Extending and Embedding Python
%7 2.7.18

Guido van Rossum
and the Python development team

A A 20,2020

Python Software Foundation
Email: docs@python.org

Contents

1 f§il] C g C++ " Ji¢ Python 3
L1 A REITIT . e e e e 3
12 RPHHRAIEHE o 4
L3 BB . . o e 6
L4 BHOPERAWIAEEL o 7
LS GRIRMIBERE . . . 8
1.6 FEC WM Python BREL o e 9
17 BB REREIIZSEL . . o e 11
1.8 APIREEIIEBETESEL . 12
L9 FITEAETEAE . . . o o 13
110 BIHEEL . o 14
L11 FECH++ BT R . . . o 17
L12 P BBHRME CAPL . L o 17
2 Defining New Types 21
2.1 TheBasics e 21
2.2 TypeMethods e e e e e e 49
3 {4 distutils f%t C fil C++ P)it 61
3.1 KRARHIT R e 62
4 At Windows “*EE4i1E C fl C++ ¥ i 65
4.1 A Cookbook Approach e e e e e e e 65
4.2 Differences Between Unix and Windows o . L e e 66
43 UsingDLLsinPractice e 66
5 AeIERIFDFIRA Python 69
5.1 VeryHigh Level Embedding e e 70
5.2 Beyond Very High Level Embedding: Anoverview 70
53 HEHRA 71
54 Extending Embedded Python 73
55 FECH HHAPython e 74
5.6 FEF Unix BEEHGIFMEEE o 74
A ARiEXRER 75
B SR 83

B.1 Python CESIITTHRE . . . 0 o o o e e
C Dy vl

C.l MBI © o o o e
C2 FHEAFHA T Python BUSERAISAE . o o o
C3 BRGREARIERESIEEE . o e
D Copyright
#yl

85
85
86
89

101

103

Extending and Embedding Python, %% 2.7.18

ASCRHA T C 5 C++ G B AR A HT AR Y B Python f#EREAR I TN RE. X LEBEHAALA] PARE
SCBrE ek %L, b m] PAsE SCBT IR I RO T7 3k SO fIA T A Python AFRE SR A E 55—
REFh, AR G S . U5, RN TR aEey iy, DMEEI AshSH (ZEztrims)
HENERES T, WSR2 B R G SR LR A3

ARSI ARELAEHT 5% Python FYEEANAIH . A Xi%1E S BAEER NS, 725 tutorial-index , reference-index
A T EIERAIES E Lo library-index 5GBTS 2RAL. B (PYEAIH Python 275) HISCHY,
fES HA T 2N HTER .

KT HEA Python/C APT IFRAIN 41, 155 ML c-api-index .

{Efi#: This guide only covers the basic tools for creating extensions provided as part of this version of CPython. Third
party tools may offer simpler alternatives. Refer to the binary extensions section in the Python Packaging User Guide for
more information.

Contents 1

https://packaging.python.org/en/latest/extensions/

Extending and Embedding Python, %% 2.7.18

2 Contents

CHAPTER 1

{&H C g C++ § & Python

SRR C, BSIUHNT Python BB . PR LEAEE] Python BT, FIPAET extension
modules FSEH: SEHUHIA N EXT S 28 8 C HFERER RS A -

N TSR, Python APT (B RRF e) 5 T —RIIpRE. AL, ATLAT; A Python ZAT £
SR> A% . Python 1) APT W] DA AE—A C¥EICPFHFIA] "Python. " KA.

PR 90 5 7 SN S R H A A R RSB NI E Y S 4

{Ef#: The C extension interface is specific to CPython, and extension modules do not work on other Python implemen-
tations. In many cases, it is possible to avoid writing C extensions and preserve portability to other implementations. For
example, if your use case is calling C library functions or system calls, you should consider using the ctypes module
or the cffi library rather than writing custom C code. These modules let you write Python code to interface with C code
and are more portable between implementations of Python than writing and compiling a C extension module.

1.1 — A ERMHIF

Let’ s create an extension module called spam (the favorite food of Monty Python fans---) and let’ s say we want to
create a Python interface to the C library function system () '. This function takes a null-terminated character string as
argument and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls —-1")

e #—A spammodule.c . (4 b, WR— BN spam, X SEEE R C ORI
spammodule. c; WEREAMIHRL FAEFE K, Ul spammi £y, WX AR SO LB spammi fy . c.)

The first line of our file can be:

AR D E SRR os BT, 3 BV — AR BRI EL A 0 T

https://cffi.readthedocs.org

Extending and Embedding Python, %% 2.7.18

#include <Python.h>

X £ A Python APL (BISRAREN, ARAT DATEIX LGS IR H AR RS B RS .

{EfE: T Python W RES E L —LURBAEIL LY R LS MAR Sk SRR TRAL Pl 2 3L, IR AR A S AT A A
K2 HT, AR L RSELE Python . h,

JiA P] WA S e L H % Python.h W, A EIZ Py 8L PY , BRTHBLEE 2@ SUHE 1 ALK SO
B AT, PARCK T ik Python fERERS Y T iZ, "Python.h" tAE T/ DERHELSCMF: <stdio.h>
, <string.h>, <errno.h>, fl <stdlib.h> . WG KL SRR RGE_ EATFAE, RS EH R
HEimalloc () , free() fl realloc() .

NN C BREEN YRR, M spam. system (string) WRMURIELE, GRAITMESEZITEN):

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple (args, "s", &command))
return NULL;

sts = system(command) ;

return Py_BuildvValue("i", sts);

}

ANHEHERESESIRNTTE CENOIT, B "1s -1") B Ea C RBIZH. C A2 A A
SR, MR TSR self Fl args

For module functions, the self argument is NULL or a pointer selected while initializing the module (see
Py_InitModuled ()). For a method, it would point to the object instance.

args ZH e 17—~ Python [tuple X RAYIEEE, Hb WS S%. f4 tple TR — MRS XS
Hrth 4K 2 Python X G—BAERATHY C AP T E Tl 5 B0 -4 C . Python AP Hf%) pR £¢
PyArg_ParseTuple () SMASHRMIRIFA CH. EHUMBM AT H B E 7 2N S BB K
FAEBCRARER) C AR BRI RS S LR .

PyArg_ParseTuple () returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw in the
example).

1.2 XFHIRFFE

An important convention throughout the Python interpreter is the following: when a function fails, it should set an ex-
ception condition and return an error value (usually a NULL pointer). Exceptions are stored in a static global variable
inside the interpreter; if this variable is NULL no exception has occurred. A second global variable stores the “associated
value” of the exception (the second argument to raise). A third variable contains the stack traceback in case the
error originated in Python code. These three variables are the C equivalents of the Python variables sys .exc_type,
sys.exc_value and sys.exc_traceback (see the section on module sys in the Python Library Reference). It
is important to know about them to understand how errors are passed around.

Python APT 15 XL T — B4 KOk 1 B BO5

4 Chapter 1. {Ef C 5 C++ ¥ & Python

Extending and Embedding Python, %% 2.7.18

TRE, REMNSE-RER

% i B & PyErr_SetString(). HBHE HFH C
C FAFEREHI A R, I 84— Python ¥

PyExc_zeroDivisionError XFEH T E XA,
TREEXT QAT S E)« SRR

H—NE AR PyErr_SetFromErrno , AEZ N RENSR, REHRESHESFZER errno
W, il I R GEA /& PyErr_SetObject (@/\Wﬁ/\’%ﬁl Sy %XT%%H TR . RATEEAE
F Py_INCREF () FeHbn{% 8 5| HoAth bk fﬁcﬂﬁf’%éﬂm%éﬁ%lmﬁﬁ

You can test non-destructively whether an exception has been set with PyErr_Occurred (). This returns the current
exception object, or NULL if no exception has occurred. You normally don’ t need to call PyErr_Occurred () to
see whether an error occurred in a function call, since you should be able to tell from the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or —1). It should not call one of the PyErr_* () functions —one has already been called by g. f’ s caller is
then supposed to also return an error indication to its caller, again without calling PyErr_* (), and so on —the most
detailed cause of the error was already reported by the function that first detected it. Once the error reaches the Python
interpreter’ s main loop, this aborts the currently executing Python code and tries to find an exception handler specified
by the Python programmer.

(FERCLERGUL T, B SKRERS B JHHILE PyEre_» O A HETIPEAM A0SR B8, TR HARX A
s AT AR o (FR 35 IR — B, IR AN e #T EFECE KR EE ER RZHHRES
H TR b 5 PR i I)

FEL 20— R O BT B R R, R A AGE I R PyErr_Clear () RAHIPLIHR.
C ISP PyErr_Clear () AYME—IF /)i'z-zﬁﬂ%“ﬂT‘uﬁ%&tfc%?/‘@ﬁ%ﬁ%ﬁﬁ%ﬁ%éEE HO R E
(W] g i A vk ﬁ%fﬁ%?ﬁﬁtﬂ%&) .
Every failing malloc () call must be turned into an exception —the direct caller of malloc () (or realloc ())
must call PyErr_NoMemory () and return a failure indicator itself. All the object-creating functions (for example,
PyInt_FromLong ()) already do this, so this note is only relevant to those who callmalloc () directly.

WEERER, BRT PyArg_ParseTuple () SFEERYHISL, 1R[] B HOIR ESAD Y R KICH AR J2 1k] 1 {5
LRFTRII, LA -1 FoRRM, anfE Unix RGER 4.

BE, MR ARG R g B R B GE A ARE S A E X 4 /T Py_XDECREF () 5
Py_DECREF (ﬁ}ﬂ).

PEFEG WA 755 SR TR E 4. A M &1 Python 5 &R A XTI 1 i A B C Xf &, fil
Ul PyExc_ZeroDivisionError, RAIPAEEEM BT M5, IRV 4 Mk FRa N EMH
PyExc_TypeError RF /R — A TLEIT I AR KRS % H PyExc_IOError). WIHRSHINEA M
i, PyArg_ParseTuple () RAGEH 5| K PyExc_TypeError. WAARAE—NSEBELTA THEE
?il%lzma‘zuz\ﬁiﬁﬁ,ﬁ\ﬁz%ﬁa M B PyExc_ValueError.

PRULAT A AR AR S — M ME— R B 0 . 5 SR SCPF R I — N isx e |, e

static PyObject *SpamError;

and initialize it in your module’ s initialization function (initspam ()) with an exception object (leaving out the error
checking for now):

PyMODINIT_FUNC
initspam(void)
{

PyObject *m;

m = Py_InitModule ("spam", SpamMethods);
if (m == NULL)
return;

(FTgksn)

1.2. XTHRNEE 5

Extending and Embedding Python, %% 2.7.18

(£ 50

SpamError = PyErr_NewException("spam.error", NULL, NULL);
Py_INCREF (SpamError) ;
PyModule_AddObject (m, "error", SpamError);

Note that the Python name for the exception object is spam.error. The PyErr_NewException () function may
create a class with the base class being Exception (unless another class is passed in instead of NULL), described in
bltin-exceptions.

[REE A2 QIR ORAT T spamError (— A5 XA TR N T B7 1Bk i, 75 0] spamError
BE Iy 2 M B T

—21E PyMODINIT_FUNC {EN R EGR [HI 2234 1) F ¥
spam.error FiF Al AYEY A H b Il , @it PyErr_SetString () EREUMMA, WT:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

if (sts < 0) {
PyErr_SetString(SpamError, "System command failed");
return NULL;

}

return PyLong_FromLong (sts);

1.3 EFHIF

(e 21 P TR 610, ARBZIZEA T T) AR

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument list,
relying on the exception set by PyArg_ParseTuple (). Otherwise the string value of the argument has been copied
to the local variable command. This is a pointer assignment and you are not supposed to modify the string to which it
points (so in Standard C, the variable command should properly be declared as const char *command).

MBI UNIX R R system () , ZIBBMPISECEN A M PyArg_ParseTuple () HUH:

sts = system(command) ;

Our spam.system () function must return the value of sts as a Python object. This is done using the function
Py_BuildValue (), which is something like the inverse of PyArg_ParseTuple () : it takes a format string and
an arbitrary number of C values, and returns a new Python object. More info on Py_BuildValue () is given later.

return Py_BuildvValue("i", sts);

FEXAEOLT , SRl —REA R, (XA G &AE Python e HLAE B .

6 Chapter 1. {Ef C 5 C++ ¥ & Python

Extending and Embedding Python, %% 2.7.18

WRAIREY C REC A PR EME GBI void WRED, WA None » (] DA Py_RETUN_NONE
FERGER):

Py_INCREF (Py_None) ;
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL pointer,
which means “error” in most contexts, as we have seen.

1.4 ERBEFRFNIGIECEREL

TR spam_system () W[4 Python F2J78 . fERRER N W LAY Python], TR Biiee L—A 07
¥ “method table”,

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, 0, NULL} /* Sentinel */

}i
HESE = A28 (METH_VARARGS) , X/MrGIEESMHEA C W ABG. "ik{§Ha METH_VARARGS .

METH_VARARGS | METH_KEYWORDS ., {H 0 fAFEfFH PyArg_ParseTuple) PIFRIHAS 5

hn B OBA M fiff | METH_VARARGS , R 3£ % % Python f£ 3F tuple #% 2 09 = %k, I & & i |
PyArg_ParseTuple () #4TENT.

METH_KEYWORDS {H 3% L4725, XMIEMN T C mArETE 24 =/ PyObject * X, £RF
WZ%r, ffifl PyArg_ParseTupleAndKeywords () RfEHTH S%K.

The method table must be passed to the interpreter in the module’ s initialization function. The initialization function
must be named initname (), where name is the name of the module, and should be the only non-st at i c item defined
in the module file:

PyMODINIT_FUNC
initspam(void)
{
(void) Py_InitModule ("spam", SpamMethods);
i

Note that PyYMODINIT_FUNC declares the function as void return type, declares any special linkage declarations
required by the platform, and for C++ declares the function as extern "C".

When the Python program imports module spam for the first time, initspam() is called. (See below for com-
ments about embedding Python.) It calls Py_InitModule (), which creates a “module object” (which is inserted
in the dictionary sys.modules under the key "spam"), and inserts built-in function objects into the newly cre-
ated module based upon the table (an array of PyMethodDef structures) that was passed as its second argument.
Py_InitModule () returns a pointer to the module object that it creates (which is unused here). It may abort with a
fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily.

When embedding Python, the initspam () function is not called automatically unless there’ s an entry in the
_PyImport_Inittab table. The easiest way to handle this is to statically initialize your statically-linked modules
by directly calling initspam () after the callto Py_Initialize ():

1.4, {ERAERIMILL RS 7

Extending and Embedding Python, %% 2.7.18

int

main (int argc, char *argv([])

{
/* Pass argv/[0] to the Python interpreter */
Py_SetProgramName (argv[0]);

/* Initialize the Python interpreter. Required. */
Py_Initialize();

/* Add a static module */
initspam();

An example may be found in the file Demo/embed/demo . ¢ in the Python source distribution.

{Ef#: Removing entries from sy s . modules or importing compiled modules into multiple interpreters within a process
(or following a fork () without an intervening exec ()) can create problems for some extension modules. Extension
module authors should exercise caution when initializing internal data structures. Note also that the reload () function
can be used with extension modules, and will call the module initialization function (initspam () in the example), but
will not load the module again if it was loaded from a dynamically loadable object file (. so on Unix, . d11 on Windows).

T 42 e[R S 81 T4 4 7 Python JEFS ALK Modules/xxmodule . c B, XS SCHFAT DA FIVEMR G
AR, B> . A modulator.py £ & FEYRIY A& 4Tk Windows Z38 v, $2A4L T —/MAETELAY GUI, Ik
P IR BB R BRI &, I HL AT PAAE IS A B4R . B ASHE Tools/modulator/ H 5% . %57 README DA
TR

1.5 miFFostis

FEARBESE VRIS I 2 A, VRIETEZAMMIE S FH Python ZRGEAIHIFMBER: . ARARNE I B0
B, XIR TR BB RGBS MBI A5 EIH S i AR By (12 disturils #93% C
fo C+ 47 J B37), PAKTE Windows b4 IFTREAIBIMEE (&£ Windows F & #i¥ C Ao C++ & FHY).

If you can’ t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter, you
will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just place
your file (spammodule. c for example) in the Modules/ directory of an unpacked source distribution, add a line to
the file Modules/Setup.local describing your file:

spam spammodule.o

IRETETIZ H 5KI51T make SRE B EMFRES . RUWATLATE Modules/ T H Rl 1] make, H2{RULISEH
#t Makefile UMF, #J5izfT ‘make Makefile’ fiy<. (VREHRIZM Setup SUPHHRTR RXFEERAE.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well, for
instance:

spam spammodule.o —-1X11

8 Chapter 1. {Ef C 5 C++ ¥ & Python

Extending and Embedding Python, %% 2.7.18

1.6 7£ C hiff A Python F#§

4Rk, el EEVERE e Fik Python T C %k, HLSZSUEAARA T, BLE C T Python i
. XAEFTHEHOR I . W C B BT [, 5 5552 A L

SEEIE, Python RERHE WA (EINIIANY, 344HHE Python s XCERAL TAFHER: 1. G HLAUR FEMEAMRAT
Python ZE R M AR Tk, AN T PA5% Python/pythonmain.c HEY —c a7,)
] Python Wi KO 26, 7 Python FJ (4. Python MRS, %A IE /R (3H A% 1) S8
S P RN, I 4R E LA Python B S FOHEET, 1 BT (Py_TNCREF () S A,
BRI AR R4 R e 26T, AT SR AR B E Ay 50

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback (PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;

PyObject *temp;

if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
if (!PyCallable_Check (temp)) {
PyErr_SetString (PyExc_TypeError, "parameter must be callable");
return NULL;
}

Py_XINCREF (temp) ; /* Add a reference to new callback */
Py_XDECREF (my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */

/* Boilerplate to return "None" */
Py_INCREF (Py_None) ;
result = Py_None;

}

return result;

}

XA BE B b 5 A Fl METH_VARARGS A5 i {2 fERE 2, X AFEAL 3 77 ik R Amam4s 10 3 2 BT & iR,
PyArg_ParseTuple () RREUSHSEUR) SCRYAEIR By e 40 544

The macros Py_XINCREF () and Py_XDECREF () increment/decrement the reference count of an object and are safe
in the presence of NULL pointers (but note that femp will not be NULL in this context). More info on them in section 7|

iiRaE &

Later, when it is time to call the function, you call the C function PyObject_CallObject (). This function has two
arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument list must
always be a tuple object, whose length is the number of arguments. To call the Python function with no arguments, pass
in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_BuildvValue () returns a tuple
when its format string consists of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

/* Time to call the callback */

arglist = Py_BuildValue (" (i)", arg);

result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);

1.6. 7£ C hif A Python FH#§ 9

Extending and Embedding Python, %% 2.7.18

PyObject_CallObject () & [a] Python Xf % 48§ 4, X t & Python K % 09 & [{H.
PyObject_CallObject () & — X HSH “5l Hit I X" k. B %EF?ﬁéﬁméﬂﬁdi%H%%%
iy 3, I HAE pyObject_CallObject () ZJG . Rl T Py_DECREF () .

PyEval_CallObject () HRFEMEEZ “H” 1: %Azs~/\¥ﬁuaxf% FoROAEXNSR, (HEn TS
Jﬂf(réﬂz E;MWHA»JE@*%%Z“ Té)% S, AREREXTIXAMEM] Py _DECREF (), RIHARXT B AY N
FRRI) AR R

Before you do this, however, it is important to check that the return value isn’ t NULL. If it is, the Python function
terminated by raising an exception. If the C code that called PyObject_CallObject () is called from Python,
it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear (). For example:

if (result == NULL)
return NULL; /* Pass error back */
..use result...
Py_DECREF (result);

T AR A R K, AR Bt — B 0013 PyEval_CallObject () o XN FSHIIFRE
Hi Python F2 /P41, Lﬂ‘%uﬁ%@ [] R BN R o A T A SR iﬂiﬁﬁ?ﬁf’?@o Ty —BE R B
TSR AR i SR R JTIAME Py_Buildvalue () R ple. 28011, JREHUE
A AR I R] DA ﬁﬂTﬁﬁ%:

PyObject *arglist;

arglist = Py_BuildvValue (" (1)", eventcode);
result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

ViR Py_DECREF (arglist) FfEAL& A HIH A, FEESIRKEZ Al JAREHEE -SHE R,
Py_BuildValue () ﬁ'één% BN RS,

L ARVE R R IR TR R, A XSO Pyobject_Call () , FRE SRR HS M X BFESE. A
wngn B ?iamﬁﬂi Py_BuildValue () fAgiE=Fi.,

PyObject *dict;

dict = Py_BuildvValue("{s:i}", "name", wval);
result = PyObject_Call (my_callback, NULL, dict);
Py_DECREF (dict);
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

10 Chapter 1. {Ef C 5 C++ ¥ & Python

Extending and Embedding Python, %% 2.7.18

1.7 RBY RERHHSEH

¥ PyArg_ParseTuple () WIFEHHUITF :

’int PyArg_ParseTuple (PyObject *arg, char *format, ...);

A arg WA — P ICHRXR . A8 Python fZi4y C BEUNSHBNK . format A2 — X TAT
B i RS Python C/API F-fi} 1) arg-parsing. FRSHCES A RAYHIIE, FEAUE 5 T ER XTI o

ER PyArg_ParseTuple () sxfirllifliiis 21 Python UM, AUCHAKLIN feiaafibny C Attt Jg
R T, T Tﬁ%%fﬁﬂﬁ*%m—’ﬁ)\?ﬁ, NIPE

FERATA R 1 2 S 31 Python X R 52 5 ka95 s AZLEBENTm5 T
— LR R BT

int ok;

int 1, J;

long k, 1;
const char *s;
int size;

ok = PyArg_ParseTuple (args, ""); /* No arguments */
/* Python call: f() */

ok = PyArg_ParseTuple (args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */

ok = PyArg_ParseTuple(args, "l11ls", sk, &l, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */

ok = PyArg_ParseTuple (args, " (ii)s#", &i, &3j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */

const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple (args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:

f('spam')

f('spam', 'w')

f('spam', 'wb', 100000) */

int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, " ((ii) (ii)) (ii)"
&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
£(((0, 0), (400, 300)), (10, 10)) */

1.7. BB REHHSH 1

Extending and Embedding Python, %% 2.7.18

Py_complex c;

ok = PyArg_ParseTuple (args, "D:myfunction", &c);

/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction (1+27) */

1.8 B REHMIRBFSH

K% PyArg_ParseTupleAndKeywords () mBEILITF:

int PyArg_ParseTupleAndKeywords (PyObject *arg, PyObject *kwdict,
char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple () function. The kwdict parameter
is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter is a NULL-
terminated list of strings which identify the parameters; the names are matched with the type information from format
from left to right. On success, PyArg_ParseTupleAndKeywords () returns true, otherwise it returns false and
raises an appropriate exception.

A HRE R ICAE R R T SR TCIR AL, ANTE kwlist FR) KB F 2R B8 TypeError [,

W B2 T SR B TR, 2 Geoff Philbrick (philbrick @hks.com):

#include "Python.h"

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;

char *state = "a stiff";

char *action = "voom";

char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg_ParseTupleAndKeywords (args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;

printf ("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf ("-- Lovely plumage, the %s —- It's %s!\n", type, state);

Py_INCREF (Py_None) ;

return Py_None;

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function 1is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg_parrot () takes
* three.

(Rt

12 Chapter 1. {Ef C 5 C++ ¥ & Python

mailto:philbrick@hks.com

Extending and Embedding Python, %% 2.7.18

(£ 50

*/
{"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0, NULL} /* sentinel */
i

void
initkeywdarg (void)
{
/* Create the module and add the functions */
Py_InitModule ("keywdarg", keywdarg_methods);
}

1.9 BWEEEE

XANPRES PyArg_ParseTuple () RAAMEL, AU :

’PyObject *Py_BuildValue (char *format, ...);

Bz AT, 5 pyArg_ParseTuple () M[F, {HE2SH0HE HEAE St 4 G A4 R %L,
AR). &R B —A4 Python X§ 438 & TR [8] C B %0JH T 45 Python 1R,

—A~5 PyArg_ParseTuple () AN, JEIH T RERS ZAEK IR M —A~T04 (Python S R4 B2 FE N
TRHEIA S TCA), U TA% 45 oAt Python BREPASEL. Py_BuildvValue () HFRERAEBITH, HE2T
1 TR I &R e d, T R A A R S 25 MR [A] None *f%ﬁﬂﬂﬁ%ﬂi@iﬁ%ﬁé@ﬁ%o
AR ZR R HAE R — KR 0 e, Sl — Mo R e, TR B .

Bl (ZEMEPEM, A2 Python {H45R):

Py_Buildvalue ("") None
Py_Buildvalue ("i", 123) 123
Py_BuildvValue ("iii", 123, 456, 789) (123, 456, 789)
Py_Buildvalue ("s", "hello") 'hello'
Py_Buildvalue("ss", "hello", "world") ('"hello', 'world'")
Py_BuildvValue ("s#", "hello", 4) 'hell'
Py_Buildvalue (" ()") ()
Py_Buildvalue (" (i)", 123) (123,)
Py_Buildvalue (" (ii)", 123, 456) (123, 4506)
Py_Buildvalue (" (i,1)", 123, 456) (123, 456)
Py_Buildvalue("[i,1]", 123, 456) [123, 456]
Py_Buildvalue("{s:i,s:i}",

"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_Buildvalue (" ((ii) (ii)) (ii)"

1, 2, 3, 4, 5, 6) (1, 2), (3, 4)), (5, 6))

1.9. MiSERE 13

Extending and Embedding Python, %% 2.7.18

1.10 5| H#

1E C/IC++ 1B, FEF RSl ECA R heap 24 HH I AT, 7 C B, B E$i malloc () fll free ()
KFEM . T C++ B2 HAE new Fll delete RS FIKINEE.

B malloc () AMECHINAEER, AHEREH free () BM B HNABEE L. MK free () MIRHL
R EE, WRADNNFIET free () WESSENAME, XN PSR CEER M. Xy
AR, AR — N free () TG, BAMIREFRDTA, WFRMEH nalloc () &2 H
RN SHOPE . XM 2454, S5 F T RO EEE, core dump, S5RZEE, HHELAY RS .

AR EE A R AR TE— 259 AN DL AR AR L. A — DR BOR TS T INAFLAS , T 2858, SREREIL
WAFER . BIAE— S0 bR B A8 AT BB XS A A B i 2, AR I AR BRI ARA

SNCTER I AR AE , R IS AU . AN, —ESIA T AR IR) AE ARG)
B DR H R BRI, i DA LI SR AR BB REA A, BT ARG OFE K301 A it S it s
PREUN A SRR . L, AL BRI, AU AT S Sems e dre/ MU ISR B 2

Python jfiif malloc () #l free () WEREW NI TCHAURERL, [RIFERR BB N AR AT F8 5. Mkt
B ERLE 1R A HIFEHL LR B AR BB S — A, TR OIS X 5 | A B R B
M, LB HITECH 0 if, FRWEOCREAEGAEN LT, W] AR T .

H—AMkGE B FHEIR e, G ROR A e bRk ks, TR e B3h” HAR W
o BB ISR PR TR S free () o 3 —MEAUREGEHE S NI, SR
FEANME). BEREXT C, PR IR B Shhrk a5 | VAU n] DARTAS AR SE) (A 2 malloc () Al
free () MECETNRY, XWE CARMEHERAD. WIFUGH—R IR A sk mfcds, E7e
HIRATAE TR T Ak,

Python i JIALEM 5 TR L, BAeft CORERMEINAT, JHDARGINS | FIPERR. X (A5 I Jo /5 1H 0 B e o)
BRI TORERT N, 5 TP — D55 . SIIRIE N G CTREE) 19511 TA S, FrRA
TEER P AR XTS5 | TG A 2 0. SR A5 T EC ek M T3 DR EFR R BT, BB WA ER
Frs I IIXT SR, WA BeA TRERASNY ST 1.

The cycle detector is able to detect garbage cycles and can reclaim them so long as there are no finalizers implemented
in Python (__del__ () methods). When there are such finalizers, the detector exposes the cycles through the gc
module (specifically, the garbage variable in that module). The gc module also exposes a way to run the detector (the
collect () function), as well as configuration interfaces and the ability to disable the detector at runtime. The cycle
detector is considered an optional component; though it is included by default, it can be disabled at build time using the
-—without—-cycle—gc option to the configure script on Unix platforms (including Mac OS X) or by removing
the definition of WITH_CYCLE_GC in the pyconfig.h header on other platforms. If the cycle detector is disabled in
this way, the gc module will not be available.

1.10.1 Python th5| Bit#k

BWN% Py_INCREF (x) #l Py_DECREF (x) , &ACFR5| 14RO V8. Py_DECREF () tWaFES| HiT43
5O BRI S . N T RIE, HASHBEVEM free () , M M50 £8 25 2 W REGEH R AT
XA H) (A, AR ERHE S —AN 8 10 B BB R T8

B RBIREHRIA : Tl Py_INCREF (x) fl Py_DECREF (x) ? ATH LI A—SiE. WHN #H”
— XL, WAL AAE — AR RS DXL e SCAIA S HNECE. 5IHMIE &
AL Py_DECREF () , TE5|HIATFREN . 5] A X R AR . A =Mk S AT
5. f7fig. I Py_DECREF () . &icbE—MAWSH S SEN G

EFDA A5 —AWRE I (SIS AR RA%E M Py_DECREF () o i HIFF AR RERFA X G it
PO A] o AEHHA AL B S E A5 5 | A LR, % 58 Ak i

PARIE SR —ABI RN WaETRAE T DL
PRAS IR A VB, SRR S AT AEC R NI, A AT R S BT«

14 Chapter 1. {Ef C 5 C++ ¥ & Python

Extending and Embedding Python, %% 2.7.18

AR T 51 AL AR AR R T OB AR AR EACRD YT, BB UL, o i AR TC 5 1H0 A S A X
Wro 5 MRS — SRR LA (U _ B T RESTEI A H AL B S R R .

NPT AZEAINA T, Gl Py _INCREF () o XAXPIHCE LA B AIIA F PR . X [l G 3—>5
WHIESIN, T ria & SHUE CridilA Foais B a5, B siiia &) -

1.10.2 HF\FHM
YRR G LB IE — R EORT, sRRO % 1 VA% A8 E A KRB 2R a5

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions whose
function it is to create a new object, such as PyInt_FromLong () and Py_BuildValue (), pass ownership to the
receiver. Even if the object is not actually new, you still receive ownership of a new reference to that object. For instance,
PyInt_FromLong () maintains a cache of popular values and can return a reference to a cached item.

MERH DA FEEF R R, WaEEds] KR, Fli PpyObject_GetAttrString() . iX
B O G, — 2 KA A BB FE 2 B 4R PyTuple_GetItem() , PyList_GetItem() ,
PyDict_GetItem() , PyDict_GetItemString () #R2RIEIMITH. FF%. FHEEHPKIGIH

PR%L PyImport_AddModule () WeREMER MG, WA GBS R AKX S XA AT HEHE b— 4
BRG] XS GAETE sys .modules B,

ARG —XZ G R 7 — AR B}, Gl H AR B R TR R, S Py_INCREF () 3k
ARSI E o XA EZERFISL: PyTuple_SetItem() fl PyList_SetItem() . X2t
RBUE LB XA, WMaas! (4 PyDict_SetItem() MHFRALSEZEHEE, Hif]
%77 —[E;-"%%E\ bhl)o

Y~ C e ¥ Python I, S MR IT RS EAER G . FAEIAXRNTIA, FroAf s
A A= fis JET U AT AGRAE S RSl 1] o US55 | I T6 2EAT R s Ay, i SOOI 95 T, dad i

J Py_INCREF () ,

Python i]\ C eRER [0l (XS 525 | T Ih e A@40A 195 | —304 K R BN B L i 2 i o

1.10.3 EPERYEFIK
AOEER T, ARG HAERRICE, HAR SRR, Xl R R n R, FF TR
TG E AL EX AT

R R INE R I DU T Py_DECREF () B|l—ATERMR, MHXMWREGI2 N B — 151Kt
o HAEHI:

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyInt_FromLong(0L));
PyObject_Print (item, stdout, 0); /* BUG! */
}

XA BRECE S — A 1ist (0], SRJEER 1ist (1] MH 0, BEITEMERMGIH. FREILER
e, (HARE.

HATRELFFAEA PyList_setItem() o JIFINAHETIH THBICA WA, FroASuG | g, pi
AL EIFORAISA 1o BAEIRBEOR AR 102 A ORISR, HARBOX M IE LT __del () Jiik.
WEREA RGN R 1, I B SN __del O ik

1.10. S|ATH# 15

Extending and Embedding Python, %% 2.7.18

BESRAE Python B, _ del () FEATPASATIERE Python f0T% . 2 AIHETE bug () AY item B IF5HIE,
. BRIY)FAEHE] bug () &8 __del () HYEVIR, LI APAT—MEARSEEE del 1ist[0]
RIGIBRBEX R G — R 5 I, SRR EREAAE, MM {#i45 item TR,

BRI, MARAE 1SRRI, A5 1 RN TR IR RUAS i eR AR AT

void
no_bug (PyObject *list)
{
PyObject *item = PyList_GetItem(list, 0);

Py_INCREF (item) ;
PyList_SetItem(list, 1, PyInt_FromLong(0L));
PyObject_Print (item, stdout, 0);
Py_DECREF (item) ;
}

KRN ELH . — M HRCAR Y Python 4185 13X~ bug YAEHh, Ii—L8 AAER TR 7E C Iild 1
BTN A __del () HEREMK.

KA) 55 R O R A AT B SRS Rl . 3@ H, Python fERERE B ANERRE TC I HE AN T 1O %
7%, HNEAN2RPRYE Python #5245 [0] . (Hn] DA % Py_BEGIN_ALLOW_THREADS Il B REHL
AN, FEHTAKEUH Py _END_ALLOW_THREADS . iXifl#f FISE/EFHZE VO W 41, flifSH 268 n] DAYE S
5 VO AR AL BRER . AR, WF RS IR Z WA —FRAY A A :

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
..some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print (item, stdout, 0); /* BUG! */

1.10.4 NULL }5%t

In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL only
to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often pass the
objects they receive on to other function —if each function were to test for NULL, there would be a lot of redundant tests
and the code would run more slowly.

It is better to test for NULL only at the ‘“source:” when a pointer that may be NULL is received, for example, from
malloc () or from a function that may raise an exception.

The macros Py_INCREF () and Py_DECREF () do not check for NULL pointers —however, their variants
Py_XINCREF () and Py_XDECREF () do.

The macros for checking for a particular object type (Pytype_Check ()) don’ t check for NULL pointers —again,
there is much code that calls several of these in a row to test an object against various different expected types, and this
would generate redundant tests. There are no variants with NULL checking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples) is
never NULL —in fact it guarantees that it is always a tuple®.

It is a severe error to ever let a NULL pointer “escape” to the Python user.

MARER AR KT 20, SRR RS, SRR IBEE TR Z B .

16 Chapter 1. {Ef C 5 C++ ¥ & Python

Extending and Embedding Python, %% 2.7.18

111 £ C++ PRET R

BATDALE C+ o G4 ftsib, FURASEIRE . AR EREF (Python fRREAS) J2 B C 2 iR K e 13 A1 i
), 4RSS R A SR AR BE R o AR Cr+ iR R AR XA . R %25 4 Python
TR SRR GE B LR BRI I L BB SRl extern "C" . TIETRAE extern "C" {...} BAH
Python SKSCPENIAE IR AL, PFEAIIRE X TS __cplusplus MEZ02X AR T (B B C++
G IR 2 X)) o

1.12 L3 RiERIEH C API

R AR AL 73700 eR BRI DS L Python (1], (EAT I 4™ AR b HLAY A TS AR T ARSCHA ™ RS B i)
B, — AP BT AT A2 “collection” FHEAZEBAMUTHY . #iR)e Python FIRIA, Ji14 C
AP AAVFY A HOR QM ZAES 5132, XA HHYAR G IR DU — i C e U T4 At ™ R L G

TR AR R ARFEEE R Cof Al static), FRIHMAHIISICHE, AR CAPTISCR ., SLbx
AR I RIS J i S R £ Python AR SRS (U2 n] AR TARMY . RIS AIE e gefiemy, — M
B A5 E SO — AR UL .] UL A0 (OB E R S8, — L8 RGN Python M REAR (11 42 Ry
A a5) (10 Windows), A SEMIAEFERIN TR B — DI C S AR S IR (— M2 AIX), stk
AN TR SHEm (U Unix Z851). BIERAT S 24 Rml WA, R EEE] R BEH nT B v A 2K

] REAEE T EARENS AT Al WL MU T AT R . XGRS L T A5 R I Bl static , BRT
REH IR RR R, Al S 5 HA Y AR 1 i 44 b 98 (FEBGE ALk 7 & A A s 1L A FRhig) o XK
AT NI oL IR L HoAl 5 7 FOR PEH A AR 517

Python {7 — ARl BLHPR i C 5115 E (54, A9 RIEERE] 55—~ Capsules. —> Capsule
&~ Python By, XRAFHEEF (void *). Capsule HfEEHIEH C APTRAIEAMT A, (HAT MR H AL
Python X R—HEf &k, lH, AT LASRE Y B Ay & 2 B 4 7o HoAhd B AT AT AT
B, SRPOX A FIE, S5 Capsule ZREUEE

Capsule [DA ZF007 T i1 C APL 434 AR . DR 2T A H © Y Capsule, 5% T4 C APLESEH AT DA
FERHTE— R L, B T A A 45 Capsule, AFHAIERIUE AT A 2 Fh05 3, U5 FomAsise il o

Whichever method you choose, it’ s important to name your Capsules properly. The function PyCapsule_New ()
takes a name parameter (const char *);you’ re permitted to pass in a NULL name, but we strongly encourage you
to specify a name. Properly named Capsules provide a degree of runtime type-safety; there is no feasible way to tell one
unnamed Capsule from another.

EHKYL, Capsule i T#57 C API, HoA 7 WARELRUNH ML :

modulename.attributename

EFIRK %L PyCapsule_Import () AIRAJS A2 AL Capsule #2481 C API, {UfE Capsule {44 F-VLRACHT .
XA C APT H PR T R B E PR EA IR C APLL

WG JRR TR A B S A EE 0, ST W AN ER, HASTEEra C APL 54
(B FH A —AY) 7 void Fe4M B4, I HARAS Ky Capsule, X I FREHL L SO AL T 52 Sk A5 Bl 5 A A
HURIFREL C APL 384T & Fimtbib UG EAE 5 1A C APT B F XA~ 22 BT

SHMEYUE I A spam B, SREH A £ T BIE. BRE spam.system () NEHIZWA C ERE
system() , H—/ K% PySpam_System () &MTCHA, MR TR L (FIUANGEM “spam” F|4f
4). PRI PySpam_System () 44 HALY AL,

PR PySpam_System () &4l C BREL, B static gifg HAbM AR

1.11. 7 C++ PREYT R 17

Extending and Embedding Python, %% 2.7.18

static int
PySpam_System (const char *command)

{

return system(command) ;

PR spam_system () IR BBk

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = PySpam_System (command) ;

return Py_BuildvValue("i", sts);

FEBHRITSK A AT

#include "Python.h"

A WA

#define SPAM_MODULE
#include "spammodule.h"

#define T HHL R LM E R FHABE, MARE PR, RZ, BRI LR B 15T
Fitafe C APT 154154l

PyMODINIT_FUNC

initspam(void)

{
PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;

m = Py_InitModule ("spam", SpamMethods);
if (m == NULL)
return;

/* Initialize the C API pointer array */
PySpam_API [PySpam_System_ NUM] = (void *)PySpam_System;

/* Create a Capsule containing the API pointer array's address */
c_api_object = PyCapsule_New((void *)PySpam_API, "spam._C_API", NULL);

if (c_api_object != NULL)
PyModule_AddObject (m, "_C_API", c_api_object);

Note that PySpam_APT is declared stat ic; otherwise the pointer array would disappear when initspam () termi-
nates!

Y spammodule.h B —H#ETAE, BRRUT IR

18 Chapter 1. {Ef C 5 C++ ¥ & Python

Extending and Embedding Python, &% 2.7.18

#ifndef Py_SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef __cplusplus
extern "C" {

#endif

/* Header file for spammodule */

/* C API functions */

#define PySpam_System NUM 0

#define PySpam_System RETURN int

#define PySpam_System PROTO (const char *command)

/* Total number of C API pointers */
#define PySpam_API_pointers 1

#1ifdef SPAM _MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_ PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_ API;

#define PySpam_System \
(* (PySpam_System_ RETURN (*)PySpam_System PROTO) PySpam API[PySpam_System NUM])

/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception if there's an error.
*/

static int

import_spam(void)

{

PySpam_API = (void **)PyCapsule_Import ("spam. C_API", 0);
return (PySpam_ API != NULL) 2 0 : -1;

}

#endif

#ifdef __cplusplus

}
#endif

#endif /* !defined (Py_SPAMMODULE_H) */

) A

M
&
81:
=
B
s

PS5 BT AE FED I BR 0O 45 60 L R B impore_spam () (s 3¢ A
PySpam_System() .

PyMODINIT_FUNC
initclient (void)
{

PyObject *m;

m = Py_InitModule("client", ClientMethods);

3

1.12. A RERIZHE C API 19

Extending and Embedding Python, %% 2.7.18

(£ LT
if (m == NULL)
return;
if (import_spam() < 0)
return;

/* additional initialization can happen here */

}

XFP AR EE 2, S spammodule . h i TR A, MR, XN EER I ATRE, FEARZEZ ALY,
BT PA R TR 2R 3] —1R

I JE R EE RN 2 Capsule $2 (it THSMYTIRE, H TAFEMEFE Capsule B85 B NAE D BLFRERL. 4175 %
Python/C API 2% F-JJ} 2 capsules F1 Capsule f5E3H (£F Python % K fT4IH) Include/pycapsule.h
il Objects/pycapsule.c).

gix

20 Chapter 1. {Ef C 5 C++ ¥ & Python

CHAPTER 2

Defining New Types

As mentioned in the last chapter, Python allows the writer of an extension module to define new types that can be ma-
nipulated from Python code, much like strings and lists in core Python.

This is not hard; the code for all extension types follows a pattern, but there are some details that you need to understand
before you can get started.

{Ef#t: The way new types are defined changed dramatically (and for the better) in Python 2.2. This document documents
how to define new types for Python 2.2 and later. If you need to support older versions of Python, you will need to refer
to older versions of this documentation.

2.1 The Basics

The Python runtime sees all Python objects as variables of type PyObject*. A PyObject is not a very magnificent
object - it just contains the refcount and a pointer to the object’ s “type object” . This is where the action is; the
type object determines which (C) functions get called when, for instance, an attribute gets looked up on an object or it is
multiplied by another object. These C functions are called “type methods” .

So, if you want to define a new object type, you need to create a new type object.

This sort of thing can only be explained by example, so here’ s a minimal, but complete, module that defines a new type:

#include <Python.h>

typedef struct {

PyObject_HEAD

/* Type-specific fields go here. */
} noddy_NoddyObject;

static PyTypeObject noddy_NoddyType = {
PyVarObject_HEAD_INIT (NULL, O)
"noddy.Noddy", /* tp_name */

(Rt

21

https://www.python.org/doc/versions/

Extending and Embedding Python, %% 2.7.18

sizeof (noddy_NoddyObject), /* tp_basicsize */
/* tp_itemsize */
/* tp_dealloc */

/* tp_print */

/* tp_getattr */

/* tp_setattr */

/* tp_compare */

/* tp_repr */

/* tp_as_number */
/* tp_as_sequence */
/* tp_as_mapping */
/* tp_hash */

/* tp_call */

/* tp_str */

/* tp_getattro */
/* tp_setattro */
/* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
"Noddy objects", /* tp_doc */

S~ SN SN SN SN S~ O~

~

N~ SN S S~ S~ O~

O O O O O O O OO O oo oo oo
~

~

bi

static PyMethodDef noddy_methods[] = {
{NULL} /* Sentinel */
bi

#ifndef PyMODINIT_FUNC /* declarations for DLL import/export */
#define PyMODINIT_FUNC void
#endif
PyMODINIT_FUNC
initnoddy (void)
{
PyObject”* m;

noddy_NoddyType.tp_new = PyType_GenericNew;
if (PyType_Ready (&noddy_NoddyType) < 0)
return;

m = Py_InitModule3 ("noddy", noddy_methods,
"Example module that creates an extension type.");

Py_INCREF (&noddy_NoddyType) ;
PyModule_AddObject (m, "Noddy", (PyObject *)&noddy_NoddyType);

Now that’ s quite a bit to take in at once, but hopefully bits will seem familiar from the last chapter.

The first bit that will be new is:

typedef struct {
PyObject_HEAD
} noddy_NoddyObject;

This is what a Noddy object will contain—in this case, nothing more than every Python object contains, namely a refcount
and a pointer to a type object. These are the fields the PyObject_HEAD macro brings in. The reason for the macro is
to standardize the layout and to enable special debugging fields in debug builds. Note that there is no semicolon after the
PyObject_HEAD macro; one is included in the macro definition. Be wary of adding one by accident; it’ s easy to do
from habit, and your compiler might not complain, but someone else’ s probably will! (On Windows, MSVC is known

22 Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

to call this an error and refuse to compile the code.)

For contrast, let’ s take a look at the corresponding definition for standard Python integers:

typedef struct {
PyObject_HEAD
long ob_ival;
} PyIntObiject;

Moving on, we come to the crunch —the type object.

static PyTypeObject noddy_NoddyType = {
PyVarObject_ HEAD_INIT (NULL, O0)
"noddy .Noddy", /* tp_name */
sizeof (noddy_NoddyObject), /* tp_basicsize */
/* tp_itemsize */
/* tp_dealloc */
/* tp_print */
/* tp_getattr */
/* tp_setattr */
/* tp_compare */
/* tp_repr */
/* tp_as_number */
/* tp_as_sequence */
/* tp_as_mapping */
/* tp_hash */
/* tp_call */
/* tp_str */
/* tp_getattro */
/* tp_setattro */
/* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
"Noddy objects", /* tp_doc */

N~ SN S S~ S~ 0~

~

N~ SN SN SN SN N~ 0~

O O O O O O O OO O oo oo oo
~

~

bi

Now if you go and look up the definition of PyTypeObject in object.h you’ 1l see that it has many more fields
that the definition above. The remaining fields will be filled with zeros by the C compiler, and it” s common practice to
not specify them explicitly unless you need them.

This is so important that we’ re going to pick the top of it apart still further:

’ PyVarObject_HEAD_INIT (NULL, 0)

This line is a bit of a wart; what we’ d like to write is:

’PyVarObject_HEAD_INIT(&PyType_Type, 0)

as the type of a type objectis “type” , but thisisn’ t strictly conforming C and some compilers complain. Fortunately,
this member will be filled in for us by PyType_Ready ().

’"noddy.Noddy", /* tp_name */

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

>>> "" 4+ noddy.new_noddy ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot add type "noddy.Noddy" to string

2.1. The Basics 23

Extending and Embedding Python, %% 2.7.18

Note that the name is a dotted name that includes both the module name and the name of the type within the module.
The module in this case is noddy and the type is Noddy, so we set the type name to noddy . Noddy. One side effect
of using an undotted name is that the pydoc documentation tool will not list the new type in the module documentation.

sizeof (noddy_NoddyObject), * tp_basicsize */

This is so that Python knows how much memory to allocate when you call PyObject_New ().

{Efii#: If you want your type to be subclassable from Python, and your type has the same tp_basicsize as its base
type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your type first in
its __bases__, or else it will not be able to call your type’ s ___new___ () method without getting an error. You can
avoid this problem by ensuring that your type has a larger value for tp_basicsize than its base type does. Most of the
time, this will be true anyway, because either your base type will be object, or else you will be adding data members
to your base type, and therefore increasing its size.

’O, /* tp_itemsize */

This has to do with variable length objects like lists and strings. Ignore this for now.

Skipping a number of type methods that we don’ t provide, we set the class flags to Py_ TPFLAGS_DEFAULT.

’Py_TPFLAGS_DEFAULT, /* tp_flags */

All types should include this constant in their flags. It enables all of the members defined by the current version of Python.

We provide a doc string for the type in tp_doc.

’"Noddy objects", /* tp_doc */

Now we get into the type methods, the things that make your objects different from the others. We aren’ t going to
implement any of these in this version of the module. We’ 1l expand this example later to have more interesting behavior.

For now, all we want to be able to do is to create new Noddy objects. To enable object creation, we have to provide
a tp_new implementation. In this case, we can just use the default implementation provided by the API function
PyType_GenericNew (). We’ d like to just assign this to the tp_new slot, but we can’ t, for portability sake, On
some platforms or compilers, we can’ t statically initialize a structure member with a function defined in another C module,
so, instead, we’ 1l assign the t p_new slot in the module initialization function just before calling PyType_Ready () :

noddy_NoddyType.tp_new = PyType_GenericNew;
if (PyType_Ready (&noddy_NoddyType) < 0)
return;

All the other type methods are NULL, so we’ 11 go over them later —that’ s for a later section!

Everything else in the file should be familiar, except for some code in initnoddy ():

if (PyType_Ready (&noddy_NoddyType) < 0)
return;

This initializes the Noddy type, filing in a number of members, including ob_t ype that we initially set to NULL.

PyModule_AddObject (m, "Noddy", (PyObject *)&noddy_NoddyType) ;

This adds the type to the module dictionary. This allows us to create Noddy instances by calling the Noddy class:

>>> import noddy
>>> mynoddy = noddy.Noddy ()

24 Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

That’ s it! All that remains is to build it; put the above code in a file called noddy . ¢ and

from distutils.core import setup, Extension
setup (name="noddy", version="1.0",
ext_modules=[Extension ("noddy", ["noddy.c"])])

in a file called setup . py; then typing

$ python setup.py build

at a shell should produce a file noddy . so in a subdirectory; move to that directory and fire up Python —you should be
able to import noddy and play around with Noddy objects.

That wasn’ t so hard, was it?

Of course, the current Noddy type is pretty uninteresting. It has no data and doesn’ t do anything. It can’ t even be
subclassed.

2.1.1 Adding data and methods to the Basic example

Let’ s extend the basic example to add some data and methods. Let’ s also make the type usable as a base class. We’
1l create a new module, noddy?2 that adds these capabilities:

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} Noddy;

static void
Noddy_dealloc (Noddy* self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)-—>tp_free ((PyObject*)self);

static PyObject *
Noddy_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

Noddy *self;

self = (Noddy *)type->tp_alloc(type, 0);
if (self != NULL) {
self->first = PyString_ FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;

self->last = PyString FromString("");
if (self->last == NULL) H{
Py_DECREF (self);

2.1. The Basics 25

Extending and Embedding Python, %% 2.7.18

(£ 50

return NULL;

self->number = 0;

return (PyObject *)self;

static int
Noddy_init (Noddy *self,
{

PyObject *args, PyObject *kwds)

PyObject *first=NULL, *last=NULL, *tmp;

static char *kwlist[] = {"first", "last", "number", NULL};

if (! PyArg_ParseTupleAndKeywords (args, kwds, "|[00i", kwlist,
sfirst, &last,
&self->number))

return -1;

if (first) |

tmp = self->first;

Py_INCREF (first);

self->first = first;

Py_XDECREF (tmp) ;

if (last) {

tmp = self->last;
Py_INCREF (last);
self->last = last;

Py_XDECREF (tmp) ;

return 0O;

static PyMemberDef Noddy_members|[] = {
{"first", T_OBJECT_EX, offsetof (Noddy,
"first name"},
{"last", T_OBJECT_EX,
"last name"},
{"number", T_INT,
"noddy number"},
{NULL} /* Sentinel

first), O,

offsetof (Noddy, last), O,

offsetof (Noddy, number), O,
*/
bi

static PyObject *
Noddy_name (Noddy* self)
{
static PyObject *format = NULL;
PyObject *args, *result;
if

(format == NULL) {

(Rt

26 Chapter 2.

Defining New Types

Extending and Embedding Python, &% 2.7.18

(& k)
format = PyString FromString("%s %s");
if (format == NULL)
return NULL;
3
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
3
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
}
args = Py_Buildvalue ("0O0O", self->first, self->last);
if (args == NULL)
return NULL;
result = PyString_Format (format, args);
Py_DECREF (args) ;
return result;
3
static PyMethodDef Noddy_methods[] = {
{"name", (PyCFunction)Noddy_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */
bi
static PyTypeObject NoddyType = {
PyVarObject_HEAD_INIT (NULL, O0)
"noddy .Noddy", /* tp_name */
sizeof (Noddy), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)Noddy_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT |
Py_TPFLAGS_BASETYPE, /* tp_flags */
"Noddy objects", /* tp_doc */
0, /* tp_traverse */
CFoiaks:)
2.1. The Basics 27

Extending and Embedding Python, %% 2.7.18

(& L)

0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
Noddy_methods, /* tp_methods */
Noddy_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)Noddy_init, /* tp_init */
0, /* tp_alloc */
Noddy_new, /* tp_new */

bi

static PyMethodDef module_methods[] = {

{NULL} /* Sentinel */
bi

#ifndef PyMODINIT_FUNC /* declarations for DLL import/export */
#define PyMODINIT_ FUNC void
#endif
PyMODINIT_FUNC
initnoddy2 (void)
{
PyObject”* m;

if (PyType_Ready (&NoddyType) < 0)
return;

m = Py_InitModule3 ("noddy2", module_methods,
"Example module that creates an extension type.");

if (m == NULL)
return;

Py_INCREF (&NoddyType) ;
PyModule_AddObject (m, "Noddy", (PyObject *)&NoddyType);

This version of the module has a number of changes.

We’ ve added an extra include:

#include <structmember.h>

This include provides declarations that we use to handle attributes, as described a bit later.

The name of the Noddy object structure has been shortened to Noddy. The type object name has been shortened to
NoddyType.

The Noddy type now has three data attributes, first, last, and number. The first and last variables are Python strings
containing first and last names. The number attribute is an integer.

The object structure is updated accordingly:

28 Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

typedef struct {
PyObject_HEAD
PyObject *first;
PyObject *last;
int number;

} Noddy;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a minimum,
we need a deallocation method:

static void
Noddy_dealloc (Noddy* self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject*)self);

which is assigned to the tp_dealloc member:

(destructor)Noddy_dealloc, *tp_dealloc*/

This method decrements the reference counts of the two Python attributes. We use Py_XDECREF () here because the
first and 1last members could be NULL. It then calls the t p_f ree member of the object’ s type to free the object’
s memory. Note that the object’ s type might not be NoddyType, because the object may be an instance of a subclass.

‘We want to make sure that the first and last names are initialized to empty strings, so we provide a new method:

static PyObject *
Noddy_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

Noddy *self;

self = (Noddy *)type->tp_alloc(type, 0);
if (self != NULL) {
self->first = PyString_FromString("");
if (self->first == NULL)
{
Py_DECREF (self);
return NULL;

self->last = PyString_FromString("");
if (self->last == NULL)
{
Py_DECREF (self);
return NULL;

self->number = 0;

return (PyObject *)self;

and install it in the t p_new member:

2.1. The Basics 29

Extending and Embedding Python, %% 2.7.18

Noddy_new, /* tp_new */

The new member is responsible for creating (as opposed to initializing) objects of the type. It is exposed in Python as
the _ _new__ () method. See the paper titled “Unifying types and classes in Python” for a detailed discussion of the
__new___ () method. One reason to implement a new method is to assure the initial values of instance variables. In this
case, we use the new method to make sure that the initial values of the members £irst and last are not NULL. If we
didn’ t care whether the initial values were NULL, we could have used PyType_GenericNew () as our new method,
as we did before. PyType_GenericNew () initializes all of the instance variable members to NULL.

The new method is a static method that is passed the type being instantiated and any arguments passed when the type
was called, and that returns the new object created. New methods always accept positional and keyword arguments,
but they often ignore the arguments, leaving the argument handling to initializer methods. Note that if the type supports
subclassing, the type passed may not be the type being defined. The new method calls the tp_alloc slot to allocate memory.
We don’ tfill the tp_alloc slot ourselves. Rather PyType_Ready () fills it for us by inheriting it from our base
class, which is object by default. Most types use the default allocation.

{Efi: If you are creating a co-operative t p_new (one that calls a base type’ s tp_new or __new___ ()), you must
not try to determine what method to call using method resolution order at runtime. Always statically determine what type
you are going to call, and call its tp_new directly, or via t ype->tp_base—->tp_new. If you do not do this, Python
subclasses of your type that also inherit from other Python-defined classes may not work correctly. (Specifically, you may
not be able to create instances of such subclasses without getting a TypeError.)

We provide an initialization function:

static int
Noddy_init (Noddy *self, PyObject *args, PyObject *kwds)
{

PyObject *first=NULL, *last=NULL, *tmp;

static char *kwlist[] = {"first", "last", "number", NULL};

if (! PyArg_ParseTupleAndKeywords (args, kwds, "|00i", kwlist,
&sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

return 0;

by filling the tp_init slot.

30 Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

(initproc)Noddy_init, /* tp_init */

The tp_init slotisexposedin Pythonasthe __init__ () method. Itis used to initialize an object after it s created.
Unlike the new method, we can’ t guarantee that the initializer is called. The initializer isn’ t called when unpickling
objects and it can be overridden. Our initializer accepts arguments to provide initial values for our instance. Initializers
always accept positional and keyword arguments.

Initializers can be called multiple times. Anyone can call the __init__ () method on our objects. For this reason, we
have to be extra careful when assigning the new values. We might be tempted, for example to assign the £ irst member
like this:

if (first) |
Py_XDECREF (self->first);
Py_INCREF (first);
self->first = first;

But this would be risky. Our type doesn’ t restrict the type of the £irst member, so it could be any kind of object.
It could have a destructor that causes code to be executed that tries to access the £irst member. To be paranoid and
protect ourselves against this possibility, we almost always reassign members before decrementing their reference counts.
When don’ t we have to do this?

¢ when we absolutely know that the reference count is greater than 1
+ when we know that deallocation of the object' will not cause any calls back into our type’ s code
 when decrementing a reference count in a t p_dealloc handler when garbage-collections is not supported?

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is to
define member definitions:

static PyMemberDef Noddy_members|[] = {
{"first", T_OBJECT_EX, offsetof (Noddy, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (Noddy, last), O,
"last name"},
{"number", T_INT, offsetof (Noddy, number), 0,
"noddy number"},
{NULL} /* Sentinel */

bi

and put the definitions in the t p_members slot:

Noddy_members, /* tp_members */

Each member definition has a member name, type, offset, access flags and documentation string. See the ;2 7! JZ, /1 5 72
section below for details.

A disadvantage of this approach is that it doesn’ t provide a way to restrict the types of objects that can be assigned to
the Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned. Further,
the attributes can be deleted, setting the C pointers to NULL. Even though we can make sure the members are initialized
to non-NULL values, the members can be set to NULL if the attributes are deleted.

We define a single method, name (), that outputs the objects name as the concatenation of the first and last names.

! This is true when we know that the object is a basic type, like a string or a float.

2 We relied on this in the tp_dealloc handler in this example, because our type doesn’ t support garbage collection. Even if a type supports
garbage collection, there are calls that can be made to “untrack” the object from garbage collection, however, these calls are advanced and not covered
here.

2.1. The Basics 31

Extending and Embedding Python, %% 2.7.18

static PyObject *

Noddy_name (Noddy* self)

{
static PyObject *format = NULL;
PyObject *args, *result;

if (format == NULL) {
format = PyString FromString("%s %s");
if (format == NULL)

return NULL;

if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;

if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;

args = Py_BuildvValue ("0OO", self->first, self->last);
if (args == NULL)
return NULL;

result = PyString_Format (format, args);
Py_DECREF (args) ;

return result;

The method is implemented as a C function that takes a Noddy (or Noddy subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as well, but
in this case we don’ t take any and don’ t need to accept a positional argument tuple or keyword argument dictionary.
This method is equivalent to the Python method:

def name (self) :
return "%s %s" % (self.first, self.last)

Note that we have to check for the possibility that our first and 1ast members are NULL. This is because they can
be deleted, in which case they are set to NULL. It would be better to prevent deletion of these attributes and to restrict the
attribute values to be strings. We’ 11 see how to do that in the next section.

Now that we’ ve defined the method, we need to create an array of method definitions:

static PyMethodDef Noddy_methods[] = {
{"name", (PyCFunction)Noddy_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

and assign them to the t p_methods slot:

Noddy_methods, /* tp_methods */

Note that we used the METH_NOARGS flag to indicate that the method is passed no arguments.

32 Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

Finally, we’ 1l make our type usable as a base class. We’ ve written our methods carefully so far so that they
don’ t make any assumptions about the type of the object being created or used, so all we need to do is to add the
Py_TPFLAGS_BASETYPE to our class flag definition:

Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp flags*/

We rename initnoddy () to initnoddy?2 () and update the module name passed to Py_InitModule3 ().

Finally, we update our setup . py file to build the new module:

from distutils.core import setup, Extension
setup (name="noddy", version="1.0",
ext_modules=]|
Extension ("noddy", ["noddy.c"]),
Extension ("noddy2", ["noddy2.c"]1),
1)

2.1.2 Providing finer control over data attributes

In this section, we’ 1l provide finer control over how the £irst and last attributes are set in the Noddy example. In
the previous version of our module, the instance variables first and last could be set to non-string values or even
deleted. We want to make sure that these attributes always contain strings.

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first;
PyObject *last;
int number;

} Noddy;

static void
Noddy_dealloc (Noddy* self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self) —>tp_free ((PyObject*)self);

static PyObject *
Noddy_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

Noddy *self;

self = (Noddy *)type->tp_alloc(type, 0);
if (self != NULL) {
self->first = PyString_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;

self->last = PyString_FromString("");
if (self->last == NULL) {

(N IUERED)

2.1. The Basics 33

Extending and Embedding Python, %% 2.7.18

(£ 50

Py_DECREF (self);
return NULL;

self->number = 0;

return (PyObject *)self;

static int
Noddy_init (Noddy *self,
{

PyObject *first=NULL,

static char *kwlist[]

if (!

return -1;
if (first) |
tmp self->first;
Py_INCREF (first);
self->first first;
Py_DECREF (tmp) ;

if (last) {

tmp self->last;
Py_INCREF (last);
self->last last;

Py_DECREF (tmp) ;

return 0;

{"number", T_INT,
"noddy number"},
{NULL} /* Sentinel */

bi

static PyObject *
Noddy_getfirst (Noddy *self,
{
Py_INCREF (self->first);
return self->first;

static int
Noddy_setfirst (Noddy *self,

{

if (value == NULL) {

PyObject *args,

*last=NULL,

PyArg_ParseTupleAndKeywords (args,

static PyMemberDef Noddy_members|]
offsetof (Noddy,

PyObject *kwds)
*tmp;

{"first", "last", "number", NULL};
kwds, "[SSi",
&sfirst, &last,

&self->number))

kwlist,

= A

number), O,

void *closure)

PyObject *value, void *closure)

(Rt

34

Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

(8 E70)
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (! PyString_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
Py_DECREF (self->first);
Py_INCREF (value);
self->first = value;
return 0O;
}
static PyObject *
Noddy_getlast (Noddy *self, void *closure)
{
Py_INCREF (self->1last);
return self->last;
}
static int
Noddy_setlast (Noddy *self, PyObject *value, wvoid *closure)
{
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");
return -1;
}
if (! PyString_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;
}
Py_DECREF (self->1last);
Py_INCREF (value);
self->last = value;
return 0;
}
static PyGetSetDef Noddy_getseters[] = {
{"first",
(getter)Noddy_getfirst, (setter)Noddy_setfirst,
"first name",
NULL},
{"last",
(getter)Noddy_getlast, (setter)Noddy_setlast,
"last name",
NULL},
{NULL} /* Sentinel */
bi
Q)

2.1. The Basics 35

Extending and Embedding Python, &% 2.7.18

(8 7))
static PyObject *
Noddy_name (Noddy* self)
{
static PyObject *format = NULL;
PyObject *args, *result;
if (format == NULL) {
format = PyString FromString("%$s %$s");
if (format == NULL)
return NULL;
}
args = Py_BuildvValue ("0OO", self->first, self->last);
if (args == NULL)
return NULL;
result = PyString_Format (format, args);
Py_DECREF (args) ;
return result;
}
static PyMethodDef Noddy_methods[] = {
{"name", (PyCFunction)Noddy_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */
bi
static PyTypeObject NoddyType = {
PyVarObject_HEAD_INIT (NULL, O)
"noddy .Noddy", /* tp_name */
sizeof (Noddy), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)Noddy_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT |
Py_TPFLAGS_BASETYPE, /* tp_flags */
"Noddy objects", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
(Fodksn)

36

Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

(& L)

0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
Noddy_methods, /* tp_methods */
Noddy_members, /* tp_members */
Noddy_getseters, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)Noddy_init, /* tp_init */
0, /* tp_alloc */
Noddy_new, /* tp_new */

bi

static PyMethodDef module_methods[] = {

{NULL} /* Sentinel */
bi

#ifndef PyMODINIT FUNC /* declarations for DLL import/export */
#define PyMODINIT_FUNC void
#endif
PyMODINIT_FUNC
initnoddy3 (void)
{
PyObject* m;

if (PyType_Ready (&NoddyType) < 0)
return;

m = Py_InitModule3 ("noddy3", module_methods,

"Example module that creates an extension type.");
if (m == NULL)
return;
Py_INCREF (&NoddyType) ;
PyModule_AddObject (m, "Noddy", (PyObject *)&NoddyType);

To provide greater control, over the first and 1last attributes, we’ 1l use custom getter and setter functions. Here are
the functions for getting and setting the first attribute:

Noddy_getfirst (Noddy *self, wvoid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Noddy_setfirst (Noddy *self, PyObject *value, void *closure)
{
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;

CFItakgs)

2.1. The Basics 37

Extending and Embedding Python, %% 2.7.18

(£ 50

if (! PyString_Check(value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;

Py_DECREF (self->first);
Py_INCREF (value) ;
self->first = value;

return 0O;

The getter function is passed a Noddy object and a “closure” , which is void pointer. In this case, the closure is
ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This could,
for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set based on data
in the closure.)

The setter function is passed the Noddy object, the new value, and the closure. The new value may be NULL, in which
case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if the attribute value is not
a string.

We create an array of PyGet SetDef structures:

static PyGetSetDef Noddy_getseters[] = {
{"first",
(getter)Noddy_getfirst, (setter)Noddy_setfirst,
"first name",
NULL},
{"last",
(getter)Noddy_getlast, (setter)Noddy_setlast,
"last name",
NULL},
{NULL} /* Sentinel */
bi

and register it in the tp_getset slot:

Noddy_getseters, /* tp_getset */

to register our attribute getters and setters.

The last item in a PyGet SetDef structure is the closure mentioned above. In this case, we aren’ t using the closure,
so we just pass NULL.

We also remove the member definitions for these attributes:

static PyMemberDef Noddy_members|[] = {
{"number", T_INT, offsetof (Noddy, number), 0,
"noddy number"},
{NULL} /* Sentinel */

bi

We also need to update the tp_init handler to only allow strings® to be passed:

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts, however,

38 Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

static int
Noddy_init (Noddy *self, PyObject *args, PyObject *kwds)
{

PyObject *first=NULL, *last=NULL, *tmp;

static char *kwlist[] = {"first", "last", "number", NULL};

if (! PyArg_ParseTupleAndKeywords (args, kwds, "|[SSi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

return O;

With these changes, we can assure that the first and 1ast members are never NULL so we can remove checks for
NULL values in almost all cases. This means that most of the Py_ XDECREF () calls can be converted to Py_ DECREF ()
calls. The only place we can’ t change these calls is in the deallocator, where there is the possibility that the initialization
of these members failed in the constructor.

We also rename the module initialization function and module name in the initialization function, as we did before, and
we add an extra definition to the setup . py file.

2.1.3 Supporting cyclic garbage collection

Python has a cyclic-garbage collector that can identify unneeded objects even when their reference counts are not zero.
This can happen when objects are involved in cycles. For example, consider:

>>> 1 = []
>>> 1.append (1)
>>> del 1

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference
count doesn’ t drop to zero. Fortunately, Python’ s cyclic-garbage collector will eventually figure out that the list is
garbage and free it.

In the second version of the Noddy example, we allowed any kind of object to be stored in the fi rst or 1ast attributes®.
This means that Noddy objects can participate in cycles:

we accept instances of string subclasses. Even though deallocating normal strings won’ t call back into our objects, we can’ t guarantee that deallocating
an instance of a string subclass won’ t call back into our objects.

4 Even in the third version, we aren’ t guaranteed to avoid cycles. Instances of string subclasses are allowed and string subclasses could allow cycles
even if normal strings don’ t.

2.1. The Basics 39

Extending and Embedding Python, %% 2.7.18

>>> import noddy2

>>> n = noddy2.Noddy ()
>>> 1 = [n]

>>> n.first = 1

This is pretty silly, but it gives us an excuse to add support for the cyclic-garbage collector to the Noddy example. To
support cyclic garbage collection, types need to fill two slots and set a class flag that enables these slots:

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first;
PyObject *last;
int number;

} Noddy;

static int
Noddy_traverse (Noddy *self, visitproc visit, wvoid *arg)
{

int vret;

if (self->first) {
vret = visit (self->first, arg);
if (vret != 0)
return vret;
}
if (self->last) {
vret = visit (self->last, arg);
if (vret != 0)
return vret;

return 0O;

static int
Noddy_clear (Noddy *self)

{
PyObject *tmp;

tmp = self->first;
self->first = NULL;
Py_XDECREF (tmp) ;

tmp = self->last;
self->last = NULL;
Py_XDECREF (tmp) ;

return 0;

static void
Noddy_dealloc (Noddy* self)

{
PyObject_GC_UnTrack (self);

(ENE327)

40 Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

(8 E70)
Noddy_clear (self);
Py_TYPE (self)->tp_free ((PyObject*)self);
i
static PyObject *
Noddy_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{
Noddy *self;
self = (Noddy *)type->tp_alloc(type, 0);
if (self != NULL) {
self->first = PyString_FromString("");
if (self->first == NULL) {
Py_DECREF (self);
return NULL;
}
self->last = PyString_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;
3
return (PyObject *)self;
s
static int
Noddy_init (Noddy *self, PyObject *args, PyObject *kwds)
{
PyObject *first=NULL, *last=NULL, *tmp;
static char *kwlist[] = {"first", "last", "number", NULL};
if (! PyArg_ParseTupleAndKeywords (args, kwds, "|[00i", kwlist,
sfirst, &last,
&self->number))
return -1;
if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;
}
if (last) {
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;
3
return 0O;
Q)
2.1. The Basics a

Extending and Embedding Python, %% 2.7.18

(£ 50

static PyMemberDef Noddy_members|[] = {
{"first", T_OBJECT_EX, offsetof (Noddy, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (Noddy, last), O,
"last name"},
{"number", T_INT, offsetof (Noddy, number), 0,
"noddy number"},
{NULL} /* Sentinel */
bi

static PyObject *

Noddy_name (Noddy* self)

{
static PyObject *format = NULL;
PyObject *args, *result;

if (format == NULL) {
format = PyString FromString("%$s %$s");
if (format == NULL)
return NULL;

if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;

if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;

args = Py_BuildvValue ("OO", self->first, self->last);
if (args == NULL)
return NULL;

result = PyString_Format (format, args);
Py_DECREF (args) ;

return result;

static PyMethodDef Noddy_methods[] = {
{"name", (PyCFunction)Noddy_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

static PyTypeObject NoddyType = {
PyVarObject_HEAD_INIT (NULL, O0)
"noddy .Noddy", /* tp_name */
sizeof (Noddy), /* tp_basicsize */

(Rt

42 Chapter 2.

Defining New Types

Extending and Embedding Python, &% 2.7.18

(& k)
0, /* tp_itemsize */
(destructor)Noddy_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT |
Py_TPFLAGS_BASETYPE |
Py_TPFLAGS_HAVE_GC, /* tp_flags */
"Noddy objects", /* tp_doc */
(traverseproc)Noddy_traverse, /* tp_traverse */
(inquiry)Noddy_clear, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
Noddy_methods, /* tp_methods */
Noddy_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)Noddy_init, /* tp_init */
0, /* tp_alloc */
Noddy_new, /* tp_new */
bi
static PyMethodDef module_methods[] = {
{NULL} /* Sentinel */
bi
#ifndef PyMODINIT_ FUNC /* declarations for DLL import/export */
#define PyMODINIT_ FUNC void
#endif
PyMODINIT_FUNC
initnoddy4 (void)
{
PyObject”* m;
if (PyType_Ready (&NoddyType) < 0)
return;
m = Py_InitModule3 ("noddy4", module_methods,
"Example module that creates an extension type.");
(@3]
2.1. The Basics 43

Extending and Embedding Python, %% 2.7.18

(£ 50

if (m == NULL)
return;

Py_INCREF (&NoddyType) ;
PyModule_AddObject (m, "Noddy", (PyObject *)&NoddyType);

The traversal method provides access to subobjects that could participate in cycles:

static int
Noddy_traverse (Noddy *self, visitproc visit, wvoid *arg)
{

int vret;

if (self->first) {
vret = visit (self->first, arg);
if (vret != 0)
return vret;
}
if (self->last) {
vret = visit (self->last, arg);
if (vret != 0)
return vret;

return 0O;

For each subobject that can participate in cycles, we need to call the visit () function, which is passed to the traversal
method. The visit () function takes as arguments the subobject and the extra argument arg passed to the traversal
method. It returns an integer value that must be returned if it is non-zero.

Python 2.4 and higher provide a Py_VISIT () macro that automates calling visit functions. With Py_VISIT (),
Noddy_traverse () can be simplified:

static int
Noddy_traverse (Noddy *self, visitproc visit, wvoid *arg)
{

Py_VISIT (self->first);

Py_VISIT (self->last);

return O;

{Ef#: Note that the tp_traverse implementation must name its arguments exactly visiz and arg in order to use
Py_VISIT (). This is to encourage uniformity across these boring implementations.

We also need to provide a method for clearing any subobjects that can participate in cycles.

static int
Noddy_clear (Noddy *self)

{
PyObject *tmp;

tmp = self->first;

(Rt

44 Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

(£ 50

self->first = NULL;
Py_XDECREF (tmp) ;

tmp = self->last;
self->last = NULL;
Py_XDECREF (tmp) ;

return 0;

Notice the use of a temporary variable in Noddy_clear (). We use the temporary variable so that we can set each
member to NULL before decrementing its reference count. We do this because, as was discussed earlier, if the reference
count drops to zero, we might cause code to run that calls back into the object. In addition, because we now support
garbage collection, we also have to worry about code being run that triggers garbage collection. If garbage collection is
run, our tp_traverse handler could get called. We can’ t take a chance of having Noddy_traverse () called
when a member’ s reference count has dropped to zero and its value hasn’ t been set to NULL.

Python 2.4 and higher provide a Py_ CLEAR () that automates the careful decrementing of reference counts. With
Py_CLEAR(), the Noddy_clear () function can be simplified:

static int

Noddy_clear (Noddy *self)

{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0O;

Note that Noddy_dealloc () may call arbitrary functions through __del__ method or weakref callback. It means
circular GC can be triggered inside the function. Since GC assumes reference count is not zero, we need to untrack the
object from GC by calling PyObject_GC_UnTrack () before clearing members. Here is reimplemented deallocator
which uses PyObject_GC_UnTrack () and Noddy_clear ().

static void
Noddy_dealloc (Noddy* self)
{
PyObject_GC_UnTrack (self);
Noddy_clear (self);
Py_TYPE (self)->tp_free ((PyObject*)self);

Finally, we add the Py_TPFLAGS_HAVE_GC flag to the class flags:

Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp flags */

That’ s pretty much it. If we had written custom tp_alloc or tp_~free slots, we’ d need to modify them for
cyclic-garbage collection. Most extensions will use the versions automatically provided.

2.1. The Basics 45

Extending and Embedding Python, %% 2.7.18

2.1.4 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the built in
types, since an extension can easily use the PyTypeObject it needs. It can be difficult to share these PyTypeObject
structures between extension modules.

In this example we will create a Shoddy type that inherits from the built-in 1ist type. The new type will be completely
compatible with regular lists, but will have an additional increment () method that increases an internal counter.

>>> import shoddy

>>> s = shoddy.Shoddy (range (3))
>>> s.extend (s)

>>> print len(s)

6

>>> print s.increment ()

1

>>> print s.increment ()

2

#include <Python.h>

typedef struct {
PyListObject list;
int state;

} Shoddy;

static PyObject *
Shoddy_increment (Shoddy *self, PyObject *unused)
{

self->state++;

return PyInt_FromLong(self->state);

static PyMethodDef Shoddy_methods[] = {
{"increment", (PyCFunction)Shoddy_increment, METH_NOARGS,
PyDoc_STR("increment state counter")},
{NULL, NULL},

bi

static int
Shoddy_init (Shoddy *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *)self, args, kwds) < 0)
return -1;
self->state = 0;
return O;

static PyTypeObject ShoddyType = {
PyVarObject_HEAD_INIT (NULL, O)

"shoddy.Shoddy", /* tp_name */
sizeof (Shoddy), /* tp_basicsize */
0, /* tp_itemsize */
0, /* tp_dealloc */

(N Tgksn)

46 Chapter 2. Defining New Types

Extending and Embedding Python, &% 2.7.18

~ SN S S~ O~

~

N SN S SN N~ O~

O O O O O O OO oo oo oo
~

~

Py_TPFLAGS_DEFAULT |
Py_TPFLAGS_BASETYPE,

’
I4
4
’
I4

4

O O O O O o o

’

Shoddy_methods,

4

~

~

~

~

~

[

nitproc) Shoddy_init,

~

O O ~ O O O O O O O
~

~

bi

PyMODINIT_FUNC
initshoddy (void)
{

PyObject *m;

ShoddyType.tp_base =

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/)(—
/*
/*
/)(—

/*
/)(—
/*
/*
/)(—
/*
/*
/)(—
/*
/*
/)(—
/*
/*
/)(—
/*
/*
/*
/*
/*

tp_print */
tp_getattr */
tp_setattr */
tp_compare */
tp_repr */
tp_as_number */
tp_as_sequence */
tp_as_mapping */
tp_hash */
tp_call */
tp_str */
tp_getattro */
tp_setattro */
tp_as_buffer */

tp_flags */
tp_doc */
tp_traverse */
tp_clear */
tp_richcompare */
tp_weaklistoffset
tp_iter */
tp_iternext */
tp_methods */
tp_members */
tp_getset */
tp_base */
tp_dict */
tp_descr_get
tp_descr_set
tp_dictoffset
tp_init */
tp_alloc */
tp_new */

*/

*/
*/
*/

&PyList_Type;

if (PyType_Ready (&ShoddyType) < 0)
return;
m = Py_InitModule3 ("shoddy", NULL, "Shoddy module");
if (m == NULL)
return;
Py_INCREF (&ShoddyType) ;
PyModule_AddObject (m, "Shoddy", (PyObject *) &ShoddyType);

As you can see, the source code closely resembles the Noddy examples in previous sections. We will break down the

main differences between them.

2.1. The Basics

47

Extending and Embedding Python, %% 2.7.18

typedef struct {
PyListObject list;
int state;

} Shoddy;

The primary difference for derived type objects is that the base type’ s object structure must be the first value. The base
type will already include the PyObject_HEAD () at the beginning of its structure.

When a Python object is a Shoddy instance, its PyObject™* pointer can be safely cast to both PyListObject* and Shoddy*.

static int
Shoddy_init (Shoddy *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *)self, args, kwds) < 0)
return -1;
self->state = 0;
return O;

Inthe __init___ method for our type, we can see how to call through to the __init___ method of the base type.

This pattern is important when writing a type with custom new and dealloc methods. The new method should not
actually create the memory for the object with t p_al1loc, that will be handled by the base class when callingits tp_new.

When filling out the PyTypeObject () for the Shoddy type, you see a slot for tp_base (). Due to cross platform
compiler issues, you can’ t fill that field directly with the PyList_Type (); it can be done later in the module’ s
init () function.

PyMODINIT_FUNC
initshoddy (void)
{

PyObject *m;

ShoddyType.tp_base = &PyList_Type;
if (PyType_Ready (&ShoddyType) < 0)
return;

m = Py_InitModule3 ("shoddy", NULL, "Shoddy module");
if (m == NULL)
return;

Py_INCREF (&ShoddyType) ;
PyModule_AddObject (m, "Shoddy", (PyObject *) &ShoddyType);

Before calling PyType_Ready (), the type structure must have the tp_base slot filled in. When we are deriving a
new type, it is not necessary to fill out the tp_alloc slot with PyType_GenericNew () —the allocate function from
the base type will be inherited.

After that, calling PyType_Ready () and adding the type object to the module is the same as with the basic Noddy
examples.

48 Chapter 2. Defining New Types

Extending and Embedding Python, &% 2.7.18

2.2 Type Methods

AT H AR RIS R TT LASE B SR AL)y v B I RERY T R 4
X2 C XM pyTypeObject ML, A 7 TN 7B

typedef struct _typeobject {
PyObject_VAR_HEAD
char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
long tp_flags;

char *tp_doc; /* Documentation string */
/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */

traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */

richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_weaklistoffset;

/* Added in release 2.2 */

2.2. Type Methods 49

Extending and Embedding Python, %% 2.7.18

(£ 50

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

long tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

} PyTypeObiject;

Now that’ s a lof of methods. Don’ t worry too much though - if you have a type you want to define, the chances are
very good that you will only implement a handful of these.

As you probably expect by now, we’ re going to go over this and give more information about the various handlers. We
won’ t go in the order they are defined in the structure, because there is a lot of historical baggage that impacts the ordering
of the fields; be sure your type initialization keeps the fields in the right order! It’ s often easiest to find an example that
includes all the fields you need (even if they’ re initialized to 0) and then change the values to suit your new type.

’char *tp_name; /* For printing */

The name of the type - as mentioned in the last section, this will appear in various places, almost entirely for diagnostic
purposes. Try to choose something that will be helpful in such a situation!

’int tp_basicsize, tp_itemsize; /* For allocation */

These fields tell the runtime how much memory to allocate when new objects of this type are created. Python has some
built-in support for variable length structures (think: strings, lists) which is where the tp_itemsize field comes in.
This will be dealt with later.

char *tp_doc;

DX R DABCE — Ber A e (BB ERMIE) , 24RAEAE Python JIZRTI I obj . __doc__ ik [RIK B SCR 5
FiE

Now we come to the basic type methods—the ones most extension types will implement.

50 Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

2.2.1 KEFMAERER

destructor tp_dealloc;

YA RSB 5 VRO Z - H. Python MR A ZL MU E IS, REUR) BERR AR, ISRARAY A Y
AR A T A 2R, AR DM B X B e W RAS By T X HUREI . DATT e e R R n 1) -

static void
newdatatype_dealloc (newdatatypeobject * obj)
{
free (obj->obj_UnderlyingDatatypePtr);
Py_TYPE (obj)->tp_free (obj);

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is important
since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is unwound due to
an exception (rather than normal returns), nothing is done to protect the deallocators from seeing that an exception has
already been set. Any actions which a deallocator performs which may cause additional Python code to be executed may
detect that an exception has been set. This can lead to misleading errors from the interpreter. The proper way to protect
against this is to save a pending exception before performing the unsafe action, and restoring it when done. This can be
done using the PyErr_Fetch () and PyErr_Restore () functions:

static void

my_dealloc (PyObject *obj)

{
MyObject *self = (MyObject *) obj;
PyObject *cbresult;

if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;
int have_error = PyErr_Occurred() ? 1 : 0;

if (have_error)
PyErr_Fetch (&err_type, &err_value, &err_traceback);

cbresult = PyObject_CallObject (self->my_callback, NULL);
if (cbresult == NULL)

PyErr_WriteUnraisable (self->my_callback);
else

Py_DECREF (cbresult);

if (have_error)
PyErr_Restore(err_type, err_value, err_traceback);

Py_DECREF (self->my_callback);

}
Py_TYPE (obj) —>tp_free ((PyObject*)self);

2.2. Type Methods 51

Extending and Embedding Python, %% 2.7.18

222 HRET

In Python, there are three ways to generate a textual representation of an object: the repr () function (or equivalent
back-tick syntax), the str () function, and the print statement. For most objects, the print statement is equivalent
to the str () function, but it is possible to special-case printing to a FILE* if necessary; this should only be done if
efficiency is identified as a problem and profiling suggests that creating a temporary string object to be written to a file is
too expensive.

These handlers are all optional, and most types at most need to implement the tp_str and tp_repr handlers.

reprfunc tp_repr;
reprfunc tp_str;
printfunc tp_print;

tp_repr ALPFEF V%R — PR, AT ERLpl 2B, TR — A aesl 1

static PyObject *
newdatatype_repr (newdatatypeobject * obj)
{
return PyString_FromFormat ("Repr—-ified_newdatatype{{size:\%d}}",
obj->obj_UnderlyingDatatypePtr->size);

WERBATHE tp_repr ALHRRT, MRREERRHRZME—MEN tp_name MIFRTRIER VAN R A MHE—FR IR

The tp_str handleris to str () what the tp_repr handler described above is to repr () ; that is, it is called when
Python code calls str () on an instance of your object. Its implementation is very similar to the tp_repr function,
but the resulting string is intended for human consumption. If tp_str is not specified, the tp_repr handler is used
instead.

N AR R T

static PyObject *
newdatatype_str (newdatatypeobject * obj)
{
return PyString FromFormat ("Stringified_newdatatype{{size:\%d}}",
obj->obj_UnderlyingDatatypePtr->size);

The print function will be called whenever Python needs to “print” an instance of the type. For example, if ‘node’ is
an instance of type TreeNode, then the print function is called when Python code calls:

print node

There is a flags argument and one flag, Py_ PRINT_RAW, and it suggests that you print without string quotes and possibly
without interpreting escape sequences.

The print function receives a file object as an argument. You will likely want to write to that file object.

Here is a sample print function:

static int
newdatatype_print (newdatatypeobject *obj, FILE *fp, int flags)
{
if (flags & Py_PRINT_RAW) {
fprintf (fp, "<{newdatatype object--size: %d}>",
obj->obj_UnderlyingDatatypePtr->size);

(FItakss)

52 Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

(£ 50

else {
fprintf (fp, "\"<{newdatatype object--size: %d}>\"",
obj->obj_UnderlyingDatatypePtr->size);
}

return 0;

2.2.3 Attribute Management

For every object which can support attributes, the corresponding type must provide the functions that control how the
attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to set
attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed to the
handler is NULL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions
for one pair. The difference is that one pair takes the name of the attribute as a char*, while the other accepts a
PyObject *. Each type can use whichever pair makes more sense for the implementation’ s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;
Jx oL, */

getattrofunc tp_getattrofunc; /* PyObject * version */
setattrofunc tp_setattrofunc;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic imple-
mentations which can be used to provide the PyObject* version of the attribute management functions. The actual
need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there are many
examples which have not been updated to use some of the new generic mechanism that is available.

RBRMER
2.2 HiHHE.

Most extension types only use simple attributes. So, what makes the attributes simple? There are only a couple of
conditions that must be met:

1. The name of the attributes must be known when PyType_Ready () is called.
2. ANTREFFRAAE BRI R B T A s, AR AR R IBURALE
TR, WHRAXS @R (AT RSO B 0 A7 A Xt AT AT B 11 o

When PyType_Ready () is called, it uses three tables referenced by the type object to create descriptors which are
placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object. Each
of the tables is optional; if all three are NULL, instances of the type will only have attributes that are inherited from their
base type, and should leave the tp_getattro and tp_setattro fields NULL as well, allowing the base type to
handle attributes.

FW A Ay object:: 2RI = AN B

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of PyMethodDef structures. Each entry in the table is an
instance of this structure:

2.2. Type Methods 53

Extending and Embedding Python, %% 2.7.18

typedef struct PyMethodDef {

const char *ml_name; /* method name */

PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */

const char *ml_doc; /* docstring */

} PyMethodDef;

One entry should be defined for each method provided by the type; no entries are needed for methods inherited from a
base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The m1_name field
of the sentinel must be NULL.

XXX Need to refer to some unified discussion of the structure fields, shared with the next section.

The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive C
types are supported, and access may be read-only or read-write. The structures in the table are defined as:

typedef struct PyMemberDef {
char *name;
int type;
int offset;
int flags;
char *doc;
} PyMemberDef;

For each entry in the table, a descriptor will be constructed and added to the type which will be able to extract a value
from the instance structure. The type field should contain one of the type codes defined in the st ructmember.h
header; the value will be used to determine how to convert Python values to and from C values. The £1ags field is used
to store flags which control how the attribute can be accessed.

XXX Need to move some of this to a shared section!

DA ARE o & XAE:file: ‘structmember.h ¢ BA1A PA{# A bitwise-OR 2H 5 .

HE EX
READONLY WA 5
RO Shorthand for READONLY.

READ_RESTRICTED Not readable in restricted mode.
WRITE_RESTRICTED | Not writable in restricted mode.
RESTRICTED TR F AT, AT,

An interesting advantage of using the t p_members table to build descriptors that are used at runtime is that any attribute
defined this way can have an associated doc string simply by providing the text in the table. An application can use the
introspection API to retrieve the descriptor from the class object, and get the doc string using its ___doc___ attribute.

As with the tp_methods table, a sentinel entry with a name value of NULL is required.

54 Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

Type-specific Attribute Management

For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only difference
between the char* and PyObject* flavors of the interface. This example effectively does the same thing as the
generic example above, but does not use the generic support added in Python 2.2. The value in showing this is two-fold:
it demonstrates how basic attribute management can be done in a way that is portable to older versions of Python, and
explains how the handler functions are called, so that if you do need to extend their functionality, you’ 1l understand what
needs to be done.

The tp_getattr handler is called when the object requires an attribute look-up. It is called in the same situations
where the __getattr__ () method of a class would be called.

A likely way to handle this is (1) to implement a set of functions (such as newdatatype_getSize () and
newdatatype_setSize () in the example below), (2) provide a method table listing these functions, and (3) pro-
vide a getattr function that returns the result of a lookup in that table. The method table uses the same structure as the
tp_methods field of the type object.

Here is an example:

static PyMethodDef newdatatype_methods[] = {
{"getSize", (PyCFunction)newdatatype_getSize, METH_VARARGS,
"Return the current size."},
{"setSize", (PyCFunction)newdatatype_setSize, METH_VARARGS,
"Set the size."},
{NULL, NULL, O, NULL} /* sentinel */

bi

static PyObject *
newdatatype_getattr (newdatatypeobject *obj, char *name)

{
return Py_FindMethod (newdatatype_methods, (PyObject *)obj, name);

The tp_setattr handler is called when the ___setattr_ () or _ delattr__ () method of a class instance
would be called. When an attribute should be deleted, the third parameter will be NULL. Here is an example that simply
raises an exception; if this were really all you wanted, the t p_setattr handler should be set to NULL.

static int

newdatatype_setattr (newdatatypeobject *obj, char *name, PyObject *v)

{
(void)PyErr_Format (PyExc_RuntimeError, "Read-only attribute: \%s", name);
return -1;

2.2.4 Object Comparison

cmpfunc tp_compare;

The tp_compare handler is called when comparisons are needed and the object does not implement the spe-
cific rich comparison method which matches the requested comparison. (It is always used if defined and the
PyObject_Compare () or PyObject_Cmp () functions are used, or if cmp () is used from Python.) It is anal-
ogous to the __cmp__ () method. This function should return -1 if objl is less than obj2, 0 if they are equal, and 1
if objl is greater than obj2. (It was previously allowed to return arbitrary negative or positive integers for less than and
greater than, respectively; as of Python 2.2, this is no longer allowed. In the future, other return values may be assigned
a different meaning.)

2.2. Type Methods 55

Extending and Embedding Python, %% 2.7.18

A tp_compare handler may raise an exception. In this case it should return a negative value. The caller has to test for
the exception using PyErr_Occurred ().

Here is a sample implementation:

static int
newdatatype_compare (newdatatypeobject * objl, newdatatypeobject * obj2)

{
long result;

if (objl->obj_UnderlyingDatatypePtr->size <
obj2->0obj_UnderlyingDatatypePtr->size) {
result = —-1;
}
else if (objl->o0bj_UnderlyingDatatypePtr->size >
obj2->obj_UnderlyingDatatypePtr->size) {

result = 1;
}
else {

result = 0;

}

return result;

2.2.5 Abstract Protocol Support

Python supports a variety of abstract ‘protocols;’ the specific interfaces provided to use these interfaces are documented
in abstract.

A number of these abstract interfaces were defined early in the development of the Python implementation. In particular,
the number, mapping, and sequence protocols have been part of Python since the beginning. Other protocols have
been added over time. For protocols which depend on several handler routines from the type implementation, the older
protocols have been defined as optional blocks of handlers referenced by the type object. For newer protocols there are
additional slots in the main type object, with a flag bit being set to indicate that the slots are present and should be checked
by the interpreter. (The flag bit does not indicate that the slot values are non-NULL. The flag may be set to indicate the
presence of a slot, but a slot may still be unfilled.)

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place the address of
a structure that implements the C type PyNumberMethods, PySequenceMethods, or PyMappingMethods,
respectively. It is up to you to fill in this structure with appropriate values. You can find examples of the use of each of
these in the Object s directory of the Python source distribution.

hashfunc tp_hash;

This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is a
moderately pointless example:

static long
newdatatype_hash (newdatatypeobject *obj)
{
long result;
result = obj->obj_UnderlyingDatatypePtr->size;

(N ITgkss)

56 Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

(£ 50

result = result * 3;
return result;

ternaryfunc tp_call;

This function is called when an instance of your data type is ‘“called” , for example, if obj1 is an instance of your data
type and the Python script contains obj1 ('hello'), the tp_call handler is invoked.

This function takes three arguments:

1. argl is the instance of the data type which is the subject of the call. If the call is obj1 ('hello"'), then argl is
obj1.
2. arg2 is a tuple containing the arguments to the call. You can use PyArg_ParseTuple () to extract the argu-

ments.

3. arg3 is a dictionary of keyword arguments that were passed. If this is non-NULL and you support keyword argu-
ments, use PyArg_ParseTupleAndKeywords () to extract the arguments. If you do not want to support
keyword arguments and this is non-NULL, raise a TypeError with a message saying that keyword arguments are
not supported.

Here is a desultory example of the implementation of the call function.

/* Implement the call function.

* objl is the instance receiving the call.

* obj2 is a tuple containing the arguments to the call, in this
* case 3 strings.

*/

static PyObject *
newdatatype_call (newdatatypeobject *obj, PyObject *args, PyObject *other)
{

PyObject *result;

char *argl;

char *arg2;

char *arg3;

if (!PyArg_ParseTuple(args, "sss:call", &argl, &arg2, &arg3)) |
return NULL;

3

result = PyString_ FromFormat (
"Returning —-- value: [\%d] argl: [\%s] arg2: [\%s] arg3: [\%s]\n",
obj—>obj_UnderlyingDatatypePtr->size,
argl, arg2, arg3);

printf ("\%s", PyString_AS_STRING (result));

return result;

XXX some fields need to be added here -

/* Added in release 2.2 */
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Any object which wishes to support iteration over its contents
(which may be generated during iteration) must implement the tp_iter handler. Objects which are returned by a
tp_iter handler must implement both the tp_iter and tp_iternext handlers. Both handlers take exactly one

2.2. Type Methods 57

Extending and Embedding Python, %% 2.7.18

parameter, the instance for which they are being called, and return a new reference. In the case of an error, they should
set an exception and return NULL.

For an object which represents an iterable collection, the tp_iter handler must return an iterator object. The iterator
object is responsible for maintaining the state of the iteration. For collections which can support multiple iterators which
do not interfere with each other (as lists and tuples do), a new iterator should be created and returned. Objects which
can only be iterated over once (usually due to side effects of iteration) should implement this handler by returning a new
reference to themselves, and should also implement the tp_iternext handler. File objects are an example of such an
iterator.

Iterator objects should implement both handlers. The tp_iter handler should return a new reference to the iterator
(this is the same as the t p__1i t e r handler for objects which can only be iterated over destructively). The tp_iternext
handler should return a new reference to the next object in the iteration if there is one. If the iteration has reached the
end, it may return NULL without setting an exception or it may set StopIteration;avoiding the exception can yield
slightly better performance. If an actual error occurs, it should set an exception and return NULL.

2.2.6 Weak Reference Support

One of the goals of Python’ s weak-reference implementation is to allow any type to participate in the weak reference
mechanism without incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must include a PyObject * field in the instance structure for the
use of the weak reference mechanism; it must be initialized to NULL by the object’ s constructor. It must also set the
tp_weaklistoffset field of the corresponding type object to the offset of the field. For example, the instance type
is defined with the following structure:

typedef struct {
PyObject_HEAD

PyClassObject *in_class; /* The class object */
PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PyInstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject PyInstance_Type = {
PyObject_HEAD_INIT (&PyType_Type)
OI
"module.instance",

/* Lots of stuff omitted for brevity... */

Py_TPFLAGS_DEFAULT, /* tp_flags */

0, /* tp_doc */

0, /* tp_traverse */

0, /* tp_clear */

0, /* tp_richcompare */

offsetof (PyInstanceObject, in_weakreflist), /* tp_weaklistoffset */
bi

The type constructor is responsible for initializing the weak reference list to NULL:

static PyObject *
instance_new () {
/* Other initialization stuff omitted for brevity */

(T IUakZE)

58 Chapter 2. Defining New Types

Extending and Embedding Python, %% 2.7.18

(£ 50

self->in_weakreflist = NULL;

return (PyObject *) self;

The only further addition is that the destructor needs to call the weak reference manager to clear any weak references.
This is only required if the weak reference list is non-NULL:

static void
instance_dealloc (PyInstanceObject *inst)

{

/* Allocate temporaries if needed, but do not begin
destruction just yet.

*/

if (inst->in_weakreflist != NULL)
PyObject_ClearWeakRefs ((PyObject *) inst);

/* Proceed with object destruction normally. */

227 EZEW

Remember that you can omit most of these functions, in which case you provide 0 as a value. There are type definitions
for each of the functions you must provide. They are in object . h in the Python include directory that comes with the
source distribution of Python.

In order to learn how to implement any specific method for your new data type, do the following: Download and unpack
the Python source distribution. Go the Objects directory, then search the C source files for tp__ plus the function you
want (for example, tp_print or tp_compare). You will find examples of the function you want to implement.

When you need to verify that an object is an instance of the type you are implementing, use the
PyObject_TypeCheck () function. A sample of its use might be something like the following:

if (! PyObject_TypeCheck (some_object, &MyType)) {
PyErr_SetString (PyExc_TypeError, "arg #1 not a mything");
return NULL;

2.2. Type Methods 59

Extending and Embedding Python, %% 2.7.18

60

Chapter 2. Defining New Types

CHAPTER 3

{s£ A distutils #9% C #1 C++ ¥ &

Starting in Python 1.4, Python provides, on Unix, a special make file for building make files for building dynamically-
linked extensions and custom interpreters. Starting with Python 2.0, this mechanism (known as related to Makefile.pre.in,
and Setup files) is no longer supported. Building custom interpreters was rarely used, and extension modules can be built
using distutils.

Building an extension module using distutils requires that distutils is installed on the build machine, which is included in
Python 2.x and available separately for Python 1.5. Since distutils also supports creation of binary packages, users don’
t necessarily need a compiler and distutils to install the extension.

—/~ distutils W T —NIKEHHA setup. py o X 4E Python UM, REHRHMEAR T 5, FHE AT

from distutils.core import setup, Extension

modulel = Extension('demo',
sources = ['demo.c'])

setup (name = 'PackageName',
version = '1.0",
description = 'This is a demo package',
ext_modules = [modulel])

WL setup.py , M demo.c, BATHAIT

python setup.py build

XHPE demo. ¢, RGN REIUIK demo FEH 5K build . KT REG, SRSUFSHHER.
MNTHFEEU build/lib. system , Z4F A HEE demo. so 8 demo.pyd »

In the setup . py, all execution is performed by calling the setup function. This takes a variable number of keyword
arguments, of which the example above uses only a subset. Specifically, the example specifies meta-information to build
packages, and it specifies the contents of the package. Normally, a package will contain of addition modules, like Python
source modules, documentation, subpackages, etc. Please refer to the distutils documentation in distutils-index to learn
more about the features of distutils; this section explains building extension modules only.

It is common to pre-compute arguments to setup (), to better structure the driver script. In the example above, the

61

Extending and Embedding Python, %% 2.7.18

ext_modules argument to setup () is a list of extension modules, each of which is an instance of the Extension.
In the example, the instance defines an extension named demo which is build by compiling a single source file, demo . c.

HZmME, W@ RAEIRNZ , FTFEBOMITAL PSS E SO . QTh il s 1k e

from distutils.core import setup, Extension
modulel = Extension('demo',
define_macros = [('MAJOR_VERSION', '1'"),
('MINOR_VERSION', '0')1,
include_dirs = ['/usr/local/include'],
libraries = ['tcl83'],
library_dirs = ['/usr/local/lib'],
sources = ['demo.c'])
setup (name = 'PackageName',
version = '1.0",
description = 'This is a demo package',
author = 'Martin v. Loewis',
author_email = 'martin@v.loewis.de',
url = 'https://docs.python.org/extending/building’,
long_description = """
This is really just a demo package.
! "I
ext_modules = [modulel])

In this example, setup () is called with additional meta-information, which is recommended when distribution packages
have to be built. For the extension itself, it specifies preprocessor defines, include directories, library directories, and
libraries. Depending on the compiler, distutils passes this information in different ways to the compiler. For example, on
Unix, this may result in the compilation commands

gcc -DNDEBUG —-g -03 -Wall -Wstrict-prototypes —-fPIC -DMAJOR_VERSION=1 -DMINOR_
< VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/
—temp.linux-1686-2.2/demo.o

gcc —shared build/temp.linux-1686-2.2/demo.o -L/usr/local/lib -1tcl83 -o build/lib.
—1linux—-1686-2.2/demo.so

XSRS TR H Y s distutils] P M % AH(E distutils B8R TR o

3.1 RIREY RRIR

%ﬁﬁﬁ%aﬁﬁ%%W@ﬁ,ﬁEﬂﬁﬁﬁmo
A Pl F AR B R, W] DA 20517

’python setup.py install

RGeS IR AL BESE R bhs T

’python setup.py sdist

In some cases, additional files need to be included in a source distribution; this is done through a MANIFEST. in file;
see the distutils documentation for details.

WS AT E T, e il AR R kAT . BTG, — DR

62 Chapter 3. {EH distutils #J3& C 0 C++ ' &

Extending and Embedding Python, %% 2.7.18

python setup.py bdist_wininst
python setup.py bdist_rpm
python setup.py bdist_dumb

3.1. AMIREVY RRIR

63

Extending and Embedding Python, %% 2.7.18

64

Chapter 3. {EH distutils #J3& C 0 C++ ' &

cHAPTER 4

7£ Windows E& %% C #1C++ ¥ &

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++, and
follows with more detailed background information on how it works. The explanatory material is useful for both the
Windows programmer learning to build Python extensions and the Unix programmer interested in producing software
which can be successfully built on both Unix and Windows.

Module authors are encouraged to use the distutils approach for building extension modules, instead of the one described
in this section. You will still need the C compiler that was used to build Python; typically Microsoft Visual C++.

{Efit: This chapter mentions a number of filenames that include an encoded Python version number. These filenames
are represented with the version number shown as XY; in practice, ' X' will be the major version number and 'Y "' will
be the minor version number of the Python release you’ re working with. For example, if you are using Python 2.2.1,
XY will actually be 22.

4.1 A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there are on Unix: use the distutils
package to control the build process, or do things manually. The distutils approach works well for most extensions;
documentation on using distutils to build and package extension modules is available in distutils-index. If you find
you really need to do things manually, it may be instructive to study the project file for the winsound standard library
module.

65

https://github.com/python/cpython/tree/2.7/PCbuild/winsound.vcxproj

Extending and Embedding Python, %% 2.7.18

4.2 Differences Between Unix and Windows

Unix and Windows use completely different paradigms for run-time loading of code. Before you try to build a module
that can be dynamically loaded, be aware of how your system works.

In Unix, a shared object (. so) file contains code to be used by the program, and also the names of functions and data
that it expects to find in the program. When the file is joined to the program, all references to those functions and data
in the file’ s code are changed to point to the actual locations in the program where the functions and data are placed in
memory. This is basically a link operation.

In Windows, a dynamic-link library (.d11) file has no dangling references. Instead, an access to functions or data goes
through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’ s memorys;
instead, the code already uses the DLL’ s lookup table, and the lookup table is modified at runtime to point to the functions
and data.

In Unix, there is only one type of library file (. a) which contains code from several object files (. o). During the link step
to create a shared object file (. so), the linker may find that it doesn’ t know where an identifier is defined. The linker
will look for it in the object files in the libraries; if it finds it, it will include all the code from that object file.

In Windows, there are two types of library, a static library and an import library (both called . 1ib). A static library is
like a Unix . a file; it contains code to be included as necessary. An import library is basically used only to reassure the
linker that a certain identifier is legal, and will be present in the program when the DLL is loaded. So the linker uses the
information from the import library to build the lookup table for using identifiers that are not included in the DLL. When
an application or a DLL is linked, an import library may be generated, which will need to be used for all future DLLs
that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On Unix,
you would not pass A . a to the linker for B. so and C . soj; that would cause it to be included twice, so that B and C would
each have their own copy. In Windows, building A.d11 will also build 2. 1ib. You do pass A. 1ib to the linker for B
and C. A. 1ib does not contain code; it just contains information which will be used at runtime to access A’ s code.

In Windows, using an import library is sort of like using import spam; it gives you access to spam’ s names, but
does not create a separate copy. On Unix, linking with a library is more like from spam import *;itdoes create a
separate copy.

4.3 Using DLLs in Practice

Windows Python is built in Microsoft Visual C++; using other compilers may or may not work (though Borland seems
to). The rest of this section is MSVC++ specific.

When creating DLLs in Windows, you must pass pythonXY . 1ib to the linker. To build two DLLs, spam and ni (which
uses C functions found in spam), you could use these commands:

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

The first command created three files: spam.obj, spam.dll and spam.lib. Spam.dll does not contain
any Python functions (such as PyArg_ParseTuple ()), but it does know how to find the Python code thanks to
pythonXY.lib.

The second command created ni.d11 (and .obj and . 11ib), which knows how to find the necessary functions from
spam, and also from the Python executable.

Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be able
to see your identifiers, you have to say _declspec (dllexport), as in void _declspec (dllexport)
initspam(void) or PyObject _declspec(dllexport) *NiGetSpamData (void).

66 Chapter 4. £ Windows E&%iE C 1 C++ 'R

Extending and Embedding Python, %% 2.7.18

Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your exe-
cutable. To get rid of them, use the Project Settings dialog, Link tab, to specify ignore default libraries. Add the correct
msvcrtxx. lib to the list of libraries.

4.3. Using DLLs in Practice 67

Extending and Embedding Python, %% 2.7.18

68

Chapter 4. £ Windows E&%iE C 1 C++ 'R

CHAPTER D

AHTENMHZEFERA Python

The previous chapters discussed how to extend Python, that is, how to extend the functionality of Python by attaching a
library of C functions to it. It is also possible to do it the other way around: enrich your C/C++ application by embedding
Python in it. Embedding provides your application with the ability to implement some of the functionality of your appli-
cation in Python rather than C or C++. This can be used for many purposes; one example would be to allow users to tailor
the application to their needs by writing some scripts in Python. You can also use it yourself if some of the functionality
can be written in Python more easily.

Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the main
program of the application is still the Python interpreter, while if you embed Python, the main program may have nothing
to do with Python —instead, some parts of the application occasionally call the Python interpreter to run some Python
code.

So if you are embedding Python, you are providing your own main program. One of the things this main program has
to do is initialize the Python interpreter. At the very least, you have to call the function Py_Initialize (). There
are optional calls to pass command line arguments to Python. Then later you can call the interpreter from any part of the
application.

There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun_SimpleString (), or you can pass a stdio file pointer and a file name (for identification in error messages
only) to PyRun_SimpleFile (). You can also call the lower-level operations described in the previous chapters to
construct and use Python objects.

A simple demo of embedding Python can be found in the directory Demo/embed/ of the source distribution.
Z W

c-api-index The details of Python’ s C interface are given in this manual. A great deal of necessary information can be
found here.

69

Extending and Embedding Python, %% 2.7.18

5.1 Very High Level Embedding

The simplest form of embedding Python is the use of the very high level interface. This interface is intended to execute
a Python script without needing to interact with the application directly. This can for example be used to perform some
operation on a file.

#include <Python.h>

int
main (int argc, char *argv[])
{
Py_SetProgramName (argv([0]); /* optional but recommended */
Py_Initialize();
PyRun_SimpleString ("from time import time,ctime\n"
"print 'Today is',ctime (time ())\n");
Py_Finalize();
return 0;

}

The Py_SetProgramName () function should be called before Py_Initialize () toinform the interpreter about
paths to Python run-time libraries. Next, the Python interpreter is initialized with Py_Initialize (), followed by
the execution of a hard-coded Python script that prints the date and time. Afterwards, the Py_Finalize () call shuts
the interpreter down, followed by the end of the program. In a real program, you may want to get the Python script from
another source, perhaps a text-editor routine, a file, or a database. Getting the Python code from a file can better be done
by using the PyRun_SimpleFile () function, which saves you the trouble of allocating memory space and loading
the file contents.

5.2 Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of Python code from your application, but ex-
changing data values is quite cumbersome to say the least. If you want that, you should use lower level calls. At the cost
of having to write more C code, you can achieve almost anything.

It should be noted that extending Python and embedding Python is quite the same activity, despite the different intent.
Most topics discussed in the previous chapters are still valid. To show this, consider what the extension code from Python
to C really does:

1. %4 Python [4Ha(H %] C,
2. Perform a function call to a C routine using the converted values, and
3. Convert the data values from the call from C to Python.
When embedding Python, the interface code does:
L. B4 C (%)) Python,
2. Perform a function call to a Python interface routine using the converted values, and
3. Convert the data values from the call from Python to C.

As you can see, the data conversion steps are simply swapped to accommodate the different direction of the cross-language
transfer. The only difference is the routine that you call between both data conversions. When extending, you call a C
routine, when embedding, you call a Python routine.

This chapter will not discuss how to convert data from Python to C and vice versa. Also, proper use of references and
dealing with errors is assumed to be understood. Since these aspects do not differ from extending the interpreter, you can
refer to earlier chapters for the required information.

70 Chapter 5. ZEHERMAREFERA Python

Extending and Embedding Python, %% 2.7.18

5.3 ZEERA

The first program aims to execute a function in a Python script. Like in the section about the very high level interface,
the Python interpreter does not directly interact with the application (but that will change in the next section).

The code to run a function defined in a Python script is:

#include <Python.h>

int

main (int argc, char *argv[])

{
PyObject *pName, *pModule, *pFunc;
PyObject *pArgs, *pValue;
int i;

if (argc < 3) |
fprintf (stderr, "Usage: call pythonfile funcname [args]\n");
return 1;

Py_Initialize();
pName = PyString_FromString(argv[1l]);
/* Error checking of pName left out */

pModule = PyImport_Import (pName) ;
Py_DECREF (pName) ;

if (pModule != NULL) {
pFunc = PyObject_GetAttrString (pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) {
PArgs = PyTuple_New (argc - 3);
for (i = 0; 1 < argc - 3; ++1i) A
pValue = PyInt_FromLong(atoi (argv[i + 31));
if (!pvalue) {
Py_DECREF (pArgs) ;
Py_DECREF (pModule) ;
fprintf (stderr, "Cannot convert argument\n");
return 1;
3
/* pValue reference stolen here: */
PyTuple_SetItem(pArgs, i, pValue);
3
pValue = PyObject_CallObject (pFunc, pArgs);
Py_DECREF (pArgs) ;
if (pValue != NULL) {
printf ("Result of call: %1d\n", PyInt_AsLong (pValue)) ;
Py_DECREF (pValue) ;
I3
else {
Py_DECREF (pFunc) ;
Py_DECREF (pModule) ;
PyErr_Print ();
fprintf (stderr,"Call failed\n");
return 1;

5.3. 4hifir A\ 71

Extending and Embedding Python, %% 2.7.18

(£ 50

t
else {
if (PyErr_Occurred())
PyErr_Print ();
fprintf (stderr, "Cannot find function \"%s\"\n", argv[2]);
}
Py_XDECREF (pFunc) ;
Py_DECREF (pModule) ;
3
else {
PyErr_Print ();
fprintf (stderr, "Failed to load \"%s\"\n", argv[1]);
return 1;
3
Py_Finalize();
return 0;

This code loads a Python script using argv [1], and calls the function named in argv [2]. Its integer arguments are
the other values of the argv array. If you compile and link this program (let’ s call the finished executable call), and
use it to execute a Python script, such as:

def multiply(a,b):
print "Will compute", a, "times", b

c =20
for i in range (0, a):
c=c¢c +Db

return c

RIS RN

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

Although the program is quite large for its functionality, most of the code is for data conversion between Python and C,
and for error reporting. The interesting part with respect to embedding Python starts with

Py_Initialize();

pName = PyString_FromString(argv[1l]);
/* Error checking of pName left out */
pModule = PyImport_Import (pName) ;

After initializing the interpreter, the script is loaded using Py Import_Import (). This routine needs a Python string
as its argument, which is constructed using the PyString_FromString () data conversion routine.

pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) {

}
Py_XDECREF (pFunc) ;

Once the script is loaded, the name we’ re looking for is retrieved using PyObject_GetAttrString (). If the
name exists, and the object returned is callable, you can safely assume that it is a function. The program then proceeds

72 Chapter 5. ZEHERMAREFERA Python

Extending and Embedding Python, %% 2.7.18

by constructing a tuple of arguments as normal. The call to the Python function is then made with:

pValue = PyObject_CallObject (pFunc, pArgs);

Upon return of the function, pValue is either NULL or it contains a reference to the return value of the function. Be
sure to release the reference after examining the value.

5.4 Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from the application itself. The Python API
allows this by extending the embedded interpreter. That is, the embedded interpreter gets extended with routines provided
by the application. While it sounds complex, it is not so bad. Simply forget for a while that the application starts the Python
interpreter. Instead, consider the application to be a set of subroutines, and write some glue code that gives Python access
to those routines, just like you would write a normal Python extension. For example:

static int numargs=0;

/* Return the number of arguments of the application command line */
static PyObject*
emb_numargs (PyObject *self, PyObject *args)
{
if (!PyArg_ParseTuple (args, ":numargs"))
return NULL;
return Py_BuildValue ("i", numargs);

static PyMethodDef EmbMethods[] = {
{"numargs", emb_numargs, METH_VARARGS,
"Return the number of arguments received by the process."},
{NULL, NULL, 0, NULL}

bi

Insert the above code just above the main () function. Also, insert the following two statements directly after
Py_Initialize():

numargs = argc;
Py_InitModule ("emb", EmbMethods);

These two lines initialize the numargs variable, and make the emb . numargs () function accessible to the embedded
Python interpreter. With these extensions, the Python script can do things like

import emb
print "Number of arguments", emb.numargs ()

In a real application, the methods will expose an API of the application to Python.

5.4. Extending Embedded Python 73

Extending and Embedding Python, %% 2.7.18

5.5 £ C++ thix A\ Python

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of the C++
system used; in general you will need to write the main program in C++, and use the C++ compiler to compile and link
your program. There is no need to recompile Python itself using C++.

5.6 7E3E Unix RGP %miFFaEes

It is not necessarily trivial to find the right flags to pass to your compiler (and linker) in order to embed the Python
interpreter into your application, particularly because Python needs to load library modules implemented as C dynamic
extensions (. so files) linked against it.

To find out the required compiler and linker flags, you can execute the pythonX. Y—config script which is generated
as part of the installation process (a python—config script may also be available). This script has several options, of
which the following will be directly useful to you:

e pythonX.Y-config --cflags will give you the recommended flags when compiling:

$ /opt/bin/python2.7-config —--cflags
-I/opt/include/python2.7 -fno-strict-aliasing -DNDEBUG -g -fwrapv -03 -Wall -
—Wstrict-prototypes

pythonX.Y-config --1dflags will give you the recommended flags when linking:

$ /opt/bin/python2.7-config --1dflags
-L/opt/lib/python2.7/config —-lpthread -1dl -lutil -1m -lpython2.7 -Xlinker -
—export—-dynamic

{Efi#: To avoid confusion between several Python installations (and especially between the system Python and your own
compiled Python), it is recommended that you use the absolute path to pythonX. Y-config, as in the above example.

If this procedure doesn’ t work for you (it is not guaranteed to work for all Unix-like platforms; however, we welcome
bug reports) you will have to read your system’ s documentation about dynamic linking and/or examine Python’ s
Makefile (use sysconfig.get_makefile_filename () to find its location) and compilation options. In this
case, the sysconfig module is a useful tool to programmatically extract the configuration values that you will want to
combine together. For example:

>>> import sysconfig

>>> gysconfig.get_config_var ('LIBS"')
'-lpthread -1dl1 -lutil’

>>> sysconfig.get_config_var ('LINKFORSHARED')
'-Xlinker -export-dynamic'

74 Chapter 5. ZEHERMAREFERA Python

APPENDIX A

RIEXTHRR

>>> R H A L EGA R Python $&7-4F . FEAE 2 R T BB AR H Ty AR M REAR LIV T IO AR B AR 2 1

. The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2to3 —>f Python 2.x fUfS #4657 Python 3.x fURLIK TR, REAS A PR 0703 1o AEAT U5 o DIy A ATyl 4
T2 AN

2t03 WA TERRMEEH, BN 1ib2to3; FFEM—/ NS AT Tools/scripts/2to3. £
2to3-reference.,

abstract base class —fili% 3£28 Abstract base classes complement duck-typing by providing a way to define interfaces
when other techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods).
ABC:s introduce virtual subclasses, which are classes that don’ t inherit from a class but are still recognized by
isinstance () and issubclass () ;see the abc module documentation. Python comes with many built-in
ABC:s for data structures (in the collections module), numbers (in the numbers module), and streams (in
the io module). You can create your own ABCs with the abc module.

argument —Z3 % A value passed to a function (or method) when calling the function. There are two types of arguments:

o KT A TEREOR M R A AR R (BIA0 name=) SCEAE N AL STERTIA A <+ Y5-I
MERE A 28BIRTE, 3 A1 5 FELATRXT complex () B HIET K724

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

s L E Ade ARTRETSHNSI (CESHTH T SR ENIT L AR SEGE A D ana A
* Witerable P TCRGAL A 2B, 3 A1 5 FELA T hy g T E S 4

complex (3, 5)
complex (* (3, 5))

SHLHIR L BRBC PR AR A B A7 XRRALINS L calls —7. RURIERE , FEOTRIBAT
TR BT L SRR TS

75

Extending and Embedding Python, %% 2.7.18

See also the parameter glossary entry and the FAQ question on the difference between arguments and parameters.

attribute —J@PE SCECE]— N RE, FTAMH S5 ERREAHAFRRE . fla, R 5% o A
— @ a, BT o.a REIHE .

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’ s creator.

bytes-like object —3= 152X} 4 An object that supports the buffer protocol, like st r, bytearray or memoryview.
Bytes-like objects can be used for various operations that expect binary data, such as compression, saving to a
binary file or sending over a socket. Some operations need the binary data to be mutable, in which case not all
bytes-like objects can apply.

bytecode —=7 i1 Python source code is compiled into bytecode, the internal representation of a Python program in the
CPython interpreter. The bytecode is also cached in . pyc and . pyo files so that executing the same file is faster
the second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to
run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes
are not expected to work between different Python virtual machines, nor to be stable between Python releases.

TR AR AT LAE dis B SR AR
class 3¢ JSRAIEN P E NGB, 258 SGEH L 3 X% 2E M S BIUEA T B 7 kg 3

classic class Any class which does not inherit from object. See new-style class. Classic classes have been removed in
Python 3.

coercion —5ii il AUEEHE The implicit conversion of an instance of one type to another during an operation which in-
volves two arguments of the same type. For example, int (3.15) converts the floating point number to the integer
3, butin 3+4. 5, each argument is of a different type (one int, one float), and both must be converted to the same
type before they can be added or it will raise a TypeError. Coercion between two operands can be performed
with the coerce built-in function; thus, 3+4 . 5 is equivalent to calling operator.add (*coerce (3, 4.
5)) and results in operator.add (3.0, 4.5). Without coercion, all arguments of even compatible types
would have to be normalized to the same value by the programmer, e.g., f1oat (3) +4 . 5 rather than just 3+4 . 5.

complex number 5% X @ LA GLY JE, Hoh I B R R 8 — A SEE SRR AL, R
A HERCAOL (-1 BRI AR) BYSEARR, EHAEREAT SN 1, ETRESHS 5. Python N T4
By sy, R TREEARICT =20 il —A 3 R4, BN 3+15. WPRTEZE math BEER ARG A%
WARBURA, #EH cmath, RER AR — DB BAEARE. WRIRBOER A L, ZIEE
ITLP AR AL

context manager — |2 F 3CAFPIEY 7E with iEAPN, @idE X __enter_ () Ml _exit_ () R
HFEDREHIN S . £ L PEP 343,

CPython Python ZF1E F HIMIVESEEL, FE python.org & 7fi.” CPython” — i)] F7E0 B R K L SL Bl HoAth
SEFFIAN Jython EY, IronPython AH X 51l

decorator &My R IPME AT — D REWREL, EHE M ewrapper A AORMITREUEH . REMidsm
BT f3E classmethod () fl staticmethod () .

PFEETE R RIS, AR A B B0E SR X BS54 4R

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

] ARSI T8, (Rl F R A o A SRR TR 1T 2 0 eR S0 SR 2858 SR SORY

76 Appendix A. RiEMBE

https://www.python.org/~guido/
https://www.python.org/dev/peps/pep-0343
https://www.python.org

Extending and Embedding Python, %% 2.7.18

descriptor —§{iif%% Any new-style object which defines the methods __get_ (), __set__ (), or
__delete__ (). When a class attribute is a descriptor, its special binding behavior is triggered upon at-
tribute lookup. Normally, using a.b to get, set or delete an attribute looks up the object named b in the class
dictionary for a, but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is
a key to a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

A KBTI IR TR T2 descriptors.

dictionary —Z#it An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eqg__ () methods. Called a hash in Perl.

dictionary view —HLEEPE| The objects returned from dict .viewkeys (),dict.viewvalues (),anddict.
viewitems () are called dictionary views. They provide a dynamic view on the dictionary’ s entries, which
means that when the dictionary changes, the view reflects these changes. To force the dictionary view to become a
full list use 1ist (dictview). See dict-views.

docstring —SCRYFAFH 128, BRI 2 WIS — b s Ul B AR M. BT AT 29
2, BSPHERSR B ITIES . R __doc_ @i, T En T AHNE,
SRR QAT AL AL

duck-typing 1 F-RM F5—FgFE XA, EIFMKEE RIS RER e LR EHA BN, meH
B R 6 s g (BRGNS, mpERWGEM T, ISAE EMmEN) hT e
FUMAERRE 288, it RIS v i 2 SRR T R, 19T 2RBLE R type () B
isinstance () Kpill. ((HEEFRENFIRB0] DAEH 4 248 % s e,) MAEES R hasattr ()
K 2 EAFP 4hfe .

EAFP R HCRVFIHA S, 930455 . X Python # J AU 4 5 AU 2 18 BT 1 B BB AP AE
HAEBGE FRINHH IS B o X PR PR XA IR @ Kz] oy Ml except ifAT. THAIN Y
W2 FTELBYL W, #ILT C S5 R HAIE = .

expression -3k A, A piece of syntax which can be evaluated to some value. In other words, an expression is an
accumulation of expression elements like literals, names, attribute access, operators or function calls which all
return a value. In contrast to many other languages, not all language constructs are expressions. There are also
statements which cannot be used as expressions, such as print or i f. Assignments are also statements, not

expressions.
extension module —§" Jg it DA C 5 C++ Zi'5 A, i1 Python [¥) C APT 3k 5iEF 1.0 DA A P A i
T H..

file object —SCPRXF G A SMRPETH 7 S0 APL AGE N2 BEEAIR G (AP read () Bl write () XAERYTT
5) o MEHAIET BRI, ORI AT AME B BLSCRE RSO, XHARAUA A, SO Rl IR A
AR (PANAR R A/ . AR IX . BT, B) . U R WP ST R 23 2 80A.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the i o module. The canonical way to create a file object is by using the open () function.

file-like object —SLPEJA 4 file object [1F] il o

finder 5 $k%% An object that tries to find the loader for a module. It must implement a method named
find_module (). See PEP 302 for details.

floor division —[i] FIUEEERE: 1) N & A B S R BB B Rk . 10 N BRI IEB AT /7 - Blin, %
kX 11/ AWTRESRE 2, M52 MR EF S EIERZERE 2.75 . WE (-11) // 4
23R 0] -3 PR SE -2.75 B T A RIS . I, PEP 238 .

function —pR %L AT DA H & R BIEEAME — 4B A . 380] DA AR ABASE 2> 240 HAE R BRI T ¢
1§/l 5 Wparameter, method 1 function ££75 ,

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11 /4 currently evaluates to 2. If the module in which it

77

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0238

Extending and Embedding Python, %% 2.7.18

is executed had enabled true division by executing:

from _ future__ import division

the expression 11 /4 would evaluate to 2 . 75. By importingthe ___future___ module and evaluating its variables,
you can see when a new feature was first added to the language and when it will become the default:

>>> import __ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection —L7 Y% [B[it The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator —2EJ%7#% A function which returns an iterator. It looks like a normal function except that it contains yield
statements for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function. Each yield temporarily suspends processing, remembering the location execution state (in-
cluding local variables and pending try-statements). When the generator resumes, it picks up where it left off (in
contrast to functions which start fresh on every invocation).

generator expression —f: g3 35 3, An expression that returns an iterator. It looks like a normal expression followed
by a for expression defining a loop variable, range, and an optional i f expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

GIL 2 W.global interpreter lock

global interpreter lock —4: i ffREg B CPython ffFEes TR B —FIALE , B RIRE —i %) g — 2817
AT Python byrecode, BEALTHE T BEE AT GARR (AHE dict SEE N EIRM) X 5 a4
A fijifk T CPython SZH., 258NN RRESS B (H 1S M RERS 2 R RE B T (8, AR W44t T 2 40
S FROHA T

ANad, BEBERE B =07 R I R A BT AR AT T B AR AT 55 0 s 4 s A R GIL
BEAh, FEIAT VO #RAEB 2 SR GIL.

QI (PASERSAIAL BER BiE Je 28y) A AR MPRERR i 55 I MR IRAG IS, R R x4
TEA0 FAAE PR DL T HOTERE o J5 (5 e AR B8 170 R A o B S AR A B A %, AT B A DA
o

hashable —u] W37 An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (itneedsan __eq__ () or __cmp___ () method).
Hashable objects which compare equal must have the same hash value.

]I F PR CERERT SRR D T SR A A LB, PR Ry B 2) A A T 0 AL

All of Python’ s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries)
are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal (except
with themselves), and their hash value is derived from their id ().

IDLE Python {) IDE, “EpiJT & 52£J BREE” MYSESCEHE o 2 Python BRifl AT PR) BE A 2 AR RS
REREL .

immutable — A HATFEEHAXTR . AR QAL AR HICA. AR R A RER L. W
R — DA R, WLBRIEHRX S . MRS R Er 5 E2AEN, B
(SR i

integer division Mathematical division discarding any remainder. For example, the expression 11/ 4 currently evaluates

to 2 in contrast to the 2 . 75 returned by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied to it). However, if one of the operands is

78 Appendix A. RiEMBE

Extending and Embedding Python, %% 2.7.18

another numeric type (such as a f1oat), the result will be coerced (see coercion) to a common type. For example,
an integer divided by a float will result in a float value, possibly with a decimal fraction. Integer division can be
forced by using the // operator instead of the / operator. See also __future__.

importing —5 A 4— MUY Python MRS RE I — MELER H Y Python FURS B I AY S 2 .
importer — A%F EHIFMBABATN R WS ZRBEE T finder 3@ Tloader

interactive —4g f. Python iy 5 — N2 H A MERERS, BIARY DATEMERESR LR AT I i A B/ ARk X, S BIHAT
HEFHLER, AEANTSEMES) python 4 (WA AZEARAG T SEAILFF UA 22 B v B A b 3 AT)
I 38 AR BRG IAR BATA f s B X RO SR B i (G ICASE A help (x)).

interpreted £ Python —RAMFREALE T, SRR M IFAIET , RIAPIE I i T 51 i g 5
e AEAE T A7 PP o R AR JESCIE AT A LGB AT A b B s B n] AT SO FRIs AT R
TR BA g A AT A AR UR Y, (R AP R EIs TR R . & Winteractive,

iterable —n] 3% U4t An object capable of returning its members one at a time. Examples of iterables include all
sequence types (such as 1ist, str, and tuple) and some non-sequence types like dict and £ile and objects
of any classes you define withan __iter_ () or __getitem__ () method. Iterables can be used ina for
loop and in many other places where a sequence is needed (zip (), map (), ---). When an iterable object is passed
as an argument to the built-in function iter (), it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessary to call iter () or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator —i%f07% An object representing a stream of data. Repeated calls to the iterator’ s next () method return suc-
cessive items in the stream. When no more data are available a St opIteration exception is raised instead. At
this point, the iterator object is exhausted and any further calls to its next () method justraise StopIteration
again. Iterators are required to havean __iter__ () method that returns the iterator object itself so every iterator
is also iterable and may be used in most places where other iterables are accepted. One notable exception is code
which attempts multiple iteration passes. A container object (such as a 1ist) produces a fresh new iterator each
time you pass it to the iter () function or use it in a for loop. Attempting this with an iterator will just return
the same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.

W25 E [EF typeiter.

key function B H pR BCAREE B R 4L, 2 REAZAR 0] 1 T-HEFP SR CLAE R TR R « BN, locale.
strxfrm () ATFA N AFEREE I HE T 29 %€ A HER 1 .

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min (), max (), sorted (), list.sort (), heapg.nsmallest (), heapg.nlargest (), and
itertools.groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a 1ambda expression
suchas lambda r: (r[0], r[2]). Also,the operator module provides three key function constructors:
attrgetter (), itemgetter (),and methodcaller (). See the Sorting HOW TO for examples of how
to create and use key functions.

keyword argument — G255 2 Warsument,
lambda (A lexpression 14T B2 IR EL, RPN AET A B BORIE. B8 lambda 5L H)VE N

lambda [parameters]: expression

LBYL “JefifJGBkER” WIS CHSE . XU S XS S AEDE T) el e 2 B e sk A w25 1. 1k
Wkg S EAFP Jy G A, HAF RUR KR 1 £ 1A,
L LAMEET, LBYL il 8 “&F” Ml “BRER” Z I &SR K. B, PARAURD 1 £
key in mapping: return mappinglkey] A[REH TTEREERAEZ 5 HAMLREIN mapping FF5 R
T key T4 o 30K) R0 AT 3 3 i BB 0 1T EAFP 5 R fig e .

79

Extending and Embedding Python, %% 2.7.18

list %% Python N Ef{—Fhsequence. BSR4 NHNIFE, HEIMT HAEF HAORALNAEERS 1%, oA
FICER I S AR R O1).

list comprehension — 553X, A compact way to process all or part of the elements in a sequence and return a list
with the results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates
a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The i £ clause is optional. If omitted,
all elements in range (256) are processed.

loader ik 7% An object that loads a module. It must define a method named 1oad_module (). Aloader is typically
returned by a finder. See PEP 302 for details.

magic method —FEARJ5#: special method RIFEIE R 3]

mapping Wi} A container object that supports arbitrary key lookups and implements the methods specified in
the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

metaclass 03¢ —Fp] TAIEZEMZE. 208 XA H K4 BPMMERY L. TR T2 LIR=NS50F
BIEEFA N I ZE . A3 T a6 2 B i AT 5 AR PR — AN BRIA S 3. Python [R5 2 Ab T] DAGI
HE X Ttde. K H P AGEAT Zax A T H, H2YFE IR, Joden] $R ke K m e i o & .
Mg TieEE R HE ., gt BEXSAE. SR g, PAREAMFLZTES5 .

L% S I metaclasses.,
method JjiJi TEINHE AR WRAE M Z BB LB — N EHRE R, RS IR B % G4 H:

—A argument GRF 44K self). I function FMnested scope.

method resolution order —Jj iEMRATIE 5 5 FEAT I3 5t /2 A0 A $R A% D3 8 R 23 LS B R e e 7 . 1
25 F Python 2.3 J7EfENTINY THRE 2.3 B Python FEHTHE T FAH 35 B 1160

module Bit JLXT5 02 Python RG] —FpZHZLA(. SR JST 644 25 18], Al E & LR Python X4,
W R 38 L importing FEAEWM#Z E] Python .

5 Wpackage.
MRO Z: Wmethod resolution order ,

mutable —n[7E FASKI LA DATER 1d () PREFEE I SO HIE. 5312 Wimmutable .

named tuple —H. #5641 Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time . localtime () returns a tuple-like object where the year is accessible either with an index such
as t [0] or with a named attribute like t . tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple (). The latter approach automatically provides extra features such as a self-documenting represen-
tation like Employee (name="jones', title='programmer').

namespace —fiy £ 45[] The place where a variable is stored. Namespaces are implemented as dictionaries. There are
the local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces sup-
port modularity by preventing naming conflicts. For instance, the functions __builtin__.open() and os.
open () are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it
clear which module implements a function. For instance, writing random. seed () or itertools.izip ()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

nested scope —jir £ 11, The ability to refer to a variable in an enclosing definition. For instance, a function defined
inside another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read and
write in the innermost scope. Likewise, global variables read and write to the global namespace.

80 Appendix A. RiEMBE

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Extending and Embedding Python, %% 2.7.18

new-style class —#f:\. 2% Any class which inherits from object. This includes all built-in types like 1ist and dict.
Only new-style classes can use Python’ s newer, versatile features like ___slots__, descriptors, properties, and
__getattribute__ ().

More information can be found in newstyle.

object W R AETHARE (JBPEEUE) ARTIUE XATH (J57E) Mm%, object UL @A fnew-style class [#i%

package —fu, —] {0 7 TR SR I 05 7437 Python module. MAEA L, {3247 H __path__ Jak
¥ Python ik .

parameter —J62 A named entity in a function (or method) definition that specifies an argument (or in some cases,
arguments) that the function can accept. There are four types of parameters:

* positional-or-keyword : ([E BT, HHE AW AN A SA R AN DA S 5T A2
ASEZ . KR BRARIES A, HIATT IR foo HI bar:

def func(foo, bar=None): ...

* positional-only: {LFREIE, & —A REEHALEE ARISE. Python Wil i AR E L ZHY
k. (B —SENEREH URMEES (Ll abs ()).

* var-positional: W]ZELE, 5 W] ARl —MERECR A AL B SEA T (FEITEHAE 2
CRZNNESHZIE). RIS AR S ARG * KE XL, Bl FE args:

def func(*args, **kwargs):

* var-keyword: FAZRHEF, HEE A DASRBUE AR S T S A (FOIMTE MR S C #3205
?72%%5(2):) L?’l‘qﬂﬁ/%TLﬂT S ZFREINEE ** A L, BB kwargs.

TS AT VALFI 5 E PTEANaie 2 4, il AS LT e S H0di s B

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, and
the function section.

PEP “Python M52 1" HIESCEHE . —4> PEP @i —Mritit S0, JHoK 1 Python #EIXERALE R, stk
—~ Python PR S B jZiT $i. PEP N 244 BORS A A S0 AR RS R BT S SRR B4 LR]

PEP WA A A) 2 BERRp i . IS DGR Fﬂ%ﬁfi’fﬁ PRSI Python BYi& T 3K 4% 5
SCRSEIENLE] . PEP [VEE A TARAEAL DX R @ 31, I BRI E A SRy .
%1, PEP 1.

positional argument —{\; B ¥ £ Wargument,

Python 3000 Python 3.x %A Lk AUWERR (X144 FHERAS 3 i Kb R TTI R M B L T) o A
YN “Py3k”.

Pythonic $if—~ U ol — B U S8 1~ Python B 5 fmci H 1 KU R, TTAN e O HCA 8 5 A
UL EE%IMU?EB ik, Python ¥y MM A for IAIRIARE [y A~ RIEAU S iy i e
o W2 G S B XA, IR ZAZE Python (A I SR] — M T 4t

for i in range(len(food)):
print food[i]

TR 2 ¥ B 157 5 B Pythonic (77 34 k& X FEY:

for piece in food:
print piece

81

https://www.python.org/dev/peps/pep-0001

Extending and Embedding Python, %% 2.7.18

reference count —5 I VHE XPREEX G5 HAOECE . 24— XRS5BT, B FCoT R ooR
T IO Python AU RUEIEF e A AT WL, (HERCPython SLBU— A KEEILR . sys Bz
T4~ getrefcount () BREL, FFFGAPA B AR IR ERT G5 T

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

sequence —J1: 41 An iterable which supports efficient element access using integer indices via the __getitem__ ()
special method and defines a 1en () method that returns the length of the sequence. Some built-in sequence types

are 1ist, str, tuple, and unicode. Note that dict also supports _ _getitem__ () and __len__ (),
but is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice —YJJ Ji* An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such asin variable_name [1:3:5]. The bracket (subscript)
notation uses s1ice objects internally (or in older versions, __getslice__ () and __setslice__ ()).

special method %55k Jjiki —7firh Python B YTk, RIS AR PATRFE 4R VR Bl QAH < 45
PRI FRIE RRH AT 2o FERTT AR 32 WL specialnames.,

statement —jfi 4] 1EA)REEF B (— NS “H) B BANL . — 5B R] DASR—expression B AR
BEFRILER), Bl if, while B for.

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple in that
elements can be accessed either by index or as an attribute. However, they do not have any of the named tuple

methods like _make () or _asdict (). Examples of struct sequences include sys.float_info and the
return value of os.stat ().
triple-quoted string — 5|5 FRf RN SAELNG S (7) SRS () WFEMFS. ENTEYIRE

‘ﬁﬁ%%ﬂ%~’*%lvﬁ&ﬂ’]? FRER AR, HEA 2 MMt ENAFrrETHHRNEERE
e X BRE S HIE S, H] DABS B AT JOf G 1 HESEAT (R4 5 SOR A0 R IR 5 1

type R A YusE—A> Python X @ FAHAMIE: HAXTLARRA —FhRAL. BHEEXT LA, AT AT
HER __class__ J@tk, SU2#E type (obj) KL,

universal newlines —jifi f]##i47 A manner of interpreting text streams in which all of the following are recognized as
ending a line: the Unix end-of-line convention '\n"', the Windows convention '\r\n"', and the old Macintosh
convention '\r'. See PEP 278 and PEP 3116, as well as str.splitlines () for an additional use.

virtual environment —JBIIAEE —FR HIVMEZ R B 021 TR, fiF Python] PRI Y. F AR P AE &6 F1 T
2% Python 73 & AUHS AN 2403 A — R G _Fiz iy HAth Python [27 HI47 4

virtual machine BNl — & 5¢ 4 L B & LB ML Python R SUAL AT $047 2 1 18 2 135 2% T 46
i) bytecode.

Zen of Python —Python Z#fi 51| Python iy N 54524, AT RS M0 X FES . AEHEERNE
AERZ B RF i A “import this”,

82 Appendix A. RiEMBE

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

APPENDIX B

i A

IXBESCRYAE A H reStructured Text JJE3CRY, | Sphinx (—~% 724 Python SCRY 5 Y SCRY A s) BIEE.

AR SRS BT L RURE R TF S 52 42 ph B I 56 Y, XA Python 42 B, WUREAES Sk, i
reporting-bugs T AEUINAZ: 5. A BAIN YL B 76 1

RN it -
* Fred L. Drake, Jr., @3 7 H 354 Python SCRYR T HEE, DAKIRE T HEH 21 30RY;
e Docutils #40, W H , Al T reStructuredText A Z A Docutils #4245
e Fredrik Lundh, Sphinx M ftli[#¥] Alternative Python Reference T H H13%45 TR £ {F-mhAH .

B.1 Python T8y Rk

AR Z %} Python i, Python FifE &l Python SCRYA Tk A, B Python JELHS & 7 Misc/ACKS SC{431)
TR TR

5T Python K ARITTR, Python A5 T HILHH (SR - WA 1!

83

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/2.7/Misc/ACKS

Extending and Embedding Python, %% 2.7.18

84

Appendix B. 3C#%4ii%EA

apPENDIX C

7 B FiF AT

C.1 zR#pImE

Python H fif 22§ FI T AR 9224 (CWI, I https://www.cwinl/) f#) Guido van Rossum - 1990 4E Y,
W, fER—TT0M ABC [iEF AU . R4 Python 345 T2 5k B HAB AW 5THk, Guido {52 H &
BEH .

1995 4E, Guido 7 #2 Je WNHY E Z A 5T 22 &) (CNRI, I, https://www.cnri.reston.va.us/) #4247 Python
ERTTAE, IR A T 2 AU

2000 4£ 71 H, Guido FI Python #.00FF & 41 BA %4 %] BeOpen.com £ 7 T BeOpen PythonLabs [\ . [F4E1 H ,
PythonLabs [#]BA%% F| Digital Creations (¥} & Zope Corporation; [, https://www.zope.org/). 2001 4£, Python #x{4:
H 42y (PSF, I https://www.python.org/psf/) 57, X &A% A4 Python AH S AT AU A1 @ iy 75
221, Zope Corporation FI{E & PSF [B i i1 .

JI A7) Python BAEZITRR) (A KIFURHYE L2 https://opensource.org/). P I, #iKZ % Python Jii
AJe GPLARA) TREL T RANOL .

XfhRA | RE F EE GPL#%?
09.0% 1.2 | n/a 1991-1995 | CWI =
13215212 1995-1999 | CNRI 7=
1.6 1.52 2000 CNRI &
2.0 1.6 2000 BeOpen.com | {5
1.6.1 1.6 2001 CNRI %
2.1 2.0+1.6.1 | 2001 PSF o
2.0.1 2.0+1.6.1 | 2001 PSF P
2.1.1 2.1+2.0.1 | 2001 PSF 2=
2.1.2 2.1.1 2002 PSF =
2.13 2.1.2 2002 PSF 2=
22 GEE | 201 2001 %% | PSF =

{Efi: GPL #A T AR M Python £ GPL N k1. 5 GPL AJa], Frf Python ¥4 Al AR FL &4 R 1B MG

85

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Extending and Embedding Python, %% 2.7.18

A, T JC T TR T A Sk . GPL AR A T IE (15 Python R PAS HVETE GPL R & AT HIAF45 & B ;
HHERFAHENATT .

JRUIARZAE Guido 55 T TAERYSNIREREE , AIfGaX 28 B A oA vl fiE -

C.2 FRERE LAH B E A Python Bk FOF ¢

C.2.1 F PYTHON 2.7.18 #Y PSF o] {inil

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),_
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

2.7.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2020 Python Software Foundation; All_
—Rights
Reserved" are retained in Python 2.7.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—~Python
2.7.18.

4. PSF is making Python 2.7.18 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY REPRESENTATION..
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 2.7.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.18

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.18, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

86 Appendix C. FHsEF0¥Fa[iE

Extending and Embedding Python, %% 2.7.18

6. This License Agreement will automatically terminate upon a material breach.
—~of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—~License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 2.7.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 FF PYTHON 2.0 fj BEOPEN.COM # &Il

BEOPEN PYTHON JFE 14] P ER 1 AR

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions

(FItgkss)

C.2. FESHLIHMBHAXMEA Python BaRERFOZ M 87

Extending and Embedding Python, %% 2.7.18

(£ 50

granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 FF PYTHON 1.6.1 g5 CNRI ¥#F o] tipil

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of

(Fotakss)

88 Appendix C. FHsEF0¥Fa[iE

Extending and Embedding Python, %% 2.7.18

(£ 50

Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 FHF PYTHON 0.9.0 E 1.2 f§ CWI ¥F o] il

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE .

C.3 USRI YT ol 50515
AT Python B ATHLCTAG A =y B b VAT RO, AT MR A 23 FLR IR

C.3.1 Mersenne Twister

_random A E E T http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html T 2% 113,
e DA 2R i se ek (75 1) -

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

(FItakss)

C.3. #HWrRIRHFaYVF ol 5053 89

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Extending and Embedding Python, %% 2.7.18

(£ 50

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m—mat @ math.sci.hiroshima-u.ac.jp (remove space)

C3.2 EEx

socket #HHH] getaddrinfo () Ml getnameinfo () pAEL, XLEpRETFAIDAE WIDE i H (http:/www.
wide.ad.jp/) By BRI SCIAFH

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

(Rt

920 Appendix C. FHsEF0¥Fa[iE

http://www.wide.ad.jp/
http://www.wide.ad.jp/

Extending and Embedding Python, %% 2.7.18

(£ 50

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-—
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that 1its use would not infringe
privately-owned rights. Reference herein to any specific commer-
cial products, ©process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply 1its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product
\ endorsement purposes. /

C.3. #HWrRIRHFaYVF ol 5053 N

Extending and Embedding Python, %% 2.7.18

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfcl321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.

1999-10-18 1lpd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 1lpd Original version.

92 Appendix C. FHsEF0¥Fa[iE

Extending and Embedding Python, %% 2.7.18

C3.5 REEEFIRS

asynchat and asyncore B & DA FEHH:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie &1

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. #HWrRIRHFaYVF ol 5053 93

Extending and Embedding Python, %% 2.7.18

C.3.7 HiTERR

trace B S PA T AEH:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode E UUdecode &%l

uu B DA R

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(Rt

94 Appendix C. FHsEF0¥Fa[iE

Extending and Embedding Python, %% 2.7.18

(£ 50

version is still 5 times faster, though.
— Arguments more compliant with Python standard

C.3.9 XML = 2= FAH

The xm1lrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

CFItakss)

C.3. #HWrRIRHFaYVF ol 5053 95

Extending and Embedding Python, %% 2.7.18

(£ 50

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

Python/dtoa.c XRALT CiEZ Y dtoa 1 strtod FREL, FT-6 C1E S 1IN0 B R A8 A TG, 1%
A4l David M. Gay (1 [R1 4 SCEFIRAE T K, 247] A http://www.netlib.org/fp/ F#%. 2009 4E 3 H 16 H#Z&3|
B DL SCAA B 5 AT OBCRITAF R 5 B

/**

* % o

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % o

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % ok X

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

(Rt

96 Appendix C. FHsEF0¥Fa[iE

Extending and Embedding Python, %% 2.7.18

(£ 50

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

‘k*****‘k**‘k********‘k*****‘k*‘k***‘k****'k‘k*‘k************************/

C.3.13 OpenSSL

WERBEAERG A, W hashlib, posix, ssl, crypt fRHLfH] OpenSSL 42 = PERE. HAh, WEHT
Python [Windows Fl Mac OS X %2427 1] fe 045 OpenSSL E#5 U1, FrLAFE AL .51 4 T OpenSSL 7 1]
UERY % DL

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corel@openssl.org.

OpenSSL License

/= == == == == == ==

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact
* openssl-core@openssl.org.

*

* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

*

* 6. Redistributions of any form whatsoever must retain the following

C.3. #HWrRIRHFaYVF ol 5053 97

Extending and Embedding Python, %% 2.7.18

(£ 50

b S I I S S S

*

*

acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eayl@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(Rt

98

Appendix C. Fys2FI¥F Tk

Extending and Embedding Python, %% 2.7.18

(22 30
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
*

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

b S e

*

*

* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence

* [including the GNU Public Licence.]

C.3.14 expat

BRAEME] ——with-system-expat BLE THIE, N pyexpat §7 AR E AL expat Y5 10HS DR 2

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINEFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. #HWrRIRHFaYVF ol 5053 99

Extending and Embedding Python, %% 2.7.18

C.3.15 libffi

FRARMIN ——with-system-1ibffi WU THE, BN _ctypes ¥ HNE (17 libffi JHEH5 DM E):

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘"Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

R ARG EAREIRY 21ib AR IHT ek A, W 55 2lib PG 8 DR 2 1ib 37 J%:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

100 Appendix C. Fys2FI¥F Tk

APPENDIX D

Copyright

Python 53 SCHY:

Copyright © 2001-2020 Python Software Foundation. {48 TG+ H]

AU © 2000 BeOpen.com., {38 TG AUH

AL © 1995-2000 Corporation for National Research Initiatives., {585 BTG AU .
WAL © 1991-1995 Stichting Mathematisch Centrum., {483 BTG AU

A RSEBM VALV, 200 L AeF Tk,

101

Extending and Embedding Python, %% 2.7.18

102 Appendix D. Copyright

3l

JEFE

., 715
2to3,75
>>> 75
_ future_ ,77
_ slots_ ,82
A
abstract base class —- #ZHEK, 75
argument -- £#, 75
attribute —-— EM,76
B
BDFL, 76
bytecode -- F¥#,76
bytes-like object —-- F¥ £ £, 76
class —— 2,76

classic class, 76

coercion —- HEH| KA, 76

complex number —— Z#,76
context manager —-- T X%H%E, 76
CPython, 76

D

deallocation, object,5l
decorator -- /% 76
descriptor —- #unE, 77
dictionary —-- f?—”;ﬁ\l,77

dictionary view —— FHAMHE, 77

docstring -- XK FEHE,T77
duck-typing -- WF A, 77

E

EAFP, 77
expression —— Fik#R, 77
extension module -- ¥ B, 77

F
file object —— XHX£,77
file-like object —-- X{EXxt%,77

finalization, of objects,5l
finder —- &THE,77

floor division —-— i FEER &, 77
function —- H#,77

G

garbage collection -- 3k E ik, 78
generator, 78

generator —— 4 &k E,78

generator expression, 78

generator expression —- 4 REBEXRAR, T8
GIL,78

global interpreter lock —- 4 & B #4,
78

H

hashable -- HW#, 78

IDLE, 78

immutable -- 4,78
importer ——- BA#,79
importing -- & A,79

integer division, 78

interactive -- X F,79
interpreted —- fEEA,79

iterable -- H#k R 4,79
iterator ——- #R%E,79

K

key function —-- &%, 79
keyword argument -- X*#&F5¥,79

L

lambda, 79
LBYL, 79

103

Extending and Embedding Python, %% 2.7.18

list —- 7%, 80 R
list comprehension —— %|%X# &R, 80 READ_RESTRICTED, 54
loader —— fu# #, 80 READONLY, 54
M reference count —- 5| fit#k, 82
repr

magic EE % %, 52

method, 80 RESTRICTED, 54
magic method -- JEARF %, 80 RO, 54
mapping -- B4t 80
metaclass —- J.2%, 80 S
method. sequence —-- f77%,82

magic, 80 slice —— 1 k,82

special, 82 special
method resolution order —- 77 3% f# 47 i J7, method. 82

89 \ special method -- 4% ¥ ik, 82

method 7 i, 80 statement -- &4, 82
module # 3k, 80 str
MRO, 80 [E & %, 52
mutable —— W%, 80 struct sequence, 82
N T
named tuple —-- E—%fﬂ?ﬂ,so triple-quoted string -- Z 5| 5F&HH, 82
namespace -- 4 %[, 80 type —- %7, 82
nested scope -- #%ZE1EHH, 80
new-style class -- #FH A%, 81 U
e) universal newlines —-— i Jf#4T, 82
object V

deallocation, 51 FE &%

finalization, 51 repr, 52
object -- Xt %,81 str, 52

P virtual environment —-- EWIIE, 82

o virtual machine —-- E#H, 82
package —- 4,81

parameter —-- #%, 81 W
PE]'.D’SI . WRITE_RESTRICTED, 54
Philbrick, Geoff, 12

positional argument -- &£, 81 y4
PyArg_ParseTuple (), 11
PyArg_ParseTupleAndKeywords (), 12
PyErr_Fetch (), 51
PyErr_Restore (), 51
PyObject_CallObject (),9
Python 3000, 81
Python #&FHEN

PEP 1,81

PEP 238,77

PEP 278,82

PEP 302,77, 80

PEP 343,76

PEP 3116,82
Pythonic, 81

Zen of Python -- Python 7,82

104 %5l

	使用 C 或 C++ 扩展 Python
	一个简单的例子
	关于错误和异常
	回到例子
	模块方法表和初始化函数
	编译和链接
	在C中调用Python函数
	提取扩展函数的参数
	给扩展函数的关键字参数
	构造任意值
	引用计数
	在C++中编写扩展
	给扩展模块提供C API

	Defining New Types
	The Basics
	Type Methods

	使用distutils构建C和C++扩展
	发布你的扩展模块

	在Windows平台编译C和C++扩展
	A Cookbook Approach
	Differences Between Unix and Windows
	Using DLLs in Practice

	在其它应用程序嵌入 Python
	Very High Level Embedding
	Beyond Very High Level Embedding: An overview
	纯嵌入
	Extending Embedded Python
	在 C++ 中嵌入 Python
	在类 Unix 系统中编译和链接

	术语对照表
	文档说明
	Python 文档的贡献者

	历史和许可证
	该软件的历史
	获取或以其他方式使用 Python 的条款和条件
	被收录软件的许可证与鸣谢

	Copyright
	索引

