Python Frequently Asked Questions
Yayim 3.12.3

Guido van Rossum and the Python development team

Mayis 04, 2024

Python Software Foundation
Email: docs@python.org






Igindekiler

1 General Python FAQ 1
I.1  General Information . . . . . ... ... . e 1
1.1.1  Whatis Python? . . . . . . . . . . e 1

1.1.2 What is the Python Software Foundation? . . . . ... ... ... ... ........... 1

1.1.3  Are there copyright restrictions on the use of Python? . . . . ... .. ... ... ... ... 2

1.1.4  Why was Python created in the first place? . . . . . . . ... ... ... .. ... 2

1.1.5  Whatis Python good for? . . . . . . . . . . . . e e e 2

1.1.6  How does the Python version numbering scheme work? . . . ... .. ... ... .. .... 3

1.1.7  How do I obtain a copy of the Python source? . . . . ... ... .. ... .......... 3

1.1.8  How do I get documentation on Python? . . . . . . .. ... ... .. ... .. ... .... 3

1.1.9  T've never programmed before. Is there a Python tutorial? . . . ... ... ... ... .... 4

1.1.10 TIs there a newsgroup or mailing list devoted to Python? . . . . . . . . .. ... ... .. ... 4

1.1.11 How doI get a beta test version of Python? . . . . . . ... ... ... .. ... ....... 4

1.1.12  How do I submit bug reports and patches for Python? . . . . ... .. ... ... ... ... 4

1.1.13  Are there any published articles about Python that I can reference? . . . . . . . .. ... ... 4

1.1.14  Are there any books on Python? . . . . . . . . ... ... o 4

1.1.15 Where in the world is www.python.org located? . . . . ... ... ... ... ... ..... 5

1.1.16 Why isitcalled Python? . . . . . . . . . . . . e e e 5

1.1.17 Do I have to like “Monty Python’s Flying Circus™? . . . . . . ... .. ... ... .. .... 5

1.2 Pythonintherealworld . . . . . .. . .. .. ... 5
1.2.1  Howstableis Python? . . . . . . . . . . . .. 5

1.2.2  How many people are using Python? . . . . . .. ... ... ... oL, 5

1.2.3  Have any significant projects been done in Python? . . . . . . ... ... ... ... ..... 5

1.2.4  What new developments are expected for Python in the future? . . . . ... ... ... ... 6

1.2.5  Isitreasonable to propose incompatible changes to Python? . . . . . . ... ... ... ... 6

1.2.6  Is Python a good language for beginning programmers? . . . . . . . . . .. ... .. .... 6

2 Programming FAQ 9
2.1 General QUESHIONS . . . . . . . e e e e e e e e e e e e e e 9
2.1.1  Is there a source code level debugger with breakpoints, single-stepping, etc.? . . . . . . . .. 9

2.1.2  Are there tools to help find bugs or perform static analysis? . . . .. ... ... ... .... 10

2.1.3  How can I create a stand-alone binary from a Python script? . . . . . .. ... ... .. ... 10

2.1.4  Are there coding standards or a style guide for Python programs? . . . . ... ... ... .. 10

22 Corelanguage . . . . . . . . . . e 10
2.2.1  Why am I getting an UnboundLocalError when the variable has a value? . . . . . . . ... .. 10

2.2.2  What are the rules for local and global variables in Python? . . . . ... .. ... ... ... 12




2.3

24

2.5

2.6

2.2.3  Why do lambdas defined in a loop with different values all return the same result? . . . . . . . 12
2.2.4  How do I share global variables across modules? . . . . . .. ... ... ... ........ 13
2.2.5  What are the “best practices” for using import inamodule? . . .. ... ... ... ..... 13
2.2.6  Why are default values shared between objects? . . . . .. ... ... ... ... 14
2277  How can I pass optional or keyword parameters from one function to another? . . . . . . . . . 15
2.2.8  What is the difference between arguments and parameters? . . . . . ... . ... ... ... 15
2.2.9  Why did changing list ‘y’ also change list X’? . . . . . . . . ... .. .. ... 15
2.2.10 How do I write a function with output parameters (call by reference)? . . . . ... ... ... 16
2.2.11 How do you make a higher order function in Python? . . . . . . . ... ... ... ... ... 17
2.2.12 HowdolIcopyanobjectinPython? . . . . . . . ... ... .. ... 0. 18
2.2.13 How can I find the methods or attributes of an object? . . . . . .. ... ... ... ..... 19
2.2.14 How can my code discover the name of anobject? . . . . . .. ... ... ... ....... 19
2.2.15 What's up with the comma operator’s precedence? . . . . . . . . . . .. ... 19
2.2.16 Is there an equivalent of C’s “?:” ternary operator? . . . . . . . . . . . . oo v v v 20
2.2.17 Isit possible to write obfuscated one-liners in Python? . . . . . . ... ... ... ... ... 20
2.2.18 What does the slash(/) in the parameter list of a function mean? . . . . . .. ... ... ... 21
Numbers and Strings . . . . . . . ... e e e e e e 21
2.3.1  How do I specify hexadecimal and octal integers? . . . . . .. .. ... ... ... ..... 21
2.3.2  Whydoes-22// 10return -37 . . . . . . L. e e e e e e e e e e 21
2.3.3  How do I get int literal attribute instead of SyntaxError? . . . . . ... ... ... ... ... 22
234 Howdolconvertastringtoanumber? . . . . . . .. ... .. ... .. 22
2.3.5 HowdoIconvertanumbertoastring? . . . . . . . . . . .. 22
2.3.6 HowdoImodify astringinplace? . . . . . . . . . . . . it 23
2.3.7  How do I use strings to call functions/methods? . . . . . . . . ... ... ... ... ..... 23
2.3.8  Is there an equivalent to Perl’s chomp() for removing trailing newlines from strings? . . . . . . 24
2.3.9 Isthere ascanf() or sscanf() equivalent? . . . . . . . ... ... ... 24
2.3.10 What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean? . . . . . . . . . . .. 25
2.3.11 CanlIend a raw string with an odd number of backslashes? . . . . . . .. .. ... ... ... 25
Performance . . . . . . . . e 25
24.1 My program is too slow. Howdo I'speeditup? . . . . . . . .. ... ... ... ... ..., 25
2.4.2  What is the most efficient way to concatenate many strings together? . . . . . . . .. ... .. 26
Sequences (Tuples/Lists) . . . . . . . o o o ot i i e e e e e e e 26
2.5.1 How do I convert between tuples and lists? . . . . . . ... .. ... ... 26
2.5.2  What'sanegative index? . . . . . . . . . e e e e e e e e e e e e e 27
2.5.3 How do literate over a sequence in reverse order? . . . . . . . . . . . . ... 27
2.54 How do you remove duplicates from alist? . . . . . . ... ... ... . 27
2.5.5 How do you remove multiple items fromalist . . . . ... ... ... ... ... ..., 28
2.5.6 Howdo youmake an array in Python? . . . . .. ... ... ... L 28
2.5.7 How do I create a multidimensional list? . . . . . . ... ... ... ... .. ... 28
2.5.8  How do I apply a method or function to a sequence of objects? . . . . . . ... ... .. ... 29
2.5.9  Why does a_tuple[i] + = [‘item’] raise an exception when the addition works? . . . . . .. .. 29
2.5.10 I want to do a complicated sort: can you do a Schwartzian Transform in Python? . . . . . .. 30
2.5.11 How can I sort one list by values from another list? . . . . . . ... ... ... ........ 31
ODbJECES . . o v o e e 31
2.6.1  Whatisaclass? . . . . . . . . e e e e 31
2.6.2 Whatisamethod?. . . . . . . . ... e 31
2,63  Whatisself?. . . . . . . e 31
2.6.4  How do I check if an object is an instance of a given class or of a subclass of it? . . . . . . . . 32
2.6.5 Whatisdelegation? . . . . . . . . . .. e e 33
2.6.6  How do I call a method defined in a base class from a derived class that extends it? . . . . . . 33
2.6.7  How can I organize my code to make it easier to change the base class? . . . ... ... ... 34
2.6.8  How do I create static class data and static class methods? . . . . . . ... ... ... .... 34
2.6.9  How can I overload constructors (or methods) in Python? . . . . . ... .. .. ... .... 35
2.6.10 Itrytouse __spam and I get an error about _SomeClassName__spam. . . . ... ... ... 35




2.7

2.6.11 My class defines __del__ but it is not called when I delete the object. . . . . . ... ... ..
2.6.12 How do I getalist of all instances of agivenclass? . . . . . . ... ... ... ... .....
2.6.13  Why does the result of 1d () appear to be not unique? . . . . . . . .. ... ... ... ...
2.6.14 When can I rely on identity tests with the is operator? . . . . . .. ... ... ... ... ..
2.6.15 How can a subclass control what data is stored in an immutable instance? . . ... ... ...
2.6.16 HowdolIcachemethodcalls? . . . . . . . . .. . .. ..
Modules . . . . . . e e e e e
27.1 Howdolcreatea.pycfile? . . . . . . . . . . . e
2.7.2  How doIfind the current module name? . . . . . . . . . . . ... ... .o
2.7.3  How can I have modules that mutually import each other? . . . . . ... ... ... ... ..

274  __import__(‘x.y.z’) returns <module x’>; howdoIgetz? . ... ... ... ... ... ...
2.7.5  When I edit an imported module and reimport it, the changes don’t show up. Why does this
happen? . . . . . e e e e e

Design and History FAQ

3.1
32
33
34
3.5
3.6
3.7

3.8

39

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28

Why are floating-point calculations so inaccurate? . . . . . . . ... ... oL
Why are Python strings immutable? . . . . . . . ... .. L
Why must ‘self” be used explicitly in method definitions and calls? . . . . . .. ... ... .. ....
Why can’t I use an assignment in an eXpression? . . . . . . . .. ..o L e e e e e e
Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g.
len(list))? . . . . e e e e e e e e e e e
Why is join() a string method instead of a list or tuple method? . . . . . .. .. ... ... .. ....
How fast are exceptions? . . . . . . . . . . L e e e e e
Why isn’t there a switch or case statement in Python? . . . . .. ... ... .. ... ... ...
Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implementation?

Can Python be compiled to machine code, C or some other language? . . ... ... ... ......
How does Python manage memory? . . . . . . . . . . .. . . e
Why doesn’t CPython use a more traditional garbage collection scheme? . . . . .. ... ... ....
Why isn’t all memory freed when CPython exits? . . . . . . . . . ... ... ... ... ... ....

How are lists implemented in CPython? . . . . . . . ... ... ... ... . ... ... ...
How are dictionaries implemented in CPython? . . . . . . . ... .. ... ... ... ... .....
Why must dictionary keys be immutable? . . . . .. ... oL o
Why doesn’t list.sort() return the sorted list? . . . . . . . . .. ...
How do you specify and enforce an interface spec in Python? . . . . . . ... ... ... ... ....

Why can’t raw strings (r-strings) end with a backslash? . . . . ... ... ..o 0000 L.
Why doesn’t Python have a “with” statement for attribute assignments? . . . . . ... .. ... ....
Why don’t generators support the with statement? . . . . . . . . ... ... oL

Library and Extension FAQ

4.1

4.2

General Library QUeStions . . . . . . . . v v v i e e e e e e e e e e e e e e e
4.1.1 How do I find a module or application to perform task X? . . . . ... ... ... .. ....
4.1.2  Where is the math.py (socket.py, regex.py, etc.) source file? . . . . .. ... ... ... ...
4.1.3  How do I make a Python script executable on Unix? . . . . . ... ... ... ... .....
4.1.4  Is there a curses/termcap package for Python? . . . . . . ... ... ... ... ...
4.1.5 Isthere an equivalent to C’'s onexit() in Python? . . . . . . . ... ... ... ... ......
4.1.6  Why don’t my signal handlers work? . . . .. ... . ... ... . .. .
Common tasks . . . . . . . .. e e

36
36
36
38
38
40
40
40
41
42

42

43
43
44
44
44
45
45

45
46
46
47
47
47
48
48
48
49
49
49
49
50
51
51
52
52
53
54
54
54




4.2.1  How do I test a Python program or component? . . . . .. ... ... ... .........
4.2.2  How do I create documentation from doc strings? . . . . . . . . . .. ... .. ...
423 Howdolgetasingle keypressatatime? . . . . . . .. .. ...
43 Threads . . . . . . . . e e
4.3.1 Howdo I programusing threads? . . . . . . . ... .. ... ... ...
4.3.2  None of my threads seem to run: why? . . . . . . . . . ... ...
4.3.3  How do I parcel out work among a bunch of worker threads? . . . . . ... ... ... ....
4.3.4  What kinds of global value mutation are thread-safe? . . . . . .. ... ... ... ......
4.3.5 Can’t we get rid of the Global Interpreter Lock? . . . ... ... ... ... ... .....
44 Inputand Output . . . . . . . oL e e e e e e e e e e
4.4.1 How do I delete a file? (And other file questions...) . . . . . ... .. ... ... ......
442 Howdolcopyafile? . . . . . . . . . e
443 HowdolIread (or write) binary data? . . . . . . . . .. .. ... ..
444 Tcan’t seem to use os.read() on a pipe created with os.popen(); why? . . . . ... ... ...
445 How doIaccess the serial (RS232) port? . . . . . . . . . . . .
4.4.6  Why doesn’t closing sys.stdout (stdin, stderr) really close it? . . . . . . ... .. ... ....
4.5 Network/Internet Programming . . . . . . . . . . .. oL e
4.5.1  What WWW tools are there for Python? . . . . .. ... ... .. ... ... ... .....
4.5.2  How can I mimic CGI form submission (METHOD =POST)? . . . . . ... ... ... ...
4.5.3  What module should I use to help with generating HTML? . . . . . .. ... ... ... ...
4.5.4  How do Isend mail from a Python script? . . . . . .. ... ... .. ... .........
4.5.5 How do I avoid blocking in the connect() method of a socket? . . . . . .. ... ... ....
4.6 Databases . . . . . ... e e e
4.6.1  Are there any interfaces to database packages in Python? . . . . . . .. ... ... .. ....
4.6.2  How do you implement persistent objects in Python? . . . . . .. ... ... ... 0.,
477 Mathematics and NUMETICS . . . . . . . . . o vt v i e e e e e e e e e e e e e e

Genisletme/Ekleme SSS

5.1  Cde kendi fonksiyonlarimi olugturabilir miyim? . . . . . . . . . ... ... oL
5.2 C++’da kendi fonksiyonlarimi olusturabilir miyim? . . . . . .. ... ... Lo
5.3 Cyazmak zor; bagka alternatifler varmi1? . . . . . . . . . . ... e
5.4  Cden rastgele Python komutlarini nasil ¢cahistirabilirim? . . . . . . . . . ... ... ... .. .....
5.5 Cden rastgele Python komutlarini nasil degerlendirebilirim? . . . . . . ... .. ... ... .. ....
5.6  Bir Python nesnesinden C degerlerini nasil ¢ikarabilirim? . . . . .. .. ... ... ... .. ...
5.7  Istege bagh uzunlukta bir tuple olusturmak icin Py_BuildValue() islevini nasil kullanabilirim? . . . . .
5.8  Ckde bir nesnenin metodunu nasil cagirabilirim? . . . . ... ..o oo
5.9  PyErr_Print() islevinden (veya stdout/stderr’e yazdiran herhangi bir seyden) gelen ¢iktiy1 nasil yakala-

5.10 Python’da yazilmig bir modiile C’den nasil erigebilirim? . . . . . .. . ... .. ... ... ...
5.11 Python’dan C++ nesnelerine nasil arayiiz olusturabilirim? . . . . . . . ... .. ... ... .. ....
5.12  Kurulum dosyasint kullanarak bir modiil ekledim ve derleme basarisiz oldu; neden? . . ... ... ..
5.13 Bir uzantida nasil hata ayiklayabilirim? . . . . . . . . . .. L. oL
5.14 Linux sistemimde bir Python modiilii derlemek istiyorum, ancak bazi dosyalar eksik. Neden? . . . . .
5.15 “Eksik girdi” ile “gecersiz girdi’yi nasil ayirt edebilirim? . . . . . .. ..o o000 oL L.
5.16 Tammlanmamis g++ sembolleri __builtin_new veya __pure_virtual’t nasil bulabilirim? . . . . . . . ..
5.17 Bazi yontemleri C’de, bazi yontemleri Python’da (6rnegin miras yoluyla) uygulanan bir nesne sinifi olus-
turabilir miyim? . . . . L L e e e e e e e e e e e

Python on Windows FAQ

6.1 How do I run a Python program under Windows? . . . . . . . . ... ... ... ... ... ....
6.2  How do I make Python scripts executable? . . . . . . . . . . . . . e
6.3  Why does Python sometimes take so longtostart? . . . . . . .. .. .. ... ... ...
6.4 How do I make an executable from a Python script? . . . . . . ... ... ... ... ... ...

69
69




6.5 Isa~*.pydfilethesameasaDLL? . . . ... ... ... . .. .. .. . . . .. ..

6.6  How can I embed Python into a Windows application? . . . . . . . . . . . .. ... ...
6.7 How do I keep editors from inserting tabs into my Python source? . . . . . . . ... ... ... ....
6.8 How do I check for a keypress without blocking? . . . . .. .. ... ... ... ... .. ...
6.9 How do I solve the missing api-ms-win-crt-runtime-11-1-0.dll error? . . . . .. ... ... ... ...

7 Grafik Kullanic1 Arayiizii SSS

7.1 Genel GKA Sorulart . . . . . . . . . 0 e e e e e e e e e
7.2 Python icin hangi GKA arag setleri var? . . . . . . . . . . ...
7.3 TKinter sorulart . . . . . ... e e e e e e e

7.3.1  Tkinter uygulamalarini nasil dondurabilirim? . . . . . . .. ... ... .. . . ...

7.3.2  G/C’yi beklerken Tk olaylarini igleyebilir miyim? . . . . . . . .. ... ... . ... .....

7.3.3  Tkinter’da calismak icin anahtar baglamalarin1 alamiyorum: neden? . . . . . .. ... .. ..

8 “Python Bilgisayarimda Neden Yiiklii?”” SSS

8.1 Pythonnedir? . . . . . . . . o e e e e e e e e
8.2  Python makinemde neden yuiklii? . . . . . . .. .. Lo
8.3  Python'usilebilir miyim? . . . . . . . . L. e e

A Sozlik

B Bu dokiimanlar hakkinda
B.1  Python Dokiimantasyonuna Katkida Bulunanlar . . . . . ... ... ... ... ... . .......

C Tarihge ve Lisans

C.1  Yazulmintarihgesi . . . . . . . o L e e e e e e e e e e
C.2 Python’a erismek veya bagka bir sekilde kullanmak i¢in gartlar ve kogullar . . . . . . . ... ... ...
C.2.1 PYTHON ICIN PSF LISANS ANLASMASI3.12.3 . . . . . ..ot
C.2.2 PYTHON 2.0 iICIN BEOPEN.COM LISANS SOZLESMESI . . . ... .. ... ......
C.2.3 PYTHON 1.6.1 ICIN CNRILISANS ANLASMAST . . . . .. ...t
C2.4 0.9.0 ARASI 1.2 PYTHON ICIN CWI LISANS SOZLESMEST . . ... ..........

C25

PYTHON 3.12.3

BELGELERINDEKI KOD iCIN SIFIR MADDE BSD LISANSI . . . ..

C.3 Tiizel Yazihmlar i¢in Lisanslar ve Onaylar . . . . . . . . . . .. ... ... .. ... ...
Mersenne TWISter's . . . . . . . . . ... e

C3.1
C32
C33
C34
C35
C3.6
C3.7
C3.8
C3.9
C.3.10
C3.11
C3.12
C3.13
C3.14
C3.15
C3.16
C3.17
C3.18
C.3.19
C.3.20

D Telif Hakk:

Soketler . . . .

Asenkron soket hizmetleri . . . . . . . . . . . . e

Cerez yonetimi
Calistirma izleme

UUencode ve UUdecode fonksiyonlart . . . . . . ... ... ... .. ... . . ......
XML Uzaktan Yordam Cagrilart . . . . . . . . . .. . L e

test_epoll . . .
kqueue secin . .
SipHash24 . . .
strtod ve dtoa .

libmpdec . . .

W3C Cl4Ntest paketi . . . . . . o o v it e e e e e

Audioop . . . .
asyncio . . . .

77

81
81
81
81
81
82
82

83
83
83
84

85

101
101

103
103
104
104
105
106
107
108
108
108
109
109
110
110
111
112
112
113
113
114
114
117
118
118
119
120
120
121
121

123




Dizin 125

vi



BOLOM 1

General Python FAQ

1.1 General Information

1.1.1 What is Python?

Python is an interpreted, interactive, object-oriented programming language. It incorporates modules, exceptions, dynamic
typing, very high level dynamic data types, and classes. It supports multiple programming paradigms beyond object-
oriented programming, such as procedural and functional programming. Python combines remarkable power with very
clear syntax. It has interfaces to many system calls and libraries, as well as to various window systems, and is extensible in
C or C++. It is also usable as an extension language for applications that need a programmable interface. Finally, Python
is portable: it runs on many Unix variants including Linux and macOS, and on Windows.

To find out more, start with tutorial-index. The Beginner’s Guide to Python links to other introductory tutorials and
resources for learning Python.

1.1.2 What is the Python Software Foundation?

The Python Software Foundation is an independent non-profit organization that holds the copyright on Python versions
2.1 and newer. The PSF’s mission is to advance open source technology related to the Python programming language and
to publicize the use of Python. The PSF’s home page is at https://www.python.org/psf/.

Donations to the PSF are tax-exempt in the US. If you use Python and find it helpful, please contribute via the PSF
donation page.



https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/psf/
https://www.python.org/psf/donations/
https://www.python.org/psf/donations/

Python Frequently Asked Questions, Yayim 3.12.3

1.1.3 Are there copyright restrictions on the use of Python?

You can do anything you want with the source, as long as you leave the copyrights in and display those copyrights in any
documentation about Python that you produce. If you honor the copyright rules, it’s OK to use Python for commercial use,
to sell copies of Python in source or binary form (modified or unmodified), or to sell products that incorporate Python
in some form. We would still like to know about all commercial use of Python, of course.

See the license page to find further explanations and the full text of the PSF License.

The Python logo is trademarked, and in certain cases permission is required to use it. Consult the Trademark Usage Policy
for more information.

1.1.4 Why was Python created in the first place?

Here’s a very brief summary of what started it all, written by Guido van Rossum:

I had extensive experience with implementing an interpreted language in the ABC group at CWI, and from
working with this group I had learned a lot about language design. This is the origin of many Python featu-
res, including the use of indentation for statement grouping and the inclusion of very-high-level data types
(although the details are all different in Python).

I had a number of gripes about the ABC language, but also liked many of its features. It was impossible to
extend the ABC language (or its implementation) to remedy my complaints — in fact its lack of extensibility
was one of its biggest problems. I had some experience with using Modula-2+ and talked with the designers
of Modula-3 and read the Modula-3 report. Modula-3 is the origin of the syntax and semantics used for
exceptions, and some other Python features.

I was working in the Amoeba distributed operating system group at CWI. We needed a better way to do
system administration than by writing either C programs or Bourne shell scripts, since Amoeba had its own
system call interface which wasn’t easily accessible from the Bourne shell. My experience with error handling
in Amoeba made me acutely aware of the importance of exceptions as a programming language feature.

It occurred to me that a scripting language with a syntax like ABC but with access to the Amoeba system calls
would fill the need. I realized that it would be foolish to write an Amoeba-specific language, so I decided
that I needed a language that was generally extensible.

During the 1989 Christmas holidays, I had a lot of time on my hand, so I decided to give it a try. During
the next year, while still mostly working on it in my own time, Python was used in the Amoeba project with
increasing success, and the feedback from colleagues made me add many early improvements.

In February 1991, after just over a year of development, I decided to post to USENET. The rest is in the
Misc/HISTORY file.

1.1.5 What is Python good for?

Python is a high-level general-purpose programming language that can be applied to many different classes of problems.

The language comes with a large standard library that covers areas such as string processing (regular expressions, Unico-
de, calculating differences between files), internet protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP), software
engineering (unit testing, logging, profiling, parsing Python code), and operating system interfaces (system calls, filesys-
tems, TCP/IP sockets). Look at the table of contents for library-index to get an idea of what’s available. A wide variety
of third-party extensions are also available. Consult the Python Package Index to find packages of interest to you.

2 Boliim 1. General Python FAQ


https://docs.python.org/3/license.html
https://www.python.org/psf/trademarks/
https://pypi.org

Python Frequently Asked Questions, Yayim 3.12.3

1.1.6 How does the Python version numbering scheme work?

Python versions are numbered “A.B.C” or “A.B”:
* A is the major version number — it is only incremented for really major changes in the language.
* B is the minor version number — it is incremented for less earth-shattering changes.
e ( is the micro version number — it is incremented for each bugfix release.

Not all releases are bugfix releases. In the run-up to a new feature release, a series of development releases are made,
denoted as alpha, beta, or release candidate. Alphas are early releases in which interfaces aren’t yet finalized; it’s not
unexpected to see an interface change between two alpha releases. Betas are more stable, preserving existing interfaces
but possibly adding new modules, and release candidates are frozen, making no changes except as needed to fix critical
bugs.

Alpha, beta and release candidate versions have an additional suffix:
¢ The suffix for an alpha version is “aN” for some small number N.
* The suffix for a beta version is “bN” for some small number N.
* The suffix for a release candidate version is “rcN” for some small number N.

In other words, all versions labeled 2.0aN precede the versions labeled 2.0bN, which precede versions labeled 2.0rcN,
and those precede 2.0.

You may also find version numbers with a “+” suffix, e.g. “2.2+”. These are unreleased versions, built directly from the
CPython development repository. In practice, after a final minor release is made, the version is incremented to the next
minor version, which becomes the “a0” version, e.g. “2.4a0”.

See the Developer’s Guide for more information about the development cycle, and PEP 387 to learn more about Pyt-
hon’s backward compatibility policy. See also the documentation for sys.version, sys.hexversion,and sys.
version_info.

1.1.7 How do | obtain a copy of the Python source?
The latest Python source distribution is always available from python.org, at https://www.python.org/downloads/. The
latest development sources can be obtained at https://github.com/python/cpython/.

The source distribution is a gzipped tar file containing the complete C source, Sphinx-formatted documentation, Python
library modules, example programs, and several useful pieces of freely distributable software. The source will compile
and run out of the box on most UNIX platforms.

Consult the Getting Started section of the Python Developer’s Guide for more information on getting the source code and
compiling it.

1.1.8 How do | get documentation on Python?
The standard documentation for the current stable version of Python is available at https://docs.python.org/3/. PDF, plain
text, and downloadable HTML versions are also available at https://docs.python.org/3/download.html.

The documentation is written in reStructuredText and processed by the Sphinx documentation tool. The reStructuredText
source for the documentation is part of the Python source distribution.

1.1. General Information 3


https://devguide.python.org/developer-workflow/development-cycle/
https://peps.python.org/pep-0387/
https://www.python.org/downloads/
https://github.com/python/cpython/
https://devguide.python.org/setup/
https://docs.python.org/3/
https://docs.python.org/3/download.html
https://www.sphinx-doc.org/

Python Frequently Asked Questions, Yayim 3.12.3

1.1.9 I've never programmed before. Is there a Python tutorial?

There are numerous tutorials and books available. The standard documentation includes tutorial-index.

Consult the Beginner’s Guide to find information for beginning Python programmers, including lists of tutorials.

1.1.10 Is there a newsgroup or mailing list devoted to Python?

There is a newsgroup, comp. lang. python, and a mailing list, python-list. The newsgroup and mailing list are gate-
wayed into each other — if you can read news it’s unnecessary to subscribe to the mailing list. comp. lang.pythonis
high-traffic, receiving hundreds of postings every day, and Usenet readers are often more able to cope with this volume.

Announcements of new software releases and events can be found in comp.lang.python.announce, a low-traffic moderated
list that receives about five postings per day. It’s available as the python-announce mailing list.

More info about other mailing lists and newsgroups can be found at https://www.python.org/community/lists/.

1.1.11 How do | get a beta test version of Python?

Alpha and beta releases are available from https://www.python.org/downloads/. All releases are announced on the
comp.lang.python and comp.lang.python.announce newsgroups and on the Python home page at https://www.python.org/;
an RSS feed of news is available.

You can also access the development version of Python through Git. See The Python Developer’s Guide for details.

1.1.12 How do | submit bug reports and patches for Python?

To report a bug or submit a patch, use the issue tracker at https://github.com/python/cpython/issues.

For more information on how Python is developed, consult the Python Developer’s Guide.

1.1.13 Are there any published articles about Python that | can reference?

It’s probably best to cite your favorite book about Python.
The very first article about Python was written in 1991 and is now quite outdated.

Guido van Rossum and Jelke de Boer, “Interactively Testing Remote Servers Using the Python Programming
Language”, CWI Quarterly, Volume 4, Issue 4 (December 1991), Amsterdam, pp 283-303.

1.1.14 Are there any books on Python?
Yes, there are many, and more are being published. See the python.org wiki at https://wiki.python.org/moin/PythonBooks
for a list.

You can also search online bookstores for “Python” and filter out the Monty Python references; or perhaps search for
“Python” and “language”.

4 Béliim 1. General Python FAQ


https://wiki.python.org/moin/BeginnersGuide
https://mail.python.org/mailman/listinfo/python-list
https://mail.python.org/mailman3/lists/python-announce-list.python.org/
https://www.python.org/community/lists/
https://www.python.org/downloads/
https://www.python.org/
https://devguide.python.org/
https://github.com/python/cpython/issues
https://devguide.python.org/
https://ir.cwi.nl/pub/18204
https://wiki.python.org/moin/PythonBooks

Python Frequently Asked Questions, Yayim 3.12.3

1.1.15 Where in the world is www.python.org located?

The Python project’s infrastructure is located all over the world and is managed by the Python Infrastructure Team. Details
here.

1.1.16 Why is it called Python?

When he began implementing Python, Guido van Rossum was also reading the published scripts from “Monty Python’s
Flying Circus”, a BBC comedy series from the 1970s. Van Rossum thought he needed a name that was short, unique, and
slightly mysterious, so he decided to call the language Python.

1.1.17 Do | have to like “Monty Python’s Flying Circus”?

No, but it helps. :)

1.2 Python in the real world

1.2.1 How stable is Python?

Very stable. New, stable releases have been coming out roughly every 6 to 18 months since 1991, and this seems likely to
continue. As of version 3.9, Python will have a new feature release every 12 months (PEP 602).

The developers issue bugfix releases of older versions, so the stability of existing releases gradually improves. Bugfix
releases, indicated by a third component of the version number (e.g. 3.5.3, 3.6.2), are managed for stability; only fixes
for known problems are included in a bugfix release, and it’s guaranteed that interfaces will remain the same throughout
a series of bugfix releases.

The latest stable releases can always be found on the Python download page. There are two production-ready versions of
Python: 2.x and 3.x. The recommended version is 3.x, which is supported by most widely used libraries. Although 2.x is
still widely used, it is not maintained anymore.

1.2.2 How many people are using Python?

There are probably millions of users, though it’s difficult to obtain an exact count.

Python is available for free download, so there are no sales figures, and it’s available from many different sites and packaged
with many Linux distributions, so download statistics don’t tell the whole story either.

The comp.lang.python newsgroup is very active, but not all Python users post to the group or even read it.

1.2.3 Have any significant projects been done in Python?

See https://www.python.org/about/success for a list of projects that use Python. Consulting the proceedings for past
Python conferences will reveal contributions from many different companies and organizations.

High-profile Python projects include the Mailman mailing list manager and the Zope application server. Several Linux
distributions, most notably Red Hat, have written part or all of their installer and system administration software in Python.
Companies that use Python internally include Google, Yahoo, and Lucasfilm Ltd.

1.2. Python in the real world 5


https://infra.psf.io
https://en.wikipedia.org/wiki/Monty_Python
https://en.wikipedia.org/wiki/Monty_Python
https://peps.python.org/pep-0602/
https://www.python.org/downloads/
https://peps.python.org/pep-0373/
https://www.python.org/about/success
https://www.python.org/community/workshops/
https://www.python.org/community/workshops/
https://www.list.org
https://www.zope.dev
https://www.redhat.com

Python Frequently Asked Questions, Yayim 3.12.3

1.2.4 What new developments are expected for Python in the future?

See https://peps.python.org/ for the Python Enhancement Proposals (PEPs). PEPs are design documents describing a
suggested new feature for Python, providing a concise technical specification and a rationale. Look for a PEP titled
“Python X.Y Release Schedule”, where X.Y is a version that hasn’t been publicly released yet.

New development is discussed on the python-dev mailing list.

1.2.5 Is it reasonable to propose incompatible changes to Python?

In general, no. There are already millions of lines of Python code around the world, so any change in the language that
invalidates more than a very small fraction of existing programs has to be frowned upon. Even if you can provide a
conversion program, there’s still the problem of updating all documentation; many books have been written about Python,
and we don’t want to invalidate them all at a single stroke.

Providing a gradual upgrade path is necessary if a feature has to be changed. PEP 5 describes the procedure followed for
introducing backward-incompatible changes while minimizing disruption for users.

1.2.6 Is Python a good language for beginning programmers?

Yes.

It is still common to start students with a procedural and statically typed language such as Pascal, C, or a subset of C++
or Java. Students may be better served by learning Python as their first language. Python has a very simple and consistent
syntax and a large standard library and, most importantly, using Python in a beginning programming course lets students
concentrate on important programming skills such as problem decomposition and data type design. With Python, students
can be quickly introduced to basic concepts such as loops and procedures. They can probably even work with user-defined
objects in their very first course.

For a student who has never programmed before, using a statically typed language seems unnatural. It presents additional
complexity that the student must master and slows the pace of the course. The students are trying to learn to think like a
computer, decompose problems, design consistent interfaces, and encapsulate data. While learning to use a statically typed
language is important in the long term, it is not necessarily the best topic to address in the students’ first programming
course.

Many other aspects of Python make it a good first language. Like Java, Python has a large standard library so that
students can be assigned programming projects very early in the course that do something. Assignments aren’t restricted
to the standard four-function calculator and check balancing programs. By using the standard library, students can gain
the satisfaction of working on realistic applications as they learn the fundamentals of programming. Using the standard
library also teaches students about code reuse. Third-party modules such as PyGame are also helpful in extending the
students’ reach.

Python’s interactive interpreter enables students to test language features while they’re programming. They can keep a
window with the interpreter running while they enter their program’s source in another window. If they can’t remember
the methods for a list, they can do something like this:

>>> L = []

>>> dir (L)

['_add__', '__class__', '_ _contains_ ', '_ _delattr_ ', '_ delitem_ ',
' _dir__ ', '__doc__', '_eq ', '__format__', '_ge_"',

' __getattribute__ ', '_ _getitem__', '__gt_ ', '__hash__', '__iadd__"',

' dmul_ ', '__init_ ', '__iter ', '_le_ ', '_len_ ', '__1t_ "',

' mul_ ', '_ne_ ', '_new__', '__reduce__ ', '_ reduce_ex__ ',

' _repr_ ', '__reversed_ ', '__rmul__ ', '_ _setattr__', '__setitem__',

' _sizeof_ ', '__str__ ', '_ _subclasshook__', 'append', 'clear',

(sonraki sayfaya devam)

6 Boliim 1. General Python FAQ



https://peps.python.org/
https://mail.python.org/mailman3/lists/python-dev.python.org/
https://peps.python.org/pep-0005/

Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)
'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
'reverse', 'sort']
>>> [d for d in dir (L) if '_ ' not in d]
["append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
—'reverse', 'sort']

>>> help (L.append)
Help on built-in function append:

append (...)
L.append (object) —-> None -- append object to end

>>> L.append (1)
>>> L

[11]

With the interpreter, documentation is never far from the student as they are programming.

There are also good IDEs for Python. IDLE is a cross-platform IDE for Python that is written in Python using Tkinter.
Emacs users will be happy to know that there is a very good Python mode for Emacs. All of these programming envi-
ronments provide syntax highlighting, auto-indenting, and access to the interactive interpreter while coding. Consult the
Python wiki for a full list of Python editing environments.

If you want to discuss Python’s use in education, you may be interested in joining the edu-sig mailing list.

1.2. Python in the real world 7


https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/PythonEditors
https://www.python.org/community/sigs/current/edu-sig

Python Frequently Asked Questions, Yayim 3.12.3

8 Boliim 1. General Python FAQ



BOLOM 2

Programming FAQ

2.1 General Questions

2.1.1 Isthere asource code level debugger with breakpoints, single-stepping, etc.?

Yes.

Several debuggers for Python are described below, and the built-in function breakpoint () allows you to drop into
any of them.

The pdb module is a simple but adequate console-mode debugger for Python. It is part of the standard Python library,
and is documented in the Library Reference Manual. You can also write your own debugger by using
the code for pdb as an example.

The IDLE interactive development environment, which is part of the standard Python distribution (normally available as
Tools/scripts/idle3), includes a graphical debugger.

PythonWin is a Python IDE that includes a GUI debugger based on pdb. The PythonWin debugger colors breakpoints
and has quite a few cool features such as debugging non-PythonWin programs. PythonWin is available as part of pywin32
project and as a part of the ActivePython distribution.

Eric is an IDE built on PyQt and the Scintilla editing component.
trepan3k is a gdb-like debugger.
Visual Studio Code is an IDE with debugging tools that integrates with version-control software.
There are a number of commercial Python IDEs that include graphical debuggers. They include:
* Wing IDE
* Komodo IDE
e PyCharm



https://github.com/python/cpython/blob/main/Tools/scripts/idle3
https://github.com/mhammond/pywin32
https://www.activestate.com/products/python/
https://eric-ide.python-projects.org/
https://github.com/rocky/python3-trepan/
https://code.visualstudio.com/
https://wingware.com/
https://www.activestate.com/products/komodo-ide/
https://www.jetbrains.com/pycharm/

Python Frequently Asked Questions, Yayim 3.12.3

2.1.2 Are there tools to help find bugs or perform static analysis?

Yes.
Pylint and Pyflakes do basic checking that will help you catch bugs sooner.

Static type checkers such as Mypy, Pyre, and Pytype can check type hints in Python source code.

2.1.3 How can | create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a stand-alone program that users can download
and run without having to install the Python distribution first. There are a number of tools that determine the set of
modules required by a program and bind these modules together with a Python binary to produce a single executable.

One is to use the freeze tool, which is included in the Python source tree as Tools/freeze. It converts Python byte code to
C arrays; with a C compiler you can embed all your modules into a new program, which is then linked with the standard
Python modules.

It works by scanning your source recursively for import statements (in both forms) and looking for the modules in the
standard Python path as well as in the source directory (for built-in modules). It then turns the bytecode for modules
written in Python into C code (array initializers that can be turned into code objects using the marshal module) and
creates a custom-made config file that only contains those built-in modules which are actually used in the program. It
then compiles the generated C code and links it with the rest of the Python interpreter to form a self-contained binary
which acts exactly like your script.

The following packages can help with the creation of console and GUI executables:
 Nuitka (Cross-platform)
* Pylnstaller (Cross-platform)
» PyOxidizer (Cross-platform)
¢ cx_Freeze (Cross-platform)
e py2app (macOS only)
* py2exe (Windows only)

2.1.4 Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as PEP 8.

2.2 Core Language

2.2.1 Why am | getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working code when it is modified by adding an
assignment statement somewhere in the body of a function.

This code:

>>> x = 10
>>> def bar():
print (x)

(sonraki sayfaya devam)

10 Béliim 2. Programming FAQ


https://pylint.pycqa.org/en/latest/index.html
https://github.com/PyCQA/pyflakes
https://mypy-lang.org/
https://pyre-check.org/
https://github.com/google/pytype
https://github.com/python/cpython/tree/main/Tools/freeze
https://nuitka.net/
https://pyinstaller.org/
https://pyoxidizer.readthedocs.io/en/stable/
https://marcelotduarte.github.io/cx_Freeze/
https://github.com/ronaldoussoren/py2app
https://www.py2exe.org/
https://peps.python.org/pep-0008/

Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

>>> bar ()
10

works, but this code:

>>> x = 10

>>> def foo():
print (x)
x += 1

results in an UnboundLocalError:

>>> foo ()
Traceback (most recent call last):

UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that variable becomes local to that scope and
shadows any similarly named variable in the outer scope. Since the last statement in foo assigns a new value to x, the
compiler recognizes it as a local variable. Consequently when the earlier print (x) attempts to print the uninitialized
local variable and an error results.

In the example above you can access the outer scope variable by declaring it global:

>>> x = 10

>>> def foobar():
global x
print (x)
x += 1

>>> foobar ()
10

This explicit declaration is required in order to remind you that (unlike the superficially analogous situation with class and
instance variables) you are actually modifying the value of the variable in the outer scope:

>>> print (x)
11

You can do a similar thing in a nested scope using the nonlocal keyword:

>>> def fool():

x = 10
def bar():
nonlocal x
print (x)
x +=1
bar ()
print (x)
>>> foo ()
10
11

2.2. Core Language 11




Python Frequently Asked Questions, Yayim 3.12.3

2.2.2 What are the rules for local and global variables in Python?

In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned a value
anywhere within the function’s body, it’s assumed to be a local unless explicitly declared as global.

Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring global for assigned
variables provides a bar against unintended side-effects. On the other hand, if global was required for all global refe-
rences, you'd be using global all the time. You’d have to declare as global every reference to a built-in function or to a
component of an imported module. This clutter would defeat the usefulness of the global declaration for identifying
side-effects.

2.2.3 Why do lambdas defined in a loop with different values all return the same
result?

Assume you use a for loop to define a few different lambdas (or even plain functions), e.g.:

>>> squares = []
>>> for x in range(5):
squares.append (lambda: x**2)

This gives you a list that contains 5 lambdas that calculate x** 2. You might expect that, when called, they would return,
respectively, 0, 1, 4, 9, and 1 6. However, when you actually try you will see that they all return 1 6:

>>> squares|[2] ()
16
>>> squares[4] ()
16

This happens because x is not local to the lambdas, but is defined in the outer scope, and it is accessed when the lambda
is called — not when it is defined. At the end of the loop, the value of x is 4, so all the functions now return 4**2, i.e.
16. You can also verify this by changing the value of x and see how the results of the lambdas change:

>>> x = 8
>>> squares[2] ()
64

In order to avoid this, you need to save the values in variables local to the lambdas, so that they don’t rely on the value of
the global x:

>>> squares = []
>>> for x in range(5):
squares.append (lambda n=x: n**2)

Here, n =x creates a new variable n local to the lambda and computed when the lambda is defined so that it has the same
value that x had at that point in the loop. This means that the value of n will be 0 in the first lambda, 1 in the second, 2
in the third, and so on. Therefore each lambda will now return the correct result:

>>> squares|[2] ()
4

>>> squares[4] ()
16

Note that this behaviour is not peculiar to lambdas, but applies to regular functions too.

12 Béliim 2. Programming FAQ



Python Frequently Asked Questions, Yayim 3.12.3

2.2.4 How do | share global variables across modules?

The canonical way to share information across modules within a single program is to create a special module (often called
config or cfg). Just import the config module in all modules of your application; the module then becomes available as
a global name. Because there is only one instance of each module, any changes made to the module object get reflected
everywhere. For example:

config.py:

[x =0 # Default value of the 'x' configuration setting
mod.py:

import config

config.x = 1

main.py:

import config
import mod
print (config.x)

Note that using a module is also the basis for implementing the singleton design pattern, for the same reason.

2.2.5 What are the “best practices” for using import in a module?

In general, don’tuse from modulename import *.Doing so clutters the importer’s namespace, and makes it much
harder for linters to detect undefined names.

Import modules at the top of a file. Doing so makes it clear what other modules your code requires and avoids questions
of whether the module name is in scope. Using one import per line makes it easy to add and delete module imports, but
using multiple imports per line uses less screen space.

It’s good practice if you import modules in the following order:
1. standard library modules — e.g. sys, os, argparse, re

2. third-party library modules (anything installed in Python’s site-packages directory) —e.g. dateutil, requests,
PIL.Image

3. locally developed modules

It is sometimes necessary to move imports to a function or class to avoid problems with circular imports. Gordon McMillan
says:

Circular imports are fine where both modules use the “import <module>" form of import. They fail when
the 2nd module wants to grab a name out of the first (“from module import name”) and the import is at the
top level. That’s because names in the st are not yet available, because the first module is busy importing
the 2nd.

In this case, if the second module is only used in one function, then the import can easily be moved into that function. By
the time the import is called, the first module will have finished initializing, and the second module can do its import.

It may also be necessary to move imports out of the top level of code if some of the modules are platform-specific. In
that case, it may not even be possible to import all of the modules at the top of the file. In this case, importing the correct
modules in the corresponding platform-specific code is a good option.

Only move imports into a local scope, such as inside a function definition, if it’s necessary to solve a problem such as
avoiding a circular import or are trying to reduce the initialization time of a module. This technique is especially helpful
if many of the imports are unnecessary depending on how the program executes. You may also want to move imports into

2.2. Core Language 13



Python Frequently Asked Questions, Yayim 3.12.3

a function if the modules are only ever used in that function. Note that loading a module the first time may be expensive
because of the one time initialization of the module, but loading a module multiple times is virtually free, costing only
a couple of dictionary lookups. Even if the module name has gone out of scope, the module is probably available in
sys.modules.

2.2.6 Why are default values shared between objects?

This type of bug commonly bites neophyte programmers. Consider this function:

def foo (mydict={}): # Danger: shared reference to one dict for all calls
compute something
mydict [key] = value

return mydict

The first time you call this function, mydict contains a single item. The second time, mydict contains two items
because when foo () begins executing, mydict starts out with an item already in it.

It is often expected that a function call creates new objects for default values. This is not what happens. Default values are
created exactly once, when the function is defined. If that object is changed, like the dictionary in this example, subsequent
calls to the function will refer to this changed object.

By definition, immutable objects such as numbers, strings, tuples, and None, are safe from change. Changes to mutable
objects such as dictionaries, lists, and class instances can lead to confusion.

Because of this feature, it is good programming practice to not use mutable objects as default values. Instead, use None
as the default value and inside the function, check if the parameter is None and create a new list/dictionary/whatever if
it is. For example, don’t write:

def foo (mydict={}):

but:

def foo (mydict=None) :
if mydict is None:
mydict = {} # create a new dict for local namespace

This feature can be useful. When you have a function that’s time-consuming to compute, a common technique is to cache
the parameters and the resulting value of each call to the function, and return the cached value if the same value is
requested again. This is called “memoizing”, and can be implemented like this:

# Callers can only provide two parameters and optionally pass _cache by keyword
def expensive(argl, arg2, *, _cache={}):
if (argl, arg2) in _cache:
return _cache|[ (argl, arg2)]

# Calculate the value

result = ... expensive computation

_cache|[ (argl, arg2)] = result # Store result in the cache
return result

You could use a global variable containing a dictionary instead of the default value; it’s a matter of taste.

14 Béliim 2. Programming FAQ




Python Frequently Asked Questions, Yayim 3.12.3

2.2.7 How can | pass optional or keyword parameters from one function to anot-
her?

Collect the arguments using the * and * * specifiers in the function’s parameter list; this gives you the positional arguments
as a tuple and the keyword arguments as a dictionary. You can then pass these arguments when calling another function
by using * and * *:

def f(x, *args, **kwargs):
kwargs['width'] = '14.3c'

g(x, *args, **kwargs)

2.2.8 What is the difference between arguments and parameters?

Parameters are defined by the names that appear in a function definition, whereas arguments are the values actually passed
to a function when calling it. Parameters define what kind of arguments a function can accept. For example, given the
function definition:

def func(foo, bar=None, **kwargs):
pass

foo, bar and kwargs are parameters of func. However, when calling func, for example:

[func(42, bar=314, extra=somevar)

the values 42, 314, and somevar are arguments.

2.2.9 Why did changing list ‘y’ also change list ‘x’?

If you wrote code like:

>>>

= [
>>> y = x
>>>
>>>
[10]
>>> x

[10]

.append (10)

KKK X

you might be wondering why appending an element to y changed x too.
There are two factors that produce this result:

1) Variables are simply names that refer to objects. Doing vy = x doesn’t create a copy of the list — it creates a new
variable y that refers to the same object x refers to. This means that there is only one object (the list), and both x
and vy refer to it.

2) Lists are mutable, which means that you can change their content.

After the call to append (), the content of the mutable object has changed from [] to [10]. Since both the variables
refer to the same object, using either name accesses the modified value [10].

If we instead assign an immutable object to x:

2.2. Core Language 15



Python Frequently Asked Questions, Yayim 3.12.3

>>> =5 # ints are immutable

>>> = X

x + 1 # 5 can't be mutated, we are creating a new object here

>>>

HKoX X
|

>>>

>>> y

we can see that in this case x and y are not equal anymore. This is because integers are immutable, and when we do x
= x + 1 we are not mutating the int 5 by incrementing its value; instead, we are creating a new object (the int 6) and
assigning it to x (that is, changing which object x refers to). After this assignment we have two objects (the ints 6 and 5)
and two variables that refer to them (x now refers to 6 but vy still refers to 5).

Some operations (for example y . append (10) and y . sort () ) mutate the object, whereas superficially similar ope-
rations (for example y = y + [10] and sorted (y)) create a new object. In general in Python (and in all cases in
the standard library) a method that mutates an object will return None to help avoid getting the two types of operations
confused. So if you mistakenly write y . sort () thinking it will give you a sorted copy of y, you'll instead end up with
None, which will likely cause your program to generate an easily diagnosed error.

However, there is one class of operations where the same operation sometimes has different behaviors with different

types: the augmented assignment operators. For example, + = mutates lists but not tuples or ints (a_list + = [1,
2, 3]isequivalenttoa_list.extend([1, 2, 3]) and mutatesa_list,whereas some_tuple + = (1,
2, 3) and some_int + = 1 create new objects).

In other words:

* If we have a mutable object (1ist, dict, set, etc.), we can use some specific operations to mutate it and all the
variables that refer to it will see the change.

« If we have an immutable object (st r, int, tuple, etc.), all the variables that refer to it will always see the same
value, but operations that transform that value into a new value always return a new object.

If you want to know if two variables refer to the same object or not, you can use the is operator, or the built-in function
id ().

2.2.10 How do | write a function with output parameters (call by reference)?

Remember that arguments are passed by assignment in Python. Since assignment just creates references to objects, there’s
no alias between an argument name in the caller and callee, and so no call-by-reference per se. You can achieve the desired
effect in a number of ways.

1) By returning a tuple of the results:

>>> def funcl(a, b):

a = 'new-value' # a and b are local names
b=Db+ 1 # assigned to new objects
return a, b # return new values

>>> x, y = 'old-value', 99

>>> funcl(x, V)
("new-value', 100)

This is almost always the clearest solution.
2) By using global variables. This isn’t thread-safe, and is not recommended.

3) By passing a mutable (changeable in-place) object:

16 Béliim 2. Programming FAQ



Python Frequently Asked Questions, Yayim 3.12.3

-
>>> def func?2(a):

al0] = '"new-value' # 'a' references a mutable 1list
al[l] = a[l1] + 1 # changes a shared object
>>> args = ['old-value', 99]

>>> func?2 (args)
>>> args
["new-value', 100]

4) By passing in a dictionary that gets mutated:

>>> def func3(args):
args['a'] = 'new-value' # args is a mutable dictionary
args['b'] = args['b'] + 1 # change it in-place

>>> args = {'a': 'old-value', 'b': 99}
>>> func3 (args)

>>> args

{'a': 'new-value', 'b': 100}

L

5) Or bundle up values in a class instance:

>>> class Namespace:
def _ init__ (self, /, **args):
for key, value in args.items() :
setattr(self, key, value)

>>> def funcé (args):
args.a = 'new-value' # args is a mutable Namespace
args.b = args.b + 1 # change object in-place

>>> args = Namespace (a='old-value', b=99)
>>> funcéd (args)

>>> vars (args)

{'a': '"nmew-value', 'b': 100}

L

There’s almost never a good reason to get this complicated.
Your best choice is to return a tuple containing the multiple results.

2.2.11 How do you make a higher order function in Python?

You have two choices: you can use nested scopes or you can use callable objects. For example, suppose you wanted to
define 1inear (a,b) which returns a function £ (x) that computes the value a* x+b. Using nested scopes:

def linear(a, b):

def result (x):
return a * x + b

return result

Or using a callable object:

class linear:

def _ init_ (self, a, b):
self.a, self.b = a, b

(sonraki sayfaya devam)

2.2. Core Language 17




Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

def _ call_ (self, x):
return self.a * x + self.b

In both cases,

[taxes = linear (0.3, 2)

gives a callable object where taxes (10e6) == 0.3 * 10e6 + 2.

The callable object approach has the disadvantage that it is a bit slower and results in slightly longer code. However, note
that a collection of callables can share their signature via inheritance:

class exponential (linear) :
# _ _init__ inherited
def _ call_(self, x):
return self.a * (x ** self.b)

Object can encapsulate state for several methods:

class counter:

value = 0

def set (self, x):
self.value = x

def up(self):
self.value = self.value + 1

def down (self):

self.value = self.value - 1
count = counter ()
inc, dec, reset = count.up, count.down, count.set

Here inc (), dec () and reset () act like functions which share the same counting variable.

2.2.12 How do | copy an object in Python?

In general, try copy . copy () or copy.deepcopy () for the general case. Not all objects can be copied, but most
can.

Some objects can be copied more easily. Dictionaries have a copy () method:

[newdict = olddict.copy ()

Sequences can be copied by slicing:

[new_l = 1[:] ]

18 Béliim 2. Programming FAQ




Python Frequently Asked Questions, Yayim 3.12.3

2.2.13 How can | find the methods or attributes of an object?

For an instance x of a user-defined class, dir (x) returns an alphabetized list of the names containing the instance
attributes and methods and attributes defined by its class.

2.2.14 How can my code discover the name of an object?

Generally speaking, it can’t, because objects don’t really have names. Essentially, assignment always binds a name to a
value; the same is true of de f and c1ass statements, but in that case the value is a callable. Consider the following code:

>>> class A:

pass
>>> B = A
>>> a = B()
>>> b = a

>>> print (b)
<__main__.A object at 0x16D07CC>
>>> print (a)
<__main__ .A object at 0x16D07CC>

Arguably the class has a name: even though it is bound to two names and invoked through the name B the created instance
is still reported as an instance of class A. However, it is impossible to say whether the instance’s name is a or b, since
both names are bound to the same value.

Generally speaking it should not be necessary for your code to “know the names” of particular values. Unless you are
deliberately writing introspective programs, this is usually an indication that a change of approach might be beneficial.

In comp.lang.python, Fredrik Lundh once gave an excellent analogy in answer to this question:

The same way as you get the name of that cat you found on your porch: the cat (object) itself cannot tell you
its name, and it doesn’t really care — so the only way to find out what it’s called is to ask all your neighbours
(namespaces) if it’s their cat (object)...

....and don’t be surprised if you’ll find that it’s known by many names, or no name at all!

2.2.15 What’s up with the comma operator’s precedence?

Comma is not an operator in Python. Consider this session:

>>> "a" in llb", "a"
(False, 'a')

Since the comma is not an operator, but a separator between expressions the above is evaluated as if you had entered:

{(llan in llb"), ngn ]

not:

[Ha" in ("b", llalv) ]

The same is true of the various assignment operators (=, + = etc). They are not truly operators but syntactic delimiters
in assighment statements.

2.2. Core Language 19



Python Frequently Asked Questions, Yayim 3.12.3

2.2.16 Is there an equivalent of C’s “?:” ternary operator?

Yes, there is. The syntax is as follows:

[on_true] if [expression] else [on_false]

x, y = 50, 25
small = x if x < y else y

Before this syntax was introduced in Python 2.5, a common idiom was to use logical operators:

[[expression] and [on_true] or [on_false]

)

However, this idiom is unsafe, as it can give wrong results when on_true has a false boolean value. Therefore, it is always

bettertousethe ... if ... else ... form.

2.2.17 lIs it possible to write obfuscated one-liners in Python?

Yes. Usually this is done by nesting 1ambda within 1ambda. See the following three examples, slightly adapted from

Ulf Bartelt:

from functools import reduce

# Primes < 1000
print (list (filter (None,map (lambda y:y*reduce (lambda x,y:x*y!=0,
map (lambda x, y=y:y%x, range (2, int (pow(y,0.5)+1))),1),range (2,1000)))))

# First 10 Fibonacci numbers
print (list (map (lambda x, f=lambda x,f: (f(x-1,f)+f(x-2,f)) if x>1 else 1:
f(x,f), range(10))))

# Mandelbrot set

print ( (lambda Ru,Ro, Iu,Io,IM,Sx,Sy:reduce (lambda x,y:x+'\n'+y,map (lambda vy,
Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda yc, Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,i=IM,
Sx=Sx, Sy=Sy:reduce (lambda x,y:x+y,map (lambda x,xc=Ru, yc=yc, Ru=Ru, Ro=Ro,
i=1i, Sx=Sx,F=lambda xc,yc,x,vy,k, f=lambda xc,yc,x,vy,k, f: (k<=0)or (x*x+y*y
>=4.0) or 1+f(xc,yc,x*x-y*yt+xc,2.0*x*y+yc,k-1,f) :f(xc,yc,x,y,k,f):chr(

64+F (Ru+x* (Ro-Ru) /Sx,yc,0,0,1)),range (Sx))) :L(Iut+y* (Io-TIu)/Sy), range (Sy
y))) (-=2.1, 0.7, -1.2, 1.2, 30, 80, 24))

# \_ /N /] / |__ lines on screen

# v 74 / / columns on screen

# / / / maximum of "iterations"

# / / range on y axis

# / range on X axis

Don't try this at home, kids!

20 Béliim 2. Programming FAQ



Python Frequently Asked Questions, Yayim 3.12.3

2.2.18 What does the slash(/) in the parameter list of a function mean?

A slash in the argument list of a function denotes that the parameters prior to it are positional-only. Positional-only para-
meters are the ones without an externally usable name. Upon calling a function that accepts positional-only parameters,
arguments are mapped to parameters based solely on their position. For example, divmod () is a function that accepts
positional-only parameters. Its documentation looks like this:

>>> help (divmod)
Help on built-in function divmod in module builtins:

divmod (x, y, /)
Return the tuple (x//y, x%y). Invariant: div*y + mod == x.

The slash at the end of the parameter list means that both parameters are positional-only. Thus, calling divmod () with
keyword arguments would lead to an error:

>>> divmod (x=3, y=4)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: divmod() takes no keyword arguments

2.3 Numbers and strings

2.3.1 How do | specify hexadecimal and octal integers?

To specify an octal digit, precede the octal value with a zero, and then a lower or uppercase “0”. For example, to set the
variable “a” to the octal value “10” (8 in decimal), type:

>>> a = 0010
>>> a
8

(7t}

Hexadecimal is just as easy. Simply precede the hexadecimal number with a zero, and then a lower or uppercase “x”.
Hexadecimal digits can be specified in lower or uppercase. For example, in the Python interpreter:

>>> a = 0Oxab
>>> a
165
>>> b
>>> b
178

0XB2

2.3.2 Why does -22 // 10 return -3?

It’s primarily driven by the desire that 1 % J have the same sign as j. If you want that, and also want:

[i::(i//j)*j+(i%j) }

then integer division has to return the floor. C also requires that identity to hold, and then compilers that truncate 1 //
j need to make 1 % J have the same sign as i.

2.3. Numbers and strings 21



Python Frequently Asked Questions, Yayim 3.12.3

There are few real use cases for 1 % j when j is negative. When j is positive, there are many, and in virtually all of
them it’s more useful for i % j tobe > = 0. If the clock says 10 now, what did it say 200 hours ago? -190 % 12
== 2isuseful; -190 % 12 == -10 is a bug waiting to bite.

2.3.3 How do | get int literal attribute instead of SyntaxError?

Trying to lookup an int literal attribute in the normal manner gives a SyntaxError because the period is seen as a
decimal point:

>>> 1.  class_
File "<stdin>", line 1
1.__class___

A

SyntaxError: invalid decimal literal

The solution is to separate the literal from the period with either a space or parentheses.

>>> 1 ._ class__
<class 'int'>
>>> (1)._ _class_

<class 'int'>

2.3.4 How do | convert a string to a number?

For integers, use the built-in int () type constructor, e.g. int ('144"') == 144. Similarly, float () converts to
floating-point, e.g. float ('144"') == 144.0.

By default, these interpret the number as decimal, so that int ('0144"') == 144 holds true, and int ('0x144")
raises ValueError. int (string, base) takes the base to convert from as a second optional argument, so int (
'0x144"', 16) == 324.If the base is specified as 0, the number is interpreted using Python’s rules: a leading ‘00’
indicates octal, and ‘Ox’ indicates a hex number.

Do not use the built-in function eval () if all you need is to convert strings to numbers. eval () will be significantly
slower and it presents a security risk: someone could pass you a Python expression that might have unwanted side effects.
For example, someone could pass __import__ ('os') .system("rm -rf S$HOME") which would erase your
home directory.

eval () also has the effect of interpreting numbers as Python expressions, so that e.g. eval ('09"') gives a syntax
error because Python does not allow leading ‘0’ in a decimal number (except ‘0’).

2.3.5 How do | convert a number to a string?

To convert, e.g., the number 144 to the string '144 "', use the built-in type constructor str (). If you want a hexa-
decimal or octal representation, use the built-in functions hex () or oct (). For fancy formatting, see the f-strings
and formatstrings sections, e.g. "{ :04d}" .format (144) yields '0144" and "{:.3f}".format (1.0/3.0)
yields '0.333".

22 Béliim 2. Programming FAQ




Python Frequently Asked Questions, Yayim 3.12.3

2.3.6 How do | modify a string in place?

You can’t, because strings are immutable. In most situations, you should simply construct a new string from the various
parts you want to assemble it from. However, if you need an object with the ability to modify in-place unicode data, try
using an io.StringIO object or the array module:

>>> import io

>>> s = "Hello, world"
>>> sio = io0.StringIO(s)
>>> sio.getvalue ()
'Hello, world'

>>> sio.seek (7)

5

>>> sio.write("there!")
6

>>> sio.getvalue ()
'Hello, there!'’

>>> import array

>>> a = array.array('u', s)
>>> print (a)

array('u', 'Hello, world')
>>> af0] = 'y’

>>> print (a)

array('u', 'yello, world'")
>>> a.tounicode ()

'yvello, world'

2.3.7 How do | use strings to call functions/methods?

There are various techniques.

* The best is to use a dictionary that maps strings to functions. The primary advantage of this technique is that the
strings do not need to match the names of the functions. This is also the primary technique used to emulate a case
construct:

-
def al():
pass

def b():
pass

dispatch = {'go': a, 'stop': b} # Note lack of parens for funcs

dispatch[get_input ()] () # Note trailing parens to call function

¢ Use the built-in function getattr ():

import foo
getattr (foo, 'bar') ()

.

Note that getattr () works on any object, including classes, class instances, modules, and so on.

This is used in several places in the standard library, like this:

2.3. Numbers and strings 23



Python Frequently Asked Questions, Yayim 3.12.3

-
class Foo:

def do_foo(self):

def do_bar (self):

f = getattr(foo_instance, 'do_' + opname)
£()

e Use 1locals () to resolve the function name:

def myFunc () :
print ("hello")

fname = "myFunc"
f = locals () [fname]
£0

2.3.8 Is there an equivalent to Perl’s chomp() for removing trailing newlines from

strings?

Youcanuse S.rstrip ("\r\n") toremove all occurrences of any line terminator from the end of the string S without
removing other trailing whitespace. If the string S represents more than one line, with several empty lines at the end, the

line terminators for all the blank lines will be removed:

>>> lines = ("line 1 \r\n"
"\r\n"

. "\r\n")

>>> lines.rstrip("\n\zr")

'line 1 '

Since this is typically only desired when reading text one line at a time, using S.rstrip () this way works well.

2.3.9 Is there a scanf() or sscanf() equivalent?

Not as such.

For simple input parsing, the easiest approach is usually to split the line into whitespace-delimited words using the
split () method of string objects and then convert decimal strings to numeric values using int () or float ().
split () supports an optional “sep” parameter which is useful if the line uses something other than whitespace as a

separator.

For more complicated input parsing, regular expressions are more powerful than C’s sscanf and better suited for the

task.

24

Béliim 2. Programming FAQ




Python Frequently Asked Questions, Yayim 3.12.3

2.3.10 What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean?

See the unicode-howto.

2.3.11 Can | end a raw string with an odd number of backslashes?

A raw string ending with an odd number of backslashes will escape the string’s quote:

>>> r'C:\this\will\not\work\"
File "<stdin>", line 1
r'C:\this\will\not\work\"

A

SyntaxError: unterminated string literal (detected at line 1)

There are several workarounds for this. One is to use regular strings and double the backslashes:

>>> 'C:\\this\\will\\work\\"
"C:\\this\\will\\work\\"

Another is to concatenate a regular string containing an escaped backslash to the raw string:

>>> r'C:\this\will\work"' "\\'
"C:\\this\\will\\work\\"'

It is also possible to use os.path.join () to append a backslash on Windows:

>>> os.path.join(r'C:\this\will\work', '")
'C:\\this\\will\\work\\"'

Note that while a backslash will “escape” a quote for the purposes of determining where the raw string ends, no escaping
occurs when interpreting the value of the raw string. That is, the backslash remains present in the value of the raw string:

>>> r'backslash\'preserved'
"backslash\\'preserved"

Also see the specification in the language reference.

2.4 Performance

2.4.1 My program is too slow. How do | speed it up?

That’s a tough one, in general. First, here are a list of things to remember before diving further:
» Performance characteristics vary across Python implementations. This FAQ focuses on CPython.
» Behaviour can vary across operating systems, especially when talking about I/O or multi-threading.

* You should always find the hot spots in your program before attempting to optimize any code (see the profile
module).

* Writing benchmark scripts will allow you to iterate quickly when searching for improvements (see the timeit
module).

« TItis highly recommended to have good code coverage (through unit testing or any other technique) before potentially
introducing regressions hidden in sophisticated optimizations.

2.4. Performance 25



Python Frequently Asked Questions, Yayim 3.12.3

That being said, there are many tricks to speed up Python code. Here are some general principles which go a long way
towards reaching acceptable performance levels:

* Making your algorithms faster (or changing to faster ones) can yield much larger benefits than trying to sprinkle
micro-optimization tricks all over your code.

 Use the right data structures. Study documentation for the bltin-types and the collections module.

* When the standard library provides a primitive for doing something, it is likely (although not guaranteed) to be
faster than any alternative you may come up with. This is doubly true for primitives written in C, such as builtins
and some extension types. For example, be sure to use either the 1ist.sort () built-in method or the related
sorted () function to do sorting (and see the sortinghowto for examples of moderately advanced usage).

* Abstractions tend to create indirections and force the interpreter to work more. If the levels of indirection outweigh
the amount of useful work done, your program will be slower. You should avoid excessive abstraction, especially
under the form of tiny functions or methods (which are also often detrimental to readability).

If you have reached the limit of what pure Python can allow, there are tools to take you further away. For example, Cython
can compile a slightly modified version of Python code into a C extension, and can be used on many different platforms.
Cython can take advantage of compilation (and optional type annotations) to make your code significantly faster than
when interpreted. If you are confident in your C programming skills, you can also write a C extension module yourself.

Ayrica bakimz:

The wiki page devoted to performance tips.

2.4.2 What is the most efficient way to concatenate many strings together?

str and bytes objects are immutable, therefore concatenating many strings together is inefficient as each concatenation
creates a new object. In the general case, the total runtime cost is quadratic in the total string length.

To accumulate many st r objects, the recommended idiom is to place them into a list and call str.join () atthe end:

chunks = []

for s in my_strings:
chunks.append (s)

result = ''.join (chunks)

(another reasonably efficient idiom is to use io.StringIO)

To accumulate many bytes objects, the recommended idiom is to extend a bytearray object using in-place conca-
tenation (the + = operator):

result = bytearray()
for b in my_bytes_objects:
result += b

2.5 Sequences (Tuples/Lists)

2.5.1 How do | convert between tuples and lists?

The type constructor tuple (seq) converts any sequence (actually, any iterable) into a tuple with the same items in the
same order.

For example, tuple ([1, 2, 3]) yields (1, 2, 3) and tuple('abc') yields ('a', 'b', 'c').If the
argument is a tuple, it does not make a copy but returns the same object, so it is cheap to call tuple () when you aren’t
sure that an object is already a tuple.

26 Béliim 2. Programming FAQ


https://cython.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Python Frequently Asked Questions, Yayim 3.12.3

The type constructor 1ist (seq) converts any sequence or iterable into a list with the same items in the same or-
der. For example, 1ist ( (1, 2, 3))yields [1, 2, 3] andlist('abc') yields ['a', 'b', 'c'].Ifthe
argument is a list, it makes a copy just like seq [ : ] would.

2.5.2 What’s a negative index?

Python sequences are indexed with positive numbers and negative numbers. For positive numbers O is the first index 1 is
the second index and so forth. For negative indices -1 is the last index and -2 is the penultimate (next to last) index and
so forth. Think of seq[—-n] as the same as seg[len (seq) —n].

Using negative indices can be very convenient. For example S [ : =11 is all of the string except for its last character, which
is useful for removing the trailing newline from a string.

2.5.3 How do | iterate over a sequence in reverse order?

Use the reversed () built-in function:

for x in reversed(sequence) :
# do something with x ...

This won’t touch your original sequence, but build a new copy with reversed order to iterate over.

2.5.4 How do you remove duplicates from a list?

See the Python Cookbook for a long discussion of many ways to do this:
https://code.activestate.com/recipes/52560/

If you don’t mind reordering the list, sort it and then scan from the end of the list, deleting duplicates as you go:

if mylist:
mylist.sort ()
last = mylist[-1]
for i in range(len(mylist)-2, -1, -1):
if last == mylist[i]:
del mylist[i]
else:
last = mylist[i]

If all elements of the list may be used as set keys (i.e. they are all hashable) this is often faster

[mylist = list (set (mylist)) ]

This converts the list into a set, thereby removing duplicates, and then back into a list.

2.5. Sequences (Tuples/Lists) 27


https://code.activestate.com/recipes/52560/

Python Frequently Asked Questions, Yayim 3.12.3

2.5.5 How do you remove multiple items from a list

As with removing duplicates, explicitly iterating in reverse with a delete condition is one possibility. However, it is easier
and faster to use slice replacement with an implicit or explicit forward iteration. Here are three variations.:

mylist[:] = filter (keep_function, mylist)
mylist[:] = (x for x in mylist if keep_condition)
mylist[:] = [x for x in mylist if keep_condition]

The list comprehension may be fastest.

2.5.6 How do you make an array in Python?

Use a list:

[["this", 1, "iS", llan", narrayn] ]

Lists are equivalent to C or Pascal arrays in their time complexity; the primary difference is that a Python list can contain
objects of many different types.

The array module also provides methods for creating arrays of fixed types with compact representations, but they are
slower to index than lists. Also note that NumPy and other third party packages define array-like structures with various
characteristics as well.

To get Lisp-style linked lists, you can emulate cons cells using tuples:

[lisp_list = ("like", ("this", ("example", None) ) ) ]

If mutability is desired, you could use lists instead of tuples. Here the analogue of a Lisp caris 1isp_list [0] and the
analogue of cdris 1isp_list [1]. Only do this if you're sure you really need to, because it’s usually a lot slower than
using Python lists.

2.5.7 How do | create a multidimensional list?

You probably tried to make a multidimensional array like this:

[>>> A = [[None] * 2] * 3 ]

This looks correct if you print it:

>>> A
[ [None, None], [None, None], [None, None]]

But when you assign a value, it shows up in multiple places:

>>> A[0][0] = 5
>>> A
[[5, Nonel], [5, Nonel, [5, Nonel]

The reason is that replicating a list with * doesn’t create copies, it only creates references to the existing objects. The * 3
creates a list containing 3 references to the same list of length two. Changes to one row will show in all rows, which is
almost certainly not what you want.

The suggested approach is to create a list of the desired length first and then fill in each element with a newly created list:

28 Béliim 2. Programming FAQ


https://numpy.org/

Python Frequently Asked Questions, Yayim 3.12.3

A = [None] * 3
for i in range(3):
A[i] = [None] * 2

This generates a list containing 3 different lists of length two. You can also use a list comprehension:

w, h =2, 3
A = [[None] * w for i in range (h)]

Or, you can use an extension that provides a matrix datatype; NumPy is the best known.

2.5.8 How do | apply a method or function to a sequence of objects?

To call a method or function and accumulate the return values is a list, a /ist comprehension is an elegant solution:

result = [obj.method() for obj in mylist]

result = [function (obj) for obj in mylist]

To just run the method or function without saving the return values, a plain for loop will suffice:

for obj in mylist:
obj.method ()

for obj in mylist:
function (ob7j)

2.5.9 Why does a_tuple[i] + = [‘item’] raise an exception when the addition works?
This is because of a combination of the fact that augmented assignment operators are assignment operators, and the
difference between mutable and immutable objects in Python.

This discussion applies in general when augmented assignment operators are applied to elements of a tuple that point to
mutable objects, but we'll use a 1ist and + = as our exemplar.

If you wrote:

>>> a_tuple = (1, 2)
>>> a_tuple[0] += 1
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The reason for the exception should be immediately clear: 1 is added to the object a_tuple [0] points to (1), producing
the result object, 2, but when we attempt to assign the result of the computation, 2, to element 0 of the tuple, we get an
error because we can’t change what an element of a tuple points to.

Under the covers, what this augmented assignment statement is doing is approximately this:

>>> result = a_tuple[0] + 1
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

2.5. Sequences (Tuples/Lists) 29


https://numpy.org/

Python Frequently Asked Questions, Yayim 3.12.3

It is the assignment part of the operation that produces the error, since a tuple is immutable.

When you write something like:

>>> a_tuple = (['foo']l, 'bar')
>>> a_tuple[0] += ['item']
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The exception is a bit more surprising, and even more surprising is the fact that even though there was an error, the append
worked:

>>> a_tuple[0]
['foo', 'item']

To see why this happens, you need to know that (a) if an object implementsan __iadd__ () magic method, it gets called
when the + = augmented assignment is executed, and its return value is what gets used in the assignment statement; and
(b) for lists, iadd__ () is equivalent to calling extend () on the list and returning the list. That’s why we say that
for lists, + =1is a “shorthand” for 1ist .extend ():

>>> a_list = []
>>> a_list += [1]
>>> a_list

[11]

This is equivalent to:

>>> result = a_list.__diadd__ ([1])
>>> a_list = result

The object pointed to by a_list has been mutated, and the pointer to the mutated object is assigned back to a_1ist. The
end result of the assignment is a no-op, since it is a pointer to the same object that a_ 11 st was previously pointing to,
but the assignment still happens.

Thus, in our tuple example what is happening is equivalent to:

>>> result = a_tuple[0].__iadd__ (['item'])
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The __iadd__ () succeeds, and thus the list is extended, but even though result points to the same object that
a_tuple [0] already points to, that final assignment still results in an error, because tuples are immutable.

2.5.10 | want to do a complicated sort: can you do a Schwartzian Transform in
Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric which maps
each element to its “sort value”. In Python, use the key argument for the 1ist.sort () method:

Isorted = LJ[:]
Isorted.sort (key=lambda s: int (s[10:15]))

30 Béliim 2. Programming FAQ




Python Frequently Asked Questions, Yayim 3.12.3

2.5.11 How can | sort one list by values from another list?

Merge them into an iterator of tuples, sort the resulting list, and then pick out the element you want.

>>> listl = ["what", "I'm", "sorting", "by"]

>>> list2 ["something", "else", "to", "sort"]

>>> pairs zip(listl, 1list2)

>>> pairs sorted (pairs)

>>> pairs

[("I'm", 'else'), ('by', 'sort'), ('sorting', 'to'), ('what', 'something')]
>>> result = [x[1] for x in pairs]

>>> result

['else', 'sort', 'to', 'something']

2.6 Objects

2.6.1 What is a class?

A class is the particular object type created by executing a class statement. Class objects are used as templates to create
instance objects, which embody both the data (attributes) and code (methods) specific to a datatype.

A class can be based on one or more other classes, called its base class(es). It then inherits the attributes and methods of its
base classes. This allows an object model to be successively refined by inheritance. You might have a generic Mailbox
class that provides basic accessor methods for a mailbox, and subclasses such as MboxMailbox,MaildirMailbox,
Out lookMailbox that handle various specific mailbox formats.

2.6.2 What is a method?

A method is a function on some object x that you normally call as x . name (arguments. . .). Methods are defined
as functions inside the class definition:

class C:
def meth(self, arg):
return arg * 2 + self.attribute

2.6.3 What is self?

Self is merely a conventional name for the first argument of a method. A method defined as meth (self, a, b,
c) should be called as x .meth (a, b, c) for some instance x of the class in which the definition occurs; the called
method will think it is called as meth (x, a, b, c).

See also Why must ‘self’ be used explicitly in method definitions and calls?.

2.6. Objects 31




Python Frequently Asked Questions, Yayim 3.12.3

2.6.4 How do | check if an object is an instance of a given class or of a subclass of
it?

Use the built-in function isinstance (obj, cls). You can check if an object is an instance of any of a num-
ber of classes by providing a tuple instead of a single class, e.g. isinstance (obj, (classl, class?2,
..)), and can also check whether an object is one of Python’s built-in types, e.g. isinstance (obJj, str) or
isinstance (obj, (int, float, complex)).

Note that isinstance () also checks for virtual inheritance from an abstract base class. So, the test will return True
for a registered class even if hasn’t directly or indirectly inherited from it. To test for “true inheritance”, scan the MRO of
the class:

from collections.abc import Mapping

class P:
pass

class C(P):
pass

Mapping.register (P)

>>> ¢ = C()

>>> isinstance(c, C) # direct
True

>>> isinstance(c, P) # Iindirect
True

>>> isinstance (c, Mapping) # virtual
True

# Actual inheritance chain
>>> type(c).__mro__
(<class 'C'>, <class 'P'>, <class 'object'>)

# Test for "true inheritance"
>>> Mapping in type(c).__mro_
False

Note that most programs donotuse i sinstance () on user-defined classes very often. If you are developing the classes
yourself, a more proper object-oriented style is to define methods on the classes that encapsulate a particular behaviour,
instead of checking the object’s class and doing a different thing based on what class it is. For example, if you have a
function that does something:

def search (obj):
if isinstance (obj, Mailbox) :
# code to search a mailbox
elif isinstance (obj, Document) :
. # code to search a document
elif

A better approach is to define a search () method on all the classes and just call it:

class Mailbox:
def search(self):
# code to search a mailbox

class Document:
(sonraki sayfaya devam)

32 Béliim 2. Programming FAQ




Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

def search(self):
# code to search a document

obj.search ()

2.6.5 What is delegation?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x and want to change
the behaviour of just one of its methods. You can create a new class that provides a new implementation of the method
you're interested in changing and delegates all other methods to the corresponding method of x.

Python programmers can easily implement delegation. For example, the following class implements a class that behaves
like a file but converts all written data to uppercase:

class UpperOut:

def _ init_ (self, outfile):
self. _outfile = outfile

def write(self, s):
self._outfile.write (s.upper())

def _ _getattr__ (self, name):
return getattr(self._outfile, name)

Here the UpperOut class redefines the write () method to convert the argument string to uppercase before cal-
ling the underlying self._outfile.write () method. All other methods are delegated to the underlying self.
_outfile object. The delegation is accomplished via the __getattr__ () method; consult the language reference
for more information about controlling attribute access.

Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved, the class must
definea __setattr__ () method too, and it must do so carefully. The basic implementation of __setattr__ ()
is roughly equivalent to the following:

class X:

def _ setattr (self, name, value):
self. dict [name] = value

Most __setattr__ () implementations must modify self.__dict__ to store local state for self without causing
an infinite recursion.

2.6.6 How do | call a method defined in a base class from a derived class that
extends it?

Use the built-in super () function:

class Derived (Base) :
def meth (self):
super () .meth () # calls Base.meth

2.6. Objects 33




Python Frequently Asked Questions, Yayim 3.12.3

In the example, super () will automatically determine the instance from which it was called (the self value), look up
the method resolution order (MRO) with type (self) ._ mro__, and return the next in line after Derived in the
MRO: Base.

2.6.7 How can | organize my code to make it easier to change the base class?

You could assign the base class to an alias and derive from the alias. Then all you have to change is the value assigned to the
alias. Incidentally, this trick is also handy if you want to decide dynamically (e.g. depending on availability of resources)
which base class to use. Example:

class Base:

BaseAlias = Base

class Derived (BaseAlias) :

2.6.8 How do | create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported in Python.

For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly use the class
name in the assignment:

class C:
count = 0 # number of times C.__ _init__ called

def _ init_ (self):
C.count = C.count + 1

def getcount (self):
return C.count # or return self.count

c.count also refers to C.count for any ¢ such that isinstance (¢, C) holds, unless overridden by c itself or
by some class on the base-class search path from c.___class__ back to C.

Caution: within a method of C, an assignment like self.count = 42 creates a new and unrelated instance named
“count” in self’s own dict. Rebinding of a class-static data name must always specify the class whether inside a method
or not:

[C.count = 314

Static methods are possible:

class C:
@staticmethod
def static(argl, arg2, arg3):
# No 'self' parameter!

However, a far more straightforward way to get the effect of a static method is via a simple module-level function:

def getcount () :
return C.count

34 Béliim 2. Programming FAQ



Python Frequently Asked Questions, Yayim 3.12.3

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies the desired
encapsulation.

2.6.9 How can | overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up first in the context of constructors.

In C++ you’d write

class C {
C() { cout << "No arguments\n"; }
C(int i) { cout << "Argument is " << i << "\n"; }

}

In Python you have to write a single constructor that catches all cases using default arguments. For example:

class C:
def _ init_ (self, i=None):
if 1 is None:
print ("No arguments")
else:
print ("Argument is", 1)

This is not entirely equivalent, but close enough in practice.

You could also try a variable-length argument list, e.g.

def _ init__ (self, *args):

The same approach works for all method definitions.

2.6.10 | try to use __spam and | get an error about _SomeClassName__spam.

Variable names with double leading underscores are “mangled” to provide a simple but effective way to define class
private variables. Any identifier of the form ___spam (at least two leading underscores, at most one trailing undersco-
re) is textually replaced with _classname__spam, where classname is the current class name with any leading
underscores stripped.

This doesn’t guarantee privacy: an outside user can still deliberately access the “_classname__spam” attribute, and private
values are visible in the object’s ___dict__ . Many Python programmers never bother to use private variable names at
all.

2.6.11 My class defines __del__ but it is not called when | delete the object.

There are several possible reasons for this.

The del statement does not necessarily call__del__ () —it simply decrements the object’s reference count, and if this
reaches zero __del__ () is called.

If your data structures contain circular links (e.g. a tree where each child has a parent reference and each parent has
a list of children) the reference counts will never go back to zero. Once in a while Python runs an algorithm to detect
such cycles, but the garbage collector might run some time after the last reference to your data structure vanishes, so
your __del__ () method may be called at an inconvenient and random time. This is inconvenient if you're trying to

2.6. Objects 35




Python Frequently Asked Questions, Yayim 3.12.3

reproduce a problem. Worse, the order in which object’s __del__ () methods are executed is arbitrary. You can run
gc.collect () to force a collection, but there are pathological cases where objects will never be collected.

Despite the cycle collector, it’s still a good idea to define an explicit c1ose () method on objects to be called whenever
you’re done with them. The close () method can then remove attributes that refer to subobjects. Don’tcall__del__ ()
directly —__del__ () should call close () and close () should make sure that it can be called more than once for
the same object.

Another way to avoid cyclical references is to use the weakref module, which allows you to point to objects without
incrementing their reference count. Tree data structures, for instance, should use weak references for their parent and
sibling references (if they need them!).

Finally, if your __del__ () method raises an exception, a warning message is printed to sys.stderr.

2.6.12 How do | get a list of all instances of a given class?

Python does not keep track of all instances of a class (or of a built-in type). You can program the class’s constructor to
keep track of all instances by keeping a list of weak references to each instance.

2.6.13 Why does the result of id () appear to be not unique?

The id () builtin returns an integer that is guaranteed to be unique during the lifetime of the object. Since in CPython,
this is the object’s memory address, it happens frequently that after an object is deleted from memory, the next freshly
created object is allocated at the same position in memory. This is illustrated by this example:

>>> i1d(1000)
13901272
>>> 1d(2000)
13901272

The two ids belong to different integer objects that are created before, and deleted immediately after execution of the
id () call. To be sure that objects whose id you want to examine are still alive, create another reference to the object:

>>> a = 1000; b = 2000
>>> id(a)
13901272
>>> id(b)
13891296

2.6.14 When can | rely on identity tests with the is operator?

The is operator tests for object identity. The testa is bisequivalentto id (a) == id(b).

The most important property of an identity test is that an object is always identical to itself, a is a always returns
True. Identity tests are usually faster than equality tests. And unlike equality tests, identity tests are guaranteed to return
a boolean True or False.

However, identity tests can only be substituted for equality tests when object identity is assured. Generally, there are three
circumstances where identity is guaranteed:

1) Assignments create new names but do not change object identity. After the assignment new = o1d, it is guaranteed
that new is old.

2) Putting an object in a container that stores object references does not change object identity. After the list assignment
s[0] = x,itisguaranteed that s[0] is x.

36 Béliim 2. Programming FAQ



Python Frequently Asked Questions, Yayim 3.12.3

3) If an object is a singleton, it means that only one instance of that object can exist. After the assignments a = None
and b = None, itis guaranteed that a is b because None is a singleton.

In most other circumstances, identity tests are inadvisable and equality tests are preferred. In particular, identity tests
should not be used to check constants such as int and str which aren’t guaranteed to be singletons:

>>> a = 1000
>>> b = 500

>>> ¢ = b + 500
>>> a is c
False

>>> a = 'Python'
>>> pb = 'Py'

>>> ¢ = b + '"thon'
>>> a is c
False

Likewise, new instances of mutable containers are never identical:

>>> a = []
>>> b = []
>>> a is b
False

In the standard library code, you will see several common patterns for correctly using identity tests:

1) As recommended by PEP 8, an identity test is the preferred way to check for None. This reads like plain English in
code and avoids confusion with other objects that may have boolean values that evaluate to false.

2) Detecting optional arguments can be tricky when None is a valid input value. In those situations, you can create a
singleton sentinel object guaranteed to be distinct from other objects. For example, here is how to implement a method
that behaves like dict .pop ():

_sentinel = object()

def pop(self, key, default=_sentinel):
if key in self:
value = self[key]
del self[key]
return value
if default is _sentinel:
raise KeyError (key)
return default

3) Container implementations sometimes need to augment equality tests with identity tests. This prevents the code from
being confused by objects such as f1oat ('NaN') that are not equal to themselves.

For example, here is the implementation of collections.abc.Sequence.__contains__ ():

def _ contains_ (self, wvalue):
for v in self:
if v is value or v == value:
return True
return False

2.6. Objects 37



https://peps.python.org/pep-0008/

Python Frequently Asked Questions, Yayim 3.12.3

2.6.15 How can a subclass control what data is stored in an immutable instance?

When subclassing an immutable type, override the __new__ () method instead of the __init__ () method. The
latter only runs after an instance is created, which is too late to alter data in an immutable instance.

All of these immutable classes have a different signature than their parent class:

from datetime import date

class FirstOfMonthDate (date) :
"Always choose the first day of the month"
def _ new__ (cls, year, month, day):
return super()._ _new__ (cls, year, month, 1)

class NamedInt (int) :
"Allow text names for some numbers"

xlat = {'zero': 0, 'one': 1, 'ten': 10}
def _ new_ (cls, wvalue):
value = cls.xlat.get (value, value)
return super()._ new__ (cls, value)

class TitleStr(str):
"Convert str to name suitable for a URL path"

def _ new__ (cls, s):
s = s.lower () .replace(' ', '-")
s = '"'.join([c for c in s if c.isalnum() or c == '-'])
return super()._ _new__ (cls, s)

The classes can be used like this:

>>> FirstOfMonthDate (2012, 2, 14)
FirstOfMonthDate (2012, 2, 1)

>>> NamedInt ('ten')

10

>>> NamedInt (20)

20

>>> TitleStr('Blog: Why Python Rocks')
'blog-why-python-rocks'

2.6.16 How do | cache method calls?
The two principal tools for caching methods are functools.cached_property() and functools.
1ru_cache (). The former stores results at the instance level and the latter at the class level.

The cached_property approach only works with methods that do not take any arguments. It does not create a reference to
the instance. The cached method result will be kept only as long as the instance is alive.

The advantage is that when an instance is no longer used, the cached method result will be released right away. The
disadvantage is that if instances accumulate, so too will the accumulated method results. They can grow without bound.

The Iru_cache approach works with methods that have hashable arguments. It creates a reference to the instance unless
special efforts are made to pass in weak references.

The advantage of the least recently used algorithm is that the cache is bounded by the specified maxsize. The disadvantage
is that instances are kept alive until they age out of the cache or until the cache is cleared.

This example shows the various techniques:

38 Béliim 2. Programming FAQ




Python Frequently Asked Questions, Yayim 3.12.3

class Weather:
"Lookup weather information on a government website"

def _ init_ (self, station_id):
self._station_id = station_id
# The _station_id is private and immutable

def current_temperature (self):
"Latest hourly observation"
# Do not cache this because old results
# can be out of date.

@cached_property

def location(self):
"Return the longitude/latitude coordinates of the station"
# Result only depends on the station_id

@lru_cache (maxsize=20)

def historic_rainfall (self, date, units='mm') :
"Rainfall on a given date"
# Depends on the station_id, date, and units.

The above example assumes that the station_id never changes. If the relevant instance attributes are mutable, the cac-
hed_property approach can’t be made to work because it cannot detect changes to the attributes.

To make the lru_cache approach work when the station_id is mutable, the class needs to define the __eq__ () and
__hash__ () methods so that the cache can detect relevant attribute updates:

class Weather:
"Example with a mutable station identifier"

def _ init_ (self, station_id):
self.station_id = station_id

def change_station(self, station_id):
self.station_id = station_id

def _ _eqg (self, other):
return self.station_id == other.station_id

def _ hash__ (self):
return hash (self.station_id)

@lru_cache (maxsize=20)

def historic_rainfall(self, date, units='cm'):
'Rainfall on a given date'
# Depends on the station_id, date, and units.

2.6. Objects 39




Python Frequently Asked Questions, Yayim 3.12.3

2.7 Modules

2.7.1 How do | create a .pyc file?

When a module is imported for the first time (or when the source file has changed since the current compiled file was
created) a . pyc file containing the compiled code should be created ina ___pycache___ subdirectory of the directory
containing the .py file. The .pyc file will have a filename that starts with the same name as the . py file, and ends
with . pyc, with a middle component that depends on the particular python binary that created it. (See PEP 3147 for
details.)

One reason that a . pyc file may not be created is a permissions problem with the directory containing the source file,
meaning that the __pycache__ subdirectory cannot be created. This can happen, for example, if you develop as one
user but run as another, such as if you are testing with a web server.

Unless the PYTHONDONTWRITEBYTECODE environment variable is set, creation of a .pyc file is automatic if you're
importing a module and Python has the ability (permissions, free space, etc...) to create a __pycache___ subdirectory
and write the compiled module to that subdirectory.

Running Python on a top level script is not considered an import and no . pyc will be created. For example, if you have a
top-level module foo . py that imports another module xyz . py, when you run foo (by typing python foo.py as
a shell command), a . pyc will be created for xyz because xyz is imported, but no . pyc file will be created for foo
since foo . py isn’t being imported.

If you need to create a . pyc file for foo — that is, to create a . pyc file for a module that is not imported — you can,
using the py_compile and compileall modules.

The py_compile module can manually compile any module. One way is to use the compile () function in that
module interactively:

>>> import py_compile
>>> py_compile.compile('foo.py")

This will write the .pyc toa___pycache__ subdirectory in the same location as foo . py (or you can override that
with the optional parameter cfile).

You can also automatically compile all files in a directory or directories using the compileall module. You can do
it from the shell prompt by running compileall . py and providing the path of a directory containing Python files to
compile:

[python -m compileall

2.7.2 How do | find the current module name?

A module can find out its own module name by looking at the predefined global variable __name__. If this has the value
'__main__ ', the program is running as a script. Many modules that are usually used by importing them also provide
a command-line interface or a self-test, and only execute this code after checking __name__:

def main () :
print ('"Running test..."')

if _ name_ ' _main :

main ()

40 Béliim 2. Programming FAQ


https://peps.python.org/pep-3147/

Python Frequently Asked Questions, Yayim 3.12.3

2.7.3 How can | have modules that mutually import each other?

Suppose you have the following modules:

foo.py:

from bar import bar_var
foo_var = 1

bar.py:

from foo import foo_var
bar_var = 2

The problem is that the interpreter will perform the following steps:
* main imports foo
¢ Empty globals for foo are created
* foo is compiled and starts executing
e foo imports bar
* Empty globals for bar are created
* bar is compiled and starts executing

* bar imports foo (which is a no-op since there already is a module named foo)

* The import mechanism tries to read foo_var from foo globals, to set bar . foo_var

= foo.foo_var

The last step fails, because Python isn’t done with interpreting foo yet and the global symbol dictionary for foo is still

empty.

The same thing happens when you use import foo, and then try to access foo. foo_var in global code.

There are (at least) three possible workarounds for this problem.

Guido van Rossum recommends avoiding all uses of from <module> import ..., and placing all code inside
functions. Initializations of global variables and class variables should use constants or built-in functions only. This means

everything from an imported module is referenced as <module>.<name>.

Jim Roskind suggests performing steps in the following order in each module:
* exports (globals, functions, and classes that don’t need imported base classes)
* import statements

* active code (including globals that are initialized from imported values).

Van Rossum doesn’t like this approach much because the imports appear in a strange place, but it does work.

Matthias Urlichs recommends restructuring your code so that the recursive import is not necessary in the first place.

These solutions are not mutually exclusive.

2.7. Modules

41




Python Frequently Asked Questions, Yayim 3.12.3

2.7.4 __import__(‘x.y.Z’) returns <module ‘x’>; how do | get z?

Consider using the convenience function import_module () from importlib instead:

[z = importlib.import_module('x.y.z") ]

2.7.5 When | edit an imported module and reimport it, the changes don’t show up.
Why does this happen?

For reasons of efficiency as well as consistency, Python only reads the module file on the first time a module is imported.
If it didn’t, in a program consisting of many modules where each one imports the same basic module, the basic module
would be parsed and re-parsed many times. To force re-reading of a changed module, do this:

import importlib
import modname
importlib.reload (modname)

Warning: this technique is not 100% fool-proof. In particular, modules containing statements like

[from modname import some_objects ]

will continue to work with the old version of the imported objects. If the module contains class definitions, existing class
instances will not be updated to use the new class definition. This can result in the following paradoxical behaviour:

>>> import importlib

>>> import cls

>>> ¢ = cls.C() # Create an instance of C
>>> importlib.reload(cls)

<module 'cls' from 'cls.py'>

>>> isinstance(c, cls.C) # isinstance 1s false?!?
False

The nature of the problem is made clear if you print out the “identity” of the class objects:

>>> hex (id(c.__class_ ))
'0x7352a0"

>>> hex (id(cls.C))
'0x4198d0"

42 Béliim 2. Programming FAQ



BOLUM 3

Design and History FAQ

3.1 Why does Python use indentation for grouping of statements?

Guido van Rossum believes that using indentation for grouping is extremely elegant and contributes a lot to the clarity of
the average Python program. Most people learn to love this feature after a while.

Since there are no begin/end brackets there cannot be a disagreement between grouping perceived by the parser and the
human reader. Occasionally C programmers will encounter a fragment of code like this:

if (x <= vy)
X++;
Y7
iz

Only the x++ statement is executed if the condition is true, but the indentation leads many to believe otherwise. Even
experienced C programmers will sometimes stare at it a long time wondering as to why vy is being decremented even for
X > y.

Because there are no begin/end brackets, Python is much less prone to coding-style conflicts. In C there are many different
ways to place the braces. After becoming used to reading and writing code using a particular style, it is normal to feel
somewhat uneasy when reading (or being required to write) in a different one.

Many coding styles place begin/end brackets on a line by themselves. This makes programs considerably longer and wastes
valuable screen space, making it harder to get a good overview of a program. Ideally, a function should fit on one screen
(say, 20-30 lines). 20 lines of Python can do a lot more work than 20 lines of C. This is not solely due to the lack of
begin/end brackets — the lack of declarations and the high-level data types are also responsible — but the indentation-based
syntax certainly helps.

43



Python Frequently Asked Questions, Yayim 3.12.3

3.2 Why am | getting strange results with simple arithmetic operati-
ons?

See the next question.

3.3 Why are floating-point calculations so inaccurate?

Users are often surprised by results like this:

>> 1.2 - 1.0
0.19999999999999996

and think it is a bug in Python. It’s not. This has little to do with Python, and much more to do with how the underlying
platform handles floating-point numbers.

The float type in CPython uses a C double for storage. A £1loat object’s value is stored in binary floating-point
with a fixed precision (typically 53 bits) and Python uses C operations, which in turn rely on the hardware implementation
in the processor, to perform floating-point operations. This means that as far as floating-point operations are concerned,
Python behaves like many popular languages including C and Java.

Many numbers that can be written easily in decimal notation cannot be expressed exactly in binary floating-point. For
example, after:

[>>> X = 1.2 ]

the value stored for x is a (very good) approximation to the decimal value 1 . 2, but is not exactly equal to it. On a typical
machine, the actual stored value is:

[1.00110011001100110011001100l1001100110011001100110011 (binary) J

which is exactly:

[1.1999999999999999555910790149937383830547332763671875 (decimal) J

The typical precision of 53 bits provides Python floats with 15-16 decimal digits of accuracy.

For a fuller explanation, please see the floating point arithmetic chapter in the Python tutorial.

3.4 Why are Python strings immutable?

There are several advantages.

One is performance: knowing that a string is immutable means we can allocate space for it at creation time, and the storage
requirements are fixed and unchanging. This is also one of the reasons for the distinction between tuples and lists.

Another advantage is that strings in Python are considered as “elemental” as numbers. No amount of activity will change
the value 8 to anything else, and in Python, no amount of activity will change the string “eight” to anything else.

44 Béliim 3. Design and History FAQ



Python Frequently Asked Questions, Yayim 3.12.3

3.5 Why must ‘self’ be used explicitly in method definitions and calls?

The idea was borrowed from Modula-3. It turns out to be very useful, for a variety of reasons.

First, it’s more obvious that you are using a method or instance attribute instead of a local variable. Reading self . x or
self.meth () makes it absolutely clear that an instance variable or method is used even if you don’t know the class
definition by heart. In C++, you can sort of tell by the lack of a local variable declaration (assuming globals are rare or
easily recognizable) — but in Python, there are no local variable declarations, so you'd have to look up the class definition
to be sure. Some C++ and Java coding standards call for instance attributes to have an m__ prefix, so this explicitness is
still useful in those languages, too.

Second, it means that no special syntax is necessary if you want to explicitly reference or call the method from a particular
class. In C++, if you want to use a method from a base class which is overridden in a derived class, you have to use the : :
operator — in Python you can write baseclass.methodname (self, <argument 1list>).Thisis particularly
useful for __init__ () methods, and in general in cases where a derived class method wants to extend the base class
method of the same name and thus has to call the base class method somehow.

Finally, for instance variables it solves a syntactic problem with assignment: since local variables in Python are (by defi-
nition!) those variables to which a value is assigned in a function body (and that aren’t explicitly declared global), there
has to be some way to tell the interpreter that an assignment was meant to assign to an instance variable instead of to
a local variable, and it should preferably be syntactic (for efficiency reasons). C++ does this through declarations, but
Python doesn’t have declarations and it would be a pity having to introduce them just for this purpose. Using the explicit
self.var solves this nicely. Similarly, for using instance variables, having to write sel1f . var means that references
to unqualified names inside a method don’t have to search the instance’s directories. To put it another way, local variables
and instance variables live in two different namespaces, and you need to tell Python which namespace to use.

3.6 Why can’t | use an assighment in an expression?

Starting in Python 3.8, you can!

Assignment expressions using the walrus operator : = assign a variable in an expression:

while chunk := fp.read(200):
print (chunk)

See PEP 572 for more information.

3.7 Why does Python use methods for some functionality (e.g.
list.index()) but functions for other (e.g. len(list))?

As Guido said:

(a) For some operations, prefix notation just reads better than postfix — prefix (and infix!) operations have a
long tradition in mathematics which likes notations where the visuals help the mathematician thinking about
a problem. Compare the easy with which we rewrite a formula like x*(a+b) into x*a + x*b to the clumsiness
of doing the same thing using a raw OO notation.

(b) When I read code that says len(x) I know that it is asking for the length of something. This tells me
two things: the result is an integer, and the argument is some kind of container. To the contrary, when I
read x.len(), I have to already know that x is some kind of container implementing an interface or inheriting
from a class that has a standard len(). Witness the confusion we occasionally have when a class that is not
implementing a mapping has a get() or keys() method, or something that isn’t a file has a write() method.

3.5. Why must ‘self’ be used explicitly in method definitions and calls? 45


https://peps.python.org/pep-0572/

Python Frequently Asked Questions, Yayim 3.12.3

—https://mail.python.org/pipermail/python-3000/2006- November/004643.html

3.8 Why is join() a string method instead of a list or tuple method?

Strings became much more like other standard types starting in Python 1.6, when methods were added which give the
same functionality that has always been available using the functions of the string module. Most of these new methods
have been widely accepted, but the one which appears to make some programmers feel uncomfortable is:

[n’ ".jOiI’l(['l', 121, 141, '8', '16']) ]

which gives the result:

["1, 2, 4, 8, 16" ]

There are two common arguments against this usage.

The first runs along the lines of: “It looks really ugly using a method of a string literal (string constant)”, to which the
answer is that it might, but a string literal is just a fixed value. If the methods are to be allowed on names bound to strings
there is no logical reason to make them unavailable on literals.

The second objection is typically cast as: “I am really telling a sequence to join its members together with a string constant”.
Sadly, you aren’t. For some reason there seems to be much less difficulty with having split () as a string method, since
in that case it is easy to see that

["1, 2, 4, 8, 1e".split (", ") ]

is an instruction to a string literal to return the substrings delimited by the given separator (or, by default, arbitrary runs
of white space).

join () isa string method because in using it you are telling the separator string to iterate over a sequence of strings and
insert itself between adjacent elements. This method can be used with any argument which obeys the rules for sequence
objects, including any new classes you might define yourself. Similar methods exist for bytes and bytearray objects.

3.9 How fast are exceptions?

A try/except block is extremely efficient if no exceptions are raised. Actually catching an exception is expensive. In
versions of Python prior to 2.0 it was common to use this idiom:

try:
value = mydict [key]

except KeyError:
mydict [key] = getvalue (key)
value = mydict [key]

This only made sense when you expected the dict to have the key almost all the time. If that wasn’t the case, you coded it
like this:

if key in mydict:
value = mydict [key]
else:
value = mydict [key] = getvalue (key)

For this specific case, you could also use value = dict.setdefault (key, getvalue (key)), butonly if
the getvalue () call is cheap enough because it is evaluated in all cases.

46 Béliim 3. Design and History FAQ


https://mail.python.org/pipermail/python-3000/2006-November/004643.html

Python Frequently Asked Questions, Yayim 3.12.3

3.10 Why isn’t there a switch or case statement in Python?

In general, structured switch statements execute one block of code when an expression has a particular value or set of
values. Since Python 3.10 one can easily match literal values, or constants within a namespace, with a match
case statement. An older alternative is a sequence of 1f... elif... elif... else.

For cases where you need to choose from a very large number of possibilities, you can create a dictionary mapping case
values to functions to call. For example:

functions = {'a': function_1,
'b': function_2,
'c': self.method_1}

func = functions[value]
func ()

For calling methods on objects, you can simplify yet further by using the getattr () built-in to retrieve methods with
a particular name:

class MyVisitor:
def visit_a(self):

def dispatch(self, wvalue):

method_name = 'visit_' + str(value)
method = getattr(self, method_name)
method ()

It’s suggested that you use a prefix for the method names, such as visit_ in this example. Without such a prefix, if
values are coming from an untrusted source, an attacker would be able to call any method on your object.

Imitating switch with fallthrough, as with C’s switch-case-default, is possible, much harder, and less needed.

3.11 Can’t you emulate threads in the interpreter instead of relying
on an OS-specific thread implementation?

Answer 1: Unfortunately, the interpreter pushes at least one C stack frame for each Python stack frame. Also, extensions
can call back into Python at almost random moments. Therefore, a complete threads implementation requires thread
support for C.

Answer 2: Fortunately, there is Stackless Python, which has a completely redesigned interpreter loop that avoids the C
stack.

3.12 Why can’t lambda expressions contain statements?

Python lambda expressions cannot contain statements because Python’s syntactic framework can’t handle statements nes-
ted inside expressions. However, in Python, this is not a serious problem. Unlike lambda forms in other languages, where
they add functionality, Python lambdas are only a shorthand notation if you're too lazy to define a function.

Functions are already first class objects in Python, and can be declared in a local scope. Therefore the only advantage of
using a lambda instead of a locally defined function is that you don’t need to invent a name for the function — but that’s
just a local variable to which the function object (which is exactly the same type of object that a lambda expression yields)
is assigned!

3.10. Why isn’t there a switch or case statement in Python? 47



https://github.com/stackless-dev/stackless/wiki

Python Frequently Asked Questions, Yayim 3.12.3

3.13 Can Python be compiled to machine code, C or some other lan-
guage?

Cython compiles a modified version of Python with optional annotations into C extensions. Nuitka is an up-and-coming
compiler of Python into C++ code, aiming to support the full Python language.

3.14 How does Python manage memory?

The details of Python memory management depend on the implementation. The standard implementation of Python,
CPython, uses reference counting to detect inaccessible objects, and another mechanism to collect reference cycles, pe-
riodically executing a cycle detection algorithm which looks for inaccessible cycles and deletes the objects involved.
The gc module provides functions to perform a garbage collection, obtain debugging statistics, and tune the collector’s
parameters.

Other implementations (such as Jython or PyPy), however, can rely on a different mechanism such as a full-blown garbage
collector. This difference can cause some subtle porting problems if your Python code depends on the behavior of the
reference counting implementation.

In some Python implementations, the following code (which is fine in CPython) will probably run out of file descriptors:

for file in very_long_list_of files:
f = open(file)
c = f.read (1)

Indeed, using CPython’s reference counting and destructor scheme, each new assignment to £ closes the previous file.
With a traditional GC, however, those file objects will only get collected (and closed) at varying and possibly long intervals.

If you want to write code that will work with any Python implementation, you should explicitly close the file or use the
with statement; this will work regardless of memory management scheme:

for file in very_long_list_of_ files:
with open(file) as f:
c = f.read(l)

3.15 Why doesn’t CPython use a more traditional garbage collection
scheme?

For one thing, this is not a C standard feature and hence it’s not portable. (Yes, we know about the Boehm GC library. It
has bits of assembler code for most common platforms, not for all of them, and although it is mostly transparent, it isn’t
completely transparent; patches are required to get Python to work with it.)

Traditional GC also becomes a problem when Python is embedded into other applications. While in a standalone Pyt-
hon it’s fine to replace the standard malloc () and free () with versions provided by the GC library, an application
embedding Python may want to have its own substitute for malloc () and free (), and may not want Python’s. Right
now, CPython works with anything that implements malloc () and free () properly.

48 Béliim 3. Design and History FAQ


https://cython.org/
https://www.nuitka.net/
https://www.jython.org
https://www.pypy.org

Python Frequently Asked Questions, Yayim 3.12.3

3.16 Why isn’t all memory freed when CPython exits?

Objects referenced from the global namespaces of Python modules are not always deallocated when Python exits. This
may happen if there are circular references. There are also certain bits of memory that are allocated by the C library that
are impossible to free (e.g. a tool like Purify will complain about these). Python is, however, aggressive about cleaning
up memory on exit and does try to destroy every single object.

If you want to force Python to delete certain things on deallocation use the atexit module to run a function that will
force those deletions.

3.17 Why are there separate tuple and list data types?

Lists and tuples, while similar in many respects, are generally used in fundamentally different ways. Tuples can be thought
of as being similar to Pascal records or C st ruct s; they’re small collections of related data which may be of different
types which are operated on as a group. For example, a Cartesian coordinate is appropriately represented as a tuple of
two or three numbers.

Lists, on the other hand, are more like arrays in other languages. They tend to hold a varying number of objects all of
which have the same type and which are operated on one-by-one. For example, os.listdir ('.") returns a list of
strings representing the files in the current directory. Functions which operate on this output would generally not break if
you added another file or two to the directory.

Tuples are immutable, meaning that once a tuple has been created, you can’t replace any of its elements with a new
value. Lists are mutable, meaning that you can always change a list’s elements. Only immutable elements can be used as
dictionary keys, and hence only tuples and not lists can be used as keys.

3.18 How are lists implemented in CPython?

CPython’s lists are really variable-length arrays, not Lisp-style linked lists. The implementation uses a contiguous array
of references to other objects, and keeps a pointer to this array and the array’s length in a list head structure.

This makes indexing a list a [1 ] an operation whose cost is independent of the size of the list or the value of the index.

When items are appended or inserted, the array of references is resized. Some cleverness is applied to improve the
performance of appending items repeatedly; when the array must be grown, some extra space is allocated so the next few
times don’t require an actual resize.

3.19 How are dictionaries implemented in CPython?

CPython’s dictionaries are implemented as resizable hash tables. Compared to B-trees, this gives better performance for
lookup (the most common operation by far) under most circumstances, and the implementation is simpler.

Dictionaries work by computing a hash code for each key stored in the dictionary using the hash () built-in functi-
on. The hash code varies widely depending on the key and a per-process seed; for example, 'Python' could hash to
-539294296 while 'python', a string that differs by a single bit, could hash to 1142331976. The hash code is
then used to calculate a location in an internal array where the value will be stored. Assuming that you’re storing keys
that all have different hash values, this means that dictionaries take constant time — O(1), in Big-O notation — to retrieve
a key.

3.16. Why isn’t all memory freed when CPython exits? 49



Python Frequently Asked Questions, Yayim 3.12.3

3.20 Why must dictionary keys be immutable?

The hash table implementation of dictionaries uses a hash value calculated from the key value to find the key. If the key
were a mutable object, its value could change, and thus its hash could also change. But since whoever changes the key
object can’t tell that it was being used as a dictionary key, it can’t move the entry around in the dictionary. Then, when you
try to look up the same object in the dictionary it won’t be found because its hash value is different. If you tried to look
up the old value it wouldn’t be found either, because the value of the object found in that hash bin would be different.

If you want a dictionary indexed with a list, simply convert the list to a tuple first; the function tuple (L) creates a tuple
with the same entries as the list L. Tuples are immutable and can therefore be used as dictionary keys.

Some unacceptable solutions that have been proposed:

 Hash lists by their address (object ID). This doesn’t work because if you construct a new list with the same value it
won’t be found; e.g.:

mydict = {[1, 2]: '12'}
print (mydict[[1, 211])

would raise a KeyError exception because the id of the [1, 2] used in the second line differs from that in the
first line. In other words, dictionary keys should be compared using ==, not using is.

* Make a copy when using a list as a key. This doesn’t work because the list, being a mutable object, could contain a
reference to itself, and then the copying code would run into an infinite loop.

¢ Allow lists as keys but tell the user not to modify them. This would allow a class of hard-to-track bugs in programs
when you forgot or modified a list by accident. It also invalidates an important invariant of dictionaries: every value
ind.keys () is usable as a key of the dictionary.

» Mark lists as read-only once they are used as a dictionary key. The problem is that it’s not just the top-level object
that could change its value; you could use a tuple containing a list as a key. Entering anything as a key into a
dictionary would require marking all objects reachable from there as read-only — and again, self-referential objects
could cause an infinite loop.

There is a trick to get around this if you need to, but use it at your own risk: You can wrap a mutable structure inside a
class instance which hasbotha __eq_ () anda__hash__ () method. You must then make sure that the hash value
for all such wrapper objects that reside in a dictionary (or other hash based structure), remain fixed while the object is in
the dictionary (or other structure).

class ListWrapper:
def _ init_ (self, the_list):
self.the_list = the_list

def _ _eqg (self, other):
return self.the_list == other.the_list

def _ hash__ (self):
1 = self.the_1list
result = 98767 - len(l)*555
for i, el in enumerate(l) :
try:
result = result + (hash(el) % 9999999) * 1001 + 1
except Exception:
result = (result % 7777777) + i * 333
return result

Note that the hash computation is complicated by the possibility that some members of the list may be unhashable and
also by the possibility of arithmetic overflow.

50 Béliim 3. Design and History FAQ




Python Frequently Asked Questions, Yayim 3.12.3

Furthermore it must always be the case that if o1 == 02 (ieol.__eq__(02) is True) then hash (ol) ==
hash (02) (ie,0l.__hash__ () == o02.__hash__ ()), regardless of whether the object is in a dictionary or not.
If you fail to meet these restrictions dictionaries and other hash based structures will misbehave.

In the case of ListWrapper, whenever the wrapper object is in a dictionary the wrapped list must not change to avoid
anomalies. Don’t do this unless you are prepared to think hard about the requirements and the consequences of not meeting
them correctly. Consider yourself warned.

3.21 Why doesn’t list.sort() return the sorted list?

In situations where performance matters, making a copy of the list just to sort it would be wasteful. Therefore, 1ist .
sort () sorts the list in place. In order to remind you of that fact, it does not return the sorted list. This way, you won’t be
fooled into accidentally overwriting a list when you need a sorted copy but also need to keep the unsorted version around.

If you want to return a new list, use the built-in sorted () function instead. This function creates a new list from a
provided iterable, sorts it and returns it. For example, here’s how to iterate over the keys of a dictionary in sorted order:

for key in sorted(mydict) :
# do whatever with mydict [key]...

3.22 How do you specify and enforce an interface spec in Python?

An interface specification for a module as provided by languages such as C++ and Java describes the prototypes for the
methods and functions of the module. Many feel that compile-time enforcement of interface specifications helps in the
construction of large programs.

Python 2.6 adds an abc module that lets you define Abstract Base Classes (ABCs). You can then use isinstance ()
and issubclass () to check whether an instance or a class implements a particular ABC. The collections.abc
module defines a set of useful ABCs such as ITterable, Container, and MutableMapping.

For Python, many of the advantages of interface specifications can be obtained by an appropriate test discipline for
components.

A good test suite for a module can both provide a regression test and serve as a module interface specification and a set of
examples. Many Python modules can be run as a script to provide a simple “self test.” Even modules which use complex
external interfaces can often be tested in isolation using trivial “stub” emulations of the external interface. The doctest
and unittest modules or third-party test frameworks can be used to construct exhaustive test suites that exercise every
line of code in a module.

An appropriate testing discipline can help build large complex applications in Python as well as having interface specifi-
cations would. In fact, it can be better because an interface specification cannot test certain properties of a program. For
example, the 1ist .append () method is expected to add new elements to the end of some internal list; an interface
specification cannot test that your 1ist .append () implementation will actually do this correctly, but it’s trivial to
check this property in a test suite.

Writing test suites is very helpful, and you might want to design your code to make it easily tested. One increasingly
popular technique, test-driven development, calls for writing parts of the test suite first, before you write any of the actual
code. Of course Python allows you to be sloppy and not write test cases at all.

3.21. Why doesn't list.sort() return the sorted list? 51



Python Frequently Asked Questions, Yayim 3.12.3

3.23 Why is there no goto?

In the 1970s people realized that unrestricted goto could lead to messy “spaghetti” code that was hard to understand and
revise. In a high-level language, it is also unneeded as long as there are ways to branch (in Python, with i f statements
and or, and, and if/else expressions) and loop (with while and for statements, possibly containing continue
and break).

One can also use exceptions to provide a “structured goto” that works even across function calls. Many feel that exceptions
can conveniently emulate all reasonable uses of the go or goto constructs of C, Fortran, and other languages. For
example:

class label (Exception): pass # declare a label

try:

if condition: raise label () # goto label
except label: # where to goto

pass

This doesn’t allow you to jump into the middle of a loop, but that’s usually considered an abuse of goto anyway. Use
sparingly.

3.24 Why can’t raw strings (r-strings) end with a backslash?

More precisely, they can’t end with an odd number of backslashes: the unpaired backslash at the end escapes the closing
quote character, leaving an unterminated string.

Raw strings were designed to ease creating input for processors (chiefly regular expression engines) that want to do their
own backslash escape processing. Such processors consider an unmatched trailing backslash to be an error anyway, so
raw strings disallow that. In return, they allow you to pass on the string quote character by escaping it with a backslash.
These rules work well when r-strings are used for their intended purpose.

If you’re trying to build Windows pathnames, note that all Windows system calls accept forward slashes too:

[f = open ("/mydir/file.txt") # works fine!

If you're trying to build a pathname for a DOS command, try e.g. one of

dir r"\this\is\my\dos\dir" "\\"
dir = r"\this\is\my\dos\dir\ "[:-1]
dir "\\this\\is\\my\\dos\\dir\\"

52 Boliim 3. Design and History FAQ



Python Frequently Asked Questions, Yayim 3.12.3

3.25 Why doesn’t Python have a “with” statement for attribute as-
signments?

Python has a with statement that wraps the execution of a block, calling code on the entrance and exit from the block.
Some languages have a construct that looks like this:

with obj:
a =1 # equivalent to obj.a = 1
total = total + 1 # obj.total = obj.total + 1

In Python, such a construct would be ambiguous.

Other languages, such as Object Pascal, Delphi, and C++, use static types, so it’s possible to know, in an unambiguous
way, what member is being assigned to. This is the main point of static typing — the compiler always knows the scope of
every variable at compile time.

Python uses dynamic types. It is impossible to know in advance which attribute will be referenced at runtime. Member
attributes may be added or removed from objects on the fly. This makes it impossible to know, from a simple reading,
what attribute is being referenced: a local one, a global one, or a member attribute?

For instance, take the following incomplete snippet:

def foo(a):
with a:
print (x)

The snippet assumes that a must have a member attribute called x. However, there is nothing in Python that tells the
interpreter this. What should happen if a is, let us say, an integer? If there is a global variable named x, will it be used
inside the with block? As you see, the dynamic nature of Python makes such choices much harder.

The primary benefit of with and similar language features (reduction of code volume) can, however, easily be achieved
in Python by assignment. Instead of:

function (args) .mydict [index] [index] .a = 21
function (args) .mydict [index] [index] .b = 42
function (args) .mydict[index] [index].c = 63
write this:

ref = function (args) .mydict [index] [index]
ref.a = 21

ref.b = 42

ref.c = 63

This also has the side-effect of increasing execution speed because name bindings are resolved at run-time in Python, and
the second version only needs to perform the resolution once.

Similar proposals that would introduce syntax to further reduce code volume, such as using a ‘leading dot’, have been
rejected in favour of explicitness (see https://mail.python.org/pipermail/python-ideas/2016-May/040070.html).

3.25. Why doesn’t Python have a “with” statement for attribute assignments? 53


https://mail.python.org/pipermail/python-ideas/2016-May/040070.html

Python Frequently Asked Questions, Yayim 3.12.3

3.26 Why don’t generators support the with statement?

For technical reasons, a generator used directly as a context manager would not work correctly. When, as is most com-
mon, a generator is used as an iterator run to completion, no closing is needed. When it is, wrap it as contextlib.
closing (generator) inthe with statement.

3.27 Why are colons required for the if/while/def/class statements?

The colon is required primarily to enhance readability (one of the results of the experimental ABC language). Consider
this:

if a ==
print (a)

versus

if a ==
print (a)

Notice how the second one is slightly easier to read. Notice further how a colon sets off the example in this FAQ answer;
it’s a standard usage in English.

Another minor reason is that the colon makes it easier for editors with syntax highlighting; they can look for colons to
decide when indentation needs to be increased instead of having to do a more elaborate parsing of the program text.

3.28 Why does Python allow commas at the end of lists and tuples?

Python lets you add a trailing comma at the end of lists, tuples, and dictionaries:

i, 2, 3,1
(‘a', 'b', 'c',)
d = {
"A": [1, 51,
"B": [6, 7], # last trailing comma is optional but good style

There are several reasons to allow this.

When you have a literal value for a list, tuple, or dictionary spread across multiple lines, it’s easier to add more elements
because you don’t have to remember to add a comma to the previous line. The lines can also be reordered without creating
a syntax error.

Accidentally omitting the comma can lead to errors that are hard to diagnose. For example:

x = [
"fee",
"fiell
"fOO",
"fum"

]

This list looks like it has four elements, but it actually contains three: “fee”, “fiefoo” and “fum”. Always adding the comma
avoids this source of error.

54 Béliim 3. Design and History FAQ




Python Frequently Asked Questions, Yayim 3.12.3

Allowing the trailing comma may also make programmatic code generation easier.

3.28. Why does Python allow commas at the end of lists and tuples? 55



Python Frequently Asked Questions, Yayim 3.12.3

56

Béliim 3. Design and History FAQ



BoLOM 4

Library and Extension FAQ

4.1 General Library Questions

4.1.1 How do | find a module or application to perform task X?
Check the Library Reference to see if there’s a relevant standard library module. (Eventually you’ll learn what’s in the
standard library and will be able to skip this step.)

For third-party packages, search the Python Package Index or try Google or another web search engine. Searching for
“Python” plus a keyword or two for your topic of interest will usually find something helpful.

4.1.2 Where is the math.py (socket.py, regex.py, etc.) source file?

If you can’t find a source file for a module it may be a built-in or dynamically loaded module implemented in C, C++ or
other compiled language. In this case you may not have the source file or it may be something like mathmodule.c,
somewhere in a C source directory (not on the Python Path).

There are (at least) three kinds of modules in Python:
1) modules written in Python (.py);
2) modules written in C and dynamically loaded (.dll, .pyd, .so, .sl, etc);

3) modules written in C and linked with the interpreter; to get a list of these, type:

import sys
print (sys.builtin_module_names)

57


https://pypi.org
https://www.google.com

Python Frequently Asked Questions, Yayim 3.12.3

4.1.3 How do | make a Python script executable on Unix?

You need to do two things: the script file’s mode must be executable and the first line must begin with # ! followed by
the path of the Python interpreter.

The first is done by executing chmod +x scriptfile or perhaps chmod 755 scriptfile.

The second can be done in a number of ways. The most straightforward way is to write

[#l/usr/local/bin/python J

as the very first line of your file, using the pathname for where the Python interpreter is installed on your platform.

If you would like the script to be independent of where the Python interpreter lives, you can use the env program. Almost
all Unix variants support the following, assuming the Python interpreter is in a directory on the user’s PATH:

[#J/usr/bin/enV'python ]

Don’t do this for CGI scripts. The PATH variable for CGI scripts is often very minimal, so you need to use the actual
absolute pathname of the interpreter.

Occasionally, a user’s environment is so full that the /usr/bin/env program fails; or there’s no env program at all. In
that case, you can try the following hack (due to Alex Rezinsky):

#! /bin/sh

nww.n

exec python $0 1+"s@"
mmnn

The minor disadvantage is that this defines the script’s __doc__ string. However, you can fix that by adding

[77do@77 = """ . .Whatever...""" ]

4.1.4 Is there a curses/termcap package for Python?

For Unix variants: The standard Python source distribution comes with a curses module in the Modules subdirectory,
though it’s not compiled by default. (Note that this is not available in the Windows distribution — there is no curses
module for Windows.)

The curses module supports basic curses features as well as many additional functions from ncurses and SYSV curses
such as colour, alternative character set support, pads, and mouse support. This means the module isn’t compatible with
operating systems that only have BSD curses, but there don’t seem to be any currently maintained OSes that fall into this
category.

4.1.5 Is there an equivalent to C’s onexit() in Python?

The atexit module provides a register function that is similar to C’s onexit ().

58 Béliim 4. Library and Extension FAQ


https://github.com/python/cpython/tree/3.12/Modules

Python Frequently Asked Questions, Yayim 3.12.3

4.1.6 Why don’t my signal handlers work?

The most common problem is that the signal handler is declared with the wrong argument list. It is called as

[handler(signum, frame)

so it should be declared with two parameters:

def handler (signum, frame):

4.2 Common tasks

4.2.1 How do | test a Python program or component?

Python comes with two testing frameworks. The doctest module finds examples in the docstrings for a module and
runs them, comparing the output with the expected output given in the docstring.

The unittest module is a fancier testing framework modelled on Java and Smalltalk testing frameworks.

To make testing easier, you should use good modular design in your program. Your program should have almost all
functionality encapsulated in either functions or class methods — and this sometimes has the surprising and delightful
effect of making the program run faster (because local variable accesses are faster than global accesses). Furthermore the
program should avoid depending on mutating global variables, since this makes testing much more difficult to do.

The “global main logic” of your program may be as simple as

if name_ == "_ _main__ ":
main_logic ()

at the bottom of the main module of your program.

Once your program is organized as a tractable collection of function and class behaviours, you should write test functions
that exercise the behaviours. A test suite that automates a sequence of tests can be associated with each module. This
sounds like a lot of work, but since Python is so terse and flexible it’s surprisingly easy. You can make coding much more
pleasant and fun by writing your test functions in parallel with the “production code”, since this makes it easy to find bugs
and even design flaws earlier.

“Support modules” that are not intended to be the main module of a program may include a self-test of the module.

if name == "_main__ ":

self_test ()

Even programs that interact with complex external interfaces may be tested when the external interfaces are unavailable
by using “fake” interfaces implemented in Python.

4.2. Common tasks 59



Python Frequently Asked Questions, Yayim 3.12.3

4.2.2 How do | create documentation from doc strings?

The pydoc module can create HTML from the doc strings in your Python source code. An alternative for creating API
documentation purely from docstrings is epydoc. Sphinx can also include docstring content.

4.2.3 How do | get a single keypress at a time?

For Unix variants there are several solutions. It’s straightforward to do this using curses, but curses is a fairly large module
to learn.

4.3 Threads

4.3.1 How do | program using threads?

Be sure to use the threading module and not the _thread module. The threading module builds convenient
abstractions on top of the low-level primitives provided by the _thread module.

4.3.2 None of my threads seem to run: why?

As soon as the main thread exits, all threads are killed. Your main thread is running too quickly, giving the threads no
time to do any work.

A simple fix is to add a sleep to the end of the program that’s long enough for all the threads to finish:

import threading, time

def thread_task (name, n):
for i in range(n):
print (name, 1)

for i in range(10):
T = threading.Thread(target=thread_task, args=(str(i), 1))
T.start ()

time.sleep(10) # <——————————————————————————— f

But now (on many platforms) the threads don’t run in parallel, but appear to run sequentially, one at a time! The reason
is that the OS thread scheduler doesn’t start a new thread until the previous thread is blocked.

A simple fix is to add a tiny sleep to the start of the run function:

def thread_task (name, n):
time.sleep(0.001) # <———————————————————— f
for i in range(n):
print (name, 1)

for i in range(10):
T = threading.Thread(target=thread_task, args=(str(i), 1i))
T.start ()

time.sleep(10)

60 Béliim 4. Library and Extension FAQ



https://epydoc.sourceforge.net/
https://www.sphinx-doc.org

Python Frequently Asked Questions, Yayim 3.12.3

Instead of trying to guess a good delay value for t ime . sleep (), it’s better to use some kind of semaphore mechanism.
One idea is to use the queue module to create a queue object, let each thread append a token to the queue when it finishes,
and let the main thread read as many tokens from the queue as there are threads.

4.3.3 How do | parcel out work among a bunch of worker threads?

The easiest way is to use the concurrent . futures module, especially the ThreadPoolExecutor class.

Or, if you want fine control over the dispatching algorithm, you can write your own logic manually. Use the queue
module to create a queue containing a list of jobs. The Queue class maintains a list of objects and has a . put (obj)
method that adds items to the queue and a .get () method to return them. The class will take care of the locking
necessary to ensure that each job is handed out exactly once.

Here’s a trivial example:

import threading, queue, time

# The worker thread gets jobs off the queue. When the queue is empty, it
# assumes there will be no more work and exits.
# (Realistically workers will run until terminated.)
def worker () :
print ('Running worker')
time.sleep(0.1)
while True:
try:
arg = g.get (block=False)
except queue.Empty:
print ('Worker', threading.current_thread(), end=" ")
print ('queue empty')
break
else:
print ('Worker', threading.current_thread(), end=' ")
print ('running with argument', arg)
time.sleep(0.5)

# Create queue
g = queue.Queue ()

# Start a pool of 5 workers

for i in range (5):
t = threading.Thread (target=worker, name='worker % (1+1))
t.start ()

# Begin adding work to the queue
for i in range (50) :
g.put (1)

# Give threads time to run
print ('Main thread sleeping')
time.sleep (5)

When run, this will produce the following output:

Running worker
Running worker
Running worker
Running worker
(sonraki sayfaya devam)

4.3. Threads 61




Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

Running worker

Main thread sleeping

Worker <Thread(worker 1, started 130283832797456)> running with argument
Worker <Thread(worker 2, started 130283824404752)> running with argument
Worker <Thread (worker 3, started 130283816012048)> running with argument
Worker <Thread (worker 4, started 130283807619344)> running with argument
Worker <Thread(worker 5, started 130283799226640)> running with argument
( 1, started 130283832797456)> running with argument

a b w N e O

Worker <Thread (worker

Consult the module’s documentation for more details; the Queue class provides a featureful interface.

4.3.4 What kinds of global value mutation are thread-safe?

A global interpreter lock (GIL) is used internally to ensure that only one thread runs in the Python VM at a time. In
general, Python offers to switch among threads only between bytecode instructions; how frequently it switches can be set
via sys.setswitchinterval (). Each bytecode instruction and therefore all the C implementation code reached
from each instruction is therefore atomic from the point of view of a Python program.

In theory, this means an exact accounting requires an exact understanding of the PVM bytecode implementation. In
practice, it means that operations on shared variables of built-in data types (ints, lists, dicts, etc) that “look atomic” really
are.

For example, the following operations are all atomic (L, L1, L2 are lists, D, D1, D2 are dicts, x, y are objects, i, j are
ints):

L.append (x)
Ll.extend (L2)

x = L[1]

x = L.pop ()
L1[i:3] = L2
L.sort ()

X =Yy
x.field =y
D[x] =y
D1.update (D2)
D.keys ()

These aren’t:

i=1i+1
L.append (L[-1])
L[i] = L[j]
D[x] = D[x] + 1

Operations that replace other objects may invoke those other objects’ __del__ () method when their reference count
reaches zero, and that can affect things. This is especially true for the mass updates to dictionaries and lists. When in
doubt, use a mutex!

62 Béliim 4. Library and Extension FAQ




Python Frequently Asked Questions, Yayim 3.12.3

4.3.5 Can’t we get rid of the Global Interpreter Lock?

The global interpreter lock (GIL) is often seen as a hindrance to Python’s deployment on high-end multiprocessor server
machines, because a multi-threaded Python program effectively only uses one CPU, due to the insistence that (almost) all
Python code can only run while the GIL is held.

Back in the days of Python 1.5, Greg Stein actually implemented a comprehensive patch set (the “free threading” patches)
that removed the GIL and replaced it with fine-grained locking. Adam Olsen recently did a similar experiment in his
python-safethread project. Unfortunately, both experiments exhibited a sharp drop in single-thread performance (at least
30% slower), due to the amount of fine-grained locking necessary to compensate for the removal of the GIL.

This doesn’t mean that you can’t make good use of Python on multi-CPU machines! You just have to be creative with
dividing the work up between multiple processes rather than multiple threads. The ProcessPoolExecutor class
in the new concurrent. futures module provides an easy way of doing so; the multiprocessing module
provides a lower-level API in case you want more control over dispatching of tasks.

Judicious use of C extensions will also help; if you use a C extension to perform a time-consuming task, the extension
can release the GIL while the thread of execution is in the C code and allow other threads to get some work done. Some
standard library modules such as z1ib and hash1ib already do this.

It has been suggested that the GIL should be a per-interpreter-state lock rather than truly global; interpreters then wouldn’t
be able to share objects. Unfortunately, this isn’t likely to happen either. It would be a tremendous amount of work, because
many object implementations currently have global state. For example, small integers and short strings are cached; these
caches would have to be moved to the interpreter state. Other object types have their own free list; these free lists would
have to be moved to the interpreter state. And so on.

And I doubt that it can even be done in finite time, because the same problem exists for 3rd party extensions. It is likely
that 3rd party extensions are being written at a faster rate than you can convert them to store all their global state in the
interpreter state.

And finally, once you have multiple interpreters not sharing any state, what have you gained over running each interpreter
in a separate process?

4.4 Input and Output

4.4.1 How do | delete a file? (And other file questions...)

Use os.remove (filename) oros.unlink (filename) ;for documentation, see the os module. The two func-
tions are identical; unlink () is simply the name of the Unix system call for this function.

To remove a directory, use os.rmdir ();use os.mkdir () to create one. os.makedirs (path) will create any
intermediate directories in path that don’t exist. os.removedirs (path) will remove intermediate directories as
long as they’re empty; if you want to delete an entire directory tree and its contents, use shutil.rmtree ().

To rename a file, use os.rename (01d_path, new_path).

To truncate afile, openitusing f = open (filename, "rb+"),anduse f.truncate (offset);offsetdefaults
to the current seek position. There’s also os . ftruncate (fd, offset) for files opened with os . open (), where
fd is the file descriptor (a small integer).

The shut i1 module also contains a number of functions to work on files including copyfile (), copytree (), and
rmtree ().

4.4. Input and Output 63


https://code.google.com/archive/p/python-safethread

Python Frequently Asked Questions, Yayim 3.12.3

4.4.2 How do | copy a file?

The shut i1l module containsa copyfile () function. Note that on Windows NTFES volumes, it does not copy alternate
data streams nor resource forks on macOS HFS+ volumes, though both are now rarely used. It also doesn’t copy file
permissions and metadata, though using shutil.copy?2 () instead will preserve most (though not all) of it.

4.4.3 How do | read (or write) binary data?

To read or write complex binary data formats, it’s best to use the st ruct module. It allows you to take a string containing
binary data (usually numbers) and convert it to Python objects; and vice versa.

For example, the following code reads two 2-byte integers and one 4-byte integer in big-endian format from a file:

import struct

with open(filename, "rb") as f:
s = f.read(8)
X, y, z = struct.unpack(">hhl", s)

The >’ in the format string forces big-endian data; the letter ‘h’ reads one “short integer” (2 bytes), and ‘I’ reads one “long
integer” (4 bytes) from the string.

For data that is more regular (e.g. a homogeneous list of ints or floats), you can also use the array module.

Not: To read and write binary data, it is mandatory to open the file in binary mode (here, passing "rb" to open () ). If
you use "r" instead (the default), the file will be open in text mode and f . read () will return st r objects rather than
bytes objects.

4.4.4 | can’t seem to use os.read() on a pipe created with os.popen(); why?

os.read () is a low-level function which takes a file descriptor, a small integer representing the opened file. os .
popen () creates a high-level file object, the same type returned by the built-in open () function. Thus, to read n bytes
from a pipe p created with os . popen (), you need to use p. read (n) .

4.4.5 How do | access the serial (RS232) port?

For Win32, OSX, Linux, BSD, Jython, IronPython:
pyserial
For Unix, see a Usenet post by Mitch Chapman:

https://groups.google.com/groups?selm=34A04430.CF9 @ohioee.com

64 Béliim 4. Library and Extension FAQ


https://en.wikipedia.org/wiki/NTFS#Alternate_data_stream_(ADS)
https://en.wikipedia.org/wiki/NTFS#Alternate_data_stream_(ADS)
https://en.wikipedia.org/wiki/Resource_fork
https://pypi.org/project/pyserial/
https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com

Python Frequently Asked Questions, Yayim 3.12.3

4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it?

Python file objects are a high-level layer of abstraction on low-level C file descriptors.

For most file objects you create in Python via the built-in open () function, £.close () marks the Python file object
as being closed from Python’s point of view, and also arranges to close the underlying C file descriptor. This also happens
automatically in £’s destructor, when £ becomes garbage.

But stdin, stdout and stderr are treated specially by Python, because of the special status also given to them by C. Running
sys.stdout.close () marks the Python-level file object as being closed, but does not close the associated C file
descriptor.

To close the underlying C file descriptor for one of these three, you should first be sure that’s what you really want to do
(e.g., you may confuse extension modules trying to do I/O). If it is, use os.close ():

os.close(stdin.fileno())
os.close(stdout.fileno())
os.close (stderr.fileno())

Or you can use the numeric constants 0, 1 and 2, respectively.

4.5 Network/Internet Programming

4.5.1 What WWW tools are there for Python?

See the chapters titled internet and netdata in the Library Reference Manual. Python has many modules that will help you
build server-side and client-side web systems.

A summary of available frameworks is maintained by Paul Boddie at https://wiki.python.org/moin/WebProgramming.

Cameron Laird maintains a useful set of pages about Python web technologies at https://web.archive.org/web/
20210224183619/http://phaseit.net/claird/comp.lang.python/web_python.

4.5.2 How can | mimic CGl form submission (METHOD =POST)?

I would like to retrieve web pages that are the result of POSTing a form. Is there existing code that would let me do this
easily?

Yes. Here’s a simple example that uses urllib.request:

#!/usr/local/bin/python
import urllib.request

# build the query string
gs = "First =Josephine&MI =Q&Last =Public"

# connect and send the server a path
req = urllib.request.urlopen('http://www.some-server.out—there'
'/cgi-bin/some-cgi-script', data=qgs)
with req:
msg, hdrs = req.read(), req.info ()

Note that in general for percent-encoded POST operations, query strings must be quoted using urllib.parse.
urlencode (). For example, to send name =Guy Steele, Jr.:

4.5. Network/Internet Programming 65



https://wiki.python.org/moin/WebProgramming
https://web.archive.org/web/20210224183619/http://phaseit.net/claird/comp.lang.python/web_python
https://web.archive.org/web/20210224183619/http://phaseit.net/claird/comp.lang.python/web_python

Python Frequently Asked Questions, Yayim 3.12.3

>>> import urllib.parse
>>> urllib.parse.urlencode ({'name': 'Guy Steele, Jr.'})
'name =Guy+Steele%2C+Jr."

Ayrica bakiniz:

urllib-howto for extensive examples.

4.5.3 What module should | use to help with generating HTML?

You can find a collection of useful links on the Web Programming wiki page.

4.5.4 How do | send mail from a Python script?

Use the standard library module smtplib.

Here’s a very simple interactive mail sender that uses it. This method will work on any host that supports an SMTP listener.

import sys, smtplib

fromaddr = input ("From: ")
toaddrs = input ("To: ").split(',")
print ("Enter message, end with ~D:")
msg = "'
while True:

line = sys.stdin.readline()

if not line:

break

msg += line

# The actual mail send

server = smtplib.SMTP ('localhost')
server.sendmail (fromaddr, toaddrs, msg)
server.quit ()

A Unix-only alternative uses sendmail. The location of the sendmail program varies between systems; sometimes it is
/usr/lib/sendmail, sometimes /usr/sbin/sendmail. The sendmail manual page will help you out. Here’s
some sample code:

import os

SENDMAIL = "/usr/sbin/sendmail" # sendmail location

p = os.popen("%s -t —-i" % SENDMAIL, "w")

p.write("To: receiver@Rexample.com\n")

p.write("Subject: test\n")

p.write("\n") # blank line separating headers from body
p.write ("Some text\n")

p.write ("some more text\n")

sts = p.close()
if sts != 0:
print ("Sendmail exit status", sts)

66 Béliim 4. Library and Extension FAQ



https://wiki.python.org/moin/WebProgramming

Python Frequently Asked Questions, Yayim 3.12.3

4.5.5 How do | avoid blocking in the connect() method of a socket?

The select module is commonly used to help with asynchronous I/O on sockets.

To prevent the TCP connect from blocking, you can set the socket to non-blocking mode. Then when you do the
connect (), you will either connect immediately (unlikely) or get an exception that contains the error number as .
errno. errno.EINPROGRESS indicates that the connection is in progress, but hasn’t finished yet. Different OSes
will return different values, so you’re going to have to check what’s returned on your system.

You can use the connect_ex () method to avoid creating an exception. It will just return the errno value. To poll, you
can call connect_ex () again later — O or errno.EISCONN indicate that you’re connected — or you can pass this
socket to select.select () to check if it’s writable.

Not: The asyncio module provides a general purpose single-threaded and concurrent asynchronous library, which can
be used for writing non-blocking network code. The third-party Twisted library is a popular and feature-rich alternative.

4.6 Databases

4.6.1 Are there any interfaces to database packages in Python?

Yes.

Interfaces to disk-based hashes such as DBM and GDBM are also included with standard Python. There is alsothe sglite3
module, which provides a lightweight disk-based relational database.

Support for most relational databases is available. See the DatabaseProgramming wiki page for details.

4.6.2 How do you implement persistent objects in Python?

The pickle library module solves this in a very general way (though you still can’t store things like open files, sockets
or windows), and the she lve library module uses pickle and (g)dbm to create persistent mappings containing arbitrary
Python objects.

4.7 Mathematics and Numerics

4.7.1 How do | generate random numbers in Python?

The standard module random implements a random number generator. Usage is simple:

import random
random. random ()

This returns a random floating point number in the range [0, 1).
There are also many other specialized generators in this module, such as:
* randrange (a, b) chooses an integer in the range [a, b).
e uniform(a, b) chooses a floating point number in the range [a, b).

* normalvariate (mean, sdev) samples the normal (Gaussian) distribution.

4.6. Databases 67


https://twisted.org/
https://wiki.python.org/moin/DatabaseProgramming

Python Frequently Asked Questions, Yayim 3.12.3

Some higher-level functions operate on sequences directly, such as:
* choice (S) chooses a random element from a given sequence.
* shuffle (L) shuffles a list in-place, i.e. permutes it randomly.

There’s also a Random class you can instantiate to create independent multiple random number generators.

68 Béliim 4. Library and Extension FAQ



BOLUM D

Genigletme/Ekleme SSS

5.1 C’de kendi fonksiyonlarimi olusturabilir miyim?

Evet, C'de fonksiyonlar, degiskenler, istisnalar ve hatta yeni tipler iceren yerlesik modiiller olusturabilirsiniz. Bu konu
extending-index dosyasinda agiklanmustir.

Cogu orta veya ileri seviye Python kitabi da bu konuyu ele alacaktir.

5.2 C++’da kendi fonksiyonlarimi olusturabilir miyim?

Evet, C++’da bulunan C uyumluluk ozelliklerini kullanarak. extern "C" { ... } komutunu Python include dos-
yalarinin etrafina yerlestirin ve Python yorumlayicisi tarafindan gagrilacak her fonksiyonun 6niine extern "C" koyun.
Yapicilart olan global veya statik C++ nesneleri muhtemelen iyi bir fikir degildir.

5.3 C yazmak zor; baska alternatifler var mi?

Ne yapmaya caligtiginiza bagh olarak, kendi C uzantilarinizi yazmanin bir dizi alternatifi vardir.

Cython and its relative Pyrex are compilers that accept a slightly modified form of Python and generate the corresponding
C code. Cython and Pyrex make it possible to write an extension without having to learn Python’s C API.

If you need to interface to some C or C++ library for which no Python extension currently exists, you can try wrapping the
library’s data types and functions with a tool such as SWIG. SIP, CXX Boost, or Weave are also alternatives for wrapping
C++ libraries.

69


https://cython.org
https://www.csse.canterbury.ac.nz/greg.ewing/python/Pyrex/
https://www.swig.org
https://github.com/Python-SIP/sip
https://cxx.sourceforge.net/
https://www.boost.org/libs/python/doc/index.html
https://github.com/scipy/weave

Python Frequently Asked Questions, Yayim 3.12.3

5.4 C’den rastgele Python komutlarini nasil calistirabilirim?

Bunu yapan en {ist diizey fonksiyon PyRun_SimpleString () olup, __main__ modiilii baglaminda ¢alistirilmak
tizere tek bir string argiiman alir ve basar i¢in 0, bir istisna olustugunda (SyntaxError dahil) -1 dondiiriir. Daha
fazla kontrol istiyorsaniz, PyRun_String () kullanin; PyRun_SimpleString () i¢in Python/pythonrun.c
icindeki kaynaga bakin.

5.5 C’den rastgele Python komutlarini nasil degerlendirebilirim?

Onceki sorudaki PyRun_String () fonksiyonunu Py_eval_input baslangic sembolii ile ¢agirm; bu fonksiyon bir
ifadeyi ayristirir, degerlendirir ve degerini dondiiriir.

5.6 Bir Python nesnesinden C degerlerini nasil cikarabilirim?

That depends on the object’s type. If it’s a tuple, PyTuple_Size () returns its length and PyTuple_GetItem()
returns the item at a specified index. Lists have similar functions, PyList_Size () and PyList_GetItem().

For bytes, PyBytes_Size () returns its length and PyBytes_AsStringAndSize () provides a pointer to its
value and its length. Note that Python bytes objects may contain null bytes so C’s st r1en () should not be used.

Bir nesnenin tiiriinii test etmek icin, once NULL olmadigindan emin olun ve ardindan PyBytes_Check (),
PyTuple_Check (), PyList_Check () vb. kullanin.

Ayrica Python nesneleri i¢in ‘abstract’ arayiizii tarafindan saglanan {iist diizey bir API de vardir — daha fazla ayrinti
icin Include/abstract .h dosyasini okuyun. PySequence_Length (),PySequence_GetItem (), vb. gibi
cagrilar1 kullanarak her tiirlii Python dizisi ile arayiiz olusturmanin yani sira sayilar (PyNumber_Index () ve digerleri)
ve PyMapping APT'lerindeki eslemeler gibi diger bir¢ok yararli protokolii de saglar.

5.7 istege bagh uzunlukta bir tuple olusturmak icin Py _BuildValue()
islevini nasil kullanabilirim?

Bunu yapamazsiniz. Bunun yerine PyTuple_Pack () kullanin.

5.8 C’de bir nesnenin metodunu nasil cagirabilirim?

PyObject_CallMethod () fonksiyonu, bir nesnenin rastgele bir metodunu ¢agirmak icin kullanilabilir. Parametreler
nesne, ¢agrilacak yontemin adi, Py_BuildvValue () ile kullanilan gibi bir string ve degisken degerleridir:

PyObject *
PyObject_CallMethod (PyObject *object, const char *method_name,
const char *arg_format, ...);

Bu, ister yerlesik ister kullanici tanimli olsun, yontemleri olan herhangi bir nesne igin gegerlidir. Sonunda doniis degerini
:Py_DECREF () lemekten siz sorumlusunuz.

Ornegin, bir dosya nesnesinin “seek” yontemini 10, 0 argiimanlartyla ¢agirmak igin (dosya nesnesi isaretgisinin “f” oldu-
gunu varsayarak):

70 Boliim 5. Genisletme/Ekleme SSS



Python Frequently Asked Questions, Yayim 3.12.3

res = PyObject_CallMethod(f, "seek", "(ii)", 10, 0);
if (res == NULL) {
an exception occurred ...
I3
else {
Py_DECREF (res) ;
I3

PyObject_CallObject () her zaman argliman listesi i¢in bir tuple istediginden, argiimansiz bir fonksiyon ¢cagirmak
icin format olarak “()” ve tek argiimanl bir fonksiyon cagirmak i¢in argiimani parantez igine alin, 6rnegin “(i)”.

5.9 PyErr_Print() islevinden (veya stdout/stderr’e yazdiran herhangi
bir seyden) gelen ciktiyi nasil yakalayabilirim?

Python kodunda, write () metodunu destekleyen bir nesne tanimlayin. Bu nesneyi sys . stdout ve sys.stderr
Ogelerine atayin. Print_error’1 cagirin ya da sadece standart geri izleme mekanizmasinin ¢alismasina izin verin. Ardindan,
cikti write () yonteminizin gonderdigi yere gidecektir.

Bunu yapmanin en kolay yolu io. St ringIO siifini kullanmaktir:

>>> import io, sys

>>> sys.stdout = io0.StringIO()

>>> print ('foo')

>>> print ('hello world!'")

>>> sys.stderr.write (sys.stdout.getvalue())
foo

hello world!

Ayni seyi yapan 6zel bir nesne soyle goriinecektir:

>>> import io, sys
>>> class StdoutCatcher (io.TextIOBase) :
def _ init__ (self):
self.data = []
def write(self, stuff):
self.data.append(stuff)

>>> import sys

>>> sys.stdout = StdoutCatcher ()

>>> print ('foo')

>>> print ('hello world!"')

>>> sys.stderr.write(''.join(sys.stdout.data))
foo

hello world!

5.9. PyErr_Print() islevinden (veya stdout/stderr’e yazdiran herhangi bir seyden) gelen ciktiy1 nagi
yakalayabilirim?




Python Frequently Asked Questions, Yayim 3.12.3

5.10 Python’da yazilmis bir modile C’den nasil erigebilirim?

Modiil nesnesine asagidaki gibi bir isaretci alabilirsiniz:

[module = PyImport_ImportModule ("<modulename>") ; ]

Modiil heniiz ige aktarilmamigsa (yani sy s .modules i¢inde heniiz mevcut degilse), bu modiilii baglatir; aksi takdirde
sadece sys .modules ["<modulename>"] degerini dondiiriir. Modiilii herhangi bir isim alanina girmedigine dikkat
edin — sadece baslatildigindan ve sy s .modules icinde saklandigindan emin olur.

Daha sonra modiiliin 6zniteliklerine (yani modiilde tanimlanan herhangi bir isme) asagidaki sekilde erigebilirsiniz:

[attr = PyObject_GetAttrString (module, "<attrname>"); ]

Modiildeki degiskenlere atamak i¢in PyObject_SetAttrString () ¢agrisi da caligir.

5.11 Python’dan C++ nesnelerine nasil arayiiz olusturabilirim?

Gereksinimlerinize bagli olarak, bir¢cok yaklagim vardir. Bunu manuel olarak yapmak i¢in the “Extending and Embedding”
belgesini okuyarak baglayin. Python ¢aligma zamani sistemi icin, C ve C++ arasinda ¢ok fazla fark olmadiginin farkina
varin — bu nedenle bir C yap1 (isaretci) tiirii etrafinda yeni bir Python tiirii olusturma stratejisi C++ nesneleri i¢in de ise
yarayacaktir.

C++ kiitiiphaneleri i¢in bakimiz C yazmak zor; baska alternatifler var mi?.

5.12 Kurulum dosyasini kullanarak bir modiil ekledim ve derleme ba-
sarisiz oldu; neden?

Kurulum bir satir sonu ile bitmelidir, eger satir sonu yoksa derleme islemi basarisiz olur. (Bunu diizeltmek igin biraz
bicimsiz shell script diizenlemesi gerekir ve bu hata o kadar kiiciik ki cabaya degmez gibi goriiniiyor)

5.13 Bir uzantida nasil hata ayiklayabilirim?

Dinamik olarak yiiklenen uzantilarla GDB kullanirken, uzantiniz yiiklenene kadar uzantinizda bir kesme noktasi ayarla-
yamazsiniz.

.gdbinit dosyaniza (veya etkilesimli olarak) su komutu ekleyin:

[br _PyImport_LoadDynamicModule ]

Sonra, GDB’yi calistirdifinizda:

$ gdb /local/bin/python
gdb) run myscript.py

gdb) continue # repeat until your extension is loaded
gdb) finish # so that your extension is loaded

gdb) br myfunction.c:50

gdb) continue

72 Boliim 5. Genisletme/Ekleme SSS



Python Frequently Asked Questions, Yayim 3.12.3

5.14 Linux sistemimde bir Python modiilii derlemek istiyorum, ancak
bazi dosyalar eksik. Neden?

Python’un paketlenmis siirtimlerinin ¢cogu, Python uzantilarin1 derlemek igin gerekli cesitli dosyalar1 iceren /usr/1ib/
python2.x/config/ dizinini icermez.

Red Hat i¢in, gerekli dosyalar1 almak icin python-devel RPM yiikleyin.

Debian icin apt—get install python-dev komutunu c¢alistirin.

5.15 “Eksik girdi” ile “gecersiz girdi’yi nasil ayirt edebilirim?

Bazen Python etkilesimli yorumlayicisinin davranigini taklit etmek istersiniz; girdi eksik oldugunda size bir devam istemi
verir (6rnegin, bir “if” deyiminin baglangicini yazdiniz veya parantezlerinizi veya ticlii dize tirnaklarinizi kapatmadiniz),
ancak girdi gecersiz oldugunda size hemen bir s6zdizimi hata mesaj1 verir.

Python’da, ayristiricinin davramsina yeterince yaklasan codeop modiiliinii kullanabilirsiniz. Ornegin IDLE bunu kulla-
nir.

Bunu C’de yapmanin en kolay yolu PyRun_InteractiveLoop () cagirmak (belki ayri bir ig parcaciginda) ve Pyt-

3

hon yorumlayicisinin girdiyi sizin igin iglemesine izin vermektir. Ayrica PyOS_ReadlineFunctionPointer () ‘1
ozel girdi fonksiyonunuza igaret edecek sekilde ayarlayabilirsiniz. Daha fazla ipucu i¢in Modules/readline.c ve
Parser/myreadline. c dosyalarina bakin.

5.16 Tanimlanmamis g++ sembolleri __ builtin_new veya _ pu-
re_virtual’1 nasil bulabilirim?

G++ uzanti modiillerini dinamik olarak yiiklemek igin Python’u yeniden derlemeli, g++ kullanarak yeniden baglamali
(Python Modules Makefile’da LINKCC'yi degistirin) ve uzanti modiiliiniizii g++ kullanarak baglamalisiniz (6rnegin, g++
-shared -o mymodule.so mymodule.o).

5.17 Bazi yontemleri C’de, bazi yontemleri Python’da (6rnegin miras
yoluyla) uygulanan bir nesne sinifi olusturabilir miyim?

Evet, int, 1ist, dict, vb. gibi yerlesik siniflardan miras alabilirsiniz.

Boost Python Kiitiiphanesi (BPL, http://www.boost.org/libs/python/doc/index.html) bunu C++'dan yapmanin bir yolunu
saglar (yani BPL’yi kullanarak C++’da yazilmig bir uzanti sinifindan miras alabilirsiniz).

5.14. Linux sistemimde bir Python modiilii derlemek istiyorum, ancak bazi dosyalar eksik. Nedei@3


http://www.boost.org/libs/python/doc/index.html

Python Frequently Asked Questions, Yayim 3.12.3

74

Boliim 5. Genisletme/Ekleme SSS



BOLUM O

Python on Windows FAQ

6.1 How do | run a Python program under Windows?

This is not necessarily a straightforward question. If you are already familiar with running programs from the Windows
command line then everything will seem obvious; otherwise, you might need a little more guidance.

Unless you use some sort of integrated development environment, you will end up typing Windows commands into what is
referred to as a “Command prompt window”. Usually you can create such a window from your search bar by searching for
cmd. You should be able to recognize when you have started such a window because you will see a Windows “command
prompt”, which usually looks like this:

[c:\> ]

The letter may be different, and there might be other things after it, so you might just as easily see something like:

[D:\YourName\Projects\Python> ]

depending on how your computer has been set up and what else you have recently done with it. Once you have started
such a window, you are well on the way to running Python programs.

You need to realize that your Python scripts have to be processed by another program called the Python interpreter. The
interpreter reads your script, compiles it into bytecodes, and then executes the bytecodes to run your program. So, how
do you arrange for the interpreter to handle your Python?

First, you need to make sure that your command window recognises the word “py” as an instruction to start the interpreter.
If you have opened a command window, you should try entering the command py and hitting return:

[C:\Users\YourName> Py ]

You should then see something like:

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)] on.
—win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

75



Python Frequently Asked Questions, Yayim 3.12.3

You have started the interpreter in “interactive mode”. That means you can enter Python statements or expressions in-
teractively and have them executed or evaluated while you wait. This is one of Python’s strongest features. Check it by
entering a few expressions of your choice and seeing the results:

>>> print ("Hello")

Hello
>>> "Hello" * 3
'HelloHelloHello'

Many people use the interactive mode as a convenient yet highly programmable calculator. When you want to end your
interactive Python session, call the exit () function or hold the Ctr1 key down while you enter a Z, then hit the
“Enter” key to get back to your Windows command prompt.

You may also find that you have a Start-menu entry such as Start » Programs » Python 3.x » Python (command line) that
results in you seeing the >>> prompt in a new window. If so, the window will disappear after you call the exit ()
function or enter the Ct r1-Z character; Windows is running a single “python” command in the window, and closes it
when you terminate the interpreter.

Now that we know the py command is recognized, you can give your Python script to it. You'll have to give either an
absolute or a relative path to the Python script. Let’s say your Python script is located in your desktop and is named
hello.py, and your command prompt is nicely opened in your home directory so you're seeing something similar to:

[C:\Users\YourName> ]

So now you’ll ask the py command to give your script to Python by typing py followed by your script path:

C:\Users\YourName> py Desktop\hello.py
hello

6.2 How do | make Python scripts executable?

On Windows, the standard Python installer already associates the .py extension with a file type (Python.File) and gives that
file type an open command that runs the interpreter (D: \Program Files\Python\python.exe "$%$1" %*).
This is enough to make scripts executable from the command prompt as foo.py’. If you'd rather be able to execute the
script by simple typing ‘foo’ with no extension you need to add .py to the PATHEXT environment variable.

6.3 Why does Python sometimes take so long to start?

Usually Python starts very quickly on Windows, but occasionally there are bug reports that Python suddenly begins to
take a long time to start up. This is made even more puzzling because Python will work fine on other Windows systems
which appear to be configured identically.

The problem may be caused by a misconfiguration of virus checking software on the problem machine. Some virus
scanners have been known to introduce startup overhead of two orders of magnitude when the scanner is configured to
monitor all reads from the filesystem. Try checking the configuration of virus scanning software on your systems to ensure
that they are indeed configured identically. McAfee, when configured to scan all file system read activity, is a particular
offender.

76 Béliim 6. Python on Windows FAQ



Python Frequently Asked Questions, Yayim 3.12.3

6.4 How do | make an executable from a Python script?

See How can I create a stand-alone binary from a Python script? for a list of tools that can be used to make executables.

6.5 Is a *.pyd file the same as a DLL?

Yes, .pyd files are dII’s, but there are a few differences. If you have a DLL named foo . pyd, then it must have a function
PyInit_foo (). Youcan then write Python “import foo”, and Python will search for foo.pyd (as well as foo.py, foo.pyc)
and if it finds it, will attempt to call PyInit_foo () to initialize it. You do not link your .exe with foo.lib, as that would
cause Windows to require the DLL to be present.

Note that the search path for foo.pyd is PYTHONPATH, not the same as the path that Windows uses to search for foo.dll.
Also, foo.pyd need not be present to run your program, whereas if you linked your program with a dll, the dll is required.
Of course, foo.pyd is required if you want to say import foo. Ina DLL, linkage is declared in the source code with
__declspec (dllexport).Ina .pyd, linkage is defined in a list of available functions.

6.6 How can | embed Python into a Windows application?

Embedding the Python interpreter in a Windows app can be summarized as follows:

1. Do not build Python into your .exe file directly. On Windows, Python must be a DLL to handle importing modu-
les that are themselves DLL’s. (This is the first key undocumented fact.) Instead, link to pythonNN.d11;itis
typically installed in C: \Windows\System. NN is the Python version, a number such as “33” for Python 3.3.

You can link to Python in two different ways. Load-time linking means linking against pythonNN. 1ib, whi-
le run-time linking means linking against pythonNN.d11. (General note: pythonNN. 1ib is the so-called
“import lib” corresponding to pythonNN.d11. It merely defines symbols for the linker.)

Run-time linking greatly simplifies link options; everything happens at run time. Your code must load pythonNN .
dl1 using the Windows LoadLibraryEx () routine. The code must also use access routines and data in
pythonNN.d11 (that is, Python’s C APT’s) using pointers obtained by the Windows GetProcAddress ()
routine. Macros can make using these pointers transparent to any C code that calls routines in Python’s C APIL.

2. If you use SWIG, it is easy to create a Python “extension module” that will make the app’s data and methods
available to Python. SWIG will handle just about all the grungy details for you. The result is C code that you link
into your .exe file (!) You do not have to create a DLL file, and this also simplifies linking.

3. SWIG will create an init function (a C function) whose name depends on the name of the extension module. For
example, if the name of the module is leo, the init function will be called initleo(). If you use SWIG shadow classes,
as you should, the init function will be called initleoc(). This initializes a mostly hidden helper class used by the
shadow class.

The reason you can link the C code in step 2 into your .exe file is that calling the initialization function is equivalent
to importing the module into Python! (This is the second key undocumented fact.)

4. In short, you can use the following code to initialize the Python interpreter with your extension module.

#include <Python.h>

Py_Initialize(); // Initialize Python.
initmyAppc(); // Initialize (import) the helper class.
PyRun_SimpleString ("import myApp"); // Import the shadow class.

6.4. How do | make an executable from a Python script? 77



Python Frequently Asked Questions, Yayim 3.12.3

5. There are two problems with Python’s C API which will become apparent if you use a compiler other than MSVC,
the compiler used to build pythonNN.dIL

Problem 1: The so-called “Very High Level” functions that take FILE * arguments will not work in a multi-
compiler environment because each compiler’s notion of a st ruct FILE will be different. From an implemen-
tation standpoint these are very low level functions.

Problem 2: SWIG generates the following code when generating wrappers to void functions:

Py_INCREF (Py_None) ;
_resultobj = Py_None;
return _resultobj;

Alas, Py_None is a macro that expands to a reference to a complex data structure called _Py_NoneStruct inside
pythonNN.dll. Again, this code will fail in a mult-compiler environment. Replace such code by:

[return Py_Buildvalue(""); J

It may be possible to use SWIG’s $t ypemap command to make the change automatically, though I have not been
able to get this to work (I'm a complete SWIG newbie).

6. Using a Python shell script to put up a Python interpreter window from inside your Windows app is not a good idea;
the resulting window will be independent of your app’s windowing system. Rather, you (or the wxPythonWindow
class) should create a “native” interpreter window. It is easy to connect that window to the Python interpreter. You
can redirect Python’s i/o to _any_ object that supports read and write, so all you need is a Python object (defined
in your extension module) that contains read() and write() methods.

6.7 How do | keep editors from inserting tabs into my Python source?

The FAQ does not recommend using tabs, and the Python style guide, PEP 8, recommends 4 spaces for distributed
Python code; this is also the Emacs python-mode default.

Under any editor, mixing tabs and spaces is a bad idea. MSVC is no different in this respect, and is easily configured to
use spaces: Take Tools » Options » Tabs, and for file type “Default” set “Tab size” and “Indent size” to 4, and select the
“Insert spaces” radio button.

Python raises IndentationError or TabError if mixed tabs and spaces are causing problems in leading whites-
pace. You may also run the t abnanny module to check a directory tree in batch mode.

6.8 How do | check for a keypress without blocking?

Use the msvcrt module. This is a standard Windows-specific extension module. It defines a function kbhit () which
checks whether a keyboard hit is present, and get ch () which gets one character without echoing it.

78 Béliim 6. Python on Windows FAQ


https://peps.python.org/pep-0008/

Python Frequently Asked Questions, Yayim 3.12.3

6.9 How do | solve the missing api-ms-win-crt-runtime-11-1-0.dll er-
ror?

This can occur on Python 3.5 and later when using Windows 8.1 or earlier without all updates having been installed. First
ensure your operating system is supported and is up to date, and if that does not resolve the issue, visit the Microsoft
support page for guidance on manually installing the C Runtime update.

6.9. How do | solve the missing api-ms-win-crt-runtime-I1-1-0.dll error? 79


https://support.microsoft.com/en-us/help/3118401/
https://support.microsoft.com/en-us/help/3118401/

Python Frequently Asked Questions, Yayim 3.12.3

80

Béliim 6. Python on Windows FAQ



BOLOM 7/

Grafik Kullanici Araytzid SSS

7.1 Genel GKA Sorulari

7.2 Python icin hangi GKA arac¢ setleri var?

Python’un standart yapilari, tkinter adli Tcl/Tk pencere 6gesi kiimesine yonelik nesne yonelimli bir arayiiz icerir. Bu
muhtemelen kurulumu ve kullanimi en kolay olamidir (¢iinkii cogu Python’in ikili dagitimlar kisminda bulunur) ve kul-
lanilandir. Kaynak isaretgiler de dahil olmak tizere Tk hakkinda daha fazla bilgi i¢in Tcl/Tk ana sayfasina bakin. Tcl/Tk,
macOS, Windows ve Unix platformlarina tamamen tasinabilir.

Hangi platformlar1 hedeflediginize bagl olarak, birkag alternatif de mevcuttur. Bir cross-platform listesi ve spesifik plat-
form GKA cerceveleri Python Wiki’de bulunabilir.

7.3 Tkinter sorulari

7.3.1 Tkinter uygulamalarini nasil dondurabilirim?

Dondurma iglemi, tek bagina bagimsiz uygulamalar olusturmak icin bir aractir. Tkinter uygulamalarin1 dondururken,
uygulama hala Tcl ve Tk kiitliphanelerine ihtiya¢ duyacagindan, uygulamalar gercekten bagimsiz olmayacaktir.

One solution is to ship the application with the Tcl and Tk libraries, and point to them at run-time using the
TCL_LIBRARY and TK_LIBRARY environment variables.

Gergekten bagimsiz uygulamalar elde etmek icin kiitiiphaneyi olusturan Tcl betiklerinin de uygulamaya entegre edilme-
si gerekir. Bunu destekleyen araglardan biri, Tix dagitimimm (http://tix.sourceforge.net/) ‘in bir pargas1 olan SAM’dir
(bagimsiz modiiller).

Build Tix with SAM enabled, perform the appropriate call to Tclsam_init (), etc. inside Python’s Modules/
tkappinit.c, and link with libtclsam and libtksam (you might include the Tix libraries as well).

81


https://www.python.org/downloads/
https://www.tcl.tk
https://wiki.python.org/moin/GuiProgramming#Cross-Platform_Frameworks
https://wiki.python.org/moin/GuiProgramming#Platform-specific_Frameworks
https://wiki.python.org/moin/GuiProgramming#Platform-specific_Frameworks
http://tix.sourceforge.net/

Python Frequently Asked Questions, Yayim 3.12.3

7.3.2 G/C’yi beklerken Tk olaylarini isleyebilir miyim?

On platforms other than Windows, yes, and you don’t even need threads! But you’ll have to restructure your I/O code a
bit. Tk has the equivalent of Xt’'s Xt AddInput () call, which allows you to register a callback function which will be
called from the Tk mainloop when I/O is possible on a file descriptor. See tkinter-file-handlers.

7.3.3 Tkinter’da calismak icin anahtar baglamalarini alamiyorum: neden?

An often-heard complaint is that event handlers bound to events with the bind () method don’t get handled even when
the appropriate key is pressed.

En yaygin neden, baglamanin uygulandig1 pencere d8esinin “klavye odagina” sahip olmamasidir. Focus komutu i¢in Tk
dokiimantasyonuna bakin. Genellikle Wigdet'lara tiklanilarak klavye odag verilir (ancak etiketler igin degil; odak alma
secenegine bakin).

82 Béliim 7. Grafik Kullanici Arayiizii SSS



BOLUM 8

“Python Bilgisayarimda Neden YUkIu?” SSS

8.1 Python nedir?

Python bir programlama dilidir. Bir¢ok farkli uygulama icin kullanilir. Python’un 6grenilmesi kolay oldugu i¢in bazi lise
ve iiniversitelerdeprogramlamaya girig dili olarak kullanilir, ancak ayni zamanda Google, NASA ve Lucasfilm Ltd. gibi
yerlerde profesyonel yazilim gelistiriciler tarafindan da kullanilir.

Python hakkinda daha fazla bilgi edinmek istiyorsaniz, Beginner’s Guide to Python ile baglaym.

8.2 Python makinemde neden yuklu?

Python’un sisteminizde yiiklii oldugunu goriiyor ancak yiiklediginizi hatirlamiyorsaniz, Python’un sisteminize girmesinin
birkag olasi yolu vardir.

* Belki de bilgisayardaki bagka bir kullanic1 programlama 6grenmek istedi ve bunu yiikledi; makineyi kimin kullan-
digin1 ve bunu kimin yiiklemis olabilecegini bulmaniz gerekecek.

¢ Makineye yiiklenen tigiincii parti bir uygulama Python ile yazilmig ve bir Python yiiklemesi iceriyor olabilir. GUI
programlarindan ag sunucularina ve yonetim komut dosyalarina kadar bu tiir bircok uygulama vardir.

* Bazi1 Windows makinelerde Python da yiikliidiir. Bu yaziy1 yazarken Hewlett-Packard ve Compaq’in Python igeren
bilgisayarlarindan haberdariz. Goriiniige gore HP/Compaq'in bazi yonetim araclar1 Python ile yazilmais.

* MacOS ve bazi Linux dagitimlari gibi Unix uyumlu bir¢ok isletim sisteminde Python varsayilan olarak yiikliidiir;
temel kuruluma dahildir.

83


https://wiki.python.org/moin/BeginnersGuide

Python Frequently Asked Questions, Yayim 3.12.3

8.3 Python’u silebilir miyim?

Bu Python’un nereden geldigine baghdir.

Birisi kasitli olarak yiiklediyse, hicbir seye zarar vermeden kaldirabilirsiniz. Windows’ta, Denetim Masasi’ndaki Program
Ekle/Kaldir simgesini kullanin.

Python iigiincii parti bir uygulama tarafindan yiiklenmigse, onu da kaldirabilirsiniz, ancak bu uygulama artik caligmaya-
caktir. Python’u dogrudan kaldirmak yerine o uygulamanin kaldiricisin1 kullanmalisiniz.

Python igletim sisteminizle birlikte geliyorsa, kaldirilmasi 6nerilmez. Kaldirirsaniz, Python’da yazilmis olan araclar artik
calismayacaktir ve bunlardan bazilar sizin i¢in 6nemli olabilir. Bu durumda isleri tekrar diizeltmek i¢in tiim sistemi
yeniden yliklemek gerekecektir.

84 Béliim 8. “Python Bilgisayarimda Neden Yukli?” SSS



ek A

Sozluk

>>>

2to3

Etkilesimli kabugun varsayilan Python istemi. Genellikle yorumlayicida etkilesimli olarak yiiriitiilebilen kod o6r-
nekleri igin goriiliir.

Sunlara bagvurabilir:

« Girintili bir kod blogu i¢in kod girerken, eslesen bir ¢ift sol ve sag sinirlayici (parantez, koseli parantez, kagl
ayrag veya iiclii tirnak) icindeyken veya bir dekorator belirttikten sonra etkilesimli kabugun varsayilan Python
istemi.

* Elipsis yerlesik sabiti.

Kaynag ayristirarak ve ayristirma agacinda gezinerek tespit edilebilecek uyumsuzluklarin ¢cogunu igleyerek Python
2.x kodunu Python 3.x koduna doniistiirmeye ¢alisan bir arac.

2t03, standart kiitiiphanede 1lib2to3'; badimsiz bir giris noktasi su sekilde
sadlanir:file: Tools/scripts/2to3. Bakinz 2to3-reference.

soyut temel simif

Soyut temel siiflar duck-typing ‘i, hasattr () gibi diger teknikler beceriksiz veya tamamen yanlis oldugun-
da arayiizleri tanimlamanin bir yolunu saglayarak tamamlar (6rnegin sihirli yontemlerle). ABC’ler, bir siniftan
miras almayan ancak yine de isinstance () ve issubclass () tarafindan tanmnan siniflar olan sanal alt si-
niflar1 tanitir; abc modiil belgelerine bakin. Python comes with many built-in ABCs for data structures (in the
collections.abc module), numbers (in the numbers module), streams (in the i o module), import finders
and loaders (in the importlib.abc module). abc modiilii ile kendi ABC’lerinizi olusturabilirsiniz.

dipnot

Bir degiskenle, bir sinif niteligiyle veya bir fonksiyon parametresiyle veya bir doniis degeriyle iligkilendirilen, ge-
lenek olarak rype hint bi¢ciminde kullanilan bir etiket.

Yerel degiskenlerin agiklamalarina ¢alisma zamaninda erisilemez, ancak global degiskenlerin, sinif niteliklerinin ve
islevlerin agiklamalari, sirastyla modiillerin, siniflarin ve iglevlerin __annotations__ ozel 6zelliginde saklanir.

Bu iglevi aciklayan variable annotation, function annotation, PEP 484 ve PEP 526’e bakin. Ek agiklamalarla
caligmaya iligkin en iyi uygulamalar icin ayrica bkz. annotations-howto.

85


https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Python Frequently Asked Questions, Yayim 3.12.3

argiiman
Fonksiyon cagrilirken bir function ‘a (veya method) gegirilen bir deger. Iki tiir argiiman vardir:

* keyword argument: bir iglev ¢agrisinda bir tanimlayicinin (6r. ad =) Oniine gecen veya bir sozliikte * * ile
baslayan bir deger olarak gegirilen bir argiiman. Ornegin, 3 ve 5, asagidaki complex () : ¢agrilarinda anahtar
kelimenin argiimanleridir:

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

e positional argument: anahtar kelime argiimani olmayan bir argliman. Konumsal argiimanler, bir argiiman lis-
tesinin baginda goriinebilir ve/veya * ile baglayan bir iterable 6gesinin 6geleri olarak iletilebilir. Ornegin, 3
ve 5, asagidaki ¢agrilarda konumsal argiimanlerdir:

complex (3, 5)
complex (* (3, 5))

Argiimanler, bir fonksiyon govdesindeki adlandirilmis yerel degiskenlere atanir. Bu atamay1 yoneten kurallar i¢in
calls boliimiine bakin. S6zdizimsel olarak, bir argiimani temsil etmek i¢in herhangi bir ifade kullanilabilir; deger-
lendirilen deger yerel degiskene atanir.

Ayrica parameter sozIugl girisine, the difference between arguments and parameters hakkindaki SSS sorusuna ve
PEP 362 ‘ye bakin.

asenkron baglam yoneticisi
An object which controls the environment seen in an async with statement by defining __aenter__ () and
__aexit__ () methods. Introduced by PEP 492.

asenkron jenerator
asynchronous generator iterator dondiiren bir iglev. Bir async for dongiisiinde kullanilabilen bir dizi deger iiret-
mek icin yield ifadeleri icermesi diginda async def ile tanimlanmig bir esyordam iglevine benziyor.

Genellikle bir asenkron iirete¢ iglevine atifta bulunur, ancak bazi baglamlarda bir asynchronous generator iterator
‘e kargilik gelebilir. Amaglanan anlamin net olmadigi durumlarda, tam terimlerin kullanilmasi belirsizligi 6nler.

Bir asenkron iiretici fonksiyonu, await ifadelerinin yani sira async for ve async with ifadeleri icerebilir.

asenkron jenerator yineleyici
Bir asynchronous generator iglevi tarafindan olusturulan bir nesne.

This is an asynchronous iterator which when called using the __anext___ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by ___anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

eszamansiz yinelenebilir
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__ () method. Introduced by PEP 492.

asenkron yineleyici
An object that implements the __aiter_ () and __anext__ () methods. __anext__ () must return an
awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s __anext__ ()
method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

nitelik
Noktali ifadeler kullanilarak adiyla bagvurulan bir nesneyle iliskili deger. Ornegin, o nesnesinin a ozniteligi varsa,
bu nesneye o.a olarak bagvurulur.

86 Ek A. Sézluk


https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

Python Frequently Asked Questions, Yayim 3.12.3

Bir nesneye, eger nesne izin veriyorsa, 6rnegin setattr () kullanarak, adi identifiers tarafindan tanimlandig gibi
tanimlayici olmayan bir 6znitelik vermek miimkiindiir. Boyle bir 6znitelige noktal1 bir ifade kullanilarak erisilemez
ve bunun yerine getattr () ile alinmasi gerekir.

beklenebilir
An object that can be used in an await expression. Can be a coroutine or an object with an __await__ ()
method. See also PEP 492.

BDFL
Benevolent Dictator For Life, nami1 diger Guido van Rossum, Python’un yaraticisi.

ikili dosya
A file object able to read and write byfes-like objects. Examples of binary files are files opened in binary mode
("rb', 'wb' or 'rb+"'), sys.stdin.buffer, sys.stdout .buffer, and instances of 10.BytesIO
and gzip.GzipFile.

Ayrica st r nesnelerini okuyabilen ve yazabilen bir dosya nesnesi i¢in zext file ‘a bakin.

odiin¢ alinan referans
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not own
the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection can remove
the last strong reference to the object and so destroy it.

borrowed reference iizerinde Py_INCREF () c¢agirmak, nesnenin 6diing alinanin son kullanimindan 6nce yok
edilemedigi durumlar diginda, onu yerinde bir strong reference ‘a doniistiirmek igin tavsiye edilir. referans.
Py_NewRef () islevi, yeni bir strong reference olusturmak i¢in kullanilabilir.

bayt benzeri nesne
bufferobjects ‘i destekleyen ve bir C-configuous arabellegini digsa aktarabilen bir nesne. Bu, tim bytes,
bytearray ve array.array nesnelerinin yani sira bir¢ok yaygin memoryview nesnesini icerir. Bayt ben-
zeri nesneler, ikili verilerle ¢alisan gesitli islemler igin kullanilabilir; bunlara sikistirma, ikili dosyaya kaydetme ve
bir soket iizerinden gonderme dahildir.

Bazi islemler, degisken olmast i¢in ikili verilere ihtiya¢ duyar. Belgeler genellikle bunlara “okuma-yazma bayt ben-
zeri nesneler” olarak atifta bulunur. Ornek degistirilebilir arabellek nesneleri bytearray ve bir bytearray
memoryview icerir. Diger iglemler, ikili verilerin degismez nesnelerde (“salt okunur bayt benzeri nesneler”) de-
polanmasini gerektirir; bunlarin 6rnekleri arasinda bytes ve bir bytes nesnesinin memoryview bulunur.

bayt kodu
Python kaynak kodu, bir Python programinin CPython yorumlayicisindaki dahili temsili olan bayt kodunda derlenir.
Bayt kodu ayrica . pyc dosyalarinda 6nbellege alinir, boylece ayn1 dosyanin ikinci kez ¢aligtirilmasi daha hizh olur
(kaynaktan bayt koduna yeniden derleme onlenebilir). Bu “ara dilin”, her bir bayt koduna karsilik gelen makine
kodunu yiiriiten bir sanal makine tizerinde ¢alisti1 soylenir. Bayt kodlariin farkli Python sanal makineleri arasinda
calismasi veya Python siiriimleri arasinda kararlh olmasi beklenmedigini unutmayin.

Bayt kodu talimatlarinin bir listesi bytecodes dokiimaninda bulunabilir.

cagirilabilir
Bir cagrilabilir, muhtemelen bir dizi argiimanla (bkz. argument) ve asagidaki sozdizimiyle cagrilabilen bir nesnedir:

[callable(argumentl, argument?2, argumentN) ]

Bir fonksiyon ve uzantisi olarak bir mefot bir cagrilabilirdir. __call__ () yontemini uygulayan bir sinif ornegi
de bir cagrilabilirdir.

geri cagirmak
Gelecekte bir noktada yiiriitiilecek bir argliman olarak iletilen bir alt program islevi.

simf
Kullanici tanimli nesneler olugturmak icin bir gsablon. Smif tanimlar1 normalde sinifin 6rnekleri tizerinde caligan
yontem tanimlarini icerir.

87


https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

Python Frequently Asked Questions, Yayim 3.12.3

smif degiskeni
Bir sinifta tanimlanmis ve yalnizca sinif diizeyinde (yani sinifin bir 6rneginde degil) degistirilmesi amaglanan bir
degisken.

karmasik say1
Tiim sayilarin bir reel kisim ve bir sanal kisim toplamui olarak ifade edildigi bilinen gergek say1 sisteminin bir uzan-
tis1. Hayali sayilar, hayali birimin gercek katlaridir (-1 ‘in karekokii), genellikle matematikte i veya miihendislikte
j ile yazilir. Python, bu son gosterimle yazilan karmagik sayilar igin yerlesik destege sahiptir; hayali kisim bir j son
ekiyle yazilir, 6rnegin 3+17j. math modiiliiniin karmagik es degerlerine erismek i¢in cmath kullanin. Karmasik
sayilarin kullanim1 oldukca gelismig bir matematiksel 6zelliktir. Onlara olan ihtiyacin farkinda degilseniz, onlari
giivenle gormezden gelebileceginiz neredeyse kesindir.

baglam yoneticisi
An object which controls the environment seen in a with statement by defining __enter__ () and
__exit__ () methods. See PEP 343.

baglam degiskeni
Baglamina bagli olarak farkli degerler alabilen bir degigken. Bu, her yiiriitme ig parcaciginin bir degisken icin farkli
bir degere sahip olabilecegi Thread-Local Storage’a benzer. Bununla birlikte, baglam degiskenleriyle, bir yiiriitme is
parcaciginda birkag baglam olabilir ve baglam degiskenlerinin ana kullanimi, eszamanli zaman uyumsuz gorevlerde
degiskenleri izlemektir. Bakimiz contextvars.

bitisik
Bir arabellek, C-bitisik veya Fortran bitisik ise tam olarak bitisik olarak kabul edilir. Sifir boyutlu arabellekler C
ve Fortran bitigiktir. Tek boyutlu dizilerde, 6geler sifirdan baglayarak artan dizinler sirasina gore bellekte yan yana
yerlestirilmelidir. Cok boyutlu C-bitisik dizilerde, 6geleri bellek adresi sirasina gore ziyaret ederken son dizin en
hizli sekilde degisir. Ancak, Fortran bitisik dizilerinde, ilk dizin en hizl sekilde degisir.

esyordam
Esyordamlar, altyordamlarin daha genellestirilmis bir bigimidir. Alt programlara bir noktada girilir ve bagka bir
noktada ¢ikilir. Egyordamlar bir¢ok farkli noktada girilebilir, ¢ikilabilir ve devam ettirilebilir. async def ifadesi
ile uygulanabilirler. Ayrica bakiniz PEP 492.

esyordam islevi
Bir coroutine nesnesi dondiiren bir iglev. Bir esyordam iglevi async def ifadesiyle tanimlanabilir ve await,
async for ve async with anahtar kelimelerini i¢erebilir. Bunlar PEP 492 tarafindan tanitildi.

CPython
Python programlama dilinin python.org iizerinde dagitildig: sekliyle kuralli uygulamasi. “CPython” terimi, gerek-
tiginde bu uygulamay1 Jython veya IronPython gibi digerlerinden ayirmak i¢in kullanilir.

dekorator
Genellikle @wrapper sozdizimi kullanilarak bir islev doniisiimii olarak uygulanan, baska bir islevi dondiiren bir
islev. Dekoratorler icin yaygin ornekler sunlardir: classmethod () ve staticmethod ().

Dekorator s6zdizimi yalnizca sozdizimsel sekerdir, asagidaki iki iglev tanimi anlamsal olarak es degerdir:

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arg):

Ayni kavram siniflar i¢in de mevcuttur, ancak orada daha az kullanilir. Dekoratérler hakkinda daha fazla bilgi i¢in
function definitions ve class definitions belgelerine bakin.

tanimlayici
Any object which defines the methods __get__ (),__set__ (),or__delete__ ().Whenaclassattribute is

88 Ek A. Sézluk


https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

Python Frequently Asked Questions, Yayim 3.12.3

a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get, set or delete
an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the respective descriptor
method gets called. Understanding descriptors is a key to a deep understanding of Python because they are the basis
for many features including functions, methods, properties, class methods, static methods, and reference to super
classes.

Tanimlayicilarin yontemleri hakkinda daha fazla bilgi igin, bkz. descriptors veya Descriptor How To Guide.

sozliik
An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__ ()
and __eqg__ () methods. Called a hash in Perl.

sozliik anlama
Ogelerin tiimiinii veya bir kismini yinelenebilir bir sekilde islemenin ve sonuglari iceren bir s6zliik déndiirmenin
kompakt bir yolu. results = {n: n ** 2 for range(10)},n ** 2 degerine eslenmis n anahtarini
iceren bir sozliik olusturur. Bkz. comprehensions.

sozliik goriiniimii
dict.keys(),dict.values () vedict.items () ‘den dondiiriilen nesnelere sozlilk goriiniimleri denir.
Sozliigiin girisleri iizerinde dinamik bir goriiniim saglarlar; bu, sozliik degistiginde goriiniimiin bu degisiklikle-
ri yansittig1 anlamina gelir. Sozliik goriiniimiinii tam liste olmaya zorlamak igin 1ist (dictview) kullanin.
Bakiniz dict-views.

belge dizisi
A string literal which appears as the first expression in a class, function or module. While ignored when the suite is
executed, it is recognized by the compiler and put into the ___doc___ attribute of the enclosing class, function or
module. Since it is available via introspection, it is the canonical place for documentation of the object.

ordek yazma
Dogru arayiize sahip olup olmadigini belirlemek igin bir nesnenin tiiriine bakmayan bir programlama stili; bunun
yerine, yontem veya nitelik basitce cagrilir veya kullanilir (“Ordek gibi goriiniiyorsa ve 6rdek gibi vakliyorsa, drdek
olmahdir.”) Iyi tasarlanmig kod, belirli tiirlerden ziyade arayiizleri vurgulayarak, polimorfik ikameye izin vererek
esnekligini artirir. Ordek yazma, t ype () veya isinstance () kullanan testleri 6nler. (Ancak, 6rdek yazmanin
abstract base class ile tamamlanabilecegini unutmayin.) Bunun yerine, genellikle hasattr () testleri veya EAFP
programlamasini kullanir.

EAFP
Af dilemek izin almaktan daha kolaydir. Bu yaygin Python kodlama stili, gecerli anahtarlarin veya niteliklerin
varligini varsayar ve varsayimin yanlis ¢tkmasi durumunda istisnalar1 yakalar. Bu temiz ve hizli stil, birgok t ry ve
except ifadesinin varlig: ile karakterize edilir. Teknik, C gibi diger bir¢ok dilde ortak olan LBYL stiliyle celisir.

ifade (deger dondiiriir)
Bir degere gore degerlendirilebilecek bir s6zdizimi parcasi. Bagka bir deyisle, bir ifade, tiimii bir deger dondiiren
sabit degerler, adlar, dznitelik erisimi, islecler veya islev ¢agrilari gibi ifade dgelerinin bir toplamidir. Diger bir¢ok
dilin aksine, tiim dil yapilar1 ifade degildir. Ayrica while gibi kullanilamayan ifadeler de vardir. Atamalar da
deger dondiirmeyen ifadelerdir (statement).

uzatma modiilii
Cekirdekle ve kullanici koduyla etkilesim kurmak i¢in Python’'un C APT’sini kullanan, C veya C++ ile yazilmig bir
modiil.

f-string
Oneki '£' veya 'F' olan dize degismezleri genellikle “f-strings” olarak adlandirilir; bu, formatted string literals
‘m kisaltmasidir. Ayrica bkz. PEP 498.

dosya nesnesi
An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying resource.
Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of

89


https://peps.python.org/pep-0498/

Python Frequently Asked Questions, Yayim 3.12.3

storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.). File
objects are also called file-like objects or streams.

Aslinda ii¢ dosya nesnesi kategorisi vardir: ham binary files, arabellege alinmis binary files ve text files. Arayiizleri
io modiiliinde tanimlanmustir. Bir dosya nesnesi yaratmanin kuralli yolu open () islevini kullanmaktir.

dosya benzeri nesne
dosya nesnesi ile esanlamlidir.

dosya sistemi kodlamasi ve hata isleyicisi
Python tarafindan isletim sistemindeki baytlarm kodunu ¢ézmek ve Unicode’u igletim sistemine kodlamak icin
kullanilan kodlama ve hata igleyici.

Dosya sistemi kodlamasi, 128’in altindaki tiim baytlarin kodunu basariyla ¢6zmeyi garanti etmelidir. Dosya sistemi
kodlamasi bu garantiyi saglayamazsa, API iglevleri UnicodeError degerini yiikseltebilir.

sys.getfilesystemencoding () ve sys.getfilesystemencodeerrors () islevleri, dosya siste-
mi kodlamasini ve hata isleyicisini almak i¢in kullanilabilir.

filesystem encoding and error handler Python baglangicinda PyConfig_Read () isleviyle yapilandirilir: bkz.
filesystem_encodingve filesystem_errors iiyeleri PyConfig.

Ayrica bkz. locale encoding.

bulucu
Ice aktarilmakta olan bir modiil i¢in /oader ‘1 bulmaya calisan bir nesne.

Python 3.3’ten beri, iki ¢esit bulucu vardir: sys .meta_path ile kullamilmak {izere meta yol bulucular, ve sys .
path_hooks ile kullamlmak tizere yol girisi bulucular.

Daha fazla ayrint1 icin PEP 302, PEP 420 ve PEP 451 bakin.

kat boliimii
En yakin tam saytya yuvarlayan matematiksel bolme. Kat bolme operatorii // seklindedir. Ornegin, 11 // 4
ifadesi, gercek yiizer bolme tarafindan dondiiriilen 2 . 75 degerinin aksine 2 olarak degerlendirilir. (-11) // 4
‘lin -3 olduguna dikkat edin, ¢iinkii bu -2 . 75 yuvarlatilmig asagi. Bakiniz PEP 238.

fonksiyon

Bir arayana bir deger dondiiren bir dizi ifade. Ayrica, govdenin yiriitiilmesinde kullanilabilen sifir veya daha fazla
argtiman iletilebilir. Ayrica parameter, method ve function boliimiine bakin.

fonksiyon aciklamasi
Bir iglev parametresinin veya doniis degerinin ek aciklamast.

Islev ek agiklamalar1 genellikle 7ype hints igin kullanilir: 6rnegin, bu fonksiyonun iki int argiiman almasi ve ayrica
bir int doniis degerine sahip olmasi beklenir

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Islev agiklama s6zdizimi function béliimiinde agiklanmaktadir.

Bu islevi aciklayan variable annotation ve PEP 484 ‘e bakin. Ek agiklamalarla ¢aligmaya iliskin en iyi uygulamalar
icin ayrica annotations-howto konusuna bakin.

future
Bir future ifadesi, from __future__ import <feature>, derleyiciyi, Python’un gelecekteki bir siirii-
miinde standart hale gelecek olan sézdizimini veya semantigi kullanarak mevcut modiilii derlemeye yonlendirir.
__future__ modiili, feature'in olasi degerlerini belgeler. Bu modiilii ice aktararak ve degigkenlerini degerlen-
direrek, dile ilk kez yeni bir 6zelligin ne zaman eklendigini ve ne zaman varsayilan olacagini (ya da yaptigini)
gorebilirsiniz:

90 Ek A. Sézluk


https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

Python Frequently Asked Questions, Yayim 3.12.3

>>> import __ future_
>>> _ future__ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

¢op toplama
Artik kullanilmadiginda bellegi bosaltma iglemi. Python, referans sayimi ve referans dongiilerini algilayip kirabilen
bir dongiisel ¢cop toplayici araciligiyla ¢op toplama gergeklestirir. Cop toplayict gc modiilii kullanilarak kontrol
edilebilir.

jenerator
Bir generator iterator dondiiren bir iglev. Bir for dongiisiinde kullanilabilen bir dizi deger iiretmek icin yield
ifadeleri icermesi veya next () isleviyle birer birer alinabilmesi diginda normal bir igleve benziyor.

Genellikle bir iiretici iglevine atifta bulunur, ancak bazi baglamlarda bir jenerator yineleyicisine atifta bulunabilir.
Amaglanan anlamin net olmadig1 durumlarda, tam terimlerin kullanilmast belirsizligi onler.

jenerator yineleyici
Bir generator islevi tarafindan olusturulan bir nesne.

Her yield, konum yiiriitme durumunu hatirlayarak (yerel degiskenler ve bekleyen try ifadeleri dahil) isleme-
yi gecici olarak askiya alir. jenerator yineleyici devam ettiginde, kaldig1 yerden devam eder (her cagrida yeniden
baslayan iglevlerin aksine).

jenerator ifadesi
Yineleyici dondiiren bir ifade. Bir dongii degiskenini, aralig1 ve istege bagl bir i f yan tiimcesini tanimlayan bir
for yan tiimcesinin takip ettifi normal bir ifadeye benziyor. Birlestirilmis ifade, bir ¢evreleyen icin degerler iiretir:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

genel islev
Farkl tiirler i¢in ayn1 islemi uygulayan birden ¢ok iglevden olusan bir islev. Bir ¢agri sirasinda hangi uygulamanin
kullanilmast gerektigi, gonderme algoritmasi tarafindan belirlenir.

Ayrica single dispatch sozliik girdisine, functools.singledispatch () dekoratoriine ve PEP 443 ‘e bakin.

genel tip
Parametrelendirilebilen bir rype; tipik olarak bir konteyner sinift, ornegin 11 st veya dict. type hint ve annotation
icin kullanilir.

Daha fazla ayrint1 icin generic allias types, PEP 483, PEP 484, PEP 585 ve t yping modiiliine bakin.

GIL
Bakiiz global interpreter lock.

genel terciiman kilidi
CPython yorumlayicisi tarafindan ayni anda yalnizca bir i par¢aciginin Python byfecode ‘u yiiriitmesini saglamak
icin kullanilan mekanizma. Bu, nesne modelini (dict gibi kritik yerlesik tiirler dahil) eszamanli erisime kargi
ortiik olarak giivenli hale getirerek CPython uygulamasini basitlestirir. Tiim yorumlayiciy: kilitlemek, ¢ok islemcili
makinelerin sagladig1 paralelligin ¢ogu pahasina, yorumlayicinin ¢ok ig pargacikli olmasini kolaylastirir.

Bununla birlikte, standart veya ligiincii taraf baz1 genigletme modiilleri, sikistirma veya karma gibi hesaplama ag1-
sindan yogun gorevler yaparken GIL’yi serbest birakacak sekilde tasarlanmistir. Ayrica, GIL, G/C yaparken her
zaman serbest birakilir.

“Serbest is pargacikli” bir yorumlayici (paylagilan verileri cok daha ince bir ayrint1 diizeyinde kilitleyen) olustur-
ma ¢abalari, ortak tek islemcili durumda performans dustiigii i¢in basarili olmamigtir. Bu performans sorununun
tistesinden gelinmesinin uygulamay1 ¢cok daha karmagik hale getirecegine ve dolayisiyla bakimini daha maliyetli
hale getirecegine inanilmaktadir.

91


https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

Python Frequently Asked Questions, Yayim 3.12.3

karma tabanl pyc
Gecerliligini belirlemek i¢in ilgili kaynak dosyanin son degistirilme zamani yerine karma degerini kullanan bir bayt
kodu onbellek dosyasi. Bakiniz pyc-invalidation.

yikanabilir
An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__ ()
method), and can be compared to other objects (it needsan __eq___ () method). Hashable objects which compare
equal must have the same hash value.

Hashability, bir nesneyi bir sozliik anahtar1 ve bir set iiyesi olarak kullanilabilir hale getirir, ¢linkii bu veri yapilari
hash degerini dahili olarak kullanir.

Python’un degismez yerlesik nesnelerinin ¢ogu, yikanabilir; degistirilebilir kaplar (listeler veya sozliikler gibi) de-
gildir; degismez kaplar (tiipler ve donmus kiimeler gibi) yalnizca 6gelerinin yikanabilir olmas1 durumunda yikana-
bilirdir. Kullanic1 tanimli siniflarin 6rnekleri olan nesneler varsayilan olarak hash edilebilirdir. Hepsi esit olmayani
kargilagtirir (kendileriyle haric) ve hash degerleri id () ‘lerinden tiiretilir.

BOSTA
Python icin Entegre Gelistirme Ortamu. idle, Python’un standart dagitimiyla birlikte gelen temel bir diizenleyici ve
yorumlayici ortamidir.

degismez
Sabit degeri olan bir nesne. Degismez nesneler arasinda sayilar, dizeler ve demetler bulunur. Boyle bir nesne degis-
tirilemez. Farkli bir degerin saklanmasi gerekiyorsa yeni bir nesne olusturulmalidir. Ornegin bir sozliikte anahtar
olarak, sabit bir karma degerinin gerekli oldugu yerlerde 6nemli bir rol oynarlar.

ice aktarim yolu
Ice aktarilacak modiiller icin path based finder tarafindan aranan konumlarin (veya path entries) listesi. Ice aktarma
sirasinda, bu konum listesi genellikle sys . path adresinden gelir, ancak alt paketler i¢in iist paketin __path
ozelliginden de gelebilir.

ice aktarma
Bir modiildeki Python kodunun bagka bir modiildeki Python koduna sunulmasi siireci.

ice aktarici
Bir modiilii hem bulan hem de yiikleyen bir nesne; hem bir finder hem de loader nesnesi.

etkilesimli
Python’un etkilesimli bir yorumlayicisi vardir; bu, yorumlayici isteminde ifadeler ve ifadeler girebileceginiz, bunlar
hemen calistirabileceginiz ve sonuglarini gorebileceginiz anlamina gelir. Herhangi bir argiiman olmadan python
‘u baglatmaniz yeterlidir (muhtemelen bilgisayarimizin ana meniisiinden segerek). Yeni fikirleri test etmenin veya
modiilleri ve paketleri incelemenin ¢ok giiclii bir yoludur (help (x) ‘i unutmayn).

yorumlanmis
Python, derlenmis bir dilin aksine yorumlanmuisg bir dildir, ancak bayt kodu derleyicisinin varlig1 nedeniyle ayrim
bulanik olabilir. Bu, kaynak dosyalarin daha sonra calistirilacak bir yiiriitiilebilir dosya olusturmadan dogrudan
caligtirilabilecegi anlamina gelir. Yorumlanan diller genellikle derlenmis dillerden daha kisa bir gelistirme/hata
ayiklama dongiisiine sahiptir, ancak programlari genellikle daha yavag ¢alisir. Ayrica bkz. interactive.

terciiman kapatma
Kapatilmasi istendiginde, Python yorumlayicisi, modiiller ve cesitli kritik i¢ yapilar gibi tahsis edilen tiim kaynak-
lar1 kademeli olarak serbest biraktig1 6zel bir asamaya girer. Ayrica garbage collector i¢in birkag ¢agr1 yapar. Bu,
kullanici taniml yikicilarda veya zayif referans geri aramalarinda kodun yiiriitiilmesini tetikleyebilir. Kapatma asa-
masinda yiiriitiilen kod, dayandig1 kaynaklar artik calismayabileceginden cesitli istisnalarla karsilagabilir (yaygin
ornekler kiitiiphane modiilleri veya uyar1 makineleridir).

Yorumlayicinin kapatilmasinin ana nedeni,
olmasidir.

main__ modiiliiniin veya caligtirilan betigin yiiriitmeyi bitirmis

92 Ek A. Sézluk



Python Frequently Asked Questions, Yayim 3.12.3

yinelenebilir
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define withan __iter__ () methodor witha___getitem__ () method that implements sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (), ...).
When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter () or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generator.

yineleyici

An object representing a stream of data. Repeated calls to the iterator’s __next__ () method (or passing it
to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
toits__next__ () method just raise StopIteration again. Iterators are required to have an __iter_ ()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a 1ist) produces a fresh new iterator each time you pass it to the iter () function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

Daha fazla bilgi typeiter icinde bulunabilir.

CPython uygulama ayrintisi: CPython does not consistently apply the requirement that an iterator define
__iter_ ().

anahtar islev
Anahtar iglevi veya harmanlama islevi, siralama veya siralama icin kullanilan bir degeri dondiiren bir ¢agrilabi-
lir. Ornegin, locale.strxfrm(), yerel ayara 6zgii siralama kurallarmin farkinda olan bir siralama anahtari
tiretmek icin kullanilir.

Python’daki bir dizi arag, 6gelerin nasil siralandigini veya gruplandirildigini kontrol etmek icin temel iglevleri ka-
bul eder. Bunlarmin () ,max (), sorted (), list.sort (), heapg.merge (), heapg.nsmallest (),
heapg.nlargest () ve itertools.groupby ().

Bir tus fonksiyonu olusturmanin birkag yolu vardir. Ornegin. st r . Lower () yontemi, biiyiik/kiigiik harfe duyarlt
olmayan siralamalar i¢in bir anahtar fonksiyonu islevi gorebilir. Alternatif olarak, lambda r: (r[0], r[2])
gibi bir 1ambda ifadesinden bir anahtar islevi olugturulabilir. Ayrica, attrgetter (), itemgetter () ve
methodcaller () fonksiyonlar: ii¢ anahtar fonksiyon kurucularidir. Anahtar islevlerin nasil olusturulacag ve
kullanilacagina iliskin ornekler i¢in Sorting HOW TO boliimiine bakin.

anahtar kelime argiimani
Bakiniz argument.

lambda
Islev cagrildiginda degerlendirilen tek bir expression ‘dan olusan anonim bir satir ici islev. Bir lambda islevi olus-
turmak i¢in s6zdizimi 1ambda [parametreler]: ifade seklindedir

LBYL
Ziplamadan 6nce Bak. Bu kodlama stili, arama veya arama yapmadan 6nce 6n kosullari acikca test eder. Bu stil,
EAFP yaklagimiyla celigir ve birgok i f ifadesinin varlig1 ile karakterize edilir.

Cok is pargacikli bir ortamda, LBYL yaklagim1 “bakan” ve “sicrayan” arasinda bir yaris kosulu getirme riskini ta-
styabilir. Ornegin, 1f key in mapping: return mapping[key] kodu, testten sonra, ancak aramadan
once baska bir ig parcacigi eslemeden key kaldirirsa bagarisiz olabilir. Bu sorun, kilitlerle veya EAFP yaklagimi
kullanilarak coziilebilir.

93



Python Frequently Asked Questions, Yayim 3.12.3

liste
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since
access to elements is O(1).

liste anlama
Bir dizideki 6gelerin tiimiinii veya bir kismini iglemenin ve sonuglart igeren bir liste dondiirmenin kompakt bir yo-
Iu. sonug = ['{:#04x}'.format (x) for range (256) if x % 2 == 0], dizinde ¢ift onaltilik
sayilar (0x..) iceren bir diziler listesi olusturur. O ile 255 arasindadir. i f yan tiimcesi istege baghdir. Atlanirsa,
“aralik(256)” icindeki tiim 6geler islenir.

yiikleyici
Modiil yiikleyen bir nesne. 1oad_module () adinda bir yontem tanimlamalidir. Bir yiikleyici genellikle bir finder
ile dondiiriiliir. Ayrintilar i¢in PEP 302 ve bir soyut temel sinif igin import1lib.abc.Loader boliimiine bakin.

yerel kodlama
Unixte, LC_CTYPE yerel ayarmin kodlamasidir. locale.setlocale(locale.LC_CTYPE,
new_locale) ile ayarlanabilir.

Windows’ta bu, ANSI kod sayfasidir (6r. "cpl1252™").

Android ve VxWorks’te Python, yerel kodlama olarak "ut £-8" kullanir.
locale.getencoding () can be used to get the locale encoding.
Ayrica filesystem encoding and error handler ‘ne bakin.

sihirli yontem
special method i¢in gayri resmi bir esanlaml.

haritalama
Keyfi anahtar aramalarin1 destekleyen ve Mapping veya MutableMapping collections-abstract-base-classes
icinde belirtilen yontemleri uygulayan bir kapsayict nesnesi. Ornekler arasinda dict, collections.
defaultdict, collections.OrderedDict ve collections.Counter sayilabilir.

meta yol bulucu
Bir finder, sys .meta_path aramasiyla dondiiriiliir. Meta yol bulucular, yo! girisi buluculart ile iligkilidir, ancak
onlardan farklidir.

Meta yol bulucularin uyguladigi yontemler i¢in importlib.abc.MetaPathFinder boliimiine bakin.

metasinif
Bir sinifin sinifi. Sf tanimlari, bir sinif adi, bir siif s6z1igii ve temel siniflarin bir listesini olugturur. Metasinif,
bu ti¢ argiimani almaktan ve sinift olusturmaktan sorumludur. Cogu nesne yonelimli programlama dili, varsayilan
bir uygulama saglar. Python’u 6zel yapan sey, 6zel metasiniflar olusturmanin miimkiin olmasidir. Cogu kullanict
bu araca hicbir zaman ihtiya¢ duymaz, ancak ihtiya¢ duyuldugunda, metasiiflar giiclii ve zarif ¢oziimler sagla-
yabilir. Nitelik erigimini giinliife kaydetmek, is parcacig1 giivenligi eklemek, nesne olusturmayi izlemek, tekilleri
uygulamak ve diger bircok gorev icin kullanilmiglardir.

Daha fazla bilgi metaclasses i¢inde bulunabilir.

metot
Bir smif govdesi iginde tanimlanan bir iglev. Bu sinifin bir 6érneginin 6zniteligi olarak ¢agrilirsa, yontem 6rnek
nesnesini ilk argument (genellikle se 1 f olarak adlandirilir) olarak alir. Bkz. function ve nested scope.

metot kalite siralamasi
Method Resolution Order is the order in which base classes are searched for a member during lookup. See pyt-
hon_2.3_mro for details of the algorithm used by the Python interpreter since the 2.3 release.

modiil
Python kodunun kurulus birimi olarak hizmet eden bir nesne. Modiiller, rastgele Python nesneleri igeren bir ad
alanina sahiptir. Modiiller, importing islemiyle Python’a yiiklenir.

94 Ek A. Sézluk


https://peps.python.org/pep-0302/

Python Frequently Asked Questions, Yayim 3.12.3

Ayrica bakiniz package.

modiil 6zelligi
Bir modiilii yiiklemek icin kullanilan ice aktarmayla ilgili bilgileri igeren bir ad alami. Bir importlib.
machinery.ModuleSpec Ornegi.

MRO
Bakiniz metot ¢oziim sirasi.

degistirilebilir
Degistirilebilir (mutable) nesneler degerlerini degistirebilir ancak 1dlerini koruyabilirler. Ayrica bkz. immu-
table.

adlandirilmis demet
“named tuple” terimi, demetten miras alan ve dizinlenebilir 6gelerine de adlandirilmis nitelikler kullanilarak eri-
silebilen herhangi bir tiir veya sinif icin gegerlidir. Tiir veya sinifin bagka 6zellikleri de olabilir.

Cesitli yerlesik tiirler, time.localtime () ve os.stat () tarafindan dondiiriilen degerler de dahil olmak
iizere, tanimlama gruplar1 olarak adlandirilir. Bagka bir 6rnek sys.float_info:

>>> sys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand, or it can be created by inheriting t yping . NamedTuple, or with the factory function collections.
namedtuple (). The latter techniques also add some extra methods that may not be found in hand-written or
built-in named tuples.

ad alam
Degiskenin saklandig1 yer. Ad alanlar1 sozliikler olarak uygulanir. Nesnelerde (yontemlerde) yerel, genel ve yerle-
sik ad alanlarinin yani sira i¢ ice ad alanlar1 vardir. Ad alanlari, adlandirma ¢akigmalarini 6nleyerek modiilerligi
destekler. Ornegin, builtins.open ve os.open () islevleri ad alanlariyla ayirt edilir. Ad alanlari, hangi
modiiliin bir islevi uyguladigini acik¢a belirterek okunabilirlige ve siirdiiriilebilirlige de yardimer olur. Ornegin,
random.seed () veya itertools.islice () yazmak, bu iglevlerin sirastyla random ve itertools
modiilleri tarafindan uygulandigini agikga gosterir.

ad alam paketi
A PEP 420 package, yalmzca alt paketler icin bir kap olarak hizmet eder. Ad alan1 paketlerinin higbir fiziksel
temsili olmayabilir ve __init__ .py dosyasi olmadigindan 6zellikle regular package gibi degildirler.

Ayrica bkz. module.

i¢ ice kapsam
Kapsamli bir tanimdaki bir degiskene atifta bulunma yetenegi. Ornegin, bagka bir fonksiyonun icinde tanimlanan bir
fonksiyon, dis fonksiyondaki degiskenlere atifta bulunabilir. I¢ ice kapsamlarin varsayilan olarak yalnizca basvuru
icin calistigini ve atama icin calisgmadigini unutmayn. Yerel degiskenler en icteki kapsamda hem okur hem de yazar.
Benzer sekilde, global degiskenler global ad alanini okur ve yazar. nonlocal, dig kapsamlara yazmaya izin verir.

yeni stil simf
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only new-style classes
could use Python’s newer, versatile features like ___slots__, descriptors, properties, __getattribute__ (),
class methods, and static methods.

obje
Durum (6znitelikler veya deger) ve tanimlanmig davranig (yontemler) iceren herhangi bir veri. Ayrica herhangi bir

95


https://peps.python.org/pep-0420/

Python Frequently Asked Questions, Yayim 3.12.3

yeni tarz sinifin nihai temel sinifi.

paket
Alt modiiller veya yinelemeli olarak alt paketler icerebilen bir Python module. Teknik olarak bir paket,
Ozniteligine sahip bir Python modiiliidiir.

path__

Ayrica bkz. regular package ve namespace package.

parametre
Bir function (veya yontem) taniminda, islevin kabul edebilecegi bir argument (veya bazi durumlarda, argiimanlar)
belirten adlandirilmig bir varlik. Bes ¢esit parametre vardir:

* positional-or-keyword: pozisyonel veya bir keyword argiiman: olarak iletilebilen bir argiiman belirtir. Bu,
varsayilan parametre tiiriidiir, 6rnegin asagidakilerde foo ve bar:

[def func (foo, bar=None): ... J

* positional-only: yalnizca konuma gore saglanabilen bir argliman belirtir. Yalnizca konumsal parametreler,
onlardan sonra fonksiyon taniminin parametre listesine bir / karakteri eklenerek tanimlanabilir, 6rnegin asa-
&idakilerde posonlyl ve posonly2:

[def func (posonlyl, posonly2, /, positional_or_keyword): ... J

* keyword-only: sadece anahtar kelime ile saglanabilen bir argiiman belirtir. Yalnizca anahtar kelime (keyword-
only) parametreleri, onlardan 6nceki fonksiyon taniminin parametre listesine tek bir degisken konumlu pa-
rametre veya ¢iplak * dahil edilerek tanimlanabilir, 6rnegin asagidakilerde kw_onlyl ve kw_only2:

[def func (arg, *, kw_onlyl, kw_only2): ... ]

* var-positional: keyfi bir pozisyonel argiiman dizisinin saglanabilecegini belirtir (diger parametreler tarafindan
zaten kabul edilmis herhangi bir konumsal argiimana ek olarak). Boyle bir parametre, parametre adinin bagina
* eklenerek tanimlanabilir, 6rnegin agagidakilerde args:

[def func (*args, **kwargs): ... ]

* var-keyword: keyfi olarak bircok anahtar kelime argiimaninin saglanabilecegini belirtir (diger parametre-
ler tarafindan zaten kabul edilen herhangi bir anahtar kelime argiimanina ek olarak). Boyle bir parametre,
parametre adinin bagina * *, 6rnegin yukaridaki ornekte kwargs eklenerek tanimlanabilir.

Parametreler, hem istege bagl hem de gerekli argtimanleri ve ayrica bazi istege bagli bagimsiz degiskenler icin
varsayilan degerleri belirtebilir.

Ayrica bkz. argiiman, argiimanlar ve parametreler arasindaki fark, inspect .Parameter, function ve PEP
362.

yol girisi
path based finder i¢e aktarma modiillerini bulmak i¢in bagvurdugu import path tizerindeki tek bir konum.

yol girisi bulucu
Bir finder sys.path_hooks (yani bir yol giris kancast) iizerinde bir ¢agrilabilir tarafindan dondiiriiliir ve path
entry verilen modiillerin nasil bulunacagin bilir.

Yol girisi bulucularinin uyguladigi yontemler i¢in importlib.abc.PathEntryFinder bolimiine bakin.

yol giris kancasi
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules on a
specific path entry.

yol tabanl bulucu
Modiiller icin bir import path arayan varsayilan meta yol buluculardan biri.

96 Ek A. Sézluk


https://peps.python.org/pep-0362/
https://peps.python.org/pep-0362/

Python Frequently Asked Questions, Yayim 3.12.3

yol benzeri nesne

PEP

Bir dosya sistemi yolunu temsil eden bir nesne. Yol benzeri bir nesne, bir yolu temsil eden bir st r veya bytes
nesnesi veya os.PathLike protokoliinii uygulayan bir nesnedir. os.PathLike protokoliinii destekleyen
bir nesne, os . fspath () islevi ¢agrilarak bir str veya bytes dosya sistemi yoluna doniistiiriilebilir; os .
fsdecode () ve os.fsencode (), bunun yerine sirasiyla st r veya bytes sonucunu garanti etmek i¢in kul-
lanilabilir. PEP 519 tarafindan tanitildi.

Python Gelistirme Onerisi. PEP, Python topluluguna bilgi saglayan veya Python veya siirecleri ya da ortami igin
yeni bir 6zelligi aciklayan bir tasarim belgesidir. PEP’ler, onerilen 6zellikler icin 6zIii bir teknik sartname ve bir
gerekge saglamalidir.

PEP’lerin, 6nemli yeni 6zellikler 6nermek, bir sorun hakkinda topluluk girdisi toplamak ve Python’a giren tasarim
kararlarini belgelemek i¢in birincil mekanizmalar olmas1 amaglanmistir. PEP yazari, topluluk icinde fikir birligi
olusturmaktan ve muhalif goriigleri belgelemekten sorumludur.

Bakiniz PEP 1.

Kisim

PEP 420 icinde tanimlandig1 gibi, bir ad alan1 paketine katkida bulunan tek bir dizindeki (muhtemelen bir zip
dosyasinda depolanan) bir dizi dosya.

konumsal argiiman

Bakiniz argument.

gecici API

Gegici bir API, standart kitapligin geriye doniik uyumluluk garantilerinden kasitli olarak hari¢ tutulan bir APT'dir.
Bu tiir arayiizlerde biiyiik degisiklikler beklenmese de, gecici olarak isaretlendikleri siirece, ¢ekirdek gelistiriciler
tarafindan gerekli goriildiigii takdirde geriye doniik uyumsuz degisiklikler (arayiiziin kaldirilmasina kadar ve buna
kadar) meydana gelebilir. Bu tiir degisiklikler kargiliksiz yapilmayacaktir - bunlar yalnizca API'nin eklenmesinden
once gozden kagan ciddi temel kusurlar ortaya ¢ikarsa gergeklesecektir.

Gecici APT'’ler icin bile, geriye doniik uyumsuz degisiklikler “son care ¢coziimii” olarak goriiliir - tanimlanan her-
hangi bir soruna geriye doniik uyumlu bir ¢dziim bulmak i¢in her tiirlii girisimde bulunulacaktir.

Bussiirec, standart kitapligin, uzun siireler boyunca sorunlu tasarim hatalarina kilitlenmeden zaman i¢inde gelismeye
devam etmesini saglar. Daha fazla ayrint1 igin bkz. PEP 411.

gecici paket

Bakiniz provisional API.

Python 3000

Python 3.x siiriim satirinin takma adi (uzun zaman 6nce siirlim 3’iin piyasaya stiriilmesi uzak bir gelecekte oldugu
zaman ortaya ¢ikti.) Bu ayn1 zamanda “Py3k” olarak da kisaltilir.

Pythonic

Diger dillerde ortak kavramlar1 kullanarak kod uygulamak yerine Python dilinin en yaygin deyimlerini yakindan
takip eden bir fikir veya kod parcasi. Ornegin, Python’da yaygin bir deyim, bir £ or ifadesi kullanarak yinelenebilir
bir 6genin tiim 6geleri tizerinde dongii olusturmaktir. Diger birgok dilde bu tiir bir yap1 yoktur, bu nedenle Python’a
agina olmayan kigiler bazen bunun yerine sayisal bir saya¢ kullanir:

g
for i in range(len(food)):

print (food[i])

L

Temizleyicinin aksine, Pythonic yontemi:

p
for piece in food:
print (piece)

97


https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

Python Frequently Asked Questions, Yayim 3.12.3

nitelikli isim
PEP 3155 i¢inde tanimlandig1 gibi, bir modiiliin genel kapsamindan o modiilde tanimlanan bir sinifa, igleve veya
yonteme giden “yolu” gosteren noktal ad. Ust diizey islevler ve smiflar i¢in nitelikli ad, nesnenin adiyla aymdir:

p
>>> class C:

class D:
def meth (self):
pass

>>> C.__ _qgualname___

YC’

>>> C.D.__gqualname_
'C.D'

>>> C.D.meth.__ _qualname_
'C.D.meth'

Modiillere atifta bulunmak i¢in kullanildiginda, fam nitelenmis ad, herhangi bir iist paket de dahil olmak iizere,
modiile giden tiim noktali yol anlamina gelir, 6rn. email .mime.text:

>>> import email .mime.text
>>> email.mime.text._ name_
'email .mime.text'

referans sayisi
The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Some objects are “immortal” and have reference counts that are never modified, and therefore the objects are never
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. Programmers can call the sys.getrefcount () function to return the reference count for a
particular object.

siirekli paketleme
__init__ .py dosyasi iceren bir dizin gibi geleneksel bir package.

Ayrica bkz. ad alani paketi.

slots
Ornek oznitelikleri i¢in &nceden yer bildirerek ve 6rnek sozliiklerini ortadan kaldirarak bellekten tasarruf saglayan
bir sinif i¢indeki bildirim. Popiiler olmasina ragmen, teknigin dogru olmasi biraz zor ve en iyi, bellek acgisindan
kritik bir uygulamada ¢ok sayida 6rnegin bulundugu nadir durumlar igin ayrilmastir.
dizi

An iterable which supports efficient element access using integer indices viathe __getitem__ () special method
and definesa ___len__ () method that returns the length of the sequence. Some built-in sequence typesare 1ist,
str,tuple,and bytes. Note that dict alsosupports __getitem__ () and__len__ (), butis considered
a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just _ _getitem__ () and __len__ (), adding count (), index (), contains__ (), and
__reversed__ (). Types that implement this expanded interface can be registered explicitly using
register (). For more documentation on sequence methods generally, see Common Sequence Operations.

anlamak
Ogelerin tiimiinii veya bir kismim yinelenebilir bir sekilde islemenin ve sonuglarla birlikte bir kiime dondiirme-
nin kompakt bir yolu. results = {c¢ for ¢ in 'abracadabra' if ¢ not in 'abc'}, {'r',
'd"' } dizelerini olusturur. Bakiniz comprehensions.

tek sevk
Uygulamanin tek bir argiiman tiiriine gore secildigi bir generic function gonderimi bi¢imi.

98 Ek A. Sézluk



https://peps.python.org/pep-3155/

Python Frequently Asked Questions, Yayim 3.12.3

parcalamak
Genellikle bir sequence ‘nin bir boliimiinii igeren bir nesne. Bir dilim, 6rnegin variable_name[1:3:5] ‘de
oldugu gibi, birkag tane verildiginde, sayilar arasinda iki nokta iist iiste koyarak, [ ] alt simge gosterimi kullanilarak
olusturulur. Koseli ayrag (alt simge) gosterimi, dahili olarak s11ice nesnelerini kullanir.

0zel metod
Toplama gibi bir tiir izerinde belirli bir iglemi yiiriitmek i¢in Python tarafindan ortiik olarak cagrilan bir yontem. Bu
tiir yontemlerin cift alt cizgi ile baglayan ve biten adlar1 vardir. Ozel yontemler specialnames icinde belgelenmistir.

ifade (deger dondiirmez)
Bir ifade, bir paketin parcgasidir (kod “blogu”). Bir ifade, bir expression veya 1 £, while veya for gibi bir anahtar
kelimeye sahip birkac yapidan biridir.

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also rype
hints and the t yping module.

giiclii referans
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the refe-
rence. The strong reference is taken by calling Py_ INCREF () when the reference is created and released with
Py_DECREF () when the reference is deleted.

Py_NewRef () fonksiyonu, bir nesneye giiclii bir bagvuru olusturmak igin kullanilabilir. Genellikle
Py_DECREF () fonksiyonu, bir referansin sizmasini 6nlemek igin giiclii referans kapsamindan ¢ikmadan 6nce
giiclii referansta ¢agrilmalidir.

Ayrica bkz. ddiing alinan referans.

yaz1 ¢oziimleme
Python’da bir dize, bir Unicode kod noktalar1 dizisidir (U+0000-U+10FFFF araliginda). Bir dizeyi depolamak
veya aktarmak icin, bir bayt dizisi olarak seri hale getirilmesi gerekir.

Bir dizeyi bir bayt dizisi halinde seri hale getirmek “kodlama (encoding)” olarak bilinir ve dizeyi bayt dizisinden
yeniden olusturmak “kod ¢dzme (decoding)” olarak bilinir.

Toplu olarak “metin kodlamalar1” olarak adlandirilan ¢esitli farkli metin serilestirme kodekleri vardir.

yaz1 dosyasi
A file object st r nesnelerini okuyabilir ve yazabilir. Cogu zaman, bir metin dosyasi aslinda bir bayt yonelimli veri
akigina erisir ve otomatik olarak rext encoding isler. Metin dosyalarina 6rnek olarak metin modunda acilan dosyalar
("r'veya 'w'), sys.stdin, sys.stdout ve 1o.StringIO ornekleri verilebilir.

Ayrica ikili dosyalar: okuyabilen ve yazabilen bir dosya nesnesi i¢in bayt benzeri nesnelere bakin.

ii¢c tirnakh dize
Ucg tirnak isareti (”) veya kesme isareti () ile sinirlanan bir dize. Tek tirnakli dizelerde bulunmayan herhangi bir
islevsellik saglamasalar da, birka¢ nedenden dolay: faydalidirlar. bir dizeye ¢ikigsiz tek ve ¢ift tirnak eklemeniz
gerekir ve bunlar, devam karakterini kullanmadan birden ¢ok satira yayilabilir, bu da onlar1 6zellikle belge dizileri
yazarken kullanigh hale getirir.

tip
Bir Python nesnesinin tiirii, onun ne tiir bir nesne oldugunu belirler; her nesnenin bir tiirii vardir. Bir nesnenin tipine
__class__ niteligi ile erisilebilir veya t ype (ob7j) ile alinabilir.

tip takma adi

Bir tanimlayiciya tiir atanarak olusturulan, bir tiir igin es anlaml.

Tiir takma adlari, #iir ipuclarin basitlestirmek igin kullamslhidir. Ornegin:

99



Python Frequently Asked Questions, Yayim 3.12.3

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplel[int, int, int]]:
pass

bu sekilde daha okunakli hale getirilebilir:

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

Bu iglevi agiklayan t yping ve PEP 484 boliimlerine bakin.

tiir ipucu
Bir degisken, bir sinif niteligi veya bir iglev parametresi veya doniis degeri i¢in beklenen tiirii belirten bir ek acik-
lama.

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can also aid
IDEs with code completion and refactoring.

Genel degiskenlerin, smif Ozniteliklerinin ve islevlerin tiir ipuglarina, yerel degiskenlere degil, typing.
get_type_hints () kullanmlarak erisilebilir.

Bu iglevi agiklayan t yping ve PEP 484 boliimlerine bakin.

evrensel yeni satirlar
Asagidakilerin tiimiiniin bir satirin bitisi olarak kabul edildigi metin akiglarin1 yorumlamanin bir yolu: Unix satir
sonu kurali \n', Windows kurali '\r\n"', ve eski Macintosh kurali '\r'. Ek bir kullanim i¢cin PEP 278 ve
PEP 3116 ve ayricabytes.splitlines () bakin.

degisken aciklama
Bir degiskenin veya bir sinif ozniteliginin ek aciklamast.

Bir degiskene veya siif nitelifine aciklama eklerken atama istege baghdir:

class C:
field: 'annotation'

Degisken agiklamalar1 genellikle #ir ipuclar: i¢in kullanilir: 6rnegin, bu degiskenin int degerlerini almasi beklenir:

[count: int = 0 ]

Degisken aciklama so6zdizimi annassign boliimiinde agiklanmigtir.

Bu islevi aciklayan; function annotation, PEP 484 ve PEP 526 boliimlerine bakin. Ek agiklamalarla ¢alismaya
iligkin en iyi uygulamalar i¢in ayrica bkz. annotations-howto.

sanal ortam
Python kullanicilariin ve uygulamalarinin, ayni sistem tizerinde ¢alisan diger Python uygulamalarinin davranigina
miidahale etmeden Python dagitim paketlerini kurmasina ve yiikseltmesine olanak taniyan, igbirligi icinde yalitilmig
bir caligma zamani ortami.

Ayrica bakiniz venv.

sanal makine
Tamamen yazilimla tanimlanmig bir bilgisayar. Python’un sanal makinesi, bayt kodu derleyicisi tarafindan yayin-
lanan bytecode ‘u ¢aligtirir.

Python’un Zen’i
Dili anlamaya ve kullanmaya yardimci olan Python tasarim ilkeleri ve felsefelerinin listesi. Liste, etkilesimli komut
isteminde “import this” yazarak bulunabilir.

100 Ek A. Sézluk


https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

ex B

Bu dokumanlar hakkinda

Bu dokiimanlar, Python dokiimanlari i¢in 6zel olarak yazilmig bir dokiiman islemcisi olan Sphinx tarafindan reStructu-
redText kaynaklarmdan olusturulur.

Dokiimantasyonun ve arag zincirinin gelistirilmesi, tipki Python’un kendisi gibi tamamen goniillii bir ¢cabadir. Katkida
bulunmak istiyorsaniz, nasil yapacaginiza iliskin bilgi icin liitfen reporting-bugs sayfasina gz atin. Yeni goniilliilere her
zaman agi1z!

Destekleri igin tesekkiirler:
¢ Fred L. Drake, Jr., orijinal Python dokiimantasyon arag setinin yaraticisi ve i¢erigin ¢ogunun yazart;
 Docutils projesi, reStructuredText ve Docutils paketini olugturduklari i¢in;

* Fredrik Lundh, Sphinx’in pek ¢ok iyi fikir edindigi Alternatif Python Referans: projesi icin.

B.1 Python Dokiimantasyonuna Katkida Bulunanlar

Birgok kisi Python diline, Python standart kiitiiphanesine ve Python dokiimantasyonuna katkida bulunmugtur. Katkida
bulunanlarin kismi bir listesi icin Python kaynak dagitiminda Misc/ACKS dosyasina bakin.

Python toplulugunun girdileri ve katkilar1 sayesinde boyle harika bir dokiimantasyona sahibiz — Tegekkiirler!

101


https://www.sphinx-doc.org/
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.12/Misc/ACKS

Python Frequently Asked Questions, Yayim 3.12.3

102 Ek B. Bu dokiimanlar hakkinda



ex G

Tarihce ve Lisans

C.1 Yazilimin tarihcgesi

Python, 1990’larin baginda Guido van Rossum tarafindan Hollanda’da Stichting Mathematisch Centrum’da (CWI, bkz.
https://www.cwi.nl/) ABC adli bir dilin devam1 olarak olusturuldu. Guido, digerlerinin olduk¢a katkis1 olmasina ragmen,
Python’un ana yazari olmaya devam ediyor.

1995’te Guido, yazilimin ¢egitli siiriimlerini yayinladig1 Virginia, Reston’daki Ulusal Aragtirma Girisimleri Kurumu’nda
(CNRI, bkz. https://www.cnri.reston.va.us/) Python tizerindeki ¢aligmalarina devam etti.

May1s 2000°de, Guido ve Python ¢ekirdek gelistirme ekibi, BeOpen PythonLabs ekibini olusturmak i¢in BeOpen.com’a
tagind1. Ayn1 yilin Ekim ayinda PythonLabs ekibi Digital Creations’a (simdi Zope Corporation; bkz. https://www.zope.
org/) tagindi. 2001 yilinda, Python Yazilim Vakfi (PSF, bkz. https://www.python.org/psf/) kuruldu, 6zellikle Python ile
ilgili Fikri Miilkiyete sahip olmak icin olusturulmus kar amaci giitmeyen bir organizasyon. Zope Corporation, PSF’nin
sponsor iiyesidir.

Tiim Python siirtimleri A¢ik Kaynaklidir (A¢ik Kaynak Tanimi icin bkz. https://opensource.org/). Tarihsel olarak, tiimii
olmasa da ¢ogu Python siirtimleri de GPL uyumluydu; asagidaki tablo ¢esitli yayinlar1 6zetlemektedir.

Yayin Sundan tiiredi:  Yil Sahibi GPL uyumlu mu?
0.9.0dan 1.2’ye  n/a 1991-1995 CWI evet
1.3°dan 1.5.2’ye 1.2 1995-1999 CNRI evet
1.6 1.5.2 2000 CNRI hayir
2.0 1.6 2000 BeOpen.com  hayir
1.6.1 1.6 2001 CNRI hayir
2.1 2.0+1.6.1 2001 PSF hayir
2.0.1 2.0+1.6.1 2001 PSF evet
2.1.1 2.1+2.0.1 2001 PSF evet
2.1.2 2.1.1 2002 PSF evet
2.1.3 2.1.2 2002 PSF evet
2.2 ve lizeri 2.1.1 2001-Giiniimiiz  PSF evet

103


https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Frequently Asked Questions, Yayim 3.12.3

Not: GPL uyumlu olmasi, Python’u GPL kapsaminda dagittigimiz anlamina gelmez. Tiim Python lisanslari, GPL’den
farkli olarak, degisikliklerinizi agik kaynak yapmadan degistirilmis bir siiriimii dagitmaniza izin verir. GPL uyumlu li-
sanslar, Python’u GPL kapsaminda yayilanan diger yazilimlarla birlestirmeyi miimkiin kilar; digerleri yapmaz.

Bu yayinlar1 miimkiin kilmak i¢in Guido’nun yonetimi altinda ¢aligan bir¢ok goniilliiye tegekkiirler.

C.2 Python’a erismek veya baska bir sekilde kullanmak icin sartlar
ve kosullar

Python yazilim1 ve belgeleri PSF Lisans Anlasmas: kapsaminda lisanslanmugtir.

Python 3.8.6’dan baglayarak, belgelerdeki 6rnekler, tarifler ve diger kodlar, PSF Lisans Sozlesmesi ve Zero-Clause BSD
license kapsaminda cift lisanshdir.

Python’a dahil edilen bazi yazilimlar farkl lisanslar altindadir. Lisanslar, bu lisansa giren kodla listelenir. Bu lisanslarin
eksik listesi i¢in bkz. Tiizel Yazilimlar icin Lisanslar ve Onaylar.

C.2.1 PYTHON iCiN PSF LISANS ANLASMASI 3.12.3

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),.
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

3.12.3 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.12.3 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All_
—Rights
Reserved" are retained in Python 3.12.3 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.12.3 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.12.3.

4. PSF is making Python 3.12.3 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION.
<~>OR

104 Ek C. Tarihce ve Lisans



Python Frequently Asked Questions, Yayim 3.12.3

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT..
—THE
USE OF PYTHON 3.12.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.12.3

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.12.3, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach.
—of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.12.3, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 PYTHON 2.0 iCiN BEOPEN.COM LiSANS SOZLESMESI

BEOPEN PYTHON ACIK KAYNAK LISANS SOZLESMESi SURUM 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.
(sonraki sayfaya devam)

C.2. Python’a erismek veya baska bir sekilde kullanmak icin sartlar ve kosullar 105




Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 PYTHON 1.6.1 iCiN CNRI LISANS ANLASMASI

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.
(sonraki sayfaya devam)

106 Ek C. Tarihce ve Lisans




Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 0.9.0 ARASI 1.2 PYTHON iCiN CWI LISANS SOZLESMESI

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE .

C.2. Python’a erismek veya baska bir sekilde kullanmak icin sartlar ve kosullar 107




Python Frequently Asked Questions, Yayim 3.12.3

C.2.5 PYTHON 3.12.3 BELGELERINDEKI KOD iCiN SIFIR MADDE BSD LiSANSI

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 Tuzel Yazilimlar icin Lisanslar ve Onaylar

Bu boliim, Python dagitimina dahil edilmis tigiincti taraf yazilimlar icin tamamlanmamis ancak biiyiiyen bir lisans ve onay
listesidir.

C.3.1 Mersenne Twister’

random modiiliiniin altyapsini olusturan _random C uzantist, http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html adresinden indirilen kodu temel alir. Orijinal koddan kelimesi kelimesine yorumlar agagidadir:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array (init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
(sonraki sayfaya devam)

108 Ek C. Tarihce ve Lisans



http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Soketler

socket modiilii, https://www.wide.ad.jp/ adresindeki WIDE Projesinden ayr1 kaynak dosyalarinda kodlanan
getaddrinfo () ve getnameinfo () fonksiyonlarim kullanir.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asenkron soket hizmetleri

The test.support.asynchat and test.support.asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved
Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

(sonraki sayfaya devam)

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 109



https://www.wide.ad.jp/

Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cerez yonetimi

http.cookies modiilii agagidaki uyarty1 icerir:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Calistirma izleme

trace modiilii agagidaki uyar1yi igerir:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.

(sonraki sayfaya devam)

110 Ek C. Tarihce ve Lisans




Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode ve UUdecode fonksiyonlari

uu modiilii agagidaki uyarry1 igerir:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 111




Python Frequently Asked Questions, Yayim 3.12.3

C.3.7 XML Uzaktan Yordam Cagrilari

xmlrpc.client modiilii asagidaki uyariy1 igerir:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

test.test_epoll modiilii asagidaki uyariy1 icerir:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

112 Ek C. Tarihce ve Lisans




Python Frequently Asked Questions, Yayim 3.12.3

C.3.9 kqueue sec¢in

select modiilii, kqueue arayiizii i¢in agagidaki uyar1y1 igerir:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

Python/pyhash.c dosyasi, Dan Bernstein’in SipHash24 algoritmasinin Marek Majkowski uygulamasini igerir. Bu-
rada asagidaki not yer alir:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 113




Python Frequently Asked Questions, Yayim 3.12.3

C.3.11 strtod ve dtoa

C double’larinin dizelere ve dizelerden doniistiiriilmesi i¢in dtoa ve strtod C fonksiyonlarini saglayan Python/dtoa.c
dosyast, su anda https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c ‘den erisilebilen David
M. Gay tarafindan ayni adli dosyadan tiiretilmigtir. 16 Mart 2009°da alinan orijinal dosya asagidaki telif hakk: ve lisans
bildirimini igerir:

/****************************************************************

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*

WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***************************************************************/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived from
that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

(sonraki sayfaya devam)

114 Ek C. Tarihce ve Lisans



https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
(sonraki sayfaya devam)

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 115




Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

Contribution(s) alone or by combination of their Contribution (s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
(sonraki sayfaya devam)

116 Ek C. Tarihce ve Lisans




Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
——-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
(sonraki sayfaya devam)

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 117




Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT .
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

ctypes modiiliiniin altyapsini olusturan _ct ypes C uzantisi, ——with-system—1ibf fi olarak yapilandiriimadig
siirece libffi kaynaklarmin dahil edildigi bir kopya kullanilarak olusturulur:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the

‘" Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

z 11ib uzantist, sistemde bulunan zlib siiriimii derleme i¢in kullanilamayacak kadar eskiyse, zlib kaynaklarinin dahil edil-
digi bir kopya kullanilarak olusturulur:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
(sonraki sayfaya devam)

118 Ek C. Tarihce ve Lisans




Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

tracemalloc tarafindan kullanilan hash tablosunun uygulanmasi cfuhash projesine dayanmaktadir:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 119




Python Frequently Asked Questions, Yayim 3.12.3

C.3.17 libmpdec

The _decimal C extension underlying the decimal module is built using an included copy of the libmpdec library
unless the build is configured ——with-system—1ibmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test paketi

test paketindeki CI14N 2.0 test paketi (Lib/test/xmltestdata/cl14n-20/), https://www.w3.org/TR/
xml-c14n2-testcases/ adresindeki W3C web sitesinden alinmistir ve 3 maddeli BSD lisansi altinda dagitilmaktadir:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
(sonraki sayfaya devam)

120 Ek C. Tarihce ve Lisans



https://www.w3.org/TR/xml-c14n2-testcases/
https://www.w3.org/TR/xml-c14n2-testcases/

Python Frequently Asked Questions, Yayim 3.12.3

(onceki sayfadan devam)

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project. https://sourceforge.net/projects/sox/files/sox/
12.17.7/s0x-12.17.7 .tar.gz

This source code is a product of Sun Microsystems, Inc. and is provided for unrestricted use. Users may copy
or modify this source code without charge.

SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PUR-
POSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.

Sun source code is provided with no support and without any obligation on the part of Sun Microsystems,
Inc. to assist in its use, correction, modification or enhancement.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGE-
MENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE OR ANY
PART THEREOF.

In no event will Sun Microsystems, Inc. be liable for any lost revenue or profits or other special, indirect and
consequential damages, even if Sun has been advised of the possibility of such damages.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, California 94043

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 121



https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://github.com/MagicStack/uvloop/tree/v0.16.0

Python Frequently Asked Questions, Yayim 3.12.3

122 Ek C. Tarihce ve Lisans



ek D

Telif Hakki

Python ve bu dokiimantasyon:

Telif Hakki © 2001-2023 Python Software Foundation. Ttim haklart saklidir.

Telif Hakk1 © 2000 BeOpen.com. Tiim haklar1 saklidir.

Telif Hakki © 1995-2000 Ulusal Aragtirma Girisimleri Kurumu. Tiim haklar1 saklidir.
Telif Hakki © 1991-1995 Stichting Mathematisch Centrum. Tiim haklari saklidir.

Biitiin lisans ve izin bilgileri i¢in Tarihce ve Lisans ‘a gbz atin.

123



Python Frequently Asked Questions, Yayim 3.12.3

124 Ek D. Telif Hakki



Dizin

Alfabetik olmayan

..., 85
2to3, 85
>>>, 85
__ future_ ,90
__slots_ ,98

A

ad alanzi, 95
ad alani paketi, 95
adlandirilmis demet, 95
anahtar islewv, 93
anahtar kelime argiimanai, 93
anlamak, 98
argument

difference from parameter, 15
argiliman, 86
asenkron badlam ydneticisi, 86
asenkron jeneratdr, 86
asenkron jeneratdr yineleyici, 86
asenkron yineleyici, 86

B

baglam dediskeni, 88
baglam ydneticisi, 88
bayt benzeri nesne, 87
bayt kodu, 87

BDFL, 87
beklenebilir, 87

belge dizisi, 89
bitisik, 88

BOSTA, 92

bulucu, 90

C

C-contiguous, 88
CPython, 88

G

cadirilabilir, 87

¢dp toplama, 91

D

deJisken aciklama, 100

degismez, 92

deJistirilebilir,95

dekoratdr, 88

dipnot, 85

dizi, 98

dosya benzeri nesne, 90

dosya nesnesi, 89

dosya sistemi kodlamasi ve hata
isleyicisi, 90

E

EAFP, 89

esyordam, 88

esyordam islevi, 88
eszamansiz yinelenebilir, 86
etkilesimli, 92

evrensel yeni satirlar, 100

F

f-string, 89
fonksiyon, 90

fonksiyon aciklamaszi, 90
Fortran contiguous, 88

G

gegici API,97

geg¢ici paket, 97

genel islev, 91

genel terciiman kilidi, 91
genel tip,91

geri ¢agirmak, 87

GII, 91

gliclii referans, 99

Fl

haritalama, 94

125



Python Frequently Asked Questions, Yayim 3.12.3

i dzel metod, 99

i¢ ice kapsam,95 P
ice aktaraicai, 92

i¢e aktarim yolu, 92
ice aktarma, 92

ifade (deger dondiirmez), 99
ifade (deger dondiiriir), 89
ikili dosya, 87

paket, 96
parameter
difference from argument, 15
parametre, 96
parcalamak, 99
PATH, 58
J PEP, 97
Python 3000, 97

jeneratdr, 91 Python Gelistirme Onerileri

jeneratdr ifadesi, 91

. : o PEP 1,97
jeneratdr yineleyici, 91 PEP 5,6
K PEP 8,10,37,78
PEP 238,90
karma tabanli pyc, 92 PEP 278, 100
karmasik sayai, 88 PEP 302,90, 94
kat bolimd, 90 PEP 343’ 88
kisim, 97 PEP 362, 86, 96
konumsal argiiman, 97 PEP 387,3
L PEP 411,97
PEP 420,90, 95,97
lambda, 93 PEP 443,91
LBYL, 93 PEP 451,90
liste, 94 PEP 483,91
liste anlama, 94 PEP 484, 85,90, 91, 100
M PEP 492, 8688
PEP 498,89
magic PEP 519,97
metot, 94 PEP 525, 86
meta yol bulucu, 94 PEP 526, 85,100
metasinaif, 94 PEP 572,45
metot, 94 PEP 585,91
magic, 94 PEP 602,5
special, 99 PEP 3116, 100
metot kalite siralamasai, 94 PEP 3147,40
modiil, 94 PEP 3155,98
modiil 6zelligi, 95 PYTHONDONTWRITEBYTECODE, 40
MRO, 95 Pythonic, 97
N Python'un Zen'i, 100
nitelik, 86 R
nitelikli isim, 98 referans sayisi, 98
O S
obje, 95 sanal makine, 100

ortam degiskeni sanal ortam, 100
PATH, 58 sinif, 87
PYTHONDONTWRITEBYTECODE, 40 sinif de@igkeni,SS

2 sihirli ydntem, 94

O soyut temel sinif, 85

ddiing alinan referans, 87 sozliik, 89

brdek yazma, 89 sdzlik anlama, 89

126 Dizin



Python Frequently Asked Questions, Yayim 3.12.3

s6zlik gdriintimii, 89
special

metot, 99
static type checker, 99
siirekli paketleme, 98

T

tanimlayicz, 88

tek sevk, 98
terclman kapatma, 92
tip, 99

tip takma adzi, 99
tiir ipucu, 100

U

uzatma modiilii, 89

0

iic tirnakli dize, 99

Y

yazi ¢dzimleme, 99
yaz1i dosyasi, 99

yeni stil sinif, 95
yerel kodlama, 94
yikanabilir, 92
yinelenebilir, 93
yineleyici, 93

yol benzeri nesne, 97
yol giris kancaszi, 96
yol girisi, 96

yol girisi bulucu, 96
yol tabanli bulucu, 96
yorumlanmis, 92
yikleyici, 94

Dizin

127



	General Python FAQ
	General Information
	What is Python?
	What is the Python Software Foundation?
	Are there copyright restrictions on the use of Python?
	Why was Python created in the first place?
	What is Python good for?
	How does the Python version numbering scheme work?
	How do I obtain a copy of the Python source?
	How do I get documentation on Python?
	I’ve never programmed before. Is there a Python tutorial?
	Is there a newsgroup or mailing list devoted to Python?
	How do I get a beta test version of Python?
	How do I submit bug reports and patches for Python?
	Are there any published articles about Python that I can reference?
	Are there any books on Python?
	Where in the world is www.python.org located?
	Why is it called Python?
	Do I have to like “Monty Python’s Flying Circus”?

	Python in the real world
	How stable is Python?
	How many people are using Python?
	Have any significant projects been done in Python?
	What new developments are expected for Python in the future?
	Is it reasonable to propose incompatible changes to Python?
	Is Python a good language for beginning programmers?


	Programming FAQ
	General Questions
	Is there a source code level debugger with breakpoints, single-stepping, etc.?
	Are there tools to help find bugs or perform static analysis?
	How can I create a stand-alone binary from a Python script?
	Are there coding standards or a style guide for Python programs?

	Core Language
	Why am I getting an UnboundLocalError when the variable has a value?
	What are the rules for local and global variables in Python?
	Why do lambdas defined in a loop with different values all return the same result?
	How do I share global variables across modules?
	What are the “best practices” for using import in a module?
	Why are default values shared between objects?
	How can I pass optional or keyword parameters from one function to another?
	What is the difference between arguments and parameters?
	Why did changing list ‘y’ also change list ‘x’?
	How do I write a function with output parameters (call by reference)?
	How do you make a higher order function in Python?
	How do I copy an object in Python?
	How can I find the methods or attributes of an object?
	How can my code discover the name of an object?
	What’s up with the comma operator’s precedence?
	Is there an equivalent of C’s “?:” ternary operator?
	Is it possible to write obfuscated one-liners in Python?
	What does the slash(/) in the parameter list of a function mean?

	Numbers and strings
	How do I specify hexadecimal and octal integers?
	Why does -22 // 10 return -3?
	How do I get int literal attribute instead of SyntaxError?
	How do I convert a string to a number?
	How do I convert a number to a string?
	How do I modify a string in place?
	How do I use strings to call functions/methods?
	Is there an equivalent to Perl’s chomp() for removing trailing newlines from strings?
	Is there a scanf() or sscanf() equivalent?
	What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean?
	Can I end a raw string with an odd number of backslashes?

	Performance
	My program is too slow. How do I speed it up?
	What is the most efficient way to concatenate many strings together?

	Sequences (Tuples/Lists)
	How do I convert between tuples and lists?
	What’s a negative index?
	How do I iterate over a sequence in reverse order?
	How do you remove duplicates from a list?
	How do you remove multiple items from a list
	How do you make an array in Python?
	How do I create a multidimensional list?
	How do I apply a method or function to a sequence of objects?
	Why does a_tuple[i] += [‘item’] raise an exception when the addition works?
	I want to do a complicated sort: can you do a Schwartzian Transform in Python?
	How can I sort one list by values from another list?

	Objects
	What is a class?
	What is a method?
	What is self?
	How do I check if an object is an instance of a given class or of a subclass of it?
	What is delegation?
	How do I call a method defined in a base class from a derived class that extends it?
	How can I organize my code to make it easier to change the base class?
	How do I create static class data and static class methods?
	How can I overload constructors (or methods) in Python?
	I try to use __spam and I get an error about _SomeClassName__spam.
	My class defines __del__ but it is not called when I delete the object.
	How do I get a list of all instances of a given class?
	Why does the result of id() appear to be not unique?
	When can I rely on identity tests with the is operator?
	How can a subclass control what data is stored in an immutable instance?
	How do I cache method calls?

	Modules
	How do I create a .pyc file?
	How do I find the current module name?
	How can I have modules that mutually import each other?
	__import__(‘x.y.z’) returns <module ‘x’>; how do I get z?
	When I edit an imported module and reimport it, the changes don’t show up. Why does this happen?


	Design and History FAQ
	Why does Python use indentation for grouping of statements?
	Why am I getting strange results with simple arithmetic operations?
	Why are floating-point calculations so inaccurate?
	Why are Python strings immutable?
	Why must ‘self’ be used explicitly in method definitions and calls?
	Why can’t I use an assignment in an expression?
	Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g. len(list))?
	Why is join() a string method instead of a list or tuple method?
	How fast are exceptions?
	Why isn’t there a switch or case statement in Python?
	Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implementation?
	Why can’t lambda expressions contain statements?
	Can Python be compiled to machine code, C or some other language?
	How does Python manage memory?
	Why doesn’t CPython use a more traditional garbage collection scheme?
	Why isn’t all memory freed when CPython exits?
	Why are there separate tuple and list data types?
	How are lists implemented in CPython?
	How are dictionaries implemented in CPython?
	Why must dictionary keys be immutable?
	Why doesn’t list.sort() return the sorted list?
	How do you specify and enforce an interface spec in Python?
	Why is there no goto?
	Why can’t raw strings (r-strings) end with a backslash?
	Why doesn’t Python have a “with” statement for attribute assignments?
	Why don’t generators support the with statement?
	Why are colons required for the if/while/def/class statements?
	Why does Python allow commas at the end of lists and tuples?

	Library and Extension FAQ
	General Library Questions
	How do I find a module or application to perform task X?
	Where is the math.py (socket.py, regex.py, etc.) source file?
	How do I make a Python script executable on Unix?
	Is there a curses/termcap package for Python?
	Is there an equivalent to C’s onexit() in Python?
	Why don’t my signal handlers work?

	Common tasks
	How do I test a Python program or component?
	How do I create documentation from doc strings?
	How do I get a single keypress at a time?

	Threads
	How do I program using threads?
	None of my threads seem to run: why?
	How do I parcel out work among a bunch of worker threads?
	What kinds of global value mutation are thread-safe?
	Can’t we get rid of the Global Interpreter Lock?

	Input and Output
	How do I delete a file? (And other file questions…)
	How do I copy a file?
	How do I read (or write) binary data?
	I can’t seem to use os.read() on a pipe created with os.popen(); why?
	How do I access the serial (RS232) port?
	Why doesn’t closing sys.stdout (stdin, stderr) really close it?

	Network/Internet Programming
	What WWW tools are there for Python?
	How can I mimic CGI form submission (METHOD=POST)?
	What module should I use to help with generating HTML?
	How do I send mail from a Python script?
	How do I avoid blocking in the connect() method of a socket?

	Databases
	Are there any interfaces to database packages in Python?
	How do you implement persistent objects in Python?

	Mathematics and Numerics
	How do I generate random numbers in Python?


	Genişletme/Ekleme SSS
	C’de kendi fonksiyonlarımı oluşturabilir miyim?
	C++’da kendi fonksiyonlarımı oluşturabilir miyim?
	C yazmak zor; başka alternatifler var mı?
	C’den rastgele Python komutlarını nasıl çalıştırabilirim?
	C’den rastgele Python komutlarını nasıl değerlendirebilirim?
	Bir Python nesnesinden C değerlerini nasıl çıkarabilirim?
	İsteğe bağlı uzunlukta bir tuple oluşturmak için Py_BuildValue() işlevini nasıl kullanabilirim?
	C’de bir nesnenin metodunu nasıl çağırabilirim?
	PyErr_Print() işlevinden (veya stdout/stderr’e yazdıran herhangi bir şeyden) gelen çıktıyı nasıl yakalayabilirim?
	Python’da yazılmış bir modüle C’den nasıl erişebilirim?
	Python’dan C++ nesnelerine nasıl arayüz oluşturabilirim?
	Kurulum dosyasını kullanarak bir modül ekledim ve derleme başarısız oldu; neden?
	Bir uzantıda nasıl hata ayıklayabilirim?
	Linux sistemimde bir Python modülü derlemek istiyorum, ancak bazı dosyalar eksik. Neden?
	“Eksik girdi” ile “geçersiz girdi’yi nasıl ayırt edebilirim?
	Tanımlanmamış g++ sembolleri __builtin_new veya __pure_virtual’ı nasıl bulabilirim?
	Bazı yöntemleri C’de, bazı yöntemleri Python’da (örneğin miras yoluyla) uygulanan bir nesne sınıfı oluşturabilir miyim?

	Python on Windows FAQ
	How do I run a Python program under Windows?
	How do I make Python scripts executable?
	Why does Python sometimes take so long to start?
	How do I make an executable from a Python script?
	Is a *.pyd file the same as a DLL?
	How can I embed Python into a Windows application?
	How do I keep editors from inserting tabs into my Python source?
	How do I check for a keypress without blocking?
	How do I solve the missing api-ms-win-crt-runtime-l1-1-0.dll error?

	Grafik Kullanıcı Arayüzü SSS
	Genel GKA Soruları
	Python için hangi GKA araç setleri var?
	Tkinter soruları
	Tkinter uygulamalarını nasıl dondurabilirim?
	G/Ç’yi beklerken Tk olaylarını işleyebilir miyim?
	Tkinter’da çalışmak için anahtar bağlamalarını alamıyorum: neden?


	“Python Bilgisayarımda Neden Yüklü?” SSS
	Python nedir?
	Python makinemde neden yüklü?
	Python’u silebilir miyim?

	Sözlük
	Bu dokümanlar hakkında
	Python Dokümantasyonuna Katkıda Bulunanlar

	Tarihçe ve Lisans
	Yazılımın tarihçesi
	Python’a erişmek veya başka bir şekilde kullanmak için şartlar ve koşullar
	PYTHON İÇİN PSF LİSANS ANLAŞMASI 3.12.3
	PYTHON 2.0 İÇİN BEOPEN.COM LİSANS SÖZLEŞMESİ
	PYTHON 1.6.1 İÇİN CNRI LİSANS ANLAŞMASI
	0.9.0 ARASI 1.2 PYTHON İÇİN CWI LİSANS SÖZLEŞMESİ
	PYTHON 3.12.3 BELGELERİNDEKİ KOD İÇİN SIFIR MADDE BSD LİSANSI

	Tüzel Yazılımlar için Lisanslar ve Onaylar
	Mersenne Twister’ı
	Soketler
	Asenkron soket hizmetleri
	Çerez yönetimi
	Çalıştırma izleme
	UUencode ve UUdecode fonksiyonları
	XML Uzaktan Yordam Çağrıları
	test_epoll
	kqueue seçin
	SipHash24
	strtod ve dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test paketi
	Audioop
	asyncio


	Telif Hakkı
	Dizin

