Python Tutorial
£ 2.7.18

Guido van Rossum
and the Python development team

A A 20,2020

Python Software Foundation
Email: docs@python.org

Contents

1 DRASHEL

PWMRRESR o o o o
MEREGRIIBATIREE . . o o

EMMBENE L

if Statements
forStatements
range () BREL
break and continue Statements, and e 1se Clauses on Loops
passStatements

ESCRREN . o

AN GRS RAG L

PURMBEZHEE .. oo

The delstatement
JCHFFA) .o
R

TEERIOEETS oo
WASUEES .o

WA IBERMER ..
FRIERRHR . oL

2 f§i)1] Python fifREdd
2.1
2.2
3 Python [FHEIE A4
3.1 Python {EA 15255 H
3.2
4 HAbR R T L
4.1
4.2
43
4.4
45
4.6
47 EUE XWEZIE R
4.8
5 Bhdi
5.1
5.2
53
5.4
55 F
5.6
5.7
58 LR AR AD A
6 fibh
6.1
6.2
6.3
6.4

7 EWAKil

........................ 20

10

11

12

13

70 BEESERIETASEL
T2 BEBTIUH .

AR

8.1 BRI R
82 W

8.3 ARFHLEEET L e
8.4 PHHISEE . .
85 T HENL EE .« o e
8.6 ESUEHENE
8.7 TR MIHEEME . . .

xR

9.1 BFRFINTE .
9.2 Python fEFIANIAT A ZSIH] . . o o o e
03 RIS e
0.4 ZNFEULHH .« o
0.5 ZEIK . .
9.6 Private Variables and Class-local References
0.7 ZRIVEHH . . e
9.8 Exceptions Are Classes TOO o v i i i i e e e e e e
0.0 AR . .
9.10 ZERRE . .
9.11 AERBeEihat .

FrdfE WA

10.1 BVEZRGEIEDD . o e
102 SCEEEEIRT . . o o o
103 M TTSE0 . . o e
104 B EEFFLTALIE o e
105 FARBERUTHED . . .
10.6 B02E o o
107 FEERITIED © o o e
108 HEAFIHFIA] . . o o o e e e
109 BURIEAT o e
1010 PEEEMIE:
101 BRI . o
1012 HAFHIL . .

FrEETRI A —58 5

111 RBICALET Y . . o o
11.2 B . o
113 i HEmIEERE TR
114 ZLRRE e
115 HBiE o o
11.6 BHBIH .« o o o e
117 HTEAEFIRI TR
11.8 HERNFEIBE . .

Bk ?

28 1 X G A G i D A2

13.1 Line Editing e
13.2 History Substitution o L o e e e e e e e e e e e e e e e
133 KeyBindings o e

59
59
59
60
62
62
64
65

67
67
68
69
72
73
75
76
76
77
78
79

81
81
82
82
82
82
83
83
84
84
84
&5
85

87
&7
88
89
89
90
91
91
92

95

13.4 BRIAR HaUMRRSR BRI, 99

14 FENBAR: FeiURIRR G 101
141 bR 103
15 Bt 105
151 R HAET 105
A ARiEXIE 107
B SCRyiiH 115
B.1 Python SCRYIUTTHRE o e 115
C PRI e 117
Cl RIS o o 117
C.2 FEHE PAHA T A] Python B KANAAE o o o o 118
C3 WEERETTIE SIS . . 121
D Copyright 133
#9l 135

Python Tutorial, 445 2.7.18

Python J&—F 5 T24>] LIRES R K mMARE S . BT SRS E RS , A 18] B 280 T) %
S4nfe. Python (EHERIEIEFIBNSREA, DANMRRENE S AR, e BN ERZIIMEZECT-6 L5 HAR
RS AW R BANE S .

ZBT-6 FRY Python R % LA K =F B W A5 ME 122 10 TS AT aT $0047 344, #B AT PATE Python ‘B ¥ https://www.
python.org/ %% H M T80 5. XA Ml B4R pt—seghiz . WHGEE = Python #itl, Fi/F. T HEE,
PASCEF AN SRS

Python fi#pRé#s 5 T-9 &, WA C ol C++ (siZFHMTTAM CHAMIET) ¥RHIhRE R ik 21,
Python] FAER] & fAL AR R IE S

XAFARAEIE A AN Python 155 FI R G AN S NN RE . B AR P BB — > Python fFREARM—
ik] AT BB TR A BN Y, B DX B] DB 4R R e

B RARMERINT SRR, 227 library-index. reference-index &It TR IEAXIEF & L. BE C o C++ ¥ E,
%:7% extending-index | c-api-index. .4 A />HEEE A f# Python,

EANFREH AR E ST, E2E A et sa & K. XA#HEH N4 Python Wiy
HAFENTIRE, WAIERERSRIXANE SRS . 273 52X AR, RFFRENS 2145 5 Python bk
ARy, WA PAIFIR2~>] B2 1) Python FEARHR, 1AL library-index.

A 18 A WARES .

Contents 1

https://www.python.org/
https://www.python.org/

Python Tutorial, A4%5 2.7.18

2 Contents

CHAPTER 1

IRBTE =

IR EAE RN L TAE, BaFEsafibeasitt. i, XN —RHESORIPFETER I, XHRZ
N8 SO IR LU RS R R ML B iy 2 HE TN [) SO o] REARAR S — A/ N BRI, — e
WP I, B — AR B AR X o

MR LA R AT, R BERR B S — L C/Cr+/Java i, HESAFEH RS . Wik, Wik,
W IFMAERNE T o TREIXARR RS — 41, w2 ARRRB TAE T . SRS A, ATRASCREE
PRES, BRSO TACSEX A, LT8Rl MG = 1

A8~ , Python 1EUF-REW BRI FEEL .

T KIS, YRULTTOAS Unix shell B4 Windows HALFESER, (LR shell B4 Sl K B2l S RIS
YA, HRE S GULRESE NI & . (RTAS A CIC++Java FLFF, {ELRE W RERTRIHREAL K HOTF % B
/i, Python () WIS A28, ATLAYE Windows, Mac OS X, AJ% Unix RS LA, i LT DA/
Heblss T A
Python 7% 53 i, {2 FRELTE M4RLE S , 0L T R A MRS, bk KR, T2 shell Ak
HCALBSCPFRITI R Python SEHEAE C i & B MAHRKA, 1 HLIEN—Fh “HESES", AR
FRORI AR ORI, TE Bk o @ AR, Python RERSRY A 20, #axt
Awk B3 Perl, il HLAR 2 4R 7 7E Python 4/ FIR4E % 5 i B T 4.
Python SV L k40 A RETE FLALAY Python e AL FUTIIBEEE, &9 I T M IOARIERIE, JRATDL
AEBCALR EFF R AT DAYE NI T, FF4425T Python 4B, B4R, —b) Py B BEHAR AL A SC P A B
. RGN . AP, MR R R O T A A Tk
Python J&— FRAIRRAIE S, FERUTIF R BT DA MR KR, DR R T PRI, RS T DA
A, RER T AT 2 I R, TR UM, B E E R LR T 4 h A T
b, AR RT A S THE
Python FLFFAF55 /2 B VA T 53 110 . Python LRSI HLFBETIAER) C, Co+, Java USRS, AATFIL
ISR

o PEOUHHRR I AR R R AR B

o TP 45 R TR AT AR R T4 2

- REEHE UERA S,

Python Tutorial, A4%5 2.7.18

Python 2 T A" : WARANE/EAT CHFRRE, SRR S HLA MRERH I LT 1 1 06 M
IR B BT DARCREIEIZ AT, i AL Python PP GEBES) FURMERAFRLF RO (HOUEE P 9
) — ELIRELIE 6582 b T, AAEAE Python MRRERE i RS 5H] C iff 5 SR T -

R, SCRFEH94 T (python —JFLE “S5E") 7444 1 BBC 15H “Monty Python iy kAT ThkIAI",
T 5 RATENPIEAT SR 4 3CH T Monty Python e JFBRSE A FURBRCAL VN, i AR FHY

BUAE (FEL 2608 Python BRRAKIAT , B TI—SS45 T . BT O REE TSR BN E , AR
R, —ATE Python PRI

AT, UG RERRIO i . TR, (LA TSRS0I TR L, SRR X 00
SR SLAL A BT 17127 Python FE 3 RIRSEH IR TRUSAE, FFIA LIRS 05k i RO
KR, INRRRHRE , B — YR, HAISERG . JTPoE SL.

4 Chapter 1. &gjEs

CHAPTER 2

{&£ F Python f##%=5

2.1 RS

The Python interpreter is usually installed as /usr/local/bin/python on those machines where it is available;
putting /usr/local/bin in your Unix shell’ s search path makes it possible to start it by typing the command

’python

to the shell. Since the choice of the directory where the interpreter lives is an installation option, other places are possible;
check with your local Python guru or system administrator. (E.g., /usr/local/python is a popular alternative
location.)

On Windows machines, the Python installation is usually placed in C: \Python27, though you can change this when
you’ re running the installer. To add this directory to your path, you can type the following command into the command
prompt in a DOS box:

set path=%path%;C:\python27

TEFHRAF R A OISR FAF (6 Unix 4542 control-D, Windows R4EH /2 Control-2) At
fEREAR TR LR AR 00 WA, ARE T ARl quit O,

The interpreter’ s line-editing features usually aren’ t very sophisticated. On Unix, whoever installed the interpreter may
have enabled support for the GNU readline library, which adds more elaborate interactive editing and history features.
Perhaps the quickest check to see whether command line editing is supported is typing Cont rol-P to the first Python
prompt you get. If it beeps, you have command line editing; see Appendix %L Z X 445 o4 4%)5 ¥ for an introduction
to the keys. If nothing appears to happen, or if ~P is echoed, command line editing isn’ t available; you’ 11 only be able
to use backspace to remove characters from the current line.

RS IBATI A SR Unix iy 47 TE—AMRiER A tty 545 LA, B aess BRI st T a2 M
FRHEGL U2 280, s A A SO E A B AR R AITE, B S BURISAT SO i i A .

B —FhR s ERERR Y 2 python —c command [arg] ..., HH' command B IEIITIITES, W
B 4T —c BT, T Python fURS H 25 S S W 2 R Ut LU BRCRR BRI 74, B S T 0 N AR SO 33
BAG 'S4 command FEHLK .

Python Tutorial, A4%5 2.7.18

A28 Python BB AT AN IAGE AT . ATDAXFERIA : python —m module [arg] ..., X&IAT module
MO, SERRAE ar AT IR R H 4 T —HEs

TEIZATRIAS G, A] BB 7 BAEIB AT I U A BB XA HRAE SO ST, i Eemil -1 stnl
PAT

All command-line options are described in using-on-general.

211 EASH

QUERATRERYTE , MRRERR UM 21T 4L, AN TR RIEA sys B argy R . ST
import sys AR PASEAX AR IR AR . I ERDPBEH - ICE; REGAERAS
¥, sys.argv[0] i@ MNEFEMFH. WREALZE - (FERA) B/, “sys.argv[0] & '-'
i —c w4, sys.argv[0] g '—c'. QIR HED —m module, sys.argv[0] 2 HEM
W4 . 7E —c command B, —m module 7 J5 RTINS B R REAS AL PE, M HIE AL sys.argv FHEML
SRR AL B .

212 FHER

FEL G (tty) BIAFHPATIROmS, FATUMRERZ17HE L EZARX (interactive mode) . AEXFEEAF, B
BoR ZRFAF (primary prompt) , $EIREIN TG4, WEH=ARTS (>>>) FoR; L ALTHIN
i, BEam k2RFHF, BAR=An (Lo 0) BEARRESI, EaBavalFR. RAMEE. BGE
B, SRIE 2 BG4 -

python

Python 2.7 (#1, Feb 28 2010, 00:02:06)

Type "help", "copyright", "credits" or "license" for more information.
>>>

SRR EAEELE M 2T A e, PAif Rfi:

>>> the_world_is_flat = 1
>>> if the_world_is_flat:
print "Be careful not to fall off!"

Be careful not to fall off!

A RZHBAWEZ N, W LK.

2.2 MRBERXNSITING
2.2.1 BEXHF LD

By default, Python source files are treated as encoded in ASCII. To declare an encoding other than the default one, a
special comment line should be added as the first line of the file. The syntax is as follows:

’# -*— coding: encoding —*-

H At encoding] PAZ Python S {{F & —Fh codecs.,
Hean, ZEREEAEH Windows-1252 #afith, ARAGIRAD SCEFEEE A

6 Chapter 2. {EF Python %28

Python Tutorial, 445 2.7.18

—*— coding: cpl252 —*-

KT F— AT —FBISME O, IRFBVAUNIX “shebang” 47 F¥3ko XAMELLT, Sh s Bt 285 7E 301
fEE 47, plmn:

#!/usr/bin/env python
—*— coding: cpl252 —*-

2.2. FRRBANIBITIMG 7

Python Tutorial, A4%5 2.7.18

8 Chapter 2. {EF Python %28

CHAPTER 3

Python BYEIER /48

NI E T, Gl R RAT 0> 5 KBS TR K d AR L AR B U 1, RN AT
WIS, PR AHESER AT A BT R — A RLASRAFIT SRR T @ R e it th . TER B 1
FAT B AR ERE LA — AT R RETR AT 0.

AT PV Z B TR SR, PR A& AT . Python HHIIERELAIS # JF3k, JF H—H I
BRSO TEE AN 1k FERENT DA B ATk B 2 28 A ACRS 5 ads, (H2 AN RE B 4 HR e]
iﬁ%ig@%ﬁ%ﬁ%oﬁﬁﬁﬁ%%*@%ﬁ@%,K%Wﬂmm%ﬁ,%%E%Aﬁ%%?ﬁ,ﬁﬁ
72 Nl VAR 1 o

JLA

this is the first comment
spam = 1 # and this is the second comment
... and now a third!
text = "# This is not a comment because it's inside quotes."

3.1 Python {E4itH &R
U124 SR L) Python 74 RIZVIRERR, SRFREPIORAAE, >>> GREIAIER T2).

3.1.1 H=

RS IR — R RS — AR DME R A — N REA R ES BN ER. RAWEENRE
e B L L/ BRI M E S — A (Hf Pascal 303 C B); 155 (0) R4, HAn

>>> 2 + 2

4

>>> 50 - 5*6

20

>>> (50 - 5.0*6) / 4

(N IUERED)

Python Tutorial, A4%5 2.7.18

(£ LT
5.0
>> 8 / 5.0
1.6

R (b2, 4, 20) 7 int KA, A/NIGRH (FKANS.0. 1.6) A float KA, FERXANFHHIEF
AN BRI L B

The return type of a division (/) operation depends on its operands. If both operands are of type int, floor division is
performed and an int is returned. If either operand is a £1oat, classic division is performed and a f1oat is returned.
The / / operator is also provided for doing floor division no matter what the operands are. The remainder can be calculated
with the % operator:

>> 17 / 3 # int / int -> Int

5

>>> 17 / 3.0 # int / float —-> float

5.666666666666667

>>> 17 // 3.0 # explicit floor division discards the fractional part
5.0

>>> 17 % 3 # the % operator returns the remainder of the division

2

>>> 5 * 3 + 2 # result * divisor + remainder

17

fE Python Ht, WA ** BB AR T H A

>>> 5 ** 2 # 5 squared

25

>>> 2 ** 7 # 2 to the power of 7
128

FT (5 TS AERRE. REET MR ERRTZ A S LR TR 1A

>>> width = 20

>>> height = 5 * 9
>>> width * height
900

R — AR E X (RIR(E) , 1P B I & Tl A s

>>> n # try to access an undefined variable
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'n' is not defined

Python HiR I MBI SE B SR i 2 MR G R AL F Rz I LU R AN 17 R

>> 3 * 3,75 / 1.5
7.5

>>> 7.0 / 2

3.5

FER RS, B AT ENH DRI R AP E AR . X EIRE 2 /RIE Python JIfEsTHIVI S Asiy, 4Rk
ISR B, Hn:

VPR R b - ARG, A 3% %2 SRR - (3% *2) , PILEERUR 9. N TR AT BAF RIS o, RAT DA AN
T (=3)**2.

10 Chapter 3. Python B93EIEX /48

Python Tutorial, 445 2.7.18

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625

>>> price +
113.0625
>>> round(_, 2)
113.06

AR B W AR 4 VR R e A . AN) S R
i, BRI NN A .

7T int] float, Python tH 3 # MM AIAET, Bl Decimal B{# Fraction. Python th N & X &
B SR, HES 5 83 0] ARR EEGT 2 (40 3+55).

VR BN FIE 2 5 R R AL A 2R

3.1.2 &

B 747, Python Wl DMEMEF AR . FAFRAZMIE, AILAMEMRSS (r...0), MG (... #
T DASRAHRIREI SR o SR \ AT DA Sfed 30

>>> 'spam eggs' # single quotes

'spam eggs'

>>> 'doesn\'t' # use \' to escape the single quote...
"doesn't"

>>> "doesn't" # ...or use double quotes instead
"doesn't"

>>> '"Yes," they said.'

""Yes," they said.'

>>> "\"Yes, \" they said."
'"Yes," they said.’

>>> '""Isn\'t," they said.'
'""Isn\'t," they said.'

In the interactive interpreter, the output string is enclosed in quotes and special characters are escaped with backslashes.
While this might sometimes look different from the input (the enclosing quotes could change), the two strings are equiv-
alent. The string is enclosed in double quotes if the string contains a single quote and no double quotes, otherwise it is
enclosed in single quotes. The print statement produces a more readable output, by omitting the enclosing quotes and
by printing escaped and special characters:

>>> '""Isn\'t," they said.'

""Isn\'t," they said.'

>>> print '""Isn\'t," they said.'

"Isn't," they said.

>>> s = 'First line.\nSecond line.' # \n means newline
>>> s # without print, \n is included in the output
'First line.\nSecond line.'

>>> print s # with print, \n produces a new line

First line.

Second line.

WERARAR EHE T \ BFAH SORERIR AT, ATRAMEA e 5 45 0730, FES ST « BPT:

2 RIHABE R —REN 2, BIR TR LLAIDE \n ZERAT1S (1L L) RIS (") BB S SRS S X B2, AR
At BAEET |5 B SOWE 15 " (BRI ARG S5 SUR), RZIRMA.

3.1. Python {E4itE2&EH 11

Python Tutorial, A4%5 2.7.18

>>> print 'C:\some\name' # here \n means newline!
C:\some

ame

>>> print r'C:\some\name' # note the r before the quote

C:\some\name

FAPER A A DABSATIE S A . — MU A =555 o e ml L EAF R I
e B S B FA R, RS, EATREIm— \ BT, 40 Rl
print nn n\
Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to

nuwn

R N GERRIT IR AT iR R)

Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to

TFRPERAIAN + BT OB —i&), dal AR ~ BT EA:

>>> # 3 times 'un', followed by 'ium'
>>> 3 * 'un' + 'ium'

'unununium’

B ZA F48 5 F @A (FI5TERATRT) K& A ShEsEs k.

>>> 'Py' 'thon'
'Python'

SRR B FRFERIRIT 20 Bl AR T HA

>>> text = ('Put several strings within parentheses '
C 'to have them joined together.')

>>> text
'Put several strings within parentheses to have them joined together.'

HAEXT AP EDX A, AR ek U T

>>> prefix = 'Py'
>>> prefix 'thon' # can't concatenate a variable and a string literal

SyntaxError: invalid syntax
>>> ('un' * 3) 'ium'

SyntaxError: invalid syntax

R AL, S RS A TIEE, WA + 5

>>> prefix + 'thon'
'Python'

PRIV S (PR 19, 5 ARSI 0. MASHOREIRTRIAN, SUE KIS
R

12 Chapter 3. Python FJIEIER N+48

Python Tutorial, 445 2.7.18

>>> word = 'Python'

>>> word[0] # character in position 0
IPI

>>> word[5] # character in position 5
lnl

R AL, XM DI IR

>>> word[-1] # last character

lnl

>>> word[—-2] # second-last character
lol

>>> word[-6]

'Pl

TERL -0 RO 2 —HERy, FrATBRG I -1 TG

In addition to indexing, slicing is also supported. While indexing is used to obtain individual characters, slicing allows you
to obtain a substring:

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)
IPy'
>>> word[2:5] # characters from position 2 (included) to 5 (excluded)
'tho'

HEEUR IR SRS R P, MERAATE. XHGs1:1] + s[i:]) ME%T s

>>> word[:2] + word[2:]
'Python'
>>> word[:4] + word[4:]
'Python'

IR IRGIABOAME: ARSI EGAN 0, AMEEHRRG AN 2 FAF R I 4

>>> word[:2] # character from the beginning to position 2 (excluded)
le'

>>> word[4:] # characters from position 4 (included) to the end

'Ol’l'

>>> word[—-2:] # characters from the second-last (included) to the end
lon'

B AX 2B R RRG IR FAT 20, S DFAZENARN 0, e P s n
, HoA n REAFER R i

e e S S
' Pl y |l t |l h|oln]|
fom b+
0 1 2 3 4 5 6

-6 -5 -4 -3 -2 -1

B—ATRERE TR 06 IURGIMALE, S —AThRE TR T IR i B j AU S T s
A i F RO T A AT

N?E%#ﬁ%ﬂ%ﬂﬁ,M%?ﬂﬁﬂﬁ,%Z%ﬂ%ﬂﬁﬁ%ﬁ%@i%ﬁZ%o%w,mnﬂhm
MR BN 2.

WE SR RG &7 R

3.1. Python {E4itE2&EH 13

Python Tutorial, A4%5 2.7.18

>>> word[42] # the word only has 6 characters
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: string index out of range

Hi2, IR RG | S H shak B

>>> word[4:42]
lon'

>>> word[42:]
T

Python " FAFERNBERIB L, EA 1 immutable §. P, mFAFRREANRG I ERES A —

>>> word[0] = 'J'

TypeError: 'str' object does not support item assignment
>>> word[2:] = 'py'

TypeError: 'str' object does not support item assignment

WERTFFEDAFERTATH, 23—

>>> 'J' + word[l:]
'Jython’

>>> word[:2] + 'py'
'"Pypy’

INEERREL len () & [A—ASFRF A K

>>> 5 = 'supercalifragilisticexpialidocious'
>>> len(s)
34

Z W

typesseq Strings, and the Unicode strings described in the next section, are examples of sequence types, and support the
common operations supported by such types.

string-methods Both strings and Unicode strings support a large number of methods for basic transformations and
searching.

formatstrings {# [str.format () #fTFEAFEEXAL.

string-formatting The old formatting operations invoked when strings and Unicode strings are the left operand of the
% operator are described in more detail here.

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to the programmer: the Unicode object. It can
be used to store and manipulate Unicode data (see http://www.unicode.org/) and integrates well with the existing string
objects, providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every script used in modern and ancient texts.
Previously, there were only 256 possible ordinals for script characters. Texts were typically bound to a code page which
mapped the ordinals to script characters. This lead to very much confusion especially with respect to internationalization
(usually written as 118n —"1i"' + 18 characters + 'n"') of software. Unicode solves these problems by defining one
code page for all scripts.

14 Chapter 3. Python BJIEIER 48

http://www.unicode.org/

Python Tutorial, 445 2.7.18

Creating Unicode strings in Python is just as simple as creating normal strings:

>>> u'Hello World !’
u'Hello World !’

The small 'u"' in front of the quote indicates that a Unicode string is supposed to be created. If you want to include
special characters in the string, you can do so by using the Python Unicode-Escape encoding. The following example
shows how:

>>> u'Hello\u0020World !'
u'Hello World !’

The escape sequence \u0020 indicates to insert the Unicode character with the ordinal value 0x0020 (the space char-
acter) at the given position.

Other characters are interpreted by using their respective ordinal values directly as Unicode ordinals. If you have literal
strings in the standard Latin-1 encoding that is used in many Western countries, you will find it convenient that the lower
256 characters of Unicode are the same as the 256 characters of Latin-1.

For experts, there is also a raw mode just like the one for normal strings. You have to prefix the opening quote with ‘ur’
to have Python use the Raw-Unicode-Escape encoding. It will only apply the above \uXXXX conversion if there is an

uneven number of backslashes in front of the small ‘u’

>>> ur'Hello\u0020World !'
u'Hello World !’

>>> ur'Hello\\u0020World !"
u'Hello\\\\u0020World !

The raw mode is most useful when you have to enter lots of backslashes, as can be necessary in regular expressions.

Apart from these standard encodings, Python provides a whole set of other ways of creating Unicode strings on the basis
of a known encoding.

The built-in function unicode () provides access to all registered Unicode codecs (COders and DECoders). Some of
the more well known encodings which these codecs can convert are Latin-1, ASCII, UTF-8, and UTF-16. The latter two
are variable-length encodings that store each Unicode character in one or more bytes. The default encoding is normally
set to ASCII, which passes through characters in the range 0 to 127 and rejects any other characters with an error. When
a Unicode string is printed, written to a file, or converted with st r (), conversion takes place using this default encoding.

>>> u"abc"

u'abc'

>>> str(u"abc")

'abe!

>>> y"aosu”

u'\xed\xfo\xfc'

>>> str(u"aosu")

Traceback (most recent call last):
File "<stdin>", line 1, in ?

UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-2: ordinal.

—not in range (128)

To convert a Unicode string into an 8-bit string using a specific encoding, Unicode objects provide an encode () method
that takes one argument, the name of the encoding. Lowercase names for encodings are preferred.

>>> u"&aot" .encode ('utf-8")
"\xc3\xad\xc3\xb6\xc3\xbc'

If you have data in a specific encoding and want to produce a corresponding Unicode string from it, you can use the
unicode () function with the encoding name as the second argument.

3.1. Python {E4itE2&EH 15

Python Tutorial, A4%5 2.7.18

>>> unicode ('\xec3\xad4\xc3\xb6\xc3\xbec', 'utf-8'")
u'\xed\xfo\xfc'

3.1.4 F|FE

Python WAl DAIE I 20 & —SE(HAG R 2 Fh B & BRRA. HrbiR g Y 20 &, AIDAEE D #5408 2545
Fr—4E OoR) B8l —A 2LV AR AR TR, (HIlH N A o= AU

>>> squares = [1, 4, 9, 16, 25]
>>> squares
(1, 4, 9, 16, 25]

Like strings (and all other built-in sequence type), lists can be indexed and sliced:

>>> squares[0] # indexing returns the item

1

>>> squares|[—1]

25

>>> squares[—3:] # slicing returns a new 1ist
[9, 16, 25]

P UL BRI — A3, XAHPIRE S I B oK. SR U, R SR B —A
By () #5 0L

>>> squares|[:]
[1, 4, 9, 16, 25]

Lists also supports operations like concatenation:

>>> squares + [36, 49, 64, 81, 100]
[+, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Himmutable (- FAFERAT], IR — A mutable B3, H2U, ©H SR AAE AT ABCEE

>>> cubes = [1, 8, 27, 65, 125] # something's wrong here
>>> 4 ** 3 # the cube of 4 is 64, not 65!

64

>>> cubes[3] = 64 # replace the wrong value

>>> cubes
[1, 8, 27, 64, 125]

PRI DAES R Rl L append () 7 3oRESIBILER (FRATRAE G RN G4 KITETER)

>>> cubes.append (216) # add the cube of 6
>>> cubes.append (7 ** 3) # and the cube of 7
>>> cubes

[1, 8, 27, 64, 125, 216, 343]

FURE R T PARY, SRR R ARSI R A, s 100 R A

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> letters

[lal’ lbl’ lCl, ld', lel, lfl, lgl}

>>> # replace some values

>>> letters[2:5] = ['C', 'D', 'E']

(Rt

16 Chapter 3. Python B93EIEX /48

Python Tutorial, 445 2.7.18

(£ 50

>>> letters

[‘a', 'B', 'C', 'D', 'E', 'f', 'g']

>>> # now remove them

>>> letters[2:5] = []

>>> letters

['a’, 'B', "f', 'g']

>>> # clear the list by replacing all the elements with an empty list
>>> letters[:] = []

>>> letters

L]

WEREL Len () BRIDAERIRIZ) R B

>>> letters = ['a', 'b', 'c', 'd']
>>> len(letters)
4

WATPARESN R (A & HAS R 51120), HLamis:

>>> a = ['a', 'b', 'c']

>>> n (1, 2, 31

>>> x = [a,]

>>> x

[['a', 'b', 'c'l, [1, 2, 311
>>> x[0]

[vav, vbv, vcv]
>>> x[0][1]
H!

3.2 ERBENF—E

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can write
an initial sub-sequence of the Fibonacci series as follows:

>>> # Fibonacci series:
the sum of two elements defines the next
. a, b=20, 1
>>> while b < 10:
print b
a, b =Db, atb

QO Ul W N

XABITFHIA T LA BRI .
* HATEH A Z WAL AR a Ml b FINGE] CHHE O F L RS AT XU T IR EIR{E, XN
T FRRREN, TR AL Z BORE T . A T REUR MR HPORIERY .
e The while loop executes as long as the condition (here: b < 10) remains true. In Python, like in C, any non-zero
integer value is true; zero is false. The condition may also be a string or list value, in fact any sequence; anything

3.2. EAREENE—E 17

Python Tutorial, A4%5 2.7.18

&ix

with a non-zero length is true, empty sequences are false. The test used in the example is a simple comparison.
The standard comparison operators are written the same as in C: < (less than), > (greater than), == (equal to), <=
(less than or equal to), >= (greater than or equal to) and ! = (not equal to).

PRI Yaitey: Hidt Python HEUEMI . AL HAMAATR, WSAENFERATR T~ Tab
B (ZA) DA%, SCbr ESORGR ST, VREIER S A AT 30 P AR SCAR G
AV Bt I E . R HA AT AT, A HAWE R AR, fFEERER— N A TR
e (BFOIRE TS A ORI A TR 2 5 —47) . R, fER—PFa i —1T, %
A HER R B

The print statement writes the value of the expression(s) it is given. It differs from just writing the expression you

want to write (as we did earlier in the calculator examples) in the way it handles multiple expressions and strings.
Strings are printed without quotes, and a space is inserted between items, so you can format things nicely, like this:

>>> 1 = 256*256
>>> print 'The value of i is', i
The value of i is 65536

A trailing comma avoids the newline after the output:

>>> a, b =20, 1

>>> while b < 1000:
print b,
a, b =Db, atb

112 358 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if the last line was not completed.

18

Chapter 3. Python By3EIEX /4B

cHAPTER 4

ﬁ

LRI TR

&~
=

)

\

B TRINIA 232 () while 1547, Python At &l il HAE = i WL iR il it iy, U R 284k

4.1 if Statements

eSO A BT IR AR A2 1€ 154 1. Bl

>>> x = int (raw_input ("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
x =0
. print 'Negative changed to zero'
. elif x == 0:
. print 'Zero'
. elif x == 1:
print 'Single'
. else:
print 'More'

More

There can be zero or more e1i f parts, and the e 1 se part is optional. The keyword ‘elif’ isshortfor ‘elseif’ ,and
is useful to avoid excessive indentation. An if ---elif ---elif ---sequence is a substitute for the switch or case

statements found in other languages.

19

Python Tutorial, A4%5 2.7.18

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating over
an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration step and
halting condition (as C), Python’ s for statement iterates over the items of any sequence (a list or a string), in the order
that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
. words = ['cat', 'window', 'defenestrate']
>>> for w in words:
print w, len(w)
cat 3
window 6
defenestrate 12

WERTENEIR N T EB BT I P ROE (AR P IR), IR D — Bl A . 7o BEAT A ER
AMCEHIE T — D EIARRFTEAE . VI AR R AR w R e

>>> for w in words|[:]: # Loop over a slice copy of the entire 1ist.
if len(w) > 6:
words.insert (0, w)
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']

4.3 range () HE

If you do need to iterate over a sequence of numbers, the built-in function range () comes in handy. It generates lists
containing arithmetic progressions:

>>> range (10)
[OV 1/ 2/ 37 47 5/ 6/ 77 87 9J

The given end point is never part of the generated list; range (10) generates a list of 10 values, the legal indices for
items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different increment
(even negative; sometimes this is called the ‘step’):

>>> range (5, 10)

[5, 6, 7, 8, 9]

>>> range (0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)
[-10, =40, -70]

AP RTIRIEN, ETPARF range () Fil Len () HAEWT:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i1 in range(len(a)):
print i, afli]
0 Mary
1 had
2 a

(Rt

20 Chapter 4. HipARIZH TR

Python Tutorial, 445 2.7.18

(£ 50

3 little
4 lamb

R, FERZEOXEMEHT, #H enumerate () WAL A, ESIWEFH5T

4.4 break and continue Statements, and else Clauses on Loops

break ifiH], 1 CHAZEM, T BkL&HIER for o while fEER.

Loop statements may have an e1se clause; it is executed when the loop terminates through exhaustion of the list (with
for) or when the condition becomes false (with while), but not when the loop is terminated by a break statement.
This is exemplified by the following loop, which searches for prime numbers:

>>> for n in range (2, 10):
for x in range (2, n):

[}

if n § x ==

print n, 'equals', x, '*', n/x
break
else:
loop fell through without finding a factor
print n, 'is a prime number'

is a prime number
is a prime number
equals 2 * 2
is a prime number
equals 2 * 3
is a prime number
equals 2 * 4
equals 3 * 3

O 00 J o U W N .

(R, XRIEHMIRI. [F40E: else THET for M, ABT if iHH.)

When used with a loop, the else clause has more in common with the else clause of a t ry statement than it does
that of i f statements: a t ry statement’ s else clause runs when no exception occurs, and a loop’ s else clause runs
when no break occurs. For more on the t ry statement and exceptions, see 4k 72 3.

continue IFFMRMHEH CIEF, FoRGRERH T — I

>>> for num in range (2, 10):

[}

if num % 2 ==

print "Found an even number", num
continue
print "Found a number", num

Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9

4.4. break and continue Statements, and else Clauses on Loops 21

Python Tutorial, A4%5 2.7.18

4.5 pass Statements

pass AT AWM. MIHE EHE—NER, HEFTFEA2SERAHN, TAERE. Fian:

>>> while True:
pass # Busy-wait for keyboard interrupt (Ctrl+C)

I TR R M 2E:

>>> class MyEmptyClass:
pass

Another place pass can be used is as a place-holder for a function or conditional body when you are working on new
code, allowing you to keep thinking at a more abstract level. The pass is silently ignored:

>>> def initlog(*args):
pass # Remember to implement this!

4.6 FNLEHEH

FATA] AR — 0 AT RSl Y Fibonacei £081) BRI AR

>>> def fib(n): # write Fibonacci series up to n
"""Print a Fibonacci series up to n."""
a, b=20, 1
while a < n:
print a,

a, b = b, atb

>>> # Now call the function we just defined:
. £ib(2000)
0112 358 13 21 34 55 89 144 233 377 610 987 1597

KT def GIA—A PRI & Lo BAS IRRA AR S MBS EBIR . e BUARE AT —
f1IT4G, I+ Habmigeit.

PREARRY S — AT A (RTEHT) P AFH 3075 AN TFAFER SO BRI SR 5 53 5 docstring o (A7 9%
RFFFRME LA, WS AT) A TR SOR 55 B 304 A2 sl B SORY, 5
R P AR AR AT S AAS s ARG S B A QRS P 35 SO A7 R — PR B RO MG, B AR B~ 158

The execution of a function introduces a new symbol table used for the local variables of the function. More precisely, all
variable assignments in a function store the value in the local symbol table; whereas variable references first look in the
local symbol table, then in the local symbol tables of enclosing functions, then in the global symbol table, and finally in
the table of built-in names. Thus, global variables cannot be directly assigned a value within a function (unless named in
a global statement), although they may be referenced.

TERRBBR IS, SCBr 28 (552) SuEI AP R AR SR L, 52 =R A 15 id
) CH IR 2R AT 31 A AR RN o 24— BRI 75 A0SO, 52 1% 08 B — A
AT 52

SEpi b Rt 27 MR 2R AN EIFINRRIE, BRI ARG, I P K B A AT AT S (B
AFNFIF A TH) -

22 Chapter 4. HipFEZHTH

Python Tutorial, 445 2.7.18

PREUE L AAE KB 5 A A RTFTS 2P BRBCA FRAGIELE A R 2R3 TR A e SCRR B 2828 . XA
ERTLASIIES 5 — 8K, AR] DAVEg— A e BU A o 3V — B S a4 AL

>>> fib

<function fib at 10042ed0>
>>> f = fib

>>> £(100)

0112358 13 21 34 55 89

Coming from other languages, you might object that £ib is not a function but a procedure since it doesn’ t return a
value. In fact, even functions without a return statement do return a value, albeit a rather boring one. This value is
called None (it’ s a built-in name). Writing the value None is normally suppressed by the interpreter if it would be the
only value written. You can see it if you really want to using print:

>>> fib (0)
>>> print £ib (0)
None

B— IR R ERGIRREIN N F L (AT ESTEHR) RO, AR

>>> def fib2(n): # return Fibonacci series up to n
"""Return a list containing the Fibonaccili series up to n."""
result = []
a, b=20, 1
while a < n:
result.append(a) # see below
a, b =Db, atb
return result

>>> f100 = f£ib2(100) # call it
>>> £100 # write the result
(¢, 12, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

BRGIH, BAER—F, HR 729870 Python J)fiE:

e The return statement returns with a value from a function. return without an expression argument returns
None. Falling off the end of a function also returns None.

» result.append (a) WM THIEXS result i ik, FER BT —MDWEREEL B
4 M obj.methodname , HH obj ZHANXER (HATHER —PEiAX), methodname 2 HXf4
RA g LI E AR . ANFEREBIRT DA SR . AN R BL)] DA AH R 9 44 BRI AS
25| . (ATPAMEH & @ X HOWXTZERATTE, WSRE) mOITRITE append () A& 471
%Xﬁ%{ﬁ)‘(lﬁ’ﬂ&E%Eﬂi’%ﬁ@ﬁ%)ﬁ%ﬂﬂ*ﬁ?ﬁ%ﬁ%o EXNRHIPEMYS T result = result +
la]l , HEERL.

4.7 AYWENLHMESHELX

2 BRBOE SCH TSR H S BB R TATIY . X B =R, FTRAH A .

4.7. ABENHESHA 23

Python Tutorial, A4%5 2.7.18

4.71 SHEGAE

A IR RO X AW SRR E A BOAE. AR R, 7T DA HE SO FR VR 3 i 240
i=a U

def ask_ok (prompt, retries=4, complaint='Yes or no, please!'):
while True:

ok = raw_input (prompt)

if ok in ('y', 'ye', 'yes'):
return True

if ok in ('n', 'no', 'nop', 'nope'):
return False

retries = retries - 1

if retries < O:
raise IOError ('refusenik user')

print complaint

XA RO PAIE) LA =L -
o NP ENZSE: ask_ok('Do you really want to quit?')
o I —AT[IEAISE: ask_ok ('OK to overwrite the file?', 2)

e i EAHFTANSE: ask_ok('OK to overwrite the file?', 2, 'Come on, only yes
or no!")

RARBIENZT in RET . BRI NFI 25 S A,
BRONEEAE & S A2 APE B BOE SUITTERY, i bA

i=5

def f (arg=1i):
print arg

i =06
£()
SATHI 5.

TREN: BOMERSRIT R XAHTEBOAE A 5 (51 FIPA RS HRILH]) AR 2
Botnn, R Y R R S AT A e SR AR s e B S A

def f(a, L=[]):
L.append (a)
return L

print f£(1)
print £(2)
print f£(3)

RRFTEI

(1]
(1, 2]
1, 2, 3]

URARAE AR IS SR 2 IR S B E, R AT AR 5 X e A

24 Chapter 4. HipFEZHTH

Python Tutorial, 445 2.7.18

def f (a, L=None):
if L is None:
L =11

L.append(a)
return L

4.7.2 XBFEY

WA PAME BN kwarg=value iy X 45 S SR HT BR g, B0 T 1) B 4L

def parrot (voltage, state='a stiff', action='voom', type='Norwegian Blue'):

print "-- This parrot wouldn't", action,

print "if you put", voltage, "volts through it."
print "-- Lovely plumage, the", type

print "-- It's", state, "I"

Bz A HWSEL (voltage) M=AMEMSEL (state, action, Fll type). XA BRI AE L T
AT — o 75 =R -

parrot (1000) # 1 positional argument
parrot (voltage=1000) # 1 keyword argument
parrot (voltage=1000000, action='VOOOOOM") # 2 keyword arguments
parrot (action='VOOOOOM', voltage=1000000) # 2 keyword arguments
parrot('a million', 'bereft of life', 'jump') # 3 positional arguments
parrot ('a thousand', state='pushing up the daisies') # 1 positional, 1 keyword

(B THT 1) oS RS AT 2 TE R

parrot () required argument missing

parrot (110, voltage=220)

#
parrot (voltage=5.0, 'dead") #
#
parrot (actor="'John Cleese') #

non—-keyword argument after a keyword argument
duplicate value for the same argument
unknown keyword argument

ERBOHA T, KEFSE TR ES B G . 230 T X7 S50 -5 s s 2 i Hod—
SHUCEE (el actor N2 parrot IASE) , BT HFAEZ, XaIFET®SH, (k
il parrot (voltage=1000) WRH). RNREX R —PNSEELRKIE. T2 A BRI 2 i
BF-

>>> def function(a):
pass

>>> function (0, a=0)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: function() got multiple values for keyword argument 'a'

When a final formal parameter of the form * *name is present, it receives a dictionary (see typesmapping) containing all
keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal parameter
of the form *name (described in the next subsection) which receives a tuple containing the positional arguments beyond
the formal parameter list. (* name must occur before * *name.) For example, if we define a function like this:

def cheeseshop(kind, *arguments, **keywords):

print "-- Do you have any", kind, "?2"
print "-- I'm sorry, we're all out of", kind
for arg in arguments:
(FIUgkEh)
4.7. BRELHESHER 25

Python Tutorial, A4%5 2.7.18

(£ 50

print arg
print "-" * 40
keys = sorted(keywords.keys())
for kw in keys:

print kw, ":", keywords [kw]

AT PMB R

cheeseshop ("Limburger", "It's very runny, sir.",
"It's really very, VERY runny, sir.",
shopkeeper="Michael Palin',
client="John Cleese",
sketch="Cheese Shop Sketch")

BREXTH:

—-— Do you have any Limburger ?

-—— I'm sorry, we're all out of Limburger
It's very runny, sir.

It's really very, VERY runny, sir.
client : John Cleese

shopkeeper : Michael Palin

sketch : Cheese Shop Sketch

Note that the list of keyword argument names is created by sorting the result of the keywords dictionary’ s keys ()
method before printing its contents; if this is not done, the order in which the arguments are printed is undefined.

4.7.3 EBRHISHIIR

B, AN R AT DAGE AR BB i SRR s RS AW E ST (St
FA). TEEBERSEZE, RSB EESEL.

def write_multiple_items (file, separator, *args):
file.write (separator.join(args))

4.7.4 BBERIFE

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the built-in range () function expects separate start and stop
arguments. If they are not available separately, write the function call with the *-operator to unpack the arguments out
of a list or tuple:

>>> range (3, 6) # normal call with separate arguments

[3, 4, 5]

>>> args = [3, 6]

>>> range (*args) # call with arguments unpacked from a list
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the * *-operator:

26 Chapter 4. HipARIZH TR

Python Tutorial, 445 2.7.18

>>> def parrot (voltage, state='a stiff', action='voom'):

print "-- This parrot wouldn't", action,
print "if you put", voltage, "volts through it.",
print "E's", state, "!"
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}

>>> parrot (**d)
—— This parrot wouldn't VOOM if you put four million volts through it. E's bleedin'.
—demised !

4.7.5 Lambda FixxX

DA lambda K8 7R A1E —A/ MY KA XA REOR B ZHH I lambda a, b: a+b,
Lambda pj AT PATE 5 B2 R O G AR 7 (1 . ENTHETR R ERRT B3Rk B SCESRUE, BATR
e LT R BUE SCHITRIRNE . S sRAUE 4, lambda p&BCR] AT | Bt 55 dek i A2

>>> def make_incrementor (n) :
return lambda x: x + n

>>> f = make_incrementor (42)
>>> £ (0)

42

>>> £ (1)

43

ERIEIBI T —A lambda KRR B — KL 75— HRE R L DR A SR

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort (key=lambda pair: pair[1l])

>>> pairs

[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]

4.7.6 HEFFTER

There are emerging conventions about the content and formatting of documentation strings.

F—ATIAZRRR G H R MR . WIS W, EARLR IR G A AR, Ry 4 n i H At
Tk (BRARA ARG R s B E R Zh i) o X —ATW ARG FRIT, PAR) R4S .

WERSCRI FAFER A 24T, SR A7 2 H, ATAERLSE_ERHE S S AR T . S LA T % —
AREANBI, ISR Z5E, ERRITERSE.

Python fiffr# A~ 2 M Python H il AT 53 SO R4t PRICAL BRSO Y T Hb 25T 7 BN R it . X
S PA N A SE MU . SO FATER SR —AT 2 B IS — D ARSI E B SO P AT i gt i . (FRATARE
17, PEVEEHESTFRAHRILTISME, HILE g 78 Cr AN,) AR5 7 4FH
WIBTATTHIIT KRB Szt SR Mzstt. @itE DRfT ARz, (2R ENTH B, W% B
ENTRFTA IS BRI RAT A A% R IR SAR SR CHm L 8 DMk

N ST SO AR T

>>> def my_function():
"""Do nothing, but document it.

No, really, it doesn't do anything.

(FItakss)

4.7. ABENHESHA 27

Python Tutorial, A4%5 2.7.18

(£ 50

pass

>>> print my_function._ _doc

Do nothing, but document it.

No, really, it doesn't do anything.

4.8 INGH: BBRE

WAERIF RS, BT ARAY Python fURD, EMENHE— T RARAE T KREEEFHBRE AR B XS
i (SCEMERHIDE, woitalil) s A2 MR SR AT e, RELEICA N A B SR AU U@ — A8
TR, R A g KUk A ARCHR)

Xt Python, PEP 8 CL2 Mo KB H BT (i iy Ak 15 v s B et 7 —FhAREH 5 LA AT H A9 B5
A% . 434> Python JT R N BRIV ARFERA BRI LT s LATR 2 Ut B i s 2 J LA 2

o fEI A EARGERE, RE B ERAT

4 NERR N EE (USRI ETRE) ARGt (B 5) m— M REFRIPT o . i
FRRTIAIRAL, BEFAZMEHE.

o AT, AT 79 AT
XA BN R AR P, OF BT RATERK) S g b HECE Z AR S
« [EREITA BN, DA REN BRI ARG .
« QARTTRE, SEHREEE A —1T.
o U SO TR
s TEIBHATHI G RE S G M 2=, HARBERERSNMEM: a = £(1, 2) + g(3, 4).

e Name your classes and functions consistently; the convention is to use CamelCase for classes and
lower_case_with_underscores for functions and methods. Always use self as the name for the first
method argument (see #74% % for more on classes and methods).

e Don’ t use fancy encodings if your code is meant to be used in international environments. Plain ASCII works
best in any case.

giE

28 Chapter 4. HipARIZH TR

https://www.python.org/dev/peps/pep-0008

CHAPTER D

HRLET

RERRA NGO L TN, T A

5.1 JIRIIES L

TFBARR LA AR R Ik X BRI R G ITIRH 5

list.append (x)
Add an item to the end of the list; equivalentto a[len (a) :] = [x].

list.extend (L)
Extend the list by appending all the items in the given list; equivalentto a[len(a) :] = L.

list.insert (i, x)
ELHEMMEFA—INILR. F—NSEREMANITTENEG], Pl a.insert (0, x) fHAFIFE
J.H, a.insert (len(a), x) Z£[T a.append(x) .

list.remove (Xx)
Remove the first item from the list whose value is x. It is an error if there is no such item.

list.pop([i])
RS2 45 2 AL E TR IR I E . WRBEA R ENE, a.pop O KRR RIZZR PR RS —
AILER. (FEEA W i AR S 3R X N SRR TR, A 255 A D 155 . YR&AE Python
S P AR B MR TR .

list.index (x)
Return the index in the list of the first item whose value is x. It is an error if there is no such item.

list.count (x)
R[]I x FEF R B B
list.sort (cmp=None, key=None, reverse=False)

XFRPPTTRIETHT (SEOTNT BESHF, RS sorted ()).

list.reverse()
Reverse the elements of the list, in place.

29

Python Tutorial, A4%5 2.7.18

ZRONFTT R

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print a.count (333), a.count (66.25),
210

>>> a.insert (2, -1)

>>> a.append(333)

>>> a

[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.1index (333)

1

>>> a.remove (333)

>>> a

[66.25, -1, 333, 1, 1234.5, 333]

>>> a.reverse ()

>>> a

[333, 1234.5, 1, 333, -1, 66.25]

>>> a.sort ()

>>> a

[-1, 1, 66.25, 333, 333, 1234.5]

>>> a.pop ()

1234.5

>>> a

[-1, 1, 66.25, 333, 333]

a.count ('x")

You might have noticed that methods like insert, remove or sort that only modify the list have no return value
printed —they return the default None. This is a design principle for all mutable data structures in Python.

5.1.1 FIREAHZER

PIFRIEFAFIIEA N ERR AR RS, Bfa— A, Boeuh (YREEEH”) . ZRM—P TR EPERY
Tis, (] append () o FMMERTFBULE —AICEK, M pop () , AHIEERT. Bl

>>> stack = [3, 4, 5]
>>> stack.append (6)
>>> stack.append(7)
>>> stack

[3, 4, 5, 6, 7]

>>> stack.pop ()

5

>>> stack

[3, 4, 5, 6]

>>> stack.pop ()

6

>>> stack.pop ()

>>> stack
[3, 4]

30

Chapter 5. #iE4EH

Python Tutorial, 445 2.7.18

5.1.2 FIRMEHPATIEH

S AT DURAEBS, oA el e s iUty (“Jedbieth™)5 SR SR AR~ H A AR5
ﬁﬂﬁ%ﬁ%?{%%ﬁﬁﬂ#tﬂﬁ%‘?%ﬁﬁ%, EUZAES R ATT LA A B TR ARG (B A i H A oo 3R
WA Bl—1) o

FTSLI—ABAF, A collections.deque, EPFBTT AT DATEHL B S ids sl oo . Filan

>>> from collections import deque
>>> queue = deque (["Eric", "John", "Michael"])

>>> queue.append ("Terry") # Terry arrives

>>> queue.append ("Graham") # Graham arrives

>>> queue.popleft () # The first to arrive now leaves
'Eric’

>>> queue.popleft () # The second to arrive now leaves
'John'

>>> queue # Remaining queue in order of arrival

deque (['Michael', 'Terry', 'Graham'])

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful when used with lists: filter (), map (), and reduce ().

filter (function, sequence) returns a sequence consisting of those items from the sequence for which
function (item) is true. If sequence is a str, unicode or tuple, the result will be of the same type; other-
wise, it is always a 1ist. For example, to compute a sequence of numbers divisible by 3 or 5:

>>> def f(x): return x $ 3 == 0 or x $ 5 == 0

>>> filter (f, range(2, 25))
[3, 5, 6, 9, 10, 12, 15, 18, 20, 21, 24)]

map (function, sequence) calls function (item) for each of the sequence’ s items and returns a list of the
return values. For example, to compute some cubes:

>>> def cube(x): return x*x*x

>>> map (cube, range(l, 11))
(2, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there are sequences and is
called with the corresponding item from each sequence (or None if some sequence is shorter than another). For example:

>>> seq = range (8)
>>> def add(x, y): return x+y

>>> map (add, seq, seq)
(o, 2, 4, 6, 8, 10, 12, 14]

reduce (function, sequence) returns a single value constructed by calling the binary function function on the
first two items of the sequence, then on the result and the next item, and so on. For example, to compute the sum of the
numbers 1 through 10:

>>> def add(x,y): return x+y

5.1. JIRMIESHE 31

Python Tutorial, A4%5 2.7.18

(£ 50

>>> reduce (add, range(l, 11))
55

If there’ s only one item in the sequence, its value is returned; if the sequence is empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the starting value is returned for an empty
sequence, and the function is first applied to the starting value and the first sequence item, then to the result and the next
item, and so on. For example,

>>> def sum(seq):
def add(x,y): return xty
return reduce (add, seq, 0)

>>> sum(range (1, 11))
55

>>> sum([])

0

Don’ t use this example’ s definition of sum () : since summing numbers is such a common need, a built-in function
sum (sequence) is already provided, and works exactly like this.

5.1.4 JIRESK

S eSS IEROE T — DR A RIS R TR F LA TR AE R B T 9 ST AR S A
JEE b, R AR B R, BE R LR R U EOR B TS

B, BREATERIE A5, B

>>> squares = []
>>> for x in range (10):
squares.append (x**2)

>>> squares
(0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

We can obtain the same result with:

squares [x**2 for x in range (10)]

This is also equivalent to squares = map (lambda x: x**2, range(10)),butit’ s more concise and read-
able.

A list comprehension consists of brackets containing an expression followed by a for clause, then zero or more for or
if clauses. The result will be a new list resulting from evaluating the expression in the context of the for and i f clauses
which follow it. For example, this listcomp combines the elements of two lists if they are not equal:

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

and it’ s equivalent to:

>>> combs = []
>>> for x in [1,2,3]:
for y in [3,1,4]:
if x !=y:

(QEA)

32 Chapter 5. #iE4EH

Python Tutorial, %45 2.7.18

(8 7))
combs.append ((x, y))
>>> combs
[, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]
AR LTS B, for A1 1€ AIF @0 R Y .
WARFBARE—A e (B EmE (x, y)), IBALAn EHES
>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]
[781 74! Ol 4/ 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
(4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = [' Dbanana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x**2) for x in range (6)]
[, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
>>> # the tuple must be parenthesized, otherwise an error is raised
>>> [x, x**2 for x in range (6)]
File "<stdin>", line 1, in <module>
[x, x**2 for x in range (6)]

SyntaxError: invalid syntax
>>> # flatten a list using a listcomp with two 'for'
>>> vec = [[1,2,3], [4,5,6], [7,8,9]]
>>> [num for elem in vec for num in elem]
[ll 2/ 3/ 47 5’ 6/ 7/ 87 9]
G et T AT DA 52 A) BB AR B R A
>>> from math import pi
>>> [str(round(pi, i)) for i in range(l, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']
BRENIIRESK
IR TP IR FRIB AT DURAEATRIE X, 85— FRHEFK
FIE T HXAS 3x4 PREFE, B 3 KR 4 5 FRA M
>>> matrix = [

(1, 2, 3, 41,

(5, 6, 7, 81,

[9, 10, 11, 127,

]

T A A T R A HAT RS
5.1. JIRBES4HE 33

Python Tutorial, A4%5 2.7.18

>>> [[row[i] for row in matrix] for i in range (4)]
ey, 5, 91, 12, 6, 101, I3, 7, 111, [4, 8, 12]]

W LR, ERSIRE SR BT IR S for PEATRIER, FrARXANME 1454 T

>>> transposed = []
>>> for i in range (4):
transposed.append([row[i] for row in matrix])

>>> transposed
rr1, 5, 91, 2, o6, 101, [3, 7, 111, [4, 8, 12]]

PRy, AT

>>> transposed = []
>>> for i in range(4):
the following 3 lines implement the nested listcomp
transposed_row = []
for row in matrix:
transposed_row.append (row[i])
transposed.append (transposed_row)

>>> transposed
tr1, s, 91, (2, o6, 101, [3, 7, 111, [4, 8, 12]]

SRR Y, AR % 2 SRR PN B R AR AU R AR A o zip O BRACRF S AR HAL BRI DL

>>> zip (*matrix)
(1, 5 9, (2, 6, 10), (3, 7, 11), (4, 8, 12)]

KEATHESHEAMREA, S0 a2 k.

5.2 The del statement

There is a way to remove an item from a list given its index instead of its value: the de 1 statement. This differs from the
pop () method which returns a value. The de 1 statement can also be used to remove slices from a list or clear the entire
list (which we did earlier by assignment of an empty list to the slice). For example:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del al[0]
>>> a

[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]

>>> a

[1, 66.25, 1234.5]

>>> del af:]

>>> a

L]

del W] DAMHBREEA AR &

>>> del a

WEHTIH a mfafis (BRI —MESIRS) . RATSTEEH 7T del AHARNE.

34 Chapter 5. B4

Python Tutorial, 445 2.7.18

5.3 JTHFIFS

HATEDINEMFAFRAREZILFERRE, IR I8t i1 52088 (S0 typesseq) HHY
Pifh. B Python iEHRYANE, HMMFIIRAMAPIMAR P X BANG — TR P o) 2688 .

—AICH B U EE S FRIT R EAL, Bl

>>> t = 12345, 54321, 'hello!'
>>> t[0]

12345

>>> t

(12345, 54321, 'hello!")

>>> # Tuples may be nested:

.u=1¢t, (1, 2, 3, 4, 5)
>>> U
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
>>> # Tuples are immutable:

. t[0] = 88888
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> # but they can contain mutable objects:

v o= ([1, 2, 31, [3, 2, 11)
>>> v
(ry, 2z, 31, (3, 2, 1])

WARFT L, JCALAE S N BRI S B R, AN E o, WA RS A, Aids
WERUAE (AR TR — DRI FREAR) o ZATe P A — A B ST R IR FRire
L IRARAT AR AL S AT R T, Bl .

BERCA T RERER SRR, HEN@E2EA RN RPEN, HFHAENRGN®. ol
sgimmutable , FFH A AFEMERICR, HF Hld WO X9 TR s R7 R
(IR2 namedtuples MG HE RiR 0] I @I) o B Emutable | F HFIFRA I ICR B[R e
i, I HE LR .

—NRRRIY S AL 0 B T AR IeAL: O Tl XA, TR SN . A ocdln]
PANEHR X S HE S 018, &AM IuRI T A TEX N ICREE I — 2SR E (E5S A
H—MERIEAREI) . HIE, (B2 A%. fim

>>> empty = ()

>>> singleton = 'hello', # <-— note trailing comma
>>> len (empty)

0

>>> len(singleton)

1

>>> singleton

('"hello',)

WAt = 12345, 54321, 'hello!' @ LALLM —AHIF: {H 12345,54321 Fl 'hello!" #FT
BETedH . BRI A

>>> x, vy, z =t

This is called, appropriately enough, sequence unpacking and works for any sequence on the right-hand side. Sequence
unpacking requires the list of variables on the left to have the same number of elements as the length of the sequence.
Note that multiple assignment is really just a combination of tuple packing and sequence unpacking.

5.3. THFFET 35

Python Tutorial, A4%5 2.7.18

54 £8§

Python AL &7 &R, LHEZMARLITTRAMP L. EREA RN RNAERER
LR, EEMPUIHFRERS, L, B8, MREPFLsH.

AR set () METLATRAIESES . W BB ASEAIRREEN set O AN 11, BAE
HRRE I, XM ARG A ST e,

PATR & — e B 7 B

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange',6K 'banana']
>>> fruit = set (basket) # create a set without duplicates
>>> fruit

set (['orange', 'pear', 'apple', 'banana'])

>>> 'orange' in fruit # fast membership testing

True

>>> 'crabgrass' in fruit

False

>>> # Demonstrate set operations on unique letters from two words

a = set ('abracadabra')
>>> b = set('alacazam')
>>> 3 # unique letters 1in a
set(['a', 'r', 'b', 'c', 'd'])
>>> a - b # letters in a but not in b
set(['r', 'd', 'b'])
>>> a | b # letters in either a or b
set(['a', 'c', 'r', '4d', 'b', 'm', 'z', '1'])
>>> a & b # letters in both a and b
set(['a', 'c'])
>>> a ~ b # letters in a or b but not both
set(['r', 'd', 'b', 'm', 'z', '1'])

KT 27 X, SEMHFHESIOENX

>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
set(['r', 'd'])

5.5 4

5 —A~EH A Y Python [FE £ 52881)& F & (S W, typesmapping). - HE HAWIE F H 0T RE S 34
N A IRE ., SPAESERECARIINTIIAR, FHEDL X85 ARG, KEFITDURER AR
FA, WHERFAREHRT . DR RS ERF R BFESoTd, I AX AT W] DUTE .
{EANSR O B BRI TR AR R, IR AT A BE MR S . SRR AE b, RS RT DA
WIERT]. Y append () Ml extend () Z M7 EHLAE .

It is best to think of a dictionary as an unordered set of key: value pairs, with the requirement that the keys are unique
(within one dictionary). A pair of braces creates an empty dictionary: { }. Placing a comma-separated list of key:value
pairs within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries are written on output.

UL B A T S B AT R DA del SRMBR—MRER . ARG T E4AF
FER F ST RATRRE, IRAZ W5 M 7 R E R S s AR AR UEL I 2 e

36 Chapter 5. #iE4EH

Python Tutorial, 445 2.7.18

The keys () method of a dictionary object returns a list of all the keys used in the dictionary, in arbitrary order (if you
want it sorted, just apply the sorted () function to it). To check whether a single key is in the dictionary, use the in
keyword.

AT 2 i <7 B — SE] R

>>> tel = {'jack': 4098, 'sape': 4139}

>>> tel['guido'] = 4127

>>> tel

{'sape': 4139, 'guido': 4127, 'Jjack': 4098}
>>> tel['jack']

4098

>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel

{'guido': 4127, 'irv': 4127, 'Jack': 4098}
>>> tel.keys ()

['"guido', 'irv', 'jack']

>>> 'guido' in tel

True

dict () H43E RR AT DA B M BEDN Je 91 LA o i

>>> dict ([('sape', 4139), ('guido', 4127), ('jack', 4098)1)
{'sape': 4139, 'jack': 4098, 'guido': 4127}

BEAh, St T T DAMAE B S e = b)

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

M TR AT BT, A B 5% B SO A R S S T

>>> dict (sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'jack': 4098, 'guido': 4127}

5.6 fEIARYELTS

MTEFFHI P ORERS, i) enumerate () BT LARFZR S|S0 AHRT 7 A {EL AT o BB iy

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
print i, v

0 tic

1 tac

2 toe

IFEIAEPASBCE 2 P2 R OGERINE, WTA zip () AR HNICER—— L.

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for g, a in zip(questions, answers):
print 'What is your ? It is .'.format (g, a)

What is your name? It is lancelot.

(Rt

5.6. EIAHIFRIS 37

Python Tutorial, A4%5 2.7.18

(£ 50

What is your quest? It is the holy grail.
What is your favorite color? It is Dblue.

R ELH [JEFR—AFF, ATPASEIE R E RLF 81, SRIGTAI reversed () %K

>>> for 1 in reversed(xrange(1,10,2)):
print i

= w o3 w0 -

NSRS A E IR — A FS, ATLAM sorted () BRERL, ‘& AT DATEA B SR 21 (4 B fill_E 3k [8]—
B HELE PR 78]

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set (basket)):
print f
apple
banana
orange
pear

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using the
iteritems () method.

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.iteritems():
print k, v
gallahad the pure
robin the brave

A RESAETEMIA B MR N A, — BORBECN BRI 22 Uil B L% 42

>>> import math
>>> raw_data = [56.2, float('NaN'), 51.7, 55.3, 52.5, float('NaN'), 47.8]
>>> filtered_data = []
>>> for value in raw_data:
if not math.isnan (value) :
filtered_data.append (value)

>>> filtered_data
[56.2, 51.7, 55.3, 52.5, 47.8]

38 Chapter 5. #iE4EH

Python Tutorial, 445 2.7.18

5.7 FAFHEH

while il 1 4 hnl DAL REHRME, TR OUUR AR HRIE .

HWBRAERF in Al not in Bl MARBE (SRTE) — O, BIERF is Ml is not HEHIANS
BB, 3 UG B A e S B 0. AT 0 R B AR M O Pk, LA
YRS B A

HWRARIETTOAGS, Blflla < b == c SRRET a /I b I H b 4T c.

WA B AT DA o i KB B and il or RALA, H ELICBARME (SOLAEMTAARIZEE) (%5 ST A
not UL . BEEHMERRIECSIET AT : FEEMZ T, not (5eBRm, or JL/edunlt, Fita
and not B or CAMT (A and (not B)) or C. MLl #E, LAl AZERCRNStT B (o 5 2
TRIERAF and il or WHFRN 8B R EISEN A EAMNT, — LIl DA 25 AR 2 4 1k

B, sk A fc Em B AR, A A and B and C ALfET Co MA@ E ARG RER, R
BRARAF AR o {EE 2 i — A

Wnl DS LB R i R A s A R B — 2R |, Bl

>>> stringl, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = stringl or string2 or string3

>>> non_null

'Trondheim’

T Python 5 C A, WR{EHEAEARE R AR AN . CRF R RES X AR, HElR T K CRE
PR SR BAERAAH T == NATH T =

5.8 LLBFFIIFIE 3R

Sequence objects may be compared to other objects with the same sequence type. The comparison uses lexicographical
ordering: first the first two items are compared, and if they differ this determines the outcome of the comparison; if they
are equal, the next two items are compared, and so on, until either sequence is exhausted. If two items to be compared
are themselves sequences of the same type, the lexicographical comparison is carried out recursively. If all items of two
sequences compare equal, the sequences are considered equal. If one sequence is an initial sub-sequence of the other, the
shorter sequence is the smaller (lesser) one. Lexicographical ordering for strings uses the ASCII ordering for individual
characters. Some examples of comparisons between sequences of the same type:

(1, 2, 3) < (1, 2, 4)

[1, 2, 3] < [1, 2, 4]

'ABC' < 'C' < 'Pascal' < 'Python'

(1, 2, 3, 4) < (1, 2, 4)

(1, 2) < (1, 2, -1)

(1, 2, 3) == (1.0, 2.0, 3.0)

(1, 2, ('aa', 'ab")) < (1, 2, ('abc', 'a"), 4)

Note that comparing objects of different types is legal. The outcome is deterministic but arbitrary: the types are ordered
by their name. Thus, a list is always smaller than a string, a string is always smaller than a tuple, etc.! Mixed numeric
types are compared according to their numeric value, so 0 equals 0.0, etc.

! The rules for comparing objects of different types should not be relied upon; they may change in a future version of the language.

5.7. EARLHEE 39

Python Tutorial, A4%5 2.7.18

&

40 Chapter 5. B4

CHAPTER O

RIR

AR Python AEREGRE I FRAHEA , ZHIHE L (BRECHIAE &) #RaEJ. Ik, MRS E — R
KRR, Bl SCAR G e A PR E B AT RRZOCI N A B AT . XBRAER S M A . BEE TR
FPASR ORI , AREVFSEE ETR D BULA SO, DA EZES . ARIREARTEA [AR P ip 6 — A R Y
PR MADEXA KB HE MR .

N AR, Python 4By ik] DAIE E SO N SCPFRL, A B AR slOARORE e 114 <2 X SE i) v il B 41T
R SCUF PRI Ak R E CAT DA AN B e R (URAETRGURIT T e iR AT Y
JHIAS A RT AT R AS B A) o

R~ Python 5 SUNITERIIK SCHE . SUPFZ MR R I BROCHEIGS .py o fE— PRI YER, ik
% (FER—ADFAFE) ATDAEE R & name_ MY(ESRAS. Bl40, @m@%ﬁ%%iﬁﬁﬁﬁﬁﬁmﬁ
KA N £ibo. py WSUPE, SUAFH A AT A%

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b=20, 1
while b < n:
print b,
a, b =Db, atb

def fib2 (n): # return Fibonacci series up to n
result = []
a, b=20, 1
while b < n:
result.append (b)
a, b =Db, atb
return result

BAEHEA Python AR, I AR v S A LML

>>> import fibo

TEYHIAFTRY, RHFASEEIARE L fibo MBNMARK; EREIEASIBERSY fibo o fKn]
AR B4 1) 28 R A

41

Python Tutorial, A4%5 2.7.18

>>> fibo.fib (1000)

112 358 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2 (100)

r+, 12, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo._ name_

'fibo'

AR F MR R AL, AR EEIR(ES — DR

>>> fib = fibo.fib
>>> fib (500)
11 2 35 8 13 21 34 55 89 144 233 377

6.1 ESHXERIER

R n] AL] AT TR DA B BRI S X S AY T IR AR . R OFERRER % — ok fE import 141
HIEF AR A AT C SRR E I AIB AT, BB IET.)

BARIBAA E A CHRA SR, ZRNEE b E P B S JRfF 535 NI, BT e
TERLBR G e i, A BG5S P 4R 28 B AR AN . 5 —J7 T, ARARGIE B a4,
DT DA BRT PSSR Y Y R B TR REARIC T . BT — B AY 2R AE B, modname . itemname,

BT A AR B . S BN BRI AT import EARAERE (SIAR) BOTFk. S ARIBELS,
PRV AR 42 R 52

import WA — MM, BN LMEA T N— BB A B A B BUERAFF S R . Bian:

>>> from fibo import fib, fib2
>>> fib (500)
112358 13 21 34 55 89 144 233 377

RN LACHIABRYL FIAZ A iR B (IR BI TR, fibo RARPOE L)
A — A AR Z T DA AR P 5 U T A 44 7

>>> from fibo import *
>>> fib (500)
112 358 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_).

FERGEF RO T A — MR ECE AN TEA * MBGER A K2R, Xl &S S e TR 22
Ak, FEHAHFAS TR T AT R AL 2

If the module name is followed by as, then the name following as is bound directly to the imported module.

>>> import fibo as fib
>>> fib.fib (500)
0112358 13 21 34 55 89 144 233 377

XA import fibo JrX—HEARGMIRARE, ME—R X2 ELA £ib BAFRIFAER] .
DA AT AYE I B £rom RYMFIEGEI, IF S RAURRCR:

VSEhR b, RBUE SCBR CHITT 1 iR BERGUREUE U I TERLREY & RS R M A KBRS -

42 Chapter 6. iR

Python Tutorial, 445 2.7.18

>>> from fibo import fib as fibonacci
>>> fibonacci (500)
0112358 13 21 34 55 89 144 233 377

{iff: For efficiency reasons, each module is only imported once per interpreter session. Therefore, if you change your
modules, you must restart the interpreter —or, if it” s just one module you want to test interactively, use reload (), e.g.
reload (modulename).

6.1.1 LIHAB AR ITER
2R H R T 5 22174 Python AR

’python fibo.py <arguments>

R ARG S PITT, M BIRSA TERS—FE, B2 _name_ PIRMESN "__main_ ". XEHREE
I AEAVRAPRESRA IR I 28 A0S

if _name_ == "_ main_ ":
import sys
fib(int (sys.argv[1]))

ARIE T VAE A SO 24 VR B A SORT 24— AR AR, PR AR B AT i 47 F) AR A 24
sebA “main” SCPFRY T PATHIIMEA iz T

$ python fibo.py 50
112 358 13 21 34

WERBEBE B T AR, IRLEACHD R Az ATHY:

>>> import fibo
>>>

XL T RS B SR T a0, SO T (CARIAR 7 2B AR T AT — 26)

6.1.2 HERERIEE

M ANHN spam MR AR EHE, RS B TR A ZAFR N BB RS E R, KGR
#M sys.path 8L I HFINERFHA N span.py B, sys.path FIIGA XKLL H SEHbhl:

* the directory containing the input script (or the current directory).
* PYTHONPATH (—Mli HRAFRIIFIR, EH shell &+ PATH H—FEIYIRTE) -
* the installation-dependent default.

TERIIGALIS, Python B2/F I ABEIL sys . path. WEIETEIBATIIARY SO H SROUBIER R KA RAL , 7E
PRERERR AR . X EERE RN H SR AR, TN RS EE PR B, BRI, B2
HiR. BEZEEHS R,

6.1. ESHXERMER 43

Python Tutorial, A4%5 2.7.18

6.1.3 “#RiFitny” Python 3%

As an important speed-up of the start-up time for short programs that use a lot of standard modules, if a file called
spam.pyc exists in the directory where spam.py is found, this is assumed to contain an already- “byte-compiled”
version of the module spam. The modification time of the version of spam. py used to create spam. pyc is recorded
in spam.pyc, and the . pyc file is ignored if these don’ t match.

Normally, you don’ t need to do anything to create the spam. pyc file. Whenever spam. py is successfully compiled,
an attempt is made to write the compiled version to spam.pyc. It is not an error if this attempt fails; if for any reason
the file is not written completely, the resulting spam. pyc file will be recognized as invalid and thus ignored later. The
contents of the spam. pyc file are platform independent, so a Python module directory can be shared by machines of
different architectures.

LA —2 L

* When the Python interpreter is invoked with the —0O flag, optimized code is generated and stored in .pyo files.
The optimizer currently doesn’ t help much; it only removes assert statements. When -0 is used, all bytecode
is optimized; . pyc files are ignored and . py files are compiled to optimized bytecode.

¢ Passing two —O flags to the Python interpreter (—00) will cause the bytecode compiler to perform optimizations that
could in some rare cases result in malfunctioning programs. Currently only __doc___ strings are removed from
the bytecode, resulting in more compact . pyo files. Since some programs may rely on having these available, you
should only use this option if you know what you’ re doing.

¢ A program doesn’ t run any faster when it is read from a . pyc or . pyo file than when it is read from a . py file;
the only thing that’ s faster about . pyc or . pyo files is the speed with which they are loaded.

* When a script is run by giving its name on the command line, the bytecode for the script is never writtentoa .pyc
or .pyo file. Thus, the startup time of a script may be reduced by moving most of its code to a module and having
a small bootstrap script that imports that module. It is also possible to name a . pyc or . pyo file directly on the
command line.

* It is possible to have a file called spam.pyc (or spam.pyo when -0 is used) without a file spam. py for the
same module. This can be used to distribute a library of Python code in a form that is moderately hard to reverse
engineer.

¢ The module compileall can create . pyc files (or . pyo files when -0 is used) for all modules in a directory.

6.2 FREEER

Python [fify T —MARifERIRE, LEEMEGSCR Python ES% (VA NHRN “FEZS%EY) ity THik, —2
BN B TR s BRI B T F O EA AN BRI, AR S RBCeR s IR R 58
MAEBAERGOERTT . X EERR IR A2 — N E IR, EERPURTIREFG. B, winreg fitk
HAE Windows #4ERGE EARML, — MR E R sys, EHNHREIE > Python R . ALkt
sys.psl Ml sys.ps2 & AT ZRIGFBIH R A T4 55

>>> import sys
>>> sys.psl
'>>> !

>>> sys.ps2
|l Al

>>> sys.psl = 'C> '
C> print 'Yuck!'
Yuck!

C>

44 Chapter 6. iR

Python Tutorial, %45 2.7.18

RPN AL i A AEG R 2 S AT A0 3o

sys.path BEE—NFRHINE, HTHE MRS HIEREGE. %8 B0 LN &
PYTHONPATH FREUVERIABSAS, B0& WA PYTHONPATH R E, WMWNEBIASEEWI M. /R0] DA AR
HES F gV EX ot A B ol

>>> import sys
>>> sys.path.append('/ufs/guido/lib/python')

6.3 dir () K%

WERREL dir O T AEHREEHE AR Bkl HEPE P47 51 &

>>> import fibo, sys

>>> dir (fibo)

['__name__ ', 'fib', 'fib2']
>>> dir (sys)

['"__displayhook__', '__doc__', '__excepthook__', '__name__', '__package__"',
' __stderr__ ', '__stdin__ ', '__stdout__', '_clear_type_cache',
'_current_frames', '_getframe', '_mercurial', 'api_version', 'argv',

'builtin_module_names', 'byteorder', 'call_tracing', 'callstats',
'copyright', 'displayhook', 'dont_write_bytecode', 'exc_clear', 'exc_info',
'exc_traceback', 'exc_type', 'exc_value', 'excepthook',6 'exec_prefix',
'executable', 'exit', 'flags', 'float_info', 'float_repr_style',
'getcheckinterval', 'getdefaultencoding', 'getdlopenflags',
'getfilesystemencoding', 'getobjects', 'getprofile', 'getrecursionlimit',
'getrefcount', 'getsizeof', 'gettotalrefcount', 'gettrace', 'hexversion',
'long_info', 'maxint', 'maxsize', 'maxunicode', 'meta_path', 'modules',
'path', 'path_hooks', 'path_importer_cache', 'platform', 'prefix', 'psl',
'py3kwarning', 'setcheckinterval', 'setdlopenflags', 'setprofile',
'setrecursionlimit', 'settrace', 'stderr', 'stdin', 'stdout', 'subversion',
'version', 'version_info', 'warnoptions']

WRBASEL, dir () RPVHARYHTE 45

>>> a = [1, 2, 3, 4, 5]

>>> import fibo

>>> fipb = fibo.fib

>>> dir ()

['__builtins__', '__name__', '__ package ' 'a', 'fib', 'fibo', 'sys']

—_r

R BAIIMPTA B AR AR, B, AL, SREES

dir () does not list the names of built-in functions and variables. If you want a list of those, they are defined in the
standard module __builtin_ :

>>> import _ builtin___

>>> dir(__builtin_)

["ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
'BufferError', 'BytesWarning', 'DeprecationWarning', 'EOFError',
'Ellipsis', 'EnvironmentError', 'Exception', 'False', 'FloatingPointError',
'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError', 'ImportWarning',
'IndentationError', 'IndexError', 'KeyError', 'KeyboardInterrupt',
'LookupError', 'MemoryError', 'NameError', 'None', 'NotImplemented',
'"NotImplementedError', 'OSError', 'OverflowError',
'PendingDeprecationWarning', 'ReferenceError', 'RuntimeError',

CFoiaks:)

6.3. dir () H¥ 45

Python Tutorial, A4%5 2.7.18

(£ 50

'RuntimeWarning', 'StandardError', 'Stoplteration', 'SyntaxError',
'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'True',
'TypeError', 'UnboundLocalError', 'UnicodeDecodeError',
'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning',
'ZeroDivisionError', '_', '__debug__ "', '__doc__', '__import_ ',

' __name__', '__package__', 'abs', 'all', 'any', 'apply', 'basestring',
'bin', 'bool', 'buffer', 'bytearray', 'bytes', 'callable', 'chr',
'classmethod', 'cmp', 'coerce', 'compile', 'complex', 'copyright',
'credits', 'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval',
'execfile', 'exit', 'file', 'filter', 'float', 'format', 'frozenset',
'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex', 'id', 'input',
'int', 'intern', 'isinstance', 'issubclass', 'iter', 'len', 'license',
'list', 'locals', 'long', 'map', 'max', 'memoryview', 'min', 'next',
'object', 'oct', 'open', 'ord', 'pow', 'print', 'property', 'quit',
'range', 'raw_input', 'reduce', 'reload', 'repr', 'reversed', 'round',
'set', 'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super',
'tuple', 'type', 'unichr', 'unicode', 'vars', 'xrange',6 'zip']

64 8

BBl RS IR R Python BB A4 ZS[B] Y5 IA . BIAN, BLRH A.B UK A W4
B IR . IR QBRI O RS A R BRI A8 A AR DAY 4 SR AR R AR — o, () il s e 44
A] DA NumPy 5 Pillow 2 RSB A i 1 2 AN FH DA I O AR A4 FR—

B ARAECA P SN E BRI S4B, it — MRS (—4 “87). mTAAERZ AR &
PR GER BN RN, Blin: cwav, .aiff, .au), FIHH ARSI, 1]
] RE R SRR ZE S — AR WTHI I RIS . AR AT REIEAE O 7E & B I R 2 R Rl R A3 (B0, RS,
Al s, A G IEE, QA TOLRERCR), I T LA B, (36 75 SbE — A To g5 R A
Buji. XRVRI I AT RS (DAY E S RSB AERTR)

sound/ Top-level package
__init__ .py Initialize the sound package
formats/ Subpackage for file format conversions
__init__ .py

wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py

effects/ Subpackage for sound effects
__init__ _.py
echo.py
surround.py
reverse.py

filters/ Subpackage for filters
__init__ .py
equalizer.py
vocoder.py
karaoke.py

46 Chapter 6. iR

Python Tutorial, 445 2.7.18

23X MR, Python #% sys.path BWH®, ERAUNTHE.

The __init__ .py files are required to make Python treat the directories as containing packages; this is done to prevent
directories with a common name, such as st ring, from unintentionally hiding valid modules that occur later on the
module search path. In the simplest case, __init__ .py can just be an empty file, but it can also execute initialization
code for the package or setthe __all__ variable, described later.

B PRI AL S A B,

’import sound.effects.echo

XM TR sound. effects.echo . HEHERLAFHER 2.

sound.effects.echo.echofilter (input, output, delay=0.7, atten=4)

AT BRI T —Fh 72

’from sound.effects import echo

WA IME TR echo , FHMHAEBA WAL T A, Rt al DA J7 0

’echo.echofilter(input, output, delay=0.7, atten=4)

73— M RE B AT I R A A A

’from sound.effects.echo import echofilter

FAE, XMW T echo, HXSMIH A echofilter () HiZWH:

’echofilter(input, output, delay=0.7, atten=4)

TR, M from package import item M}, item W PUREAY TR (), MATPUREHE X
WAL AR, ek, Ko, import HAIE LR SAEM PE X T item; WEREAT, BEETERE—
P RN E . WEREAZIE, WF|% InportError FH .

M, S import item.subitem.subsubitem IXFERYIBIERS, BT)5 —50 2 MR — AR DA
Bt R I DRI, R0 I A B

6.41 \NBhEAN*

MH S from sound.effects import * k47 HAERNIT, MIGFHEHXSPAFEM TGS
RS, B PR A, R T A . X RETR BB KHIE, A TR RS AR
WERIRIER, XA ENEH DA R A TEIE A 2 kA

ME— B il pe 7 2 E O EE R — N2 X RG] inport A A T RATALE: R — MM
_init__.py RBEXT —M# N _all_ HIFR, ESWM NEEET] from package import *
R 1% P AR 51 3 o 6 BATZ BRI FCAR, A/EE T DAY R R 8 . AAEE WA
AT S * BV RS T, BT A @A SRR A . B, S sound/effects/
__init__.py AJRAELE DA A

all = ["echo", "surround", "reverse"]

XEME from sound.effects import * ¥F A sound B =/ g TR,

MPEEHEEN __all__, from sound.effects import * &4 R&MA sound.effects PR AT
HIERBME A 20 BRI S A T sound. effects (ATREIBATAEMIFE __init__.py "PHYY
RS, SRE AT E SUPEM A FR. X R __init__.py & XIWEMAFR (DAR AN E 4%
). EREFERZE inport AR A INE AEAT M AR . BT T A6

64. 8 47

Python Tutorial, A4%5 2.7.18

import sound.effects.echo
import sound.effects.surround
from sound.effects import *

XM T, echo Ml surround fHUEFEIAT from. . . import IHAJH S AR Y /iy 258 H Y, B
BAE XAE sound.effects i, (XEEXT __all_ BHAHER.)

%ﬁ%&%ﬁ%ﬁi&ﬁﬂﬂﬁ@ﬂ% import * WU BRI AR, (HAEAE U B A SRR N2
AN o

WHICAE, i from package import specific_submodule ¥AEMFE! Sibr b, BRETARIBGR
i SR F AR LAY] 2 TR, R AR Tk

6.42 FE&%E

The submodules often need to refer to each other. For example, the surround module might use the echo module.
In fact, such references are so common that the import statement first looks in the containing package before looking
in the standard module search path. Thus, the surround module can simply use import echo or from echo
import echofilter. If the imported module is not found in the current package (the package of which the current
module is a submodule), the import statement looks for a top-level module with the given name.

ALY 3 R (SR GBI sound f—4F) , ARWT AGE 48X S AR5 H s AL R, i,
MR sound. filters.vocoder FEEAE sound.effects WPl echo #ilk, BW A from

sound.effects import echo,

Starting with Python 2.5, in addition to the implicit relative imports described above, you can write explicit relative imports
with the from module import name form of import statement. These explicit relative imports use leading dots
to indicate the current and parent packages involved in the relative import. From the surround module for example,
you might use:

from . import echo
from .. import formats
from ..filters import equalizer

Note that both explicit and implicit relative imports are based on the name of the current module. Since the name of
the main module is always "___main__ ", modules intended for use as the main module of a Python application should
always use absolute imports.

6.43 £4ERFME

BSFE — MR, __path__ . BHRIGHE I, S eSO AU Z Bl PR AT £
giﬁ: __init_.py WHRMATR. XL DMBUG AR 5 MR 6) S R T i 18

B ATEIIE, (HEW T R iR

48 Chapter 6. iR

Python Tutorial, 445 2.7.18

&

64. 8 49

Python Tutorial, A4%5 2.7.18

50

Chapter 6. iR

CHAPTER /

H\H

AILR IR AR RE P i i Bl PARAASE] B ARIT BN ok, s B ASCIFARRE R . A

AFPHE ST i

7.1 EREMRHERX

So far we’ ve encountered two ways of writing values: expression statements and the print statement. (A third way is
using the write () method of file objects; the standard output file can be referenced as sy s . stdout. See the Library
Reference for more information on this.)

Often you’ 11 want more control over the formatting of your output than simply printing space-separated values. There
are two ways to format your output; the first way is to do all the string handling yourself; using string slicing and concate-
nation operations you can create any layout you can imagine. The string types have some methods that perform useful
operations for padding strings to a given column width; these will be discussed shortly. The second way is to use the
str.format () method.

The st ring module contains a Template class which offers yet another way to substitute values into strings.

One question remains, of course: how do you convert values to strings? Luckily, Python has ways to convert any value to
a string: pass it to the repr () or str () functions.

The str () function is meant to return representations of values which are fairly human-readable, while repr () is meant
to generate representations which can be read by the interpreter (or will force a SyntaxError if there is no equivalent
syntax). For objects which don’ t have a particular representation for human consumption, str () will return the same
value as repr (). Many values, such as numbers or structures like lists and dictionaries, have the same representation
using either function. Strings and floating point numbers, in particular, have two distinct representations.

JLAil+

>>> s = 'Hello, world.'
>>> str(s)

'Hello, world.'

>>> repr(s)

"'Hello, world.'"

(Rt

51

Python Tutorial, A4%5 2.7.18

(£ 50

>>> str(1.0/7.0)
'0.142857142857"
>>> repr(1.0/7.0)
'0.14285714285714285"
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = 'The value of x is ' + repr(x) + ', and y is
>>> print s
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:
... hello = 'hello, world\n'
>>> hellos = repr (hello)
>>> print hellos
'hello, world\n'
>>> # The argument to repr () may be any Python object:
repr ((x, y, ('spam', 'eggs')))
"(32.5, 40000, ('spam', 'eggs'))"

+ repr(y) + '...'

Here are two ways to write a table of squares and cubes:

>>> for x in range (1, 11):
print repr(x).rjust(2), repr(x*x).rjust(3),
Note trailing comma on previous line
print repr (x*x*x).rjust (4)

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
749 343
8 64 512
9 81 729
10 100 1000

>>> for x in range(1,11):

print ' '.format (x, x*x, X*xX*X)
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

(Note that in the first example, one space between each column was added by the way print works: by default it adds
spaces between its arguments.)

This example demonstrates the st r. rjust () method of string objects, which right-justifies a string in a field of a given
width by padding it with spaces on the left. There are similar methods str.1just () and str.center (). These
methods do not write anything, they just return a new string. If the input string is too long, they don’ t truncate it, but
return it unchanged; this will mess up your column lay-out but that’ s usually better than the alternative, which would be

52 Chapter 7. Nt

Python Tutorial, 445 2.7.18

lying about a value. (If you really want truncation you can always add a slice operation, as in x . Ljust (n) [:n].)

WHFSNAT R, str.zfill O, ESERT TN AANETEE, EREHMIE 15

>>> '"12'.zfi11(5)

'00012"

>>> '-3.14"'.z£fil11(7)
'-003.14"

>>> '3.14159265359".2£f111(5)
'3.14159265359"

str.format () JHiERREA HEW T B

>>> print 'We are the who say "{}!"'.format ('knights', 'Ni'")
We are the knights who say "Ni!"

The brackets and characters within them (called format fields) are replaced with the objects passed into the str.
format () method. A number in the brackets refers to the position of the object passed into the str.format ()
method.

>>> print ' and '.format ('spam', 'eggs')
spam and eggs
>>> print ' and '.format ('spam', 'eggs')

eggs and spam

WRAE str. format () TR MM KBTS, WEHSE ARG T ENTHE.

>>> print 'This is .. format (
.. food="'spam', adjective='absolutely horrible')
This spam 1is absolutely horrible.

(B R T SROTME R A A

>>> print 'The story of , , and .'.format ('Bill', 'Manfred',
Ce. other='"'Georg")
The story of Bill, Manfred, and Georg.

"!'s' (apply str())and '!'r' (apply repr ()) can be used to convert the value before it is formatted.

>>> import math

>>> print 'The value of PI is approximately .'.format (math.pi)
The value of PI is approximately 3.14159265359.
>>> print 'The value of PI is approximately .'.format (math.pi)

The value of PI is approximately 3.141592653589793.

An optional ':' and format specifier can follow the field name. This allows greater control over how the value is
formatted. The following example rounds Pi to three places after the decimal.

>>> import math
>>> print 'The value of PI is approximately .'.format (math.pi)
The value of PI is approximately 3.142.

Passing an integer after the ' : ' will cause that field to be a minimum number of characters wide. This is useful for
making tables pretty.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():
print ' ==> '.format (name, phone)

(Rt

71. ERERMRHEN 53

Python Tutorial, A4%5 2.7.18

(£ LT
Jack ==> 4098
Dcab ==> 7678
Sjoerd ==> 4127

w%%ﬁ—A#%km%f$ﬁ$ %Tﬁ%bﬁ% 2N F A4 RR A 2 AL BT AE BRI A% X
o T AT AL fa] LA AN B D7 1S 1) DR e A

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print ('Jack: ; Sjoerd: ;!

Ce . 'Dcab: '.format (table))

Jack: 4098; Sjoerd: 4127; Dcab: 8637678

RXMATPAELL] **7 £F5HF table V528 K7 S 4 f% 18

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print 'Jack: ; Sjoerd: ; Dcab: '.format (**table)
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

ﬁﬁ%ﬂﬁ@ﬁvus(é BRI AT, B SR I A R R
KT str. format () FATFAFHHERALITERMEA, 35254 formatstrings .
711 BRFFRERIETIE

s BAERF AT DURVEF AR R AR L. BRI S HURREA— MR sprint £ () KARAIREFATHT, WA
AILZEL, FFR Bl i A A A AR A . Bl

>>> import math
>>> print 'The value of PI is approximately . % math.pi
The value of PI is approximately 3.142.

More information can be found in the string-formatting section.

7.2 EEXHF

open () returns a file object, and is most commonly used with two arguments: open (filename, mode).

>>> f = open('workfile', 'w')
>>> print f
<open file 'workfile', mode 'w' at 80a0960>

F—ASRREE XA TR B ASERD T, R — b U 77 i 745
mode FILAZ v, FIORCAFHBEER, 'w' FRHEGA (EHFAENRS CHF2PR) , B84 'ar For
TIPSO LABINN A s AT S AREE S HEhIMB SRR . o+ FORTTIT ST EES o mode B4
e AR A MEIERIACE T

On Windows, 'b' appended to the mode opens the file in binary mode, so there are also modes like 'rb', 'wb',
and 'r+b'. Python on Windows makes a distinction between text and binary files; the end-of-line characters in text
files are automatically altered slightly when data is read or written. This behind-the-scenes modification to file data is
fine for ASCII text files, but it’ 1l corrupt binary data like that in JPEG or EXE files. Be very careful to use binary
mode when reading and writing such files. On Unix, it doesn’ t hurt to append a 'b' to the mode, so you can use it
platform-independently for all binary files.

54 Chapter 7. Nt

Python Tutorial, 445 2.7.18

7.2 XHMRIIFE
AATHRE TR TRHEBOE R AN £ ISR

Toread afile’ s contents, call £.read (size), which reads some quantity of data and returns it as a string. size is an
optional numeric argument. When size is omitted or negative, the entire contents of the file will be read and returned;
it’ s your problem if the file is twice as large as your machine’ s memory. Otherwise, at most size bytes are read and
returned. If the end of the file has been reached, £ . read () will return an empty string (" ").

>>> f.read()
'This is the entire file.\n'
>>> f.read()

[}

f.readline () reads a single line from the file; a newline character (\n) is left at the end of the string, and is only
omitted on the last line of the file if the file doesn’ t end in a newline. This makes the return value unambiguous; if £ .
readline () returns an empty string, the end of the file has been reached, while a blank line is represented by '\n"',
a string containing only a single newline.

>>> f.readline ()

'This is the first line of the file.\n'
>>> f.readline ()

'Second line of the file\n'

>>> f.readline ()
T

TEMSCHE AP EERAT , ARAT DATERRE P SRR o I Nk, PRdiy, IR A

>>> for line in f:
print line,

This is the first line of the file.
Second line of the file

R AR AR R R A HO R BT AT, ARtATDAREI 1ist (£) B £.readlines ().

f.write (string) writes the contents of string to the file, returning None.

>>> f.write('This is a test\n')

To write something other than a string, it needs to be converted to a string first:

>>> value = ('the answer', 42)
>>> s = str(value)
>>> f.write(s)

f.tell () returns an integer giving the file object’ s current position in the file, measured in bytes from the beginning
of the file. To change the file object’ s position, use £ .seek (offset, from_ what). The position is computed
from adding offset to a reference point; the reference point is selected by the from_what argament. A from_what value
of 0 measures from the beginning of the file, 1 uses the current file position, and 2 uses the end of the file as the reference
point. from_what can be omitted and defaults to 0, using the beginning of the file as the reference point.

>>> f = open('workfile', 'r+'")

>>> f.write('012345678%abcdef")

>>> f.seek (5) # Go to the 6th byte in the file
>>> f.read(1l)

|5|

(FItakss)

7.2. EB5XH 55

Python Tutorial, A4%5 2.7.18

(£ 50

>>> f.seek (-3,
>>> f.read(1l)
ldl

2) # Go to the 3rd byte before the end

When you’ re done with a file, call £.close () to close it and free up any system resources taken up by the open file.
After calling £.close (), attempts to use the file object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: I/0 operation on closed file

It is good practice to use the with keyword when dealing with file objects. This has the advantage that the file is properly
closed after its suite finishes, even if an exception is raised on the way. It is also much shorter than writing equivalent
try-finally blocks:

>>> with open('workfile', 'r') as f:
.. read_data = f.read()
>>> f.closed

True

SO A — BN I Y, IR isatty () fll truncate () , BAMEABREAL; A %SO E 52
M S HES%

7.2.2 {E[json {REFLHICEIE

FAFH] MR AL S A SCHEIF S P st ok . B T RES S5 8l, HoR read () J7 vk A REIR A 54
B, XBEFRFHRLAE LI int () WRREL, EREARZIML 1123 AR FAFER IR B B E 123,
AR RAF T A 5 RN 7 MR A O B 2, T AT R S A 28155 2%

Python ALV A0t JSON (JavaSeript Object Notation) AT BCRSCHM, AL P /R I 5 A
AR LIS 2 RO AT AESI S R 1. 4% S son ROPRIERLHTTLUR T Python BCHRERKLEH , I
AL TR ARG AR serializing . W10 1 ILHBORFI A deserializing . EFF 911k
RURFFFUL LI, Fom Gy TR o] REC A7 A PP B | S I3 5) AR

TEfR#: JSON A% 30l H BB AR e T AR s e, 2 RRY REQAEE, X MH O HARIFIER
RGeS

WERARA — MR %, ARA] A —AT R A AU R R B JSON FAFER R

>>> import json
>>> json.dumps ([1, 'simple', 'list'])
'[1, "simple", "list"]'

Another variant of the dumps () function, called dump (), simply serializes the object to a file. So if £ is a file object
opened for writing, we can do this:

json.dump (x, f)

To decode the object again, if £ is a file object which has been opened for reading:

56 Chapter 7. Nt

http://json.org

Python Tutorial, 445 2.7.18

x = json.load(f)

B] BLPR) P S AL S A AT DARE BEA RAMF ail, HUZAE JSON Hh - SR AT T 3R SL il 75 BN %5 /). Ison
BRI 2 7% 4 25 XF U PR R

S
pickle - I FEHER

5JSON ANJF], pickle j2—Ff SEVFRAL A % Python Xt AT FHIALI L. L, B4 Python FFFfAy, A
REM T S HAE S WE RN AR EE . BOAN O T Bt Ay AR h AR BEE & Ot
1, WIEFSIR A A ZAGAERIERY pickle Hod m] PASRATAE R AURD

7.2. EB5XH 57

Python Tutorial, A4%5 2.7.18

58

Chapter 7. BN

CHAPTER 8

FIHACN IR, FATEBA B EREE, (R URRE K2 uld AR sl 1, R &R 7 — 2 RN
B Bl (24) AWK RER: 55 ERM 7%

8.1 iBEHEIR

RS R XARMATHT IR, T RERRARAESA~] Python IR 2 5) B 5 1 1

>>> while True print 'Hello world'
File "<stdin>", line 1
while True print 'Hello world'

A

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest point in the line where the error
was detected. The error is caused by (or at least detected at) the token preceding the arrow: in the example, the error is
detected at the keyword print, since a colon (' : ') is missing before it. File name and line number are printed so you
know where to look in case the input came from a script.

82 ®BE

B e A s A AR TR B IERRY, (AT, BN TRE G A 5t TERATIPAR I 21 1 55 e bl
HNFE, AEA—ERFBOVEER: IRFR A S A Python /P AR EAT. HE, KRR
ARPREFALBE, BEF 2 BoR TR Brs i B R AR R

>>> 10 * (1/0)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3

(Rt

59

Python Tutorial, A4%5 2.7.18

(£ 50

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects

W B E — IS IR P B S T 2R BM R REA AR, MHRRZ IR0
FERAE B — B AT ok s FIRR B) i R BUKIKE - ZeroDivisionError, NameError F
TypeError, VENFRHIEASTEINFAH L AEMNERENATR. NT AN ERFES L, HYT
Hﬂg%f&ﬁ’ﬂﬁ”’%mﬂﬁ*%ﬁﬂﬁt (BRI NAE ML) . FRER AR N B RAF (AR
KT) o

AT IR B AR e S SR e LR R R (IR 5

AR Y BT — B2 AR 1 4 T 2 S e A S I Y TR SCe B AL S A IR AT ek s (E
e B2 s MARHE R A AT .

bltin-exceptions 41|t T P E S FIEA TR L.

8.3 HERE

A AGR B AL HL T S W R Y . EE MG, BEXZORH P —ERA, BRI AN AR ELL,
EAVH PRy (H control-C si#fE ARG R HARERME) : R 5 LER Wy AR5
& KeyboardInterrupt S KIG/R. :

>>> while True:

try:
x = int (raw_input ("Please enter a number: "))
break
except ValueError:
print "Oops! That was no valid number. Try again..."

try iR TAE RN .
o B, PUTry T4 (try Ml except XETFZIN (£47) iE4]).
o WREA T EE, WPk except F a1 358 try IHAIIIHAT

o ARAEPAT try TR KA T S, Mk % T AR TR . SRS, AR ZERAN except K
BT ST SR VRS, WIRAT except 141, SAJGAREEIT try IR JEHAUE .
o QR AAER S H A except TR E B ANVLE, MR HAZ S RSN oy iR AR R3]
AERRRRSY, WIEe—A RS2 R, PATRHE LI R A E PR B R
A try statement may have more than one except clause, to specify handlers for different exceptions. At most one handler

will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other handlers of the
same t ry statement. An except clause may name multiple exceptions as a parenthesized tuple, for example:

. except (RuntimeError, TypeError, NameError):
pass

Note that the parentheses around this tuple are required, because except ValueError, e: wasthe syntax used for
what is normally written as except ValueError as e: in modern Python (described below). The old syntax is
still supported for backwards compatibility. This means except RuntimeError, TypeError is notequivalent

60 Chapter 8. §tizfiRHE

Python Tutorial, 445 2.7.18

toexcept (RuntimeError, TypeError): buttoexcept RuntimeError as TypeError: whichis
not what you want.

HRJ Y except A AT AR SRR 44, DAIAREIEICAT . (HEFEEAEA], PROA DA AN AR 2) 1 2 BT i S A
B BRI TATER RIS S, RIGEHG kR (R B)

import sys

try:

f = open('myfile.txt")

s = f.readline ()

i = int(s.strip())
except IOError as e:

print "I/O error ()t ".format (e.errno, e.strerror)
except ValueError:

print "Could not convert data to an integer."
except:

print "Unexpected error:", sys.exc_info () [0]

raise

try --except IGHA —AIER else T4, FEMEH B CLE T A 1 except) J5 T« X THE try TH)A
Gk S AT R AR BT . Biln:

for arg in sys.argv([l:]:

try:
f = open(arg, 'r')

except IOError:
print 'cannot open', arg

else:
print arg, 'has', len(f.readlines()), 'lines'
f.close()

The use of the e 1 se clause is better than adding additional code to the t ry clause because it avoids accidentally catching
an exception that wasn’ t raised by the code being protected by the t ry ---except statement.

KASHERE, EWRERA RBME, WA Sl SHTAENZEREURT 7 2R,

The except clause may specify a variable after the exception name (or tuple). The variable is bound to an exception
instance with the arguments stored in instance.args. For convenience, the exception instance defines __str__ ()
so the arguments can be printed directly without having to reference .args.

One may also instantiate an exception first before raising it and add any attributes to it as desired.

>>> try:
raise Exception('spam', 'eggs')
except Exception as inst:

print type (inst) # the exception instance

print inst.args # arguments stored in .args

print inst # __str___ allows args to be printed directly
x, y = inst.args

print 'x =', x

print 'y ="', y

<type 'exceptions.Exception'>
('spam', 'eggs')

('spam', 'eggs')

X = spam

y = €ggs

If an exception has an argument, it is printed as the last part (‘detail’) of the message for unhandled exceptions.

83. AEBRE 61

Python Tutorial, A4%5 2.7.18

SR AR AU oy TA)R B R, AR wy AR (B R ER) B sR BN R A Y
Ho fFln:

>>> def this_fails():
x = 1/0

>>> try:
this_fails()

except ZeroDivisionError as detail:
print 'Handling run-time error:', detail

Handling run-time error: integer division or modulo by zero

8.4 Mii&w

raise iR SRR LR 2 AR AR E I . Bl

>>> raise NameError ('HiThere')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: HiThere

The sole argument to raise indicates the exception to be raised. This must be either an exception instance or an
exception class (a class that derives from Exception).

WRARTEE R BT K T R EATEAARE, WATACE R AR raise EAEREHT| & FH#

>>> try:
raise NameError ('HiThere')
except NameError:
print 'An exception flew by!'
raise

An exception flew by!

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

NameError: HiThere

8.5 AFEEVRE

Programs may name their own exceptions by creating a new exception class (see 3 for more about Python classes).
Exceptions should typically be derived from the Except ion class, either directly or indirectly. For example:

>>> class MyError (Exception) :
def _ init__ (self, value):
self.value = value
def _ str_ (self):
return repr (self.value)
>>> try:
raise MyError (2*2)
except MyError as e:

(Qi¥i#3)

62 Chapter 8. §tizfiRHE

Python Tutorial, 445 2.7.18

(£ LT
print 'My exception occurred, value:', e.value
My exception occurred, value: 4
>>> raise MyError ('oops!")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
__main__ .MyError: 'oops!'
In this example, the default __init__ () of Exception has been overridden. The new behavior simply creates the

value attribute. This replaces the default behavior of creating the args attribute.
FPAE SRR, B ASETEAT AR T DASRAT AR AT 44, (RO B PR AR B, sl HR B vr 2 e, X
BB P SR VAL B 7 R S AR IO AR E B . TERIEAT BT | A 2 A R B IR AR I, Tl ROE 2N
IHUE N S RS, AR BRI B R S 2 T2

class Error (Exception) :
""'"Base class for exceptions in this module."""
pass

class InputError (Error) :
"""Exception raised for errors 1in the input.

Attributes:
expr —— 1nput expression in which the error occurred
msg —— explanation of the error
i
def _ _init__ (self, expr, msg):
self.expr = expr
self.msg = msg

class TransitionError (Error):
"""Raised when an operation attempts a state transition that's not

allowed.
Attributes:
prev —— state at beginning of transition
next ——- attempted new state
msg —— explanation of why the specific transition is not allowed
mrmrn
def _ _init__ (self, prev, next, msqg):
self.prev = prev
self.next = next
self.msg = msg

REBSHHE SCHLHREA “Error” Z5R, 2T HrifE 7 14 .

VP PMEREEE SCTEATA SRR, DMGEEITE R Eeh T BE B iR . A REMEZELE, HZ
W%,

85. AFBENRE 63

Python Tutorial, A4%5 2.7.18

8.6 ENFEIRE

try WAA AR A, T E SO AHE A TS IR AT PR . fln:

>>> try:
raise KeyboardInterrupt
finally:
print 'Goodbye, world!'

Goodbye, world!

KeyboardInterrupt

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

A finally clause is always executed before leaving the t ry statement, whether an exception has occurred or not. When
an exception has occurred in the t ry clause and has not been handled by an except clause (or it has occurred in an
except or else clause), it is re-raised after the finally clause has been executed. The finally clause is also
executed “on the way out” when any other clause of the t ry statement is left via a break, continue or return
statement. A more complicated example (having except and finally clauses in the same t ry statement works as
of Python 2.5):

>>> def divide(x, y):
try:
result = x / y
except ZeroDivisionError:
print "division by zero!"
else:
print "result is", result
finally:
print "executing finally clause"

>>> divide (2, 1)

result is 2

executing finally clause

>>> divide (2, 0)

division by zero!

executing finally clause

>>> divide("2", "1™")

executing finally clause

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: 'str' and 'str'

As you can see, the finally clause is executed in any event. The TypeError raised by dividing two strings is not
handled by the except clause and therefore re-raised after the finally clause has been executed.

Yéi%&ﬂﬁ%f?qj, finally AP TREOONBEHR (GIASCIF s Mg ER:) ERAM, T2 E s
ikiel

64 Chapter 8. $&i2f154

Python Tutorial, 445 2.7.18

8.7 ¥iiE W HIFEIRIE

FBER G LT AEA TR A RN EPATRIARHE T B, TR 2 R AR L R R . T AF
B RHEERB, BT SR AT E pER b

for line in open("myfile.txt"):
print line,

The problem with this code is that it leaves the file open for an indeterminate amount of time after the code has finished
executing. This is not an issue in simple scripts, but can be a problem for larger applications. The with statement allows
objects like files to be used in a way that ensures they are always cleaned up promptly and correctly.

with open("myfile.txt") as f:
for line in f:
print line,

After the statement is executed, the file f is always closed, even if a problem was encountered while processing the lines.
Other objects which provide predefined clean-up actions will indicate this in their documentation.

8.7. T WHIRERIRIE 65

Python Tutorial, A4%5 2.7.18

66

Chapter 8. §tizfiRHE

CHAPTER 9

b

A AETE S AU, Python AR AHFHEIRRITE SCREZEIMAZE F . B¢ C++ Hl Modula-3 1 JSH/L
&G Er . Python PZHRAL 1 X RIGREII I A PRSI . FRAOERBLH VP2 EEE, IR DAE S R
KRR, — 07K] AR A R 44 PRV 735 XG0T AL & R B AR B A it . AIASE B
—FE, I Python RIRMISIERHE: EAMEBITI Q& ATAMER# S B,

IE C++ RiES, BEERE (BIESERRT) &2 public (FI5ML R X Private Variables and Class-local References),
JTA W53 BREER A2 viral . 57E Modula-3 H—#E, %G T NEI S XSRS« Jr vk R B 2%
ARG R NSEFE, RS R, 5 Smalltalk —4f, RAGHEXTS . XN FAFE
AR TIE S . 5 C++ fll Modula-3 AN[A], PIERBTDARAER PP RNES. b, 5 CH+ 4, K2
BHAEHRIEE (BARZBES, %) 1N EZ BT DA S 55 E L.

(H T = X TR AARE, KSR Smalltalk F1 C++ 1 HEF . FIA L Modula-3 AR, B
T[] X0 4 (41 SCEE C++ BEEGIE Python, (HEFTHAEEE TR E)

9.1 ZIMR

MREANE, A (FEZMEREN) WA E B [7] — R 5. XA HMIE T o4 . F—F
Python IFii 3 A S BIEX — i, TEACBR SRR (B, 749, Jodl) WA pAZeHZme. A
i, BIAXY RATAERG, s, FUATR Z RO, (Y Python UG R T ST RE S 7 AL RN S o
RIEHEHTRFIEAL, BRI A AR R BSR4 B, el D RREE, FOYLIALE
—MEE WERBREUB L TN SRR IXT G, TR B XA T AR Pascal HAREERE TP
AERSEALEALH

67

Python Tutorial, A4%5 2.7.18

9.2 Python {E Rl F1& &=]

AN, BT ATFI 5 Python M {ERIALIN. 3672 XA o4 22 SETTOMETS , (R
S PSS iy 44 2 AN T A4 R 5 4 P AE R I — 56 T R WX FE T 5
Python T/ AR AT

LA S5 .

namespace (fp4Z211) Je— B FEIREGIOWE . KA Ay 22024 NS Python IR, (H—fs
BURHARS LT (7SRRI T FLULAT 0] AR 8. R IR JLA 4 21
T APHNERBI RS (17 abs () RN, FIPTRIOSHE): Bl 02 Ra R s i
J TR, MIERIE LB, MR A I Rd s SRR, KT oA SRgEE A2, A
R 4 B 2 AR R BL, PR BT DASE S maimize BRI 2077
A — LI s USRI L I

EEGERA— T, FACALATIRAE RS Z R ISR BB, fERIAN z.real 1, real 2Xf
Gz W—AN @M. HTRRI IR, W AR5 E T RS - fEXA 5 modname . funcname Hr,
modname @XM funcname REH—NEM. TEHTE LT 7EBIH R RIS E 42)m 4
PRZ B E S A E— N ELUL RIS B AT A R e i 42 25)

JEHERT AR RS E TS, W NEE, IR @R T . BIUEEE TS, /R AE H
modname.the_answer = 42,0 GHyJEMFREFETT A del iI5A M. Fl4N, del modname.the_answer
Fr2x M H modname FIXTR P H K the_answer [

Namespaces are created at different moments and have different lifetimes. The namespace containing the built-in names
is created when the Python interpreter starts up, and is never deleted. The global namespace for a module is created
when the module definition is read in; normally, module namespaces also last until the interpreter quits. The statements
executed by the top-level invocation of the interpreter, either read from a script file or interactively, are considered part of
amodule called __main__, so they have their own global namespace. (The built-in names actually also live in a module;
thisis called _ _builtin_ .)

— A~ BRSO A 1 iy 47 25 B A R RSO NP R, A R S 1] s — A A bR 3 P S AL B 5 R
MkR. (FL b, WEMBSREAETHA, THREEL.) U8, BUGBHRAEHSA EH SRR A4 2
[
—A~ R A e — A i 2SR A] BT) 9 Python AR A SCAR DOUg . X HLAY R ECHEEDT)" BORE X 44 FREY
PERRE G I 2l i 4 25 (A P A 4R A
g%ﬁwﬁﬁ%i7ﬁﬁﬁﬁ@%oﬁﬁ?éﬁ%ﬁﬁﬁﬁ,§¢ﬁ34ﬁ%§ﬁﬂﬁﬁ%ﬁﬁ%ﬁ%ﬁ%

o BN R N E A & SR 4 A

o MR PR O A6 18 R AT AT P R RO A R B AR SRR i, (L AR R4 i

o R AN AL B R Y JR 44 B

o BOMEITERIR (RRRR) RSN ELRI a4 20

If a name is declared global, then all references and assignments go directly to the middle scope containing the module’
s global names. Otherwise, all variables found outside of the innermost scope are read-only (an attempt to write to such
a variable will simply create a new local variable in the innermost scope, leaving the identically named outer variable
unchanged).

W, HREREIERE (BT SCR) 5T A BT R E) R BR . TERREASY, R RS T S 4R
VA — i a2 2500 BB fiv 44 25 18] o SEAE SCIRFAE Rl iy 4% 25 18] PN RO 55— i 44 231

VIFAE— ARSI R A A REI R BE N dict, TR AT IIEIRG A ST dict REHERESE
JAERR. R, EUTXASRRE S fir A 2SR SE BRI, B U T B e TR 2 R

68 Chapter 9. 2

Python Tutorial, 445 2.7.18

B B R TR A R 4 T SCAOR A E Y - E— DTN SO R R0 2R Va0t 2 i SR Y iy
ZA3], TEW RN 2 s M2 BB . 55— J51H, SEFR A PRI R R AR IS T TR B A58 U —
{HJ2, Python IEYERIFE “Hiifif A RMIT 5 m AR, PIAZHE THRIBE S A TR@T! (FL L, 7
A L R SIE T .)

A special quirk of Python is that —if no global statement is in effect —assignments to names always go into the innermost
scope. Assignments do not copy data —they just bind names to objects. The same is true for deletions: the statement de 1
x removes the binding of x from the namespace referenced by the local scope. In fact, all operations that introduce new
names use the local scope: in particular, import statements and function definitions bind the module or function name
in the local scope. (The global statement can be used to indicate that particular variables live in the global scope.)

9.3 ##R*E
HHIA TSR, HB AL

9.3.1 HENIFE
] 285 SRR AR

class ClassName:
<statement-1>

<statement-N>

R LG RBUE X (def HA]) —FRAPITA BN . (PRAT AR I8 SO 1€ 1A — 7 3¢
e BRI -)

TESCE A, 8 XNRYIE B RS R BUE L, R ira H A, A RHERA H—3A TSR 5 R R
XA D FEZE AR R RO S AT — AR S 80012, 302 Tk A 2407 VS B Hi A i —
XA R R R e R o

MEASRE S, R AN Ay A 8], R RS A R P, A X S A) B A
RAFT A A Z o IR, RRBICE S S B 5 HL I ek R R

B (NGRAL) IEHBTFRE I, KR R & XEA e —MUBITERE L a6 4 25 [N 2
JARI RS s FATRAE T 17 T R RE L5 B AR (FEREAISE L Z & IEH) FRilfE
FHBRRF BB AR R, FOGRFAEX G0 5 B SOR T4 I A4 7K (FEX AR Bl ClassName).

9.3.2 ANk

ESUESESTUTLE S (C e IR PRI

B 31 A] Python BT J@ LS | B Bl FOARHETEYA: ob3 . name. A RN & M4 2SN SR QA N
FET R A =W R PrA 28K B, JRSEE SR FR:

class MyClass:
"""A simple example class"""
i = 12345

def f (self):
return 'hello world'

9.3. Rk 69

Python Tutorial, A4%5 2.7.18

W2 MyClass.i fll MyClass. £ G RUNEMET I, R0 R m]— D EECRI— B R . KJmitthn]
PABORRARL , PR T DA IRAEOR B4 MyClass . 1 BYfH. __doc_ WR—ARUNEME, ik [l B 8 A 3C

RYFHFH: "A simple example class".

Ky A RN R AT RAEIS RN 2R MR — D L BRI S B s A 26000 ()
B R

x = MyClass ()

BIERAHT) IR IO ST SS R AL B %

SEBMEEAE (T RUR) LEE—DEXG. T2 RTREEHEARE IR B E L. i
HE RS — AN _init_ () MROTIE, SRR

def _ init__ (self):
self.data = []

BAEENT _init_ () JIREF, REEOLEAES A3 R L P AR __init_ 0.
PRIAEX ARG, W] RO AR B R 3RAG— N E AR AL R B 2101

x = MyClass ()

MR, __init_ O FIEEAAE BN R R RIETE. X EOLT, ISRz RAfr S
Berkrpliteitsy __init_ (). B0, :

>>> class Complex:

def _ init_ (self, realpart, imagpart):
self.r = realpart
self.i = imagpart

>>> x = Complex (3.0, —-4.5)
>>> x.r, X.1
(3.0, —-4.5)

9.3.3 SEfINR

Now what can we do with instance objects? The only operations understood by instance objects are attribute references.
There are two kinds of valid attribute names, data attributes and methods.

B A B A XY T Smalltalk HPAY “SEHIASE", PAR C+ HEY Bl A7 . BB IEA T AN R)R
BRE, TATRAES — BIRMER= A . B0, WiR = 2 L)@ e MyClass SR, WA ARRD BERHT
B 16, HARBELATIBE R

x.counter = 1

while x.counter < 10:
x.counter = x.counter * 2

print x.counter

del x.counter

53— REBURMES IR k. PR IRT” MLMEI. (12 Python 1, Jriis MARIEH R R KA
A FOMAE G T DA Jr 7% . B, 51126042 FLA append, insert, remove, sort 25074, SATT, 7EDL Fit
W, BT R SR R, eI A A M)

SRS R A RO IRA AR T BRI AR L, — 2 I 2 R RO Gy Je P2 s ST Ll
MR 53 . NIERAT TR R BT, x. £ @ARIITEG N, o MyClass . £ g — PRk, M x.1 AeTs
ik, I MyClass. i Agd— A% Hig x. £ 5 MyClass. £ AR —PIF—ER 1 7EF &, K2R
LOUE

70 Chapter 9. 2

Python Tutorial, 445 2.7.18

9.3.4 FHiEMR
S, AR IR S PR

’x.f()

1E MyClass /RfilH, RHRFIFAAFE "hello world'. {HiZ, SERIEH— AN EIF AR x. £ 22—
MNHEXG, ER AR UG R . Bilan

xf = x.f
while True:
print xf ()

FBRSEITE hello world, HFILEH.

B NITIEBOR I B AR A A7 ARATREC 2 E IR . £ () WFBCAW AL, BAR £0 MK
BOESHGE T B8 ZABHEAE TH AR BAFSETA N — A ES R0 R B0 Python 17 &
51 K S R SRR PR RG] -

Actually, you may have guessed the answer: the special thing about methods is that the object is passed as the first
argument of the function. In our example, the call x. £ () is exactly equivalent to MyClass. f (x). In general, calling
a method with a list of n arguments is equivalent to calling the corresponding function with an argument list that is created
by inserting the method’ s object before the first argument.

WERARIIR TR RO R RIS AE R, IR A H CBA A RE N . Y — SRl AR B R s |
i, FHERLOITIRIE. WRARFR—DETRECT SRR ARESRNE, SEdEIHTE (5mm) Kot
GO RBO R3] — R X G 5 ZORAIE AT IEXT G XA G XT GO 25 IExT 5. S S 401 %
ig ﬂ? g‘?ﬂﬂ‘ RIS, FFET LI GASEIN R @A SESNER, HOE SRR R
KR4

9.3.5 XHXPIEE

— Bk, SEOIAS R TR S BIAME R, TT2RAR R T2 B S B S R A O ik

class Dog:

kind = 'canine' # class variable shared by all instances
def _ init_ (self, name):
self.name = name # instance variable unique to each instance

>>> d = Dog('Fido")
>>> e = Dog('Buddy')

>>> d.kind # shared by all dogs
'canine'

>>> e.kind # shared by all dogs
'canine'

>>> d.name # unique to d

'Fido'

>>> e.name # unique to e
'Buddy’

1E 4k Fert 2 e R, L8R T BEXE B Smutable 545 10151 35 #1725 308 A5 1 45
Ho BIHNPA AT 1 tricks 5 FA % HESAS &, ITA I Dog LR H AL 52— B 51 4

9.3. Rk 71

Python Tutorial, A4%5 2.7.18

class Dog:
tricks = [] # mistaken use of a class variable

def _ init_ (self, name):
self.name = name

def add_trick(self, trick):
self.tricks.append(trick)

>>>
>>>
>>>
>>>
>>>

= Dog ('Fido")

= Dog ('Buddy")

.add_trick('roll over')

.add_trick('play dead")

.tricks # unexpectedly shared by all dogs

Q0 Qo 0 Q

['roll over', 'play dead']

N QA VAL I R S e

class Dog:

def _ init_ (self, name):
self.name = name
self.tricks = [] # creates a new empty list for each dog

def add_trick(self, trick):
self.tricks.append(trick)

>>> d = Dog('Fido")

>>> e = Dog('Buddy")

>>> d.add_trick('roll over')
>>> e.add_trick('play dead")

>>> d.tricks
['roll over']
>>> e.tricks
['play dead']

9.4 #M3EiLEA

Wb E > B i d R A R 24 PRI IR R I s O 1 S e R AR v S EOUE DA B R 1) T S 44 Pk
5, W B0 B A 2 R/ MU R B K A LA . ATRER) 28 AR T I A PR R G 71, RS
?WL@%%% FRERRTER (BRI —A R RIZ), B2 M shiak a2 ik, 1m0 44 1k i 42 Ko e

Bl JE T AR R A B — R 2 (% Fom”) Brgl e mginid, JERRE T Bl alih 54k
WAL, SeBR b, 7E Python A A A< P RESE i BBl — e R s BT 2@ (Mfey—Jrm, M C
5 25 11 Python SEHLNI AT DASE 4 IRURCSE BRANY , HAEL B RIXT DT s seAstE T A) C S
Python §"JEA A .)

P 1 24 P8 P S % 7 i T RE S e B B VRS R P) O IR o 5 YA BT v [R A
m&iEFWTMﬁ*A*@ﬁ%ﬁmmmQE%&%Eéﬁfzw%ﬁ&%?ﬁi,A%ﬁﬁﬂ%%ﬂ@
—PRPREEE, RO A 29 T AR B E S NSRRI

Eﬁ%ﬂ%ﬁ%ﬁ%%T(ﬁﬁ@ﬁﬁﬂ)#&ﬁ@@ﬁﬁ AKX L Fr L3RTE TR T M
IR, R SATERE R A RS B R L

IR AN SRR LN self. RWADHZE—NLE: self X—HHRAE Python FRLAEXHA IR S

72 Chapter 9. 2

Python Tutorial, 445 2.7.18

o BB B, AREEILLE 2 SRR AR HoAt Python B2y Bk UG Z AT, 17 HA W] AR —A>
B BRI G 5 AT RE ST IXAER 205

AL A — AR TR P 1Y R RS A 2SI L Bl i SC T — AR ko BRESUE U SCA AR A 15 T2 L2
W R B EOU R — R AL 2 nT ARG . Bl

Function defined outside the class
def fl(self, x, vy):
return min(x, x+y)

class C:
f = f1

def g(self):
return 'hello world'

h =g

BAE £, 9 Ml h #2 ¢ RIG N REO RIEIE, NITENTH#EE ¢ LB TE—HF h 22 T 9. B
TR, ARG BIAE R H S SRR P R R =R

JPEAT AE B sel £ 2R 5k E A AT 4

class Bag:
def _ init_ (self):
self.data = []

def add(self, x):
self.data.append(x)

def addtwice(self, x):
self.add (x)
self.add(x)

D7 T DA - 33 e O)) 05 X5 | ARy A R e 5505 TR R IR 4 JR VA P sl e 40 5 HLE SR . (2
AGEAR ARt .) BN DA 50 W B e 7k P R s, (HA R e re
WEZAIEBN TS 280001, S AR 4R A0 eR BRI a] DA SR BT T, e E SR e 5
Rth—4¢. MR, WRINENRA SRRV E I E), HE R — 3 R 3R AT & A R 5 iA T 2
5T I 2 AR (Y B

BAMEAE R, LA £ (B £2), HA7ER object .__class__.

9.5 4%

IR, WERASHROR, EFRRERUNMERRC 7 IRAESE SRYTEIA IR s

class DerivedClassName (BaseClassName) :
<statement-1>

<statement-N>

K BaseClassName WA E LT & IRA I SURPE S .t A i/p i AT B ok A QR B2 A i
TEMALE . ARG, BN, 24E2EE AR — MR b i

9.5. 4% 73

Python Tutorial, A4%5 2.7.18

class DerivedClassName (modname.BaseClassName) :

IRAZEE S AATI AR 5 2] . MM TEZEXT R, B POC E. U5 ERFRU T R 5 1 angk
TRMIEMAER T RAR], RSP I TE . MRS G thIRA A HARREAZE, WIEALNF54
B -

TRA: 2 SE B A AT A4k 2 4b: DerivedClassName () SBIBHZIEN— LB HIESIHRHEAT
ﬁﬁgﬁﬁ}; RN AEEYE, WA DB R R EEZ A 10 Rk, WERFZAE T — AR BT 5) 5 15|
AR

IR RE S A R A vk T YEAE TR I 1] — X G2 i oty 3 ish A R, R] — 38 2
X — YRR R R A RE ST B S BRI . (6 C++ F2FF B R . Python Y firg Y
TR FARE virtual k)

AEIRA: 2 i) B 38 Y5 S B b Rl REAR LY e i A a7 B B [4 1 LSk . A Rl 30T DATRT B R
FREZE ¥ B BaseClassName.methodname (self, arguments). XN iRt 24
M. (GRS R HE A R VE A DA BaseClassName B4 B 5 18] B 5wl L =)
Python 7 /™ PN B bR BT 4 H T AR AL -
e {fiff] isinstance () FREE—EFIHK2EHL: isinstance (obj, int) {U&FE obj.__class_
A int BHEANRA H int BZREH True,
e Use issubclass () to check class inheritance: issubclass (bool, int) is True since bool is a sub-

class of int. However, issubclass (unicode, str) isFalse since unicode is not a subclass of str
(they only share a common ancestor, basestring).

9.5.1 S EHK

Python supports a limited form of multiple inheritance as well. A class definition with multiple base classes looks like
this:

class DerivedClassName (Basel, Base2, Base3):
<statement-1>

<statement-N>

For old-style classes, the only rule is depth-first, left-to-right. Thus, if an attribute is not found in DerivedClassName,
it is searched in Base1, then (recursively) in the base classes of Basel, and only if it is not found there, it is searched
in Base?2, and so on.

(To some people breadth first —searching Base?2 and Base 3 before the base classes of Base 1l —looks more natural.
However, this would require you to know whether a particular attribute of Basel is actually defined in Basel or in
one of its base classes before you can figure out the consequences of a name conflict with an attribute of Base2. The
depth-first rule makes no differences between direct and inherited attributes of Basel.)

For new-style classes, the method resolution order changes dynamically to support cooperative calls to super (). This
approach is known in some other multiple-inheritance languages as call-next-method and is more powerful than the super
call found in single-inheritance languages.

With new-style classes, dynamic ordering is necessary because all cases of multiple inheritance exhibit one or more dia-
mond relationships (where at least one of the parent classes can be accessed through multiple paths from the bottommost
class). For example, all new-style classes inherit from object, so any case of multiple inheritance provides more than
one path to reach object. To keep the base classes from being accessed more than once, the dynamic algorithm lin-
earizes the search order in a way that preserves the left-to-right ordering specified in each class, that calls each parent only
once, and that is monotonic (meaning that a class can be subclassed without affecting the precedence order of its parents).

74 Chapter 9. 2

Python Tutorial, 445 2.7.18

Taken together, these properties make it possible to design reliable and extensible classes with multiple inheritance. For
more detail, see https://www.python.org/download/releases/2.3/mro/.

9.6 Private Variables and Class-local References

IRFI R —AXF G ARG “FAA™ SLBIAERAE Python HIFAAFAE. {Hig, K%L Python {URHRELYH
R s A — A N RIZKI A FR (B _spam) Wiz 4152 APLIAEAF T Lt B2 mE. Jiik
R o XN B — S BRAY, n] AN 2l B AR

M T AER TR M ARE 5 (FIanEE 2 705 72807 e LR A FRFZE), BRI AEAE T R
A BRSCRE, R B4R 5 o ARMIEACH __spam WARIRAF (ZDWAPIDRIZ L, 22— FHT
) BISCARRE A _classname__spam, HH1 classname SRR THIZ FRIZKN M HIEATR. X
P A JEPRRAF I AEALE, HBE IR LN 3k T .
AFRMEA BT ik PR ER G EMABIR R N A . filan:
class Mapping:

def _ init__ (self, iterable):

self.items_list = []
self.__update(iterable)

def update(self, iterable):
for item in iterable:
self.items_list.append(item)

__update = update # private copy of original update () method
class MappingSubclass (Mapping) :

def update (self, keys, values):
provides new signature for update ()
but does not break __init__ ()
for item in zip (keys, values):
self.items_list.append(item)

b T B R B BP i fE MappingSubclass 5| A T —~ __update #R IR AFRIRE 0L HOR & B,
HE 2 FF Mapping 2 9 B #) _Mapping__update [l £ MappingSubclass 2 1 g £ ¥ >
_MappingSubclass__update,

TR, AN BT B TR RN S s T A B e R A B AR T RE R o X AEAEIR
WO N EESRAM, BIATETRRAR

Notice that code passed to exec, eval () or execfile () does not consider the classname of the invoking class to
be the current class; this is similar to the effect of the global statement, the effect of which is likewise restricted to
code that is byte-compiled together. The same restriction applies to getattr (), setattr () and delattr (), as
well as when referencing ___dict___ directly.

o A

9.6. Private Variables and Class-local References 75

https://www.python.org/download/releases/2.3/mro/

Python Tutorial, A4%5 2.7.18

9.7 Z:IiifiEA

I L5 T 2400 T Pascal (1 “record” B C [“struct” JXFERIBIRZET, H5— Loy & Bn min 47— .
XA DS A L — 2k

class Employee:
pass

john = Employee () # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000

— B TR E IS A IS U Y Python AURSTEAE W] AR AR A— ML T B 2 B T ik i R A L
A, ARATAT — DT SR GORM AT LB A R B, AR VT DAE LAl read () Al readline ()
IR TR ZATRIBEIR N, HF A SR

Instance method objects have attributes, too: m. im_self is the instance object with the methodm () ,andm. im_func
is the function object corresponding to the method.

9.8 Exceptions Are Classes Too

User-defined exceptions are identified by classes as well. Using this mechanism it is possible to create extensible hierar-
chies of exceptions.

There are two new valid (semantic) forms for the raise statement:

raise Class, instance

raise instance

In the first form, instance must be an instance of Class or of a class derived from it. The second form is a shorthand
for:

raise instance._ class__, instance

A class in an except clause is compatible with an exception if it is the same class or a base class thereof (but not the
other way around —an except clause listing a derived class is not compatible with a base class). For example, the following
code will print B, C, D in that order:

class B:
pass
class C(B):
pass
class D(C):
pass

for ¢ in [B, C, D]:
try:
raise c()
except D:
print "D"

(FItgss)

76 Chapter 9. 2

Python Tutorial, 445 2.7.18

[CAWY)
except C:
print "C"
except B:
print "B"

Note that if the except clauses were reversed (with except B first), it would have printed B, B, B —the first matching
except clause is triggered.

When an error message is printed for an unhandled exception, the exception’ s class name is printed, then a colon and a
space, and finally the instance converted to a string using the built-in function str ().

9.9 EN2E

BIAACR I, GATREC AE B RZ U RA AT A for 1HA]:

for element in [1, 2, 31:
print element

for element in (1, 2, 3):
print element

for key in {'one':1, 'two':2}:
print key

for char in "123":
print char

for line in open("myfile.txt"):
print line,

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind the scenes,
the for statement calls iter () on the container object. The function returns an iterator object that defines the method
next () which accesses elements in the container one at a time. When there are no more elements, next () raises a
StopIteration exception which tells the for loop to terminate. This example shows how it all works:

>>> s = 'abc'
>>> it = iter(s)
>>> it

<iterator object at O0x00A1DB50>

>>> it.next ()

P

>>> it.next ()

lbl

>>> it.next ()

lcl

>>> it.next ()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

it.next ()

StopIlteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. De-
fine an __iter__ () method which returns an object with a next () method. If the class defines next (), then
__iter__ () can justreturn self:

class Reverse:
"""Tterator for looping over a sequence backwards."""
def _ init_ (self, data):

(Rt

9.9. &EHK2E 77

Python Tutorial, A4%5 2.7.18

(£ 50

self.data = data
self.index = len (data)

def _ iter_ (self):
return self

def next (self):
if self.index == 0:
raise Stoplteration
self.index = self.index - 1
return self.data[self.index]

>>> rev = Reverse('spam')
>>> iter (rev)
<__main__ .Reverse object at 0x00A1DB50>
>>> for char in rev:
print char

nw v oo 3 -

9.10 4Rk 2%

Generator 32— TRIEE ARG RIERMT R TR . B SEE U RER AL, (H2 AR R
2 yield i), BUOHEMERM next O B, BN EREIHERR AT (BEoicE ERIITE
AR BT A B o S e o 2 2 L 7 A B B s B 0

def reverse (data) :
for index in range(len(data)-1, -1, -1):
yield data[index]

>>> for char in reverse('golf'):
print char

Q O H rho.

Anything that can be done with generators can also be done with class-based iterators as described in the previous section.
What makes generators so compact is that the __iter__ () and next () methods are created automatically.

73— REEFFIEAE TR A A PIRAS ST YR 2 18] 1 3h A7 . X% B L self. index
Ml self.data XFMSLHIALE BT 5 o 5 H I R -

BT = HE QAT MR IR, MRS, Eflib &S B35 K stopIteration, XLEAFPELS
HE—E, fEEENRESRTHE RS —HES .

78 Chapter 9. 2

Python Tutorial, 445 2.7.18

9.11 ApZBRIEX

L] F R AR AR AT DA RIS ORISR, BT BRI e o, R AN2 NSRS AR 365 X
PR AP TR IR 5L B = R BB B R O o AR il s R b 5 B 0 A il B S B (HOA
R, A AR 51 Bt X B R 548 AT -

ANGE

>>> sum(i*i for i in range (10)) # sum of squares
285

>>> xvec = [10, 20, 30]

>>> yvec = [7, 5, 3]

>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin
>>> sine_table = dict ((x, sin(x*pi/180)) for x in range (0, 91))

>>> unique_words = set (word for line in page for word in line.split())

>>> valedictorian = max((student.gpa, student.name) for student in graduates)

>>> data = 'golf'

>>> list (data[i] for i in range(len(data)-1,-1,-1))
[lfl’ lll’ 'O', lg.l]

gx

9.11. &R FiER 79

Python Tutorial, A4%5 2.7.18

80

Chapter 9.

cHAPTER 10

PRAEEEEIIT

10.1 BR{ERGHEO

os BPURIL 7142 S HIE RGN eREL:

>>> import os

>>> os.getcwd () # Return the current working directory

'C:\\Python26"

>>> os.chdir ('/server/accesslogs') # Change current working directory
>>> os.system('mkdir today') # Run the command mkdir in the system shell
0

— LI import os MiA from os import * . XKfHEGNEN open () MY os.open () Faxk
Beehs, BRI 2R HIR

WER dir () Al help () BRECTAERZTREB TH, ATAPRRES, 41 os:

>>> import os

>>> dir (os)

<returns a list of all module functions>

>>> help (os)

<returns an extensive manual page created from the module's docstrings>

XHF HHE SN H S BT S5, shutil BBt T35 T s P 32 10

>>> import shutil
>>> shutil.copyfile('data.db', 'archive.db'")
>>> shutil.move ('/build/executables', 'installdir')

81

Python Tutorial, A4%5 2.7.18

10.2 CHF@EECH

glob BLBRFLHL T — AN H 53 6 T d FUAT 1 2% 1 3 SUPE 1 S e A

>>> import glob
>>> glob.glob('*.py")
["primes.py', 'random.py', 'quote.py']

10.3 SLITEH

18 S8 AR 7 AR 7 TR B B A 1T S8, XS HE NI RAFETE sys B argy J@TEH . BN, DA
Tk BAEm A4 TafT python demo.py one two three

>>> import sys
>>> print sys.argv
['demo.py', 'one', 'two', 'three']

The getopt module processes sys.argv using the conventions of the Unix getopt () function. More powerful and
flexible command line processing is provided by the argparse module.

104 $EiRMHEERMEFLEL

sys BRHUA A stdin , stdout Fl stderr BJEME. J5E X T KB EEMEREEIEEA R, BIELE stdour 17 5
E MR AE R e

>>> sys.stderr.write('Warning, log file not found starting a new one\n')
Warning, log file not found starting a new one

YL A BT R BT sys . exit ()

10.5 FHFEREs T

re BHC B R AT AL PR AL MR R . TR PERCAI B, IRk R At i, (AL i
PES

>>> import re

>>> re.findall (r'\bf[a-z]*', 'which foot or hand fell fastest')
["foot', 'fell', 'fastest']

>>> re.sub(r' (\bla-z]+) \1', r'\1', 'cat in the the hat')

'cat in the hat'

Y F R A IIREI,, B AT AR O B AT 5 [A I

>>> 'tea for too'.replace('too', 'two')
'tea for two'

82 Chapter 10. #RAEREREf

Python Tutorial, %45 2.7.18

10.6 =

math BEHUR AR GREERIRIZ C R B

>>> import math

>>> math.cos (math.pi / 4.0)
0.70710678118654757

>>> math.log (1024, 2)

10.0

random BB I TREP LR T A

>>> import random

>>> random.choice (['apple', 'pear', 'banana'l])

'apple'

>>> random.sample (xrange (100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]

>>> random.random () # random float

0.17970987693706186

>>> random.randrange (6) # random integer chosen from range (6)

4

10.7 HEExMijia]

There are a number of modules for accessing the internet and processing internet protocols. Two of the simplest are
urllib2 for retrieving data from URLs and smtplib for sending mail:

>>> import urllib2
>>> for line in urllib2.urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl"):
if 'EST' in line or 'EDT' in line: # look for Eastern Time
print line

Nov. 25, 09:43:32 PM EST

>>> import smtplib

>>> server = smtplib.SMTP ('localhost')

>>> server.sendmail ('soothsayerlexample.org', 'jcaesar@example.org',
"""To: jcaesar@example.org
From: soothsayer@example.org

Beware the Ides of March.
mn ”)

>>> server.quit ()

(AR, B A RBIFFEAE localhost FizFT MBI IR 55 2%)

10.6. #= 83

Python Tutorial, A4%5 2.7.18

10.8 H HAFORT [a]

datetime FHGE{E T DA BAFNSZ A 7 sUERAE HOVIARIR R A28 BUORSORR HUWAIR R B9k, (HSCBRY EE T
e A RO IR BRI ARE 7o AR A AR o AR SR Al SRR I X R

>>> # dates are easily constructed and formatted
>>> from datetime import date
>>> now = date.today ()

>>> now
datetime.date (2003, 12, 2)
>>> now.strftime ("Sm-5d-%y.] %b %Y is a %A on the %d day of %B.")

'12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'

>>> # dates support calendar arithmetic
>>> birthday = date (1964, 7, 31)

>>> age = now - birthday

>>> age.days

14368

10.9 BiEEYS

Common data archiving and compression formats are directly supported by modules including: z1ib, gzip, bz2,
zipfileand tarfile.

>>> import zlib

>>> s = 'witch which has which witches wrist watch'
>>> len(s)

41

>>> t = zlib.compress(s)

>>> len(t)

37

>>> zlib.decompress (t)

'witch which has which witches wrist watch'
>>> zlib.crc32(s)

226805979

10.10 MHEEMNE

— 44 Python FJ 3 17 it] — PR AA A [R] 7 YA AR R PERE 2B 1SS 48R Python $2 4L 7 —] DASZ B 3]
Ik S e A T A

B, JTAEMTFE RN LR SRS BT REE RG]). timeit BOA] APGEEURTEIZTTRCRTT
T —E PP F

>>> from timeit import Timer

>>> Timer ('t=a; a=b; b=t', 'a=1; b=2"'").timeit ()
0.57535828626024577
>>> Timer('a,b = b,a', 'a=1l; b=2").timeit ()

0.54962537085770791

5 timeit RGAIRIER BN, profile Ml pstats BEHERHL T HITERICHY FUAD BR H 3R ek a] % B0
ST A

84 Chapter 10. #RAEREREf

Python Tutorial, 445 2.7.18

10.11 REEH

I 5 o A1) — 5 PR AT B AR PO A BB B I, HAETT A d AR 2w as AT 2l

doctest BT 4TI, i FABIAIFSIERYE XAk ARIE, WA
S B SO IR SO e — BRI B, SO 6 PR R GIRICHE SRS, L fu i doctest L
ey 5 B SR

def average (values):
"""Computes the arithmetic mean of a list of numbers.

>>> print average ([20, 30, 70])
40.0

men

return sum(values, 0.0) / len(values)

import doctest
doctest.testmod () # automatically validate the embedded tests

unittest BHORR doctest BEMIBHES UM , (8 AvFAE— ey SO At 8 ATy WA S

import unittest
class TestStatisticalFunctions (unittest.TestCase) :

def test_average (self):
self.assertEqual (average ([20, 30, 70]), 40.0)
self.assertEqual (round (average([1, 5, 7]1), 1), 4.3)
with self.assertRaises (ZeroDivisionError) :
average ([])
with self.assertRaises (TypeError) :
average (20, 30, 70)

unittest.main () # Calling from the command line invokes all tests

10.12 BB

Python A7 “ Haff i ith” ROBE . i HA S 2R AN K I e il AR it B 213X — . I :

e The xmlrpclib and SimpleXMLRPCServer modules make implementing remote procedure calls into an
almost trivial task. Despite the modules names, no direct knowledge or handling of XML is needed.

* The email package is a library for managing email messages, including MIME and other RFC 2822-based mes-
sage documents. Unlike smtplib and poplib which actually send and receive messages, the email package
has a complete toolset for building or decoding complex message structures (including attachments) and for imple-
menting internet encoding and header protocols.

e The xml.dom and xm1 . sax packages provide robust support for parsing this popular data interchange format.
Likewise, the csv module supports direct reads and writes in a common database format. Together, these modules
and packages greatly simplify data interchange between Python applications and other tools.

o EPRE 2R, [f6 gettext , locale, PAJ codecs fi.

10.11. FREEEH 85

Python Tutorial, A4%5 2.7.18

86

Chapter 10. #RAEEEf

cHAPTER 11

REEE T —F ZERSY

S ARG T M AR I S S SR SRR . K LEREAR D AR /N A

11.1 Lt

The repr module provides a version of repr () customized for abbreviated displays of large or deeply nested containers:

>>> import repr
>>> repr.repr (set ('supercalifragilisticexpialidocious'))
"Set(['a', ’C', ’dV, le’, lf’, lgll '..J)"

pprint BHGRHLTHENEIRFTEIRER], Fob g N EXT SR 7 E SO RAERS PO R B 4
ISR R M EIA TN, SR AL SUSIIEATAFRIAEE DA A R R R A A

>>> import pprint
>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
'yvellow'], 'blue']]l]

>>> pprint.pprint (t, width=30)

[[[['black', 'cyan'],
'white',
['green', 'red']l],
[['magenta', 'yellow'],
'blue']]]

textwrap BIRFBEHE AL ICA B, DAIE LY 45 52 1 e T8 JEE -

>>> import textwrap

>>> doc = """The wrap() method is just like fill() except that it returns
. a list of strings instead of one big string with newlines to separate
. the wrapped lines."""

>>> print textwrap.fill (doc, width=40)

(Rt

87

Python Tutorial, A4%5 2.7.18

(£ 50

The wrap () method is just like f£ill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

locale fRiBAb 3 5 45 i Hids SCAAH XA BA% . Tocale AR format pR %1 & — > grouping JE 4, W H
PR BTSSR A A B A e R

>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'English United States.1252")
'English_United States.1252'

>>> conv = locale.localeconv () # get a mapping of conventions
>>> x = 1234567.8

>>> locale.format (" ", x, grouping=True)

'1,234,567"

>>> locale.format_string (" ", (conv(['currency_symbol'],

R conv|'frac_digits'], x), grouping=True)
'$1,234,567.80"

11.2 &R

string BOREE— B Template 2K, HAEMTHREM R LIETE. ©RVFHEARE S 2
HITEOL R E S A SRR

A A B R A AT SR, LA $ N B YRR Python ARRAF (BB SRk, B fi R4l
) M — FLOE RS S5-0F 5 AR R , il n] DAYE S TR B R ESE 2 i P BB i T S 5. $9
R SO FAT $:

>>> from string import Template

>>> t = Template ('S folk send $$10 to S$cause.')

>>> t.substitute(village="'Nottingham', cause='the ditch fund')
'Nottinghamfolk send $10 to the ditch fund.'

A I BT SO PR ARG G A, T4 substitute () Jrfili KeyErzor. MFHS
PREIF A IR, PR BT T AR R 52 8EHg, AT safe_substitute () ik MIAE
SRR, A R R

>>> t = Template ('Return the $item to Sowner.')
>>> d = dict(item='unladen swallow')

>>> t.substitute (d)

Traceback (most recent call last):

KeyError: 'owner'
>>> t.safe_substitute (d)
'Return the unladen swallow to S$Sowner.'

Template /1) 1-2E0] DA & SCEFRAT. B0, PARRRFAIRAME st f s ay 2 2heE, RN T A5 1EA H
WL MR S R R AR Y o AT

>>> import time, os.path

>>> photofiles = ['img_1074.3jpg', 'img_1076.jpg', 'img_1077.jpg']
>>> class BatchRename (Template) :
delimiter = '%'

CFItakgs)

88 Chapter 11. fREERENM—F 89

Python Tutorial, 445 2.7.18

(8 E70)

>>> fmt = raw_input ('Enter rename style (%d-date %$n-seqgnum —format) : ")
Enter rename style (%d-date %n—-seqnum %$f-format): Ashley_%n%f
>>> t = BatchRename (fmt)
>>> date = time.strftime (' Sbsy ")
>>> for i, filename in enumerate (photofiles):

base, ext = os.path.splitext (filename)

newname = t.substitute (d=date, n=i, f=ext)

print ' ——> '.format (filename, newname)

img_1074.jpg —-> Ashley_0.7Jpg
img_1076.jpg ——> Ashley_1.7pg
img_1077.jpg ——-> Ashley_2.7pg

BRI o — A N 5 R e a2 45 2 RE AR AR Hh A1 20 BTk . X (AT XML SO AiSCAR R R A
HTML [454 200 8 7 SUBARUSCR T e »

11.3 {EFHZ#FIEIEICRERX

struct BHURMLT pack () Ml unpack () B, MTABIAE KRR —dERHCFAR. FHRBIHI TR T
TEAGE zipfile BBRIGIOLT, AMTIEERM) —A> ZIP SCPFR BT A S5 B Pack AURS "H" Il "1 7351
PEEP P AT BEL "< R EATERST /N 75

import struct

data = open('myfile.zip', 'rb').read()
start = 0
for i in range (3): # show the first 3 file headers

start += 14
fields = struct.unpack ('<IIIHH', datal[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = fields

start += 16

filename = data[start:start+filenamesize]

start += filenamesize

extra = data[start:start+extra_size]

print filename, hex(crc32), comp_size, uncomp_size

start += extra_size + comp_size # skip to the next header

114 Z2%1E

AL — R T AR UL 22 M55 BEAT AR A SEOR . 22 AR T DASR i b B R B 20038, Y5O s A
Wy, REFHAML SRR Giafr. — M RN SRR, F VO Mt s TEm M T &R+ .

PATF AR SR T R threading BERAMTE G GIE 7L, HAAE W LR RIIRELETT:

import threading, zipfile

class AsyncZip (threading.Thread) :
def _ init_ (self, infile, outfile):

CFItakgs)

11.3. ERE-#IBIRERER 89

Python Tutorial, A4%5 2.7.18

(£ 50

threading.Thread.__init__ (self)
self.infile = infile
self.outfile = outfile

def run(self):
f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
f.write(self.infile)
f.close()
print 'Finished background zip of: ', self.infile

background = AsyncZip ('mydata.txt', 'myarchive.zip')
background.start ()
print 'The main program continues to run in foreground.'

background. join () # Wait for the background task to finish
print 'Main program waited until background was done.'

Z ALY TR 2Pk A0S, AHE PR 2 A AR 18] 7 2 S w BT R. SHE, threading B4R
BT ZAERPRAE S, OIELRER. F. FOEENETE.

While those tools are powerful, minor design errors can result in problems that are difficult to reproduce. So, the pre-
ferred approach to task coordination is to concentrate all access to a resource in a single thread and then use the Queue

module to feed that thread with requests from other threads. Applications using Queue . Queue objects for inter-thread
communication and coordination are easier to design, more readable, and more reliable.

11.5 BHERiCHF

logging EHREEHEINAEST & HRTEM H FILRK RS TEHRAPIEIL T, HEHEMAER S sys .

stderr

import logging
logging.debug ('Debugging information')
logging.info ('Informational message')

logging.warning ('Warning:config file not found', 'server.conf')
logging.error ('Error occurred')

logging.critical('Critical error -- shutting down')

X2 A AT i

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error —-- shutting down

BRIATE LR, informational 71 debugging S Bl i ih & A ik BURRMEST DR AT oAty 1 B T AL K57 6
SR B HLTHRE, Kk, BT ECHTTP flidsas. Bt JE nl DARSEE B0 Se S [l i b o7 5

DEBUG, INFO, WARNING, ERROR, #] CRITICAL,
H&E ARG n] PAE M Python L, AT AN A FBCE SCHmER, PAGE B & S H &0k 675 5 e b AR T «

90 Chapter 11. fREERENM—F 89

Python Tutorial, 445 2.7.18

11.6 585|H

Python 2 [BT WA B (XERZ BN G TT I VTRl garbage collection KFERAEIRTIT) o KA
R a— 5 B BR 5 A A SR 5 R AT

BT AR SRS AR BEAE N, (/R AR REFEEGOH AR R B R EREAT]. AR, BRER
NS HAR AT . weakre £ BLERFLHLH) T H W DURLAAES | BLREIR BT 5. X5
AHFFENS, EXRFASIN DGR RRE R, HONS5 X Gl Al . SN AR A T
BRI R T AT

>>> import weakref, gc
>>> class A:
def _ init_ (self, value):
self.value = value
def _ _repr__ (self):
return str (self.value)

>>> a

= A(10) # create a reference

>>> d = weakref.WeakValueDictionary ()
>>> d['primary'] = a # does not create a reference
>>> d['primary'] # fetch the object if it is still alive
10
>>> del a # remove the one reference
>>> gc.collect () # run garbage collection right away
0
>>> d['primary'] # entry was automatically removed
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

d['primary'] # entry was automatically removed

File "C:/python26/1lib/weakref.py", line 46, in __getitem___
o = self.datalkey] ()
KeyError: 'primary'

1.7 AFREIIRNIA

VR T ARG T K T DAEE N B REEORB 2 . (B2, ARBamERAANRED &R,
array BHRHE T —Fl array O X, BRMTIIE, EHGEIAMHERE B R HAA S £ E S, T
H BT T — N AP FAT A B TT R AT BGRB8 CGRBS S i), X T A1) ok
W, BANSH 12 AR TE Python 17 int X4 745 225 16 S

>>> from array import array

>>> a = array('H', [4000, 10, 700, 22222])
>>> sum(a)

26932

>>> al[l:3]

array ('H', [10, 7001])

collections BHHRL T —F deque () W5, BRMTINE, (BN s AT E R, iioE
1AL FRAH BE RN« BRI GE T S B BA A BE A ST R R

>>> from collections import deque
>>> d = deque(["taskl", "task2", "task3"])
>>> d.append ("task4™)

(R Itakss)

11.6. §53|H 91

Python Tutorial, A4%5 2.7.18

(£ 50

>>> print "Handling", d.popleft ()
Handling taskl

unsearched = deque ([starting_node])
def breadth_first_search (unsearched) :
node = unsearched.popleft ()
for m in gen_moves (node) :
if is_goal (m):
return m
unsearched. append (m)

TERR B SR SEBLASN , PRl AL T H A T B, B4 bisect Bik BA HTHAEHET Y 210 k%L

>>> import bisect

>>> scores = [(100, 'perl'), (200, 'tcl'"), (400, 'lua'"), (500, 'python')]
>>> pbisect.insort (scores, (300, 'ruby'))

>>> scores

[(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

heapq BEHUR L TR F I FOR LI KB FoMERIA H B RIFEEE . XN THREERL T
/N AN BLEATSE SR BN R HE P I AR AR HA A

>>> from heapg import heapify, heappop, heappush

>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]

>>> heapify(data) # rearrange the list into heap order
>>> heappush (data, -5) # add a new entry

>>> [heappop (data) for i in range(3)] # fetch the three smallest entries
[-5, 0, 1]

11.8 +#tHIIFREHE

decimal PEHEEML T —Fh Decimal FPERAH F TR S8, ML NER float —HEHF S L,
R AE T

o T8 55 I PR HCAth 5 R 1 0k fh s v D i
. TR,
o A Y 8 LA DAY R VAR B A R
o BESARUNELL, 5
o JPEEEER S T 158 M VAR VT RS R BT AT -

B, (- PR A R R RO 70 S FALM SRR B, SRR ISER . ARER I
HHAFIRPGL R SR

>>> from decimal import *

>>> x = Decimal ('0.70'") * Decimal('1.05")

>>> x

Decimal ('0.7350")

>>> x.quantize (Decimal ('0.01")) # round to nearest cent
Decimal ('0.74")

>>> round (.70 * 1.05, 2) # same calculation with floats
0.73

92 Chapter 11. #REEET—F_E5

Python Tutorial, 445 2.7.18

Decimal FURMERE R BIINE, HMRIRA P A RO POREL A Sl U A~A 247, Decimal 7] PA
BAU T Tz SRk 6 2 — R RBOCE R iR -+ B & S 80 .

KR RS Decimal JEREMS PATXS T —HE M mUBOR UANE H RIRLIZ SR S s DU

>>> Decimal ('1.00") % Decimal('.10")
Decimal ('0.00")

>>> 1.00 % 0.10

0.09999999999999995

>>> sum([Decimal ('0.1")]1*10) == Decimal('1.0")
True

>>> sum([0.1]1%10) == 1.0

False

decimal BLBRFEHL I F T 20 R EHGIE:

>>> getcontext () .prec = 36
>>> Decimal (1) / Decimal (7)
Decimal ('0.142857142857142857142857142857142857")

118, +HSTRES 9

Python Tutorial, A4%5 2.7.18

94

Chapter 11. #REEERN—F =5

CHAPTER 12

TR ?

el A BORE T BE S 4 9 NS 1] Python [B0 - MR T T Python SRR B SE PR . AR %
WP T AR 2

AP Python SURIAERY— 7o HALSCRY:
* library-index:

BRI AT, R T T RARMEE H g8, ThEeRgibise ke (AETRNY) 2% Y0k 4R
HERY Python ZZATHUEL Y 1R 2 HYMEINACHS . A LERERA] DAJER Unix fE4H, il HTTP A2 SCRY, AR
REALEC, MRMTarATIET, S5 CGIARR, IRAREUN A KIF 2 HoMbAT S5 . D SEARifE e 25 T DA T Ao
Z Al N .

¢ install-index explains how to install external modules written by other Python users.

* reference-index: Python HTEYARIE LA TRANRE . RS BLE AR ST, (AR ARG M S a2
Ei DR

B Z Python B

* https://www.python.org : F: %] Python [ufi. ‘EALE S, SCRIPALARE Web E5 Python AH 5K T A
B . M IR 2 M KER A B, W, AR B84 T RE LE F2ul s b, LRI
P s Hh BT

* hittps://docs.python.org : 3 1J5a] Python [3CRY .

e https://pypi.org: The Python Package Index, previously also nicknamed the Cheese Shop, is an index of user-
created Python modules that are available for download. Once you begin releasing code, you can register it here so
that others can find it.

* https://code.activestate.com/recipes/langs/python/ : Python Cookbook J&—/MH 24 KHAL R BIEE, THLH)

IR F A o 5 BB A5 3 2 09 DT Bk U EE E — 45 44 A Python Cookbook (O’ Reilly & Associates,
ISBN 0-596-00797-3) Hy4i.,

For Python-related questions and problem reports, you can post to the newsgroup comp. lang.python, or send them
to the mailing list at python-list@python.org. The newsgroup and mailing list are gatewayed, so messages posted to one
will automatically be forwarded to the other. There are around 120 postings a day (with peaks up to several hundred),
asking (and answering) questions, suggesting new features, and announcing new modules. Before posting, be sure to check
the list of Frequently Asked Questions (also called the FAQ). Mailing list archives are available at https://mail.python.

95

https://www.python.org
https://docs.python.org
https://pypi.org
https://code.activestate.com/recipes/langs/python/
mailto:python-list@python.org
https://mail.python.org/pipermail/
https://mail.python.org/pipermail/

Python Tutorial, A4%5 2.7.18

org/pipermail/. The FAQ answers many of the questions that come up again and again, and may already contain the
solution for your problem.

96 Chapter 12. T3 ?

https://mail.python.org/pipermail/
https://mail.python.org/pipermail/

cHAPTER 13

X EXmIEMMmIEH L

Some versions of the Python interpreter support editing of the current input line and history substitution, similar to
facilities found in the Korn shell and the GNU Bash shell. This is implemented using the GNU Readline library, which
supports Emacs-style and vi-style editing. This library has its own documentation which I won’ t duplicate here; however,
the basics are easily explained. The interactive editing and history described here are optionally available in the Unix and
Cygwin versions of the interpreter.

This chapter does not document the editing facilities of Mark Hammond’ s PythonWin package or the Tk-based envi-
ronment, IDLE, distributed with Python. The command line history recall which operates within DOS boxes on NT and
some other DOS and Windows flavors is yet another beast.

13.1 Line Editing

If supported, input line editing is active whenever the interpreter prints a primary or secondary prompt. The current line
can be edited using the conventional Emacs control characters. The most important of these are: C—A (Control-A) moves
the cursor to the beginning of the line, C-E to the end, C—B moves it one position to the left, C-F to the right. Backspace
erases the character to the left of the cursor, C-D the character to its right. C—K kills (erases) the rest of the line to the
right of the cursor, C—Y yanks back the last killed string. C-underscore undoes the last change you made; it can be
repeated for cumulative effect.

13.2 History Substitution

History substitution works as follows. All non-empty input lines issued are saved in a history buffer, and when a new
prompt is given you are positioned on a new line at the bottom of this buffer. C—P moves one line up (back) in the history
buffer, C—N moves one down. Any line in the history buffer can be edited; an asterisk appears in front of the prompt to
mark a line as modified. Pressing the Return key passes the current line to the interpreter. C—R starts an incremental
reverse search; C—S starts a forward search.

97

https://tiswww.case.edu/php/chet/readline/rltop.html

Python Tutorial, A4%5 2.7.18

13.3 Key Bindings

The key bindings and some other parameters of the Readline library can be customized by placing commands in an
initialization file called ~/ . input rc. Key bindings have the form

’key—name: function-name

or

’"string": function—name

and options can be set with

’set option-name value

For example:

I prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:

Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding for Tab in Python is to insert a Tab character instead of Readline’ s default filename
completion function. If you insist, you can override this by putting

Tab: complete

in your ~/ . inputrc. (Of course, this makes it harder to type indented continuation lines if you’ re accustomed to
using Tab for that purpose.)

Automatic completion of variable and module names is optionally available. To enable it in the interpreter’ s interactive
mode, add the following to your startup file:'

import rlcompleter, readline
readline.parse_and_bind('tab: complete')

This binds the Tab key to the completion function, so hitting the Tab key twice suggests completions; it looks at Python
statement names, the current local variables, and the available module names. For dotted expressions such as string.
a, it will evaluate the expression up to the final ' . ' and then suggest completions from the attributes of the resulting
object. Note that this may execute application-defined code if an object witha ___getattr__ () method is part of the
expression.

A more capable startup file might look like this example. Note that this deletes the names it creates once they are no
longer needed; this is done since the startup file is executed in the same namespace as the interactive commands, and
removing the names avoids creating side effects in the interactive environment. You may find it convenient to keep some
of the imported modules, such as os, which turn out to be needed in most sessions with the interpreter.

! Python will execute the contents of a file identified by the PYTHONSTARTUP environment variable when you start an interactive interpreter. To
customize Python even for non-interactive mode, see /& | 42 3z.

98 Chapter 13. RXERXFHIFFHEHE

Python Tutorial, 445 2.7.18

Add auto-completion and a stored history file of commands to your Python
interactive interpreter. Requires Python 2.0+, readline. Autocomplete 1is
bound to the Esc key by default (you can change it - see readline docs).

Store the file in ~/.pystartup, and set an environment variable to point
to it: T"export PYTHONSTARTUP=~/.pystartup'" in bash.

HH FH W H K H

import atexit
import os

import readline
import rlcompleter

historyPath = os.path.expanduser ("~/.pyhistory")
def save_history (historyPath=historyPath) :
import readline

readline.write_history_file (historyPath)

if os.path.exists (historyPath):
readline.read_history_file (historyPath)

atexit.register (save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath

13.4 BhAR A REXNERSR

Python R 5 FLIRA A LL, IR EE T —0 s ToiBAE, A LEA R IIRE : R AT R B2 A T
IR (ATAR ANE B TR R B R LIS), ARFARE . AL] AR AR T 5 8. Ay
xkE (REEW) 5, 515 AR5 2 A ITH

AN BRI RS AR [Python, B LVATEAE T A B, RAT tab ¥har, FREATL A
ARG . A T DA E B A SRR, 5 AR SRR 1 FRBEE bpython,

134. BAREXBRRHERS 99

http://ipython.scipy.org/
http://www.bpython-interpreter.org/

Python Tutorial, A4%5 2.7.18

100 Chapter 13. X ERXHiFFImIBEH L

cHAPTER 14

FREAR SR

PR BRI AR CE 2R A 2 SR8 (ki) i/ NE. 2RO, BRI /N

’0.125

ST 1/10 +2/100 + 5/1000 , [F3E, —3EHIH /N

[o-001 |

FT 02+ 0/4+ 178, EXPIA/INEEARFEIRE, ME—FHIEAY XA A 10 BB/ MIGRE, #
AR 2 R EA

A, KRR 2E B NS BER R o — RN X REHERZ RGO, AR A1 2k
7 G R BB LA A — R s BOE AT B

JA A SRR PR A M R AR AN S — 2 B 13 o AT AR EAE 2B i — A UE

= |

o, HATUY,

’0.33 ‘

o, S,

’0.333

PABLISHE. PR TRIRIRE T 2R, BEEUKIEA ST 13, 2 E s 1/3 .

WIRERYTERE, TCIRIREH 2000 2 N SR Rehs , +EfIAY 0.1 FRTCIRRS It 33— DA 2 B EH /)
Bo AEDA 2 AEEE LT, 1/10 2 — A TRRIEFR/ MR

0.0001100110011001100110011001100110011001100110011...

Stop at any finite number of bits, and you get an approximation.

101

Python Tutorial, A4%5 2.7.18

On a typical machine running Python, there are 53 bits of precision available for a Python float, so the value stored
internally when you enter the decimal number O . 1 is the binary fraction

0.00011001100110011001100110011001100110011001100110011010

which is close to, but not exactly equal to, 1/10.

It’ s easy to forget that the stored value is an approximation to the original decimal fraction, because of the way that
floats are displayed at the interpreter prompt. Python only prints a decimal approximation to the true decimal value of the
binary approximation stored by the machine. If Python were to print the true decimal value of the binary approximation
stored for 0.1, it would have to display

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

R Z BN A AR 2, [Nt Python i id S & AER PRI nl 48 B (2 4K

>>> 0.1
0.1

It’ s important to realize that this is, in a real sense, an illusion: the value in the machine is not exactly 1/10, you’ re
simply rounding the display of the true machine value. This fact becomes apparent as soon as you try to do arithmetic
with these values

>>> 0.1 + 0.2
0.30000000000000004

TR AT O i R A A BRI - B A2 Python BUSRIR , AR IR IRSTERTA S
%1/J\E’Jﬁ%1¢)ﬂljl§l’]/%,m BEIEF R RRFEFEMTEI (RARESTERRSEIA i A T A S 2
XFPIES) o

Other surprises follow from this one. For example, if you try to round the value 2.675 to two decimal places, you get this

>>> round(2.675, 2)
2.67

The documentation for the built-in round () function says that it rounds to the nearest value, rounding ties away from
zero. Since the decimal fraction 2.675 is exactly halfway between 2.67 and 2.68, you might expect the result here to be (a
binary approximation to) 2.68. It’ s not, because when the decimal string 2 . 675 is converted to a binary floating-point
number, it’ s again replaced with a binary approximation, whose exact value is

2.67499999999999982236431605997495353221893310546875

Since this approximation is slightly closer to 2.67 than to 2.68, it’ s rounded down.

If you’ re in a situation where you care which way your decimal halfway-cases are rounded, you should consider using
the decimal module. Incidentally, the decimal module also provides a nice way to “see” the exact value that’ s
stored in any particular Python float

>>> from decimal import Decimal
>>> Decimal (2.675)
Decimal ('2.67499999999999982236431605997495353221893310546875")

Another consequence is that since 0.1 is not exactly 1/10, summing ten values of 0.1 may not yield exactly 1.0, either:

>>> sum = 0.0
>>> for 1 in range (10)

CFITgkED)

102 Chapter 14. FREHR: FiLFIRE

Python Tutorial, 445 2.7.18

(£ 50

sum += 0.1

>>> sum
0.9999999999999999

BRI MBSO F X RO AR C0.17 RYMIESTE NI “FORMERHR" — R
Hik. TS B TR XA B I B A,

As that says near the end, “there are no easy answers.” Still, don’ t be unduly wary of floating-point! The errors in
Python float operations are inherited from the floating-point hardware, and on most machines are on the order of no more
than 1 part in 2#*53 per operation. That’ s more than adequate for most tasks, but you do need to keep in mind that it’
s not decimal arithmetic, and that every float operation can suffer a new rounding error.

While pathological cases do exist, for most casual use of floating-point arithmetic you’ 1l see the result you expect in the
end if you simply round the display of your final results to the number of decimal digits you expect. For fine control over
how a float is displayed see the str. format () method’ s format specifiers in formatstrings.

14.1 RiRMEEEIR

A/NTREAEANRERE “0.17 BIBIT, FFULHIARTT DAEREE B g LA TR B 0T . IRE B 2 B B A K
TR SRR .

Representation error refers to the fact that some (most, actually) decimal fractions cannot be represented exactly as binary
(base 2) fractions. This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many others) often won’ t
display the exact decimal number you expect:

>>> 0.1 + 0.2
0.30000000000000004

Why is that? 1/10 and 2/10 are not exactly representable as a binary fraction. Almost all machines today (July 2010) use
IEEE-754 floating point arithmetic, and almost all platforms map Python floats to IEEE-754 “double precision” . 754
doubles contain 53 bits of precision, so on input the computer strives to convert 0.1 to the closest fraction it can of the
form J/2**N where J is an integer containing exactly 53 bits. Rewriting

’1 /10 ~= J / (2%*N)
5H
’J ~= 24*N / 10

HHBT T84 53 7 (B >= 2**52 {H < 2**53), N [Jifd{EN 56:

>>> 2**52
4503599627370496
>>> 2*%*53
9007199254740992
>>> 2*%*56/10
7205759403792793

That is, 56 is the only value for N that leaves J with exactly 53 bits. The best possible value for J is then that quotient
rounded:

14.1. JRMHEIR 103

http://www.lahey.com/float.htm

Python Tutorial, A4%5 2.7.18

>>> g, r = divmod (2**56, 10)
>>> r
6

M T ARE0E 10 B)—2, S E T Py & ARG

>>> g+l
7205759403792794

Therefore the best possible approximation to 1/10 in 754 double precision is that over 2**56, or

7205759403792794 / 72057594037927936

WHEH TR T B/, EAEERLER FISKT 1105 QERFA1EA 1 EaA, WEPHSE/N T 1/10,
HICI U EHA 2 A #h ey 1/10!

HIATEKIEARS “FRH” 1/10: ELbE SIS Em s e/ N, BT B R i fd: 754 B0 EE D
N

>>> |1 * 2**56
7205759403792794.0

If we multiply that fraction by 10**30, we can see the (truncated) value of its 30 most significant decimal digits:

>>> 7205759403792794 * 10**30 // 2**56
100000000000000005551115123125L

meaning that the exact number stored in the computer is approximately equal to the decimal value
0.100000000000000005551115123125. In versions prior to Python 2.7 and Python 3.1, Python rounded this
value to 17 significant digits, giving ‘0.10000000000000001" . In current versions, Python displays a value based on
the shortest decimal fraction that rounds correctly back to the true binary value, resulting simply in ‘0.1 .

104 Chapter 14. EmEA: FiFORF

cHAPTER 15

B 3%

15.1 TEHER

15.1.1 $HiRAME

BRAGTRRT, AR STT AR R R A DO . AR, FRR 2] Eay S 3nAT: WPREANZ
K HICHE, (TR Z S, BFSUEDRERS . (X RN RA IS try ifiA)H i except
PR) AR TR, 2SR TF AIERRESIR L AR S AR . B
ARG DA RCE AR ERT IR 16214 1L 4t RS AR HE B AL

47 (%A Control-C ok Delete) ##A EEEUHIRR SBEH M AR [FHRRFF TEIRATA
AT A TR TE | & 1) KeyboardInterrupt J&, BIDAH try iBAJ4HE,
15.1.2 T[H1THY Python &

£ BSD 452€ Unix £4¢ L, Python AR PAEHINAT, U shell WAL, 547U

’#//usr/bin/env python

(BRBLAREE AL T M 8 PATH) IARRIITSG, HRESCIFBRCE N AT E T # 0 AU STIFRY RTINS 74 TERE
SPGB, AT RA Unix #2147 45 R (" \n') Z53R, MiAJ2PA Windows ('\r\n') {7452, R,
HOONERE 74T ' # 7 Python HUZEREIT 1A

AT DA chmod iy 4 A BIA SR A AT A LU BR

’$ chmod +x myscript.py

1E Windows 245 I, WA “AIPATEN" A& . Python Ze3ffF H ot . py X5 python. exe HIXEL,
BLREXLHT Python SCUFRt & F A A AIZFT. §RMAT LR pyw , ZERXAMEBLT , 23 B & H B
BE0.

I GNU Readline {0,/ 7 85 1] i £ JHL 115 Rl o«

105

Python Tutorial, A4%5 2.7.18

15.1.3 ¥ ERX BN

MEEPASH 7 35U Python I, EEUHSHAFREGHIN AR & AT — ebnfEdy S, BRI, E0nT DA K4
A PYTHONSTARTUP WYFRSTAS BB N B & R & 1 SCPE R EBL. X RAUT Unix shell () . profile
fE-

This file is only read in interactive sessions, not when Python reads commands from a script, and not when /dev/tty
is given as the explicit source of commands (which otherwise behaves like an interactive session). It is executed in the
same namespace where interactive commands are executed, so that objects that it defines or imports can be used without
qualification in the interactive session. You can also change the prompts sys.ps1 and sys.ps?2 in this file.

QARARAE A 2 Hi H Sk S I — AN S B S, URATRAME S if os.path.isfile (' .pythonrc.
py'): exec(open('.pythonrc.py') .read()) XFEMMRIDIES RS0 R EHTmE. WRE
TERIAS 8 e s S, b2 AR rp S AT e 4

import os
filename = os.environ.get ('PYTHONSTARTUP')
if filename and os.path.isfile(filename) :
with open(filename) as fobj:
startup_file = fobj.read()
exec (startup_file)

15.1.4 EHER

Python 2Lt TN TR H E X sitecustomize fl usercustomize, WAFH TIEFI, 1L
o B F] | site-packages H KB . JH 3l Python Fiz 47 AR

>>> import site
>>> site.getusersitepackages ()
'/home/user/.local/lib/python2.7/site-packages'

BAE, ETPMER H R Al#— 4 usercustomize.py BSCHF, IR ARAIL . E&PIH
Python MYERK/EN, FRAFEDA -s WUS30, UEMASITA.

sitecustomize PAM A #5750 TAE, Hid & i iF 0L BE A fE 42)5 site-packages H k811, H1E
usercustomize ZHIB A HRKEMITSI site BLRAYIR,

gix

106 Chapter 15. ff

APPENDIX A

RIEXTHRR

>>> R H A L EGA R Python $&7-4F . FEAE 2 R T BB AR H Ty AR M REAR LIV T IO AR B AR 2 1

. The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2to3 —>f Python 2.x fUfS #4657 Python 3.x fURLIK TR, REAS A PR 0703 1o AEAT U5 o DIy A ATyl 4
T2 AN

2t03 WA TERRMEEH, BN 1ib2to3; FFEM—/ NS AT Tools/scripts/2to3. £
2to3-reference.,

abstract base class —fili% 3£28 Abstract base classes complement duck-typing by providing a way to define interfaces
when other techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods).
ABC:s introduce virtual subclasses, which are classes that don’ t inherit from a class but are still recognized by
isinstance () and issubclass () ;see the abc module documentation. Python comes with many built-in
ABC:s for data structures (in the collections module), numbers (in the numbers module), and streams (in
the io module). You can create your own ABCs with the abc module.

argument —Z3 % A value passed to a function (or method) when calling the function. There are two types of arguments:

o KT A TEREOR M R A AR R (BIA0 name=) SCEAE N AL STERTIA A <+ Y5-I
MERE A 28BIRTE, 3 A1 5 FELATRXT complex () B HIET K724

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

s L E Ade ARTRETSHNSI (CESHTH T SR ENIT L AR SEGE A D ana A
* Witerable P TCRGAL A 2B, 3 A1 5 FELA T hy g T E S 4

complex (3, 5)
complex (* (3, 5))

SHLHIR L BRBC PR AR A B A7 XRRALINS L calls —7. RURIERE , FEOTRIBAT
TR BT L SRR TS

107

Python Tutorial, A4%5 2.7.18

See also the parameter glossary entry and the FAQ question on the difference between arguments and parameters.

attribute —J@PE SCECE]— N RE, FTAMH S5 ERREAHAFRRE . fla, R 5% o A
— @ a, BT o.a REIHE .

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’ s creator.

bytes-like object —3= 152X} 4 An object that supports the buffer protocol, like st r, bytearray or memoryview.
Bytes-like objects can be used for various operations that expect binary data, such as compression, saving to a
binary file or sending over a socket. Some operations need the binary data to be mutable, in which case not all
bytes-like objects can apply.

bytecode —=7 i1 Python source code is compiled into bytecode, the internal representation of a Python program in the
CPython interpreter. The bytecode is also cached in . pyc and . pyo files so that executing the same file is faster
the second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to
run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes
are not expected to work between different Python virtual machines, nor to be stable between Python releases.

TR AR AT LAE dis B SR AR
class 3¢ JSRAIEN P E NGB, 258 SGEH L 3 X% 2E M S BIUEA T B 7 kg 3

classic class Any class which does not inherit from object. See new-style class. Classic classes have been removed in
Python 3.

coercion —5ii il AUEEHE The implicit conversion of an instance of one type to another during an operation which in-
volves two arguments of the same type. For example, int (3.15) converts the floating point number to the integer
3, butin 3+4. 5, each argument is of a different type (one int, one float), and both must be converted to the same
type before they can be added or it will raise a TypeError. Coercion between two operands can be performed
with the coerce built-in function; thus, 3+4 . 5 is equivalent to calling operator.add (*coerce (3, 4.
5)) and results in operator.add (3.0, 4.5). Without coercion, all arguments of even compatible types
would have to be normalized to the same value by the programmer, e.g., f1oat (3) +4 . 5 rather than just 3+4 . 5.

complex number 5% X @ LA GLY JE, Hoh I B R R 8 — A SEE SRR AL, R
A HERCAOL (-1 BRI AR) BYSEARR, EHAEREAT SN 1, ETRESHS 5. Python N T4
By sy, R TREEARICT =20 il —A 3 R4, BN 3+15. WPRTEZE math BEER ARG A%
WARBURA, #EH cmath, RER AR — DB BAEARE. WRIRBOER A L, ZIEE
ITLP AR AL

context manager — |2 F 3CAFPIEY 7E with iEAPN, @idE X __enter_ () Ml _exit_ () R
HFEDREHIN S . £ L PEP 343,

CPython Python ZF1E F HIMIVESEEL, FE python.org & 7fi.” CPython” — i)] F7E0 B R K L SL Bl HoAth
SEFFIAN Jython EY, IronPython AH X 51l

decorator &My R IPME AT — D REWREL, EHE M ewrapper A AORMITREUEH . REMidsm
BT f3E classmethod () fl staticmethod () .

PFEETE R RIS, AR A B B0E SR X BS54 4R

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

] ARSI T8, (Rl F R A o A SRR TR 1T 2 0 eR S0 SR 2858 SR SORY

108 Appendix A. RiEIEBR

https://www.python.org/~guido/
https://www.python.org/dev/peps/pep-0343
https://www.python.org

Python Tutorial, 445 2.7.18

descriptor —§{iif%% Any new-style object which defines the methods __get_ (), __set__ (), or
__delete__ (). When a class attribute is a descriptor, its special binding behavior is triggered upon at-
tribute lookup. Normally, using a.b to get, set or delete an attribute looks up the object named b in the class
dictionary for a, but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is
a key to a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

A KBTI IR TR T2 descriptors.

dictionary —Z#it An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eqg__ () methods. Called a hash in Perl.

dictionary view —HLEEPE| The objects returned from dict .viewkeys (),dict.viewvalues (),anddict.
viewitems () are called dictionary views. They provide a dynamic view on the dictionary’ s entries, which
means that when the dictionary changes, the view reflects these changes. To force the dictionary view to become a
full list use 1ist (dictview). See dict-views.

docstring —SCRYFAFH 128, BRI 2 WIS — b s Ul B AR M. BT AT 29
2, BSPHERSR B ITIES . R __doc_ @i, T En T AHNE,
SRR QAT AL AL

duck-typing 1 F-RM F5—FgFE XA, EIFMKEE RIS RER e LR EHA BN, meH
B R 6 s g (BRGNS, mpERWGEM T, ISAE EMmEN) hT e
FUMAERRE 288, it RIS v i 2 SRR T R, 19T 2RBLE R type () B
isinstance () Kpill. ((HEEFRENFIRB0] DAEH 4 248 % s e,) MAEES R hasattr ()
K 2 EAFP 4hfe .

EAFP R HCRVFIHA S, 930455 . X Python # J AU 4 5 AU 2 18 BT 1 B BB AP AE
HAEBGE FRINHH IS B o X PR PR XA IR @ Kz] oy Ml except ifAT. THAIN Y
W2 FTELBYL W, #ILT C S5 R HAIE = .

expression -3k A, A piece of syntax which can be evaluated to some value. In other words, an expression is an
accumulation of expression elements like literals, names, attribute access, operators or function calls which all
return a value. In contrast to many other languages, not all language constructs are expressions. There are also
statements which cannot be used as expressions, such as print or i f. Assignments are also statements, not

expressions.
extension module —§" Jg it DA C 5 C++ Zi'5 A, i1 Python [¥) C APT 3k 5iEF 1.0 DA A P A i
T H..

file object —SCPRXF G A SMRPETH 7 S0 APL AGE N2 BEEAIR G (AP read () Bl write () XAERYTT
5) o MEHAIET BRI, ORI AT AME B BLSCRE RSO, XHARAUA A, SO Rl IR A
AR (PANAR R A/ . AR IX . BT, B) . U R WP ST R 23 2 80A.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the i o module. The canonical way to create a file object is by using the open () function.

file-like object —SLPEJA 4 file object [1F] il o

finder 5 $k%% An object that tries to find the loader for a module. It must implement a method named
find_module (). See PEP 302 for details.

floor division —[i] FIUEEERE: 1) N & A B S R BB B Rk . 10 N BRI IEB AT /7 - Blin, %
kX 11/ AWTRESRE 2, M52 MR EF S EIERZERE 2.75 . WE (-11) // 4
23R 0] -3 PR SE -2.75 B T A RIS . I, PEP 238 .

function —pR %L AT DA H & R BIEEAME — 4B A . 380] DA AR ABASE 2> 240 HAE R BRI T ¢
1§/l 5 Wparameter, method 1 function ££75 ,

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11 /4 currently evaluates to 2. If the module in which it

109

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0238

Python Tutorial, A4%5 2.7.18

is executed had enabled true division by executing:

from _ future__ import division

the expression 11 /4 would evaluate to 2 . 75. By importingthe ___future___ module and evaluating its variables,
you can see when a new feature was first added to the language and when it will become the default:

>>> import __ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection —L7 Y% [B[it The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator —2EJ%7#% A function which returns an iterator. It looks like a normal function except that it contains yield
statements for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function. Each yield temporarily suspends processing, remembering the location execution state (in-
cluding local variables and pending try-statements). When the generator resumes, it picks up where it left off (in
contrast to functions which start fresh on every invocation).

generator expression —f: g3 35 3, An expression that returns an iterator. It looks like a normal expression followed
by a for expression defining a loop variable, range, and an optional i f expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

GIL 2 W.global interpreter lock

global interpreter lock —4: i ffREg B CPython ffFEes TR B —FIALE , B RIRE —i %) g — 2817
AT Python byrecode, BEALTHE T BEE AT GARR (AHE dict SEE N EIRM) X 5 a4
A fijifk T CPython SZH., 258NN RRESS B (H 1S M RERS 2 R RE B T (8, AR W44t T 2 40
S FROHA T

ANad, BEBERE B =07 R I R A BT AR AT T B AR AT 55 0 s 4 s A R GIL
BEAh, FEIAT VO #RAEB 2 SR GIL.

QI (PASERSAIAL BER BiE Je 28y) A AR MPRERR i 55 I MR IRAG IS, R R x4
TEA0 FAAE PR DL T HOTERE o J5 (5 e AR B8 170 R A o B S AR A B A %, AT B A DA
o

hashable —u] W37 An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (itneedsan __eq__ () or __cmp___ () method).
Hashable objects which compare equal must have the same hash value.

]I F PR CERERT SRR D T SR A A LB, PR Ry B 2) A A T 0 AL

All of Python’ s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries)
are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal (except
with themselves), and their hash value is derived from their id ().

IDLE Python {) IDE, “EpiJT & 52£J BREE” MYSESCEHE o 2 Python BRifl AT PR) BE A 2 AR RS
REREL .

immutable — A HATFEEHAXTR . AR QAL AR HICA. AR R A RER L. W
R — DA R, WLBRIEHRX S . MRS R Er 5 E2AEN, B
(SR i

integer division Mathematical division discarding any remainder. For example, the expression 11/ 4 currently evaluates

to 2 in contrast to the 2 . 75 returned by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied to it). However, if one of the operands is

110 Appendix A. RiEIEBR

Python Tutorial, 445 2.7.18

another numeric type (such as a f1oat), the result will be coerced (see coercion) to a common type. For example,
an integer divided by a float will result in a float value, possibly with a decimal fraction. Integer division can be
forced by using the // operator instead of the / operator. See also __future__.

importing —5 A 4— MUY Python MRS RE I — MELER H Y Python FURS B I AY S 2 .
importer — A%F EHIFMBABATN R WS ZRBEE T finder 3@ Tloader

interactive —5¢ 7. Python iy — NS HAMERERS , BIVRAT DATERRRES S /AT S ATB I AN SR, SZ BT
HAEEHER . AT SEOES) python fivd (WA DATEARAYTT ST AR B P s A B3 BT
AE R AR BOS SR AT A I X A AR AER T (HEAE help (x)).

interpreted £ Python —RAMFREALE T, SRR M IFAIET , RIAPIE I i T 51 i g 5
e AEAE T A7 PP o R AR JESCIE AT A LGB AT A b B s B n] AT SO FRIs AT R
TR BA g A AT A AR UR Y, (R AP R EIs TR R . & Winteractive,

iterable —n] 3% U4t An object capable of returning its members one at a time. Examples of iterables include all
sequence types (such as 1ist, str, and tuple) and some non-sequence types like dict and £ile and objects
of any classes you define withan __iter_ () or __getitem__ () method. Iterables can be used ina for
loop and in many other places where a sequence is needed (zip (), map (), ---). When an iterable object is passed
as an argument to the built-in function iter (), it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessary to call iter () or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator —i%f07% An object representing a stream of data. Repeated calls to the iterator’ s next () method return suc-
cessive items in the stream. When no more data are available a St opIteration exception is raised instead. At
this point, the iterator object is exhausted and any further calls to its next () method justraise StopIteration
again. Iterators are required to havean __iter__ () method that returns the iterator object itself so every iterator
is also iterable and may be used in most places where other iterables are accepted. One notable exception is code
which attempts multiple iteration passes. A container object (such as a 1ist) produces a fresh new iterator each
time you pass it to the iter () function or use it in a for loop. Attempting this with an iterator will just return
the same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.

W25 E [EF typeiter.

key function B H pR BCAREE B R 4L, 2 REAZAR 0] 1 T-HEFP SR CLAE R TR R « BN, locale.
strxfrm () ATFA N AFEREE I HE T 29 %€ A HER 1 .

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min (), max (), sorted (), list.sort (), heapg.nsmallest (), heapg.nlargest (), and
itertools.groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a 1ambda expression
suchas lambda r: (r[0], r[2]). Also,the operator module provides three key function constructors:
attrgetter (), itemgetter (),and methodcaller (). See the Sorting HOW TO for examples of how
to create and use key functions.

keyword argument — G255 2 Warsument,
lambda (A lexpression 14T B2 IR EL, RPN AET A B BORIE. B8 lambda 5L H)VE N

lambda [parameters]: expression

LBYL “Jefrf JGHkER” M3 045 . X AR g 5 XS S 7E #EA T IR T B 4R 2 1 S A A i p 4 . itk
Wkg S EAFP Jy G A, HAF RUR KR 1 £ 1A,
L LAMEET, LBYL il 8 “&F” Ml “BRER” Z I &SR K. B, PARAURD 1 £
key in mapping: return mappinglkey] A[REH TTEREERAEZ 5 HAMLREIN mapping FF5 R
T key T4 o 30K) R0 AT 3 3 i BB 0 1T EAFP 5 R fig e .

111

Python Tutorial, A4%5 2.7.18

list %% Python N Ef{—Fhsequence. BSR4 NHNIFE, HEIMT HAEF HAORALNAEERS 1%, oA
FICER I S AR R O1).

list comprehension — 553X, A compact way to process all or part of the elements in a sequence and return a list
with the results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates
a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The i £ clause is optional. If omitted,
all elements in range (256) are processed.

loader ik 7% An object that loads a module. It must define a method named 1oad_module (). Aloader is typically
returned by a finder. See PEP 302 for details.

magic method —FEARJ5#: special method RIFEIE R 3]

mapping Wi} A container object that supports arbitrary key lookups and implements the methods specified in
the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

metaclass 03¢ —Fp] TAIEZEMZE. 208 XA H K4 BPMMERY L. TR T2 LIR=NS50F
BIEEFA N I ZE . A3 T a6 2 B i AT 5 AR PR — AN BRIA S 3. Python [R5 2 Ab T] DAGI
HE X Ttde. K H P AGEAT Zax A T H, H2YFE IR, Joden] $R ke K m e i o & .
Mg TieEE R HE ., gt BEXSAE. SR g, PAREAMFLZTES5 .

L% S I metaclasses.,
method JjiJi TEINHE AR WRAE M Z BB LB — N EHRE R, RS IR B % G4 H:

—A argument GRF 44K self). I function FMnested scope.

method resolution order —Jj iEMRATIE 5 5 FEAT I3 5t /2 A0 A $R A% D3 8 R 23 LS B R e e 7 . 1
25 F Python 2.3 J7EfENTINY THRE 2.3 B Python FEHTHE T FAH 35 B 1160

module Bit JLXT5 02 Python RG] —FpZHZLA(. SR JST 644 25 18], Al E & LR Python X4,
W R 38 L importing FEAEWM#Z E] Python .

5 Wpackage.
MRO Z: Wmethod resolution order ,

mutable —n[7E FASKI LA DATER 1d () PREFEE I SO HIE. 5312 Wimmutable .

named tuple —H. #5641 Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time . localtime () returns a tuple-like object where the year is accessible either with an index such
as t [0] or with a named attribute like t . tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple (). The latter approach automatically provides extra features such as a self-documenting represen-
tation like Employee (name="jones', title='programmer').

namespace —fiy £ 45[] The place where a variable is stored. Namespaces are implemented as dictionaries. There are
the local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces sup-
port modularity by preventing naming conflicts. For instance, the functions __builtin__.open() and os.
open () are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it
clear which module implements a function. For instance, writing random. seed () or itertools.izip ()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

nested scope —jir £ 11, The ability to refer to a variable in an enclosing definition. For instance, a function defined
inside another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read and
write in the innermost scope. Likewise, global variables read and write to the global namespace.

112 Appendix A. RiEIEBR

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Python Tutorial, 445 2.7.18

new-style class —#f:\. 2% Any class which inherits from object. This includes all built-in types like 1ist and dict.
Only new-style classes can use Python’ s newer, versatile features like ___slots__, descriptors, properties, and
__getattribute__ ().

More information can be found in newstyle.

object W R AETHARE (JBPEEUE) ARTIUE XATH (J57E) Mm%, object UL @A fnew-style class [#i%

package —fu, —] {0 7 TR SR I 05 7437 Python module. MAEA L, {3247 H __path__ Jak
¥ Python ik .

parameter —J62 A named entity in a function (or method) definition that specifies an argument (or in some cases,
arguments) that the function can accept. There are four types of parameters:

* positional-or-keyword : ([E BT, HHE AW AN A SA R AN DA S 5T A2
ASEZ . KR BRARIES A, HIATT IR foo HI bar:

def func(foo, bar=None): ...

* positional-only: {LFREIE, & —A REEHALEE ARISE. Python Wil i AR E L ZHY
k. (B —SENEREH URMEES (Ll abs ()).

* var-positional: W]ZELE, 5 W] ARl —MERECR A AL B SEA T (FEITEHAE 2
CRZNNESHZIE). RIS AR S ARG * KE XL, Bl FE args:

def func(*args, **kwargs):

* var-keyword: FAZRHEF, HEE A DASRBUE AR S T S A (FOIMTE MR S C #3205
?72%%5(2):) L?’l‘qﬂﬁ/%TLﬂT S ZFREINEE ** A L, BB kwargs.

TS AT VALFI 5 E PTEANaie 2 4, il AS LT e S H0di s B

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, and
the function section.

PEP “Python M52 1" HIESCEHE . —4> PEP @i —Mritit S0, JHoK 1 Python #EIXERALE R, stk
—~ Python PR S B jZiT $i. PEP N 244 BORS A A S0 AR RS R BT S SRR B4 LR]

PEP WA A A) 2 BERRp i . IS DGR Fﬂ%ﬁfi’fﬁ PRSI Python BYi& T 3K 4% 5
SCRSEIENLE] . PEP [VEE A TARAEAL DX R @ 31, I BRI E A SRy .
%1, PEP 1.

positional argument —{\; B ¥ £ Wargument,

Python 3000 Python 3.x %A Lk AUWERR (X144 FHERAS 3 i Kb R TTI R M B L T) o A
YN “Py3k”.

Pythonic $if—~ U ol — B U S8 1~ Python B 5 fmci H 1 KU R, TTAN e O HCA 8 5 A
UL EE%IMU?EB ik, Python ¥y MM A for IAIRIARE [y A~ RIEAU S iy i e
o W2 G S B XA, IR ZAZE Python (A I SR] — M T 4t

for i in range(len(food)):
print food[i]

TR 2 ¥ B 157 5 B Pythonic (77 34 k& X FEY:

for piece in food:
print piece

113

https://www.python.org/dev/peps/pep-0001

Python Tutorial, A4%5 2.7.18

reference count —5 I VHE XPREEX G5 HAOECE . 24— XRS5BT, B FCoT R ooR
T IO Python AU RUEIEF e A AT WL, (HERCPython SLBU— A KEEILR . sys Bz
T4~ getrefcount () BREL, FFFGAPA B AR IR ERT G5 T

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

sequence —J1: 41 An iterable which supports efficient element access using integer indices via the __getitem__ ()
special method and defines a 1en () method that returns the length of the sequence. Some built-in sequence types

are 1ist, str, tuple, and unicode. Note that dict also supports _ _getitem__ () and __len__ (),
but is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice —YJJ Ji* An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such asin variable_name [1:3:5]. The bracket (subscript)
notation uses s1ice objects internally (or in older versions, __getslice__ () and __setslice__ ()).

special method %55k Jjiki —7firh Python B YTk, RIS AR PATRFE 4R VR Bl QAH < 45
PRI FRIE RRH AT 2o FERTT AR 32 WL specialnames.,

statement —jfi 4] 1EA)REEF B (— NS “H) B BANL . — 5B R] DASR—expression B AR
BEFRILER), Bl if, while B for.

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple in that
elements can be accessed either by index or as an attribute. However, they do not have any of the named tuple

methods like _make () or _asdict (). Examples of struct sequences include sys.float_info and the
return value of os.stat ().
triple-quoted string — 5|5 FRf RN SAELNG S (7) SRS () WFEMFS. ENTEYIRE

‘ﬁﬁ%%ﬂ%~’*%lvﬁ&ﬂ’]? FRER AR, HEA 2 MMt ENAFrrETHHRNEERE
e X BRE S HIE S, H] DABS B AT JOf G 1 HESEAT (R4 5 SOR A0 R IR 5 1

type R A YusE—A> Python X @ FAHAMIE: HAXTLARRA —FhRAL. BHEEXT LA, AT AT
HER __class__ J@tk, SU2#E type (obj) KL,

universal newlines —jifi f]##i47 A manner of interpreting text streams in which all of the following are recognized as
ending a line: the Unix end-of-line convention '\n"', the Windows convention '\r\n"', and the old Macintosh
convention '\r'. See PEP 278 and PEP 3116, as well as str.splitlines () for an additional use.

virtual environment —JBIIAEE —FR HIVMEZ R B 021 TR, fiF Python] PRI Y. F AR P AE &6 F1 T
2% Python 73 & AUHS AN 2403 A — R G _Fiz iy HAth Python [27 HI47 4

virtual machine BNl — & 5¢ 4 L B & LB ML Python R SUAL AT $047 2 1 18 2 135 2% T 46
i) bytecode.

Zen of Python —Python Z#fi 51| Python iy N 54524, AT RS M0 X FES . AEHEERNE
AERZ B RF i A “import this”,

114 Appendix A. RiEXHRE

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

APPENDIX B

i A

IXBESCRYAE A H reStructured Text JJE3CRY, | Sphinx (—~% 724 Python SCRY 5 Y SCRY A s) BIEE.

AR SRS BT L RURE R TF S 52 42 ph B I 56 Y, XA Python 42 B, WUREAES Sk, i
reporting-bugs T AEUINAZ: 5. A BAIN YL B 76 1

RN it -
* Fred L. Drake, Jr., @3 7 H 354 Python SCRYR T HEE, DAKIRE T HEH 21 30RY;
e Docutils #40, W H , Al T reStructuredText A Z A Docutils #4245
e Fredrik Lundh, Sphinx M ftli[#¥] Alternative Python Reference T H H13%45 TR £ {F-mhAH .

B.1 Python T8y Rk

AR Z %} Python i, Python FifE &l Python SCRYA Tk A, B Python JELHS & 7 Misc/ACKS SC{431)
TR TR

5T Python K ARITTR, Python A5 T HILHH (SR - WA 1!

115

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/2.7/Misc/ACKS

Python Tutorial, A4%5 2.7.18

116 Appendix B. 3C44i5EA

apPENDIX C

7 B FiF AT

C.1 zR#pImE

Python H fif 22§ FI T AR 9224 (CWI, I https://www.cwinl/) f#) Guido van Rossum - 1990 4E Y,
W, fER—TT0M ABC [iEF AU . R4 Python 345 T2 5k B HAB AW 5THk, Guido {52 H &
BEH .

1995 4E, Guido 7 #2 Je WNHY E Z A 5T 22 &) (CNRI, I, https://www.cnri.reston.va.us/) #4247 Python
ERTTAE, IR A T 2 AU

2000 4£ 71 H, Guido FI Python #.00FF & 41 BA %4 %] BeOpen.com £ 7 T BeOpen PythonLabs [\ . [F4E1 H ,
PythonLabs [#]BA%% F| Digital Creations (¥} & Zope Corporation; [, https://www.zope.org/). 2001 4£, Python #x{4:
H 42y (PSF, I https://www.python.org/psf/) 57, X &A% A4 Python AH S AT AU A1 @ iy 75
221, Zope Corporation FI{E & PSF [B i i1 .

JI A7) Python BAEZITRR) (A KIFURHYE L2 https://opensource.org/). P I, #iKZ % Python Jii
AJe GPLARA) TREL T RANOL .

XfhRA | RE F EE GPL#%?
09.0% 1.2 | n/a 1991-1995 | CWI =
13215212 1995-1999 | CNRI 7=
1.6 1.52 2000 CNRI &
2.0 1.6 2000 BeOpen.com | {5
1.6.1 1.6 2001 CNRI %
2.1 2.0+1.6.1 | 2001 PSF o
2.0.1 2.0+1.6.1 | 2001 PSF P
2.1.1 2.1+2.0.1 | 2001 PSF 2=
2.1.2 2.1.1 2002 PSF =
2.13 2.1.2 2002 PSF 2=
22 GEE | 201 2001 %% | PSF =

{Efi: GPL #A T AR M Python £ GPL N k1. 5 GPL AJa], Frf Python ¥4 Al AR FL &4 R 1B MG

117

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Tutorial, A4%5 2.7.18

A, T JC T TR T A Sk . GPL AR A T IE (15 Python R PAS HVETE GPL R & AT HIAF45 & B ;
HHERFAHENATT .

JRUIARZAE Guido 55 T TAERYSNIREREE , AIfGaX 28 B A oA vl fiE -

C.2 FRERE LAH B E A Python Bk FOF ¢

C.2.1 F PYTHON 2.7.18 #Y PSF o] {inil

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),_
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

2.7.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2020 Python Software Foundation; All_
—Rights
Reserved" are retained in Python 2.7.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—~Python
2.7.18.

4. PSF is making Python 2.7.18 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY REPRESENTATION..
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 2.7.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.18

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.18, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

118 Appendix C. 5558 F0¥FE[iE

Python Tutorial, 445 2.7.18

6. This License Agreement will automatically terminate upon a material breach.
—~of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—~License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 2.7.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 FF PYTHON 2.0 fj BEOPEN.COM # &Il

BEOPEN PYTHON JFE 14] P ER 1 AR

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions

(FItgkss)

C.2. FESHLIHMBHAXMEA Python BaRERFOZ M 119

Python Tutorial, A4%5 2.7.18

(£ 50

granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 FF PYTHON 1.6.1 g5 CNRI ¥#F o] tipil

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of

(Fotakss)

120 Appendix C. Fys2FI¥F Tk

Python Tutorial, 445 2.7.18

(£ 50

Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 FHF PYTHON 0.9.0 E 1.2 f§ CWI ¥F o] il

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE .

C.3 USRI YT ol 50515
AT Python B ATHLCTAG A =y B b VAT RO, AT MR A 23 FLR IR

C.3.1 Mersenne Twister

_random A E E T http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html T 2% 113,
e DA 2R i se ek (75 1) -

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

(FItakss)

C.3. #HWrRIRHFaYVF ol 5053 121

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Tutorial, A4%5 2.7.18

(£ 50

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m—mat @ math.sci.hiroshima-u.ac.jp (remove space)

C3.2 EEx

socket #HHH] getaddrinfo () Ml getnameinfo () pAEL, XLEpRETFAIDAE WIDE i H (http:/www.
wide.ad.jp/) By BRI SCIAFH

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

(Rt

122 Appendix C. FHsEF0¥Fa[iE

http://www.wide.ad.jp/
http://www.wide.ad.jp/

Python Tutorial, 445 2.7.18

(£ 50

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-—
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that 1its use would not infringe
privately-owned rights. Reference herein to any specific commer-
cial products, ©process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply 1its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product
\ endorsement purposes. /

C.3. #HWrRIRHFaYVF ol 5053 123

Python Tutorial, A4%5 2.7.18

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfcl321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.

1999-10-18 1lpd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 1lpd Original version.

124 Appendix C. 5558 F0¥FE[iE

Python Tutorial, 445 2.7.18

C3.5 REEEFIRS

asynchat and asyncore B & DA FEHH:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie &1

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. #HWrRIRHFaYVF ol 5053 125

Python Tutorial, A4%5 2.7.18

C.3.7 HiTERR

trace B S PA T AEH:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode E UUdecode &%l

uu B DA R

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(Rt

126 Appendix C. Fys2FI¥F Tk

Python Tutorial, 445 2.7.18

(£ 50

version is still 5 times faster, though.
— Arguments more compliant with Python standard

C.3.9 XML = 2= FAH

The xm1lrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

CFItakss)

C.3. #HWrRIRHFaYVF ol 5053 127

Python Tutorial, A4%5 2.7.18

(£ 50

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

Python/dtoa.c CHEML T CiEF1) dtoa Fl strtod pR%Y, I THF C i H AU M FAF R T4, 1%
CAFA David M. Gay 1y [R] 4 SCHIRAE T, 24110 A] M http://www.netlib.org/fp/ 3% . 2009 4E 3 H 16 H#5:2%)]
(A JELAE SO AL AR FROBCRI AT R B

/**

* % o

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % o

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % ok X

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

(Rt

128 Appendix C. Fys2FI¥F Tk

Python Tutorial, 445 2.7.18

(£ 50

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

‘k*****‘k**‘k********‘k*****‘k*‘k***‘k****'k‘k*‘k************************/

C.3.13 OpenSSL

WERBEAERG A, W hashlib, posix, ssl, crypt fRHLfH] OpenSSL 42 = PERE. HAh, WEHT
Python [Windows Fl Mac OS X %2427 1] fe 045 OpenSSL E#5 U1, FrLAFE AL .51 4 T OpenSSL 7 1]
UERY % DL

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corel@openssl.org.

OpenSSL License

/= == == == == == ==

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact
* openssl-core@openssl.org.

*

* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

*

* 6. Redistributions of any form whatsoever must retain the following

C.3. #HWrRIRHFaYVF ol 5053 129

Python Tutorial, A4%5 2.7.18

(£ 50

b S S I . R e S S S R

*

*

acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eayl@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(Rt

130

Appendix C. Fys2FI¥F Tk

Python Tutorial, 445 2.7.18

(22 30
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
*

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

b S e

*

*

* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence

* [including the GNU Public Licence.]

C.3.14 expat

BRAEME] ——with-system-expat BLE THIE, N pyexpat §7 AR E AL expat Y5 10HS DR 2

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINEFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. #HWrRIRHFaYVF ol 5053 131

Python Tutorial, A4%5 2.7.18

C.3.15 libffi

FRARMIN ——with-system-1ibffi WU THE, BN _ctypes ¥ HNE (17 libffi JHEH5 DM E):

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘"Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

R ARG EAREIRY 21ib AR IHT ek A, W 55 2lib PG 8 DR 2 1ib 37 J%:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

132 Appendix C. Fys2FI¥F Tk

APPENDIX D

Copyright

Python 53 SCHY:

Copyright © 2001-2020 Python Software Foundation. {48 TG+ H]

AU © 2000 BeOpen.com., {38 TG AUH

AL © 1995-2000 Corporation for National Research Initiatives., {585 BTG AU .
WAL © 1991-1995 Stichting Mathematisch Centrum., {483 BTG AU

A RSEBM VALV, 200 L AeF Tk,

133

Python Tutorial, A4%5 2.7.18

134 Appendix D. Copyright

5

JEFH
..., 107

*

&4, 26

B4, 26
2to3, 107
>>> 107
all 47
_ _builtin_

M, 45
___future_ , 109
__slots__,114

PATH, 43, 105

PYTHONPATH, 43, 45

PYTHONSTARTUP, 98, 106
T A

* 26

*%. 26

for, 20

A

abstract base class —- & H%, 107
argument -- %, 107

attribute —-- B4, 108

B

BDFL, 108

bytecode -- F¥ 7, 108

bytes-like object —-- F¥ E3F4%£, 108
C

class —- 2,108
classic class, 108
coding
style, 28
coercion —- HRH| KA H##, 108

compileall

MR, 44
complex number —-— £ #i, 108
context manager -- T X&HEE 108
CPython, 108

D

decorator —— ¥, 108
descriptor —- #HR &, 109
dictionary -- FH#, 109

dictionary view —— FHALE, 109
docstring —— XHFEH &, 109
docstrings, 22,27

documentation strings, 22,27
duck-typing —-- #F KA 109

E

EAFP, 109
expression -- Fik R, 109
extension module —-- ¥ EH, 109

F
file

Xt &, 54
file object -- XX 4,109
file-like object —-- X#Ext£, 109
finder —— & # £, 109
floor division —-— [§ FE &%, 109
for

EA4, 20
function —- &E#, 109

G

garbage collection —- ¥ 3k [E I, 110
generator, 110

generator —- 4 &, 110

generator expression, 110

generator expression -- ALK, 110
GIL, 110

135

Python Tutorial, A4%5 2.7.18

global interpreter lock —- 4 & B 24,
110
F{
hashable —— H¥#, 110
help
[FIE % %, 81
|
IDLE, 110

immutable —— A7, 110
importer —— § A4, 111
importing —— A, 111
integer division, 110
interactive —— X F, 111
interpreted —- EA, 111
iterable —— HF#H R 4£, 111
iterator —- #* M, 111

J
json

Bk, 56
K

key function —-- #&F#, 111
keyword argument -- X#EFHH, 111

L

lambda, 111

LBYL, 111

list —- %%, 112

list comprehension —- 7|k# &SR, 112
loader —-— fn# #, 112

M

magic
method, 112
magic method -- JEAJ ik, 112
mangling
name, 75
mapping —— B, 112
metaclass —-- J.%, 112
method
magic, 112
special, 114
£, 70
method resolution order -- ¥ ¥ # W 7,
112
method ¥, 112
module
search path, 43
module A, 112
MRO, 112

mutable —— T4, 112

N

name
mangling, 75

named tuple —- B 44,112

namespace —- w4 %4, 112

nested scope —— #hEEFH, 112

new-style class -- #a%, 113

@)
object —- X£,113
open

EE &%, 54
F)
package -- 4,113
parameter —- K%, 113
PATH, 43, 105
path

module search, 43
PEP, 113
positional argument —--— L& %%, 113

Python 3000, 113
Python #&#H N
PEP 1,113
PEP 8,28
PEP 238,109
PEP 278,114
PEP 302,109, 112
PEP 343,108
PEP 3116, 114
Pythonic, 113
PYTHONPATH, 43, 45
PYTHONSTARTUP, 98, 106

R

readline

Bk, 98

reference count —-- 5| fit%k, 114

rlcompleter

#k, 98
S

search

path, module, 43
sequence —- J¥7%|, 114
slice —— 4,114

special

method, 114
special method -- 4% ¥ ik, 114
statement -- &4, 114

strings, documentation, 22,27

136

EL]

Python Tutorial, 445 2.7.18

struct sequence, 114
style
coding, 28

Bk, 44

Sy

T

triple-quoted string —— Z 5| EF 4 &, 114
type —- %7, 114

U

unicode

& & #, 15
universal newlines —- i f#4T, 114

\Y

& &%
help, 81
open, 54
unicode, 15
virtual environment —- EMIIE, 114
virtual machine -- E#AH, 114
Xt R
file, 54
method, 70

W
N

__builtin_ ,45
compileall, 44
json, 56
readline, 98
rlcompleter, 98
sys, 44

Z

Zen of Python -- Python zZ##, 114

%5l 137

	课前甜点
	使用 Python 解释器
	调用解释器
	解释器的运行环境

	Python 的非正式介绍
	Python 作为计算器使用
	走向编程的第一步

	其他流程控制工具
	if Statements
	for Statements
	range() 函数
	break and continue Statements, and else Clauses on Loops
	pass Statements
	定义函数
	函数定义的更多形式
	小插曲：编码风格

	数据结构
	列表的更多特性
	The del statement
	元组和序列
	集合
	字典
	循环的技巧
	深入条件控制
	比较序列和其他类型

	模块
	更多有关模块的信息
	标准模块
	dir() 函数
	包

	输入输出
	更漂亮的输出格式
	读写文件

	错误和异常
	语法错误
	异常
	处理异常
	抛出异常
	用户自定义异常
	定义清理操作
	预定义的清理操作

	类
	名称和对象
	Python 作用域和命名空间
	初探类
	补充说明
	继承
	Private Variables and Class-local References
	杂项说明
	Exceptions Are Classes Too
	迭代器
	生成器
	生成器表达式

	标准库简介
	操作系统接口
	文件通配符
	命令行参数
	错误输出重定向和程序终止
	字符串模式匹配
	数学
	互联网访问
	日期和时间
	数据压缩
	性能测量
	质量控制
	自带电池

	标准库简介 —— 第二部分
	格式化输出
	模板
	使用二进制数据记录格式
	多线程
	日志记录
	弱引用
	用于操作列表的工具
	十进制浮点运算

	接下来？
	交互式编辑和编辑历史
	Line Editing
	History Substitution
	Key Bindings
	默认交互式解释器的替代品

	浮点算术：争议和限制
	表示性错误

	附录
	交互模式

	术语对照表
	文档说明
	Python 文档的贡献者

	历史和许可证
	该软件的历史
	获取或以其他方式使用 Python 的条款和条件
	被收录软件的许可证与鸣谢

	Copyright
	索引

