The Python/C API
%75 2.7.18

Guido van Rossum
and the Python development team

A A 20,2020

Python Software Foundation
Email: docs@python.org

Contents

ik 3
L1 AR e 3
1.2 %%, BRUFIGIHE 4
L3 B e 7
14 HRAPYhON . . . e e 9
15 ERHIE . . 10
The Very High Level Layer 11
5DHHE 15
SR 7
4.1 Unicode Exception ObJECtS o v v i v i e e e e e e e e e e e e e e e e 21
4.2 Recursion Control L e e e e e e e e e e e e e 22
A3 FRERE . . 23
44 FRUEESIEIRTN L 24
4.5 String EXCEpLions v v i i e 24
TH 25
50 PAERGETRRIT . o o e 25
52 BRGIAE . o 26
53 R . . e 26
54 AR e 27
55 s marshal BEESZHE L . L L 30
5.6 RMTSEOTHEREZSE e 31
57 FAFEREERSRRIAL . 37
5.8 JTHT o 39
59 GRRMZSIEMFS IHFIIEE 39
RXT 42 41
6.1 NP . o e 41
6.2 BUFIIIL . o e 45
6.3 JEFNMNL . . 49
6.4 HREFEMN . .. 51
6.5 IEMZEML . .o 52
6.6 THZZMIMYL . o o e 53

10

FLA R)2

8 B - D
T2 BERTE .
T3 AR e e
74 Mapping ObJects o oo e e e e e e
7.5 HABXTZR . . e
Initialization, Finalization, and Threads
8.1 Initializing and finalizing the interpreter
8.2 Process-wide parameters o it e
8.3 Thread State and the Global Interpreter Lock
8.4 Sub-interpreter SUPPOTL v v v v i e
8.5 FHAEM . . .
8.6 AMMTAIIRIEE . . e
8.7 BB S . e
A B
O R 5 S R
02 PIFEIELL .« o o e
9.3 XIBRAMERE o o
9.4 The pymalloc allocator 0 o i e e e e e e e e e
0.5 BT o
R H B
101 ZEHE EAMTERTE © o e
10.2 Common Object Structurest i e
103 ZEAUSTER . e
10.4 Number Object StrUCtUIES v v ittt e e e e e e e e e e e e
10.5 Mapping Object StIUCLUIES v v v v e o e e e e e e e e e e e e e e e e e e e
10.6 Sequence Object StrUCtUTES v v v v it e e e e e e e e e e e e e e e e e e
10.7 Buffer Object Structures ottt e e e e e e
10.8 XTGBT EEFREARIFI . . o o o
AR I
SCH]
B.1 Python SCRYIITTERE o e
P RV AT E
Cl IR o o
C2 FRPEAHAM) 2 Python FUAERAIZAE: . o o oo
C3 BOCEHLERIFTHE S . . . o
Copyright

51

55
55
57
63
90
93

111
111
112
114
120
121
121
123

125
125
126
127
128
128

131
131
132
136
151
152
152
153
154

157

165
165

167
167
168
171

183

185

The Python/C API, X% 2.7.18

AT IR T A B S TR Python MRRESHIA LB FEF Y C Al C++ FE/F ST Y APL. [] i}
A PAZ: 7 extending-index , A T g H I —BUEN, (HEATEANEIE APT K%L

Contents 1

The Python/C API, X% 2.7.18

2 Contents

CHAPTER 1

Python [i e 11 (APL) fiif5 C Al C++ F2fy R AT ATEZ A2 L F 151 Python f# s . % APLTE C++
HEFERT AL, RN TR LA, B HRFHAR Python/C APL. i] Python/C APL A7 PN EEARHY PR o 58—~
HURN THEE IS &7 Rk BN B Python MEREARDIAEN C L. X n] B fiei W BT 37 5
55 " ANPRER JERF Python MRS CHBER HI Y15 XA 9 38 5 AR AE— 1B) Y embedding Python..

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

VFZ APT BRI A B Python sX PR NARREAEIE I BN, KR A Python [1Y I FE 7
WHRERALEE YR, A RS FR Y H i A Python 2 B Je B S RV X &2 15

1.1 BaXH

{71} Python/C API It 2R 4l eR . AU E SCRTd 1 T i AT v A 4 35 2) AR 2 o

’ #include "Python.h"

XEWREC SN REL S <stdio.h>, <string.h>, <errno.h>, <limits.h>, <assert.h>
Ml <stdlib.h> (WEEFH).

{EfE: T Python W RES E L —LURBAEIL LY R G LS MAR ik SRR TIAL PiLAR 2 S, IR AR A S AT A f
K2 HT, AR L RSERLE Python . h,

Python.h s SCHY AR Fa] LAAAR (il A 3 AR Sk SCPRRTE SLRRR AN) B A RIS Py 2% _Py. DA _Py
TR PRt Python SCELNERGE IR, ARG g 52 (U o S5A4 R4 PRIAT PR B RS
Important: user code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes

the portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

The Python/C API, X% 2.7.18

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/,whereprefixand exec_prefixare
defined by the corresponding parameters to Python’ s configure script and version is sys.version[:3]. On
Windows, the headers are installed in prefix/include, where prefix is the installation directory specified to the
installer.

B SC, WERFAES (SRR ERCEIRET gt S R . 3 2550 H SR
RIFAZRRIGHE] #include <pythonX.Y/Python.h>; X¥HEEZEEHMFEAATH, KN prefix N
BIRIK R EAE R H exec_prefix TREEFERYKL .

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry points
tobe extern "C",so there is no need to do anything special to use the API from C++.

1.2 5. EBFS|ATE

KZ % Python/C API s ERE — AN EZ NS EPA S —Pyobject * RBIPRIEME. ILRBLE—M8E, 5
7] 6 /8 — ME & Python X R AN BEIAHIE XA, B TFERZHEEN T (BIANRIE. 75 SR A2 51%
i#) Python 5 # < AR RERY 7 sNAL BT A Python XF 4368 [T i —AN Bl C Ak FRIR 2R
EHE . JLFFrA Python X AR A fAAEHE b R4 AR SR —APyobject KA H S LE, H
HPyobject * RAEIMFREH A R AR A . ME—IBISNE type XT5 T IR S e N BERREL, T PA
BATEE RHSPy TypeObject W4,

firf5 Python %4 (FH: % Python #%) #5H —A type Fl—A> reference count. S5 2RI E B B4 KA
Xge (BIAnEEg.) FReH e XREG A EZ, A types TR) o XFFREAS AR ARG 2RAL, #HE —A%
KRR GG E TZEA: Hlan, 24 (HACH) a Frigfxi 4 2 Python 5| #Hf PyList_Check (a) NH.

1.21 5|

The reference count is important because today’ s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or a
global (or static) C variable, or a local variable in some C function. When an object’ s reference count becomes zero, the
object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects
may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’ s an obvious
problem with objects that reference each other here; for now, the solution is “don’ t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ INCREF () to increment an
object’ s reference count by one, and Py_ DECREF () to decrement it by one. The Py_ DECREF () macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the object’
s deallocator to be called. The deallocator is a function pointer contained in the object’ s type structure. The type-specific
deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a compound
object type, such as a list, as well as performing any additional finalization that’ s needed. There’ s no chance that
the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count
increment is a simple operation.

It is not necessary to increment an object’ s reference count for every local variable that contains a pointer to an object.
In theory, the object’ s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’ t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

4 Chapter 1. #iR

The Python/C API, X% 2.7.18

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_ DECREF (), so almost
any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py DECREF () when they are done with the result; this soon becomes
second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a reference”
means being responsible for calling Py_DECREEF on it when the reference is no longer needed. Ownership can also be
transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually decref’
ing it by calling Py_DECREF () or Py_XDECREF () when it’ s no longer needed—or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_ SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

’

3

t, 0, PyInt_FromLong(lL))

t, 1, PyInt_FromLong(2L));

t, 2, PyString FromString("three"));

Here, PyInt_FromLong () returns a new reference which is immediately stolen by PyTuple SetItem (). When
you want to keep using an object although the reference to it will be stolen, use Py_ INCREF () to grab another reference
before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem () for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’ s a generic function,
Py_BuildValue (), that can create most common objects from C values, directed by a format string. For example,
the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildvValue (" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

12. &, %EF03| Bt 5

The Python/C API, X% 2.7.18

It is much more common to use PyObject_Set Item () and friends with items whose references you are only borrow-
ing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’ t have to increment a reference count so you can give a reference away (“have it
be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

int i, n;

n = PyObject_Length(target);
if (n < 0)
return -1;
for (i = 0; i < n; i++) {
PyObject *index = PyInt_FromLong (i) ;
if (!index)
return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
3

return 0;

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the
only reference to the object. Therefore, the generic functions that return object references, like PyOb ject_GetItem ()
and PySequence_Get Item (), always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call only
—the plumage (the type of the object passed as an argument to the function) doesn’ t enter into it/ Thus, if you extract
an item from a list using PyList_GetItem(),youdon’ town the reference —but if you obtain the same item from
the same list using PySequence_Get Item () (which happens to take exactly the same arguments), you do own a
reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(),and once using PySequence_GetItem().

long
sum_list (PyObject *1list)
{
int i, n;
long total = 0;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyInt_Check (item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);
}

return total;

6 Chapter 1. #i&

The Python/C API, X% 2.7.18

long
sum_sequence (PyObject *sequence)
{
int i, n;
long total = 0;
PyObject *item;
n = PySequence_Length (sequence);
if (n < 0)
return -1; /* Has no length */

for (i = 0; i < n; i++) |
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyInt_AsLong(item);
Py_DECREF (item); /* Discard reference ownership */
}

return total;

1.2.2 R

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 &%

Python T2 51 75 ZEAL PR & AR R v 5 RICIR e 2 A alfe i i i, REfeidanifi &
WA, WA, BRI ITRATRGURRER eI LR ATt 45 P PRl A 1o 99 -

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’ s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or -1, depending on the function’ s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred (). These exceptions
are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred () canbe used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr_SetString () is the most common
(though not the most general) function to set the exception state, and PyErr_Clear () clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python objects sys.exc_type, sys.
exc_value, and sys.exc_traceback; however, they are not the same: the Python objects represent the last
exception being handled by a Python try ---except statement, while the C level exception state only exists while an
exception is being passed on between C functions until it reaches the Python bytecode interpreter’ s main loop, which
takes care of transferring it to sys.exc_type and friends.

1.3. &% 7

The Python/C API, X% 2.7.18

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’ s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should not set another exception —that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It
so happens that this example doesn’ t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong (0L);
if (item == NULL)
goto error;
}
const_one = PyInt_FromLong (lL);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

(Rt

8 Chapter 1. #i&

The Python/C API, X% 2.7.18

(£ 50

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr ExceptionMatches () and PyErr_ Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X' in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to
success after the final call made is successful.

1.4 & A Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules __builtin_ ,_ main_ , sys,and exceptions. Italso initializes the module search path
(sys.path).

Py _TInitialize () doesnotsetthe “scriptargumentlist”(sys .argv). If this variable is needed by Python code that
will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv, updatepath)
after the call to Py Tnitialize ().

On most systems (in particular, on Unix and Windows, although the details are slightly different), Py_Tnitialize ()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named 1ib/pythonX. Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX. Y. (Infact, this particular path is also the “fallback” location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath (),
Py_GetPrefix (), Py_GetExecPrefix (), and Py _GetProgramFullPath () (all defined in Modules/
getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another call
to Py_TInitialize ())or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py_Finalize (). The function Py_TsInitialized () returns true
if Python is currently in the initialized state. More information about these functions is given in a later chapter. Notice
that Py_Finalize () doesnot free all memory allocated by the Python interpreter, e.g. memory allocated by extension
modules currently cannot be released.

1.4. #& A\ Python 9

The Python/C API, X% 2.7.18

1.5 A

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of this
section.

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by “a debug build” of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugtothe . /configure command. Itis
also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBRUG is enabled in the Unix build,
compiler optimization is disabled.

B 1 AT AT T ROR 2 A, eI T A T B M A -
o BOME ARSI BT 53 Be e o
BANAS ELRES IN B SR AT 2 A G it o
* Downcasts from wide types to narrow types are checked for loss of information.
s FZWE PR MB IR G I . Ji5h, RAEXMRAUE test_c_api () ik
BEAS B S BRI A FIRE R B
* The storage for long ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
o INIRZIRESANVES N S AL 2 R BLAs A TIN
¢ Extra checks are added to the memory arena implementation.
o GSIAAME R LA
X HLATRESCA R 2 BB MR AL

Defining Py_ TRACE_REFS enables reference tracing. When defined, a circular doubly linked list of active objects
is maintained by adding two extra fields to every PyObject. Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG.

HRELZFMEE, 5257 Python JF AL Misc/SpecialBuilds.txt

10 Chapter 1. #Li&

CHAPTER 2

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input,Py_file_input,andPy_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take F ILE * parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.

int Py_Main (int argc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The argc
and argv parameters should be prepared exactly as those which are passed to a C program’ s main () function.
It is important to note that the argument list may be modified (but the contents of the strings pointed to by the
argument list are not). The return value will be 0 if the interpreter exits normally (ie, without an exception), 1 if
the interpreter exits due to an exception, or 2 if the parameter list does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
as long as Py_InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),

11

The Python/C API, X% 2.7.18

return the value of PyRun_TnteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
If filename is NULL, this function uses "2 ??" as the filename.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags* argu-
ment set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main___ module according to the flags argument. If
__main__ does not already exist, it is created. Returns O on success or —1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return —1, but exit the process,
as long as Py_InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file. If closeit is true, the file is closed before
PyRun_SimpleFileExFlags returns.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.ps1 and sys.ps2. Returns 0 when the input was executed successfully,
-1 if there was an exception, or an error code from the errcode . h include file distributed as part of Python if
there was a parse error. (Note that errcode . h is not included by Python . h, so must be included specifically
if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user will
be prompted using sys.psl and sys.ps2. Returns 0 at EOF.

struct _node* PyParser_SimpleParseString (const char *str, int start)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL and flags set to 0.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags)
This is a simplified interface to PyParser SimpleParseStringFlagsFilename () below, leaving file-
name set to NULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *filename,
int start, int flags)
Parse Python source code from st using the start token start according to the flags argument. The result can be
used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times.

12 Chapter 2. The Very High Level Layer

The Python/C API, X% 2.7.18

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int start)
This is a simplified interface to PyParser_SimpleParseFileFlags () below, leaving flags set to 0.

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flags)
Similar to PyParser_SimpleParseStringFlagsFilename (),butthe Python source code is read from
fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags set
to NULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompiler-
Flags *flags)
Return value: New reference. Execute Python source code from st in the context specified by the dictionaries
globals and locals with the compiler flags specified by flags. The parameter start specifies the start token that
should be used to parse the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0 and flags set to NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags set

to NULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to O.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flags)
Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file. If closeit is true, the file is closed before
PyRun_FileExFlags () returns.

PyObject* Py_CompileString (const char *str, const char *filename, int start)
Return value: New reference. This is a simplified interface to Py_CompileStringFlags () below, leaving
flags set to NULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompiler-
Flags *flags)
Return value: New reference. Parse and compile the Python source code in str, returning the resulting code object.
The start token is given by start; this can be used to constrain the code which can be compiled and should be
Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename is used
to construct the code object and may appear in tracebacks or SyntaxError exception messages. This returns
NULL if the code cannot be parsed or compiled.

PyObject* PyEval_EvalCode (PyCodeObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyEval_ FEvalCodeEx (), with just the code
object, and the dictionaries of global and local variables. The other arguments are set to NULL.

PyObject* PyEval_EvalCodeEx (PyCodeObject *co, PyObject *globals, PyObject *locals, PyObject **args,
int argcount, PyObject **kws, int kwcount, PyObject **defs, int defcount,
PyObject *closure)
Evaluate a precompiled code object, given a particular environment for its evaluation. This environment consists of
dictionaries of global and local variables, arrays of arguments, keywords and defaults, and a closure tuple of cells.

13

The Python/C API, X% 2.7.18

PyObject* PyEval_EvalFrame (PyFrameObject *f)
Evaluate an execution frame. This is a simplified interface to PyEval_EvalFrameEx, for backward compatibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code object
associated with the execution frame f is executed, interpreting bytecode and executing calls as needed. The addi-
tional throwflag parameter can mostly be ignored - if true, then it causes an exception to immediately be thrown;
this is used for the throw () methods of generator objects.

int PyEval_MergeCompilerF1lags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString (). This
is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __future__ import can modify flags.

Whenever PyCompilerFlags *flagsis NULL, cf_flags is treated as equal to O, and any modification
dueto from __ future_ import is discarded.

struct PyCompilerFlags {
int cf_flags;
}

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP 238.

14 Chapter 2. The Very High Level Layer

https://www.python.org/dev/peps/pep-0238

CHAPTER 3

51 AT

AT ZAR RN T HE Python R YT AL

void Py_ INCREF (PyObject *0)
Increment the reference count for object 0. The object must not be NULL; if you aren’ t sure thatitisn’ t NULL,
use Py_XINCREF ().

void Py_XINCREF (PyObject *o)
Increment the reference count for object 0. The object may be NULL, in which case the macro has no effect.

void Py_DECREF (PyObject *0)
Decrement the reference count for object 0. The object must not be NULL; if you aren’ t sure that itisn’ t NULL,
use Py_XDECREF (). If the reference count reaches zero, the object’ s type’ s deallocation function (which must
not be NULL) is invoked.

Bl BEOR BT S EUL R Python AU BUAGETA N (HIHINY— Ml __del () JrikAg2EILHIHE
RN NIE) o EIRBERACHD T F WA S, ERI TR RERS [Hi1J517 BT Python
ArJr SR XA AT AL I 4 R AL BRI RAEPy_DECREF () AR 2 BT R. 24 4T
FERFRAS . BT, 503 I IR 0 G 14 AR B2 224 K7 R B3 e R A 5 | P 9 DL 81— A i 2
OB R AR, ARG AN R i Py _DECREF ()

void Py_XDECREF (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), and the same warning applies.

void Py_ CLEAR (PyObject *o)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py DECREF (), except that the argument is also set to NULL. The warning
for Py_DECREF () does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before decrementing its reference count.

2SR LI WA [T R Sl I B AL BRI, B e — M
2.4 B

15

The Python/C API, X% 2.7.18

PAF BRE5GE T Python 13247
BA R 2Py XINCREF () FlPy_XDECREF () [faHFH R FR A .

PA R BRI B 22 AL VT AR fEORE AR A% 0 N Rl H]: _Py_Dealloc ()

_Py_NewReference () PANEFE _Py_RefTotal,

HTZjJ/uﬂA/\: Py_IncRef (PyObject *o), Py_DecRef (PyObject *o0).,

, _Py_ForgetReference(),

16

Chapter 3. 5|Hit#

cHAPTER 4

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand some
of the basics of Python exception handling. It works somewhat like the Unix errno variable: there is a global indicator
(per thread) of the last error that occurred. Most functions don’ t clear this on success, but will set it to indicate the
cause of the error on failure. Most functions also return an error indicator, usually NULL if they are supposed to return a
pointer, or —1 if they return an integer (exception: the PyArg_* () functions return 1 for success and 0 for failure).

When a function must fail because some function it called failed, it generally doesn’ t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

The error indicator consists of three Python objects corresponding to the Python variables sys.exc_type, sys.
exc_value and sys.exc_traceback. API functions exist to interact with the error indicator in various ways.
There is a separate error indicator for each thread.

void PyErr_PrintEx (int set_sys_last_vars)
Print a standard traceback to sys . stderr and clear the error indicator. Unless the errorisa SystemExit. In
that case the no traceback is printed and Python process will exit with the error code specified by the SystemExit
instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print ()
Alias for PyErr_PrintEx (1).

PyObject* PyErr_Occurred ()
Return value: Borrowed reference. Test whether the error indicator is set. If set, return the exception fype (the first
argument to the last call to one of the PyErr_Set* () functions or to PyErr_Restore ()). If not set, return
NULL. You do not own a reference to the return value, so you do not need to Py_ DECREF () it.

17

The Python/C API, X% 2.7.18

{Ef#: Do not compare the return value to a specific exception; use PyErr_ ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred (), exc). This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception in exc. If exc is a class object, this also returns true when
given is an instance of a subclass. If exc is a tuple, all exceptions in the tuple (and recursively in subtuples) are
searched for a match.

void PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr_Fetch () below can be “unnormalized” , meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

void PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all
three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

{Efii#: This function is normally only used by code that needs to handle exceptions or by code that needs to save
and restore the error indicator temporarily.

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects are
NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback. The exception
type should be a class. Do not pass an invalid exception type or value. (Violating these rules will cause subtle
problems later.) This call takes away a reference to each object: you must own a reference to each object before the
call and after the call you no longer own these references. (If you don’ t understand this, don’ t use this function.
I warned you.)

{f#: This function is normally only used by code that needs to save and restore the error indicator temporarily;
use PyErr_ Fetch () to save the current exception state.

void PyErr_SetString (PyObject *type, const char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not increment its reference
count. The second argument is an error message; it is converted to a string object.

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr_SetString () butlets you specify an arbitrary Python object for the “value”
of the exception.

PyObject* PyErr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. This function sets the error indicator and returns NULL. exception should be a Python

18 Chapter 4. RE4IE

The Python/C API, X% 2.7.18

exception class. The format and subsequent parameters help format the error message; they have the same meaning
and values as in PyString FromFormat ().

void PyErr_SetNone (PyObject *type)
This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_BadArgument ()
This is a shorthand for PyErr_SetString (PyExc_TypeError, message), where message indicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()
Return value: Always NULL. This is a shorthand for PyErr_SetNone (PyExc_MemoryError); it returns
NULL so an object allocation function can write return PyErr_NoMemory () ; when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *type)

Return value: Always NULL. This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a tuple object whose first item is the inte-
ger errno value and whose second item is the corresponding error message (gotten from strerror ()), and
then calls PyErr_SetObject (type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_ CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
Similar to PyErr_SetFromErrno (), with the additional behavior that if filenameObject is not NULL, it is
passed to the constructor of type as a third parameter. In the case of exceptions such as IOError and OSError,
this is used to define the £i1lename attribute of the exception instance.

PyObject* PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromErrnolWithFilenameObject (), but the file-
name is given as a C string.

PyObject* PyErr_SetFromWindowsErr (int ierr)

Return value: Always NULL. This is a convenience function to raise WindowsError. If called
with jerr of 0, the error code returned by a call to GetLastError () is used instead. It calls
the Win32 function FormatMessage () to retrieve the Windows description of error code given by
ierr or GetLastError (), then it constructs a tuple object whose first item is the ierr value and
whose second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL. Availabil-
ity: Windows.

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Similar to PyErr_SetFromwindowsErr (), with an additional parameter spec-
ifying the exception type to be raised. Availability: Windows.

2.3 B fE.

PyObject* PyErr_SetFromWindowsErrWithFilenameObject (int ierr, PyObject *filenameObject)
Similar to PyErr_SetFromwindowsErr (), with the additional behavior that if filenameObject is not NULL,
it is passed to the constructor of WindowsError as a third parameter. Availability: Windows.

PyObject* PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Return value: Always NULL. Similar to PyErr_SetFromWindowsErrWithFilenameObject (),butthe
filename is given as a C string. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyOb-

Ject *filename)
Similar to PyErr_ SetFromWindowsErrWithFilenameObject (), with an additional parameter speci-

fying the exception type to be raised. Availability: Windows.
2.3 Fri .

19

The Python/C API, X% 2.7.18

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *file-

name)
Return value: Always NULL. Similar to PyErr_ SetFromWindowsErrWithFilename (), with an addi-

tional parameter specifying the exception type to be raised. Availability: Windows.
2.3 B E.

void PyErr_BadInternalCall ()
This is a shorthand for PyErr_SetString (PyExc_SystemError, message), where message indicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

int PyErr_WarnEx (PyObject *category, char *message, int stacklevel)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message ar-
gument is a message string. stacklevel is a positive number giving a number of stack frames; the warning will
be issued from the currently executing line of code in that stack frame. A stacklevel of 1 is the function calling
PyErr WarnEx (), 2 is the function above that, and so forth.

This function normally prints a warning message to sys.stderr; however, it is also possible that the user has specified
that warnings are to be turned into errors, and in that case this will raise an exception. It is also possible that the
function raises an exception because of a problem with the warning machinery (the implementation imports the
warnings module to do the heavy lifting). The return value is 0 if no exception is raised, or —1 if an exception
is raised. (It is not possible to determine whether a warning message is actually printed, nor what the reason is for
the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling (for
example, Py_DECREF () owned references and return an error value).

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception;the default warning category is PyExc_Runt imeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at 47 /& %24 5% 71,

5

For information about warning control, see the documentation for the warnings module and the —W option in
the command line documentation. There is no C API for warning control.

int PyErr_Warn (PyObject *category, char *message)
Issue a warning message. The category argument is a warning category (see below) or NULL; the message argument
is a message string. The warning will appear to be issued from the function calling PyEr»_Warn (), equivalent
to calling PyErr_WarnEx () with a stacklevel of 1.

Deprecated; use PyErr_WarnEx () instead.

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit (), see there for more information. The module and registry
arguments may be set to NULL to get the default effect described there.

int PyErr_WarnPy3k (char *message, int stacklevel)
Issue a DeprecationWarning with the given message and stacklevel if the Py_Py3kWarningFlag flagis
enabled.

2.6 FHHE.

int PyErr_CheckSignals ()
This function interacts with Python’ s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If the signal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect for SIGINT is to raise the KeyboardInterrupt
exception. If an exception is raised the error indicator is set and the function returns —1; otherwise the function
returns 0. The error indicator may or may not be cleared if it was previously set.

void PyErr_SetInterrupt ()
This function simulates the effect of a STGINT signal arriving —the next time PyErr_CheckSignals () is

20 Chapter 4. RE4IE

The Python/C API, X% 2.7.18

called, KeyboardInterrupt will be raised. It may be called without holding the interpreter lock.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to whicha '\ 0 ' byte will be written whenever a signal is received. It
returns the previous such file descriptor. The value —1 disables the feature; this is the initial state. This is equivalent
to signal.set_wakeup_£d () in Python, but without any error checking. fd should be a valid file descriptor.
The function should only be called from the main thread.

2.6 HiHHE.

PyObject* PyErr_NewException (char *name, PyObject *base, PyObject *dict)
Return value: New reference. This utility function creates and returns a new exception class. The name argu-
ment must be the name of the new exception, a C string of the form module.classname. The base and
dict arguments are normally NULL. This creates a class object derived from Exception (accessible in C as
PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base
classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject* PyErr_NewExceptionWithDoc (char *name, char *doc, PyObject *base, PyObject *dict)
Return value: New reference. Same as PyErr NewException (), except that the new exception class can easily
be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception class.

2.7 Hr e

void PyErr_ WriteUnraisable (PyObject *obj)
This utility function prints a warning message to sys . stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

4.1 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject* PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeDecodeError object with the attributes encoding, object, length, start, end and reason.

PyObject* PyUnicodeEncodeError_Create (const char *encoding, const Py _UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const

) _ char *reason)
Create a UnicodeEncodeError object with the attributes encoding, object, length, start, end and reason.

PyObject* PyUnicodeTranslateError_Create (const Py UNICODE *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Create a UnicodeTranslateError object with the attributes object, length, start, end and reason.

PyObject* PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Return the encoding attribute of the given exception object.

PyObject* PyUnicodeDecodeError_GetObject (PyObject *exc)
PyObject* PyUnicodeEncodeError_GetObject (PyObject *exc)

4.1. Unicode Exception Objects 21

The Python/C API, X% 2.7.18

PyObject* PyUnicodeTranslateError_GetObject (PyObject *exc)
Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Get the start attribute of the given exception object and place it into *start. start must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Set the start attribute of the given exception object to start. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Get the end attribute of the given exception object and place it into *end. end must not be NULL. Return 0 on
success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Set the end attribute of the given exception object to end. Return 0 on success, —1 on failure.

PyObject* PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject* PyUnicodeTranslateError_GetReason (PyObject *exc)
Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)
Set the reason attribute of the given exception object to reason. Return O on success, —1 on failure.

4.2 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mod-
ules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically).

int Py_EnterRecursiveCall (const char *where)
Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack ().
In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RuntimeError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a string suchas " in instance check" to be concatenated to the Runt imeError mes-
sage caused by the recursion depth limit.

void Py_LeaveRecursiveCall ()
Ends a Py EnterRecursiveCall/(). Must be called once for each successful invocation of
Py_EnterRecursiveCall ().

22 Chapter 4. RE4IE

The Python/C API, X% 2.7.18

43 IRERE

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python ex-
ception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

C & Python Z#R EXe
PyExc_BaseException BaseException (1), 4)
PyExc_Exception Exception)
PyExc_StandardError StandardError (1)
PyExc_ArithmeticError ArithmeticError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BufferError BufferError
PyExc_EnvironmentError EnvironmentError @))
PyExc_EOFError EOFError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError

PyExc_IOError IOError

PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError (1)
PyExc_MemoryError MemoryError
PyExc_NameError NameError
PyExc_NotImplementedError NotImplementedError
PyExc_OSError OSError
PyExc_OverflowError OverflowError
PyExc_ReferenceError ReferenceError 2)
PyExc_RuntimeError RuntimeError
PyExc_StopIteration Stoplteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit

PyExc_TabError TabError

PyExc_TypeError TypeError
PyExc_UnboundLocalError UnboundLocalError
PyExc_UnicodeDecodeError UnicodeDecodeError
PyExc_UnicodeEncodeError UnicodeEncodeError
PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateError | UnicodeTranslateError
PyExc_VMSError VMSError 5)
PyExc_ValueError ValueError
PyExc_WindowsError WindowsError 3)
PyExc_ZeroDivisionError ZeroDivisionError

HRE:
(1) X2 HAARME R .

(2) This is the same as weakref .ReferenceError

43. FERE

23

The Python/C API, X% 2.7.18

(3) Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is
defined.

(4) 2.5 BT aE.
(5) Only defined on VMS; protect code that uses this by testing that the preprocessor macro ___VMS is defined.

4.4 HREZEEEI

All standard Python warning categories are available as global variables whose names are PyEx c__ followed by the Python
exception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

C &R Python Z#R E s
PyExc_Warning Warning @))]
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning | PendingDeprecationWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

MR-
(1) 3 AR S5 B K.

4.5 String Exceptions

TE 2.6 R All exceptions to be raised or caught must be derived from BaseExcept ion. Trying to raise a string
exception now raises TypeError.

24 Chapter 4. RE4IE

CHAPTER D

ARFE PRI T S S] T RAR S, wdRAT) C AU SETHES -Gl B AR, 7E C P A Python A58, DA
L @R R B S HOT AR C (B4 7 Python HH (B AF4E

51 RIERGHER

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty (fileno (fp)) is true. If the global flag Py_InteractiveFlag is true, this function

also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"' or
12727210

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python

interpreter will continue to be used. If a new executable is loaded into the new process, this function does not need
to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only avail-
able when USE_STACKCHECK is defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECK will be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (int i)
Return the current signal handler for signal i. This is a thin wrapper around either sigaction () or signal ().
Do not call those functions directly! PyOS_sighandler_t is a typedef alias for void (*) (int).

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t /)
Set the signal handler for signal i to be h; return the old signal handler. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t isa typedef alias
for void (*) (int).

25

The Python/C API, X% 2.7.18

5.2 ZYiThAE

These are utility functions that make functionality from the sy s module accessible to C code. They all work with the
current interpreter thread’ s sys module’ s dict, which is contained in the internal thread state structure.

PyObject *PySys_GetObject (char *name)
Return value: Borrowed reference. Return the object name from the sys module or NULL if it does not exist,
without setting an exception.

FILE *PySys_GetFile (char *name, FILE *def)
Return the FILE* associated with the object name in the sys module, or def if name is not in the module or is
not associated with a FILE*.

int PySys_SetObject (char *name, PyObject *v)
Set name in the sy s module to v unless v is NULL, in which case name is deleted from the sys module. Returns 0
on success, —1 on error.

void PySys_ResetWarnOptions ()
Reset sys.warnoptions to an empty list.

void PySys_AddWarnOption (char *s)
Append sto sys.warnoptions.

void PySys_SetPath (char *path)
Set sys.path to a list object of paths found in path which should be a list of paths separated with the platform’
s search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Write the output string described by format to sys . st dout. No exceptions are raised, even if truncation occurs
(see below).

format should limit the total size of the formatted output string to 1000 bytes or less —after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should be
limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of other
formatted text does not exceed 1000 bytes. Also watch out for “%f” , which can print hundreds of digits for very
large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
As above, but write to sys . stderr or stderr instead.

5.3 diREH

void Py_FatalError (const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when the
object administration appears to be corrupted. On Unix, the standard C library function abort () is called which
will attempt to produce a core file.

void Py_Exit (int status)
Exit the current process. This calls Py _Finalize () and then calls the standard C library function
exit (status).

int Py_AtExit (void (*func)())
Register a cleanup function to be called by Py_Finalize (). The cleanup function will be called with no ar-
guments and should return no value. At most 32 cleanup functions can be registered. When the registration is

26 Chapter5. TH

The Python/C API, X% 2.7.18

successful, Py_AtExit () returns 0; on failure, it returns —1. The cleanup function registered last is called first.
Each cleanup function will be called at most once. Since Python’ s internal finalization will have completed before
the cleanup function, no Python APIs should be called by func.

5.4 S

PyObject* PyImport_ImportModule (const char *name)

Return value: New reference. This is a simplified interface to Py Import_ImportModuleEx () below, leaving
the globals and locals arguments set to NULL and level set to 0. When the name argument contains a dot (when
it specifies a submodule of a package), the fromlist argument is set to the list [' * '] so that the return value is
the named module rather than the top-level package containing it as would otherwise be the case. (Unfortunately,
this has an additional side effect when name in fact specifies a subpackage instead of a submodule: the submodules
specified in the package’ s __all__ variable are loaded.) Return a new reference to the imported module, or
NULL with an exception set on failure. Before Python 2.4, the module may still be created in the failure case —
examine sys.modules to find out. Starting with Python 2.4, a failing import of a module no longer leaves the
module in sys.modules.

TE 2.4 JRFE PR Failing imports remove incomplete module objects.
TE 2.6 FiUFE I Always uses absolute imports.

PyObject* PyImport_ImportModuleNoBlock (const char *name)
This version of Py Tmport_ImportModule () doesnotblock. It’ s intended to be used in C functions that im-
port other modules to execute a function. The import may block if another thread holds the import lock. The func-
tion Py Import_ImportModuleNoBlock () never blocks. It first tries to fetch the module from sys.modules
and falls back to Py ITmport_ImportModule () unless the lock is held, in which case the function will raise
an ImportError.

2.6 HiHHE.

PyObject* PyImport_ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject *from-

list)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function

__import__ (), asthestandard __import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure (before Python 2.4, the module may still be created in this case). Like for __import__ (), the return
value when a submodule of a package was requested is normally the top-level package, unless a non-empty fromlist
was given.

TE 2.4 JRFE Y Failing imports remove incomplete module objects.

TE 2.6 MU HE B The function is an alias for Py Import_ImportModulelLevel () with —1 as level, meaning
relative import.

PyObject* PyImport_ImportModuleLevel (char *name, PyObject *globals, PyObject *locals, PyOb-
Ject *fromlist, int level)
Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__ (), asthestandard __import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception set

on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.
2.5 HriTgg.

PyObject* PyImport_Import (PyObject *name)
Return value: New reference. This is a higher-level interface that calls the current “import hook function” . It

54. BEAER 27

The Python/C API, X% 2.7.18

invokes the __import__ () function from the _ _builtins___ of the current globals. This means that the
import is done using whatever import hooks are installed in the current environment, e.g. by rexec or ihooks.

TE 2.6 R FE L Always uses absolute imports.

PyObject* PyImport_ReloadModule (PyObject *m)
Return value: New reference. Reload a module. This is best described by referring to the built-in Python func-
tion reload (), as the standard reload () function calls this function directly. Return a new reference to the
reloaded module, or NULL with an exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModule (const char *name)
Return value: Borrowed reference. Return the module object corresponding to a module name. The name argument
may be of the form package.module. First check the modules dictionary if there’ s one there, and if not,
create a new one and insert it in the modules dictionary. Return NULL with an exception set on failure.

{ifiit: This function does not load or import the module; if the module wasn’ t already loaded, you will get an
empty module object. Use Py Import_ImportModule () or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

PyObject* PyImport ExecCodeModule (char *name, PyObject *co)

Return value: New reference. Given a module name (possibly of the form package .module) and a code object
read from a Python bytecode file or obtained from the built-in function compile (), load the module. Return a
new reference to the module object, or NULL with an exception set if an error occurred. Before Python 2.4, the
module could still be created in error cases. Starting with Python 2.4, name is removed from sys.modules in
error cases, and even if name was already in sys.modules on entry to Py Import_ExecCodeModule ().
Leaving incompletely initialized modules in sys.modules is dangerous, as imports of such modules have no
way to know that the module object is an unknown (and probably damaged with respect to the module author’ s
intents) state.

The module’ s___file_ attribute will be set to the code object’ s co_filename.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created will
still not be created.

JE 2.4 R name is removed from sys .modules in error cases.

PyObject* PyImport_ExecCodeModuleEx (char *name, PyObject *co, char *pathname)
Return value: New reference. Like PyImport_ExecCodeModule (), but the __file_ attribute of the
module object is set to pathname if it is non-NULL.

long PyImport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a. .pyc and . pyo files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* PyImport_GetModuleDict ()
Return value: Borrowed reference. Return the dictionary used for the module administration (a.k.a. sys.
modules). Note that this is a per-interpreter variable.

PyObject* PyImport_GetImporter (PyObject *path)
Return an importer object for a sys.path/pkg.__path__ item path, possibly by fetching it from the sys.
path_importer_cache dict. If it wasn’ t yet cached, traverse sys.path_hooks until a hook is found
that can handle the path item. Return None if no hook could; this tells our caller it should fall back to the built-in
import mechanism. Cache the resultin sys.path_importer_cache. Return a new reference to the importer
object.

2.6 F I EE.

28 Chapter5. TH

The Python/C API, X% 2.7.18

void _PyImport_Init ()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup ()
Empty the module table. For internal use only.

void _PyImport_Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension (char *, char *)
For internal use only.

PyObject* _PyImport_FixupExtension (char *, char *)
For internal use only.

int PyImport_ImportFrozenModule (char *name)
Load a frozen module named name. Return 1 for success, O if the module is not found, and -1 with
an exception set if the initialization failed. To access the imported module on a successful load, use
PyImport_ImportModule (). (Note the misnomer —this function would reload the module if it was al-
ready imported.)

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the £reeze utility (see Tools/
freeze/ in the Python source distribution). Its definition, found in Include/import .h, is:

struct _frozen {
char *name;
unsigned char *code;
int size;

bi

struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one whose members
are all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, void (*initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport_ExtendInittab (), returning —1 if the table could not be extended. The new module can be
imported by the name name, and uses the function initfunc as the initialization function called on the first attempted
import. This should be called before Py_Tnitialize ().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. Programs which embed Python may use an array of
these structures in conjunction with Py Import_ExtendInittab () to provide additional built-in modules.
The structure is defined in ITnclude/import.h as:

struct _inittab {
char *name;
void (*initfunc) (void);

bi

int PyImport_ExtendInittab (struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0
on success or —1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This should be called before Py_Tnitialize ().

54. BEAER 29

The Python/C API, X% 2.7.18

5.5 #¥i#E marshal 2z

X LEBiRE FeiF C AV AL S marshal BT AT REAR s e 21 Ax G . oA S ek 50n] I ARRF A 5
ANEMFPBIRE, 55— L8 s O] A O B . 1T 77 6 marshal B i) SCPF 2 A~ E il A
1%

BOAHEAEAF I SR B ARG 1 RT3k o

The module supports two versions of the data format: version 0 is the historical version, version 1 (new in Python 2.4)
shares interned strings in the file, and upon unmarshalling. Version 2 (new in Python 2.5) uses a binary format for floating
point numbers. Py MARSHAL_VERSION indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)
Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of the
size of the native 1ong type.

YE 2.4 HUHE P version indicates the file format.

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file.

TE 2.4 MU PR version indicates the file format.

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version)
Return value: New reference. Return a string object containing the marshalled representation of value.

FE 2.4 BUE A version indicates the file format.
PAR BREL ARV O RS A4t >4 marshal #8200 {E

XXX What about error detection? It appears that reading past the end of the file will always result in a negative numeric
value (where that’ s relevant), butit’ s not clear that negative values won’ t be handled properly when there’ s no error.
What’ s the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal_ReadLongFromFile (FILE *file)
MATIF T BB FILE* R BRATR [—4> C Long. (MR BUR BB 32 HO{E, Toie Al
long ZEARUFIK FEAIMA

int PyMarshal_ReadShortFromFile (FILE *file)

MATFFHTA2EU% FILE* BT SR FIR B —A C short. {#] SR BEIRE 16 MME, b4
Ml short WK BE QI .

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading. On
error, sets the appropriate exception (EOFError or TypeError) and returns NULL.

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE * opened for reading. Unlike
PyMarshal_ReadObjectFromFile (), this function assumes that no further objects will be read from the
file, allowing it to aggressively load file data into memory so that the de-serialization can operate from data in
memory rather than reading a byte at a time from the file. Only use these variant if you are certain that you won’ t
be reading anything else from the file. On error, sets the appropriate exception (EOFError or TypeError) and
returns NULL.

PyObject* PyMarshal_ReadObjectFromString (char *string, Py_ssize_t len)
Return value: New reference. Return a Python object from the data stream in a character buffer containing len bytes
pointed to by string. On error, sets the appropriate exception (EOFError or TypeError) and returns NULL.

TE 2.5 iR ¥ gi: This function used an int type for len. This might require changes in your code for properly
supporting 64-bit systems.

30 Chapter5. TH

The Python/C API, X% 2.7.18

5.6 BT SHHMBELE

QIR E C Y R BRI AR, XL Boe A Y. HEREEAFEP] I extending-index .
XU PR B A B Bl = A, PyArg ParseTuple (), PyArg ParseTupleAndKeywords (), VA

JepyArg Parse (), BN 46 XA 5 45 B o5 o8 00 15 19 2 808 0 ek 4 3 28 R 2509 6 71 A
[l TR R A A AT R

— R F AR 0 B E 2 AR T, — MRS T R IA —4 Python X4 EillH &7
FFECE MG SRR R ITPA . B T ARBISL, AR S P S S 2 BTGl 0 X 28 o K By
ISR FERC TRl WG5S NI FEFCRMEHIG; S O W X A8 BICH)
Python X RHKA; Trii's (1 WEefeidng C ALkt (Ieitde) Je2.,

These formats allow accessing an object as a contiguous chunk of memory. You don’ t have to provide raw storage for
the returned unicode or bytes area. Also, you won’ t have to release any memory yourself, except with the es, es#, et
and et # formats.

s (string or Unicode) [const char *] Convert a Python string or Unicode object to a C pointer to a character string.
You must not provide storage for the string itself; a pointer to an existing string is stored into the character pointer
variable whose address you pass. The C string is NUL-terminated. The Python string must not contain embedded
NUL bytes; if it does, a TypeError exception is raised. Unicode objects are converted to C strings using the
default encoding. If this conversion fails, a UnicodeError is raised.

s# (string, Unicode or any read buffer compatible object) [const char *, int (or Py_ssize_t, see below)] This
variant on s stores into two C variables, the first one a pointer to a character string, the second one its length. In
this case the Python string may contain embedded null bytes. Unicode objects pass back a pointer to the default
encoded string version of the object if such a conversion is possible. All other read-buffer compatible objects pass
back a reference to the raw internal data representation.

Starting with Python 2.5 the type of the length argument can be controlled by defining the macro
PY_SSIZE_T_CLEAN before including Python.h. If the macro is defined, length is a Py_ssize_t rather
than an int.

s* (string, Unicode, or any buffer compatible object) [Py_buffer] Similar to s#, this code fills a Py_buffer struc-
ture provided by the caller. The buffer gets locked, so that the caller can subsequently use the buffer even inside
a Py_BEGIN_ALLOW_THREADS block; the caller is responsible for calling PyBuffer_Release with the
structure after it has processed the data.

2.6 HrIEE.

z (string, Unicode or None) [const char *] Like s, but the Python object may also be None, in which case the C
pointer is set to NULL.

z# (string, Unicode, None or any read buffer compatible object) [const char *, int] This is to s# as z is to s.
z* (string, Unicode, None or any buffer compatible object) [Py_buffer] This is to s* as z is to s.
2.6 FIRE.

u (Unicode) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of 16-bit
Unicode (UTF-16) data. As with s, there is no need to provide storage for the Unicode data buffer; a pointer to
the existing Unicode data is stored into the Py UNICODE pointer variable whose address you pass.

u# (Unicode) [Py_UNICODE *, int] This variant on u stores into two C variables, the first one a pointer to a Unicode
data buffer, the second one its length. Non-Unicode objects are handled by interpreting their read-buffer pointer
as pointer to a Py_ UNTCODE array.

es (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer] This variant on
s is used for encoding Unicode and objects convertible to Unicode into a character bufter. It only works for encoded
data without embedded NUL bytes.

5.6. BITSHHEETE 31

The Python/C API, X% 2.7.18

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case the default encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char* *; the
value of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument.

PyArg_ParseTuple () rHEE—ANEMER/AINKZMIX, 54 5 J5 i) B ¥4 BB G X Hid &
*Z;Mﬁ”er FUHEA B B A7 23 18] o A SRR SR Pyem_Free () ZRERE 470 HU 42
X,

et (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer] Sameas es ex-
cept that 8-bit string objects are passed through without recoding them. Instead, the implementation assumes that
the string object uses the encoding passed in as parameter.

es# (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length]
This variant on s# is used for encoding Unicode and objects convertible to Unicode into a character buffer.
Unlike the e s format, this variant allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and must be a const char* which points to the name
of an encoding as a NUL-terminated string, or NULL, in which case the default encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument must be a char* *; the value of the
pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in the
encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced integer
will be set to the number of bytes in the output buffer.

A PR

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a TypeError will be set.
Note: starting from Python 3.6 a ValueError will be set.

TEX TG TH, *buffer_length YU E N i 545 A NUL fRURAT I

et# (string, Unicode or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length]
Same as es# except that string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

b (integer) [unsigned char] Kf—/™3E 111 Python ALY Bl—ANTEAF S IR RY, 067 —4> C unsigned
char A,

B (integer) [unsigned char] ¥ — /> Python #& B &% fk il — A 8 B I R K & i o8 A0 R, A E— 4 C
unsigned char %,

2.3 F R EE.
h (integer) [short int] §— Python & 4E4k il —4~ C short int AL,

H (integer) [unsigned short int] > Python 3B Ap if—4~ Cunsigned short int JfF55%8A, If
AN Ji Y)
2.3 B HIHE.

i (integer) [int] ff—> Python B AN —4> C int FA,

I (integer) [unsigned int] §—> Python A A i—~ C unsigned int JoRFZHEA, FEAK AL
i

2.3 B e

32 Chapter5. TH

The Python/C API, X% 2.7.18

1 (integer) [long int] }$—> Python ##I5L4{k i—/~ C long int {CHEAL,

k (integer) [unsigned long] Convert a Python integer or long integer toa C unsigned long without overflow check-
ing.
2.3 FriEhhE.

L (integer) [PY_LONG_LONG] Convert a Python integer to a C long long. This format is only available on
platforms that support long long (or _int 64 on Windows).

K (integer) [unsigned PY_LONG_LONG] Converta Python integer or long integertoa Cunsigned long long
without overflow checking. This format is only available on platforms that support unsigned long long (or
unsigned _int64 on Windows).

2.3 B RE.
n (integer) [Py_ssize_t] Convert a Python integer or long integer toa C Py_ssize_t.
2.5 Fri i fE.
c (string of length 1) [char] Convert a Python character, represented as a string of length 1, to a C char.
£ (float) [float] f—> Python i fiXt54fbil— 4> C £loat ¥F KL
d (float) [double] *%—/> Python ¥ S 54 4L I — C double XURSEIVE S%L.
D (complex) [Py_complex] #f—> Python & 328U AL i—1 C Py._complex Python & %!,

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’ s reference count is not increased. The pointer stored is not
NULL.

0! (object) [typeobject, PyObject *] *f—~ Python X RAF A—A> C #85t. I 0 K, HREFEMA C SH:
S—J2 Python ZRAUNIR AL, 55 —ASRAFMNIRIGH Y C AL (Pyobject * g H) pyHdik. MR
Python Xf G RAUANT, &4l TypeError 34,

0& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes two

arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to void
*. The converter function in turn is called as follows:

status = converter (object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg Parse* () function. The returned status should be 1 for a successful conversion and 0 if the conversion
has failed. When the conversion fails, the converter function should raise an exception and leave the content of
address unmodified.

S (string) [PyStringObject *] Like O but requires that the Python object is a string object. Raises TypeError if the
object is not a string object. The C variable may also be declared as PyObject *.

U (Unicode string) [PyUnicodeObject *] Like O but requires that the Python object is a Unicode object. Raises
TypeError if the object is not a Unicode object. The C variable may also be declared as PyOb ject *.

t# (read-only character buffer) [char *, int] Like s#, but accepts any object which implements the read-only buffer
interface. The char* variable is set to point to the first byte of the buffer, and the int is set to the length of the
buffer. Only single-segment buffer objects are accepted; TypeError is raised for all others.

w (read-write character buffer) [char *] Similar to s, but accepts any object which implements the read-write buffer
interface. The caller must determine the length of the buffer by other means, or use wi instead. Only single-segment
buffer objects are accepted; TypeError is raised for all others.

wi (read-write character buffer) [char *, Py_ssize_t] Like s#, but accepts any object which implements the read-
write buffer interface. The char * variable is set to point to the first byte of the buffer, and the Py_ssize_t

5.6. BITSHHEETE 33

The Python/C API, X% 2.7.18

is set to the length of the buffer. Only single-segment buffer objects are accepted; TypeError is raised for all
others.

w* (read-write byte-oriented buffer) [Py_buffer] This is to w what s* is to s.
2.6 R AR

(items) (tuple) [matching-items] X} 52,75 J& Python J£ 41|, BRI LR items g TSR . CSHL
XS items WAE— AL RS ATT. P8 s R OT T BB IRE

{Ef#: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual param-
eters, not an arbitrary sequence. Code which previously caused TypeError to be raised here may now proceed
without an exception. This is not expected to be a problem for existing code.

It is possible to pass Python long integers where integers are requested; however no proper range checking is done —the
most significant bits are silently truncated when the receiving field is too small to receive the value (actually, the semantics
are inherited from downcasts in C —your mileage may vary).

AL AT b A — L HA) AT HA R RIS . IR R MR EAE IR 5. BT

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value —when an optional argument is not specified,
PyArg_ParseTuple () does not touch the contents of the corresponding C variable(s).

: *%iﬁﬁﬁé@ﬁﬂ%%%ﬁﬁﬁ%, B 5 R TR O ARAE BRI B Y s (PyArg_ParseTuple () B
BEIRR) CREE” 757

i AEERICHSIREAT AR 05 J5 I P AR BUTRAE N AR R I R BURERA R A R-IE . = A MIEHE .

TERATAT] 22 B2 3t Python XPR5 R 45k a9 5115 AZLEBENHIT HTHE

B4 IX 2 R PN S Ko e il i AL AP B 1Y AE stk X S HORAE G AOCALIIE.
—LlELL, A BRSO R T TR, XSO AE] AR, BTN ARIERE
E R A AT

N TR, arg XS AR VAR A HASOA TR . iIiih, PyArg Parse* () pREGRIA true, JZ
Z MR false H H5| K — P GE R 2PyArg Parse* () @ﬁlﬁ%~A$%T$E$§1£%}ﬂW%Jﬂ
I, RS R A DA K 5 S A% s B el A AR SRR A g B

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
fERT— R B S8, Rk S EESE &P JR AR R . R] true; RIKR M) false
FHG I RAH B 5 o

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)

MpyArg_parseTuple () M, SRMERHEZ—A va_list RIS LL A e il AR E S EEE .

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], ...)
Parse the parameters of a function that takes both positional and keyword parameters into local variables. Returns

true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-
words(], va_list vargs)

MpyArg ParseTupleAndKeywords () fA[F, SRMIE#HZ—A va_list LB SHUMN A& 1] AR5 & 1

int PyArg_Parse (PyObject *args, const char *format, ...)
Function used to deconstruct the argument lists of “old-style” functions —these are functions which use the
METH_OLDARGS parameter parsing method. This is not recommended for use in parameter parsing in new code,
and most code in the standard interpreter has been modified to no longer use this for that purpose. It does remain
a convenient way to decompose other tuples, however, and may continue to be used for that purpose.

34 Chapter5. TH

The Python/C API, X% 2.7.18

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
— A KA ERF SR E SR RIS Ee R . (X kA R S 800 s Y 1%
TER B R FEWIME TH_VARARGS . W& LB S8 L VAL VA args TEXBifE A5 B2 —
ASEBRICH . TCAH K BE 22 min F HAEE S maxs min F1 max A REAHIA] . BOMYSEL AL
AR, B SRR AR Pyobject * KRB RIHEE BRI args WIE; &
TR EERAGIH ATE args BRI A ESECR IR 8 & 58 st . eREUS))3 1]
true H H AN args AN @ el # 0 & 8HRE R g e R AR 1] false; WIRKRIG T 251 & — 1575 .

KRR B R B, BUA _weakref i BIAHUTI R LT | A IR TR :

static PyObject *
weakref_ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_ NewRef (object, callback);

}

return result;

}

EAME TP PyArg UnpackTuple () 5B T PyArg ParseTuple():

PyArg_ParseTuple (args, "O|O:ref", &object, &callback)

2.2 B RE.

FE 2.5 W B This function used an int type for min and max. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* Py_BuildValue (const char *format, ...)
Return value: New reference. Create a new value based on a format string similar to those accepted by the
PyArg _Parse* () family of functions and a sequence of values. Returns the value or NULL in the case of
an error; an exception will be raised if NULL is returned.

Py_BuildValue () does not always build a tuple. It builds a tuple only if its format string contains two or more
format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns whatever
object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# formats,
the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py_BuildValue (). In other words, if your code invokes malloc () and passes the allocated memory to
Py_BuildValue (), your code is responsible for calling free () for that memory once Py_BuildValue ()
returns.

TE R TEA G 5 2R ARG B35S O AYZAR U ICRF 28R 8]/ Python X 4382 ;
Tifts [Ny C A2 (R AR e

TAEBIANZAR, BIRAF, BSHE SRR TR S22 (B A EIT, Wsh). Xn]
PABAR AR A AL 45 H LA S Py]

s (string) [char *] Convert a null-terminated C string to a Python object. If the C string pointer is NULL, None
is used.

s# (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointer is NULL, the
length is ignored and None is returned.

z (string or None) [char *] I “s“—#¥f,

5.6. BITSHHEETE 35

The Python/C API, X% 2.7.18

z# (string or None) [char *, int] FI “s#“—#F,

u (Unicode string) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2 or UCS-4) data to
a Python Unicode object. If the Unicode buffer pointer is NULL, None is returned.

u# (Unicode string) [Py_UNICODE *, int] Convert a Unicode (UCS-2 or UCS-4) data buffer and its length to
a Python Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and None is returned.

i (integer) [int] Kf—4> C int BAULZAL L, Python BEAUNTZ

b (integer) [char] F§—> C char “FAFRF ALK Python BEAUXTR .

h (integer) [short int] J—~ C short int §G#FAIEE(Y Y, Python AN 4

1 (integer) [long int] $#—14~ C long int KIEHIEAL LY Python B AN 4,

B (integer) [unsigned char] #—/> C unsigned char FTLAFS R BIEAL Y, Python BRI 42

H (integer) [unsigned short int] % —/ C unsigned long JLAF-54%EEAIEL(L 5 Python BEAINT 4

I (integer/long) [unsigned int] ConvertaCunsigned int toaPython integer object or a Python long integer
object, if it is larger than sys .maxint.

k (integer/long) [unsigned long] Convert a C unsigned long to a Python integer object or a Python long
integer object, if it is larger than sys .maxint.

L (long) [PY_LONG_LONG] Convert a C 1long long to a Python long integer object. Only available on
platforms that support Long long.

K (long) [unsigned PY_LONG_LONG] Convert a C unsigned long long to a Python long integer ob-
ject. Only available on platforms that support unsigned long long.

n (int) [Py_ssize_t] Converta C Py_ssize_t to a Python integer or long integer.
2.5 Frise.
c (string of length 1) [char] Convert a C int representing a character to a Python string of length 1.
d (float) [double] Kf—/> C double BUKGEEIF MAU% LA Python 7 AR AUELF
£ (float) [float] Same as d.
D (complex) [Py_complex *] f—4> C Py_complex RIRE5HALJy Python A,

O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented by
one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception. Therefore, Py_BuildValue () will return NULL but
won’ traise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] F1 “O“fH 7] .

N (object) [PyObject *] Same as O, except it doesn’ t increment the reference count on the object. Useful when
the object is created by a call to an object constructor in the argument list.

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The function
is called with anything (which should be compatible with void *)as its argument and should returna “new”
Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Ff—A> C A5 & /7515545 1, Python JTLH I PRFRHH R 1 e R HCR:
[items] (list) [matching-items] Kf—~ C A5 & 74 F45i Python 51 F PR IRl i e Z B0

{items} (dictionary) [matching-items] Yf—4~ C 25 & 744 i Python S8, & —NFiESLR) C A& X}
YER— P ICEHA TS, 2 BIE R A .

If there is an error in the format string, the SystemError exception is set and NULL returned.

36

Chapter5. TH

The Python/C API, X% 2.7.18

PyObject* Py_VaBuildValue (const char *format, va_list vargs)
MPpy_Buildvalue () M, SR ERSZ—A> va_list KA SN A 2 W] AL Sk

5.7 FFRRERSHEIt

FH TR AR AL 55 H5 i L 114 R

int PyOS_snprint£ (char *str, size_t size, const char *format, ...)
FRIEAS X AT formar MUESHNSEL, AL size 7358 sor o 320 Unix T 0L snprintf (2) .

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)
P X FAF R formar FNAS &S HH 3R va , ANtgh it size FA5 2] str o 52 W Unix F M} 51
vsnprintf (2) .

PyOS_snprintf () and PyOS_vsnprintf () wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure that str*[*size-1] is always ' \ 0 ' upon return. They never write more than size bytes (including the
trailing '\ 0" into str. Both functions require that str != NULL, size > 0and format != NULL.

If the platform doesn’ t have vsnprintf () and the buffer size needed to avoid truncation exceeds size by more than
512 bytes, Python aborts with a Py_FatalError.

TXSEPR AR I (rv) 4% B DA R0 fReg
* M0 <= rv < size, HHFHAIIMH v NFEFEGA sor (ONEEARRE str¥[*rv] 1) ' \0 " F7)

* Mrv >= size , HHFEHREEWIFBBITEE WA ov + 1 FAIEPIX. FEXPELT,
str¥[*size-1] B "\0"' .

* Hrv < 0, RRELERFRYFN . TEEXFEFOLT, str¥[*size-1] FEALZ "\0" , {E2 str Y HARTR
IIARBE Lo FERIT DR BT REF 5.
PATN BRI B 5 1 5 P T R Y A R BRI
double PyOS_string_to_double (const char *s, char **endptr, PyObject *overflow_exception)
FEFAFE s B4y double 2RI, RIGING| % Python S5 . Hs2 7783 BYLE A% B T4 Python
float () WIERBHEZH FRBRNES, BT s UAA RIS RIS . FAn UM T 214 13 X
1.

If endptr is NULL, convert the whole string. Raise ValueError and return -1 .0 if the string is not a valid
representation of a floating-point number.

W endptr g NULL , RAREZL B FAF R IR *endptr BB NG 15— R F1F.
QR FAF R WG B 7 B A RSB A, K * endptr E AR FRARMIL, 51K
ValueError %%, FHikH -1.0 .

WAR s FR— D RKMABEEME—NF BT E (LLt, "1e500" P LA LR —NF4F
) SRR overflow_exception j& NULL iR[1] Py_HUGE_VAL (HIE4MFFS) I A AREET
M Rews . FEHAL T, overflow_exception T[] — Python BEXT%; 5| K F 8 HRME -1.0
o TEXPIAMEI T, WHE *endptr f8IMFEREZ G — D F1F.

WERAERE G0 10 e AR AR AT A A R (EC AN — DA R B R) |, BB I 24 1Y) Python 4 3 HR [l
-1.0,

2.7 Fr I gE.

double PyOS_ascii_strtod (const char *nptr, char **endptr)
Convert a string to a doub le. This function behaves like the Standard C function st rt od () does in the C locale.
It does this without changing the current locale, since that would not be thread-safe.

5.7. FHBRREEAL 37

The Python/C API, X% 2.7.18

PyOS_ascii_strtod() should typically be used for reading configuration files or other non-user input that
should be locale independent.

See the Unix man page strtod (2) for details.
2.4 FriEhfE.
2.7 G E#%:: Use PyOS_string to_double () instead.

char* PyOS_ascii_formatd (char *buffer, size_t buf_len, const char *format, double d)
Convert a double to a string using the ' . ' as the decimal separator. format is a print £ () -style format string
specifying the number format. Allowed conversion characters are 'e', 'E', '£', 'F', 'g' and 'G"'.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed.
2.4 T fE.
2.7 i)5 EL F8 % This function is removed in Python 2.7 and 3.1. Use PyOS_double_to_string () instead.

char* PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)
e double val —AMff format_code, precision Fl flags {)F4FER

format_code mustbeoneof 'e', 'E', "£','F', 'g','G"or 'r'. For 'r"', the supplied precision must be 0
and is ignored. The 'r' format code specifies the standard repr () format.

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed to-
gether:

* Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-negative.
e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

e Py DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf () '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE, Py_DTST_INFINITE, or
Py_DTST NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem Free ().

2.7 B RE.

double PyOS_ascii_atof (const char *aptr)
Convert a string to a double in a locale-independent way.

See the Unix man page atof (2) for details.
2.4 B i Rg.
3.1 G E M Use PyOS_string to_double () instead.

char* PyOS_stricmp (char *s/, char *s2)
FAHREARRS KNG . ZEEJLT5 stremp () I TETXME, HEEZAR T KNG,

2.6 HIHE.

char* PyOS_strnicmp (char *s/, char *s2, Py_ssize_t size)

FRRARS KNG . ZEBILFS strnemp () B TAERHIE, H2 B2 T KRN,
2.6 B HE.

38 Chapter5. TH

The Python/C API, X% 2.7.18

5.8 St

PyObject* PyEval_GetBuiltins ()
Return value: Borrowed reference. 3 [A] 4 HilAAT MU A B pR B0 -3, RS HSeA WUEAE SR AT, iz [m]
LRREHIRE2S -

PyObject* PyEval_GetLocals ()
Return value: Borrowed reference. Return a dictionary of the local variables in the current execution frame, or
NULL if no frame is currently executing.

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference. Return a dictionary of the global variables in the current execution frame, or
NULL if no frame is currently executing.

PyFrameObject* PyEval_GetFrame ()
Return value: Borrowed reference. Return the current thread state” s frame, which is NULL if no frame is currently
executing.

int PyFrame_GetLineNumber (PyFrameObject *frame)
R frame M FIELEHATIIATS .

int PyEval_GetRestricted ()
If there is a current frame and it is executing in restricted mode, return true, otherwise false.

const char* PyEval_GetFuncName (PyObject *func)

W2 fune Je R0, RESEBIR G, WHREIERATR, HERE] func BZRBLHI 4 K.

const char* PyEval_GetFuncDesc (PyObject *func)
A5 func BIZERLR A FAFH o 1R [HE AR B EOMITT VAR “07 , 7 constructor” , ” instance” F1” object”.
HpyEval_GetFuncName () WZERIER:, G5REGE func HHIR.

5.9 YmfFtines M SZFHFTh6E

int PyCodec_Register (PyObject *search_function)

TEM— AT AR A 2R R KL
TERRIMER], HZima encodings 0, WRMARTEM, HHREHAN TR RBIIRN A AL

int PyCodec_KnownEncoding (const char *encoding)
Return 1 or 0 depending on whether there is a registered codec for the given encoding.

PyObject* PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
12 PG R e EE AR i i AP

object is passed through the encoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

PyObject* PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)

2 B G5 AR e AR D APL

object is passed through the decoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

5.8. R 39

The Python/C API, X% 2.7.18

5.9.1 Codec &1k API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes encodings
looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set and NULL
returned.

PyObject* PyCodec_Encoder (const char *encoding)
Get an encoder function for the given encoding.

PyObject* PyCodec_Decoder (const char *encoding)
Get a decoder function for the given encoding.

PyObject* PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Get an IncrementalEncoder object for the given encoding.

PyObject* PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Get an IncrementalDecoder object for the given encoding.

PyObject* PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Get a St reamReader factory function for the given encoding.

PyObject* PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)
WY E W) encoding FEL—~ StreamWriter L] PRZEN.

5.9.2 FF Unicode B iR MBIEERFI MR API

int PyCodec_RegisterError (const char *name, PyObject *error)
Register the error handling callback function error under the given name. This callback function will be called by a
codec when it encounters unencodable characters/undecodable bytes and name is specified as the error parameter
in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes and
their offset in the original string (see Unicode Exception Objects for functions to extract this information). The call-
back must either raise the given exception, or return a two-item tuple containing the replacement for the problematic
sequence, and an integer giving the offset in the original string at which encoding/decoding should be resumed.

JEI MR IE <0, IR [a] 1%

PyObject* PyCodec_LookupError (const char *name)
Lookup the error handling callback function registered under name. As a special case NULL can be passed, in
which case the error handling callback for “strict” will be returned.

PyObject* PyCodec_StrictErrors (PyObject *exc)
Raise exc as an exception.

PyObject* PyCodec_IgnoreErrors (PyObject *exc)
Ignore the unicode error, skipping the faulty input.

PyObject* PyCodec_ReplaceErrors (PyObject *exc)
Replace the unicode encode error with ? or U+FFFD.

PyObject* PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
Replace the unicode encode error with XML character references.

PyObject* PyCodec_BackslashReplaceErrors (PyObject *exc)
Replace the unicode encode error with backslash escapes (\x, \u and \U).

40 Chapter5. TH

CHAPTER O

MERE

AF PRI Python XIRACH,, Fib HRM, LA Z RIS R (Flan, Prafuadesy, Sy
FIRR) . MR GRBIEATE I, 1474 —4 Python 54 .

XL R R AN AT B TR IE WAL AT B 0, In— B Ry List_New () A, (HH ARG H 3%
AWK E 2 “NULL“fA{E.

6.1 XFZ Y

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns —1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the str () of the object is written instead of
the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)
Returns 1 if o has the attribute aftr_name, and 0 otherwise. This is equivalent to the Python expression
hasattr (o, attr_name). This function always succeeds.

PyObject* PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Return value: New reference. Retrieve an attribute named atfr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GetAttrString (PyObject *o, const char *attr_name)
Return value: New reference. Retrieve an attribute named attr_name from object o. Returns the attribute value on
success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Generic attribute getter function that is meant to be put into a type object’ s tp_getattro slot. It looks for a
descriptor in the dictionary of classes in the object’ s MRO as well as an attribute in the object’ s __dict___

41

The Python/C API, X% 2.7.18

(if present). As outlined in descriptors, data descriptors take preference over instance attributes, while non-data
descriptors don’ t. Otherwise, an AttributeError is raised.

int PyObject_SetAttrx (PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return 0 on success. This is the equivalent of the Python statement o.attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttr ().

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception and return —1 on
failure; return 0 on success. This is the equivalent of the Python statement o.attr_name = wv.

If v is NULL, the attribute is deleted, however this feature is deprecated in favour of using
PyObject_DelAttrString/().

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Generic attribute setter and deleter function that is meant to be put into a type object” s tp_setattroslot. It
looks for a data descriptor in the dictionary of classes in the object” s MRO, and if found it takes preference over
setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or deleted in the object’ s
__dict__ (if present). On success, 0 is returned, otherwise an Att ributeError israised and -1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object 0. Returns -1 on failure. This is the equivalent of the Python statement
del o.attr_name.

PyObject* PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Return value: New reference. Compare the values of ol and 02 using the operation specified by opid, which must
be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, > or >=
respectively. This is the equivalent of the Python expression o1 op o2, where op is the operator corresponding
to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Compare the values of o/ and 02 using the operation specified by opid, which must be one of Py_LT, Py_LE,
Py_EQ,Py_NE,Py_GT, or Py_GE, corresponding to <, <=, ==, ! =, >, or >= respectively. Returns -1 on error,
0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op o2, where op is the
operator corresponding to opid.

{Efft: If ol and o2 are the same object, PyObject_RichCompareBool () will always return 1 for Py_EQ and 0
for Py_NE.

int PyObject_Cmp (PyObject *ol, PyObject *02, int *result)
Compare the values of ol and 02 using a routine provided by o/, if one exists, otherwise with a routine provided by
02. The result of the comparison is returned in result. Returns —1 on failure. This is the equivalent of the Python
statement result = cmp (ol, 02).

int PyObject_Compare (PyObject *0l, PyObject *02)
Compare the values of o/ and 02 using a routine provided by o/, if one exists, otherwise with a routine pro-
vided by 02. Returns the result of the comparison on success. On error, the value returned is undefined; use
PyErr_Occurred () to detect an error. This is equivalent to the Python expression cmp (01, 02).

PyObject* PyObject_Repr (PyObject *0)
Return value: New reference. Compute a string representation of object 0. Returns the string representation on

42 Chapter 6. #HIRWRE

The Python/C API, X% 2.7.18

success, NULL on failure. This is the equivalent of the Python expression repr (o). Called by the repr ()
built-in function and by reverse quotes.

PyObject* PyObject_Str (PyObject *0)
Return value: New reference. Compute a string representation of object 0. Returns the string representation on
success, NULL on failure. This is the equivalent of the Python expression st r (o). Called by the str () built-in
function and by the print statement.

PyObject* PyObject_Bytes (PyObject *0)
Compute a bytes representation of object 0. In 2.x, this is just an alias for PyObject_Str ().

PyObject* PyObject_Unicode (PyObject *o)
Return value: New reference. Compute a Unicode string representation of object o. Returns the Unicode string
representation on success, NULL on failure. This is the equivalent of the Python expression unicode (o). Called
by the unicode () built-in function.

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Returns 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error, returns —1 and sets an
exception. If cls is a type object rather than a class object, PyObject_IsInstance () returns 1 if inst is of
type cls. If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of
the checks returns 1, otherwise it will be 0. If inst is not a class instance and cls is neither a type object, nor a class
object, nor a tuple, inst must have a __class___ attribute —the class relationship of the value of that attribute
with cls will be used to determine the result of this function.

2.1 B se.
T 2.2 JiRFE L Support for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of extensions to
the class system may want to be aware of. If A and B are class objects, B is a subclass of A if it inherits from A either
directly or indirectly. If either is not a class object, a more general mechanism is used to determine the class relationship
of the two objects. When testing if B is a subclass of A, if Ais B, PyObject_IsSubclass () returns true. If A
and B are different objects, B’ s __bases___ attribute is searched in a depth-first fashion for A —the presence of the
_ _bases___ attribute is considered sufficient for this determination.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Returns 1 if the class derived is identical to or derived from the class cls, otherwise returns 0. In case of an error,
returns —1. If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one
of the checks returns 1, otherwise it will be 0. If either derived or cls is not an actual class object (or tuple), this
function uses the generic algorithm described above.

2.1 B iChfE.
TE 2.3 iR e: Older versions of Python did not support a tuple as the second argument.

int PyCallable_Check (PyObject *0)
Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This function always
succeeds.

PyObject* PyObject_Call (PyObject *callable_object, PyObject *args, PyObject *kw)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tuple args,
and named arguments given by the dictionary kw. If no named arguments are needed, kw may be NULL. args
must not be NULL, use an empty tuple if no arguments are needed. Returns the result of the call on success, or
NULL on failure. This is the equivalent of the Python expression apply (callable_object, args, kw)
orcallable_object (*args, **kw).

2.2 B RE.

PyObject* PyObject_CallObject (PyObject *callable_object, PyObject *args)
Return value: New reference. Call a callable Python object callable_object, with arguments given by the tu-
ple args. If no arguments are needed, then args may be NULL. Returns the result of the call on success, or

6.1. &N 43

The Python/C API, X% 2.7.18

NULL on failure. This is the equivalent of the Python expression apply (callable_object, args) or
callable_object (*args).

PyObject* PyObject_CallFunction (PyObject *callable, char *format, ...)
Return value: New reference. Call a callable Python object callable, with a variable number of C arguments. The C
arguments are described using a Py_BuildValue () style format string. The format may be NULL, indicating
that no arguments are provided. Returns the result of the call on success, or NULL on failure. This is the equivalent
of the Python expression apply (callable, args) or callable (*args). Note that if you only pass
PyObject *args, PyObject_CallFunctionObjArgs () is a faster alternative.

PyObject* PyObject_CallMethod (PyObject *o, char *method, char *format, ...)
Return value: New reference. Call the method named method of object o with a variable number of C arguments.
The C arguments are described by a Py BuildValue () format string that should produce a tuple. The format
may be NULL, indicating that no arguments are provided. Returns the result of the call on success, or NULL on fail-
ure. This is the equivalent of the Python expression o .method (args) . Note that if you only pass PyObject
*args, PyObject_CallMethodObjArgs () is a faster alternative.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL)
Return value: New reference. Call a callable Python object callable, with a variable number of PyObject *
arguments. The arguments are provided as a variable number of parameters followed by NULL. Returns the result
of the call on success, or NULL on failure.

2.2 FifE.

PyObject* PyObject_CallMethodObjArgs (PyObject *o, PyObject *name, ..., NULL)
Return value: New reference. Calls a method of the object o, where the name of the method is given as a Python
string object in name. It is called with a variable number of PyOb ject * arguments. The arguments are provided
as a variable number of parameters followed by NULL. Returns the result of the call on success, or NULL on failure.

2.2 Fi .

long PyObject_Hash (PyObject *o)
Compute and return the hash value of an object 0. On failure, return —1. This is the equivalent of the Python
expression hash (o) .

long PyObject_HashNotImplemented (PyObject *0)
Seta TypeError indicating that t ype (o) is not hashable and return —1. This function receives special treatment
when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not hashable.

2.6 FRIIEE.

int PyObject_IsTrue (PyObject *o)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python expression not
not o. On failure, return —1.

int PyObject_Not (PyObject *o)
Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the Python expression not
o. On failure, return —1.

PyObject* PyObject_Type (PyObject *0)
Return value: New reference. When o is non-NULL, returns a type object corresponding to the object type of object
0. On failure, raises SystemError and returns NULL. This is equivalent to the Python expression t ype (o) .
This function increments the reference count of the return value. There’ s really no reason to use this function
instead of the common expression o—>ob_type, which returns a pointer of type PyTypeOb ject *, except
when the incremented reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return true if the object o is of type fype or a subtype of type. Both parameters must be non-NULL.

2.2 FrEhfE.

44 Chapter 6. #HIRWRE

The Python/C API, X% 2.7.18

Py_ssize_t PyObject_Length (PyObject *o)

Py_ssize_t PyObject_Size (PyObject *o)
Return the length of object 0. If the object o provides either the sequence and mapping protocols, the sequence
length is returned. On error, —1 is returned. This is the equivalent to the Python expression 1en (o).

T 2.5 Jit 5K These functions returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyObject_GetItem (PyObject *o, PyObject *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is the
equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Raise an exception and return —1 on failure; return O on success. This is the
equivalent of the Python statement o [key] = v.

int PyObject_DelItem (PyObject *o, PyObject *key)
Delete the mapping for key from o. Returns —1 on failure. This is the equivalent of the Python statement del
olkeyl].

int PyObject_AsFileDescriptor (PyObject *o)
Derives a file descriptor from a Python object. If the object is an integer or long integer, its value is returned. If
not, the object’ s £ileno () method is called if it exists; the method must return an integer or long integer, which
is returned as the file descriptor value. Returns —1 on failure.

PyObject* PyObject_Dir (PyObject *o)
Return value: New reference. This is equivalent to the Python expression dir (o), returning a (possibly empty)
list of strings appropriate for the object argument, or NULL if there was an error. If the argument is NULL, this is
like the Python dir (), returning the names of the current locals; in this case, if no execution frame is active then
NULL is returned but PyErr Occurred () will return false.

PyObject* PyObject_GetIter (PyObject *o)
Return value: New reference. This is equivalent to the Python expression iter (o). It returns a new iterator for
the object argument, or the object itself if the object is already an iterator. Raises TypeError and returns NULL
if the object cannot be iterated.

6.2 il

int PyNumber_Check (PyObject *0)
SRR G o RAECF R, IRIFIEL 1, IR EMER . XA R RS SR 2R U

PyObject* PyNumber_Add (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. This is the equivalent of
the Python expression o1 + o2.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from o/, or NULL on failure. This is the equivalent
of the Python expression o1 - o02.

PyObject* PyNumber_Multiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. This is the equivalent
of the Python expression o1 * o2.

PyObject* PyNumber_Divide (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of dividing ol by 02, or NULL on failure. This is the equivalent of
the Python expression o1 / o2.

6.2. il 45

The Python/C API, X% 2.7.18

PyObject* PyNumber_FloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return the floor of ol divided by 02, or NULL on failure. This is equivalent to the
“classic” division of integers.

2.2 i fE.

PyObject* PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is “approximate” because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers.

2.2 B EE.

PyObject* PyNumber_Remainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. This is the equivalent
of the Python expression o1 % o02.

PyObject* PyNumber_Divmod (PyObject *ol, PyObject *02)
Return value: New reference. See the built-in function divmod () . Returns NULL on failure. This is the equivalent
of the Python expression divmod (01, 02).

PyObject* PyNumber_Power (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. This is the equivalent of
the Python expression pow (o1, 02, 03), where 03 is optional. If 03 is to be ignored, pass Py_None in its
place (passing NULL for 03 would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *0)
Return value: New reference. Returns the negation of o on success, or NULL on failure. This is the equivalent of
the Python expression —o.

PyObject* PyNumber_Positive (PyObject *0)
Return value: New reference. Returns o on success, or NULL on failure. This is the equivalent of the Python
expression +o.

PyObject* PyNumber_Absolute (PyObject *o)
Return value: New reference. Returns the absolute value of o, or NULL on failure. This is the equivalent of the
Python expression abs (o) .

PyObject* PyNumber_Invert (PyObject *0)
Return value: New reference. Returns the bitwise negation of o on success, or NULL on failure. This is the equivalent
of the Python expression ~o.

PyObject* PyNumber_Lshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. This is the
equivalent of the Python expression o1 << 02.

PyObject* PyNumber_Rshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by 02 on success, or NULL on failure. This is
the equivalent of the Python expression o1 >> o02.

PyObject* PyNumber_And (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise and” of o/ and 02 on success and NULL on failure. This is the
equivalent of the Python expression 01 & o02.

PyObject* PyNumber_Xor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise exclusive or” of ol by 02 on success, or NULL on failure. This
is the equivalent of the Python expression o1 ~ o02.

PyObject* PyNumber_Oxr (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of ol and 02 on success, or NULL on failure. This is the

46 Chapter 6. #HIRWRE

The Python/C API, X% 2.7.18

equivalent of the Python expression o1 | o2.

PyObject* PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of adding o/ and 02, or NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 += o02.

PyObject* PyNumber_InPlaceSubtract (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of subtracting 02 from o/, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement o1 —-= 02.

PyObject* PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of multiplying o/ and 02, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 *= o02.

PyObject* PyNumber_InPlaceDivide (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of dividing o/ by 02, or NULL on failure. The operation is done
in-place when ol supports it. This is the equivalent of the Python statement 01 /= o02.

PyObject* PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Returns the mathematical floor of dividing o/ by 02, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 //= 02.

2.2 i fE.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Return a reasonable approximation for the mathematical value of o/ divided by 02,
or NULL on failure. The return value is “approximate” because binary floating point numbers are approximate;
it is not possible to represent all real numbers in base two. This function can return a floating point value when
passed two integers. The operation is done in-place when ol supports it.

2.2 .

PyObject* PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
Return value: New reference. Returns the remainder of dividing o/ by 02, or NULL on failure. The operation is
done in-place when ol supports it. This is the equivalent of the Python statement 01 %= 02.

PyObject* PyNumber__InPlacePower (PyObject *ol, PyObject *02, PyObject *03)
Return value: New reference. See the built-in function pow () . Returns NULL on failure. The operation is done
in-place when o1 supports it. This is the equivalent of the Python statement 01 **= o2 when 03 is Py_None, or
an in-place variant of pow (01, 02, o3) otherwise. If 03 is to be ignored, pass Py_None in its place (passing
NULL for 03 would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of left shifting o/ by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 <<= 02.

PyObject* PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Return value: New reference. Returns the result of right shifting o/ by o2 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 >>= 02.

PyObject* PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise and” of ol and 02 on success and NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 &= o2.

PyObject* PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise exclusive or” of ol by 02 on success, or NULL on failure. The
operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 "= o02.

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Return value: New reference. Returns the “bitwise or” of ol and 02 on success, or NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python statement 01 |= o2.

6.2. il 47

The Python/C API, X% 2.7.18

int PyNumber_Coerce (PyObject **pl, PyObject **p2)
This function takes the addresses of two variables of type PyObject *. If the objects pointed to by *p1 and
*p2 have the same type, increment their reference count and return O (success). If the objects can be converted
to a common numeric type, replace *p1 and *p2 by their converted value (with ‘new’ reference counts), and
return O. If no conversion is possible, or if some other error occurs, return —1 (failure) and don’ t increment the
reference counts. The call PyNumber_Coerce (&0l, &o2) is equivalent to the Python statement o1, o2
= coerce(ol, 02).

int PyNumber_CoerceEx (PyObject **pl, PyObject **p2)
This function is similar to PyNumber_Coerce (), except that it returns 1 when the conversion is not possible
and when no error is raised. Reference counts are still not increased in this case.

PyObject* PyNumber__Int (PyObject *o)
Return value: New reference. Returns the o converted to an integer object on success, or NULL on failure. If the
argument is outside the integer range a long object will be returned instead. This is the equivalent of the Python
expression int (o).

PyObject* PyNumber_Long (PyObject *0)
Return value: New reference. Returns the o converted to a long integer object on success, or NULL on failure. This
is the equivalent of the Python expression 1ong (o).

PyObject* PyNumber_Float (PyObject *0)
Return value: New reference. Returns the o converted to a float object on success, or NULL on failure. This is the
equivalent of the Python expression f1loat (o).

PyObject* PyNumber_Index (PyObject *0)
Returns the o converted to a Python int or long on success or NULL with a TypeError exception raised on failure.

2.5 B fE.

PyObject* PyNumber_ToBase (PyObject *n, int base)
Returns the integer n converted to base as a string with a base marker of 'Ob"', '0o"', or '0Ox" if applicable.
When base isnot 2, 8, 10, or 16, the format is ' x#num' where x is the base. If 7 is not an int object, it is converted
with PyNumber TIndex () first.

2.6 FiHIfE.

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
Returns o converted to a Py_ssize_t value if o can be interpreted as an integer. If o can be converted to a Python int
or long but the attempt to convert to a Py_ssize_t value would raise an OverflowError, then the exc argument
is the type of exception that will be raised (usually IndexError or OverflowError). If exc is NULL, then
the exception is cleared and the value is clipped to PY_SSIZE_T_MIN for a negative integer or PY_SSIZE_T_MAX
for a positive integer.

2.5 BN HE.

int PyIndex_Check (PyObject *0)
Returns 1 if o is an index integer (has the nb_index slot of the tp_as_number structure filled in), and O otherwise.

2.5 B EE.

48 Chapter 6. #HIRWRE

The Python/C API, X% 2.7.18

6.3 FE5IiY

int PySequence_Check (PyObject *0)
Return 1 if the object provides sequence protocol, and 0 otherwise. This function always succeeds.

Py_ssize_t PySequence_Size (PyObject *o)
Py_ssize_t PySequence_Length (PyObject *0)
SRR 5 *o* B GA, SRR R 0] “~1%. 4124 Python [“len(0)“ ikt

T 2.5 Jit ¥ 2K These functions returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PySequence_Concat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. This is the
equivalent of the Python expression o1 + o2.

PyObject* PySequence_Repeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
This is the equivalent of the Python expression o * count.

JE 2.5 iR L This function used an int type for count. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PySequence_InPlaceConcat (PyObject *ol, PyObject *02)
Return value: New reference. Return the concatenation of o/ and 02 on success, and NULL on failure. The operation
is done in-place when ol supports it. This is the equivalent of the Python expression o1 += o2.

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Return the result of repeating sequence object o count times, or NULL on failure.
The operation is done in-place when o supports it. This is the equivalent of the Python expression o *= count.

TE 2.5 MU P This function used an int type for count. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PySequence_GetItem (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o, or NULL on failure. This is the equivalent of the Python
expression o [1].

TE 2.5 B P This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PySequence_GetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
Return value: New reference. Return the slice of sequence object o between i/ and i2, or NULL on failure. This is
the equivalent of the Python expression o [11:12].

JE 2.5 MU P This function used an int type for i/ and i2. This might require changes in your code for properly
supporting 64-bit systems.

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *v)
PTG v RIS o (58 i S otE . RIGET 51 58 R E -1; WEIEHRE 0. XA 24T Python 154
ol[i] = vo BERREC RAMUZEERT v g5
If v is NULL, the element is deleted, however this feature is deprecated in favour of using
PySequence_DelItem().

FE 2.5 it B2 This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

int PySequence_DelItem (PyObject *o, Py_ssize_t i)
MERXF SR 0 15 i 50K . RIEINHRI] -1, XA 24T Python i54] del o[i].

6.3. Rt 49

The Python/C API, X% 2.7.18

TE 2.5 fiR ¥ 24 This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2, PyObject *v)
Assign the sequence object v to the slice in sequence object o from i/ to i2. Raise an exception and return —1 on
failure; return 0 on success. This is the equivalent of the Python statement o [i1:12] = w.

If v is NULL, the slice is deleted, however this feature is deprecated in favour of using
PySequence_DelSlice().

F£ 2.5 iR P This function used an int type for i/ and i2. This might require changes in your code for properly
supporting 64-bit systems.

int PySequence_DelSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
MIER PN S o B il B 2 Y] . RIGEHRE] -1, X424 T Python i5f) del o[il:i2],

F£ 2.5 iR P This function used an int type for i/ and i2. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PySequence_Count (PyObject *o, PyObject *value)
W& [E] value 75 o T BLIYUCEL, BIRIEIERS o [key] == value WM. KIGHHRE] -1, XAHY
F Python F£iA3L 0. count (value).

F£ 2.5 Jit B This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

int PySequence_Contains (PyObject *o, PyObject *value)
W€ o R value, JIR o PIYHE—TTET value, MR 1, FHWGRIE 00 HFHS, &0 -1, XAH
4 F Python A, value in o.

Py_ssize_t PySequence_Index (PyObject *o, PyObject *value)
R —ARG] %%, i o[1] == value. H45H], 3R\ —1. #H24F Python [“0.index(value)“FihzK.

TE 2.5 WS B This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

PyObject* PySequence_List (PyObject *0)
Return value: New reference. Return a list object with the same contents as the arbitrary sequence o. The returned
list is guaranteed to be new.

PyObject* PySequence_Tuple (PyObject *o)
Return value: New reference. Return a tuple object with the same contents as the arbitrary sequence o or NULL on
failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed with the appropriate
contents. This is equivalent to the Python expression tuple (o).

PyObject* PySequence_Fast (PyObject *o, const char *m)
Return value: New reference. Return the sequence o as a list, unless it is already a tuple or list, in which case o
is returned. Use PySequence Fast_GET _ITEM() to access the members of the result. Returns NULL on
failure. If the object is not a sequence, raises TypeError with m as the message text.

PyObject* PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. Return the ith element of o, assuming that o was returned by
PySequence_Fast (), o0is not NULL, and that i is within bounds.

T 2.5 Ji B 2 This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

PyObject** PySequence_Fast_ITEMS (PyObject *0)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast () and
o is not NULL.

50 Chapter 6. #HIRWRE

The Python/C API, X% 2.7.18

THVERE, WS IR EE RN, FEHT 0T T AE 2 FOH E (L items KA. LI, (7R P 81 Tk BB R S0
(T R XA i

2.4 B fE.

PyObject* PySequence_ITEM (PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. Macro form of
PySequence_GetItem () but without checking that PySequence_Check () on o is true and without ad-
justment for negative indices.

2.3 B fE.

FE 2.5 Hit 58 2 This function used an int type for i. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that o was returned by PySequence_Fast () and that o is not NULL. The
size can also be gotten by calling PySequence_Size () on o, but PySequence_Fast_GET_SIZE () is
faster because it can assume o is a list or tuple.

6.4 BREHH N

int PyMapping_Check (PyObject *o)
Return 1 if the object provides mapping protocol, and 0 otherwise. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

Py_ssize_t PyMapping_Length (PyObject *0)
Returns the number of keys in object o on success, and —1 on failure. For objects that do not provide mapping
protocol, this is equivalent to the Python expression 1en (o).

JE 2.5 R T : These functions returned an int type. This might require changes in your code for properly
supporting 64-bit systems.

int PyMapping_DelItemString (PyObject *o, char *key)
Remove the mapping for object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del ol[key].

int PyMapping_DelItem (PyObject *o, PyObject *key)
Remove the mapping for object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del o[key].

int PyMapping_HasKeyString (PyObject *o, char *key)
On success, return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to o [key], returning
True on success and False on an exception. This function always succeeds.

int PyMapping_HasKey (PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and O otherwise. This is equivalent to o [key], returning True
on success and False on an exception. This function always succeeds.

PyObject* PyMapping_ Keys (PyObject *o)
Return value: New reference. On success, return a list of the keys in object 0. On failure, return NULL. This is
equivalent to the Python expression o . keys ().

PyObject* PyMapping_Values (PyObject *0)
Return value: New reference. On success, return a list of the values in object 0. On failure, return NULL. This is
equivalent to the Python expression o.values ().

6.4. BR5HMIY 51

The Python/C API, X% 2.7.18

PyObject* PyMapping_Items (PyObject *0)
Return value: New reference. On success, return a list of the items in object o, where each item is a tuple containing
a key-value pair. On failure, return NULL. This is equivalent to the Python expression o.items ().

PyObject* PyMapping_ GetItemString (PyObject *o, char *key)
Return value: New reference. Return element of o corresponding to the object key or NULL on failure. This is the
equivalent of the Python expression o [key].

int PyMapping_SetItemString (PyObject *o, char *key, PyObject *v)
Map the object key to the value v in object 0. Returns —1 on failure. This is the equivalent of the Python statement
olkey] = wv.

6.5 iE{CaRN

2.2 Bl IsE.
ERAFA I AL
int PyIter_Check (PyObject *o)
IR[A] true , HIRXG o CFRREAFLIE

This function can return a false positive in the case of old-style classes because those classes always define a
tp_iternext slot with logic that either invokes a next () method or raises a TypeError.

PyObject* PyIter_Next (PyObject *o)
Return value: New reference. Return the next value from the iteration o. The object must be an iterator (it is up to
the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error occurs
while retrieving the item, returns NULL and passes along the exception.

FOIEREGERE —A—DEER, C AU NA%E R,

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while ((item = PyIter_Next (iterator))) {
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;
}

Py_DECREF (iterator);

if (PyErr_Occurred()) {
/* propagate error */
}
else {
/* continue doing useful work */

}

52 Chapter 6. #HIRWRE

The Python/C API, X% 2.7.18

6.6 |BZ il

This section describes the legacy buffer protocol, which has been introduced in Python 1.6. It is still supported but
deprecated in the Python 2.x series. Python 3 introduces a new buffer protocol which fixes weaknesses and shortcomings
of the protocol, and has been backported to Python 2.6. See Buffers and Memoryview Objects for more information.

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
A [— AT AR T A AP AR S AP 48 5. obj SRR BE AT g e 1 . i
1R[] 0, F buffer &R NAFHINE K buffer_len U5 g np KA FE . IR] —1 % ¥ —1> TypeError,
1.6 BRI GE.
TE 2.5 {3 2 This function used an int * type for buffer_len. This might require changes in your code for
properly supporting 64-bit systems.

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
IR [E A48) AR R 0 R AR R85 . ol S SR BB g v 11 o B R o]
0, 3 buffer YAINAFHHLIENT buffer_len BN XK . HESAHER ~1 I H— TypeError,

1.6 B fE.
JE 2.5 R P This function used an int * type for buffer_len. This might require changes in your code for
properly supporting 64-bit systems.
int PyObject_CheckReadBuffer (PyObject *0)
Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns 0.
2.2 Frhw T hE.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Returns a pointer to a writeable memory location. The obj argument must support the single-segment, character
buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len to the buffer length.
Returns —1 and sets a TypeError on error.

1.6 R AE.

¥ 2.5 i M This function used an int * type for buffer_len. This might require changes in your code for
properly supporting 64-bit systems.

6.6. |HZ iYL 53

The Python/C API, X% 2.7.18

54 Chapter 6. #HRWRE

CHAPTER /

BEFRXRE

A I BRI BURR 2 TR 28 Python X 4 388, IR BB SAL A EADEAR B — N s R EM
Python & FH2IE]— X%, (HAHE T B4 BA IEMAERL, WM e a8 88 B, Baxt
SRAERNTH, EHHPyDict_Check (), ARIEAYLEMIZET Python X5 IERIM) “ Kt

#x .. While the functions described in this chapter carefully check the type of the objects which are passed in, many
of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can cause
memory access violations and immediate termination of the interpreter.

7.1 BAMR

AATHHIA Python ZERXH G A —SLHIXNFR 5 None.

711 ERUR
PyTypeObject
XA C Z544 1 T4 built-in 2878
PyObject* PyType_Type
This is the type object for type objects; it is the same object as t ype and types . TypeType in the Python layer.
int PyType_Check (PyObject *0)
WERM G 0 R—DERARNGR, WK TIRMELTXRAEASLH], RIEE. FEHEIARE R
fiz.
int PyType_CheckExact (PyObject *o)
WERM LR 0 @—PMRAXS G, (A RIRHESAR R TR, IRIEH. EHEFTA L TIREE.
2.2 B NfE.

55

The Python/C API, X% 2.7.18

unsigned int PyType_ClearCache ()
Clear the internal lookup cache. Return the current version tag.

2.6 FRIIEE.

void PyType_Modified (PyTypeObject *type)
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type.

2.6 F I EE.
int PyType_HasFeature (PyObject *o, int feature)
Return true if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC (PyObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS_HAVE_GC.

2.0 B

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Return true if a is a subtype of b.

2.2 i fE.

This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on b.
Call PyObject_TIsSubclass () todo the same check that issubclass () would do.

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. 2.2 I 5.

TE 2.5 MU EE B This function used an int type for nitems. This might require changes in your code for properly
supporting 64-bit systems.
PyObject* PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. 2.2 #i I 5.
int PyType_Ready (PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is

responsible for adding inherited slots from a type’ s base class. Return O on success, or return —1 and sets an
exception on error.

2.2 i fE.

7.1.2 None W&

TR, None fPyTypeObject R ELEEAE Python/ C APL AT, T None) A, MilxIgdril (12
CH il ==) MEBT. mTREMER, A pyNone_Check () B%L.

PyObject* Py_None

Python None X%, FIRZ(H. XPMREAT L. EFEEGIE—HABL AT AR .

Py_RETURN_NONE
Properly handle returning Py_ None from within a C function.

2.4 BN RE.

56 Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

7.2 WEMR

7.2.1 Plain Integer Objects

PyIntObject
This subtype of PyOb ject represents a Python integer object.

PyTypeObject PyInt_Type
This instance of PyTypeObject represents the Python plain integer type. This is the same object as int and
types.IntType.

int PyInt_Check (PyObject *0)
Return true if o is of type PyInt_Type or a subtype of PyInt_Type.

TE 2.2 FiUEE PR Allowed subtypes to be accepted.

int PyInt_CheckExact (PyObject *0)
Return true if o is of type PyInt_ Type, but not a subtype of PyInt_Type.

2.2 FifE.

PyObject* PyInt_FromString (char *str, char **pend, int base)

Return value: New reference. Return anew Py IntObject or PyLongOb ject based on the string value in str,
which is interpreted according to the radix in base. If pend is non-NULL, *pend will point to the first character in
str which follows the representation of the number. If base is 0, the radix will be determined based on the leading
characters of str: if str starts with ' Ox "' or '0X"', radix 16 will be used; if str starts with '0', radix 8 will be
used; otherwise radix 10 will be used. If base is not 0, it must be between 2 and 36, inclusive. Leading spaces
are ignored. If there are no digits, ValueError will be raised. If the string represents a number too large to be
contained within the machine’ s 1ong int type and overflow warnings are being suppressed, a PyLongObject
will be returned. If overflow warnings are not being suppressed, NULL will be returned in this case.

PyObject* PyInt_FromLong (long ival)
Return value: New reference. Create a new integer object with a value of ival.

The current implementation keeps an array of integer objects for all integers between —5 and 256, when you create
an int in that range you actually just get back a reference to the existing object. So it should be possible to change
the value of 1. I suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyInt_FromSsize_t (Py_ssize_t ival)
Return value: New reference. Create a new integer object with a value of ival. If the value is larger than LONG_MAX
or smaller than LONG_MIN, a long integer object is returned.

2.5 HRTIEE.

PyObject* PyInt_FromSize_t (size_t ival)
Create a new integer object with a value of ival. If the value exceeds LONG_MAX, a long integer object is returned.

2.5 B HE.

long PyInt_AsLong (PyObject *io)
Will first attempt to cast the object to a Py Tnt Ob ject, if it is not already one, and then return its value. If there
is an error, —1 is returned, and the caller should check PyErr_Occurred () to find out whether there was an
error, or whether the value just happened to be —1.

long PyInt_AS_LONG (PyObject *io)
Return the value of the object io. No error checking is performed.

unsigned long PyInt_AsUnsignedLongMask (PyObject *io)
Will first attempt to cast the object to a PyIntObject or PyLongObject, if it is not already one, and then
return its value as unsigned long. This function does not check for overflow.

7.2. BEMR 57

The Python/C API, X% 2.7.18

2.3 B EE.

unsigned PY_LONG_LONG PyInt_AsUnsignedLongLongMask (PyObject *io)
Will first attempt to cast the object to a PyIntObject or PyLongObject, if it is not already one, and then
return its value as unsigned long long, without checking for overflow.

2.3 BRI E.

Py_ssize_t PyInt_AsSsize_t (PyObject *io)
Will first attempt to cast the object to a PyIntObject or PyLongObject, if it is not already one, and then
return its value as Py_ssize_t.

2.5 .

long PyInt_GetMax ()
Return the system’ s idea of the largest integer it can handle (LONG_MAX, as defined in the system header files).

int PyInt_ClearFreelist ()
Clear the integer free list. Return the number of items that could not be freed.

2.6 R E.

7.22 F[RMER

Python HPF /RIEZAE N BB TRLIA . HA Py_False fl Py_True WAM/R(E. B, EHHQIH
AR D REAE AR /R(EL. B2, RIS

int PyBool_Check (PyObject *0)
MR 0 2 PyBool_Type KA, NJIR[A true,

2.3 Frh e
PyObject* Py_False
Python [“False“ X 4. X GIEAEAT . ENIZGH MG IR — R .

PyObject* Py_True
Python 1) “True“Xf 4. ZXFRIA AT . EMIZGHE MG ECE B 5 —

Py_RETURN_FALSE
MERER] Py_False I, FFEHGMERTIHITHEL

2.4 BRI RE.

Py_RETURN_TRUE
MEEEOR] Py_True W, FFEIGIERYTIHITEL

2.4 B fE.

PyObject* PyBool_FromLong (long v)
Return value: New reference. 134 v SEFR(E, 1REl—4> Py_True 8{F Py_False W5 H-

2.3 B RTIEE.

58 Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

7.2.3 Long Integer Objects

PyLongObject
This subtype of PyOb ject represents a Python long integer object.

PyTypeObject PyLong_Type
This instance of Py TypeOb ject represents the Python long integer type. This is the same object as 1ong and
types.LongType.

int PyLong_Check (PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongObject.

TE 2.2 FiUEE P Allowed subtypes to be accepted.

int PyLong_CheckExact (PyObject *p)
Return true if its argument is a PyLongOb ject, but not a subtype of PyLongObject.

2.2 FihfE.

PyObject* PyLong_FromLong (long v)
Return value: New reference. Return a new PyLongObject object from v, or NULL on failure.

PyObject* PyLong_FromUnsignedLong (unsigned long v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long, or NULL on
failure.

PyObject* PyLong_FromSsize_t (Py_ssize_tv)
Return value: New reference. Return anew PyLongOb ject objectfroma C Py_ssize_t, or NULL on failure.

2.6 FRIIEE.

PyObject* PyLong_FromSize_t (size_t v)
Return value: New reference. Return a new PyLongObject object from a C size_t, or NULL on failure.

2.6 HHHE.

PyObject* PyLong_FromLongLong (PY_LONG_LONG v)
Return value: New reference. Return a new PyLongObject object froma C long long, or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned PY_LONG_LONG v)
Return value: New reference. Return a new PyLongObject object from a C unsigned long long, or
NULL on failure.

PyObject* PyLong_FromDouble (double v)
Return value: New reference. Return anew PyLongOb ject object from the integer part of v, or NULL on failure.

PyObject* PyLong_FromString (char *str, char **pend, int base)
Return value: New reference. Return a new PyLongOb ject based on the string value in str, which is interpreted
according to the radix in base. If pend is non-NULL, *pend will point to the first character in s which follows the
representation of the number. If base is 0, the radix will be determined based on the leading characters of str: if
str starts with '0x ' or '0X"', radix 16 will be used; if st starts with ' 0 ', radix 8 will be used; otherwise radix
10 will be used. If base is not 0, it must be between 2 and 36, inclusive. Leading spaces are ignored. If there are
no digits, ValueError will be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_t length, int base)
Return value: New reference. Convert a sequence of Unicode digits to a Python long integer value. The first
parameter, u, points to the first character of the Unicode string, length gives the number of characters, and base is
the radix for the conversion. The radix must be in the range [2, 36]; if it is out of range, ValueError will be
raised.

1.6 R EE.

7.2. BEMR 59

The Python/C API, X% 2.7.18

TE 2.5 B ¥ 2 This function used an int for length. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyLong_FromVoidPtr (void *p)

Return value: New reference. Create a Python integer or long integer from the pointer p. The pointer value can be
retrieved from the resulting value using PyLong _AsVoidPtr ().

1.5.2 Frihse.
JE 2.5 JiRFE P If the integer is larger than LONG_MAX, a positive long integer is returned.

long PyLong_AsLong (PyObject *pylong)

Return a C long representation of the contents of pylong. If pylong is greater than LONG_MAX, an
OverflowError is raised and —1 will be returned.

long PyLong_AsLongAndOverflow (PyObject *pylong, int *overflow)

Return a C long representation of the contents of pylong. If pylong is greater than LONG_MAX or less than
LONG_MIN, set *overflow to 1 or —1, respectively, and return —1; otherwise, set *overflow to 0. If any other
exception occurs (for example a TypeError or MemoryError), then —1 will be returned and *overflow will be 0.

2.7 B fE.

PY_LONG_LONG PyLong_AsLongLongAndOverflow (PyObject *pylong, int *overflow)

Return a C long long representation of the contents of pylong. If pylong is greater than PY_LLONG_MAX or
less than PY_ LLONG_MIN, set *overflow to 1 or —1, respectively, and return —1; otherwise, set *overflow to 0.
If any other exception occurs (for example a TypeError or MemoryError), then -1 will be returned and *overflow
will be 0.

2.7 B fE.

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)

Returna C Py_ssize_t representation of the contents of pylong. If pylong is greater than PY_SSIZE_T_MAX,
an OverflowError is raised and —1 will be returned.

2.6 HRIIEE.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)

Return a C unsigned long representation of the contents of pylong. If pylong is greater than ULONG_MAX,
an OverflowError is raised.

PY_LONG_LONG PyLong_AsLongLong (PyObject *pylong)

Return a C 1long long from a Python long integer. If pylong cannot be represented as a long long, an
OverflowError israised and -1 is returned.

2.2 R RE.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLong (PyObject *pylong)

Return a C unsigned long long from a Python long integer. If pylong cannot be represented as an
unsigned long long,anOverflowErrorisraised and (unsigned long long) -1 is returned.

2.2 BRI EE.

TE 2.7 HUHE PR A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask (PyObject *io)

Return a C unsigned long from a Python long integer, without checking for overflow.

Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.

2.3 I RE.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLongMask (PyObject *io)

Return a C unsigned long long from a Python long integer, without checking for overflow.

60

Chapter 7. BRI RE

The Python/C API, X% 2.7.18

Returns (unsigned PY_LONG_LONG) -1 onerror. Use PyErr_Occurred () to disambiguate.
2.3 B RYIRE.

double PyLong_AsDouble (PyObject *pylong)
Return a C double representation of the contents of pylong. If pylong cannot be approximately represented as a
double, an OverflowError exception is raised and —1 . 0 will be returned.

void* PyLong_AsVoidPtr (PyObject *pylong)
Convert a Python integer or long integer pylong to a C void pointer. If pylong cannot be converted, an
OverflowError will be raised. This is only assured to produce a usable void pointer for values created
with PyLong_FromVoidPtr ().

1.5.2 HiRIIHE.
JE 2.5 R FE L For values outside 0.LONG_MAX, both signed and unsigned integers are accepted.

7.24 FRHHR

PyFloatObject
XA C LA Pryobject HTHAMK—1 Python # i 4.

PyTypeObject PyFloat_Type
This instance of Py TypeOb ject represents the Python floating point type. This is the same object as f1oat
and types.FloatType.

int PyFloat_Check (PyObject *p)
Y ZHoe—A C KM pyFloatobject B2 CERMpPyFloatobject K TRAMS, RI[PIH.
TE 2.2 iREE L Allowed subtypes to be accepted.

int PyFloat_CheckExact (PyObject *p)
Uit SHE— N C RApyrloatobject (HAR CRAMpPyFloatobject B FRARS, RIAH.
2.2 FiiIIRE.

PyObject* PyFloat_FromString (PyObject *str, char **pend)
Return value: New reference. Create a PyF'loatObject object based on the string value in str, or NULL on
failure. The pend argument is ignored. It remains only for backward compatibility.

PyObject* PyFloat_FromDouble (double v)
Return value: New reference. Create a PyF1oatObject object from v, or NULL on failure.

double PyFloat_AsDouble (PyObject *pyfloat)
& [m] — K pyfloar WS C 2K AL double, MR float A g —~> Python ¥ s %t &, (H 2t &
__float__ () Jrik, EDIELE LW, 5 pyfloar Feife li— 7 s R IMON XS Jr YRR 1]
-1.0, FrPANIZIEA C REkPyErr_Occurred () fgrbiz,

double PyFloat_AS_DOUBLE (PyObject *pyfloat)
iR 5]~ pyfloat %) C double FR, HEA HIRKA .

PyObject* PyFloat_GetInfo (void)
iR Al —A> structseq LB, HH L EA 5 float AR . FMEFERAMERMFEE. B2k float .h)
— Ay AL
2.6 FIIRE.

double PyFloat_GetMax ()
R[] 55 K AT R A FREF s 40 DBL_MAX *}j C double

2.6 HiHHE.

7.2. BEMR 61

The Python/C API, X% 2.7.18

double PyFloat_GetMin ()
i Al fge /N KRR A — AL IE I 58 DBL_MIN “} C double .

2.6 FRIIEE.

int PyFloat_ClearFreeList ()
2SSOSR R TC R 3 H AL

2.6 HIHE.

void PyFloat_AsString (char *buf, PyFloatObject *v)
Convert the argument v to a string, using the same rules as st r () . The length of buf should be at least 100.

This function is unsafe to call because it writes to a buffer whose length it does not know.
2.7 5B Use PyObject_Str () or PyOS_double_to_string () instead.

void PyFloat_AsReprString (char *buf, PyFloatObject *v)
Same as PyFloat_AsString, except uses the same rules as repr () . The length of buf should be at least 100.

This function is unsafe to call because it writes to a buffer whose length it does not know.

2.7 MG B Use PyObject_Repr () or PyOS_double_to_string() instead.

7.25 BHMR

M CAPL %, Python S G2 PR A » SEBL: —~2FE Python A2)7l Jl i) Python X4, 55 by
s MURHIERBMER C Z5M A, APLER{E 1 s LRI

FTREHH C HHak

it LE R IR X G R A S ROT UM RIR R R AL, AR “(E” A5 s el
N THA APL

Py_complex
X —], Python 52 BOG R IEER 43 19 C A . 28I 73- b B AR HONS G2 14 R B3CHTS T ik S B 4544
AR A BCE R A, BRI ME O

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)

R B FASZ R, H C FMpy_complex K.

Py_complex _Py_c_dif£ (Py_complex left, Py_complex right)
RPN E 2,) C2RBPy complex iR,

Py_complex _Py_c_neg (Py_complex complex)
R ISZHL complex FITE, H C2RALPy complex FIiR.

Py_complex _Py_c_prod (Py_complex left, Py_complex right)
R ML E AR,] C KB Py complex FiR,

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)

RBIANEEWT, H C KB Py complex FoR.
W divisor %z, EANTTEIREIZEHRE errno S5 EDOM,

62 Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
1R [B] num) exp K&,] C2EABpy complex TN,

U2 num s B exp AGRIESERL, XA iR A FHBLE errno 24 EDOM.

FRE#HH) Python &

PyComplexObject
XA C R Pyob ject B TIBUALFE—A Python R4

PyTypeObject PyComplex_Type
This instance of Py TypeOb ject represents the Python complex number type. It is the same object as complex
and types.ComplexType.

int PyComplex_Check (PyObject *p)
MREMERRE—A CRKMpyComplexObject i # & C KMpyComplexObject WFIM, &1l
H.

==

TE 2.2 iR Allowed subtypes to be accepted.

int PyComplex_CheckExact (PyObject *p)
MR BERHSEE— CEAlpycomplexObject HALE CFERMpycomplexObject W THRAL, kA
H.

2.2 BRI RE.

PyObject* PyComplex_FromCComplex (Py_complex v)
Return value: New reference. ¥4t C 2581Py complex FHIEAE K — 1 1) Python & %4 .

PyObject* PyComplex_FromDoubles (double real, double imag)
Return value: New reference. 1R real Fl imag 1& [0 —/ Nl C 5B pyComplexObject R4,

double PyComplex_RealAsDouble (PyObject *op)
PA C 2k# double R [H] op FSEHR.

double PyComplex_ImagAsDouble (PyObject *op)
PA C 2% double iR 0] op BB

Py_complex PyComplex_AsCComplex (PyObject *op)
Return the Py_complex value of the complex number op. Upon failure, this method returns —1. 0 as a real
value.

TE 2.6 HUEE P If op is not a Python complex number object but has a ___complex__ () method, this method
will first be called to convert op to a Python complex number object.

7.3 MR

ARSI — R AR T — B e s A9 70 4 Python 155 AT IR E 2R B PSR &R

7.3. FFIIMR 63

The Python/C API, X% 2.7.18

7.3.1 FHHEAMKR

2.6 T hE.
PyByteArrayObject
XA Pyobject B THAHRR—> Python FHr 4R R .

PyTypeObject PyByteArray_Type
This instance of PyTypeObject represents the Python bytearray type; it is the same object as bytearray in
the Python layer.

REGE

M

int PyByteArray_Check (PyObject *o)

BXFR 02— DT RAR RN Hg— A7 AR TR RSB, R
int PyByteArray_CheckExact (PyObject *0)

BXR 0 B—ANFWHANER, HAR—AFIWHHLER TR LHIN, REH.

Ef= APl BE

PyObject* PyByteArray_FromObject (PyObject *o)
Return a new bytearray object from any object, o, that implements the buffer protocol.

PyObject* PyByteArray_ FromStringAndSize (const char *string, Py_ssize_t len)
Create a new bytearray object from string and its length, len. On failure, NULL is returned.

PyObject* PyByteArray_Concat (PyObject *a, PyObject *b)
BEREFATEA a F b IFAR Bl — A SR AT 7 4
Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Return the size of bytearray after checking for a NULL pointer.

char* PyByteArray_AsString (PyObject *bytearray)
Return the contents of bytearray as a char array after checking for a NULL pointer.

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
Rt bytearray 1] NTBZE I DX K INJEHE N len,

Mt

XA AR RE . BN A SRS
char* PyByteArray_AS_STRING (PyObject *bytearray)
C FfpyByteArray AsString () WZEMAS.

Py_ssize_t PyByteArray_ GET_SIZE (PyObject *bytearray)
CMifpyByteArray_size () LA,

The Python/C API, X% 2.7.18

7.3.2 String/Bytes Objects

These functions raise TypeError when expecting a string parameter and are called with a non-string parameter.

{Efii#: These functions have been renamed to PyBytes_* in Python 3.x. Unless otherwise noted, the PyBytes functions
available in 3.x are aliased to their PyString_* equivalents to help porting.

PyStringObject
This subtype of PyOb ject represents a Python string object.

PyTypeObject PyString_Type
This instance of Py TypeOb ject represents the Python string type; it is the same object as str and types.
StringType in the Python layer. .

int PyString_Check (PyObject *o)
Return true if the object o is a string object or an instance of a subtype of the string type.

TE 2.2 f s Allowed subtypes to be accepted.

int PyString_CheckExact (PyObject *0)
Return true if the object o is a string object, but not an instance of a subtype of the string type.

2.2 B e

PyObject* PyString_ FromString (const char *v)
Return value: New reference. Return a new string object with a copy of the string v as value on success, and NULL
on failure. The parameter v must not be NULL; it will not be checked.

PyObject* PyString_FromStringAndSize (const char *v, Py_ssize_t len)
Return value: New reference. Return a new string object with a copy of the string v as value and length len on
success, and NULL on failure. If v is NULL, the contents of the string are uninitialized.

JE 2.5 MUSE ¥: This function used an int type for len. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyString FromFormat (const char *format, ...)
Return value: New reference. Take a C printf () -style format string and a variable number of arguments,
calculate the size of the resulting Python string and return a string with the values formatted into it. The variable
arguments must be C types and must correspond exactly to the format characters in the format string. The following
format characters are allowed:

7.3. FFIIMR 65

The Python/C API, X% 2.7.18

Format Type Comment
Charac-
ters
%% n/a The literal % character.
$C int A single character, represented as a C int.
%d int Exactly equivalent to printf ("$d").
$u un- Exactly equivalent to print £ ("$u").
signed
int
$1d long Exactly equivalent to print f ("$1d").
%$1lu un- Exactly equivalent to printf ("$1u").
signed
long
%$11d long Exactly equivalent to printf ("$11d").
long
$1lu un- Exactly equivalent to printf ("$11u").
signed
long
long
$zd Py_ssize_t Exactly equivalent to printf ("%$zd")
$zu size_t Exactly equivalent to printf ("$zu")
i int Exactly equivalent to printf ("$i").
$xX int Exactly equivalent to printf ("$x").
%s char* A null-terminated C character array.
$p void* The hex representation of a C pointer. Mostly equivalent to printf ("$p") except
that it is guaranteed to start with the literal Ox regardless of what the platform’ s
printf yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

R The “%lid” and “%Ilu” format specifiers are only available when HAVE_ LONG_LONG is defined.

TE 2.7 iR PR Support for “%lld” and “%llu” added.

PyObject* PyString FromFormatV (const char *format, va_list vargs)
Return value: New reference. Identical to PyString FromFormat () except that it takes exactly two argu-
ments.

Py_ssize_t PyString_Size (PyObject *string)
Return the length of the string in string object string.

¥ 2.5 R L This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

Py_ssize_t PyString_GET_SIZE (PyObject *string)
Macro form of PyString_Size () but without error checking.

TE 2.5 f H 24 This macro returned an int type. This might require changes in your code for properly supporting
64-bit systems.

char* PyString_AsString (PyObject *string)
Return a NUL-terminated representation of the contents of string. The pointer refers to the internal buffer
of string, not a copy. The data must not be modified in any way, unless the string was just created using

66 Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

PyString_FromStringAndSize (NULL, size). It mustnot be deallocated. If string is a Unicode ob-
ject, this function computes the default encoding of string and operates on that. If sfring is not a string object at all,
PyString AsString () returns NULL and raises TypeError.

char* PyString_AS_STRING (PyObject *string)
Macro form of PyString AsString () but without error checking. Only string objects are supported; no
Unicode objects should be passed.

int PyString_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)
Return a NUL-terminated representation of the contents of the object obj through the output variables buffer and
length.

The function accepts both string and Unicode objects as input. For Unicode objects it returns the default encoded
version of the object. If length is NULL, the resulting buffer may not contain NUL characters; if it does, the function
returns —1 and a TypeError is raised.

The buffer refers to an internal string buffer of 0bj, not a copy. The data must not be modified in any way, unless the
string was just created using PyString_FromStringAndSize (NULL, size). Itmustnotbe deallocated.
If string is a Unicode object, this function computes the default encoding of string and operates on that. If string is
not a string object at all, PyString AsStringAndSize () returns —1 and raises TypeError.

F£ 2.5 Ji BE P This function used an int * type for length. This might require changes in your code for properly
supporting 64-bit systems.

void PyString_Concat (PyObject **string, PyObject *newpart)
Create a new string object in *string containing the contents of newpart appended to string; the caller will own the
new reference. The reference to the old value of string will be stolen. If the new string cannot be created, the old
reference to string will still be discarded and the value of *string will be set to NULL; the appropriate exception will
be set.

void PyString_ConcatAndDel (PyObject **string, PyObject *newpart)
Create a new string object in *string containing the contents of newpart appended to string. This version decrements
the reference count of newpart.

int _PyString_Resize (PyObject **string, Py_ssize_t newsize)
A way to resize a string object even though itis “immutable” . Only use this to build up a brand new string object;
don’ tuse this if the string may already be known in other parts of the code. It is an error to call this function if
the refcount on the input string object is not one. Pass the address of an existing string object as an Ivalue (it may
be written into), and the new size desired. On success, *string holds the resized string object and O is returned;
the address in *string may differ from its input value. If the reallocation fails, the original string object at *string is
deallocated, *string is set to NULL, a memory exception is set, and —1 is returned.

TE 2.5 B B This function used an int type for newsize. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyString_Format (PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args. Analogous to format % args.
The args argument must be a tuple or dict.

void PyString_InternInPlace (PyObject **string)
Intern the argument *string in place. The argument must be the address of a pointer variable pointing to a Python
string object. If there is an existing interned string that is the same as *string, it sets *string to it (decrementing
the reference count of the old string object and incrementing the reference count of the interned string object),
otherwise it leaves *string alone and interns it (incrementing its reference count). (Clarification: even though there
is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the object after
the call if and only if you owned it before the call.)

{Ef#: This function is not available in 3.x and does not have a PyBytes alias.

7.3. FRYINER 67

The Python/C API, X% 2.7.18

PyObject* PyString_InternFromString (const char *v)

Return value: New reference. A combination of PyString FromString() and
PyString InternInPlace (), returning either a new string object that has been interned, or a new (
“owned”) reference to an earlier interned string object with the same value.

{Ef#: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)

Return value: New reference. Create an object by decoding size bytes of the encoded buffer s using the codec
registered for encoding. encoding and errors have the same meaning as the parameters of the same name in the
unicode () built-in function. The codec to be used is looked up using the Python codec registry. Return NULL
if an exception was raised by the codec.

{Ef#: This function is not available in 3.x and does not have a PyBytes alias.

TE 2.5 iR P This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyString_AsDecodedObject (PyObject *str, const char *encoding, const char *errors)

Return value: New reference. Decode a string object by passing it to the codec registered for encoding and return
the result as Python object. encoding and errors have the same meaning as the parameters of the same name in the
string encode () method. The codec to be used is looked up using the Python codec registry. Return NULL if
an exception was raised by the codec.

{Ef#: This function is not available in 3.x and does not have a PyBytes alias.

PyObject* PyString_Encode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)

Return value: New reference. Encode the char buffer of the given size by passing it to the codec registered for
encoding and return a Python object. encoding and errors have the same meaning as the parameters of the same
name in the string encode () method. The codec to be used is looked up using the Python codec registry. Return
NULL if an exception was raised by the codec.

{Efi#: This function is not available in 3.x and does not have a PyBytes alias.

TE 2.5 Fi B PR This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyString_AsEncodedObject (PyObject *str, const char *encoding, const char *errors)

Return value: New reference. Encode a string object using the codec registered for encoding and return the result
as Python object. encoding and errors have the same meaning as the parameters of the same name in the string
encode () method. The codec to be used is looked up using the Python codec registry. Return NULL if an
exception was raised by the codec.

{Ef#: This function is not available in 3.x and does not have a PyBytes alias.

68

Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

7.3.3 Unicode Objects and Codecs

Unicode &

Unicode 3 #Y

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UNICODE
This type represents the storage type which is used by Python internally as basis for holding Unicode ordinals.
Python’ s default builds use a 16-bit type for Py_ UNTCODE and store Unicode values internally as UCS2. It is
also possible to build a UCS4 version of Python (most recent Linux distributions come with UCS4 builds of Python).
These builds then use a 32-bit type for Py_ UNICODE and store Unicode data internally as UCS4. On platforms
where wchar_t is available and compatible with the chosen Python Unicode build variant, Py_ UNICODE is a
typedef alias for wchar_t to enhance native platform compatibility. On all other platforms, Py UNICODE is a
typedef alias for either unsigned short (UCS2)or unsigned long (UCS4).

Note that UCS2 and UCS4 Python builds are not binary compatible. Please keep this in mind when writing extensions
or interfaces.

PyUnicodeObject
This subtype of PyOb ject represents a Python Unicode object.

PyTypeObject PyUnicode_Type
This instance of Py TypeObject represents the Python Unicode type. It is exposed to Python code as unicode
and types.UnicodeType.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of Unicode
objects:

int PyUnicode_Check (PyObject *o)
Return true if the object o is a Unicode object or an instance of a Unicode subtype.

T 2.2 iR Allowed subtypes to be accepted.

int PyUnicode_CheckExact (PyObject *0)
Return true if the object o is a Unicode object, but not an instance of a subtype.

2.2 iR EIfE.
Py_ssize_t PyUnicode_GET_SIZE (PyObject *0)
Return the size of the object. o has to be a PyUnicodeObject (not checked).

F£ 2.5 Jit B ¥ This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

Py_ssize_t PyUnicode_GET_DATA_SIZE (PyObject *o)
Return the size of the object’ s internal buffer in bytes. o has to be a PyUnicodeObject (not checked).

F£ 2.5 Jit B This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

Py_UNICODE* PyUnicode_AS_UNICODE (PyObject *0)
Return a pointer to the internal Py_ UNTCODE buffer of the object. o has to be a PyUnicodeObject (not
checked).

const char* PyUnicode_AS_DATA (PyObject *0)
Return a pointer to the internal buffer of the object. o has to be a PyUnicodeOb ject (not checked).

int PyUnicode_ClearFreelist ()

R, IR] PR 2% H 4L

7.3. FFIIMR 69

The Python/C API, X% 2.7.18

2.6 i E.

Unicode & Ef

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py _UNICODE_ISSPACE (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is a whitespace character.

int Py_UNICODE_ISLOWER (Py UNICODE ch)
Return 1 or 0 depending on whether ch is a lowercase character.

int Py_UNICODE_ISUPPER (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is an uppercase character.

int Py_UNICODE_ISTITLE (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a titlecase character.

int Py_UNICODE_ISLINEBREAK (Py_UNICODE ch)
Return 1 or 0 depending on whether c# is a linebreak character.

int Py_UNICODE_ISDECIMAL (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a decimal character.

int Py_UNICODE_ISDIGIT (Py UNICODE ch)
Return 1 or 0 depending on whether c# is a digit character.

int Py_UNICODE_ISNUMERIC (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is a numeric character.

int Py_UNICODE_ISALPHA (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is an alphabetic character.

int Py_UNICODE_ISALNUM (Py_UNICODE ch)
Return 1 or 0 depending on whether ch is an alphanumeric character.

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE_TOLOWER (Py_UNICODE ch)
Return the character ch converted to lower case.

Py_UNICODE Py_UNICODE_TOUPPER (Py_UNICODE ch)
Return the character ch converted to upper case.

Py_UNICODE Py_UNICODE_TOTITLE (Py_UNICODE ch)
Return the character ch converted to title case.

int Py_UNICODE_TODECIMAL (Py_UNICODE ch)
Return the character ch converted to a decimal positive integer. Return -1 if this is not possible. This macro does
not raise exceptions.

int Py _UNICODE_TODIGIT (Py_UNICODE ch)
Return the character ch converted to a single digit integer. Return —1 if this is not possible. This macro does not
raise exceptions.

double Py_UNICODE_TONUMERIC (Py UNICODE ch)
Return the character ch converted to a double. Return —1. 0 if this is not possible. This macro does not raise
exceptions.

70 Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

Plain Py_UNICODE

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize_t size)

Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u may
be NULL which causes the contents to be undefined. It is the user’ s responsibility to fill in the needed data. The
buffer is copied into the new object. If the buffer is not NULL, the return value might be a shared object. Therefore,
modification of the resulting Unicode object is only allowed when u is NULL.

TE 2.5 Fit B P This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_FromStringAndSize (const char *u, Py_ssize_t size)

Return value: New reference. Create a Unicode object from the char buffer u. The bytes will be interpreted as being
UTF-8 encoded. u may also be NULL which causes the contents to be undefined. It is the user’ s responsibility to
fill in the needed data. The buffer is copied into the new object. If the buffer is not NULL, the return value might
be a shared object. Therefore, modification of the resulting Unicode object is only allowed when u is NULL.

2.6 Hr e

PyObject *PyUnicode_FromString (const char *u)

Return value: New reference. Create a Unicode object from a UTF-8 encoded null-terminated char buffer u.

2.6 HiifE

PyObject* PyUnicode_FromFormat (const char *format, ...)

Return value: New reference. Take a C printf ()-style format string and a variable number of arguments,
calculate the size of the resulting Python unicode string and return a string with the values formatted into it. The
variable arguments must be C types and must correspond exactly to the format characters in the format string. The
following format characters are allowed:

5% TiE Al L% TR o

c B AR, FOonh C g B AL,

%d A Exactly equivalent to print £ ("%d").

$u T 1A Exactly equivalent to printf ("$u").

$1d Kok Exactly equivalent to print £ ("$1d").

$1u TFE KRl Exactly equivalent to printf ("$1u").

$zd Py_ssize_t Exactly equivalent to printf ("$zd").

%zu size_t Exactly equivalent to printf ("$zu").

%i (S| Exactly equivalent to printf ("$i").

$x A Exactly equivalent to printf ("$x").

%s char* PA null S92 1EFFHY C FAFEAL

sp void* —A CHRENW NIRRT AN T print £ ("sp") [H
E%Eﬁ%%?@ﬁ 0x I3k, MERGFH L printf et
Ao

%$U PyObject* A unicode object.

SV PyObject*, char * | A unicode object (which may be NULL) and a null-terminated C character
array as a second parameter (which will be used, if the first parameter is
NULL).

%S PyObject* The result of calling PyObject_Unicode ().

%R PyObject* The result of calling PyObject_Repr ().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

7.3.

FolxsR 71

The Python/C API, X% 2.7.18

2.6 i E.

PyObject* PyUnicode_FromFormatV (const char *format, va_list vargs)
Return value: New reference. Identical to PyUnicode_FromFormat () except that it takes exactly two argu-
ments.

2.6 F I E.

Py_UNICODE* PyUnicode_AsUnicode (PyObject *unicode)
Return a read-only pointer to the Unicode object’ s internal Py UNICODE buffer, NULL if unicode is not a Unicode
object. Note that the resulting Py UNICODE * string may contain embedded null characters, which would cause
the string to be truncated when used in most C functions.

Py_ssize_t PyUnicode_GetSize (PyObject *unicode)
Return the length of the Unicode object.

F£ 2.5 Jit B ¥ This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Coerce an encoded object obj to a Unicode object and return a reference with
incremented refcount.

String and other char buffer compatible objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see the next section for
details).

All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ ing the returned objects.

PyObject* PyUnicode_FromObject (PyObject *obj)
Return value: New reference. Shortcut for PyUnicode_FromEncodedObject (obj, NULL,
"strict") which is used throughout the interpreter whenever coercion to Unicode is needed.

If the platform supports wchar_t and provides a header file wchar.h, Python can interface directly to this type using the
following functions. Support is optimized if Python’ s own Py_UNICODE type is identical to the system’ s wchar_t.

wchar_t Support

wchar_t support for platforms which support it:

PyObject* PyUnicode_FromWideChar (const wchar_t *w, Py_ssize_t size)
Return value: New reference. Create a Unicode object from the wchar_t buffer w of the given size. Return NULL
on failure.

TE 2.5 Fi B P This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PyUnicode_AsWideChar (PyUnicodeObject *unicode, wchar_t *w, Py_ssize_t size)
Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t characters are copied
(excluding a possibly trailing O-termination character). Return the number of wchar_t characters copied or —1
in case of an error. Note that the resulting wchar_t string may or may not be O-terminated. It is the responsibility
of the caller to make sure that the wchar_t string is O-terminated in case this is required by the application. Also,
note that the wchar_t * string might contain null characters, which would cause the string to be truncated when
used with most C functions.

TE 2.5 it P This function returned an int type and used an int type for size. This might require changes in
your code for properly supporting 64-bit systems.

72 Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in unicode () Unicode object constructor.

Setting encoding to NULL causes the default encoding to be used which is ASCII. The file system calls should use
Py_FileSystemDefaultEncoding as the encoding for file names. This variable should be treated as read-only:
on some systems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application
invokes setlocale).

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec.
Default error handling for all built-in codecs is “strict” (ValueError is raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:

PyObject* PyUnicode_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s. encoding
and errors have the same meaning as the parameters of the same name in the unicode () built-in function. The
codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.

TE 2.5 iR P This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_Encode (const Py_UNICODE *s, Py_ssize_t size, const char *encoding, const char *er-

rors)
Return value: New reference. Encode the Py_ UNTCODE buffer s of the given size and return a Python string object.

encoding and errors have the same meaning as the parameters of the same name in the Unicode encode () method.
The codec to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the
codec.

TE 2.5 Fi B PR This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference. Encode a Unicode object and return the result as Python string object. encoding and
errors have the same meaning as the parameters of the same name in the Unicode encode () method. The codec
to be used is looked up using the Python codec registry. Return NULL if an exception was raised by the codec.

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the UTF-8 encoded string s. Return
NULL if an exception was raised by the codec.

JE 2.5 JiR B gk This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

7.3. FRYINER 73

The Python/C API, X% 2.7.18

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py_ssize_t size, const char *errors,

Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTFS8 (). If consumed

is not NULL, trailing incomplete UTF-8 byte sequences will not be treated as an error. Those bytes will not be
decoded and the number of bytes that have been decoded will be stored in consumed.

2.4 B RE.

F£ 2.5 [FE PR This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_EncodeUTF8 (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNTCODE buffer s of the given size using UTF-8 and return a Python
string object. Return NULL if an exception was raised by the codec.

F£ 2.5 Ji B P This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsUTF8String (PyObject *unicode)
Return value: New reference. Encode a Unicode object using UTF-8 and return the result as Python string object.
Error handling is “strict” . Return NULL if an exception was raised by the codec.

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject* PyUnicode_DecodeUTF32 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Decode size bytes from a UTF-32 encoded buffer string and return the corresponding Unicode object. errors (if
non-NULL) defines the error handling. It defaults to “strict” .

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*pbyteorder == 1: Dbig endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
In a narrow build code points outside the BMP will be decoded as surrogate pairs.
If byteorder is NULL, the codec starts in native order mode.

Return NULL if an exception was raised by the codec.

2.6 FiiIIRE.

PyObject* PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
If consumed is NULL, behave like PyUnicode DecodeUTF32 (). If consumed is not NULL,

PyUnicode_DecodeUTF32Stateful () will not treat trailing incomplete UTF-32 byte sequences (such
as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.

2.6 i E.

74 Chapter 7. &M RE

The Python/C API, X% 2.7.18

PyObject* PyUnicode_EncodeUTF32 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-

order)
Return a Python bytes object holding the UTF-32 encoded value of the Unicode data in s. Output is written
according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is O, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.
2.6 FRIIEE.

PyObject* PyUnicode_AsUTF32String (PyObject *unicode)
Return a Python string using the UTF-32 encoding in native byte order. The string always starts with a BOM mark.
Error handling is “strict” . Return NULL if an exception was raised by the codec.

2.6 FRIIEE.

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)
Return value: New reference. Decode size bytes from a UTF-16 encoded buffer string and return the corresponding
Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict” .

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \uf f fe character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

TE 2.5 F s g This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_DecodeUTF1l6Stateful (const char *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed)
Return value: New reference. If consumed is NULL, behave like PyUnicode_DecodeUTF16 (). If consumed

is not NULL, PyUnicode_DecodeUTF16Stateful () will not treat trailing incomplete UTF-16 byte se-
quences (such as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and
the number of bytes that have been decoded will be stored in consumed.

2.4 B

7.3. FRYINER 75

The Python/C API, X% 2.7.18

TE 2.5 B ¥ 2i: This function used an int type for size and an int * type for consumed. This might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_EncodeUTF16 (const Py_UNICODE *s, Py_ssize_t size, const char *errors, int byte-

order)
Return value: New reference. Return a Python string object holding the UTF-16 encoded value of the Unicode data

in 5. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDE is defined, a single Py_ UNICODE value may get represented as a surrogate pair. If it is
not defined, each Py UNICODE values is interpreted as a UCS-2 character.

Return NULL if an exception was raised by the codec.

¥ 2.5 i 2: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsUTF16String (PyObject *unicode)
Return value: New reference. Return a Python string using the UTF-16 encoding in native byte order. The string
always starts with a BOM mark. Error handling is “strict” . Return NULL if an exception was raised by the codec.

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject* PyUnicode_DecodeUTF7 (const char *s, Py_ssize_t size, const char *errors)
Create a Unicode object by decoding size bytes of the UTF-7 encoded string s. Return NULL if an exception was
raised by the codec.

PyObject* PyUnicode_DecodeUTF7Stateful (const char *s, Py_ssize t size, const char *errors,

Py_ssize_t *consumed)
If consumed is NULL, behave like PyUnicode_DecodeUTE7 (). If consumed is not NULL, trailing incomplete

UTF-7 base-64 sections will not be treated as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored in consumed.

PyObject* PyUnicode_EncodeUTF7 (const Py UNICODE *s, Py_ssize_t size, int base64SetO,

int base64 WhiteSpace, const char *errors)
Encode the Py UNICODE buffer of the given size using UTF-7 and return a Python bytes object. Return NULL

if an exception was raised by the codec.

If base64SetO is nonzero, “Set O” (punctuation that has no otherwise special meaning) will be encoded in base-64.
If base64 WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the Python “utf-7”
codec.

76 Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Unicode-Escape encoded string
s. Return NULL if an exception was raised by the codec.

F£ 2.5 [HE PR This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py_UNICODE *s, Py_ssize_t size)
Return value: New reference. Encode the Py UNICODE buffer of the given size using Unicode-Escape and return
a Python string object. Return NULL if an exception was raised by the codec.

TE 2.5 FU s L This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Unicode-Escape and return the result as Python string
object. Error handling is “strict” . Return NULL if an exception was raised by the codec.

Raw-Unicode-Escape Codecs

These are the “Raw Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Raw-Unicode-Escape encoded
string 5. Return NULL if an exception was raised by the codec.

TE 2.5 Fi B PR This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py _UNICODE *s, Py_ssize_t size, const

char *errors)
Return value: New reference. Encode the Py_ UNICODE buffer of the given size using Raw-Unicode-Escape and

return a Python string object. Return NULL if an exception was raised by the codec.

I 2.5 [FE PR This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Raw-Unicode-Escape and return the result as Python
string object. Error handling is “strict” . Return NULL if an exception was raised by the codec.

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by
the codecs during encoding.

PyObject* PyUnicode_DecodeLatinl (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the Latin-1 encoded string s. Return
NULL if an exception was raised by the codec.

TE 2.5 Hit ¥ This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

7.3. FRYINER 77

The Python/C API, X% 2.7.18

PyObject* PyUnicode_EncodeLatinl (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNTCODE buffer of the given size using Latin-1 and return a Python
string object. Return NULL if an exception was raised by the codec.

F£ 2.5 Ji B PR This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsLatinlString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using Latin-1 and return the result as Python string object.
Error handling is “strict” . Return NULL if an exception was raised by the codec.

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCII (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the ASCII encoded string s. Return
NULL if an exception was raised by the codec.

T 2.5 Fit s g This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_EncodeASCII (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py UNICODE buffer of the given size using ASCII and return a Python
string object. Return NULL if an exception was raised by the codec.

TE 2.5 Fi B g This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsASCIIString (PyObject *unicode)
Return value: New reference. Encode a Unicode object using ASCII and return the result as Python string object.
Error handling is “strict” . Return NULL if an exception was raised by the codec.

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to obtain
most of the standard codecs included in the encodings package). The codec uses mapping to encode and decode
characters.

Decoding mappings must map single string characters to single Unicode characters, integers (which are then interpreted
as Unicode ordinals) or None (meaning ‘“undefined mapping” and causing an error).

Encoding mappings must map single Unicode characters to single string characters, integers (which are then interpreted
as Latin-1 ordinals) or None (meaning ‘“undefined mapping” and causing an error).

The mapping objects provided must only support the __getitem__ mapping interface.

If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be inter-
preted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings which map
characters to different code points.

These are the mapping codec APIs:

PyObject* PyUnicode_DecodeCharmap (const char *s, Py_ssize_t size, PyObject *mapping, const char *er-

rors)
Return value: New reference. Create a Unicode object by decoding size bytes of the encoded string s using the given

mapping object. Return NULL if an exception was raised by the codec. If mapping is NULL latin-1 decoding will
be done. Else it can be a dictionary mapping byte or a unicode string, which is treated as a lookup table. Byte
values greater that the length of the string and U+FFFE ‘“characters” are treated as ‘“undefined mapping” .

78 Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

TE 2.4 B Allowed unicode string as mapping argument.

JE 2.5 Jit B gk This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_EncodeCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping, const

char *errors)
Return value: New reference. Encode the Py_ UNTCODE buffer of the given size using the given mapping object

and return a Python string object. Return NULL if an exception was raised by the codec.

T 2.5 Hit g This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Return value: New reference. Encode a Unicode object using the given mapping object and return the result as
Python string object. Error handling is “strict” . Return NULL if an exception was raised by the codec.

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode_TranslateCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *table, const

char *errors)
Return value: New reference. Translate a Py_ UNICODE buffer of the given size by applying a character mapping

table to it and return the resulting Unicode object. Return NULL when an exception was raised by the codec.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the __getitem__ () interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

TE 2.5 Fi ¥ PR This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is
defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Create a Unicode object by decoding size bytes of the MBCS encoded string s. Return
NULL if an exception was raised by the codec.

T 2.5 F B L This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_DecodeMBCSStateful (const char *s, int size, const char *errors, int *consumed)
If consumed is NULL, behave like PyUnicode_DecodeMBCS (). If consumed is not NULL,
PyUnicode_DecodeMBCSStaterful () will not decode trailing lead byte and the number of bytes that have
been decoded will be stored in consumed.

2.5 i fE.

PyObject* PyUnicode_EncodeMBCS (const Py_UNICODE *s, Py_ssize_t size, const char *errors)
Return value: New reference. Encode the Py_ UNICODE buffer of the given size using MBCS and return a Python
string object. Return NULL if an exception was raised by the codec.

TE 2.5 iR P This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

7.3. FRYINER 79

The Python/C API, X% 2.7.18

PyObject* PyUnicode_AsMBCSString (PyObject *unicode)

Return value: New reference. Encode a Unicode object using MBCS and return the result as Python string object.
Error handling is “strict” . Return NULL if an exception was raised by the codec.

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or -1 if an exception occurs.

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right)

Return value: New reference. Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxsplit)

Return value: New reference. Split a string giving a list of Unicode strings. If sep is NULL, splitting will be done
at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit splits will be done. If
negative, no limit is set. Separators are not included in the resulting list.

1 2.5 iR P This function used an int type for maxsplit. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyUnicode_Splitlines (PyObject *s, int keepend)

Return value: New reference. Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is
considered to be one line break. If keepend is 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errors)

Return value: New reference. Translate a string by applying a character mapping table to it and return the resulting
Unicode object.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the ___getitem__ () interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject* PyUnicode_Join (PyObject *separator, PyObject *seq)

Return value: New reference. Join a sequence of strings using the given separator and return the resulting Unicode
string.

Py_ssize_t PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int di-

rection)
Return 1 if substr matches str [start :end] atthe given tail end (direction == —1 means to do a prefix match,

direction == 1 a suffix match), 0 otherwise. Return —1 if an error occurred.

F£ 2.5 M #: This function used an int type for start and end. This might require changes in your code for
properly supporting 64-bit systems.

Py_ssize_t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)

Return the first position of substr in str [start :end] using the given direction (direction == 1 means to do a
forward search, direction == —1 a backward search). The return value is the index of the first match; a value of —1
indicates that no match was found, and -2 indicates that an error occurred and an exception has been set.

TE 2.5 {3 2 This function used an int type for start and end. This might require changes in your code for
properly supporting 64-bit systems.

80

Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

Py_ssize_t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Return the number of non-overlapping occurrences of substr in str [start:end]. Return -1 if an error oc-
curred.

F£ 2.5 P This function returned an int type and used an int type for start and end. This might require
changes in your code for properly supporting 64-bit systems.

PyObject* PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Return value: New reference. Replace at most maxcount occurrences of substr in str with replstr and return the
resulting Unicode object. maxcount == —1 means replace all occurrences.

FE 2.5 {5 2 This function used an int type for maxcount. This might require changes in your code for properly
supporting 64-bit systems.

int PyUnicode_Compare (PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

int PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Rich compare two unicode strings and return one of the following:

e NULL in case an exception was raised
e Py_True or Py_False for successful comparisons
e Py_NotImplemented in case the type combination is unknown

Note that Py_EQ and Py_NE comparisons can cause a UnicodeWarning in case the conversion of the argu-
ments to Unicode fails with a UnicodeDecodeError.

Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT,and Py_LE.

PyObject* PyUnicode_Format (PyObject *format, PyObject *args)
Return value: New reference. Return a new string object from format and args; this is analogous to format %
args.

int PyUnicode_Contains (PyObject *container, PyObject *element)
Check whether element is contained in container and return true or false accordingly.

element has to coerce to a one element Unicode string. —1 is returned if there was an error.

7.3.4 Buffers and Memoryview Objects

Python objects implemented in C can export a group of functions called the “buffer interface.” These functions can be
used by an object to expose its data in a raw, byte-oriented format. Clients of the object can use the buffer interface to
access the object data directly, without needing to copy it first.

Two examples of objects that support the buffer interface are strings and arrays. The string object exposes the character
contents in the buffer interface’ s byte-oriented form. An array can only expose its contents via the old-style buffer
interface. This limitation does not apply to Python 3, where memoryview objects can be constructed from arrays, too.
Array elements may be multi-byte values.

An example user of the buffer interface is the file object’ swrite () method. Any object that can export a series of bytes
through the buffer interface can be written to a file. There are a number of format codes to PyArg_ ParseTuple ()
that operate against an object’ s buffer interface, returning data from the target object.

Starting from version 1.6, Python has been providing Python-level buffer objects and a C-level buffer API so that any
built-in or used-defined type can expose its characteristics. Both, however, have been deprecated because of various
shortcomings, and have been officially removed in Python 3 in favour of a new C-level buffer API and a new Python-level
object named memoryview.

7.3. FRYINER 81

The Python/C API, X% 2.7.18

The new buffer API has been backported to Python 2.6, and the memoryview object has been backported to Python
2.7. Tt is strongly advised to use them rather than the old APIs, unless you are blocked from doing so for compatibility
reasons.

The new-style Py_buffer struct

Py_buffer

void *buf
A pointer to the start of the memory for the object.

Py_ssize_t 1len
The total length of the memory in bytes.

int readonly
An indicator of whether the buffer is read only.

const char *format
A NULL terminated string in st ruct module style syntax giving the contents of the elements available
through the buffer. If this is NULL, "B" (unsigned bytes) is assumed.

int ndim
The number of dimensions the memory represents as a multi-dimensional array. If it is 0, strides and
suboffsets must be NULL.

Py_ssize_t *shape
Anarray of Py_ssize_tsthelength of ndim giving the shape of the memory as a multi-dimensional array.
Note that ((*shape) [0] * ... * (*shape) [ndims-1]) *itemsize should be equal to len.

Py_ssize_t *strides
An array of Py_ssize_ts the length of ndim giving the number of bytes to skip to get to a new element
in each dimension.

Py_ssize_t *suboffsets
An array of Py_ssize_ts the length of ndim. If these suboffset numbers are greater than or equal to O,
then the value stored along the indicated dimension is a pointer and the suboffset value dictates how many bytes
to add to the pointer after de-referencing. A suboffset value that it negative indicates that no de-referencing
should occur (striding in a contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index
when there are both non-NULL strides and suboffsets:

void *get_item_pointer (int ndim, wvoid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; 1i++)

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = *((char**)pointer) + suboffsets[i];
}
;

return (void*)pointer;

82

Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

Py_ssize_t itemsize
This is a storage for the itemsize (in bytes) of each element of the shared memory. It is technically un-
necessary as it can be obtained using PyBuffer SizeFromFormat (), however an exporter may know
this information without parsing the format string and it is necessary to know the itemsize for proper inter-
pretation of striding. Therefore, storing it is more convenient and faster.

void *internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer should never alter this value.

Buffer related functions

int PyObject_CheckBuffer (PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0.

int PyObject_GetBuffer (PyObject *obj, Py_buffer *view, int flags)
Export obj into a Py_buffer, view. These arguments must never be NULL. The flags argument is a bit field
indicating what kind of buffer the caller is prepared to deal with and therefore what kind of buffer the exporter is
allowed to return. The buffer interface allows for complicated memory sharing possibilities, but some caller may
not be able to handle all the complexity but may want to see if the exporter will let them take a simpler view to its
memory.

Some exporters may not be able to share memory in every possible way and may need to raise errors to signal
to some consumers that something is just not possible. These errors should be a Buf ferError unless there is
another error that is actually causing the problem. The exporter can use flags information to simplify how much of
the Py_buf fer structure is filled in with non-default values and/or raise an error if the object can’ t support a
simpler view of its memory.

0 is returned on success and —1 on error.

The following table gives possible values to the flags arguments.

7.3. FRYINER 83

The Python/C API, X% 2.7.18

Flag

Description

PyBUF_SIMPLE

This is the default flag state. The returned buffer may or may not have writable memory.
The format of the data will be assumed to be unsigned bytes. This is a “stand-alone”
flag constant. It never needs to be ‘I’ d to the others. The exporter will raise an error
if it cannot provide such a contiguous buffer of bytes.

PyBUF_WRITABLE

The returned buffer must be writable. If it is not writable, then raise an error.

PyBUF_STRIDES

This implies PyBUF _ND. The returned buffer must provide strides information (i.e. the
strides cannot be NULL). This would be used when the consumer can handle strided,
discontiguous arrays. Handling strides automatically assumes you can handle shape. The
exporter can raise an error if a strided representation of the data is not possible (i.e.
without the suboffsets).

PyBUF_ND

The returned buffer must provide shape information. The memory will be assumed C-
style contiguous (last dimension varies the fastest). The exporter may raise an error if
it cannot provide this kind of contiguous buffer. If this is not given then shape will be
NULL.

PyBUF_C_CONTIG
PyBUF_F_CONTIG
PyBUF_ANY_CONT

Udtese flags indicate that the contiguity returned buffer must be respectively, C-

Uoaitiguous (last dimension varies the fastest), Fortran contiguous (first dimension varies

T digdartest) or either one. All of these flags imply PyBUF_STRIDES and guarantee that
the strides buffer info structure will be filled in correctly.

PyBUF_INDIRECT

This flag indicates the returned buffer must have suboffsets information (which can be

NULL if no suboffsets are needed). This can be used when the consumer can handle
indirect array referencing implied by these suboffsets. This implies PyBUF_STRIDES.
The returned buffer must have true format information if this flag is provided. This would
be used when the consumer is going to be checking for what ‘kind’ of data is actually
stored. An exporter should always be able to provide this information if requested. If
format is not explicitly requested then the format must be returned as NULL (which
means 'B', or unsigned bytes)

This is equivalent to (PyBUF_STRIDES

RQhis is equivalent to (PyBUF_STRIDES).
This is equivalent to (PyBUF_STRIDES
PyBUF_WRITABLE).

R®@his is equivalent to (PyBUF__STRIDES
This is equivalent to
PyBUF_WRITABLE).

This is equivalent to (PyBUF_INDIRECT
This is equivalent to (PyBUF_ND |
OThis is equivalent to (PyBUF_ND) .

PyBUF_FORMAT

PyBUF_STRIDED
PyBUF_STRIDED_|
PyBUF_RECORDS

| PyBUF_WRITABLE).

| PyBUF_FORMAT

PyBUF_RECORDS_|
PyBUF_FULL

|
(PyBUF_INDIRECT

PyBUF_FORMAT).
| PyBUF_FORMAT

PyBUF_FULL_RO
PyBUF_CONTIG
PyBUF_CONTIG_R|

| PyBUF_FORMAT).
PyBUF_WRITABLE).

void PyBuffer_Release (Py_buffer *view)
Release the buffer view. This should be called when the buffer is no longer being used as it may free memory from
it.

Py_ssize_t PyBuffer_SizeFromFormat (const char *)
Return the implied i temsize from the struct-stype format.

int PyBuffer_IsContiguous (Py_buffer *view, char fortran)
Return 1 if the memory defined by the view is C-style (fortranis ' C ') or Fortran-style (fortranis 'F ') contiguous
or either one (fortranis 'A"). Return O otherwise.

void PyBuffer FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize,

char fortran)
Fill the strides array with byte-strides of a contiguous (C-style if fortranis ' C' or Fortran-style if fortranis 'F")

array of the given shape with the given number of bytes per element.

The Python/C API, X% 2.7.18

int PyBuffer_ FillInfo (Py_buffer *view, PyObject *obj, void *buf, Py_ssize_t len, int readonly, int in-
. . Joftags) .
Fill in a buffer-info structure, view, correctly for an exporter that can only share a contiguous chunk of memory of
“unsigned bytes” of the given length. Return 0 on success and —1 (with raising an error) on error.

MemoryView objects

2.7 B HE.

A memoryview object exposes the new C level buffer interface as a Python object which can then be passed around
like any other object.

PyObject *PyMemoryView_FromObject (PyObject *obyj)
Create a memoryview object from an object that defines the new buffer interface.

PyObject *PyMemoryView_FromBuffer (Py_buffer *view)
Create a memoryview object wrapping the given buffer-info structure view. The memoryview object then owns the
buffer, which means you shouldn’ t try to release it yourself: it will be released on deallocation of the memoryview
object.

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)
Create a memoryview object to a contiguous chunk of memory (in either ‘C’ or ‘F’ ortran order) from an object
that defines the buffer interface. If memory is contiguous, the memoryview object points to the original memory.
Otherwise copy is made and the memoryview points to a new bytes object.

int PyMemoryView_Check (PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview.

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *obj)
Return a pointer to the buffer-info structure wrapped by the given object. The object must be a memoryview
instance; this macro doesn’ t check its type, you must do it yourself or you will risk crashes.

Old-style buffer objects

More information on the old buffer interface is provided in the section Buffer Object Structures, under the description for
PyBufferProcs.

A “buffer object” is defined in the buf ferobject .h header (included by Python.h). These objects look very
similar to string objects at the Python programming level: they support slicing, indexing, concatenation, and some other
standard string operations. However, their data can come from one of two sources: from a block of memory, or from
another object which exports the buffer interface.

Buffer objects are useful as a way to expose the data from another object’ s buffer interface to the Python programmer.
They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory, it is possible
to expose any data to the Python programmer quite easily. The memory could be a large, constant array in a C extension,
it could be a raw block of memory for manipulation before passing to an operating system library, or it could be used to
pass around structured data in its native, in-memory format.

PyBufferObject
This subtype of PyOb ject represents a buffer object.

PyTypeObject PyBuf fer_Type
The instance of Py TypeOb ject which represents the Python buffer type; it is the same object as buf fer and
types.BufferType in the Python layer. .

int Py_END_OF_BUFFER
This constant may be passed as the size parameter to PyBuffer FromObject () or

7.3. FRYINER 85

The Python/C API, X% 2.7.18

PyBuffer FromReadWriteObject (). It indicates that the new PyBufferObject should refer
to base object from the specified offset to the end of its exported buffer. Using this enables the caller to avoid
querying the base object for its length.

int PyBuffer_ Check (PyObject *p)
Return true if the argument has type PyBuffer_ Type.

PyObject* PyBuf fer_FromObiject (PyObject *base, Py_ssize_t offset, Py_ssize_t size)
Return value: New reference. Return a new read-only buffer object. This raises TypeError if base doesn’ t sup-
port the read-only buffer protocol or doesn’ t provide exactly one buffer segment, or it raises ValueError if offset
is less than zero. The buffer will hold a reference to the base object, and the buffer’ s contents will refer to the base
object’ s buffer interface, starting as position offset and extending for size bytes. If size is Py_END_OF_BUFFER,
then the new buffer’ s contents extend to the length of the base object’ s exported buffer data.

JE 2.5 JREE ¥ This function used an int type for offset and size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyBuffer_FromReadWriteObject (PyObject *base, Py_ssize_t offset, Py_ssize_t size)
Return value: New reference. Return a new writable buffer object. Parameters and exceptions are similar to
those for PyBuffer FromObject (). If the base object does not export the writeable buffer protocol, then
TypeError is raised.

F£ 2.5 Jit L This function used an int type for offset and size. This might require changes in your code for
properly supporting 64-bit systems.

PyObject* PyBuffer FromMemory (void *ptr, Py_ssize_t size)
Return value: New reference. Return a new read-only buffer object that reads from a specified location in mem-
ory, with a specified size. The caller is responsible for ensuring that the memory buffer, passed in as prr, is not
deallocated while the returned buffer object exists. Raises ValueError if size is less than zero. Note that
Py_END_OF_BUFFER may not be passed for the size parameter; ValueError will be raised in that case.

TE 2.5 iR P This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyBuf fer_FromReadWriteMemory (void *prr, Py_ssize_t size)
Return value: New reference. Similar to PyBuffer_ FromMemory (), but the returned buffer is writable.

TF 2.5 i P: This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyBuf fer_New (Py_ssize_t size)
Return value: New reference. Return a new writable buffer object that maintains its own memory buffer of size
bytes. ValueError is returned if size is not zero or positive. Note that the memory buffer (as returned by
PyObject_AsWriteBuffer ()) is not specifically aligned.

JE 2.5 Jit ¥ gk This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

7.3.5 JTHMR

PyTupleObject
XAPyobject I FRBMAFK—4 Python FJTCHNR

PyTypeObject PyTuple_Type
This instance of Py TypeOb ject represents the Python tuple type; it is the same object as tuple and types.
TupleType in the Python layer..

int PyTuple_Check (PyObject *p)
R p Je— DI R TCH IR TIRAU LB, I3 [m] A

86 Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

TE 2.2 fRE i Allowed subtypes to be accepted.

int PyTuple_CheckExact (PyObject *p)
R p @— IS, AR — DI FRER B, R A

2.2 FifE.

PyObject* PyTuple_New (Py_ssize_t len)
Return value: New reference. Return a new tuple object of size len, or NULL on failure.

F£ 2.5 iR A ¥ This function used an int type for len. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyTuple_Pack (Py_ssize_tn, ...)
Return value: New reference. Return a new tuple object of size n, or NULL on failure. The tuple values are initialized
to the subsequent n C arguments pointing to Python objects. PyTuple_Pack (2, a, b) is equivalent to
Py_Buildvalue (" (0O)", a, b).

2.4 B

TE 2.5 iR 2 This function used an int type for n. This might require changes in your code for properly
supporting 64-bit systems.

Py_ssize_t PyTuple_Size (PyObject *p)
Take a pointer to a tuple object, and return the size of that tuple.

¥ 2.5 R L This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.

TE 2.5 fUEE g This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

PyObject* PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Return the object at position pos in the tuple pointed to by p. If pos is out of
bounds, return NULL and set an IndexError exception.

TF 2.5 M P This function used an int type for pos. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple_Get Item (), but does no checking of its arguments.

TE 2.5 it 8 g This function used an int type for pos. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return the slice of the tuple pointed to by p between low and high, or NULL on
failure. This is the equivalent of the Python expression p [1low:high]. Indexing from the end of the list is not
supported.

JE 2.5 HR B This function used an int type for low and high. This might require changes in your code for
properly supporting 64-bit systems.

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *o)
Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on success. If pos is out of
bounds, return —1 and set an IndexError exception.

7.3. FRYINER 87

The Python/C API, X% 2.7.18

{Efif: This function “steals” a reference to o and discards a reference to an item already in the tuple at the affected
position.

F£ 2.5 fiR¥E PR This function used an int type for pos. This might require changes in your code for properly
supporting 64-bit systems.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *o)

Like PyTuple_SetItem (), but does no error checking, and should only be used to fill in brand new tuples.

{I:f#t: This macro “steals” a reference to o, and, unlike PyTuple_ SetItem (), does not discard a reference
to any item that is being replaced; any reference in the tuple at position pos will be leaked.

7 2.5 fiRRHE PR This function used an int type for pos. This might require changes in your code for properly
supporting 64-bit systems.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of
this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code
should never assume that the resulting value of *p will be the same as before calling this function. If the object
referenced by *p is replaced, the original *p is destroyed. On failure, returns —1 and sets *p to NULL, and raises
MemoryError or SystemError.

T 2.2 fiRHE Pk Removed unused third parameter, last_is_sticky.

FE 2.5 {2 This function used an int type for newsize. This might require changes in your code for properly
supporting 64-bit systems.

int PyTuple_ClearFreeList ()

RN R TR 2% H AL
2.6 B .

7.3.6 FIRMR

PyListObject

XA CEAryobject HTIAAFK—> Python F X R .

PyTypeObject PyList_Type

This instance of Py TypeObject represents the Python list type. This is the same object as 11 st in the Python
layer.

int PyList_Check (PyObject *p)

MR p e —DINRM R & — P RLRH TR, RFH.
TE 2.2 fRH e Allowed subtypes to be accepted.

int PyList_CheckExact (PyObject *p)

Y pr—MIIFNR, HRARIIFIN TIBLBIN, R,
2.2 FifE.

PyObject* PyList_New (Py_ssize_t len)

Return value: New reference. Return a new list of length len on success, or NULL on failure.

88

Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

Wi 24 len KT ZR, BRI 5 £ X2 0 H B sl NULL, B IR e H 25 C &
B pysequence_SetItem() WS API 5{E H C Ak PyList_SetItem () YA W H & E N E
SRS Python AR A FFiX X4

¥ 2.5 RBP4 This function used an int for size. This might require changes in your code for properly supporting
64-bit systems.

Py_ssize_t PyList_Size (PyObject *list)

R[] list HOVFRRIKIE XFTAESNREANRIAM Llen (1ist)

F£ 2.5 IR # 4 This function returned an int. This might require changes in your code for properly supporting
64-bit systems.

Py_ssize_t PyList_GET_SIZE (PyObject *list)
FIRAK) C R PyList_Size () , BAHRKM.

T 2.5 it 8 ¢k This macro returned an int. This might require changes in your code for properly supporting
64-bit systems.

PyObject* PyList_GetItem (PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. Return the object at position index in the list pointed to by /ist. The position must
be non-negative; indexing from the end of the list is not supported. If index is out of bounds (<0 or >=len(list)),
return NULL and set an IndexError exception.

TE 2.5 iR B8 ¥ This function used an int for index. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyList_GET_ITEM (PyObject *list, Py_ssize_t i)
Return value: Borrowed reference. J2JUAI C BREPyList_GetItem() , ARG,

TE 2.5 Jix B P This macro used an int for i. This might require changes in your code for properly supporting
64-bit systems.

int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)
4%5J%%*%’?§I7@mdex FISE R itemn o JREIITIR AT O o 412 index 8 H S FE R] -1 H3E IndexError

FH

1M RS sk — DXt item B5 I HIFEF—DUBIR B 2w A E EMEAFERG .

FE 2.5 WU B This function used an int for index. This might require changes in your code for properly
supporting 64-bit systems.

void PyList_SET_ITEM (PyObject *list, Py_ssize_t 1, P»Object *0)
AR) B A Py List_SetTtem (). IXIHH RPN THHR 2 Wi W20 AL g vt
Fe

Mt This macro “steals” a reference to ifem, and, unlike PyList_SetItem (), does not discard a reference
to any item that it being replaced; any reference in list at position i will be leaked.

FE 2.5 B HE B This macro used an int for i. This might require changes in your code for properly supporting
64-bit systems.

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)

Fr4c B item FHA BB R list R51%5 index Z HIAALE . WA BIRFRE] 05 WA BIWRE -1 I
BE—PNRE. 4T list.insert (index, item),

3. FIIxR 89

The Python/C API, X% 2.7.18

T 2.5 Hix B 2k This function used an int for index. This might require changes in your code for properly
supporting 64-bit systems.

int PyList_Append (PyObject *list, PyObject *item)
FEXFR item PRINENFN R list A . WERBIPFFRE] 05 QAR WR W] -1 H R E— . Y
T list.append(item),

PyObject* PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Return a list of the objects in /ist containing the objects between low and high. Return
NULL and set an exception if unsuccessful. Analogous to 1ist [low:high]. Indexing from the end of the list
is not supported.

TE 2.5 W B This function used an int for low and high. This might require changes in your code for properly
supporting 64-bit systems.

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Set the slice of list between low and high to the contents of itemlist. Analogous to 1ist [low:high] =
itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice deletion). Return O
on success, —1 on failure. Indexing from the end of the list is not supported.

JE 2.5 R FE Y This function used an int for low and high. This might require changes in your code for properly
supporting 64-bit systems.

int PyList_Sort (PyObject *list)
Xt list HEAE HBEATIEARR . BIRNRIE 0, RIGHERE] -1, XAEMT 1ist.sort (),

int PyList_Reverse (PyObject *list)
Xt list A% H AT IEECES . BRRIE] 0, RIKIHR[E] -1, XEEM T List . reverse ().

PyObject* PyList_AsTuple (PyObject *list)
Return value: New reference. 1 [\l —ANE e X %, HA a5 list TN ZEHrT tuple (1ist) .

7.4 Mapping Objects

741 FHRMK
PyDictObject
XAPyobject I FRAMAFK—4 Python “FHXI5 .
PyTypeObject PyDict_Type
This instance of Py TypeOb ject represents the Python dictionary type. This is exposed to Python programs as
dict and types.DictType.
int PyDict_Check (PyObject *p)
W2 p e T R uH TR TR L, R [L
TE 2.2 iREE PR Allowed subtypes to be accepted.
int PyDict_CheckExact (PyObject *p)
AR p e TN REA R T IRRAY TR LB, MR A .
2.4 T fE.
PyObject* PyDict_New ()
Return value: New reference. Return a new empty dictionary, or NULL on failure.
PyObject* PyDictProxy_ New (PyObject *dict)
Return value: New reference. Return a proxy object for a mapping which enforces read-only behavior. This is
normally used to create a proxy to prevent modification of the dictionary for non-dynamic class types.

90 Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

2.2 BRI EE.

void PyDict_Clear (PyObject *p)
T2 A S I A SRR

int PyDict_Contains (PyObject *p, PyObject *key)
WE key AL ETAETF L p o QR key VEFC | p WOFE—ST, MURME] 1, AHWGRIE 0 o &[] -1 E7RH
B o IXA[F] T Python ik key in p.

2.4 B RE.

PyObject* PyDict_Copy (PyObject *p)
Return value: New reference. 3R |05 p 1081 [a] S X 1Y 8T L

1.6 IIIRE.

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
TR key fENEERE value FEANTFH p o key WhZiihhashable ; IRANIE, & TypeError 5.)
BE 0, RMERIE -1 .

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
Insert value into the dictionary p using key as a key. key should be a char*. The key object is created using
PyString_FromString (key). Return 0 on success or —1 on failure.

int PyDict_DelItem (PyObject *p, PyObject *key)
S key RT3 p A H o key MATZFIIEAY; WERAJE, WHLL TypeError . M
gm0, KM RE -1 .

int PyDict_DelItemString (PyObject *p, char *key)
B8 p P E P AT key DM H o BRI O, SRIGFR] -1,

PyObject* PyDict_GetItem (PyObject *p, PyObject *key)
Return value: Borrowed reference. Return the object from dictionary p which has a key key. Return NULL if the
key key is not present, but without setting an exception.

PyObject* PyDict_GetItemString (PyObject *p, const char *key)
Return value: Borrowed reference. This is the same as PyDict_GetItem (), but key is specified as a char*,
rather than a PyOb ject *.

PyObject* PyDict_Items (PyObject *p)
Return value: New reference. Return a PyListObject containing all the items from the dictionary, as in the
dictionary method dict.items ().

PyObject* PyDict_Keys (PyObject *p)
Return value: New reference. Return a PyListObject containing all the keys from the dictionary, as in the
dictionary method dict .keys ().

PyObject* PyDict_Values (PyObject *p)
Return value: New reference. Return a PyListObject containing all the values from the dictionary p, as in the
dictionary method dict .values ().

Py_ssize_t PyDict_Size (PyObject *p)
R E I H A, ST p) 1en (p) .

F£ 2.5 Jit B 2 This function returned an int type. This might require changes in your code for properly sup-
porting 64-bit systems.

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos must be initialized to 0
prior to the first call to this function to start the iteration; the function returns true for each pair in the dictionary,
and false once all pairs have been reported. The parameters pkey and pvalue should either point to PyObject *
variables that will be filled in with each key and value, respectively, or may be NULL. Any references returned

7.4. Mapping Objects 91

The Python/C API, X% 2.7.18

through them are borrowed. ppos should not be altered during iteration. Its value represents offsets within the
internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.

g

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
/* do something interesting with the values... */

}

The dictionary p should not be mutated during iteration. It is safe (since Python 2.1) to modify the values of the
keys as you iterate over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |

int i = PyInt_AS_LONG(value) + 1;

PyObject *o = PyInt_FromLong (i) ;

if (o == NULL)
return -1;

if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (o) ;
return -1;

}

Py_DECREF (o) ;

}

FE 2.5 Jit S #: This function used an int * type for ppos. This might require changes in your code for properly
supporting 64-bit systems.

int PyDict_Merge (PyObject *a, PyObject *b, int override)
MG b IATIRA, RESEXT B T8 ao b AT AR — DM, BT S K PyMapping Keys ()
Mpyobject GetTtem() WIXG. MR override JyEAL, WHIRTE b HH M RN a hEAFTER
FHR SO R R 4, A I ANARAE a %A A] () B) H2 S I B (BT o Y LB a] 0 B3 2451 &
S IR m -1,
2.2 B IIRE.

int PyDict_Update (PyObject *a, PyObject *b)
X5 C 1y pyDict_Merge(a, b, 1) —F, WZELIT Python ¥ a.update (b), 2 HITE
TryDict_Update () TS " ANSHEA “keys” JBIERA 2 BLE BRI A . 24 B2 ih
WR[E] O B 5| A SRR E] -1
2.2 Hih I RE.

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)
K seq2 I EAEN BEREA T BT M a. seq2 WA ER 2 1 AVEBEEDN I TR A PR AR
MAFAE RIS, Q2R override EAE W 55 i AR SENE Y o 4TI R B] O B 45| K S Ik vl
—1. ZiYy Python RS (RIEEERSM)

def PyDict_MergeFromSeqg2 (a, seq2, override):
for key, value in seq2:
if override or key not in a:
alkey] = value

2.2 Fi .

92 Chapter 7. BRI RE

The Python/C API, X% 2.7.18

7.5 Hh¥g

7.5.1 Class and Instance Objects

Note that the class objects described here represent old-style classes, which will go away in Python 3. When creating new
types for extension modules, you will want to work with type objects (section 2 7 2 %).

PyClassObject
The C structure of the objects used to describe built-in classes.

PyObject* PyClass_Type
This is the type object for class objects; it is the same object as t ypes . ClassType in the Python layer.

int PyClass_Check (PyObject *0)
Return true if the object o is a class object, including instances of types derived from the standard class object.
Return false in all other cases.

int PyClass_IsSubclass (PyObject *klass, PyObject *base)
Return true if klass is a subclass of base. Return false in all other cases.

There are very few functions specific to instance objects.

PyTypeObject PyInstance_Type
Type object for class instances.

int PyInstance_Check (PyObject *obj)
Return true if obj is an instance.

PyObject* PyInstance_New (PyObject *class, PyObject *arg, PyObject *kw)
Return value: New reference. Create a new instance of a specific class. The parameters arg and kw are used as the
positional and keyword parameters to the object’ s constructor.

PyObject* PyInstance_NewRaw (PyObject *class, PyObject *dict)
Return value: New reference. Create a new instance of a specific class without calling its constructor. class is the
class of new object. The dict parameter will be used as the object’ s __dict__;if NULL, a new dictionary will
be created for the instance.

7.5.2 REBHR

AL E T Python pRELHRREL .
PyFunctionObject
TR C S5H1K

PyTypeObject PyFunction_Type
XfE— 1 PyTypeObject SEfBIFHFE /R Python pREZEAL., BEfE N types.FunctionType [a] Python £
AT
int PyFunction_Check (PyObject *0)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL.
PyObject* PyFunction_New (PyObject *code, PyObject *globals)
Return value: New reference. iR 0| SACH X2 code FHRHIHT BB E o globals Wil Je— A7 H, ZRER]
PATTIR) 4 2
The function’ s docstring, name and __module__ are retrieved from the code object, the argument defaults and
closure are set to NULL.

75. HihMR 93

The Python/C API, X% 2.7.18

PyObject* PyFunction_GetCode (PyObject *op)
Return value: Borrowed reference. 12 [8] 5 BB 42 op FERIIACID R4 .

PyObject* PyFunction_GetGlobals (PyObject *op)
Return value: Borrowed reference. 205 pREUT S *op* A L Bem 4 /L.

PyObject* PyFunction_GetModule (PyObject *op)
Return value: Borrowed reference. 32 [0 BB op W) __module_ JEY, W& H— 8 TR RIS
FFER, HATRAE I Python FURS A IR A HABAL BXR

PyObject* PyFunction_GetDefaults (PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be a
tuple of arguments or NULL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.

RIMHSE| &% SystemError iR E -1

PyObject* PyFunction_GetClosure (PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This can be NULL or
a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.

KIGETS % systemError S IfaR M -1 .

7.5.3 HiEMR

There are some useful functions that are useful for working with method objects.

PyTypeObject PyMethod_Type
XAPyTypeObject SLBIFE Python JrikA, E{EHN types.MethodType [a] Python F2F AT .

int PyMethod_Check (PyObject *o)
Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL.

PyObject* PyMethod_New (PyObject *func, PyObject *self, PyObject *class)
Return value: New reference. Return a new method object, with func being any callable object; this is the function
that will be called when the method is called. If this method should be bound to an instance, self should be the
instance and class should be the class of self, otherwise self should be NULL and class should be the class which
provides the unbound method..

PyObject* PyMethod_Class (PyObject *meth)
Return value: Borrowed reference. Return the class object from which the method meth was created; if this was
created from an instance, it will be the class of the instance.

PyObject* PyMethod_GET_CLASS (PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Class () which avoids error checking.

PyObject* PyMethod_Function (PyObject *meth)
Return value: Borrowed reference. 32 [8] JeEER 515 meth IR B4 .

PyObject* PyMethod_GET_FUNCTION (PyObject *meth)
Return value: Borrowed reference. 72ANH I PyMet hod_Function (), W&Z% T HE5RAEN .

PyObject* PyMethod_Self£ (PyObject *meth)
Return value: Borrowed reference. Return the instance associated with the method meth if it is bound, otherwise
return NULL.

The Python/C API, X% 2.7.18

PyObject* PyMethod_GET_SELF (PyObject *meth)
Return value: Borrowed reference. 72 A PyMet hod _Self (), B8 T ARG .

int PyMethod_ClearFreelist ()

RN IR] TR 2% H AL
2.6 I E.

7.5.4 THMR

Python’ s built-in file objects are implemented entirely on the FILE* support from the C standard library. This is an
implementation detail and may change in future releases of Python.

PyFileObject
This subtype of PyOb ject represents a Python file object.

PyTypeObject PyFile_Type
This instance of Py TypeOb ject represents the Python file type. This is exposed to Python programs as file
and types.FileType.

int PyFile_Check (PyObject *p)
Return true if its argument is a PyFi leObject or a subtype of PyFileObject.

TE 2.2 iREE P Allowed subtypes to be accepted.

int PyFile_CheckExact (PyObject *p)
Return true if its argument is a PyFileObject, but not a subtype of PyFileObject.

2.2 B RE.

PyObject* PyFile_FromString (char *filename, char *mode)
Return value: New reference. On success, return a new file object that is opened on the file given by filename, with
a file mode given by mode, where mode has the same semantics as the standard C routine fopen (). On failure,
return NULL.

PyObject* PyFile_FromFile (FILE *fp, char *name, char *mode, int (*close)(FILE*))
Return value: New reference. Create a new PyFileObject from the already-open standard C file pointer, fp.
The function close will be called when the file should be closed. Return NULL and close the file using close on
failure. close is optional and can be set to NULL.

FILE* PyFile_AsFile (PyObject *p)
Return the file object associated with p asa FILE *.

If the caller will ever use the returned FILE* object while the GIL is released it must also call the
PyFile_IncUseCount () and PyFile_DecUseCount () functions described below as appropriate.

void PyFile_IncUseCount (PyFileObject *p)
Increments the PyFileObject’ s internal use count to indicate that the underlying F TLE * is being used. This prevents
Python from calling f_close() on it from another thread. Callers of this must call PyFile DecUseCount ()
when they are finished with the FILE*. Otherwise the file object will never be closed by Python.

The GIL must be held while calling this function.

The suggested use is to call this after PyFile AsFile () and before you release the GIL:

FILE *fp = PyFile_AsFile(p);
PyFile_IncUseCount (p);

JE L. */
Py_BEGIN_ALLOW_THREADS
do_something (fp) ;

(QEA)

7.5. HibItsk 95

The Python/C API, X% 2.7.18

(£ 50

Py_END_ALLOW_THREADS
/Jx L., */
PyFile_DecUseCount (p) ;

2.6 HIHE.

void PyFile_DecUseCount (PyFileObject *p)
Decrements the PyFileObject’ s internal unlocked_count member to indicate that the caller is done with its own
use of the FILE*. This may only be called to undo a prior call to PyFile TncUseCount ().

The GIL must be held while calling this function (see the example above).
2.6 FRIIEE.

PyObject* PyFile_GetLine (PyObject *p, int n)
Return value: New reference. Z5#y T p.readline ([n]) , X PEREMXTE p FEEE—FT. p A]DAE 04
MR HAA readline () FEMAEADNE. W 02 0, WIRRATHRKEEIf, #aEi—17. W
o KT 0%, WSO BORN R n N5 FTRGR BT —EB5r . ZEXPAMEOL T, s B s
RCHEARRE, WHREIZSFERFER . B2, W a/NF o, WIEIRKEMMER S 3 I—4T, H2 s
B REE, W5|% EOFError,

PyObject* PyFile_Name (PyObject *p)
Return value: Borrowed reference. Return the name of the file specified by p as a string object.

void PyFile_SetBufSize (PyFileObject *p, int n)
Available on systems with setvbuf () only. This should only be called immediately after file object creation.

int PyFile_SetEncoding (PyFileObject *p, const char *enc)
Set the file’ s encoding for Unicode output to enc. Return 1 on success and 0 on failure.

2.3 BN fE.

int PyFile_SetEncodingAndErrors (PyFileObject *p, const char *enc, *errors)
Set the file” s encoding for Unicode output to enc, and its error mode to err. Return 1 on success and O on failure.

2.6 I E.

int PyFile_SoftSpace (PyObject *p, int newflag)
This function exists for internal use by the interpreter. Set the softspace attribute of p to newflag and return
the previous value. p does not have to be a file object for this function to work properly; any object is supported
(thought its only interesting if the softspace attribute can be set). This function clears any errors, and will
return O as the previous value if the attribute either does not exist or if there were errors in retrieving it. There is
no way to detect errors from this function, but doing so should not be needed.

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)
FEXR obj G AN G p o flags ME—SZRFHIPREE Py_PRINT_RAW; HIREE, MEHAXRA str ()
MAIE repr () o BIIMNRIE 0, JKIGIHRE] -1, KFECE T 241 B4

int PyFile_WriteString (const char *s, PyObject *p)
FEFAFER s GRS po BRI 0 RIBGRIA] -1 K55 ARV 8

96 Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

7.5.5 ERIR

There are only a few functions special to module objects.

PyTypeObject PyModule_Type
This instance of PyTypeOb ject represents the Python module type. This is exposed to Python programs as
types.ModuleType.

int PyModule_Check (PyObject *p)
Return true if p is a module object, or a subtype of a module object.

FE 2.2 MCE P Allowed subtypes to be accepted.

int PyModule_CheckExact (PyObject *p)
Return true if p is a module object, but not a subtype of PyModule_Type.

2.2 i RE.

PyObject* PyModule_New (const char *name)
Return value: New reference. Return a new module object with the ___name___ attribute set to name. Only the
module’ s __doc___and __name___attributes are filled in; the caller is responsible for providinga ___file_
attribute.

PyObject* PyModule_GetDict (PyObject *module)
Return value: Borrowed reference. Return the dictionary object that implements module’ s namespace; this ob-
ject is the same as the ___dict___ attribute of the module object. This function never fails. It is recommended
extensions use other PyModule_* () and PyObject_* () functions rather than directly manipulate a module’
s__dict__.

char* PyModule_GetName (PyObject *module)
Return module’ s __name___value. If the module does not provide one, or if it is not a string, SystemError
is raised and NULL is returned.

char* PyModule_GetFilename (PyObject *module)
Return the name of the file from which module was loaded using module’ s __file___ attribute. If this is not
defined, or if it is not a string, raise SystemError and return NULL.

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)
Add an object to module as name. This is a convenience function which can be used from the module’ s initialization
function. This steals a reference to value. Return —1 on error, O on success.

2.0 i fE.

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Add an integer constant to module as name. This convenience function can be used from the module’ s initialization
function. Return —1 on error, O on success.

2.0 BRI RE.

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Add a string constant to module as name. This convenience function can be used from the module’ s initialization
function. The string value must be null-terminated. Return —1 on error, O on success.

2.0 H RN EE.

int PyModule_AddIntMacro (PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return —1 on error, 0 on success.

2.6 BFiHfE.

int PyModule_AddStringMacro (PyObject *module, macro)

7.5. Hfh¥+x 97

The Python/C API, X% 2.7.18

Add a string constant to module.

2.6 HHHE.

7.5.6 IXAIBIIR

Python 424t T W~il H A USRI R . S— PP S, BRSO __getitem () AL RFS.
B AE AT AR G — A sentinel B, 78 o BEE TR A XS, HFAER] sentinel fEIF45 R IE
e
PyTypeObject PySeqIlter_Type

pySeqIter_New () RIEIEMREXRIFRIIS R A EF IR NEREL iter O BRSHILN,

2.2 Frh e

int PySeqIter_Check (op)
W2 op KRB PySeqTter Type MR true,

2.2 R E.

PyObject* PySeqIter_New (PyObject *seq)
Return value: New reference. R [n]—A~ 5 & FLT 51 %5 52— 2 i F 25 A8 seq. 47 5117 F4AE S| k&
IndexError B, EMRLEH,

2.2 B R E.

PyTypeObject PyCalllter_ Type
Hip i PyCallliter New () Ml iter () WEMREHINSHILAIR E AR RIBT R

2.2 Fi .

int PyCallIter_Check (op)
WM op IWFHPycalllter Type WIR[H true.

2.2 i fE.

PyObject* PyCallIter_New (PyObject *callable, PyObject *sentinel)
Return value: New reference. 1 [0l— LM # . 85— AZ%L callable T DA ATA0 n] DAXER A S80S
BN FH Y Python W] FH XTS5 AR UE FHER M 2R BEA R A R —ANH o 24 callable 32 7145 sentinel
PIERT, BARL L.

2.2 B

7.5.7 HIRFFHR

PR RRAX R LB IR R . BV TR BN R A7,
PyTypeObject PyProperty_Type
NEHIAFT IR 42

2.2 B IRE.
PyObject* PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)
Return value: New reference. 2.2 Fi I EE.

PyObject* PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
Return value: New reference. 2.2 iR HE.

PyObject* PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)
Return value: New reference. 2.2 #i I HE.

98 Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

PyObject* PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value: New reference. 2.2 #i I HE.

PyObject* PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
Return value: New reference. 2.3 iR HE.

int PyDescr_IsData (PyObject *descr)

WFARFFXR deser AEARIRIE, WHRIE true; WERFARTTIA, WM false. descr AR FHRFFXT

g WA
2.2 FiHfE.

PyObject* PyWrapper_New (PyObject *, PyObject *)
Return value: New reference. 2.2 #iRINHE.

7.5.8 YR X&

PyTypeObject PySlice_Type
The type object for slice objects. This is the same as s1ice and types.SliceType.

int PySlice_Check (PyObject *ob)
Return true if ob is a slice object; ob must not be NULL.

PyObject* PySlice_New (PyObject *start, PyObject *stop, PyObject *step)

Return value: New reference. Return a new slice object with the given values. The start, stop, and step parameters
are used as the values of the slice object attributes of the same names. Any of the values may be NULL, in which
case the None will be used for the corresponding attribute. Return NULL if the new object could not be allocated.

int PySlice_GetIndices (PySliceObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,

Py_ssize_t *step)
Retrieve the start, stop and step indices from the slice object slice, assuming a sequence of length length. Treats
indices greater than length as errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed to
be converted to an integer, in which case —1 is returned with an exception set).

You probably do not want to use this function. If you want to use slice objects in versions of Python prior to 2.3,
you would probably do well to incorporate the source of PySilice GetIndicesEx (), suitably renamed, in
the source of your extension.

F£ 2.5 Fit B P This function used an int type for length and an int * type for start, stop, and step. This might
require changes in your code for properly supporting 64-bit systems.

int PySlice_GetIndicesEx (PySliceObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop,

Py_ssize_t *step, Py_ssize_t *slicelength)
Usable replacement for PyS1ice_GetIndices (). Retrieve the start, stop, and step indices from the slice
object slice assuming a sequence of length length, and store the length of the slice in slicelength. Out of bounds
indices are clipped in a manner consistent with the handling of normal slices.

Returns O on success and —1 on error with exception set.
2.3 B NRE.

FE 2.5 JitHE PR This function used an int type for length and an int * type for start, stop, step, and slicelength.
This might require changes in your code for properly supporting 64-bit systems.

7.5. Hfh¥+x 99

The Python/C API, X% 2.7.18

7.5.9 Ellipsis Object

PyObject *Py_Ellipsis

7.5.

The Python E11ipsis object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts. Like Py_None it is a singleton object.

10 5551 A&

Python 3§ “S551 " fEA—IMR . BMAKYL, APIFEHESIS GRS, B—Fhgie M a5

%,

5 RS AT REHLAE T O — AN X G AL

int PyWeakref_Check (ob)

W “ob” Jg—AHIHEEE MU, MRIE true.,
2.2 HiihE

int PyWeakref_CheckRef (ob)

s “ob” Z—5IH, WERE true,
2.2 i RE

int PyWeakref_CheckProxy (ob)

WA “ob” @ —AHXIS, MR M true,
2.2 FilhhE

PyObject* PyWeakref_ NewRef (PyObject *ob, PyObject *callback)

Return value: New reference. Return a weak reference object for the object ob. This will always return a new
reference, but is not guaranteed to create a new object; an existing reference object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.

2.2 e

PyObject* PyWeakref_NewProxy (PyObject *ob, PyObject *callback)

Return value: New reference. Return a weak reference proxy object for the object ob. This will always return a
new reference, but is not guaranteed to create a new object; an existing proxy object may be returned. The second
parameter, callback, can be a callable object that receives notification when ob is garbage collected; it should accept
a single parameter, which will be the weak reference object itself. callback may also be None or NULL. If ob is
not a weakly-referencable object, or if callback is not callable, None, or NULL, this will return NULL and raise
TypeError.

2.2 Fife

PyObject* PyWeakref_GetObject (P\ Object *ref)

Return value: Borrowed reference. & 15357 | A% ref HUBES FIXE4, MSLE IR SR FEAEAE, NLE

Py_None,

2.2 Fik e

et ZREUR P | AT E R —A = ESRIE T . X R BR AR 15 B e AR (8 310 5
RGNV RERA S, A5 WARI AR IR X Z R R W Py INCREF () .

PyObject* PyWeakref_GET_OBJECT (PyObject *ref’)

Return value: Borrowed reference. 25{l|PyWeakref GetObject (), {HELHH— MBI A %,

100

Chapter 7. EFRIMRE

The Python/C API, X% 2.7.18

2.2 BRI EE.

7511 KE

A A FH X EE X G) B £ (5 Bl 217 using-capsules.
2.7 Hi I gE.

PyCapsule
XAPyobject B TRMAFE —MER(E, UFEEL Python RIPRHERME (VA void* $REMYIE
) M C P REHE L Hf C RISRTEHERE M. Bl TR — b e L) C B = s
B i g FARBEER, DASERT AMGIB HLE I BT . 3 Fe /il ad TR SR S AL 7 180 S 25 2 Ak
i) C APL,

PyCapsule_Destructor

ARSI — Al gk] — A, s AT

typedef void (*PyCapsule_Destructor) (PyObject *);

ZAPyCapsule_New () 33kHl PyCapsule_Destructor % [HI{H f{iE X o

int PyCapsule_CheckExact (PyObject *p)
WRSHE—APyCapsule WA True

PyObject* PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)
Return value: New reference. Create a PyCapsule encapsulating the pointer. The pointer argument may not be
NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule Import ().

void* PyCapsule_GetPointer (PyObject *capsule, const char *name)
Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.

The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule is
NULL, the name passed in must also be NULL. Python uses the C function st rcmp () to compare capsule names.

PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Return the current destructor stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

void* PyCapsule_GetContext (PyObject *capsule)
Return the current context stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.

const char* PyCapsule_GetName (PyObject *capsule)
Return the current name stored in the capsule. On failure, set an exception and return NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.

7.5. HibItsk 101

The Python/C API, X% 2.7.18

void* PyCapsule_Import (const char *name, int no_block)
Import a pointer to a C object from a capsule attribute in a module. The name parameter should specify the full
name to the attribute, as inmodule.attribute. The name stored in the capsule must match this string exactly.
If no_block is true, import the module without blocking (using Py Import_ImportModuleNoBlock ()). If
no_block is false, import the module conventionally (using Py Import_ImportModule ()).

Return the capsule’ s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule_IsValid (PyObject *capsule, const char *name)
Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact (), has a non-NULL pointer stored in it, and its internal name matches the
name parameter. (See PyCapsule_GetPointer () for information on how capsule names are compared.)

In other words, if PyCapsule_ IsValid () returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get ()) are guaranteed to succeed.

Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext (PyObject *capsule, void *context)
Set the context pointer inside capsule to context.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
Set the destructor inside capsule to destructor.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName (PyObject *capsule, const char *name)
Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If the previous name stored
in the capsule was not NULL, no attempt is made to free it.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Set the void pointer inside capsule to pointer. The pointer may not be NULL.

Return 0 on success. Return nonzero and set an exception on failure.

7.5.12 CObjects

% fi.: The CObject AP is deprecated as of Python 2.7. Please switch to the new /i 42 APL

PyCObject
This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to access
C APIs defined in dynamically loaded modules.

int PyCObject_Check (PyObject *p)
Return true if its argument is a PyCOb ject.

PyObject* PyCObject_FromVoidPtr (void* cobj, void (*destr)(void *))
Return value: New reference. Create a PyCObject from the void * cobj. The destr function will be called
when the object is reclaimed, unless it is NULL.

102 Chapter 7. AFHMMRE

The Python/C API, X% 2.7.18

PyObject* PyCObject_FromVoidPtrAndDesc (void* cobj, void* desc, void (*destr)(void *, void *))
Return value: New reference. Create a PyCObject fromthe void * cobj. The destr function will be called when
the object is reclaimed. The desc argument can be used to pass extra callback data for the destructor function.

void* PyCObject_AsVoidPtr (PyObject* self)
Return the object void * that the PyCOb ject self was created with.

void* PyCObject_GetDesc (PyObject* self)
Return the description void * that the PyCOb ject self was created with.

int PyCObject_SetVoidPtr (PyObject* self, void* cobyj)
Set the void pointer inside self to cobj. The PyCObject must not have an associated destructor. Return true on
success, false on failure.

7.5.13 Cell 3%

“Cell” 4 AT 5L B ZAMEFSE 02 . T AR AR, — A “Cell” M40l T AR L T b
O 31 PR 1A M RE S0 A 4 [R B P 2 B X AN AR A “Cell” 1M, 7% (8
I, R “Cell” AL HYMETI A & FRTTHON A By o IXFPX “Cell” X G AE RIRALIN 5 | HI 77 2SR A A
S DRI R S [3D TR AR B Y28 . “Cell” X GAE HAH 7 T BER A T -
PyCellObject

T Cell XF521Y C &l ik

PyTypeObject PyCell_Type
5 Cell XFRXF AT R

int PyCell_Check (ob)
Return true if ob is a cell object; ob must not be NULL.

PyObject* PyCell_New (PyObject *ob)
Return value: New reference. Create and return a new cell object containing the value ob. The parameter may be
NULL.

PyObject* PyCell_Get (PyObject *cell)
Return value: New reference. 1R 7] cell X5 cell FHNZ

PyObject* PyCell_GET (PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-NULL
and a cell object.

int PyCell_Set (PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell. value
may be NULL. cell must be non-NULL; if it is not a cell object, —1 will be returned. On success, 0 will be returned.

void PyCell_SET (PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for safety;
cell must be non-NULL and must be a cell object.

75. HihMR 103

The Python/C API, X% 2.7.18

7514 £ HR

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over a
function that yields values, rather than explicitly calling PyGen_New ().

PyGenObject

TR R C S5t A
PyTypeObject PyGen_Type
SR o UE SUIATIE SO

int PyGen_Check (ob)
Return true if ob is a generator object; ob must not be NULL.

int PyGen_CheckExact (ob)
Return true if 0ob’ s type is PyGen_Type is a generator object; ob must not be NULL.

PyObject* PyGen_New (PyFrameObject *frame)
Return value: New reference. Create and return a new generator object based on the frame object. A reference to
frame is stolen by this function. The parameter must not be NULL.

7.5.15 DateTime Y&

datetime BIH$RAL T2 B0 H BIAIET RIS 76 AR X S8 s B2 B, 0 Z50FE AR A 15 AS Hh A B 3k S
datetime.h (EERM IR ETE Python. h), I HIS PyDateTime IMPORT MM A , i
e MR IR LB B — T2 o XSRS FFR AR E C S5 TREH A — 528 & PyDateTimeAPT
H, B H N AR .
pitliveEcw
int PyDate_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob must
not be NULL.

2.4 B fE.

int PyDate_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL.

2.4 B RE.

int PyDateTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType or asubtype of PyDateTime_DateTimeType.
ob must not be NULL.

2.4 BN RE.

int PyDateTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL.

2.4 B RE.

int PyTime_Check (PyObject *ob)
Return true if 0b is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob must
not be NULL.

2.4 I E.

int PyTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL.

2.4 B

104 Chapter 7. AFHMMRE

The Python/C API, X% 2.7.18

int PyDelta_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or asubtype of PyDateTime_DeltaType. ob must
not be NULL.

2.4 BRI RE.

int PyDelta_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL.
2.4 BRI RE.

int PyTZInfo_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType. ob
must not be NULL.

2.4 R fE.
int PyTZInfo_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL.
2.4 B RE.
TRV RN E
PyObject* PyDate_FromDate (int year, int month, int day)
Return value: New reference. Return a datet ime . date object with the specified year, month and day.
2.4 B RE.

PyObject* PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second,

int usecond)
Return value: New reference. Return a datet ime . datet ime object with the specified year, month, day, hour,

minute, second and microsecond.
2.4 F I RE.

PyObject* PyTime_FromTime (int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second and
microsecond.

2.4 B RE.

PyObject* PyDelta_FromDSU (int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of days,
seconds and microseconds. Normalization is performed so that the resulting number of microseconds and seconds
lie in the ranges documented for datet ime.timedelta objects.

2.4 BN fE.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including sub-
classes (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR (PyDateTime_Date *o)
PAIE#E B0 I 2GR o] AR 03 (L
2.4 FrEhfE.

int PyDateTime_GET_MONTH (PyDateTime_Date *0)
R, M0 F| 12 %L

2.4 BN RE.

int PyDateTime_GET_ DAY (PyDateTime_Date *0)

R A, A0 2 31 HEEAL.
2.4 B RE.

7.5. Hfh¥+x 105

The Python/C API, X% 2.7.18

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime, in-
cluding subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR (PyDateTime_DateTime *o)
IR[E/INGE, A O B 23 [REEL

2.4 BRI E.

int PyDateTime_DATE_GET_MINUTE (PyDateTime_DateTime *0)
S5 o NNV IRUR O3/ @

2.4 B fE.

int PyDateTime_DATE_GET_SECOND (PyDateTime_DateTime *0)
WREED, A0 B 59 AL

2.4 BN RE.

int PyDateTime_DATE_GET_MICROSECOND (PyDateTime_DateTime *0)
IR, MO F1] 999999 Y HE AL .

2.4 B RE.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including sub-
classes. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR (PyDateTime_Time *o)
ARENEE, A0 F 23 YRR

2.4 BN RE.

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *o)

REMh, A0 F SO HEAL
2.4 B RE.

int PyDateTime_TIME_GET_SECOND (PyDateTime_Time *0)
AREED, MO F 59 AL

2.4 F D RE.

int PyDateTime_TIME_GET_MICROSECOND (PyDateTime_Time *0)
AR EGER A0 F] 999999 [t HE %k .
2.4 FCNRE.

— LSBT RIS E DB APL !

PyObject* PyDateTime_FromTimestamp (PyObject *args)

Return value: New reference. Create and return a new datetime.datetime object given an argument tuple
suitable for passing to datetime.datetime.fromtimestamp ().

2.4 B

PyObject* PyDate_FromTimestamp (PyObject *args)
Return value: New reference. Create and return a new datet ime . date object given an argument tuple suitable
for passing to datetime.date.fromtimestamp ().

2.4 FrEhfE.

106 Chapter 7. AFHMMRE

The Python/C API, X% 2.7.18

75.16 EEHK
2.5 il HE.

This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using the either the abstract object protocol (including PyObject_CallMethod(),
PyObject_RichCompareBool (), PyObject_Hash (), PyObject_Repr (), PyObject_IsTrue(),
PyObject_Print (), and PyObject_GetIter()) or the abstract number protocol (includ-
ing PyNumber_And(), PyNumber_Subtract (), PyNumber_Or (), PyNumber_Xor (),
PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract(), PyNumber_InPlaceOr (), and
PyNumber_InPlaceXor ()).

PySetObject
This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of this
structure should be considered public and are subject to change. All access should be done through the documented
API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type
This is an instance of Py TypeOb ject representing the Python set type.

PyTypeObject PyFrozenSet_Type
This is an instance of Py TypeOb ject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work with
any iterable Python object.

int PySet_Check (PyObject *p)
Return true if p is a set object or an instance of a subtype.

2.6 e

int PyFrozenSet_Check (PyObject *p)
Return true if p is a frozenset object or an instance of a subtype.

2.6 BFiHIfE.

int PyAnySet_Check (PyObject *p)
Return true if pis a set object, a frozenset object, or an instance of a subtype.

int PyAnySet_CheckExact (PyObject *p)
Return true if pis a set object or a frozenset object but not an instance of a subtype.

int PyFrozenSet_CheckExact (PyObject *p)
Return true if pis a frozenset object but not an instance of a subtype.

PyObject* PySet_New (PyObject *iterable)
Return value: New reference. Return a new set containing objects returned by the iterable. The iterable may be
NULL to create a new empty set. Return the new set on success or NULL on failure. Raise TypeError if iterable
is not actually iterable. The constructor is also useful for copying a set (c=set (s)).

PyObject* PyFrozenSet_New (PyObject *iterable)
Return value: New reference. Return a new frozenset containing objects returned by the iterable. The iter-
able may be NULL to create a new empty frozenset. Return the new set on success or NULL on failure. Raise
TypeError if iterable is not actually iterable.

Tr 2.6 i PR Now guaranteed to return a brand-new frozenset. Formerly, frozensets of zero-length were a
singleton. This got in the way of building-up new frozensets with PySet_Add ().

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

7.5. HibItsk 107

The Python/C API, X% 2.7.18

Py_ssize_t PySet_Size (PyObject *anyset)
Return the length of a set or frozenset object. Equivalent to len (anyset). Raises a
PyExc_SystemError if anyset isnota set, frozenset, or an instance of a subtype.

F£ 2.5 R H Y This function returned an int. This might require changes in your code for properly supporting
64-bit systems.

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
Macro form of PySet_Size () without error checking.

int PySet_Contains (PyObject *anyset, PyObject *key)
Return 1 if found, O if not found, and -1 if an error is encountered. Unlike the Python __contains__ ()
method, this function does not automatically convert unhashable sets into temporary frozensets. Raise a
TypeError if the key is unhashable. Raise PyExc_SystemError if anyset is not a set, frozenset,
or an instance of a subtype.

int PySet_Add (PyObject *set, PyObject *key)
Add key to a set instance. Does not apply to frozenset instances. Return O on success or —1 on failure.
Raise a TypeError if the key is unhashable. Raise a MemoryError if there is no room to grow. Raise a
SystemError if set is not an instance of set or its subtype.

TE 2.6 i P Now works with instances of frozenset or its subtypes. Like PyTuple SetItem () in that
it can be used to fill-in the values of brand new frozensets before they are exposed to other code.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its
subtypes.

int PySet_Discard (PyObject *set, PyObject *key)
Return 1 if found and removed, O if not found (no action taken), and —1 if an error is encountered. Does
not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike the Python
discard () method, this function does not automatically convert unhashable sets into temporary frozensets.
Raise PyExc_SystemError if set is not an instance of set or its subtype.

PyObject* PySet_Pop (PyObject *set)
Return value: New reference. Return a new reference to an arbitrary object in the set, and removes the object from
the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a SystemError if sef is not an
instance of set or its subtype.

int PySet_Clear (PyObject *set)
T2 A S I A SREAELRT

7517 RIBHHK

ASXF 5 & CPython SEHLAYARGLANTY . Ui R 4858 21 ek £ B T AT AURS
PyCodeObject
TR AR R C G514 . A7 BT il sy B 0
PyTypeObject PyCode_Type
Xsg—PyTypeObject LM, HFIR Python [f) code A,
int PyCode_Check (PyObject *co)
R co j&—> code XFZLNHRE true.

int PyCode_GetNumFree (PyObject *co)
R[] co HY AR

108 Chapter 7. AFHMMRE

The Python/C API, X% 2.7.18

PyCodeObject *PyCode_New (int argcount, int nlocals, int stacksize, int flags, PyObject *code, PyObject *consts,
PyObject *names, PyObject *varnames, PyObject *freevars, PyObject *cellvars,
PyObject *filename, PyObject *name, int firstlineno, PyObject *Inotab)
[— A AR X g 2R AR TR — A M LA ROk B — A AR, 3
HlPyCode_NewEmpty (). Y PyCode_New () H.#: 1] PAG E B HEHI Y Python WiAS, A N7 g
E LA .

int PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)
Return a new empty code object with the specified filename, function name, and first line number. It is illegal to
execor eval () the resulting code object.

75. HihMR 109

The Python/C API, X% 2.7.18

110 Chapter 7. A#IMRE

CHAPTER 8

Initialization, Finalization, and Threads

8.1 Initializing and finalizing the interpreter

void Py_Initialize ()

Initialize the Python interpreter. In an application embedding Python, this should be called before using any
other Python/C API functions; with the exception of Py_SetProgramName (), Py_SetPythonHome (),
PyEval_InitThreads (), PyEval_ReleaseLock (), and PyEval_AcquireLock (). This initial-
izes the table of loaded modules (sys.modules), and creates the fundamental modules _ builtin__,
__main__ and sys. It also initializes the module search path (sys.path). It does not set sys.
argv; use PySys_SetArgvEx () for that. This is a no-op when called for a second time (without calling
Py_Finalize () first). There is no return value; it is a fatal error if the initialization fails.

void Py_InitializeEx (int initsigs)
This function works like Py_Tnitialize () if initsigsis 1. If initsigs is 0, it skips initialization registration of
signal handlers, which might be useful when Python is embedded.

2.4 R E.

int Py_IsInitialized()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After Py_Finalize ()
is called, this returns false until Py_Tnitialize () is called again.

void Py_Finalize ()
Undo all initializations made by Py_Tnitialize () and subsequent use of Python/C API functions, and destroy
all sub-interpreters (see Py_NewInterpreter () below) that were created and not yet destroyed since the last
callto Py_Initialize (). Ideally, this frees all memory allocated by the Python interpreter. This is a no-op
when called for a second time (without calling Py_ Tnitialize () again first). There is no return value; errors
during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart Python without
having to restart the application itself. An application that has loaded the Python interpreter from a dynamically
loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During
a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before
exiting from the application.

111

The Python/C API, X% 2.7.18

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del___ () methods) to fail when they depend on other objects (even functions) or modules. Dy-
namically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by
the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references
between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions
may not work properly if their initialization routine is called more than once; this can happen if an application calls
Py_Initialize () and Py Finalize () more than once.

8.2 Process-wide parameters

void Py_SetProgramName (char *name)

This function should be called before Py_Tnitialize () is called for the first time, if it is called at all. It tells
the interpreter the value of the argv [0] argument to the main () function of the program. This is used by
Py_GetPath () and some other functions below to find the Python run-time libraries relative to the interpreter
executable. The default value is 'python'. The argument should point to a zero-terminated character string in
static storage whose contents will not change for the duration of the program’ s execution. No code in the Python
interpreter will change the contents of this storage.

char* Py_GetProgramName ()

Return the program name set with Py SetProgramName (), or the default. The returned string points into
static storage; the caller should not modify its value.

char* Py_GetPrefix ()

Return the prefix for installed platform-independent files. This is derived through a number of complicated rules
from the program name set with Py_ Set ProgramName () and some environment variables; for example, if the
program name is ' /usr/local/bin/python’, the prefixis ' /usr/local'. The returned string points
into static storage; the caller should not modify its value. This corresponds to the prefix variable in the top-
level Makefile and the ——prefix argument to the configure script at build time. The value is available to
Python code as sys . prefix. Itis only useful on Unix. See also the next function.

char* Py_GetExecPrefix ()

Return the exec-prefix for installed platform-dependent files. This is derived through a number of complicated rules
from the program name set with Py_SetProgramName () and some environment variables; for example, if
the program name is ' /usr/local/bin/python’', the exec-prefixis ' /usr/local'. The returned string
points into static storage; the caller should not modify its value. This corresponds to the exec_prefix variable
in the top-level Makefile and the ——exec-prefix argument to the configure script at build time. The
value is available to Python code as sys.exec_prefix. Itis only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared
libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed
inthe /usr/local/plat subtree while platform independent may be installed in /usr/local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running
the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are
another platform, and Intel machines running Linux are yet another platform. Different major revisions of the
same operating system generally also form different platforms. Non-Unix operating systems are a different story;
the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set
to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from
the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

char* Py_GetProgramFullPath ()

Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (set by Py_SetProgramName () above). The returned string

112

Chapter 8. Initialization, Finalization, and Threads

The Python/C API, X% 2.7.18

points into static storage; the caller should not modify its value. The value is available to Python code as sys.
executable.

char* Py_GetPath ()
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName () above) and some environment variables. The returned string consists of a se-
ries of directory names separated by a platform dependent delimiter character. The delimiter character is ' : '
on Unix and Mac OS X, '; ' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys . path is initialized with this value on interpreter startup; it can be (and usually is)
modified later to change the search path for loading modules.

const char* Py_GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"

The first word (up to the first space character) is the current Python version; the first three characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not modify
its value. The value is available to Python code as sys .version.

const char* Py_GetPlatform ()
Return the platform identifier for the current platform. On Unix, this is formed from the “official” name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is
also known as SunOS 5.x, the value is ' sunos5'. On Mac OS X, itis 'darwin'. On Windows, itis 'win'.
The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.platform.

const char* Py_GetCopyright ()
Return the official copyright string for the current Python version, for example

'"Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.copyright.

const char* Py_GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

const char* Py_GetBuildInfo ()
Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

void PySys_ SetArgvEx (int argc, char **argv, int updatepath)
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’ smain ()
function with the difference that the first entry should refer to the script file to be executed rather than the executable
hosting the Python interpreter. If there isn’ t a script that will be run, the first entry in argv can be an empty string.
If this function fails to initialize sy s . argv, a fatal condition is signalled using Py_FatalError ().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys .path
according to the following algorithm:

8.2. Process-wide parameters 113

The Python/C API, X% 2.7.18

* If the name of an existing script is passed in argv [0], the absolute path of the directory where the script
is located is prepended to sys .path.

e Otherwise (that is, if argc is 0 or argv [0] doesn’ t point to an existing file name), an empty string is
prepended to sys . path, which is the same as prepending the current working directory (" . ").

{Ef#: Tt is recommended that applications embedding the Python interpreter for purposes other than executing a
single script pass 0 as updatepath, and update sys . path themselves if desired. See CVE-2008-5983.

On versions before 2.6.6, you can achieve the same effect by manually popping the first sys . path element after
having called PySys_SetArgv (), for example using:

PyRun_SimpleString ("import sys; sys.path.pop(0)\n");

2.6.6 FiH I E.

void PySys_SetArgv (int argc, char **argv)
This function works like Py Sys_SetArgvEx () with updatepath set to 1.

void Py_SetPythonHome (char *home)
Set the default “home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for
the meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’ s execution. No code in the Python interpreter will change the contents of this
storage.

char* Py_GetPythonHome ()
Return the default “home” , that is, the value set by a previous call to Py_SetPythonHome (), or the value of
the PYTHONHOME environment variable if it is set.

8.3 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’ s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python
objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example,
when two threads simultaneously increment the reference count of the same object, the reference count could end up
being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see sys.
setcheckinterval ()). The lock is also released around potentially blocking I/O operations like reading or writing
a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’ s also one global variable pointing to the current Py ThreadState: it can be retrieved
using PyThreadState_Get ().

114 Chapter 8. Initialization, Finalization, and Threads

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, X% 2.7.18

8.3.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
. Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
. Do some blocking I/O operation
Py_END_ALLOW_THREADS

The Py BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block. These two macros are still available when Python is compiled
without thread support (they simply have an empty expansion).

When thread support is enabled, the block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
...Do some blocking I/0 operation...
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is
released (since another thread could immediately acquire the lock and store its own thread state in the global variable).
Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread
state pointer.

{#f#: Calling system /O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’ t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard z1 ib and hash1ib modules release the GIL when
compressing or hashing data.

8.3.2 jE Python G|y i2

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is automat-
ically associated to them and the code showed above is therefore correct. However, when threads are created from C (for
example by a third-party library with its own thread management), they don’ t hold the GIL, nor is there a thread state
structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the aforementioned
third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then
acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you
are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.

The PyGILState Ensure () and PyGILState_ Release () functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

8.3. Thread State and the Global Interpreter Lock 115

The Python/C API, X% 2.7.18

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* () functions assume there is only one global interpreter (created automatically by
Py _Initialize ()). Python supports the creation of additional interpreters (using Py_NewInterpreter ()),
but mixing multiple interpreters and the PyGILState_* () API is unsupported.

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems with
fork (), after a process forks only the thread that issued the fork will exist. That also means any locks held by other
threads will never be released. Python solves this for os. fork () by acquiring the locks it uses internally before the
fork, and releasing them afterwards. In addition, it resets any lock-objects in the child. When extending or embedding
Python, there is no way to inform Python of additional (non-Python) locks that need to be acquired before or reset after
a fork. OS facilities such as pthread_atfork () would need to be used to accomplish the same thing. Additionally,
when extending or embedding Python, calling fork () directly rather than through os. fork () (and returning to or
calling into Python) may result in a deadlock by one of Python’ s internal locks being held by a thread that is defunct
after the fork. PyOS_AfterFork () tries to reset the necessary locks, but is not always able to.

8.3.3 S API

These are the most commonly used types and functions when writing C extension code, or when embedding the Python
interpreter:

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same
interpreter share their module administration and a few other internal items. There are no public members in this
structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory, open
file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter
they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp, which points to this thread’ s interpreter state.

void PyEval_InitThreads ()
Initialize and acquire the global interpreter lock. It should be called in the main thread before creat-
ing a second thread or engaging in any other thread operations such as PyEval_ ReleaseLock () or
PyEval_ReleaseThread (tstate). It is not needed before calling PyEval_ SaveThread() or
PyEval_RestoreThread().

This is a no-op when called for a second time. It is safe to call this function before calling Py Tnitialize ().

{Ef#: When only the main thread exists, no GIL operations are needed. This is a common situation (most Python
programs do not use threads), and the lock operations slow the interpreter down a bit. Therefore, the lock is not
created initially. This situation is equivalent to having acquired the lock: when there is only a single thread, all
object accesses are safe. Therefore, when this function initializes the global interpreter lock, it also acquires it.
Before the Python _thread module creates a new thread, knowing that either it has the lock or the lock hasn’ t

116 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, X% 2.7.18

been created yet, it calls PyEval_ TnitThreads (). When this call returns, it is guaranteed that the lock has
been created and that the calling thread has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global interpreter lock.

This function is not available when thread support is disabled at compile time.

int PyEval_ThreadsInitialized ()
Returns a non-zero value if PyEval_ InitThreads () has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded. This
function is not available when thread support is disabled at compile time.

2.4 R E.

PyThreadState* PyEval_SaveThread ()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread state
to NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it. (This function is available even when thread support is disabled at compile time.)

void PyEval_RestoreThread (PyThreadState *tstate)
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread state to
tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it, otherwise
deadlock ensues. (This function is available even when thread support is disabled at compile time.)

PyThreadState* PyThreadState_Get ()
Return the current thread state. The global interpreter lock must be held. When the current thread state is NULL,
this issues a fatal error (so that the caller needn’ t check for NULL).

PyThreadState* PyThreadState_Swap (PyThreadState *tstate)
Swap the current thread state with the thread state given by the argument zstate, which may be NULL. The global
interpreter lock must be held and is not released.

void PyEval_ReInitThreads ()
This function is called from PyOS_AfterFork () to ensure that newly created child processes don’ t hold locks
referring to threads which are not running in the child process.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState_STATE PyGILState_Ensure ()
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python, or
of the global interpreter lock. This may be called as many times as desired by a thread as long as each call is
matched with a call to PyGILState Release (). In general, other thread-related APIs may be used be-
tween PyGILState_FEnsure () and PyGILState Release () calls as long as the thread state is restored
to its previous state before the Release(). For example, normal usage of the Py BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque “handle” to the thread state when PyGILState_Ensure () was called, and
must be passed to PyGILState_Release () to ensure Python is left in the same state. Even though recursive
calls are allowed, these handles cannot be shared - each unique call to PyGILState Ensure () must save the
handle for its call to PyGIL.State Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure
is a fatal error.

2.3 B EE.

void PyGILState_Release (PyGILState_STATE)
Release any resources previously acquired. After this call, Python’ s state will be the same as it was prior to the

corresponding PyGILState_Ensure () call (but generally this state will be unknown to the caller, hence the
use of the GILState API).

8.3. Thread State and the Global Interpreter Lock 117

The Python/C API, X% 2.7.18

Everycallto PyGILState_Ensure () mustbe matchedbyacallto PyGILState Release () onthe same
thread.

2.3 B RIIEE.

PyThreadState* PyGILState_GetThisThreadState ()
Get the current thread state for this thread. May return NULL if no GILState API has been used on the current
thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made
on the main thread. This is mainly a helper/diagnostic function.

2.3 B fE.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOW_THREADS
This macro expandsto { PyThreadState *_save; _save = PyEval_SaveThread () ;. Note that
it contains an opening brace; it must be matched with a following Py_ END_ALLOW_THREADS macro. See above
for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py_END_ALLOW_THREADS
This macro expands to PyEval_RestoreThread (_save); }. Note thatit contains a closing brace; it must
be matched with an earlier Py BEGIN_ALLOW_THREADS macro. See above for further discussion of this macro.
It is a no-op when thread support is disabled at compile time.

Py_BLOCK_THREADS
This macro expands to PyEval_RestoreThread(_save);: it is equivalent to
Py _END_ALLOW_THREADS without the closing brace. It is a no-op when thread support is disabled at
compile time.

Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread() ;: it is equivalent to
Py _BEGIN_ALLOW_THREADS without the opening brace and variable declaration. It is a no-op when
thread support is disabled at compile time.

8.3.4 Low-level API

All of the following functions are only available when thread support is enabled at compile time, and must be called only
when the global interpreter lock has been created.

PyInterpreterState* PyInterpreterState_New ()
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is necessary
to serialize calls to this function.

void PyInterpreterState_Clear (PylnterpreterState *interp)
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PyInterpreterState_Delete (PylnterpreterState *interp)
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have
been reset with a previous call to Py InterpreterState Clear ().

PyThreadState* PyThreadState_New (PylnterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not be
held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Reset all information in a thread state object. The global interpreter lock must be held.

118 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, X% 2.7.18

void PyThreadState_Delete (PyThreadState *tstate)
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset
with a previous call to PyThreadState_Clear ().

PyObject* PyThreadState_GetDict ()
Return value: Borrowed reference. Return a dictionary in which extensions can store thread-specific state informa-
tion. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function
when no current thread state is available. If this function returns NULL, no exception has been raised and the caller
should assume no current thread state is available.

TE 2.3 fR B I Previously this could only be called when a current thread is active, and NULL meant that an
exception was raised.

int PyThreadState_SetAsyncExc (long id, PyObject *exc)
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the
exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you must
write your own C extension to call this. Must be called with the GIL held. Returns the number of thread states
modified; this is normally one, but will be zero if the thread id isn’ t found. If exc is NULL, the pending exception
(if any) for the thread is cleared. This raises no exceptions.

2.3 FrIEe.

void PyEval_AcquireThread (PyThreadState *tstate)
Acquire the global interpreter lock and set the current thread state to fstate, which should not be NULL. The lock
must have been created earlier. If this thread already has the lock, deadlock ensues.

PyEval_RestoreThread () is a higher-level function which is always available (even when thread support
isn’ t enabled or when threads have not been initialized).

void PyEval_ReleaseThread (PyThreadState *tstate)
Reset the current thread state to NULL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. The tstafe argument, which must not be NULL, is only used to check
that it represents the current thread state —if it isn’ t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when thread support isn’ t
enabled or when threads have not been initialized).

void PyEval_AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock, a
deadlock ensues.

%% . This function does not change the current thread state. Please use PyEval_ RestoreThread () or
PyEval_AcquireThread () instead.

void PyEval_ReleaseLock ()
Release the global interpreter lock. The lock must have been created earlier.

% M This function does not change the current thread state. Please use PyEval_SaveThread () or
PyEval_ReleaseThread () instead.

8.3. Thread State and the Global Interpreter Lock 119

The Python/C API, X% 2.7.18

8.4 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.
You can switch between sub-interpreters using the Py ThreadState_Swap () function. You can create and destroy
them using the following functions:

PyThreadState* Py_NewInterpreter ()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the fun-
damental modules builtins, _ main__ and sys. The table of loaded modules (sys.modules) and the
module search path (sys.path) are also separate. The new environment has no sys.argv variable. It has
new standard I/O stream file objects sys.stdin, sys.stdout and sys . stderr (however these refer to the
same underlying file descriptors).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation
of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state is stored in
the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the
global interpreter lock must be held before calling this function and is still held when it returns; however, unlike
most other Python/C API functions, there needn’ t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is im-
ported, it is initialized normally, and a (shallow) copy of its module’ s dictionary is squirreled away. When the
same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents
of this copy; the extension’ s init function is not called. Note that this is different from what happens when
an extension is imported after the interpreter has been completely re-initialized by calling Py Finalize () and
Py_Initialize ();in that case, the extension’ s initmodule function is called again.

void Py_EndInterpreter (PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state is NULL. All
thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before calling
this function and is still held when it returns.) Py_Finalize () will destroy all sub-interpreters that haven’ t
been explicitly destroyed at that point.

8.4.1 HBFIBE

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’ t
perfect —for example, using low-level file operations like os.close () they can (accidentally or maliciously) affect
each other’ s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when the extension makes use of (static) global variables, or when the extension
manipulates its module’ s dictionary after its initialization. It is possible to insert objects created in one sub-interpreter
into a namespace of another sub-interpreter; this should be done with great care to avoid sharing user-defined functions,
methods, instances or classes between sub-interpreters, since import operations executed by such objects may affect the
wrong (sub-)interpreter’ s dictionary of loaded modules.

Also note that combining this functionality with PyGILState_* () APIs is delicate, because these APIs assume a
bijection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters. It
is highly recommended that you don’ t switch sub-interpreters between a pair of matching PyGILState_ Ensure ()
and PyGILState_Release () calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using sub-interpreters.

120 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, X% 2.7.18

8.5 HiEM

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the
form of a function pointer and a void pointer argument.

int Py_AddPendingCall (int (*func)(void *), void *arg)
Schedule a function to be called from the main interpreter thread. On success, O is returned and func is queued for
being called in the main thread. On failure, —1 is returned without setting any exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument arg.
It will be called asynchronously with respect to normally running Python code, but with both these conditions met:

* on a bytecode boundary;
 with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return 0 on success, or —1 on failure with an exception set. func won’ t be interrupted to perform another
asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock
is released.

This function doesn’ t need a current thread state to run, and it doesn’ t need the global interpreter lock.

g e: This is a low-level function, only useful for very special cases. There is no guarantee that func will be
called as quick as possible. If the main thread is busy executing a system call, func won’ t be called before the
system call returns. This function is generally not suitable for calling Python code from arbitrary C threads.
Instead, use the PyGILState API.

2.7 i RE.

8.6 SrHTFOERER

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are
used for profiling, debugging, and coverage analysis tools.

Starting with Python 2.2, the implementation of this facility was substantially revised, and an interface from C was added.
This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects,
making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace
functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported
to the Python-level trace functions in previous versions.

int (*Py_tracefunc) (PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval SetProfile () and PyEval_ SetTrace (). The
first parameter is the object passed to the registration function as obj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, or PyTrace_C_RETURN, and arg
depends on the value of what:

8.5. BRIiEM 121

The Python/C API, X% 2.7.18

what B1E arg a X

PyTrace_CALL ,'é\zEéPy_None.

PyTrace_EXCEPTION sys.exc_info () BRI FEEL.

PyTrace_LINE ,"E,'\zEéPy_None.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL EAE R RO 4 .

PyTrace C_EXCEPTION | 1EfEVa 1 AR 4,

PyTrace_C_RETURN TEAEVE FH RO 52

int PyTrace_CALL
The value of the what parameter to a Py_ t racefunc function when a new call to a function or method is being
reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not
reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Py_ t race func function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception becomes
set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to
unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives
these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a trace function (but not a profiling function) when a line-number event
is being reported.

int PyTrace_RETURN
The value for the what parameter to Py_ t race func functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_ t race func functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_t race func functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_ t race func functions when a C function has returned.

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be
any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj for each
thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events
except PyTrace_LINE and PyTrace_EXCEPTION.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval SetProfile (), except the tracing func-
tion does receive line-number events and does not receive any event related to C function objects being
called. Any trace function registered using PyEval_SetTrace () will not receive PyTrace_C_CALL,
PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what parameter.

PyObject* PyEval_GetCallStats (PyObject *self)
Return a tuple of function call counts. There are constants defined for the positions within the tuple:

122 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, X% 2.7.18

<
L
c
D

Name

PCALL_ALL
PCALL_FUNCTION
PCALL_FAST_FUNCTION
PCALL_FASTER_FUNCTION
PCALL_METHOD
PCALL_BOUND_METHOD
PCALL_CFUNCTION
PCALL_TYPE
PCALL_GENERATOR
PCALL_OTHER
PCALL_POP

O 00| | A\ K~|W N —|O

—
)

PCALL_FAST_FUNCTION means no argument tuple needs to be created. PCALL_FASTER_FUNCTION means
that the fast-path frame setup code is used.

If there is a method call where the call can be optimized by changing the argument tuple and calling the function
directly, it gets recorded twice.

This function is only present if Python is compiled with CALL_PROFILE defined.

8.7 MR RRTHF

These functions are only intended to be used by advanced debugging tools.

PylInterpreterState* PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.

2.2 FifE.

PylnterpreterState* PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.

2.2 B RE.

PyThreadState * PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first Py ThreadStat e object in the list of threads associated with the interpreter interp.

2.2 B E.

PyThreadState* PyThreadState_Next (PyThreadState *tstate)
Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState object.

2.2 R RE.

8.7. BRIAIRAEZH 123

The Python/C API, X% 2.7.18

124 Chapter 8. Initialization, Finalization, and Threads

CHAPTER 9

9.1 #fiA

Memory management in Python involves a private heap containing all Python objects and data structures. The manage-
ment of this private heap is ensured internally by the Python memory manager. The Python memory manager has different
components which deal with various dynamic storage management aspects, like sharing, segmentation, preallocation or
caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all Python-
related data by interacting with the memory manager of the operating system. On top of the raw memory allocator, several
object-specific allocators operate on the same heap and implement distinct memory management policies adapted to the
peculiarities of every object type. For example, integer objects are managed differently within the heap than strings, tuples
or dictionaries because integers imply different storage requirements and speed/space tradeoffs. The Python memory
manager thus delegates some of the work to the object-specific allocators, but ensures that the latter operate within the
bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions exported
by the C library: malloc (), calloc (), realloc () and free (). This will result in mixed calls between the
C allocator and the Python memory manager with fatal consequences, because they implement different algorithms and
operate on different heaps. However, one may safely allocate and release memory blocks with the C library allocator for
individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)

return PyErr_NoMemory () ;
...Do some I/O operation involving buf...
res = PyString_ FromString (buf);

(Rt

125

The Python/C API, X% 2.7.18

(£ 50

free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory manager
is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter
is under control of the Python memory manager. For example, this is required when the interpreter is extended with new
object types written in C. Another reason for using the Python heap is the desire to inform the Python memory manager
about the memory needs of the extension module. Even when the requested memory is used exclusively for internal,
highly-specific purposes, delegating all memory requests to the Python memory manager causes the interpreter to have a
more accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the Python memory
manager may or may not trigger appropriate actions, like garbage collection, memory compaction or other preventive
procedures. Note that by using the C library allocator as shown in the previous example, the allocated memory for the
I/O buffer escapes completely the Python memory manager.

9.2 AF#ED

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap:

void* PyMem_Malloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc (1) had been called
instead. The memory will not have been initialized in any way.

void* PyMem_Realloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old and
the new sizes. If p is NULL, the call is equivalent to PyMem_Malloc (n);else if n is equal to zero, the memory
block is resized but is not freed, and the returned pointer is non-NULL. Unless p is NULL, it must have been returned
by a previous call to PyMem_Malloc () or PyMem Realloc (). If the request fails, PyMem Realloc ()
returns NULL and p remains a valid pointer to the previous memory area.

void PyMem_Free (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to PyMem_Malloc ()
or PyMem_Realloc (). Otherwise, or if PyMem_Free (p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

TYPE* PyMem_New (TYPE, size_t n)
Same as PyMem_Malloc (), butallocates (n * sizeof (TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize (void *p, TYPE, size_t n)
Same as PyMem_Realloc (), but the memory block is resized to (n * sizeof (TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.
This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory when
handling errors.

void PyMem_Del (void *p)
YHpyMem Free () #d]
In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving the

C API functions listed above. However, note that their use does not preserve binary compatibility across Python versions
and is therefore deprecated in extension modules.

126 Chapter 9. HEEE

The Python/C API, X% 2.7.18

PyMem_MALLOC (), PyMem_REALLOC (), PyMem_FREE ().

PyMem_NEW (), PyMem_RESIZE (), PyMem_DEL ().

9.3 MRIECE

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.

By default, these functions use pymalloc memory allocator.

#x M. The GIL must be held when using these functions.

void* PyObject_Malloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc (1) had been
called instead. The memory will not have been initialized in any way.

void* PyObject_Realloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.

If p is NULL, the call is equivalent to PyObject_Malloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc (),
PyObject_Realloc () orPyObject_Calloc().

If the request fails, PyObject_Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyObject_Free (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyObject_Malloc (), PyObject_Realloc() or PyObject_Calloc(). Otherwise, or if
PyObject_Free (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.
In addition, the following macro sets are provided:
* PyObject_MALLOC (): alias to PyObject_Malloc ()
¢ PyObject_REALLOC (): alias to PyObject_Realloc ()
e PyObject_FREE (): aliasto PyObject_Free ()
e PyObject_Del (): aliasto PyObject_Free ()

* PyObject_DEL(): alias to PyObject_FREE () (so finally an alias to PyObject_Free ())

9.3. MRIECE 127

The Python/C API, X% 2.7.18

9.4 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It uses
memory mappings called “arenas” with a fixed size of 256 KiB. It falls back to malloc () and realloc () for
allocations larger than 512 bytes.

pymalloc is the default allocator of PyObject_Malloc ().
The arena allocator uses the following functions:

e mmap () and munmap () if available,

e malloc () and free () otherwise.

TE 2.7.7 WUHE B The threshold changed from 256 to 512 bytes. The arena allocator now uses mmap () if available.

9.5 ¥

Here is the example from section ## 34, rewritten so that the I/O buffer is allocated from the Python heap by using the
first function set:

PyObject *res;

char *buf = (char *) PyMem_Malloc (BUFSIZ); /* for I/0 */
if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyString_FromString (buf);
PyMem_Free (buf); /* allocated with PyMem Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New (char, BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyString_FromString (buf);
PyMem_Del (buf); /* allocated with PyMem New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed, it
is required to use the same memory API family for a given memory block, so that the risk of mixing different allocators
is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as fatal because it
mixes two different allocators operating on different heaps.

char *bufl = PyMem_New (char, BUFSIZ);
char *buf2 = (char *) malloc (BUFSIZ);

char *buf3 = (char *) PyMem_Malloc (BUFSIZ);

PyMem_Del (buf3); /* Wrong —- should be PyMem_Free() */
free (buf2); /* Right —-- allocated via malloc() */
free (bufl); /* Fatal —- should be PyMem_Del () */

128 Chapter 9. HEEE

The Python/C API, X% 2.7.18

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are allocated
and released with PyOb ject_New (), PyObject_NewVar () and PyObject_Del ().

These will be explained in the next chapter on defining and implementing new object types in C.

9.5. fil¥F 129

The Python/C API, X% 2.7.18

130 Chapter 9. HEEE

cHAPTER 10

R

AFAIR TR SPGB i i i . BRI

10.1 7E¥ F B ECXR

PyObject* _PyObject_New (PyTypeObject *type)
Return value: New reference.

PyVarObject* _PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)
Return value: New reference. ¥ 2.5 It 3B : This function used an int type for size. This might require changes
in your code for properly supporting 64-bit systems.

void _PyObject_Del (PyObject *op)

PyObject* PyObiject_Init (PyObject *op, PyTypeObject *type)
Return value: Borrowed reference. "B [AZEBIFIWIET | FRWIGRALH 0 FCX S opo IR Bl EATIRAE TS . N
R type KIZA RS GRALLIZAG I E , PR HASIN BRI 25 O ZE RS REE . RFR I HAb 7 BoA 2
A0

PyVarObject* PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. ' HFEMPyObject_Init () —FE, H HEWiGAS B R/ NG
KEFE.

F£ 2.5 i B P This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

TYPE* PyObject_New (TYPE, PyTypeObject *type)
Return value: New reference. {fi[f] C 2544255 TYPE 1 Python 25X} % rype 43—~ 11 Python X} 42 .
KRAEZ Python XF R 413k H i L FBEASPARIIRA: XL HITECR —. WD BRI type Xf
LW tp_basicsize FERFHIE.

TYPE* PyObject_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
Return value: New reference. i J}] C)RS5 25FL TYPE 1 Python 2B 42 type 43 Fit—~3F7 1) Python
X5 . Python X5 3 SC AT & LI F BN IR . B BLINAEZS BT B T TYPE 254410 type
MGt _itemsize FBARMENY size FEE . X0 T LI RICAX A BB AL i e B K

131

The Python/C API, X% 2.7.18

ANHIX GRS o 7 B R A BT [5] PAAE20TE AT AT N E TR, X4 T I
o TERIRR .

F£ 2.5 [FE PR This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

void PyObject_Del (PyObject *op)
R pyobject _New () BFPyobject_NewVar () SFHCAFFRINR . X X 5HY type FBUE
Xiftp_dealloc AEPRRRBORIM . WHIXABRELASS op X4 =7 BEE A AT AR T, PR I 43 i
WA E AR — AR Python XF 4R .

PyObject* Py_InitModule (char *name, PyMethodDef *methods)
Return value: Borrowed reference. Create a new module object based on a name and table of functions, returning
the new module object.

TE 2.3 JiRFE L Older versions of Python did not support NULL as the value for the methods argument.

PyObject* Py_InitModule3 (char *name, PyMethodDef *methods, char *doc)
Return value: Borrowed reference. Create a new module object based on a name and table of functions, returning
the new module object. If doc is non-NULL, it will be used to define the docstring for the module.

JE 2.3 JiRFE L Older versions of Python did not support NULL as the value for the methods argument.

PyObject* Py_InitModuled4 (char *name, PyMethodDef *methods, char *doc, PyObject *self, int apiver)
Return value: Borrowed reference. Create a new module object based on a name and table of functions, returning
the new module object. If doc is non-NULL, it will be used to define the docstring for the module. If self is non-
NULL, it will be passed to the functions of the module as their (otherwise NULL) first parameter. (This was added
as an experimental feature, and there are no known uses in the current version of Python.) For apiver, the only
value which should be passed is defined by the constant PYTHON_API_VERSION.

{Efit: Most uses of this function should probably be using the Py ITnitModule3 () instead; only use this if
you are sure you need it.

F£ 2.3 WCE PR Older versions of Python did not support NULL as the value for the methods argument.

PyObject _Py_NoneStruct
Object which is visible in Python as None. This should only be accessed using the Py_None macro, which
evaluates to a pointer to this object.

10.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section describes
these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’ s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to treat a
pointer to an object as an object. In a normal “release” build, it contains only the object’ s reference count
and a pointer to the corresponding type object. It corresponds to the fields defined by the expansion of the
PyObject_HEAD macro.

PyVarObject
This is an extension of PyObject that adds the ob_size field. This is only used for objects that have some

132 Chapter 10. & scU$F

The Python/C API, X% 2.7.18

notion of length. This type does not often appear in the Python/C API. It corresponds to the fields defined by the
expansion of the PyObject_VAR_HEAD macro.

These macros are used in the definition of PyObject and PyVarObject:

PyObject_HEAD

This is a macro which expands to the declarations of the fields of the PyOb ject type; it is used when declaring
new types which represent objects without a varying length. The specific fields it expands to depend on the definition
of Py_TRACE_REFS. By default, that macro is not defined, and PyOb ject_HEAD expands to:

Py_ssize_t ob_refcnt;
PyTypeObject *ob_type;

When Py_TRACE_REFS is defined, it expands to:

PyObject *_ob_next, *_ob_prev;
Py_ssize_t ob_refcnt;
PyTypeObject *ob_type;

PyObject_VAR_HEAD

This is a macro which expands to the declarations of the fields of the Py VarOb ject type; itis used when declaring
new types which represent objects with a length that varies from instance to instance. This macro always expands
to:

PyObject_HEAD
Py_ssize_t ob_size;

Note that PyOb ject_HEAD is part of the expansion, and that its own expansion varies depending on the definition
of Py_ TRACE_REFS.

Py_TYPE (0)

This macro is used to access the ob_t ype member of a Python object. It expands to:

(((PyObject*) (o)) -—>ob_type)

2.6 B

Py_REFCNT (0)

This macro is used to access the ob_refcnt member of a Python object. It expands to:

(((PyObject*) (o)) -—>ob_refcnt)

2.6 B

Py_SIZE (0)

This macro is used to access the ob_size member of a Python object. It expands to:

(((PyVarObject*) (o)) ->ob_size)

2.6 B

PyObject_HEAD_INIT (type)

This is a macro which expands to initialization values for a new PyOb ject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT (type, size)

This is a macro which expands to initialization values for a new PyVarObject type, including the ob_size
field. This macro expands to:

10.2. Common Object Structures 133

The Python/C API, X% 2.7.18

_PyObject_EXTRA_INIT
1, type, size,

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two PyOb ject *
parameters and return one such value. If the return value is NULL, an exception shall have been set. If not NULL,
the return value is interpreted as the return value of the function as exposed in Python. The function must return a
new reference.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

1, C xR ax

ml_name char * name of the method

ml_meth PyCFunction | pointer to the C implementation

ml_flags | B flag bits indicating how the call should be constructed
ml_doc char * points to the contents of the docstring

The m1_meth is a C function pointer. The functions may be of different types, but they always return PyOb ject *.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyObject #, it is common that the method implementation uses the
specific C type of the self object.

The m1_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention. Of the calling convention flags, only METH VARARGS and METH_KEYWORDS can
be combined. Any of the calling convention flags can be combined with a binding flag.

METH_VARARGS
This is the typical calling convention, where the methods have the type Py CFunct i on. The function expects two
PyObject * values. The first one is the self object for methods; for module functions, it is the module object.
The second parameter (often called args) is a tuple object representing all arguments. This parameter is typically
processed using PyArg_ParseTuple () or PyArg _UnpackTuple ().

METH_KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects three pa-
rameters: self, args, and a dictionary of all the keyword arguments. The flag is typically combined with
METH_VARARGS, and the parameters are typically processed using PyArg ParseTupleAndKeywords ().

METH_NOARGS
Methods without parameters don’ t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH O flag, instead of invoking
PyArg_ParseTuple () with a "O" argument. They have the type PyCFunction, with the self parame-
ter, and a PyOb ject * parameter representing the single argument.

METH_OLDARGS
This calling convention is deprecated. The method must be of type PyCFunction. The second argument is
NULL if no arguments are given, a single object if exactly one argument is given, and a tuple of objects if more
than one argument is given. There is no way for a function using this convention to distinguish between a call with
multiple arguments and a call with a tuple as the only argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

134 Chapter 10. & scU$F

The Python/C API, X% 2.7.18

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to create class methods, similar to what is created when using the classmethod () built-in function.

2.3 B fE.

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to create
static methods, similar to what is created when using the staticmethod () built-in function.

2.3 Fri .
One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip re-
peated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains slot,
for example, would generate a wrapped method named ___contains__ () and preclude the loading of a corre-
sponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in place of the
wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are optimized more
than wrapper object calls.

2.4 B fE.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

L2 C A ax

name char * name of the member

type it the type of the member in the C struct

offset | Py_ssize_t | the offset in bytes that the member is located on the type’ s object struct
flags it flag bits indicating if the field should be read-only or writable

doc char * points to the contents of the docstring

type can be one of many T_ macros corresponding to various C types. When the member is accessed in Python,
it will be converted to the equivalent Python type.

Macro name C
T_SHORT short

T_INT B
T_LONG KA
T_FLOAT =T
T_DOUBLE double
T_STRING char *
T_OBJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char

T BYTE char
T_UBYTE unsigned char
T_UINT PR o
T_USHORT unsigned short
T_ULONG TAF KA
T_BOOL char
T_LONGLONG long long
T_ULONGLONG | Ji£§%5 long long
T _PYSSIZET Py_ssize_t

10.2. Common Object Structures 135

The Python/C API, X% 2.7.18

T_OBJECT and T_OBJECT_EX differ in that T _OBJECT returns None if the member is NULL and
T_OBJECT_EX raises an AttributeError. Try to use T_OBJECT_EX over T_OBJECT because
T_OBJECT_EX handles use of the de1 statement on that attribute more correctly than T_OBJECT.

flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. Only T_OBJECT and T_OBJECT_EX members can be deleted. (They are set to NULL).

PyGetSetDef
Structure to define property-like access for a type. See also description of the PyTypeObject.tp_getset
slot.

B |CEE | &Y
PR S char * attribute name

get getter C Function to get the attribute
set setter optional C function to set or delete the attribute, if omitted the attribute is readonly
doc char * | optional docstring

closure | void * optional function pointer, providing additional data for getter and setter

The get function takes one PyObject * parameter (the instance) and a function pointer (the associated
closure):

typedef PyObject * (*getter) (PyObject *, woid *);

It should return a new reference on success or NULL with a set exception on failure.

set functions take two PyOb ject * parameters (the instance and the value to be set) and a function pointer (the
associated closure):

typedef int (*setter) (PyObject *, PyObject *, woid *);

In case the attribute should be deleted the second parameter is NULL. Should return 0 on success or —1 with a set
exception on failure.

PyObject* Py_FindMethod (PyMethodDef table[], PyObject *ob, char *name)
Return value: New reference. Return a bound method object for an extension type implemented in C. This
can be useful in the implementation of a tp_getattro or tp_getattr handler that does not use the
PyObject_GenericGetAttr () function.

10.3 HEIFR

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of the PyObject_* () orPyType_* () functions,
but do not offer much that’ s interesting to most Python applications. These objects are fundamental to how objects behave,
so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object stores
a large number of values, mostly C function pointers, each of which implements a small part of the type’ s functionality.
The fields of the type object are examined in detail in this section. The fields will be described in the order in which they
occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc, intintobjarg-
proc, objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, cmpfunc, repr-
func, hashfunc

The structure definition for Py TypeObject can be found in Include/object .h. For convenience of reference,
this repeats the definition found there:

136 Chapter 10. JREIMZHF

The Python/C API, X% 2.7.18

typedef struct _typeobject {
PyObject_VAR_HEAD
char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
long tp_flags;

char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_weaklistoffset;

/* Added in release 2.2 */
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

CFoiaks:)

10.3. FEFIFIR 137

The Python/C API, X% 2.7.18

(£ 50

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

long tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

} PyTypeObiject;

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (cre-
ated by type_new (), usually called from a class statement). Note that PyType_Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.

PyObject* PyObject . _ob_next
PyObject* PyObject . _ob_prev

These fields are only present when the macro Py_ TRACE_REF'S is defined. Their initialization to NULL is taken
care of by the PyObject_HEAD_INIT macro. For statically allocated objects, these fields always remain NULL.
For dynamically allocated objects, these two fields are used to link the object into a doubly-linked list of all live
objects on the heap. This could be used for various debugging purposes; currently the only use is to print the objects
that are still alive at the end of a run when the environment variable PYTHONDUMPREF'S is set.

These fields are not inherited by subtypes.

Py_ssize_t PyObject .ob_refcnt

This is the type object’ s reference count, initialized to 1 by the PyObject_HEAD_INIT macro. Note that for
statically allocated type objects, the type’ s instances (objects whose ob_type points back to the type) do not
count as references. But for dynamically allocated type objects, the instances do count as references.

This field is not inherited by subtypes.

TE 2.5 Jit B ¢ This field used to be an int type. This might require changes in your code for properly supporting
64-bit systems.

PyTypeObject* PyObject .ob_type

This is the type’ s type, in other words its metatype. It is initialized by the argument to the
PyObject_HEAD_INIT macro, and its value should normally be sPyType_Type. However, for dynami-
cally loadable extension modules that must be usable on Windows (at least), the compiler complains that this is
not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT macro and to
initialize this field explicitly at the start of the module’ s initialization function, before doing anything else. This
is typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. PyType_Ready () checks if ob_type is
NULL, and if so, initializes it: in Python 2.2, it is set to &Py Type_Type; in Python 2.2.1 and later it is initialized
to the ob_type field of the base class. PyType_Ready () will not change this field if it is non-zero.

138

Chapter 10. J+& I

The Python/C API, X% 2.7.18

In Python 2.2, this field is not inherited by subtypes. In 2.2.1, and in 2.3 and beyond, it is inherited by subtypes.

Py_ssize_t PyVarObject.ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects, this
field has a special internal meaning.

This field is not inherited by subtypes.

char* PyTypeObject .tp_name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module globals,
the string should be the full module name, followed by a dot, followed by the type name; for built-in types, it should
be just the type name. If the module is a submodule of a package, the full package name is part of the full module
name. For example, a type named T defined in module M in subpackage Q in package P should have the t p_name
initializer "P.Q.M.T".

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored in
the type dict as the value for key ' __module__ '.

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is made
accessible as the ___module___ attribute, and everything after the last dot is made accessible as the __name___
attribute.

If no dot is present, the entire tp_name field is made accessible as the _ _name__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created with
pydoc.

This field is not inherited by subtypes.

Py_ssize_t PyTypeObject .tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize
These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero t p_ i t ems i ze field. For a type with fixed-length instances, all instances
have the same size, given in tp_basicsize.

For a type with variable-length instances, the instances must have an ob_size field, and the instance size is
tp_basicsize plus N times tp_itemsize, where N is the “length” of the object. The value of N is
typically stored in the instance’ s ob_size field. There are exceptions: for example, long ints use a negative
ob_size to indicate a negative number, and N is abs (ob_size) there. Also, the presence of an ob_size
field in the instance layout doesn’ t mean that the instance structure is variable-length (for example, the structure
for the list type has fixed-length instances, yet those instances have a meaningful ob_s1i ze field).

The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an initializer
for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout. The
basic size does not include the GC header size (this is new in Python 2.2; in 2.1 and 2.0, the GC header size was
included in tp_basicsize).

These fields are inherited separately by subtypes. If the base type has a non-zero tp_ i tems1i ze, it is generally not
safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the implementation
of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value of tp_basicsize. Example: suppose a type implements an array of double. tp_itemsize
is sizeof (double). It is the programmer’ s responsibility that tp_basicsize is a multiple of
sizeof (double) (assuming this is the alignment requirement for double).

10.3. ZEEXR 139

The Python/C API, X% 2.7.18

destructor PyTypeObject .tp_dealloc

A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and E11ipsis).

The destructor function is called by the Py_ DECREF () and Py_XDECREF () macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor function
should free all references which the instance owns, free all memory buffers owned by the instance (using the freeing
function corresponding to the allocation function used to allocate the buffer), and finally (as its last action) call the
type’ s tp_ free function. If the type is not subtypable (doesn’ t have the Py_ TPFLAGS_BASETYPE flag bit
set), it is permissible to call the object deallocator directly instead of via t p_ free. The object deallocator should
be the one used to allocate the instance; this is normally PyOb ject_Del () if the instance was allocated using
PyObject_New () orPyObject_VarNew (),or PyObject_GC_Del () if the instance was allocated using
PyObject_GC_New () or PyObject__GC_NewVar ().

This field is inherited by subtypes.

printfunc PyTypeObject .tp_print

An optional pointer to the instance print function.

The print function is only called when the instance is printed to a real file; when it is printed to a pseudo-file (like
a StringIO instance), the instance’ s tp_repr or tp_ st r function is called to convert it to a string. These
are also called when the type’ s tp_print field is NULL. A type should never implement tp_print ina way
that produces different output than tp_repr or tp_str would.

The print function is called with the same signature as PyObject_Print (): int tp_print (PyObject
*self, FILE *file, int flags). The self argument is the instance to be printed. The file argument is
the stdio file to which it is to be printed. The flags argument is composed of flag bits. The only flag bit currently
defined is Py_ PRINT_RAW. When the Py_PRINT_RAW flag bit is set, the instance should be printed the same
way as tp_ st r would format it; when the Py_ PRINT_RAW flag bit is clear, the instance should be printed the
same was as tp_ repr would format it. It should return —1 and set an exception condition when an error occurred
during the comparison.

Itis possible that the t p_ print field will be deprecated. In any case, it is recommended not to define tp_print,
but instead to rely on tp_repr and tp_ st r for printing.

This field is inherited by subtypes.

getattrfunc PyTypeObject .tp_getattr

An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_getattr (PyObject *o, char *attr_name);

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’ s tp_getattrand tp_getattro are both NULL.

setattrfunc PyTypeObject .tp_setattr

An optional pointer to the function for setting and deleting attributes.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is

PyObject * tp_setattr (PyObject *o, char *attr_name, PyObject *v);

The v argument is set to NULL to delete the attribute. This field is inherited by subtypes together with
tp_setattro: asubtype inherits both tp_setattr and tp_setattro from its base type when the sub-
type’ s tp_setattrand tp_setattro are both NULL.

140

Chapter 10. J+& I

The Python/C API, X% 2.7.18

cmpfunc PyTypeObject . tp_compare
An optional pointer to the three-way comparison function.

The signature is the same as for PyObject_Compare (). The function should return 1 if self greater than other,
0 if self is equal to other, and —1 if self less than other. It should return —1 and set an exception condition when
an error occurred during the comparison.

This field is inherited by subtypes together with t p_richcompareand tp_hash: asubtypes inherits all three of
tp_compare, tp_richcompare,and tp_hash when the subtype’ s tp_compare, tp_richcompare,
and tp_hash are all NULL.

reprfunc PyTypeObject .tp_repr
An optional pointer to a function that implements the built-in function repr ().

The signature is the same as for PyObject_Repr (); it must return a string or a Unicode object. Ideally, this
function should return a string that, when passed to eval (), given a suitable environment, returns an object with
the same value. If this is not feasible, it should return a string starting with ' <' and ending with '>' from which
both the type and the value of the object can be deduced.

When this field is not set, a string of the form <%s object at %p> is returned, where s is replaced by the
type name, and %p by the object’ s memory address.

This field is inherited by subtypes.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number protocol.
These fields are documented in Number Object Structures.

The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence protocol.
These fields are documented in Sequence Object Structures.

The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping protocol.
These fields are documented in Mapping Object Structures.

The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject .tp_hash
An optional pointer to a function that implements the built-in function hash ().

The signature is the same as for PyObject_Hash (); it must return a C long. The value —1 should not be
returned as a normal return value; when an error occurs during the computation of the hash value, the function
should set an exception and return - 1.

This field can be set explicitly to PyObject_HashNotImplemented () to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash___ = None at the Python level,
causing isinstance (o, collections.Hashable) to correctly return False. Note that the converse
is also true - setting __hash___ = None on a class at the Python level will result in the tp_hash slot being set
to PyObject_HashNotImplemented().

When this field is not set, two possibilities exist: if the tp_compare and tp_richcompare fields are both
NULL, a default hash value based on the object’ s address is returned; otherwise, a TypeError is raised.

This field is inherited by subtypes together with tp_richcompare and tp_compare: a subtypes inher-
its all three of tp_compare, tp_richcompare, and tp_hash, when the subtype’ s tp_compare,
tp_richcompare and tp_hash are all NULL.

10.3. FEFIFIR 141

The Python/C API, X% 2.7.18

ternaryfunc PyTypeObject .tp_call

An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call ().

This field is inherited by subtypes.

reprfunc PyTypeObject .tp_str

An optional pointer to a function that implements the built-in operation str (). (Note that str is a type now,
and str () calls the constructor for that type. This constructor calls PyObject_Str () to do the actual work,
and PyObject_Str () will call this handler.)

The signature is the same as for PyObject_Str (); it must return a string or a Unicode object. This function
should return a “friendly” string representation of the object, as this is the representation that will be used by the
print statement.

When this field is not set, PyOb ject_Repr () is called to return a string representation.

This field is inherited by subtypes.

getattrofunc PyTypeObject .tp_getattro

An optional pointer to the get-attribute function.

The signature is the same as for PyObject_GetAttr (). It is usually convenient to set this field to
PyObject_GenericGetAttr (), which implements the normal way of looking for object attributes.

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_ getattr and
tp_getattro from its base type when the subtype’ s tp_getattrand tp_getattro are both NULL.

setattrofunc PyTypeObject .tp_setattro

An optional pointer to the function for setting and deleting attributes.

The signature is the same as for PyObject_SetAttr (), but setting v to NULL to delete an attribute must be
supported. It is usually convenient to set this field to PyObject_GenericSetAttr (), which implements the
normal way of setting object attributes.

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp setattr and
tp_setattro from its base type when the subtype’ s tp_setattrand tp_setattro are both NULL.

PyBufferProcs* PyTypeObject .tp_as_buffer

Pointer to an additional structure that contains fields relevant only to objects which implement the buffer interface.
These fields are documented in Buffer Object Structures.

The tp_as_bufrfer field is not inherited, but the contained fields are inherited individually.

long PyTypeObject .tp_flags

This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others are used
to indicate that certain fields in the type object (or in the extension structures referenced via tp_as_number,
tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not always present are
valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be considered to have a zero
or NULL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag bit set,
the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if the extension
structure is inherited, i.e. the base type’ s value of the flag bit is copied into the subtype together with a pointer to
the extension structure. The Py_ TPFLAGS_HAVE_ GC flag bit is inherited together with the t p_t raverse and
tp_clear fields, i.e. if the Py TPFLAGS_HAVE_ GC flag bit is clear in the subtype and the tp_traverse
and tp_clear fields in the subtype exist (as indicated by the Py TPFLAGS HAVE_RICHCOMPARE flag bit)
and have NULL values.

The following bit masks are currently defined; these can be ORed together using the | operator to form the value of
the tp_ flags field. The macro Py Type_HasFeature () takes a type and a flags value, #p and f, and checks
whether tp—->tp_flags & £ isnon-zero.

142

Chapter 10. J+& I

The Python/C API, X% 2.7.18

Py_TPFLAGS_HAVE_GETCHARBUFFER
If this bit is set, the PyBufferProcs struct referenced by tp_as_buffer has the
bf_getcharbuffer field.

Py_TPFLAGS_HAVE_SEQUENCE_IN
If this bit is set, the PySequenceMethods struct referenced by tp_as_sequence has the
sq_contains field.

Py_TPFLAGS_GC
This bit is obsolete. The bit it used to name is no longer in use. The symbol is now defined as zero.

Py_TPFLAGS_HAVE_INPLACEOPS
If this bit is set, the PySequenceMethods struct referenced by tp_as_sequence and
the PyNumberMethods structure referenced by tp_as_number contain the fields for

in-place operators. In particular, this means that the PyNumberMethods structure has
the fields nb_inplace_add, nb_inplace_subtract, nb_inplace_multiply,
nb_inplace_divide, nb_inplace_remainder, nb_inplace_power,

nb_inplace_1lshift, nb_inplace_rshift, nb_inplace_and, nb_inplace_xor,
and nb_inplace_or; and the PySequenceMethods struct has the fields sq_inplace_concat
and sq_inplace_repeat.

Py_TPFLAGS_CHECKTYPES
If this bit is set, the binary and ternary operations in the PyNumberMethods structure referenced by
tp_as_number accept arguments of arbitrary object types, and do their own type conversions if needed. If
this bit is clear, those operations require that all arguments have the current type as their type, and the caller is
supposed to perform a coercion operation first. This applies to nb_add, nb_subtract, nb_multiply,
nb_divide, nb_remainder, nb_divmod, nb_power, nb_lshift, nb_rshift, nb_and,
nb_xor,and nb_or.

Py_TPFLAGS_HAVE_RICHCOMPARE
If this bit is set, the type object has the tp_richcompare field, as well as the tp_t raverse and the
tp_clear fields.

Py_TPFLAGS_HAVE_WEAKREFS
If this bit is set, the tp_weaklistoffset field is defined. Instances of a type are weakly referenceable
if the type’ s tp_weaklistoffset field has a value greater than zero.

Py_TPFLAGS_HAVE_ITER
If this bit is set, the type object has the tp_iterand tp_iternext fields.

Py_TPFLAGS_HAVE_CLASS
If this bit is set, the type object has several new fields defined starting in Python 2.2: tp_methods,
tp_members, tp_getset, tp_base, tp_dict, tp_descr_get, tp_descr_set,
tp_dictoffset, tp_init, tp_alloc, tp_new, tp_free, tp_is_gc, tp_bases, tp_mro,
tp_cache, tp_subclasses,and tp_weaklist.

Py _TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case, the ob_type field of its
instances is considered a reference to the type, and the type object is INCREF’ ed when a new instance is
created, and DECREF’ ed when an instance is destroyed (this does not apply to instances of subtypes; only
the type referenced by the instance’ s ob_type gets INCREF’ ed or DECREF’ ed).

Py _TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar toa “final” class in Java).

Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by Py Type_Ready ().

10.3. FEFIFIR 143

The Python/C API, X% 2.7.18

Py_TPFLAGS_READYING
This bit is set while Py Type_Ready () is in the process of initializing the type object.

Py_TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created us-
ing PyObject_GC_New () and destroyed using PyObject_GC_Del (). More information in section
1 2f % & & 4537 35 38 =)). This bit also implies that the GC-related fields tp_t raverse and
tp_clear are present in the type object; but those fields also exist when Py TPFLAGS_HAVE_GC is
clear but Py TPFLAGS_HAVE_RICHCOMPARE is set.

Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in

the type object and its extension structures. Currently, it includes the following
bits: Py TPFLAGS_HAVE GETCHARBUFFER, Py TPFLAGS_HAVE SEQUENCE_IN,
Py TPFLAGS_HAVE_INPLACEOPS, Py TPFLAGS_HAVE_ RICHCOMPARE,

Py_TPFLAGS_HAVE_WEAKREFS, Py TPFLAGS_HAVE_ITER,and Py_TPFLAGS_HAVE_CLASS.

char* PyTypeObject .tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as the
___doc___ attribute on the type and instances of the type.

This field is not inherited by subtypes.
The following three fields only exist if the Py TPFLAGS_HAVE_RICHCOMPARE flag bit is set.

traverseproc PyTypeObject . tp_traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py TPFLAGS_HAVE_GC flag bit is set. More information about Python’ s garbage collection scheme can be
found in section 1 % % K A FH VIR IR EDIL.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementation
of a tp_traverse function simply calls Py_VISIT () on each of the instance’ s members that are Python
objects. For example, this is function 1ocal_traverse () from the thread extension module:

static int
local_traverse (localobject *self, visitproc visit, wvoid *arg)
{

Py_VISIT (self->args);

Py_VISIT (self->kw);

Py_VISIT (self->dict);

return O;

Note that Py_ VISIT () is called only on those members that can participate in reference cycles. Although there
is also a sel f->key member, it can only be NULL or a Python string and therefore cannot be part of a reference
cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want to
visit it anyway just so the gc module’ s get_referents () function will include it.

Note that Py_ VISIT () requires the visit and arg parameters to Local_traverse () to have these specific
names; don’ tname them just anything.

This field is inherited by subtypes together with tp_clear and the Py TPFLAGS_HAVE_GC flag bit: the flag
bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype and
the subtype has the Py_ TPFLAGS_HAVE_RICHCOMPARE flag bit set.

inquiry PyTypeObject .tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the Py TPFLAGS_HAVE_GC
flag bit is set.

144 Chapter 10. W& HM T

The Python/C API, X% 2.7.18

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_ c1ear functions in the system must combine to break all reference cycles. This
is subtle, and if in any doubt supply a tp_clear function. For example, the tuple type does not implement a
tp_clear function, because it’ s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_clear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’ timmediately obvious, and there’ s rarely a good reason to avoid implementing tp_clear.

Implementations of tp_c1ear should drop the instance’ s references to those of its members that may be Python
objects, and set its pointers to those members to NULL, as in the following example:

static int

local_clear (localobject *self)

{
Py_CLEAR (self->key);
Py_CLEAR (self->args);
Py_CLEAR (self->kw);
Py_CLEAR (self->dict);
return O;

The Py_CLEAR () macro should be used, because clearing references is delicate: the reference to the contained
object must not be decremented until after the pointer to the contained object is set to NULL. This is because
decrementing the reference count may cause the contained object to become trash, triggering a chain of reclamation
activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated with
the contained object). If it” s possible for such code to reference self again, it’ s important that the pointer to
the contained object be NULL at that time, so that self knows the contained object can no longer be used. The
Py_CLEAR () macro performs the operations in a safe order.

Because the goal of tp_clear functions is to break reference cycles, it’ s not necessary to clear contained
objects like Python strings or Python integers, which can’ t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’ s tp_dealloc function to invoke
tp_clear.

More information about Python’ s garbage collection scheme can be found in section 1 %} £ % 7 & ¥ 53135
e,

This field is inherited by subtypes together with tp_t raverse and the Py_ TPFLAGS_HAVE_ GC flag bit: the
flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype
and the subtype has the Py TPFLAGS_HAVE_RICHCOMPARE flag bit set.

richcmpfunc PyTypeObject .tp_richcompare
An optional pointer to the rich comparison function, whose signature is PyObject
*tp_richcompare (PyObject *a, PyObject *b, int op).

The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_Not Implemented, if another error occurred it must return NULL and set an
exception condition.

{Ef#: If you want to implement a type for which only a limited set of comparisons makes sense (e.g. == and ! =,
but not < and friends), directly raise TypeError in the rich comparison function.

This field is inherited by subtypes together with tp_compare and tp_hash: a subtype inherits all three of
tp_compare, tp_richcompare,and tp_hash, whenthe subtype’s tp_compare, tp_richcompare,
and tp_hash are all NULL.

The following constants are defined to be used as the third argument for tp_ richcompare and for
PyObject_RichCompare ():

10.3. FEFIFIR 145

The Python/C API, X% 2.7.18

B XFER
Py_LT | <
Py_LE | <=
Py_EQ | ==
Py_NE | !=
Py_GT | >
Py_GE | >=

The next field only exists if the Py TPFLAGS_HAVE_WEAKREF'S flag bit is set.

long PyTypeObject .tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs () andthe PyWeakref_* () functions. The instance structure needs to include
a field of type PyOb ject * which is initialized to NULL.

Do not confuse this field with tp_weak 11 st; that is the list head for weak references to the type object itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found via
tp_weaklistoffset, this should not be a problem.

When a type defined by a class statement has no ___slots__ declaration, and none of its base types are weakly
referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the instance layout
and setting the tp_weaklistoffset of thatslot’ s offset.

When a type’ s __slots__ declaration contains a slot named __weakref__, that slot becomes the weak
reference list head for instances of the type, and the slot’ s offset is stored in the type’ s tp_weaklistoffset.

When a type’ s ___slots__ declaration does not contain a slot named __weakref__, the type inherits its
tp_weaklistoffset from its base type.

The next two fields only exist if the Py_ TPFLAGS_HAVE_ ITER flag bit is set.

getiterfunc PyTypeObject .tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function, and classic instances
always have this function, even if they don’ tdefinean __iter__ () method).

This function has the same signature as PyObject_GetIter ().
This field is inherited by subtypes.

iternextfunc PyTypeObject .tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it must
return NULL; a StopIteration exception may or may not be set. When another error occurs, it must return
NULL too. Its presence normally signals that the instances of this type are iterators (although classic instances
always have this function, even if they don’ t define a next () method).

Iterator types should also define the t p_ i t er function, and that function should return the iterator instance itself
(not a new iterator instance).

This function has the same signature as PyIter Next ().
This field is inherited by subtypes.
The next fields, up to and including t p_weak11ist, only exist if the Py_ TPFLAGS_HAVE_CLASS flag bit is set.

struct PyMethodDef* PyTypeObject . tp_methods
An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.

146 Chapter 10. & scU$F

The Python/C API, X% 2.7.18

For each entry in the array, an entry is added to the type’ s dictionary (see tp_dict below) containing a method
descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* PyTypeObject . tp_members
An optional pointer to a static NULL-terminated array of PyMembe rDef structures, declaring regular data mem-
bers (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’ s dictionary (see t p_dict below) containing a member
descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* PyTypeObject .tp_getset
An optional pointer to a static NULL-terminated array of PyGet SetDe £ structures, declaring computed attributes
of instances of this type.

For each entry in the array, an entry is added to the type’ s dictionary (see tp_dict below) containing a getset
descriptor.

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

PyTypeObject* PyTypeObject .tp_base
An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

This field is not inherited by subtypes (obviously), but it defaults to sPyBaseObject_Type (which to Python
programmers is known as the type object).

PyObject* PyTypeObject .tp_dict
The type’ s dictionary is stored here by Py Type_Ready ().

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once PyType_Ready () has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’ t correspond to overloaded operations (like
add__ ().

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different mech-
anism).

descrgetfunc PyTypeObject .tp_descr_get
An optional pointer to a “descriptor get” function.

The function signature is

PyObject * tp_descr_get (PyObject *self, PyObject *obj, PyObject *type);

This field is inherited by subtypes.

descrsetfunc PyTypeObject .tp_descr_set
An optional pointer to a function for setting and deleting a descriptor’ s value.

The function signature is

int tp_descr_set (PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value. This field is inherited by subtypes.

long PyTypeObject .tp_dictoffset
If the instances of this type have a dictionary containing instance variables, this field is non-zero and con-
tains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr ().

10.3. FEFIFIR 147

The Python/C API, X% 2.7.18

Do not confuse this field with tp_ dict; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If the value
is less than zero, it specifies the offset from the end of the instance structure. A negative offset is more expensive to
use, and should only be used when the instance structure contains a variable-length part. This is used for example
to add an instance variable dictionary to subtypes of str or tuple. Note that the tp_basicsize field should
account for the dictionary added to the end in that case, even though the dictionary is not included in the basic
object layout. On a system with a pointer size of 4 bytes, tp_dictoffset should be set to —4 to indicate that
the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negative tp_dictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof (void*) :
round up to sizeof (void*)

where tp_basicsize, tp_itemsizeand tp_dictoffset aretaken from the type object, and ob_size
is taken from the instance. The absolute value is taken because long ints use the sign of ob_size to
store the sign of the number. (There’ s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr().)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means that
the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is always
found via tp_dictoffset, this should not be a problem.

When a type defined by a class statement hasno ___slots___ declaration, and none of its base types has an instance
variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set to that slot’
s offset.

When a type defined by a class statement has a ___slots___ declaration, the type inherits its tp_dictoffset
from its base type.

(Adding aslotnamed __dict__ tothe ___slots__ declaration does not have the expected effect, it just causes
confusion. Maybe this should be added as a feature just like __weakref___ though.)

initproc PyTypeObject .tp_init
An optional pointer to an instance initialization function.

This function corresponds tothe __init__ () method of classes. Like __init__ (), itis possible to create an
instance without calling __init__ (), and it is possible to reinitialize an instance by calling its __init__ ()
method again.

The function signature is

int tp_init (PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the callto __init__ ().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after the
type’ s tp_new function has returned an instance of the type. If the t p_new function returns an instance of
some other type that is not a subtype of the original type, no tp_init function is called; if tp_new returns an
instance of a subtype of the original type, the subtype’ s tp_init is called. (VERSION NOTE: described here
is what is implemented in Python 2.2.1 and later. In Python 2.2, the tp_ init of the type of the object returned
by tp_new was always called, if not NULL.)

This field is inherited by subtypes.

allocfunc PyTypeObject .tp_alloc
An optional pointer to an instance allocation function.

148 Chapter 10. & scU$F

The Python/C API, X% 2.7.18

The function signature is

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return a
pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but
with ob_refcnt set to 1 and ob_type set to the type argument. If the type’ s tp_itemsize is non-zero,
the object’ s ob_size field should be initialized to nifems and the length of the allocated memory block should
betp_basicsize + nitems*tp_itemsize, rounded up toa multiple of sizeof (void*) ;otherwise,
nitems is not used and the length of the block should be tp_basicsize.

Do not use this function to do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is always set to PyType_ GenericAlloc (), to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.

newfunc PyTypeObject.tp_new
An optional pointer to an instance creation function.

If this function is NULL for a particular type, that type cannot be called to create new instances; presumably there
is some other way to create instances, like a factory function.

The function signature is

PyObject *tp_new (PyTypeObject *subtype, PyObject *args, PyObject *kwds)

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’ t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).

The tp_new function should call subtype->tp_alloc (subtype, nitems) to allocate space for the
object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be
ignored or repeated should be placed in the tp_ init handler. A good rule of thumb is that for immutable types,
all initialization should take place in tp_new, while for mutable types, most initialization should be deferred to
tp_init.

This field is inherited by subtypes, except it is not inherited by static types whose tp_hbase is NULL or
&PyBaseObject_Type. The latter exception is a precaution so that old extension types don’ t become callable
simply by being linked with Python 2.2.

destructor PyTypeObject .tp_free
An optional pointer to an instance deallocation function.

The signature of this function has changed slightly: in Python 2.2 and 2.2.1, its signature is destructor:

’VOid tp_free (PyObject *)

In Python 2.3 and beyond, its signature is freefunc:

’void tp_free(void *)

The only initializer that is compatible with both versions is _PyObject_Del, whose definition has suitably
adapted in Python 2.3.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is set to a deallocator suitable to match Py Type GenericAlloc () and the value of the
Py TPFLAGS_HAVE_GC flag bit.

10.3. HXBHR 149

The Python/C API, X% 2.7.18

inquiry PyTypeObject .tp_is_gc
An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’ s type’ s tp_flags field, and check the Py TPFLAGS_HAVE_GC flag bit. But some
types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are
not collectible. Such types should define this function; it should return 1 for a collectible instance, and 0 for a
non-collectible instance. The signature is

int tp_is_gc (PyObject *self)

(The only example of this are types themselves. The metatype, Py Type_ Type, defines this function to distinguish
between statically and dynamically allocated types.)

This field is inherited by subtypes. (VERSION NOTE: in Python 2.2, it was not inherited. It is inherited in 2.2.1
and later versions.)

PyObject* PyTypeObject .tp_bases
Tuple of base types.

This is set for types created by a class statement. It should be NULL for statically defined types.
This field is not inherited.

PyObject* PyTypeObject .tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object, in Method
Resolution Order.

This field is not inherited; it is calculated fresh by Py Type_ Ready ().

PyObject* PyTypeObject .tp_cache
Unused. Not inherited. Internal use only.

PyObject* PyTypeObject . tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* PyTypeObject .tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macro COUNT_ALLOCS is defined, and are for internal
use only. They are documented here for completeness. None of these fields are inherited by subtypes. See the
PYTHONSHOWALLOCCOUNT environment variable.

Py_ssize_t PyTypeObject.tp_allocs
Number of allocations.

Py_ssize_t PyTypeObject.tp_frees
Number of frees.

Py_ssize_t PyTypeObject.tp_maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* PyTypeObject .tp_next
Pointer to the next type object with a non-zero tp_allocs field.

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread which
created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage collection
on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called will own the
Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from some other C or C++
library, care should be taken to ensure that destroying those objects on the thread which called tp_dealloc will not violate
any assumptions of the library.

150 Chapter 10. s3I X

The Python/C API, X% 2.7.18

10.4 Number Object Structures

PyNumberMethods
This structure holds pointers to the functions which an object uses to implement the number protocol. Almost every
function below is used by the function of similar name documented in the 5 #-73L section.

Here is the structure definition:

typedef struct {

binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc
ternaryfun
unaryfunc
unaryfunc
unaryfunc
inquiry nb
unaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc
coercion n
unaryfunc
unaryfunc
unaryfunc
unaryfunc
unaryfunc

/* Added 1
binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc
ternaryfun
binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc

/* Added 1
binaryfunc
binaryfunc
binaryfunc
binaryfunc

_nonzero;

nb_add;
nb_subtract;
nb_multiply;
nb_divide;
nb_remainder;
nb_divmod;

c nb_power;
nb_negative;
nb_positive;
nb_absolute;

nb_invert;
nb_1lshift;
nb_rshift;
nb_and;
nb_xor;
nb_or;

/* Used by PyObject_IsTrue */

b_coerce; /* Used by the coerce() function */

nb_int;
nb_long;
nb_float;
nb_oct;
nb_hex;

n release 2.0 */
nb_inplace_add;
nb_inplace_subtract;
nb_inplace_multiply;
nb_inplace_divide;
nb_inplace_remainder;

c nb_inplace_power;
nb_inplace_1lshift;
nb_inplace_rshift;
nb_inplace_and;
nb_inplace_xor;
nb_inplace_or;

n release 2.2 */
nb_floor_divide;
nb_true_divide;
nb_inplace_floor_divide;
nb_inplace_true_divide;

/* Added in release 2.5 */
unaryfunc nb_index;
} PyNumberMethods;

Binary and ternary functions may receive different kinds of arguments, depending on the flag bit
Py TPFLAGS_CHECKTYPES:

10.4. Number Object Structures 151

The Python/C API, X% 2.7.18

e If Py TPFLAGS CHECKTYPES is not set, the function arguments are guaranteed to be of the object’ s type;
the caller is responsible for calling the coercion method specified by the nb_coerce member to convert the
arguments:

coercion PyNumberMethods .nb_coerce
This function is used by PyNumber_ CoerceEx () and has the same signature. The first argument is
always a pointer to an object of the defined type. If the conversion to a common “larger” type is possible, the
function replaces the pointers with new references to the converted objects and returns 0. If the conversion
is not possible, the function returns 1. If an error condition is set, it will return —1.

e If the Py TPFLAGS_CHECKTYPES flag is set, binary and ternary functions must check the type of all their
operands, and implement the necessary conversions (at least one of the operands is an instance of the defined type).
This is the recommended way; with Python 3 coercion will disappear completely.

If the operation is not defined for the given operands, binary and ternary functions must return Py_Not Implemented,
if another error occurred they must return NULL and set an exception.

10.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has three
members:

lenfunc PyMappingMethods.mp_length
This function is used by PyMapping_Length () and PyObject_Size (), and has the same signature. This
slot may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods .mp_subscript
This function is used by PyObject_GetItem () and has the same signature. This slot must be filled for the
PyMapping_Check () function to return 1, it can be NULL otherwise.

objobjargproc PyMappingMethods .mp_ass_subscript
This function is used by PyOb ject_SetItem() and PyObject_DelItem (). It has the same signature as
PyObject_SetItem(),butvcan also be set to NULL to delete an item. If this slot is NULL, the object does
not support item assignment and deletion.

10.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence_Size () and PyObject_Size (), and has the same signature.

binaryfunc PySequenceMethods.sq concat
This function is used by PySequence_Concat () and has the same signature. It is also used by the + operator,
after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by Py Sequence_Repeat () and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq _item
This function is used by PySequence_GetItem () and has the same signature. This slot must be filled for the
PySequence_Check () function to return 1, it can be NULL otherwise.

152 Chapter 10. & scU$F

The Python/C API, X% 2.7.18

Negative indexes are handled as follows: if the sg_length slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sq_item. If sgq_length is NULL, the index is passed as
is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence_SetItem () and has the same signature. This slot may be left to NULL
if the object does not support item assignment and deletion.

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains () and has the same signature. This slot may be left to
NULL, in this case PySequence_Contains () simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq inplace_concat
This function is used by PySequence_InPlaceConcat () and has the same signature. It should modify its
first operand, and return it.

ssizeargfunc PySequenceMethods.sq _inplace_repeat
This function is used by PySequence_InPlaceRepeat () and has the same signature. It should modify its
first operand, and return it.

10.7 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of data, where each
chunk is specified as a pointer/length pair. These chunks are called segments and are presumed to be non-contiguous in
memory.

If an object does not export the buffer interface, then its tp_as_buffer member in the Py TypeOb ject structure
should be NULL. Otherwise, the tp_as_buffer will point to a PyBufferProcs structure.

{Eff: It is very important that your Py TypeObject structure uses Py TPFLAGS_DEFAULT for the value of the
tp_flags member rather than 0. This tells the Python runtime that your PyBufferProcs structure contains the
bf_getcharbuffer slot. Older versions of Python did not have this member, so a new Python interpreter using an
old extension needs to be able to test for its presence before using it.

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.

The first slot is bf_getreadbuffer, of type readbufferproc. If this slot is NULL, then the object does
not support reading from the internal data. This is non-sensical, so implementors should fill this in, but callers
should test that the slot contains a non-NULL value.

The nextslotisbf_getwritebuffer havingtype writebufferproc. Thisslot may be NULL if the object
does not allow writing into its returned buffers.

The third slot is bf_getsegcount, with type segcountproc. This slot must not be NULL and is used
to inform the caller how many segments the object contains. Simple objects such as PyString Type and
PyBuffer_ Type objects contain a single segment.

The last slot is bf_getcharbuffer, of type charbufferproc. This slot will only be present
if the Py TPFLAGS_ HAVE_GETCHARBUFFER flag is present in the tp_flags field of the object’
s PyTypeObject. Before using this slot, the caller should test whether it is present by using the
PyType_HasFeature () function. If the flag is present, bf_getcharbuffer may be NULL, indicating
that the object’ s contents cannot be used as 8-bit characters. The slot function may also raise an error if the
object’ s contents cannot be interpreted as 8-bit characters. For example, if the object is an array which is config-
ured to hold floating point values, an exception may be raised if a caller attempts to use bf_getcharbuffer to

10.7. Buffer Object Structures 153

The Python/C API, X% 2.7.18

fetch a sequence of 8-bit characters. This notion of exporting the internal buffers as “text” is used to distinguish
between objects that are binary in nature, and those which have character-based content.

{Efiit: The current policy seems to state that these characters may be multi-byte characters. This implies that a
buffer size of N does not mean there are N characters present.

Py_TPFLAGS_HAVE_GETCHARBUFFER
Flag bit set in the type structure to indicate that the bf _getcharbuffer slot is known. This being set does not
indicate that the object supports the buffer interface or that the bf _getcharbuffer slotis non-NULL.

Py_ssize_t (*readbufferproc) (PyObject *self, Py_ssize_t segment, void **ptrptr)
Return a pointer to a readable segment of the buffer in *pt rptr. This function is allowed to raise an exception,
in which case it must return —1. The segment which is specified must be zero or positive, and strictly less than the
number of segments returned by the bf_getsegcount slot function. On success, it returns the length of the
segment, and sets *ptrptr to a pointer to that memory.

Py_ssize_t (*writebufferproc) (PyObject *self, Py_ssize_t segment, void **ptrptr)
Return a pointer to a writable memory buffer in *pt rptr, and the length of that segment as the function return
value. The memory buffer must correspond to buffer segment segment. Must return —1 and set an exception on
error. TypeError should be raised if the object only supports read-only buffers, and SystemError should be
raised when segment specifies a segment that doesn’ t exist.

Py_ssize_t (*segcountproc) (PyObject *self, Py_ssize_t *lenp)
Return the number of memory segments which comprise the buffer. If lenp is not NULL, the implementation must
report the sum of the sizes (in bytes) of all segments in * 1enp. The function cannot fail.

Py_ssize_t (*charbufferproc) (PyObject *self, Py_ssize_t segment, char **ptrptr)
Return the size of the segment segment that ptrptr is set to. *ptrptr is set to the memory buffer. Returns -1 on
error.

10.8 {EXHRIEE T FHBIA B B

Python X {EA5 | A BLRAG I -5 M F5 20 “Z888” XGPS, IR AR X g bl et 5 e A4
X5 AAFHENRRGINRRA, 8 ARER T8 (B F s e) Mgl MR, AREEN
SR P [STy S o

HEAE-NERE, KRB L Wep_flags F B W WA Py _TPFLAGS_HAVE_GC F 2 fit —
Mtp traverse ACFRISEIN. WIRZIEBW SBR[AR, WEESEMep _clear .

Py_TPFLAGS_HAVE_GC
WE T ARG AL AR QAT A AL ISR AN . R R, T SCHE X SR RN AR AT 4L
A JE B AR 35 bR B A A S R -
1. Wid I PyObject _GC_New () B{PyObject _GC_NewVar () Kk S4B AR
2. WAL T A v RE AL & AL A ARSI FBUE, B Pyobject _GC_Track () .
TYPE* PyObject_GC_New (TYPE, PyTypeObject *type)
KT ryobject_New() , @EHTWE T Py_TPFLAGS_HAVE_GC WA IS4 M4 .
TYPE* PyObject_GC_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
KUF-Pyobject NewVar () , BHFRE TPy TPFLAGS HAVE_ GC WM IEN4,

F£ 2.5 [HE PR This function used an int type for size. This might require changes in your code for properly
supporting 64-bit systems.

154 Chapter 10. & scU$F

The Python/C API, X% 2.7.18

TYPE* PyObject_GC_Resize (TYPE, PyVarObject *op, Py_ssize_t newsize)
Resize an object allocated by PyObject_NewVar (). Returns the resized object or NULL on failure. op must
not be tracked by the collector yet.

F£ 2.5 it B #: This function used an int type for newsize. This might require changes in your code for properly
supporting 64-bit systems.

void PyObject_GC_Track (PyObject *op)
XIS op MBI B B ER BRI 2R A A G o W A e RIS R B I D AUR R R0, RA [l it
] BEAEAL I INRTF 401247 FEtp_traverse ABREIRFTA FBASNARUG . TR LR, WAL
ETSUR AR Y& Rt DL AL

void _PyObject_GC_TRACK (PyObject *op)
PyObject_GC_Track () MIRSEBURAS . EAREHUH T FEpib.

FIRERY, A5 B RS R4 5 T S ARA A A) -
1. e8| HH B AR FBIRAG, A Pyobject_GC_UnTrack () .
2. WA PyObject_GC_Del () BERNZII NG

void PyObject_GC_Del (void *op)
REBOT RN, B ERIIGRIE PyObject_GC_New () B PyObject_GC_NewVar () ECHATE.

void PyObject_GC_UnTrack (void *op)
MELC AR AR REGTBER op M E. WHIEZE ALY Z EH K
M Pyobject _GC_Track () PAXKE H [l 2] # 8RB % R 4L . BE: (tp_dealloc HJAR) B2
{Etp_traverse MNHHMHE A A9 AT 5B R R B A G I B 4

void _PyObject_GC_UNTRACK (PyObject *op)
PyObject_GC_UnTrack () WM ZSEBMINAS . ANBEM T AL .

tp_traverse MDA N RBWRETES .

int (*visitproc) (PyObject *object, void *arg)
fetfitp_traverse AEIRTTF BRENI AL, object J2 75 PR LR I — DX R, 28 =MESXH
Ttp_traverse Ab¥RAY arg . Python AUl 1225 1R 2 bR BSE BUREAG | IR SLIAG TN, ANFR2EM
SEFESUIVEEEI®

tp_traverse ALPRIAFIRE AT A

int (*traverseproc) (PyObject *self, visitproc visit, void *arg)
Traversal function for a container object. Implementations must call the visit function for each object directly
contained by self, with the parameters to visit being the contained object and the arg value passed to the handler.
The visit function must not be called with a NULL object argument. If visit returns a non-zero value that value
should be returned immediately.

N T fifbep_traverse Ab R SCEL, Python it T — vy VISIT() K. FHEMMXAE, ©H
W tp_traverse WIZBEAN44 K visit F arg .
void Py_VISIT (PyObject *o)

If 0 is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return it.
Using this macro, tp_ t raverse handlers look like:

static int
my_traverse (Noddy *self, visitproc visit, woid *arqg)
{

Py_VISIT (self->foo0);

Py_VISIT (self->bar);

return O;

10.8. fEXHRABZTHBIALIR B 155

The Python/C API, X% 2.7.18

2.4 R RE.
The tp_clear handler must be of the i nquiry type, or NULL if the object is immutable.

int (*inquiry) (PyObject *self')
EI ARG IS . AR RATEEYIITE, FOMITA TR B R LG . 5%
HREIZ, SRR E RGBT AR CREEXtsIH RIAM Py DECREF () J7k) . 453K
WA AR DU B2 SAEEERT | T Py, TR S8R

156 Chapter 10. JREIMZHF

APPENDIX A

RIEXTHRR

>>> R H A L EGA R Python $&7-4F . FEAE 2 R T BB AR H Ty AR M REAR LIV T IO AR B AR 2 1

. The default Python prompt of the interactive shell when entering code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2to3 —>f Python 2.x fUfS #4657 Python 3.x fURLIK TR, REAS A PR 0703 1o AEAT U5 o DIy A ATyl 4
T2 AN

2t03 WA TERRMEEH, BN 1ib2to3; FFEM—/ NS AT Tools/scripts/2to3. £
2to3-reference.,

abstract base class —fili% 3£28 Abstract base classes complement duck-typing by providing a way to define interfaces
when other techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods).
ABC:s introduce virtual subclasses, which are classes that don’ t inherit from a class but are still recognized by
isinstance () and issubclass () ;see the abc module documentation. Python comes with many built-in
ABC:s for data structures (in the collections module), numbers (in the numbers module), and streams (in
the io module). You can create your own ABCs with the abc module.

argument —Z3 % A value passed to a function (or method) when calling the function. There are two types of arguments:

o KT A TEREOR M R A AR R (BIA0 name=) SCEAE N AL STERTIA A <+ Y5-I
MERE A 28BIRTE, 3 A1 5 FELATRXT complex () B HIET K724

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

s L E Ade ARTRETSHNSI (CESHTH T SR ENIT L AR SEGE A D ana A
* Witerable P TCRGAL A 2B, 3 A1 5 FELA T hy g T E S 4

complex (3, 5)
complex (* (3, 5))

SHLHIR L BRBC PR AR A B A7 XRRALINS L calls —7. RURIERE , FEOTRIBAT
TR BT L SRR TS

157

The Python/C API, X% 2.7.18

See also the parameter glossary entry and the FAQ question on the difference between arguments and parameters.

attribute —J@PE SCECE]— N RE, FTAMH S5 ERREAHAFRRE . fla, R 5% o A
— @ a, BT o.a REIHE .

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’ s creator.

bytes-like object —3= 15 J3%} 4 An object that supports the buffer protocol, like str, bytearray or memoryview.
Bytes-like objects can be used for various operations that expect binary data, such as compression, saving to a
binary file or sending over a socket. Some operations need the binary data to be mutable, in which case not all
bytes-like objects can apply.

bytecode —=7 i1 Python source code is compiled into bytecode, the internal representation of a Python program in the
CPython interpreter. The bytecode is also cached in . pyc and . pyo files so that executing the same file is faster
the second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to
run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes
are not expected to work between different Python virtual machines, nor to be stable between Python releases.

TR AR AT LAE dis B SR AR
class 3¢ JSRAIEN P E NGB, 258 SGEH L 3 X% 2E M S BIUEA T B 7 kg 3

classic class Any class which does not inherit from object. See new-style class. Classic classes have been removed in
Python 3.

coercion —5ii il AUEEHE The implicit conversion of an instance of one type to another during an operation which in-
volves two arguments of the same type. For example, int (3.15) converts the floating point number to the integer
3, butin 3+4. 5, each argument is of a different type (one int, one float), and both must be converted to the same
type before they can be added or it will raise a TypeError. Coercion between two operands can be performed
with the coerce built-in function; thus, 3+4 . 5 is equivalent to calling operator.add (*coerce (3, 4.
5)) and results in operator.add (3.0, 4.5). Without coercion, all arguments of even compatible types
would have to be normalized to the same value by the programmer, e.g., f1oat (3) +4 . 5 rather than just 3+4 . 5.

complex number 5% X @ LA GLY JE, Hoh I B R R 8 — A SEE SRR AL, R
A HERCAOL (-1 BRI AR) BYSEARR, EHAEREAT SN 1, ETRESHS 5. Python N T4
By sy, R TREEARICT =20 il —A 3 R4, BN 3+15. WPRTEZE math BEER ARG A%
WARBURA, #EH cmath, RER AR — DB BAEARE. WRIRBOER A L, ZIEE
ITLP AR AL

context manager — |2 F 3CAFPIEY 7E with iEAPN, @idE X __enter_ () Ml _exit_ () R
HFEDREHIN S . £ L PEP 343,

CPython Python ZF1E F HIMIVESEEL, FE python.org & 7fi.” CPython” — i)] F7E0 B R K L SL Bl HoAth
SEFFIAN Jython EY, IronPython AH X 51l

decorator &My R IPME AT — D REWREL, EHE M ewrapper A AORMITREUEH . REMidsm
BT f3E classmethod () fl staticmethod () .

PFEETE R RIS, AR A B B0E SR X BS54 4R

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

] ARSI T8, (Rl F R A o A SRR TR 1T 2 0 eR S0 SR 2858 SR SORY

158 Appendix A. RiEIEBR

https://www.python.org/~guido/
https://www.python.org/dev/peps/pep-0343
https://www.python.org

The Python/C API, X% 2.7.18

descriptor —§{iif%% Any new-style object which defines the methods __get_ (), __set__ (), or
__delete__ (). When a class attribute is a descriptor, its special binding behavior is triggered upon at-
tribute lookup. Normally, using a.b to get, set or delete an attribute looks up the object named b in the class
dictionary for a, but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is
a key to a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

A KBTI IR TR T2 descriptors.

dictionary —Z#it An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eqg__ () methods. Called a hash in Perl.

dictionary view —HLEEPE| The objects returned from dict .viewkeys (),dict.viewvalues (),anddict.
viewitems () are called dictionary views. They provide a dynamic view on the dictionary’ s entries, which
means that when the dictionary changes, the view reflects these changes. To force the dictionary view to become a
full list use 1ist (dictview). See dict-views.

docstring —SCRYFAFH 128, BRI 2 WIS — b s Ul B AR M. BT AT 29
2, BSPHERSR B ITIES . R __doc_ @i, T En T AHNE,
SRR QAT AL AL

duck-typing 1 F-RM F5—FgFE XA, EIFMKEE RIS RER e LR EHA BN, meH
B R 6 s g (BRGNS, mpERWGEM T, ISAE EMmEN) hT e
FUMAERRE 288, it RIS v i 2 SRR T R, 19T 2RBLE R type () B
isinstance () Kpill. ((HEEFRENFIRB0] DAEH 4 248 % s e,) MAEES R hasattr ()
K 2 EAFP 4hfe .

EAFP R HCRVFIHA S, 930455 . X Python # J AU 4 5 AU 2 18 BT 1 B BB AP AE
HAEBGE FRINHH IS B o X PR PR XA IR @ Kz] oy Ml except ifAT. THAIN Y
W2 FTELBYL W, #ILT C S5 R HAIE = .

expression -3k A, A piece of syntax which can be evaluated to some value. In other words, an expression is an
accumulation of expression elements like literals, names, attribute access, operators or function calls which all
return a value. In contrast to many other languages, not all language constructs are expressions. There are also
statements which cannot be used as expressions, such as print or i f. Assignments are also statements, not

expressions.
extension module —§" Jg it DA C 5 C++ Zi'5 A, i1 Python [¥) C APT 3k 5iEF 1.0 DA A P A i
T H..

file object —SCPRXF G A SMRPETH 7 S0 APL AGE N2 BEEAIR G (AP read () Bl write () XAERYTT
5) o MEHAIET BRI, ORI AT AME B BLSCRE RSO, XHARAUA A, SO Rl IR A
AR (PANAR R A/ . AR IX . BT, B) . U R WP ST R 23 2 80A.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the i o module. The canonical way to create a file object is by using the open () function.

file-like object —SLPEJA 4 file object [1F] il o

finder 5 $k%% An object that tries to find the loader for a module. It must implement a method named
find_module (). See PEP 302 for details.

floor division —[i] FIUEEERE: 1) N & A B S R BB B Rk . 10 N BRI IEB AT /7 - Blin, %
kX 11/ AWTRESRE 2, M52 MR EF S EIERZERE 2.75 . WE (-11) // 4
23R 0] -3 PR SE -2.75 B T A RIS . I, PEP 238 .

function —pR %L AT DA H & R BIEEAME — 4B A . 380] DA AR ABASE 2> 240 HAE R BRI T ¢
1§/l 5 Wparameter, method 1 function ££75 ,

__future__ A pseudo-module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expression 11 /4 currently evaluates to 2. If the module in which it

159

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0238

The Python/C API, X% 2.7.18

is executed had enabled true division by executing:

from _ future__ import division

the expression 11 /4 would evaluate to 2 . 75. By importingthe ___future___ module and evaluating its variables,
you can see when a new feature was first added to the language and when it will become the default:

>>> import __ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection —L7 Y% [B[it The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator —2EJ%7#% A function which returns an iterator. It looks like a normal function except that it contains yield
statements for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function. Each yield temporarily suspends processing, remembering the location execution state (in-
cluding local variables and pending try-statements). When the generator resumes, it picks up where it left off (in
contrast to functions which start fresh on every invocation).

generator expression —f: g3 35 3, An expression that returns an iterator. It looks like a normal expression followed
by a for expression defining a loop variable, range, and an optional i f expression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

GIL 2 W.global interpreter lock

global interpreter lock —4: i ffREg B CPython ffFEes TR B —FIALE , B RIRE —i %) g — 2817
AT Python byrecode, BEALTHE T BEE AT GARR (AHE dict SEE N EIRM) X 5 a4
A fijifk T CPython SZH., 258NN RRESS B (H 1S M RERS 2 R RE B T (8, AR W44t T 2 40
S FROHA T

ANad, BEBERE B =07 R I R A BT AR AT T B AR AT 55 0 s 4 s A R GIL
BEAh, FEIAT VO #RAEB 2 SR GIL.

QI (PASERSAIAL BER BiE Je 28y) A AR MPRERR i 55 I MR IRAG IS, R R x4
TEA0 FAAE PR DL T HOTERE o J5 (5 e AR B8 170 R A o B S AR A B A %, AT B A DA
o

hashable —u] W37 An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (itneedsan __eq__ () or __cmp___ () method).
Hashable objects which compare equal must have the same hash value.

]I F PR CERERT SRR D T SR A A LB, PR Ry B 2) A A T 0 AL

All of Python’ s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries)
are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal (except
with themselves), and their hash value is derived from their id ().

IDLE Python {) IDE, “EpiJT & 52£J BREE” MYSESCEHE o 2 Python BRifl AT PR) BE A 2 AR RS
REREL .

immutable — A HATFEEHAXTR . AR QAL AR HICA. AR R A RER L. W
R — DA R, WLBRIEHRX S . MRS R Er 5 E2AEN, B
(SR i

integer division Mathematical division discarding any remainder. For example, the expression 11/ 4 currently evaluates

to 2 in contrast to the 2 . 75 returned by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied to it). However, if one of the operands is

160 Appendix A. RiEIEBR

The Python/C API, X% 2.7.18

another numeric type (such as a f1oat), the result will be coerced (see coercion) to a common type. For example,
an integer divided by a float will result in a float value, possibly with a decimal fraction. Integer division can be
forced by using the // operator instead of the / operator. See also __future__.

importing —5 A 4— MUY Python MRS RE I — MELER H Y Python FURS B I AY S 2 .
importer — A%F EHIFMBABATN R WS ZRBEE T finder 3@ Tloader

interactive —5¢ 7. Python iy — NS HAMERERS , BIVRAT DATERRRES S /AT S ATB I AN SR, SZ BT
HAEEHER . AT SEOES) python fivd (WA DATEARAYTT ST AR B P s A B3 BT
AE R AR BOS SR AT A I X A AR AER T (HEAE help (x)).

interpreted £ Python —RAMFREALE T, SRR M IFAIET , RIAPIE I i T 51 i g 5
e AEAE T A7 PP o R AR JESCIE AT A LGB AT A b B s B n] AT SO FRIs AT R
TR BA g A AT A AR UR Y, (R AP R EIs TR R . & Winteractive,

iterable —n] 3% U4t An object capable of returning its members one at a time. Examples of iterables include all
sequence types (such as 1ist, str, and tuple) and some non-sequence types like dict and £ile and objects
of any classes you define withan __iter_ () or __getitem__ () method. Iterables can be used ina for
loop and in many other places where a sequence is needed (zip (), map (), ---). When an iterable object is passed
as an argument to the built-in function iter (), it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessary to call iter () or deal with iterator
objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

iterator —i%f07% An object representing a stream of data. Repeated calls to the iterator’ s next () method return suc-
cessive items in the stream. When no more data are available a St opIteration exception is raised instead. At
this point, the iterator object is exhausted and any further calls to its next () method justraise StopIteration
again. Iterators are required to havean __iter__ () method that returns the iterator object itself so every iterator
is also iterable and may be used in most places where other iterables are accepted. One notable exception is code
which attempts multiple iteration passes. A container object (such as a 1ist) produces a fresh new iterator each
time you pass it to the iter () function or use it in a for loop. Attempting this with an iterator will just return
the same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.

W25 E [EF typeiter.

key function B H pR BCAREE B R 4L, 2 REAZAR 0] 1 T-HEFP SR CLAE R TR R « BN, locale.
strxfrm () ATFA N AFEREE I HE T 29 %€ A HER 1 .

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min (), max (), sorted (), list.sort (), heapg.nsmallest (), heapg.nlargest (), and
itertools.groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, an ad-hoc key function can be built from a 1ambda expression
suchas lambda r: (r[0], r[2]). Also,the operator module provides three key function constructors:
attrgetter (), itemgetter (),and methodcaller (). See the Sorting HOW TO for examples of how
to create and use key functions.

keyword argument — G255 2 Warsument,
lambda (A lexpression 14T B2 IR EL, RPN AET A B BORIE. B8 lambda 5L H)VE N

lambda [parameters]: expression

LBYL “Jefrf JGHkER” M3 045 . X AR g 5 XS S 7E #EA T IR T B 4R 2 1 S A A i p 4 . itk
Wkg S EAFP Jy G A, HAF RUR KR 1 £ 1A,
L LAMEET, LBYL il 8 “&F” Ml “BRER” Z I &SR K. B, PARAURD 1 £
key in mapping: return mappinglkey] A[REH TTEREERAEZ 5 HAMLREIN mapping FF5 R
T key T4 o 30K) R0 AT 3 3 i BB 0 1T EAFP 5 R fig e .

161

The Python/C API, X% 2.7.18

list %% Python N Ef{—Fhsequence. BSR4 NHNIFE, HEIMT HAEF HAORALNAEERS 1%, oA
FICER I S AR R O1).

list comprehension — 553X, A compact way to process all or part of the elements in a sequence and return a list
with the results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates
a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The i £ clause is optional. If omitted,
all elements in range (256) are processed.

loader ik 7% An object that loads a module. It must define a method named 1oad_module (). Aloader is typically
returned by a finder. See PEP 302 for details.

magic method —FEARJ5#: special method RIFEIE R 3]

mapping Wi} A container object that supports arbitrary key lookups and implements the methods specified in
the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

metaclass 03¢ —Fp] TAIEZEMZE. 208 XA H K4 BPMMERY L. TR T2 LIR=NS50F
BIEEFA N I ZE . A3 T a6 2 B i AT 5 AR PR — AN BRIA S 3. Python [R5 2 Ab T] DAGI
HE X Ttde. K H P AGEAT Zax A T H, H2YFE IR, Joden] $R ke K m e i o & .
Mg TieEE R HE ., gt BEXSAE. SR g, PAREAMFLZTES5 .

L% S I metaclasses.,
method JjiJi TEINHE AR WRAE M Z BB LB — N EHRE R, RS IR B % G4 H:

—A argument GRF 44K self). I function FMnested scope.

method resolution order —Jj iEMRATIE 5 5 FEAT I3 5t /2 A0 A $R A% D3 8 R 23 LS B R e e 7 . 1
25 F Python 2.3 J7EfENTINY THRE 2.3 B Python FEHTHE T FAH 35 B 1160

module Bit JLXT5 02 Python RG] —FpZHZLA(. SR JST 644 25 18], Al E & LR Python X4,
W R 38 L importing FEAEWM#Z E] Python .

5 Wpackage.
MRO Z: Wmethod resolution order ,

mutable —n[7E FASKI LA DATER 1d () PREFEE I SO HIE. 5312 Wimmutable .

named tuple —H. #5641 Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time . localtime () returns a tuple-like object where the year is accessible either with an index such
as t [0] or with a named attribute like t . tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a regular
class definition. A full featured named tuple can also be created with the factory function collections.
namedtuple (). The latter approach automatically provides extra features such as a self-documenting represen-
tation like Employee (name="jones', title='programmer').

namespace —fiy £ 45[] The place where a variable is stored. Namespaces are implemented as dictionaries. There are
the local, global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces sup-
port modularity by preventing naming conflicts. For instance, the functions __builtin__.open() and os.
open () are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it
clear which module implements a function. For instance, writing random. seed () or itertools.izip ()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

nested scope —jir £ 11, The ability to refer to a variable in an enclosing definition. For instance, a function defined
inside another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read and
write in the innermost scope. Likewise, global variables read and write to the global namespace.

162 Appendix A. RiEIEBR

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

The Python/C API, X% 2.7.18

new-style class —#f:\. 2% Any class which inherits from object. This includes all built-in types like 1ist and dict.
Only new-style classes can use Python’ s newer, versatile features like ___slots__, descriptors, properties, and
__getattribute__ ().

More information can be found in newstyle.

object W R AETHARE (JBPEEUE) ARTIUE XATH (J57E) Mm%, object UL @A fnew-style class [#i%

package —fu, —] {0 7 TR SR I 05 7437 Python module. MAEA L, {3247 H __path__ Jak
¥ Python ik .

parameter —J62 A named entity in a function (or method) definition that specifies an argument (or in some cases,
arguments) that the function can accept. There are four types of parameters:

* positional-or-keyword : ([E BT, HHE AW AN A SA R AN DA S 5T A2
ASEZ . KR BRARIES A, HIATT IR foo HI bar:

def func(foo, bar=None): ...

* positional-only: {LFREIE, & —A REEHALEE ARISE. Python Wil i AR E L ZHY
k. (B —SENEREH URMEES (Ll abs ()).

* var-positional: W]ZELE, 5 W] ARl —MERECR A AL B SEA T (FEITEHAE 2
CRZNNESHZIE). RIS AR S ARG * KE XL, Bl FE args:

def func(*args, **kwargs):

* var-keyword: FAZRHEF, HEE A DASRBUE AR S T S A (FOIMTE MR S C #3205
?72%%5(2):) L?’l‘qﬂﬁ/%TLﬂT S ZFREINEE ** A L, BB kwargs.

TS AT VALFI 5 E PTEANaie 2 4, il AS LT e S H0di s B

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, and
the function section.

PEP “Python M52 1" HIESCEHE . —4> PEP @i —Mritit S0, JHoK 1 Python #EIXERALE R, stk
—~ Python PR S B jZiT $i. PEP N 244 BORS A A S0 AR RS R BT S SRR B4 LR]

PEP WA A A) 2 BERRp i . IS DGR Fﬂ%ﬁfi’fﬁ PRSI Python BYi& T 3K 4% 5
SCRSEIENLE] . PEP [VEE A TARAEAL DX R @ 31, I BRI E A SRy .
%1, PEP 1.

positional argument —{\; B ¥ £ Wargument,

Python 3000 Python 3.x %A Lk AUWERR (X144 FHERAS 3 i Kb R TTI R M B L T) o A
YN “Py3k”.

Pythonic $if—~ U ol — B U S8 1~ Python B 5 fmci H 1 KU R, TTAN e O HCA 8 5 A
UL EE%IMU?EB ik, Python ¥y MM A for IAIRIARE [y A~ RIEAU S iy i e
o W2 G S B XA, IR ZAZE Python (A I SR] — M T 4t

for i in range(len(food)):
print food[i]

TR 2 ¥ B 157 5 B Pythonic (77 34 k& X FEY:

for piece in food:
print piece

163

https://www.python.org/dev/peps/pep-0001

The Python/C API, X% 2.7.18

reference count —5 I VHE XPREEX G5 HAOECE . 24— XRS5BT, B FCoT R ooR
T IO Python AU RUEIEF e A AT WL, (HERCPython SLBU— A KEEILR . sys Bz
T4~ getrefcount () BREL, FFFGAPA B AR IR ERT G5 T

__slots__ A declaration inside a new-style class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

sequence —J1: 41 An iterable which supports efficient element access using integer indices via the __getitem__ ()
special method and defines a 1en () method that returns the length of the sequence. Some built-in sequence types

are 1ist, str, tuple, and unicode. Note that dict also supports _ _getitem__ () and __len__ (),
but is considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than
integers.

slice —YJJ Ji* An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such asin variable_name [1:3:5]. The bracket (subscript)
notation uses s1ice objects internally (or in older versions, __getslice__ () and __setslice__ ()).

special method %55k Jjiki —7firh Python B YTk, RIS AR PATRFE 4R VR Bl QAH < 45
PRI FRIE RRH AT 2o FERTT AR 32 WL specialnames.,

statement —jfi 4] 1EA)REEF B (— NS “H) B BANL . — 5B R] DASR—expression B AR
BEFRILER), Bl if, while B for.

struct sequence A tuple with named elements. Struct sequences expose an interface similiar to named tuple in that
elements can be accessed either by index or as an attribute. However, they do not have any of the named tuple

methods like _make () or _asdict (). Examples of struct sequences include sys.float_info and the
return value of os.stat ().
triple-quoted string — 5|5 FRf RN SAELNG S (7) SRS () WFEMFS. ENTEYIRE

‘ﬁﬁ%%ﬂ%~’*%lvﬁ&ﬂ’]? FRER AR, HEA 2 MMt ENAFrrETHHRNEERE
e X BRE S HIE S, H] DABS B AT JOf G 1 HESEAT (R4 5 SOR A0 R IR 5 1

type R A YusE—A> Python X @ FAHAMIE: HAXTLARRA —FhRAL. BHEEXT LA, AT AT
HER __class__ J@tk, SU2#E type (obj) KL,

universal newlines —jifi f]##i47 A manner of interpreting text streams in which all of the following are recognized as
ending a line: the Unix end-of-line convention '\n"', the Windows convention '\r\n"', and the old Macintosh
convention '\r'. See PEP 278 and PEP 3116, as well as str.splitlines () for an additional use.

virtual environment —JBIIAEE —FR HIVMEZ R B 021 TR, fiF Python] PRI Y. F AR P AE &6 F1 T
2% Python 73 & AUHS AN 2403 A — R G _Fiz iy HAth Python [27 HI47 4

virtual machine BNl — & 5¢ 4 L B & LB ML Python R SUAL AT $047 2 1 18 2 135 2% T 46
i) bytecode.

Zen of Python —Python Z#fi 51| Python iy N 54524, AT RS M0 X FES . AEHEERNE
AERZ B RF i A “import this”,

164 Appendix A. RiEXtEEER

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

APPENDIX B

i A

IXBESCRYAE A H reStructured Text JJE3CRY, | Sphinx (—~% 724 Python SCRY 5 Y SCRY A s) BIEE.

AR SRS BT L RURE R TF S 52 42 ph B I 56 Y, XA Python 42 B, WUREAES Sk, i
reporting-bugs T AEUINAZ: 5. A BAIN YL B 76 1

RN it -
* Fred L. Drake, Jr., @3 7 H 354 Python SCRYR T HEE, DAKIRE T HEH 21 30RY;
e Docutils #40, W H , Al T reStructuredText A Z A Docutils #4245
e Fredrik Lundh, Sphinx M ftli[#¥] Alternative Python Reference T H H13%45 TR £ {F-mhAH .

B.1 Python T8y Rk

AR Z %} Python i, Python FifE &l Python SCRYA Tk A, B Python JELHS & 7 Misc/ACKS SC{431)
TR TR

5T Python K ARITTR, Python A5 T HILHH (SR - WA 1!

165

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/2.7/Misc/ACKS

The Python/C API, X% 2.7.18

166 Appendix B. 3C44i5EA

apPENDIX C

7 B FiF AT

C.1 zR#pImE

Python H fif 22§ FI T AR 9224 (CWI, I https://www.cwinl/) f#) Guido van Rossum - 1990 4E Y,
W, fER—TT0M ABC [iEF AU . R4 Python 345 T2 5k B HAB AW 5THk, Guido {52 H &
BEH .

1995 4E, Guido 7 #2 Je WNHY E Z A 5T 22 &) (CNRI, I, https://www.cnri.reston.va.us/) #4247 Python
ERTTAE, IR A T 2 AU

2000 4£ 71 H, Guido FI Python #.00FF & 41 BA %4 %] BeOpen.com £ 7 T BeOpen PythonLabs [\ . [F4E1 H ,
PythonLabs [#]BA%% F| Digital Creations (¥} & Zope Corporation; [, https://www.zope.org/). 2001 4£, Python #x{4:
H 42y (PSF, I https://www.python.org/psf/) 57, X &A% A4 Python AH S AT AU A1 @ iy 75
221, Zope Corporation FI{E & PSF [B i i1 .

JI A7) Python BAEZITRR) (A KIFURHYE L2 https://opensource.org/). P I, #iKZ % Python Jii
AJe GPLARA) TREL T RANOL .

XfhRA | RE F EE GPL#%?
09.0% 1.2 | n/a 1991-1995 | CWI =
13215212 1995-1999 | CNRI 7=
1.6 1.52 2000 CNRI &
2.0 1.6 2000 BeOpen.com | {5
1.6.1 1.6 2001 CNRI %
2.1 2.0+1.6.1 | 2001 PSF o
2.0.1 2.0+1.6.1 | 2001 PSF P
2.1.1 2.1+2.0.1 | 2001 PSF 2=
2.1.2 2.1.1 2002 PSF =
2.13 2.1.2 2002 PSF 2=
22 GEE | 201 2001 %% | PSF =

{Efi: GPL #A T AR M Python £ GPL N k1. 5 GPL AJa], Frf Python ¥4 Al AR FL &4 R 1B MG

167

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python/C API, X% 2.7.18

A, T JC T TR T A Sk . GPL AR A T IE (15 Python R PAS HVETE GPL R & AT HIAF45 & B ;
HHERFAHENATT .

JRUIARZAE Guido 55 T TAERYSNIREREE , AIfGaX 28 B A oA vl fiE -

C.2 FRERE LAH B E A Python Bk FOF ¢

C.2.1 F PYTHON 2.7.18 #Y PSF o] {inil

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),_
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

2.7.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 2.7.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2020 Python Software Foundation; All_
—Rights
Reserved" are retained in Python 2.7.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.7.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—~Python
2.7.18.

4. PSF is making Python 2.7.18 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY REPRESENTATION..
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 2.7.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.7.18

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.7.18, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

168 Appendix C. Fys2FI¥F Tk

The Python/C API, X% 2.7.18

6. This License Agreement will automatically terminate upon a material breach.
—~of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—~License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 2.7.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 FF PYTHON 2.0 fj BEOPEN.COM # &Il

BEOPEN PYTHON JFE 14] P ER 1 AR

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions

(FItgkss)

C.2. FESHLIHMBHAXMEA Python BaRERFOZ M 169

The Python/C API, X% 2.7.18

(£ 50

granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 FF PYTHON 1.6.1 g5 CNRI ¥#F o] tipil

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of

(Fotakss)

170 Appendix C. 5558 F0¥FE[iE

The Python/C API, X% 2.7.18

(£ 50

Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 FHF PYTHON 0.9.0 E 1.2 f§ CWI ¥F o] il

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE .

C.3 USRI YT ol 50515
AT Python B ATHLCTAG A =y B b VAT RO, AT MR A 23 FLR IR

C.3.1 Mersenne Twister

_random A E E T http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html T 2% 113,
e DA 2R i se ek (75 1) -

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

(FItakss)

C.3. #HWrRIRHFaYVF ol 5053 171

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, X% 2.7.18

(£ 50

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m—mat @ math.sci.hiroshima-u.ac.jp (remove space)

C3.2 EEx

socket #HHH] getaddrinfo () Ml getnameinfo () pAEL, XLEpRETFAIDAE WIDE i H (http:/www.
wide.ad.jp/) By BRI SCIAFH

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

(Rt

172 Appendix C. FHsEF0¥Fa[iE

http://www.wide.ad.jp/
http://www.wide.ad.jp/

The Python/C API, X% 2.7.18

(£ 50

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpect 1 module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for
any purpose without fee is hereby granted, provided that this en-—
tire notice is included in all copies of any software which is or
includes a copy or modification of this software and in all
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence
Livermore National Laboratory under contract no. W-7405-ENG-48
between the U.S. Department of Energy and The Regents of the
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their em-
ployees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that 1its use would not infringe
privately-owned rights. Reference herein to any specific commer-
cial products, ©process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply 1its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University
of California, and shall not be used for advertising or product
\ endorsement purposes. /

C.3. #HWrRIRHFaYVF ol 5053 173

The Python/C API, X% 2.7.18

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfcl321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 lpd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

1999-11-04 lpd Edited comments slightly for automatic TOC extraction.

1999-10-18 1lpd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 1lpd Original version.

174 Appendix C. 5558 F0¥FE[iE

The Python/C API, X% 2.7.18

C3.5 REEEFIRS

asynchat and asyncore B & DA FEHH:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie &1

The Cookie module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3. #HWrRIRHFaYVF ol 5053 175

The Python/C API, X% 2.7.18

C.3.7 HiTERR

trace B S PA T AEH:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.8 UUencode E UUdecode &%l

uu B DA R

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(Rt

176 Appendix C. 5558 F0¥FE[iE

The Python/C API, X% 2.7.18

(£ 50

version is still 5 times faster, though.
— Arguments more compliant with Python standard

C.3.9 XML = 2= FAH

The xm1lrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.10 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

CFItakss)

C.3. #HWrRIRHFaYVF ol 5053 177

The Python/C API, X% 2.7.18

(£ 50

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.11 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.12 strtod and dtoa

Python/dtoa.c CHEML T CiEF1) dtoa Fl strtod pR%Y, I THF C i H AU M FAF R T4, 1%
CAFA David M. Gay 1y [R] 4 SCHIRAE T, 24110 A] M http://www.netlib.org/fp/ 3% . 2009 4E 3 H 16 H#5:2%)]
(A JELAE SO AL AR FROBCRI AT R B

/**

The author of this software is David M. Gay.

* % o

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % o

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % ok X

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

(Rt

178 Appendix C. 5558 F0¥FE[iE

The Python/C API, X% 2.7.18

(£ 50

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

‘k*****‘k**‘k********‘k*****‘k*‘k***‘k****'k‘k*‘k************************/

C.3.13 OpenSSL

WERBEAERG A, W hashlib, posix, ssl, crypt fRHLfH] OpenSSL 42 = PERE. HAh, WEHT
Python [Windows Fl Mac OS X %2427 1] fe 045 OpenSSL E#5 U1, FrLAFE AL .51 4 T OpenSSL 7 1]
UERY % DL

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corel@openssl.org.

OpenSSL License

/= == == == == == ==

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact
* openssl-core@openssl.org.

*

* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

*

* 6. Redistributions of any form whatsoever must retain the following

C.3. #HWrRIRHFaYVF ol 5053 179

The Python/C API, X% 2.7.18

(£ 50

b S S I . R e S S S R

*

*

acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eayl@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(Rt

180

Appendix C. Fys2FI¥F Tk

The Python/C API, X% 2.7.18

(22 30
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
*

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

b S e

*

*

* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence

* [including the GNU Public Licence.]

C.3.14 expat

BRAEME] ——with-system-expat BLE THIE, N pyexpat §7 AR E AL expat Y5 10HS DR 2

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINEFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. #HWrRIRHFaYVF ol 5053 181

The Python/C API, X% 2.7.18

C.3.15 libffi

FRARMIN ——with-system-1ibffi WU THE, BN _ctypes ¥ HNE (17 libffi JHEH5 DM E):

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘"Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.16 zlib

R ARG EAREIRY 21ib AR IHT ek A, W 55 2lib PG 8 DR 2 1ib 37 J%:

Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

182 Appendix C. Fys2FI¥F Tk

APPENDIX D

Copyright

Python 53 SCHY:

Copyright © 2001-2020 Python Software Foundation. {48 TG+ H]

AU © 2000 BeOpen.com., {38 TG AUH

AL © 1995-2000 Corporation for National Research Initiatives., {585 BTG AU .
WAL © 1991-1995 Stichting Mathematisch Centrum., {483 BTG AU

A RSEBM VALV, 200 L AeF Tk,

183

The Python/C API, X% 2.7.18

184 Appendix D. Copyright

3l

EFE
..., 157
2to3, 157
>>> 157
__all__ (package variable), 277
__builtin_

BP0 111
__dict__ (module attribute), 97
__doc__ (module attribute), 97
_ file_ (module attribute), 97

_ future_ , 159
__import_

B E &%, 27
__main___

Bk, 9 111, 120
__name___ (module attribute), 97
_ _slots_ , 164
_frozen (C (), 29
_inittab (C £7A),29
_Py_c_diff (C &%), 62
_Py_c_neg (C &%), 62
_Py_c_pow (C &%), 62
_Py_c_prod (C &%), 62
_Py_c_quot (C &), 62
_Py_c_sum (C k), 62
_Py_NoneStruct (CE %), 132
_PyImport_FindExtension (C &%), 29
_PyImport_Fini (C %), 29
_PyImport_FixupExtension (C &), 29
_PyImport_Init (C &), 28
_PyObject_Del (C &%%), 131
_PyObject_GC_TRACK (C &), 155
_PyObject_GC_UNTRACK (C &), 155
_PyObject_New (C FH %), 131
_PyObject_NewVar (C &%), 131
_PyString_Resize (C &%), 67
_PyTuple_Resize (C #4%), 88

exec_prefix, 4

PATH, 9

prefix, 4

PYTHONDUMPREFS, 138
PYTHONHOME, 9, 114
PYTHONPATH, 9
PYTHONSHOWALLOCCOUNT, 150

A

abort (), 26
abs
& &%, 46
abstract base class —— £ H %, 157
apply
& % 4, 43, 44
argument -- %%, 157
argv (in module sys), 113
attribute —- &M, 158

B

BDFL, 158
buffer

&, 81
buffer interface, 81
BufferType (in module types), 85
builtins

HH, 120
bytearray

%, 64
bytecode —-- F ¥, 158
bytes

B & &%, 43
bytes—-like object —- F¥WEXt%, 158

C

calloc (), 125
Capsule

Xt %, 101
charbufferproc (C X&), 154
class

185

The Python/C API, X% 2.7.18

X4, 93
class —-- 2,158
classic class, 158
classmethod

& &%, 135
ClassType (in module types), 93
cleanup functions, 26
close () (in module os), 120

cmp
B & %, 42
CO_FUTURE_DIVISION (C % %), 14
CObject
st 102
code object, 108
coerce
[EE %%, 48
coercion —- HEH| KA H##, 158
compile
)& & %, 28
complex number
Xt &, 62

complex number —-- £ %, 158

context manager —- T XA % 158

copyright (in module sys), 113
CPython, 158

D
decorator —-- A 158
descriptor -- k%, 159
dictionary

Xt £, 90
dictionary —--— F 4,159
dictionary view —— FHAE, 159

DictionaryType (in module types), 90
DictType (in module types), 90

divmod

[FIE & %, 46
docstring —-— XA F A B, 159
duck-typing -- ®F KA 159
E
EAFP, 159

EOFError (built-in exception), 96
exc_info () (in module sys), 7
exc_traceback (in module sys), 7, 17
exc_type (in module sys), 7, 17
exc_value (in module sys), 7, 17
exceptions

9
exec_prefix, 4
executable (in module sys), 112
exit (), 26
expression —— F}ik=#, 159
extension module —-- ¥ B, 159

F
file

X%, 95
file object -- XXt £, 159
file-like object —— XHEX%,159
FileType (in module types), 95
finder —- #H# &, 159
float

B E &%, 48
floating point

X4, 61
FloatType (in modules types), 61
floor division -- [FEER %, 159
fopen (), 95
free (), 125
freeze utility, 29
frozenset

4,107
function

X%, 93
function -- ®E#, 159

G

garbage collection —- Hr3% E i, 160
generator, 160

generator —— A ik, 160

generator expression, 160

generator expression -- 4 gk #ERiAR, 160
GIL, 114, 160
global interpreter lock, 114

global interpreter lock —-— £ F #5241,
160

Fl

hash
[EE &%, 44, 141
hashable -- TW#%, 160

IDLE, 160
ihooks

ik, 27
immutable —-- A ZF, 160
importer —- & A4, 161
importing -- & A, 161
incr_item(), 8,9
inquiry (C %), 156
instance

R, 93
int

[EE &%, 48
integer

x4, 57

186

EL]

The Python/C API, X% 2.7.18

integer division, 160
interactive -- X &, 161
interpreted —— @EA, 161
interpreter lock, 114
IntType (in modules types), 57
iterable —— H# R4, 161
iterator —- # R %, 161

K

key function -- £ & ¥, 161
KeyboardInterrupt (built-in exception), 20
keyword argument —— X% FH¥, 161

L

lambda, 161
LBYL, 161
len
[ME & %, 45, 49, 51, 89,91, 108
list
Xt &, 88
list —- 7|3k, 162
list comprehension —- 7%|%k# &R, 162
loader —— n# #, 162
lock, interpreter, 114
long
[& & %, 48
long integer
Xt £, 59
LONG_MAX, 58, 60
LongType (in modules types), 59

M
magic
method, 162
magic method -- JBEARF %, 162
main (), 112,113
malloc (), 125

mapping

Xt £, 90
mapping —— B, 162
metaclass —— T2, 162

METH_CLASS (& % &), 134
METH_COEXIST (BIE % &), 135
METH_KEYWORDS ([E] % % &), 134
METH_NOARGS ([l % %), 134
METH_O (EJ& % %), 134
METH_OLDARGS (1% &%), 134
METH_STATIC (E]E &%), 135
METH_VARARGS ([Fl % T 8), 134
method

magic, 162

special, 164

&, 94

method resolution order -- ¥ ¥ ## W 7,
162

method # ¥, 162
MethodType (in module types), 93, 94
module

search path, 9, 111,113

£, 97
module #H, 162
modules (in module sys), 27, 111
ModuleType (in module types), 97
MRO, 162
mutable —— T4, 162

N

named tuple —— E 414,162
namespace -- 4 %A, 162
nested scope —-— ﬁ@ﬁ’?}ﬂjﬁ, 162
new-style class —— ¥, 163
None

x4, 56

numeric

&, 57
O

object

code, 108
object —- X £,163
OverflowError (built-in exception), 60

F)

package -- 4,163
package variable

alil 27
parameter —— H#%, 163
PATH, 9

path
module search, 9, 111, 113
path (in module sys), 9, 111, 113

PEP, 163
plat form (in module sys), 113
positional argument —-— L& %%, 163
pow
[EVE & %, 46, 47
prefix, 4

Py_AddPendingCall (C &), 121
Py_AddPendingCall (), 121
Py_AtExit (C &%), 26
Py_BEGIN_ALLOW_THREADS, 115
Py_BEGIN_ALLOW_THREADS(CZO,“8
Py_BLOCK_THREADS(CUlelg
Py_buffer (C £ A), 82
Py_buffer.buf (C & R), 82
Py_buffer.internal (C & i), 83
Py_buffer.itemsize (C s i), 82

e]

187

The Python/C API, X% 2.7.18

Py_buffer.ndim (C & 1), 82
Py_buffer.readonly (C m i), 82
Py_buffer.shape (C & R), 82
Py_buffer.strides (C i i), 82
Py_buffer.suboffsets (Cm it), 82
Py_Buildvalue (C &%), 35
Py_CLEAR (C F k), 15
Py_CompileString (C &%), 13
Py_CompileString(), 14
Py_CompileStringFlags (C &%), 13
Py_complex (C (), 62
Py_DECREF (C & 4%), 15
Py_DECREF (), 4

Py_Ellipsis (C E &), 100
Py_END_ALLOW_THREADS, 115
Py_END_ALLOW_THREADS (C)"'Z), 118
Py_END_OF_BUFFER (C % &), 85
Py_EndInterpreter (C %%%), 120
Py_EnterRecursiveCall (C &%), 22
Py_eval_input (C £%), 14
Py_Exit (C &%), 26

Py_False (C &), 58
Py_FatalError (C &), 26
Py_FatalError(), 113
Py_FdIsInteractive (C &%), 25
Py_file_input (CE &), 14
Py_Finalize (C &), 111
Py_Finalize (), 26,111,120
Py_FindMethod (C #%k), 136
Py_GetBuildInfo (C &), 113
Py_GetCompiler (C F#k), 113
Py_GetCopyright (C H4%), 113
Py_GetExecPrefix (C H4%), 112
Py_GetExecPrefix(),9
Py_GetPath (C &%), 113
Py_GetPath(),9, 112
Py_GetPlatform (C F#k), 113
Py_GetPrefix (C FHik), 112
Py_GetPrefix(),9
Py_GetProgramFullPath (C &), 112
Py_GetProgramFullPath(),9
Py_GetProgramName (C F#k), 112
Py_GetPythonHome (C &%), 114
Py_GetVersion (C &%), 113
Py_INCREF (C #4%), 15
Py_INCREF (),4

Py_Initialize (C &), 111
Py_Initialize(),9, 112,116,120
Py_InitializeEx (C FH4), 111
Py_InitModule (C &%), 132
Py_InitModule3 (C &%), 132
Py_InitModuled (C &%), 132
Py_IsInitialized (C &), 111
Py_IsInitialized(),9

Py_LeaveRecursiveCall (C &%), 22
Py_Main (C &#), 11
Py_NewInterpreter (C &%), 120
Py_None (C &), 56
Py_PRINT_RAW, 96
Py_REFCNT (C %), 133
Py_RETURN_FALSE (C %), 58
Py_RETURN_NONE (C %), 56
Py_RETURN_TRUE (C %), 58
Py_SetProgramName (C &%), 112
Py_SetProgramName (), 9, 111, 112
Py_SetPythonHome (C &%), 114
Py_single_input (C &), 14
Py_SIZE (C %), 133
PY_SSIZE_T_MAX, 60
Py_TPFLAGS_BASETYPE (FE % &), 143
Py_TPFLAGS_CHECKTYPES ([F1 % % 8), 143
Py_TPFLAGS_DEFAULT (B1E % ¥), 144
Py_TPFLAGS_GC (FlE % %), 143
Py_TPFLAGS_HAVE_CLASS (1% % %), 143
Py_TPFLAGS_HAVE_GC (H1E % 8), 144
Py_TPFLAGS_HAVE_GETCHARBUFFER ([Fl & T %),
142, 154
Py_TPFLAGS_HAVE_INPLACEOPS ([E|E % %), 143
Py_TPFLAGS_HAVE_ITER (F% % 8), 143
Py_TPFLAGS_HAVE_RICHCOMPARE (% % %), 143
Py_TPFLAGS_HAVE_SEQUENCE_IN ([F% % &), 143
Py_TPFLAGS_HAVE_WEAKREFS (H] % T &), 143
Py_TPFLAGS_HEAPTYPE (F1E %), 143
Py_TPFLAGS_READY (E1 % %), 143
Py_TPFLAGS_READYING (FZ %), 143
Py_tracefunc (C £ &), 121
Py_True (C &%), 58
Py_TYPE (C %), 133
Py_UNBLOCK_THREADS (C %), 118
Py_UNICODE (C £78), 69
Py_UNICODE_ISALNUM (C &%), 70
Py_UNICODE_ISALPHA (C #4%), 70
Py_UNICODE_ISDECIMAL (C %), 70
Py_UNICODE_ISDIGIT (C &%), 70
Py_UNICODE_ISLINEBREAK (C &%), 70
Py_UNICODE_ISLOWER (C &% %%), 70
Py_UNICODE_ISNUMERIC (C #4%), 70
Py_UNICODE_ISSPACE (C &%), 70
Py_UNICODE_ISTITLE (C %), 70
Py_UNICODE_ISUPPER (C &%), 70
Py_UNICODE_TODECIMAL (C %%k), 70
Py_UNICODE_TODIGIT (C & k), 70
Py_UNICODE_TOLOWER (C % 4%), 70
Py_UNICODE_TONUMERIC (C &%), 70
Py_UNICODE_TOTITLE (C &%), 70
Py_UNICODE_TOUPPER (C &%), 70
Py_VaBuildvalue (C &%), 36
Py_VISIT (C F&#), 155

188

EL]

The Python/C API, X% 2.7.18

Py_XDECREF (C &%), 15
Py_XDECREF (), 9
Py_XINCREF (C &%), 15
PyAnySet_Check (C &%), 107
PyAnySet_CheckExact (C &%), 107
PyArg_Parse (C &%), 34
PyArg_ParseTuple (C H), 34
PyArg_ParseTupleAndKeywords (C & 4%), 34
PyArg_UnpackTuple (C &%), 34
PyArg_VaParse (C F#k), 34
PyArg_VaParseTupleAndKeywords (C F#%), 34
PyBool_Check (C FH#%), 58
PyBool_FromLong (C &%), 58
PyBuffer_Check (C &), 86
PyBuffer_FillContiguousStrides (C & %),
84
PyBuffer_FillInfo (C &), 84
PyBuffer_FromMemory (C &%), 86
PyBuffer_FromObject (C &%), 86
PyBuffer_ FromReadWriteMemory (C &%), 86
PyBuffer_ FromReadWriteObject (C F#k), 86
PyBuffer_IsContiguous (C &), 84
PyBuffer_ New (C FH#%), 86
PyBuffer_Release (C &%), 84
PyBuffer_SizeFromFormat (C %#k), 84
PyBuffer_Type (CE &), 85
PyBufferObject (C (M), 85
PyBufferProcs, 85
PyBufferProcs (C £#&), 153
PyByteArray_AS_STRING (C &%), 64
PyByteArray_AsString (C k), 64
PyByteArray_Check (C &), 64
PyByteArray_CheckExact (C &%), 64
PyByteArray_Concat (C %%%), 64
PyByteArray_FromObject (C &%), 64
PyByteArray_FromStringAndSize (C F#k), 64
PyByteArray_GET_SIZE (C &), 64
PyByteArray_Resize (C H#), 64
PyByteArray_Size (C &), 64
PyByteArray_Type (C & &), 64
PyByteArrayObiject (C £A), 64
PyCallable_Check (C &4k), 43
PyCallIter_Check (C H#k), 98
PyCallIter_New (C %), 98
PyCallIter_Type (C &%), 98
PyCapsule (C %), 101
PyCapsule_CheckExact (C &%), 101
PyCapsule_Destructor (C £#), 101
PyCapsule_GetContext (C &), 101
PyCapsule_GetDestructor (C &%), 101
PyCapsule_GetName (C H#k), 101
PyCapsule_GetPointer (C &%), 101
PyCapsule_Import (C &%), 101
PyCapsule_IsValid (C &), 102

PyCapsule_New (C &% 4%), 101
PyCapsule_SetContext (C &%), 102
PyCapsule_SetDestructor (C %H4L), 102
PyCapsule_SetName (C %), 102
PyCapsule_SetPointer (C &), 102
PyCell_Check (C & 4%), 103
PyCell_GET (C &%), 103
PyCell_Get (C &%), 103
PyCell_ New (C & 4%), 103
PyCell_SET (C k), 103
PyCell_Set (C F4%), 103
PyCell_Type (C T ¥), 103
PyCellObject (C £#), 103
PyCFunction (C £#&), 134
PyClass_Check (C #4%), 93
PyClass_IsSubclass (C #4%), 93
PyClass_Type (C £ &), 93
PyClassObject (C (%), 93
PyCObject (C £A), 102
PyCObject_AsVoidPtr (C &%), 103
PyCObject_Check (C &%), 102
PyCObject_FromVoidPtr (C &%), 102
PyCObject_FromVoidPtrAndDesc (C %), 102
PyCObject_GetDesc (C k), 103
PyCObject_SetVoidPtr (C &%), 103
PyCode_Check (C #4%), 108
PyCode_GetNumFree (C &%), 108
PyCode_New (C F#%), 108
PyCode_NewEmpty (C & 4%), 109
PyCode_Type (C T &), 108
PyCodec_BackslashReplaceErrors (C &),
40
PyCodec_Decode (C &%), 39
PyCodec_Decoder (C &%), 40
PyCodec_Encode (C &%), 39
PyCodec_Encoder (C &), 40
PyCodec_IgnoreErrors (C &), 40
PyCodec_IncrementalDecoder (C F4%), 40
PyCodec_IncrementalEncoder (C %), 40
PyCodec_KnownEncoding (C &%), 39
PyCodec_LookupError (C &4%), 40
PyCodec_Register (C &), 39
PyCodec_RegisterError (C k), 40
PyCodec_ReplaceErrors (C k), 40
PyCodec_StreamReader (C H4%), 40
PyCodec_StreamWriter (C &%), 40
PyCodec_StrictErrors (C &4%), 40
PyCodec_XMLCharRefReplaceErrors (C &),
40
PyCodeObject (C £#), 108
PyCompilerFlags (C (%), 14
PyComplex_AsCComplex (C &%), 63
PyComplex_Check (C ##k), 63
PyComplex_CheckExact (C &%), 63

e]

189

The Python/C API, X% 2.7.18

PyComplex_FromCComplex (C &%), 63
PyComplex_FromDoubles (C &), 63
PyComplex_ImagAsDouble (C ##k), 63
PyComplex_RealAsDouble (C &%), 63
PyComplex_Type (C & %), 63
PyComplexObject (C £#), 63
PyDate_Check (C F%k), 104
PyDate_CheckExact (C &%), 104
PyDate_FromDate (C F4%), 105
PyDate_FromTimestamp (C &%), 106
PyDateTime_Check (C &%), 104
PyDateTime_CheckExact (C Fk), 104
PyDateTime_DATE_GET_HOUR (C &% 4%), 106
PyDateTime_ DATE_GET_MICROSECOND (C & #%),
106
PyDateTime_DATE_GET_MINUTE (C &%), 106
PyDateTime_DATE_GET_SECOND (C & #%), 106
PyDateTime_FromDateAndTime (C FH#k), 105
PyDateTime_FromTimestamp (C F#%), 106
PyDateTime_GET_DAY (C & #k), 105
PyDateTime_GET_MONTH (C &%), 105
PyDateTime_GET_YEAR (C F%%), 105
PyDateTime_TIME_GET_HOUR (C &% %%), 106
PyDateTime_TIME_GET_MICROSECOND (C & #%),
106
PyDateTime_ TIME_GET_MINUTE (C #%%), 106
PyDateTime_TIME_GET_SECOND (C %4%), 106
PyDelta_Check (C #4%), 104
PyDelta_CheckExact (C &), 105
PyDelta_FromDSU (C &#%), 105
PyDescr_TIsData (C &%), 99
PyDescr_NewClassMethod (C k), 99
PyDescr_NewGetSet (C &), 98
PyDescr_NewMember (C &% #%), 98
PyDescr_NewMethod (C & #k), 98
PyDescr_NewWrapper (C #4%), 98
PyDict_Check (C &%), 90
PyDict_CheckExact (C &), 90
PyDict_Clear (C FH %), 91
PyDict_Contains (C H%%), 91
PyDict_Copy (C k), 91
PyDict_DelItem (C &%), 91
PyDict_DelItemString (C &), 91
PyDict_GetItem (C k), 91
PyDict_GetItemString (C H3%k), 91
PyDict_Items (C &), 91
PyDict_Keys (C H#k), 91
PyDict_Merge (C &#k), 92
PyDict_MergeFromSeq2 (C F4%), 92
PyDict_New (C FH4%), 90
PyDict_Next (C &%), 91
PyDict_SetTItem (C &%), 91
PyDict_SetItemString (C &%), 91
PyDict_Size (C &%), 91

PyDict_Type (C T &), 90

PyDict_Update (C & #k), 92

PyDict_values (C &%), 91

PyDictObject (C X&), 90

PyDictProxy_New (C %), 90

PyErr_BadArgument (C &), 19

PyErr_BadInternalCall (C #%#k), 20

PyErr_CheckSignals (C &%), 20

PyErr_Clear (C &%), 18

PyErr_Clear(),7,9

PyErr_ExceptionMatches (C FHk), 18

PyErr_ExceptionMatches (), 9

PyErr_Fetch (C %H4k), 18

PyErr_Format (C %), 18

PyErr_GivenExceptionMatches (C &#k), 18

PyErr_NewException (C FH4%), 21

PyErr_NewExceptionWithDoc (C &%), 21

PyErr_NoMemory (C FH#%), 19

PyErr_NormalizeException (C &), 18

PyErr_Occurred (C &), 17

PyErr_Occurred(),7

PyErr_Print (C &), 17

PyErr_PrintEx (C Fk), 17

PyErr_Restore (C %K), 18

PyErr_SetExcFromWindowsErr (C FH#k), 19

PyErr_SetExcFromWindowsErrWithFilename
(C &%), 20

PyErr_SetExcFromWindowsErrWithFilenameObject
(C &%), 19

PyErr_SetFromErrno (C %), 19

PyErr_SetFromErrnoWithFilename (C & %),
19

PyErr_SetFromErrnoWithFilenameObject (C
H40), 19

PyErr_SetFromWindowsErr (C &%), 19

PyErr_SetFromWindowsErrWithFilename (C
%30, 19

PyErr_SetFromWindowsErrWithFilenameObject
(C &%), 19

PyErr_SetInterrupt (C FHi), 20

PyErr_SetNone (C &4%), 19

PyErr_SetObject (C %), 18

PyErr_SetString (C H4%), 18

PyErr_SetString (), 7

PyErr_Warn (C k), 20

PyErr_WarnEx (C F3%k), 20

PyErr_WarnExplicit (C %), 20

PyErr_WarnPy3k (C &), 20

PyErr_WriteUnraisable (C H4%), 21

PyEval_AcquireLock (C F#%), 119

PyEval_AcquirelLock (), 111

PyEval_AcquireThread (C &%), 119

PyEval_EvalCode (C %), 13

PyEval_EvalCodeEx (C &%), 13

190

EL]

The Python/C API, X% 2.7.18

PyEval_EvalFrame (C F4%), 13
PyEval_EvalFrameEx (C), 14
PyEval_GetBuiltins (C %%%), 39
PyEval_GetCallStats (C &%), 122
PyEval_GetFrame (C &%%%), 39
PyEval_GetFuncDesc (C F4%), 39
PyEval_GetFuncName (C F#%), 39
PyEval_GetGlobals (C &), 39
PyEval_GetLocals (C FH#k), 39
PyEval_GetRestricted (C k), 39
PyEval_InitThreads (C &%), 116
PyEval_InitThreads (), 111
PyEval_MergeCompilerFlags (C &%), 14
PyEval_RelInitThreads (C FHk), 117
PyEval_ReleaseLock (C FH#), 119
PyEval_ReleaseLock (), 111,116
PyEval_ReleaseThread (C FH#k), 119
PyEval_ReleaseThread(), 116
PyEval_RestoreThread (C FH%k), 117
PyEval_RestoreThread(), 115,116
PyEval_SaveThread (C &#), 117
PyEval_SaveThread(), 115,116
PyEval_SetProfile (C &%), 122
PyEval_SetTrace (C &%), 122
PyEval_ThreadsInitialized (C &%), 117
PyExc_ArithmeticError, 23
PyExc_AssertionError, 23
PyExc_AttributeError, 23
PyExc_BaseException, 23
PyExc_BufferError, 23
PyExc_BytesWarning, 24
PyExc_DeprecationWarning, 24
PyExc_EnvironmentError, 23
PyExc_EOFError, 23
PyExc_Exception, 23
PyExc_FloatingPointError, 23
PyExc_FutureWarning, 24
PyExc_GeneratorExit, 23
PyExc_ImportError, 23
PyExc_ImportWarning, 24
PyExc_IndentationError, 23
PyExc_IndexError, 23
PyExc_IOError, 23
PyExc_KeyboardInterrupt, 23
PyExc_KeyError, 23
PyExc_LookupError, 23
PyExc_MemoryError, 23
PyExc_NameError, 23
PyExc_NotImplementedError, 23
PyExc_OSError, 23
PyExc_OverflowError, 23
PyExc_PendingDeprecationWarning, 24
PyExc_ReferenceError, 23
PyExc_RuntimeError, 23

PyExc_RuntimeWarning, 24
PyExc_StandardError, 23
PyExc_StopIteration, 23
PyExc_SyntaxError, 23
PyExc_SyntaxWarning, 24
PyExc_SystemError, 23
PyExc_SystemExit, 23
PyExc_TabError, 23
PyExc_TypeError, 23
PyExc_UnboundLocalError, 23
PyExc_UnicodeDecodeError, 23
PyExc_UnicodeEncodeError, 23
PyExc_UnicodeError, 23
PyExc_UnicodeTranslateError, 23
PyExc_UnicodeWarning, 24
PyExc_UserWarning, 24
PyExc_ValueError, 23
PyExc_VMSError, 23
PyExc_Warning, 24
PyExc_WindowsError, 23
PyExc_ZeroDivisionError, 23
PyFile_AsFile (C &%), 95
PyFile_Check (C &%), 95
PyFile_CheckExact (C &#), 95
PyFile_DecUseCount (C %), 96
PyFile_FromFile (C &%), 95
PyFile_FromString (C &), 95
PyFile_GetLine (C H4%), 96
PyFile_IncUseCount (C %#%), 95
PyFile_Name (C &%), 96
PyFile_SetBufSize (C &), 96
PyFile_SetEncoding (C &%), 96
PyFile_SetEncodingAndErrors (C H#), 96
PyFile_SoftSpace (C &%), 96
PyFile_Type (C £ &), 95
PyFile_WriteObject (C #4%), 96
PyFile_WriteString (C H4%), 96
PyFileObject (C %), 95
PyFloat_AS_DOUBLE (C %), 61
PyFloat_AsDouble (C $%4%), 61
PyFloat_AsReprString (C &%), 62
PyFloat_AsString (C F#k), 62
PyFloat_Check (C &%), 61
PyFloat_CheckExact (C $#4%), 61
PyFloat_ClearFreeList (C &%), 62
PyFloat_FromDouble (C &%), 61
PyFloat_FromString (C %), 61
PyFloat_GetInfo (C &%), 61
PyFloat_GetMax (C F4%), 61
PyFloat_GetMin (C &%), 61
PyFloat_Type (C % &), 61
PyFloatObject (C (%), 61
PyFrame_GetLineNumber (C % 4%), 39
PyFrozenSet_Check (C &), 107

e]

191

The Python/C API, X% 2.7.18

PyFrozenSet_CheckExact (C &%), 107
PyFrozenSet_New (C #%%), 107
PyFrozenSet_Type (C &), 107
PyFunction_Check (C &%), 93
PyFunction_GetClosure (C H4), 94
PyFunction_GetCode (C #4%), 93
PyFunction_GetDefaults (C ##k), 94
PyFunction_GetGlobals (C &%), 94
PyFunction_GetModule (C &%), 94
PyFunction_ New (C &F4%), 93
PyFunction_SetClosure (C H4%), 94
PyFunction_SetDefaults (C H4%), 94
PyFunction_Type (C £ &), 93
PyFunctionObject (C £#&), 93
PyGen_Check (C &), 104
PyGen_CheckExact (C &%), 104
PyGen_New (C F#4%), 104

PyGen_Type (C T &), 104

PyGenObject (C X&), 104

PyGetSetDef (C (7)), 136
PyGILState_Ensure (C &#), 117
PyGILState_GetThisThreadState (C FHk), 118
PyGILState_Release (C F#4%), 117
PyImport_AddModule (C &), 28
PyImport_AppendInittab (C &%), 29
PyImport_Cleanup (C &%), 29
PyImport_ExecCodeModule (C &%), 28
PyImport_ExecCodeModuleEx (C &%), 28
PyImport_ExtendInittab (C &%), 29
PyImport_FrozenModules (C % &), 29
PyImport_GetImporter (C %), 28
PyImport_GetMagicNumber (C F4%), 28
PyImport_GetModuleDict (C &%), 28
PyImport_Import (C &%), 27
PyImport_ImportFrozenModule (C &%), 29
PyImport_ImportModule (C %), 27
PyImport_ImportModuleEx (C &%), 27
PyImport_ImportModulelLevel (C FHik), 27
PyImport_ImportModuleNoBlock (C &4%), 27
PyImport_ReloadModule (C %), 28
PyIndex_Check (C F4%), 48
PyInstance_Check (C &%), 93
PyInstance_New (C &%), 93
PyInstance_NewRaw (C F#{), 93
PyInstance_Type (C £ &), 93
PyInt_AS_LONG (C &4%), 57
PyInt_AsLong (C &), 57
PyInt_AsSsize_t (C &4%), 58
PyInt_AsUnsignedLongLongMask (C &%), 58
PyInt_AsUnsignedLongMask (C FH#k), 57
PyInt_Check (C &%), 57
PyInt_CheckExact (C &%), 57
PyInt_ClearFreelList (C &%), 58
PyInt_FromLong (C &%), 57

PyInt_FromSize_t (C &%), 57
PyInt_FromSsize_t (C &), 57
PyInt_FromString (C &%), 57
PyInt_GetMax (C F#k), 58

PyInt_Type (C &%), 57
PyInterpreterState (C (), 116
PyInterpreterState_Clear (C H4), 118
PyInterpreterState_Delete (C H%), 118
PyInterpreterState_Head (C &#), 123
PyInterpreterState_New (C FH), 118
PyInterpreterState_Next (C &%), 123
PyInterpreterState_ThreadHead (C &%), 123
PyIntObject (C £#), 57

PyIter_Check (C F#k), 52

PyTter_Next (C &%), 52

PyList_Append (C F#4%), 90
PyList_AsTuple (C FH4k), 90
PyList_Check (C &%), 88
PyList_CheckExact (C &#k), 88
PyList_GET_ITEM (C &%), 89
PyList_GET_SIZE (C &%), 89
PyList_GetItem (C &%), 89
PyList_GetItem(),6

PyList_GetSlice (C &%), 90
PyList_TInsert (C &4%), 89

PyList_New (C &%), 88

PyList_Reverse (C FH#k), 90
PyList_SET_ITEM (C &%), 89
PyList_SetItem (C &%), 89
PyList_SetItem(),5

PyList_SetSlice (C &%), 90
PyList_Size (C %), 89

PyList_Sort (C H%k), 90

PyList_Type (C £ &), 88

PyListObject (C £7), 88
PyLong_AsDouble (C &%), 61
PyLong_AsLong (C #%k), 60
PyLong_AsLongAndOverflow (C FH4%), 60
PyLong_AsLongLong (C %), 60
PyLong_AsLongLongAndOverflow (C &%), 60
PyLong_AsSsize_t (C &%), 60
PyLong_AsUnsignedLong (C #4%), 60
PyLong_AsUnsignedLongLong (C &%), 60
PyLong_AsUnsignedLongLongMask (C %), 60
PyLong_AsUnsignedLongMask (C ##g), 60
PyLong_AsVoidPtr (C &%), 61
PyLong_Check (C &%), 59
PyLong_CheckExact (C &#), 59
PyLong_FromDouble (C &#¢), 59
PyLong_FromLong (C &#%), 59
PyLong_FromLongLong (C &%), 59
PyLong_FromSize_t (C F%%), 59
PyLong_FromSsize_t (C &4), 59
PyLong_FromString (C &#), 59

192

EL]

The Python/C API, X% 2.7.18

PyLong_FromUnicode (C F4%), 59
PyLong_FromUnsignedLong (C &%), 59
PyLong_FromUnsignedLongLong (C &%), 59
PyLong_FromVoidPtr (C #H4%), 60
PyLong_Type (C T &), 59
PyLongObiject (C (7)), 59
PyMapping_Check (C F%%), 51
PyMapping_DelItem (C &#), 51
PyMapping_DelltemString (C &%), 51
PyMapping_GetItemString (C F4%), 52
PyMapping_HasKey (C $%%), 51
PyMapping_HasKeyString (C &), 51
PyMapping_Items (C &%), 51
PyMapping_Keys (C &%), 51
PyMapping_Length (C %), 51
PyMapping_SetItemString (C &%), 52
PyMapping_Size (C H4%), 51
PyMapping_Values (C &%), 51
PyMappingMethods (C £A), 152
PyMappingMethods.mp_ass_subscript (C X
R), 152
PyMappingMethods.mp_length (C & 1), 152
PyMappingMethods.mp_subscript (Cm i), 152
PyMarshal_ReadLastObjectFromFile (C &
%), 30
PyMarshal_ ReadLongFromFile (C &%), 30
PyMarshal_ReadObjectFromFile (C F4%), 30
PyMarshal_ReadObjectFromString (C & %),
30
PyMarshal_ReadShortFromFile (C F4%), 30
PyMarshal_WriteLongToFile (C &%), 30
PyMarshal WriteObjectToFile (C &%), 30
PyMarshal_WriteObjectToString (C F#k), 30
PyMem_Del (C &), 126
PyMem_Free (C &%), 126
PyMem_Malloc (C &%), 126
PyMem_New (C %), 126
PyMem_Realloc (C &%), 126
PyMem_Resize (C &%), 126
PyMemberDef (C %), 135
PyMemoryView_Check (C &%), 85
PyMemoryView_FromBuffer (C F#k), 85
PyMemoryView_FromObject (C ##%), 85
PyMemoryView_GET_BUFFER (C &%), 85
PyMemoryView_GetContiguous (C #%%), 85
PyMethod_Check (C &), 94
PyMethod_Class (C &4%), 94
PyMethod_ClearFreeList (C &), 95
PyMethod_Function (C &#%), 94
PyMethod_GET_CLASS (C &%), 94
PyMethod_GET_FUNCTION (C %#%), 94
PyMethod_GET_SELF (C &%), 94
PyMethod_New (C &#k), 94
PyMethod_Self (C &%), 94

PyMethod_Type (C & &), 94
PyMethodDef (C £ &), 134
PyModule_AddIntConstant (C #4%), 97
PyModule_AddIntMacro (C &%), 97
PyModule_AddObject (C F4%), 97
PyModule_AddStringConstant (C &%), 97
PyModule_AddStringMacro (C F#4%), 97
PyModule_Check (C &%), 97
PyModule_CheckExact (C &%), 97
PyModule_GetDict (C &%), 97
PyModule_GetFilename (C %4%), 97
PyModule_GetName (C F4%), 97
PyModule_New (C F#%), 97
PyModule_Type (C &%), 97
PyNumber_Absolute (C &), 46
PyNumber_Add (C &%), 45
PyNumber_And (C %), 46
PyNumber_AsSsize_t (C %), 48
PyNumber_Check (C #%%), 45
PyNumber_Coerce (C %), 47
PyNumber_CoerceEx (C &F#k), 48
PyNumber_Divide (C &%), 45
PyNumber_Divmod (C k), 46
PyNumber_Float (C &%), 48
PyNumber_FloorDivide (C ¥h%%), 45
PyNumber_Index (C &%), 48
PyNumber_InPlaceAdd (C &%), 47
PyNumber_InPlaceAnd (C &%), 47
PyNumber_InPlaceDivide (C &%), 47
PyNumber_InPlaceFloorDivide (C &4%), 47
PyNumber_InPlaceLshift (C F%k), 47
PyNumber_InPlaceMultiply (C FH#%), 47
PyNumber_InPlaceOr (C &%), 47
PyNumber_InPlacePower (C F#f), 47
PyNumber_InPlaceRemainder (C k), 47
PyNumber_InPlaceRshift (C &%), 47
PyNumber_InPlaceSubtract (C FH4%), 47
PyNumber_InPlaceTrueDivide (C &%), 47
PyNumber_InPlaceXor (C #4k), 47
PyNumber_Int (C &%), 48
PyNumber_Invert (C &%), 46
PyNumber_Long (C F#k), 48
PyNumber_Lshift (C &%), 46
PyNumber_Multiply (C &%), 45
PyNumber_Negative (C k), 46
PyNumber_Or (C &%), 46
PyNumber_Positive (C &), 46
PyNumber_Power (C &%), 46
PyNumber_Remainder (C F4%), 46
PyNumber_Rshift (C &%), 46
PyNumber_Subtract (C &%), 45
PyNumber_ToBase (C &%), 48
PyNumber_TrueDivide (C &%), 46
PyNumber_Xor (C & #%), 46

e]

193

The Python/C API, X% 2.7.18

PyNumberMethods (C £7A), 151
PyNumberMethods.nb_coerce (C mx), 152
PyObject (C £A), 132
PyObject_AsCharBuffer (C &%), 53
PyObject_AsFileDescriptor (C &%), 45
PyObject_AsReadBuffer (C &), 53
PyObject_AsWriteBuffer (C FH#k), 53
PyObject_Bytes (C &%), 43
PyObject_Call (C k), 43
PyObject_CallFunction (C), 44
PyObject_CallFunctionObijArgs (C FHik), 44
PyObject_CallMethod (C &%), 44
PyObject_CallMethodObjArgs (C &4%), 44
PyObject_CallObject (C &%), 43
PyObject_CheckBuffer (C &4%), 83
PyObject_CheckReadBuffer (C FH4k), 53
PyObject_Cmp (C &%), 42
PyObject_Compare (C &%), 42
PyObject_Del (C k), 132
PyObject_DelAttr (C k), 42
PyObject_DelAttrString (C Fik), 42
PyObject_Delltem (C &), 45
PyObject_Dir (C F#k), 45
PyObject_Free (C &%), 127
PyObject_GC_Del (C &%), 155
PyObject_GC_New (C &%), 154
PyObject_GC_NewVar (C &%), 154
PyObject_GC_Resize (C %), 154
PyObject_GC_Track (C k), 155
PyObject_GC_UnTrack (C &%), 155
PyObject_GenericGetAttr (C H#), 41
PyObject_GenericSetAttr (C &), 42
PyObject_GetAttr (C k), 41
PyObject_GetAttrString (C H4%), 41
PyObject_GetBuffer (C F#%), 83
PyObject_GetItem (C F%), 45
PyObject_GetlIter (C &4%), 45
PyObject_HasAttr (C Hhk), 41
PyObject_HasAttrString (C &%), 41
PyObject_Hash (C F%k), 44
PyObject_HashNotImplemented (C &%), 44
PyObject_HEAD (C %), 133
PyObject_HEAD_INIT (C %), 133
PyObject_Init (C F#k), 131
PyObject_InitVar (C H), 131
PyObject_IsInstance (C &%), 43
PyObject_IsSubclass (C i), 43
PyObject_IsTrue (C &%), 44
PyObject_Length (C &%), 44
PyObject_Malloc (C FH#), 127
PyObject_New (C F %), 131
PyObject_NewVar (C &), 131
PyObject_Not (C F%), 44

PyObject ._ob_next (Cm.), 138

PyObject ._ob_prev (C . i), 138
PyObject_Print (C k), 41
PyObject_Realloc (C &%), 127
PyObject_Repr (C &), 42
PyObject_RichCompare (C &), 42
PyObject_RichCompareBool (C F4k), 42
PyObject_SetAttr (C FHik), 42
PyObject_SetAttrString (C &), 42
PyObject_SetItem (C H%), 45
PyObject_Size (C &%), 44
PyObject_Str (C Hk), 43
PyObject_Type (C H4k), 44
PyObject_TypeCheck (C &%), 44
PyObject_Unicode (C &%), 43
PyObject_VAR_HEAD (C %), 133
PyObiject.ob_refcnt (C & 1), 138
PyObject.ob_type (C &), 138
PyOS_AfterFork (C FH#), 25
PyOS_ascii_atof (C &%), 38
PyOS_ascii_formatd (C &%), 38
Py0OS_ascii_strtod (C &), 37
PyOS_CheckStack (C H4%), 25
Py0OS_double_to_string (C &#), 38
PyOS_getsig (C &%), 25
PyOS_setsig (C &%), 25
PyOS_snprintf (C H4%), 37
PyOS_stricmp (C FH4%), 38
PyOS_string_to_double (C &%), 37
PyOS_strnicmp (C H#), 38
PyOS_vsnprintf (C FH#k), 37
PyParser_SimpleParseFile (C &%), 12
PyParser_SimpleParseFileFlags (C %4%), 13
PyParser_SimpleParseString (C FHk), 12
PyParser_SimpleParseStringFlags (C & %),
12
PyParser_SimpleParseStringFlagsFilename
(C F%), 12
PyProperty_Type (C &%), 98
PyRun_AnyFile (C H%k), 11
PyRun_AnyFileEx (C F#k), 11
PyRun_AnyFileExFlags (C %), 11
PyRun_AnyFileFlags (C &%), 11
PyRun_File (C &%), 13
PyRun_FileEx (C H4%), 13
PyRun_FileExFlags (C &), 13
PyRun_FileFlags (C &%), 13
PyRun_InteractiveLoop (C &%), 12
PyRun_InteractiveLoopFlags (C &#%), 12
PyRun_InteractiveOne (C &), 12
PyRun_InteractiveOneFlags (C k), 12
PyRun_SimpleFile (C &H4%), 12
PyRun_SimpleFileEx (C %), 12
PyRun_SimpleFileExFlags (C &%), 12
PyRun_SimpleFileFlags (C &%), 12

194

EL]

The Python/C API, X% 2.7.18

PyRun_SimpleString (C i), 12
PyRun_SimpleStringFlags (C &4%), 12
PyRun_String (C &), 13
PyRun_StringFlags (C &4%), 13
PySeqlter_Check (C &%), 98
PySeqlter_New (C F#4%), 98
PySeqlter_Type (C £ &), 98
PySequence_Check (C &%), 49
PySequence_Concat (C &%), 49
PySequence_Contains (C &%), 50
PySequence_Count (C F#%), 50
PySequence_DellItem (C FH#%), 49
PySequence_DelSlice (C %%%), 50
PySequence_Fast (C &%), 50
PySequence_Fast_GET_ITEM (C F%%), 50
PySequence_Fast_GET_SIZE (C H4k), 51
PySequence_Fast_ITEMS (C &%), 50
PySequence_GetItem (C &%), 49
PySequence_GetItem(),6
PySequence_GetSlice (C %), 49
PySequence_Index (C &%), 50
PySequence_InPlaceConcat (C FH4%), 49
PySequence_InPlaceRepeat (C k), 49
PySequence_ITEM (C &%), 51
PySequence_Length (C &%), 49
PySequence_List (C &%), 50
PySequence_Repeat (C H#L), 49
PySequence_SetItem (C FH#), 49
PySequence_SetSlice (C &%), 50
PySequence_Size (C H#k), 49
PySequence_Tuple (C &%), 50
PySequenceMethods (C £A), 152

PySlice_Check (C %), 99
PySlice_GetIndices (C &4%), 99
PySlice_GetIndicesEx (C &%), 99
PySlice_New (C &%), 99

PySlice_Type (C £ %), 99
PyString_AS_STRING (C H#k), 67
PyString_AsDecodedObject (C F%k), 68
PyString_AsEncodedObject (C F%k), 68
PyString_AsString (C ##k), 66
PyString_AsStringAndSize (C H4%), 67
PyString_ Check (C #4%), 65

PyString CheckExact (C &3), 65
PyString_Concat (C FH#k), 67
PyString_ConcatAndDel (C ¥h#%k), 67
PyString_Decode (C &%), 68

PyString Encode (C &%), 68
PyString_Format (C $4%), 67

PyString FromFormat (C &#), 65
PyString_FromFormatV (C &%), 66
PyString FromString (C &%), 65
PyString_FromString(), 9l

PyString_FromStringAndSize (C H%%), 65

PyString_GET_SIZE (C &%), 66
PyString_InternFromString (C &%), 67
PyString_InternInPlace (C &%), 67
PyString_Size (C &%), 66

PyString_ Type (C &%), 65
PyStringObject (C (&), 65
PySys_AddWarnOption (C &), 26
PySys_GetFile (C k), 26
PySys_GetObject (C &), 26
PySys_ResetWarnOptions (C &%), 26

PySequenceMethods.sq ass_item(Cr i), 153 PySys_SetArgv (C &%), 114
PySequenceMethods.sq _concat (C & R), 152 PySys_SetArgv (), 111
PySequenceMethods.sq _contains (Ca i), 153 PySys_SetArgvEx (C k), 113
PySequenceMethods.sq inplace_concat (C PySys_SetArgvEx(),9, 111
MR, 153 PySys_SetObject (C &%), 26
PySequenceMethods.sq inplace_repeat (C PySys_SetPath (C H##), 26
AR, 153 PySys_WriteStderr (C &#), 26
PySequenceMethods.sq item (C m i), 152 PySys_WriteStdout (C &), 26
PySequenceMethods.sq _length (C & R), 152 Python 3000, 163
PySequenceMethods.sq_repeat (C s i), 152 Python #£EZEP

PySet_Add (C F#k), 108 PEP 1,163
PySet_Check (C &%), 107 PEP 238, 14,159
PySet_Clear (C k), 108 PEP 278, 164
PySet_Contains (C #4%), 108 PEP 302,159, 162
PySet_Discard (C &%), 108 PEP 343,158
PySet_GET_SIZE (C F#k), 108 PEP 3116, 164

PySet_New (C &), 107 PYTHONDUMPREFS, 138

PySet_Pop (C %), 108
PySet_Size (C &%), 107
PySet_Type (C & &), 107
PySetObject (C £ A), 107
PySignal_SetWakeupFd (C H4%), 21

PYTHONHOME, 9, 114
Pythonic, 163

PYTHONPATH, 9
PYTHONSHOWALLOCCOUNT, 150
PyThreadState, 114

e]

195

The Python/C API, X% 2.7.18

PyThreadState (C £), 116 PyTypeObiject.tp_call (C . RR), 141
PyThreadState_Clear (C &%), 118 PyTypeObject.tp_clear (C M RN), 144
PyThreadState_Delete (C k), 118 PyTypeObject.tp_compare (C & 1), 140
PyThreadState_Get (C &%), 117 PyTypeObiject.tp_dealloc (Cm 1), 139
PyThreadState_GetDict (C &#), 119 PyTypeObject.tp_descr_get (C & i), 147
PyThreadState_New (C &%), 118 PyTypeObject.tp_descr_set (C i), 147
PyThreadState_Next (C F4%), 123 PyTypeObject.tp_dict (C m RR), 147
PyThreadState_SetAsyncExc (C &%), 119 PyTypeObject.tp_dictoffset (C . i), 147
PyThreadState_Swap (C F%), 117 PyTypeObiject.tp_doc (C m i), 144
PyTime_Check (C &#), 104 PyTypeObiject.tp_flags (Cm i), 142
PyTime_CheckExact (C &), 104 PyTypeObiject.tp_free (Cr.), 149
PyTime_FromTime (C &4%), 105 PyTypeObject.tp_frees (C M i), 150
PyTrace_C_CALL (C &%), 122 PyTypeObject.tp_getattr (C i), 140
PyTrace_C_EXCEPTION (C &), 122 PyTypeObject.tp_getattro (C & R), 142
PyTrace_C_RETURN (C & &), 122 PyTypeObject.tp_getset (C & i), 147
PyTrace_CALL (C T &), 122 PyTypeObiject.tp_hash (Cm. i), 141
PyTrace_EXCEPTION (C & &), 122 PyTypeObject.tp_init (C A %), 148
PyTrace_LINE (C &), 122 PyTypeObject.tp_is_gc (C .), 149
PyTrace_RETURN (C & &), 122 PyTypeObject.tp_itemsize (C & i), 139
PyTuple_Check (C H4%), 86 PyTypeObiject.tp_iter (C s 1), 146
PyTuple_CheckExact (C F%%), 87 PyTypeObject.tp_iternext (C & 1), 146
PyTuple_ClearFreelist (C #4%), 88 PyTypeObiject.tp_maxalloc (C & i), 150
PyTuple_GET_ITEM (C &%), 87 PyTypeObject.tp_members (C m 1), 147
PyTuple_GET_SIZE (C &%), 87 PyTypeObject.tp_methods (C & 1), 146
PyTuple_GetItem (C #4%), 87 PyTypeObiject.tp_mro (C s i), 150
PyTuple_GetSlice (C k), 87 PyTypeObiject .tp_name (C %), 139
PyTuple_New (C &%), 87 PyTypeObiject.tp_new (C R), 149
PyTuple_Pack (C &%), 87 PyTypeObject.tp_next (Cm i), 150
PyTuple_SET_ITEM (C &%), 88 PyTypeObject.tp_print (C & i), 140
PyTuple_SetItem (C #4%), 87 PyTypeObiject.tp_repr (C . i), 141
PyTuple_SetItem(),5 PyTypeObject .tp_richcompare (C & i), 145
PyTuple_Size (C &%), 87 PyTypeObject.tp_setattr (C s i), 140
PyTuple_Type (C £ &), 86 PyTypeObiject.tp_setattro (C & R), 142
PyTupleObiject (C £A), 86 PyTypeObject.tp_str (C i), 142
PyType_Check (C &%), 55 PyTypeObject.tp_subclasses (C a1), 150
PyType_CheckExact (C &%), 55 PyTypeObject.tp_traverse (C & i), 144
PyType_ClearCache (C &%), 55 PyTypeObject.tp_weaklist (C & 1), 150
PyType_GenericAlloc (C &%k), 56 PyTypeObject.tp_weaklistoffset (C m),
PyType_GenericNew (C H3k), 56 146

PyType_HasFeature (C H3k), 56 PyTZInfo_Check (C FH#k), 105
PyType_HasFeature (), 153 PyTZInfo_CheckExact (C &), 105
PyType_TIS_GC (C &%), 56 PyUnicode_AS_DATA (C k), 69
PyType_IsSubtype (C FH4k), 56 PyUnicode_AS_UNICODE (C &%), 69
PyType_Modified (C &%), 56 PyUnicode_AsASCIIString (C &), 78
PyType_Ready (C FH %), 56 PyUnicode_AsCharmapString (C &#), 79
PyType_Type (C &), 55 PyUnicode_AsEncodedString (C &4%), 73
PyTypeObiject (C £A), 55 PyUnicode_AsLatinlString (C F%k), 78
PyTypeObiject.tp_alloc (C & 1), 148 PyUnicode_AsMBCSString (C &%), 79
PyTypeObiject.tp_allocs (C rx i), 150 PyUnicode_AsRawUnicodeEscapeString (C &
PyTypeObject.tp_as_buffer (Cr i), 142), 77

PyTypeObject.tp_base (Cm), 147 PyUnicode_AsUnicode (C #4%), 72
PyTypeObject.tp_bases (C & i), 150 PyUnicode_AsUnicodeEscapeString (C & %),
PyTypeObiject.tp_basicsize (C k), 139 77

PyTypeObiject.tp_cache (C & R), 150 PyUnicode_AsUTF8String (C &%), 74

196 %51

The Python/C API, X% 2.7.18

PyUnicode_AsUTF16String (C &4%), 76
PyUnicode_AsUTF32String (C #4%), 75
PyUnicode_AsWideChar (C & 4%), 72
PyUnicode_Check (C &%), 69
PyUnicode_CheckExact (C &), 69
PyUnicode_ClearFreeList (C &%), 69
PyUnicode_Compare (C ##%), 81
PyUnicode_Concat (C &%), 80
PyUnicode_Contains (C &%), 81
PyUnicode_Count (C &%), 80
PyUnicode_Decode (C H4%), 73
PyUnicode_DecodeASCII (C &%), 78
PyUnicode_DecodeCharmap (C &#), 78
PyUnicode_DecodeLatinl (C &%), 77
PyUnicode_DecodeMBCS (C k), 79
PyUnicode_DecodeMBCSStateful (C FH4k), 79
PyUnicode_DecodeRawUnicodeEscape (C &
), 77
PyUnicode_DecodeUnicodeEscape (C &%), 77
PyUnicode_DecodeUTF7 (C &%), 76
PyUnicode_DecodeUTF7Stateful (C FH#k), 76
PyUnicode_DecodeUTF8 (C % 4%), 73
PyUnicode_DecodeUTF8Stateful (C %), 73
PyUnicode_DecodeUTF16 (C &4%), 75
PyUnicode_DecodeUTF16Stateful (C &#), 75
PyUnicode_DecodeUTF32 (C &), 74
PyUnicode_DecodeUTF32Stateful (C H#k), 74
PyUnicode_Encode (C F4%), 73
PyUnicode_EncodeASCII (C &%), 78
PyUnicode_EncodeCharmap (C & 4%), 79
PyUnicode_Encodelatinl (C &%), 77
PyUnicode_EncodeMBCS (C k), 79
PyUnicode_EncodeRawUnicodeEscape (C &
), 77
PyUnicode_EncodeUnicodeEscape (C ##k), 77
PyUnicode_EncodeUTF7 (C &%), 76
PyUnicode_EncodeUTFS8 (C &%), 74
PyUnicode_EncodeUTF16 (C &%), 76
PyUnicode_EncodeUTF32 (C k), 74
PyUnicode_Find (C $%4%), 80
PyUnicode_Format (C &%), 81
PyUnicode_FromEncodedObiject (C FH4%), 72
PyUnicode_FromFormat (C F4%), 71
PyUnicode_FromFormatV (C &%), 72
PyUnicode_FromObject (C k), 72
PyUnicode_FromString (C &#k), 71
PyUnicode_FromStringAndSize (C %), 71
PyUnicode_FromUnicode (C FH4%), 71
PyUnicode_FromWideChar (C #4%), 72
PyUnicode_GET_DATA_SIZE (C k), 69
PyUnicode_GET_SIZE (C &%), 69
PyUnicode_GetSize (C &), 72
PyUnicode_Join (C &%), 80
PyUnicode_Replace (C &), 81

PyUnicode_RichCompare (C &), 81
PyUnicode_Split (C &%), 80
PyUnicode_Splitlines (C %), 80
PyUnicode_Tailmatch (C &%), 80
PyUnicode_Translate (C &%), 80
PyUnicode_TranslateCharmap (C F4%), 79
PyUnicode_Type (C &%), 69
PyUnicodeDecodeError_Create (C ##%), 21
PyUnicodeDecodeError_GetEncoding (C &
#), 21
PyUnicodeDecodeError_GetEnd (C F#%), 22
PyUnicodeDecodeError_GetObject (C & #),
21
PyUnicodeDecodeError_GetReason (C & %),
22
PyUnicodeDecodeError_GetStart (C FH), 22
PyUnicodeDecodeError_SetEnd (C FH4), 22
PyUnicodeDecodeError_SetReason (C & #),
22
PyUnicodeDecodeError_SetStart (C &H#), 22
PyUnicodeEncodeError_Create (C FH4), 21
PyUnicodeEncodeError_GetEncoding (C &
£, 21
PyUnicodeEncodeError_GetEnd (C %), 22
PyUnicodeEncodeError_GetObject (C & %),
21
PyUnicodeEncodeError_GetReason (C & %),
22
PyUnicodeEncodeError_GetStart (C H%), 22
PyUnicodeEncodeError_SetEnd (C k), 22
PyUnicodeEncodeError_SetReason (C & %),
22
PyUnicodeEncodeError_SetStart (C H#%), 22
PyUnicodeObject (C £#), 69
PyUnicodeTranslateError_Create (C & #),

21
PyUnicodeTranslateError_GetEnd (C & %),
22
PyUnicodeTranslateError_GetObject (C &
#0), 21
PyUnicodeTranslateError_GetReason (C &
%), 22
PyUnicodeTranslateError_GetStart (C &
£, 22
PyUnicodeTranslateError_SetEnd (C & #),
22
PyUnicodeTranslateError_SetReason (C &
%), 22
PyUnicodeTranslateError_SetStart (C &
#0), 22

PyVarObject (C £#), 132
PyVarObject_HEAD_INIT (C %), 133
PyVarObject.ob_size (C s R), 139
PyWeakref_Check (C &), 100

e]

197

The Python/C API, X% 2.7.18

PyWeakref_CheckProxy (C &%), 100
PyWeakref_CheckRef (C F%), 100
PyWeakref_GET_OBJECT (C &%), 100
PyWeakref GetObject (C &), 100
PyWeakref NewProxy (C &4%), 100
PyWeakref_NewRef (C k), 100
PyWrapper_New (C & %%), 99

R

readbufferproc (C £ #), 154
realloc (), 125
reference count —-- 5| Jfit#, 164
reload

)& & %, 28
repr

FIE %%, 42, 141
rexec

"k, 27
S

search

path, module, 9, 111,113
segcountproc (C £#), 154
sequence

R, 63
sequence —- 77|, 164
set

£, 107
set_all(),6
setcheckinterval () (in module sys), 114
setvbuf (), 96
SIGINT, 20
signal

HH, 20
slice —— K, 164
SliceType (in module types), 99
softspace (file attribute), 96
special

method, 164
special method -- #%F %, 164
statement -- &4, 164
staticmethod

[EE & %, 135
stderr (in module sys), 120
stdin (in module sys), 120
stdout (in module sys), 120
str

& &%, 43
strerror (), 19
string

X4, 65
StringType (in module types), 65
struct sequence, 164
sum_list (),6

sum_sequence (), 7, 8
sys
0,111,120

SystemError (built-in exception), 97

T

thread

ik, 116
tp_as_mapping (C & 1), 141
tp_as_number (C A& R), 141
tp_as_sequence (C .), 141
traverseproc (C (&), 155
triple-quoted string -- =55 F4 &, 164
tuple

[FE % %, 50, 90

Xt &, 86
TupleType (in module types), 86
type

& &%, 44

X4, 4,55
type —— XA, 164
TypeType (in module types), 55

u

ULONG_MAX, 60
unicode
[EE % %, 43
universal newlines —- 4T, 164

\Y
EE & %

__import
abs, 46
apply, 43, 44
bytes, 43
classmethod, 135
cmp, 42
coerce, 48
compile, 28
divmod, 46
float, 48
hash, 44, 141
int, 48
len, 45, 49, 51, 89, 91, 108
long, 48
pow, 46, 47
reload, 28
repr, 42, 141
staticmethod, 135
str, 43
tuple, 50, 90
type, 44
unicode, 43

version (in module sys), 113

, 27

198

EL]

The Python/C API, X% 2.7.18

virtual environment -- &I, 164
virtual machine —-— JE#A#L, 164
visitproc (C (&), 155
S
buffer, 81
bytearray, 64
Capsule, 101
class, 93
CObject, 102
complex number, 62
dictionary, 90
file, 95
floating point, 61
frozenset, 107
function, 93
instance, 93
integer, 57
list, 88
long integer, 59
mapping, 90
method, 94
module, 97
None, 56
numeric, 57
sequence, 63
set, 107
string, 65
tuple, 86
type, 4,55

W
Bk

__builtin_ ,9,111

__main_ ,9,111,120

builtins, 120

exceptions,9

ihooks, 27

rexec, 27

signal, 20

sys, 9,111,120

thread, 116
writebufferproc (C X&), 154

Z

Zen of Python -- Python z##, 164

e]

199

	概述
	包含文件
	对象、类型和引用计数
	异常
	嵌入Python
	调试构建

	The Very High Level Layer
	引用计数
	异常处理
	Unicode Exception Objects
	Recursion Control
	标准异常
	标准警告类别
	String Exceptions

	工具
	操作系统实用程序
	系统功能
	过程控制
	导入模块
	数据 marshal 操作支持
	解析参数并构建值变量
	字符串转换与格式化
	反射
	编解码器注册与支持功能

	抽象对象层
	对象协议
	数字协议
	序列协议
	映射协议
	迭代器协议
	旧缓冲协议

	具体的对象层
	基本对象
	数值对象
	序列对象
	Mapping Objects
	其他对象

	Initialization, Finalization, and Threads
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Sub-interpreter support
	异步通知
	分析和跟踪
	高级调试器支持

	内存管理
	概述
	内存接口
	对象分配器
	The pymalloc allocator
	例子

	对象实现支持
	在堆上分配对象
	Common Object Structures
	类型对象
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	使对象类型支持循环垃圾回收

	术语对照表
	文档说明
	Python 文档的贡献者

	历史和许可证
	该软件的历史
	获取或以其他方式使用 Python 的条款和条件
	被收录软件的许可证与鸣谢

	Copyright
	索引

