string described by format to sys.stdout. No exceptions are raised, even if truncation occurs
(see below).
format should limit the total size of the formatted output string to 1000 bytes or less –after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted “%s”formats should occur; these should be
limited using“%.<N>s”where <N> is a decimal number calculated so that <N> plus the maximum size of other
formatted text does not exceed 1000 bytes. Also watch out for“%f”, which can print hundreds of digits for very
large numbers.
If a problem occurs, or sys.stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr(const char *format, ...)
As above, but write to sys.stderr or stderr instead.

5.3 过程控制

void Py_FatalError(const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when the
object administration appears to be corrupted. On Unix, the standard C library function abort() is called which
will attempt to produce a core file.

void Py_Exit(int status)
Exit the current process. This calls Py_Finalize() and then calls the standard C library function
exit(status).

int Py_AtExit(void (*func)())
Register a cleanup function to be called by Py_Finalize(). The cleanup function will be called with no ar-
guments and should return no value. At most 32 cleanup functions can be registered. When the registration is

26 Chapter 5. 工具

The Python/C API,发布 2.7.18

successful, Py_AtExit() returns 0; on failure, it returns -1. The cleanup function registered last is called first.
Each cleanup function will be called at most once. Since Python’s internal finalization will have completed before
the cleanup function, no Python APIs should be called by func.

5.4 导入模块

PyObject* PyImport_ImportModule(const char *name)
Return value: New reference. This is a simplified interface to PyImport_ImportModuleEx() below, leaving
the globals and locals arguments set to NULL and level set to 0. When the name argument contains a dot (when
it specifies a submodule of a package), the fromlist argument is set to the list ['*'] so that the return value is
the named module rather than the top-level package containing it as would otherwise be the case. (Unfortunately,
this has an additional side effect when name in fact specifies a subpackage instead of a submodule: the submodules
specified in the package’s __all__ variable are loaded.) Return a new reference to the imported module, or
NULL with an exception set on failure. Before Python 2.4, the module may still be created in the failure case—
examine sys.modules to find out. Starting with Python 2.4, a failing import of a module no longer leaves the
module in sys.modules.
在 2.4版更改: Failing imports remove incomplete module objects.
在 2.6版更改: Always uses absolute imports.

PyObject* PyImport_ImportModuleNoBlock(const char *name)
This version of PyImport_ImportModule() does not block. It’s intended to be used in C functions that im-
port other modules to execute a function. The import may block if another thread holds the import lock. The func-
tion PyImport_ImportModuleNoBlock() never blocks. It first tries to fetch the module from sys.modules
and falls back to PyImport_ImportModule() unless the lock is held, in which case the function will raise
an ImportError.
2.6新版功能.

PyObject* PyImport_ImportModuleEx(char *name, PyObject *globals, PyObject *locals, PyObject *from-
list)

Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__(), as the standard __import__() function calls this function directly.
The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure (before Python 2.4, the module may still be created in this case). Like for __import__(), the return
value when a submodule of a package was requested is normally the top-level package, unless a non-empty fromlist
was given.
在 2.4版更改: Failing imports remove incomplete module objects.
在 2.6版更改: The function is an alias for PyImport_ImportModuleLevel() with -1 as level, meaning
relative import.

PyObject* PyImport_ImportModuleLevel(char *name, PyObject *globals, PyObject *locals, PyOb-
ject *fromlist, int level)

Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__(), as the standard __import__() function calls this function directly.
The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__(), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.
2.5新版功能.

PyObject* PyImport_Import(PyObject *name)
Return value: New reference. This is a higher-level interface that calls the current“import hook function”. It

5.4. 导入模块 27

The Python/C API,发布 2.7.18

invokes the __import__() function from the __builtins__ of the current globals. This means that the
import is done using whatever import hooks are installed in the current environment, e.g. by rexec or ihooks.
在 2.6版更改: Always uses absolute imports.

PyObject* PyImport_ReloadModule(PyObject *m)
Return value: New reference. Reload a module. This is best described by referring to the built-in Python func-
tion reload(), as the standard reload() function calls this function directly. Return a new reference to the
reloaded module, or NULL with an exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModule(const char *name)
Return value: Borrowed reference. Return the module object corresponding to a module name. The name argument
may be of the form package.module. First check the modules dictionary if there’s one there, and if not,
create a new one and insert it in the modules dictionary. Return NULL with an exception set on failure.

注解: This function does not load or import the module; if the module wasn’t already loaded, you will get an
empty module object. Use PyImport_ImportModule() or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

PyObject* PyImport_ExecCodeModule(char *name, PyObject *co)
Return value: New reference. Given a module name (possibly of the form package.module) and a code object
read from a Python bytecode file or obtained from the built-in function compile(), load the module. Return a
new reference to the module object, or NULL with an exception set if an error occurred. Before Python 2.4, the
module could still be created in error cases. Starting with Python 2.4, name is removed from sys.modules in
error cases, and even if name was already in sys.modules on entry to PyImport_ExecCodeModule().
Leaving incompletely initialized modules in sys.modules is dangerous, as imports of such modules have no
way to know that the module object is an unknown (and probably damaged with respect to the module author’s
intents) state.
The module’s __file__ attribute will be set to the code object’s co_filename.
This function will reload the module if it was already imported. See PyImport_ReloadModule() for the
intended way to reload a module.
If name points to a dotted name of the form package.module, any package structures not already created will
still not be created.
在 2.4版更改: name is removed from sys.modules in error cases.

PyObject* PyImport_ExecCodeModuleEx(char *name, PyObject *co, char *pathname)
Return value: New reference. Like PyImport_ExecCodeModule(), but the __file__ attribute of the
module object is set to pathname if it is non-NULL.

long PyImport_GetMagicNumber()
Return the magic number for Python bytecode files (a.k.a. .pyc and .pyo files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* PyImport_GetModuleDict()
Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a. sys.
modules). Note that this is a per-interpreter variable.

PyObject* PyImport_GetImporter(PyObject *path)
Return an importer object for a sys.path/pkg.__path__ item path, possibly by fetching it from the sys.
path_importer_cache dict. If it wasn’t yet cached, traverse sys.path_hooks until a hook is found
that can handle the path item. Return None if no hook could; this tells our caller it should fall back to the built-in
import mechanism. Cache the result in sys.path_importer_cache. Return a new reference to the importer
object.
2.6新版功能.

28 Chapter 5. 工具

The Python/C API,发布 2.7.18

void _PyImport_Init()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup()
Empty the module table. For internal use only.

void _PyImport_Fini()
Finalize the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension(char *, char *)
For internal use only.

PyObject* _PyImport_FixupExtension(char *, char *)
For internal use only.

int PyImport_ImportFrozenModule(char *name)
Load a frozen module named name. Return 1 for success, 0 if the module is not found, and -1 with
an exception set if the initialization failed. To access the imported module on a successful load, use
PyImport_ImportModule(). (Note the misnomer —this function would reload the module if it was al-
ready imported.)

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the freeze utility (see Tools/
freeze/ in the Python source distribution). Its definition, found in Include/import.h, is:

struct _frozen {
char *name;
unsigned char *code;
int size;

};

struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab(const char *name, void (*initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab(), returning -1 if the table could not be extended. The new module can be
imported by the name name, and uses the function initfunc as the initialization function called on the first attempted
import. This should be called before Py_Initialize().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. Programs which embed Python may use an array of
these structures in conjunction with PyImport_ExtendInittab() to provide additional built-in modules.
The structure is defined in Include/import.h as:

struct _inittab {
char *name;
void (*initfunc)(void);

};

int PyImport_ExtendInittab(struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0
on success or -1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This should be called before Py_Initialize().

5.4. 导入模块 29

The Python/C API,发布 2.7.18

5.5 数据 marshal操作支持

这些例程允许 C代码处理与 marshal模块所用相同数据格式的序列化对象。其中有些函数可用来将数据写
入这种序列化格式，另一些函数则可用来读取并恢复数据。用于存储 marshal数据的文件必须以二进制模式
打开。

数字值在存储时会将最低位字节放在开头。

The module supports two versions of the data format: version 0 is the historical version, version 1 (new in Python 2.4)
shares interned strings in the file, and upon unmarshalling. Version 2 (new in Python 2.5) uses a binary format for floating
point numbers. Py_MARSHAL_VERSION indicates the current file format (currently 2).
void PyMarshal_WriteLongToFile(long value, FILE *file, int version)

Marshal a long integer, value, to file. This will only write the least-significant 32 bits of value; regardless of the
size of the native long type.
在 2.4版更改: version indicates the file format.

void PyMarshal_WriteObjectToFile(PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file.
在 2.4版更改: version indicates the file format.

PyObject* PyMarshal_WriteObjectToString(PyObject *value, int version)
Return value: New reference. Return a string object containing the marshalled representation of value.
在 2.4版更改: version indicates the file format.

以下函数允许读取并恢复存储为 marshal格式的值。
XXX What about error detection? It appears that reading past the end of the file will always result in a negative numeric
value (where that’s relevant), but it’s not clear that negative values won’t be handled properly when there’s no error.
What’s the right way to tell? Should only non-negative values be written using these routines?
long PyMarshal_ReadLongFromFile(FILE *file)

从打开用于读取的 FILE*的对应数据流返回一个 C long。使用此函数只能读取 32位的值，无论本机
long类型的长度如何。

int PyMarshal_ReadShortFromFile(FILE *file)
从打开用于读取的 FILE*的对应数据流返回一个 C short。使用此函数只能读取 16位的值，无论本
机 short的长度如何。

PyObject* PyMarshal_ReadObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading. On
error, sets the appropriate exception (EOFError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading. Unlike
PyMarshal_ReadObjectFromFile(), this function assumes that no further objects will be read from the
file, allowing it to aggressively load file data into memory so that the de-serialization can operate from data in
memory rather than reading a byte at a time from the file. Only use these variant if you are certain that you won’t
be reading anything else from the file. On error, sets the appropriate exception (EOFError or TypeError) and
returns NULL.

PyObject* PyMarshal_ReadObjectFromString(char *string, Py_ssize_t len)
Return value: New reference. Return a Python object from the data stream in a character buffer containing len bytes
pointed to by string. On error, sets the appropriate exception (EOFError or TypeError) and returns NULL.
在 2.5 版更改: This function used an int type for len. This might require changes in your code for properly
supporting 64-bit systems.

30 Chapter 5. 工具

The Python/C API,发布 2.7.18

5.6 解析参数并构建值变量

在创建你自己的扩展函数和方法时，这些函数是有用的。其它的信息和样例见 extending-index。
这 些 函 数 描 述 的 前 三 个，PyArg_ParseTuple()，PyArg_ParseTupleAndKeywords()， 以
及PyArg_Parse()，它们都使用 格式化字符串来将函数期待的参数告知函数。这些函数都使用相
同语法规则的格式化字符串。

一个格式化字符串包含 0或者更多的格式单元。一个格式单元用来描述一个 Python对象；它通常是一个字
符或者由括号括起来的格式单元序列。除了少数例外，一个非括号序列的格式单元通常对应这些函数的具有
单一地址的参数。在接下来的描述中，双引号内的表达式是格式单元；圆括号 ()内的是对应这个格式单元的
Python对象类型；方括号 []内的是传递的 C变量 (变量集)类型。
These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for
the returned unicode or bytes area. Also, you won’t have to release any memory yourself, except with the es, es#, et
and et# formats.
s (string or Unicode) [const char *] Convert a Python string or Unicode object to a C pointer to a character string.

You must not provide storage for the string itself; a pointer to an existing string is stored into the character pointer
variable whose address you pass. The C string is NUL-terminated. The Python string must not contain embedded
NUL bytes; if it does, a TypeError exception is raised. Unicode objects are converted to C strings using the
default encoding. If this conversion fails, a UnicodeError is raised.

s# (string, Unicode or any read buffer compatible object) [const char *, int (or Py_ssize_t, see below)] This
variant on s stores into two C variables, the first one a pointer to a character string, the second one its length. In
this case the Python string may contain embedded null bytes. Unicode objects pass back a pointer to the default
encoded string version of the object if such a conversion is possible. All other read-buffer compatible objects pass
back a reference to the raw internal data representation.
Starting with Python 2.5 the type of the length argument can be controlled by defining the macro
PY_SSIZE_T_CLEAN before including Python.h. If the macro is defined, length is a Py_ssize_t rather
than an int.

s* (string, Unicode, or any buffer compatible object) [Py_buffer] Similar to s#, this code fills a Py_buffer struc-
ture provided by the caller. The buffer gets locked, so that the caller can subsequently use the buffer even inside
a Py_BEGIN_ALLOW_THREADS block; the caller is responsible for calling PyBuffer_Release with the
structure after it has processed the data.
2.6新版功能.

z (string, Unicode or None) [const char *] Like s, but the Python object may also be None, in which case the C
pointer is set to NULL.

z# (string, Unicode, None or any read buffer compatible object) [const char *, int] This is to s# as z is to s.
z* (string, Unicode, None or any buffer compatible object) [Py_buffer] This is to s* as z is to s.

2.6新版功能.
u (Unicode) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of 16-bit

Unicode (UTF-16) data. As with s, there is no need to provide storage for the Unicode data buffer; a pointer to
the existing Unicode data is stored into the Py_UNICODE pointer variable whose address you pass.

u# (Unicode) [Py_UNICODE *, int] This variant on u stores into two C variables, the first one a pointer to a Unicode
data buffer, the second one its length. Non-Unicode objects are handled by interpreting their read-buffer pointer
as pointer to a Py_UNICODE array.

es (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer] This variant on
s is used for encoding Unicode and objects convertible to Unicode into a character buffer. It only works for encoded
data without embedded NUL bytes.

5.6. 解析参数并构建值变量 31

The Python/C API,发布 2.7.18

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case the default encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char**; the
value of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument.
PyArg_ParseTuple()会分配一个足够大小的缓冲区，将编码后的数据拷贝进这个缓冲区并且设置
*buffer引用这个新分配的内存空间。调用者有责任在使用后调用PyMem_Free()去释放已经分配的缓
冲区。

et (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer] Same ases ex-
cept that 8-bit string objects are passed through without recoding them. Instead, the implementation assumes that
the string object uses the encoding passed in as parameter.

es# (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length]
This variant on s# is used for encoding Unicode and objects convertible to Unicode into a character buffer.
Unlike the es format, this variant allows input data which contains NUL characters.
It requires three arguments. The first is only used as input, and must be a const char*which points to the name
of an encoding as a NUL-terminated string, or NULL, in which case the default encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument must be a char**; the value of the
pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in the
encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced integer
will be set to the number of bytes in the output buffer.
有两种操作方式：

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free() to free the allocated buffer after usage.
If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg_ParseTuple() will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a TypeError will be set.
Note: starting from Python 3.6 a ValueError will be set.
在这两个例子中，*buffer_length被设置为编码后结尾不为 NUL的数据的长度。

et# (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length]
Same as es# except that string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

b (integer) [unsigned char] 将一个非负的 Python整型转化成一个无符号的微整型，存储在一个 C unsigned
char类型中。

B (integer) [unsigned char] 将一个 Python 整型转化成一个微整型并不检查溢出问题，存储在一个 C
unsigned char类型中。

2.3新版功能.
h (integer) [short int] 将一个 Python整型转化成一个 C short int短整型。

H (integer) [unsigned short int] 将一个 Python整型转化成一个 C unsigned short int无符号短整型，并
不检查溢出问题。

2.3新版功能.
i (integer) [int] 将一个 Python整型转化成一个 C int整型。

I (integer) [unsigned int] 将一个 Python整型转化成一个 C unsigned int无符号整型，并不检查溢出问
题。

2.3新版功能.

32 Chapter 5. 工具

The Python/C API,发布 2.7.18

l (integer) [long int] 将一个 Python整型转化成一个 C long int长整型。

k (integer) [unsigned long] Convert a Python integer or long integer to a Cunsigned longwithout overflow check-
ing.
2.3新版功能.

L (integer) [PY_LONG_LONG] Convert a Python integer to a C long long. This format is only available on
platforms that support long long (or _int64 on Windows).

K (integer) [unsigned PY_LONG_LONG] Convert a Python integer or long integer to a C unsigned long long
without overflow checking. This format is only available on platforms that support unsigned long long (or
unsigned _int64 on Windows).
2.3新版功能.

n (integer) [Py_ssize_t] Convert a Python integer or long integer to a C Py_ssize_t.
2.5新版功能.

c (string of length 1) [char] Convert a Python character, represented as a string of length 1, to a C char.
f (float) [float] 将一个 Python浮点数转化成一个 C float浮点数。

d (float) [double] 将一个 Python浮点数转化成一个 C double双精度浮点数。

D (complex) [Py_complex] 将一个 Python复数类型转化成一个 C Py_complex Python复数类型。
O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus

receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is not
NULL.

O! (object) [typeobject, PyObject *] 将一个 Python对象存入一个 C指针。和 O类似，但是需要两个 C参数：
第一个是 Python类型对象的地址，第二个是存储对象指针的 C变量 (PyObject*变量)的地址。如果
Python对象类型不对，会抛出 TypeError异常。

O& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes two
arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to void
*. The converter function in turn is called as follows:

status = converter(object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parse*() function. The returned status should be 1 for a successful conversion and 0 if the conversion
has failed. When the conversion fails, the converter function should raise an exception and leave the content of
address unmodified.

S (string) [PyStringObject *] Like O but requires that the Python object is a string object. Raises TypeError if the
object is not a string object. The C variable may also be declared as PyObject*.

U (Unicode string) [PyUnicodeObject *] Like O but requires that the Python object is a Unicode object. Raises
TypeError if the object is not a Unicode object. The C variable may also be declared as PyObject*.

t# (read-only character buffer) [char *, int] Like s#, but accepts any object which implements the read-only buffer
interface. The char* variable is set to point to the first byte of the buffer, and the int is set to the length of the
buffer. Only single-segment buffer objects are accepted; TypeError is raised for all others.

w (read-write character buffer) [char *] Similar to s, but accepts any object which implements the read-write buffer
interface. The caller must determine the length of the buffer by other means, or usew# instead. Only single-segment
buffer objects are accepted; TypeError is raised for all others.

w# (read-write character buffer) [char *, Py_ssize_t] Like s#, but accepts any object which implements the read-
write buffer interface. The char * variable is set to point to the first byte of the buffer, and the Py_ssize_t

5.6. 解析参数并构建值变量 33

The Python/C API,发布 2.7.18

is set to the length of the buffer. Only single-segment buffer objects are accepted; TypeError is raised for all
others.

w* (read-write byte-oriented buffer) [Py_buffer] This is to w what s* is to s.
2.6新版功能.

(items) (tuple) [matching-items] 对象必须是 Python序列，它的长度是 items中格式单元的数量。C参数必
须对应 items中每一个独立的格式单元。序列中的格式单元可能有嵌套。

注解: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual param-
eters, not an arbitrary sequence. Code which previously caused TypeError to be raised here may now proceed
without an exception. This is not expected to be a problem for existing code.

It is possible to pass Python long integers where integers are requested; however no proper range checking is done—the
most significant bits are silently truncated when the receiving field is too small to receive the value (actually, the semantics
are inherited from downcasts in C—your mileage may vary).
格式化字符串中还有一些其他的字符具有特殊的涵义。这些可能并不嵌套在圆括号中。它们是：

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value —when an optional argument is not specified,
PyArg_ParseTuple() does not touch the contents of the corresponding C variable(s).

: 格式单元的列表结束标志；冒号后的字符串被用来作为错误消息中的函数名 (PyArg_ParseTuple()函
数引发的“关联值”异常)。

; 格式单元的列表结束标志；分号后的字符串被用来作为错误消息取代默认的错误消息。: 和 ;相互排斥。

注意任何由调用者提供的 Python对象引用是借来的引用；不要递减它们的引用计数！
传递给这些函数的附加参数必须是由格式化字符串确定的变量的地址；这些都是用来存储输入元组的值。有
一些情况，如上面的格式单元列表中所描述的，这些参数作为输入值使用；在这种情况下，它们应该匹配指
定的相应的格式单元。

为了转换成功，arg对象必须匹配格式并且格式必须用尽。成功的话，PyArg_Parse*()函数返回 true，反
之它们返回 false并且引发一个合适的异常。当PyArg_Parse*()函数因为某一个格式单元转化失败而失败
时，对应的以及后续的格式单元地址内的变量都不会被使用。

int PyArg_ParseTuple(PyObject *args, const char *format, ...)
解析一个函数的参数，表达式中的参数按参数位置顺序存入局部变量中。成功返回 true；失败返回 false
并且引发相应的异常。

int PyArg_VaParse(PyObject *args, const char *format, va_list vargs)
和PyArg_ParseTuple()相同，然而它接受一个 va_list类型的参数而不是可变数量的参数集。

int PyArg_ParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *key-
words[], ...)

Parse the parameters of a function that takes both positional and keyword parameters into local variables. Returns
true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *key-
words[], va_list vargs)

和PyArg_ParseTupleAndKeywords()相同，然而它接受一个 va_list类型的参数而不是可变数量的
参数集。

int PyArg_Parse(PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of “old-style”functions —these are functions which use the
METH_OLDARGS parameter parsing method. This is not recommended for use in parameter parsing in new code,
and most code in the standard interpreter has been modified to no longer use this for that purpose. It does remain
a convenient way to decompose other tuples, however, and may continue to be used for that purpose.

34 Chapter 5. 工具

The Python/C API,发布 2.7.18

int PyArg_UnpackTuple(PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
一个不使用格式化字符串指定参数类型的简单形式的参数检索。使用这种方法来检索参数的函数应该
在函数或者方法表中声明METH_VARARGS。包含实际参数的元组应该以 args形式被传入；它必须是一
个实际的元组。元组的长度必须至少是 min并且不超过 max；min和 max可能相同。额外的参数必须传
递给函数，每一个参数必须是一个指向PyObject*类型变量的指针；它们将被赋值为 args的值；它
们将包含借来的引用。不在 args里面的可选参数不会被赋值；由调用者完成初始化。函数成功则返回
true并且如果 args不是元组或者包含错误数量的元素则返回 false；如果失败了会引发一个异常。
这是一个使用此函数的示例，取自 _weakref帮助模块用来弱化引用的源代码：

static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{

PyObject *object;
PyObject *callback = NULL;
PyObject *result = NULL;

if (PyArg_UnpackTuple(args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_NewRef(object, callback);

}
return result;

}

这个例子中调用PyArg_UnpackTuple()完全等价于调用PyArg_ParseTuple():

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

2.2新版功能.
在 2.5 版更改: This function used an int type for min and max. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* Py_BuildValue(const char *format, ...)
Return value: New reference. Create a new value based on a format string similar to those accepted by the
PyArg_Parse*() family of functions and a sequence of values. Returns the value or NULL in the case of
an error; an exception will be raised if NULL is returned.
Py_BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two or more
format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns whatever
object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the format string.
When memory buffers are passed as parameters to supply data to build objects, as for the s and s# formats,
the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py_BuildValue(). In other words, if your code invokes malloc() and passes the allocated memory to
Py_BuildValue(), your code is responsible for calling free() for that memory once Py_BuildValue()
returns.
在下面的描述中，双引号的表达式使格式单元；圆括号 ()内的是格式单元将要返回的 Python对象类型；
方括号 []内的是传递的 C变量 (变量集)的类型
字符例如空格，制表符，冒号和逗号在格式化字符串中会被忽略 (但是不包括格式单元，如 s#)。这可
以使很长的格式化字符串具有更好的可读性。

s (string) [char *] Convert a null-terminated C string to a Python object. If the C string pointer is NULL, None
is used.

s# (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointer is NULL, the
length is ignored and None is returned.

z (string or None) [char *] 和 “s“一样。

5.6. 解析参数并构建值变量 35

The Python/C API,发布 2.7.18

z# (string or None) [char *, int] 和 “s#“一样。
u (Unicode string) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2 or UCS-4) data to

a Python Unicode object. If the Unicode buffer pointer is NULL, None is returned.
u# (Unicode string) [Py_UNICODE *, int] Convert a Unicode (UCS-2 or UCS-4) data buffer and its length to

a Python Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and None is returned.
i (integer) [int] 将一个 C int整型转化成 Python整型对象。
b (integer) [char] 将一个 C char字符型转化成 Python整型对象。
h (integer) [short int] 将一个 C short int短整型转化成 Python整型对象。
l (integer) [long int] 将一个 C long int长整型转化成 Python整型对象。
B (integer) [unsigned char] 将一个 C unsigned char无符号字符型转化成 Python整型对象。
H (integer) [unsigned short int] 将一个 C unsigned long无符号短整型转化成 Python整型对象。
I (integer/long) [unsigned int] Convert a Cunsigned int to a Python integer object or a Python long integer

object, if it is larger than sys.maxint.
k (integer/long) [unsigned long] Convert a C unsigned long to a Python integer object or a Python long

integer object, if it is larger than sys.maxint.
L (long) [PY_LONG_LONG] Convert a C long long to a Python long integer object. Only available on

platforms that support long long.
K (long) [unsigned PY_LONG_LONG] Convert a C unsigned long long to a Python long integer ob-

ject. Only available on platforms that support unsigned long long.
n (int) [Py_ssize_t] Convert a C Py_ssize_t to a Python integer or long integer.

2.5新版功能.
c (string of length 1) [char] Convert a C int representing a character to a Python string of length 1.
d (float) [double] 将一个 C double双精度浮点数转化为 Python浮点数类型数字。
f (float) [float] Same as d.
D (complex) [Py_complex *] 将一个 C Py_complex类型的结构转化为 Python复数类型。
O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented by

one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception. Therefore, Py_BuildValue() will return NULL but
won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] 和 “O“相同。
N (object) [PyObject *] Same as O, except it doesn’t increment the reference count on the object. Useful when

the object is created by a call to an object constructor in the argument list.
O& (object) [converter, anything] Convert anything to a Python object through a converter function. The function

is called with anything (which should be compatible with void *) as its argument and should return a“new”
Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] 将一个 C变量序列转换成 Python元组并保持相同的元素数量
[items] (list) [matching-items] 将一个 C变量序列转换成 Python列表并保持相同的元素数量
{items} (dictionary) [matching-items] 将一个 C变量序列转换成 Python字典。每一对连续的 C变量对

作为一个元素插入字典中，分别作为关键字和值。

If there is an error in the format string, the SystemError exception is set and NULL returned.

36 Chapter 5. 工具

The Python/C API,发布 2.7.18

PyObject* Py_VaBuildValue(const char *format, va_list vargs)
和Py_BuildValue()相同，然而它接受一个 va_list类型的参数而不是可变数量的参数集。

5.7 字符串转换与格式化

用于数字转换和格式化字符串输出的函数

int PyOS_snprintf(char *str, size_t size, const char *format, ...)
根据格式字符串 format和额外参数，输出不超过 size字节到 str。请参见 Unix手册页 snprintf(2)。

int PyOS_vsnprintf(char *str, size_t size, const char *format, va_list va)
根据格式字符串 format 和变量参数列表 va ，不能输出超过 size 字节到 str 。请参见 Unix 手册页
vsnprintf(2)。

PyOS_snprintf() and PyOS_vsnprintf() wrap the Standard C library functions snprintf() and
vsnprintf(). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.
The wrappers ensure that str*[*size-1] is always '\0' upon return. They never write more than size bytes (including the
trailing '\0' into str. Both functions require that str != NULL, size > 0 and format != NULL.
If the platform doesn’t have vsnprintf() and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts with a Py_FatalError.
这些函数的返回值（rv）应按照以下规则被解释：

• 当 0 <= rv < size，输出转换成功而且 rv个字符被写入 str（不包含末尾 str*[*rv]的 '\0'字节）

• 当 rv >= size ，输出转换被截断并且成功需要一个带有 rv + 1 字节的缓冲区。在这种情况下，
str*[*size-1]的值是 '\0'。

• 当 rv < 0，会发生一些不好的事情。在这种情况下，str*[*size-1]的值也是 '\0'，但是 str的其余部
分未被定义。错误的确切原因取决于底层平台。

以下函数提供与语言环境无关的字符串到数字转换。

double PyOS_string_to_double(const char *s, char **endptr, PyObject *overflow_exception)
将字符串 s转换为 double类型，失败时引发 Python异常。接受的字符串的集合对应于被 Python的
float()构造函数接受的字符串的集合，除了 s必须没有前导或尾随空格。转换必须独立于当前的区
域。

If endptr is NULL, convert the whole string. Raise ValueError and return -1.0 if the string is not a valid
representation of a floating-point number.
如果 endptr 不是 NULL ，尽可能多的转换字符串并将 *endptr 设置为指向第一个未转换的字符。
如果字符串的初始段不是浮点数的有效的表达方式，将 * endptr设置为指向字符串的开头，引发
ValueError异常，并且返回 -1.0。

如果 s表示一个太大而不能存储在一个浮点数中的值（比方说，"1e500"在许多平台上是一个字符
串）然后如果 overflow_exception是 NULL返回 Py_HUGE_VAL（用适当的符号）并且不设置任
何异常。在其他方面，overflow_exception必须指向一个 Python异常对象；引发异常并返回 -1.0
。在这两种情况下，设置 *endptr指向转换值之后的第一个字符。

如果在转换期间发生任何其他错误（比如一个内存不足的错误），设置适当的 Python 异常并且返回
-1.0。

2.7新版功能.
double PyOS_ascii_strtod(const char *nptr, char **endptr)

Convert a string to a double. This function behaves like the Standard C function strtod() does in the C locale.
It does this without changing the current locale, since that would not be thread-safe.

5.7. 字符串转换与格式化 37

The Python/C API,发布 2.7.18

PyOS_ascii_strtod() should typically be used for reading configuration files or other non-user input that
should be locale independent.
See the Unix man page strtod(2) for details.
2.4新版功能.
2.7版后已移除: Use PyOS_string_to_double() instead.

char* PyOS_ascii_formatd(char *buffer, size_t buf_len, const char *format, double d)
Convert a double to a string using the '.' as the decimal separator. format is a printf()-style format string
specifying the number format. Allowed conversion characters are 'e', 'E', 'f', 'F', 'g' and 'G'.
The return value is a pointer to buffer with the converted string or NULL if the conversion failed.
2.4新版功能.
2.7版后已移除: This function is removed in Python 2.7 and 3.1. Use PyOS_double_to_string() instead.

char* PyOS_double_to_string(double val, char format_code, int precision, int flags, int *ptype)
转换 double val为一个使用 format_code，precision和 flags的字符串

format_code must be one of 'e', 'E', 'f', 'F', 'g', 'G' or 'r'. For 'r', the supplied precision must be 0
and is ignored. The 'r' format code specifies the standard repr() format.
flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed to-
gether:

• Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-negative.
• Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.
• Py_DTSF_ALT means to apply “alternate”formatting rules. See the documentation for the
PyOS_snprintf() '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE, Py_DTST_INFINITE, or
Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.
The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem_Free().
2.7新版功能.

double PyOS_ascii_atof(const char *nptr)
Convert a string to a double in a locale-independent way.
See the Unix man page atof(2) for details.
2.4新版功能.
3.1版后已移除: Use PyOS_string_to_double() instead.

char* PyOS_stricmp(char *s1, char *s2)
字符串不区分大小写。该函数几乎与 strcmp()的工作方式相同，只是它忽略了大小写。

2.6新版功能.
char* PyOS_strnicmp(char *s1, char *s2, Py_ssize_t size)

字符串不区分大小写。该函数几乎与 strncmp()的工作方式相同，只是它忽略了大小写。

2.6新版功能.

38 Chapter 5. 工具

The Python/C API,发布 2.7.18

5.8 反射

PyObject* PyEval_GetBuiltins()
Return value: Borrowed reference. 返回当前执行帧中内置函数的字典，如果当前没有帧正在执行，则返回
线程状态的解释器。

PyObject* PyEval_GetLocals()
Return value: Borrowed reference. Return a dictionary of the local variables in the current execution frame, or
NULL if no frame is currently executing.

PyObject* PyEval_GetGlobals()
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution frame, or
NULL if no frame is currently executing.

PyFrameObject* PyEval_GetFrame()
Return value: Borrowed reference. Return the current thread state’s frame, which is NULL if no frame is currently
executing.

int PyFrame_GetLineNumber(PyFrameObject *frame)
返回 frame当前正在执行的行号。

int PyEval_GetRestricted()
If there is a current frame and it is executing in restricted mode, return true, otherwise false.

const char* PyEval_GetFuncName(PyObject *func)
如果 func是函数、类或实例对象，则返回它的名称，否则返回 func的类型的名称。

const char* PyEval_GetFuncDesc(PyObject *func)
根据 func的类型返回描述字符串。返回值包括函数和方法的“()”,”constructor”,”instance”和”object”。
与PyEval_GetFuncName()的结果连接，结果将是 func的描述。

5.9 编解码器注册与支持功能

int PyCodec_Register(PyObject *search_function)
注册一个新的编解码器搜索函数。

作为副作用，其尝试加载 encodings包，如果尚未完成，请确保它始终位于搜索函数列表的第一位。

int PyCodec_KnownEncoding(const char *encoding)
Return 1 or 0 depending on whether there is a registered codec for the given encoding.

PyObject* PyCodec_Encode(PyObject *object, const char *encoding, const char *errors)
泛型编解码器基本编码 API。
object is passed through the encoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

PyObject* PyCodec_Decode(PyObject *object, const char *encoding, const char *errors)
泛型编解码器基本解码 API。
object is passed through the decoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

5.8. 反射 39

The Python/C API,发布 2.7.18

5.9.1 Codec查找 API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes encodings
looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set and NULL
returned.
PyObject* PyCodec_Encoder(const char *encoding)

Get an encoder function for the given encoding.
PyObject* PyCodec_Decoder(const char *encoding)

Get a decoder function for the given encoding.
PyObject* PyCodec_IncrementalEncoder(const char *encoding, const char *errors)

Get an IncrementalEncoder object for the given encoding.
PyObject* PyCodec_IncrementalDecoder(const char *encoding, const char *errors)

Get an IncrementalDecoder object for the given encoding.
PyObject* PyCodec_StreamReader(const char *encoding, PyObject *stream, const char *errors)

Get a StreamReader factory function for the given encoding.
PyObject* PyCodec_StreamWriter(const char *encoding, PyObject *stream, const char *errors)

为给定的 encoding获取一个 StreamWriter工厂函数。

5.9.2 用于 Unicode编码错误处理程序的注册表 API

int PyCodec_RegisterError(const char *name, PyObject *error)
Register the error handling callback function error under the given name. This callback function will be called by a
codec when it encounters unencodable characters/undecodable bytes and name is specified as the error parameter
in the call to the encode/decode function.
The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes and
their offset in the original string (see Unicode Exception Objects for functions to extract this information). The call-
back must either raise the given exception, or return a two-item tuple containing the replacement for the problematic
sequence, and an integer giving the offset in the original string at which encoding/decoding should be resumed.
成功则返回 “0“，失败则返回 “-1“

PyObject* PyCodec_LookupError(const char *name)
Lookup the error handling callback function registered under name. As a special case NULL can be passed, in
which case the error handling callback for“strict”will be returned.

PyObject* PyCodec_StrictErrors(PyObject *exc)
Raise exc as an exception.

PyObject* PyCodec_IgnoreErrors(PyObject *exc)
Ignore the unicode error, skipping the faulty input.

PyObject* PyCodec_ReplaceErrors(PyObject *exc)
Replace the unicode encode error with ? or U+FFFD.

PyObject* PyCodec_XMLCharRefReplaceErrors(PyObject *exc)
Replace the unicode encode error with XML character references.

PyObject* PyCodec_BackslashReplaceErrors(PyObject *exc)
Replace the unicode encode error with backslash escapes (\x, \u and \U).

40 Chapter 5. 工具

CHAPTER6

抽象对象层

本章中的函数与 Python对象交互，无论其类型，或具有广泛类的对象类型（例如，所有数值类型，或所有序
列类型）。当使用对象类型并不适用时，他们会产生一个 Python异常。
这些函数是不可能用于未正确初始化的对象的，如一个列表对象被PyList_New()创建，但其中的项目没
有被设置为一些非 “NULL“的值。

6.1 对象协议

int PyObject_Print(PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the str() of the object is written instead of
the repr().

int PyObject_HasAttr(PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name). This function always succeeds.

int PyObject_HasAttrString(PyObject *o, const char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name). This function always succeeds.

PyObject* PyObject_GetAttr(PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString(PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr(PyObject *o, PyObject *name)
Generic attribute getter function that is meant to be put into a type object’s tp_getattro slot. It looks for a
descriptor in the dictionary of classes in the object’s MRO as well as an attribute in the object’s __dict__

41

The Python/C API,发布 2.7.18

(if present). As outlined in descriptors, data descriptors take preference over instance attributes, while non-data
descriptors don’t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr(PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return -1 on
failure; return 0 on success. This is the equivalent of the Python statement o.attr_name = v.
If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttr().

int PyObject_SetAttrString(PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return -1 on
failure; return 0 on success. This is the equivalent of the Python statement o.attr_name = v.
If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr(PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object’s tp_setattro slot. It
looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found it takes preference over
setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the object’s
__dict__ (if present). On success, 0 is returned, otherwise an AttributeError is raised and -1 is returned.

int PyObject_DelAttr(PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object o. Returns-1 on failure. This is the equivalent of the Python statement
del o.attr_name.

int PyObject_DelAttrString(PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object o. Returns-1 on failure. This is the equivalent of the Python statement
del o.attr_name.

PyObject* PyObject_RichCompare(PyObject *o1, PyObject *o2, int opid)
Return value: New reference. Compare the values of o1 and o2 using the operation specified by opid, which must
be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >=
respectively. This is the equivalent of the Python expression o1 op o2, where op is the operator corresponding
to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool(PyObject *o1, PyObject *o2, int opid)
Compare the values of o1 and o2 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >= respectively. Returns -1 on error,
0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op o2, where op is the
operator corresponding to opid.

注解: If o1 and o2 are the same object, PyObject_RichCompareBool() will always return 1 for Py_EQ and 0
for Py_NE.

int PyObject_Cmp(PyObject *o1, PyObject *o2, int *result)
Compare the values of o1 and o2 using a routine provided by o1, if one exists, otherwise with a routine provided by
o2. The result of the comparison is returned in result. Returns -1 on failure. This is the equivalent of the Python
statement result = cmp(o1, o2).

int PyObject_Compare(PyObject *o1, PyObject *o2)
Compare the values of o1 and o2 using a routine provided by o1, if one exists, otherwise with a routine pro-
vided by o2. Returns the result of the comparison on success. On error, the value returned is undefined; use
PyErr_Occurred() to detect an error. This is equivalent to the Python expression cmp(o1, o2).

PyObject* PyObject_Repr(PyObject *o)
Return value: New reference. Compute a string representation of object o. Returns the string representation on

42 Chapter 6. 抽象对象层

The Python/C API,发布 2.7.18

success, NULL on failure. This is the equivalent of the Python expression repr(o). Called by the repr()
built-in function and by reverse quotes.

PyObject* PyObject_Str(PyObject *o)
Return value: New reference. Compute a string representation of object o. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression str(o). Called by the str() built-in
function and by the print statement.

PyObject* PyObject_Bytes(PyObject *o)
Compute a bytes representation of object o. In 2.x, this is just an alias for PyObject_Str().

PyObject* PyObject_Unicode(PyObject *o)
Return value: New reference. Compute a Unicode string representation of object o. Returns the Unicode string
representation on success, NULL on failure. This is the equivalent of the Python expression unicode(o). Called
by the unicode() built-in function.

int PyObject_IsInstance(PyObject *inst, PyObject *cls)
Returns 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns -1 and sets an
exception. If cls is a type object rather than a class object, PyObject_IsInstance() returns 1 if inst is of
type cls. If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of
the checks returns 1, otherwise it will be 0. If inst is not a class instance and cls is neither a type object, nor a class
object, nor a tuple, inst must have a __class__ attribute—the class relationship of the value of that attribute
with cls will be used to determine the result of this function.
2.1新版功能.
在 2.2版更改: Support for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of extensions to
the class system may want to be aware of. If A and B are class objects, B is a subclass of A if it inherits from A either
directly or indirectly. If either is not a class object, a more general mechanism is used to determine the class relationship
of the two objects. When testing if B is a subclass of A, if A is B, PyObject_IsSubclass() returns true. If A
and B are different objects, B’s __bases__ attribute is searched in a depth-first fashion for A—the presence of the
__bases__ attribute is considered sufficient for this determination.
int PyObject_IsSubclass(PyObject *derived, PyObject *cls)

Returns 1 if the class derived is identical to or derived from the class cls, otherwise returns 0. In case of an error,
returns -1. If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one
of the checks returns 1, otherwise it will be 0. If either derived or cls is not an actual class object (or tuple), this
function uses the generic algorithm described above.
2.1新版功能.
在 2.3版更改: Older versions of Python did not support a tuple as the second argument.

int PyCallable_Check(PyObject *o)
Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This function always
succeeds.

PyObject* PyObject_Call(PyObject *callable_object, PyObject *args, PyObject *kw)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tuple args,
and named arguments given by the dictionary kw. If no named arguments are needed, kw may be NULL. args
must not be NULL, use an empty tuple if no arguments are needed. Returns the result of the call on success, or
NULL on failure. This is the equivalent of the Python expression apply(callable_object, args, kw)
or callable_object(*args, **kw).
2.2新版功能.

PyObject* PyObject_CallObject(PyObject *callable_object, PyObject *args)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tu-
ple args. If no arguments are needed, then args may be NULL. Returns the result of the call on success, or

6.1. 对象协议 43

The Python/C API,发布 2.7.18

NULL on failure. This is the equivalent of the Python expression apply(callable_object, args) or
callable_object(*args).

PyObject* PyObject_CallFunction(PyObject *callable, char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments. The C
arguments are described using a Py_BuildValue() style format string. The format may be NULL, indicating
that no arguments are provided. Returns the result of the call on success, or NULL on failure. This is the equivalent
of the Python expression apply(callable, args) or callable(*args). Note that if you only pass
PyObject * args, PyObject_CallFunctionObjArgs() is a faster alternative.

PyObject* PyObject_CallMethod(PyObject *o, char *method, char *format, ...)
Return value: New reference. Call the method named method of object o with a variable number of C arguments.
The C arguments are described by a Py_BuildValue() format string that should produce a tuple. The format
may beNULL, indicating that no arguments are provided. Returns the result of the call on success, orNULL on fail-
ure. This is the equivalent of the Python expression o.method(args). Note that if you only pass PyObject
* args, PyObject_CallMethodObjArgs() is a faster alternative.

PyObject* PyObject_CallFunctionObjArgs(PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyObject*
arguments. The arguments are provided as a variable number of parameters followed by NULL. Returns the result
of the call on success, or NULL on failure.
2.2新版功能.

PyObject* PyObject_CallMethodObjArgs(PyObject *o, PyObject *name, ..., NULL)
Return value: New reference. Calls a method of the object o, where the name of the method is given as a Python
string object in name. It is called with a variable number of PyObject* arguments. The arguments are provided
as a variable number of parameters followed byNULL. Returns the result of the call on success, orNULL on failure.
2.2新版功能.

long PyObject_Hash(PyObject *o)
Compute and return the hash value of an object o. On failure, return -1. This is the equivalent of the Python
expression hash(o).

long PyObject_HashNotImplemented(PyObject *o)
Set aTypeError indicating thattype(o) is not hashable and return-1. This function receives special treatment
when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not hashable.
2.6新版功能.

int PyObject_IsTrue(PyObject *o)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression not
not o. On failure, return -1.

int PyObject_Not(PyObject *o)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression not
o. On failure, return -1.

PyObject* PyObject_Type(PyObject *o)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type of object
o. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression type(o).
This function increments the reference count of the return value. There’s really no reason to use this function
instead of the common expression o->ob_type, which returns a pointer of type PyTypeObject*, except
when the incremented reference count is needed.

int PyObject_TypeCheck(PyObject *o, PyTypeObject *type)
Return true if the object o is of type type or a subtype of type. Both parameters must be non-NULL.
2.2新版功能.

44 Chapter 6. 抽象对象层

The Python/C API,发布 2.7.18

Py_ssize_t PyObject_Length(PyObject *o)
Py_ssize_t PyObject_Size(PyObject *o)

Return the length of object o. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, -1 is returned. This is the equivalent to the Python expression len(o).
在 2.5 版更改: These functions returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyObject_GetItem(PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is the
equivalent of the Python expression o[key].

int PyObject_SetItem(PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return -1 on failure; return 0 on success. This is the
equivalent of the Python statement o[key] = v.

int PyObject_DelItem(PyObject *o, PyObject *key)
Delete the mapping for key from o. Returns -1 on failure. This is the equivalent of the Python statement del
o[key].

int PyObject_AsFileDescriptor(PyObject *o)
Derives a file descriptor from a Python object. If the object is an integer or long integer, its value is returned. If
not, the object’s fileno()method is called if it exists; the method must return an integer or long integer, which
is returned as the file descriptor value. Returns -1 on failure.

PyObject* PyObject_Dir(PyObject *o)
Return value: New reference. This is equivalent to the Python expression dir(o), returning a (possibly empty)
list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL, this is
like the Python dir(), returning the names of the current locals; in this case, if no execution frame is active then
NULL is returned but PyErr_Occurred() will return false.

PyObject* PyObject_GetIter(PyObject *o)
Return value: New reference. This is equivalent to the Python expression iter(o). It returns a new iterator for
the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns NULL
if the object cannot be iterated.

6.2 数字协议

int PyNumber_Check(PyObject *o)
如果对象 o提供数字的协议，返回真 1，否则返回假。这个函数不会调用失败。

PyObject* PyNumber_Add(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of adding o1 and o2, or NULL on failure. This is the equivalent of
the Python expression o1 + o2.

PyObject* PyNumber_Subtract(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of subtracting o2 from o1, orNULL on failure. This is the equivalent
of the Python expression o1 - o2.

PyObject* PyNumber_Multiply(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of multiplying o1 and o2, orNULL on failure. This is the equivalent
of the Python expression o1 * o2.

PyObject* PyNumber_Divide(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of dividing o1 by o2, or NULL on failure. This is the equivalent of
the Python expression o1 / o2.

6.2. 数字协议 45

The Python/C API,发布 2.7.18

PyObject* PyNumber_FloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Return the floor of o1 divided by o2, or NULL on failure. This is equivalent to the
“classic”division of integers.

2.2新版功能.
PyObject* PyNumber_TrueDivide(PyObject *o1, PyObject *o2)

Return value: New reference. Return a reasonable approximation for the mathematical value of o1 divided by o2,
or NULL on failure. The return value is“approximate”because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers.
2.2新版功能.

PyObject* PyNumber_Remainder(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the remainder of dividing o1 by o2, orNULL on failure. This is the equivalent
of the Python expression o1 % o2.

PyObject* PyNumber_Divmod(PyObject *o1, PyObject *o2)
Return value: New reference. See the built-in function divmod(). ReturnsNULL on failure. This is the equivalent
of the Python expression divmod(o1, o2).

PyObject* PyNumber_Power(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference. See the built-in function pow(). Returns NULL on failure. This is the equivalent of
the Python expression pow(o1, o2, o3), where o3 is optional. If o3 is to be ignored, pass Py_None in its
place (passing NULL for o3 would cause an illegal memory access).

PyObject* PyNumber_Negative(PyObject *o)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent of
the Python expression -o.

PyObject* PyNumber_Positive(PyObject *o)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python
expression +o.

PyObject* PyNumber_Absolute(PyObject *o)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs(o).

PyObject* PyNumber_Invert(PyObject *o)
Return value: New reference. Returns the bitwise negation of o on success, orNULL on failure. This is the equivalent
of the Python expression ~o.

PyObject* PyNumber_Lshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of left shifting o1 by o2 on success, or NULL on failure. This is the
equivalent of the Python expression o1 << o2.

PyObject* PyNumber_Rshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of right shifting o1 by o2 on success, or NULL on failure. This is
the equivalent of the Python expression o1 >> o2.

PyObject* PyNumber_And(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the“bitwise and”of o1 and o2 on success and NULL on failure. This is the
equivalent of the Python expression o1 & o2.

PyObject* PyNumber_Xor(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the“bitwise exclusive or”of o1 by o2 on success, or NULL on failure. This
is the equivalent of the Python expression o1 ^ o2.

PyObject* PyNumber_Or(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the“bitwise or”of o1 and o2 on success, or NULL on failure. This is the

46 Chapter 6. 抽象对象层

The Python/C API,发布 2.7.18

equivalent of the Python expression o1 | o2.
PyObject* PyNumber_InPlaceAdd(PyObject *o1, PyObject *o2)

Return value: New reference. Returns the result of adding o1 and o2, or NULL on failure. The operation is done
in-place when o1 supports it. This is the equivalent of the Python statement o1 += o2.

PyObject* PyNumber_InPlaceSubtract(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of subtracting o2 from o1, or NULL on failure. The operation is
done in-place when o1 supports it. This is the equivalent of the Python statement o1 -= o2.

PyObject* PyNumber_InPlaceMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of multiplying o1 and o2, or NULL on failure. The operation is
done in-place when o1 supports it. This is the equivalent of the Python statement o1 *= o2.

PyObject* PyNumber_InPlaceDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of dividing o1 by o2, or NULL on failure. The operation is done
in-place when o1 supports it. This is the equivalent of the Python statement o1 /= o2.

PyObject* PyNumber_InPlaceFloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the mathematical floor of dividing o1 by o2, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 //= o2.
2.2新版功能.

PyObject* PyNumber_InPlaceTrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Return a reasonable approximation for the mathematical value of o1 divided by o2,
or NULL on failure. The return value is“approximate”because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers. The operation is done in-place when o1 supports it.
2.2新版功能.

PyObject* PyNumber_InPlaceRemainder(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the remainder of dividing o1 by o2, or NULL on failure. The operation is
done in-place when o1 supports it. This is the equivalent of the Python statement o1 %= o2.

PyObject* PyNumber_InPlacePower(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference. See the built-in function pow(). Returns NULL on failure. The operation is done
in-placewhen o1 supports it. This is the equivalent of the Python statement o1 **= o2when o3 is Py_None, or
an in-place variant of pow(o1, o2, o3) otherwise. If o3 is to be ignored, pass Py_None in its place (passing
NULL for o3 would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of left shifting o1 by o2 on success, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 <<= o2.

PyObject* PyNumber_InPlaceRshift(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the result of right shifting o1 by o2 on success, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 >>= o2.

PyObject* PyNumber_InPlaceAnd(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the “bitwise and”of o1 and o2 on success and NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 &= o2.

PyObject* PyNumber_InPlaceXor(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the“bitwise exclusive or”of o1 by o2 on success, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 ^= o2.

PyObject* PyNumber_InPlaceOr(PyObject *o1, PyObject *o2)
Return value: New reference. Returns the“bitwise or”of o1 and o2 on success, or NULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python statement o1 |= o2.

6.2. 数字协议 47

The Python/C API,发布 2.7.18

int PyNumber_Coerce(PyObject **p1, PyObject **p2)
This function takes the addresses of two variables of type PyObject*. If the objects pointed to by *p1 and
*p2 have the same type, increment their reference count and return 0 (success). If the objects can be converted
to a common numeric type, replace *p1 and *p2 by their converted value (with‘new’reference counts), and
return 0. If no conversion is possible, or if some other error occurs, return -1 (failure) and don’t increment the
reference counts. The call PyNumber_Coerce(&o1, &o2) is equivalent to the Python statement o1, o2
= coerce(o1, o2).

int PyNumber_CoerceEx(PyObject **p1, PyObject **p2)
This function is similar to PyNumber_Coerce(), except that it returns 1 when the conversion is not possible
and when no error is raised. Reference counts are still not increased in this case.

PyObject* PyNumber_Int(PyObject *o)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. If the
argument is outside the integer range a long object will be returned instead. This is the equivalent of the Python
expression int(o).

PyObject* PyNumber_Long(PyObject *o)
Return value: New reference. Returns the o converted to a long integer object on success, or NULL on failure. This
is the equivalent of the Python expression long(o).

PyObject* PyNumber_Float(PyObject *o)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is the
equivalent of the Python expression float(o).

PyObject* PyNumber_Index(PyObject *o)
Returns the o converted to a Python int or long on success orNULLwith a TypeError exception raised on failure.
2.5新版功能.

PyObject* PyNumber_ToBase(PyObject *n, int base)
Returns the integer n converted to base as a string with a base marker of '0b', '0o', or '0x' if applicable.
When base is not 2, 8, 10, or 16, the format is 'x#num'where x is the base. If n is not an int object, it is converted
with PyNumber_Index() first.
2.6新版功能.

Py_ssize_t PyNumber_AsSsize_t(PyObject *o, PyObject *exc)
Returns o converted to a Py_ssize_t value if o can be interpreted as an integer. If o can be converted to a Python int
or long but the attempt to convert to a Py_ssize_t value would raise an OverflowError, then the exc argument
is the type of exception that will be raised (usually IndexError or OverflowError). If exc is NULL, then
the exception is cleared and the value is clipped to PY_SSIZE_T_MIN for a negative integer or PY_SSIZE_T_MAX
for a positive integer.
2.5新版功能.

int PyIndex_Check(PyObject *o)
Returns 1 if o is an index integer (has the nb_index slot of the tp_as_number structure filled in), and 0 otherwise.
2.5新版功能.

48 Chapter 6. 抽象对象层

The Python/C API,发布 2.7.18

6.3 序列协议

int PySequence_Check(PyObject *o)
Return 1 if the object provides sequence protocol, and 0 otherwise. This function always succeeds.

Py_ssize_t PySequence_Size(PyObject *o)
Py_ssize_t PySequence_Length(PyObject *o)

成功时返回序列中 *o*的对象数,失败时返回 “-1“. 相当于 Python的 “len(o)“表达式.
在 2.5 版更改: These functions returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PySequence_Concat(PyObject *o1, PyObject *o2)
Return value: New reference. Return the concatenation of o1 and o2 on success, and NULL on failure. This is the
equivalent of the Python expression o1 + o2.

PyObject* PySequence_Repeat(PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
This is the equivalent of the Python expression o * count.
在 2.5版更改: This function used an int type for count. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PySequence_InPlaceConcat(PyObject *o1, PyObject *o2)
Return value: New reference. Return the concatenation of o1 and o2 on success, andNULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python expression o1 += o2.

PyObject* PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
The operation is done in-place when o supports it. This is the equivalent of the Python expression o *= count.
在 2.5版更改: This function used an int type for count. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PySequence_GetItem(PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent of the Python
expression o[i].
在 2.5 版更改: This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PySequence_GetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Return value: New reference. Return the slice of sequence object o between i1 and i2, or NULL on failure. This is
the equivalent of the Python expression o[i1:i2].
在 2.5版更改: This function used an int type for i1 and i2. This might require changes in your code for properly
supporting 64-bit systems.

int PySequence_SetItem(PyObject *o, Py_ssize_t i, PyObject *v)
将对象 v赋值给 o的第 i号元素。失败时会引发异常并返回 -1；成功时返回 0。这相当于 Python语句
o[i] = v。此函数不会改变对 v的引用。

If v is NULL, the element is deleted, however this feature is deprecated in favour of using
PySequence_DelItem().
在 2.5 版更改: This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

int PySequence_DelItem(PyObject *o, Py_ssize_t i)
删除对象 o的第 i号元素。失败时返回 -1。这相当于 Python语句 del o[i]。

6.3. 序列协议 49

The Python/C API,发布 2.7.18

在 2.5 版更改: This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

int PySequence_SetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2, PyObject *v)
Assign the sequence object v to the slice in sequence object o from i1 to i2. Raise an exception and return -1 on
failure; return 0 on success. This is the equivalent of the Python statement o[i1:i2] = v.
If v is NULL, the slice is deleted, however this feature is deprecated in favour of using
PySequence_DelSlice().
在 2.5版更改: This function used an int type for i1 and i2. This might require changes in your code for properly
supporting 64-bit systems.

int PySequence_DelSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
删除序列对象 o的从 i1到 i2的切片。失败时返回 -1。这相当于 Python语句 del o[i1:i2]。

在 2.5版更改: This function used an int type for i1 and i2. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PySequence_Count(PyObject *o, PyObject *value)
返回 value在 o中出现的次数，即返回使得 o[key] == value的键的数量。失败时返回 -1。这相当
于 Python表达式 o.count(value)。

在 2.5版更改: This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

int PySequence_Contains(PyObject *o, PyObject *value)
确定 o是否包含 value。如果 o中的某一项等于 value，则返回 1，否则返回 0。出错时，返回 -1。这相
当于 Python表达式 value in o。

Py_ssize_t PySequence_Index(PyObject *o, PyObject *value)
返回第一个索引 *i*,其中 o[i] == value.出错时,返回 -1.相当于 Python的 “o.index(value)“表达式.
在 2.5版更改: This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

PyObject* PySequence_List(PyObject *o)
Return value: New reference. Return a list object with the same contents as the arbitrary sequence o. The returned
list is guaranteed to be new.

PyObject* PySequence_Tuple(PyObject *o)
Return value: New reference. Return a tuple object with the same contents as the arbitrary sequence o or NULL on
failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with the appropriate
contents. This is equivalent to the Python expression tuple(o).

PyObject* PySequence_Fast(PyObject *o, const char *m)
Return value: New reference. Return the sequence o as a list, unless it is already a tuple or list, in which case o
is returned. Use PySequence_Fast_GET_ITEM() to access the members of the result. Returns NULL on
failure. If the object is not a sequence, raises TypeError with m as the message text.

PyObject* PySequence_Fast_GET_ITEM(PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. Return the ith element of o, assuming that o was returned by
PySequence_Fast(), o is not NULL, and that i is within bounds.
在 2.5 版更改: This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

PyObject** PySequence_Fast_ITEMS(PyObject *o)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast() and
o is not NULL.

50 Chapter 6. 抽象对象层

The Python/C API,发布 2.7.18

请注意,如果列表调整大小,重新分配可能会重新定位 items数组.因此,仅在序列无法更改的上下文中
使用基础数组指针.
2.4新版功能.

PyObject* PySequence_ITEM(PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. Macro form of
PySequence_GetItem() but without checking that PySequence_Check() on o is true and without ad-
justment for negative indices.
2.3新版功能.
在 2.5 版更改: This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PySequence_Fast_GET_SIZE(PyObject *o)
Returns the length of o, assuming that o was returned by PySequence_Fast() and that o is not NULL. The
size can also be gotten by calling PySequence_Size() on o, but PySequence_Fast_GET_SIZE() is
faster because it can assume o is a list or tuple.

6.4 映射协议

int PyMapping_Check(PyObject *o)
Return 1 if the object provides mapping protocol, and 0 otherwise. This function always succeeds.

Py_ssize_t PyMapping_Size(PyObject *o)
Py_ssize_t PyMapping_Length(PyObject *o)

Returns the number of keys in object o on success, and -1 on failure. For objects that do not provide mapping
protocol, this is equivalent to the Python expression len(o).
在 2.5 版更改: These functions returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

int PyMapping_DelItemString(PyObject *o, char *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to the Python
statement del o[key].

int PyMapping_DelItem(PyObject *o, PyObject *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to the Python
statement del o[key].

int PyMapping_HasKeyString(PyObject *o, char *key)
On success, return1 if the mapping object has the key key and0 otherwise. This is equivalent too[key], returning
True on success and False on an exception. This function always succeeds.

int PyMapping_HasKey(PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to o[key], returning True
on success and False on an exception. This function always succeeds.

PyObject* PyMapping_Keys(PyObject *o)
Return value: New reference. On success, return a list of the keys in object o. On failure, return NULL. This is
equivalent to the Python expression o.keys().

PyObject* PyMapping_Values(PyObject *o)
Return value: New reference. On success, return a list of the values in object o. On failure, return NULL. This is
equivalent to the Python expression o.values().

6.4. 映射协议 51

The Python/C API,发布 2.7.18

PyObject* PyMapping_Items(PyObject *o)
Return value: New reference. On success, return a list of the items in object o, where each item is a tuple containing
a key-value pair. On failure, return NULL. This is equivalent to the Python expression o.items().

PyObject* PyMapping_GetItemString(PyObject *o, char *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is the
equivalent of the Python expression o[key].

int PyMapping_SetItemString(PyObject *o, char *key, PyObject *v)
Map the object key to the value v in object o. Returns -1 on failure. This is the equivalent of the Python statement
o[key] = v.

6.5 迭代器协议

2.2新版功能.
迭代器有两个函数。

int PyIter_Check(PyObject *o)
返回 true，如果对象 o支持迭代器协议的话。

This function can return a false positive in the case of old-style classes because those classes always define a
tp_iternext slot with logic that either invokes a next() method or raises a TypeError.

PyObject* PyIter_Next(PyObject *o)
Return value: New reference. Return the next value from the iteration o. The object must be an iterator (it is up to
the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error occurs
while retrieving the item, returns NULL and passes along the exception.

要为迭代器编写一个一个循环，C代码应该看起来像这样

PyObject *iterator = PyObject_GetIter(obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while ((item = PyIter_Next(iterator))) {
/* do something with item */
...
/* release reference when done */
Py_DECREF(item);

}

Py_DECREF(iterator);

if (PyErr_Occurred()) {
/* propagate error */

}
else {

/* continue doing useful work */
}

52 Chapter 6. 抽象对象层

The Python/C API,发布 2.7.18

6.6 旧缓冲协议

This section describes the legacy buffer protocol, which has been introduced in Python 1.6. It is still supported but
deprecated in the Python 2.x series. Python 3 introduces a new buffer protocol which fixes weaknesses and shortcomings
of the protocol, and has been backported to Python 2.6. See Buffers and Memoryview Objects for more information.
int PyObject_AsCharBuffer(PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)

返回一个可用作基于字符的输入的只读内存地址的指针。obj参数必须支持单段字符缓冲接口。成功时
返回 0，将 buffer设为内存地址并将 buffer_len设为缓冲区长度。出错时返回 -1并设置一个 TypeError。

1.6新版功能.
在 2.5 版更改: This function used an int * type for buffer_len. This might require changes in your code for
properly supporting 64-bit systems.

int PyObject_AsReadBuffer(PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
返回一个指向包含任意数据的只读内存地址的指针。obj参数必须支持单段可读缓冲接口。成功时返回
0，将 buffer设为内存地址并将 buffer_len设为缓冲区长度。出错时返回 -1并设置一个 TypeError。

1.6新版功能.
在 2.5 版更改: This function used an int * type for buffer_len. This might require changes in your code for
properly supporting 64-bit systems.

int PyObject_CheckReadBuffer(PyObject *o)
Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns 0.
2.2新版功能.

int PyObject_AsWriteBuffer(PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a writeable memory location. The obj argument must support the single-segment, character
buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len to the buffer length.
Returns -1 and sets a TypeError on error.
1.6新版功能.
在 2.5 版更改: This function used an int * type for buffer_len. This might require changes in your code for
properly supporting 64-bit systems.

6.6. 旧缓冲协议 53

The Python/C API,发布 2.7.18

54 Chapter 6. 抽象对象层

CHAPTER7

具体的对象层

本章中的函数特定于某些 Python 对象类型。将错误类型的对象传递给它们并不是一个好主意；如果您从
Python程序接收到一个对象，但不确定它是否具有正确的类型，则必须首先执行类型检查；例如，要检查对
象是否为字典，请使用PyDict_Check()。本章的结构类似于 Python对象类型的“家族树”。

警告: While the functions described in this chapter carefully check the type of the objects which are passed in, many
of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can cause
memory access violations and immediate termination of the interpreter.

7.1 基本对象

本节描述 Python类型对象和单一实例对象象 None。

7.1.1 类型对象

PyTypeObject
对象的 C结构用于描述 built-in类型。

PyObject* PyType_Type
This is the type object for type objects; it is the same object as type and types.TypeType in the Python layer.

int PyType_Check(PyObject *o)
如果对象 o是一个类型对象，包括继承于标准类型对象的类型实例，返回真。在其它所有情况下返回
假。

int PyType_CheckExact(PyObject *o)
如果对象 o是一个类型对象，但不是标准类型对象的子类型时，返回真。在其它所有情况下返回假。

2.2新版功能.

55

The Python/C API,发布 2.7.18

unsigned int PyType_ClearCache()
Clear the internal lookup cache. Return the current version tag.
2.6新版功能.

void PyType_Modified(PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type.
2.6新版功能.

int PyType_HasFeature(PyObject *o, int feature)
Return true if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC(PyObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py_TPFLAGS_HAVE_GC.
2.0新版功能.

int PyType_IsSubtype(PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.
2.2新版功能.
This function only checks for actual subtypes, which means that __subclasscheck__() is not called on b.
Call PyObject_IsSubclass() to do the same check that issubclass() would do.

PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. 2.2新版功能.
在 2.5版更改: This function used an int type for nitems. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyType_GenericNew(PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. 2.2新版功能.

int PyType_Ready(PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. Return 0 on success, or return -1 and sets an
exception on error.
2.2新版功能.

7.1.2 None对象

请注意，None的PyTypeObject不会直接在 Python / C API中公开。由于 None是单例，测试对象标识（在
C中使用 ==）就足够了。由于同样的原因，没有 PyNone_Check()函数。

PyObject* Py_None
Python None对象，表示缺乏值。这个对象没有方法。它需要像引用计数一样处理任何其他对象。

Py_RETURN_NONE
Properly handle returning Py_None from within a C function.
2.4新版功能.

56 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

7.2 数值对象

7.2.1 Plain Integer Objects

PyIntObject
This subtype of PyObject represents a Python integer object.

PyTypeObject PyInt_Type
This instance of PyTypeObject represents the Python plain integer type. This is the same object as int and
types.IntType.

int PyInt_Check(PyObject *o)
Return true if o is of type PyInt_Type or a subtype of PyInt_Type.
在 2.2版更改: Allowed subtypes to be accepted.

int PyInt_CheckExact(PyObject *o)
Return true if o is of type PyInt_Type, but not a subtype of PyInt_Type.
2.2新版功能.

PyObject* PyInt_FromString(char *str, char **pend, int base)
Return value: New reference. Return a new PyIntObject or PyLongObject based on the string value in str,
which is interpreted according to the radix in base. If pend is non-NULL, *pend will point to the first character in
str which follows the representation of the number. If base is 0, the radix will be determined based on the leading
characters of str: if str starts with '0x' or '0X', radix 16 will be used; if str starts with '0', radix 8 will be
used; otherwise radix 10 will be used. If base is not 0, it must be between 2 and 36, inclusive. Leading spaces
are ignored. If there are no digits, ValueError will be raised. If the string represents a number too large to be
contained within the machine’s long int type and overflow warnings are being suppressed, a PyLongObject
will be returned. If overflow warnings are not being suppressed, NULL will be returned in this case.

PyObject* PyInt_FromLong(long ival)
Return value: New reference. Create a new integer object with a value of ival.
The current implementation keeps an array of integer objects for all integers between -5 and 256, when you create
an int in that range you actually just get back a reference to the existing object. So it should be possible to change
the value of 1. I suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyInt_FromSsize_t(Py_ssize_t ival)
Return value: New reference. Create a new integer object with a value of ival. If the value is larger than LONG_MAX
or smaller than LONG_MIN, a long integer object is returned.
2.5新版功能.

PyObject* PyInt_FromSize_t(size_t ival)
Create a new integer object with a value of ival. If the value exceeds LONG_MAX, a long integer object is returned.
2.5新版功能.

long PyInt_AsLong(PyObject *io)
Will first attempt to cast the object to a PyIntObject, if it is not already one, and then return its value. If there
is an error, -1 is returned, and the caller should check PyErr_Occurred() to find out whether there was an
error, or whether the value just happened to be -1.

long PyInt_AS_LONG(PyObject *io)
Return the value of the object io. No error checking is performed.

unsigned long PyInt_AsUnsignedLongMask(PyObject *io)
Will first attempt to cast the object to a PyIntObject or PyLongObject, if it is not already one, and then
return its value as unsigned long. This function does not check for overflow.

7.2. 数值对象 57

The Python/C API,发布 2.7.18

2.3新版功能.
unsigned PY_LONG_LONG PyInt_AsUnsignedLongLongMask(PyObject *io)

Will first attempt to cast the object to a PyIntObject or PyLongObject, if it is not already one, and then
return its value as unsigned long long, without checking for overflow.
2.3新版功能.

Py_ssize_t PyInt_AsSsize_t(PyObject *io)
Will first attempt to cast the object to a PyIntObject or PyLongObject, if it is not already one, and then
return its value as Py_ssize_t.
2.5新版功能.

long PyInt_GetMax()
Return the system’s idea of the largest integer it can handle (LONG_MAX, as defined in the system header files).

int PyInt_ClearFreeList()
Clear the integer free list. Return the number of items that could not be freed.
2.6新版功能.

7.2.2 布尔对象

Python中的布尔值是作为整数的子类实现的。只有 Py_False和 Py_True两个布尔值。因此，正常的创建
和删除功能不适用于布尔值。但是，下列宏可用。

int PyBool_Check(PyObject *o)
如果 o是 PyBool_Type类型，则返回 true。
2.3新版功能.

PyObject* Py_False
Python的 “False“对象。该对象没有任何方法。它应该象其它使用引用计数管理的对象一样使用。

PyObject* Py_True
Python的 “True“对象。该对象没有任何方法。它应该象其它使用引用计数管理的对象一样使用。

Py_RETURN_FALSE
从函数返回 Py_False时，需要增加它的引用计数。

2.4新版功能.
Py_RETURN_TRUE

从函数返回 Py_True时，需要增加它的引用计数。

2.4新版功能.
PyObject* PyBool_FromLong(long v)

Return value: New reference. 根据 v的实际值，返回一个 Py_True或者 Py_False的新引用。

2.3新版功能.

58 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

7.2.3 Long Integer Objects

PyLongObject
This subtype of PyObject represents a Python long integer object.

PyTypeObject PyLong_Type
This instance of PyTypeObject represents the Python long integer type. This is the same object as long and
types.LongType.

int PyLong_Check(PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongObject.
在 2.2版更改: Allowed subtypes to be accepted.

int PyLong_CheckExact(PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongObject.
2.2新版功能.

PyObject* PyLong_FromLong(long v)
Return value: New reference. Return a new PyLongObject object from v, or NULL on failure.

PyObject* PyLong_FromUnsignedLong(unsigned long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long, or NULL on
failure.

PyObject* PyLong_FromSsize_t(Py_ssize_t v)
Return value: New reference. Return a new PyLongObject object from a C Py_ssize_t, or NULL on failure.
2.6新版功能.

PyObject* PyLong_FromSize_t(size_t v)
Return value: New reference. Return a new PyLongObject object from a C size_t, or NULL on failure.
2.6新版功能.

PyObject* PyLong_FromLongLong(PY_LONG_LONG v)
Return value: New reference. Return a new PyLongObject object from a C long long, or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong(unsigned PY_LONG_LONG v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long long, or
NULL on failure.

PyObject* PyLong_FromDouble(double v)
Return value: New reference. Return a new PyLongObject object from the integer part of v, orNULL on failure.

PyObject* PyLong_FromString(char *str, char **pend, int base)
Return value: New reference. Return a new PyLongObject based on the string value in str, which is interpreted
according to the radix in base. If pend is non-NULL, *pend will point to the first character in str which follows the
representation of the number. If base is 0, the radix will be determined based on the leading characters of str: if
str starts with '0x' or '0X', radix 16 will be used; if str starts with '0', radix 8 will be used; otherwise radix
10 will be used. If base is not 0, it must be between 2 and 36, inclusive. Leading spaces are ignored. If there are
no digits, ValueError will be raised.

PyObject* PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. Convert a sequence of Unicode digits to a Python long integer value. The first
parameter, u, points to the first character of the Unicode string, length gives the number of characters, and base is
the radix for the conversion. The radix must be in the range [2, 36]; if it is out of range, ValueError will be
raised.
1.6新版功能.

7.2. 数值对象 59

The Python/C API,发布 2.7.18

在 2.5 版更改: This function used an int for length. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyLong_FromVoidPtr(void *p)
Return value: New reference. Create a Python integer or long integer from the pointer p. The pointer value can be
retrieved from the resulting value using PyLong_AsVoidPtr().
1.5.2新版功能.
在 2.5版更改: If the integer is larger than LONG_MAX, a positive long integer is returned.

long PyLong_AsLong(PyObject *pylong)
Return a C long representation of the contents of pylong. If pylong is greater than LONG_MAX, an
OverflowError is raised and -1 will be returned.

long PyLong_AsLongAndOverflow(PyObject *pylong, int *overflow)
Return a C long representation of the contents of pylong. If pylong is greater than LONG_MAX or less than
LONG_MIN, set *overflow to 1 or -1, respectively, and return -1; otherwise, set *overflow to 0. If any other
exception occurs (for example a TypeError or MemoryError), then -1 will be returned and *overflow will be 0.
2.7新版功能.

PY_LONG_LONG PyLong_AsLongLongAndOverflow(PyObject *pylong, int *overflow)
Return a C long long representation of the contents of pylong. If pylong is greater than PY_LLONG_MAX or
less than PY_LLONG_MIN, set *overflow to 1 or -1, respectively, and return -1; otherwise, set *overflow to 0.
If any other exception occurs (for example a TypeError or MemoryError), then -1 will be returned and *overflow
will be 0.
2.7新版功能.

Py_ssize_t PyLong_AsSsize_t(PyObject *pylong)
Return a C Py_ssize_t representation of the contents of pylong. If pylong is greater than PY_SSIZE_T_MAX,
an OverflowError is raised and -1 will be returned.
2.6新版功能.

unsigned long PyLong_AsUnsignedLong(PyObject *pylong)
Return a C unsigned long representation of the contents of pylong. If pylong is greater than ULONG_MAX,
an OverflowError is raised.

PY_LONG_LONG PyLong_AsLongLong(PyObject *pylong)
Return a C long long from a Python long integer. If pylong cannot be represented as a long long, an
OverflowError is raised and -1 is returned.
2.2新版功能.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLong(PyObject *pylong)
Return a C unsigned long long from a Python long integer. If pylong cannot be represented as an
unsigned long long, an OverflowError is raised and (unsigned long long)-1 is returned.
2.2新版功能.
在 2.7版更改: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask(PyObject *io)
Return a C unsigned long from a Python long integer, without checking for overflow.
Returns (unsigned long)-1 on error. Use PyErr_Occurred() to disambiguate.
2.3新版功能.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLongMask(PyObject *io)
Return a C unsigned long long from a Python long integer, without checking for overflow.

60 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

Returns (unsigned PY_LONG_LONG)-1 on error. Use PyErr_Occurred() to disambiguate.
2.3新版功能.

double PyLong_AsDouble(PyObject *pylong)
Return a C double representation of the contents of pylong. If pylong cannot be approximately represented as a
double, an OverflowError exception is raised and -1.0 will be returned.

void* PyLong_AsVoidPtr(PyObject *pylong)
Convert a Python integer or long integer pylong to a C void pointer. If pylong cannot be converted, an
OverflowError will be raised. This is only assured to produce a usable void pointer for values created
with PyLong_FromVoidPtr().
1.5.2新版功能.
在 2.5版更改: For values outside 0..LONG_MAX, both signed and unsigned integers are accepted.

7.2.4 浮点数对象

PyFloatObject
这个 C类型PyObject的子类型代表一个 Python浮点数对象。

PyTypeObject PyFloat_Type
This instance of PyTypeObject represents the Python floating point type. This is the same object as float
and types.FloatType.

int PyFloat_Check(PyObject *p)
当他的参数是一个 C类型PyFloatObject或者是 C类型PyFloatObject的子类型时，返回真。
在 2.2版更改: Allowed subtypes to be accepted.

int PyFloat_CheckExact(PyObject *p)
当他的参数是一个 C类型PyFloatObject但不是 C类型PyFloatObject的子类型时，返回真。
2.2新版功能.

PyObject* PyFloat_FromString(PyObject *str, char **pend)
Return value: New reference. Create a PyFloatObject object based on the string value in str, or NULL on
failure. The pend argument is ignored. It remains only for backward compatibility.

PyObject* PyFloat_FromDouble(double v)
Return value: New reference. Create a PyFloatObject object from v, or NULL on failure.

double PyFloat_AsDouble(PyObject *pyfloat)
返回一个代表 pyfloat 内容的 C 类型 double。如果 float 不是一个 Python 浮点数对象，但是包含
__float__() 方法，这个方法会首先被调用，将 pyfloat 转换成一个浮点数。失败时这个方法返回
-1.0，所以应该调用 C函数PyErr_Occurred()检查错误。

double PyFloat_AS_DOUBLE(PyObject *pyfloat)
返回一个 pyfloat内容的 C double表示，但没有错误检查。

PyObject* PyFloat_GetInfo(void)
返回一个 structseq实例，其中包含有关 float的精度、最小值和最大值的信息。它是头文件 float.h的
一个简单包装。

2.6新版功能.
double PyFloat_GetMax()

返回最大可表示的有限浮点数 DBL_MAX为 C double。

2.6新版功能.

7.2. 数值对象 61

The Python/C API,发布 2.7.18

double PyFloat_GetMin()
返回最小可表示归一化正浮点数 DBL_MIN 为 C double。

2.6新版功能.
int PyFloat_ClearFreeList()

清空浮点数释放列表。返回无法释放的项目数。

2.6新版功能.
void PyFloat_AsString(char *buf, PyFloatObject *v)

Convert the argument v to a string, using the same rules as str(). The length of buf should be at least 100.
This function is unsafe to call because it writes to a buffer whose length it does not know.
2.7版后已移除: Use PyObject_Str() or PyOS_double_to_string() instead.

void PyFloat_AsReprString(char *buf, PyFloatObject *v)
Same as PyFloat_AsString, except uses the same rules as repr(). The length of buf should be at least 100.
This function is unsafe to call because it writes to a buffer whose length it does not know.
2.7版后已移除: Use PyObject_Repr() or PyOS_double_to_string() instead.

7.2.5 复数对象

从 C API看，Python的复数对象由两个不同的部分实现：一个是在 Python程序使用的 Python对象，另外的
是一个代表真正复数值的 C结构体。API提供了函数共同操作两者。

表示复数的 C结构体

需要注意的是接受这些结构体的作为参数并当做结果返回的函数，都是传递“值”而不是引用指针。此规则
适用于整个 API。
Py_complex

这是一个对应 Python复数对象的值部分的 C结构体。绝大部分处理复数对象的函数都用这类型的结构
体作为输入或者输出值，它可近似地定义为：

typedef struct {
double real;
double imag;

} Py_complex;

Py_complex _Py_c_sum(Py_complex left, Py_complex right)
返回两个复数的和，用 C类型Py_complex表示。

Py_complex _Py_c_diff(Py_complex left, Py_complex right)
返回两个复数的差，用 C类型Py_complex表示。

Py_complex _Py_c_neg(Py_complex complex)
返回复数 complex的负值，用 C类型Py_complex表示。

Py_complex _Py_c_prod(Py_complex left, Py_complex right)
返回两个复数的乘积，用 C类型Py_complex表示。

Py_complex _Py_c_quot(Py_complex dividend, Py_complex divisor)
返回两个复数的商，用 C类型Py_complex表示。

如果 divisor为空，这个方法返回零并设置 errno为 EDOM。

62 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

Py_complex _Py_c_pow(Py_complex num, Py_complex exp)
返回 num的 exp次幂，用 C类型Py_complex表示。
如果 num为空且 exp不是正实数，这个方法返回零并设置 errno为 EDOM。

表示复数的 Python对象

PyComplexObject
这个 C类型PyObject的子类型代表一个 Python复数对象。

PyTypeObject PyComplex_Type
This instance of PyTypeObject represents the Python complex number type. It is the same object as complex
and types.ComplexType.

int PyComplex_Check(PyObject *p)
如果它的变量是一个 C类型PyComplexObject或者是 C类型PyComplexObject的子类型，返回
真。

在 2.2版更改: Allowed subtypes to be accepted.
int PyComplex_CheckExact(PyObject *p)

如果它的参数是一个 C类型PyComplexObject但不是 C类型PyComplexObject的子类型，返回
真。

2.2新版功能.
PyObject* PyComplex_FromCComplex(Py_complex v)

Return value: New reference. 根据 C类型Py_complex的值生成一个新的 Python复数对象。
PyObject* PyComplex_FromDoubles(double real, double imag)

Return value: New reference. 根据 real和 imag返回一个新的 C类型PyComplexObject对象。

double PyComplex_RealAsDouble(PyObject *op)
以 C类型 double返回 op的实部。

double PyComplex_ImagAsDouble(PyObject *op)
以 C类型 double返回 op的虚部。

Py_complex PyComplex_AsCComplex(PyObject *op)
Return the Py_complex value of the complex number op. Upon failure, this method returns -1.0 as a real
value.
在 2.6版更改: If op is not a Python complex number object but has a __complex__() method, this method
will first be called to convert op to a Python complex number object.

7.3 序列对象

序列对象的一般操作在前一章中讨论过;本节介绍 Python语言固有的特定类型的序列对象。

7.3. 序列对象 63

The Python/C API,发布 2.7.18

7.3.1 字节数组对象

2.6新版功能.
PyByteArrayObject

这个PyObject的子类型表示一个 Python字节数组对象。
PyTypeObject PyByteArray_Type

This instance of PyTypeObject represents the Python bytearray type; it is the same object as bytearray in
the Python layer.

类型检查宏

int PyByteArray_Check(PyObject *o)
当对象 o是一个字节数组对象而且是一个字节数组类型的子类型实例时，返回真。

int PyByteArray_CheckExact(PyObject *o)
当对象 o是一个字节数组对象，但不是一个字节数组类型的子类型实例时，返回真。

直接 API函数

PyObject* PyByteArray_FromObject(PyObject *o)
Return a new bytearray object from any object, o, that implements the buffer protocol.

PyObject* PyByteArray_FromStringAndSize(const char *string, Py_ssize_t len)
Create a new bytearray object from string and its length, len. On failure, NULL is returned.

PyObject* PyByteArray_Concat(PyObject *a, PyObject *b)
连接字节数组 a和 b并返回一个带有结果的新的字节数组。

Py_ssize_t PyByteArray_Size(PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.

char* PyByteArray_AsString(PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer.

int PyByteArray_Resize(PyObject *bytearray, Py_ssize_t len)
将 bytearray的内部缓冲区的大小调整为 len。

宏

这些宏减低安全性以换取性能，它们不检查指针。

char* PyByteArray_AS_STRING(PyObject *bytearray)
C函数PyByteArray_AsString()的宏版本。

Py_ssize_t PyByteArray_GET_SIZE(PyObject *bytearray)
C函数PyByteArray_Size()的宏版本。

64 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

7.3.2 String/Bytes Objects

These functions raise TypeError when expecting a string parameter and are called with a non-string parameter.

注解: These functions have been renamed to PyBytes_* in Python 3.x. Unless otherwise noted, the PyBytes functions
available in 3.x are aliased to their PyString_* equivalents to help porting.

PyStringObject
This subtype of PyObject represents a Python string object.

PyTypeObject PyString_Type
This instance of PyTypeObject represents the Python string type; it is the same object as str and types.
StringType in the Python layer. .

int PyString_Check(PyObject *o)
Return true if the object o is a string object or an instance of a subtype of the string type.
在 2.2版更改: Allowed subtypes to be accepted.

int PyString_CheckExact(PyObject *o)
Return true if the object o is a string object, but not an instance of a subtype of the string type.
2.2新版功能.

PyObject* PyString_FromString(const char *v)
Return value: New reference. Return a new string object with a copy of the string v as value on success, and NULL
on failure. The parameter v must not be NULL; it will not be checked.

PyObject* PyString_FromStringAndSize(const char *v, Py_ssize_t len)
Return value: New reference. Return a new string object with a copy of the string v as value and length len on
success, and NULL on failure. If v is NULL, the contents of the string are uninitialized.
在 2.5 版更改: This function used an int type for len. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyString_FromFormat(const char *format, ...)
Return value: New reference. Take a C printf()-style format string and a variable number of arguments,
calculate the size of the resulting Python string and return a string with the values formatted into it. The variable
arguments must be C types and must correspond exactly to the format characters in the format string. The following
format characters are allowed:

7.3. 序列对象 65

The Python/C API,发布 2.7.18

Format
Charac-
ters

Type Comment

%% n/a The literal % character.
%c int A single character, represented as a C int.
%d int Exactly equivalent to printf("%d").
%u un-

signed
int

Exactly equivalent to printf("%u").

%ld long Exactly equivalent to printf("%ld").
%lu un-

signed
long

Exactly equivalent to printf("%lu").

%lld long
long

Exactly equivalent to printf("%lld").

%llu un-
signed
long
long

Exactly equivalent to printf("%llu").

%zd Py_ssize_t Exactly equivalent to printf("%zd").
%zu size_t Exactly equivalent to printf("%zu").
%i int Exactly equivalent to printf("%i").
%x int Exactly equivalent to printf("%x").
%s char* A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalent to printf("%p") except

that it is guaranteed to start with the literal 0x regardless of what the platform’s
printf yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

注解: The“%lld” and“%llu” format specifiers are only available when HAVE_LONG_LONG is defined.

在 2.7版更改: Support for“%lld” and“%llu” added.
PyObject* PyString_FromFormatV(const char *format, va_list vargs)

Return value: New reference. Identical to PyString_FromFormat() except that it takes exactly two argu-
ments.

Py_ssize_t PyString_Size(PyObject *string)
Return the length of the string in string object string.
在 2.5版更改: This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

Py_ssize_t PyString_GET_SIZE(PyObject *string)
Macro form of PyString_Size() but without error checking.
在 2.5版更改: This macro returned an int type. This might require changes in your code for properly supporting
64-bit systems.

char* PyString_AsString(PyObject *string)
Return a NUL-terminated representation of the contents of string. The pointer refers to the internal buffer
of string, not a copy. The data must not be modified in any way, unless the string was just created using

66 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

PyString_FromStringAndSize(NULL, size). It must not be deallocated. If string is a Unicode ob-
ject, this function computes the default encoding of string and operates on that. If string is not a string object at all,
PyString_AsString() returns NULL and raises TypeError.

char* PyString_AS_STRING(PyObject *string)
Macro form of PyString_AsString() but without error checking. Only string objects are supported; no
Unicode objects should be passed.

int PyString_AsStringAndSize(PyObject *obj, char **buffer, Py_ssize_t *length)
Return a NUL-terminated representation of the contents of the object obj through the output variables buffer and
length.
The function accepts both string and Unicode objects as input. For Unicode objects it returns the default encoded
version of the object. If length isNULL, the resulting buffer may not contain NUL characters; if it does, the function
returns -1 and a TypeError is raised.
The buffer refers to an internal string buffer of obj, not a copy. The data must not be modified in any way, unless the
string was just created using PyString_FromStringAndSize(NULL, size). It must not be deallocated.
If string is a Unicode object, this function computes the default encoding of string and operates on that. If string is
not a string object at all, PyString_AsStringAndSize() returns -1 and raises TypeError.
在 2.5版更改: This function used an int * type for length. This might require changes in your code for properly
supporting 64-bit systems.

void PyString_Concat(PyObject **string, PyObject *newpart)
Create a new string object in *string containing the contents of newpart appended to string; the caller will own the
new reference. The reference to the old value of string will be stolen. If the new string cannot be created, the old
reference to string will still be discarded and the value of *string will be set to NULL; the appropriate exception will
be set.

void PyString_ConcatAndDel(PyObject **string, PyObject *newpart)
Create a new string object in *string containing the contents of newpart appended to string. This version decrements
the reference count of newpart.

int _PyString_Resize(PyObject **string, Py_ssize_t newsize)
A way to resize a string object even though it is“immutable”. Only use this to build up a brand new string object;
don’t use this if the string may already be known in other parts of the code. It is an error to call this function if
the refcount on the input string object is not one. Pass the address of an existing string object as an lvalue (it may
be written into), and the new size desired. On success, *string holds the resized string object and 0 is returned;
the address in *string may differ from its input value. If the reallocation fails, the original string object at *string is
deallocated, *string is set to NULL, a memory exception is set, and -1 is returned.
在 2.5版更改: This function used an int type for newsize. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyString_Format(PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args. Analogous to format % args.
The args argument must be a tuple or dict.

void PyString_InternInPlace(PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a Python
string object. If there is an existing interned string that is the same as *string, it sets *string to it (decrementing
the reference count of the old string object and incrementing the reference count of the interned string object),
otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification: even though there
is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the object after
the call if and only if you owned it before the call.)

注解: This function is not available in 3.x and does not have a PyBytes alias.

7.3. 序列对象 67

The Python/C API,发布 2.7.18

PyObject* PyString_InternFromString(const char *v)
Return value: New reference. A combination of PyString_FromString() and
PyString_InternInPlace(), returning either a new string object that has been interned, or a new (
“owned”) reference to an earlier interned string object with the same value.

注解: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString_Decode(const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Create an object by decoding size bytes of the encoded buffer s using the codec
registered for encoding. encoding and errors have the same meaning as the parameters of the same name in the
unicode() built-in function. The codec to be used is looked up using the Python codec registry. Return NULL
if an exception was raised by the codec.

注解: This function is not available in 3.x and does not have a PyBytes alias.

在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyString_AsDecodedObject(PyObject *str, const char *encoding, const char *errors)
Return value: New reference. Decode a string object by passing it to the codec registered for encoding and return
the result as Python object. encoding and errors have the same meaning as the parameters of the same name in the
string encode() method. The codec to be used is looked up using the Python codec registry. Return NULL if
an exception was raised by the codec.

注解: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString_Encode(const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Encode the char buffer of the given size by passing it to the codec registered for
encoding and return a Python object. encoding and errors have the same meaning as the parameters of the same
name in the string encode()method. The codec to be used is looked up using the Python codec registry. Return
NULL if an exception was raised by the codec.

注解: This function is not available in 3.x and does not have a PyBytes alias.

在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyString_AsEncodedObject(PyObject *str, const char *encoding, const char *errors)
Return value: New reference. Encode a string object using the codec registered for encoding and return the result
as Python object. encoding and errors have the same meaning as the parameters of the same name in the string
encode() method. The codec to be used is looked up using the Python codec registry. Return NULL if an
exception was raised by the codec.

注解: This function is not available in 3.x and does not have a PyBytes alias.

68 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

7.3.3 Unicode Objects and Codecs

Unicode对象

Unicode类型

These are the basic Unicode object types used for the Unicode implementation in Python:
Py_UNICODE

This type represents the storage type which is used by Python internally as basis for holding Unicode ordinals.
Python’s default builds use a 16-bit type for Py_UNICODE and store Unicode values internally as UCS2. It is
also possible to build a UCS4 version of Python (most recent Linux distributions come with UCS4 builds of Python).
These builds then use a 32-bit type for Py_UNICODE and store Unicode data internally as UCS4. On platforms
where wchar_t is available and compatible with the chosen Python Unicode build variant, Py_UNICODE is a
typedef alias for wchar_t to enhance native platform compatibility. On all other platforms, Py_UNICODE is a
typedef alias for either unsigned short (UCS2) or unsigned long (UCS4).

Note that UCS2 and UCS4 Python builds are not binary compatible. Please keep this in mind when writing extensions
or interfaces.
PyUnicodeObject

This subtype of PyObject represents a Python Unicode object.
PyTypeObject PyUnicode_Type

This instance of PyTypeObject represents the Python Unicode type. It is exposed to Python code as unicode
and types.UnicodeType.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of Unicode
objects:
int PyUnicode_Check(PyObject *o)

Return true if the object o is a Unicode object or an instance of a Unicode subtype.
在 2.2版更改: Allowed subtypes to be accepted.

int PyUnicode_CheckExact(PyObject *o)
Return true if the object o is a Unicode object, but not an instance of a subtype.
2.2新版功能.

Py_ssize_t PyUnicode_GET_SIZE(PyObject *o)
Return the size of the object. o has to be a PyUnicodeObject (not checked).
在 2.5版更改: This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

Py_ssize_t PyUnicode_GET_DATA_SIZE(PyObject *o)
Return the size of the object’s internal buffer in bytes. o has to be a PyUnicodeObject (not checked).
在 2.5版更改: This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

Py_UNICODE* PyUnicode_AS_UNICODE(PyObject *o)
Return a pointer to the internal Py_UNICODE buffer of the object. o has to be a PyUnicodeObject (not
checked).

const char* PyUnicode_AS_DATA(PyObject *o)
Return a pointer to the internal buffer of the object. o has to be a PyUnicodeObject (not checked).

int PyUnicode_ClearFreeList()
清空释放列表。返回所释放的条目数。

7.3. 序列对象 69

The Python/C API,发布 2.7.18

2.6新版功能.

Unicode字符属性

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.
int Py_UNICODE_ISSPACE(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a whitespace character.
int Py_UNICODE_ISLOWER(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a lowercase character.
int Py_UNICODE_ISUPPER(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is an uppercase character.
int Py_UNICODE_ISTITLE(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a titlecase character.
int Py_UNICODE_ISLINEBREAK(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a linebreak character.
int Py_UNICODE_ISDECIMAL(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a decimal character.
int Py_UNICODE_ISDIGIT(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a digit character.
int Py_UNICODE_ISNUMERIC(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is a numeric character.
int Py_UNICODE_ISALPHA(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is an alphabetic character.
int Py_UNICODE_ISALNUM(Py_UNICODE ch)

Return 1 or 0 depending on whether ch is an alphanumeric character.
These APIs can be used for fast direct character conversions:
Py_UNICODE Py_UNICODE_TOLOWER(Py_UNICODE ch)

Return the character ch converted to lower case.
Py_UNICODE Py_UNICODE_TOUPPER(Py_UNICODE ch)

Return the character ch converted to upper case.
Py_UNICODE Py_UNICODE_TOTITLE(Py_UNICODE ch)

Return the character ch converted to title case.
int Py_UNICODE_TODECIMAL(Py_UNICODE ch)

Return the character ch converted to a decimal positive integer. Return -1 if this is not possible. This macro does
not raise exceptions.

int Py_UNICODE_TODIGIT(Py_UNICODE ch)
Return the character ch converted to a single digit integer. Return -1 if this is not possible. This macro does not
raise exceptions.

double Py_UNICODE_TONUMERIC(Py_UNICODE ch)
Return the character ch converted to a double. Return -1.0 if this is not possible. This macro does not raise
exceptions.

70 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

Plain Py_UNICODE

To create Unicode objects and access their basic sequence properties, use these APIs:
PyObject* PyUnicode_FromUnicode(const Py_UNICODE *u, Py_ssize_t size)

Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u may
be NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data. The
buffer is copied into the new object. If the buffer is not NULL, the return value might be a shared object. Therefore,
modification of the resulting Unicode object is only allowed when u is NULL.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_FromStringAndSize(const char *u, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the char buffer u. The bytes will be interpreted as being
UTF-8 encoded. u may also be NULL which causes the contents to be undefined. It is the user’s responsibility to
fill in the needed data. The buffer is copied into the new object. If the buffer is not NULL, the return value might
be a shared object. Therefore, modification of the resulting Unicode object is only allowed when u is NULL.
2.6新版功能.

PyObject *PyUnicode_FromString(const char *u)
Return value: New reference. Create a Unicode object from a UTF-8 encoded null-terminated char buffer u.
2.6新版功能.

PyObject* PyUnicode_FromFormat(const char *format, ...)
Return value: New reference. Take a C printf()-style format string and a variable number of arguments,
calculate the size of the resulting Python unicode string and return a string with the values formatted into it. The
variable arguments must be C types and must correspond exactly to the format characters in the format string. The
following format characters are allowed:

格式字符 类型 注释
%% 不适用 文字%字符。
%c 整型 单个字符，表示为 C语言的整型。
%d 整型 Exactly equivalent to printf("%d").
%u 无符号整型 Exactly equivalent to printf("%u").
%ld 长整型 Exactly equivalent to printf("%ld").
%lu 无符号长整型 Exactly equivalent to printf("%lu").
%zd Py_ssize_t Exactly equivalent to printf("%zd").
%zu size_t Exactly equivalent to printf("%zu").
%i 整型 Exactly equivalent to printf("%i").
%x 整型 Exactly equivalent to printf("%x").
%s char* 以 null为终止符的 C字符数组。
%p void* 一个 C指针的十六进制表示形式。基本等价于 printf("%p")但

它会确保以字面值 0x开头，不论系统平台上 printf的输出是什
么。

%U PyObject* A unicode object.
%V PyObject*, char * A unicode object (which may be NULL) and a null-terminated C character

array as a second parameter (which will be used, if the first parameter is
NULL).

%S PyObject* The result of calling PyObject_Unicode().
%R PyObject* The result of calling PyObject_Repr().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

7.3. 序列对象 71

The Python/C API,发布 2.7.18

2.6新版功能.
PyObject* PyUnicode_FromFormatV(const char *format, va_list vargs)

Return value: New reference. Identical to PyUnicode_FromFormat() except that it takes exactly two argu-
ments.
2.6新版功能.

Py_UNICODE* PyUnicode_AsUnicode(PyObject *unicode)
Return a read-only pointer to the Unicode object’s internalPy_UNICODE buffer,NULL if unicode is not a Unicode
object. Note that the resulting Py_UNICODE* string may contain embedded null characters, which would cause
the string to be truncated when used in most C functions.

Py_ssize_t PyUnicode_GetSize(PyObject *unicode)
Return the length of the Unicode object.
在 2.5版更改: This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

PyObject* PyUnicode_FromEncodedObject(PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Coerce an encoded object obj to a Unicode object and return a reference with
incremented refcount.
String and other char buffer compatible objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see the next section for
details).
All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

PyObject* PyUnicode_FromObject(PyObject *obj)
Return value: New reference. Shortcut for PyUnicode_FromEncodedObject(obj, NULL,
"strict") which is used throughout the interpreter whenever coercion to Unicode is needed.

If the platform supports wchar_t and provides a header file wchar.h, Python can interface directly to this type using the
following functions. Support is optimized if Python’s own Py_UNICODE type is identical to the system’s wchar_t.

wchar_t Support

wchar_t support for platforms which support it:
PyObject* PyUnicode_FromWideChar(const wchar_t *w, Py_ssize_t size)

Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Return NULL
on failure.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PyUnicode_AsWideChar(PyUnicodeObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing 0-termination character). Return the number of wchar_t characters copied or -1
in case of an error. Note that the resulting wchar_t string may or may not be 0-terminated. It is the responsibility
of the caller to make sure that the wchar_t string is 0-terminated in case this is required by the application. Also,
note that the wchar_t* string might contain null characters, which would cause the string to be truncated when
used with most C functions.
在 2.5版更改: This function returned an int type and used an int type for size. This might require changes in
your code for properly supporting 64-bit systems.

72 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.
Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in unicode() Unicode object constructor.
Setting encoding to NULL causes the default encoding to be used which is ASCII. The file system calls should use
Py_FileSystemDefaultEncoding as the encoding for file names. This variable should be treated as read-only:
on some systems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application
invokes setlocale).
Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec.
Default error handling for all built-in codecs is“strict”(ValueError is raised).
The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:
PyObject* PyUnicode_Decode(const char *s, Py_ssize_t size, const char *encoding, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding
and errors have the same meaning as the parameters of the same name in the unicode() built-in function. The
codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_Encode(const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const char *er-
rors)

Return value: New reference. Encode the Py_UNICODE buffer s of the given size and return a Python string object.
encoding and errors have the same meaning as the parameters of the same name in the Unicodeencode()method.
The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsEncodedString(PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference. Encode a Unicode object and return the result as Python string object. encoding and
errors have the same meaning as the parameters of the same name in the Unicode encode() method. The codec
to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

UTF-8 Codecs

These are the UTF-8 codec APIs:
PyObject* PyUnicode_DecodeUTF8(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s. Return
NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

7.3. 序列对象 73

The Python/C API,发布 2.7.18

PyObject* PyUnicode_DecodeUTF8Stateful(const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF8(). If consumed
is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.
2.4新版功能.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_EncodeUTF8(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer s of the given size using UTF-8 and return a Python
string object. Return NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsUTF8String(PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python string object.
Error handling is“strict”. Return NULL if an exception was raised by the codec.

UTF-32 Codecs

These are the UTF-32 codec APIs:
PyObject* PyUnicode_DecodeUTF32(const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Decode size bytes from a UTF-32 encoded buffer string and return the corresponding Unicode object. errors (if
non-NULL) defines the error handling. It defaults to“strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1 or
1, any byte order mark is copied to the output.
After completion, *byteorder is set to the current byte order at the end of input data.
In a narrow build code points outside the BMP will be decoded as surrogate pairs.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.
2.6新版功能.

PyObject* PyUnicode_DecodeUTF32Stateful(const char *s, Py_ssize_t size, const char *errors, int *by-
teorder, Py_ssize_t *consumed)

If consumed is NULL, behave like PyUnicode_DecodeUTF32(). If consumed is not NULL,
PyUnicode_DecodeUTF32Stateful() will not treat trailing incomplete UTF-32 byte sequences (such
as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.
2.6新版功能.

74 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

PyObject* PyUnicode_EncodeUTF32(const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-
order)

Return a Python bytes object holding the UTF-32 encoded value of the Unicode data in s. Output is written
according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.
If Py_UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.
2.6新版功能.

PyObject* PyUnicode_AsUTF32String(PyObject *unicode)
Return a Python string using the UTF-32 encoding in native byte order. The string always starts with a BOM mark.
Error handling is“strict”. Return NULL if an exception was raised by the codec.
2.6新版功能.

UTF-16 Codecs

These are the UTF-16 codec APIs:
PyObject* PyUnicode_DecodeUTF16(const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to“strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1 or
1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \ufffe character).
After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_DecodeUTF16Stateful(const char *s, Py_ssize_t size, const char *errors, int *by-
teorder, Py_ssize_t *consumed)

Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16(). If consumed
is not NULL, PyUnicode_DecodeUTF16Stateful() will not treat trailing incomplete UTF-16 byte se-
quences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and
the number of bytes that have been decoded will be stored in consumed.
2.4新版功能.

7.3. 序列对象 75

The Python/C API,发布 2.7.18

在 2.5 版更改: This function used an int type for size and an int * type for consumed. This might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeUTF16(const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-
order)

Return value: New reference. Return a Python string object holding the UTF-16 encoded value of the Unicode data
in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.
If Py_UNICODE_WIDE is defined, a single Py_UNICODE value may get represented as a surrogate pair. If it is
not defined, each Py_UNICODE values is interpreted as a UCS-2 character.
Return NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsUTF16String(PyObject *unicode)
Return value: New reference. Return a Python string using the UTF-16 encoding in native byte order. The string
always starts with a BOM mark. Error handling is“strict”. Return NULL if an exception was raised by the codec.

UTF-7 Codecs

These are the UTF-7 codec APIs:
PyObject* PyUnicode_DecodeUTF7(const char *s, Py_ssize_t size, const char *errors)

Create a Unicode object by decoding size bytes of the UTF-7 encoded string s. Return NULL if an exception was
raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful(const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)

If consumed isNULL, behave like PyUnicode_DecodeUTF7(). If consumed is notNULL, trailing incomplete
UTF-7 base-64 sections will not be treated as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7(const Py_UNICODE *s, Py_ssize_t size, int base64SetO,
int base64WhiteSpace, const char *errors)

Encode the Py_UNICODE buffer of the given size using UTF-7 and return a Python bytes object. Return NULL
if an exception was raised by the codec.
If base64SetO is nonzero,“Set O”(punctuation that has no otherwise special meaning) will be encoded in base-64.
If base64WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the Python“utf-7”
codec.

76 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

Unicode-Escape Codecs

These are the“Unicode Escape”codec APIs:
PyObject* PyUnicode_DecodeUnicodeEscape(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded string
s. Return NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_EncodeUnicodeEscape(const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using Unicode-Escape and return
a Python string object. Return NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as Python string
object. Error handling is“strict”. Return NULL if an exception was raised by the codec.

Raw-Unicode-Escape Codecs

These are the“Raw Unicode Escape”codec APIs:
PyObject* PyUnicode_DecodeRawUnicodeEscape(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape encoded
string s. Return NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_EncodeRawUnicodeEscape(const Py_UNICODE *s, Py_ssize_t size, const
char *errors)

Return value: New reference. Encode the Py_UNICODE buffer of the given size using Raw-Unicode-Escape and
return a Python string object. Return NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsRawUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as Python
string object. Error handling is“strict”. Return NULL if an exception was raised by the codec.

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by
the codecs during encoding.
PyObject* PyUnicode_DecodeLatin1(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s. Return
NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

7.3. 序列对象 77

The Python/C API,发布 2.7.18

PyObject* PyUnicode_EncodeLatin1(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using Latin-1 and return a Python
string object. Return NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsLatin1String(PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python string object.
Error handling is“strict”. Return NULL if an exception was raised by the codec.

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.
PyObject* PyUnicode_DecodeASCII(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s. Return
NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_EncodeASCII(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using ASCII and return a Python
string object. Return NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsASCIIString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python string object.
Error handling is“strict”. Return NULL if an exception was raised by the codec.

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to obtain
most of the standard codecs included in the encodings package). The codec uses mapping to encode and decode
characters.
Decoding mappings must map single string characters to single Unicode characters, integers (which are then interpreted
as Unicode ordinals) or None (meaning“undefined mapping”and causing an error).
Encoding mappings must map single Unicode characters to single string characters, integers (which are then interpreted
as Latin-1 ordinals) or None (meaning“undefined mapping”and causing an error).
The mapping objects provided must only support the __getitem__ mapping interface.
If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be inter-
preted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings which map
characters to different code points.
These are the mapping codec APIs:
PyObject* PyUnicode_DecodeCharmap(const char *s, Py_ssize_t size, PyObject *mapping, const char *er-

rors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using the given
mapping object. Return NULL if an exception was raised by the codec. If mapping is NULL latin-1 decoding will
be done. Else it can be a dictionary mapping byte or a unicode string, which is treated as a lookup table. Byte
values greater that the length of the string and U+FFFE“characters”are treated as“undefined mapping”.

78 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

在 2.4版更改: Allowed unicode string as mapping argument.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_EncodeCharmap(const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping, const
char *errors)

Return value: New reference. Encode the Py_UNICODE buffer of the given size using the given mapping object
and return a Python string object. Return NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsCharmapString(PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as
Python string object. Error handling is“strict”. Return NULL if an exception was raised by the codec.

The following codec API is special in that maps Unicode to Unicode.
PyObject* PyUnicode_TranslateCharmap(const Py_UNICODE *s, Py_ssize_t size, PyObject *table, const

char *errors)
Return value: New reference. Translate a Py_UNICODE buffer of the given size by applying a character mapping
table to it and return the resulting Unicode object. Return NULL when an exception was raised by the codec.
The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).
Mapping tables need only provide the __getitem__() interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is
defined by the user settings on the machine running the codec.
PyObject* PyUnicode_DecodeMBCS(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Create a Unicode object by decoding size bytes of the MBCS encoded string s. Return
NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_DecodeMBCSStateful(const char *s, int size, const char *errors, int *consumed)
If consumed is NULL, behave like PyUnicode_DecodeMBCS(). If consumed is not NULL,
PyUnicode_DecodeMBCSStateful() will not decode trailing lead byte and the number of bytes that have
been decoded will be stored in consumed.
2.5新版功能.

PyObject* PyUnicode_EncodeMBCS(const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_UNICODE buffer of the given size using MBCS and return a Python
string object. Return NULL if an exception was raised by the codec.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

7.3. 序列对象 79

The Python/C API,发布 2.7.18

PyObject* PyUnicode_AsMBCSString(PyObject *unicode)
Return value: New reference. Encode a Unicode object using MBCS and return the result as Python string object.
Error handling is“strict”. Return NULL if an exception was raised by the codec.

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.
They all return NULL or -1 if an exception occurs.
PyObject* PyUnicode_Concat(PyObject *left, PyObject *right)

Return value: New reference. Concat two strings giving a new Unicode string.
PyObject* PyUnicode_Split(PyObject *s, PyObject *sep, Py_ssize_t maxsplit)

Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done
at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If
negative, no limit is set. Separators are not included in the resulting list.
在 2.5版更改: This function used an int type for maxsplit. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_Splitlines(PyObject *s, int keepend)
Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is
considered to be one line break. If keepend is 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate(PyObject *str, PyObject *table, const char *errors)
Return value: New reference. Translate a string by applying a character mapping table to it and return the resulting
Unicode object.
The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).
Mapping tables need only provide the __getitem__() interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.
errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_Join(PyObject *separator, PyObject *seq)
Return value: New reference. Join a sequence of strings using the given separator and return the resulting Unicode
string.

Py_ssize_t PyUnicode_Tailmatch(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int di-
rection)

Return 1 if substr matches str[start:end] at the given tail end (direction == -1 means to do a prefix match,
direction == 1 a suffix match), 0 otherwise. Return -1 if an error occurred.
在 2.5 版更改: This function used an int type for start and end. This might require changes in your code for
properly supporting 64-bit systems.

Py_ssize_t PyUnicode_Find(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Return the first position of substr in str[start:end] using the given direction (direction == 1 means to do a
forward search, direction == -1 a backward search). The return value is the index of the first match; a value of -1
indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.
在 2.5 版更改: This function used an int type for start and end. This might require changes in your code for
properly supporting 64-bit systems.

80 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

Py_ssize_t PyUnicode_Count(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str[start:end]. Return -1 if an error oc-
curred.
在 2.5版更改: This function returned an int type and used an int type for start and end. This might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_Replace(PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the
resulting Unicode object. maxcount == -1 means replace all occurrences.
在 2.5版更改: This function used an int type formaxcount. This might require changes in your code for properly
supporting 64-bit systems.

int PyUnicode_Compare(PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

int PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
Rich compare two unicode strings and return one of the following:

• NULL in case an exception was raised
• Py_True or Py_False for successful comparisons
• Py_NotImplemented in case the type combination is unknown

Note that Py_EQ and Py_NE comparisons can cause a UnicodeWarning in case the conversion of the argu-
ments to Unicode fails with a UnicodeDecodeError.
Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_LE.

PyObject* PyUnicode_Format(PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to format %
args.

int PyUnicode_Contains(PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.
element has to coerce to a one element Unicode string. -1 is returned if there was an error.

7.3.4 Buffers and Memoryview Objects

Python objects implemented in C can export a group of functions called the“buffer interface.”These functions can be
used by an object to expose its data in a raw, byte-oriented format. Clients of the object can use the buffer interface to
access the object data directly, without needing to copy it first.
Two examples of objects that support the buffer interface are strings and arrays. The string object exposes the character
contents in the buffer interface’s byte-oriented form. An array can only expose its contents via the old-style buffer
interface. This limitation does not apply to Python 3, where memoryview objects can be constructed from arrays, too.
Array elements may be multi-byte values.
An example user of the buffer interface is the file object’s write()method. Any object that can export a series of bytes
through the buffer interface can be written to a file. There are a number of format codes to PyArg_ParseTuple()
that operate against an object’s buffer interface, returning data from the target object.
Starting from version 1.6, Python has been providing Python-level buffer objects and a C-level buffer API so that any
built-in or used-defined type can expose its characteristics. Both, however, have been deprecated because of various
shortcomings, and have been officially removed in Python 3 in favour of a new C-level buffer API and a new Python-level
object named memoryview.

7.3. 序列对象 81

The Python/C API,发布 2.7.18

The new buffer API has been backported to Python 2.6, and the memoryview object has been backported to Python
2.7. It is strongly advised to use them rather than the old APIs, unless you are blocked from doing so for compatibility
reasons.

The new-style Py_buffer struct

Py_buffer

void *buf
A pointer to the start of the memory for the object.

Py_ssize_t len
The total length of the memory in bytes.

int readonly
An indicator of whether the buffer is read only.

const char *format
A NULL terminated string in struct module style syntax giving the contents of the elements available
through the buffer. If this is NULL, "B" (unsigned bytes) is assumed.

int ndim
The number of dimensions the memory represents as a multi-dimensional array. If it is 0, strides and
suboffsets must be NULL.

Py_ssize_t *shape
An array of Py_ssize_ts the length of ndim giving the shape of the memory as a multi-dimensional array.
Note that ((*shape)[0] * ... * (*shape)[ndims-1])*itemsize should be equal to len.

Py_ssize_t *strides
An array of Py_ssize_ts the length of ndim giving the number of bytes to skip to get to a new element
in each dimension.

Py_ssize_t *suboffsets
An array of Py_ssize_ts the length of ndim. If these suboffset numbers are greater than or equal to 0,
then the value stored along the indicated dimension is a pointer and the suboffset value dictates how many bytes
to add to the pointer after de-referencing. A suboffset value that it negative indicates that no de-referencing
should occur (striding in a contiguous memory block).
If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).
Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index
when there are both non-NULL strides and suboffsets:

void *get_item_pointer(int ndim, void *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {
char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; i++) {

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {

pointer = *((char**)pointer) + suboffsets[i];
}

}
return (void*)pointer;

}

82 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

Py_ssize_t itemsize
This is a storage for the itemsize (in bytes) of each element of the shared memory. It is technically un-
necessary as it can be obtained using PyBuffer_SizeFromFormat(), however an exporter may know
this information without parsing the format string and it is necessary to know the itemsize for proper inter-
pretation of striding. Therefore, storing it is more convenient and faster.

void *internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer should never alter this value.

Buffer related functions

int PyObject_CheckBuffer(PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0.

int PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags)
Export obj into a Py_buffer, view. These arguments must never be NULL. The flags argument is a bit field
indicating what kind of buffer the caller is prepared to deal with and therefore what kind of buffer the exporter is
allowed to return. The buffer interface allows for complicated memory sharing possibilities, but some caller may
not be able to handle all the complexity but may want to see if the exporter will let them take a simpler view to its
memory.
Some exporters may not be able to share memory in every possible way and may need to raise errors to signal
to some consumers that something is just not possible. These errors should be a BufferError unless there is
another error that is actually causing the problem. The exporter can use flags information to simplify how much of
the Py_buffer structure is filled in with non-default values and/or raise an error if the object can’t support a
simpler view of its memory.
0 is returned on success and -1 on error.
The following table gives possible values to the flags arguments.

7.3. 序列对象 83

The Python/C API,发布 2.7.18

Flag Description
PyBUF_SIMPLE This is the default flag state. The returned buffer may or may not have writable memory.

The format of the data will be assumed to be unsigned bytes. This is a“stand-alone”
flag constant. It never needs to be‘|’d to the others. The exporter will raise an error
if it cannot provide such a contiguous buffer of bytes.

PyBUF_WRITABLE The returned buffer must be writable. If it is not writable, then raise an error.
PyBUF_STRIDES This implies PyBUF_ND. The returned buffer must provide strides information (i.e. the

strides cannot be NULL). This would be used when the consumer can handle strided,
discontiguous arrays. Handling strides automatically assumes you can handle shape. The
exporter can raise an error if a strided representation of the data is not possible (i.e.
without the suboffsets).

PyBUF_ND The returned buffer must provide shape information. The memory will be assumed C-
style contiguous (last dimension varies the fastest). The exporter may raise an error if
it cannot provide this kind of contiguous buffer. If this is not given then shape will be
NULL.

PyBUF_C_CONTIGUOUS
PyBUF_F_CONTIGUOUS
PyBUF_ANY_CONTIGUOUS

These flags indicate that the contiguity returned buffer must be respectively, C-
contiguous (last dimension varies the fastest), Fortran contiguous (first dimension varies
the fastest) or either one. All of these flags imply PyBUF_STRIDES and guarantee that
the strides buffer info structure will be filled in correctly.

PyBUF_INDIRECT This flag indicates the returned buffer must have suboffsets information (which can be
NULL if no suboffsets are needed). This can be used when the consumer can handle
indirect array referencing implied by these suboffsets. This implies PyBUF_STRIDES.

PyBUF_FORMAT The returned buffer must have true format information if this flag is provided. This would
be used when the consumer is going to be checking for what‘kind’of data is actually
stored. An exporter should always be able to provide this information if requested. If
format is not explicitly requested then the format must be returned as NULL (which
means 'B', or unsigned bytes)

PyBUF_STRIDED This is equivalent to (PyBUF_STRIDES | PyBUF_WRITABLE).
PyBUF_STRIDED_ROThis is equivalent to (PyBUF_STRIDES).
PyBUF_RECORDS This is equivalent to (PyBUF_STRIDES | PyBUF_FORMAT |

PyBUF_WRITABLE).
PyBUF_RECORDS_ROThis is equivalent to (PyBUF_STRIDES | PyBUF_FORMAT).
PyBUF_FULL This is equivalent to (PyBUF_INDIRECT | PyBUF_FORMAT |

PyBUF_WRITABLE).
PyBUF_FULL_RO This is equivalent to (PyBUF_INDIRECT | PyBUF_FORMAT).
PyBUF_CONTIG This is equivalent to (PyBUF_ND | PyBUF_WRITABLE).
PyBUF_CONTIG_ROThis is equivalent to (PyBUF_ND).

void PyBuffer_Release(Py_buffer *view)
Release the buffer view. This should be called when the buffer is no longer being used as it may free memory from
it.

Py_ssize_t PyBuffer_SizeFromFormat(const char *)
Return the implied itemsize from the struct-stype format.

int PyBuffer_IsContiguous(Py_buffer *view, char fortran)
Return 1 if the memory defined by the view is C-style (fortran is 'C') or Fortran-style (fortran is 'F') contiguous
or either one (fortran is 'A'). Return 0 otherwise.

void PyBuffer_FillContiguousStrides(int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize,
char fortran)

Fill the strides array with byte-strides of a contiguous (C-style if fortran is 'C' or Fortran-style if fortran is 'F')
array of the given shape with the given number of bytes per element.

84 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

int PyBuffer_FillInfo(Py_buffer *view, PyObject *obj, void *buf, Py_ssize_t len, int readonly, int in-
foflags)

Fill in a buffer-info structure, view, correctly for an exporter that can only share a contiguous chunk of memory of
“unsigned bytes”of the given length. Return 0 on success and -1 (with raising an error) on error.

MemoryView objects

2.7新版功能.
A memoryview object exposes the new C level buffer interface as a Python object which can then be passed around
like any other object.
PyObject *PyMemoryView_FromObject(PyObject *obj)

Create a memoryview object from an object that defines the new buffer interface.
PyObject *PyMemoryView_FromBuffer(Py_buffer *view)

Create a memoryview object wrapping the given buffer-info structure view. The memoryview object then owns the
buffer, which means you shouldn’t try to release it yourself: it will be released on deallocation of the memoryview
object.

PyObject *PyMemoryView_GetContiguous(PyObject *obj, int buffertype, char order)
Create a memoryview object to a contiguous chunk of memory (in either‘C’or‘F’ortran order) from an object
that defines the buffer interface. If memory is contiguous, the memoryview object points to the original memory.
Otherwise copy is made and the memoryview points to a new bytes object.

int PyMemoryView_Check(PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview.

Py_buffer *PyMemoryView_GET_BUFFER(PyObject *obj)
Return a pointer to the buffer-info structure wrapped by the given object. The object must be a memoryview
instance; this macro doesn’t check its type, you must do it yourself or you will risk crashes.

Old-style buffer objects

More information on the old buffer interface is provided in the section Buffer Object Structures, under the description for
PyBufferProcs.
A “buffer object”is defined in the bufferobject.h header (included by Python.h). These objects look very
similar to string objects at the Python programming level: they support slicing, indexing, concatenation, and some other
standard string operations. However, their data can come from one of two sources: from a block of memory, or from
another object which exports the buffer interface.
Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python programmer.
They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory, it is possible
to expose any data to the Python programmer quite easily. The memory could be a large, constant array in a C extension,
it could be a raw block of memory for manipulation before passing to an operating system library, or it could be used to
pass around structured data in its native, in-memory format.
PyBufferObject

This subtype of PyObject represents a buffer object.
PyTypeObject PyBuffer_Type

The instance of PyTypeObject which represents the Python buffer type; it is the same object as buffer and
types.BufferType in the Python layer. .

int Py_END_OF_BUFFER
This constant may be passed as the size parameter to PyBuffer_FromObject() or

7.3. 序列对象 85

The Python/C API,发布 2.7.18

PyBuffer_FromReadWriteObject(). It indicates that the new PyBufferObject should refer
to base object from the specified offset to the end of its exported buffer. Using this enables the caller to avoid
querying the base object for its length.

int PyBuffer_Check(PyObject *p)
Return true if the argument has type PyBuffer_Type.

PyObject* PyBuffer_FromObject(PyObject *base, Py_ssize_t offset, Py_ssize_t size)
Return value: New reference. Return a new read-only buffer object. This raises TypeError if base doesn’t sup-
port the read-only buffer protocol or doesn’t provide exactly one buffer segment, or it raises ValueError if offset
is less than zero. The buffer will hold a reference to the base object, and the buffer’s contents will refer to the base
object’s buffer interface, starting as position offset and extending for size bytes. If size is Py_END_OF_BUFFER,
then the new buffer’s contents extend to the length of the base object’s exported buffer data.
在 2.5版更改: This function used an int type for offset and size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyBuffer_FromReadWriteObject(PyObject *base, Py_ssize_t offset, Py_ssize_t size)
Return value: New reference. Return a new writable buffer object. Parameters and exceptions are similar to
those for PyBuffer_FromObject(). If the base object does not export the writeable buffer protocol, then
TypeError is raised.
在 2.5版更改: This function used an int type for offset and size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyBuffer_FromMemory(void *ptr, Py_ssize_t size)
Return value: New reference. Return a new read-only buffer object that reads from a specified location in mem-
ory, with a specified size. The caller is responsible for ensuring that the memory buffer, passed in as ptr, is not
deallocated while the returned buffer object exists. Raises ValueError if size is less than zero. Note that
Py_END_OF_BUFFER may not be passed for the size parameter; ValueError will be raised in that case.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyBuffer_FromReadWriteMemory(void *ptr, Py_ssize_t size)
Return value: New reference. Similar to PyBuffer_FromMemory(), but the returned buffer is writable.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyBuffer_New(Py_ssize_t size)
Return value: New reference. Return a new writable buffer object that maintains its own memory buffer of size
bytes. ValueError is returned if size is not zero or positive. Note that the memory buffer (as returned by
PyObject_AsWriteBuffer()) is not specifically aligned.
在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

7.3.5 元组对象

PyTupleObject
这个PyObject的子类型代表一个 Python的元组对象。

PyTypeObject PyTuple_Type
This instance of PyTypeObject represents the Python tuple type; it is the same object as tuple and types.
TupleType in the Python layer..

int PyTuple_Check(PyObject *p)
如果 p是一个元组对象或者元组类型的子类型的实例，则返回真值。

86 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

在 2.2版更改: Allowed subtypes to be accepted.
int PyTuple_CheckExact(PyObject *p)

如果 p是一个元组对象，而不是一个元组子类型的实例，则返回真值。

2.2新版功能.
PyObject* PyTuple_New(Py_ssize_t len)

Return value: New reference. Return a new tuple object of size len, or NULL on failure.
在 2.5 版更改: This function used an int type for len. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyTuple_Pack(Py_ssize_t n, ...)
Return value: New reference. Return a new tuple object of size n, orNULL on failure. The tuple values are initialized
to the subsequent n C arguments pointing to Python objects. PyTuple_Pack(2, a, b) is equivalent to
Py_BuildValue("(OO)", a, b).
2.4新版功能.
在 2.5 版更改: This function used an int type for n. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PyTuple_Size(PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.
在 2.5版更改: This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

Py_ssize_t PyTuple_GET_SIZE(PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.
在 2.5版更改: This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

PyObject* PyTuple_GetItem(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out of
bounds, return NULL and set an IndexError exception.
在 2.5 版更改: This function used an int type for pos. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyTuple_GET_ITEM(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple_GetItem(), but does no checking of its arguments.
在 2.5 版更改: This function used an int type for pos. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyTuple_GetSlice(PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return the slice of the tuple pointed to by p between low and high, or NULL on
failure. This is the equivalent of the Python expression p[low:high]. Indexing from the end of the list is not
supported.
在 2.5 版更改: This function used an int type for low and high. This might require changes in your code for
properly supporting 64-bit systems.

int PyTuple_SetItem(PyObject *p, Py_ssize_t pos, PyObject *o)
Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on success. If pos is out of
bounds, return -1 and set an IndexError exception.

7.3. 序列对象 87

The Python/C API,发布 2.7.18

注解: This function“steals”a reference to o and discards a reference to an item already in the tuple at the affected
position.

在 2.5 版更改: This function used an int type for pos. This might require changes in your code for properly
supporting 64-bit systems.

void PyTuple_SET_ITEM(PyObject *p, Py_ssize_t pos, PyObject *o)
Like PyTuple_SetItem(), but does no error checking, and should only be used to fill in brand new tuples.

注解: This macro“steals”a reference to o, and, unlike PyTuple_SetItem(), does not discard a reference
to any item that is being replaced; any reference in the tuple at position pos will be leaked.

在 2.5 版更改: This function used an int type for pos. This might require changes in your code for properly
supporting 64-bit systems.

int _PyTuple_Resize(PyObject **p, Py_ssize_t newsize)
Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of
this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code
should never assume that the resulting value of *p will be the same as before calling this function. If the object
referenced by *p is replaced, the original *p is destroyed. On failure, returns -1 and sets *p to NULL, and raises
MemoryError or SystemError.
在 2.2版更改: Removed unused third parameter, last_is_sticky.
在 2.5版更改: This function used an int type for newsize. This might require changes in your code for properly
supporting 64-bit systems.

int PyTuple_ClearFreeList()
清空释放列表。返回所释放的条目数。

2.6新版功能.

7.3.6 列表对象

PyListObject
这个 C类型PyObject的子类型代表一个 Python列表对象。

PyTypeObject PyList_Type
This instance of PyTypeObject represents the Python list type. This is the same object as list in the Python
layer.

int PyList_Check(PyObject *p)
如果 p是一个列表对象或者是一个列表类型的子类型实例时，返回真。

在 2.2版更改: Allowed subtypes to be accepted.
int PyList_CheckExact(PyObject *p)

当 p是一个列表对象，但是不是列表类型的子类型实例时，返回真。

2.2新版功能.
PyObject* PyList_New(Py_ssize_t len)

Return value: New reference. Return a new list of length len on success, or NULL on failure.

88 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

注解: 当 len 大于零时，被返回的列表对象项目被设成 NULL。因此你不能用类似 C 函
数PySequence_SetItem() 的抽象 API 或者用 C 函数PyList_SetItem() 将所有项目设置成真
实对象前对 Python代码公开这个对象。

在 2.5版更改: This function used an int for size. This might require changes in your code for properly supporting
64-bit systems.

Py_ssize_t PyList_Size(PyObject *list)
返回 list中列表对象的长度；这等于在列表对象调用 len(list)。

在 2.5版更改: This function returned an int. This might require changes in your code for properly supporting
64-bit systems.

Py_ssize_t PyList_GET_SIZE(PyObject *list)
宏版本的 C函数PyList_Size()，没有错误检测。

在 2.5 版更改: This macro returned an int. This might require changes in your code for properly supporting
64-bit systems.

PyObject* PyList_GetItem(PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. Return the object at position index in the list pointed to by list. The position must
be non-negative; indexing from the end of the list is not supported. If index is out of bounds (<0 or >=len(list)),
return NULL and set an IndexError exception.
在 2.5 版更改: This function used an int for index. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyList_GET_ITEM(PyObject *list, Py_ssize_t i)
Return value: Borrowed reference. 宏版本的 C函数PyList_GetItem()，没有错误检测。

在 2.5版更改: This macro used an int for i. This might require changes in your code for properly supporting
64-bit systems.

int PyList_SetItem(PyObject *list, Py_ssize_t index, PyObject *item)
将列表中索引为 index的项设为 item。成功时返回 0。如果 index超出范围则返回 -1并设定 IndexError
异常。

注解: 此函数会“偷走”一个对 item的引用并丢弃一个对列表中受影响位置上的已有条目的引用。

在 2.5 版更改: This function used an int for index. This might require changes in your code for properly
supporting 64-bit systems.

void PyList_SET_ITEM(PyObject *list, Py_ssize_t i, PyObject *o)
不带错误检测的宏版本PyList_SetItem()。这通常只被用于新列表中之前没有内容的位置进行填
充。

注解: This macro“steals”a reference to item, and, unlike PyList_SetItem(), does not discard a reference
to any item that it being replaced; any reference in list at position i will be leaked.

在 2.5版更改: This macro used an int for i. This might require changes in your code for properly supporting
64-bit systems.

int PyList_Insert(PyObject *list, Py_ssize_t index, PyObject *item)
将条目 item插入到列表 list 索引号 index之前的位置。如果成功将返回 0；如果不成功则返回 -1并设
置一个异常。相当于 list.insert(index, item)。

7.3. 序列对象 89

The Python/C API,发布 2.7.18

在 2.5 版更改: This function used an int for index. This might require changes in your code for properly
supporting 64-bit systems.

int PyList_Append(PyObject *list, PyObject *item)
将对象 item添加到列表 list 的末尾。如果成功将返回 0；如果不成功则返回 -1并设置一个异常。相当
于 list.append(item)。

PyObject* PyList_GetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return a list of the objects in list containing the objects between low and high. Return
NULL and set an exception if unsuccessful. Analogous to list[low:high]. Indexing from the end of the list
is not supported.
在 2.5版更改: This function used an int for low and high. This might require changes in your code for properly
supporting 64-bit systems.

int PyList_SetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice of list between low and high to the contents of itemlist. Analogous to list[low:high] =
itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return 0
on success, -1 on failure. Indexing from the end of the list is not supported.
在 2.5版更改: This function used an int for low and high. This might require changes in your code for properly
supporting 64-bit systems.

int PyList_Sort(PyObject *list)
对 list中的条目进行原地排序。成功时返回 0，失败时返回 -1。这等价于 list.sort()。

int PyList_Reverse(PyObject *list)
对 list中的条目进行原地反转。成功时返回 0，失败时返回 -1。这等价于 list.reverse()。

PyObject* PyList_AsTuple(PyObject *list)
Return value: New reference. 返回一个新的元组对象，其中包含 list的内容；等价于 tuple(list)。

7.4 Mapping Objects

7.4.1 字典对象

PyDictObject
这个PyObject的子类型代表一个 Python字典对象。

PyTypeObject PyDict_Type
This instance of PyTypeObject represents the Python dictionary type. This is exposed to Python programs as
dict and types.DictType.

int PyDict_Check(PyObject *p)
如果 p是字典对象或者字典类型的子类型的实例，则返回真。

在 2.2版更改: Allowed subtypes to be accepted.
int PyDict_CheckExact(PyObject *p)

如果 p是字典对象但不是字典类型的子类型的实例，则返回真。

2.4新版功能.
PyObject* PyDict_New()

Return value: New reference. Return a new empty dictionary, or NULL on failure.
PyObject* PyDictProxy_New(PyObject *dict)

Return value: New reference. Return a proxy object for a mapping which enforces read-only behavior. This is
normally used to create a proxy to prevent modification of the dictionary for non-dynamic class types.

90 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

2.2新版功能.
void PyDict_Clear(PyObject *p)

清空现有字典的所有键值对。

int PyDict_Contains(PyObject *p, PyObject *key)
确定 key是否包含在字典 p中。如果 key匹配上 p的某一项，则返回 1，否则返回 0。返回 -1表示出
错。这等同于 Python表达式 key in p。

2.4新版功能.
PyObject* PyDict_Copy(PyObject *p)

Return value: New reference. 返回与 p包含相同键值对的新字典。

1.6新版功能.
int PyDict_SetItem(PyObject *p, PyObject *key, PyObject *val)

使用 key作为键将 value插入字典 p。key必须为hashable；如果不是，会抛出 TypeError异常。成功
返回 0，失败返回 -1。

int PyDict_SetItemString(PyObject *p, const char *key, PyObject *val)
Insert value into the dictionary p using key as a key. key should be a char*. The key object is created using
PyString_FromString(key). Return 0 on success or -1 on failure.

int PyDict_DelItem(PyObject *p, PyObject *key)
使用键 key删除字典 p中的条目。key必须是可哈希的；如果不是，则抛出 TypeError异常。成功时
返回 0，失败时返回 -1。

int PyDict_DelItemString(PyObject *p, char *key)
删除字典 p中由字符串 key作为键的条目。成功时返回 0，失败时返回 -1。

PyObject* PyDict_GetItem(PyObject *p, PyObject *key)
Return value: Borrowed reference. Return the object from dictionary p which has a key key. Return NULL if the
key key is not present, but without setting an exception.

PyObject* PyDict_GetItemString(PyObject *p, const char *key)
Return value: Borrowed reference. This is the same as PyDict_GetItem(), but key is specified as a char*,
rather than a PyObject*.

PyObject* PyDict_Items(PyObject *p)
Return value: New reference. Return a PyListObject containing all the items from the dictionary, as in the
dictionary method dict.items().

PyObject* PyDict_Keys(PyObject *p)
Return value: New reference. Return a PyListObject containing all the keys from the dictionary, as in the
dictionary method dict.keys().

PyObject* PyDict_Values(PyObject *p)
Return value: New reference. Return a PyListObject containing all the values from the dictionary p, as in the
dictionary method dict.values().

Py_ssize_t PyDict_Size(PyObject *p)
返回字典中项目数，等价于对字典 p使用 len(p)。

在 2.5版更改: This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

int PyDict_Next(PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos must be initialized to 0
prior to the first call to this function to start the iteration; the function returns true for each pair in the dictionary,
and false once all pairs have been reported. The parameters pkey and pvalue should either point to PyObject*
variables that will be filled in with each key and value, respectively, or may be NULL. Any references returned

7.4. Mapping Objects 91

The Python/C API,发布 2.7.18

through them are borrowed. ppos should not be altered during iteration. Its value represents offsets within the
internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.
例如

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */
...

}

The dictionary p should not be mutated during iteration. It is safe (since Python 2.1) to modify the values of the
keys as you iterate over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
int i = PyInt_AS_LONG(value) + 1;
PyObject *o = PyInt_FromLong(i);
if (o == NULL)

return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {

Py_DECREF(o);
return -1;

}
Py_DECREF(o);

}

在 2.5版更改: This function used an int * type for ppos. This might require changes in your code for properly
supporting 64-bit systems.

int PyDict_Merge(PyObject *a, PyObject *b, int override)
对映射对象 b进行迭代，将键值对添加到字典 a。b可以是一个字典，或任何支持PyMapping_Keys()
和PyObject_GetItem()的对象。如果 override为真值，则如果在 b中找到相同的键则 a中已存在的
相应键值对将被替换，否则如果在 a中没有相同的键则只是添加键值对。当成功时返回 0或者当引发
异常时返回 -1。

2.2新版功能.
int PyDict_Update(PyObject *a, PyObject *b)

这与 C 中的 PyDict_Merge(a, b, 1) 一样，也类似于 Python 中的 a.update(b)，差别在
于PyDict_Update() 在第二个参数没有“keys”属性时不会回退到迭代键值对的序列。当成功时
返回 0或者当引发异常时返回 -1。

2.2新版功能.
int PyDict_MergeFromSeq2(PyObject *a, PyObject *seq2, int override)

将 seq2中的键值对更新或合并到字典 a。seq2必须为产生长度为 2的用作键值对的元素的可迭代对象。
当存在重复的键时，如果 override真值则最后出现的键胜出。当成功时返回 0或者当引发异常时返回
-1。等价的 Python代码（返回值除外）:

def PyDict_MergeFromSeq2(a, seq2, override):
for key, value in seq2:

if override or key not in a:
a[key] = value

2.2新版功能.

92 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

7.5 其他对象

7.5.1 Class and Instance Objects

Note that the class objects described here represent old-style classes, which will go away in Python 3. When creating new
types for extension modules, you will want to work with type objects (section类型对象).
PyClassObject

The C structure of the objects used to describe built-in classes.
PyObject* PyClass_Type

This is the type object for class objects; it is the same object as types.ClassType in the Python layer.
int PyClass_Check(PyObject *o)

Return true if the object o is a class object, including instances of types derived from the standard class object.
Return false in all other cases.

int PyClass_IsSubclass(PyObject *klass, PyObject *base)
Return true if klass is a subclass of base. Return false in all other cases.

There are very few functions specific to instance objects.
PyTypeObject PyInstance_Type

Type object for class instances.
int PyInstance_Check(PyObject *obj)

Return true if obj is an instance.
PyObject* PyInstance_New(PyObject *class, PyObject *arg, PyObject *kw)

Return value: New reference. Create a new instance of a specific class. The parameters arg and kw are used as the
positional and keyword parameters to the object’s constructor.

PyObject* PyInstance_NewRaw(PyObject *class, PyObject *dict)
Return value: New reference. Create a new instance of a specific class without calling its constructor. class is the
class of new object. The dict parameter will be used as the object’s __dict__; if NULL, a new dictionary will
be created for the instance.

7.5.2 函数对象

有一些特定于 Python函数的函数。
PyFunctionObject

用于函数的 C结构体。
PyTypeObject PyFunction_Type

这是一个PyTypeObject实例并表示 Python函数类型。它作为 types.FunctionType向 Python程
序员公开。

int PyFunction_Check(PyObject *o)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL.

PyObject* PyFunction_New(PyObject *code, PyObject *globals)
Return value: New reference. 返回与代码对象 code关联的新函数对象。globals必须是一个字典，该函数可
以访问全局变量。

The function’s docstring, name and __module__ are retrieved from the code object, the argument defaults and
closure are set to NULL.

7.5. 其他对象 93

The Python/C API,发布 2.7.18

PyObject* PyFunction_GetCode(PyObject *op)
Return value: Borrowed reference. 返回与函数对象 op关联的代码对象。

PyObject* PyFunction_GetGlobals(PyObject *op)
Return value: Borrowed reference. 返回与函数对象 *op*相关联的全局字典。

PyObject* PyFunction_GetModule(PyObject *op)
Return value: Borrowed reference. 返回函数对象 op的 __module__属性，通常为一个包含了模块名称的字
符串，但可以通过 Python代码设为返回其他任意对象。

PyObject* PyFunction_GetDefaults(PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be a
tuple of arguments or NULL.

int PyFunction_SetDefaults(PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.
失败时引发 SystemError异常并返回 -1。

PyObject* PyFunction_GetClosure(PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This can be NULL or
a tuple of cell objects.

int PyFunction_SetClosure(PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.
失败时引发 SystemError异常并返回 -1。

7.5.3 方法对象

There are some useful functions that are useful for working with method objects.
PyTypeObject PyMethod_Type

这个PyTypeObject实例代表 Python方法类型。它作为 types.MethodType向 Python程序公开。
int PyMethod_Check(PyObject *o)

Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL.
PyObject* PyMethod_New(PyObject *func, PyObject *self, PyObject *class)

Return value: New reference. Return a new method object, with func being any callable object; this is the function
that will be called when the method is called. If this method should be bound to an instance, self should be the
instance and class should be the class of self, otherwise self should be NULL and class should be the class which
provides the unbound method..

PyObject* PyMethod_Class(PyObject *meth)
Return value: Borrowed reference. Return the class object from which the method meth was created; if this was
created from an instance, it will be the class of the instance.

PyObject* PyMethod_GET_CLASS(PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Class() which avoids error checking.

PyObject* PyMethod_Function(PyObject *meth)
Return value: Borrowed reference. 返回关联到方法 meth的函数对象。

PyObject* PyMethod_GET_FUNCTION(PyObject *meth)
Return value: Borrowed reference. 宏版本的PyMethod_Function()，略去了错误检测。

PyObject* PyMethod_Self(PyObject *meth)
Return value: Borrowed reference. Return the instance associated with the method meth if it is bound, otherwise
return NULL.

94 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

PyObject* PyMethod_GET_SELF(PyObject *meth)
Return value: Borrowed reference. 宏版本的PyMethod_Self()，省略了错误检测。

int PyMethod_ClearFreeList()
清空释放列表。返回所释放的条目数。

2.6新版功能.

7.5.4 文件对象

Python’s built-in file objects are implemented entirely on the FILE* support from the C standard library. This is an
implementation detail and may change in future releases of Python.
PyFileObject

This subtype of PyObject represents a Python file object.
PyTypeObject PyFile_Type

This instance of PyTypeObject represents the Python file type. This is exposed to Python programs as file
and types.FileType.

int PyFile_Check(PyObject *p)
Return true if its argument is a PyFileObject or a subtype of PyFileObject.
在 2.2版更改: Allowed subtypes to be accepted.

int PyFile_CheckExact(PyObject *p)
Return true if its argument is a PyFileObject, but not a subtype of PyFileObject.
2.2新版功能.

PyObject* PyFile_FromString(char *filename, char *mode)
Return value: New reference. On success, return a new file object that is opened on the file given by filename, with
a file mode given by mode, where mode has the same semantics as the standard C routine fopen(). On failure,
return NULL.

PyObject* PyFile_FromFile(FILE *fp, char *name, char *mode, int (*close)(FILE*))
Return value: New reference. Create a new PyFileObject from the already-open standard C file pointer, fp.
The function close will be called when the file should be closed. Return NULL and close the file using close on
failure. close is optional and can be set to NULL.

FILE* PyFile_AsFile(PyObject *p)
Return the file object associated with p as a FILE*.
If the caller will ever use the returned FILE* object while the GIL is released it must also call the
PyFile_IncUseCount() and PyFile_DecUseCount() functions described below as appropriate.

void PyFile_IncUseCount(PyFileObject *p)
Increments the PyFileObject’s internal use count to indicate that the underlyingFILE* is being used. This prevents
Python from calling f_close() on it from another thread. Callers of this must call PyFile_DecUseCount()
when they are finished with the FILE*. Otherwise the file object will never be closed by Python.
The GIL must be held while calling this function.
The suggested use is to call this after PyFile_AsFile() and before you release the GIL:

FILE *fp = PyFile_AsFile(p);
PyFile_IncUseCount(p);
/* ... */
Py_BEGIN_ALLOW_THREADS
do_something(fp);

(下页继续)

7.5. 其他对象 95

The Python/C API,发布 2.7.18

(续上页)
Py_END_ALLOW_THREADS
/* ... */
PyFile_DecUseCount(p);

2.6新版功能.
void PyFile_DecUseCount(PyFileObject *p)

Decrements the PyFileObject’s internal unlocked_count member to indicate that the caller is done with its own
use of the FILE*. This may only be called to undo a prior call to PyFile_IncUseCount().
The GIL must be held while calling this function (see the example above).
2.6新版功能.

PyObject* PyFile_GetLine(PyObject *p, int n)
Return value: New reference. 等价于 p.readline([n])，这个函数从对象 p中读取一行。p可以是文件
对象或具有 readline()方法的任何对象。如果 n是 0，则无论该行的长度如何，都会读取一行。如
果 n大于 “0“，则从文件中读取不超过 n个字节；可以返回行的一部分。在这两种情况下，如果立即到
达文件末尾，则返回空字符串。但是，如果 n小于 0，则无论长度如何都会读取一行，但是如果立即
到达文件末尾，则引发 EOFError。

PyObject* PyFile_Name(PyObject *p)
Return value: Borrowed reference. Return the name of the file specified by p as a string object.

void PyFile_SetBufSize(PyFileObject *p, int n)
Available on systems with setvbuf() only. This should only be called immediately after file object creation.

int PyFile_SetEncoding(PyFileObject *p, const char *enc)
Set the file’s encoding for Unicode output to enc. Return 1 on success and 0 on failure.
2.3新版功能.

int PyFile_SetEncodingAndErrors(PyFileObject *p, const char *enc, *errors)
Set the file’s encoding for Unicode output to enc, and its error mode to err. Return 1 on success and 0 on failure.
2.6新版功能.

int PyFile_SoftSpace(PyObject *p, int newflag)
This function exists for internal use by the interpreter. Set the softspace attribute of p to newflag and return
the previous value. p does not have to be a file object for this function to work properly; any object is supported
(thought its only interesting if the softspace attribute can be set). This function clears any errors, and will
return 0 as the previous value if the attribute either does not exist or if there were errors in retrieving it. There is
no way to detect errors from this function, but doing so should not be needed.

int PyFile_WriteObject(PyObject *obj, PyObject *p, int flags)
将对象 obj写入文件对象 p。flags唯一支持的标志是 Py_PRINT_RAW；如果给定，则写入对象的 str()
而不是 repr()。成功时返回 0，失败时返回 -1。将设置适当的例外。

int PyFile_WriteString(const char *s, PyObject *p)
将字符串 s写入文件对象 p。成功返回 0失败返回 -1；将设定相应的异常。

96 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

7.5.5 模块对象

There are only a few functions special to module objects.
PyTypeObject PyModule_Type

This instance of PyTypeObject represents the Python module type. This is exposed to Python programs as
types.ModuleType.

int PyModule_Check(PyObject *p)
Return true if p is a module object, or a subtype of a module object.
在 2.2版更改: Allowed subtypes to be accepted.

int PyModule_CheckExact(PyObject *p)
Return true if p is a module object, but not a subtype of PyModule_Type.
2.2新版功能.

PyObject* PyModule_New(const char *name)
Return value: New reference. Return a new module object with the __name__ attribute set to name. Only the
module’s __doc__ and __name__ attributes are filled in; the caller is responsible for providing a __file__
attribute.

PyObject* PyModule_GetDict(PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’s namespace; this ob-
ject is the same as the __dict__ attribute of the module object. This function never fails. It is recommended
extensions use other PyModule_*() and PyObject_*() functions rather than directly manipulate a module’
s __dict__.

char* PyModule_GetName(PyObject *module)
Return module’s __name__ value. If the module does not provide one, or if it is not a string, SystemError
is raised and NULL is returned.

char* PyModule_GetFilename(PyObject *module)
Return the name of the file from which module was loaded using module’s __file__ attribute. If this is not
defined, or if it is not a string, raise SystemError and return NULL.

int PyModule_AddObject(PyObject *module, const char *name, PyObject *value)
Add an object tomodule as name. This is a convenience function which can be used from the module’s initialization
function. This steals a reference to value. Return -1 on error, 0 on success.
2.0新版功能.

int PyModule_AddIntConstant(PyObject *module, const char *name, long value)
Add an integer constant tomodule as name. This convenience function can be used from the module’s initialization
function. Return -1 on error, 0 on success.
2.0新版功能.

int PyModule_AddStringConstant(PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’s initialization
function. The string value must be null-terminated. Return -1 on error, 0 on success.
2.0新版功能.

int PyModule_AddIntMacro(PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro(module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return -1 on error, 0 on success.
2.6新版功能.

int PyModule_AddStringMacro(PyObject *module, macro)

7.5. 其他对象 97

The Python/C API,发布 2.7.18

Add a string constant to module.
2.6新版功能.

7.5.6 迭代器对象

Python提供了两个通用迭代器对象。第一个是序列迭代器，它使用支持 __getitem__()方法的任意序列。
第二个使用可调用对象和一个 sentinel值，为序列中的每个项调用可调用对象，并在返回 sentinel值时结束迭
代。

PyTypeObject PySeqIter_Type
PySeqIter_New()返回迭代器对象的类型对象和内置序列类型内置函数 iter()的单参数形式。

2.2新版功能.
int PySeqIter_Check(op)

如果 op的类型为PySeqIter_Type则返回 true。
2.2新版功能.

PyObject* PySeqIter_New(PyObject *seq)
Return value: New reference. 返回一个与常规序列对象一起使用的迭代器 seq。当序列订阅操作引发
IndexError时，迭代结束。

2.2新版功能.
PyTypeObject PyCallIter_Type

由函数PyCallIter_New()和 iter()内置函数的双参数形式返回的迭代器对象类型对象。

2.2新版功能.
int PyCallIter_Check(op)

如果 op的类型为PyCallIter_Type则返回 true。
2.2新版功能.

PyObject* PyCallIter_New(PyObject *callable, PyObject *sentinel)
Return value: New reference. 返回一个新的迭代器。第一个参数 callable可以是任何可以在没有参数的情
况下调用的 Python可调用对象；每次调用都应该返回迭代中的下一个项目。当 callable返回等于 sentinel
的值时，迭代将终止。

2.2新版功能.

7.5.7 描述符对象

“描述符”是描述对象的某些属性的对象。它们存在于类型对象的字典中。

PyTypeObject PyProperty_Type
内建描述符类型的类型对象。

2.2新版功能.
PyObject* PyDescr_NewGetSet(PyTypeObject *type, struct PyGetSetDef *getset)

Return value: New reference. 2.2新版功能.
PyObject* PyDescr_NewMember(PyTypeObject *type, struct PyMemberDef *meth)

Return value: New reference. 2.2新版功能.
PyObject* PyDescr_NewMethod(PyTypeObject *type, struct PyMethodDef *meth)

Return value: New reference. 2.2新版功能.

98 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

PyObject* PyDescr_NewWrapper(PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference. 2.2新版功能.

PyObject* PyDescr_NewClassMethod(PyTypeObject *type, PyMethodDef *method)
Return value: New reference. 2.3新版功能.

int PyDescr_IsData(PyObject *descr)
如果描述符对象 descr描述数据属性，则返回 true；如果描述方法，则返回 false。descr必须是描述符对
象；没有错误检查。

2.2新版功能.
PyObject* PyWrapper_New(PyObject *, PyObject *)

Return value: New reference. 2.2新版功能.

7.5.8 切片对象

PyTypeObject PySlice_Type
The type object for slice objects. This is the same as slice and types.SliceType.

int PySlice_Check(PyObject *ob)
Return true if ob is a slice object; ob must not be NULL.

PyObject* PySlice_New(PyObject *start, PyObject *stop, PyObject *step)
Return value: New reference. Return a new slice object with the given values. The start, stop, and step parameters
are used as the values of the slice object attributes of the same names. Any of the values may be NULL, in which
case the None will be used for the corresponding attribute. Return NULL if the new object could not be allocated.

int PySlice_GetIndices(PySliceObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step)

Retrieve the start, stop and step indices from the slice object slice, assuming a sequence of length length. Treats
indices greater than length as errors.
Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed to
be converted to an integer, in which case -1 is returned with an exception set).
You probably do not want to use this function. If you want to use slice objects in versions of Python prior to 2.3,
you would probably do well to incorporate the source of PySlice_GetIndicesEx(), suitably renamed, in
the source of your extension.
在 2.5版更改: This function used an int type for length and an int * type for start, stop, and step. This might
require changes in your code for properly supporting 64-bit systems.

int PySlice_GetIndicesEx(PySliceObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)

Usable replacement for PySlice_GetIndices(). Retrieve the start, stop, and step indices from the slice
object slice assuming a sequence of length length, and store the length of the slice in slicelength. Out of bounds
indices are clipped in a manner consistent with the handling of normal slices.
Returns 0 on success and -1 on error with exception set.
2.3新版功能.
在 2.5版更改: This function used an int type for length and an int * type for start, stop, step, and slicelength.
This might require changes in your code for properly supporting 64-bit systems.

7.5. 其他对象 99

The Python/C API,发布 2.7.18

7.5.9 Ellipsis Object

PyObject *Py_Ellipsis
The Python Ellipsis object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts. Like Py_None it is a singleton object.

7.5.10 弱引用对象

Python支持“弱引用”作为一类对象。具体来说，有两种直接实现弱引用的对象。第一种就是简单的引用对
象，第二种尽可能地作用为一个原对象的代理。

int PyWeakref_Check(ob)
如果“ob”是一个引用或者一个代理对象，则返回 true。
2.2新版功能.

int PyWeakref_CheckRef(ob)
如果“ob”是一个引用，则返回 true。
2.2新版功能.

int PyWeakref_CheckProxy(ob)
如果“ob”是一个代理对象，则返回 true。
2.2新版功能.

PyObject* PyWeakref_NewRef(PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference object for the object ob. This will always return a new
reference, but is not guaranteed to create a new object; an existing reference object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.
2.2新版功能.

PyObject* PyWeakref_NewProxy(PyObject *ob, PyObject *callback)
Return value: New reference. Return a weak reference proxy object for the object ob. This will always return a
new reference, but is not guaranteed to create a new object; an existing proxy object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.
2.2新版功能.

PyObject* PyWeakref_GetObject(PyObject *ref)
Return value: Borrowed reference. 返回弱引用对象 ref的被引用对象。如果被引用对象不再存在，则返回
Py_None。

2.2新版功能.

警告: 该函数返回被引用对象的一个 **借来的引用 **。这意味着除非你很清楚在你使用期间这个
对象不可能被销毁，否则你应该始终对该对象调用Py_INCREF()。

PyObject* PyWeakref_GET_OBJECT(PyObject *ref)
Return value: Borrowed reference. 类似PyWeakref_GetObject()，但实现为一个不做类型检查的宏。

100 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

2.2新版功能.

7.5.11 胶囊

有关使用这些对象的更多信息请参阅 using-capsules。
2.7新版功能.
PyCapsule

这个PyObject的子类型代表着一个任意值，当需要通过 Python代码将任意值（以 void*指针的形
式）从 C扩展模块传递给其他 C代码时非常有用。它通常用于将指向一个模块中定义的 C语言函数指
针传递给其他模块，以便可以从那里调用它们。这允许通过正常的模块导入机制访问动态加载的模块
中的 C API。

PyCapsule_Destructor
这种类型的一个析构器返回一个胶囊，定义如下：

typedef void (*PyCapsule_Destructor)(PyObject *);

参阅PyCapsule_New()来获取 PyCapsule_Destructor返回值的语义。
int PyCapsule_CheckExact(PyObject *p)

如果参数是一个PyCapsule则返回 True
PyObject* PyCapsule_New(void *pointer, const char *name, PyCapsule_Destructor destructor)

Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument may not be
NULL.
On failure, set an exception and return NULL.
The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)
If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.
If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule_Import().

void* PyCapsule_GetPointer(PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.
The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule is
NULL, the name passed in must also be NULL. Python uses the C function strcmp() to compare capsule names.

PyCapsule_Destructor PyCapsule_GetDestructor(PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.
It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

void* PyCapsule_GetContext(PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.
It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

const char* PyCapsule_GetName(PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.
It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

7.5. 其他对象 101

The Python/C API,发布 2.7.18

void* PyCapsule_Import(const char *name, int no_block)
Import a pointer to a C object from a capsule attribute in a module. The name parameter should specify the full
name to the attribute, as in module.attribute. The name stored in the capsule must match this string exactly.
If no_block is true, import the module without blocking (using PyImport_ImportModuleNoBlock()). If
no_block is false, import the module conventionally (using PyImport_ImportModule()).
Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule_IsValid(PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact(), has a non-NULL pointer stored in it, and its internal name matches the
name parameter. (See PyCapsule_GetPointer() for information on how capsule names are compared.)
In other words, if PyCapsule_IsValid() returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get()) are guaranteed to succeed.
Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext(PyObject *capsule, void *context)
Set the context pointer inside capsule to context.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor(PyObject *capsule, PyCapsule_Destructor destructor)
Set the destructor inside capsule to destructor.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName(PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name stored
in the capsule was not NULL, no attempt is made to free it.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer(PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.
Return 0 on success. Return nonzero and set an exception on failure.

7.5.12 CObjects

警告: The CObject API is deprecated as of Python 2.7. Please switch to the new胶囊 API.

PyCObject
This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to access
C APIs defined in dynamically loaded modules.

int PyCObject_Check(PyObject *p)
Return true if its argument is a PyCObject.

PyObject* PyCObject_FromVoidPtr(void* cobj, void (*destr)(void *))
Return value: New reference. Create a PyCObject from the void * cobj. The destr function will be called
when the object is reclaimed, unless it is NULL.

102 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

PyObject* PyCObject_FromVoidPtrAndDesc(void* cobj, void* desc, void (*destr)(void *, void *))
Return value: New reference. Create a PyCObject from the void * cobj. The destr function will be called when
the object is reclaimed. The desc argument can be used to pass extra callback data for the destructor function.

void* PyCObject_AsVoidPtr(PyObject* self)
Return the object void * that the PyCObject self was created with.

void* PyCObject_GetDesc(PyObject* self)
Return the description void * that the PyCObject self was created with.

int PyCObject_SetVoidPtr(PyObject* self, void* cobj)
Set the void pointer inside self to cobj. The PyCObject must not have an associated destructor. Return true on
success, false on failure.

7.5.13 Cell对象

“Cell”对象用于实现由多个作用域引用的变量。对于每个这样的变量，一个“Cell”对象为了存储该值而被
创建；引用该值的每个堆栈框架的局部变量包含同样使用该变量的对外部作用域的“Cell”引用。访问该值
时，将使用“Cell”中包含的值而不是单元格对象本身。这种对“Cell”对象的非关联化的引用需要支持生成
的字节码；访问时不会自动非关联化这些内容。“Cell”对象在其他地方可能不太有用。
PyCellObject

用于 Cell对象的 C结构体。
PyTypeObject PyCell_Type

与 Cell对象对应的类型对 象。
int PyCell_Check(ob)

Return true if ob is a cell object; ob must not be NULL.
PyObject* PyCell_New(PyObject *ob)

Return value: New reference. Create and return a new cell object containing the value ob. The parameter may be
NULL.

PyObject* PyCell_Get(PyObject *cell)
Return value: New reference. 返回 cell对象 cell的内容。

PyObject* PyCell_GET(PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-NULL
and a cell object.

int PyCell_Set(PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell. value
may be NULL. cell must be non-NULL; if it is not a cell object, -1 will be returned. On success, 0 will be returned.

void PyCell_SET(PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for safety;
cell must be non-NULL and must be a cell object.

7.5. 其他对象 103

The Python/C API,发布 2.7.18

7.5.14 生成器对象

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over a
function that yields values, rather than explicitly calling PyGen_New().
PyGenObject

用于生成器对象的 C结构体。
PyTypeObject PyGen_Type

与生成器对象对应的类型对 象。
int PyGen_Check(ob)

Return true if ob is a generator object; ob must not be NULL.
int PyGen_CheckExact(ob)

Return true if ob’s type is PyGen_Type is a generator object; ob must not be NULL.
PyObject* PyGen_New(PyFrameObject *frame)

Return value: New reference. Create and return a new generator object based on the frame object. A reference to
frame is stolen by this function. The parameter must not be NULL.

7.5.15 DateTime对象

datetime 模块提供了各种日期和时间对象。在使用任何这些函数之前，必须在你的源码中包含头文件
datetime.h (请注意此文件并未包含在 Python.h中)，并且宏 PyDateTime_IMPORT必须被发起调用，通
常是作为模块初始化函数的一部分。这个宏会将指向特定 C结构的指针放入一个静态变量 PyDateTimeAPI
中，它会由下面的宏来使用。

类型检查宏：

int PyDate_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob must
not be NULL.
2.4新版功能.

int PyDate_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL.
2.4新版功能.

int PyDateTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType or a subtype of PyDateTime_DateTimeType.
ob must not be NULL.
2.4新版功能.

int PyDateTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL.
2.4新版功能.

int PyTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob must
not be NULL.
2.4新版功能.

int PyTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL.
2.4新版功能.

104 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

int PyDelta_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or a subtype of PyDateTime_DeltaType. ob must
not be NULL.
2.4新版功能.

int PyDelta_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL.
2.4新版功能.

int PyTZInfo_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType. ob
must not be NULL.
2.4新版功能.

int PyTZInfo_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL.
2.4新版功能.

用于创建对象的宏：

PyObject* PyDate_FromDate(int year, int month, int day)
Return value: New reference. Return a datetime.date object with the specified year, month and day.
2.4新版功能.

PyObject* PyDateTime_FromDateAndTime(int year, int month, int day, int hour, int minute, int second,
int usecond)

Return value: New reference. Return a datetime.datetime object with the specified year, month, day, hour,
minute, second and microsecond.
2.4新版功能.

PyObject* PyTime_FromTime(int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second and
microsecond.
2.4新版功能.

PyObject* PyDelta_FromDSU(int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of days,
seconds and microseconds. Normalization is performed so that the resulting number of microseconds and seconds
lie in the ranges documented for datetime.timedelta objects.
2.4新版功能.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including sub-
classes (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:
int PyDateTime_GET_YEAR(PyDateTime_Date *o)

以正整数的形式返回年份值。

2.4新版功能.
int PyDateTime_GET_MONTH(PyDateTime_Date *o)

返回月，从 0到 12的整数。
2.4新版功能.

int PyDateTime_GET_DAY(PyDateTime_Date *o)
返回日期，从 0到 31的整数。
2.4新版功能.

7.5. 其他对象 105

The Python/C API,发布 2.7.18

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime, in-
cluding subclasses. The argument must not be NULL, and the type is not checked:
int PyDateTime_DATE_GET_HOUR(PyDateTime_DateTime *o)

返回小时，从 0到 23的整数。
2.4新版功能.

int PyDateTime_DATE_GET_MINUTE(PyDateTime_DateTime *o)
返回分钟，从 0到 59的整数。
2.4新版功能.

int PyDateTime_DATE_GET_SECOND(PyDateTime_DateTime *o)
返回秒，从 0到 59的整数。
2.4新版功能.

int PyDateTime_DATE_GET_MICROSECOND(PyDateTime_DateTime *o)
返回微秒，从 0到 999999的整数。
2.4新版功能.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including sub-
classes. The argument must not be NULL, and the type is not checked:
int PyDateTime_TIME_GET_HOUR(PyDateTime_Time *o)

返回小时，从 0到 23的整数。
2.4新版功能.

int PyDateTime_TIME_GET_MINUTE(PyDateTime_Time *o)
返回分钟，从 0到 59的整数。
2.4新版功能.

int PyDateTime_TIME_GET_SECOND(PyDateTime_Time *o)
返回秒，从 0到 59的整数。
2.4新版功能.

int PyDateTime_TIME_GET_MICROSECOND(PyDateTime_Time *o)
返回微秒，从 0到 999999的整数。
2.4新版功能.

一些便于模块实现 DB API的宏:
PyObject* PyDateTime_FromTimestamp(PyObject *args)

Return value: New reference. Create and return a new datetime.datetime object given an argument tuple
suitable for passing to datetime.datetime.fromtimestamp().
2.4新版功能.

PyObject* PyDate_FromTimestamp(PyObject *args)
Return value: New reference. Create and return a new datetime.date object given an argument tuple suitable
for passing to datetime.date.fromtimestamp().
2.4新版功能.

106 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

7.5.16 集合对象

2.5新版功能.
This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using the either the abstract object protocol (including PyObject_CallMethod(),
PyObject_RichCompareBool(), PyObject_Hash(), PyObject_Repr(), PyObject_IsTrue(),
PyObject_Print(), and PyObject_GetIter()) or the abstract number protocol (includ-
ing PyNumber_And(), PyNumber_Subtract(), PyNumber_Or(), PyNumber_Xor(),
PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract(), PyNumber_InPlaceOr(), and
PyNumber_InPlaceXor()).
PySetObject

This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of this
structure should be considered public and are subject to change. All access should be done through the documented
API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type
This is an instance of PyTypeObject representing the Python set type.

PyTypeObject PyFrozenSet_Type
This is an instance of PyTypeObject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work with
any iterable Python object.
int PySet_Check(PyObject *p)

Return true if p is a set object or an instance of a subtype.
2.6新版功能.

int PyFrozenSet_Check(PyObject *p)
Return true if p is a frozenset object or an instance of a subtype.
2.6新版功能.

int PyAnySet_Check(PyObject *p)
Return true if p is a set object, a frozenset object, or an instance of a subtype.

int PyAnySet_CheckExact(PyObject *p)
Return true if p is a set object or a frozenset object but not an instance of a subtype.

int PyFrozenSet_CheckExact(PyObject *p)
Return true if p is a frozenset object but not an instance of a subtype.

PyObject* PySet_New(PyObject *iterable)
Return value: New reference. Return a new set containing objects returned by the iterable. The iterable may be
NULL to create a new empty set. Return the new set on success or NULL on failure. Raise TypeError if iterable
is not actually iterable. The constructor is also useful for copying a set (c=set(s)).

PyObject* PyFrozenSet_New(PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The iter-
able may be NULL to create a new empty frozenset. Return the new set on success or NULL on failure. Raise
TypeError if iterable is not actually iterable.
在 2.6版更改: Now guaranteed to return a brand-new frozenset. Formerly, frozensets of zero-length were a
singleton. This got in the way of building-up new frozensets with PySet_Add().

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

7.5. 其他对象 107

The Python/C API,发布 2.7.18

Py_ssize_t PySet_Size(PyObject *anyset)
Return the length of a set or frozenset object. Equivalent to len(anyset). Raises a
PyExc_SystemError if anyset is not a set, frozenset, or an instance of a subtype.
在 2.5版更改: This function returned an int. This might require changes in your code for properly supporting
64-bit systems.

Py_ssize_t PySet_GET_SIZE(PyObject *anyset)
Macro form of PySet_Size() without error checking.

int PySet_Contains(PyObject *anyset, PyObject *key)
Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Python __contains__()
method, this function does not automatically convert unhashable sets into temporary frozensets. Raise a
TypeError if the key is unhashable. Raise PyExc_SystemError if anyset is not a set, frozenset,
or an instance of a subtype.

int PySet_Add(PyObject *set, PyObject *key)
Add key to a set instance. Does not apply to frozenset instances. Return 0 on success or -1 on failure.
Raise a TypeError if the key is unhashable. Raise a MemoryError if there is no room to grow. Raise a
SystemError if set is not an instance of set or its subtype.
在 2.6版更改: Now works with instances of frozenset or its subtypes. Like PyTuple_SetItem() in that
it can be used to fill-in the values of brand new frozensets before they are exposed to other code.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its
subtypes.
int PySet_Discard(PyObject *set, PyObject *key)

Return 1 if found and removed, 0 if not found (no action taken), and -1 if an error is encountered. Does
not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike the Python
discard() method, this function does not automatically convert unhashable sets into temporary frozensets.
Raise PyExc_SystemError if set is not an instance of set or its subtype.

PyObject* PySet_Pop(PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the set, and removes the object from
the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError if set is not an
instance of set or its subtype.

int PySet_Clear(PyObject *set)
清空现有字典的所有键值对。

7.5.17 代码对象

代码对象是 CPython实现的低级细节。每个代表一块尚未绑定到函数中的可执行代码。
PyCodeObject

用于描述代码对象的对象的 C结构。此类型字段可随时更改。
PyTypeObject PyCode_Type

这是一个PyTypeObject实例，其表示 Python的 code类型。

int PyCode_Check(PyObject *co)
如果 co是一个 code对象则返回 true。

int PyCode_GetNumFree(PyObject *co)
返回 co中的自由变量数。

108 Chapter 7. 具体的对象层

The Python/C API,发布 2.7.18

PyCodeObject *PyCode_New(int argcount, int nlocals, int stacksize, int flags, PyObject *code, PyObject *consts,
PyObject *names, PyObject *varnames, PyObject *freevars, PyObject *cellvars,
PyObject *filename, PyObject *name, int firstlineno, PyObject *lnotab)

返回一个新的代码对象。如果你需要一个虚拟代码对象来创建一个代码帧，请使
用PyCode_NewEmpty()。调用PyCode_New() 直接可以绑定到准确的 Python 版本，因为字节码
的定义经常变化。

int PyCode_NewEmpty(const char *filename, const char *funcname, int firstlineno)
Return a new empty code object with the specified filename, function name, and first line number. It is illegal to
exec or eval() the resulting code object.

7.5. 其他对象 109

The Python/C API,发布 2.7.18

110 Chapter 7. 具体的对象层

CHAPTER8

Initialization, Finalization, and Threads

8.1 Initializing and finalizing the interpreter

void Py_Initialize()
Initialize the Python interpreter. In an application embedding Python, this should be called before using any
other Python/C API functions; with the exception of Py_SetProgramName(), Py_SetPythonHome(),
PyEval_InitThreads(), PyEval_ReleaseLock(), and PyEval_AcquireLock(). This initial-
izes the table of loaded modules (sys.modules), and creates the fundamental modules __builtin__,
__main__ and sys. It also initializes the module search path (sys.path). It does not set sys.
argv; use PySys_SetArgvEx() for that. This is a no-op when called for a second time (without calling
Py_Finalize() first). There is no return value; it is a fatal error if the initialization fails.

void Py_InitializeEx(int initsigs)
This function works like Py_Initialize() if initsigs is 1. If initsigs is 0, it skips initialization registration of
signal handlers, which might be useful when Python is embedded.
2.4新版功能.

int Py_IsInitialized()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. AfterPy_Finalize()
is called, this returns false until Py_Initialize() is called again.

void Py_Finalize()
Undo all initializations made by Py_Initialize() and subsequent use of Python/C API functions, and destroy
all sub-interpreters (see Py_NewInterpreter() below) that were created and not yet destroyed since the last
call to Py_Initialize(). Ideally, this frees all memory allocated by the Python interpreter. This is a no-op
when called for a second time (without calling Py_Initialize() again first). There is no return value; errors
during finalization are ignored.
This function is provided for a number of reasons. An embedding application might want to restart Python without
having to restart the application itself. An application that has loaded the Python interpreter from a dynamically
loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During
a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before
exiting from the application.

111

The Python/C API,发布 2.7.18

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del__() methods) to fail when they depend on other objects (even functions) or modules. Dy-
namically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by
the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references
between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions
may not work properly if their initialization routine is called more than once; this can happen if an application calls
Py_Initialize() and Py_Finalize() more than once.

8.2 Process-wide parameters

void Py_SetProgramName(char *name)
This function should be called before Py_Initialize() is called for the first time, if it is called at all. It tells
the interpreter the value of the argv[0] argument to the main() function of the program. This is used by
Py_GetPath() and some other functions below to find the Python run-time libraries relative to the interpreter
executable. The default value is 'python'. The argument should point to a zero-terminated character string in
static storage whose contents will not change for the duration of the program’s execution. No code in the Python
interpreter will change the contents of this storage.

char* Py_GetProgramName()
Return the program name set with Py_SetProgramName(), or the default. The returned string points into
static storage; the caller should not modify its value.

char* Py_GetPrefix()
Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName() and some environment variables; for example, if the
program name is '/usr/local/bin/python', the prefix is '/usr/local'. The returned string points
into static storage; the caller should not modify its value. This corresponds to the prefix variable in the top-
level Makefile and the --prefix argument to the configure script at build time. The value is available to
Python code as sys.prefix. It is only useful on Unix. See also the next function.

char* Py_GetExecPrefix()
Return the exec-prefix for installed platform-dependent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName() and some environment variables; for example, if
the program name is '/usr/local/bin/python', the exec-prefix is '/usr/local'. The returned string
points into static storage; the caller should not modify its value. This corresponds to the exec_prefix variable
in the top-level Makefile and the --exec-prefix argument to the configure script at build time. The
value is available to Python code as sys.exec_prefix. It is only useful on Unix.
Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared
libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed
in the /usr/local/plat subtree while platform independent may be installed in /usr/local.
Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running
the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are
another platform, and Intel machines running Linux are yet another platform. Different major revisions of the
same operating system generally also form different platforms. Non-Unix operating systems are a different story;
the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set
to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from
the Python version by which they were compiled!).
System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

char* Py_GetProgramFullPath()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (set by Py_SetProgramName() above). The returned string

112 Chapter 8. Initialization, Finalization, and Threads

The Python/C API,发布 2.7.18

points into static storage; the caller should not modify its value. The value is available to Python code as sys.
executable.

char* Py_GetPath()
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName() above) and some environment variables. The returned string consists of a se-
ries of directory names separated by a platform dependent delimiter character. The delimiter character is ':'
on Unix and Mac OS X, ';' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys.path is initialized with this value on interpreter startup; it can be (and usually is)
modified later to change the search path for loading modules.

const char* Py_GetVersion()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"

The first word (up to the first space character) is the current Python version; the first three characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not modify
its value. The value is available to Python code as sys.version.

const char* Py_GetPlatform()
Return the platform identifier for the current platform. On Unix, this is formed from the“official”name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is
also known as SunOS 5.x, the value is 'sunos5'. On Mac OS X, it is 'darwin'. On Windows, it is 'win'.
The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.platform.

const char* Py_GetCopyright()
Return the official copyright string for the current Python version, for example
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.copyright.

const char* Py_GetCompiler()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

const char* Py_GetBuildInfo()
Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

void PySys_SetArgvEx(int argc, char **argv, int updatepath)
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main()
function with the difference that the first entry should refer to the script file to be executed rather than the executable
hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty string.
If this function fails to initialize sys.argv, a fatal condition is signalled using Py_FatalError().
If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys.path
according to the following algorithm:

8.2. Process-wide parameters 113

The Python/C API,发布 2.7.18

• If the name of an existing script is passed in argv[0], the absolute path of the directory where the script
is located is prepended to sys.path.

• Otherwise (that is, if argc is 0 or argv[0] doesn’t point to an existing file name), an empty string is
prepended to sys.path, which is the same as prepending the current working directory (".").

注解: It is recommended that applications embedding the Python interpreter for purposes other than executing a
single script pass 0 as updatepath, and update sys.path themselves if desired. See CVE-2008-5983.
On versions before 2.6.6, you can achieve the same effect by manually popping the first sys.path element after
having called PySys_SetArgv(), for example using:

PyRun_SimpleString("import sys; sys.path.pop(0)\n");

2.6.6新版功能.
void PySys_SetArgv(int argc, char **argv)

This function works like PySys_SetArgvEx() with updatepath set to 1.
void Py_SetPythonHome(char *home)

Set the default“home”directory, that is, the location of the standard Python libraries. See PYTHONHOME for
the meaning of the argument string.
The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the contents of this
storage.

char* Py_GetPythonHome()
Return the default“home”, that is, the value set by a previous call to Py_SetPythonHome(), or the value of
the PYTHONHOME environment variable if it is set.

8.3 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python
objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example,
when two threads simultaneously increment the reference count of the same object, the reference count could end up
being incremented only once instead of twice.
Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see sys.
setcheckinterval()). The lock is also released around potentially blocking I/O operations like reading or writing
a file, so that other Python threads can run in the meantime.
The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_Get().

114 Chapter 8. Initialization, Finalization, and Threads

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API,发布 2.7.18

8.3.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
... Do some blocking I/O operation ...
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
... Do some blocking I/O operation ...
Py_END_ALLOW_THREADS

The Py_BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block. These two macros are still available when Python is compiled
without thread support (they simply have an empty expansion).
When thread support is enabled, the block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
...Do some blocking I/O operation...
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is
released (since another thread could immediately acquire the lock and store its own thread state in the global variable).
Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread
state pointer.

注解: Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard zlib and hashlibmodules release the GIL when
compressing or hashing data.

8.3.2 非 Python创建的线程

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is automat-
ically associated to them and the code showed above is therefore correct. However, when threads are created from C (for
example by a third-party library with its own thread management), they don’t hold the GIL, nor is there a thread state
structure for them.
If you need to call Python code from these threads (often this will be part of a callback API provided by the aforementioned
third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then
acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you
are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.
The PyGILState_Ensure() and PyGILState_Release() functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

8.3. Thread State and the Global Interpreter Lock 115

The Python/C API,发布 2.7.18

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);

Note that the PyGILState_*() functions assume there is only one global interpreter (created automatically by
Py_Initialize()). Python supports the creation of additional interpreters (using Py_NewInterpreter()),
but mixing multiple interpreters and the PyGILState_*() API is unsupported.
Another important thing to note about threads is their behaviour in the face of the C fork() call. On most systems with
fork(), after a process forks only the thread that issued the fork will exist. That also means any locks held by other
threads will never be released. Python solves this for os.fork() by acquiring the locks it uses internally before the
fork, and releasing them afterwards. In addition, it resets any lock-objects in the child. When extending or embedding
Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired before or reset after
a fork. OS facilities such as pthread_atfork() would need to be used to accomplish the same thing. Additionally,
when extending or embedding Python, calling fork() directly rather than through os.fork() (and returning to or
calling into Python) may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct
after the fork. PyOS_AfterFork() tries to reset the necessary locks, but is not always able to.

8.3.3 高阶 API

These are the most commonly used types and functions when writing C extension code, or when embedding the Python
interpreter:
PyInterpreterState

This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same
interpreter share their module administration and a few other internal items. There are no public members in this
structure.
Threads belonging to different interpreters initially share nothing, except process state like available memory, open
file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter
they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread’s interpreter state.

void PyEval_InitThreads()
Initialize and acquire the global interpreter lock. It should be called in the main thread before creat-
ing a second thread or engaging in any other thread operations such as PyEval_ReleaseLock() or
PyEval_ReleaseThread(tstate). It is not needed before calling PyEval_SaveThread() or
PyEval_RestoreThread().
This is a no-op when called for a second time. It is safe to call this function before calling Py_Initialize().

注解: When only the main thread exists, no GIL operations are needed. This is a common situation (most Python
programs do not use threads), and the lock operations slow the interpreter down a bit. Therefore, the lock is not
created initially. This situation is equivalent to having acquired the lock: when there is only a single thread, all
object accesses are safe. Therefore, when this function initializes the global interpreter lock, it also acquires it.
Before the Python _thread module creates a new thread, knowing that either it has the lock or the lock hasn’t

116 Chapter 8. Initialization, Finalization, and Threads

The Python/C API,发布 2.7.18

been created yet, it calls PyEval_InitThreads(). When this call returns, it is guaranteed that the lock has
been created and that the calling thread has acquired it.
It is not safe to call this function when it is unknown which thread (if any) currently has the global interpreter lock.
This function is not available when thread support is disabled at compile time.

int PyEval_ThreadsInitialized()
Returns a non-zero value if PyEval_InitThreads() has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded. This
function is not available when thread support is disabled at compile time.
2.4新版功能.

PyThreadState* PyEval_SaveThread()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread state
to NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it. (This function is available even when thread support is disabled at compile time.)

void PyEval_RestoreThread(PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state to
tstate, which must not beNULL. If the lock has been created, the current thread must not have acquired it, otherwise
deadlock ensues. (This function is available even when thread support is disabled at compile time.)

PyThreadState* PyThreadState_Get()
Return the current thread state. The global interpreter lock must be held. When the current thread state is NULL,
this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState* PyThreadState_Swap(PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument tstate, which may be NULL. The global
interpreter lock must be held and is not released.

void PyEval_ReInitThreads()
This function is called from PyOS_AfterFork() to ensure that newly created child processes don’t hold locks
referring to threads which are not running in the child process.

The following functions use thread-local storage, and are not compatible with sub-interpreters:
PyGILState_STATE PyGILState_Ensure()

Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or
of the global interpreter lock. This may be called as many times as desired by a thread as long as each call is
matched with a call to PyGILState_Release(). In general, other thread-related APIs may be used be-
tween PyGILState_Ensure() and PyGILState_Release() calls as long as the thread state is restored
to its previous state before the Release(). For example, normal usage of the Py_BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS macros is acceptable.
The return value is an opaque “handle”to the thread state when PyGILState_Ensure() was called, and
must be passed to PyGILState_Release() to ensure Python is left in the same state. Even though recursive
calls are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure() must save the
handle for its call to PyGILState_Release().
When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure
is a fatal error.
2.3新版功能.

void PyGILState_Release(PyGILState_STATE)
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the
corresponding PyGILState_Ensure() call (but generally this state will be unknown to the caller, hence the
use of the GILState API).

8.3. Thread State and the Global Interpreter Lock 117

The Python/C API,发布 2.7.18

Every call to PyGILState_Ensure()must be matched by a call to PyGILState_Release() on the same
thread.
2.3新版功能.

PyThreadState* PyGILState_GetThisThreadState()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the current
thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made
on the main thread. This is mainly a helper/diagnostic function.
2.3新版功能.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.
Py_BEGIN_ALLOW_THREADS

This macro expands to { PyThreadState *_save; _save = PyEval_SaveThread();. Note that
it contains an opening brace; it must be matched with a following Py_END_ALLOW_THREADS macro. See above
for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py_END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread(_save); }. Note that it contains a closing brace; it must
be matched with an earlierPy_BEGIN_ALLOW_THREADSmacro. See above for further discussion of this macro.
It is a no-op when thread support is disabled at compile time.

Py_BLOCK_THREADS
This macro expands to PyEval_RestoreThread(_save);: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace. It is a no-op when thread support is disabled at
compile time.

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread();: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration. It is a no-op when
thread support is disabled at compile time.

8.3.4 Low-level API

All of the following functions are only available when thread support is enabled at compile time, and must be called only
when the global interpreter lock has been created.
PyInterpreterState* PyInterpreterState_New()

Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is necessary
to serialize calls to this function.

void PyInterpreterState_Clear(PyInterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState_Delete(PyInterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have
been reset with a previous call to PyInterpreterState_Clear().

PyThreadState* PyThreadState_New(PyInterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not be
held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear(PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

118 Chapter 8. Initialization, Finalization, and Threads

The Python/C API,发布 2.7.18

void PyThreadState_Delete(PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset
with a previous call to PyThreadState_Clear().

PyObject* PyThreadState_GetDict()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific state informa-
tion. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function
when no current thread state is available. If this function returns NULL, no exception has been raised and the caller
should assume no current thread state is available.
在 2.3 版更改: Previously this could only be called when a current thread is active, and NULL meant that an
exception was raised.

int PyThreadState_SetAsyncExc(long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you must
write your own C extension to call this. Must be called with the GIL held. Returns the number of thread states
modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL, the pending exception
(if any) for the thread is cleared. This raises no exceptions.
2.3新版功能.

void PyEval_AcquireThread(PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to tstate, which should not be NULL. The lock
must have been created earlier. If this thread already has the lock, deadlock ensues.
PyEval_RestoreThread() is a higher-level function which is always available (even when thread support
isn’t enabled or when threads have not been initialized).

void PyEval_ReleaseThread(PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The tstate argument, which must not be NULL, is only used to check
that it represents the current thread state—if it isn’t, a fatal error is reported.
PyEval_SaveThread() is a higher-level function which is always available (even when thread support isn’t
enabled or when threads have not been initialized).

void PyEval_AcquireLock()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock, a
deadlock ensues.

警告: This function does not change the current thread state. Please use PyEval_RestoreThread() or
PyEval_AcquireThread() instead.

void PyEval_ReleaseLock()
Release the global interpreter lock. The lock must have been created earlier.

警告: This function does not change the current thread state. Please use PyEval_SaveThread() or
PyEval_ReleaseThread() instead.

8.3. Thread State and the Global Interpreter Lock 119

The Python/C API,发布 2.7.18

8.4 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.
You can switch between sub-interpreters using the PyThreadState_Swap() function. You can create and destroy
them using the following functions:
PyThreadState* Py_NewInterpreter()

Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the fun-
damental modules builtins, __main__ and sys. The table of loaded modules (sys.modules) and the
module search path (sys.path) are also separate. The new environment has no sys.argv variable. It has
new standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr (however these refer to the
same underlying file descriptors).
The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation
of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state is stored in
the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the
global interpreter lock must be held before calling this function and is still held when it returns; however, unlike
most other Python/C API functions, there needn’t be a current thread state on entry.)
Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is im-
ported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When the
same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents
of this copy; the extension’s init function is not called. Note that this is different from what happens when
an extension is imported after the interpreter has been completely re-initialized by calling Py_Finalize() and
Py_Initialize(); in that case, the extension’s initmodule function is called again.

void Py_EndInterpreter(PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state is NULL. All
thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before calling
this function and is still held when it returns.) Py_Finalize() will destroy all sub-interpreters that haven’t
been explicitly destroyed at that point.

8.4.1 错误和警告

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t
perfect —for example, using low-level file operations like os.close() they can (accidentally or maliciously) affect
each other’s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when the extension makes use of (static) global variables, or when the extension
manipulates its module’s dictionary after its initialization. It is possible to insert objects created in one sub-interpreter
into a namespace of another sub-interpreter; this should be done with great care to avoid sharing user-defined functions,
methods, instances or classes between sub-interpreters, since import operations executed by such objects may affect the
wrong (sub-)interpreter’s dictionary of loaded modules.
Also note that combining this functionality with PyGILState_*() APIs is delicate, because these APIs assume a
bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters. It
is highly recommended that you don’t switch sub-interpreters between a pair of matching PyGILState_Ensure()
and PyGILState_Release() calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using sub-interpreters.

120 Chapter 8. Initialization, Finalization, and Threads

The Python/C API,发布 2.7.18

8.5 异步通知

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the
form of a function pointer and a void pointer argument.
int Py_AddPendingCall(int (*func)(void *), void *arg)

Schedule a function to be called from the main interpreter thread. On success, 0 is returned and func is queued for
being called in the main thread. On failure, -1 is returned without setting any exception.
When successfully queued, func will be eventually called from the main interpreter thread with the argument arg.
It will be called asynchronously with respect to normally running Python code, but with both these conditions met:

• on a bytecode boundary;
• with the main thread holding the global interpreter lock (func can therefore use the full C API).

funcmust return 0 on success, or -1 on failure with an exception set. func won’t be interrupted to perform another
asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock
is released.
This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

警告: This is a low-level function, only useful for very special cases. There is no guarantee that func will be
called as quick as possible. If the main thread is busy executing a system call, func won’t be called before the
system call returns. This function is generally not suitable for calling Python code from arbitrary C threads.
Instead, use the PyGILState API.

2.7新版功能.

8.6 分析和跟踪

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are
used for profiling, debugging, and coverage analysis tools.
Starting with Python 2.2, the implementation of this facility was substantially revised, and an interface from C was added.
This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects,
making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace
functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported
to the Python-level trace functions in previous versions.
int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)

The type of the trace function registered using PyEval_SetProfile() and PyEval_SetTrace(). The
first parameter is the object passed to the registration function as obj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, or PyTrace_C_RETURN, and arg
depends on the value of what:

8.5. 异步通知 121

The Python/C API,发布 2.7.18

what 的值 arg 的含义
PyTrace_CALL 总是Py_None.
PyTrace_EXCEPTION sys.exc_info()返回的异常信息。
PyTrace_LINE 总是Py_None.
PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL 正在调用函数对象。
PyTrace_C_EXCEPTION 正在调用函数对象。
PyTrace_C_RETURN 正在调用函数对象。

int PyTrace_CALL
The value of the what parameter to a Py_tracefunc function when a new call to a function or method is being
reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not
reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Py_tracefunc function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception becomes
set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to
unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives
these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a trace function (but not a profiling function) when a line-number event
is being reported.

int PyTrace_RETURN
The value for the what parameter to Py_tracefunc functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_tracefunc functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_tracefunc functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_tracefunc functions when a C function has returned.

void PyEval_SetProfile(Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be
any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj for each
thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events
except PyTrace_LINE and PyTrace_EXCEPTION.

void PyEval_SetTrace(Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval_SetProfile(), except the tracing func-
tion does receive line-number events and does not receive any event related to C function objects being
called. Any trace function registered using PyEval_SetTrace() will not receive PyTrace_C_CALL,
PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what parameter.

PyObject* PyEval_GetCallStats(PyObject *self)
Return a tuple of function call counts. There are constants defined for the positions within the tuple:

122 Chapter 8. Initialization, Finalization, and Threads

The Python/C API,发布 2.7.18

Name Value
PCALL_ALL 0
PCALL_FUNCTION 1
PCALL_FAST_FUNCTION 2
PCALL_FASTER_FUNCTION 3
PCALL_METHOD 4
PCALL_BOUND_METHOD 5
PCALL_CFUNCTION 6
PCALL_TYPE 7
PCALL_GENERATOR 8
PCALL_OTHER 9
PCALL_POP 10

PCALL_FAST_FUNCTIONmeans no argument tuple needs to be created. PCALL_FASTER_FUNCTIONmeans
that the fast-path frame setup code is used.
If there is a method call where the call can be optimized by changing the argument tuple and calling the function
directly, it gets recorded twice.
This function is only present if Python is compiled with CALL_PROFILE defined.

8.7 高级调试器支持

These functions are only intended to be used by advanced debugging tools.
PyInterpreterState* PyInterpreterState_Head()

Return the interpreter state object at the head of the list of all such objects.
2.2新版功能.

PyInterpreterState* PyInterpreterState_Next(PyInterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.
2.2新版功能.

PyThreadState * PyInterpreterState_ThreadHead(PyInterpreterState *interp)
Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter interp.
2.2新版功能.

PyThreadState* PyThreadState_Next(PyThreadState *tstate)
Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState object.
2.2新版功能.

8.7. 高级调试器支持 123

The Python/C API,发布 2.7.18

124 Chapter 8. Initialization, Finalization, and Threads

CHAPTER9

内存管理

9.1 概述

Memory management in Python involves a private heap containing all Python objects and data structures. The manage-
ment of this private heap is ensured internally by the Python memory manager. The Python memory manager has different
components which deal with various dynamic storage management aspects, like sharing, segmentation, preallocation or
caching.
At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all Python-
related data by interacting with the memory manager of the operating system. On top of the raw memory allocator, several
object-specific allocators operate on the same heap and implement distinct memory management policies adapted to the
peculiarities of every object type. For example, integer objects are managed differently within the heap than strings, tuples
or dictionaries because integers imply different storage requirements and speed/space tradeoffs. The Python memory
manager thus delegates some of the work to the object-specific allocators, but ensures that the latter operate within the
bounds of the private heap.
It is important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document.
To avoid memory corruption, extension writers should never try to operate on Python objects with the functions exported
by the C library: malloc(), calloc(), realloc() and free(). This will result in mixed calls between the
C allocator and the Python memory manager with fatal consequences, because they implement different algorithms and
operate on different heaps. However, one may safely allocate and release memory blocks with the C library allocator for
individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

...Do some I/O operation involving buf...
res = PyString_FromString(buf);

(下页继续)

125

The Python/C API,发布 2.7.18

(续上页)
free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory manager
is involved only in the allocation of the string object returned as a result.
In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter
is under control of the Python memory manager. For example, this is required when the interpreter is extended with new
object types written in C. Another reason for using the Python heap is the desire to inform the Python memory manager
about the memory needs of the extension module. Even when the requested memory is used exclusively for internal,
highly-specific purposes, delegating all memory requests to the Python memory manager causes the interpreter to have a
more accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the Python memory
manager may or may not trigger appropriate actions, like garbage collection, memory compaction or other preventive
procedures. Note that by using the C library allocator as shown in the previous example, the allocated memory for the
I/O buffer escapes completely the Python memory manager.

9.2 内存接口

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap:
void* PyMem_Malloc(size_t n)

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc(1) had been called
instead. The memory will not have been initialized in any way.

void* PyMem_Realloc(void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old and
the new sizes. If p is NULL, the call is equivalent to PyMem_Malloc(n); else if n is equal to zero, the memory
block is resized but is not freed, and the returned pointer is non-NULL. Unless p isNULL, it must have been returned
by a previous call to PyMem_Malloc() or PyMem_Realloc(). If the request fails, PyMem_Realloc()
returns NULL and p remains a valid pointer to the previous memory area.

void PyMem_Free(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to PyMem_Malloc()
or PyMem_Realloc(). Otherwise, or if PyMem_Free(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.
TYPE* PyMem_New(TYPE, size_t n)

Same as PyMem_Malloc(), but allocates (n * sizeof(TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize(void *p, TYPE, size_t n)
Same as PyMem_Realloc(), but the memory block is resized to (n * sizeof(TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.
This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory when
handling errors.

void PyMem_Del(void *p)
与PyMem_Free()相同

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving the
C API functions listed above. However, note that their use does not preserve binary compatibility across Python versions
and is therefore deprecated in extension modules.

126 Chapter 9. 内存管理

The Python/C API,发布 2.7.18

PyMem_MALLOC(), PyMem_REALLOC(), PyMem_FREE().
PyMem_NEW(), PyMem_RESIZE(), PyMem_DEL().

9.3 对象分配器

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.
By default, these functions use pymalloc memory allocator.

警告: The GIL must be held when using these functions.

void* PyObject_Malloc(size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc(1) had been
called instead. The memory will not have been initialized in any way.

void* PyObject_Realloc(void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.
If p is NULL, the call is equivalent to PyObject_Malloc(n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.
Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc() or PyObject_Calloc().
If the request fails, PyObject_Realloc() returnsNULL and p remains a valid pointer to the previous memory
area.

void PyObject_Free(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyObject_Malloc(), PyObject_Realloc() or PyObject_Calloc(). Otherwise, or if
PyObject_Free(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

In addition, the following macro sets are provided:
• PyObject_MALLOC(): alias to PyObject_Malloc()
• PyObject_REALLOC(): alias to PyObject_Realloc()
• PyObject_FREE(): alias to PyObject_Free()
• PyObject_Del(): alias to PyObject_Free()
• PyObject_DEL(): alias to PyObject_FREE() (so finally an alias to PyObject_Free())

9.3. 对象分配器 127

The Python/C API,发布 2.7.18

9.4 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It uses
memory mappings called “arenas”with a fixed size of 256 KiB. It falls back to malloc() and realloc() for
allocations larger than 512 bytes.
pymalloc is the default allocator of PyObject_Malloc().
The arena allocator uses the following functions:

• mmap() and munmap() if available,
• malloc() and free() otherwise.

在 2.7.7版更改: The threshold changed from 256 to 512 bytes. The arena allocator now uses mmap() if available.

9.5 例子

Here is the example from section概述, rewritten so that the I/O buffer is allocated from the Python heap by using the
first function set:

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New(char, BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed, it
is required to use the same memory API family for a given memory block, so that the risk of mixing different allocators
is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as fatal because it
mixes two different allocators operating on different heaps.

char *buf1 = PyMem_New(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
...
PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); /* Right -- allocated via malloc() */
free(buf1); /* Fatal -- should be PyMem_Del() */

128 Chapter 9. 内存管理

The Python/C API,发布 2.7.18

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are allocated
and released with PyObject_New(), PyObject_NewVar() and PyObject_Del().
These will be explained in the next chapter on defining and implementing new object types in C.

9.5. 例子 129

The Python/C API,发布 2.7.18

130 Chapter 9. 内存管理

CHAPTER10

对象实现支持

本章描述了定义新对象类型时所使用的函数、类型和宏。

10.1 在堆上分配对象

PyObject* _PyObject_New(PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar(PyTypeObject *type, Py_ssize_t size)
Return value: New reference. 在 2.5版更改: This function used an int type for size. This might require changes
in your code for properly supporting 64-bit systems.

void _PyObject_Del(PyObject *op)
PyObject* PyObject_Init(PyObject *op, PyTypeObject *type)

Return value: Borrowed reference. 用它的类型和初始引用来初始化新分配对象 op。返回已初始化对象。如
果 type表明该对象参与循环垃圾检测器，则将其添加到检测器的观察对象集中。对象的其他字段不受
影响。

PyVarObject* PyObject_InitVar(PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. 它的功能和PyObject_Init()一样，并且会初始化变量大小对象的
长度信息。

在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

TYPE* PyObject_New(TYPE, PyTypeObject *type)
Return value: New reference. 使用 C结构类型 TYPE 和 Python类型对象 type分配一个新的 Python对象。
未在该 Python对象标头中定义的字段不会被初始化；对象的引用计数将为一。内存分配大小由 type对
象的tp_basicsize字段来确定。

TYPE* PyObject_NewVar(TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference. 使用 C的数据结构类型 TYPE和 Python的类型对象 type分配一个新的 Python
对象。Python对象头文件中没有定义的字段不会被初始化。被分配的内存空间预留了 TYPE 结构加 type
对象中tp_itemsize字段提供的 size字段的值。这对于实现类似元组这种能够在构造期决定自己大

131

The Python/C API,发布 2.7.18

小的对象是很实用的。将字段的数组嵌入到相同的内存分配中可以减少内存分配的次数，这提高了内
存分配的效率。

在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

void PyObject_Del(PyObject *op)
释放由PyObject_New()或者PyObject_NewVar()分配内存的对象。这通常由对象的 type字段定
义的tp_dealloc处理函数来调用。调用这个函数以后 op对象中的字段都不可以被访问，因为原分配
的内存空间已不再是一个有效的 Python对象。

PyObject* Py_InitModule(char *name, PyMethodDef *methods)
Return value: Borrowed reference. Create a new module object based on a name and table of functions, returning
the new module object.
在 2.3版更改: Older versions of Python did not support NULL as the value for the methods argument.

PyObject* Py_InitModule3(char *name, PyMethodDef *methods, char *doc)
Return value: Borrowed reference. Create a new module object based on a name and table of functions, returning
the new module object. If doc is non-NULL, it will be used to define the docstring for the module.
在 2.3版更改: Older versions of Python did not support NULL as the value for the methods argument.

PyObject* Py_InitModule4(char *name, PyMethodDef *methods, char *doc, PyObject *self, int apiver)
Return value: Borrowed reference. Create a new module object based on a name and table of functions, returning
the new module object. If doc is non-NULL, it will be used to define the docstring for the module. If self is non-
NULL, it will be passed to the functions of the module as their (otherwise NULL) first parameter. (This was added
as an experimental feature, and there are no known uses in the current version of Python.) For apiver, the only
value which should be passed is defined by the constant PYTHON_API_VERSION.

注解: Most uses of this function should probably be using the Py_InitModule3() instead; only use this if
you are sure you need it.

在 2.3版更改: Older versions of Python did not support NULL as the value for the methods argument.
PyObject _Py_NoneStruct

Object which is visible in Python as None. This should only be accessed using the Py_None macro, which
evaluates to a pointer to this object.

10.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section describes
these structures and how they are used.
All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.
PyObject

All object types are extensions of this type. This is a type which contains the information Python needs to treat a
pointer to an object as an object. In a normal “release”build, it contains only the object’s reference count
and a pointer to the corresponding type object. It corresponds to the fields defined by the expansion of the
PyObject_HEAD macro.

PyVarObject
This is an extension of PyObject that adds the ob_size field. This is only used for objects that have some

132 Chapter 10. 对象实现支持

The Python/C API,发布 2.7.18

notion of length. This type does not often appear in the Python/C API. It corresponds to the fields defined by the
expansion of the PyObject_VAR_HEAD macro.

These macros are used in the definition of PyObject and PyVarObject:
PyObject_HEAD

This is a macro which expands to the declarations of the fields of the PyObject type; it is used when declaring
new types which represent objects without a varying length. The specific fields it expands to depend on the definition
of Py_TRACE_REFS. By default, that macro is not defined, and PyObject_HEAD expands to:

Py_ssize_t ob_refcnt;
PyTypeObject *ob_type;

When Py_TRACE_REFS is defined, it expands to:

PyObject *_ob_next, *_ob_prev;
Py_ssize_t ob_refcnt;
PyTypeObject *ob_type;

PyObject_VAR_HEAD
This is a macro which expands to the declarations of the fields of thePyVarObject type; it is used when declaring
new types which represent objects with a length that varies from instance to instance. This macro always expands
to:

PyObject_HEAD
Py_ssize_t ob_size;

Note that PyObject_HEAD is part of the expansion, and that its own expansion varies depending on the definition
of Py_TRACE_REFS.

Py_TYPE(o)
This macro is used to access the ob_type member of a Python object. It expands to:

(((PyObject*)(o))->ob_type)

2.6新版功能.
Py_REFCNT(o)

This macro is used to access the ob_refcnt member of a Python object. It expands to:

(((PyObject*)(o))->ob_refcnt)

2.6新版功能.
Py_SIZE(o)

This macro is used to access the ob_size member of a Python object. It expands to:

(((PyVarObject*)(o))->ob_size)

2.6新版功能.
PyObject_HEAD_INIT(type)

This is a macro which expands to initialization values for a new PyObject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT(type, size)
This is a macro which expands to initialization values for a new PyVarObject type, including the ob_size
field. This macro expands to:

10.2. Common Object Structures 133

The Python/C API,发布 2.7.18

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two PyObject*
parameters and return one such value. If the return value is NULL, an exception shall have been set. If not NULL,
the return value is interpreted as the return value of the function as exposed in Python. The function must return a
new reference.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

域 C类型 含义
ml_name char * name of the method
ml_meth PyCFunction pointer to the C implementation
ml_flags 整型 flag bits indicating how the call should be constructed
ml_doc char * points to the contents of the docstring

The ml_meth is a C function pointer. The functions may be of different types, but they always return PyObject*.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyObject*, it is common that the method implementation uses the
specific C type of the self object.
The ml_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention. Of the calling convention flags, only METH_VARARGS and METH_KEYWORDS can
be combined. Any of the calling convention flags can be combined with a binding flag.
METH_VARARGS

This is the typical calling convention, where the methods have the type PyCFunction. The function expects two
PyObject* values. The first one is the self object for methods; for module functions, it is the module object.
The second parameter (often called args) is a tuple object representing all arguments. This parameter is typically
processed using PyArg_ParseTuple() or PyArg_UnpackTuple().

METH_KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects three pa-
rameters: self, args, and a dictionary of all the keyword arguments. The flag is typically combined with
METH_VARARGS, and the parameters are typically processed using PyArg_ParseTupleAndKeywords().

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH_O flag, instead of invoking
PyArg_ParseTuple() with a "O" argument. They have the type PyCFunction, with the self parame-
ter, and a PyObject* parameter representing the single argument.

METH_OLDARGS
This calling convention is deprecated. The method must be of type PyCFunction. The second argument is
NULL if no arguments are given, a single object if exactly one argument is given, and a tuple of objects if more
than one argument is given. There is no way for a function using this convention to distinguish between a call with
multiple arguments and a call with a tuple as the only argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

134 Chapter 10. 对象实现支持

The Python/C API,发布 2.7.18

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to create class methods, similar to what is created when using the classmethod() built-in function.
2.3新版功能.

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to create
static methods, similar to what is created when using the staticmethod() built-in function.
2.3新版功能.

One other constant controls whether a method is loaded in place of another definition with the same method name.
METH_COEXIST

The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip re-
peated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains slot,
for example, would generate a wrapped method named __contains__() and preclude the loading of a corre-
sponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in place of the
wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are optimized more
than wrapper object calls.
2.4新版功能.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

域 C类型 含义
name char * name of the member
type 整型 the type of the member in the C struct
offset Py_ssize_t the offset in bytes that the member is located on the type’s object struct
flags 整型 flag bits indicating if the field should be read-only or writable
doc char * points to the contents of the docstring

type can be one of many T_ macros corresponding to various C types. When the member is accessed in Python,
it will be converted to the equivalent Python type.

Macro name C类型
T_SHORT short
T_INT 整型
T_LONG 长整型
T_FLOAT 浮点数
T_DOUBLE double
T_STRING char *
T_OBJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char
T_BYTE char
T_UBYTE unsigned char
T_UINT 无符号整型
T_USHORT unsigned short
T_ULONG 无符号长整型
T_BOOL char
T_LONGLONG long long
T_ULONGLONG 无符号 long long
T_PYSSIZET Py_ssize_t

10.2. Common Object Structures 135

The Python/C API,发布 2.7.18

T_OBJECT and T_OBJECT_EX differ in that T_OBJECT returns None if the member is NULL and
T_OBJECT_EX raises an AttributeError. Try to use T_OBJECT_EX over T_OBJECT because
T_OBJECT_EX handles use of the del statement on that attribute more correctly than T_OBJECT.
flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. Only T_OBJECT and T_OBJECT_EX members can be deleted. (They are set to NULL).

PyGetSetDef
Structure to define property-like access for a type. See also description of the PyTypeObject.tp_getset
slot.

域 C类型 含义
名称 char * attribute name
get getter C Function to get the attribute
set setter optional C function to set or delete the attribute, if omitted the attribute is readonly
doc char * optional docstring
closure void * optional function pointer, providing additional data for getter and setter

The get function takes one PyObject* parameter (the instance) and a function pointer (the associated
closure):

typedef PyObject *(*getter)(PyObject *, void *);

It should return a new reference on success or NULL with a set exception on failure.
set functions take two PyObject* parameters (the instance and the value to be set) and a function pointer (the
associated closure):

typedef int (*setter)(PyObject *, PyObject *, void *);

In case the attribute should be deleted the second parameter is NULL. Should return 0 on success or -1 with a set
exception on failure.

PyObject* Py_FindMethod(PyMethodDef table[], PyObject *ob, char *name)
Return value: New reference. Return a bound method object for an extension type implemented in C. This
can be useful in the implementation of a tp_getattro or tp_getattr handler that does not use the
PyObject_GenericGetAttr() function.

10.3 类型对象

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of thePyObject_*() orPyType_*() functions,
but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects behave,
so they are very important to the interpreter itself and to any extension module that implements new types.
Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object stores
a large number of values, mostly C function pointers, each of which implements a small part of the type’s functionality.
The fields of the type object are examined in detail in this section. The fields will be described in the order in which they
occur in the structure.
Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc, intintobjarg-
proc, objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, cmpfunc, repr-
func, hashfunc
The structure definition for PyTypeObject can be found in Include/object.h. For convenience of reference,
this repeats the definition found there:

136 Chapter 10. 对象实现支持

The Python/C API,发布 2.7.18

typedef struct _typeobject {
PyObject_VAR_HEAD
char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
long tp_flags;

char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_weaklistoffset;

/* Added in release 2.2 */
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

(下页继续)

10.3. 类型对象 137

The Python/C API,发布 2.7.18

(续上页)
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
long tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;

} PyTypeObject;

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (cre-
ated by type_new(), usually called from a class statement). Note that PyType_Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.
PyObject* PyObject._ob_next
PyObject* PyObject._ob_prev

These fields are only present when the macro Py_TRACE_REFS is defined. Their initialization to NULL is taken
care of by the PyObject_HEAD_INITmacro. For statically allocated objects, these fields always remainNULL.
For dynamically allocated objects, these two fields are used to link the object into a doubly-linked list of all live
objects on the heap. This could be used for various debugging purposes; currently the only use is to print the objects
that are still alive at the end of a run when the environment variable PYTHONDUMPREFS is set.
These fields are not inherited by subtypes.

Py_ssize_t PyObject.ob_refcnt
This is the type object’s reference count, initialized to 1 by the PyObject_HEAD_INIT macro. Note that for
statically allocated type objects, the type’s instances (objects whose ob_type points back to the type) do not
count as references. But for dynamically allocated type objects, the instances do count as references.
This field is not inherited by subtypes.
在 2.5版更改: This field used to be an int type. This might require changes in your code for properly supporting
64-bit systems.

PyTypeObject* PyObject.ob_type
This is the type’s type, in other words its metatype. It is initialized by the argument to the
PyObject_HEAD_INIT macro, and its value should normally be &PyType_Type. However, for dynami-
cally loadable extension modules that must be usable on Windows (at least), the compiler complains that this is
not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT macro and to
initialize this field explicitly at the start of the module’s initialization function, before doing anything else. This
is typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. PyType_Ready() checks if ob_type is
NULL, and if so, initializes it: in Python 2.2, it is set to &PyType_Type; in Python 2.2.1 and later it is initialized
to the ob_type field of the base class. PyType_Ready() will not change this field if it is non-zero.

138 Chapter 10. 对象实现支持

The Python/C API,发布 2.7.18

In Python 2.2, this field is not inherited by subtypes. In 2.2.1, and in 2.3 and beyond, it is inherited by subtypes.
Py_ssize_t PyVarObject.ob_size

For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects, this
field has a special internal meaning.
This field is not inherited by subtypes.

char* PyTypeObject.tp_name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module globals,
the string should be the full module name, followed by a dot, followed by the type name; for built-in types, it should
be just the type name. If the module is a submodule of a package, the full package name is part of the full module
name. For example, a type named T defined in module M in subpackage Q in package P should have the tp_name
initializer "P.Q.M.T".
For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored in
the type dict as the value for key '__module__'.
For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is made
accessible as the __module__ attribute, and everything after the last dot is made accessible as the __name__
attribute.
If no dot is present, the entire tp_name field is made accessible as the __name__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created with
pydoc.
This field is not inherited by subtypes.

Py_ssize_t PyTypeObject.tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize

These fields allow calculating the size in bytes of instances of the type.
There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instances, all instances
have the same size, given in tp_basicsize.
For a type with variable-length instances, the instances must have an ob_size field, and the instance size is
tp_basicsize plus N times tp_itemsize, where N is the “length”of the object. The value of N is
typically stored in the instance’s ob_size field. There are exceptions: for example, long ints use a negative
ob_size to indicate a negative number, and N is abs(ob_size) there. Also, the presence of an ob_size
field in the instance layout doesn’t mean that the instance structure is variable-length (for example, the structure
for the list type has fixed-length instances, yet those instances have a meaningful ob_size field).
The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an initializer
for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout. The
basic size does not include the GC header size (this is new in Python 2.2; in 2.1 and 2.0, the GC header size was
included in tp_basicsize).
These fields are inherited separately by subtypes. If the base type has a non-zero tp_itemsize, it is generally not
safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the implementation
of the base type).
A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value of tp_basicsize. Example: suppose a type implements an array of double. tp_itemsize
is sizeof(double). It is the programmer’s responsibility that tp_basicsize is a multiple of
sizeof(double) (assuming this is the alignment requirement for double).

10.3. 类型对象 139

The Python/C API,发布 2.7.18

destructor PyTypeObject.tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and Ellipsis).
The destructor function is called by the Py_DECREF() and Py_XDECREF() macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor function
should free all references which the instance owns, free all memory buffers owned by the instance (using the freeing
function corresponding to the allocation function used to allocate the buffer), and finally (as its last action) call the
type’s tp_free function. If the type is not subtypable (doesn’t have the Py_TPFLAGS_BASETYPE flag bit
set), it is permissible to call the object deallocator directly instead of via tp_free. The object deallocator should
be the one used to allocate the instance; this is normally PyObject_Del() if the instance was allocated using
PyObject_New() orPyObject_VarNew(), orPyObject_GC_Del() if the instance was allocated using
PyObject_GC_New() or PyObject_GC_NewVar().
This field is inherited by subtypes.

printfunc PyTypeObject.tp_print
An optional pointer to the instance print function.
The print function is only called when the instance is printed to a real file; when it is printed to a pseudo-file (like
a StringIO instance), the instance’s tp_repr or tp_str function is called to convert it to a string. These
are also called when the type’s tp_print field is NULL. A type should never implement tp_print in a way
that produces different output than tp_repr or tp_str would.
The print function is called with the same signature as PyObject_Print(): int tp_print(PyObject
*self, FILE *file, int flags). The self argument is the instance to be printed. The file argument is
the stdio file to which it is to be printed. The flags argument is composed of flag bits. The only flag bit currently
defined is Py_PRINT_RAW. When the Py_PRINT_RAW flag bit is set, the instance should be printed the same
way as tp_str would format it; when the Py_PRINT_RAW flag bit is clear, the instance should be printed the
same was as tp_repr would format it. It should return -1 and set an exception condition when an error occurred
during the comparison.
It is possible that the tp_print field will be deprecated. In any case, it is recommended not to define tp_print,
but instead to rely on tp_repr and tp_str for printing.
This field is inherited by subtypes.

getattrfunc PyTypeObject.tp_getattr
An optional pointer to the get-attribute-string function.
This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_getattr(PyObject *o, char *attr_name);

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.

setattrfunc PyTypeObject.tp_setattr
An optional pointer to the function for setting and deleting attributes.
This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_setattr(PyObject *o, char *attr_name, PyObject *v);

The v argument is set to NULL to delete the attribute. This field is inherited by subtypes together with
tp_setattro: a subtype inherits both tp_setattr and tp_setattro from its base type when the sub-
type’s tp_setattr and tp_setattro are both NULL.

140 Chapter 10. 对象实现支持

The Python/C API,发布 2.7.18

cmpfunc PyTypeObject.tp_compare
An optional pointer to the three-way comparison function.
The signature is the same as for PyObject_Compare(). The function should return 1 if self greater than other,
0 if self is equal to other, and -1 if self less than other. It should return -1 and set an exception condition when
an error occurred during the comparison.
This field is inherited by subtypes together withtp_richcompare andtp_hash: a subtypes inherits all three of
tp_compare, tp_richcompare, and tp_hashwhen the subtype’s tp_compare, tp_richcompare,
and tp_hash are all NULL.

reprfunc PyTypeObject.tp_repr
An optional pointer to a function that implements the built-in function repr().
The signature is the same as for PyObject_Repr(); it must return a string or a Unicode object. Ideally, this
function should return a string that, when passed to eval(), given a suitable environment, returns an object with
the same value. If this is not feasible, it should return a string starting with '<' and ending with '>' from which
both the type and the value of the object can be deduced.
When this field is not set, a string of the form <%s object at %p> is returned, where %s is replaced by the
type name, and %p by the object’s memory address.
This field is inherited by subtypes.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number protocol.
These fields are documented in Number Object Structures.
The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence protocol.
These fields are documented in Sequence Object Structures.
The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping protocol.
These fields are documented in Mapping Object Structures.
The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject.tp_hash
An optional pointer to a function that implements the built-in function hash().
The signature is the same as for PyObject_Hash(); it must return a C long. The value -1 should not be
returned as a normal return value; when an error occurs during the computation of the hash value, the function
should set an exception and return -1.
This field can be set explicitly to PyObject_HashNotImplemented() to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash__ = None at the Python level,
causing isinstance(o, collections.Hashable) to correctly return False. Note that the converse
is also true - setting __hash__ = None on a class at the Python level will result in the tp_hash slot being set
to PyObject_HashNotImplemented().
When this field is not set, two possibilities exist: if the tp_compare and tp_richcompare fields are both
NULL, a default hash value based on the object’s address is returned; otherwise, a TypeError is raised.
This field is inherited by subtypes together with tp_richcompare and tp_compare: a subtypes inher-
its all three of tp_compare, tp_richcompare, and tp_hash, when the subtype’s tp_compare,
tp_richcompare and tp_hash are all NULL.

10.3. 类型对象 141

The Python/C API,发布 2.7.18

ternaryfunc PyTypeObject.tp_call
An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call().
This field is inherited by subtypes.

reprfunc PyTypeObject.tp_str
An optional pointer to a function that implements the built-in operation str(). (Note that str is a type now,
and str() calls the constructor for that type. This constructor calls PyObject_Str() to do the actual work,
and PyObject_Str() will call this handler.)
The signature is the same as for PyObject_Str(); it must return a string or a Unicode object. This function
should return a“friendly”string representation of the object, as this is the representation that will be used by the
print statement.
When this field is not set, PyObject_Repr() is called to return a string representation.
This field is inherited by subtypes.

getattrofunc PyTypeObject.tp_getattro
An optional pointer to the get-attribute function.
The signature is the same as for PyObject_GetAttr(). It is usually convenient to set this field to
PyObject_GenericGetAttr(), which implements the normal way of looking for object attributes.
This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.

setattrofunc PyTypeObject.tp_setattro
An optional pointer to the function for setting and deleting attributes.
The signature is the same as for PyObject_SetAttr(), but setting v to NULL to delete an attribute must be
supported. It is usually convenient to set this field to PyObject_GenericSetAttr(), which implements the
normal way of setting object attributes.
This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattr and tp_setattro are both NULL.

PyBufferProcs* PyTypeObject.tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer interface.
These fields are documented in Buffer Object Structures.
The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

long PyTypeObject.tp_flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others are used
to indicate that certain fields in the type object (or in the extension structures referenced via tp_as_number,
tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not always present are
valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be considered to have a zero
or NULL value instead.
Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag bit set,
the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if the extension
structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together with a pointer to
the extension structure. The Py_TPFLAGS_HAVE_GC flag bit is inherited together with the tp_traverse and
tp_clear fields, i.e. if the Py_TPFLAGS_HAVE_GC flag bit is clear in the subtype and the tp_traverse
and tp_clear fields in the subtype exist (as indicated by the Py_TPFLAGS_HAVE_RICHCOMPARE flag bit)
and have NULL values.
The following bit masks are currently defined; these can be ORed together using the | operator to form the value of
the tp_flags field. The macro PyType_HasFeature() takes a type and a flags value, tp and f, and checks
whether tp->tp_flags & f is non-zero.

142 Chapter 10. 对象实现支持

The Python/C API,发布 2.7.18

Py_TPFLAGS_HAVE_GETCHARBUFFER
If this bit is set, the PyBufferProcs struct referenced by tp_as_buffer has the
bf_getcharbuffer field.

Py_TPFLAGS_HAVE_SEQUENCE_IN
If this bit is set, the PySequenceMethods struct referenced by tp_as_sequence has the
sq_contains field.

Py_TPFLAGS_GC
This bit is obsolete. The bit it used to name is no longer in use. The symbol is now defined as zero.

Py_TPFLAGS_HAVE_INPLACEOPS
If this bit is set, the PySequenceMethods struct referenced by tp_as_sequence and
the PyNumberMethods structure referenced by tp_as_number contain the fields for
in-place operators. In particular, this means that the PyNumberMethods structure has
the fields nb_inplace_add, nb_inplace_subtract, nb_inplace_multiply,
nb_inplace_divide, nb_inplace_remainder, nb_inplace_power,
nb_inplace_lshift, nb_inplace_rshift, nb_inplace_and, nb_inplace_xor,
and nb_inplace_or; and the PySequenceMethods struct has the fields sq_inplace_concat
and sq_inplace_repeat.

Py_TPFLAGS_CHECKTYPES
If this bit is set, the binary and ternary operations in the PyNumberMethods structure referenced by
tp_as_number accept arguments of arbitrary object types, and do their own type conversions if needed. If
this bit is clear, those operations require that all arguments have the current type as their type, and the caller is
supposed to perform a coercion operation first. This applies to nb_add, nb_subtract, nb_multiply,
nb_divide, nb_remainder, nb_divmod, nb_power, nb_lshift, nb_rshift, nb_and,
nb_xor, and nb_or.

Py_TPFLAGS_HAVE_RICHCOMPARE
If this bit is set, the type object has the tp_richcompare field, as well as the tp_traverse and the
tp_clear fields.

Py_TPFLAGS_HAVE_WEAKREFS
If this bit is set, the tp_weaklistoffset field is defined. Instances of a type are weakly referenceable
if the type’s tp_weaklistoffset field has a value greater than zero.

Py_TPFLAGS_HAVE_ITER
If this bit is set, the type object has the tp_iter and tp_iternext fields.

Py_TPFLAGS_HAVE_CLASS
If this bit is set, the type object has several new fields defined starting in Python 2.2: tp_methods,
tp_members, tp_getset, tp_base, tp_dict, tp_descr_get, tp_descr_set,
tp_dictoffset, tp_init, tp_alloc, tp_new, tp_free, tp_is_gc, tp_bases, tp_mro,
tp_cache, tp_subclasses, and tp_weaklist.

Py_TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case, the ob_type field of its
instances is considered a reference to the type, and the type object is INCREF’ed when a new instance is
created, and DECREF’ed when an instance is destroyed (this does not apply to instances of subtypes; only
the type referenced by the instance’s ob_type gets INCREF’ed or DECREF’ed).

Py_TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar to a“final”class in Java).

Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by PyType_Ready().

10.3. 类型对象 143

The Python/C API,发布 2.7.18

Py_TPFLAGS_READYING
This bit is set while PyType_Ready() is in the process of initializing the type object.

Py_TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created us-
ing PyObject_GC_New() and destroyed using PyObject_GC_Del(). More information in section
使对象类型支持循环垃圾回收. This bit also implies that the GC-related fields tp_traverse and
tp_clear are present in the type object; but those fields also exist when Py_TPFLAGS_HAVE_GC is
clear but Py_TPFLAGS_HAVE_RICHCOMPARE is set.

Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in
the type object and its extension structures. Currently, it includes the following
bits: Py_TPFLAGS_HAVE_GETCHARBUFFER, Py_TPFLAGS_HAVE_SEQUENCE_IN ,
Py_TPFLAGS_HAVE_INPLACEOPS, Py_TPFLAGS_HAVE_RICHCOMPARE,
Py_TPFLAGS_HAVE_WEAKREFS, Py_TPFLAGS_HAVE_ITER, and Py_TPFLAGS_HAVE_CLASS.

char* PyTypeObject.tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as the
__doc__ attribute on the type and instances of the type.
This field is not inherited by subtypes.

The following three fields only exist if the Py_TPFLAGS_HAVE_RICHCOMPARE flag bit is set.
traverseproc PyTypeObject.tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. More information about Python’s garbage collection scheme can be
found in section使对象类型支持循环垃圾回收.
The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementation
of a tp_traverse function simply calls Py_VISIT() on each of the instance’s members that are Python
objects. For example, this is function local_traverse() from the thread extension module:

static int
local_traverse(localobject *self, visitproc visit, void *arg)
{

Py_VISIT(self->args);
Py_VISIT(self->kw);
Py_VISIT(self->dict);
return 0;

}

Note that Py_VISIT() is called only on those members that can participate in reference cycles. Although there
is also a self->key member, it can only be NULL or a Python string and therefore cannot be part of a reference
cycle.
On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want to
visit it anyway just so the gc module’s get_referents() function will include it.
Note that Py_VISIT() requires the visit and arg parameters to local_traverse() to have these specific
names; don’t name them just anything.
This field is inherited by subtypes together with tp_clear and the Py_TPFLAGS_HAVE_GC flag bit: the flag
bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype and
the subtype has the Py_TPFLAGS_HAVE_RICHCOMPARE flag bit set.

inquiry PyTypeObject.tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the Py_TPFLAGS_HAVE_GC
flag bit is set.

144 Chapter 10. 对象实现支持

The Python/C API,发布 2.7.18

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_clear functions in the system must combine to break all reference cycles. This
is subtle, and if in any doubt supply a tp_clear function. For example, the tuple type does not implement a
tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_clear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.
Implementations of tp_clear should drop the instance’s references to those of its members that may be Python
objects, and set its pointers to those members to NULL, as in the following example:

static int
local_clear(localobject *self)
{

Py_CLEAR(self->key);
Py_CLEAR(self->args);
Py_CLEAR(self->kw);
Py_CLEAR(self->dict);
return 0;

}

The Py_CLEAR() macro should be used, because clearing references is delicate: the reference to the contained
object must not be decremented until after the pointer to the contained object is set to NULL. This is because
decrementing the reference count may cause the contained object to become trash, triggering a chain of reclamation
activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated with
the contained object). If it’s possible for such code to reference self again, it’s important that the pointer to
the contained object be NULL at that time, so that self knows the contained object can no longer be used. The
Py_CLEAR() macro performs the operations in a safe order.
Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained
objects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’s tp_dealloc function to invoke
tp_clear.
More information about Python’s garbage collection scheme can be found in section使对象类型支持循环垃
圾回收.
This field is inherited by subtypes together with tp_traverse and the Py_TPFLAGS_HAVE_GC flag bit: the
flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype
and the subtype has the Py_TPFLAGS_HAVE_RICHCOMPARE flag bit set.

richcmpfunc PyTypeObject.tp_richcompare
An optional pointer to the rich comparison function, whose signature is PyObject
*tp_richcompare(PyObject *a, PyObject *b, int op).
The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_NotImplemented, if another error occurred it must return NULL and set an
exception condition.

注解: If you want to implement a type for which only a limited set of comparisons makes sense (e.g. == and !=,
but not < and friends), directly raise TypeError in the rich comparison function.

This field is inherited by subtypes together with tp_compare and tp_hash: a subtype inherits all three of
tp_compare, tp_richcompare, and tp_hash, when the subtype’s tp_compare, tp_richcompare,
and tp_hash are all NULL.
The following constants are defined to be used as the third argument for tp_richcompare and for
PyObject_RichCompare():

10.3. 类型对象 145

The Python/C API,发布 2.7.18

常数 对照
Py_LT <
Py_LE <=
Py_EQ ==
Py_NE !=
Py_GT >
Py_GE >=

The next field only exists if the Py_TPFLAGS_HAVE_WEAKREFS flag bit is set.
long PyTypeObject.tp_weaklistoffset

If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs() and thePyWeakref_*() functions. The instance structure needs to include
a field of type PyObject* which is initialized to NULL.
Do not confuse this field with tp_weaklist; that is the list head for weak references to the type object itself.
This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found via
tp_weaklistoffset, this should not be a problem.
When a type defined by a class statement has no __slots__ declaration, and none of its base types are weakly
referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the instance layout
and setting the tp_weaklistoffset of that slot’s offset.
When a type’s __slots__ declaration contains a slot named __weakref__, that slot becomes the weak
reference list head for instances of the type, and the slot’s offset is stored in the type’s tp_weaklistoffset.
When a type’s __slots__ declaration does not contain a slot named __weakref__, the type inherits its
tp_weaklistoffset from its base type.

The next two fields only exist if the Py_TPFLAGS_HAVE_ITER flag bit is set.
getiterfunc PyTypeObject.tp_iter

An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function, and classic instances
always have this function, even if they don’t define an __iter__() method).
This function has the same signature as PyObject_GetIter().
This field is inherited by subtypes.

iternextfunc PyTypeObject.tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it must
return NULL; a StopIteration exception may or may not be set. When another error occurs, it must return
NULL too. Its presence normally signals that the instances of this type are iterators (although classic instances
always have this function, even if they don’t define a next() method).
Iterator types should also define the tp_iter function, and that function should return the iterator instance itself
(not a new iterator instance).
This function has the same signature as PyIter_Next().
This field is inherited by subtypes.

The next fields, up to and including tp_weaklist, only exist if the Py_TPFLAGS_HAVE_CLASS flag bit is set.
struct PyMethodDef* PyTypeObject.tp_methods

An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.

146 Chapter 10. 对象实现支持

The Python/C API,发布 2.7.18

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a method
descriptor.
This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* PyTypeObject.tp_members
An optional pointer to a static NULL-terminated array of PyMemberDef structures, declaring regular data mem-
bers (fields or slots) of instances of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a member
descriptor.
This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* PyTypeObject.tp_getset
An optional pointer to a staticNULL-terminated array ofPyGetSetDef structures, declaring computed attributes
of instances of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.
This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

PyTypeObject* PyTypeObject.tp_base
An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.
This field is not inherited by subtypes (obviously), but it defaults to &PyBaseObject_Type (which to Python
programmers is known as the type object).

PyObject* PyTypeObject.tp_dict
The type’s dictionary is stored here by PyType_Ready().
This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once PyType_Ready() has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations (like
__add__()).
This field is not inherited by subtypes (though the attributes defined in here are inherited through a different mech-
anism).

descrgetfunc PyTypeObject.tp_descr_get
An optional pointer to a“descriptor get”function.
The function signature is

PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);

This field is inherited by subtypes.
descrsetfunc PyTypeObject.tp_descr_set

An optional pointer to a function for setting and deleting a descriptor’s value.
The function signature is

int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value. This field is inherited by subtypes.
long PyTypeObject.tp_dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and con-
tains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr().

10.3. 类型对象 147

The Python/C API,发布 2.7.18

Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.
If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If the value
is less than zero, it specifies the offset from the end of the instance structure. A negative offset is more expensive to
use, and should only be used when the instance structure contains a variable-length part. This is used for example
to add an instance variable dictionary to subtypes of str or tuple. Note that the tp_basicsize field should
account for the dictionary added to the end in that case, even though the dictionary is not included in the basic
object layout. On a system with a pointer size of 4 bytes, tp_dictoffset should be set to -4 to indicate that
the dictionary is at the very end of the structure.
The real dictionary offset in an instance can be computed from a negative tp_dictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof(void*):

round up to sizeof(void*)

where tp_basicsize, tp_itemsize and tp_dictoffset are taken from the type object, and ob_size
is taken from the instance. The absolute value is taken because long ints use the sign of ob_size to
store the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr().)
This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means that
the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is always
found via tp_dictoffset, this should not be a problem.
When a type defined by a class statement has no __slots__ declaration, and none of its base types has an instance
variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set to that slot’
s offset.
When a type defined by a class statement has a __slots__ declaration, the type inherits its tp_dictoffset
from its base type.
(Adding a slot named __dict__ to the __slots__ declaration does not have the expected effect, it just causes
confusion. Maybe this should be added as a feature just like __weakref__ though.)

initproc PyTypeObject.tp_init
An optional pointer to an instance initialization function.
This function corresponds to the __init__() method of classes. Like __init__(), it is possible to create an
instance without calling __init__(), and it is possible to reinitialize an instance by calling its __init__()
method again.
The function signature is

int tp_init(PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the call to __init__().
The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after the
type’s tp_new function has returned an instance of the type. If the tp_new function returns an instance of
some other type that is not a subtype of the original type, no tp_init function is called; if tp_new returns an
instance of a subtype of the original type, the subtype’s tp_init is called. (VERSION NOTE: described here
is what is implemented in Python 2.2.1 and later. In Python 2.2, the tp_init of the type of the object returned
by tp_new was always called, if not NULL.)
This field is inherited by subtypes.

allocfunc PyTypeObject.tp_alloc
An optional pointer to an instance allocation function.

148 Chapter 10. 对象实现支持

The Python/C API,发布 2.7.18

The function signature is

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return a
pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but
with ob_refcnt set to 1 and ob_type set to the type argument. If the type’s tp_itemsize is non-zero,
the object’s ob_size field should be initialized to nitems and the length of the allocated memory block should
be tp_basicsize + nitems*tp_itemsize, rounded up to a multiple of sizeof(void*); otherwise,
nitems is not used and the length of the block should be tp_basicsize.
Do not use this function to do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is always set to PyType_GenericAlloc(), to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.

newfunc PyTypeObject.tp_new
An optional pointer to an instance creation function.
If this function is NULL for a particular type, that type cannot be called to create new instances; presumably there
is some other way to create instances, like a factory function.
The function signature is

PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds)

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).
The tp_new function should call subtype->tp_alloc(subtype, nitems) to allocate space for the
object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be
ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for immutable types,
all initialization should take place in tp_new, while for mutable types, most initialization should be deferred to
tp_init.
This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type. The latter exception is a precaution so that old extension types don’t become callable
simply by being linked with Python 2.2.

destructor PyTypeObject.tp_free
An optional pointer to an instance deallocation function.
The signature of this function has changed slightly: in Python 2.2 and 2.2.1, its signature is destructor:

void tp_free(PyObject *)

In Python 2.3 and beyond, its signature is freefunc:

void tp_free(void *)

The only initializer that is compatible with both versions is _PyObject_Del, whose definition has suitably
adapted in Python 2.3.
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is set to a deallocator suitable to match PyType_GenericAlloc() and the value of the
Py_TPFLAGS_HAVE_GC flag bit.

10.3. 类型对象 149

The Python/C API,发布 2.7.18

inquiry PyTypeObject.tp_is_gc
An optional pointer to a function called by the garbage collector.
The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’s type’s tp_flags field, and check the Py_TPFLAGS_HAVE_GC flag bit. But some
types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are
not collectible. Such types should define this function; it should return 1 for a collectible instance, and 0 for a
non-collectible instance. The signature is

int tp_is_gc(PyObject *self)

(The only example of this are types themselves. The metatype, PyType_Type, defines this function to distinguish
between statically and dynamically allocated types.)
This field is inherited by subtypes. (VERSION NOTE: in Python 2.2, it was not inherited. It is inherited in 2.2.1
and later versions.)

PyObject* PyTypeObject.tp_bases
Tuple of base types.
This is set for types created by a class statement. It should be NULL for statically defined types.
This field is not inherited.

PyObject* PyTypeObject.tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object, in Method
Resolution Order.
This field is not inherited; it is calculated fresh by PyType_Ready().

PyObject* PyTypeObject.tp_cache
Unused. Not inherited. Internal use only.

PyObject* PyTypeObject.tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* PyTypeObject.tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macro COUNT_ALLOCS is defined, and are for internal
use only. They are documented here for completeness. None of these fields are inherited by subtypes. See the
PYTHONSHOWALLOCCOUNT environment variable.
Py_ssize_t PyTypeObject.tp_allocs

Number of allocations.
Py_ssize_t PyTypeObject.tp_frees

Number of frees.
Py_ssize_t PyTypeObject.tp_maxalloc

Maximum simultaneously allocated objects.
PyTypeObject* PyTypeObject.tp_next

Pointer to the next type object with a non-zero tp_allocs field.
Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread which
created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage collection
on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called will own the
Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from some other C or C++
library, care should be taken to ensure that destroying those objects on the thread which called tp_dealloc will not violate
any assumptions of the library.

150 Chapter 10. 对象实现支持

The Python/C API,发布 2.7.18

10.4 Number Object Structures

PyNumberMethods
This structure holds pointers to the functions which an object uses to implement the number protocol. Almost every
function below is used by the function of similar name documented in the数字协议 section.
Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_divide;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_nonzero; /* Used by PyObject_IsTrue */
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
coercion nb_coerce; /* Used by the coerce() function */
unaryfunc nb_int;
unaryfunc nb_long;
unaryfunc nb_float;
unaryfunc nb_oct;
unaryfunc nb_hex;

/* Added in release 2.0 */
binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_divide;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

/* Added in release 2.2 */
binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

/* Added in release 2.5 */
unaryfunc nb_index;

} PyNumberMethods;

Binary and ternary functions may receive different kinds of arguments, depending on the flag bit
Py_TPFLAGS_CHECKTYPES:

10.4. Number Object Structures 151

The Python/C API,发布 2.7.18

• If Py_TPFLAGS_CHECKTYPES is not set, the function arguments are guaranteed to be of the object’s type;
the caller is responsible for calling the coercion method specified by the nb_coerce member to convert the
arguments:
coercion PyNumberMethods.nb_coerce

This function is used by PyNumber_CoerceEx() and has the same signature. The first argument is
always a pointer to an object of the defined type. If the conversion to a common“larger”type is possible, the
function replaces the pointers with new references to the converted objects and returns 0. If the conversion
is not possible, the function returns 1. If an error condition is set, it will return -1.

• If the Py_TPFLAGS_CHECKTYPES flag is set, binary and ternary functions must check the type of all their
operands, and implement the necessary conversions (at least one of the operands is an instance of the defined type).
This is the recommended way; with Python 3 coercion will disappear completely.

If the operation is not defined for the given operands, binary and ternary functions must return Py_NotImplemented,
if another error occurred they must return NULL and set an exception.

10.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has three
members:

lenfunc PyMappingMethods.mp_length
This function is used by PyMapping_Length() and PyObject_Size(), and has the same signature. This
slot may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods.mp_subscript
This function is used by PyObject_GetItem() and has the same signature. This slot must be filled for the
PyMapping_Check() function to return 1, it can be NULL otherwise.

objobjargproc PyMappingMethods.mp_ass_subscript
This function is used by PyObject_SetItem() and PyObject_DelItem(). It has the same signature as
PyObject_SetItem(), but v can also be set to NULL to delete an item. If this slot is NULL, the object does
not support item assignment and deletion.

10.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence_Size() and PyObject_Size(), and has the same signature.

binaryfunc PySequenceMethods.sq_concat
This function is used by PySequence_Concat() and has the same signature. It is also used by the + operator,
after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by PySequence_Repeat() and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq_item
This function is used by PySequence_GetItem() and has the same signature. This slot must be filled for the
PySequence_Check() function to return 1, it can be NULL otherwise.

152 Chapter 10. 对象实现支持

The Python/C API,发布 2.7.18

Negative indexes are handled as follows: if the sq_length slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sq_item. If sq_length is NULL, the index is passed as
is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence_SetItem() and has the same signature. This slot may be left to NULL
if the object does not support item assignment and deletion.

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains() and has the same signature. This slot may be left to
NULL, in this case PySequence_Contains() simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq_inplace_concat
This function is used by PySequence_InPlaceConcat() and has the same signature. It should modify its
first operand, and return it.

ssizeargfunc PySequenceMethods.sq_inplace_repeat
This function is used by PySequence_InPlaceRepeat() and has the same signature. It should modify its
first operand, and return it.

10.7 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of data, where each
chunk is specified as a pointer/length pair. These chunks are called segments and are presumed to be non-contiguous in
memory.
If an object does not export the buffer interface, then its tp_as_buffer member in the PyTypeObject structure
should be NULL. Otherwise, the tp_as_buffer will point to a PyBufferProcs structure.

注解: It is very important that your PyTypeObject structure uses Py_TPFLAGS_DEFAULT for the value of the
tp_flags member rather than 0. This tells the Python runtime that your PyBufferProcs structure contains the
bf_getcharbuffer slot. Older versions of Python did not have this member, so a new Python interpreter using an
old extension needs to be able to test for its presence before using it.

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.
The first slot is bf_getreadbuffer, of type readbufferproc. If this slot is NULL, then the object does
not support reading from the internal data. This is non-sensical, so implementors should fill this in, but callers
should test that the slot contains a non-NULL value.
The next slot is bf_getwritebuffer having type writebufferproc. This slot may be NULL if the object
does not allow writing into its returned buffers.
The third slot is bf_getsegcount, with type segcountproc. This slot must not be NULL and is used
to inform the caller how many segments the object contains. Simple objects such as PyString_Type and
PyBuffer_Type objects contain a single segment.
The last slot is bf_getcharbuffer, of type charbufferproc. This slot will only be present
if the Py_TPFLAGS_HAVE_GETCHARBUFFER flag is present in the tp_flags field of the object’
s PyTypeObject. Before using this slot, the caller should test whether it is present by using the
PyType_HasFeature() function. If the flag is present, bf_getcharbuffer may be NULL, indicating
that the object’s contents cannot be used as 8-bit characters. The slot function may also raise an error if the
object’s contents cannot be interpreted as 8-bit characters. For example, if the object is an array which is config-
ured to hold floating point values, an exception may be raised if a caller attempts to use bf_getcharbuffer to

10.7. Buffer Object Structures 153

The Python/C API,发布 2.7.18

fetch a sequence of 8-bit characters. This notion of exporting the internal buffers as“text”is used to distinguish
between objects that are binary in nature, and those which have character-based content.

注解: The current policy seems to state that these characters may be multi-byte characters. This implies that a
buffer size of N does not mean there are N characters present.

Py_TPFLAGS_HAVE_GETCHARBUFFER
Flag bit set in the type structure to indicate that the bf_getcharbuffer slot is known. This being set does not
indicate that the object supports the buffer interface or that the bf_getcharbuffer slot is non-NULL.

Py_ssize_t (*readbufferproc)(PyObject *self, Py_ssize_t segment, void **ptrptr)
Return a pointer to a readable segment of the buffer in *ptrptr. This function is allowed to raise an exception,
in which case it must return -1. The segment which is specified must be zero or positive, and strictly less than the
number of segments returned by the bf_getsegcount slot function. On success, it returns the length of the
segment, and sets *ptrptr to a pointer to that memory.

Py_ssize_t (*writebufferproc)(PyObject *self, Py_ssize_t segment, void **ptrptr)
Return a pointer to a writable memory buffer in *ptrptr, and the length of that segment as the function return
value. The memory buffer must correspond to buffer segment segment. Must return -1 and set an exception on
error. TypeError should be raised if the object only supports read-only buffers, and SystemError should be
raised when segment specifies a segment that doesn’t exist.

Py_ssize_t (*segcountproc)(PyObject *self, Py_ssize_t *lenp)
Return the number of memory segments which comprise the buffer. If lenp is not NULL, the implementation must
report the sum of the sizes (in bytes) of all segments in *lenp. The function cannot fail.

Py_ssize_t (*charbufferproc)(PyObject *self, Py_ssize_t segment, char **ptrptr)
Return the size of the segment segment that ptrptr is set to. *ptrptr is set to the memory buffer. Returns -1 on
error.

10.8 使对象类型支持循环垃圾回收

Python对循环引用的垃圾检测与回收需要“容器”对象类型的支持，此类型的容器对象中可能包含其它容器
对象。不保存其它对象的引用的类型，或者只保存原子类型（如数字或字符串）的引用的类型，不需要显式
提供垃圾回收的支持。

若要创建一个容器类，类型对象的tp_flags 字段必须包含Py_TPFLAGS_HAVE_GC 并提供一
个tp_traverse处理的实现。如果该类型的实例是可变的，还需要实现tp_clear。

Py_TPFLAGS_HAVE_GC
设置了此标志位的类型的对象必须符合此处记录的规则。为方便起见，下文把这些对象称为容器对象。

容器类型的构造函数必须符合两个规则：

1. 必须使用PyObject_GC_New()或PyObject_GC_NewVar()为这些对象分配内存。
2. 初始化了所有可能包含其他容器的引用的字段后，它必须调用PyObject_GC_Track()。

TYPE* PyObject_GC_New(TYPE, PyTypeObject *type)
类似于PyObject_New()，适用于设置了Py_TPFLAGS_HAVE_GC标签的容器对象。

TYPE* PyObject_GC_NewVar(TYPE, PyTypeObject *type, Py_ssize_t size)
类似于PyObject_NewVar()，适用于设置了Py_TPFLAGS_HAVE_GC标签的容器对象。

在 2.5 版更改: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

154 Chapter 10. 对象实现支持

The Python/C API,发布 2.7.18

TYPE* PyObject_GC_Resize(TYPE, PyVarObject *op, Py_ssize_t newsize)
Resize an object allocated by PyObject_NewVar(). Returns the resized object or NULL on failure. op must
not be tracked by the collector yet.
在 2.5版更改: This function used an int type for newsize. This might require changes in your code for properly
supporting 64-bit systems.

void PyObject_GC_Track(PyObject *op)
把对象 op加入到垃圾回收器跟踪的容器对象中。对象在被回收器跟踪时必须保持有效的，因为回收器
可能在任何时候开始运行。在tp_traverse处理前的所有字段变为有效后，必须调用此函数，通常在
靠近构造函数末尾的位置。

void _PyObject_GC_TRACK(PyObject *op)
PyObject_GC_Track()的宏实现版本。它不能被用于扩展模块。

同样的，对象的释放器必须符合两个类似的规则：

1. 在引用其它容器的字段失效前，必须调用PyObject_GC_UnTrack()。

2. 必须使用PyObject_GC_Del()释放对象的内存。
void PyObject_GC_Del(void *op)

释放对象的内存，该对象初始化时由PyObject_GC_New()或PyObject_GC_NewVar()分配内存。

void PyObject_GC_UnTrack(void *op)
从 回 收 器 跟 踪 的 容 器 对 象 集 合 中 移 除 op 对 象。 请 注 意 可 以 在 此 对 象 上 再 次 调
用PyObject_GC_Track() 以将其加回到被跟踪对象集合。释放器 (tp_dealloc 句柄) 应当
在tp_traverse句柄所使用的任何字段失效之前为对象调用此函数。

void _PyObject_GC_UNTRACK(PyObject *op)
PyObject_GC_UnTrack()的使用宏实现的版本。不能用于扩展模块。

tp_traverse处理接收以下类型的函数形参。

int (*visitproc)(PyObject *object, void *arg)
传给tp_traverse处理的访问函数的类型。object 是容器中需要被遍历的一个对象，第三个形参对应
于tp_traverse处理的 arg。Python核心使用多个访问者函数实现循环引用的垃圾检测，不需要用户
自行实现访问者函数。

tp_traverse处理必须是以下类型：

int (*traverseproc)(PyObject *self, visitproc visit, void *arg)
Traversal function for a container object. Implementations must call the visit function for each object directly
contained by self, with the parameters to visit being the contained object and the arg value passed to the handler.
The visit function must not be called with a NULL object argument. If visit returns a non-zero value that value
should be returned immediately.

为了简化tp_traverse 处理的实现，Python 提供了一个Py_VISIT() 宏。若要使用这个宏，必须
把tp_traverse的参数命名为 visit和 arg。

void Py_VISIT(PyObject *o)
If o is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return it.
Using this macro, tp_traverse handlers look like:

static int
my_traverse(Noddy *self, visitproc visit, void *arg)
{

Py_VISIT(self->foo);
Py_VISIT(self->bar);
return 0;

}

10.8. 使对象类型支持循环垃圾回收 155

The Python/C API,发布 2.7.18

2.4新版功能.
The tp_clear handler must be of the inquiry type, or NULL if the object is immutable.
int (*inquiry)(PyObject *self)

丢弃产生循环引用的引用。不可变对象不需要声明此方法，因为他们不可能直接产生循环引用。需要
注意的是，对象在调用此方法后必须仍是有效的（不能对引用只调用Py_DECREF()方法）。当垃圾回
收器检测到该对象在循环引用中时，此方法会被调用。

156 Chapter 10. 对象实现支持

APPENDIXA

术语对照表

>>> 交互式终端中默认的 Python提示符。往往会显示于能以交互方式在解释器里执行的样例代码之前。
... The default Python prompt of the interactive shell when entering code for an indented code block, when within

a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2to3 一个将 Python 2.x代码转换为 Python 3.x代码的工具，能够处理大部分通过解析源码并遍历解析树可检
测到的不兼容问题。

2to3包含在标准库中，模块名为 lib2to3；并提供一个独立入口点 Tools/scripts/2to3。参见
2to3-reference。

abstract base class –抽象基类 Abstract base classes complement duck-typing by providing a way to define interfaces
when other techniques like hasattr() would be clumsy or subtly wrong (for example with magic methods).
ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized by
isinstance() and issubclass(); see the abc module documentation. Python comes with many built-in
ABCs for data structures (in the collections module), numbers (in the numbers module), and streams (in
the io module). You can create your own ABCs with the abc module.

argument –参数 A value passed to a function (or method) when calling the function. There are two types of arguments:
• 关键字参数: 在函数调用中前面带有标识符（例如 name=）或者作为包含在前面带有 **的字典里
的值传入。举例来说，3和 5在以下对 complex()的调用中均属于关键字参数:

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• 位置参数: 不属于关键字参数的参数。位置参数可出现于参数列表的开头以及/或者作为前面带有
*的iterable里的元素被传入。举例来说，3和 5在以下调用中均属于位置参数:

complex(3, 5)
complex(*(3, 5))

参数会被赋值给函数体中对应的局部变量。有关赋值规则参见 calls一节。根据语法，任何表达式都可
用来表示一个参数；最终算出的值会被赋给对应的局部变量。

157

The Python/C API,发布 2.7.18

See also the parameter glossary entry and the FAQ question on the difference between arguments and parameters.
attribute –属性 关联到一个对象的值，可以使用点号表达式通过其名称来引用。例如，如果一个对象 o具有

一个属性 a，就可以用 o.a来引用它。

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.
bytes-like object –字节类对象 An object that supports the buffer protocol, like str, bytearray or memoryview.

Bytes-like objects can be used for various operations that expect binary data, such as compression, saving to a
binary file or sending over a socket. Some operations need the binary data to be mutable, in which case not all
bytes-like objects can apply.

bytecode –字节码 Python source code is compiled into bytecode, the internal representation of a Python program in the
CPython interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is faster
the second time (recompilation from source to bytecode can be avoided). This“intermediate language”is said to
run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes
are not expected to work between different Python virtual machines, nor to be stable between Python releases.
字节码指令列表可以在 dis模块的文档中查看。

class –类 用来创建用户定义对象的模板。类定义通常包含对该类的实例进行操作的方法定义。
classic class Any class which does not inherit from object. See new-style class. Classic classes have been removed in

Python 3.
coercion –强制类型转换 The implicit conversion of an instance of one type to another during an operation which in-

volves two arguments of the same type. For example, int(3.15) converts the floating point number to the integer
3, but in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the same
type before they can be added or it will raise a TypeError. Coercion between two operands can be performed
with the coerce built-in function; thus, 3+4.5 is equivalent to calling operator.add(*coerce(3, 4.
5)) and results in operator.add(3.0, 4.5). Without coercion, all arguments of even compatible types
would have to be normalized to the same value by the programmer, e.g., float(3)+4.5 rather than just 3+4.5.

complex number –复数 对普通实数系统的扩展，其中所有数字都被表示为一个实部和一个虚部的和。虚数
是虚数单位（-1的平方根）的实倍数，通常在数学中写为 i，在工程学中写为 j。Python内置了对复
数的支持，采用工程学标记方式；虚部带有一个 j后缀，例如 3+1j。如果需要 math模块内对象的对
应复数版本，请使用 cmath，复数的使用是一个比较高级的数学特性。如果你感觉没有必要，忽略它
们也几乎不会有任何问题。

context manager –上下文管理器 在 with语句中使用，通过定义 __enter__()和 __exit__()方法来控
制环境状态的对象。参见 PEP 343。

CPython Python编程语言的规范实现，在 python.org上发布。”CPython”一词用于在必要时将此实现与其他
实现例如 Jython或 IronPython相区别。

decorator –装饰器 返回值为另一个函数的函数，通常使用 @wrapper语法形式来进行函数变换。装饰器的
常见例子包括 classmethod()和 staticmethod()。

装饰器语法只是一种语法糖，以下两个函数定义在语义上完全等价:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

同的样概念也适用于类，但通常较少这样使用。有关装饰器的详情可参见函数定义和类定义的文档。

158 Appendix A. 术语对照表

https://www.python.org/~guido/
https://www.python.org/dev/peps/pep-0343
https://www.python.org

The Python/C API,发布 2.7.18

descriptor –描述器 Any new-style object which defines the methods __get__(), __set__(), or
__delete__(). When a class attribute is a descriptor, its special binding behavior is triggered upon at-
tribute lookup. Normally, using a.b to get, set or delete an attribute looks up the object named b in the class
dictionary for a, but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is
a key to a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.
有关描述符的方法的详情可参看 descriptors。

dictionary –字典 An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

dictionary view –字典视图 The objects returned from dict.viewkeys(), dict.viewvalues(), and dict.
viewitems() are called dictionary views. They provide a dynamic view on the dictionary’s entries, which
means that when the dictionary changes, the view reflects these changes. To force the dictionary view to become a
full list use list(dictview). See dict-views.

docstring –文档字符串 作为类、函数或模块之内的第一个表达式出现的字符串字面值。它在代码执行时会被
忽略，但会被解释器识别并放入所在类、函数或模块的 __doc__属性中。由于它可用于代码内省，因
此是对象存放文档的规范位置。

duck-typing –鸭子类型 指一种编程风格，它并不依靠查找对象类型来确定其是否具有正确的接口，而是直
接调用或使用其方法或属性（“看起来像鸭子，叫起来也像鸭子，那么肯定就是鸭子。”）由于强调接
口而非特定类型，设计良好的代码可通过允许多态替代来提升灵活性。鸭子类型避免使用 type()或
isinstance()检测。(但要注意鸭子类型可以使用抽象基类作为补充。)而往往会采用 hasattr()
检测或是EAFP编程。

EAFP“求原谅比求许可更容易”的英文缩写。这种 Python常用代码编写风格会假定所需的键或属性存在，
并在假定错误时捕获异常。这种简洁快速风格的特点就是大量运用 try和 except语句。于其相对的
则是所谓LBYL风格，常见于 C等许多其他语言。

expression –表达式 A piece of syntax which can be evaluated to some value. In other words, an expression is an
accumulation of expression elements like literals, names, attribute access, operators or function calls which all
return a value. In contrast to many other languages, not all language constructs are expressions. There are also
statements which cannot be used as expressions, such as print or if. Assignments are also statements, not
expressions.

extension module –扩展模块 以 C或 C++编写的模块，使用 Python的 C API来与语言核心以及用户代码进
行交互。

file object –文件对象 对外提供面向文件 API以使用下层资源的对象（带有 read()或 write()这样的方
法）。根据其创建方式的不同，文件对象可以处理对真实磁盘文件，对其他类型存储，或是对通讯设备
的访问（例如标准输入/输出、内存缓冲区、套接字、管道等等）。文件对象也被称为文件类对象或流。
There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the io module. The canonical way to create a file object is by using the open() function.

file-like object –文件类对象 file object的同义词。

finder –查找器 An object that tries to find the loader for a module. It must implement a method named
find_module(). See PEP 302 for details.

floor division –向下取整除法 向下舍入到最接近的整数的数学除法。向下取整除法的运算符是 //。例如，表
达式 11 // 4的计算结果是 2，而与之相反的是浮点数的真正除法返回 2.75。注意 (-11) // 4
会返回 -3因为这是 -2.75向下舍入得到的结果。见 PEP 238。

function –函数 可以向调用者返回某个值的一组语句。还可以向其传入零个或多个参数并在函数体执行中被
使用。另见parameter, method和 function等节。

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11/4 currently evaluates to 2. If the module in which it

159

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0238

The Python/C API,发布 2.7.18

is executed had enabled true division by executing:

from __future__ import division

the expression11/4would evaluate to2.75. By importing the__future__module and evaluating its variables,
you can see when a new feature was first added to the language and when it will become the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection –垃圾回收 The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator –生成器 A function which returns an iterator. It looks like a normal function except that it contains yield
statements for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function. Each yield temporarily suspends processing, remembering the location execution state (in-
cluding local variables and pending try-statements). When the generator resumes, it picks up where it left off (in
contrast to functions which start fresh on every invocation).

generator expression –生成器表达式 An expression that returns an iterator. It looks like a normal expression followed
by a for expression defining a loop variable, range, and an optional if expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

GIL 参见global interpreter lock。
global interpreter lock –全局解释器锁 CPython解释器所采用的一种机制，它确保同一时刻只有一个线程在

执行 Python bytecode。此机制通过设置对象模型（包括 dict等重要内置类型）针对并发访问的隐式安
全简化了 CPython实现。给整个解释器加锁使得解释器多线程运行更方便，其代价则是牺牲了在多处
理器上的并行性。

不过，某些标准库或第三方库的扩展模块被设计为在执行计算密集型任务如压缩或哈希时释放 GIL。
此外，在执行 I/O操作时也总是会释放 GIL。
创建一个（以更精细粒度来锁定共享数据的）“自由线程”解释器的努力从未获得成功，因为这会牺牲
在普通单处理器情况下的性能。据信克服这种性能问题的措施将导致实现变得更复杂，从而更难以维
护。

hashable –可哈希 An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__()method), and can be compared to other objects (it needs an __eq__() or __cmp__()method).
Hashable objects which compare equal must have the same hash value.
可哈希性使得对象能够作为字典键或集合成员使用，因为这些数据结构要在内部使用哈希值。

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries)
are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal (except
with themselves), and their hash value is derived from their id().

IDLE Python的 IDE，“集成开发与学习环境”的英文缩写。是 Python标准发行版附带的基本编程器和解释
器环境。

immutable –不可变 具有固定值的对象。不可变对象包括数字、字符串和元组。这样的对象不能被改变。如
果必须存储一个不同的值，则必须创建新的对象。它们在需要常量哈希值的地方起着重要作用，例如
作为字典中的键。

integer division Mathematical division discarding any remainder. For example, the expression 11/4 currently evaluates
to 2 in contrast to the 2.75 returned by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied to it). However, if one of the operands is

160 Appendix A. 术语对照表

The Python/C API,发布 2.7.18

another numeric type (such as a float), the result will be coerced (see coercion) to a common type. For example,
an integer divided by a float will result in a float value, possibly with a decimal fraction. Integer division can be
forced by using the // operator instead of the / operator. See also __future__.

importing –导入 令一个模块中的 Python代码能为另一个模块中的 Python代码所使用的过程。
importer –导入器 查找并加载模块的对象；此对象既属于finder又属于loader。

interactive –交互 Python带有一个交互式解释器，即你可以在解释器提示符后输入语句和表达式，立即执行
并查看其结果。只需不带参数地启动 python命令（也可以在你的计算机开始菜单中选择相应菜单项）。
在测试新想法或检验模块和包的时候用这种方式会非常方便（请记得使用 help(x)）。

interpreted –解释型 Python一是种解释型语言，与之相对的是编译型语言，虽然两者的区别由于字节码编译
器的存在而会有所模糊。这意味着源文件可以直接运行而不必显式地创建可执行文件再运行。解释型
语言通常具有比编译型语言更短的开发/调试周期，但是其程序往往运行得更慢。参见interactive。

iterable –可迭代对象 An object capable of returning its members one at a time. Examples of iterables include all
sequence types (such as list, str, and tuple) and some non-sequence types like dict and file and objects
of any classes you define with an __iter__() or __getitem__() method. Iterables can be used in a for
loop and in many other places where a sequence is needed (zip(), map(),⋯). When an iterable object is passed
as an argument to the built-in function iter(), it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator –迭代器 An object representing a stream of data. Repeated calls to the iterator’s next() method return suc-
cessive items in the stream. When no more data are available a StopIteration exception is raised instead. At
this point, the iterator object is exhausted and any further calls to its next()method just raise StopIteration
again. Iterators are required to have an __iter__()method that returns the iterator object itself so every iterator
is also iterable and may be used in most places where other iterables are accepted. One notable exception is code
which attempts multiple iteration passes. A container object (such as a list) produces a fresh new iterator each
time you pass it to the iter() function or use it in a for loop. Attempting this with an iterator will just return
the same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.
更多信息可查看 typeiter。

key function –键函数 键函数或称整理函数，是能够返回用于排序或排位的值的可调用对象。例如，locale.
strxfrm()可用于生成一个符合特定区域排序约定的排序键。

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.nsmallest(), heapq.nlargest(), and
itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a lambda expression
such as lambda r: (r[0], r[2]). Also, the operator module provides three key function constructors:
attrgetter(), itemgetter(), and methodcaller(). See the Sorting HOW TO for examples of how
to create and use key functions.

keyword argument –关键字参数 参见argument。

lambda 由一个单独expression构成的匿名内联函数，表达式会在调用时被求值。创建 lambda函数的句法为
lambda [parameters]: expression

LBYL“先查看后跳跃”的英文缩写。这种代码编写风格会在进行调用或查找之前显式地检查前提条件。此
风格与EAFP方式恰成对比，其特点是大量使用 if语句。

在多线程环境中，LBYL方式会导致“查看”和“跳跃”之间发生条件竞争风险。例如，以下代码 if
key in mapping: return mapping[key]可能由于在检查操作之后其他线程从 mapping中移除
了 key而出错。这种问题可通过加锁或使用 EAFP方式来解决。

161

The Python/C API,发布 2.7.18

list –列表 Python内置的一种sequence。虽然名为列表，但更类似于其他语言中的数组而非链接列表，因为访
问元素的时间复杂度为 O(1)。

list comprehension –列表推导式 A compact way to process all or part of the elements in a sequence and return a list
with the results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates
a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted,
all elements in range(256) are processed.

loader –加载器 An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details.

magic method –魔术方法 special method的非正式同义词。

mapping –映射 A container object that supports arbitrary key lookups and implements the methods specified in
the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

metaclass –元类 一种用于创建类的类。类定义包含类名、类字典和基类列表。元类负责接受上述三个参数并
创建相应的类。大部分面向对象的编程语言都会提供一个默认实现。Python的特别之处在于可以创建
自定义元类。大部分用户永远不需要这个工具，但当需要出现时，元类可提供强大而优雅的解决方案。
它们已被用于记录属性访问日志、添加线程安全性、跟踪对象创建、实现单例，以及其他许多任务。

更多详情参见 metaclasses。
method方法 在类内部定义的函数。如果作为该类的实例的一个属性来调用，方法将会获取实例对象作为其

第一个argument (通常命名为 self)。参见function和nested scope。

method resolution order –方法解析顺序 方法解析顺序就是在查找成员时搜索全部基类所用的先后顺序。请
查看 Python 2.3方法解析顺序了解自 2.3版起 Python解析器所用相关算法的详情。

module模块 此对象是 Python代码的一种组织单位。各模块具有独立的命名空间，可包含任意 Python对象。
模块可通过importing操作被加载到 Python中。
另见package。

MRO 参见method resolution order。
mutable –可变 可变对象可以在其 id()保持固定的情况下改变其取值。另请参见immutable。

named tuple –具名元组 Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time.localtime() returns a tuple-like object where the year is accessible either with an index such
as t[0] or with a named attribute like t.tm_year).
A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple(). The latter approach automatically provides extra features such as a self-documenting represen-
tation like Employee(name='jones', title='programmer').

namespace –命名空间 The place where a variable is stored. Namespaces are implemented as dictionaries. There are
the local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces sup-
port modularity by preventing naming conflicts. For instance, the functions __builtin__.open() and os.
open() are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it
clear which module implements a function. For instance, writing random.seed() or itertools.izip()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

nested scope –嵌套作用域 The ability to refer to a variable in an enclosing definition. For instance, a function defined
inside another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read and
write in the innermost scope. Likewise, global variables read and write to the global namespace.

162 Appendix A. 术语对照表

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

The Python/C API,发布 2.7.18

new-style class –新式类 Any class which inherits from object. This includes all built-in types like list and dict.
Only new-style classes can use Python’s newer, versatile features like __slots__, descriptors, properties, and
__getattribute__().
More information can be found in newstyle.

object –对象 任何具有状态（属性或值）以及预定义行为（方法）的数据。object也是任何new-style class的最
顶层基类名。

package –包 一种可包含子模块或递归地包含子包的 Python module。从技术上说，包是带有 __path__属性
的 Python模块。

parameter –形参 A named entity in a function (or method) definition that specifies an argument (or in some cases,
arguments) that the function can accept. There are four types of parameters:

• positional-or-keyword：位置或关键字，指定一个可以作为位置参数传入也可以作为关键字参数传
入的实参。这是默认的形参类型，例如下面的 foo和 bar:

def func(foo, bar=None): ...

• positional-only：仅限位置，指定一个只能按位置传入的参数。Python中没有定义仅限位置形参的
语法。但是一些内置函数有仅限位置形参（比如 abs()）。

• var-positional：可变位置，指定可以提供由一个任意数量的位置参数构成的序列（附加在其他形参
已接受的位置参数之后）。这种形参可通过在形参名称前加缀 *来定义，例如下面的 args:

def func(*args, **kwargs): ...

• var-keyword：可变关键字，指定可以提供任意数量的关键字参数（附加在其他形参已接受的关键
字参数之后）。这种形参可通过在形参名称前加缀 **来定义，例如上面的 kwargs。

形参可以同时指定可选和必选参数，也可以为某些可选参数指定默认值。

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, and
the function section.

PEP“Python增强提议”的英文缩写。一个 PEP就是一份设计文档，用来向 Python社区提供信息，或描述
一个 Python的新增特性及其进度或环境。PEP应当提供精确的技术规格和所提议特性的原理说明。
PEP应被作为提出主要新特性建议、收集社区对特定问题反馈以及为必须加入 Python的设计决策编写
文档的首选机制。PEP的作者有责任在社区内部建立共识，并应将不同意见也记入文档。
参见 PEP 1。

positional argument –位置参数 参见argument。
Python 3000 Python 3.x发布路线的昵称（这个名字在版本 3的发布还遥遥无期的时候就已出现了）。有时也

被缩写为“Py3k”。
Pythonic 指一个思路或一段代码紧密遵循了 Python语言最常用的风格和理念，而不是使用其他语言中通用

的概念来实现代码。例如，Python的常用风格是使用 for语句循环来遍历一个可迭代对象中的所有元
素。许多其他语言没有这样的结构，因此不熟悉 Python的人有时会选择使用一个数字计数器:

for i in range(len(food)):
print food[i]

而相应的更简洁更 Pythonic的方法是这样的:

for piece in food:
print piece

163

https://www.python.org/dev/peps/pep-0001

The Python/C API,发布 2.7.18

reference count –引用计数 对特定对象的引用的数量。当一个对象的引用计数降为零时，所分配资源将被释
放。引用计数对 Python代码来说通常是不可见的，但它是CPython实现的一个关键元素。sys模块定义
了一个 getrefcount()函数，程序员可调用它来返回特定对象的引用计数。

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

sequence –序列 An iterable which supports efficient element access using integer indices via the __getitem__()
special method and defines a len() method that returns the length of the sequence. Some built-in sequence types
are list, str, tuple, and unicode. Note that dict also supports __getitem__() and __len__(),
but is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice –切片 An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (subscript)
notation uses slice objects internally (or in older versions, __getslice__() and __setslice__()).

special method –特殊方法 一种由 Python隐式调用的方法，用来对某个类型执行特定操作例如相加等等。这
种方法的名称的首尾都为双下划线。特殊方法的文档参见 specialnames。

statement –语句 语句是程序段（一个代码“块”）的组成单位。一条语句可以是一个expression或某个带有关
键字的结构，例如 if、while或 for。

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple in that
elements can be accessed either by index or as an attribute. However, they do not have any of the named tuple
methods like _make() or _asdict(). Examples of struct sequences include sys.float_info and the
return value of os.stat().

triple-quoted string –三引号字符串 首尾各带三个连续双引号（”）或者单引号（’）的字符串。它们在功能上
与首尾各用一个引号标注的字符串没有什么不同，但是有多种用处。它们允许你在字符串内包含未经
转义的单引号和双引号，并且可以跨越多行而无需使用连接符，在编写文档字符串时特别好用。

type –类型 类型决定一个 Python对象属于什么种类；每个对象都具有一种类型。要知道对象的类型，可以访
问它的 __class__属性，或是通过 type(obj)来获取。

universal newlines –通用换行 A manner of interpreting text streams in which all of the following are recognized as
ending a line: the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh
convention '\r'. See PEP 278 and PEP 3116, as well as str.splitlines() for an additional use.

virtual environment –虚拟环境 一种采用协作式隔离的运行时环境，允许 Python用户和应用程序在安装和升
级 Python分发包时不会干扰到同一系统上运行的其他 Python应用程序的行为。

virtual machine –虚拟机 一台完全通过软件定义的计算机。Python 虚拟机可执行字节码编译器所生成
的bytecode。

Zen of Python –Python之禅 列出 Python设计的原则与哲学，有助于理解与使用这种语言。查看其具体内容
可在交互模式提示符中输入“import this”。

164 Appendix A. 术语对照表

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

APPENDIXB

文档说明

这些文档生成自 reStructuredText原文档，由 Sphinx（一个专门为 Python文档写的文档生成器）创建。
本文档和它所用工具链的开发完全是由志愿者完成的，这和 Python本身一样。如果您想参与进来，请阅读
reporting-bugs了解如何参与。我们随时欢迎新的志愿者！
特别鸣谢：

• Fred L. Drake, Jr.，创造了用于早期 Python文档的工具链，以及撰写了非常多的文档；
• Docutils软件包项目，创建了 reStructuredText文本格式和 Docutils软件套件；
• Fredrik Lundh，Sphinx从他的 Alternative Python Reference项目中获得了很多好的想法。

B.1 Python文档的贡献者

有很多对 Python语言，Python标准库和 Python文档有贡献的人，随 Python源代码发布的Misc/ACKS文件列
出了部分贡献者。

有了 Python社区的输入和贡献，Python才有了如此出色的文档 -谢谢你们！

165

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/2.7/Misc/ACKS

The Python/C API,发布 2.7.18

166 Appendix B. 文档说明

APPENDIXC

历史和许可证

C.1 该软件的历史

Python由荷兰数学和计算机科学研究学会（CWI，见 https://www.cwi.nl/）的 Guido van Rossum于 1990年代
初设计，作为一门叫做 ABC的语言的替代品。尽管 Python包含了许多来自其他人的贡献，Guido仍是其主
要作者。

1995年，Guido在弗吉尼亚州的国家创新研究公司（CNRI，见 https://www.cnri.reston.va.us/）继续他在 Python
上的工作，并在那里发布了该软件的多个版本。

2000年五月，Guido和 Python核心开发团队转到 BeOpen.com并组建了 BeOpen PythonLabs团队。同年十月，
PythonLabs团队转到 Digital Creations (现为 Zope Corporation；见 https://www.zope.org/)。2001年，Python软件
基金会 (PSF，见 https://www.python.org/psf/)成立，这是一个专为拥有 Python相关知识产权而创建的非营利
组织。Zope Corporation现在是 PSF的赞助成员。
所有的 Python版本都是开源的（有关开源的定义参阅 https://opensource.org/）。历史上，绝大多数 Python版
本是 GPL兼容的；下表总结了各个版本情况。

发布版本 源自 年份 所有者 GPL兼容？
0.9.0至 1.2 n/a 1991-1995 CWI 是
1.3至 1.5.2 1.2 1995-1999 CNRI 是
1.6 1.5.2 2000 CNRI 否
2.0 1.6 2000 BeOpen.com 否
1.6.1 1.6 2001 CNRI 否
2.1 2.0+1.6.1 2001 PSF 否
2.0.1 2.0+1.6.1 2001 PSF 是
2.1.1 2.1+2.0.1 2001 PSF 是
2.1.2 2.1.1 2002 PSF 是
2.1.3 2.1.2 2002 PSF 是
2.2及更高 2.1.1 2001至今 PSF 是

注解: GPL兼容并不意味着 Python在 GPL下发布。与 GPL不同，所有 Python许可证都允许您分发修改后

167

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python/C API,发布 2.7.18

的版本，而无需开源所做的更改。GPL兼容的许可证使得 Python可以与其它在 GPL下发布的软件结合使用；
但其它的许可证则不行。

感谢众多在 Guido指导下工作的外部志愿者，使得这些发布成为可能。

C.2 获取或以其他方式使用 Python的条款和条件

C.2.1 用于 PYTHON 2.7.18的 PSF许可协议

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

2.7.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2020 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 2.7.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
2.7.18.

4. PSF is making Python 2.7.18 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 2.7.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.18
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.18, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

168 Appendix C. 历史和许可证

The Python/C API,发布 2.7.18

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 2.7.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 用于 PYTHON 2.0的 BEOPEN.COM许可协议

BEOPEN PYTHON开源许可协议第 1版

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions

(下页继续)

C.2. 获取或以其他方式使用 Python的条款和条件 169

The Python/C API,发布 2.7.18

(续上页)
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 用于 PYTHON 1.6.1的 CNRI许可协议

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of

(下页继续)

170 Appendix C. 历史和许可证

The Python/C API,发布 2.7.18

(续上页)
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 用于 PYTHON 0.9.0至 1.2的 CWI许可协议

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 被收录软件的许可证与鸣谢

本节是 Python发行版中收录的第三方软件的许可和致谢清单，该清单是不完整且不断增长的。

C.3.1 Mersenne Twister

_random 模块包含基于 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html 下载的代
码。以下是原始代码的完整注释（声明）：

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

(下页继续)

C.3. 被收录软件的许可证与鸣谢 171

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API,发布 2.7.18

(续上页)

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 套接字

socket模块使用 getaddrinfo()和 getnameinfo()函数，这些函数源代码在WIDE项目（http://www.
wide.ad.jp/）的单独源文件中。

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

(下页继续)

172 Appendix C. 历史和许可证

http://www.wide.ad.jp/
http://www.wide.ad.jp/

The Python/C API,发布 2.7.18

(续上页)
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /

C.3. 被收录软件的许可证与鸣谢 173

The Python/C API,发布 2.7.18

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);

added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 lpd Original version.

174 Appendix C. 历史和许可证

The Python/C API,发布 2.7.18

C.3.5 异步套接字服务

asynchat and asyncore模块包含以下声明:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie管理

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. 被收录软件的许可证与鸣谢 175

The Python/C API,发布 2.7.18

C.3.7 执行追踪

trace模块包含以下声明:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode与 UUdecode函数

uu模块包含以下声明:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C

(下页继续)

176 Appendix C. 历史和许可证

The Python/C API,发布 2.7.18

(续上页)
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.9 XML远程过程调用

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(下页继续)

C.3. 被收录软件的许可证与鸣谢 177

The Python/C API,发布 2.7.18

(续上页)
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

Python/dtoa.c文件提供了 C语言的 dtoa和 strtod函数，用于将 C语言的双精度型和字符串进行转换，该
文件由 David M. Gay的同名文件派生而来，当前可从 http://www.netlib.org/fp/下载。2009年 3月 16日检索到
的原始文件包含以下版权和许可声明:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

(下页继续)

178 Appendix C. 历史和许可证

The Python/C API,发布 2.7.18

(续上页)
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.13 OpenSSL

如果操作系统可用，则 hashlib, posix, ssl, crypt 模块使用 OpenSSL 库来提高性能。此外，适用于
Python的Windows和 Mac OS X安装程序可能包括 OpenSSL库的拷贝，所以在此处也列出了 OpenSSL许可
证的拷贝:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following

(下页继续)

C.3. 被收录软件的许可证与鸣谢 179

The Python/C API,发布 2.7.18

(续上页)
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.

(下页继续)

180 Appendix C. 历史和许可证

The Python/C API,发布 2.7.18

(续上页)
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.14 expat

除非使用 --with-system-expat配置了构建，否则 pyexpat扩展都是用包含 expat源的拷贝构建的:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. 被收录软件的许可证与鸣谢 181

The Python/C API,发布 2.7.18

C.3.15 libffi

除非使用 --with-system-libffi配置了构建，否则 _ctypes扩展都是包含 libffi源的拷贝构建的:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

如果系统上找到的 zlib版本太旧而无法用于构建，则使用包含 zlib源代码的拷贝来构建 zlib扩展:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

182 Appendix C. 历史和许可证

APPENDIXD

Copyright

Python与这份文档：
Copyright © 2001-2020 Python Software Foundation。保留所有权利。
版权所有 © 2000 BeOpen.com。保留所有权利。
版权所有 © 1995-2000 Corporation for National Research Initiatives。保留所有权利。
版权所有 © 1991-1995 Stichting Mathematisch Centrum。保留所有权利。

有关完整的许可证和许可信息，参见历史和许可证。

183

The Python/C API,发布 2.7.18

184 Appendix D. Copyright

索引

非字母
..., 157
2to3, 157
>>>, 157
__all__ (package variable), 27
__builtin__

模块, 9, 111
__dict__ (module attribute), 97
__doc__ (module attribute), 97
__file__ (module attribute), 97
__future__, 159
__import__

�置函数, 27
__main__

模块, 9, 111, 120
__name__ (module attribute), 97
__slots__, 164
_frozen (C类型), 29
_inittab (C类型), 29
_Py_c_diff (C函数), 62
_Py_c_neg (C函数), 62
_Py_c_pow (C函数), 62
_Py_c_prod (C函数), 62
_Py_c_quot (C函数), 62
_Py_c_sum (C函数), 62
_Py_NoneStruct (C变量), 132
_PyImport_FindExtension (C函数), 29
_PyImport_Fini (C函数), 29
_PyImport_FixupExtension (C函数), 29
_PyImport_Init (C函数), 28
_PyObject_Del (C函数), 131
_PyObject_GC_TRACK (C函数), 155
_PyObject_GC_UNTRACK (C函数), 155
_PyObject_New (C函数), 131
_PyObject_NewVar (C函数), 131
_PyString_Resize (C函数), 67
_PyTuple_Resize (C函数), 88
环境变量

exec_prefix, 4

PATH, 9
prefix, 4
PYTHONDUMPREFS, 138
PYTHONHOME, 9, 114
PYTHONPATH, 9
PYTHONSHOWALLOCCOUNT, 150

A
abort(), 26
abs

�置函数, 46
abstract base class -- 抽象基类, 157
apply

�置函数, 43, 44
argument -- 参数, 157
argv (in module sys), 113
attribute -- 属性, 158

B
BDFL, 158
buffer

对象, 81
buffer interface, 81
BufferType (in module types), 85
builtins

模块, 120
bytearray

对象, 64
bytecode -- 字节码, 158
bytes

�置函数, 43
bytes-like object -- 字节类对象, 158

C
calloc(), 125
Capsule

对象, 101
charbufferproc (C类型), 154
class

185

The Python/C API,发布 2.7.18

对象, 93
class -- 类, 158
classic class, 158
classmethod

�置函数, 135
ClassType (in module types), 93
cleanup functions, 26
close() (in module os), 120
cmp

�置函数, 42
CO_FUTURE_DIVISION (C变量), 14
CObject

对象, 102
code object, 108
coerce

�置函数, 48
coercion -- 强制类型转换, 158
compile

�置函数, 28
complex number

对象, 62
complex number -- 复数, 158
context manager -- 上下文管理器, 158
copyright (in module sys), 113
CPython, 158

D
decorator -- 装饰器, 158
descriptor -- 描述器, 159
dictionary

对象, 90
dictionary -- 字典, 159
dictionary view -- 字典视图, 159
DictionaryType (in module types), 90
DictType (in module types), 90
divmod

�置函数, 46
docstring -- 文档字符串, 159
duck-typing -- 鸭子类型, 159

E
EAFP, 159
EOFError (built-in exception), 96
exc_info() (in module sys), 7
exc_traceback (in module sys), 7, 17
exc_type (in module sys), 7, 17
exc_value (in module sys), 7, 17
exceptions

模块, 9
exec_prefix, 4
executable (in module sys), 112
exit(), 26
expression -- 表达式, 159
extension module -- 扩展模块, 159

F
file

对象, 95
file object -- 文件对象, 159
file-like object -- 文件类对象, 159
FileType (in module types), 95
finder -- 查找器, 159
float

�置函数, 48
floating point

对象, 61
FloatType (in modules types), 61
floor division -- 向下取整除法, 159
fopen(), 95
free(), 125
freeze utility, 29
frozenset

对象, 107
function

对象, 93
function -- 函数, 159

G
garbage collection -- 垃圾回收, 160
generator, 160
generator -- 生成器, 160
generator expression, 160
generator expression -- 生成器表达式, 160
GIL, 114, 160
global interpreter lock, 114
global interpreter lock -- 全局解释器锁,

160

H
hash

�置函数, 44, 141
hashable -- 可哈希, 160

I
IDLE, 160
ihooks

模块, 27
immutable -- 不可变, 160
importer -- 导入器, 161
importing -- 导入, 161
incr_item(), 8, 9
inquiry (C类型), 156
instance

对象, 93
int

�置函数, 48
integer

对象, 57

186 索引

The Python/C API,发布 2.7.18

integer division, 160
interactive -- 交互, 161
interpreted -- 解释型, 161
interpreter lock, 114
IntType (in modules types), 57
iterable -- 可迭代对象, 161
iterator -- 迭代器, 161

K
key function -- 键函数, 161
KeyboardInterrupt (built-in exception), 20
keyword argument -- 关键字参数, 161

L
lambda, 161
LBYL, 161
len

�置函数, 45, 49, 51, 89, 91, 108
list

对象, 88
list -- 列表, 162
list comprehension -- 列表推导式, 162
loader -- 加载器, 162
lock, interpreter, 114
long

�置函数, 48
long integer

对象, 59
LONG_MAX, 58, 60
LongType (in modules types), 59

M
magic

method, 162
magic method -- 魔术方法, 162
main(), 112, 113
malloc(), 125
mapping

对象, 90
mapping -- 映射, 162
metaclass -- 元类, 162
METH_CLASS (�置变量), 134
METH_COEXIST (�置变量), 135
METH_KEYWORDS (�置变量), 134
METH_NOARGS (�置变量), 134
METH_O (�置变量), 134
METH_OLDARGS (�置变量), 134
METH_STATIC (�置变量), 135
METH_VARARGS (�置变量), 134
method

magic, 162
special, 164
对象, 94

method resolution order -- 方法解析顺序,
162

method 方法, 162
MethodType (in module types), 93, 94
module

search path, 9, 111, 113
对象, 97

module 模块, 162
modules (in module sys), 27, 111
ModuleType (in module types), 97
MRO, 162
mutable -- 可变, 162

N
named tuple -- 具名元组, 162
namespace -- 命名空间, 162
nested scope -- 嵌套作用域, 162
new-style class -- 新式类, 163
None

对象, 56
numeric

对象, 57

O
object

code, 108
object -- 对象, 163
OverflowError (built-in exception), 60

P
package -- 包, 163
package variable

__all__, 27
parameter -- 形参, 163
PATH, 9
path

module search, 9, 111, 113
path (in module sys), 9, 111, 113
PEP, 163
platform (in module sys), 113
positional argument -- 位置参数, 163
pow

�置函数, 46, 47
prefix, 4
Py_AddPendingCall (C函数), 121
Py_AddPendingCall(), 121
Py_AtExit (C函数), 26
Py_BEGIN_ALLOW_THREADS, 115
Py_BEGIN_ALLOW_THREADS (C宏), 118
Py_BLOCK_THREADS (C宏), 118
Py_buffer (C类型), 82
Py_buffer.buf (C成员), 82
Py_buffer.internal (C成员), 83
Py_buffer.itemsize (C成员), 82

索引 187

The Python/C API,发布 2.7.18

Py_buffer.ndim (C成员), 82
Py_buffer.readonly (C成员), 82
Py_buffer.shape (C成员), 82
Py_buffer.strides (C成员), 82
Py_buffer.suboffsets (C成员), 82
Py_BuildValue (C函数), 35
Py_CLEAR (C函数), 15
Py_CompileString (C函数), 13
Py_CompileString(), 14
Py_CompileStringFlags (C函数), 13
Py_complex (C类型), 62
Py_DECREF (C函数), 15
Py_DECREF(), 4
Py_Ellipsis (C变量), 100
Py_END_ALLOW_THREADS, 115
Py_END_ALLOW_THREADS (C宏), 118
Py_END_OF_BUFFER (C变量), 85
Py_EndInterpreter (C函数), 120
Py_EnterRecursiveCall (C函数), 22
Py_eval_input (C变量), 14
Py_Exit (C函数), 26
Py_False (C变量), 58
Py_FatalError (C函数), 26
Py_FatalError(), 113
Py_FdIsInteractive (C函数), 25
Py_file_input (C变量), 14
Py_Finalize (C函数), 111
Py_Finalize(), 26, 111, 120
Py_FindMethod (C函数), 136
Py_GetBuildInfo (C函数), 113
Py_GetCompiler (C函数), 113
Py_GetCopyright (C函数), 113
Py_GetExecPrefix (C函数), 112
Py_GetExecPrefix(), 9
Py_GetPath (C函数), 113
Py_GetPath(), 9, 112
Py_GetPlatform (C函数), 113
Py_GetPrefix (C函数), 112
Py_GetPrefix(), 9
Py_GetProgramFullPath (C函数), 112
Py_GetProgramFullPath(), 9
Py_GetProgramName (C函数), 112
Py_GetPythonHome (C函数), 114
Py_GetVersion (C函数), 113
Py_INCREF (C函数), 15
Py_INCREF(), 4
Py_Initialize (C函数), 111
Py_Initialize(), 9, 112, 116, 120
Py_InitializeEx (C函数), 111
Py_InitModule (C函数), 132
Py_InitModule3 (C函数), 132
Py_InitModule4 (C函数), 132
Py_IsInitialized (C函数), 111
Py_IsInitialized(), 9

Py_LeaveRecursiveCall (C函数), 22
Py_Main (C函数), 11
Py_NewInterpreter (C函数), 120
Py_None (C变量), 56
Py_PRINT_RAW, 96
Py_REFCNT (C宏), 133
Py_RETURN_FALSE (C宏), 58
Py_RETURN_NONE (C宏), 56
Py_RETURN_TRUE (C宏), 58
Py_SetProgramName (C函数), 112
Py_SetProgramName(), 9, 111, 112
Py_SetPythonHome (C函数), 114
Py_single_input (C变量), 14
Py_SIZE (C宏), 133
PY_SSIZE_T_MAX, 60
Py_TPFLAGS_BASETYPE (�置变量), 143
Py_TPFLAGS_CHECKTYPES (�置变量), 143
Py_TPFLAGS_DEFAULT (�置变量), 144
Py_TPFLAGS_GC (�置变量), 143
Py_TPFLAGS_HAVE_CLASS (�置变量), 143
Py_TPFLAGS_HAVE_GC (�置变量), 144
Py_TPFLAGS_HAVE_GETCHARBUFFER (�置变量),

142, 154
Py_TPFLAGS_HAVE_INPLACEOPS (�置变量), 143
Py_TPFLAGS_HAVE_ITER (�置变量), 143
Py_TPFLAGS_HAVE_RICHCOMPARE (�置变量), 143
Py_TPFLAGS_HAVE_SEQUENCE_IN (�置变量), 143
Py_TPFLAGS_HAVE_WEAKREFS (�置变量), 143
Py_TPFLAGS_HEAPTYPE (�置变量), 143
Py_TPFLAGS_READY (�置变量), 143
Py_TPFLAGS_READYING (�置变量), 143
Py_tracefunc (C类型), 121
Py_True (C变量), 58
Py_TYPE (C宏), 133
Py_UNBLOCK_THREADS (C宏), 118
Py_UNICODE (C类型), 69
Py_UNICODE_ISALNUM (C函数), 70
Py_UNICODE_ISALPHA (C函数), 70
Py_UNICODE_ISDECIMAL (C函数), 70
Py_UNICODE_ISDIGIT (C函数), 70
Py_UNICODE_ISLINEBREAK (C函数), 70
Py_UNICODE_ISLOWER (C函数), 70
Py_UNICODE_ISNUMERIC (C函数), 70
Py_UNICODE_ISSPACE (C函数), 70
Py_UNICODE_ISTITLE (C函数), 70
Py_UNICODE_ISUPPER (C函数), 70
Py_UNICODE_TODECIMAL (C函数), 70
Py_UNICODE_TODIGIT (C函数), 70
Py_UNICODE_TOLOWER (C函数), 70
Py_UNICODE_TONUMERIC (C函数), 70
Py_UNICODE_TOTITLE (C函数), 70
Py_UNICODE_TOUPPER (C函数), 70
Py_VaBuildValue (C函数), 36
Py_VISIT (C函数), 155

188 索引

The Python/C API,发布 2.7.18

Py_XDECREF (C函数), 15
Py_XDECREF(), 9
Py_XINCREF (C函数), 15
PyAnySet_Check (C函数), 107
PyAnySet_CheckExact (C函数), 107
PyArg_Parse (C函数), 34
PyArg_ParseTuple (C函数), 34
PyArg_ParseTupleAndKeywords (C函数), 34
PyArg_UnpackTuple (C函数), 34
PyArg_VaParse (C函数), 34
PyArg_VaParseTupleAndKeywords (C函数), 34
PyBool_Check (C函数), 58
PyBool_FromLong (C函数), 58
PyBuffer_Check (C函数), 86
PyBuffer_FillContiguousStrides (C 函数),

84
PyBuffer_FillInfo (C函数), 84
PyBuffer_FromMemory (C函数), 86
PyBuffer_FromObject (C函数), 86
PyBuffer_FromReadWriteMemory (C函数), 86
PyBuffer_FromReadWriteObject (C函数), 86
PyBuffer_IsContiguous (C函数), 84
PyBuffer_New (C函数), 86
PyBuffer_Release (C函数), 84
PyBuffer_SizeFromFormat (C函数), 84
PyBuffer_Type (C变量), 85
PyBufferObject (C类型), 85
PyBufferProcs, 85
PyBufferProcs (C类型), 153
PyByteArray_AS_STRING (C函数), 64
PyByteArray_AsString (C函数), 64
PyByteArray_Check (C函数), 64
PyByteArray_CheckExact (C函数), 64
PyByteArray_Concat (C函数), 64
PyByteArray_FromObject (C函数), 64
PyByteArray_FromStringAndSize (C函数), 64
PyByteArray_GET_SIZE (C函数), 64
PyByteArray_Resize (C函数), 64
PyByteArray_Size (C函数), 64
PyByteArray_Type (C变量), 64
PyByteArrayObject (C类型), 64
PyCallable_Check (C函数), 43
PyCallIter_Check (C函数), 98
PyCallIter_New (C函数), 98
PyCallIter_Type (C变量), 98
PyCapsule (C类型), 101
PyCapsule_CheckExact (C函数), 101
PyCapsule_Destructor (C类型), 101
PyCapsule_GetContext (C函数), 101
PyCapsule_GetDestructor (C函数), 101
PyCapsule_GetName (C函数), 101
PyCapsule_GetPointer (C函数), 101
PyCapsule_Import (C函数), 101
PyCapsule_IsValid (C函数), 102

PyCapsule_New (C函数), 101
PyCapsule_SetContext (C函数), 102
PyCapsule_SetDestructor (C函数), 102
PyCapsule_SetName (C函数), 102
PyCapsule_SetPointer (C函数), 102
PyCell_Check (C函数), 103
PyCell_GET (C函数), 103
PyCell_Get (C函数), 103
PyCell_New (C函数), 103
PyCell_SET (C函数), 103
PyCell_Set (C函数), 103
PyCell_Type (C变量), 103
PyCellObject (C类型), 103
PyCFunction (C类型), 134
PyClass_Check (C函数), 93
PyClass_IsSubclass (C函数), 93
PyClass_Type (C变量), 93
PyClassObject (C类型), 93
PyCObject (C类型), 102
PyCObject_AsVoidPtr (C函数), 103
PyCObject_Check (C函数), 102
PyCObject_FromVoidPtr (C函数), 102
PyCObject_FromVoidPtrAndDesc (C函数), 102
PyCObject_GetDesc (C函数), 103
PyCObject_SetVoidPtr (C函数), 103
PyCode_Check (C函数), 108
PyCode_GetNumFree (C函数), 108
PyCode_New (C函数), 108
PyCode_NewEmpty (C函数), 109
PyCode_Type (C变量), 108
PyCodec_BackslashReplaceErrors (C 函数),

40
PyCodec_Decode (C函数), 39
PyCodec_Decoder (C函数), 40
PyCodec_Encode (C函数), 39
PyCodec_Encoder (C函数), 40
PyCodec_IgnoreErrors (C函数), 40
PyCodec_IncrementalDecoder (C函数), 40
PyCodec_IncrementalEncoder (C函数), 40
PyCodec_KnownEncoding (C函数), 39
PyCodec_LookupError (C函数), 40
PyCodec_Register (C函数), 39
PyCodec_RegisterError (C函数), 40
PyCodec_ReplaceErrors (C函数), 40
PyCodec_StreamReader (C函数), 40
PyCodec_StreamWriter (C函数), 40
PyCodec_StrictErrors (C函数), 40
PyCodec_XMLCharRefReplaceErrors (C 函数),

40
PyCodeObject (C类型), 108
PyCompilerFlags (C类型), 14
PyComplex_AsCComplex (C函数), 63
PyComplex_Check (C函数), 63
PyComplex_CheckExact (C函数), 63

索引 189

The Python/C API,发布 2.7.18

PyComplex_FromCComplex (C函数), 63
PyComplex_FromDoubles (C函数), 63
PyComplex_ImagAsDouble (C函数), 63
PyComplex_RealAsDouble (C函数), 63
PyComplex_Type (C变量), 63
PyComplexObject (C类型), 63
PyDate_Check (C函数), 104
PyDate_CheckExact (C函数), 104
PyDate_FromDate (C函数), 105
PyDate_FromTimestamp (C函数), 106
PyDateTime_Check (C函数), 104
PyDateTime_CheckExact (C函数), 104
PyDateTime_DATE_GET_HOUR (C函数), 106
PyDateTime_DATE_GET_MICROSECOND (C 函数),

106
PyDateTime_DATE_GET_MINUTE (C函数), 106
PyDateTime_DATE_GET_SECOND (C函数), 106
PyDateTime_FromDateAndTime (C函数), 105
PyDateTime_FromTimestamp (C函数), 106
PyDateTime_GET_DAY (C函数), 105
PyDateTime_GET_MONTH (C函数), 105
PyDateTime_GET_YEAR (C函数), 105
PyDateTime_TIME_GET_HOUR (C函数), 106
PyDateTime_TIME_GET_MICROSECOND (C 函数),

106
PyDateTime_TIME_GET_MINUTE (C函数), 106
PyDateTime_TIME_GET_SECOND (C函数), 106
PyDelta_Check (C函数), 104
PyDelta_CheckExact (C函数), 105
PyDelta_FromDSU (C函数), 105
PyDescr_IsData (C函数), 99
PyDescr_NewClassMethod (C函数), 99
PyDescr_NewGetSet (C函数), 98
PyDescr_NewMember (C函数), 98
PyDescr_NewMethod (C函数), 98
PyDescr_NewWrapper (C函数), 98
PyDict_Check (C函数), 90
PyDict_CheckExact (C函数), 90
PyDict_Clear (C函数), 91
PyDict_Contains (C函数), 91
PyDict_Copy (C函数), 91
PyDict_DelItem (C函数), 91
PyDict_DelItemString (C函数), 91
PyDict_GetItem (C函数), 91
PyDict_GetItemString (C函数), 91
PyDict_Items (C函数), 91
PyDict_Keys (C函数), 91
PyDict_Merge (C函数), 92
PyDict_MergeFromSeq2 (C函数), 92
PyDict_New (C函数), 90
PyDict_Next (C函数), 91
PyDict_SetItem (C函数), 91
PyDict_SetItemString (C函数), 91
PyDict_Size (C函数), 91

PyDict_Type (C变量), 90
PyDict_Update (C函数), 92
PyDict_Values (C函数), 91
PyDictObject (C类型), 90
PyDictProxy_New (C函数), 90
PyErr_BadArgument (C函数), 19
PyErr_BadInternalCall (C函数), 20
PyErr_CheckSignals (C函数), 20
PyErr_Clear (C函数), 18
PyErr_Clear(), 7, 9
PyErr_ExceptionMatches (C函数), 18
PyErr_ExceptionMatches(), 9
PyErr_Fetch (C函数), 18
PyErr_Format (C函数), 18
PyErr_GivenExceptionMatches (C函数), 18
PyErr_NewException (C函数), 21
PyErr_NewExceptionWithDoc (C函数), 21
PyErr_NoMemory (C函数), 19
PyErr_NormalizeException (C函数), 18
PyErr_Occurred (C函数), 17
PyErr_Occurred(), 7
PyErr_Print (C函数), 17
PyErr_PrintEx (C函数), 17
PyErr_Restore (C函数), 18
PyErr_SetExcFromWindowsErr (C函数), 19
PyErr_SetExcFromWindowsErrWithFilename

(C函数), 20
PyErr_SetExcFromWindowsErrWithFilenameObject

(C函数), 19
PyErr_SetFromErrno (C函数), 19
PyErr_SetFromErrnoWithFilename (C 函数),

19
PyErr_SetFromErrnoWithFilenameObject (C

函数), 19
PyErr_SetFromWindowsErr (C函数), 19
PyErr_SetFromWindowsErrWithFilename (C

函数), 19
PyErr_SetFromWindowsErrWithFilenameObject

(C函数), 19
PyErr_SetInterrupt (C函数), 20
PyErr_SetNone (C函数), 19
PyErr_SetObject (C函数), 18
PyErr_SetString (C函数), 18
PyErr_SetString(), 7
PyErr_Warn (C函数), 20
PyErr_WarnEx (C函数), 20
PyErr_WarnExplicit (C函数), 20
PyErr_WarnPy3k (C函数), 20
PyErr_WriteUnraisable (C函数), 21
PyEval_AcquireLock (C函数), 119
PyEval_AcquireLock(), 111
PyEval_AcquireThread (C函数), 119
PyEval_EvalCode (C函数), 13
PyEval_EvalCodeEx (C函数), 13

190 索引

The Python/C API,发布 2.7.18

PyEval_EvalFrame (C函数), 13
PyEval_EvalFrameEx (C函数), 14
PyEval_GetBuiltins (C函数), 39
PyEval_GetCallStats (C函数), 122
PyEval_GetFrame (C函数), 39
PyEval_GetFuncDesc (C函数), 39
PyEval_GetFuncName (C函数), 39
PyEval_GetGlobals (C函数), 39
PyEval_GetLocals (C函数), 39
PyEval_GetRestricted (C函数), 39
PyEval_InitThreads (C函数), 116
PyEval_InitThreads(), 111
PyEval_MergeCompilerFlags (C函数), 14
PyEval_ReInitThreads (C函数), 117
PyEval_ReleaseLock (C函数), 119
PyEval_ReleaseLock(), 111, 116
PyEval_ReleaseThread (C函数), 119
PyEval_ReleaseThread(), 116
PyEval_RestoreThread (C函数), 117
PyEval_RestoreThread(), 115, 116
PyEval_SaveThread (C函数), 117
PyEval_SaveThread(), 115, 116
PyEval_SetProfile (C函数), 122
PyEval_SetTrace (C函数), 122
PyEval_ThreadsInitialized (C函数), 117
PyExc_ArithmeticError, 23
PyExc_AssertionError, 23
PyExc_AttributeError, 23
PyExc_BaseException, 23
PyExc_BufferError, 23
PyExc_BytesWarning, 24
PyExc_DeprecationWarning, 24
PyExc_EnvironmentError, 23
PyExc_EOFError, 23
PyExc_Exception, 23
PyExc_FloatingPointError, 23
PyExc_FutureWarning, 24
PyExc_GeneratorExit, 23
PyExc_ImportError, 23
PyExc_ImportWarning, 24
PyExc_IndentationError, 23
PyExc_IndexError, 23
PyExc_IOError, 23
PyExc_KeyboardInterrupt, 23
PyExc_KeyError, 23
PyExc_LookupError, 23
PyExc_MemoryError, 23
PyExc_NameError, 23
PyExc_NotImplementedError, 23
PyExc_OSError, 23
PyExc_OverflowError, 23
PyExc_PendingDeprecationWarning, 24
PyExc_ReferenceError, 23
PyExc_RuntimeError, 23

PyExc_RuntimeWarning, 24
PyExc_StandardError, 23
PyExc_StopIteration, 23
PyExc_SyntaxError, 23
PyExc_SyntaxWarning, 24
PyExc_SystemError, 23
PyExc_SystemExit, 23
PyExc_TabError, 23
PyExc_TypeError, 23
PyExc_UnboundLocalError, 23
PyExc_UnicodeDecodeError, 23
PyExc_UnicodeEncodeError, 23
PyExc_UnicodeError, 23
PyExc_UnicodeTranslateError, 23
PyExc_UnicodeWarning, 24
PyExc_UserWarning, 24
PyExc_ValueError, 23
PyExc_VMSError, 23
PyExc_Warning, 24
PyExc_WindowsError, 23
PyExc_ZeroDivisionError, 23
PyFile_AsFile (C函数), 95
PyFile_Check (C函数), 95
PyFile_CheckExact (C函数), 95
PyFile_DecUseCount (C函数), 96
PyFile_FromFile (C函数), 95
PyFile_FromString (C函数), 95
PyFile_GetLine (C函数), 96
PyFile_IncUseCount (C函数), 95
PyFile_Name (C函数), 96
PyFile_SetBufSize (C函数), 96
PyFile_SetEncoding (C函数), 96
PyFile_SetEncodingAndErrors (C函数), 96
PyFile_SoftSpace (C函数), 96
PyFile_Type (C变量), 95
PyFile_WriteObject (C函数), 96
PyFile_WriteString (C函数), 96
PyFileObject (C类型), 95
PyFloat_AS_DOUBLE (C函数), 61
PyFloat_AsDouble (C函数), 61
PyFloat_AsReprString (C函数), 62
PyFloat_AsString (C函数), 62
PyFloat_Check (C函数), 61
PyFloat_CheckExact (C函数), 61
PyFloat_ClearFreeList (C函数), 62
PyFloat_FromDouble (C函数), 61
PyFloat_FromString (C函数), 61
PyFloat_GetInfo (C函数), 61
PyFloat_GetMax (C函数), 61
PyFloat_GetMin (C函数), 61
PyFloat_Type (C变量), 61
PyFloatObject (C类型), 61
PyFrame_GetLineNumber (C函数), 39
PyFrozenSet_Check (C函数), 107

索引 191

The Python/C API,发布 2.7.18

PyFrozenSet_CheckExact (C函数), 107
PyFrozenSet_New (C函数), 107
PyFrozenSet_Type (C变量), 107
PyFunction_Check (C函数), 93
PyFunction_GetClosure (C函数), 94
PyFunction_GetCode (C函数), 93
PyFunction_GetDefaults (C函数), 94
PyFunction_GetGlobals (C函数), 94
PyFunction_GetModule (C函数), 94
PyFunction_New (C函数), 93
PyFunction_SetClosure (C函数), 94
PyFunction_SetDefaults (C函数), 94
PyFunction_Type (C变量), 93
PyFunctionObject (C类型), 93
PyGen_Check (C函数), 104
PyGen_CheckExact (C函数), 104
PyGen_New (C函数), 104
PyGen_Type (C变量), 104
PyGenObject (C类型), 104
PyGetSetDef (C类型), 136
PyGILState_Ensure (C函数), 117
PyGILState_GetThisThreadState (C函数), 118
PyGILState_Release (C函数), 117
PyImport_AddModule (C函数), 28
PyImport_AppendInittab (C函数), 29
PyImport_Cleanup (C函数), 29
PyImport_ExecCodeModule (C函数), 28
PyImport_ExecCodeModuleEx (C函数), 28
PyImport_ExtendInittab (C函数), 29
PyImport_FrozenModules (C变量), 29
PyImport_GetImporter (C函数), 28
PyImport_GetMagicNumber (C函数), 28
PyImport_GetModuleDict (C函数), 28
PyImport_Import (C函数), 27
PyImport_ImportFrozenModule (C函数), 29
PyImport_ImportModule (C函数), 27
PyImport_ImportModuleEx (C函数), 27
PyImport_ImportModuleLevel (C函数), 27
PyImport_ImportModuleNoBlock (C函数), 27
PyImport_ReloadModule (C函数), 28
PyIndex_Check (C函数), 48
PyInstance_Check (C函数), 93
PyInstance_New (C函数), 93
PyInstance_NewRaw (C函数), 93
PyInstance_Type (C变量), 93
PyInt_AS_LONG (C函数), 57
PyInt_AsLong (C函数), 57
PyInt_AsSsize_t (C函数), 58
PyInt_AsUnsignedLongLongMask (C函数), 58
PyInt_AsUnsignedLongMask (C函数), 57
PyInt_Check (C函数), 57
PyInt_CheckExact (C函数), 57
PyInt_ClearFreeList (C函数), 58
PyInt_FromLong (C函数), 57

PyInt_FromSize_t (C函数), 57
PyInt_FromSsize_t (C函数), 57
PyInt_FromString (C函数), 57
PyInt_GetMax (C函数), 58
PyInt_Type (C变量), 57
PyInterpreterState (C类型), 116
PyInterpreterState_Clear (C函数), 118
PyInterpreterState_Delete (C函数), 118
PyInterpreterState_Head (C函数), 123
PyInterpreterState_New (C函数), 118
PyInterpreterState_Next (C函数), 123
PyInterpreterState_ThreadHead (C函数), 123
PyIntObject (C类型), 57
PyIter_Check (C函数), 52
PyIter_Next (C函数), 52
PyList_Append (C函数), 90
PyList_AsTuple (C函数), 90
PyList_Check (C函数), 88
PyList_CheckExact (C函数), 88
PyList_GET_ITEM (C函数), 89
PyList_GET_SIZE (C函数), 89
PyList_GetItem (C函数), 89
PyList_GetItem(), 6
PyList_GetSlice (C函数), 90
PyList_Insert (C函数), 89
PyList_New (C函数), 88
PyList_Reverse (C函数), 90
PyList_SET_ITEM (C函数), 89
PyList_SetItem (C函数), 89
PyList_SetItem(), 5
PyList_SetSlice (C函数), 90
PyList_Size (C函数), 89
PyList_Sort (C函数), 90
PyList_Type (C变量), 88
PyListObject (C类型), 88
PyLong_AsDouble (C函数), 61
PyLong_AsLong (C函数), 60
PyLong_AsLongAndOverflow (C函数), 60
PyLong_AsLongLong (C函数), 60
PyLong_AsLongLongAndOverflow (C函数), 60
PyLong_AsSsize_t (C函数), 60
PyLong_AsUnsignedLong (C函数), 60
PyLong_AsUnsignedLongLong (C函数), 60
PyLong_AsUnsignedLongLongMask (C函数), 60
PyLong_AsUnsignedLongMask (C函数), 60
PyLong_AsVoidPtr (C函数), 61
PyLong_Check (C函数), 59
PyLong_CheckExact (C函数), 59
PyLong_FromDouble (C函数), 59
PyLong_FromLong (C函数), 59
PyLong_FromLongLong (C函数), 59
PyLong_FromSize_t (C函数), 59
PyLong_FromSsize_t (C函数), 59
PyLong_FromString (C函数), 59

192 索引

The Python/C API,发布 2.7.18

PyLong_FromUnicode (C函数), 59
PyLong_FromUnsignedLong (C函数), 59
PyLong_FromUnsignedLongLong (C函数), 59
PyLong_FromVoidPtr (C函数), 60
PyLong_Type (C变量), 59
PyLongObject (C类型), 59
PyMapping_Check (C函数), 51
PyMapping_DelItem (C函数), 51
PyMapping_DelItemString (C函数), 51
PyMapping_GetItemString (C函数), 52
PyMapping_HasKey (C函数), 51
PyMapping_HasKeyString (C函数), 51
PyMapping_Items (C函数), 51
PyMapping_Keys (C函数), 51
PyMapping_Length (C函数), 51
PyMapping_SetItemString (C函数), 52
PyMapping_Size (C函数), 51
PyMapping_Values (C函数), 51
PyMappingMethods (C类型), 152
PyMappingMethods.mp_ass_subscript (C 成

员), 152
PyMappingMethods.mp_length (C成员), 152
PyMappingMethods.mp_subscript (C成员), 152
PyMarshal_ReadLastObjectFromFile (C 函

数), 30
PyMarshal_ReadLongFromFile (C函数), 30
PyMarshal_ReadObjectFromFile (C函数), 30
PyMarshal_ReadObjectFromString (C 函数),

30
PyMarshal_ReadShortFromFile (C函数), 30
PyMarshal_WriteLongToFile (C函数), 30
PyMarshal_WriteObjectToFile (C函数), 30
PyMarshal_WriteObjectToString (C函数), 30
PyMem_Del (C函数), 126
PyMem_Free (C函数), 126
PyMem_Malloc (C函数), 126
PyMem_New (C函数), 126
PyMem_Realloc (C函数), 126
PyMem_Resize (C函数), 126
PyMemberDef (C类型), 135
PyMemoryView_Check (C函数), 85
PyMemoryView_FromBuffer (C函数), 85
PyMemoryView_FromObject (C函数), 85
PyMemoryView_GET_BUFFER (C函数), 85
PyMemoryView_GetContiguous (C函数), 85
PyMethod_Check (C函数), 94
PyMethod_Class (C函数), 94
PyMethod_ClearFreeList (C函数), 95
PyMethod_Function (C函数), 94
PyMethod_GET_CLASS (C函数), 94
PyMethod_GET_FUNCTION (C函数), 94
PyMethod_GET_SELF (C函数), 94
PyMethod_New (C函数), 94
PyMethod_Self (C函数), 94

PyMethod_Type (C变量), 94
PyMethodDef (C类型), 134
PyModule_AddIntConstant (C函数), 97
PyModule_AddIntMacro (C函数), 97
PyModule_AddObject (C函数), 97
PyModule_AddStringConstant (C函数), 97
PyModule_AddStringMacro (C函数), 97
PyModule_Check (C函数), 97
PyModule_CheckExact (C函数), 97
PyModule_GetDict (C函数), 97
PyModule_GetFilename (C函数), 97
PyModule_GetName (C函数), 97
PyModule_New (C函数), 97
PyModule_Type (C变量), 97
PyNumber_Absolute (C函数), 46
PyNumber_Add (C函数), 45
PyNumber_And (C函数), 46
PyNumber_AsSsize_t (C函数), 48
PyNumber_Check (C函数), 45
PyNumber_Coerce (C函数), 47
PyNumber_CoerceEx (C函数), 48
PyNumber_Divide (C函数), 45
PyNumber_Divmod (C函数), 46
PyNumber_Float (C函数), 48
PyNumber_FloorDivide (C函数), 45
PyNumber_Index (C函数), 48
PyNumber_InPlaceAdd (C函数), 47
PyNumber_InPlaceAnd (C函数), 47
PyNumber_InPlaceDivide (C函数), 47
PyNumber_InPlaceFloorDivide (C函数), 47
PyNumber_InPlaceLshift (C函数), 47
PyNumber_InPlaceMultiply (C函数), 47
PyNumber_InPlaceOr (C函数), 47
PyNumber_InPlacePower (C函数), 47
PyNumber_InPlaceRemainder (C函数), 47
PyNumber_InPlaceRshift (C函数), 47
PyNumber_InPlaceSubtract (C函数), 47
PyNumber_InPlaceTrueDivide (C函数), 47
PyNumber_InPlaceXor (C函数), 47
PyNumber_Int (C函数), 48
PyNumber_Invert (C函数), 46
PyNumber_Long (C函数), 48
PyNumber_Lshift (C函数), 46
PyNumber_Multiply (C函数), 45
PyNumber_Negative (C函数), 46
PyNumber_Or (C函数), 46
PyNumber_Positive (C函数), 46
PyNumber_Power (C函数), 46
PyNumber_Remainder (C函数), 46
PyNumber_Rshift (C函数), 46
PyNumber_Subtract (C函数), 45
PyNumber_ToBase (C函数), 48
PyNumber_TrueDivide (C函数), 46
PyNumber_Xor (C函数), 46

索引 193

The Python/C API,发布 2.7.18

PyNumberMethods (C类型), 151
PyNumberMethods.nb_coerce (C成员), 152
PyObject (C类型), 132
PyObject_AsCharBuffer (C函数), 53
PyObject_AsFileDescriptor (C函数), 45
PyObject_AsReadBuffer (C函数), 53
PyObject_AsWriteBuffer (C函数), 53
PyObject_Bytes (C函数), 43
PyObject_Call (C函数), 43
PyObject_CallFunction (C函数), 44
PyObject_CallFunctionObjArgs (C函数), 44
PyObject_CallMethod (C函数), 44
PyObject_CallMethodObjArgs (C函数), 44
PyObject_CallObject (C函数), 43
PyObject_CheckBuffer (C函数), 83
PyObject_CheckReadBuffer (C函数), 53
PyObject_Cmp (C函数), 42
PyObject_Compare (C函数), 42
PyObject_Del (C函数), 132
PyObject_DelAttr (C函数), 42
PyObject_DelAttrString (C函数), 42
PyObject_DelItem (C函数), 45
PyObject_Dir (C函数), 45
PyObject_Free (C函数), 127
PyObject_GC_Del (C函数), 155
PyObject_GC_New (C函数), 154
PyObject_GC_NewVar (C函数), 154
PyObject_GC_Resize (C函数), 154
PyObject_GC_Track (C函数), 155
PyObject_GC_UnTrack (C函数), 155
PyObject_GenericGetAttr (C函数), 41
PyObject_GenericSetAttr (C函数), 42
PyObject_GetAttr (C函数), 41
PyObject_GetAttrString (C函数), 41
PyObject_GetBuffer (C函数), 83
PyObject_GetItem (C函数), 45
PyObject_GetIter (C函数), 45
PyObject_HasAttr (C函数), 41
PyObject_HasAttrString (C函数), 41
PyObject_Hash (C函数), 44
PyObject_HashNotImplemented (C函数), 44
PyObject_HEAD (C宏), 133
PyObject_HEAD_INIT (C宏), 133
PyObject_Init (C函数), 131
PyObject_InitVar (C函数), 131
PyObject_IsInstance (C函数), 43
PyObject_IsSubclass (C函数), 43
PyObject_IsTrue (C函数), 44
PyObject_Length (C函数), 44
PyObject_Malloc (C函数), 127
PyObject_New (C函数), 131
PyObject_NewVar (C函数), 131
PyObject_Not (C函数), 44
PyObject._ob_next (C成员), 138

PyObject._ob_prev (C成员), 138
PyObject_Print (C函数), 41
PyObject_Realloc (C函数), 127
PyObject_Repr (C函数), 42
PyObject_RichCompare (C函数), 42
PyObject_RichCompareBool (C函数), 42
PyObject_SetAttr (C函数), 42
PyObject_SetAttrString (C函数), 42
PyObject_SetItem (C函数), 45
PyObject_Size (C函数), 44
PyObject_Str (C函数), 43
PyObject_Type (C函数), 44
PyObject_TypeCheck (C函数), 44
PyObject_Unicode (C函数), 43
PyObject_VAR_HEAD (C宏), 133
PyObject.ob_refcnt (C成员), 138
PyObject.ob_type (C成员), 138
PyOS_AfterFork (C函数), 25
PyOS_ascii_atof (C函数), 38
PyOS_ascii_formatd (C函数), 38
PyOS_ascii_strtod (C函数), 37
PyOS_CheckStack (C函数), 25
PyOS_double_to_string (C函数), 38
PyOS_getsig (C函数), 25
PyOS_setsig (C函数), 25
PyOS_snprintf (C函数), 37
PyOS_stricmp (C函数), 38
PyOS_string_to_double (C函数), 37
PyOS_strnicmp (C函数), 38
PyOS_vsnprintf (C函数), 37
PyParser_SimpleParseFile (C函数), 12
PyParser_SimpleParseFileFlags (C函数), 13
PyParser_SimpleParseString (C函数), 12
PyParser_SimpleParseStringFlags (C 函数),

12
PyParser_SimpleParseStringFlagsFilename

(C函数), 12
PyProperty_Type (C变量), 98
PyRun_AnyFile (C函数), 11
PyRun_AnyFileEx (C函数), 11
PyRun_AnyFileExFlags (C函数), 11
PyRun_AnyFileFlags (C函数), 11
PyRun_File (C函数), 13
PyRun_FileEx (C函数), 13
PyRun_FileExFlags (C函数), 13
PyRun_FileFlags (C函数), 13
PyRun_InteractiveLoop (C函数), 12
PyRun_InteractiveLoopFlags (C函数), 12
PyRun_InteractiveOne (C函数), 12
PyRun_InteractiveOneFlags (C函数), 12
PyRun_SimpleFile (C函数), 12
PyRun_SimpleFileEx (C函数), 12
PyRun_SimpleFileExFlags (C函数), 12
PyRun_SimpleFileFlags (C函数), 12

194 索引

The Python/C API,发布 2.7.18

PyRun_SimpleString (C函数), 12
PyRun_SimpleStringFlags (C函数), 12
PyRun_String (C函数), 13
PyRun_StringFlags (C函数), 13
PySeqIter_Check (C函数), 98
PySeqIter_New (C函数), 98
PySeqIter_Type (C变量), 98
PySequence_Check (C函数), 49
PySequence_Concat (C函数), 49
PySequence_Contains (C函数), 50
PySequence_Count (C函数), 50
PySequence_DelItem (C函数), 49
PySequence_DelSlice (C函数), 50
PySequence_Fast (C函数), 50
PySequence_Fast_GET_ITEM (C函数), 50
PySequence_Fast_GET_SIZE (C函数), 51
PySequence_Fast_ITEMS (C函数), 50
PySequence_GetItem (C函数), 49
PySequence_GetItem(), 6
PySequence_GetSlice (C函数), 49
PySequence_Index (C函数), 50
PySequence_InPlaceConcat (C函数), 49
PySequence_InPlaceRepeat (C函数), 49
PySequence_ITEM (C函数), 51
PySequence_Length (C函数), 49
PySequence_List (C函数), 50
PySequence_Repeat (C函数), 49
PySequence_SetItem (C函数), 49
PySequence_SetSlice (C函数), 50
PySequence_Size (C函数), 49
PySequence_Tuple (C函数), 50
PySequenceMethods (C类型), 152
PySequenceMethods.sq_ass_item (C成员), 153
PySequenceMethods.sq_concat (C成员), 152
PySequenceMethods.sq_contains (C成员), 153
PySequenceMethods.sq_inplace_concat (C

成员), 153
PySequenceMethods.sq_inplace_repeat (C

成员), 153
PySequenceMethods.sq_item (C成员), 152
PySequenceMethods.sq_length (C成员), 152
PySequenceMethods.sq_repeat (C成员), 152
PySet_Add (C函数), 108
PySet_Check (C函数), 107
PySet_Clear (C函数), 108
PySet_Contains (C函数), 108
PySet_Discard (C函数), 108
PySet_GET_SIZE (C函数), 108
PySet_New (C函数), 107
PySet_Pop (C函数), 108
PySet_Size (C函数), 107
PySet_Type (C变量), 107
PySetObject (C类型), 107
PySignal_SetWakeupFd (C函数), 21

PySlice_Check (C函数), 99
PySlice_GetIndices (C函数), 99
PySlice_GetIndicesEx (C函数), 99
PySlice_New (C函数), 99
PySlice_Type (C变量), 99
PyString_AS_STRING (C函数), 67
PyString_AsDecodedObject (C函数), 68
PyString_AsEncodedObject (C函数), 68
PyString_AsString (C函数), 66
PyString_AsStringAndSize (C函数), 67
PyString_Check (C函数), 65
PyString_CheckExact (C函数), 65
PyString_Concat (C函数), 67
PyString_ConcatAndDel (C函数), 67
PyString_Decode (C函数), 68
PyString_Encode (C函数), 68
PyString_Format (C函数), 67
PyString_FromFormat (C函数), 65
PyString_FromFormatV (C函数), 66
PyString_FromString (C函数), 65
PyString_FromString(), 91
PyString_FromStringAndSize (C函数), 65
PyString_GET_SIZE (C函数), 66
PyString_InternFromString (C函数), 67
PyString_InternInPlace (C函数), 67
PyString_Size (C函数), 66
PyString_Type (C变量), 65
PyStringObject (C类型), 65
PySys_AddWarnOption (C函数), 26
PySys_GetFile (C函数), 26
PySys_GetObject (C函数), 26
PySys_ResetWarnOptions (C函数), 26
PySys_SetArgv (C函数), 114
PySys_SetArgv(), 111
PySys_SetArgvEx (C函数), 113
PySys_SetArgvEx(), 9, 111
PySys_SetObject (C函数), 26
PySys_SetPath (C函数), 26
PySys_WriteStderr (C函数), 26
PySys_WriteStdout (C函数), 26
Python 3000, 163
Python 提高建议

PEP 1, 163
PEP 238, 14, 159
PEP 278, 164
PEP 302, 159, 162
PEP 343, 158
PEP 3116, 164

PYTHONDUMPREFS, 138
PYTHONHOME, 9, 114
Pythonic, 163
PYTHONPATH, 9
PYTHONSHOWALLOCCOUNT, 150
PyThreadState, 114

索引 195

The Python/C API,发布 2.7.18

PyThreadState (C类型), 116
PyThreadState_Clear (C函数), 118
PyThreadState_Delete (C函数), 118
PyThreadState_Get (C函数), 117
PyThreadState_GetDict (C函数), 119
PyThreadState_New (C函数), 118
PyThreadState_Next (C函数), 123
PyThreadState_SetAsyncExc (C函数), 119
PyThreadState_Swap (C函数), 117
PyTime_Check (C函数), 104
PyTime_CheckExact (C函数), 104
PyTime_FromTime (C函数), 105
PyTrace_C_CALL (C变量), 122
PyTrace_C_EXCEPTION (C变量), 122
PyTrace_C_RETURN (C变量), 122
PyTrace_CALL (C变量), 122
PyTrace_EXCEPTION (C变量), 122
PyTrace_LINE (C变量), 122
PyTrace_RETURN (C变量), 122
PyTuple_Check (C函数), 86
PyTuple_CheckExact (C函数), 87
PyTuple_ClearFreeList (C函数), 88
PyTuple_GET_ITEM (C函数), 87
PyTuple_GET_SIZE (C函数), 87
PyTuple_GetItem (C函数), 87
PyTuple_GetSlice (C函数), 87
PyTuple_New (C函数), 87
PyTuple_Pack (C函数), 87
PyTuple_SET_ITEM (C函数), 88
PyTuple_SetItem (C函数), 87
PyTuple_SetItem(), 5
PyTuple_Size (C函数), 87
PyTuple_Type (C变量), 86
PyTupleObject (C类型), 86
PyType_Check (C函数), 55
PyType_CheckExact (C函数), 55
PyType_ClearCache (C函数), 55
PyType_GenericAlloc (C函数), 56
PyType_GenericNew (C函数), 56
PyType_HasFeature (C函数), 56
PyType_HasFeature(), 153
PyType_IS_GC (C函数), 56
PyType_IsSubtype (C函数), 56
PyType_Modified (C函数), 56
PyType_Ready (C函数), 56
PyType_Type (C变量), 55
PyTypeObject (C类型), 55
PyTypeObject.tp_alloc (C成员), 148
PyTypeObject.tp_allocs (C成员), 150
PyTypeObject.tp_as_buffer (C成员), 142
PyTypeObject.tp_base (C成员), 147
PyTypeObject.tp_bases (C成员), 150
PyTypeObject.tp_basicsize (C成员), 139
PyTypeObject.tp_cache (C成员), 150

PyTypeObject.tp_call (C成员), 141
PyTypeObject.tp_clear (C成员), 144
PyTypeObject.tp_compare (C成员), 140
PyTypeObject.tp_dealloc (C成员), 139
PyTypeObject.tp_descr_get (C成员), 147
PyTypeObject.tp_descr_set (C成员), 147
PyTypeObject.tp_dict (C成员), 147
PyTypeObject.tp_dictoffset (C成员), 147
PyTypeObject.tp_doc (C成员), 144
PyTypeObject.tp_flags (C成员), 142
PyTypeObject.tp_free (C成员), 149
PyTypeObject.tp_frees (C成员), 150
PyTypeObject.tp_getattr (C成员), 140
PyTypeObject.tp_getattro (C成员), 142
PyTypeObject.tp_getset (C成员), 147
PyTypeObject.tp_hash (C成员), 141
PyTypeObject.tp_init (C成员), 148
PyTypeObject.tp_is_gc (C成员), 149
PyTypeObject.tp_itemsize (C成员), 139
PyTypeObject.tp_iter (C成员), 146
PyTypeObject.tp_iternext (C成员), 146
PyTypeObject.tp_maxalloc (C成员), 150
PyTypeObject.tp_members (C成员), 147
PyTypeObject.tp_methods (C成员), 146
PyTypeObject.tp_mro (C成员), 150
PyTypeObject.tp_name (C成员), 139
PyTypeObject.tp_new (C成员), 149
PyTypeObject.tp_next (C成员), 150
PyTypeObject.tp_print (C成员), 140
PyTypeObject.tp_repr (C成员), 141
PyTypeObject.tp_richcompare (C成员), 145
PyTypeObject.tp_setattr (C成员), 140
PyTypeObject.tp_setattro (C成员), 142
PyTypeObject.tp_str (C成员), 142
PyTypeObject.tp_subclasses (C成员), 150
PyTypeObject.tp_traverse (C成员), 144
PyTypeObject.tp_weaklist (C成员), 150
PyTypeObject.tp_weaklistoffset (C 成员),

146
PyTZInfo_Check (C函数), 105
PyTZInfo_CheckExact (C函数), 105
PyUnicode_AS_DATA (C函数), 69
PyUnicode_AS_UNICODE (C函数), 69
PyUnicode_AsASCIIString (C函数), 78
PyUnicode_AsCharmapString (C函数), 79
PyUnicode_AsEncodedString (C函数), 73
PyUnicode_AsLatin1String (C函数), 78
PyUnicode_AsMBCSString (C函数), 79
PyUnicode_AsRawUnicodeEscapeString (C 函

数), 77
PyUnicode_AsUnicode (C函数), 72
PyUnicode_AsUnicodeEscapeString (C 函数),

77
PyUnicode_AsUTF8String (C函数), 74

196 索引

The Python/C API,发布 2.7.18

PyUnicode_AsUTF16String (C函数), 76
PyUnicode_AsUTF32String (C函数), 75
PyUnicode_AsWideChar (C函数), 72
PyUnicode_Check (C函数), 69
PyUnicode_CheckExact (C函数), 69
PyUnicode_ClearFreeList (C函数), 69
PyUnicode_Compare (C函数), 81
PyUnicode_Concat (C函数), 80
PyUnicode_Contains (C函数), 81
PyUnicode_Count (C函数), 80
PyUnicode_Decode (C函数), 73
PyUnicode_DecodeASCII (C函数), 78
PyUnicode_DecodeCharmap (C函数), 78
PyUnicode_DecodeLatin1 (C函数), 77
PyUnicode_DecodeMBCS (C函数), 79
PyUnicode_DecodeMBCSStateful (C函数), 79
PyUnicode_DecodeRawUnicodeEscape (C 函

数), 77
PyUnicode_DecodeUnicodeEscape (C函数), 77
PyUnicode_DecodeUTF7 (C函数), 76
PyUnicode_DecodeUTF7Stateful (C函数), 76
PyUnicode_DecodeUTF8 (C函数), 73
PyUnicode_DecodeUTF8Stateful (C函数), 73
PyUnicode_DecodeUTF16 (C函数), 75
PyUnicode_DecodeUTF16Stateful (C函数), 75
PyUnicode_DecodeUTF32 (C函数), 74
PyUnicode_DecodeUTF32Stateful (C函数), 74
PyUnicode_Encode (C函数), 73
PyUnicode_EncodeASCII (C函数), 78
PyUnicode_EncodeCharmap (C函数), 79
PyUnicode_EncodeLatin1 (C函数), 77
PyUnicode_EncodeMBCS (C函数), 79
PyUnicode_EncodeRawUnicodeEscape (C 函

数), 77
PyUnicode_EncodeUnicodeEscape (C函数), 77
PyUnicode_EncodeUTF7 (C函数), 76
PyUnicode_EncodeUTF8 (C函数), 74
PyUnicode_EncodeUTF16 (C函数), 76
PyUnicode_EncodeUTF32 (C函数), 74
PyUnicode_Find (C函数), 80
PyUnicode_Format (C函数), 81
PyUnicode_FromEncodedObject (C函数), 72
PyUnicode_FromFormat (C函数), 71
PyUnicode_FromFormatV (C函数), 72
PyUnicode_FromObject (C函数), 72
PyUnicode_FromString (C函数), 71
PyUnicode_FromStringAndSize (C函数), 71
PyUnicode_FromUnicode (C函数), 71
PyUnicode_FromWideChar (C函数), 72
PyUnicode_GET_DATA_SIZE (C函数), 69
PyUnicode_GET_SIZE (C函数), 69
PyUnicode_GetSize (C函数), 72
PyUnicode_Join (C函数), 80
PyUnicode_Replace (C函数), 81

PyUnicode_RichCompare (C函数), 81
PyUnicode_Split (C函数), 80
PyUnicode_Splitlines (C函数), 80
PyUnicode_Tailmatch (C函数), 80
PyUnicode_Translate (C函数), 80
PyUnicode_TranslateCharmap (C函数), 79
PyUnicode_Type (C变量), 69
PyUnicodeDecodeError_Create (C函数), 21
PyUnicodeDecodeError_GetEncoding (C 函

数), 21
PyUnicodeDecodeError_GetEnd (C函数), 22
PyUnicodeDecodeError_GetObject (C 函数),

21
PyUnicodeDecodeError_GetReason (C 函数),

22
PyUnicodeDecodeError_GetStart (C函数), 22
PyUnicodeDecodeError_SetEnd (C函数), 22
PyUnicodeDecodeError_SetReason (C 函数),

22
PyUnicodeDecodeError_SetStart (C函数), 22
PyUnicodeEncodeError_Create (C函数), 21
PyUnicodeEncodeError_GetEncoding (C 函

数), 21
PyUnicodeEncodeError_GetEnd (C函数), 22
PyUnicodeEncodeError_GetObject (C 函数),

21
PyUnicodeEncodeError_GetReason (C 函数),

22
PyUnicodeEncodeError_GetStart (C函数), 22
PyUnicodeEncodeError_SetEnd (C函数), 22
PyUnicodeEncodeError_SetReason (C 函数),

22
PyUnicodeEncodeError_SetStart (C函数), 22
PyUnicodeObject (C类型), 69
PyUnicodeTranslateError_Create (C 函数),

21
PyUnicodeTranslateError_GetEnd (C 函数),

22
PyUnicodeTranslateError_GetObject (C 函

数), 21
PyUnicodeTranslateError_GetReason (C 函

数), 22
PyUnicodeTranslateError_GetStart (C 函

数), 22
PyUnicodeTranslateError_SetEnd (C 函数),

22
PyUnicodeTranslateError_SetReason (C 函

数), 22
PyUnicodeTranslateError_SetStart (C 函

数), 22
PyVarObject (C类型), 132
PyVarObject_HEAD_INIT (C宏), 133
PyVarObject.ob_size (C成员), 139
PyWeakref_Check (C函数), 100

索引 197

The Python/C API,发布 2.7.18

PyWeakref_CheckProxy (C函数), 100
PyWeakref_CheckRef (C函数), 100
PyWeakref_GET_OBJECT (C函数), 100
PyWeakref_GetObject (C函数), 100
PyWeakref_NewProxy (C函数), 100
PyWeakref_NewRef (C函数), 100
PyWrapper_New (C函数), 99

R
readbufferproc (C类型), 154
realloc(), 125
reference count -- 引用计数, 164
reload

�置函数, 28
repr

�置函数, 42, 141
rexec

模块, 27

S
search

path, module, 9, 111, 113
segcountproc (C类型), 154
sequence

对象, 63
sequence -- 序列, 164
set

对象, 107
set_all(), 6
setcheckinterval() (in module sys), 114
setvbuf(), 96
SIGINT, 20
signal

模块, 20
slice -- 切片, 164
SliceType (in module types), 99
softspace (file attribute), 96
special

method, 164
special method -- 特殊方法, 164
statement -- 语句, 164
staticmethod

�置函数, 135
stderr (in module sys), 120
stdin (in module sys), 120
stdout (in module sys), 120
str

�置函数, 43
strerror(), 19
string

对象, 65
StringType (in module types), 65
struct sequence, 164
sum_list(), 6

sum_sequence(), 7, 8
sys

模块, 9, 111, 120
SystemError (built-in exception), 97

T
thread

模块, 116
tp_as_mapping (C成员), 141
tp_as_number (C成员), 141
tp_as_sequence (C成员), 141
traverseproc (C类型), 155
triple-quoted string -- 三引号字符串, 164
tuple

�置函数, 50, 90
对象, 86

TupleType (in module types), 86
type

�置函数, 44
对象, 4, 55

type -- 类型, 164
TypeType (in module types), 55

U
ULONG_MAX, 60
unicode

�置函数, 43
universal newlines -- 通用换行, 164

V
�置函数

__import__, 27
abs, 46
apply, 43, 44
bytes, 43
classmethod, 135
cmp, 42
coerce, 48
compile, 28
divmod, 46
float, 48
hash, 44, 141
int, 48
len, 45, 49, 51, 89, 91, 108
long, 48
pow, 46, 47
reload, 28
repr, 42, 141
staticmethod, 135
str, 43
tuple, 50, 90
type, 44
unicode, 43

version (in module sys), 113

198 索引

The Python/C API,发布 2.7.18

virtual environment -- 虚拟环境, 164
virtual machine -- 虚拟机, 164
visitproc (C类型), 155
对象

buffer, 81
bytearray, 64
Capsule, 101
class, 93
CObject, 102
complex number, 62
dictionary, 90
file, 95
floating point, 61
frozenset, 107
function, 93
instance, 93
integer, 57
list, 88
long integer, 59
mapping, 90
method, 94
module, 97
None, 56
numeric, 57
sequence, 63
set, 107
string, 65
tuple, 86
type, 4, 55

W
模块

__builtin__, 9, 111
__main__, 9, 111, 120
builtins, 120
exceptions, 9
ihooks, 27
rexec, 27
signal, 20
sys, 9, 111, 120
thread, 116

writebufferproc (C类型), 154

Z
Zen of Python -- Python 之禅, 164

索引 199

	概述
	包含文件
	对象、类型和引用计数
	异常
	嵌入Python
	调试构建

	The Very High Level Layer
	引用计数
	异常处理
	Unicode Exception Objects
	Recursion Control
	标准异常
	标准警告类别
	String Exceptions

	工具
	操作系统实用程序
	系统功能
	过程控制
	导入模块
	数据 marshal 操作支持
	解析参数并构建值变量
	字符串转换与格式化
	反射
	编解码器注册与支持功能

	抽象对象层
	对象协议
	数字协议
	序列协议
	映射协议
	迭代器协议
	旧缓冲协议

	具体的对象层
	基本对象
	数值对象
	序列对象
	Mapping Objects
	其他对象

	Initialization, Finalization, and Threads
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Sub-interpreter support
	异步通知
	分析和跟踪
	高级调试器支持

	内存管理
	概述
	内存接口
	对象分配器
	The pymalloc allocator
	例子

	对象实现支持
	在堆上分配对象
	Common Object Structures
	类型对象
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	使对象类型支持循环垃圾回收

	术语对照表
	文档说明
	Python 文档的贡献者

	历史和许可证
	该软件的历史
	获取或以其他方式使用 Python 的条款和条件
	被收录软件的许可证与鸣谢

	Copyright
	索引

