itertools — Функції, що створюють ітератори для ефективного циклу


Цей модуль реалізує кілька будівельних блоків iterator, натхненних конструкціями з APL, Haskell і SML. Кожен був перероблений у формі, придатній для Python.

Модуль стандартизує основний набір швидких, ефективних інструментів пам’яті, які корисні окремо або в комбінації. Разом вони утворюють «алгебру ітераторів», що дає змогу створювати спеціалізовані інструменти лаконічно та ефективно на чистому Python.

Наприклад, SML надає інструмент табуляції: tabulate(f), який створює послідовність f(0), f(1), .... Такого ж ефекту можна досягти в Python, об’єднавши map() і count() для формування map(f, count()).

These tools and their built-in counterparts also work well with the high-speed functions in the operator module. For example, the multiplication operator can be mapped across two vectors to form an efficient dot-product: sum(starmap(operator.mul, zip(vec1, vec2, strict=True))).

Нескінченні ітератори:

Ітератор

Аргументи

Результати

приклад

count()

[start[, step]]

початок, початок+крок, початок+2*крок, …

count(10) 10 11 12 13 14 ...

cycle()

стор

p0, p1, … plast, p0, p1, …

cycle('ABCD') A B C D A B C D ...

repeat()

елемент [,n]

елем, елем, елем, … нескінченно або до n разів

repeat(10, 3) 10 10 10

Ітератори, що завершуються на найкоротшій вхідній послідовності:

Ітератор

Аргументи

Результати

приклад

accumulate()

p [,func]

p0, p0+p1, p0+p1+p2, …

accumulate([1,2,3,4,5]) 1 3 6 10 15

batched()

p, n

(p0, p1, …, p_n-1), …

batched('ABCDEFG', n=3) ABC DEF G

chain()

p, q, …

p0, p1, … plast, q0, q1, …

chain('ABC', 'DEF') A B C D E F

chain.from_iterable()

ітерований

p0, p1, … plast, q0, q1, …

chain.from_iterable(['ABC', 'DEF']) A B C D E F

compress()

дані, селектори

(d[0], якщо s[0]), (d[1], якщо s[1]), …

compress('ABCDEF', [1,0,1,0,1,1]) A C E F

dropwhile()

predicate, seq

seq[n], seq[n+1], starting when predicate fails

dropwhile(lambda x: x<5, [1,4,6,4,1]) 6 4 1

filterfalse()

predicate, seq

elements of seq where predicate(elem) fails

filterfalse(lambda x: x%2, range(10)) 0 2 4 6 8

groupby()

ітерований [, ключ]

субітератори, згруповані за значенням ключа (v)

islice()

seq, [початок,] зупинка [, крок]

елементи з seq[start:stop:step]

islice('ABCDEFG', 2, None) C D E F G

pairwise()

ітерований

(p[0], p[1]), (p[1], p[2])

pairwise('ABCDEFG') AB BC CD DE EF FG

starmap()

функція, посл

func(*seq[0]), func(*seq[1]), …

starmap(pow, [(2,5), (3,2), (10,3)]) 32 9 1000

takewhile()

predicate, seq

seq[0], seq[1], until predicate fails

takewhile(lambda x: x<5, [1,4,6,4,1]) 1 4

tee()

воно, п

it1, it2, … itn розділяє один ітератор на n

zip_longest()

p, q, …

(p[0], q[0]), (p[1], q[1]), …

zip_longest('ABCD', 'xy', fillvalue='-') Ax By C- D-

Комбінаторні ітератори:

Ітератор

Аргументи

Результати

product()

p, q, … [repeat=1]

декартовий добуток, еквівалентний вкладеному циклу for

permutations()

p[, r]

кортежі довжини r, усі можливі впорядкування, відсутність повторюваних елементів

combinations()

п, р

кортежі довжини r, у відсортованому порядку, без повторюваних елементів

комбінації_із_заміною()

п, р

кортежі довжини r, у відсортованому порядку, з повторюваними елементами

Приклади

Результати

product('ABCD', repeat=2)

AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD

перестановки('ABCD', 2)

AB AC AD BA BC BD CA CB CD DA DB DC

combinations('ABCD', 2)

AB AC AD BC BD CD

combinations_with_replacement('ABCD', 2)

AA AB AC AD BB BC BD CC CD DD

Itertool Functions

У наступному модулі функціонують усі ітератори конструкцій і повернення. Деякі надають потоки нескінченної довжини, тому до них мають звертатися лише функції або цикли, які скорочують потік.

itertools.accumulate(iterable[, func, *, initial=None])

Створіть ітератор, який повертає накопичені суми або накопичені результати інших бінарних функцій (зазначених за допомогою необов’язкового аргументу func).

Якщо вказано func, це має бути функція двох аргументів. Елементи вхідних даних iterable можуть мати будь-який тип, який можна прийняти як аргументи func. (Наприклад, із операцією додавання за замовчуванням елементи можуть мати будь-який доданий тип, включаючи Decimal або Fraction.)

Зазвичай кількість виведених елементів збігається з вхідним ітерованим. Однак, якщо надано ключовий аргумент initial, накопичення розпочинається з початковим значенням, так що вихід має на один елемент більше, ніж ітерований вхід.

Приблизно еквівалентно:

def accumulate(iterable, func=operator.add, *, initial=None):
    'Return running totals'
    # accumulate([1,2,3,4,5]) → 1 3 6 10 15
    # accumulate([1,2,3,4,5], initial=100) → 100 101 103 106 110 115
    # accumulate([1,2,3,4,5], operator.mul) → 1 2 6 24 120
    it = iter(iterable)
    total = initial
    if initial is None:
        try:
            total = next(it)
        except StopIteration:
            return
    yield total
    for element in it:
        total = func(total, element)
        yield total

There are a number of uses for the func argument. It can be set to min() for a running minimum, max() for a running maximum, or operator.mul() for a running product. Amortization tables can be built by accumulating interest and applying payments:

>>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
>>> list(accumulate(data, operator.mul))     # running product
[3, 12, 72, 144, 144, 1296, 0, 0, 0, 0]
>>> list(accumulate(data, max))              # running maximum
[3, 4, 6, 6, 6, 9, 9, 9, 9, 9]

# Amortize a 5% loan of 1000 with 10 annual payments of 90
>>> account_update = lambda bal, pmt: round(bal * 1.05) + pmt
>>> list(accumulate(repeat(-90, 10), account_update, initial=1_000))
[1000, 960, 918, 874, 828, 779, 728, 674, 618, 559, 497]

Перегляньте functools.reduce() подібну функцію, яка повертає лише остаточне накопичене значення.

Added in version 3.2.

Змінено в версії 3.3: Додано необов’язковий параметр func.

Змінено в версії 3.8: Додано необов’язковий початковий параметр.

itertools.batched(iterable, n)

Batch data from the iterable into tuples of length n. The last batch may be shorter than n.

Loops over the input iterable and accumulates data into tuples up to size n. The input is consumed lazily, just enough to fill a batch. The result is yielded as soon as the batch is full or when the input iterable is exhausted:

>>> flattened_data = ['roses', 'red', 'violets', 'blue', 'sugar', 'sweet']
>>> unflattened = list(batched(flattened_data, 2))
>>> unflattened
[('roses', 'red'), ('violets', 'blue'), ('sugar', 'sweet')]

>>> for batch in batched('ABCDEFG', 3):
...     print(batch)
...
('A', 'B', 'C')
('D', 'E', 'F')
('G',)

Приблизно еквівалентно:

def batched(iterable, n):
    # batched('ABCDEFG', 3) → ABC DEF G
    if n < 1:
        raise ValueError('n must be at least one')
    it = iter(iterable)
    while batch := tuple(islice(it, n)):
        yield batch

Added in version 3.12.

itertools.chain(*iterables)

Створіть ітератор, який повертає елементи з першого ітератора, поки він не буде вичерпаний, а потім переходить до наступного ітератора, доки всі ітератори не будуть вичерпані. Використовується для обробки послідовних послідовностей як однієї послідовності. Приблизно еквівалентно:

def chain(*iterables):
    # chain('ABC', 'DEF') → A B C D E F
    for it in iterables:
        for element in it:
            yield element
classmethod chain.from_iterable(iterable)

Альтернативний конструктор для chain(). Отримує ланцюгові вхідні дані з одного ітерованого аргументу, який обчислюється ліниво. Приблизно еквівалентно:

def from_iterable(iterables):
    # chain.from_iterable(['ABC', 'DEF']) → A B C D E F
    for it in iterables:
        for element in it:
            yield element
itertools.combinations(iterable, r)

Повертає r довжину підпослідовностей елементів із вхідного iterable.

The combination tuples are emitted in lexicographic ordering according to the order of the input iterable. So, if the input iterable is sorted, the output tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are unique, there will be no repeated values in each combination.

Приблизно еквівалентно:

def combinations(iterable, r):
    # combinations('ABCD', 2) → AB AC AD BC BD CD
    # combinations(range(4), 3) → 012 013 023 123
    pool = tuple(iterable)
    n = len(pool)
    if r > n:
        return
    indices = list(range(r))
    yield tuple(pool[i] for i in indices)
    while True:
        for i in reversed(range(r)):
            if indices[i] != i + n - r:
                break
        else:
            return
        indices[i] += 1
        for j in range(i+1, r):
            indices[j] = indices[j-1] + 1
        yield tuple(pool[i] for i in indices)

Код для combinations() також може бути виражений як підпослідовність permutations() після фільтрації записів, де елементи не відсортовані (відповідно до їхньої позиції у вхідному пулі):

def combinations(iterable, r):
    pool = tuple(iterable)
    n = len(pool)
    for indices in permutations(range(n), r):
        if sorted(indices) == list(indices):
            yield tuple(pool[i] for i in indices)

Кількість повернених елементів – n! / р! / (n-r)! коли 0 <= r <= n or zero when r > n.

itertools.combinations_with_replacement(iterable, r)

Повертає r довжину підпослідовностей елементів із вхідного iterable, що дозволяє повторювати окремі елементи більше одного разу.

The combination tuples are emitted in lexicographic ordering according to the order of the input iterable. So, if the input iterable is sorted, the output tuples will be produced in sorted order.

Елементи розглядаються як унікальні на основі їх позиції, а не їх значення. Отже, якщо вхідні елементи унікальні, згенеровані комбінації також будуть унікальними.

Приблизно еквівалентно:

def combinations_with_replacement(iterable, r):
    # combinations_with_replacement('ABC', 2) → AA AB AC BB BC CC
    pool = tuple(iterable)
    n = len(pool)
    if not n and r:
        return
    indices = [0] * r
    yield tuple(pool[i] for i in indices)
    while True:
        for i in reversed(range(r)):
            if indices[i] != n - 1:
                break
        else:
            return
        indices[i:] = [indices[i] + 1] * (r - i)
        yield tuple(pool[i] for i in indices)

Код для combinations_with_replacement() також можна виразити як підпослідовність product() після фільтрації записів, де елементи не відсортовані (відповідно до їхньої позиції у вхідному пулі):

def combinations_with_replacement(iterable, r):
    pool = tuple(iterable)
    n = len(pool)
    for indices in product(range(n), repeat=r):
        if sorted(indices) == list(indices):
            yield tuple(pool[i] for i in indices)

Кількість повернених елементів – (n+r-1)! / р! / (n-1)! коли n > 0.

Added in version 3.1.

itertools.compress(data, selectors)

Створіть ітератор, який фільтрує елементи з даних, повертаючи лише ті, які мають відповідний елемент у селекторах, який оцінюється як True. Зупиняється, коли ітерації data або selectors вичерпано. Приблизно еквівалентно:

def compress(data, selectors):
    # compress('ABCDEF', [1,0,1,0,1,1]) → A C E F
    return (d for d, s in zip(data, selectors) if s)

Added in version 3.1.

itertools.count(start=0, step=1)

Створіть ітератор, який повертає значення з рівним інтервалом, починаючи з числа start. Часто використовується як аргумент map() для створення послідовних точок даних. Також використовується з zip() для додавання порядкових номерів. Приблизно еквівалентно:

def count(start=0, step=1):
    # count(10) → 10 11 12 13 14 ...
    # count(2.5, 0.5) → 2.5 3.0 3.5 ...
    n = start
    while True:
        yield n
        n += step

Під час підрахунку з числами з плаваючою комою кращої точності інколи можна досягти шляхом заміни мультиплікативного коду, наприклад: (початок + крок * i для i в count()).

Змінено в версії 3.1: Додано аргумент step і дозволено нецілі аргументи.

itertools.cycle(iterable)

Зробіть ітератор, який повертає елементи з iterable і зберігає копію кожного. Коли iterable вичерпано, поверніть елементи зі збереженої копії. Повторюється безкінечно. Приблизно еквівалентно:

def cycle(iterable):
    # cycle('ABCD') → A B C D A B C D A B C D ...
    saved = []
    for element in iterable:
        yield element
        saved.append(element)
    while saved:
        for element in saved:
              yield element

Зверніть увагу, що цей член набору інструментів може потребувати значного допоміжного сховища (залежно від довжини ітерованого).

itertools.dropwhile(predicate, iterable)

Створіть ітератор, який видаляє елементи з ітерованого, якщо предикат істинний; згодом повертає кожен елемент. Зауважте, що ітератор не створює жодних виходів, доки предикат не стане хибним, тому він може мати тривалий час запуску. Приблизно еквівалентно:

def dropwhile(predicate, iterable):
    # dropwhile(lambda x: x<5, [1,4,6,4,1]) → 6 4 1
    iterable = iter(iterable)
    for x in iterable:
        if not predicate(x):
            yield x
            break
    for x in iterable:
        yield x
itertools.filterfalse(predicate, iterable)

Make an iterator that filters elements from iterable returning only those for which the predicate is false. If predicate is None, return the items that are false. Roughly equivalent to:

def filterfalse(predicate, iterable):
    # filterfalse(lambda x: x%2, range(10)) → 0 2 4 6 8
    if predicate is None:
        predicate = bool
    for x in iterable:
        if not predicate(x):
            yield x
itertools.groupby(iterable, key=None)

Створіть ітератор, який повертає послідовні ключі та групи з iterable. Ключ — це функція, яка обчислює значення ключа для кожного елемента. Якщо не вказано або має значення None, key за замовчуванням використовується як функція ідентифікації та повертає елемент без змін. Як правило, iterable вже має бути відсортований за тією самою ключовою функцією.

Робота groupby() подібна до фільтра uniq в Unix. Він генерує розрив або нову групу щоразу, коли змінюється значення ключової функції (саме тому зазвичай необхідно відсортувати дані за допомогою тієї самої ключової функції). Така поведінка відрізняється від GROUP BY SQL, яка агрегує загальні елементи незалежно від порядку введення.

Повернена група сама є ітератором, який ділиться основним ітератором із groupby(). Оскільки джерело є спільним, коли об’єкт groupby() розширено, попередня група більше не відображається. Отже, якщо ці дані знадобляться пізніше, їх слід зберегти як список:

groups = []
uniquekeys = []
data = sorted(data, key=keyfunc)
for k, g in groupby(data, keyfunc):
    groups.append(list(g))      # Store group iterator as a list
    uniquekeys.append(k)

groupby() приблизно еквівалентно:

class groupby:
    # [k for k, g in groupby('AAAABBBCCDAABBB')] → A B C D A B
    # [list(g) for k, g in groupby('AAAABBBCCD')] → AAAA BBB CC D

    def __init__(self, iterable, key=None):
        if key is None:
            key = lambda x: x
        self.keyfunc = key
        self.it = iter(iterable)
        self.tgtkey = self.currkey = self.currvalue = object()

    def __iter__(self):
        return self

    def __next__(self):
        self.id = object()
        while self.currkey == self.tgtkey:
            self.currvalue = next(self.it)    # Exit on StopIteration
            self.currkey = self.keyfunc(self.currvalue)
        self.tgtkey = self.currkey
        return (self.currkey, self._grouper(self.tgtkey, self.id))

    def _grouper(self, tgtkey, id):
        while self.id is id and self.currkey == tgtkey:
            yield self.currvalue
            try:
                self.currvalue = next(self.it)
            except StopIteration:
                return
            self.currkey = self.keyfunc(self.currvalue)
itertools.islice(iterable, stop)
itertools.islice(iterable, start, stop[, step])

Make an iterator that returns selected elements from the iterable. If start is non-zero, then elements from the iterable are skipped until start is reached. Afterward, elements are returned consecutively unless step is set higher than one which results in items being skipped. If stop is None, then iteration continues until the iterator is exhausted, if at all; otherwise, it stops at the specified position.

Якщо start має значення None, то ітерація починається з нуля. Якщо крок має значення None, тоді крок за умовчанням дорівнює одиниці.

Unlike regular slicing, islice() does not support negative values for start, stop, or step. Can be used to extract related fields from data where the internal structure has been flattened (for example, a multi-line report may list a name field on every third line).

Приблизно еквівалентно:

def islice(iterable, *args):
    # islice('ABCDEFG', 2) → A B
    # islice('ABCDEFG', 2, 4) → C D
    # islice('ABCDEFG', 2, None) → C D E F G
    # islice('ABCDEFG', 0, None, 2) → A C E G
    s = slice(*args)
    start = 0 if s.start is None else s.start
    stop = s.stop
    step = 1 if s.step is None else s.step
    if start < 0 or (stop is not None and stop < 0) or step <= 0:
        raise ValueError
    indices = count() if stop is None else range(max(stop, start))
    next_i = start
    for i, element in zip(indices, iterable):
        if i == next_i:
            yield element
            next_i += step
itertools.pairwise(iterable)

Повертає послідовні пари, що перекриваються, взяті з вхідних даних iterable.

Кількість 2-кортежів у вихідному ітераторі буде на один менше, ніж кількість входів. Він буде порожнім, якщо вхідний ітератор має менше двох значень.

Приблизно еквівалентно:

def pairwise(iterable):
    # pairwise('ABCDEFG') → AB BC CD DE EF FG
    iterator = iter(iterable)
    a = next(iterator, None)
    for b in iterator:
        yield a, b
        a = b

Added in version 3.10.

itertools.permutations(iterable, r=None)

Повертає послідовні зміни довжини r елементів у iterable.

Якщо r не вказано або має значення None, тоді r за замовчуванням відповідає довжині iterable і генеруються всі можливі перестановки повної довжини.

The permutation tuples are emitted in lexicographic order according to the order of the input iterable. So, if the input iterable is sorted, the output tuples will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are unique, there will be no repeated values within a permutation.

Приблизно еквівалентно:

def permutations(iterable, r=None):
    # permutations('ABCD', 2) → AB AC AD BA BC BD CA CB CD DA DB DC
    # permutations(range(3)) → 012 021 102 120 201 210
    pool = tuple(iterable)
    n = len(pool)
    r = n if r is None else r
    if r > n:
        return
    indices = list(range(n))
    cycles = list(range(n, n-r, -1))
    yield tuple(pool[i] for i in indices[:r])
    while n:
        for i in reversed(range(r)):
            cycles[i] -= 1
            if cycles[i] == 0:
                indices[i:] = indices[i+1:] + indices[i:i+1]
                cycles[i] = n - i
            else:
                j = cycles[i]
                indices[i], indices[-j] = indices[-j], indices[i]
                yield tuple(pool[i] for i in indices[:r])
                break
        else:
            return

Код для permutations() також може бути виражений як підпослідовність product(), відфільтрована, щоб виключити записи з повторюваними елементами (ті, що знаходяться в одній позиції у вхідному пулі):

def permutations(iterable, r=None):
    pool = tuple(iterable)
    n = len(pool)
    r = n if r is None else r
    for indices in product(range(n), repeat=r):
        if len(set(indices)) == r:
            yield tuple(pool[i] for i in indices)

Кількість повернених елементів – n! / (n-r)! коли 0 <= r <= n or zero when r > n.

itertools.product(*iterables, repeat=1)

Декартовий добуток вхідних ітерацій.

Приблизно еквівалентно вкладеним циклам for у виразі генератора. Наприклад, product(A, B) повертає те саме, що ((x,y) для x в A для y у B).

Вкладені цикли обертаються як одометр із крайнім правим елементом, що просувається на кожній ітерації. Цей шаблон створює лексикографічне впорядкування, так що якщо ітеровані вхідні елементи відсортовані, кортежі продукту видаються в відсортованому порядку.

Щоб обчислити добуток iterable із самим собою, вкажіть кількість повторень за допомогою необов’язкового аргументу repeat. Наприклад, product(A, repeat=4) означає те саме, що product(A, A, A, A).

Ця функція приблизно еквівалентна наступному коду, за винятком того, що фактична реалізація не накопичує проміжні результати в пам’яті:

def product(*args, repeat=1):
    # product('ABCD', 'xy') → Ax Ay Bx By Cx Cy Dx Dy
    # product(range(2), repeat=3) → 000 001 010 011 100 101 110 111
    pools = [tuple(pool) for pool in args] * repeat
    result = [[]]
    for pool in pools:
        result = [x+[y] for x in result for y in pool]
    for prod in result:
        yield tuple(prod)

Перед запуском product() він повністю споживає вхідні ітерації, зберігаючи пули значень у пам’яті для генерації продуктів. Відповідно, це корисно лише з обмеженими вхідними даними.

itertools.repeat(object[, times])

Make an iterator that returns object over and over again. Runs indefinitely unless the times argument is specified.

Приблизно еквівалентно:

def repeat(object, times=None):
    # repeat(10, 3) → 10 10 10
    if times is None:
        while True:
            yield object
    else:
        for i in range(times):
            yield object

A common use for repeat is to supply a stream of constant values to map or zip:

>>> list(map(pow, range(10), repeat(2)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
itertools.starmap(function, iterable)

Make an iterator that computes the function using arguments obtained from the iterable. Used instead of map() when argument parameters are already grouped in tuples from a single iterable (when the data has been «pre-zipped»).

The difference between map() and starmap() parallels the distinction between function(a,b) and function(*c). Roughly equivalent to:

def starmap(function, iterable):
    # starmap(pow, [(2,5), (3,2), (10,3)]) → 32 9 1000
    for args in iterable:
        yield function(*args)
itertools.takewhile(predicate, iterable)

Створіть ітератор, який повертає елементи з ітерованого, якщо предикат істинний. Приблизно еквівалентно:

def takewhile(predicate, iterable):
    # takewhile(lambda x: x<5, [1,4,6,4,1]) → 1 4
    for x in iterable:
        if predicate(x):
            yield x
        else:
            break

Note, the element that first fails the predicate condition is consumed from the input iterator and there is no way to access it. This could be an issue if an application wants to further consume the input iterator after takewhile has been run to exhaustion. To work around this problem, consider using more-iterools before_and_after() instead.

itertools.tee(iterable, n=2)

Повертає n незалежних ітераторів з одного ітератора.

The following Python code helps explain what tee does (although the actual implementation is more complex and uses only a single underlying FIFO queue):

def tee(iterable, n=2):
    it = iter(iterable)
    deques = [collections.deque() for i in range(n)]
    def gen(mydeque):
        while True:
            if not mydeque:             # when the local deque is empty
                try:
                    newval = next(it)   # fetch a new value and
                except StopIteration:
                    return
                for d in deques:        # load it to all the deques
                    d.append(newval)
            yield mydeque.popleft()
    return tuple(gen(d) for d in deques)

Once a tee() has been created, the original iterable should not be used anywhere else; otherwise, the iterable could get advanced without the tee objects being informed.

tee iterators are not threadsafe. A RuntimeError may be raised when simultaneously using iterators returned by the same tee() call, even if the original iterable is threadsafe.

Цей інструмент itertool може потребувати значного допоміжного сховища (залежно від того, скільки тимчасових даних потрібно зберегти). Загалом, якщо один ітератор використовує більшість або всі дані перед запуском іншого ітератора, швидше використовувати list() замість tee().

itertools.zip_longest(*iterables, fillvalue=None)

Створіть ітератор, який агрегує елементи з кожного ітератора. Якщо ітерації мають нерівномірну довжину, відсутні значення заповнюються за допомогою fillvalue. Ітерація триває до тих пір, поки не буде вичерпано найдовшу ітерацію. Приблизно еквівалентно:

def zip_longest(*args, fillvalue=None):
    # zip_longest('ABCD', 'xy', fillvalue='-') → Ax By C- D-
    iterators = [iter(it) for it in args]
    num_active = len(iterators)
    if not num_active:
        return
    while True:
        values = []
        for i, it in enumerate(iterators):
            try:
                value = next(it)
            except StopIteration:
                num_active -= 1
                if not num_active:
                    return
                iterators[i] = repeat(fillvalue)
                value = fillvalue
            values.append(value)
        yield tuple(values)

Якщо один із ітераторів потенційно нескінченний, то функцію zip_longest() слід обернути чимось, що обмежує кількість викликів (наприклад, islice() або takewhile()). Якщо не вказано, fillvalue за замовчуванням має значення None.

Рецепти Itertools

У цьому розділі наведено рецепти для створення розширеного набору інструментів з використанням існуючих itertools як будівельних блоків.

The primary purpose of the itertools recipes is educational. The recipes show various ways of thinking about individual tools — for example, that chain.from_iterable is related to the concept of flattening. The recipes also give ideas about ways that the tools can be combined — for example, how starmap() and repeat() can work together. The recipes also show patterns for using itertools with the operator and collections modules as well as with the built-in itertools such as map(), filter(), reversed(), and enumerate().

A secondary purpose of the recipes is to serve as an incubator. The accumulate(), compress(), and pairwise() itertools started out as recipes. Currently, the sliding_window(), iter_index(), and sieve() recipes are being tested to see whether they prove their worth.

Substantially all of these recipes and many, many others can be installed from the more-itertools project found on the Python Package Index:

python -m pip install more-itertools

Many of the recipes offer the same high performance as the underlying toolset. Superior memory performance is kept by processing elements one at a time rather than bringing the whole iterable into memory all at once. Code volume is kept small by linking the tools together in a functional style. High speed is retained by preferring «vectorized» building blocks over the use of for-loops and generators which incur interpreter overhead.

import collections
import functools
import math
import operator
import random

def take(n, iterable):
    "Return first n items of the iterable as a list."
    return list(islice(iterable, n))

def prepend(value, iterable):
    "Prepend a single value in front of an iterable."
    # prepend(1, [2, 3, 4]) → 1 2 3 4
    return chain([value], iterable)

def tabulate(function, start=0):
    "Return function(0), function(1), ..."
    return map(function, count(start))

def repeatfunc(func, times=None, *args):
    "Repeat calls to func with specified arguments."
    if times is None:
        return starmap(func, repeat(args))
    return starmap(func, repeat(args, times))

def flatten(list_of_lists):
    "Flatten one level of nesting."
    return chain.from_iterable(list_of_lists)

def ncycles(iterable, n):
    "Returns the sequence elements n times."
    return chain.from_iterable(repeat(tuple(iterable), n))

def tail(n, iterable):
    "Return an iterator over the last n items."
    # tail(3, 'ABCDEFG') → E F G
    return iter(collections.deque(iterable, maxlen=n))

def consume(iterator, n=None):
    "Advance the iterator n-steps ahead. If n is None, consume entirely."
    # Use functions that consume iterators at C speed.
    if n is None:
        collections.deque(iterator, maxlen=0)
    else:
        next(islice(iterator, n, n), None)

def nth(iterable, n, default=None):
    "Returns the nth item or a default value."
    return next(islice(iterable, n, None), default)

def quantify(iterable, predicate=bool):
    "Given a predicate that returns True or False, count the True results."
    return sum(map(predicate, iterable))

def first_true(iterable, default=False, predicate=None):
    "Returns the first true value or the *default* if there is no true value."
    # first_true([a,b,c], x) → a or b or c or x
    # first_true([a,b], x, f) → a if f(a) else b if f(b) else x
    return next(filter(predicate, iterable), default)

def all_equal(iterable, key=None):
    "Returns True if all the elements are equal to each other."
    # all_equal('4٤௪౪໔', key=int) → True
    return len(take(2, groupby(iterable, key))) <= 1

def unique_justseen(iterable, key=None):
    "List unique elements, preserving order. Remember only the element just seen."
    # unique_justseen('AAAABBBCCDAABBB') → A B C D A B
    # unique_justseen('ABBcCAD', str.casefold) → A B c A D
    if key is None:
        return map(operator.itemgetter(0), groupby(iterable))
    return map(next, map(operator.itemgetter(1), groupby(iterable, key)))

def unique_everseen(iterable, key=None):
    "List unique elements, preserving order. Remember all elements ever seen."
    # unique_everseen('AAAABBBCCDAABBB') → A B C D
    # unique_everseen('ABBcCAD', str.casefold) → A B c D
    seen = set()
    if key is None:
        for element in filterfalse(seen.__contains__, iterable):
            seen.add(element)
            yield element
    else:
        for element in iterable:
            k = key(element)
            if k not in seen:
                seen.add(k)
                yield element

def sliding_window(iterable, n):
    "Collect data into overlapping fixed-length chunks or blocks."
    # sliding_window('ABCDEFG', 4) → ABCD BCDE CDEF DEFG
    iterator = iter(iterable)
    window = collections.deque(islice(iterator, n - 1), maxlen=n)
    for x in iterator:
        window.append(x)
        yield tuple(window)

def grouper(iterable, n, *, incomplete='fill', fillvalue=None):
    "Collect data into non-overlapping fixed-length chunks or blocks."
    # grouper('ABCDEFG', 3, fillvalue='x') → ABC DEF Gxx
    # grouper('ABCDEFG', 3, incomplete='strict') → ABC DEF ValueError
    # grouper('ABCDEFG', 3, incomplete='ignore') → ABC DEF
    iterators = [iter(iterable)] * n
    match incomplete:
        case 'fill':
            return zip_longest(*iterators, fillvalue=fillvalue)
        case 'strict':
            return zip(*iterators, strict=True)
        case 'ignore':
            return zip(*iterators)
        case _:
            raise ValueError('Expected fill, strict, or ignore')

def roundrobin(*iterables):
    "Visit input iterables in a cycle until each is exhausted."
    # roundrobin('ABC', 'D', 'EF') → A D E B F C
    # Algorithm credited to George Sakkis
    iterators = map(iter, iterables)
    for num_active in range(len(iterables), 0, -1):
        iterators = cycle(islice(iterators, num_active))
        yield from map(next, iterators)

def partition(predicate, iterable):
    """Partition entries into false entries and true entries.

    If *predicate* is slow, consider wrapping it with functools.lru_cache().
    """
    # partition(is_odd, range(10)) → 0 2 4 6 8   and  1 3 5 7 9
    t1, t2 = tee(iterable)
    return filterfalse(predicate, t1), filter(predicate, t2)

def subslices(seq):
    "Return all contiguous non-empty subslices of a sequence."
    # subslices('ABCD') → A AB ABC ABCD B BC BCD C CD D
    slices = starmap(slice, combinations(range(len(seq) + 1), 2))
    return map(operator.getitem, repeat(seq), slices)

def iter_index(iterable, value, start=0, stop=None):
    "Return indices where a value occurs in a sequence or iterable."
    # iter_index('AABCADEAF', 'A') → 0 1 4 7
    seq_index = getattr(iterable, 'index', None)
    if seq_index is None:
        # Path for general iterables
        iterator = islice(iterable, start, stop)
        for i, element in enumerate(iterator, start):
            if element is value or element == value:
                yield i
    else:
        # Path for sequences with an index() method
        stop = len(iterable) if stop is None else stop
        i = start
        try:
            while True:
                yield (i := seq_index(value, i, stop))
                i += 1
        except ValueError:
            pass

def iter_except(func, exception, first=None):
    "Convert a call-until-exception interface to an iterator interface."
    # iter_except(d.popitem, KeyError) → non-blocking dictionary iterator
    try:
        if first is not None:
            yield first()
        while True:
            yield func()
    except exception:
        pass

The following recipes have a more mathematical flavor:

def powerset(iterable):
    "powerset([1,2,3]) → () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)
    return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

def sum_of_squares(iterable):
    "Add up the squares of the input values."
    # sum_of_squares([10, 20, 30]) → 1400
    return math.sumprod(*tee(iterable))

def reshape(matrix, cols):
    "Reshape a 2-D matrix to have a given number of columns."
    # reshape([(0, 1), (2, 3), (4, 5)], 3) →  (0, 1, 2), (3, 4, 5)
    return batched(chain.from_iterable(matrix), cols)

def transpose(matrix):
    "Swap the rows and columns of a 2-D matrix."
    # transpose([(1, 2, 3), (11, 22, 33)]) → (1, 11) (2, 22) (3, 33)
    return zip(*matrix, strict=True)

def matmul(m1, m2):
    "Multiply two matrices."
    # matmul([(7, 5), (3, 5)], [(2, 5), (7, 9)]) → (49, 80), (41, 60)
    n = len(m2[0])
    return batched(starmap(math.sumprod, product(m1, transpose(m2))), n)

def convolve(signal, kernel):
    """Discrete linear convolution of two iterables.
    Equivalent to polynomial multiplication.

    Convolutions are mathematically commutative; however, the inputs are
    evaluated differently.  The signal is consumed lazily and can be
    infinite. The kernel is fully consumed before the calculations begin.

    Article:  https://betterexplained.com/articles/intuitive-convolution/
    Video:    https://www.youtube.com/watch?v=KuXjwB4LzSA
    """
    # convolve([1, -1, -20], [1, -3]) → 1 -4 -17 60
    # convolve(data, [0.25, 0.25, 0.25, 0.25]) → Moving average (blur)
    # convolve(data, [1/2, 0, -1/2]) → 1st derivative estimate
    # convolve(data, [1, -2, 1]) → 2nd derivative estimate
    kernel = tuple(kernel)[::-1]
    n = len(kernel)
    padded_signal = chain(repeat(0, n-1), signal, repeat(0, n-1))
    windowed_signal = sliding_window(padded_signal, n)
    return map(math.sumprod, repeat(kernel), windowed_signal)

def polynomial_from_roots(roots):
    """Compute a polynomial's coefficients from its roots.

       (x - 5) (x + 4) (x - 3)  expands to:   x³ -4x² -17x + 60
    """
    # polynomial_from_roots([5, -4, 3]) → [1, -4, -17, 60]
    factors = zip(repeat(1), map(operator.neg, roots))
    return list(functools.reduce(convolve, factors, [1]))

def polynomial_eval(coefficients, x):
    """Evaluate a polynomial at a specific value.

    Computes with better numeric stability than Horner's method.
    """
    # Evaluate x³ -4x² -17x + 60 at x = 5
    # polynomial_eval([1, -4, -17, 60], x=5) → 0
    n = len(coefficients)
    if not n:
        return type(x)(0)
    powers = map(pow, repeat(x), reversed(range(n)))
    return math.sumprod(coefficients, powers)

def polynomial_derivative(coefficients):
    """Compute the first derivative of a polynomial.

       f(x)  =  x³ -4x² -17x + 60
       f'(x) = 3x² -8x  -17
    """
    # polynomial_derivative([1, -4, -17, 60]) → [3, -8, -17]
    n = len(coefficients)
    powers = reversed(range(1, n))
    return list(map(operator.mul, coefficients, powers))

def sieve(n):
    "Primes less than n."
    # sieve(30) → 2 3 5 7 11 13 17 19 23 29
    if n > 2:
        yield 2
    data = bytearray((0, 1)) * (n // 2)
    for p in iter_index(data, 1, start=3, stop=math.isqrt(n) + 1):
        data[p*p : n : p+p] = bytes(len(range(p*p, n, p+p)))
    yield from iter_index(data, 1, start=3)

def factor(n):
    "Prime factors of n."
    # factor(99) → 3 3 11
    # factor(1_000_000_000_000_007) → 47 59 360620266859
    # factor(1_000_000_000_000_403) → 1000000000000403
    for prime in sieve(math.isqrt(n) + 1):
        while not n % prime:
            yield prime
            n //= prime
            if n == 1:
                return
    if n > 1:
        yield n

def totient(n):
    "Count of natural numbers up to n that are coprime to n."
    # https://mathworld.wolfram.com/TotientFunction.html
    # totient(12) → 4 because len([1, 5, 7, 11]) == 4
    for prime in set(factor(n)):
        n -= n // prime
    return n