The Python Language Reference
%75 2.7.18

Guido van Rossum
and the Python development team

A A 20,2020

Python Software Foundation
Email: docs@python.org

Contents

itk 3
L1 HASEEE . o 3
0 S 4
Wil B 5
0 R 5
22 HABTERT . . o 8
23 FRIAGHIEEET . o 8
24 FHE . .o 9
25 BB . e 13
2.6 ABREE . 13
Bt 15
3 ML MHERIE L 15
32 FRERBUZE ..o 16
33 News-styleand classicclasses e 23
34 BRRTYELTE o 24
PO a1
41 MBEYE e 41
42 BH 43
ESUY 45
500 BAREERL . . . e 45
5.2 R 46
5.3 BB 51
54 FHBELT .« e 54
55 —IREARFIMGZE . . o 54
5.6 TITEARIZBELT .. 55
57 BEOLIBE . o o e 56
5.8 TITLIIBIE L 56
59 UERGBE ... 56
500 FRIBIE o o 59
5.11 Conditional Expressions e 60
5.12 lambda ZEIRTC . . L L L 60
513 FRFUFE e 60
504 KAEMIT « o o o 61

505 BREAFLICT . o o

6 iy
6.1 FERFCIEA] .
6.2 MRMETEM] . . . o o e
6.3 Theassertstatement. v i v i it e e e e e e e e e e e e e e e
6.4 Thepassstatement v i i i i e e e e e e e e e e e e e e e
6.5 Thedelstatement 0 i i i e e e e e e e e e e e e e e e e
6.6 Theprintstatement 0 i e e e e e e
6.7 The returnstatementt i i it e e e e e e e e e e e
6.8 The yieldstatement v v i v i it e e e e e e e e e e e e e e e
6.9 The raisestatement i v i i i e e e e e e e e e e e e e e e
6.10 Thebreakstatement v i v it e e e e e e e e e e e e e e e
6.11 The continuestatement v v i i i e e e e e e e e e e e e e e e
6.12 The import statement o o v i i e e e e e e e e e e e
6.13 Theglobal StateMENt v v v v v e
6.14 The execstatement v i v i i i e e e e e e e e e e e e e e e e e e

7 HAWEN
7.1 Theifstatement o . 0 i e e e e e e e e e e e e e e e e
7.2 Thewhilestatement v i it et et e e e e e e e e e e e e e e
7.3 The forstatement o i e
7.4 The trystatement i e
7.5 Thewithstatement e e e e e e e e e e e
7.6 FREUENX .« o o
TT 0 ZEEN e

8 WA
8.1 SEELM Python FEIT o e
8.2 IUMFHIIA . . e
83 WHIHIA . o o
8.4 FEFHIA o o

9 PRGN

A R

B Schi]
B.1 Python SCESIUTTHRE . . . o . o o e

C Pyl ik
C.l ZEEHI T
C2 FHEAHA T Python RUSERAISAE . . o o
C3 BRUCEEERIVETTIE SIS .

D Copyright

#5l

63
63
64
66
66
67
67
68
68
69
69
69
70
73
73

75
76
76
76
77
78
80
81

83
83
83
84
84

85

89

97
97

99
99
100
103

115

117

The Python Language Reference, k7% 2.7.18

RS2 F A T Python BITETAM “BoliB 7. ASH RN, FiLEMENERRIEE. JR0nEr g
XEGERAN PR BRI SCRAAE Tibrary-index 1. A K% FIARIERX 4, 15517 tutorial-index .
Xt C 8 C++ Ry B3, A PIAVESNY Tt extending-index ik T 4455 — 4~ Python 3" A5k, c-api-index
FEANE T C/C++ Rl IR

Contents 1

The Python Language Reference, k% 2.7.18

2 Contents

CHAPTER 1

AL T @R Python il 5 WliiR . FF ARG B A BRI o

A BUS T REHLORUE N ARSI TC 08, (HR SR PR G B AR Al b A T iod . I SR RS s SCOUM TR0l ik
FRRT o AR I B SCRO T AR UESE 2 B, (A e al— S S, I, SRRk B EIE H
RESEASIX 03 SCRYAE Python HURTSKBL—ild, WFA TR ZE HATAI, SKbr ERA KSR AT AR
VB o MAET—J7TA , WRARIEAE S Python F HAR 7 AT SCA% 5 = R USRS, VRV I RERSAEIX
%fi?ﬂ“zﬂ]o WERARA BAR LG EIEAAE L, WFRAT MBI R B 5 E——m & AW —5 5%
FELAr-)

It is dangerous to add too many implementation details to a language reference document —the implementation may
change, and other implementations of the same language may work differently. On the other hand, there is currently only
one Python implementation in widespread use (although alternate implementations exist), and its particular quirks are
sometimes worth being mentioned, especially where the implementation imposes additional limitations. Therefore, you’
1l find short “implementation notes” sprinkled throughout the text.

7 Python SLBAHRAT A — L N EANBRAERIRL . A KA SRR 2 L library-index 5[RN BB AE
BEBR N, AR EATT IV R A A B A S

1.1 HithzeZ)

HIRE T Python SEBZEAZAGE i) IZ WG, (H A — S8 H A SCH AR E U Y ok USRS) .
R S B A
CPython XJ2 5 it tH B FFLE4ED Y Python SCBL, DA CIEEMG . Bridif s hd BAE LS is -

Jython A Java 1555 4 510 Python SZ¥ . BESZE n] DAFE A Java b) — N HIASTE S, B8 AT DA SR i 5 5
Java BESCR M . AT R BE 245 EnT 5 1) Jython 934

Python for NET sS85 k5 i T CPython SC8, {H 28 T .NET $645 MW 3 W ASI A NET 2KE. &
)G 1 /& Brian Lloyd. 48 T #1318 Al 3J5H) Python for NET =71,

http://www.jython.org/
https://pythonnet.github.io/

The Python Language Reference, k% 2.7.18

IronPython ‘5 —>.NET f{] Python 53}, 5 Python.NET R[a] 51T B 24 WM IL (524 Python S23, I H
4 Python fURG ELHES I NET R4, B I0A1E ¥ 2 4 ¥) 83 Jython 1) Jim Hugunin, 48T A
w35 IronPython [k

PyPy 5¢4:{fi] Python 155 4 5 1) Python SE¥l. ‘B SRS HAW LI A M m gkt flanEme X Sy
AT Gifas 2 . I H 0 H bp 2 —g i sevr s (g dioioReds (B0 B2 1] Python 45 1Y), $5¢Jil
WOHE S ARSI . TS A7 PyPy HiH 0.

PA b X 65 AR AT BEAE R L8 05 T 5 WS 25 SR T A A BT 22 5w, B0 51 AT AR IE Python SURYFEH

AR BB N1 EHE TS0k, DA U E A P A SC AR 5 32 1 R0 257

1.2 #riE

AR ARIA AT At a4 R G BGIERY BNF TEARRTE . X A& AR & AR

lc _letter (lc_letter | "_")~*
"a"..."Z"

name
lc_letter

B—ITHE /R name 22— lc_letter ZJGIRENH L 1c_letter MITXRIZ. M—4 lc_letter NJE
EREEA Ta' B 2 TR (PR EAEASORY IR 2SR AT LA ok i SRl ANEE R 4 85 .)

BEAAMAYIT S22 FK (R T E SC4 FR) k.« = B2k (1) BOHR IR T eI B2 phnyE
RGBT RS () FoRal— TR Z RER; RO, T (+) FoR— K WKER, i fJ5
TS IHRANA ([1) R TR @E U, XM NAR TR . * Ml + SRR 90 i K
W BEES T4 BE AR ETET S N SHEE RT3 BT . Al H A —1T A
ZA A PRI AL T RE 2 DA Z R R 24T

FEVTARE SCH (I B 7n i), B BAME TN 2E: th =45 0 RIS P AP I EFRR R E (F) X
RIS AT LAY ASCIL AT . HARIES (<. . . >) FEEA I A2 X T B e A S IR R U s BT pA
FERSEEI FATE 428075 R

SR IR T UL, (R ATAE SCAVRITAE SORAFAEROR XY i3k SCAE T4 AR b B
W4T, M RITAE S T R A B A AT . A6 R —FE4Y (R) AR BNF 423
HREE G AEZ R R A I Ak S

4 Chapter 1. #}i

http://ironpython.net/
http://pypy.org/

CHAPTER 2

RS

Python £ 1 —> ARAT &5 B2 S A BTS2 — A el 33k o i B AL) FAAF IR, ANEERHA A
M MR — A SRR — N ATEAT

Python uses the 7-bit ASCII character set for program text.

2.3 Fr RN FE: Anencoding declaration can be used to indicate that string literals and comments use an encoding different
from ASCIL.

For compatibility with older versions, Python only warns if it finds 8-bit characters; those warnings should be corrected
by either declaring an explicit encoding, or using escape sequences if those bytes are binary data, instead of characters.

The run-time character set depends on the I/O devices connected to the program but is generally a superset of ASCII.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1 (an
ASCII superset that covers most western languages that use the Latin alphabet), but it is possible that in the future Unicode
text editors will become common. These generally use the UTF-8 encoding, which is also an ASCII superset, but with
very different use for the characters with ordinals 128-255. While there is no consensus on this subject yet, it is unwise
to assume either Latin-1 or UTF-8, even though the current implementation appears to favor Latin-1. This applies both
to the source character set and the run-time character set.

—> Python FEJF Al /0 WA 2 E 4547

The Python Language Reference, k% 2.7.18

2.1.1 {BiEFT

WHATHISE A0 LA NEWLINE JEATORH) o IR RERSBOZ TR0, IRAEHAETA i 07 NEWLINE (i)
W AR 2 AT TR AR . — BTN DA IR AT R IR A RS Y AT PR A B

2.1.2 ¥IB1T

Py PEATIE A TR AP SV AR TP A AEPSCPERI AR o, 0] DARE AT frisife-F- & _ERA T2 0L 5l
- Unix it 1] 1) ASCIL 747 LF (##47), Windows It][] ASCIL “F£§}3751] CR LF (u] =164 7), 5% |H Macintosh
BB ASCIL“#4F CR (1 %), Frfr RETEAII I, TR A6 MARSRES PN RE— 1)
HATH R & kbR

ik A Python I, AL F4FHR % A Python APT B A7ifE C A GEHATAF (P \n, 7= ASCIL F4F LF ff
HATE AR -

213 8§

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored by
the syntax; they are not tokens.

2.1.4 ‘RS 7EH

R HEREA T Python A 45 —BK 85 — 4T, FF HITHLIEMFAR coding [=:1\s* ([-\w.]+), X%
HRBESYANE IR RALHE; FiR ke — 38 @ T IR SR 4ifis . SRR I 5 —F7. TR
ERIESE AT, WEATHLIR R, HENREEHERMT

’# —*— coding: <encoding-name> —*-— ‘

X2 GNU Emacs AT IHER, DAK

’# vim: fileencoding=<encoding—-name> ‘

which is recognized by Bram Moolenaar’ s VIM. In addition, if the first bytes of the file are the UTF-8 byte-order mark
("\xef\xbb\xbf "), the declared file encoding is UTF-8 (this is supported, among others, by Microsoft’ s notepad).

If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical analysis,
in particular to find the end of a string, and to interpret the contents of Unicode literals. String literals are converted to
Unicode for syntactical analysis, then converted back to their original encoding before interpretation starts.

2.1.5 BRXBYITHHE

P ECE 2 BT A SORHLEAF (\) PR — 85T, BUNATR: 4 — BT A — D ATE AR
?‘ZE%WE‘JIQ%H%@H#, B S NATPHEM A R B BT, AL LR IR TR R . B
f:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

6 Chapter 2. &% 54T

The Python Language Reference, k7% 2.7.18

PASCRHLES R AT AN BB A TERE . SORMLN BE R DF R . ORI A RE IR BHZIEAT, FAFERERSN (R
j(?;ﬁ% PASMRTERFAS BE T BORHAL 3 B B PN EAT) o AN SRV A RSP AT R ASMI SRR AR T 9 BT 1Y
oAty

2.1.6 fRNRYTTHHE
55 T SAesE 5 AN R ZRE A0 sl BT, o B BORHT. fln:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

IATHHE AT A A R . ST AR R P S5 . SRS ATt AV AAT . REBHERATZ A
2H NEWLINE JE47 . [BHERAT Rl AT =5 15 A4 LR 5 BElg oL X 254 T seipali A ke

2.1.7 =A1T

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE token is
generated). During interactive input of statements, handling of a blank line may differ depending on the implementation
of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one containing not even
whitespace or a comment) terminates a multi-line statement.

2.1.8 4gi#
—ABIATIF AL 23 1 GEREFFRRAT) BRI AT g 5, AP T B i I L5 4

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and
including the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number
of spaces preceding the first non-blank character then determines the line’ s indentation. Indentation cannot be split over
multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Br A YETERE: TR UNIX V-5 ESORGRiEg A P RORRE, E— R SCPE PR G O R AP S AT
SNV . 53 AMB B AN E - 538 R RE 2 2 R) e R i k2

FTEA TR A D IEAAT; EAE BRIt RIOT R h S 2N . A TA7 8 25 A AL B IR ARAT IR
RARTE L BIINE W] e FEESHITIEENZE).

ZATELAT H G RGO 2 YO —A 3R 1242 B INDENT H1 DEDENT JEAF, HARUEHTHNT .
TEBECC RS — AT 201, eI A— DM BRI . W ARRAY 2 BB R = T2
e EAZIEATIRMAT IR PR SR TR . WA, WA B, AR TR, > it
AR, JfA M4~ INDENT JEAF. WERFATZHAR, W & L2t P ZP8EL — P TRER
(Y BT B BRI R, A HH — (i 4 s> DEDENT JEAF. 7ESCIEREE, BRI RT 21
Hfti4: i—> DEDENT JE4%

XN IER ((H4 A7) 1) Python AURD 4t 7 fBl:

def perm(1l):
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]

(N IUERED)

21, 174549 7

The Python Language Reference, k% 2.7.18

(£ 50

s = 1[:1i] + 1[i+1:]
p = perm(s)
for x in p:
r.append (1[i:1+1] + x)
return r

PATT /R BSR4 Fh e k4 i

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:1] + 1[i+1:]
p = perm(1l[:1] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append (1[i:1+1] + x)
return r # error: inconsistent dedent

(Kbr b, BI= RSP S I ARG — e A T KB —return r BgEUETEIL

DEPCH AR GRS)

2.1.9 EHFZEH=H

BRARRAEZ BT L BT AT A N, ST BIRAPRIIEARAT 25 2 B AFAR)RR il DA SR M BREAT . AR A
FEAF AT IE S BT DARIIERT . WITE 2 2 R 7 (B0 ab J2—ASERF, 1T a b @A

2.2 HAbFHF

F% 7 NEWLINE, INDENT HI DEDENT, if477ELA FIRATERT: 479245, REEF, F @18, BIAUK 2 a4
AT (ZHITHERATE ILAF RN AR TEAT, MR RS FRIERF . WRAAE S, FFAE B A
RATRER ISR TR AL —MEAT

2.3 FRIRFHIXREBEF

Identifiers (also referred to as names) are described by the following lexical definitions:

identifier = (letter|"_") (letter | digit | "_")*
letter u= lowercase | uppercase

lowercase u= "at..."z"

uppercase u= "ATL,. "z

digit = "om..."on

PRIRAFRI R LB BR . R/ NE U

8 Chapter 2. &% 54T

The Python Language Reference, k7% 2.7.18

231 g5

PAT AR IR B T 5 B R B P AR K, AT RUNAEEE AR RAT . R RIDEE TS X B R 58
A3

and del from not while
as elif global or with
assert else if pass yield
break except import print

class exec in raise

continue finally is return

def for lambda try

TE 2.4 iR None became a constant and is now recognized by the compiler as a name for the built-in object None.
Although it is not a keyword, you cannot assign a different object to it.

E 2.5 iR E M Using as and with as identifiers triggers a warning. To use them as keywords, enable the
with_statement future feature .

T 2.6 iRH K as and wi th are full keywords.

2.3.2 {REMFRIATFSE
FEBARIAAFR (B T X7 HATRRIRIY & o IR EEAR AT ey fip A U2 DA R R A4 T RS

_* Notimported by from module import *. The specialidentifier _is used in the interactive interpreter to store
the result of the last evaluation; it is stored in the __builtin__ module. When not in interactive mode, _ has
no special meaning and is not defined. See section 7he import statement.

M _AERAARE TR E R SOR 2 E gettext B TG KILAZE T

*__ System-defined names. These names are defined by the interpreter and its implementation (including the standard
library). Current system names are discussed in the 4% 7k 7 i% % #f section and elsewhere. More will likely be
defined in future versions of Python. Any use of __*___ names, in any context, that does not follow explicitly
documented use, is subject to breakage without warning.

_* RIRA IR XFPEARAERE P RN, SUA—FR AT E S AR A 2R IR R
JRHEZ A PR s . S AT (84F) .

24 FH(E

FHAAM TFRR— LN ERE .

The Python Language Reference, k% 2.7.18

2.4.1 String literals

TR TR R DA 3R G AT

stringliteral = [stringprefix] (shortstring | longstring)
Strll’lgpreflx = "r" | "u" I "ur" | "R" ‘ "U" | "UR" | "Ur" ‘ "uR"

| npn | ngn ‘ "Hr" | "Rr" | "HR" ‘ "RR"
shortstring = "'" shortstringitem* "'"™ | '"' shortstringitem* '"'
longstring BES "r''" Jongstringitem* "'''"

I Tmwmwmwa longstflngltem* Tmwmwmwa
shortstringitem := shortstringchar | escapeseq
longstringitem = longstringchar | escapeseq
shortstringchar := <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
escapeseq = "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix and the rest of the string literal. The source character set is defined by the encoding declaration;
it is ASCII if no encoding declaration is given in the source file; see section % 22 7= Af].

In plain English: String literals can be enclosed in matching single quotes (') or double quotes ("). They can also be
enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted strings). The
backslash (\) character is used to escape characters that otherwise have a special meaning, such as newline, backslash
itself, or the quote character. String literals may optionally be prefixed with a letter 'r' or 'R'; such strings are called
raw strings and use different rules for interpreting backslash escape sequences. A prefix of 'u' or 'U' makes the string
a Unicode string. Unicode strings use the Unicode character set as defined by the Unicode Consortium and ISO 10646.
Some additional escape sequences, described below, are available in Unicode strings. A prefixof 'b' or 'B"' isignored in
Python 2; it indicates that the literal should become a bytes literal in Python 3 (e.g. when code is automatically converted
with 2t03). A 'u' or 'b"' prefix may be followed by an 'r' prefix.

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped quotes
in a row terminate the string. (A “quote” is the character used to open the string, i.e. either ' or ".)

Unless an 'r' or 'R' prefix is present, escape sequences in strings are interpreted according to rules similar to those
used by Standard C. The recognized escape sequences are:

] aX EZ]
\newline Ignored

W FHL (V)

\! H505 ()

v BEIE (")

\a ASCII %% (BEL)

\b ASCII E#% (BS)

\f ASCII #£4K (FF)

\n ASCII #:47 (LF)

\N{name} Character named name in the Unicode database (Unicode only)

\r ASCII [7] % (CR)

\t ASCII 7K1l % (TAB)

\UXXXX Character with 16-bit hex value xxxx (Unicode only) @)
\Uxxxxxxxx | Character with 32-bit hex value xxxxxxxx (Unicode only) 2)
\v ASCII = F % (VT)

\ooo JNHEHEL 000 B “F1F (3.5
\xhh TN IERIE b B A 4.5)

10 Chapter 2. &% 54T

The Python Language Reference, k7% 2.7.18

PR
(1) Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.

(2) Any Unicode character can be encoded this way, but characters outside the Basic Multilingual Plane (BMP) will
be encoded using a surrogate pair if Python is compiled to use 16-bit code units (the default).

3) ShrifE C —8, HemE =/ HE
4) ShpifE C AR, ZERWF A7 i BhS o

(5) In a string literal, hexadecimal and octal escapes denote the byte with the given value; it is not necessary that the
byte encodes a character in the source character set. In a Unicode literal, these escapes denote a Unicode character
with the given value.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in the
string. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences marked as “(Unicode only)” in the table
above fall into the category of unrecognized escapes for non-Unicode string literals.

When an 'r' or 'R' prefix is present, a character following a backslash is included in the string without change, and
all backslashes are left in the string. For example, the string literal r" \n" consists of two characters: a backslash and
a lowercase 'n'. String quotes can be escaped with a backslash, but the backslash remains in the string; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; r"\ " is not a valid string
literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw string cannot end in a single
backslash (since the backslash would escape the following quote character). Note also that a single backslash followed by
a newline is interpreted as those two characters as part of the string, not as a line continuation.

When an 'r' or 'R' prefix is used in conjunction witha 'u' or 'U"' prefix, then the \uXXXX and \UXXXXXXXX
escape sequences are processed while all other backslashes are left in the string. For example, the string literal ur"\
u0062\n" consists of three Unicode characters: ‘LATIN SMALL LETTER B’ , ‘REVERSE SOLIDUS’ , and
‘LATIN SMALL LETTER N’ . Backslashes can be escaped with a preceding backslash; however, both remain in the
string. As a result, \uXXXX escape sequences are only recognized when there are an odd number of backslashes.

24.2 FRHBRFEEHHE

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are allowed, and
their meaning is the same as their concatenation. Thus, "hello" 'world' isequivalent to "helloworld". This
feature can be used to reduce the number of backslashes needed, to split long strings conveniently across long lines, or
even to add comments to parts of strings, for example:

re.compile (" [A-Za-z_]" letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’ operator must be
used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles for
each component (even mixing raw strings and triple quoted strings).

24. FHIE 11

The Python Language Reference, k% 2.7.18

243 H¥FEE

There are four types of numeric literals: plain integers, long integers, floating point numbers, and imaginary numbers.
There are no complex literals (complex numbers can be formed by adding a real number and an imaginary number).

ERATFHEFA T ERS; -1 XMk LR R HIERA - MFmE 1 AR

2.4.4 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger = integer ("1™ | "L")

integer = decimalinteger | octinteger | hexinteger | bininteger
decimalinteger = nonzerodigit digit* | "Q"

octinteger = "o" ("o"™ | "O") octdigit+ | "O" octdigit+

hexinteger = "o" ("x" | "X") hexdigit+

bininteger = "0" ("b" | "B") bindigit+

nonzerodigit = A

octdigit = "or..."n

bindigit = "o" | omain

hexdigit = digit | "a"..."f" | "A"..."F"

Although both lower case '1' and upper case 'L"' are allowed as suffix for long integers, it is strongly recommended to
always use 'L"', since the letter ' 1 ' looks too much like the digit '1"'.

Plain integer literals that are above the largest representable plain integer (e.g., 2147483647 when using 32-bit arithmetic)
are accepted as if they were long integers instead.' There is no limit for long integer literals apart from what can be stored
in available memory.

Some examples of plain integer literals (first row) and long integer literals (second and third rows):

7 2147483647 0177
3L 79228162514264337593543950336L 0377L 0x100000000L
79228162514264337593543950336 Oxdeadbeef

245 FRFmEE
PP B {1 Fh DA R) 5 AT

floatnumber n= pointfloat | exponentfloat
pointfloat = [intpart] fraction | intpart "."
exponentfloat = (intpart | pointfloat) exponent
intpart = digit+

fraction = "." digit+

exponent — ("e" | "E") [H+" | n_n] dlglt+

Note that the integer and exponent parts of floating point numbers can look like octal integers, but are interpreted using
radix 10. For example, 077010 is legal, and denotes the same number as 77e10. The allowed range of floating point

! In versions of Python prior to 2.4, octal and hexadecimal literals in the range just above the largest representable plain integer but below the
largest unsigned 32-bit number (on a machine using 32-bit arithmetic), 4294967296, were taken as the negative plain integer obtained by subtracting
4294967296 from their unsigned value.

12 Chapter 2. &% 54T

The

Python Language Reference, k7% 2.7.18

literals is implementation-dependent. Some examples of floating point literals:

3.14 10. .001 1el00 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase like —1 is actually an expression composed of the unary operator

— and the literal 1.

246 EHTEE
FE B TRIMEL F DA 3RlyA 8 SCEE A T

imagnumber = (floatnumber | intpart) ("3j"

| "J")

— AR HMER R AN SEE 0.0 I A AR PA— ﬁﬁmﬁ%%rm ENNBETEEA R . ZA

BN EEE, S E— R Bl (3+45) o — S RECF AR R BT
’3.14;‘ 10.7 107 L0017 11003 3.14e-10j

2.5 TEHF

PA R TEAT I8 THE A

+ - * * / // %

<< >> & | A ~

The comparison operators <> and !=
obsolescent.

2.6 SFRFF

DL F IR PR 5 R

are alternate spellings of the same operator.

!'= is the preferred spelling; <> is

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning as
an ellipsis in slices. The second half of the list, the augmented assignment operators, serve lexically as delimiters, but also

perform an operation.

PATR ATHT E] ASCIL P45 Vo HA AT I AL 7 I BAT Rk &5 3L, BRI M A B G

v n

\

PAF ATHT HI ASCIT 5244 Python a3k il Al 4Lt 31T

FAFER B AERE Z AN TC S AR | A B

?

s

5. iBHH

13

The Python Language Reference, k% 2.7.18

&

14 Chapter 2. &% 54T

CHAPTER 3

iR R

31 MR, EHS5ARE

Objects are Python’ s abstraction for data. All data in a Python program is represented by objects or by relations between
objects. (In a sense, and in conformance to Von Neumann’ s model of a “stored program computer,” code is also
represented by objects.)

Every object has an identity, a type and a value. An object’ s identity never changes once it has been created; you may
think of it as the object’ s address in memory. The ‘is’ operator compares the identity of two objects; the 1d ()
function returns an integer representing its identity (currently implemented as its address). An object’ s fype is also
unchangeable.! An object’ s type determines the operations that the object supports (e.g., “does it have a length?”)
and also defines the possible values for objects of that type. The type () function returns an object’ s type (which is
an object itself). The value of some objects can change. Objects whose value can change are said to be mutable; objects
whose value is unchangeable once they are created are called immutable. (The value of an immutable container object
that contains a reference to a mutable object can change when the latter’ s value is changed; however the container is still
considered immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the
same as having an unchangeable value, it is more subtle.) An object’ s mutability is determined by its type; for instance,
numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

MRGEANARAHEIE; SR, HICVATT RN ENT AT RE S BV E SRR . Feifr HL iR i S SR B3 (el
ol 52 44 gk L BIL A — A iy S BRI el S BRI B A, R mT 5 T AR R e e Bl

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed detection
of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to
collect garbage containing circular references. See the documentation of the gc module for information on controlling
the collection of cyclic garbage. Other implementations act differently and CPython may change. Do not depend on
immediate finalization of objects when they become unreachable (ex: always close files).

TR O 92 B A BR R R T BE VT RE 4 IEH 1 DL T S M R RS A7 . 2Rl try e
except’ THAMHHEFH AT RES X RIIFIAE .

VAR BSOL R A T AL T AT A PRI — RS (B R AR B, B IR AL PR Y & BB SRR R R AT
Ho

15

The Python Language Reference, k% 2.7.18

Some objects contain references to “external” resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen, such
objects also provide an explicit way to release the external resource, usually a close () method. Programs are strongly
recommended to explicitly close such objects. The ‘try--finally’ statement provides a convenient way to do this.

AL RS RHAMSRIGI; ENIRN 5% . ZasrIBl AT, PIFRMT IS X8| R 2o
SAERI AR . AEZBEOT, MIRIE—DAEGAER, FAVSHEr SR A2 g Hi
BIATRIE— BRI AT AR Wﬂ%ﬁﬁ%@”%ﬁ%mﬁvolﬁ ISR A R A5 (A E4D)
BN DA GG U, 2420 R R AR N R R E R S

RGN G AT I LT A i . R X5 905 10 B B e A RE B L2 2 5 X R ml AR R A

S5 E A1 52 B b 2k [AR R B A BUE AT — a2 R95 R, TR AT A8 8RR LI 2R fe i
B. BlifEa = 1; b = 1 2ZJG, a flb AIRESWEATREANSFE I —MEA—FXT S, XERT RS,
HEfFEc = [1; d=[1ZF, cfdPREXIERHNAE. RMEHEssER. (§HEEc = d = []
M2 R[] — ARG AESS c Fl d.)

3.2 IRERBEREK

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages, depending
on the implementation) can define additional types. Future versions of Python may add types to the type hierarchy (e.g.,
rational numbers, efficiently stored arrays of integers, etc.).

PATER SRR P & FRREMESR Bk, XS @ MR A ARSI Dy m AR @ s S . B
5 AR T HE S

None JL2RAHA—FUR{E. 2B —HABER RS, G N E A PR None PJiH . TEFZHILT
ERNRITR S, O R 2 Wk [0 {0 e& £eR a2 1] None, B IZARAE M .

NotImplemented This type has a single value. There is a single object with this value. This object is accessed through the
built-in name Not Implemented. Numeric methods and rich comparison methods may return this value if they
do not implement the operation for the operands provided. (The interpreter will then try the reflected operation, or
some other fallback, depending on the operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the built-in
name E11ipsis. Itis used to indicate the presence of the . . . syntax in a slice. Its truth value is true.

numbers . Number IS FHAGE, HFRPAEATARIBEAAEARNE R BRI SR . 87
XGIEAT AR — HAJHHAE AP AE . Python sy AR AR A= Py, (AR
TR AR R TR TTE,

Python X/ BUHL. 77 S BYBCFI A 45
numbers. Integral WIS RITREATHRBEEGIIMGR (EFHIEHRED .
There are three types of integers:

Plain integers These represent numbers in the range -2147483648 through 2147483647. (The range may
be larger on machines with a larger natural word size, but not smaller.) When the result of an operation
would fall outside this range, the result is normally returned as a long integer (in some cases, the exception
OverflowError israised instead). For the purpose of shift and mask operations, integers are assumed
to have a binary, 2’ s complement notation using 32 or more bits, and hiding no bits from the user (i.e.,
all 4294967296 different bit patterns correspond to different values).

Long integers MW QETRERE I/ NYECT, ZIRT A HBINAE (RGN . TEASHAIE
izl 2 A HIZOR, AL 2 IAMEROR . BRERGRRATS (L1 2 MM 2= L

Booleans These represent the truth values False and True. The two objects representing the values False
and True are the only Boolean objects. The Boolean type is a subtype of plain integers, and Boolean

16 Chapter 3. #iE#E%

The Python Language Reference, k7% 2.7.18

values behave like the values 0 and 1, respectively, in almost all contexts, the exception being that when
converted to a string, the strings "False" or "True" are returned, respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers and the least surprises when switching between the plain and long
integer domains. Any operation, if it yields a result in the plain integer domain, will yield the same result in
the long integer domain or when using mixed operands. The switch between domains is transparent to the
programmer.

numbers.Real (float) ILAXFR IR AYRURE LV 8. HTH 2 A BRI Bl AR H A PRRE 522
HTFIRZABLAS 2 (DA% C B Java SEB) . Python AN SCRFHURE LR A SR I i i Y Bl
T AL PRASFINATEAE, (HX ST AR TAE Python H Al TR R IGIF AR UKL O 38, It
BOA B R A 5 P R T % T T AR 2%

numbers . Complex FLIEH R DA—XIHLARI IRUURG BE 17 O BORFRIZ G . A7 93 w0 P R X
HFRAR . —ABUE 2 BSSHREA A E A B E M 2. real Fl z. imag SRIRHL.

JEH X R IR AR BB ARG A IR P8 WEREL len O FRIE—DFoIR 5% H k. 24—
MFINRKEE R n i, REIEGQESEET 0, 1, ., n-1. FPo) a B H i ANl a (1] #$%.

PRSI A alic 3] FRRGIS N kA&, i <=k <j. BERBAN, FART A
— SRR ERAE RIREF S . BTFIIRRG RN 0 FHh.

FHLFPBNE SRR =A “step” BB “PRUIN” :ali:dk] ¥k a PRESH x MPTA4H,

x =1+ n*k,n>=0Hi<=x<j,
JF A AT AR AT AR PR i DA 43

AAEFEE] AR AL PP SR R — AR BEFF O . (WPRXT RS0 HA X R A5, Hok
(R AT G] AR5 (B, — AN RIS R %S | IR G2 AN RE AR 1)

PATR B TR AT 2SR 4

FF¥H The items of a string are characters. There is no separate character type; a character is represented
by a string of one item. Characters represent (at least) 8-bit bytes. The built-in functions chr () and
ord () convert between characters and nonnegative integers representing the byte values. Bytes with
the values 0127 usually represent the corresponding ASCII values, but the interpretation of values is up
to the program. The string data type is also used to represent arrays of bytes, e.g., to hold data read from
a file.

(On systems whose native character set is not ASCII, strings may use EBCDIC in their internal represen-
tation, provided the functions chr () and ord () implement a mapping between ASCII and EBCDIC,
and string comparison preserves the ASCII order. Or perhaps someone can propose a better rule?)

Unicode The items of a Unicode object are Unicode code units. A Unicode code unit is represented by a
Unicode object of one item and can hold either a 16-bit or 32-bit value representing a Unicode ordinal
(the maximum value for the ordinal is given in sys.maxunicode, and depends on how Python is
configured at compile time). Surrogate pairs may be present in the Unicode object, and will be reported
as two separate items. The built-in functions unichr () and ord () convert between code units and
nonnegative integers representing the Unicode ordinals as defined in the Unicode Standard 3.0. Conver-
sion from and to other encodings are possible through the Unicode method encode () and the built-in
function unicode ().

Jedl — S IcdH gk H T PAZAERE Python Xt R . A& PN PA B4 H LA hiE 5 7 ry ik
M. R —AZHRoC (CBcdl”) s 7Rk s I — N2 SR pl (— Rk
KALANRERIETTH, PN 2 AR BERIAA D H) . — D2 cd il — AN
2 B

nARyEH R AR SIAERL RS TR . TR ARRIDI A AR T BT R (E A e 1 (IR TR H A

FI A T Aob P 2B] 28 7 51 28

3.2. FREABEREN 17

The Python Language Reference, k% 2.7.18

Bl B2 R 2% H AT AR AERE Python X5 . 313 ih I 7 #5558 H HiE 5 20 B 2>k 5
J8e GERAUENKIE N 0 5 1 AZIFTCTE MR)

FYi%El A bytearray object is a mutable array. They are created by the built-in bytearray () construc-
tor. Aside from being mutable (and hence unhashable), byte arrays otherwise provide the same interface
and functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable sequence type.

AR PRGN AR HAN AN G 8 oy B IR AE G . NCENTA BB T ARk RG]
HREATTPEE, BN EREL Len () REES AR H B LEH WA Z R GAN,
KRR RIS, PARGEAFTRE. I X FR 2SR Ais 5

XA A TTR IR A A BN g B () o S R 7 SR 1) 87 EU RN A SR A
By as (Bl 1 Fn .0y, ME—fa A eaE i —1

H HiAG Wish) A S A 2 AL

A R TR ARES . EAIAE B set () MIE2Lple, I A8 5 pAE s et
e, Bl add () .

WESES WS R RRAT LS. BN SN ER frozenset () EFA1E . HT frozenset X}
GRTI A Hhashable, &0 AR HAE S — MEA R IR BUE FHLA

Wl R R IR AL RGP RI X RIES . W M a k] alFEBUY a R0 k 194
H X n] DATEFGA P, VR e de 1 IHM H iR PEREL Len () AR NG)
FHEL
R i A A R 2R
T R R IR LR N RT IA RN R LS . AR ERE G 551K

T AR e R AR R S AT OB AL, R A T e k) i S B AT

SRR A AR R — 2k . VR B R 07 SR A0 1L FE AR50 EE BRI : A SR WA B AR <% (34

1AL 0) MBI RRARRG H— 7 H .

FIOR PR AT (..) ARESREIE (BT 2 N,

The extension modules dbm, gdbm, and bsddb provide additional examples of mapping types.
AP AT AR Y T eR B 4R A (S IR A /N

J e SCeR B e SRR B0 G i i s A0E SORGEE (B L3 202 3L /INT) o BRI I I B —A
SR, P U RS R BT E LESH1%E 2.

TR R
__doc__ func_doc The function’ s documentation string, or None if nE
unavailable.
__name__ func_name The function’ s name 5
__module__ ZREIT BRI A FR, A NN None. RS

__defaults__ func_defaults | HEARINENSBIEIASEELLR T, | 5
WTCATAT S ECEA BRINEN N None,
__code__ func_code FE IS G) PR BRI AR X 5 DS
__globals__ func_globals RIAF T2 R A 4 Jr) 722 1) S 5 | H— R &K HiE
T JE AR 42 Ry fin 44 25 [
__dict__ func_dict i 24 25 8] SCRPI B BB P D]
_ closure__ func_closure None or a tuple of cells that contain bindings for the | Hi3
function’ s free variables.

REBTTFRAT “Writable” HJE IS 240 A ME R JEAY.

18 Chapter 3. #iE#E%

The Python Language Reference, k7% 2.7.18

¥E 2.4 B func_name is now writable.

FE 2.6 iR P The double-underscore attributes __closure_ , _ code_ , _ defaults_ , and
__globals__ were introduced as aliases for the corresponding func_* attributes for forwards compati-
bility with Python 3.

BREION G SRR RIS AR R e, QX vl AR e 8 R AR I et okt 1 T R J 1
SARESRBAIBRCE IR R, EFHAT KIEFRA P RS LR B . RRTRIE W EIHFNE
B

A K eREUE LHVBIME BT A AT G i G 2 00TR SO N RIS i it

User-defined methods A user-defined method object combines a class, a class instance (or None) and any callable
object (normally a user-defined function).

Special read-only attributes: im_self is the class instance object, im_func is the function object;
im_class is the class of im_self for bound methods or the class that asked for the method for unbound
methods; _ doc___is the method’ s documentation (same as im_func._ _doc_); _ name__ is the
method name (same as im_func._ name_);__ module__ isthe name of the module the method was
defined in, or None if unavailable.

FE 2.2 IREP: im_self used to refer to the class that defined the method.

TE 2.6 U5 ¥ For Python 3 forward-compatibility, im_func is also available as __func__, and
im_selfas__ _self .

D7 EIE SCRPRI (BN REBLED T2 RO R R R EUE 1 -

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of
that class), if that attribute is a user-defined function object, an unbound user-defined method object, or a
class method object. When the attribute is a user-defined method object, a new method object is only created
if the class from which it is being retrieved is the same as, or a derived class of, the class stored in the original
method object; otherwise, the original method object is used as it is.

When a user-defined method object is created by retrieving a user-defined function object from a class, its
im_self attribute is None and the method object is said to be unbound. When one is created by retrieving
a user-defined function object from a class via one of its instances, its im_sel1f attribute is the instance, and
the method object is said to be bound. In either case, the new method’ s im_class attribute is the class
from which the retrieval takes place, and its im_ func attribute is the original function object.

When a user-defined method object is created by retrieving another method object from a class or instance,
the behaviour is the same as for a function object, except that the im_ func attribute of the new instance is
not the original method object but its im_ func attribute.

When a user-defined method object is created by retrieving a class method object from a class or instance, its
im_self attribute is the class itself, and its im_ func attribute is the function object underlying the class
method.

When an unbound user-defined method object is called, the underlying function (im_func) is called, with
the restriction that the first argument must be an instance of the proper class (im_class) or of a derived
class thereof.

When a bound user-defined method object is called, the underlying function (im_func) is called, inserting
the class instance (im_self) in front of the argument list. For instance, when C is a class which contains
a definition for a function £ (), and x is an instance of C, calling x. £ (1) is equivalent to calling C. f (x,
1).

When a user-defined method object is derived from a class method object, the “class instance” stored in
im_self will actually be the class itself, so that calling either x. £ (1) or C. £ (1) is equivalent to calling
£ (C, 1) where £ is the underlying function.

3.2. FEAREREN 19

The Python Language Reference, k% 2.7.18

B

Note that the transformation from function object to (unbound or bound) method object happens each time the
attribute is retrieved from the class or instance. In some cases, a fruitful optimization is to assign the attribute
to a local variable and call that local variable. Also notice that this transformation only happens for user-
defined functions; other callable objects (and all non-callable objects) are retrieved without transformation. It
is also important to note that user-defined functions which are attributes of a class instance are not converted
to bound methods; this only happens when the function is an attribute of the class.

H RS B E A function or method which uses the vield statement (see section The yield statement) is called
a generator function. Such a function, when called, always returns an iterator object which can be used to
execute the body of the function: calling the iterator’ s next () method will cause the function to execute
until it provides a value using the yield statement. When the function executes a return statement or
falls off the end, a StopIteration exception is raised and the iterator will have reached the end of the
set of values to be returned.

DU RS PR RO SR T C R AN IR B e . N E R B B T2 4E len () Al math.sin ()
(math Z— AR HE P ERED . NERESEIN R M C Rz, Frikn HiE b
__doc__ jRRRERSCRYFERFER, WEREA WK None; __name_ ZREIN PR __self #F
A None (B0 F—4H); _module__ ERREFTEEIHAZAFR, WREA NN None.

WL R SR e N BB 75 — P, AR T — A C BA G sk
WSS E. WEITIER—ABI T2 alist.append (), H alist 3—PIIEX G T2 B
B, REERI R __self_ SN alist FTARICHIXTR .

Class Types Class types, or “new-style classes,” are callable. These objects normally act as factories for new

instances of themselves, but variations are possible for class types that override __new___ (). The arguments
of the call are passedto___new___ () and, in the typical case,to___init__ () toinitialize the new instance.

Classic Classes Class objects are described below. When a class object is called, a new class instance (also de-
scribed below) is created and returned. This implies a call to the class’ s __init__ () method if it has
one. Any arguments are passedontothe _ init__ () method. If thereisno ___init__ () method, the
class must be called without arguments.

JRH Class instances are described below. Class instances are callable only when the classhasa_ call_ ()
method; x (arguments) is a shorthand for x.___call__ (arguments).

Modules are imported by the i mport statement (see section 7he import statement). A module object has a names-
pace implemented by a dictionary object (this is the dictionary referenced by the func_globals attribute of functions
defined in the module). Attribute references are translated to lookups in this dictionary, e.g., m. x is equivalent to
m.__dict__ ["x"]. A module object does not contain the code object used to initialize the module (since it
isn’ t needed once the initialization is done).

JE A £ B B iy 2 S 2, Bl m.x = 1 %[F m.__dict__["x"] = 1,
FORR R __dict_ HPAF RN QTR AR A 4 25 1] o

H1T CPython {5 BISIR P HLAYBEE , AME BTV SIS 3 SR S B, R 7 L A 1% 3
51 . AERES L TR, AT % 7 S B PR SR S DA L G e

Predefined (writable) attributes: __name___is the module’ s name;___doc___is the module’ s documentation
string, or None if unavailable; ___file_ is the pathname of the file from which the module was loaded, if it
was loaded from a file. The __file_ attribute is not present for C modules that are statically linked into the
interpreter; for extension modules loaded dynamically from a shared library, it is the pathname of the shared library
file.

R Both class types (new-style classes) and class objects (old-style/classic classes) are typically created by class definitions

(see section 3£ 72 3L). A class has a namespace implemented by a dictionary object. Class attribute references are
translated to lookups in this dictionary, e.g., C.x is translated to C.__dict__ ["x"] (although for new-style
classes in particular there are a number of hooks which allow for other means of locating attributes). When the
attribute name is not found there, the attribute search continues in the base classes. For old-style classes, the
search is depth-first, left-to-right in the order of occurrence in the base class list. New-style classes use the more

20

Chapter 3. #iE#E%

The Python Language Reference, k7% 2.7.18

complex C3 method resolution order which behaves correctly even in the presence of ‘diamond’ inheritance
structures where there are multiple inheritance paths leading back to a common ancestor. Additional details on
the C3 MRO used by new-style classes can be found in the documentation accompanying the 2.3 release at https:
/Iwww.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a user-defined function object or an unbound user-
defined method object whose associated class is either C or one of its base classes, it is transformed into an unbound
user-defined method object whose im_class attribute is C. When it would yield a class method object, it is
transformed into a bound user-defined method object whose im_self attribute is C. When it would yield a static
method object, it is transformed into the object wrapped by the static method object. See section 523 % i£ 25 for
another way in which attributes retrieved from a class may differ from those actually contained inits __dict___
(note that only new-style classes support descriptors).

KIEMERES TR T, (AT 7.
FXE AT (W30 DA AE— AR50 ILF 30,
Special attributes: __name___isthe classname; ___module__isthe module name in which the class was defined;
__dict__ is the dictionary containing the class’ s namespace; ___bases___ is a tuple (possibly empty or a

singleton) containing the base classes, in the order of their occurrence in the base class list; ___doc___is the class’
s documentation string, or None if undefined.

2 A class instance is created by calling a class object (see above). A class instance has a namespace implemented

Files

as a dictionary which is the first place in which attribute references are searched. When an attribute is not found
there, and the instance’ s class has an attribute by that name, the search continues with the class attributes. If a class
attribute is found that is a user-defined function object or an unbound user-defined method object whose associated
class is the class (call it C) of the instance for which the attribute reference was initiated or one of its bases, it
is transformed into a bound user-defined method object whose im_class attribute is C and whose im_self
attribute is the instance. Static method and class method objects are also transformed, as if they had been retrieved
from class C; see above under “Classes” . See section = 3,414 %5 for another way in which attributes of a
class retrieved via its instances may differ from the objects actually stored in the class’ s ___dict__. If no class
attribute is found, and the object’ sclasshasa___getattr__ () method, that is called to satisfy the lookup.

Ji P L 0 A I 2 SO S B 0 L, (EUR & ROR O MR AY P . MR A setattr ()
w_ delattr () Jrik, WRFUR 5V T B SE R S B 7

IR RSB B A F LRk A AR YR, ST AN BT . R AN, & Was ok 7r ik 4 4R —17,
Yok EYE: __dict_ hEMETFIL _ class_ NSEBIXFV R,

A file object represents an open file. File objects are created by the open () built-in function, and also by os.
popen (), os.fdopen (), and the makefile () method of socket objects (and perhaps by other functions
or methods provided by extension modules). The objects sys.stdin, sys.stdout and sys.stderr are
initialized to file objects corresponding to the interpreter’ s standard input, output and error streams. See bltin-
file-objects for complete documentation of file objects.

PSSR Ly R A T 6)) R B e TR B 25 T 1 o AT SCPT BRI AR ARRR A IS B SE B T A Ak

NN SEEE WAE LA —IF 2

ARG BRI RETR %% A 5 7 e AT Python RS, BiFRbyrecode, AR XS BR B G X 53]
FET BRAO RAL SR R A R R (R BT @ Ry 1y B, AR A& TR 3G 1
HEVASBAA AT AT R A AU X RN (RO BN s T S I (E) . 5 e 80k
G, ARG AL, WA SR ARG ChE R EIRE 2 AHE) .

Special read-only attributes: co_name gives the function name; co_argcount is the number of positional
arguments (including arguments with default values); co_nlocals is the number of local variables used
by the function (including arguments); co_varnames is a tuple containing the names of the local variables
(starting with the argument names); co_cellvars is a tuple containing the names of local variables that are
referenced by nested functions; co_freevars is a tuple containing the names of free variables; co_code
is a string representing the sequence of bytecode instructions; co_consts is a tuple containing the literals

3.2. FEAREREN 21

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, k% 2.7.18

used by the bytecode; co_names is a tuple containing the names used by the bytecode; co_filename is
the filename from which the code was compiled; co_firstlineno is the first line number of the function;
co_lnotabisastring encoding the mapping from bytecode offsets to line numbers (for details see the source
code of the interpreter); co_stacksize is the required stack size (including local variables); co_flags
is an integer encoding a number of flags for the interpreter.

PAF R T co_flags BIFREGNE L WER KB *argument s IBERIEZL B RN
HSH, W 0x04 (iR WRREEH **keywords IBFPREZAEREE N XL BFESE, W
0x08 VB E; WIRREUE AN, W 0x20 (g E.

KRR (From _ future_ import division) H{#if] co_flags HIFRENL TS
FRADNT G B S22 75 FH AR PR G0 S pR B PRI o AR R R A R R I B 0% 2000 {or; ZE T
ELf#) Python it H s f§ 0x10 £ 0x1000 {7,

co_flags HigHAMAL B PR B R R A .
QRS R TR —AKEL, co_consts HHREE—TIREE R A SCRYFAFER , QSR A SO

None,
i*x} 4 Frame objects represent execution frames. They may occur in traceback objects (see below).

Special read-only attributes: £_back is to the previous stack frame (towards the caller), or None if this is the
bottom stack frame; £_code is the code object being executed in this frame; £_1ocals is the dictionary
used to look up local variables; £_globals is used for global variables; £_builtins is used for built-
in (intrinsic) names; £_restricted is a flag indicating whether the function is executing in restricted
execution mode; £_lasti gives the precise instruction (this is an index into the bytecode string of the code
object).

Special writable attributes: £_trace, if not None, is a function called at the start of each source code line
(this is used by the debugger); £_exc_type, f_exc_value, f_exc_traceback represent the last
exception raised in the parent frame provided another exception was ever raised in the current frame (in all
other cases they are None); £_1ineno is the current line number of the frame —writing to this from within
a trace function jumps to the given line (only for the bottom-most frame). A debugger can implement a Jump
command (aka Set Next Statement) by writing to f_lineno.

MI#IRE 4 Traceback objects represent a stack trace of an exception. A traceback object is created when an ex-
ception occurs. When the search for an exception handler unwinds the execution stack, at each unwound
level a traceback object is inserted in front of the current traceback. When an exception handler is entered,
the stack trace is made available to the program. (See section The try statement.) It is accessible as sys.
exc_traceback, and also as the third item of the tuple returned by sys .exc_info (). The latter is the
preferred interface, since it works correctly when the program is using multiple threads. When the program
contains no suitable handler, the stack trace is written (nicely formatted) to the standard error stream; if the
interpreter is interactive, it is also made available to the user as sys . last_traceback.

Special read-only attributes: tb_next is the next level in the stack trace (towards the frame where the
exception occurred), or None if there is no next level; tb_frame points to the execution frame of the
current level; tb_1lineno gives the line number where the exception occurred; tb_lasti indicates the
precise instruction. The line number and last instruction in the traceback may differ from the line number of
its frame object if the exception occurred in a t ry statement with no matching except clause or with a finally
clause.

PR} 5% Slice objects are used to represent slices when extended slice syntax is used. This is a slice using two
colons, or multiple slices or ellipses separated by commas, e.g., a[i:J:stepl,a[i:], k:1l],oral.
., 1:731. They are also created by the built-in s1ice () function.

Fkey L E M start ARAL stop A B step I KAE; B{EINA NN None, X 2@
CIE-Fcyin-e il

PIR MRk

22 Chapter 3. #iE#E%

The Python Language Reference, k7% 2.7.18

slice.indices (self, length)
This method takes a single integer argument length and computes information about the extended slice
that the slice object would describe if applied to a sequence of length items. It returns a tuple of three
integers; respectively these are the start and stop indices and the step or stride length of the slice. Missing
or out-of-bounds indices are handled in a manner consistent with regular slices.

2.3 iR E.

WS JTIER B TSI IR SR AE T — b O b ST R O SRR T iR Gl 7 3 STk
GOIME R AR GRS, G # R BRE SOEXT S 2 MBS BRI — S
RGNS, TR PR R, EASPE P BSOTIRN G E AR A
9, AEEATRTEE A Rl e TR . SSTTEXT R T N B staticmethod () 14
e Sullfee

RIGBR R TGS T — R HA T G i 5 Sl M sl 2 S 9 3R BGZ /2 10)5
Ko FVEXGAE W IRBERVER AT A EAE ST “H P OFyE” —Tr ik . 205 vExtgenr
W N ER classmethod () M3 KAz,

3.3 New-style and classic classes

Classes and instances come in two flavors: old-style (or classic) and new-style.

Up to Python 2.1 the concept of class was unrelated to the concept of type, and old-style classes were the only flavor
available. For an old-style class, the statement x.__class___ provides the class of x, but type (x) is always <type
'instance'>. This reflects the fact that all old-style instances, independent of their class, are implemented with a
single built-in type, called instance.

New-style classes were introduced in Python 2.2 to unify the concepts of class and type. A new-style class is simply
a user-defined type, no more, no less. If x is an instance of a new-style class, then type (x) is typically the same as
x.__class___ (although this is not guaranteed —a new-style class instance is permitted to override the value returned
forx._ _class_).

The major motivation for introducing new-style classes is to provide a unified object model with a full meta-model. It also
has a number of practical benefits, like the ability to subclass most built-in types, or the introduction of “descriptors” ,
which enable computed properties.

For compatibility reasons, classes are still old-style by default. New-style classes are created by specifying another new-
style class (i.e. a type) as a parent class, or the “top-level type” obJject if no other parent is needed. The behaviour
of new-style classes differs from that of old-style classes in a number of important details in addition to what type ()
returns. Some of these changes are fundamental to the new object model, like the way special methods are invoked.
Others are “fixes” that could not be implemented before for compatibility concerns, like the method resolution order in
case of multiple inheritance.

While this manual aims to provide comprehensive coverage of Python’ s class mechanics, it may still be lacking in some
areas when it comes to its coverage of new-style classes. Please see https://www.python.org/doc/newstyle/ for sources of
additional information.

Old-style classes are removed in Python 3, leaving only new-style classes.

3.3. New-style and classic classes 23

https://www.python.org/doc/newstyle/

The Python Language Reference, k% 2.7.18

3.4 HEFEBR

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subscripting
and slicing) by defining methods with special names. This is Python’ s approach to operator overloading, allowing
classes to define their own behavior with respect to language operators. For instance, if a class defines a method named
__getitem (), and x is an instance of this class, then x [i] is roughly equivalent to x.___getitem__ (i) for
old-style classes and type (x) .__getitem__ (x, i) for new-style classes. Except where mentioned, attempts
to execute an operation raise an exception when no appropriate method is defined (typically AttributeError or
TypeError).

TESE IV IDUT (] P B 2R A 28}, AR EE B0 — S R R SE PR B T AR S e 1 1 24 2 A 7 L . 6l
an, FRECAN TR AERIEX T L R Ul @G B, R A T et iea B o XA O i — A~ 5L i)
& W3C BSOS SRR) NodeList %11,)

3.4.1 EXEH

object.__new__ (cls[,])
Pa I AR —A> cls RIHFI LG, new () 2—EREIE (BN RS MR AR 2 R),
BRI K LG T BRSNS HRNS AL AR G R RE = o Zm I).
__new__ () BYIRIEMER A6 5 5L GE A2 cls 1 240) .

Typical implementations create a new instance of the class by invoking the superclass’s___new___ () method using
super (currentclass, cls)._ _new__(cls[, ...]) withappropriate arguments and then modify-
ing the newly-created instance as necessary before returning it.

MR __new () B —A> os BEH, WMBFHELBIR__inic () TIEXEZIFEHINAT, Bl
__init_ (self[, ...1), Hriself], HRMSHEWEBRS new () BIH.

MR new_ () RIRIE—A> cls LB, WEFSEBIR__init () JFREA 2T

__new__ () K HMFER VA ZLARY T2 (140 int, str 5 tuple) & il LHI QSR . ERES
TE H A LTt d a4 DAE E i 28 R AR

object.__init__ (self[,])
Called after the instance has been created (by ___new___ ()), but before it is returned to the caller. The arguments
are those passed to the class constructor expression. If a base class has an ___init__ () method, the derived
class’ s___init__ () method, if any, must explicitly call it to ensure proper initialization of the base class part
of the instance; for example: BaseClass.__init__ (self, [args...]).

Because __new___ () and __init__ () work together in constructing objects (__new___ () to create it, and
__init__ () to customise it), no non-None value may be returned by ___init__ (); doing so will cause a
TypeError to be raised at runtime.

object.__del__ (self)
Called when the instance is about to be destroyed. This is also called a destructor. If a base classhasa___del_ ()
method, the derived class” s del () method, if any, must explicitly call it to ensure proper deletion of the
base class part of the instance. Note that it is possible (though not recommended!) for the __del__ () method
to postpone destruction of the instance by creating a new reference to it. It may then be called at a later time when
this new reference is deleted. It is not guaranteed that __del__ () methods are called for objects that still exist
when the interpreter exits.

Wf#: del xdoesn’ tdirectly call x.__del__ () —the former decrements the reference count for x by one,
and the latter is only called when x’ s reference count reaches zero. Some common situations that may prevent
the reference count of an object from going to zero include: circular references between objects (e.g., a doubly-
linked list or a tree data structure with parent and child pointers); a reference to the object on the stack frame of a
function that caught an exception (the traceback stored in sy s . exc_traceback keeps the stack frame alive); or

24 Chapter 3. #iE#E%

The Python Language Reference, k7% 2.7.18

a reference to the object on the stack frame that raised an unhandled exception in interactive mode (the traceback
stored in sys.last_traceback keeps the stack frame alive). The first situation can only be remedied by
explicitly breaking the cycles; the latter two situations can be resolved by storing None in sys .exc_traceback
or sys.last_traceback. Circular references which are garbage are detected when the option cycle detector
is enabled (it’ s on by default), but can only be cleaned up if there are no Python-level __del__ () methods
involved. Refer to the documentation for the gc module for more information about how _ del_ () methods
are handled by the cycle detector, particularly the description of the garbage value.

% e: Due to the precarious circumstances under which ___del__ () methods are invoked, exceptions that
occur during their execution are ignored, and a warning is printed to sys.stderr instead. Also, when
__del__ () isinvoked in response to a module being deleted (e.g., when execution of the program is done),
other globals referenced by the __del () method may already have been deleted or in the process of being
torn down (e.g. the import machinery shutting down). For this reason, __del__ () methods should do the
absolute minimum needed to maintain external invariants. Starting with version 1.5, Python guarantees that
globals whose name begins with a single underscore are deleted from their module before other globals are
deleted; if no other references to such globals exist, this may help in assuring that imported modules are still
available at the time whenthe del () method is called.

See also the —R command-line option.

object.__repr__ (self)
Called by the repr () built-in function and by string conversions (reverse quotes) to compute the “official” string
representation of an object. If at all possible, this should look like a valid Python expression that could be used to
recreate an object with the same value (given an appropriate environment). If this is not possible, a string of the
form <. ..some useful description...> should be returned. The return value must be a string object.
Ifaclassdefines repr () butnot___str (),then_ repr _ () isalsoused whenan “informal” string
representation of instances of that class is required.

BB E RN TR, R R R A A 5 8 (5 B LI SO R E B .

object.__str__ (self)
Called by the st r () built-in function and by the pri nt statement to compute the “informal” string representation
of an object. This differs from ___repr () in that it does not have to be a valid Python expression: a more
convenient or concise representation may be used instead. The return value must be a string object.

object.__1t__ (self, other)

object.__le__ (self, other)

object.__eq__ (self, other)

object.__ne__ (self, other)

object.__gt__ (self, other)

object.__ge__ (self, other)
2.1 B ChRE.

These are the so-called “rich comparison” methods, and are called for comparison operators in preference to
___cmp___ () below. The correspondence between operator symbols and method names is as follows: x<y calls x .
_ 1t (y),x<=ycalsx._ le_ (y),x==ycallsx.__eq_ (y),x!=yandx<>ycalx.__ne_ (y),
x>ycalsx.__gt_ (y),and x>=ycallsx.__ge_ (y).

R E R SEOCA MRS, & BT A BE 2R T BRI X R Not Tmplemented. # BRI,
N B iR] False B True. Al Sifp bk 8807k n] DOR ML RAE, N ICAR RBGZ FAT 2 5
AFAREFWT (BIANFED 1 A Z4F), Python SXTREIEIA bool () LABIEST R N HILZ (.

There are no implied relationships among the comparison operators. The truth of x==y does not imply that x ! =y
is false. Accordingly, when defining __eq__ (), one should also define __ne__ () so that the operators will

3.4. BHFEBH 25

The Python Language Reference, k% 2.7.18

behave as expected. See the paragraph on ___hash__ () for some important notes on creating hashable objects
which support custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support
the operation but the right argument does); rather, I1t__ () and _ gt__ () are each other’ s reflection,
le_ ()and___ge__ () areeachother’sreflection,and___eqg () and___ne_ () are their own reflection.

Arguments to rich comparison methods are never coerced.

To automatically generate ordering operations from a single root operation, see functools.
total_ordering().

object.__cmp__ (self, other)
Called by comparison operations if rich comparison (see above) is not defined. Should return a negative integer
if self < other, zero if self == other, a positive integer if self > other. If no__cmp__ (),
__eq__()or__ne__ () operation is defined, class instances are compared by object identity (“address”). See
also the descriptionof ___hash___ () for some important notes on creating rashable objects which support custom
comparison operations and are usable as dictionary keys. (Note: the restriction that exceptions are not propagated
by ___cmp__ () has been removed since Python 1.5.)

object.__remp__ (self, other)
FE 2.1 MUCE L No longer supported.

object.__hash___ (self)
Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset, and dict. __hash__ () should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to mix together the hash values of the components
of the object that also play a part in comparison of objects by packing them into a tuple and hashing the tuple.
Example:

def _ hash__ (self):
return hash ((self.name, self.nick, self.color))

If aclassdoes notdefinea _cmp_ () or __eq () method it should not definea ___hash__ () operation
either; if itdefines __ _cmp_ () or__eq () butnot___hash__ (), its instances will not be usable in hashed
collections. If a class defines mutable objects and implements a __cmp___ () or __eqg__ () method, it should
not implement ___hash___ (), since hashable collection implementations require that an object’ s hash value is
immutable (if the object’ s hash value changes, it will be in the wrong hash bucket).

User-defined classes have ___cmp__ () and ___hash__ () methods by default; with them, all objects compare
unequal (except with themselves) and x.__hash___ () returns a result derived from id (x) .

Classes which inherita ___hash___ () method from a parent class but change the meaning of __cmp__ () or
___eqg___ () such that the hash value returned is no longer appropriate (e.g. by switching to a value-based concept
of equality instead of the default identity based equality) can explicitly flag themselves as being unhashable by
setting __hash__ = None in the class definition. Doing so means that not only will instances of the class raise
an appropriate TypeError when a program attempts to retrieve their hash value, but they will also be correctly
identified as unhashable when checking isinstance (obj, collections.Hashable) (unlike classes
which define their own ___hash__ () to explicitly raise TypeError).

TE 2.5 lE M __hash__ () may now also return a long integer object; the 32-bit integer is then derived from
the hash of that object.

JE 2.6 JRFEEL: _ hash__ may now be set to None to explicitly flag instances of a class as unhashable.

object._ nonzero__ (self)
Called to implement truth value testing and the built-in operation bool () ; should return False or True, or
their integer equivalents 0 or 1. When this method is not defined, __I1en_ () is called, if it is defined, and the
object is considered true if its result is nonzero. If a class defines neither ___1en__ () nor __nonzero__ (), all
its instances are considered true.

26 Chapter 3. #iE#E%

The Python Language Reference, k7% 2.7.18

object.__unicode__ (self)
Called to implement unicode () built-in; should return a Unicode object. When this method is not defined,
string conversion is attempted, and the result of string conversion is converted to Unicode using the system default
encoding.

3.4.2 HE LRt
AT DASE SCR D7 koK RE SOW S BB IETT) (. name MY MROESOMER) AR A L

object.__getattr__ (self, name)
Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance attribute
nor is it found in the class tree for self). name is the attribute name. This method should return the (computed)
attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, ___getattr__ () is not called. (This is an
intentional asymmetry between __getattr () and __setattr__ ().) This is done both for efficiency
reasons and because otherwise ___getattr__ () would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance attribute
dictionary (but instead inserting them in another object). See the __getattribute__ () method below for a
way to actually get total control in new-style classes.

object.__setattr__ (self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store the
value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If _ setattr () wants to assign to an instance attribute, it should not simply execute self.name =
value —this would cause a recursive call to itself. Instead, it should insert the value in the dictionary of
instance attributes, e.g., self.__dict__[name] = value. For new-style classes, rather than access-
ing the instance dictionary, it should call the base class method with the same name, for example, object .
_ _setattr_ (self, name, value).

object.__delattr__ (self, name)
FMT_ setattr () HHAEM HMERTTIEBE. MITENIZIAE del obj . name X FZX 44
BN A B

More attribute access for new-style classes

The following methods only apply to new-style classes.

object.__getattribute__ (self, name)
W7 ¥ 2 TR A b R A DASE BT RSB @M). AR LT getattr (), M)
AEWHA, BIE getattribute () BRXMWIHHEHZE A T AttributeError. W
WM aR A (FEN) B HEEEE 5] & —4 AttributeError [, TSI 7 & 1 O BRI
A, S IR 1% 2 R T B R (] 44 R 1 B 2 O R U 1B T R AT AT JE M, B4 object.

__getattribute__ (self, name),

{Efi#: This method may still be bypassed when looking up special methods as the result of implicit invocation via
language syntax or built-in functions. See Special method lookup for new-style classes.

3.4. BHFEBH 27

The Python Language Reference, k% 2.7.18

P fih 28

PAF HEACE— MM R (Bl 488 5528) SLBlB T4 ArA 2R i iE A 2 e (%
IR AHE A B R BIEA ERETF) . FEPVTRGI, “J@H” AR EdE __dict__
T REE S T) B 44 1 S
object.__get___ (self, instance, owner)
VA A DRI A 2R JE . (CRIEHIN) S0Zneoli @i (SEolEHEyin). a4
FREHZE, M = 2 iae kR @ e tl, ans prf A g R R U)@ A None B ¥
Wik (THEHE) JEHEEEGES] &1 AttributeError 7.

object.__set__ (self, instance, value)

PR ML TT ¥R ABLE instance 48 5 W) T4 & 2800 S Bl 4 J@ A B (L value .

object.__delete__ (self, instance)

VA BT ¥R AR instance i 52 1) T A 4 2 S B SR A

A AR 2R

BEUOR, RS EA “HEiTh” MxXIgE, HEED Aot AT E

¥__get_ (), __set__ () M__delete__ (), WR—IXMFREXLT AL TEFRTEZE 1, T:T?fﬁ?ﬁﬂjﬂ

U

E&Wfilﬂﬂ’]%@/\ﬁjﬂm/\}\ AN NF G o L R IR uﬁjﬁﬂﬂﬂﬁ?@ﬁ B, a.x BELRNFSM a.
_dict__['x'] FFlh, AR5 type(a) .__dict__ ['x'], FEFRMKKER type (a) B EFHELE, K

(O pIve

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on which
descriptor methods were defined and how they were called. Note that descriptors are only invoked for new style objects
or classes (ones that subclass object () or type ()).

TG AR I IG Re— 0 a. x. SHIHEGTTHK a 1iE:
LN S AR B R AN L O 502 Y P AR LR SGR R — MR 4 Tk x . _get___(a)

YR If binding to a new-style object instance, a . x is transformed into the call: type (a) .__dict__['x"'].
__get___(a, type(a)).

Ry If binding to a new-style class, A . x is transformed into the call: A.__dict_ ['x']._ _get__ (None,
A).

IR WK a)& super B—5EH6I, WEEE super (B, obj) .m() &fEobj.__class__.__mro__ !
R B IWHEE FRAEE ARG AN AR AR A.__dict__['m'].__get__ (obj,
obj.__class__),

XFSEFIEE, KA AR I e BT e ST MRS . — MR DAE L_get_ ()
__set__ () fl__delete_ () WAEEAEG. WHREEAEE N __get__ (), WJFRJEM 2R [#5855 %5
%a% W A0 5 B S - oA A SR (. WURAR SR 2 LT __set_ () Fl/Ek__delete_ (), W
AR A R EAECR E X, e R ER R e . B, B S EE
x get_ () M_set__ (), MIAEEIEHARRE_get_ () HHk. ®XT__set_ () Ml_get__ ()
F B IR R A 2 S E R S :fi,ﬁitlﬂﬂﬁmx 5 2ZHX, AEBdR AR v LBl T E R

Python J5¥% (345 staticmethod () fl classmethod ()) HBEAE N AERIAZ LI . B I SLF 7] PLEE &
MHEB I ﬁﬁi@%fi%ﬁtﬁ—'ﬁ*ﬁW%E"Jﬁ%@?ﬁﬂ%*ﬁﬂ@ﬁﬁo

property () BBV AEIERIA R R SLIN . I SL B BE BB AT

28 Chapter 3. #iE#E%

The Python Language Reference, k7% 2.7.18

__slots__

By default, instances of both old and new-style classes have a dictionary for attribute storage. This wastes space for objects
having very few instance variables. The space consumption can become acute when creating large numbers of instances.

The default can be overridden by defining __slots__ in a new-style class definition. The __slots__ declaration takes a
sequence of instance variables and reserves just enough space in each instance to hold a value for each variable. Space is
saved because __dict__is not created for each instance.

__slots__
This class variable can be assigned a string, iterable, or sequence of strings with variable names used by instances. If
defined in a new-style class, __slots__ reserves space for the declared variables and prevents the automatic creation
of __dict__and __weakref__ for each instance.

2.2 B RYIRE.
{§i] _ slots__ {0

¢ When inheriting from a class without __slots__, the __dict __ attribute of that class will always be accessible, so a
__slots__ definition in the subclass is meaningless.

o Wy _dict_ g, SHRAREL RAE _slots__ & P AN A HT AR BIRE. Sl — DRI AL &
AWAERF5| & AttributeError. FrAARFGEASME, MR '__dict__ ' MAZ] _slots__ 751
PR P o
TE 2.3 HUH B Previously, adding ' ___dict__ ' tothe __slots__ declaration would not enable the assignment of
new attributes not specifically listed in the sequence of instance variable names.

o MRREGEANLBIBE _ weakref _ 28 HE, ST _slots__ IMA S LRI F T WRG
BTN SRy, AN ' __weakref ' MAZ] _slots__ I FAFER A

TE 2.3 HUHE P Previously, adding '___weakref__' to the __slots__ declaration would not enable support for
weak references.

o _ slots__ il AR AR AL BN B IARY (I A 5 FERIZH FSLE . Bt RIEEARERE R
SRt _slors__ g LR SEBIAE RIRCEERIAMA B, KIEMt S B s A A .

¢ The action of a __slots__ declaration is limited to the class where it is defined. As a result, subclasses will have a
__dict__ unless they also define __slots__ (which must only contain names of any additional slots).

o BUR—ARE AL EAERANFR WA E S, W B2 AL EE U S BiAL s R AT i) (Brakid i
HARMIEIRIBCHNA S 2 o XL MASRERP & SCR R E Lo R REL I —B5 1E e Ot
ARG

e Nonempty __slots__ does not work for classes derived from “variable-length” built-in types such as long, str
and tuple.

o ATAAE AR AR AT A G AT ABIRAE 2 __slots
B AR S E.

* _ class__ TRAEAAEP DI EA R _slots__ WA 2@ -

Tr 2.6 MU HE PR Previously, _ class__ assignment raised an error if either new or old class had __slots__.

o WRSHBRT ABREI s A, ARRATHES) IS

3.4. BHFEBH 29

The Python Language Reference, k% 2.7.18

3.4.3 BENKEIE

By default, new-style classes are constructed using t ype (). A class definition is read into a separate namespace and the
value of class name is bound to the result of t ype (name, bases, dict).

When the class definition is read, if __metaclass__ is defined then the callable assigned to it will be called instead of
type (). This allows classes or functions to be written which monitor or alter the class creation process:

* Modifying the class dictionary prior to the class being created.
» Returning an instance of another class —essentially performing the role of a factory function.

These steps will have to be performed in the metaclass’ s ___new__ () method —type.__new__ () can then be called
from this method to create a class with different properties. This example adds a new element to the class dictionary before
creating the class:

class metacls (type) :
def _ new__ (mcs, name, bases, dict):
dict['foo'] = 'metacls was here'
return type.__new__ (mcs, name, bases, dict)

You can of course also override other class methods (or add new methods); for example defining a custom ___call ()
method in the metaclass allows custom behavior when the class is called, e.g. not always creating a new instance.

__metaclass___
This variable can be any callable accepting arguments for name, bases, and dict. Upon class creation, the
callable is used instead of the built-in type ().

2.2 il RE.
The appropriate metaclass is determined by the following precedence rules:
e [fdict['__metaclass__ '] exists, it is used.

¢ Otherwise, if there is at least one base class, its metaclass is used (this looks for a __class__ attribute first and if
not found, uses its type).

* Otherwise, if a global variable named __metaclass__ exists, it is used.
¢ Otherwise, the old-style, classic metaclass (types.ClassType) is used.

The potential uses for metaclasses are boundless. Some ideas that have been explored including logging, inter-
face checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource lock-
ing/synchronization.

344 HEXLEHIRFREE

2.6 B RIIRE.
PAR I8 R % isinstance () fll issubclass () WNEREHIEIATH.

Feolil, Ju abc.ABCMeta SCHL T IX BT VADATE ALVFIFINRELSE (ABC) {12 “REFLEESR” BOMBMET
ORI (EARNERM), WFHM ABC Z .

class.__instancecheck___ (self, instance)

WIS instance SN class 1)—A> (ECHEZERIEH) SeBl LR EIE(E . AE LT IO, WS

PAZEFL isinstance (instance, class).

class.__subclasscheck___ (self, subclass)

Return true 415 subclass N AN class)—A> (B4 FRRNGREEAE. nse LT, W
2 PASEH! issubclass (subclass, class).

30 Chapter 3. #iE#E%

The Python Language Reference, k7% 2.7.18

TER I AE SR BT RMRI (o) . BATAREIE AT I E SRR E o X5 HT 5L
BRI RO R B e — B0, TR OU R S04 e R 2k

W

=

PEP 3119 - 5| ARh% L2 pnshaediiR, @l instancecheck_ () Ml__subclasscheck__ () %€
fiil isinstance () fl issubclass () 174, MASLIIEERISIALE BT % E S WS IS 2L N 2
(B0, abc Hibk).

3.4.5 #E#ITTEAMR

object.__call__ self[args...]
WOTR AR BIVE S —A R Bl W™ PR R E LTIk, W x (argl, arg2, ...)
WAYS T x._ _call_ (argl, arg2, ...) BHgER=.

3.4.6 {RAIETIRAE

The following methods can be defined to implement container objects. Containers usually are sequences (such as
lists or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of methods is
used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable keys
should be the integers k for which 0 <= k < N where N is the length of the sequence, or slice objects, which de-
fine a range of items. (For backwards compatibility, the method __ _getslice _ () (see below) can also be de-
fined to handle simple, but not extended slices.) It is also recommended that mappings provide the methods keys (),
values (), items (), has_key (), get (), clear (), setdefault (), iterkeys (), itervalues/(),
iteritems (), pop (), popitem(), copy (), and update () behaving similar to those for Python’ s standard
dictionary objects. The UserDict module provides a DictMixin class to help create those methods from a base set of
__getitem (),__setitem__ (),__delitem__ (),and keys (). Mutable sequences should provide meth-
ods append (), count (), index (), extend (), insert (), pop (), remove (), reverse () and sort (),
like Python standard list objects. Finally, sequence types should implement addition (meaning concatenation) and mul-
tiplication (meaning repetition) by defining the methods __add radd__ iadd__ mul__ (),
__rmul__ ()and__imul__ () described below; they should not define ___coerce__ () or other numerical opera-
tors. It is recommended that both mappings and sequences implement the __contains___ () method to allow efficient
use of the in operator; for mappings, in should be equivalent of has_key () ; for sequences, it should search through
the values. It is further recommended that both mappings and sequences implement the __iter () method to al-
low efficient iteration through the container; for mappings, ___iter__ () should be the same as iterkeys (); for
sequences, it should iterate through the values.

object.__len__ (self)
Called to implement the built-in function 1en () . Should return the length of the object, an integer >= 0. Also, an
object that doesn’ tdefinea___nonzero___ () methodand whose___Ien___ () method returns zero is considered
to be false in a Boolean context.

CPython implementation detail: In CPython, the length is required to be at most sy s .maxsize. If the length
is larger than sys .maxsize some features (such as len ()) may raise OverflowError. To prevent raising
OverflowError by truth value testing, an object must definea ___nonzero__ () method.

object.__getitem__ (self, key)
TR AL self [key] BYSRIH. XTPAIRAL, B2V BB A X4 . R 8
=5l (ﬁﬂ%ﬁu%‘%ﬂﬁﬂﬁﬁi) MRRIRIR L I T getitem () J7ik. WIR key IEAUAIEH
Mx5]% TypeError Jpd; MNP RT[HEIEHE ASME (TEA TR AECR S [RR IR)5)
ﬁ'ﬂf”%]?yi IndexError %1, XET WAL, W key $AB] (ANTERSRT) M5 KeyError
o

3.4. BHFEBH 31

https://www.python.org/dev/peps/pep-3119

The Python Language Reference, k% 2.7.18

Wit for FEFEEAR AR A BIFHHIE IndexError DA EHHKINEF AL .

object.__setitem__ (self, key, value)
PO EASE L] self [key) WMH. EEFIE__getitem () M. AW ZRILIIL T AR
IR T TR B e VPR T S BB B I, BURF S SRV T R R . R IEWIIY key (RS 1HY
FHWE__getitem () JFiKMITEILAH] o

object.__delitem__ (self, key)
TR M AL B self[key] WIMBR. WEFWE__getitem__ () M. hyX 5 558 M Ty ¥
N IZABR T 75 WL e A b, SR A R R T E . R IERIY key [ELTE] K 1 FH Y
5 getitem () FEMIEHAHE .

object.__missing__ (self, key)

Wi dict. _getitem () FEFRABNFH AR BRI E F PASEER dict 2R self [key],

object.__iter__ (self)
This method is called when an iterator is required for a container. This method should return a new iterator object
that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the container,
and should also be made available as the method iterkeys ().

BRI T LB BENFRERRBINSE A & . HXRERBRIEE TS F typeiter —17,
object.__reversed__ (self)

U (ARAFHE) &9 reversed () N EBRECR I DASEIL A . B 1 24 3R Bl —ASH G DAY 7 i

MERBEENITE XL HECER N5 .

R ARG reversed () FiE, W reversed () WEERECKRLER|MHFH ML (_len ()

M_getitem (). SCREFHIMPBIIRT RV Y AUAEREBHR AL reversed O Fridfitmy se B msky
T APt reversed () Jiik.

2.6 HIHE.

The membership test operators (i nand not 1in)are normally implemented as an iteration through a sequence. However,
container objects can supply the following special method with a more efficient implementation, which also does not
require the object be a sequence.

object.__contains__ (self, item)
VELFH B YR DASE BB R AG 2 AT . AR item J2& self WA AR B, 75 GR EHE . XFF B8
AHYCRGE T 57 5 Bl S5 %) B T AN S (BB SRAELN

XFAREN __contains_ () BRS, BWRAKMEEe2ilst iter () TR, RIS
H__getitem () WIHKXFAERINL, SHE S 55 P ogta 265

3.4.7 Additional methods for emulation of sequence types

The following optional methods can be defined to further emulate sequence objects. Immutable sequences methods should
at most only define ___getslice__ (); mutable sequences might define all three methods.

object.__getslice__ (self, i,)
2.0 i G ELFZ 4 Support slice objects as parameters tothe getitem () method. (However, built-in types
in CPython currently still implement __getslice__ (). Therefore, you have to override it in derived classes
when implementing slicing.)

Called to implement evaluation of self [i:7j]. The returned object should be of the same type as self. Note
that missing i or j in the slice expression are replaced by zero or sys .maxsize, respectively. If negative in-
dexes are used in the slice, the length of the sequence is added to that index. If the instance does not implement
the _ Ilen__ () method, an AttributeError is raised. No guarantee is made that indexes adjusted this

32 Chapter 3. #iE#E%

The Python Language Reference, k7% 2.7.18

way are not still negative. Indexes which are greater than the length of the sequence are not modified. If no
__getslice__ () isfound, a slice object is created instead, and passed to __getitem _ () instead.

object.__setslice__ (self, i, j, sequence)
Called to implement assignment to se1f [i:7j]. Same notes for i and jas for __getslice__ ().

This method is deprecated. If no _ setslice__ () is found, or for extended slicing of the form
self[i:j:k], a slice object is created, and passed to __setitem _ (), instead of __setslice__ ()
being called.

object.__delslice__ (self,i,j)
Called to implement deletion of self [i:7j]. Same notes for i and j as for __getslice__ (). This method
is deprecated. If no ___delslice__ () is found, or for extended slicing of the form self[i:j:k], aslice
object is created, and passedto __delitem_ _ (),insteadof __delslice__ () being called.

Notice that these methods are only invoked when a single slice with a single colon is used, and the slice method is
available. For slice operations involving extended slice notation, or in absence of the slice methods, getitem__ (),
__setitem () or__delitem _ () is called with a slice object as argument.

The following example demonstrate how to make your program or module compatible with earlier versions of Python
(assuming that methods ___getitem (), setitem () and ___delitem _ () support slice objects as argu-
ments):

class MyClass:
def _ _getitem__ (self, index):
def _ setitem_ (self, index, value):

def _ delitem__ (self, index):

if sys.version_info < (2, 0):
They won't be defined if version is at least 2.0 final

def _ _getslice_ (self, i, J):

return self[max (0, 1):max(0, J):]
def _ setslice_ (self, i, j, seq):

self[max (0, 1i):max(0, J):] = seq
def _ delslice__ (self, i, 7J):

del self[max (0, 1i):max (0, j):]

Note the calls to max () ; these are necessary because of the handling of negative indices before the __*slice__ ()
methods are called. When negative indexes are used, the __*item__ () methods receive them as provided, but the
__*slice__ () methods geta “cooked” form of the index values. For each negative index value, the length of the
sequence is added to the index before calling the method (which may still result in a negative index); this is the customary
handling of negative indexes by the built-in sequence types, and the ___*item__ () methods are expected to do this as
well. However, since they should already be doing that, negative indexes cannot be passed in; they must be constrained
to the bounds of the sequence before being passed tothe ___*item__ () methods. Calling max (0, i) conveniently
returns the proper value.

3.4. BHFEBH 33

The Python Language Reference, k% 2.7.18

3.4.8 {RIUBFARE

SE SCPAR 5 IR R T B 2R A, R @R R BT A SR RIE S (BIAnAR BN REEA T RIS) Brxd I Ay

object.__add__ (self, other)

object.__sub__ (self, other)

object.__mul__ (self, other)

object.__floordiv___ (self, other)

object.__mod__ (self, other)

object.__divmod___ (self, other)

object.__pow___ (self, other[, modulo])

object.__1lshift__ (self, other)

object.__rshift__ (self, other)

object.__and__ (self, other)

object.__xor__ (self, other)

object.__or___ (self, other)
These methods are called to implement the binary arithmetic operations (+, —, *, //, %, divmod (), pow (),
**x <<, >> &, ~, |). For instance, to evaluate the expression x + vy, where x is an instance of a class that has
an__add__ () method, x.__add__ (y) iscalled. The __divmod__ () method should be the equivalent to
using _ floordiv.__ () and __mod__ (); it should not be related to __truediv.__ () (described below).
Note that ___pow___ () should be defined to accept an optional third argument if the ternary version of the built-in
pow () function is to be supported.

AR BT VA P R — AR SR 5 RIS B T2, BV %R [E] Not Implemented.

object.__div__ (self, other)

object.__truediv___ (self, other)
The division operator (/) is implemented by these methods. The _ truediv__ () method is used when
__ future_ .division is in effect, otherwise _ div.__ () is used. If only one of these two methods is
defined, the object will not support division in the alternate context; TypeError will be raised instead.

object.__radd__ (self, other)
object. rsub (self, other)
object.__rmul__ (self, other)

)

object. _rd:Lv_ self, other
object.__rtruediv___ (self, other)

object.__rfloordiv__ (self, other)

object.__rmod__ (self, other)

object.__rdivmod___ (self, other)

object.__rpow___ (self, other)

object.__rlshift__ (self, other)

object.__rrshift__ (self, other)

object.__rand__ (self, other)

object.__rxor___ (self, other)

object.__ror__ (self, other)
These methods are called to implement the binary arithmetic operations (+, —, *, /, %, divmod (), pow (),
*x <<, >>, &, 7, |) with reflected (swapped) operands. These functions are only called if the left operand does
not support the corresponding operation and the operands are of different types.” For instance, to evaluate the
expression x — vy, where y is an instance of a class that has an ___rsub__ () method, y.__rsub__ (x) is
called if x.___sub__ (y) returns Notlmplemented.

BT pow () AN __rpow__ () (FINSEHIHARHIN &AL 20
2 XTSI B, SRR R AT (BII__aci__ () RSN KR RS HA G R, SRR R A R B

34 Chapter 3. #iE#E%

The Python Language Reference, k7% 2.7.18

TR AR PR RCR AU ZE BRI — A 12K, Han PRt TH e i S ik, Wiy
V2 e T2 RS AR . AT T Ae V72K T %ﬂf’ﬁ%ﬂ’] Y

object.__iadd___ (self, other)
object.__isub___ (self, other)
)
)

object.__imul__ (self, other
object.__idiv__ (self, other
object.__itruediv__ (self, other)
object.__ifloordiv___ (self, other)

object.__imod__ (self, other)
object.__ipow__ (self, other[, modulo])
object.__ilshift__ (self, other)
object.__irshift__ (self, other)
object.__iand___ (self, other)

object.__ixor__ (self, other)

object.__ior__ (self, other)
These methods are called to implement the augmented arithmetic assignments (+=, —=, *=, /=, / /=, $=, **=,
<<=, >>=, &=, *=, | =). These methods should attempt to do the operation in-place (modlfylng self) and return the

result (which could be, but does not have to be, self). If a specific method is not defined, the augmented assignment
falls back to the normal methods. For instance, to execute the statement x += vy, where x is an instance of a class
thathasan__ iadd () method, x.___iadd__ (y) is called. If x is an instance of a class that does not define
a__ iadd () method, x.__add__ (y) and y.__ radd__ (x) are considered, as with the evaluation of x
+ y.

object.__neg__ (self)
object.__pos__ (self)
object.__abs__ (self)
object.__invert__ (self)

PR AL JCAAB T (-, +, abs () Ml ~)s

object._ _complex__ (self)

object.__int__ (self)

object.__long__ (self)

object.__float__ (self)
Called to implement the built-in functions complex (), int (), long (), and f1oat (). Should return a value
of the appropriate type.

object.__oct__ (self)
object.__hex__ (self)
Called to implement the built-in functions oct () and hex (). Should return a string value.

object.__index__ (self)
Called to implement operator.index (). Also called whenever Python needs an integer object (such as in
slicing). Must return an integer (int or long).

2.5 HilhhE

object.__coerce__ (self, other)
Called to implement “mixed-mode” numeric arithmetic. Should either return a 2-tuple containing self and other
converted to a common numeric type, or None if conversion is impossible. When the common type would be
the type of other, it is sufficient to return None, since the interpreter will also ask the other object to attempt a

coercion (but sometimes, if the implementation of the other type cannot be changed, it is useful to do the conversion
to the other type here). A return value of Not Implemented is equivalent to returning None.

3.4. BHFEBH 35

The Python Language Reference, k% 2.7.18

3.4.9 Coercion rules

This section used to document the rules for coercion. As the language has evolved, the coercion rules have become hard
to document precisely; documenting what one version of one particular implementation does is undesirable. Instead, here
are some informal guidelines regarding coercion. In Python 3, coercion will not be supported.

If the left operand of a % operator is a string or Unicode object, no coercion takes place and the string formatting
operation is invoked instead.

It is no longer recommended to define a coercion operation. Mixed-mode operations on types that don’ t define
coercion pass the original arguments to the operation.

New-style classes (those derived from object) never invoke the __coerce__ () method in response to a binary
operator; the only time __coerce__ () is invoked is when the built-in function coerce () is called.

For most intents and purposes, an operator that returns Not Implemented is treated the same as one that is not
implemented at all.

Below, __op__ () and __rop__ () are used to signify the generic method names corresponding to an operator;
__iop__ () isused for the corresponding in-place operator. For example, for the operator ‘+’ , _add__ ()
and___radd___ () areused for the left and right variant of the binary operator, and __iadd___ () for the in-place
variant.

For objects x and y, first x.__op___(y) is tried. If this is not implemented or returns Not Implemented, y.
__rop___(x) istried. If this is also not implemented or returns Not Implemented, a TypeError exception
is raised. But see the following exception:

Exception to the previous item: if the left operand is an instance of a built-in type or a new-style class, and the right
operand is an instance of a proper subclass of that type or class and overrides the base’ s __rop__ () method,
the right operand’ s __rop__ () method is tried before the left operand’ s __op__ () method.

This is done so that a subclass can completely override binary operators. Otherwise, the left operand’ s ___op__ ()
method would always accept the right operand: when an instance of a given class is expected, an instance of a
subclass of that class is always acceptable.

When either operand type defines a coercion, this coercion is called before that type’s __op___ () or__rop__ ()
method is called, but no sooner. If the coercion returns an object of a different type for the operand whose coercion
is invoked, part of the process is redone using the new object.

When an in-place operator (like ‘+=")is used, if the left operand implements __iop__ (), it is invoked without
any coercion. When the operation falls back to__op__ () and/or __rop__ (), the normal coercion rules apply.

Inx + v, if xis a sequence that implements sequence concatenation, sequence concatenation is invoked.

Inx * vy, if one operand is a sequence that implements sequence repetition, and the other is an integer (int or
long), sequence repetition is invoked.

Rich comparisons (implemented by methods __eg () and so on) never use coercion. Three-way comparison
(implemented by ___cmp___ ()) does use coercion under the same conditions as other binary operations use it.

In the current implementation, the built-in numeric types int, long, float, and complex do not use coercion.
All these types implementa ___coerce__ () method, for use by the built-in coerce () function.

T 2.7 JRFE P The complex type no longer makes implicit calls to the __coerce_ () method for mixed-type
binary arithmetic operations.

36

Chapter 3. #iE#E%

The Python Language Reference, k7% 2.7.18

3.4.10 with {549 L T &EHE
2.5 FilshEe.

A context manager is an object that defines the runtime context to be established when executing a w1 t h statement. The
context manager handles the entry into, and the exit from, the desired runtime context for the execution of the block of
code. Context managers are normally invoked using the wi t h statement (described in section 7The with statement), but
can also be used by directly invoking their methods.

R SO AR BB VAR R IR E A R A RRAS . B R IR, SC RTINSO
BT LR UEHEERE 25 5, 1§57 typecontextmanager .

object.__enter__ (self)
Enter the runtime context related to this object. The wi t h statement will bind this method’ s return value to the
target(s) specified in the as clause of the statement, if any.

object.__exit__ (self, exc_type, exc_value, traceback)
1B R RAIZATI BRSNSl TR BT CGR M RE . PR T SO TR
B, =ASHHER N None.

ARG T R, I HA B RO S (R Rk), NI 2R Wl e, A, S
FEIR H 5 A% IE # AR AL 2L

WHRE__exit_ () HEANZRER G KEANTE, X2WHERTUE.
Z)
PEP 343 - “with” &) Python with iEAHITEHIAR. &5 FmRGl.

3.4.11 Special method lookup for old-style classes

For old-style classes, special methods are always looked up in exactly the same way as any other method or attribute. This
is the case regardless of whether the method is being looked up explicitly as in x.__getitem__ (i) or implicitly as
inx[i].

This behaviour means that special methods may exhibit different behaviour for different instances of a single old-style
class if the appropriate special attributes are set differently:

>>> class C:

pass
>>> cl = C{()

>>> c2 = C{()

>>> ¢cl.__len_ = lambda: 5
>>> c2.__len__ = lambda: 9
>>> len(cl)

5

>>> len(c2)

9

3.4. BHFEBH 37

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, k% 2.7.18

3.4.12 Special method lookup for new-style classes

For new-style classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an
object’ s type, not in the object’ s instance dictionary. That behaviour is the reason why the following code raises an
exception (unlike the equivalent example with old-style classes):

>>> class C(object):

pass
>>> ¢ = C()
>>> c.__len__ = lambda: 5

>>> len (c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

BEAT O 5 B S BEAE T A 45 28 B RAE N T A X RS S B LSRR IR T 3k, B AN__hash_ ()
M__repr_ (). WRXLETFIEM RAER M THREM AR, BTSRRI R A 5 A I
i SR

>>> 1 ._ hash__ () == hash(1l)
True
>>> int._ hash__ () == hash(int)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash__' of 'int' object needs an argument

N L W N B2 L rawea 8) R S D S W S R A SR 5 2 /S BIVE <312 2 R RS G U R 7 WIS
i G S) 5 A

>>> type(l).__hash__ (1) == hash(1l)

True

>>> type(int) .__hash__ (int) == hash (int)
True

B 7 o8 IR SEE AT L Bl E o, RS R R thasiid getattribute () Tk,
RN R TR

>>> class Meta (type):
def _ getattribute__ (*args):
print "Metaclass getattribute invoked"
return type.__getattribute__ (*args)

>>> class C(object):
_ _metaclass__ = Meta
def _ len_ (self):
return 10
def _ _getattribute__ (*args):
print "Class getattribute invoked"

return object.__getattribute__ (*args)
>>> ¢ = C()
>>> c.__len__ () # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__ (c) # Explicit lookup via type

Metaclass getattribute invoked

(F ks

38 Chapter 3. #iE#E%

The Python Language Reference, k7% 2.7.18

(8 E70)
10
>>> len(c) # Implicit lookup
10

LA Geid getattribute () HUHIMARNTAS N ERAE B AL b it 7 BB Al asta), AR 24k

T RPN I — S RGP (RRROTE o2 RBLEAE X RA B EPME IR A —Bob th i eas 2B) -

&

3.4. BHFEBH

39

The Python Language Reference, k% 2.7.18

40 Chapter 3. ¥iBigE

cHAPTER 4

HAITIREY

4.1 HEEHE

Names refer to objects. Names are introduced by name binding operations. Each occurrence of a name in the program
text refers to the binding of that name established in the innermost function block containing the use.

A block is a piece of Python program text that is executed as a unit. The following are blocks: a module, a function
body, and a class definition. Each command typed interactively is a block. A script file (a file given as standard input
to the interpreter or specified on the interpreter command line the first argument) is a code block. A script command (a
command specified on the interpreter command line with the ‘-¢’ option) is a code block. The file read by the built-in
function execfile () is a code block. The string argument passed to the built-in function eval () and to the exec
statement is a code block. The expression read and evaluated by the built-in function input () is a code block.

REBIRAE PATWUHPEIIT. — IS EEREREE O T HPuE (O HAT 58 UG BZRTHE T4k A
LA 4RSI AT o

A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that
block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining one,
unless a contained block introduces a different binding for the name. The scope of names defined in a class block is
limited to the class block; it does not extend to the code blocks of methods —this includes generator expressions since they
are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + i for i in range(10))

B NAARAEACE R BB, 2 i A& E MR AT o S — AR B AT UL re) A S A ek
LEOPOAZAR R T

If a name is bound in a block, it is a local variable of that block. If a name is bound at the module level, it is a global
variable. (The variables of the module code block are local and global.) If a variable is used in a code block but not
defined there, it is a free variable.

When a name is not found at all, a NameError exception is raised. If the name refers to a local variable that has not
been bound, a UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

41

The Python Language Reference, k% 2.7.18

The following constructs bind names: formal parameters to functions, i mport statements, class and function definitions
(these bind the class or function name in the defining block), and targets that are identifiers if occurring in an assignment,
for loop header, in the second position of an except clause header or after as in a with statement. The import
statement of the form from ... import * binds all names defined in the imported module, except those beginning
with an underscore. This form may only be used at the module level.

A target occurring in a del statement is also considered bound for this purpose (though the actual semantics are to
unbind the name). It is illegal to unbind a name that is referenced by an enclosing scope; the compiler will report a
SyntaxError.

B AR B ATE A8 S 2 T R s BN A s SR U e, s R TREIBZ S (Bl s R AUk) .

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as
references to the current block. This can lead to errors when a name is used within a block before it is bound. This rule is
subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block. The local
variables of a code block can be determined by scanning the entire text of the block for name binding operations.

If the global statement occurs within a block, all uses of the name specified in the statement refer to the binding of that
name in the top-level namespace. Names are resolved in the top-level namespace by searching the global namespace,
i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace of the module
__builtin__. The global namespace is searched first. If the name is not found there, the builtins namespace is
searched. The global statement must precede all uses of the name.

The builtins namespace associated with the execution of a code block is actually found by looking up the name
__builtins__ inits global namespace; this should be a dictionary or a module (in the latter case the module’ s dic-
tionary is used). By default, when in the __main__ module, __builtins___ isthe built-in module __builtin___
(note: no ‘s’); when in any other module, __builtins___ is an alias for the dictionary of the _ _builtin___
module itself .__builtins__ can be set to a user-created dictionary to create a weak form of restricted execution.

CPython implementation detail: Users should not touch __builtins__; it is strictly an implementation detail.
Users wanting to override values in the builtins namespace should import the __builtin__ (no ‘s’) module and
modify its attributes appropriately.

BRI I S AR — R AR BB . — AR BB EE B 4o __main_

global A5 [F— A H i 44 FR g6 e HA MH R AR k. Wk —A B 2 E o S E R A —4%
global i54], NZHHAEBSHYIE RS RAL .

A class definition is an executable statement that may use and define names. These references follow the normal rules for
name resolution. The namespace of the class definition becomes the attribute dictionary of the class. Names defined at
the class scope are not visible in methods.

4.1.1 5HTHEMRXE

There are several cases where Python statements are illegal when used in conjunction with nested scopes that contain free
variables.

If a variable is referenced in an enclosing scope, it is illegal to delete the name. An error will be reported at compile time.

If the wild card form of import —import * —isused in a function and the function contains or is a nested block with
free variables, the compiler will raise a SyntaxError.

If exec is used in a function and the function contains or is a nested block with free variables, the compiler will raise
a SyntaxError unless the exec explicitly specifies the local namespace for the exec. (In other words, exec obj
would be illegal, but exec obj in ns would be legal.)

The eval (), execfile (), and input () functions and the exec statement do not have access to the full environ-
ment for resolving names. Names may be resolved in the local and global namespaces of the caller. Free variables are not

42 Chapter 4. HiiTHEHE

The Python Language Reference, k7% 2.7.18

resolved in the nearest enclosing namespace, but in the global namespace.! The exec statement and the eval () and
execfile () functions have optional arguments to override the global and local namespace. If only one namespace is
specified, it is used for both.

42 BT

S e PRI B 0 L 42 R DA B A B o e A S 8 A R — b s S AR R IS, D0) 4 2 B
TV, BRI LA il A e s AT] 3 TR AR) e 2R B R A QRS R A AR B 4832
Python AT s AR BE A T4 iR (PIANZAEABIRE) S| % 5% . Python Bejp il PAfid raise
WA RAMG KA. RREABREL try - except IBRAPRIEEN . RIHMM finally THIATHUH RS
EHHAN, BIFALHRE, el min 2 m kKA FEH 2T .

Python [R5 ERAMBIR 2 “A1l” B St A BRas n] DAFR I A TAR AR, HAESNE RS AT, (HE
AREAE SR AR IARPEI B R MO Bt (B ARl T2 B b S AU A BL)

When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its interactive
main loop. In either case, it prints a stack backtrace, except when the exception is SystemExit.

SRl I BIRARRN . except TRISUIESLHIIRISEAPER:: B 5| LB 2802 H B 2K
P n]E AL BRI, R A K S AR IR

Exceptions can also be identified by strings, in which case the except clause is selected by object identity. An arbitrary
value can be raised along with the identifying string which can be passed to the handler.

{Efiit: Messages to exceptions are not part of the Python API. Their contents may change from one version of Python
to the next without warning and should not be relied on by code which will run under multiple versions of the interpreter.

WS The try statement /INTT WS £ ry 1BA] IR DA J The raise statement /N5 raise 15A] A .

&ix

U SRR B) 2 ph T A 3 S VR AR TV AR A TEAE R S R BT A T

42. BE 43

The Python Language Reference, k% 2.7.18

a4 Chapter 4. i {THER

CHAPTER D

ARFERFRE Python H A RIS FMOCR A & Lo

WL TEARRNSZEET T, ST BNF SRR IATRIA A ZIAE T 2 (R) Tk
FNLEA IR

name .= othername

HHEASHESL, WXMERN name #EiE¥E 5 othername fH[H.

5.1 EREMR

When a description of an arithmetic operator below uses the phrase ‘“the numeric arguments are converted to a common
type,” the arguments are coerced using the coercion rules listed at Coercion rules. If both arguments are standard numeric
types, the following coercions are applied:

o WML —ZHONEEL, 7S RAPEN R

o W, WRAE—SEONFRE, T —SBAPEAN T NG

* otherwise, if either argument is a long integer, the other is converted to long integer;
* otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string left argument to the ‘%’ operator). Extensions can define
their own coercions.

45

The Python Language Reference, k% 2.7.18

5.2 [F¥

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in reverse
quotes or in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom = identifier | literal | enclosure

enclosure = parenth_form | list_display
| generator_expression | dict_display | set_display
| string_conversion | yield_atom

5.2.1 #RIAFF (BHR)

YER IR T IR RAF I A TR . IS BTG Ao a0 TR e X, DA & 5902 R X
A 598 SR .

L ARG E B — DX GBS, X% R A SRAERFR B AR X 5 e M4 FRAR R 220 HoR(ER 5] &
NameError BH .

RAT B T 4P SO TE A IS P) — AR AT A A B 2 R RI LI LIF EARAA SR 2 T
RILKE5 R, B minding o8 64k, FAAARaTE R HA IS 2 i h— K B ikt
XAHALRL, BHRAT R T L HAEA A — NI, g, BMAE—D% K Ham fR PR FR HAT
__spam LN _Ham__spam. SXFPFEEA AT TR RAT T AE A0 . ISR R A RR R (i
it 255 ANFELF), Alfe A A i B SCEE LR . WA AL T RIZA N, NIRS# 5.

5.2.2 FEIA

Python supports string literals and various numeric literals:

literal := stringliteral | integer | longinteger
| floatnumber | Iimagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating point number, complex
number) with the given value. The value may be approximated in the case of floating point and imaginary (complex)
literals. See section 5~ #i7 {4 for details.

FIEAS 7 TR 5 R AT AR R 2, PR RO R AR R BN A SE PR . 20 YO HAT R M A 7 THI (K
6 (RIS R AR P SCAS A R B R AR) AT REAS B IR G 802 AT A1 MBI R [FIX 5

5.2.3 HEHESHHENX
7 [4 5 R 2R SR 5 T i] ek U 3%

parenth_form = "(" [expression_list] ")"
7 [155 B Rk 0 R R R AP R I = A pAE A R 78 . SRiZd R & 2 0—ANHES, BEamAk—
ATEHL N, BT R B Rt R 2 ikl

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the rules for literals apply (i.e.,
two occurrences of the empty tuple may or may not yield the same object).

46 Chapter 5. T/ix=

The Python Language Reference, k7% 2.7.18

TR IR th B S, SCBREAE AR SRR BIAME LR 2], X RTES A A i
—RWEFAPE AR ETFE T =7 2B, FFm M WA SR TT P

5.24 FRER

R RIS T RE A S 2k UR S

list_display = "[" [expression_list | list_comprehension] "]1"
list_comprehension expression list_for

list_for
old_expression_list

old _expression [("," old expression)+ [","]]

old_expression = or_test | old_lambda_expr
list_iter = list_for | 1list_1if
list_if = "if" old _expression [list_iter]

A list display yields a new list object. Its contents are specified by providing either a list of expressions or a list compre-
hension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed
into the list object in that order. When a list comprehension is supplied, it consists of a single expression followed by
at least one for clause and zero or more for or 1f clauses. In this case, the elements of the new list are those that
would be produced by considering each of the for or 17 clauses a block, nesting from left to right, and evaluating the
expression to produce a list element each time the innermost block is reached’.

5.2.5 Displays for sets and dictionaries

For constructing a set or a dictionary Python provides special syntax called “displays” , each of them in two flavors:
o BB R AR N
o 5 AR — IR R T SR, ROl T X

A AA TR R

comprehension = expression comp_for

comp_for = "for" target_list "in" or_test [comp_iter]
comp_iter = comp_for | comp_if

comp_if RES "if" expression_nocond [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or i1
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
foror 1f clauses a block, nesting from left to right, and evaluating the expression to produce an element each time the
innermost block is reached.

Note that the comprehension is executed in a separate scope, so names assigned to in the target listdon’ t “leak” in the
enclosing scope.

! In Python 2.3 and later releases, a list comprehension “leaks” the control variables of each for it contains into the containing scope. However,
this behavior is deprecated, and relying on it will not work in Python 3.

52. B¥F 47

"for" target_1list "in" old_expression_list [list_iter]

The Python Language Reference, k% 2.7.18

5.2.6 H£mRBETRER
A I e ek I B R 1) B T A e

generator_expression = "(" expression comp_for ")"

A RIS A — BT A A R o AR S HES MR, DOBIAE T & e 5 M0 & O 4552k
TS FREAN -

Variables used in the generator expression are evaluated lazily when the __next__ () method is called for generator
object (in the same fashion as normal generators). However, the leftmost for clause is immediately evaluated, so that
an error produced by it can be seen before any other possible error in the code that handles the generator expression.

Subsequent for clauses cannot be evaluated immediately since they may depend on the previous o r loop. For example:
(x*vy for x in range (10) for y in bar(x)).

The parentheses can be omitted on calls with only one argument. See section 1 /] for the detail.

5.2.7 FHTR

FHLR R HAESE SRR A] HE S 25 1 SR et R 51

"{" [key_datum_list | dict_comprehension] "}"
key_datum ("," key_datum)* [","]

m.mn

dict_display
key_datum_list
key_datum
dict_comprehension

TR S E— AR IR 5L

W%%$~A$“““Wm%@ﬁﬁ b, BN MNERAHCRE S L Fp 25 H . AR S8
VEAE 7 L Hp A7 TICRH S 5O R A o 3 T M35 R T DAE BB X e 31 vh 2 R B8 e A R A i, e & M p (5 H
e — IR BB E

FUHEF G RMEGHE XA TAR, EFLAR T RIPIANFRIEA, Jamidr EARMER “for” A1 “if”
TA). BHEFAPIATIE, NSRRI EAEICR SN AR O AGHT Y7 4

Xt B B SR I P BR) 2 8HE 2 A A 0 56 20 & 2825 4 WﬂP(%%%%,%%%ﬁﬁﬁﬁmmwhiﬁﬁﬂ
P A T AS R RARHERAE S o) AR [A S AR 5 8 S AT ERAT Y o Jo— NS (BIAE S kA
A I SCAR) SR fee A R

expression expression
expression ":" expression comp_for

528 £88TR

O R MR SRR, 55 SR KBIE T3 B 570 B) A

set_display := "{" (expression_list | comprehension) "}"

EARREDH AR R, HNEEE— RAIFREA N EF AR E . SR E 57 f
i— IR, HOTR AN B HPORIEFH AR EGXIR . MRS, Lo oMK
IV LA VIV Sy OFE 8

ZHEAANREN (3 RME T AR

48 Chapter 5. T/ix=

The Python Language Reference, k7% 2.7.18

5.2.9 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string_conversion = "*" expression_list " "

A string conversion evaluates the contained expression list and converts the resulting object into a string according to rules
specific to its type.

If the object is a string, a number, None, or a tuple, list or dictionary containing only objects whose type is one of these,
the resulting string is a valid Python expression which can be passed to the built-in function eval () toyield an expression
with the same value (or an approximation, if floating point numbers are involved).

(In particular, converting a string adds quotes around it and converts “funny” characters to escape sequences that are
safe to print.)

Recursive objects (for example, lists or dictionaries that contain a reference to themselves, directly or indirectly) use . . .
to indicate a recursive reference, and the result cannot be passed to eval () to get an equal value (SyntaxError will
be raised instead).

The built-in function repr () performs exactly the same conversion in its argument as enclosing it in parentheses and
reverse quotes does. The built-in function st r () performs a similar but more user-friendly conversion.

5.2.10 yield Fixz,

yield_atom "(" yield expression ")"
yield_expression = "yield" [expression_list]

2.5 HiHIfE.

The yield expression is only used when defining a generator function, and can only be used in the body of a function
definition. Using a yield expression in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution
of a generator function. The execution starts when one of the generator’ s methods is called. At that time, the execution
proceeds to the first yield expression, where it is suspended again, returning the value of expression_1list to
generator’ s caller. By suspended we mean that all local state is retained, including the current bindings of local variables,
the instruction pointer, and the internal evaluation stack. When the execution is resumed by calling one of the generator’
s methods, the function can proceed exactly as if the yie1d expression was just another external call. The value of the
yield expression after resuming depends on the method which resumed the execution.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry
point and their execution can be suspended. The only difference is that a generator function cannot control where should
the execution continue after it yields; the control is always transferred to the generator’ s caller.

52. B¥F 49

The Python Language Reference, k% 2.7.18

4 i ER- A BRI E

AT/ N RA T AR ARE AR IR . BT T4 i AR it e B AT
TEEEAE A i C ZAE AT IR A MEA 7 #4851 % valueError 5.

generator.next ()
Starts the execution of a generator function or resumes it at the last executed yield expression. When a gener-
ator function is resumed with a next () method, the current yie1d expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value of
the expression_Ilist isreturned to next ()’ scaller. If the generator exits without yielding another value,
a StopIlteration exception is raised.

generator.send (value)
Resumes the execution and “sends” a value into the generator function. The value argument becomes the result
of the current yield expression. The send () method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send () is called to start the
generator, it must be called with None as the argument, because there is no yie1d expression that could receive
the value.

generator.throw (type[, value[, traceback]])
Raises an exception of type type at the point where generator was paused, and returns the next value yielded by
the generator function. If the generator exits without yielding another value, a StopIteration exception is
raised. If the generator function does not catch the passed-in exception, or raises a different exception, then that
exception propagates to the caller.

generator.close ()
Raises a GeneratorExit at the point where the generator function was paused. If the generator function then
raises StopIteration (by exiting normally, or due to already being closed) or GeneratorExit (by not
catching the exception), close returns to its caller. If the generator yields a value, a RuntimeError is raised. If
the generator raises any other exception, it is propagated to the caller. close () does nothing if the generator has
already exited due to an exception or normal exit.

XHE—ANRIEAYE) T, R T AR A S e A A T

>>> def echo (value=None) :

print "Execution starts when 'next ()' is called for the first time."
try:
while True:
try:
value = (yield value)
except Exception, e:
value = e
finally:

print "Don't forget to clean up when 'close() is called."
>>> generator = echo (1)

>>> print generator.next ()

Execution starts when 'next()' is called for the first time.
1

>>> print generator.next ()

None

>>> print generator.send(2)

2

>>> generator.throw(TypeError, "spam")

TypeError ('spam',)

>>> generator.close ()

Don't forget to clean up when 'close()' is called.

50 Chapter 5. FRikR;

The Python Language Reference, k7% 2.7.18

S
PEP 342 - il Wgom R A pe 25 s B A 3650 A4 % APT FETERGER L, (AT DAY F AR B AR

53 &

JR BRI RS T P R BRI RE. ENIMAEDT
primary = atom | attributeref | subscription | slicing | call

5.3.1 BH5IH
JEES R E T A — A2 AR

attributeref = primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, e.g., a module, list, or an instance. This
object is then asked to produce the attribute whose name is the identifier. If this attribute is not available, the exception
AttributeErrorisraised. Otherwise, the type and value of the object produced is determined by the object. Multiple
evaluations of the same attribute reference may yield different objects.

5.3.2 iHE
FBGIRAERFS (AP JeHENER) S (L) X — I

subscription = primary "[" expression_list "]"

The primary must evaluate to an object of a sequence or mapping type.

AR F AN, ik O ITORAE — A PAKBUR RSO ARG, IR A SR M v e Bk
IR (FkAFNFN—ATd, BRIEHH A1)

If the primary is a sequence, the expression list must evaluate to a plain integer. If this value is negative, the length of the
sequence is added to it (so that, e.g., x [-1] selects the last item of x.) The resulting value must be a nonnegative integer

less than the number of items in the sequence, and the subscription selects the item whose index is that value (counting
from zero).

TFAFERR IR TAT . FAFA R B A R SR AL 2 OO — NPT AT R

53. E® 51

https://www.python.org/dev/peps/pep-0342

The Python Language Reference, k% 2.7.18

533 Y1k

PRRAERF NS (P47 . JUHER) PSRRI,)R AT AR Rk A R IR e de 2
R E R YR AT

slicing = simple_slicing | extended_slicing
simple_slicing primary "[" short_slice "]"

extended_slicing
slice_list

primary "[" slice_list "]"
slice_item ("," slice_item)* [","]

slice_item = expression | proper_slice | ellipsis
proper_slice = short_slice | long_slice

short_slice = [lower_bound] ":" [upper_bound]
long_slice = short_slice ":" |[stride]

lower_bound = expression

upper_bound = expression

stride = expression

ellipsis i= oo

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any
subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining
that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if
the slice list contains no proper slice nor ellipses). Similarly, when the slice list has exactly one short slice and no trailing
comma, the interpretation as a simple slicing takes priority over that as an extended slicing.

The semantics for a simple slicing are as follows. The primary must evaluate to a sequence object. The lower and upper
bound expressions, if present, must evaluate to plain integers; defaults are zero and the sys .maxint, respectively. If
either bound is negative, the sequence’ s length is added to it. The slicing now selects all items with index k such that i
<= k < j whereiand j are the specified lower and upper bounds. This may be an empty sequence. It is not an error
if i or j lie outside the range of valid indexes (such items don’ t exist so they aren’ t selected).

The semantics for an extended slicing are as follows. The primary must evaluate to a mapping object, and it is indexed
with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the key is a tuple
containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The conversion
of a slice item that is an expression is that expression. The conversion of an ellipsis slice item is the built-in E11ipsis
object. The conversion of a proper slice is a slice object (see section 47 /& & 7! & 2% 25 #]) whose start, stop and
step attributes are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting
None for missing expressions.

5.3.4 FH
JIr VR 2 B T RE A 25 1 — AR5 2 2 SR IAT— A RTTRIR G (Bl function):

call

primary " (" [argument_list [","]
| expression genexpr_for] ")"
positional_arguments ["," keyword_arguments]

argument_list

[","™ "*" expression] ["," keyword_arguments]
["," "**" oxpression]
| keyword_arguments ["," "*" expression]
[n,n LU 1] expression]
| "*" expression ["," keyword_arguments] ["," "x*"
| "**" expression
positional_arguments = expression ("," expression)*

52 Chapter 5. FRikR;

expression]

The Python Language Reference, k7% 2.7.18

keyword_arguments = keyword_item ("," keyword_item)*
keyword_item u= identifier "=" expression

A trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects, class
objects, methods of class instances, and certain class instances themselves are callable; extensions may define additional
callable object types). All argument expressions are evaluated before the call is attempted. Please refer to section % 4%
7 3 for the syntax of formal parameter lists.

WERAFAE R T 28, e el U SRR O BB A Bk, RS R R ()
PR WA N MEESH, WRHFENTAR N NS KI5, TN XREFSH, IR RA R E
HX A ZEAE (RERARPRAT 5 55— ISR MR W 55— AN 207, IRIEEHE) . AR C T,
M5 % TypeError . BN, KHSEEMAZMHTIHTE (BIEIFREACH None AT M7
A SHAEISE RIS, ORI 25 (00 R R BOE SRR A RIS . (B4 B SCHSHOOAE
APOTRS L, 28R F X I AR QY EBOAMERT, 5 WP RS A Y 23 (2 B
Pt SRR DL 5 B2 o) ARARA— N ARIE S (A T E BOAE, W &51% TypeError R,
MM, CHEFEEMRIPIR SN NI S H%.

SLLese gl RS UL AL E S MBCA AR N E R R, RIMEENE SIS & ™A “md”, NIEARERAR
LIRS FE CPython 1, DA CHE I/ PyArg_ParseTuple () SRAFMTHZ RN o B Bk
JE T XA DL .

WRIFAERIEASHEMZ A ESH, 25K TypeError JH#, FRiEA DN EXSHMEA T
*identifier AJVk; TEMIEI T, RIEASHHZRZ—MUETZRMUESHEITTH (WREAHZ AR
B ESHO A — 25Tt) o

WAL KB P SR 5 Z W E SRR, KF&51% TypeError 3, BRI —MEASHULA
T **identifier Aik, RIERSHRHERZ —MLE T ZRIB TSR T ([T BTN RIS
AV SRRV, WRBA ZRRETFSEINN—4 Cirfl) =7 4L

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements from

this iterable are treated as if they were additional positional arguments; if there are positional arguments x/, -+, xN, and
expression evaluates to a sequence y/, ‘-, yM, this is equivalent to a call with M+N positional arguments x/, ‘-, xN,
y] , v, Y M.

A consequence of this is that although the *expression syntax may appear after some keyword arguments, it is
processed before the keyword arguments (and the * *expression argument, if any —see below). So:

>>> def f(a, b):
print a, b

>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f£() got multiple values for keyword argument 'a'
>>> f£(1, *(2,))
12

FE [— AV H [R5 B 2400 *expression ARERIFAVE L, IILSE PR EaXFRAGIRIE A & K

If the syntax **expression appears in the function call, expression must evaluate to a mapping, the contents of
which are treated as additional keyword arguments. In the case of a keyword appearing in both expression and as an
explicit keyword argument, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots
or as keyword argument names. Formal parameters using the syntax (sublist) cannot be used as keyword argument

53. E® 53

The Python Language Reference, k% 2.7.18

names; the outermost sublist corresponds to a single unnamed argument slot, and the argument value is assigned to the
sublist using the usual tuple assignment rules after all other parameter processing is done.

ARG R TR, AR REE, REEHR AN None. IR [MERTTEEIT 2T TR IR e 26
A,

WA —

R E e SCeRBe: e B USRS TT, I AS B2 BRI 28— 32 R L sUE 248 0E
IR SH MRS WS 20 S AU BIAT return TRATIY, R AR E B RO Y iR [a]
{H.

WEL B ik BAAGURAOB T RES: A 5 N EL R BT YRR A 2 L built-in-funcs .
P G: IR mIZIEH—AH LB

RSBk VMM P E E R B, I HAEARMSES RS WS B ERZ I L8
H—BE

PRl SRMAGE LA __call () Ik ERRCRRESEM0 TR NZIE.

5.4 BEHEMF
B STRFSE WAE e M —TE BT IR (40 R AU D — GBS . AT

power = primary ["**" u_expr]

[, AN P B 2 SRR F B AT A b, BRI [2R (3R 22 A sk
I) : —1%x2 G5 -1,

The power operator has the same semantics as the built-in pow () function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common type.
The result type is that of the arguments after coercion.

With mixed operand types, the coercion rules for binary arithmetic operators apply. For int and long int operands, the
result has the same type as the operands (after coercion) unless the second argument is negative; in that case, all arguments
are converted to float and a float result is delivered. For example, 1 0* *2 returns 100, but 10* *—2 returns 0. 01. (This
last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second
argument was negative, an exception was raised).

Raising 0. O to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional power
results ina ValueError.

5.5 —HEARMIEH

A AL S BA A) e 2k

u_expr = power | "-" u_expr | "+" u_expr | "~" u_expr
—ICBHAT - (1) &7 RS H .
—JCIEFAF + (1) 27745 HEUE S B R ..

The unary ~ (invert) operator yields the bitwise inversion of its plain or long integer argument. The bitwise inversion of

54 Chapter 5. T/ix=

The Python Language Reference, k7% 2.7.18

x is defined as — (x+1) . It only applies to integral numbers.

TEFTA =ML T, MRS, K5]K TypeError FH.

“rEREZEHAF

TR ARIBRATEM LRSS W R SR AT AR TR E AR R, BRRIE AT AN R
AWASEI, —MERTREZESR, H—MERTINAELE R

m_expr = u_expr | m expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr
| m_expr "%" u_expr
a_expr I= m_expr | a_expr "+" m_expr | a_expr "-" m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer (plain or long) and the other must be a sequence. In the former case, the numbers are
converted to a common type and then multiplied together. In the latter case, sequence repetition is performed; a negative
repetition factor yields an empty sequence.

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments are
first converted to a common type. Plain or long integer division yields an integer of the same type; the result is that of
mathematical division with the ‘floor’ function applied to the result. Division by zero raises the ZeroDivisionError
exception.

BEAF & (B K b 56— D SER B A S BRI WA EF S e o R A A280h
X 5| K ZeroDivisionError JH. SEMTDAUKNIE SE, Bl 3.14%0.7 %F 0.34 (BN 3.14 &F
4%0.7 + 0.34), BUEBHAFEERIEFSRE S8 MRER—3 (B0 hF) GERMAEXE—E/N T4
AR N

The integer division and modulo operators are connected by the following identity: x == (x/vy)*y + (x%y). In-
teger division and modulo are also connected with the built-in function divmod (): divmod (%, y) == (x/y,
x%y) . These identities don’ t hold for floating point numbers; there similar identities hold approximately where x /v is
replaced by floor (x/y) or floor (x/y) - 13,

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string and unicode
objects to perform string formatting (also known as interpolation). The syntax for string formatting is described in the
Python Library Reference, section string-formatting.

2.3 UG E. %% The floor division operator, the modulo operator, and the divmod () function are no longer defined
for complex numbers. Instead, convert to a floating point number using the abs () function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both sequences
of the same type. In the former case, the numbers are converted to a common type and then added together. In the latter
case, the sequences are concatenated.

BREAT - 08D Ri BB RO SRR e g AR Rl 2R

>R abs (x3y) < abs (v) 7EACFIULRIL, (X TR0 S, hPEARIEE, AR EARM NI, BN, BRAER -
1219 Python P 8y — A~ IBEE 754 MRS EEHE, 11l -1e-100 % 1e100 A4 4 1100 MIEMIE G, ITREAAFZ ~1e-100
+ 1e100, XYEHUE LIEH%T 1100, Bfimath. fmod () RFIMLERINSBA SH—DSEAMFESME, FIAEZF LT
R[E -1e-100, frfiy A EH IR BRI BT .

3 If x is very close to an exact integer multiple of y, it’ s possible for f1oor (x/y) to be one larger than (x-x%y) /y due to rounding. In such

o

cases, Python returns the latter result, in order to preserve that divmod (x,y) [0] * y + x % y be very close to x.

6. ZTEREHH 35

The Python Language Reference, k% 2.7.18

5.7 BhEH

BALs AR T AR

shift_expr = a_expr | shift_expr ("<<" | ">>") a expr

These operators accept plain or long integers as arguments. The arguments are converted to a common type. They shift
the first argument to the left or right by the number of bits given by the second argument.

A right shift by n bits is defined as division by pow (2, n). A left shift by » bits is defined as multiplication with
pow (2, n). Negative shift counts raise a ValueError exception.

{Ef#: In the current implementation, the right-hand operand is required to be at most sy s .maxsize. If the right-hand
operand is larger than sys.maxsize an OverflowError exception is raised.

5.8 Z{izE

=R Ls A A A AMFER S

and_expr = shift_expr | and _expr "&" shift_expr
XOr_expr = and_expr | xor_expr """ and_expr
or_expr = xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be plain or long integers. The arguments are
converted to a common type.

The ~ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be plain or long integers. The
arguments are converted to a common type.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be plain or long integers. The arguments
are converted to a common type.

5.9 LEREH

5 C A, Python WA LB AL Sl], ARTATMTSRAR . s finzid. 75— C ARZAfET
a < b < cEFERFRIR SR G ARE IR AR L

comparison n= or_expr (comp_operator or_expr)*
COmp operator = "<" ‘ ">" | n__mn | ">=" I "<=" | "<>" | wilp_—_mn
| "iS" ["not"] ‘ ["not"] "in"

He B iz SF Ry AT /R True B False.,

HEGZH AT MERAIE, Bl x < v <= 2T x <y and y <= z, Ty RPERE—K (ELERF
BTN x <y ENE 2 FARSPORIE) .

E R MR a, b, ¢, .y, 2 RIBX opl, op2, -+, opN HHEGZHFF, Wa opl b op2 c

56 Chapter 5. FRikR;

The Python Language Reference, k7% 2.7.18

... vy opN z %M T a opl b and b op2 ¢ and ... y opN z, JFEMARZEHEEANFEA
w2 HBeRkE—R.

HHERE a opl b op2 ¢ AEMETE a il c Z[BIHATEMLE, HL, x < v > z XENBEREEE
VER (BAREEA KR) .

The forms <> and ! = are equivalent; for consistency with C, ! = is preferred; where != is mentioned below <> is also
accepted. The <> spelling is considered obsolescent.

5.9.1 {HLLE

BEAF <, >, ==, >= <= H | = LR RIE. PN RAZROGH IR,

AR LS R RGN REAMAE (B RERIARIRS) . WR(EAE Python g —AMAH 44l 4 i)
MG B, XS — MR TR k. TH, SREHREOREARE R, Bl K4
%B%@%)%ﬁ%ﬁi%o HBGEFAF S T — R E R RS . AATTAT DATA A I 2 a8 5 S BT 5% H e) e
ESCT R RAE.

Types can customize their comparison behavior by implementing a ___cmp___ () method or rich comparison methods
like 1t (), described in & A& 4.

BRI —ZCHE LU (== F1 1=) B R TR ARIRS . B, B RAR RS 0 S0 — 8ok R S5 R A,
HAAR [ﬂﬁﬁ%é‘f@%ﬂ#ﬁﬁ HRER A . HUE XA T A B S A BT W R %02 ST
P = is vy HIEKE x == v).

The default order comparison (<, >, <=, and >=) gives a consistent but arbitrary order.

(This unusual definition of comparison was used to simplify the definition of operations like sorting and the in and not
1in operators. In the future, the comparison rules for objects of different types are likely to change.)

Fi B ERIA B —BE LU AT N, BAANFER RS L6 B2 A, XA REANIE G e ST B A e X
HAHRETEN—SER R, XFERBTFEEH B CWIRAT R, Ehrl, #2 NERBHE XN
PARFNRAIA T i £ ZE N E R AT -
o NEFEZEA (typesnumeric) A K FrifEFEZEM fractions.Fraction #l decimal .Decimal AJHEfT
FKAINFRFNES R B LR, BIAMR B EEOA SRR)T O . FERBUM CIBR B A , B
(BB3E) FUNIEMIE T EASG R R .

» Strings (instances of str or unicode) compare lexicographically using the numeric equivalents (the result of
the built-in function ord ()) of their characters.* When comparing an 8-bit string and a Unicode string, the 8-bit
string is converted to Unicode. If the conversion fails, the strings are considered unequal.

* Instances of tuple or 1ist can be compared only within each of their types. Equality comparison across these
types results in unequality, and ordering comparison across these types gives an arbitrary order.

These sequences compare lexicographically using comparison of corresponding elements, whereby reflexivity of
the elements is enforced.

In enforcing reflexivity of elements, the comparison of collections assumes that for a collection element x, x ==
x is always true. Based on that assumption, element identity is compared first, and element comparison is per-
formed only for distinct elements. This approach yields the same result as a strict element comparison would,

4 Unicode Sl BT X 43 #42 (A1 U+0041) A1 44 545 (0 “KSHTFEE A7), HIK Unicode TR ZEHEFAFES HH—4
AR, A — SR AR 2 A AR F PR IR . B, SRTA A TR ST R C7 WIRAH
U+00C7 f {7 ERYERAS TR FHRFEIR, AT —A> U+0043 B AL ERY a5 4 CRGHT 548 O il bE—A> U+0327 #4447 By 84
FH AT HFIHRER .

The comparison operators on unicode strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example,
u"\u00C7"™ == u"\u0043\u0327" is False, even though both strings represent the same abstract character “LATIN CAPITAL LETTER
C WITH CEDILLA” .

BHMSRTAFEN (B NSRBI MM) XA EEETILR:, Wi unicodedata.normalize ().

59. LkBHEHE 57

The Python Language Reference, k% 2.7.18

if the compared elements are reflexive. For non-reflexive elements, the result is different than for strict element
comparison.

PN B2 DA 0] 1 7 e U R AN

-aﬁ/\zxﬁ%ﬁ%w# CATACHAE 2R KR, I BN A e EZEB LS (Flan,
[1,2] ==) SMRAE, PUAZEHEURT),

— Collections are ordered the same as their first unequal elements (for example, cmp ([1,2,x]1, [1,2,
y 1) returns the same as cmp (x,y)). If a corresponding element does not exist, the shorter collection is
ordered first (for example, [1,2] < [1,2,3] istrue).

© PIWUT (dict H’J;&TFJ) A, AR HACYENTHA MY (42 18) XF. SERME R — B0 AR
HMLAE H RS

Outcomes other than equality are resolved consistently, but are not otherwise defined.’

* Most other objects of built-in types compare unequal unless they are the same object; the choice whether one
object is considered smaller or larger than another one is made arbitrarily but consistently within one execution of
a program.

TERTRERIIEOL T, P S 1 HO A T Ay o 24 A —— 26— B
o FHAFHEBE IV %02 B ORI« A Th e, AT RS HBE I B %R 45
x 1s yEMKEx ==y
o W AZRA PRI . A)ihid, oI %A AR 145 R
x == yMy == x
x !=yfly !'= x
x < yMy > x
x <= yHfly >= x
o ROV ZRWAZER . A (fR2R) F 7 2R 17X — A
x>y andy > zBHEKEx > z
x <y and y <= z BKE x < z
o S i) OB A% B AR IO .)i, SRR %A M [R A5 AR
x == yfllnot x !=y
x < yflnot x >= y (T2
x > yflnot x <= y (T EEHF)

e EBREH T ReHrLmisE (RFmAEEASBL) . 5520 total_ordering ()
el

* hash () WERMIZGRGME 2. MFERXIRYZEE RAMERSAE, SERC ARG

Python does not enforce these consistency rules.

5 Earlier versions of Python used lexicographic comparison of the sorted (key, value) lists, but this was very expensive for the common case of
comparing for equality. An even earlier version of Python compared dictionaries by identity only, but this caused surprises because people expected to
be able to test a dictionary for emptiness by comparing it to { }.

58 Chapter 5. FRikR;

The Python Language Reference, k7% 2.7.18

5.9.2 RKENEEHE

The operators in and not in test for membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well as
dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set, frozenset,
dict, or collections.deque, the expression x in vy isequivalentto any (x is e or x == e for e in vy).

KPR R 2RAOR YL, K HACY x 2 y B THE x in v A True. —SMARINE v. £ind (x)
= -1, BEMAREEHIAETHMFFREY T, B " in "abe" ¥R [True.

XFENT__contains__ () FEMHFEECERU, R y.__contains__ (x) RFEEMHM x in y
R\ True, FNR[E False,

For user-defined classes which do not define _ contains_ () butdodefine iter (),x in yis True if
some value z with x == =z is produced while iterating over y. If an exception is raised during the iteration, it is as if
1in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem (), x in vy is True if and only if
there is a non-negative integer index i such that x == y[1], and all lower integer indices do not raise IndexError
exception. (If any other exception is raised, it is as if in raised that exception).

The operator not 1n is defined to have the inverse true value of in.

5.9.3 RIRSILEK

The operators isand is not test for object identity: x is vy is true if and only if x and y are the same object. x is
not vy yields the inverse truth value.®

5.10 f/RiEH

or_test = and_test | or_test "or" and_test
and_test = not_test | and_test "and" not_test
not_test = comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values
are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings,
tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. (Seethe __nonzero__ () special
method for a way to change this.)

BEAFnot MHEHSHONBMEM 774 True, HW /AL False,
FikA x and y IR xR AR x AENBR EHZAE AW y SRAGFH R PS5 RAE
Kk x or vy BN KM AR x NENERIHZE; X y KA & S5

(Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty,
the expression s or 'foo' yields the desired value. Because not has to invent a value anyway, it does not bother to
return a value of the same type as its argument, so e.g., not 'foo' yields False,not '"'.)

O iy TAEFE E BB IAE . A IRFI R DA SRS M S AR, ARTT AR S R BP0 T 1 s B A S BB R R AT R,
BIAN K B S B E B B2 (B LA 2 ANt . 25 B AR A KBRS,

5.10. fiREH 59

The Python Language Reference, k% 2.7.18

5.11 Conditional Expressions

2.5 Fri ke,
conditional_expression = or_test ["if" or_test "else" expression]
expression = conditional_expression | lambda_expr

AR CERFRN “=JtisBAF") FERTA Python iz B R R L 5ELL -

The expression x if C else vy first evaluates the condition, C (not x); if C is true, x is evaluated and its value is
returned; otherwise, y is evaluated and its value is returned.

HZ 5 PEP 308 1A KA MFFRA TN

5.12 lambda FKixxX

lambda_expr = "lambda" [parameter_list]: expression
old_lambda_expr = "lambda" [parameter_list]: old_expression

Lambda expressions (sometimes called lambda forms) have the same syntactic position as expressions. They are a short-
hand to create anonymous functions; the expression lambda parameters: expression yields afunction object.
The unnamed object behaves like a function object defined with

def <lambda> (parameters) :
return expression

See section # 44 i€ 3L for the syntax of parameter lists. Note that functions created with lambda expressions cannot
contain statements.

5.13 RixAXFIER

expression_list = expression ("," expression)* [","]

An expression list containing at least one comma yields a tuple. The length of the tuple is the number of expressions in
the list. The expressions are evaluated from left to right.

RBHE S Q) RMOTH (AR £ 72 TR HAR R OL T rTR . A R I 5 i Bk
BAARSE—TCH, MR EREANE. (Eeg— 1 aocd, BN AEAERETES: O.)

60 Chapter 5. FRikR;

https://www.python.org/dev/peps/pep-0308

The Python Language Reference, k7% 2.7.18

5.14 RENHFF

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated
before the left-hand side.

FEPATIU T, kA RS AR ok E.

exprl, expr2, expr3, expr4
(exprl, expr2, expr3, expr4)
{exprl: expr2, expr3: expréd}

exprl + expr2 * (expr3 - exprd)
exprl (expr2, expr3, *exprd4, **exprb)
expr3, exprd4 = exprl, expr2

5.15 BEBRFMAH

The following table summarizes the operator precedences in Python, from lowest precedence (least binding) to highest
precedence (most binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for comparisons, including tests, which all
have the same precedence and chain from left to right —see section }t.4% i& - —and exponentiation, which groups from
right to left).

BEEF it

lambda lambda FEiE

if-else ZFR

or /K245 OR

and /RS AND

not x fi/RZHAE NOT

in,not in,is,1s not,<,<=,> >= <>, = == HWRGER, A3E ORI AR 54
| # 75 OR

" i 58 XOR

& A5 AND

<<, >> AL

+, - TN

/1% Multiplication, division, remainder’

+x, =X, ~X 1w, 1, #074E NOT

* * ﬁj‘ig

x[index], x[index:index], x (arguments...), x. | i, YK, #EH, JBHSIH
attribute

(expressions...), [expressions...], {key: | Binding or tuple display, list display, dictionary
value...}, “expressions...’ display, string conversion

T BEAFRMH T AL TEIS & T SR REm e -
S FHBIAE * - G T AR AR T A U AR S (OB AF, R 24+ -1 0.5,

5.14. K{EIFF 61

The Python Language Reference, k% 2.7.18

&

62 Chapter 5. FRikR;

CHAPTER O

EERIEA

Simple statements are comprised within a single logical line. Several simple statements may occur on a single line sepa-
rated by semicolons. The syntax for simple statements is:

simple_stmt = expression_stmt

6.1 RiEXiED

assert_stmt
assignment_stmt
augmented_assignment_stmt
pass_stmt
del_stmt
print_stmt
return_stmt
yield stmt
raise_stmt
break_stmt
continue_stmt
import_stmt
future_stmt
global_stmt
exec_stmt

FRXEHTITAMEAE (REZRELERT), d (AL i G AR A
AR EG AE Python w1 RERYIR [BIE N None). iR Cif A HAt i i1 D7 0t e seir B R E T Ad

1. FahsaE R AL

expression_stmt =

expression_list

63

The Python Language Reference, k% 2.7.18

FIRAE R AR ERFB TR (WATRE R —3RIA) BRI
In interactive mode, if the value is not None, it is converted to a string using the built-in repr () function and the

resulting string is written to standard output (see section The print statement) on a line by itself. (Expression statements
yielding None are not written, so that procedure calls do not cause any output.)

6.2 M{EHIE)

WA T2 PR () FPERIRRE(E, PARAE ko m] A2 G A i A

assignment_stmt = (target_1list "=")+ (expression_list | yield expression)
target_list = target ("," target)* [","]
target = identifier

| "(" target_1list ")"

| "[" [target_list] "]1"
| attributeref

| subscription

| slicing

(See section /77! for the syntax definitions for the last three symbols.)

IR 1) 200 R I RB RN RIATRAE (XA B R iRk AU hiZ 5 s %R, a8
ANTCH) HRFER— SRR RN B BRI H brd 3.

AR H AR (132) roksib e SO . M E B — At g BT . it q) rgisis

Gt AT AR G e A A TIRE B e HoA R, AR (AR nT e 2 T B | e e A PRIzl
PR HELIFNG | B S i I A R B E LG (S A0 R R R4 —T1).

Assignment of an object to a target list is recursively defined as follows.
« If the target list is a single target: The object is assigned to that target.

* If the target list is a comma-separated list of targets: The object must be an iterable with the same number of items
as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets.

X GRIRAE 25 B H AR B F4% DA T 07 Ui T E S
o WEREARHIRRSA (25K) -

— If the name does not occur in a g1 oba I statement in the current code block: the name is bound to the object
in the current local namespace.

— Otherwise: the name is bound to the object in the current global namespace.

UNSRZA PR L 0 WEAF BB 0 X 0] RE T 2 AT BESE E B4 PRI R 5 | T A %,
T B R ARG R U T AT RS (ASRAFAE) -

« If the target is a target list enclosed in parentheses or in square brackets: The object must be an iterable with the
same number of items as there are targets in the target list, and its items are assigned, from left to right, to the
corresponding targets.

o MR GNEMESIH SRR SGORIE. ERE DA IRE RN R &

M5 K& TypeError, BATRIPERAG iR RIR(EL 46 @ 1 JE M R B RERATIRE, W2
51k s GEE NN AttributeError [HIFARTRHIZR).

64 Chapter 6. EEiEx)

The Python Language Reference, k7% 2.7.18

R AR GO R B HR RS | AR AT A ARt B, WA ISR K a . x AT RATI 15K
BB (AERSEHIEIEAAAE) K. ZEM B a. < FfERBUE WSO RN, FFAEbBm flH %
KBETE. Hit, a.x AP —EfR A R ek A 2k g — 2wk, W20
IR A LR PR A IRE R H A5

class Cls:
X =3 # class variable
inst = Cls ()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

Bl —E R TR BN, BlinEd property (O BIEHIRFIEIEME.

« If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a muta-
ble sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is
evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield a plain integer. If it is negative,
the sequence’ s length is added to it. The resulting value must be a nonnegative integer less than the sequence’
s length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of
range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

R — B SR (G178, AL TEA 5B R BRI R R, ARG &
O ASKF OB 2 R S B SEAMERT o X T DU B e B B {ELR I PR AFAT [B, il DA
SEAEA—SERAERT (AR FEER A E) -

« If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper
bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’ s length. The bounds
should evaluate to (small) integers. If either bound is negative, the sequence’ s length is added to it. The resulting
bounds are clipped to lie between zero and the sequence’ s length, inclusive. Finally, the sequence object is asked
to replace the slice with the items of the assigned sequence. The length of the slice may be different from the length
of the assigned sequence, thus changing the length of the target sequence, if the object allows it.

E 24T QQ?LEP FARIARAREU R 5 RE XA AEA T, TERUARA A IS L B BB s, SECR K
AR HFIREE -

WARNING: Although the definition of assignment implies that overlaps between the left-hand side and the right-hand
sideare ‘safe’ (forexamplea, b = b, a swapstwo variables), overlaps within the collection of assigned-to variables
are not safe! For instance, the following program prints [0, 2]:

x = [0, 1]

[
i=0
i, x[i] =1, 2
print x

6.2.1 HEMEIED
YRR LT P A B) ks G RV) 0 —

augmented_assignment_stmt = augtarget augop (expression_list | yield expression)
augtarget = identifier | attributeref | subscription | slicing
augop = ni=n | n__m ‘ Wx_n | n/:u | "//:" ‘ LSSl I MWxx_—N

| LN] | MW= | ne="m ‘ nA_n | "|:"

(See section 7 7! for the syntax definitions for the last three symbols.)

6.2. W{EIED 65

The Python Language Reference, k% 2.7.18

SR IRAELTR R %) AR AN RSN R (S8 IRETH AR AR, AIE A RE N ATIEORAFE) , XM
BB R ARE AT E M otz ®, HHEPRIRES R H iR, BRI SBERE—K.

BEIRIRAETE BN < += 1 APABKEy x = x + 1 FAERRUEIFARSE SR AROR » AE3S SRIBE Y HCA
x URPORE—K. TH, fEATRMREL T, Shrinzie e drn, Wt A ald P Hxigdf
FEHIRES BAR, T2 BB SURR 5

B A BN IR(E 4 JC AN Z A HARAG B SO0, 9 I(E /R A W (e A Ak B 25 2 W FEL A]
R, BR T RTREAFAE ROCBRAEA T A BIAME O, HESRIBR(ETH A T ot St 58l —ocis A .

XEFIRIET IR AR, FXH AR X T 5 4= 50) 5 bk o S BIRREE T .

6.3 The assert statement

assert 1EAT) R AEFE 7 HP 3l AR W 5 w18 =

assert_stmt = "assert" expression ["," expression]
TR assert expression T
if _ _debug__:

if not expression: raise AssertionError

P EIE assert expressionl, expression2 ZfT

if _ _debug__:
if not expressionl: raise AssertionError (expression?2)

These equivalences assume that __debug___ and AssertionError refer to the built-in variables with those names.
In the current implementation, the built-in variable __debug___ is True under normal circumstances, False when
optimization is requested (command line option -O). The current code generator emits no code for an assert statement
when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression
that failed in the error message; it will be displayed as part of the stack trace.

MRE4% __debug_ @AREARY. %N EA B IESTEMRS RSN E .
6.4 The pass statement

pass_stmt = "pass"

pass E—NEEME L BEYRATH, F2EAKE. Bil6 4 EE ERE-FEAEHFATERITEMAC
B PR FH RIS (567, B

def f (arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

66 Chapter 6. EEiEx)

The Python Language Reference, k7% 2.7.18

6.5 The del statement

del_stmt = "del" target_1list
T A as U e Sy, SRAE R O AR R 2L, AR TR, HAA 1 —Sf R,
H 451 2 R0 A 2 A5 i I s B B — A H A

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name
occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.

It is illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.

JEIET I AN T B ER 2 B BB 2R B R S B R 5 MR — DU R AR S5 T IR — S T 262
2O (ERMEX— 2 Y] R osE) -

6.6 The print statement

print_stmt = "print" ([expression ("," expression)* [","]]

| ">>" expression [("," expression)+ [","11)

print evaluates each expression in turn and writes the resulting object to standard output (see below). If an object is
not a string, it is first converted to a string using the rules for string conversions. The (resulting or original) string is then
written. A space is written before each object is (converted and) written, unless the output system believes it is positioned
at the beginning of a line. This is the case (1) when no characters have yet been written to standard output, (2) when
the last character written to standard output is a whitespace character except ' ', or (3) when the last write operation
on standard output was not a print statement. (In some cases it may be functional to write an empty string to standard
output for this reason.)

{#fi#: Objects which act like file objects but which are not the built-in file objects often do not properly emulate this
aspect of the file object’ s behavior, so it is best not to rely on this.

A '"\n' character is written at the end, unless the print statement ends with a comma. This is the only action if the
statement contains just the keyword print.

Standard output is defined as the file object named stdout in the built-in module sys. If no such object exists, or if it
does not have a write () method, a RuntimeError exception is raised.

print also has an extended form, defined by the second portion of the syntax described above. This form is sometimes
referred to as “print chevron.” In this form, the first expression after the >> must evaluate to a “file-like” object,
specifically an object that has a write () method as described above. With this extended form, the subsequent expres-
sions are printed to this file object. If the first expression evaluates to None, then sys. stdout is used as the file for
output.

6.6. The print statement 67

The Python Language Reference, k% 2.7.18

6.7 The return statement

return_stmt = "return" [expression_list]

return fEEE LRSI BT RBUE I EmAS, Aa b BT 08 LB r M.
ARG T HA AN, ERPORME, BNPA None B,

return XEJFUHTKEIAN . FFAZFEEHS I (& None) R EIE.

When return passes control out of a t ry statement with a finally clause, that finally clause is executed before
really leaving the function.

In a generator function, the return statement is not allowed to include an expression_Ilist. In that context, a
bare return indicates that the generator is done and will cause StopIteration to be raised.

6.8 The yield statement

yield_stmt = yield expression

The yield statement is only used when defining a generator function, and is only used in the body of the generator
function. Using a yield statement in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator iterator, or more commonly, a generator.
The body of the generator function is executed by calling the generator’ s next () method repeatedly until it raises an
exception.

When a yield statement is executed, the state of the generator is frozen and the value of expression_list is
returned to next ()’ scaller. By “frozen” we mean that all local state is retained, including the current bindings of
local variables, the instruction pointer, and the internal evaluation stack: enough information is saved so that the next time
next () is invoked, the function can proceed exactly as if the yie1d statement were just another external call.

As of Python version 2.5, the yield statement is now allowed in the t ry clause of a t ry --- finally construct. If
the generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected), the
generator-iterator’ s close () method will be called, allowing any pending £inally clauses to execute.

A Kyield ifE S NSERMNTES R yield 7k X —H.

{1:f#: In Python 2.2, the vield statement was only allowed when the generators feature has been enabled. This
__future__ import statement was used to enable the feature:

from __ future__ import generators

% W
PEP 255 - Simple Generators The proposal for adding generators and the yie1d statement to Python.

PEP 342 - Coroutines via Enhanced Generators The proposal that, among other generator enhancements, proposed
allowing yield to appear inside a t ry --- finally block.

68 Chapter 6. EEiEx)

https://www.python.org/dev/peps/pep-0255
https://www.python.org/dev/peps/pep-0342

The Python Language Reference, k7% 2.7.18

6.9 The raise statement

raise_stmt = "raise" [expression ["," expression ["," expression]]]

If no expressions are present, raise re-raises the last exception that was active in the current scope. If no exception is
active in the current scope, a TypeError exception is raised indicating that this is an error (if running under IDLE, a
Queue .Empty exception is raised instead).

Otherwise, raise evaluates the expressions to get three objects, using None as the value of omitted expressions. The
first two objects are used to determine the rype and value of the exception.

If the first object is an instance, the type of the exception is the class of the instance, the instance itself is the value, and
the second object must be None.

If the first object is a class, it becomes the type of the exception. The second object is used to determine the exception
value: If it is an instance of the class, the instance becomes the exception value. If the second object is a tuple, it is used
as the argument list for the class constructor; if it is None, an empty argument list is used, and any other object is treated
as a single argument to the constructor. The instance so created by calling the constructor is used as the exception value.

If a third object is present and not None, it must be a traceback object (see section 47/ £ A & 28 45 #)), and it is
substituted instead of the current location as the place where the exception occurred. If the third object is present and not
a traceback object or None, a TypeError exception is raised. The three-expression form of raise is useful to re-raise
an exception transparently in an except clause, but ra i se with no expressions should be preferred if the exception to be
re-raised was the most recently active exception in the current scope.

ARFHEWELFEE T T —WER, A XAEPFHEIEE AL he try statement —Ti %

6.10 The break statement

break_stmt = "break"
break TEEVE F RS MIT for Biwhile IRFRFHRER AT, (HAS BT ZIEIA N AR R8s e L
RER .
It terminates the nearest enclosing loop, skipping the optional e 1 se clause if the loop has one.
WR—A>for b reak Frédsl, ZMMMREET HARS IRFrH 24 Fi{E.

When break passes control out of a ¢ ry statement with a finally clause, that finally clause is executed before
really leaving the loop.

6.11 The continue statement

continue_stmt = "continue"
continue FEIEE FHSMIT for 8iwhile TEAFTRERAN, (BARS H BTG IR AR eh £ a2 e
N finally FAIFHRERVRIE .. BSREPITHRAL M INZTEERN T — K.

When cont inue passes control out of a t ry statement with a finally clause, that finally clause is executed
before really starting the next loop cycle.

6.11. The continue statement 69

The Python Language Reference, k% 2.7.18

6.12 The import statement

import_stmt n= "import" module ["as" name] ("," module ["as" name])*
| "from" relative_module "import" identifier ["as" name]
("," identifier ["as" name])*
| "from" relative_module "import" " (" identifier ["as" name]
("," identifier ["as" name])* [","] ™))"
| "from" module "import" "*"

module = (identifier ".")* identifier

relative_module = "."* module | "."+

name = identifier

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define a name or names
in the local namespace (of the scope where the import statement occurs). The statement comes in two forms differing
on whether it uses the from keyword. The first form (without £ rom) repeats these steps for each identifier in the list.
The form with £rom performs step (1) once, and then performs step (2) repeatedly.

To understand how step (1) occurs, one must first understand how Python handles hierarchical naming of modules. To
help organize modules and provide a hierarchy in naming, Python has a concept of packages. A package can contain
other packages and modules while modules cannot contain other modules or packages. From a file system perspective,
packages are directories and modules are files.

Once the name of the module is known (unless otherwise specified, the term “module” will refer to both packages and
modules), searching for the module or package can begin. The first place checked is sys.modules, the cache of all
modules that have been imported previously. If the module is found there then it is used in step (2) of import.

If the module is not found in the cache, then sys.meta_path is searched (the specification for sys.meta_path
can be found in PEP 302). The object is a list of finder objects which are queried in order as to whether they know
how to load the module by calling their find_module () method with the name of the module. If the module hap-
pens to be contained within a package (as denoted by the existence of a dot in the name), then a second argument to
find_module () is given as the value of the __path___ attribute from the parent package (everything up to the last
dot in the name of the module being imported). If a finder can find the module it returns a loader (discussed later) or
returns None.

If none of the finders on sys .meta_path are able to find the module then some implicitly defined finders are queried.
Implementations of Python vary in what implicit meta path finders are defined. The one they all do define, though, is one
that handles sys.path_hooks, sys.path_importer_cache, and sys.path.

The implicit finder searches for the requested module in the “paths” specified in one of two places (“paths” do not
have to be file system paths). If the module being imported is supposed to be contained within a package then the second
argument passed to find_module (), __path___ on the parent package, is used as the source of paths. If the module
is not contained in a package then sys . path is used as the source of paths.

Once the source of paths is chosen it is iterated over to find a finder that can handle that path. The dict at sys.
path_importer_cache caches finders for paths and is checked for a finder. If the path does not have a finder
cached then sys.path_hooks is searched by calling each object in the list with a single argument of the path, re-
turning a finder or raises ImportError. If a finder is returned then it is cached in sys.path_importer_cache
and then used for that path entry. If no finder can be found but the path exists then a value of None is stored in sys.
path_importer_cache to signify that an implicit, file-based finder that handles modules stored as individual files
should be used for that path. If the path does not exist then a finder which always returns None is placed in the cache for
the path.

If no finder can find the module then ImportError is raised. Otherwise some finder returned a loader whose
load_module () method is called with the name of the module to load (see PEP 302 for the original definition
of loaders). A loader has several responsibilities to perform on a module it loads. First, if the module already exists in
sys.modules (a possibility if the loader is called outside of the import machinery) then it is to use that module for

70 Chapter 6. EEiEx)

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0302

The Python Language Reference, k7% 2.7.18

initialization and not a new module. But if the module does not exist in sys .modules then it is to be added to that
dict before initialization begins. If an error occurs during loading of the module and it was added to sys.modules it
is to be removed from the dict. If an error occurs but the module was already in sys .modules it is left in the dict.

The loader must set several attributes on the module. __name___is to be set to the name of the module. __ file_
is to be the “path” to the file unless the module is built-in (and thus listed in sys.builtin_module_names) in
which case the attribute is not set. If what is being imported is a package then __path__ is to be set to a list of paths
to be searched when looking for modules and packages contained within the package being imported. ___package___
is optional but should be set to the name of package that contains the module or package (the empty string is used for
module not contained in a package). _ loader__is also optional but should be set to the loader object that is loading
the module.

If an error occurs during loading then the loader raises ImportError if some other exception is not already being
propagated. Otherwise the loader returns the module that was loaded and initialized.

When step (1) finishes without raising an exception, step (2) can begin.

The first form of import statement binds the module name in the local namespace to the module object, and then goes
on to import the next identifier, if any. If the module name is followed by a s, the name following a s is used as the local
name for the module.

The from form does not bind the module name: it goes through the list of identifiers, looks each one of them up in
the module found in step (1), and binds the name in the local namespace to the object thus found. As with the first
form of import, an alternate local name can be supplied by specifying “as localname” . If a name is not found,
ImportError israised. If the list of identifiers is replaced by a star (' * '), all public names defined in the module are
bound in the local namespace of the import statement..

The public names defined by a module are determined by checking the module’ s namespace for a variable named
__all__;if defined, it must be a sequence of strings which are names defined or imported by that module. The names
givenin__all__ are all considered public and are required to exist. If __all___is not defined, the set of public names
includes all names found in the module’ s namespace which do not begin with an underscore character (' _'). __all_
should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such
as library modules which were imported and used within the module).

The fromform with * may only occur in a module scope. If the wild card form of import —import * —isusedina
function and the function contains or is a nested block with free variables, the compiler will raise a SyntaxError.

When specifying what module to import you do not have to specify the absolute name of the module. When a module or
package is contained within another package it is possible to make a relative import within the same top package without
having to mention the package name. By using leading dots in the specified module or package after £rom you can
specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means
the current package where the module making the import exists. Two dots means up one package level. Three dots is
up two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end
up importing pkg.mod. If you execute from ..subpkg2 import mod from within pkg.subpkgl you will
import pkg. subpkg?2 .mod. The specification for relative imports is contained within PEP 328.

importlib.import_module () is provided to support applications that determine which modules need to be loaded
dynamically.

6.12. The import statement 71

https://www.python.org/dev/peps/pep-0328

The Python Language Reference, k% 2.7.18

6.12.1 future i&4

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python. The future statement is intended to ease migration to future
versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module
basis before the release in which the feature becomes standard.

future_statement = "from" "__future__ " "import" feature ["as" name]
("," feature ["as" name])*
| "from" "__ future_ " "import" " (" feature ["as" name]
("," feature ["as" name])* [","] Mm)"

feature = identifier

name = identifier

future 1E/AJMHESE AT SR 2 B B . T DA IAE future i5A) 2 HiAT 2R
o RO SRR (AARAFTE)
. R,
o 247, A&
o HiAth future 154].

The features recognized by Python 2.6 are unicode_literals, print_function, absolute_import,
division, generators, nested_scopes and with_statement. generators, with_statement,
nested_scopes are redundant in Python version 2.6 and above because they are always enabled.

future TF AR 2 198 F 2> BR B MURF IR Fop XA DR T 1 SR eSO 3 o A A] R AR A S B 3B
AR R ATRE ST AR AR TETE (BIAHTR PR B), TEIRXARRE DL g 13 T BE 5 2 DA il 1y 77 20k
FRPTRLER . IXARRY P E A REHER BB TN A 1R

XA E B BATAS , S iFas ZRE LAV Z AR 0E S0, ASREA future 1A A5 R A RFPE I 2
Bl i dinge

HEs T S AT import 1EAJAHIR] : AFAE— A E SCREFAI LA AUARERTE __future_, BESTER
17 future 15A]HS DA H 10 7 BT A

FRRY AAE AT i T future 7547 BT 5 FH A 36 8 4Rk
THTERL AN B A B AT A i 2 A

import __ future__ [as name]

XHAE future 15475 B HIE 2R B RIRTE CETETABR H)8 import 1541 .

Code compiled by an exec statement or calls to the built-in functions compile () and execfile () that occurin a
module M containing a future statement will, by default, use the new syntax or semantics associated with the future state-
ment. This can, starting with Python 2.2 be controlled by optional arguments to compile () —see the documentation
of that function for details.

TEAE B R PR AT T B A future TRAPREAERREAS 200 IS RO R0 BIR— MR g i JEr s 1
71 %ﬁ%ﬁiﬁ}(o IHEANT —PMMAZFRK T, HZEAMY futre 154], ERAEL XSG IGHAT
KRG

S YL:
PEP 236 - [n]5] __future__ % _ future_ ML ERAIHEIL,

72 Chapter 6. EEiEx)

https://www.python.org/dev/peps/pep-0236

The Python Language Reference, k7% 2.7.18

6.13 The global statement

global_stmt = "global" identifier ("," identifier)*

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers
are to be interpreted as globals. It would be impossible to assign to a global variable without global, although free
variables may refer to globals without being declared global.

Names listed ina g1 oba 1 statement must not be used in the same code block textually preceding that g1 oba I statement.

Names listed in a g1oba 1 statement must not be defined as formal parameters or in a for loop control target, class
definition, function definition, or import statement.

CPython implementation detail: The current implementation does not enforce the latter two restrictions, but programs
should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.

Programmer’ s note: global is a directive to the parser. It applies only to code parsed at the same time as the
global statement. In particular, a gl obal statement contained in an exec statement does not affect the code block
containing the exec statement, and code contained in an exec statement is unaffected by g1 obal statements in the
code containing the exec statement. The same applies to the eval (), execfile () and compile () functions.

6.14 The exec statement

n

exec_stmt = "exec" or_expr ["in" expression ["," expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to either a Unicode
string, a Latin-1 encoded string, an open file object, a code object, or a tuple. If it is a string, the string is parsed as a suite
of Python statements which is then executed (unless a syntax error occurs).! If it is an open file, the file is parsed until
EOF and executed. If it is a code object, it is simply executed. For the interpretation of a tuple, see below. In all cases,
the code that’ s executed is expected to be valid as file input (see section U147 A\). Be aware that the return and
yield statements may not be used outside of function definitions even within the context of code passed to the exec
statement.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the first expression after
in is specified, it should be a dictionary, which will be used for both the global and the local variables. If two expressions
are given, they are used for the global and local variables, respectively. If provided, locals can be any mapping object.
Remember that at module level, globals and locals are the same dictionary. If two separate objects are given as globals
and locals, the code will be executed as if it were embedded in a class definition.

The first expression may also be a tuple of length 2 or 3. In this case, the optional parts must be omitted.
The form exec (expr, globals) is equivalent to exec expr in globals, while the form exec (expr,
globals, locals) isequivalent to exec expr in globals, locals. The tuple form of exec provides
compatibility with Python 3, where exec is a function rather than a statement.

7E 2.4 MUHE PR Formerly, locals was required to be a dictionary.

As a side effect, an implementation may insert additional keys into the dictionaries given besides those corresponding to
variable names set by the executed code. For example, the current implementation may add a reference to the dictionary
of the built-in module __builtin__ underthekey _ builtins__ (!).

Programmer’ s hints: dynamic evaluation of expressions is supported by the built-in function eval (). The built-in
functions globals () and locals () return the current global and local dictionary, respectively, which may be useful
to pass around for use by exec.

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use universal newlines
mode to convert Windows or Mac-style newlines.

6.14. The exec statement 73

The Python Language Reference, k% 2.7.18

74 Chapter 6. EEiEx)

CHAPTER /

EEEnREEHEEN (F04) Mifsa; BT AR 25 m sl il o e & L e s T dw,

HARiEMET,

FIRERE R L A AR GBS T ATZ N,

The if, while and for statements implement traditional control flow constructs. try specifies exception handlers
and/or cleanup code for a group of statements. Function and class definitions are also syntactically compound statements.

Compound statements consist of one or more ‘clauses.’ A clause consists of a header and a ‘suite.” The clause headers
of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely
identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one or
more semicolon-separated simple statements on the same line as the header, following the header’ s colon, or it can be one
or more indented statements on subsequent lines. Only the latter form of suite can contain nested compound statements;
the following is illegal, mostly because it wouldn’ t be clear to which i 7 clause a following e 1 se clause would belong:

’if testl: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or
none of the print statements are executed:

’if x <y < z: print x; print y; print z

¥4 4.

o=

compound_stmt

suite
statement
stmt_list

if_stmt

while_stmt

for_stmt

try_stmt

with_stmt

funcdef

classdef

| decorated

stmt_1list NEWLINE | NEWLINE INDENT statement+ DEDENT
stmt_1list NEWLINE | compound_stmt
simple_stmt (";" simple_stmt)* [";"]

75

The Python Language Reference, k% 2.7.18

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the ‘dangling e1se’
problem is solved in Python by requiring nested 1 £ statements to be indented).

N T PRUETEMT, AR A7 AR R R4 1 AR e B AT rh i A%

7.1 The if statement

i £ R TA R IET

if_stmt = "if" expression ":" suite
("elif" expression ":" suite)*
["else" ":" suite]

BN RAR BN REEERE—PNEME (GES0A RE T TREESERERE L) TETR ke
—VCRCHY—A s RIGPATZ AR (1 HL 2 £ BRI A AN 2B TEORME) « AR TR Rb NI R,
WanRelse FAJRIRIFAER S BINTT -

7.2 The while statement

while WA TAEFRIBARE N H R OL N A AT

while_stmt = "while" expression suite

["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be the
first time it is tested) the suite of the e 1 se clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’ s suite. A
cont inue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

7.3 The for statement

For WHAMTAFS] (BIMISAFE . TEATIZ) SHA AT e ROu 4 76 2 BT 2 1L

for_stmt = "for" target_list "in" expression_list ":" suite

["else™ ":" suite]

The expression list is evaluated once; it should yield an iterable object. An iterator is created for the result of the
expression_list. The suite is then executed once for each item provided by the iterator, in the order of ascending
indices. Each item in turn is assigned to the target list using the standard rules for assignments, and then the suite is exe-
cuted. When the items are exhausted (which is immediately when the sequence is empty), the suite in the e 1 se clause,
if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’ s suite. A
cont inue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the el se clause if there was no next item.

76 Chapter 7. E&15%)

The Python Language Reference, k7% 2.7.18

The suite may assign to the variable(s) in the target list; this does not affect the next item assigned to it.

The target list is not deleted when the loop is finished, but if the sequence is empty, it will not have been assigned to at all
by the loop. Hint: the built-in function range () returns a sequence of integers suitable to emulate the effect of Pascal’
sfor 1 := a to b do;e.g, range (3) returns the list [0, 1, 2].

{I:fi#: There is a subtlety when the sequence is being modified by the loop (this can only occur for mutable sequences,
e.g. lists). An internal counter is used to keep track of which item is used next, and this is incremented on each iteration.
When this counter has reached the length of the sequence the loop terminates. This means that if the suite deletes the
current (or a previous) item from the sequence, the next item will be skipped (since it gets the index of the current item
which has already been treated). Likewise, if the suite inserts an item in the sequence before the current item, the current
item will be treated again the next time through the loop. This can lead to nasty bugs that can be avoided by making a
temporary copy using a slice of the whole sequence, e.g.,

for x in al[:]:
if x < 0: a.remove (X)

7.4 The try statement

try WEA) R — AL R R S AL PR AN/ T PACAD:

try_stmt = tryl_stmt | try2_stmt
tryl_stmt = "try" ":" suite
("except" [expression [("as" | ",") identifier]] ":" suite)+
["else™ ":" suite]
["finally" ":" suite]
try2_stmt = "try" ":" suite
"finally" ":" suite

TE 2.5 Jit S B In previous versions of Python, try - except - finally did not work. try--except had to be
nestedin try---finally.

The except clause(s) specify one or more exception handlers. When no exception occurs in the t ry clause, no exception
handler is executed. When an exception occurs in the ¢ ry suite, a search for an exception handler is started. This search
inspects the except clauses in turn until one is found that matches the exception. An expression-less except clause, if
present, must be last; it matches any exception. For an except clause with an expression, that expression is evaluated, and
the clause matches the exception if the resulting object is “compatible” with the exception. An object is compatible with
an exception if it is the class or a base class of the exception object, or a tuple containing an item compatible with the
exception.

WA except TG FEAIVCAC, TS AE R AR AN Ak v F Ak ARSI 2R s Ak PR AR

URAERT except TS HAYFRAHORIAM G IR T 55, WISORXME BRSO R S 0Bal , e A AR AR
R LS B wE iR (ELiEREA cry BRI K) -

When a matching except clause is found, the exception is assigned to the target specified in that except clause, if present,
and the except clause’ s suite is executed. All except clauses must have an executable block. When the end of this block
is reached, execution continues normally after the entire try statement. (This means that if two nested handlers exist for
the same exception, and the exception occurs in the try clause of the inner handler, the outer handler will not handle the
exception.)

' R SR A SRR, BRAREE—A final 1y FHIEMSIE T H—ANRE. BT ENRESFERBREHEL.

7.4. The try statement 77

The Python Language Reference, k% 2.7.18

Before an except clause’ s suite is executed, details about the exception are assigned to three variables in the sy s module:
sys.exc_type receives the object identifying the exception; sy s . exc_value receives the exception’ s parameter;
sys.exc_traceback receives a traceback object (see section #7 ./ Kk 7 & 2% & #) identifying the point in the
program where the exception occurred. These details are also available through the sys .exc_info () function, which
returns a tuple (exc_type, exc_value, exc_traceback). Use of the corresponding variables is deprecated
in favor of this function, since their use is unsafe in a threaded program. As of Python 1.5, the variables are restored to
their previous values (before the call) when returning from a function that handled an exception.

The optional e 1 se clause is executed if the control flow leaves the t ry suite, no exception was raised, and no return,
continue, or break statement was executed. Exceptions in the else clause are not handled by the preceding
except clauses.

If finallyis present, itspecifiesa ‘cleanup’ handler. The ¢ ry clause is executed, including any except and else
clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved. The finally
clause is executed. If there is a saved exception, it is re-raised at the end of the £inally clause. If the finally clause
raises another exception or executes a return or break statement, the saved exception is discarded:

>>> def f():
try:
1/0
finally:
return 42
>>> f()
42

fEfinally TAJBATIIN], REFPANBERRIUR H {5 B -

When a return, break or cont inue statement is executed in the t ry suite of a t ry--- finally statement, the
finally clause is also executed ‘on the way out.” A continue statement is illegal in the £inally clause. (The
reason is a problem with the current implementation —this restriction may be lifted in the future).

The return value of a function is determined by the last ret urn statement executed. Since the £inal 1y clause always
executes, a return statement executed in the finally clause will always be the last one executed:

>>> def foo():
try:
return 'try'
finally:
return 'finally'
>>> foo ()
'finally'

BRI S5 BT DE e 7 4RE, A ra se A RSB35 L0 DATE The raise statement —
SETE

7.5 The with statement
2.5 Hilihhe.

with A TS A M R SO PRES (S Mowith 35 4] 1 F U672 52— 8 XI5 AT i 3T .
XAV e ry -~ except - finally MBI THEE AT fEHIE] .

with_stmt = "with" with_item ("," with_item)* ":" suite

78 Chapter 7. E&15%)

The Python Language Reference, k7% 2.7.18

with_item == expression ["as" target]
WA “WH” Bwith BT R
Lo BRI (. with_item 3 HHIFIBRA) SKIEAIRIG—A> B R SCE RIS .
2. A LT U PIERI_ exit_ () DMEJSLEM
3. REVAM B R SUEBIARN__enter () Tk
4. Wfwich iBARAE—AHR, KEH__enter () HERIE{ERPIRMELS .

T with IFRSPRIEIR__enter () TriRRBIRCRA AR, W__exic () FFEUZPIM
P, ASRAEAS H Ap o0 SRR F) A A A i, 0 SR A FE TR A R N A A A R . 25 LT THT A9 5
6 4.

5. PATIERIAR .

6. The context manager’ s ___exit__ () method is invoked. If an exception caused the suite to be exited, its type,
value, and traceback are passed as arguments to ___exit__ (). Otherwise, three None arguments are supplied.

If the suite was exited due to an exception, and the return value from the __exit__ () method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with the
statement following the wi t h statement.

WASER R T R DML AR ER L, kA exit () MREEXWANE, HRAEZKIR
TER I R ARG IAT

WRAZATH, WAPWEAEL D wich BAIRERMBE LA FF U

with A() as a, B() as b:
suite

HHT

with A() as a:
with B() as b:
suite

{Ef#: InPython 2.5, the wi t h statement is only allowed when the with_statement feature has been enabled. It is
always enabled in Python 2.6.

TE 2.7 O LR A~ BF CEER
S
PEP 343 - “with” {4y Python with B IHTEHEIA . B5ERIRE].

7.5. The with statement 79

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, k% 2.7.18

B TE X

PR R SOBER RS T P 1 R SR E S (B WA R 2R R 3 —7F)

decorated u= decorators (classdef | funcdef)
decorators = decorator+
decorator = "@" dotted_name [" (" [argument_1list [","]] ")"] NEWLINE
funcdef = "def" funcname " (" [parameter_list] ")" ":" suite
dotted_name = identifier ("." identifier)*
parameter_list = (defparameter ",")*

("*" identifier ["," "**" identifier]

| "**" jdentifier
| defparameter [","])

defparameter = parameter ["=" expression]
sublist = parameter ("," parameter)* [","]
parameter = identifier | " (" sublist ™)"
funcname = identifier

PREUE SO — AT AT A o EARATIN 7 24 1 J= 0 iy 44 23 18] FPers e B Rl 31— e BN R (BT R
FrACR A LR) o SXAS BRBOOF R AL S % 2 w4 R i 44 25 TR A5 1, A e ESCREIR] I s o P) 4 iy 44 25
[«

BREUE SOF AR SPATEREUER HU 24 R BRI S AT IR 2

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated when
the function is defined, in the scope that contains the function definition. The result must be a callable, which is invoked

with the function object as the only argument. The returned value is bound to the function name instead of the function
object. Multiple decorators are applied in nested fashion. For example, the following code:

Qfl1l (arg)
Qf2
def func(): pass

is equivalent to:

def func(): pass
func = fl(arg) (£2 (func))

When one or more top-level parameters have the form parameter = expression, the function is said to have “default
parameter values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in
which case the parameter’ s default value is substituted. If a parameter has a default value, all following parameters must
also have a default value —this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated when the function definition is executed. This means that the expression
is evaluated once, when the function is defined, and that the same “pre-computed” value is used for each call. This
is especially important to understand when a default parameter is a mutable object, such as a list or a dictionary: if the
function modifies the object (e.g. by appending an item to a list), the default value is in effect modified. This is generally
not what was intended. A way around this is to use None as the default, and explicitly test for it in the body of the
function, e.g.:

def whats_on_the_telly (penguin=None) :
if penguin is None:
penguin = []

(Fotgkss)

% A A BRSOV 15— ST tH B A E I e e o R __doc_ JEYE, R %R B docstring .

80 Chapter 7. E&i&%

The Python Language Reference, k7% 2.7.18

(£ 50

penguin.append ("property of the zoo")
return penguin

Function call semantics are described in more detail in section 7]] . A function call always assigns values to all parameters
mentioned in the parameter list, either from position arguments, from keyword arguments, or from default values. If the
form “*identifier” is present, it is initialized to a tuple receiving any excess positional parameters, defaulting to
the empty tuple. If the form “**identifier” is present, it is initialized to a new dictionary receiving any excess
keyword arguments, defaulting to a new empty dictionary.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions. This
uses lambda expressions, described in section lambda % i% X,. Note that the lambda expression is merely a shorthand for
a simplified function definition; a function defined ina “der” statement can be passed around or assigned to another
name just like a function defined by a lambda expression. The “def” form is actually more powerful since it allows the
execution of multiple statements.

Programmer’ s note: Functions are first-class objects. A “def” form executed inside a function definition defines
a local function that can be returned or passed around. Free variables used in the nested function can access the local
variables of the function containing the def. See section ¢ % 5 4 % for details.

7.7 FEENL

PR SO ISR I E (S WAT o AR 8254 —T7):

classdef = "class" classname [inheritance] ":" suite
inheritance = "(" [expression_list] ")"
classname = identifier

A class definition is an executable statement. It first evaluates the inheritance list, if present. Each item in the inheritance
list should evaluate to a class object or class type which allows subclassing. The class’ s suite is then executed in a new
execution frame (see section ¢ % 5 %f ¥), using a newly created local namespace and the original global namespace.
(Usually, the suite contains only function definitions.) When the class’ s suite finishes execution, its execution frame is
discarded but its local namespace is saved.® A class object is then created using the inheritance list for the base classes
and the saved local namespace for the attribute dictionary. The class name is bound to this class object in the original
local namespace.

Programmer’ s note: Variables defined in the class definition are class variables; they are shared by all instances. To
create instance variables, they can be set in a method with self.name = value. Both class and instance variables
are accessible through the notation “self.name” , and an instance variable hides a class variable with the same name
when accessed in this way. Class variables can be used as defaults for instance variables, but using mutable values there
can lead to unexpected results. For new-style classes, descriptors can be used to create instance variables with different
implementation details.

Class definitions, like function definitions, may be wrapped by one or more decorator expressions. The evaluation rules
for the decorator expressions are the same as for functions. The result must be a class object, which is then bound to the
class name.

3 AR S — A) B AR R IR (E A 2 251 __doc_ 46H , WabRi%ZE M docstring.

The Python Language Reference, k% 2.7.18

&

82 Chapter 7. E&15%)

CHAPTER 8

BB

&
it

Python i REAS i AMZ MR A MEAniEs AR P SR A A, DARRE T AIIER], A
AR IE SO A5 4 o X — BRIP4 HAEIX LU 00 T B T8

8.1 5224 Python %

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion
of a complete Python program. A complete Python program is executed in a minimally initialized environment: all
built-in and standard modules are available, but none have been initialized, except for sys (various system services),
__builtin__ (built-in functions, exceptions and None) and __main__. The latter is used to provide the local and
global namespace for execution of the complete program.

1T —> 528 Python A&7 B TETA IR 1 Btk v S A -

FRRE St R DA I S BB A B A 5 AEMERS DL, EIFASERI I T — D e AR, R BRI IR
fr—2ith) (FTRENEATER]) . N IRIRIE S — e B PR RERRTE _main_ Y64
25 (8] PR o

A complete program can be passed to the interpreter in three forms: with the —c string command line option, as a file
passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the interpreter
enters interactive mode; otherwise, it executes the file as a complete program.

8.2 XFHA
A A 58S SR A B A L 2t

file_input = (NEWLINE | statement)*

BEHETA T R A LA DL:

83

The Python Language Reference, k% 2.7.18

o fpHT— 5% Python RTINS (M ICIFEFAFH) ;
o fENT— AL

* when parsing a string passed to the exec statement;

8.3 XHEXMA
3E T I A B DA R H AR

interactive_input = [stmt_1list] NEWLINE | compound_stmt NEWLINE

R ERT—% (REZER) ZEERUATA — 2075 SO0 T DT & 00 E 5 A a5 a4
iR

8.4 iAW

There are two forms of expression input. Both ignore leading whitespace. The string argument to eval () must have
the following form:

eval_input = expression_list NEWLINE¥*

The input line read by input () must have the following form:

input_input = expression_list NEWLINE

Note: to read ‘raw’ input line without interpretation, you can use the built-in function raw_input () or the
readline () method of file objects.

84 Chapter 8. REERAH

CHAPTER 9

EHEEIE

X2 5e N Python 4K, BEHGAAMT R EMAR . PAZEBU#AT Python JESCPF MRS -

Grammar for Python

Note: Changing the grammar specified in this file will most likely

require corresponding changes in the parser module

(../Modules/parsermodule.c). If you can't make the changes to
that module yourself, please co-ordinate the required changes
with someone who can; ask around on python-dev for help. Fred
Drake <fdrake@acm.org> will probably be listening there.

NOTE WELL: You should also follow all the steps listed in PEP 306,

"How to Change Python's Grammar"

Start symbols for the grammar:

single_input is a single interactive statement;

file input is a module or sequence of commands read from an input file;
eval_input is the input for the eval() and input () functions.

NB: compound_stmt in single_input is followed by extra NEWLINE!
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE

file_input: (NEWLINE | stmt)* ENDMARKER

eval_input:

testlist NEWLINE* ENDMARKER

decorator: '@' dotted_name ['(' [arglist] ')'] NEWLINE
decorators: decorator+
decorated: decorators (classdef | funcdef)
funcdef: 'def' NAME parameters ':' suite
parameters: '(' [varargslist] ')’
varargslist: ((fpdef ['=' test] ',')*
("*'" NAME [',' '**' NAME] | '**' NAME) |
fpdef ['="' test] (',' fpdef ['=' test])* [','])
fpdef: NAME | ' (' fplist ')'
fplist: fpdef (',' fpdef)* [',']

The Python Language Reference, k% 2.7.18

(£ LT
stmt: simple_stmt | compound_stmt
simple_stmt: small_stmt (';' small_stmt)* [';'] NEWLINE
small_stmt: (expr_stmt | print_stmt | del_stmt | pass_stmt | flow_stmt |
import_stmt | global_stmt | exec_stmt | assert_stmt)

expr_stmt: testlist (augassign (yield_expr|testlist) |
('='" (yield_expr|testlist))*)

augassign: ('+=' | '==' | A= U/=0 | vs=ro| tg=to | |=t | st
T<<=' | te>=t | txR=t | r//=T)
For normal assignments, additional restrictions enforced by the interpreter
print_stmt: 'print' ([test (',' test)* [','] 1 |
">>" test [('," test)+ [','] 1)

del_stmt: 'del' exprlist
pass_stmt: 'pass'

flow_stmt: break_stmt | continue_stmt | return_stmt | raise_stmt | yield_stmt
break _stmt: 'break'
continue_stmt: 'continue'
return_stmt: 'return' [testlist]
yield_stmt: yield_expr
raise_stmt: 'raise' [test [',' test [',' test]]]
import_stmt: import_name | import_from
import_name: 'import' dotted_as_names
import_from: ('from' ('.'* dotted_name | '.'+)
"import" ('*' | '"(' import_as_names ')' | import_as_names))

import_as_name: NAME ['as' NAME]
dotted_as_name: dotted_name ['as' NAME]

import_as_names: import_as_name (',' import_as_name)* [', ']
dotted_as_names: dotted_as_name (',' dotted_as_name)*
dotted_name: NAME ('.' NAME) *

global_stmt: 'global' NAME (',' NAME)*

exec_stmt: 'exec' expr ['in' test [',' test]]

assert_stmt: 'assert' test [',' test]

compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt | with_stmt | funcdef |_
—~classdef | decorated

if_stmt: 'if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite]
while_stmt: 'while' test ':' suite ['else' ':' suite]
for_stmt: '"for' exprlist 'in' testlist ':' suite ['else' ':' suite]
try_stmt: ('try' ':' suite
((except_clause ':' suite)+
[Telse' ":' suite]
["finally" ":' suite] |
'finally' ':' suite))
with_stmt: 'with' with_item (',' with_item)* ':' suite
with_item: test ['as' expr]
NB compile.c makes sure that the default except clause is last
except_clause: 'except' [test [('as' | ',") test]]

suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT

Backward compatibility cruft to support:

[x for x in lambda: True, lambda: False 1if x()]
even while also allowing:

lambda x: 5 if x else 2

(But not a mix of the two)

testlist_safe: old_test [(',' old_test)+ [',']]
old_test: or_test | old_lambdef
old_lambdef: 'lambda' [varargslist] ':' old_test

(Rt

86 Chapter 9. EMIEAMTE

The Python Language Reference, k7% 2.7.18

(ZE

test: or_test ['if' or_test 'else' test] | lambdef
or_test: and_test ('or' and_test)*
and_test: not_test ('and' not_test)*
not_test: 'not' not_test | comparison
comparison: expr (comp_op expr)*
comp_op: '<'['">'|'=="[">="|'<="["'"<>"|"!="|"in'|'not' 'in'|'is'|'is' 'not'
expr: xor_expr ('|' xor_expr)*
xor_expr: and_expr ('”' and_expr)*
and_expr: shift_expr ('&' shift_expr)*
shift_expr: arith_expr (('<<'['>>'") arith_expr)*
arith_expr: term (('+'|'-") term)*
term: factor (('*'"|'/'|'%$'|'//') factor)*
factor: ('+'|'-"|'~") factor | power
power: atom trailer* ['**' factor]
atom: (' (' [yield_ expr|testlist_comp] ')' |

'"['" [listmaker] ']1'" |

'{'" [dictorsetmaker] '}' |

'Y testlistl ' |

NAME | NUMBER | STRING+)
listmaker: test (list_for | (','" test)* [','])
testlist_comp: test (comp_for | (',' test)* [','])
lambdef: 'lambda' [varargslist] ':' test
trailer: ' (' [arglist] '")'" | '[' subscriptlist '"]' | '.' NAME
subscriptlist: subscript (', ' subscript)* [',']
subscript: ".'" '".' '." | test | [test] ':' [test] [sliceop]
sliceop: ':' [test]
exprlist: expr (',' expr)* [',"]
testlist: test (',' test)* [',']
dictorsetmaker: ((test ':' test (comp_for | (',' test '":' test)* [','])) |

(test (comp_for | ('," test)* [',"']1)))
classdef: 'class' NAME [' (' [testlist] ")'] ':' suite
arglist: (argument ',')* (argument [',']
["*" test (','" argument)* [',' '"**' test]
["**" test)

The reason that keywords are test nodes instead of NAME is that using NAME
results in an ambigquity. ast.c makes sure it's a NAME.
argument: test [comp_for] | test '=' test

list_iter: list_for | list_if
list_for: '"for' exprlist 'in' testlist_safe [list_iter]

list_if: '"if' old_test [list_iter]

comp_iter: comp_for | comp_if

comp_for: 'for' exprlist 'in' or_test [comp_iter]
comp_if: 'if' old_test [comp_iter]
testlistl: test (',' test)*

not used in grammar, but may appear in "node" passed from Parser to Compiler
encoding_decl: NAME

yield_expr: 'yield' [testlist]

87

The Python Language Reference, k% 2.7.18

88 Chapter 9. EEHIEEMNE

APPENDIX A

RIEXTHRR

>>> R H A L EGA R Python $&7-4F . FEAE 2 R T BB AR H Ty AR M REAR LIV T IO AR B AR 2 1

. The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2to3 —>f Python 2.x fUfS #4657 Python 3.x fURLIK TR, REAS A PR 0703 1o AEAT U5 o DIy A ATyl 4
T2 AN

2t03 WA TERRMEEH, BN 1ib2to3; FFEM—/ NS AT Tools/scripts/2to3. £
2to3-reference.,

abstract base class —fili% 3£28 Abstract base classes complement duck-typing by providing a way to define interfaces
when other techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods).
ABC:s introduce virtual subclasses, which are classes that don’ t inherit from a class but are still recognized by
isinstance () and issubclass () ;see the abc module documentation. Python comes with many built-in
ABC:s for data structures (in the collections module), numbers (in the numbers module), and streams (in
the io module). You can create your own ABCs with the abc module.

argument —Z3 % A value passed to a function (or method) when calling the function. There are two types of arguments:

o KT A TEREOR M R A AR R (BIA0 name=) SCEAE N AL STERTIA A <+ Y5-I
MERE A 28BIRTE, 3 A1 5 FELATRXT complex () B HIET K724

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

s L E Ade ARTRETSHNSI (CESHTH T SR ENIT L AR SEGE A D ana A
* Witerable P TCRGAL A 2B, 3 A1 5 FELA T hy g T E S 4

complex (3, 5)
complex (* (3, 5))

SHLHIRIL BRECR PR AR A B A XIRALINS IR —7. RS, (MRS AT
TR SR 2 IR R TS

89

The Python Language Reference, k% 2.7.18

See also the parameter glossary entry and the FAQ question on the difference between arguments and parameters.

attribute —J@PE SCECE]— N RE, FTAMH S5 ERREAHAFRRE . fla, R 5% o A
— @ a, BT o.a REIHE .

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’ s creator.

bytes-like object —3= 152X} 4 An object that supports the buffer protocol, like st r, bytearray or memoryview.
Bytes-like objects can be used for various operations that expect binary data, such as compression, saving to a
binary file or sending over a socket. Some operations need the binary data to be mutable, in which case not all
bytes-like objects can apply.

bytecode —=7 i1 Python source code is compiled into bytecode, the internal representation of a Python program in the
CPython interpreter. The bytecode is also cached in . pyc and . pyo files so that executing the same file is faster
the second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to
run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes
are not expected to work between different Python virtual machines, nor to be stable between Python releases.

TR AR AT LAE dis B SR AR
class 3¢ JSRAIEN P E NGB, 258 SGEH L 3 X% 2E M S BIUEA T B 7 kg 3

classic class Any class which does not inherit from object. See new-style class. Classic classes have been removed in
Python 3.

coercion —5ii il AUEEHE The implicit conversion of an instance of one type to another during an operation which in-
volves two arguments of the same type. For example, int (3.15) converts the floating point number to the integer
3, butin 3+4. 5, each argument is of a different type (one int, one float), and both must be converted to the same
type before they can be added or it will raise a TypeError. Coercion between two operands can be performed
with the coerce built-in function; thus, 3+4 . 5 is equivalent to calling operator.add (*coerce (3, 4.
5)) and results in operator.add (3.0, 4.5). Without coercion, all arguments of even compatible types
would have to be normalized to the same value by the programmer, e.g., f1oat (3) +4 . 5 rather than just 3+4 . 5.

complex number 5% X @ LA GLY JE, Hoh I B R R 8 — A SEE SRR AL, R
A HERCAOL (-1 BRI AR) BYSEARR, EHAEREAT SN 1, ETRESHS 5. Python N T4
By sy, R TREEARICT =20 il —A 3 R4, BN 3+15. WPRTEZE math BEER ARG A%
WARBURA, #EH cmath, RER AR — DB BAEARE. WRIRBOER A L, ZIEE
ITLP AR AL

context manager — - F U B FowichiBa)H i, WidEN_ enter () Fl__exit_ () kil
HECRSHIN S . S, PEP 343,

CPython Python ZF1E F HIMIVESEEL, FE python.org & 7fi.” CPython” — i)] F7E0 B R K L SL Bl HoAth
SEFFIAN Jython EY, IronPython AH X 51l

decorator &My R IPME AT — D REWREL, EHE M ewrapper A AORMITREUEH . REMidsm
BT f3E classmethod () fl staticmethod () .

PFEETE R RIS, AR A B B0E SR X BS54 4R

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

] ARSI T8, (Rl R A o A SR A TR 1T 2 I e S I 2 5L B30y

90 Appendix A. RiEMBE

https://www.python.org/~guido/
https://www.python.org/dev/peps/pep-0343
https://www.python.org

The Python Language Reference, k7% 2.7.18

descriptor —§{iif%% Any new-style object which defines the methods __ get_ (), __set__ (), or
__delete__ (). When a class attribute is a descriptor, its special binding behavior is triggered upon at-
tribute lookup. Normally, using a.b to get, set or delete an attribute looks up the object named b in the class
dictionary for a, but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is
a key to a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

A KBRS E a0 5

dictionary —Z#it An associative array, where arbitrary keys are mapped to values. The keys can be any object with
_ _hash__ () and__eqg__ () methods. Called a hash in Perl.

dictionary view —HLEEPE| The objects returned from dict .viewkeys (),dict.viewvalues (),anddict.
viewitems () are called dictionary views. They provide a dynamic view on the dictionary’ s entries, which
means that when the dictionary changes, the view reflects these changes. To force the dictionary view to become a
full list use 1ist (dictview). See dict-views.

docstring —SCRYFAFH 128, BRI 2 WIS — b s Ul B AR M. BT AT 29
2, BSPHERSR B ITIES . R __doc_ @i, T En T AHNE,
SRR QAT AL AL

duck-typing 1 F-RM F5—FgFE XA, EIFMKEE RIS RER e LR EHA BN, meH
B R 6 s g (BRGNS, mpERWGEM T, ISAE EMmEN) hT e
FUMAERRE 288, it RIS v i 2 SRR T R, 19T 2RBLE R type () B
isinstance () Kpill. ((HEEFRENFIRB0] DAEH 4 248 % s e,) MAEES R hasattr ()
K 2 EAFP 4hfe .

EAFP R HCRVFI A S 930 4q5 . X fh Python # AU 4 5 AU 2 18 B 1 B BB 1A AE
HAEABCE S DRI RS o A 0 T DR AR S SOl e Kis e ry Mlexcept i) T HAMIXF Y
W PRHLBYL W, HLT C S 2 HAih = .

expression -3k A, A piece of syntax which can be evaluated to some value. In other words, an expression is an
accumulation of expression elements like literals, names, attribute access, operators or function calls which all
return a value. In contrast to many other languages, not all language constructs are expressions. There are also
statements which cannot be used as expressions, such as print or if. Assignments are also statements, not

expressions.
extension module —§" Jg it DA C 5 C++ Zi'5 A, i1 Python [¥) C APT 3k 5iEF 1.0 DA A P A i
T H..

file object —SCPRXF G A SMRPETH 7 S0 APL AGE N2 BEEAIR G (AP read () Bl write () XAERYTT
5) o MEHAIET BRI, ORI AT AME B BLSCRE RSO, XHARAUA A, SO Rl IR A
AR (PANAR R A/ . AR IX . BT, B) . U R WP ST R 23 2 80A.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the i o module. The canonical way to create a file object is by using the open () function.

file-like object —SLPEJA 4 file object [1F] il o

finder 5 $k%% An object that tries to find the loader for a module. It must implement a method named
find_module (). See PEP 302 for details.

floor division —[i] FIUEEERE: 1) N & A B S R BB B Rk . 10 N BRI IEB AT /7 - Blin, %
kX 11/ AWTRESRE 2, M52 MR EF S EIERZERE 2.75 . WE (-11) // 4
23R 0] -3 PR SE -2.75 B T A RIS . I, PEP 238 .

function —pR %L AT DA H & R BIEEAME — 4B A . 380] DA AR ABASE 2> 240 HAE R BRI T ¢
il B Wparameter, method F1.& % & S 2537,

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11 /4 currently evaluates to 2. If the module in which it

91

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0238

The Python Language Reference, k% 2.7.18

is executed had enabled true division by executing:

from _ future__ import division

the expression 11 /4 would evaluate to 2 . 75. By importingthe ___future___ module and evaluating its variables,
you can see when a new feature was first added to the language and when it will become the default:

>>> import __ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection —L7 Y% [B[it The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator —2EJ%#% A function which returns an iterator. It looks like a normal function except that it contains yield
statements for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function. Each yield temporarily suspends processing, remembering the location execution state (in-
cluding local variables and pending try-statements). When the generator resumes, it picks up where it left off (in
contrast to functions which start fresh on every invocation).

generator expression —f: g3 35 3, An expression that returns an iterator. It looks like a normal expression followed
by a for expression defining a loop variable, range, and an optional i f expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

GIL 2 W.global interpreter lock

global interpreter lock —4: i ffREg B CPython ffFEes TR B —FIALE , B RIRE —i %) g — 2817
AT Python byrecode, BEALTHE T BEE AT GARR (AHE dict SEE N EIRM) X 5 a4
A fijifk T CPython SZH., 258NN RRESS B (H 1S M RERS 2 R RE B T (8, AR W44t T 2 40
S FROHA T

ANad, BEBERE B =07 R I R A BT AR AT T B AR AT 55 0 s 4 s A R GIL
BEAh, FEIAT VO #RAEB 2 SR GIL.

QI (PASERSAIAL BER BiE Je 28y) A AR MPRERR i 55 I MR IRAG IS, R R x4
TEA0 FAAE PR DL T HOTERE o J5 (5 e AR B8 170 R A o B S AR A B A %, AT B A DA
o

hashable —u] W37 An object is hashable if it has a hash value which never changes during its lifetime (it needs a
___hash__ () method), and can be compared to other objects (itneedsan __eq__ () or __cmp___ () method).
Hashable objects which compare equal must have the same hash value.

TP CERERT SRR A T SR A A LB, DRy B 2) A A T 0 AL

All of Python’ s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries)
are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal (except
with themselves), and their hash value is derived from their id ().

IDLE Python {) IDE, “EpiJT & 52£J BREE” MYSESCEHE o 2 Python BRifl AT PR) BE A 2 AR RS
REREL .

immutable — A HATFEEHAXTR . AR QAL AR HICA. AR R A RER L. W
R — DA R, WLBRIEHRX S . MRS R Er 5 E2AEN, B
(SR i

integer division Mathematical division discarding any remainder. For example, the expression 11/ 4 currently evaluates

to 2 in contrast to the 2 . 75 returned by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied to it). However, if one of the operands is

92 Appendix A. RiEMBE

The Python Language Reference, k7% 2.7.18

another numeric type (such as a f1oat), the result will be coerced (see coercion) to a common type. For example,
an integer divided by a float will result in a float value, possibly with a decimal fraction. Integer division can be
forced by using the // operator instead of the / operator. See also __future__.

importing —5 A 4— MUY Python MRS RE I — MELER H Y Python FURS B I AY S 2 .
importer — A%F EHIFMBABATN R WS ZRBEE T finder 3@ Tloader

interactive —5¢ 7. Python iy — NS HAMERERS , BIVRAT DATERRRES S /AT S ATB I AN SR, SZ BT
HAEEHER . AT SEOES) python fivd (WA DATEARAYTT ST AR B P s A B3 BT
AE R AR BOS SR AT A I X A AR AER T (HEAE help (x)).

interpreted £ Python —RAMFREALE T, SRR M IFAIET , RIAPIE I i T 51 i g 5
e AEAE T A7 PP o R AR JESCIE AT A LGB AT A b B s B n] AT SO FRIs AT R
TR BA g A AT A AR UR Y, (R AP R EIs TR R . & Winteractive,

iterable —n] 3% U4t An object capable of returning its members one at a time. Examples of iterables include all
sequence types (such as 1ist, str, and tuple) and some non-sequence types like dict and £ile and objects
of any classes you define withan ___iter_ () or __getitem _ () method. Iterables can be used ina for
loop and in many other places where a sequence is needed (zip (), map (), ---). When an iterable object is passed
as an argument to the built-in function iter (), it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessary to call iter () or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator —i%f07% An object representing a stream of data. Repeated calls to the iterator’ s next () method return suc-
cessive items in the stream. When no more data are available a St opIteration exception is raised instead. At
this point, the iterator object is exhausted and any further calls to its next () method justraise StopIteration
again. Iterators are required tohavean ___iter__ () method that returns the iterator object itself so every iterator
is also iterable and may be used in most places where other iterables are accepted. One notable exception is code
which attempts multiple iteration passes. A container object (such as a 1ist) produces a fresh new iterator each
time you pass it to the iter () function or use it in a for loop. Attempting this with an iterator will just return
the same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.

W25 E [E&F typeiter.

key function B H pR BCAREE B R 4L, 2 REAZAR 0] 1 T-HEFP SR CLAE R TR R « BN, locale.
strxfrm () ATFA N AFEREE I HE T 29 %€ A HER 1 .

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min (), max (), sorted (), list.sort (), heapg.nsmallest (), heapg.nlargest (), and
itertools.groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a Iambda expression
suchas lambda r: (r[0], r[2]). Also,the operator module provides three key function constructors:
attrgetter (), itemgetter (),and methodcaller (). See the Sorting HOW TO for examples of how
to create and use key functions.

keyword argument — G255 2 Warsument,
lambda (A lexpression 14T B2 IR EL, RPN AET A B BORIE. B8 lambda 5L H)VE N

lambda [parameters]: expression

LBYL “Jefrf JGHkER” M9 sCais . X AR g 5 XS S AE #EA T IR B 4R 2 1 S A A i f 4 . itk
WS EAFP J7 AR O H, HAR R KR 1 7 1)
L LAMEEH, LBYL il 8 “&F” Ml “BRER” Z I KR K. B, PARAURD 1 £
key in mapping: return mappinglkey] A REH TEREERAEZ 5 HAMLREIN mapping FF5 R
T key T 5 o 3K) R0 AT 3 3 i BB 1T EAFP 5 2R fig e .

93

The Python Language Reference, k% 2.7.18

list %% Python N Ef{—Fhsequence. BSR4 NHNIFE, HEIMT HAEF HAORALNAEERS 1%, oA
FICER I S AR R O1).

list comprehension — 553X, A compact way to process all or part of the elements in a sequence and return a list
with the results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates
a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The i f clause is optional. If omitted,
all elements in range (256) are processed.

loader ik 7% An object that loads a module. It must define a method named 1oad_module (). Aloader is typically
returned by a finder. See PEP 302 for details.

magic method —FEARJ5#: special method RIFEIE R 3]

mapping Wi} A container object that supports arbitrary key lookups and implements the methods specified in
the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

metaclass 03¢ —Fp] TAIEZEMZE. 208 XA H K4 BPMMERY L. TR T2 LIR=NS50F
BIEEFA N I ZE . A3 T a6 2 B i AT 5 AR PR — AN BRIA S 3. Python [R5 2 Ab T] DAGI
HE X Ttde. K H P AGEAT Zax A T H, H2YFE IR, Joden] $R ke K m e i o & .
Mg TieEE R HE ., gt BEXSAE. SR g, PAREAMFLZTES5 .

HZHRS I 8 2 LR e,
method Jj ik 7EANHE CHIBRE. RV ZRA LB — DRI, T RIS BIR R AT

—A argument GRF 44K self). I function FMnested scope.

method resolution order —Jj iEMRATIE 5 5 FEAT I3 5t /2 A0 A $R A% D3 8 R 23 LS B R e e 7 . 1
25 F Python 2.3 J7EfENTINY THRE 2.3 B Python FEHTHE T FAH 35 B 1160

module Bit JLXT5 02 Python RG] —FpZHZLA(. SR JST 644 25 18], Al E & LR Python X4,
W R 38 L importing FEAEWM#Z E] Python .

5 Wpackage.
MRO Z: Wmethod resolution order ,

mutable —n[7E FASKI LA DATER 1d () PREFEE I SO HIE. 5312 Wimmutable .

named tuple —H. #5641 Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time . localtime () returns a tuple-like object where the year is accessible either with an index such
as t [0] or with a named attribute like t . tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple (). The latter approach automatically provides extra features such as a self-documenting represen-
tation like Employee (name="jones', title='programmer').

namespace —fiy £ 45[] The place where a variable is stored. Namespaces are implemented as dictionaries. There are
the local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces sup-
port modularity by preventing naming conflicts. For instance, the functions __builtin__.open() and os.
open () are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it
clear which module implements a function. For instance, writing random. seed () or itertools.izip ()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

nested scope —jir £ 11, The ability to refer to a variable in an enclosing definition. For instance, a function defined
inside another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read and
write in the innermost scope. Likewise, global variables read and write to the global namespace.

94 Appendix A. RiEMBE

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, k7% 2.7.18

new-style class —#f:\. 2% Any class which inherits from object. This includes all built-in types like 1ist and dict.
Only new-style classes can use Python’ s newer, versatile features like ___slots__, descriptors, properties, and
__getattribute__ ().

More information can be found in New-style and classic classes.

object W R AETHARE (JBPEEUE) ARTIUE XATH (J57E) Mm%, object UL @A fnew-style class [#i%
TZERA .

package —fu, —] {0 7 TR SR I 05 7437 Python module. MAEA L, {3247 H __path__ Jak
¥ Python ik .

parameter —J62 A named entity in a function (or method) definition that specifies an argument (or in some cases,
arguments) that the function can accept. There are four types of parameters:

* positional-or-keyword : ([E BT, HHE AW AN A SA R AN DA S 5T A2
ASEZ . KR BRARIES A, HIATT IR foo HI bar:

def func(foo, bar=None): ...

* positional-only: {LFREIE, & —A REEHALEE ARISE. Python Wil i AR E L ZHY
k. (B —SENEREH URMEES (Ll abs ()).

* var-positional: W]ZELE, 5 W] ARl —MERECR A AL B SEA T (FEITEHAE 2
CRZNNESHZIE). RIS AR S ARG * KE XL, Bl FE args:

def func(*args, **kwargs):

* var-keyword: FAZRHEF, HEE A DASRBUE AR S T S A (FOIMTE MR S C #3205
?72%%5(2):) L?’l‘qﬂﬁ/%TLﬂT S ZFREINEE ** A L, BB kwargs.

TS AT VALFI 5 E PTEANaie 2 4, il AS LT e S H0di s B

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, and
the 4% 3L section.

PEP “Python M52 1" HIESCEHE . —4> PEP @i —Mritit S0, JHoK 1 Python #EIXERALE R, stk
—~ Python PR S B jZiT $i. PEP N 244 BORS A A S0 AR RS R BT S SRR B4 LR]

PEP WA A A) 2 BERRp i . IS DGR Fﬂ%ﬁfi’fﬁ PRSI Python BYi& T 3K 4% 5
SCRSEIENLE] . PEP [VEE A TARAEAL DX R @ 31, I BRI E A SRy .
%1, PEP 1.

positional argument —{\; B ¥ £ Wargument,

Python 3000 Python 3.x %A Lk AUWERR (X144 FHERAS 3 i Kb R TTI R M B L T) o A
YN “Py3k”.

Pythonic $ii— > ol — B AU SR 1~ Python T 5 doch H 9 KU R, TTAS e O A HCA 8 5 v
B‘Ji‘%ﬁ%j&ﬂﬁﬁ% {4, Python [¥y i XU & L] £or FATHRFRA [T — A~ R AR B P g B4 e
o W2 G S B XA, IR ZAZE Python (A I SR] — M T 4t

for i in range(len(food)):
print food[i]

TR 2 ¥ B 157 5 B Pythonic (77 34 k& X FEY:

for piece in food:
print piece

95

https://www.python.org/dev/peps/pep-0001

The Python Language Reference, k% 2.7.18

reference count —5 I VHE XPREEX G5 HAOECE . 24— XRS5BT, B FCoT R ooR
T IO Python AU RUEIEF e A AT WL, (HERCPython SLBU— A KEEILR . sys Bz
T4~ getrefcount () BREL, FFFGAPA B AR IR ERT G5 T

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

sequence —J1: 41 An iterable which supports efficient element access using integer indices via the _ getitem ()
special method and defines a 1en () method that returns the length of the sequence. Some built-in sequence types
are 1ist, str, tuple, and unicode. Note that dict also supports _ getitem () and __len_ (),
but is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice —YJJ Ji* An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such asin variable_name [1:3:5]. The bracket (subscript)
notation uses s1ice objects internally (or in older versions, __getslice__ () and __setslice__ ()).

special method %55k Jjiki —7firh Python B T, RIS AR PATRFE 4R VR Bl AIAH < 45
MM A TR AN XUT 2o FRIRTTIERI TS WA oA 77 i 6 Ak

statement —jfi 4] 1EA)REEF B (— NS “H) B BANL . — 5B R] DASR—expression B AR
SEFEEH, Flnir, while B{for,

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple in that
elements can be accessed either by index or as an attribute. However, they do not have any of the named tuple

methods like _make () or _asdict (). Examples of struct sequences include sys.float_info and the
return value of os.stat ().
triple-quoted string — 5|5 FRf RN SAELNG S (7) SRS () WFEMFS. ENTEYIRE

‘ﬁﬁ%%ﬂ%~’*%lvﬁ&ﬂ’]? FRER AR, HEA 2 MMt ENAFrrETHHRNEERE
e X BRE S HIE S, H] DABS B AT JOf G 1 HESEAT (R4 5 SOR A0 R IR 5 1

type R A YusE—A> Python X @ FAHAMIE: HAXTLARRA —FhRAL. BHEEXT LA, AT AT
HER __class__ J@tk, SU2#E type (obj) KL,

universal newlines —jifi f]##i47 A manner of interpreting text streams in which all of the following are recognized as
ending a line: the Unix end-of-line convention '\n"', the Windows convention '\r\n"', and the old Macintosh
convention '\r'. See PEP 278 and PEP 3116, as well as str.splitlines () for an additional use.

virtual environment —JBIIAEE —FR HIVMEZ R B 021 TR, fiF Python] PRI Y. F AR P AE &6 F1 T
2% Python 73 & AUHS AN 2403 A — R G _Fiz iy HAth Python [27 HI47 4

virtual machine BNl — & 5¢ 4 L B & LB ML Python R SUAL AT $047 2 1 18 2 135 2% T 46
i) bytecode.

Zen of Python —Python Z#fi 51| Python iy N 54524, AT RS M0 X FES . AEHEERNE
AERZ B RF i A “import this”,

96 Appendix A. RiEMBE

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

APPENDIX B

i A

IXBESCRYAE A H reStructured Text JJE3CRY, | Sphinx (—~% 724 Python SCRY 5 Y SCRY A s) BIEE.

AR SRS BT L RURE R TF S 52 42 ph B I 56 Y, XA Python 42 B, WUREAES Sk, i
reporting-bugs T AEUINAZ: 5. A BAIN YL B 76 1

RN it -
* Fred L. Drake, Jr., @3 7 H 354 Python SCRYR T HEE, DAKIRE T HEH 21 30RY;
e Docutils #40, W H , Al T reStructuredText A Z A Docutils #4245
e Fredrik Lundh, Sphinx M ftli[#¥] Alternative Python Reference T H H13%45 TR £ {F-mhAH .

B.1 Python T8y Rk

AR Z %} Python i, Python FifE &l Python SCRYA Tk A, B Python JELHS & 7 Misc/ACKS SC{431)
TR TR

5T Python K ARITTR, Python A5 T HILHH (SR - WA 1!

97

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/2.7/Misc/ACKS

The Python Language Reference, k% 2.7.18

98 Appendix B. 3#4ikBA

apPENDIX C

7 B FiF AT

C.1 zR#pImE

Python H fif 22§ FI T AR 9224 (CWI, I https://www.cwinl/) f#) Guido van Rossum - 1990 4E Y,
W, fER—TT0M ABC [iEF AU . R4 Python 345 T2 5k B HAB AW 5THk, Guido {52 H &
BEH .

1995 4E, Guido 7 #2 Je WNHY E Z A 5T 22 &) (CNRI, I, https://www.cnri.reston.va.us/) #4247 Python
ERTTAE, IR A T 2 AU

2000 4£ 71 H, Guido FI Python #.00FF & 41 BA %4 %] BeOpen.com £ 7 T BeOpen PythonLabs [\ . [F4E1 H ,
PythonLabs [#]BA%% F| Digital Creations (¥} & Zope Corporation; [, https://www.zope.org/). 2001 4£, Python #x{4:
H 42y (PSF, I https://www.python.org/psf/) 57, X &A% A4 Python AH S AT AU A1 @ iy 75
221, Zope Corporation FI{E & PSF [B i i1 .

JI A7) Python BAEZITRR) (A KIFURHYE L2 https://opensource.org/). P I, #iKZ % Python Jii
AJe GPLARA) TREL T RANOL .

XfhRA | RE F EE GPL#%?
09.0% 1.2 | n/a 1991-1995 | CWI =
13215212 1995-1999 | CNRI 7=
1.6 1.52 2000 CNRI &
2.0 1.6 2000 BeOpen.com | {5
1.6.1 1.6 2001 CNRI %
2.1 2.0+1.6.1 | 2001 PSF o
2.0.1 2.0+1.6.1 | 2001 PSF P
2.1.1 2.1+2.0.1 | 2001 PSF 2=
2.1.2 2.1.1 2002 PSF =
2.13 2.1.2 2002 PSF 2=
22 GEE | 201 2001 %% | PSF =

{Efi: GPL #A T AR M Python £ GPL N k1. 5 GPL AJa], Frf Python ¥4 Al AR FL &4 R 1B MG

99

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference, k% 2.7.18

A, T JC T TR T A Sk . GPL AR A T IE (15 Python R PAS HVETE GPL R & AT HIAF45 & B ;
HHERFAHENATT .

JRUIARZAE Guido 55 T TAERYSNIREREE , AIfGaX 28 B A oA vl fiE -

C.2 FRERE LAH B E A Python Bk FOF ¢

C.2.1 F PYTHON 2.7.18 #Y PSF o] {inil

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),_
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

2.7.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2020 Python Software Foundation; All_
—Rights
Reserved" are retained in Python 2.7.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—~Python
2.7.18.

4. PSF is making Python 2.7.18 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY REPRESENTATION..
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 2.7.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.18

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.18, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

100 Appendix C. Fys2FI¥F Tk

The Python Language Reference, k7% 2.7.18

6. This License Agreement will automatically terminate upon a material breach.
—of

its terms and conditions.
7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—~License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.
8. By copying, installing or otherwise using Python 2.7.18, Licensee agrees

to be bound by the terms and conditions of this License Agreement.

C.2.2 FF PYTHON 2.0 fj BEOPEN.COM # &Il

BEOPEN PYTHON JFE 14] P ER 1 AR

1.

This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

BeOpen is making the Software available to Licensee on an "AS IS" basis.

BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by and interpreted in all respects

by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions

(FItgkss)

C.2. FESHLIHMBHAXMEA Python BaRERFOZ M 101

The Python Language Reference, k% 2.7.18

(£ 50

granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 FF PYTHON 1.6.1 g5 CNRI ¥#F o] tipil

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of

(Fotakss)

102 Appendix C. Fys2FI¥F Tk

The Python Language Reference, k7% 2.7.18

(£ 50

Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 FHF PYTHON 0.9.0 E 1.2 f§ CWI ¥F o] il

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE .

C.3 USRI YT ol 50515
AT Python B ATHLCTAG A =y B b VAT RO, AT MR A 23 FLR IR

C.3.1 Mersenne Twister

_random A E E T http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html T 2% 113,
e DA 2R i se ek (75 1) -

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

(FItakss)

C.3. #HWrRIRHFaYVF ol 5053 103

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Language Reference, k% 2.7.18

(£ 50

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m—mat @ math.sci.hiroshima-u.ac.jp (remove space)

C3.2 EEx

socket #HHH] getaddrinfo () Ml getnameinfo () pAEL, XLEpRETFAIDAE WIDE i H (http:/www.
wide.ad.jp/) By BRI SCIAFH

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

(Rt

104 Appendix C. 5558 F0¥FE[iE

http://www.wide.ad.jp/
http://www.wide.ad.jp/

The Python Language Reference, k7% 2.7.18

(£ 50

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-—
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that 1its use would not infringe
privately-owned rights. Reference herein to any specific commer-
cial products, ©process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply 1its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product
\ endorsement purposes. /

C.3. #HWrRIRHFaYVF ol 5053 105

The Python Language Reference, k% 2.7.18

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfcl321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.

1999-10-18 1lpd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 1lpd Original version.

106 Appendix C. Fys2FI¥F Tk

The Python Language Reference, k7% 2.7.18

C3.5 REEEFIRS

asynchat and asyncore B & DA FEHH:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie &1

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. WURIRHFEYIFETiE SIS H

107

The Python Language Reference, k% 2.7.18

C.3.7 HiTERR

trace B S PA T AEH:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode E UUdecode &%l

uu B DA R

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(Rt

108 Appendix C. Fys2FI¥F Tk

The Python Language Reference, k7% 2.7.18

(£ 50

version is still 5 times faster, though.
— Arguments more compliant with Python standard

C.3.9 XML = 2= FAH

The xm1lrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

CFItakss)

C.3. #HWrRIRHFaYVF ol 5053 109

The Python Language Reference, k% 2.7.18

(£ 50

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

Python/dtoa.c XRALT CiEZ Y dtoa 1 strtod FREL, FT-6 C1E S 1IN0 B R A8 A TG, 1%
A4l David M. Gay (1 [R1 4 SCEFIRAE T K, 247] A http://www.netlib.org/fp/ F#%. 2009 4E 3 H 16 H#Z&3|
B DL SCAA B 5 AT OBCRITAF R 5 B

/**

The author of this software is David M. Gay.

* % o

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % o

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % ok X

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

(Rt

110 Appendix C. 5558 F0¥FE[iE

The Python Language Reference, k7% 2.7.18

(£ 50

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

‘k*****‘k**‘k********‘k*****‘k*‘k***‘k****'k‘k*‘k************************/

C.3.13 OpenSSL

WERBEAERG A, W hashlib, posix, ssl, crypt fRHLfH] OpenSSL 42 = PERE. HAh, WEHT
Python [Windows Fl Mac OS X %2427 1] fe 045 OpenSSL E#5 U1, FrLAFE AL .51 4 T OpenSSL 7 1]
UERY % DL

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corel@openssl.org.

OpenSSL License

/= == == == == == ==

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact
* openssl-core@openssl.org.

*

* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

*

* 6. Redistributions of any form whatsoever must retain the following

C.3. #HWrRIRHFaYVF ol 5053 111

The Python Language Reference, k% 2.7.18

(£ 50

b S I I S S S

*

*

acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eayl@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(Rt

112

Appendix C. Fys2FI¥F Tk

The Python Language Reference, k7% 2.7.18

(22 30
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
*

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

b S e

*

*

* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence

* [including the GNU Public Licence.]

C.3.14 expat

BRAEME] ——with-system-expat BLE THIE, N pyexpat §7 AR E AL expat Y5 10HS DR 2

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINEFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. #HWrRIRHFaYVF ol 5053 113

The Python Language Reference, k% 2.7.18

C.3.15 libffi

FRARMIN ——with-system-1ibffi WU THE, BN _ctypes ¥ HNE (17 libffi JHEH5 DM E):

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘"Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

R ARG EAREIRY 21ib AR IHT ek A, W 55 2lib PG 8 DR 2 1ib 37 J%:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

114 Appendix C. 5558 F0¥FE[iE

APPENDIX D

Copyright

Python 53 SCHY:

Copyright © 2001-2020 Python Software Foundation. {48 TG+ H]

AU © 2000 BeOpen.com., {38 TG AUH

AL © 1995-2000 Corporation for National Research Initiatives., {585 BTG AU .
WAL © 1991-1995 Stichting Mathematisch Centrum., {483 BTG AU

A RSEBM VALV, 200 L AeF Tk,

115

The Python Language Reference, k% 2.7.18

116 Appendix D. Copyright

3l

JEFH
..., 89

o\

augmented assignment, 65
&:

augmented assignment, 65
*

in function calls,53

7% 4], 81
* *

in function calls, 53

&4, 81
* k=

augmented assignment, 65
*—

augmented assignment, 65
4=

augmented assignment, 65
//=

augmented assignment, 65
/=

augmented assignment, 65
2to3, 89
<<=

augmented assignment, 65

assignment statement, 64

augmented assignment, 65
>>=

augmented assignment, 65
>>> 89
@

&4, 80

augmented assignment, 65
__abs___ () (object 7 i%), 35
__add___ () (object 75 %), 34

__all__ (optional module attribute), 71

__and__ () (object 7 i%), 34
_ _bases__ (class attribute), 21
_ _builtin_

e, 73, 83
__builtins_ ,73
__call__ () (object method), 54
__call__ () (object 7 i%), 31

__class__ (instance attribute), 21
__closure__ (function attribute), 18

__cmp__ () (object 75 i%), 26
___code___ (function attribute), 18
__coerce__ () (object 7 i%), 35
__complex__ () (object 7 i%), 35
__contains__ () (object 7 i%), 32
__debug__, 66

__defaults__ (function attribute), 18
__del__ () (object 7 i%), 24
__delattr__ () (object 7 i%), 27
__delete__ () (object 7 i%), 28
__delitem__ () (object 7 i%), 32
__delslice__ () (object 75 i%), 33

__dict__ (class attribute), 21
__dict__ (function attribute), 18
__dict__ (instance attribute), 21, 27
__dict__ (module attribute), 20
__div__ () (object 7 %), 34
__divmod__ () (object 7 i%), 34
__doc__ (class attribute), 21
__doc___ (function attribute), 18
__doc___ (method attribute), 19
__doc__ (module attribute), 20

__enter__ () (object 7 i%), 37
__eq__ () (object 7 i%), 25
__exit__ () (object 7 i%), 37

_ file_ ,71

_ file_ (module attribute), 20

_ float__ () (object 7 i%), 35
__floordiv__ () (object 7 i%), 34
_ future_ ,91

__ge__ () (object 7 i%), 25

117

The Python Language Reference, k% 2.7.18

__get__ () (object 7 i%), 28
__getattr__ () (object 7 i%), 27
__getattribute__ () (object 7 i%), 27
__getitem__ () (mapping object method), 24
__getitem__ () (object 7% i%), 31
__getslice__ () (object 7 i%), 32
__globals__ (function attribute), 18
__gt__ () (object 7 i%), 25
__hash__ () (object 7 i%), 26
__hex__ () (object 7 i%), 35
__iadd__ () (object 7 i%), 35
__iand__ () (object 7 i%), 35
__idiv__ () (object 7 i%), 35
__ifloordiv__ () (object 7 i%), 35
__ilshift__ () (object 7 i%), 35
__imod__ () (object 7 i%), 35
__imul__ () (object 7 i%), 35
__index__ () (object 7 i%), 35
__init__ () (object method), 20
__init__ () (object 75 i%), 24
__instancecheck__ () (class 7 i%), 30
__int__ () (object 7 %), 35
__invert__ () (object 7 i%), 35
__ior__ () (object 7 i%), 35
__ipow__ () (object 7 i%), 35
__irshift_ () (object % %), 35
__isub__ () (object 7 i%), 35
__iter_ () (object 7 i%), 32
__itruediv__ () (object 7 i%), 35
__ixor__ () (object 7 i%), 35
__le__ () (object 7 i%), 25
__len__ () (mapping object method), 26
__len__ () (object % i%), 31
_ loader_ ,71
__long__ () (object 7 i%), 35
__1shift__ () (object 7 %), 34
__1t__ () (object 7i¥%), 25
__main___

e, 42, 83
__metaclass__ (EIE % %), 30
__missing__ () (object 7 i%), 32
__mod__ () (object 7 i¥), 34
_ _module__ (class attribute), 21
__module___ (function attribute), 18
__module___ (method attribute), 19
__mul__ () (object 7 %), 34
__name_ ,71
__name___(class attribute), 21
__name___ (function attribute), 18
__name___ (method attribute), 19
__ name___ (module attribute), 20
__ne__ () (object 7 i%), 25
__neqg__ () (object 77 i%), 35
__new__ () (object 7 i%), 24

__nonzero__ () (object method), 31
__nonzero___ () (object 7 i%), 26
__oct__ () (object 7 i%), 35
__or__ () (object 7 i%), 34
__package_ ,71

__path_ ,70,71

__pos__ () (object 7 i%), 35
__pow__ () (object 7 i%), 34

__radd__ () (object 7 i%), 34
rand__ () (object 7 i%), 34
__rcmp__ () (object 7 i%), 26
rdiv__ () (object 7 i%), 34

__rdivmod__ () (object 7 i%), 34
__repr__ () (object 7 i%), 25
__reversed__ () (object 7 i%), 32
__rfloordiv__ () (object 7 i%), 34
__rlshift__ () (object 7 i%), 34
__rmod__ () (object 7 i%), 34
__rmul__ () (object 7 i%), 34
__ror__ () (object 7 i), 34
__rpow__ () (object 7 i%), 34
__rrshift__ () (object 75 i%), 34
__rshift__ () (object 7 i%k), 34
__rsub__ () (object 7 i%), 34
__rtruediv__ () (object 7 i%), 34
__rxor__ () (object 7 i%), 34
__set__ () (object 75 i%), 28
__setattr__ () (object method), 27
__setattr__ () (object 7 i%), 27
__setitem__ () (object 7 i%k), 32
__setslice__ () (object 7 i%), 33
__slots_ ,96
_ slots_ (FIE%)29
__str__ () (object 7 i%), 25
__sub__ () (object 7 i%), 34
__subclasscheck__ () (class 7 %), 30
__truediv__ () (object 7 %), 34
__unicode__ () (object 7 i%), 26
__xor___ () (object 7 i%), 34
| =
augmented assignment, 65
Bl 5
AssertionError, 66
AttributeError, 51
GeneratorExit, 50
ImportError, 70,71
NameError, 46
RuntimeError, 67
StopIteration, 50, 68
TypeError, 55
ValueError, 56
ZeroDivisionError, 55
& 4
*, 81

118

EL]

The Python Language Reference, k7% 2.7.18

** 81 with statement, 78
@, 80 ASCIIQASCIT, 4,10, 13,17
assert, 66 assert
break, 69, 76, 78 E A4, 66
class, 81 AssertionError
continue, 69, 76, 78 Bl 4b, 66
def, 80 assertions
del, 24, 67 debugging, 66
exec, 73 assignment
for, 69,76 attribute, 64
from, 41 augmented, 65
global, 64,67,73 class attribute, 21
if, 76 class instance attribute, 21
import, 20, 70 slicing, 65
pass, 66 statement, 17, 64
print, 25, 67 subscription, 65
raise, 69 target list, 64
return, 68, 78 atom, 46
try, 22,77 attribute, 16
while, 69,76 assignment, 64
with, 37,78 assignment, class, 21
yield, 68 assignment, class instance, 21
BELE class, 21
and, 59 class instance, 21
in, 59 deletion, 67
is, 59 generic special, 16
is not, 59 reference, 51
not, 59 special, 16
not 1in, 59 attribute —- EMH, 90
or, 59 AttributeError
B4k, 51
A augmented
abs assignment, 65
B & & %, 35
abstract base class —- £ %, 89 B
addition, 55 back-quotes, 25, 49
and backslash character,6
bitwise, 56 backward
EHEA, 59 quotes, 25, 49
anonymous BDFL, 90
function, 60 binary
argument arithmetic operation, 55
call semantics, 52 bitwise operation, 56
function, 18 binary literal, 12
function definition, 80 binding
argument -- &%, 89 global name, 73
arithmetic name, 41, 64, 70, 71, 80, 81
conversion,45 bitwise
operation, binary, 55 and, 56
operation, unary, 54 operation,binary, 56
array operation, unary, 54
R, 18 or, 56
as xor, 56
import statement, 70 blank line,7

%5l 119

The Python Language Reference, k% 2.7.18

block, 41
code, 41
BNF, 4, 45
Boolean
operation, 59
x4, 16
break
iE 4], 69,76,78
bsddb
e, 18
built-in
method, 20
built-in function
call, 54
T4, 20, 54
built-in method
call, 54
T4, 20, 54
byte, 17
bytearray, 18
bytecode, 21
bytecode —-- F ¥, 90

bytes-like object —-- F¥ EF£, 90
c, 10

language, 16, 17, 20, 56
call, 52

built-in function, 54
built-in method, 54
class instance, 54
class object, 20,21, 54
function, 18, 54
instance, 31, 54
method, 54
procedure, 64
user—defined function, 54
callable
T4, 18,52
chaining
comparisons, 56
character, 17,51
character set, 17
chr
& &%, 17
class
attribute, 21
attribute assignment, 21
classic, 23
constructor, 24
definition, 68, 81
instance, 21
name, 81
new-style, 23

old-style, 23

x4, 20,21, 54, 81

&4, 81
class —— 2,90
class instance

attribute, 21

attribute assignment, 21

call, 54

T4, 20,21, 54
class object

call, 20, 21, 54
classic class, 90
clause, 75
close () (generator 7 i%), 50
cmp

& & %, 26
co_argcount (code object attribute), 2 1
co_cellvars (code object attribute), 21
co_code (code object attribute), 21
co_consts (code object attribute), 21
co_filename (code object attribute), 21
co_firstlineno (code object attribute), 21
co_flags (code object attribute), 21
co_freevars (code object attribute), 21
co_1lnotab (code object attribute), 21
co_name (code object attribute), 21
co_names (code object attribute), 21
co_nlocals (code object attribute), 21
co_stacksize (code object attribute), 21
co_varnames (code object attribute), 21
code

block, 41
code object, 21
coercion —- FEH| KA A 90
comma, 46

trailing, 60, 67
command line, 83
comment, 6
comparison, 56

string, 17
comparisons, 25, 26

chaining, 56
compile

EE & %, 73
complex

literal, 12

number, 17

& % %, 35

4,17
complex number —-— £ #,90
compound

statement, 75
comprehensions

list, 47

120

EL]

The Python Language Reference, k7% 2.7.18

Conditional
expression, 59
conditional
expression, 60
constant, 9
constructor
class, 24
container, 16, 21
context manager, 37

context manager —— Lt FNXEIEZE 90
continue

B4, 69,76,78
conversion

arithmetic, 45

string, 25,49, 64
coroutine, 49
CPython, 90

D
dangling
else, 76
data, 15
type, 16
type, immutable, 46
datum, 48
dbm
Mk, 18
debugging
assertions, 66
decimal literal, 12
decorator —— 4, 90
DEDENT token, 7,76
def
iE A4, 80
default
parameter value, 80
definition
class, 68, 81
function, 68, 80
del
E A4, 24, 67
deletion
attribute, 67
target, 67
target list, 67
delimiters, 13

descriptor —- R, 91
destructor, 24, 64
dictionary

display, 48

T4, 18, 21,26, 48, 51, 65
dictionary -- 3, 91
dictionary view —— FHAHE, 91
display

dictionary, 48

list, 47

set, 48

tuple, 46
division, 55
divmod

[& %, 34
docstring, 81
docstring —- XHFEHFE, 91
documentation string, 22
duck-typing -- #F %A 91

E

EAFP, 91
EBCDIC, 17
elif
XBT,76
Ellipsis
&, 16
else
dangling, 76
Xx4#F,69,76,78

empty
list, 47
tuple, 17, 46

encoding declarations (source file), 6

environment, 41
error handling,43
errors, 43
escape sequence, 10
eval

B & %, 73, 84
evaluation

order, 61
exc_info (in module sys), 22
exc_traceback (in module sys), 22, 77
exc_type (in module sys), 77
exc_value (in module sys), 77
except

XHF, T
exception, 43, 69

handler, 22

raising, 69
exception handler, 43
exclusive

or, 56
exec

EA,73
execfile

[EE & %, 73
execution

frame, 41, 81

restricted, 42

stack, 22

e]

The Python Language Reference, k% 2.7.18

execution model, 41
expression,45
Conditional, 59
conditional, 60
generator, 48
lambda, 60, 81
list, 60, 63, 64
statement, 63
yield, 49
expression -- Fi#k =R, 91
extended
slicing, 52
extended print statement, 67
extended slicing, 17
extension
module, 16
extension module -- ¥ B, 91

F

f_back (frame attribute), 22
f_builtins (frame attribute), 22
f__code (frame attribute), 22
f_exc_traceback (frame attribute), 22
f_exc_type (frame attribute), 22
f_exc_value (frame attribute), 22
f_globals (frame attribute), 22
f_lasti (frame attribute), 22
f_lineno (frame attribute), 22
f_locals (frame attribute), 22
f_restricted (frame attribute), 22
f_trace (frame attribute), 22
False, 16
file

T4, 21, 84
file object -- XfX%£,91
file-like object —— X#£xt%£,91
finally

X8 F,68,69,77,78
find_module

finder, 70
finder, 70

find_module, 70
finder —- ## 4,91
float

& & %, 35
floating point

number, 17

x4, 17
floating point literal, 12
floor division —-— i FEUER®R &, 91
for

iE 4], 69,76
frame

execution,4l, 81

&, 22
free

variable, 41, 67
from

K#F,70

iE A, 41
frozenset

X%, 18
func_closure (function attribute), 18
func_code (function attribute), 18
func_defaults (function attribute), 18
func_dict (function attribute), 18
func_doc (function attribute), 18
func_globals (function attribute), 18
func_name (function attribute), 18
function

anonymous, 60

argument, 18

call, 18, 54

call,user—-defined, 54

definition, 68, 80

generator, 49, 68

name, 80

user—-defined, 18

T4, 18, 20, 54, 80
function —— E#, 91
future

statement, 72

G

garbage collection, 15
garbage collection —— XK [E L, 92
gdbm
ik, 18
generator, 92
expression, 48
function, 20, 49, 68
iterator, 20, 68
4,22, 48,49
generator —— A ik, 92
generator expression, 92
generator expression —- 4 KREBEERHKR, 92
GeneratorExit
B4, 50
generic
special attribute, 16
GIL, 92
global
name binding, 73
namespace, 18
&4, 64,67,73

global interpreter lock —— & f #5241,

92
globals

122

EL]

The Python Language Reference, k7% 2.7.18

[EE & %, 73
grammar, 4
grouping, 7

F{

handle an exception,43
handler

exception, 22
hash

& & %, 26
hash character,6
hashable, 48
hashable -- W%, 92
hex

& & %, 35
hexadecimal literal, 12
hierarchy

type, 16

|
id

& & %, 15
identifier, 8, 46
identity

test, 59
identity of an object, 15
IDLE, 92
if

&4, 76
im_class (method attribute), 19
im_ func (method attribute), 19
im_self (method attribute), 19
imaginary literal, 12
immutable

data type, 46

object, 46, 48

R, 17
immutable —— A H 7%, 92
immutable object, 15
immutable sequence

X, 17
immutable types

subclassing, 24
import

iE 4], 20, 70
importer —— B A#,93
ImportError

B4k, 70,71
importing -- §A,93
in

X, 76

B HAF, 59
inclusive

or, 56

INDENT token,7
indentation, 7
index operation,17
indices () (slice 7% i%), 22
inheritance, 81
input, 84

raw, 84

& &%, 84
instance

call, 31,54

class, 21

T4, 20,21, 54
int

& &%, 35
integer, 17

representation, 17

&, 16
integer division, 92
integer literal, 12
interactive -- X %, 93
interactive mode, 83
internal type,?21
interpreted ——- #EA,K 93
interpreter, 83
inversion, 54
invocation, 18
is

EHHE, 59
is not

= A, 59
item

sequence, 51

string, 51
item selection, 17
iterable -- H#E R 4,93
iterator -- # R %, 93

J

Java
language, 17

K

key, 48

key function -- #®E#, 93
key/datum pair, 48
keyword, 9

keyword argument -- *#&F5H¥, 93

L

lambda, 93
expression, 60, 81
language
c, 16, 17, 20, 56
Java, 17

e]

The Python Language Reference, k% 2.7.18

Pascal, 77
last_traceback (in module sys), 22
LBYL, 93
leading whitespace, 7
len

FIE g%, 17, 18, 31
lexical analysis,5
lexical definitions,4
line continuation,6
line joining,6
line structure,5
list

assignment, target, 64

comprehensions, 47

deletion target, 67

display, 47

empty, 47

expression, 60, 63, 64

target, 64,76

T4, 18,47,51,52, 65
list —— %%, 94
list comprehension -- F|FKHKEHER, 94
literal, 9,46
load_module

loader, 70
loader, 70

load_module, 70
loader —- fu# %, 94
locals

)& &%, 73
logical line, 6
long

B & & %, 35
long integer

X%, 16
long integer literal, 12
loop

over mutable sequence, 77

statement, 69, 76
loop control

target, 69

M
magic
method, 94
magic method —-- JEARF %, 94
makefile () (socket method),21

metaclass -- J0K, 94
method
built-in, 20
call, 54
magic, 94
special, 96
user—defined, 19
4,19, 20,54
method resolution order -- ¥ 3% /F,
94
method 7 i, 94
minus, 54
module
extension, 16
importing, 70
namespace, 20
4., 20, 51
module A3, 94
modulo, 55
MRO, 94
multiplication, 55
mutable
4,17, 64,65
mutable —- T 77, 94
mutable object, 15
mutable sequence
loop over, 77

HA, 17
N

name, 8, 41, 46
binding, 41, 64, 70, 71, 80, 81
binding, global, 73
class, 81
function, 80
mangling, 46
rebinding, 64
unbinding, 67

named tuple -- B 44,94

NameError
B4, 46

NameError (built-in exception), 41

names
private, 46

namespace, 41
global, 18
module, 20

mangling namespace -- @4 % [, 94
name, 46 negation, 54
mapping nested scope -- #%E1EHH, 94
4,18, 21,51, 65 new-style class —-- # A%, 95
mapping —— B4, 94 newline
membership suppression, 67
test, 59 NEWLINE token,6,76
124 %5l

The Python Language Reference, k7% 2.7.18

next () (generator 7 i%), 50
None

T4, 16, 64
not

B HAF, 59
not in

B HAF, 59
notation, 4
NotImplemented

£, 16
null

operation, 66
number, 12

complex, 17

floating point, 17
numeric

&, 16,21

numeric literal, 12

O

object, 15
code, 21
immutable, 46, 48
object —— Xf#£,95
oct
[& & %, 35
octal literal, 12
open
B E &%, 21
operation
binary arithmetic, 55
binary bitwise, 56
Boolean, 59
null, 66
shifting, 56
unary arithmetic, 54
unary bitwise, 54
operator
overloading, 24
precedence, 61
ternary, 60
operators, 13
or
bitwise, 56
exclusive, 56
inclusive, 56
BEHFF, 59
ord
EE &%, 17
order
evaluation, 61
output, 64, 67
standard, 64, 67

OverflowError (built-in exception), 16

overloading
operator, 24

F)
package, 70
package -- 4,95
parameter
call semantics,53
function definition, 79
value, default, 80
parameter —— H%,95
parenthesized form, 46
parser, 5
Pascal
language, 77
pass
iE 4], 66
PEP, 95

physical line,6, 10
plain integer
£, 16
plain integer literal, 12
plus, 54
popen () (in module os), 21

positional argument —-- fI &5, 95

pow

[EE & %, 34
precedence

operator, 61
primary, 51
print

E 4], 25,67
private

names, 46
procedure

call, 64
program, 83
Python 3000, 95
Python $#&&EN

PEP 1,95

PEP 236,72

PEP 238,91

PEP 255,68

PEP 278,96

PEP 302,70,91,94

PEP 308,60

PEP 328,71

PEP 342,51,68

PEP 343,37,79,90

PEP 3116,96

PEP 31109,3l
Pythonic, 95

e]

The Python Language Reference, k% 2.7.18

Q

quotes
backward, 25, 49
reverse, 25, 49

R

raise

& 4], 69
raise an exception,43
raising

exception, 69
range

& &%, 77
raw input, 84
raw string, 10
raw_input

B & &%, 84
readline () (file method), 84
rebinding

name, 64
recursive

T4, 49
reference

attribute, 51
reference count —-— 5| it%k, 96
reference counting, 15
relative

import, 71
repr

[EE % %, 25, 49, 64
representation

integer, 17
reserved word,9
restricted

execution, 42
return

iE 4], 68,78
reverse

quotes, 25,49
RuntimeError

s, 67
S

scope, 41
send () (generator 75 %), 50
sequence
item, 51
*t4,17,21,51,52,59,65,76
sequence —— J¥7%|,96

shifting
operation, 56
simple
statement, 63
singleton
tuple, 17
slice, 52
& &%, 22
%, 31
slice —— 14,96
slicing, 17,52
assignment, 65
extended, 52
source character set,6
space, 7
special
attribute, 16
attribute, generic, 16
method, 96
special method -- ¥%F ik, 96
stack
execution, 22
trace, 22
standard
output, 64, 67
Standard C, 10
standard input, 83
start (slice object attribute), 22, 52
statement
assignment, 17, 64
assignment, augmented, 65
compound, 75
expression, 63
future, 72
loop, 69, 76
simple, 63
statement —- iE4], 96
statement grouping, 7
stderr (in module sys), 21
stdin (in module sys), 21
stdio, 21
stdout (in module sys), 21, 67
step (slice object attribute), 22, 52
stop (slice object attribute), 22, 52
StopIteration
B4, 50, 68
str
& % %, 25, 49
string
comparison, 17

set
display, 48 conversion, 25,49, 64
w4, 18,48 item, 51
set type Unicode, 10
&, 18 X%, 17,51,52
126 23|

The Python Language Reference, k7% 2.7.18

string literal, 10
struct sequence, 96
subclassing
immutable types, 24
subscription, 17, 18,51
assignment, 65
subtraction, 55
suite, 75
suppression
newline, 67
syntax, 4, 45
sys
Ik, 67,77,83
sys.exc_info, 22
sys.exc_traceback, 22
sys.last_traceback, 22
sys.meta_path, 70
sys.modules, 70
sys.path, 70
sys.path_hooks, 70
sys.path_importer_cache, 70
sys.stderr, 21
sys.stdin, 21
sys.stdout, 21
SystemExit (built-in exception), 43

T

tab, 7
target, 64
deletion, 67
list, 64,76
list assignment, 64
list,deletion, 67
loop control, 69
tb_ frame (traceback attribute), 22
tb_lasti (traceback attribute), 22
tb_1lineno (traceback attribute), 22
tb_next (traceback attribute), 22
termination model, 43
ternary
operator, 60
test
identity, 59
membership, 59
throw () (generator 7 i%), 50

token, 5
trace
stack, 22
traceback
t4,22,69,77
trailing
comma, 60, 67
triple-quoted string -- Z 5| 5F/&H, 96

triple—-quoted string, 10

True, 16

try
B4, 22,77

tuple
display, 46
empty, 17, 46
singleton, 17
4, 17,51,52,60

type, 16
data, 16
hierarchy, 16
immutable data, 46
& &%, 15

type —- %7, 96

type of an object, I5

TypeError
Blob, 55

types, internal, 2l

u

unary
arithmetic operation, 54
bitwise operation, 54
unbinding
name, 67
UnboundLocalError, 41
unichr
EE &%, 17
Unicode, 17
unicode
EE 8%, 17,27
AR, 17
Unicode Consortium, 10
universal newlines —-- 3@ f#1T, 96
UNIX, 83
unreachable object, 15
unrecognized escape sequence, |1
user—-defined
function, 18
function call, 54
method, 19
user-defined function
4,18, 54, 80
user—-defined method

HA, 19
vV

value

default parameter, 80
value of an object, 15
ValueError

B4, 56
values

writing, 64, 67

e]

127

The Python Language Reference, k% 2.7.18

variable
free, 41, 67
EE &%
abs, 35
chr, 17
cmp, 26
compile, 73
complex, 35
divmod, 34
eval, 73, 84
execfile, 73
float, 35
globals, 73
hash, 26
hex, 35
id, 15
input, 84
int, 35
len, 17,18, 31
locals, 73
long, 35
oct, 35
open, 21
ord, 17
pow, 34
range, 77
raw_input, 84
repr, 25, 49, 64
slice, 22
str, 25,49
type, 15
unichr, 17
unicode, 17,27
KEF
elif, 76
else, 69, 76,78
except, 77
finally, 68, 69, 77,78
from, 70
in, 76
yield, 49
virtual environment —- EWIIE, 96
virtual machine —-- E#HL, 96
xR
Boolean, 16
built-in function, 20, 54
built-in method, 20, 54
callable, 18,52
class, 20, 21, 54, 81
class instance, 20, 21, 54
complex, 17
dictionary, 18, 21, 26, 48, 51, 65
Ellipsis, 16
file, 21,84

W

floating point, 17
frame, 22

frozenset, 18

function, 18, 20, 54, 80
generator, 22,48, 49
immutable, 17
immutable sequence, 17
instance, 20, 21, 54
integer, 16

list, 18,47,51,52,65
long integer, 16
mapping, 18, 21, 51, 65
method, 19, 20, 54

module, 20, 51

mutable, 17, 64, 65
mutable sequence, 17
None, 16, 64
NotImplemented, 16
numeric, 16, 21

plain integer, 16
recursive, 49

sequence, 17, 21, 51, 52, 59, 65, 76
set, 18,48

set type, 18

slice, 31

string, 17,51,52
traceback, 22, 69, 77
tuple, 17,51, 52, 60
unicode, 17
user—-defined function, 18, 54, 80
user—-defined method, 19

while

&4, 69,76

whitespace, 7

Bk

__builtin_ ,73,83
__main_ ,42,83
array, 18

bsddb, 18

dbm, 18

gdbm, 18

sys, 67,77, 83

with

&4, 37,78

writing

X

XOor

values, 64, 67

bitwise, 56

128

EL]

The Python Language Reference, k7% 2.7.18

Y

yield
expression, 49
KET, 49
T 4], 68

Z

Zen of Python -- Python Z##,96
ZeroDivisionError

B4k, 55

%3 129

	概述
	其他实现
	标注

	词法分析
	行结构
	其他形符
	标识符和关键字
	字面值
	运算符
	分隔符

	数据模型
	对象、值与类型
	标准类型层级结构
	New-style and classic classes
	特殊方法名称

	执行模型
	命名与绑定
	异常

	表达式
	算术转换
	原子
	原型
	幂运算符
	一元算术和位运算
	二元算术运算符
	移位运算
	二元位运算
	比较运算
	布尔运算
	Conditional Expressions
	lambda 表达式
	表达式列表
	求值顺序
	运算符优先级

	简单语句
	表达式语句
	赋值语句
	The assert statement
	The pass statement
	The del statement
	The print statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	The global statement
	The exec statement

	复合语句
	The if statement
	The while statement
	The for statement
	The try statement
	The with statement
	函数定义
	类定义

	最高层级组件
	完整的 Python 程序
	文件输入
	交互式输入
	表达式输入

	完整的语法规范
	术语对照表
	文档说明
	Python 文档的贡献者

	历史和许可证
	该软件的历史
	获取或以其他方式使用 Python 的条款和条件
	被收录软件的许可证与鸣谢

	Copyright
	索引

