The Python/C API
Yayim 3.12.3

Guido van Rossum and the Python development team

Mayis 04, 2024

Python Software Foundation
Email: docs@python.org

Icindekiler

Introduction 3
I.1 Codingstandards L e e e e e e 3
1.2 Include Files e e 4
1.3 Useful macros 0 o e e e e e e e 4
1.4 Objects, Types and Reference Counts vttt 7

1.4.1 Reference Counts ot v vt i it e e e e e e e 7

LA2 TYPES o v o e e e e e e e e e e e e e e e e 10
1.5 EXCeptions o o i e e e e e e e e e e e e 11
1.6 Embedding Python e 12
1.7 Debugging Builds e e 13
C API Stability 15
2.1 Unstable CAPIL e 15
2.2 Stable Application Binary Interface 16

221 Limited CAPL 16

222 Stable ABI. 16

2.2.3 Limited API Scope and Performance L . 16

224 Limited APT Caveats 0 e e e e e e e e 17
2.3 Platform Considerations L e e e e 17
2.4 Contents of Limited API e 17
The Very High Level Layer 43
Reference Counting 49
Exception Handling 53
5.1 Printingand clearing e e e e e e e e e e 54
5.2 Raising exCeptions e e e e e e e e e 54
5.3 Issuing warningsol e e e e e e e 57
54 Querying the error indicatoro e e e e e e e e 58
5.5 SignalHandling e 61
5.6 Exception Classes v v v i i e e e e e e e e e e e e e e 62
5.7 Exception ObJects ot i e e e e e e e e e e e e 62
5.8 Unicode Exception Objects e 63
5.9 Recursion Control L e e e e e e e e e 64
5.10 Standard EXceptions L. e e e e 65
5.11 Standard Warning Categories v v v v v e e e e e e e e e e e e e e e e e e 67

6

Utilities
6.1 Operating System UtIlities o 0 e e e e e e e e e e
6.2 System Functions L e e e
6.3 Process Control e e e e e e
6.4 Importing Modules L e
6.5 Datamarshalling support L. e e e
6.6 Parsing arguments and building valueso e
6.6.1 Parsing argUments i i e e e e e e e e e e e e e e e e e
6.6.2 Buildingvalues e
6.7 String conversion and formatting L. L L oL e e e e e e e e
6.8 PyHash API e
6.9 Reflection e
6.10 Codec registry and support functions Lo e e e e e e e
6.10.1 Codeclookup API. e
6.10.2 Registry API for Unicode encoding error handlers
6.11 Support for Perf Maps L e
Abstract Objects Layer
7.1 Object Protocol e e e e e e e e
7.2 Call Protocol e e e e
7.2.1 The tp_call Protocol o . e e e e e e e e e e
7.2.2 The Vectorcall Protocol e e e e e
7.23 Object Calling APT e
7.2.4 Call Support APL o e
7.3 Number Protocol e e e
7.4 Sequence Protocol e e e e e e e e e
7.5 Mapping Protocol e e e e e e e e
7.6 Tterator Protocol e e e e e e e e e
7.7 Buffer Protocol e e e e e e e e
777.1 Bufferstructure e e e e e e e e
7.7.2 Bufferrequest types o e e e e e
773 ComMPIEX AITAYS © « « v v v o e
7.7.4 Buffer-related functions e e e e e e e e e
7.8 Old Buffer Protocol e e e e e e e
Concrete Objects Layer
8.1 Fundamental Objects i e e e e e e e e e e e e
8.1.1 Type Objects o o i i e e e e e e e e e e e e e
8.1.2 TheNone Object o e e
8.2 Numeric ObJects i i e e e e e e e
8.2.1 Integer ObJeCtS o it e e e e e e e e e e e e e e
8.2.2 Boolean ObJECtS o i e e e e e e e e e e e e
8.2.3 Floating Point Objects i i e e e e e e e e
8.2.4 Complex Number Objects o o L i it e e
8.3 Sequence ObJECts e e e e e e e e
8.3.1 Bytes ObJects o o i e e e e e e e e e e e e
8.3.2 Byte Array ODJEcts o i e e e e e e e e e e e e e e
8.3.3 Unicode Objectsand Codecs o o v i i v ittt e e e e e
8.3.4 Tuple Objects o o i e e e e e e e e e e e
8.3.5 Struct Sequence Objects e e e e e e
83.6 ListObjects e e e
84 Container ObJECtS v v v v v et e e e e e e e e e e e e e e e e e e e
8.4.1 Dictionary ObJectS o v i e e e e e e e e e e e e e e
8.4.2 SetObjects i e e e e e e e e e

69
69
72
74
75
78
79
80
86
88
90
90
91
92
92
93

95

95
100
100
101
103
105
105
109
111
112
113
114
116
118
119
120

123
123

8.5

8.6

9.1
9.2
9.3
9.4
9.5

9.6

9.7
9.8
9.9
9.10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Function Objects o i e e e e e e e e e e e
8.5.1 Function ObJECtS v i v e e e e e e e e e e e e e e
8.5.2 Imstance Method Objects L i e e e e e e
853 Method Objects L
854 CellObjects o v v e e
855 CodeObjects v v v it e e e e e
8.5.6 Extrainformation e
Other ObJECtS v o ot e e e e e e e e e e e e e
8.6.1 FileObjects o L e e e e e e e e
8.6.2 Module Objects o i e e e e e e e e e e
8.6.3 Tterator Objects i ot e e e e e e
8.6.4 Descriptor ObJects o v e e e e e e e e e e e e e e e
8.6.5 Slice ObJects v o i e e e e e e e e e e e
8.6.6 MemoryViewobjects e
8.6.7 Weak Reference Objects e
8.6.8 Capsules L e
8.69 Frame Objects o e e e
8.6.10 Generator ObJECtS v v v e e e e e e e e e e e e e e
8.6.11 Coroutine ObJECtS v v v e i e e e e e e e e e e e e e e e
8.6.12 Context Variables Objects e
8.6.13 DateTime ObJects o v it e e e e e e e e e
8.6.14 Objects for Type Hinting o o e
9 Initialization, Finalization, and Threads
Before Python Initialization L
Global configuration variables L
Initializing and finalizing the interpreter e
Process-wide parameters oL e e e e e e e e e e e e e e
Thread State and the Global Interpreter Lock
9.5.1 Releasing the GIL from extensioncode
9.52 Non-Pythoncreated threads
9.5.3 Cautionsabout fork() e e e
9.5.4 High-level APT e
9.5.5 Low-level APL e
Sub-interpreter SUPPOTt . . . o v v v v ot e
9.6.1 APer-Interpreter GIL L
9.6.2 BugsandcaveatS. i . e e e e e e e e e e e e e e e e e e e
Asynchronous Notifications o 0 e e e e e e e e e e e e
Profilingand Tracing e e
Advanced Debugger Support L L e e e e e e
Thread Local Storage Support e e e
9.10.1 Thread Specific Storage (TSS) APT
9.10.2 Thread Local Storage (TLS) APT e
10 Python Initialization Configuration
Example e
PyWideStringList e e
PyStatus e
PyPreConfig e
Preinitialize Python with PyPreConfig
PyConfig o e
Initialization with PyConfig
Isolated Configuration L
Python Configuration e e

10.9

176

201
201
202
205
206
210
211
211
212
212
215
218
220
221
221
222
224
224
224
226

227
227
228
229
230
232
233
244
246
246

11

12

13

10.10 Python Path Configuration 0 e e e e e e e e e e
10.11 Py_RunMain() o o e e e e e e e e e e e e e e e
10.12 Py_GetArgcArgV() . . o v o o e e e e e e e e e e e e e e e e e e
10.13 Multi-Phase Initialization Private Provisional API

Memory Management
T1.L OVerview o o o e e e e e e e
11.2 Allocator Domains o e e e e e e e e e e e e e
11.3 Raw Memory Interface L
11.4 MemoryInterface L L e
11.5 Object allocators v v v i i e
11.6 Default Memory AllOcators v v i it e e e e e e e e e e e e e e e e e
11.7 Customize Memory Allocators o e
11.8 Debug hooks on the Python memory allocators
11.9 The pymalloc allocator o e e e
11.9.1 Customize pymalloc Arena Allocator i i i vt i e
11.10 tracemalloc C API e
TLIT Examples oo o e e e e e e e e e e e e e

Object Implementation Support
12.1 Allocating Objectsonthe Heap 0 i i e st e e e
122 Common Object Structurest e e e e e
12.2.1 Base object types and MAaCTOS« v v v v v e e e e e e e e e e e e e e e
12.2.2 Implementing functions and methods oo,
12.2.3 Accessing attributes of exXtension types oo u e e e e e e e e e
123 Type ObJeCtS . . . o o o v e e e e e e e e e e e e e
12.3.1 Quick Reference L. e e e e e e e e e
12.3.2 PyTypeObject Definition 0 0 e
12.3.3 PyObject SIots o o e e e e e
12.3.4 PyVarObject SIOts v i e e e e e e e e e e e e e
12.3.5 PyTypeObject SIOts o v v i e e e e e e e e e e e e e e
12.3.6 0 Static TYPES .« ¢ v v o o e
12377 Heap Types o o o i i e e e
12.4 Number Object StrUCIUIES o i ittt e e e e e e e e e e e
12.5 Mapping Object StIUCTUIES v v v v v bt e e e e e e e e e e e e e e e e e
12.6 Sequence Object StruCtures v v v v v e e e e e e e e e e e e e e e e
12.7 Buffer Object Structures o v v i e e e e e e e e e e e e e
12.8 Async Object Structures e e e e
12.9 Slot Type typedefs e
12.10 Examples o o e e e e e e e e
12.11 Supporting Cyclic Garbage Collection i i ittt e e e e
12.11.1 Controlling the Garbage Collector State vt i i
12.11.2 Querying Garbage Collector Stateo

API and ABI Versioning
Sozlitkk

Bu dokiimanlar hakkinda
B.1 Python Dokiimantasyonuna Katkida Bulunanlar

Tarihge ve Lisans

C.l1 Yazilmuntarihgesi L

C.2 Python’a erismek veya bagka bir sekilde kullanmak i¢in sartlar ve kogullar
C.2.1 PYTHON ICIN PSF LISANS ANLASMASI3.12.3o oot

251
251
252
253
253
255
256
256
258
259
260
260
260

263
263
264
264
266
269
273
273
278
279
280
280
300
300
300
302
303
304
305
306
307
310
312
313

315

317

C.2.2 PYTHON 2.0 ICIN BEOPEN.COM LISANS SOZLESMESI 337

C.2.3 PYTHON 1.6.1 ICIN CNRILISANS ANLASMASI 338

C2.4 0.9.0 ARASI 1.2 PYTHON ICIN CWI LISANS SOZLESMEST 339

C.2.5 PYTHON 3.12.3 BELGELERINDEKI KOD ICIN SIFIR MADDE BSD LISANSI 340

C.3 Tiizel Yazilimlar i¢in Lisanslar ve Onaylar 340
C3.1 Mersenne TWIStEI'T o v v v v vt ittt e e e e e e e e e e 340

C3.2 Soketler 341

C3.3 Asenkronsokethizmetleri. e 341

C3.4 CerezyOnetimi v v v vttt et e e e e e e e e e e e e e e e 342

C35 Cahstrmaizleme e 342

C.3.6 UUencode ve UUdecode fonksiyonlart, 343

C.3.7 XML Uzaktan Yordam Cagrilart o it e e e 344

C.3.8 test_epoll L e e e e e e 344

C3.9 KQUEUESECIN v v it i e e e e e e e e e e e e 345
C3.10 SipHash24 345
C3.01 strtodvedtoa o o e e e e 346
C3.12 OpenSSL 346
C3U13 eXPat. . v o o v e e e e e e e e e e e e e e e 349
C3.14 Ibffio o 350
C3.15 zlib . . o e 350
C3.16 cfuhash e 351
C3.17 Hbmpdec o e e e e 352
C3.18 W3CCI4Ntestpaketi oo v v vt ittt et e 352
C3.19 Audioop 353
C.3.20 asynClo . . . v v v i e e e e e e e e e e e e e e e 353

D Telif Hakk: 355
Dizin 357

Vi

The Python/C API, Yayim 3.12.3

Bu kilavuz, genisletme modiilleri yazmak veya Python’u gommek isteyen C ve C++ programcilari tarafindan kullanilan
APTyi belgelemektedir. Uzant1 yazmanin genel ilkelerini agiklayan ancak API islevlerini ayrintili olarak belgelemeyen
extending-index’in tamamlayicisidir.

icindekiler 1

The Python/C API, Yayim 3.12.3

2 icindekiler

BOLOM 1

Introduction

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter at a
variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C API.
There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension modules
for specific purposes; these are C modules that extend the Python interpreter. This is probably the most common use. The
second reason is to use Python as a component in a larger application; this technique is generally referred to as embedding
Python in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There are
several tools that automate the process to some extent. While people have embedded Python in other applications since
its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you're embedding or extending Python; moreover, most applica-
tions that embed Python will need to provide a custom extension as well, so it’s probably a good idea to become familiar
with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards

If you’re writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7. These
guidelines apply regardless of the version of Python you are contributing to. Following these conventions is not necessary
for your own third party extension modules, unless you eventually expect to contribute them to Python.

https://peps.python.org/pep-0007/

The Python/C API, Yayim 3.12.3

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following line:

#define PY _SSIZE_T CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,<limits.h>,
<assert.h>and <stdlib.h> (if available).

Not: Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python . h before any standard headers are included.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python . h. See Parsing arguments and
building values for a description of this macro.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be
used by extension writers. Structure member names do not have a reserved prefix.

Not: User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes the
portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix
are defined by the corresponding parameters to Python’s configure script and version is '$d.%d' % sys.
version_info[:2]. On Windows, the headers are installed in prefix/include, where prefix is the ins-
tallation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under pre fix include the platform specific headers from
exec_prefix.

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry points
tobe extern "C". As aresult, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.

PyMODINIT FUNC

Declare an extension module Py Init initialization function. The function return type is PyOb ject*. The macro
declares any special linkage declarations required by the platform, and for C++ declares the function as extern
" C n .

The initialization function must be named PyInit_ name, where name is the name of the module, and should be
the only non-stat ic item defined in the module file. Example:

4 Boélim 1. Introduction

The Python/C API, Yayim 3.12.3

-

static struct PyModuleDef spam_module = {
PyModuleDef_ HEAD_INIT,
.m_name = "spam",

bi

PyMODINIT_FUNC
PyInit_spam(void)
{
return PyModule_Create (&spam_module) ;

}

Py_ABS (x)
Return the absolute value of x.

Added in version 3.3.
Py_ALWAYS_INLINE

Ask the compiler to always inline a static inline function. The compiler can ignore it and decides to not inline the
function.

It can be used to inline performance critical static inline functions when building Python in debug mode with
function inlining disabled. For example, MSC disables function inlining when building in debug mode.

Marking blindly a static inline function with Py_ ALWAYS_INLINE can result in worse performances (due to
increased code size for example). The compiler is usually smarter than the developer for the cost/benefit analysis.

If Python is built in debug mode (if the Py_ DEBUG macro is defined), the Py_ALWAYS TNLINE macro does
nothing.

It must be specified before the function return type. Usage:

[static inline Py_ALWAYS_INLINE int random(void) { return 4; }

Added in version 3.11.
Py_CHARMASK (c)

Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to an
unsigned char.

Py_DEPRECATED (version)

Use this for deprecated declarations. The macro must be placed before the symbol name.

Example:

[Py_DEPRECATED(3.8) PyAPI_FUNC (int) Py_OldFunction (void) ;

3.8 siiriimiinde degisti: MSVC support was added.

Py_GETENV (s)

Like getenv (s), but returns NULL if —-E was passed on the command line (see PyConfig.
use_environment).

Py_MAX (X,y)
Return the maximum value between x and y.

Added in version 3.3.

1.3. Useful macros 5

The Python/C API, Yayim 3.12.3

Py_MEMBER_SIZE (type, member)
Return the size of a structure (t ype) member in bytes.

Added in version 3.6.

Py_MIN (X, y)
Return the minimum value between x and y.
Added in version 3.3.

Py_NO_INLINE

Disable inlining on a function. For example, it reduces the C stack consumption: useful on LTO+PGO builds which
heavily inline code (see bpo-33720).

Usage:

[Py_NO_INLINE static int random(void) { return 4; }

Added in version 3.11.

Py_STRINGIFY (X)
Convert x to a C string. E.g. Py_STRINGIFY (123) returns "123".
Added in version 3.4.

Py_UNREACHABLE ()

Use this when you have a code path that cannot be reached by design. For example, in the default : clause in
a switch statement for which all possible values are covered in case statements. Use this in places where you
might be tempted to put an assert (0) or abort () call.

In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable code.
For example, the macro is implemented with __builtin_unreachable () on GCC in release mode.

A use for Py_ UNREACHABLE () is following a call a function that never returns but that is not declared
_Py_NO_RETURN.

If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used. For
example, under low memory condition or if a system call returns a value out of the expected range. In this case, it’s
better to report the error to the caller. If the error cannot be reported to caller, Py FatalError () can be used.

Added in version 3.7.

Py_UNUSED (arg)

Use this for unused arguments in a function definition to silence compiler warnings. Example: int func (int
a, int Py_UNUSED (b)) { return a; }.

Added in version 3.4.

PyDoc_STRVAR (name, str)

Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the value
will be empty.

Use PyDoc_ STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
7Y coo
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
(sonraki sayfaya devam)

6 Boliim 1. Introduction

https://bugs.python.org/issue?@action=redirect&bpo=33720
https://peps.python.org/pep-0007/

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

7Y oo

PyDoc_STR (str)

Creates a docstring for the given input string or an empty string if docstrings are disabled.
Use PyDoc_STR in specifying docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR ("Returns the keys of the row.")},
{NULL, NULL}
i

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyOb ject*. This type is a
pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the same
way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only fitting that
they should be represented by a single C type. Almost all Python objects live on the heap: you never declare an automatic
or static variable of type PyObject, only pointer variables of type PyOb ject* can be declared. The sole exception
are the type objects; since these must never be deallocated, they are typically static Py TypeOb ject objects.

All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of the
well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check (a) is true
if (and only if) the object pointed to by a is a Python list.

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a strong reference to an object. Such a place could be another object,
or a global (or static) C variable, or a local variable in some C function. When the last strong reference to an object is
released (i.e. its reference count becomes zero), the object is deallocated. If it contains references to other objects, those
references are released. Those other objects may be deallocated in turn, if there are no more references to them, and so
on. (There’s an obvious problem with objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_INCREF () to take a
new reference to an object (i.e. increment its reference count by one), and Py DECREF () to release that reference
(i.e. decrement the reference count by one). The Py DECREF () macro is considerably more complex than the incref
one, since it must check whether the reference count becomes zero and then cause the object’s deallocator to be called.
The deallocator is a function pointer contained in the object’s type structure. The type-specific deallocator takes care
of releasing references for other objects contained in the object if this is a compound object type, such as a list, as well
as performing any additional finalization that’s needed. There’s no chance that the reference count can overflow; at least
as many bits are used to hold the reference count as there are distinct memory locations in virtual memory (assuming
sizeof (Py_ssize_t) > = sizeof (void*)). Thus, the reference count increment is a simple operation.

It is not necessary to hold a strong reference (i.e. increment the reference count) for every local variable that contains
a pointer to an object. In theory, the object’s reference count goes up by one when the variable is made to point to it
and it goes down by one when the variable goes out of scope. However, these two cancel each other out, so at the end
the reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from being

1.4. Objects, Types and Reference Counts 7

https://peps.python.org/pep-0007/

The Python/C API, Yayim 3.12.3

deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the object
that lives at least as long as our variable, there is no need to take a new strong reference (i.e. increment the reference
count) temporarily. An important situation where this arises is in objects that are passed as arguments to C functions in
an extension module that are called from Python; the call mechanism guarantees to hold a reference to every argument
for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without taking a new reference.
Some other operation might conceivably remove the object from the list, releasing that reference, and possibly deallocating
it. The real danger is that innocent-looking operations may invoke arbitrary Python code which could do this; there is a
code path which allows control to flow back to the user from a Py DECREF (), so almost any operation is potentially
dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always create a new strong reference (i.e. increment the reference
count) of the object they return. This leaves the caller with the responsibility to call Py DECREF () when they are done
with the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a reference”
means being responsible for calling Py_DECREF on it when the reference is no longer needed. Ownership can also
be transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually
releasing it by calling Py DECREF () or Py_XDECREF () when it’s no longer needed—or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals
a reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that
function assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_ SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three™) could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

3);

t, 0, PyLong_FromLong (1lL));

t, 1, PyLong_FromLong(2L));

t, 2, PyUnicode_FromString("three"));

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

Here, PyLong_FromLong () returns a new reference which is immediately stolen by Py Tuple_SetItem (). When
you want to keep using an object although the reference to it will be stolen, use Py_ TNCREF () to grab another reference
before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem () for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py_BuildValue (), that can create most common objects from C values, directed by a format string. For example,

8 Boliim 1. Introduction

The Python/C API, Yayim 3.12.3

the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildValue (" (iis)", 1, 2, "three");
list = Py_BuildValue (" [iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem () and friends with items whose references you are only borro-
wing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding references
is much saner, since you don’t have to take a new reference just so you can give that reference away (“have it be stolen”).
For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length(target);
if (n < 0)
return -1;
for (i = 0; 1 < n; 1i++) {
PyObject *index = PyLong_FromSsize_t (i);
if (!index)
return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
}

return 0O;

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the
only reference to the object. Therefore, the generic functions that return object references, like PyOb ject_GetItem ()
and PySequence_GetItem (), always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call only
— the plumage (the type of the object passed as an argument to the function) doesn’t enter into it/ Thus, if you extract
an item from a list using PyList_GetItem (), you don’t own the reference — but if you obtain the same item from
the same list using PySequence_Get Item () (which happens to take exactly the same arguments), you do own a
reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(),and once using PySequence_GetItem()

long

sum_list (PyObject *1list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
(sonraki sayfaya devam)

1.4. Objects, Types and Reference Counts 9

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)
for (i = 0; 1 < n; 1i++) {
item = PyList_GetItem(list, i); /* Can't fail */
if (!PyLong_Check (item)) continue; /* Skip non-integers */
value = PyLong_AsLong (item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}

return total;

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */
for (i = 0; 1 < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong(item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
s
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

type Py_ssize_t
Bir parcasi Kararl1 ABIL A signed integral type such that sizeof (Py_ssize_t) == sizeof (size_t).

C99 doesn’t define such a thing directly (size_t is an unsigned integral type). See PEP 353 for details.
PY_SSIZE_T_MAX is the largest positive value of type Py_ssize_t.

10 Boliim 1. Introduction

https://peps.python.org/pep-0353/

The Python/C API, Yayim 3.12.3

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise ex-
ceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function encounters
an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not documented
otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few functions return a Boolean
true/false result, with false indicating an error. Very few functions return no explicit error indicator or have an ambiguous
return value, and require explicit testing for errors with PyErr_Occurred (). These exceptions are always explicitly
documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred () can be used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr_ SetString () is the most common
(though not the most general) function to set the exception state, and PyErr_Clear () clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; however,
they are not the same: the Python objects represent the last exception being handled by a Python try ... except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info () and
friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should not set another exception — that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It so
happens that this example doesn’t need to clean up any owned references when it detects an error. The following example
function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item(PyObject *dict, PyObject *key)
{
/* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
(sonraki sayfaya devam)

1.5. Exceptions 11

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L) ;
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py _XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item) ;

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches () and PyErr_Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X' in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to
success after the final call made is successful.

1.6 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter can
only be used after the interpreter has been initialized.

The basic initialization function is Py_ Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, __main__,and sys. It also initializes the module search path (sys.path).

Py _Initialize () doesnotsetthe “script argument list” (sys.argv). If this variable is needed by Python code that

12 Boliim 1. Introduction

The Python/C API, Yayim 3.12.3

will be executed later, setting PyConfig.argvand PyConfig.parse_argv must be set: see Python Initialization
Configuration.

On most systems (in particular, on Unix and Windows, although the details are slightly different), Py_Tnitialize ()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named 1ib/pythonX. Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX. Y. (In fact, this particular path is also the “fallback” location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath (),
Py_GetPrefix (), Py _GetExecPrefix(),and Py_GetProgramFullPath () (all defined in Modules/
getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another call
to Py_Initialize ()) or the application is simply done with its use of Python and wants to free memory allocated
by Python. This can be accomplished by calling Py_ FinalizeEx (). Thefunction Py_TsTnitialized () returns
true if Python is currently in the initialized state. More information about these functions is given in a later chapter.
Notice that Py_FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory allocated
by extension modules currently cannot be released.

1.7 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently used builds will be described in the remainder of this
section.

Py_DEBUG

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by a debug build of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebug to the . /configure command. It is
also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the Unix build,
compiler optimization is disabled.

In addition to the reference count debugging described below, extra checks are performed, see Python Debug Build.

Defining Py_TRACE_REFS enables reference tracing (see the configure —--with-trace-refs option).
When defined, a circular doubly linked list of active objects is maintained by adding two extra fields to every PyOb ject.
Total allocations are tracked as well. Upon exit, all existing references are printed. (In interactive mode this happens after
every statement run by the interpreter.)

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

1.7. Debugging Builds 13

The Python/C API, Yayim 3.12.3

14 Boliim 1. Introduction

BOLOM 2

C API Stability

Unless documented otherwise, Python’s C API is covered by the Backwards Compatibility Policy, PEP 387. Most changes
to it are source-compatible (typically by only adding new API). Changing existing API or removing API is only done after
a deprecation period or to fix serious issues.

CPython’s Application Binary Interface (ABI) is forward- and backwards-compatible across a minor release (if these are
compiled the same way; see Platform Considerations below). So, code compiled for Python 3.10.0 will work on 3.10.8
and vice versa, but will need to be compiled separately for 3.9.x and 3.11.x.

There are two tiers of C API with different stability expectations:

e Unstable API, may change in minor versions without a deprecation period. It is marked by the PyUnstable
prefix in names.

e Limited API, is compatible across several minor releases. When Py_ L.TMITED_APT is defined, only this subset
is exposed from Python. h.

These are discussed in more detail below.

Names prefixed by an underscore, such as _Py_InternalState, are private API that can change without notice even
in patch releases. If you need to use this API, consider reaching out to CPython developers to discuss adding public API
for your use case.

2.1 Unstable C API

Any API named with the PyUnstable prefix exposes CPython implementation details, and may change in every minor
release (e.g. from 3.9 to 3.10) without any deprecation warnings. However, it will not change in a bugfix release (e.g.
from 3.10.0 to 3.10.1).

It is generally intended for specialized, low-level tools like debuggers.

Projects that use this API are expected to follow CPython development and spend extra effort adjusting to changes.

15

https://peps.python.org/pep-0387/
https://discuss.python.org/c/core-dev/c-api/30

The Python/C API, Yayim 3.12.3

2.2 Stable Application Binary Interface

For simplicity, this document talks about extensions, but the Limited API and Stable ABI work the same way for all uses
of the API — for example, embedding Python.

2.2.1 Limited C API

Python 3.2 introduced the Limited API, a subset of Python’s C API. Extensions that only use the Limited API can be
compiled once and work with multiple versions of Python. Contents of the Limited API are listed below.
Py LIMITED_API
Define this macro before including Python.h to opt in to only use the Limited API, and to select the Limited
API version.

Define Py_LIMITED_APT to the value of PY_VERSION_HEX corresponding to the lowest Python version your
extension supports. The extension will work without recompilation with all Python 3 releases from the specified
one onward, and can use Limited API introduced up to that version.

Rather than using the PY VERSION_HEX macro directly, hardcode a minimum minor version (e.g.
0x030A0000 for Python 3.10) for stability when compiling with future Python versions.

You can also define Py_LIMITED_APT to 3. This works the same as 0x03020000 (Python 3.2, the version
that introduced Limited API).

2.2.2 Stable ABI

To enable this, Python provides a Stable ABI: a set of symbols that will remain compatible across Python 3.x versions.

The Stable ABI contains symbols exposed in the Limited API, but also other ones — for example, functions necessary to
support older versions of the Limited APIL

On Windows, extensions that use the Stable ABI should be linked against python3.d11 rather than a version-specific
library such as python39.d11.

On some platforms, Python will look for and load shared library files named with the abi 3 tag (e.g. mymodule.abi3.
so). It does not check if such extensions conform to a Stable ABI. The user (or their packaging tools) need to ensure that,
for example, extensions built with the 3.10+ Limited APT are not installed for lower versions of Python.

All functions in the Stable ABI are present as functions in Python’s shared library, not solely as macros. This makes them
usable from languages that don’t use the C preprocessor.

2.2.3 Limited API Scope and Performance

The goal for the Limited API is to allow everything that is possible with the full C API, but possibly with a performance
penalty.

For example, while PyList_GetItem () isavailable, its “unsafe” macro variant PyList_GET_ITEM () isnot. The
macro can be faster because it can rely on version-specific implementation details of the list object.

Without Py_LIMITED_API defined, some C API functions are inlined or replaced by macros. Defining
Py_LIMITED_APT disables this inlining, allowing stability as Python’s data structures are improved, but possibly re-
ducing performance.

By leaving out the Py_LIMITED_APT definition, it is possible to compile a Limited API extension with a version-
specific ABI. This can improve performance for that Python version, but will limit compatibility. Compiling with

16 Bolum 2. C API Stability

The Python/C API, Yayim 3.12.3

Py_LIMITED_APT will then yield an extension that can be distributed where a version-specific one is not available
— for example, for prereleases of an upcoming Python version.

2.2.4 Limited API Caveats

Note that compiling with Py_LIMITED_APTI is not a complete guarantee that code conforms to the Limited API or
the Stable ABI. Py_LIMITED_APT only covers definitions, but an API also includes other issues, such as expected
semantics.

One issue that Py_ LIMITED_AP I does not guard against is calling a function with arguments that are invalid in a lower
Python version. For example, consider a function that starts accepting NULL for an argument. In Python 3.9, NULL now
selects a default behavior, but in Python 3.8, the argument will be used directly, causing a NULL dereference and crash.
A similar argument works for fields of structs.

Another issue is that some struct fields are currently not hidden when Py_ LIMITED_APT is defined, even though they’re
part of the Limited API.

For these reasons, we recommend testing an extension with a// minor Python versions it supports, and preferably to build
with the lowest such version.

We also recommend reviewing documentation of all used API to check if it is explicitly part of the Limited API. Even
with Py_LIMITED_APT defined, a few private declarations are exposed for technical reasons (or even unintentionally,
as bugs).

Also note that the Limited API is not necessarily stable: compiling with Py_LIMITED_API with Python 3.8 means that
the extension will run with Python 3.12, but it will not necessarily compile with Python 3.12. In particular, parts of the
Limited API may be deprecated and removed, provided that the Stable ABI stays stable.

2.3 Platform Considerations

ABI stability depends not only on Python, but also on the compiler used, lower-level libraries and compiler options. For
the purposes of the Stable ABI, these details define a “platform”. They usually depend on the OS type and processor
architecture

It is the responsibility of each particular distributor of Python to ensure that all Python versions on a particular platform are
built in a way that does not break the Stable ABI. This is the case with Windows and macOS releases from python.org
and many third-party distributors.

2.4 Contents of Limited API

Currently, the Limited API includes the following items:

e PY VECTORCALL_ARGUMENTS_OFFSET
e PyAlter_Check ()

e PyArg Parse()

* PyArg ParseTuple ()

* PyArg ParseTupleAndKeywords ()

e PyArg UnpackTuple ()

2.3. Platform Considerations 17

The Python/C API, Yayim 3.12.3

PyArg_VaParse ()

PyArg VaParseTupleAndKeywords ()
PyArg ValidateKeywordArguments ()
PyBaseObject_Type
PyBool_FromLong ()

PyBool_Type

PyBuffer FillContiguousStrides ()
PyBuffer FillInfo()

PyBuffer_ FromContiguous ()
PyBuffer GetPointer ()

PyBuffer IsContiguous ()
PyBuffer Release()
PyBuffer_SizeFromFormat ()
PyBuffer ToContiguous ()
PyByteArrayIter_Type
PyByteArray_AsString ()
PyByteArray_ Concat ()
PyByteArray_ FromObject ()
PyByteArray_ FromStringAndSize ()
PyByteArray_Resize ()
PyByteArray_ Size ()
PyByteArray_Type
PyBytesIter_Type
PyBytes_AsString()
PyBytes_AsStringAndSize ()
PyBytes_Concat ()
PyBytes_ConcatAndDel ()
PyBytes_DecodeEscape ()
PyBytes_FromFormat ()
PyBytes_FromFormatV ()
PyBytes_FromObject ()
PyBytes_FromString()
PyBytes_FromStringAndSize ()
PyBytes_Repr ()

PyBytes_Size ()

PyBytes_Type

18

Bolum 2. C API Stability

The Python/C API, Yayim 3.12.3

e PyCFunction

* PyCFunctionWithKeywords

e PyCFunction_Call ()

* PyCFunction_GetFlags ()

e PyCFunction_GetFunction ()
e PyCFunction_GetSelf ()

e PyCFunction_New ()

e PyCFunction_NewEx ()

* PyCFunction_Type

* PyCMethod_New ()

* PyCallIlIter New/()

e PyCalllter_Type

e PyCallable_Check ()

* PyCapsule_Destructor

* PyCapsule_ GetContext ()

e PyCapsule_GetDestructor ()
* PyCapsule_GetName ()

e PyCapsule_GetPointer ()

e PyCapsule_Import ()

* PyCapsule_IsValid()

* PyCapsule_New ()

* PyCapsule_ SetContext ()

e PyCapsule_SetDestructor ()
* PyCapsule_SetName ()

e PyCapsule_SetPointer ()

e PyCapsule_Type

* PyClassMethodDescr_Type

* PyCodec_BackslashReplaceErrors ()
* PyCodec_Decode ()

e PyCodec_Decoder ()

* PyCodec_Encode ()

* PyCodec_Encoder ()

* PyCodec_IgnoreErrors ()

e PyCodec_IncrementalDecoder ()
* PyCodec_IncrementalEncoder ()

e PyCodec_KnownEncoding ()

2.4. Contents of Limited API 19

The Python/C API, Yayim 3.12.3

* PyCodec_LookupError ()

e PyCodec_NameReplaceErrors ()
* PyCodec_Register ()

e PyCodec_RegisterError()
e PyCodec_ReplaceErrors ()
e PyCodec_StreamReader ()

e PyCodec_StreamWriter ()

e PyCodec_StrictErrors ()

e PyCodec_Unregister ()

* PyCodec_XMLCharRefReplaceErrors ()
* PyComplex_FromDoubles ()
* PyComplex_ImagAsDouble ()
* PyComplex_RealAsDouble ()
* PyComplex_Type

* PyDescr_NewClassMethod ()
* PyDescr_NewGetSet ()

* PyDescr_NewMember ()

* PyDescr_NewMethod ()

e PyDictItems_Type

e PyDictIterItem_Type

e PyDictIterKey_Type

e PyDictIterValue_Type

* PyDictKeys_Type

* PyDictProxy_New ()

* PyDictProxy_Type

e PyDictRevIterItem_Type

e PyDictRevIterKey_Type

e PyDictRevIterValue_Type
* PyDictValues_Type

e PyDict_Clear()

e PyDict_Contains ()

e PyDict_Copy ()

e PyDict_DelItem()

e PyDict_DelItemString()

e PyDict_GetItem()

e PyDict_GetItemString/()

20 Bolum 2. C API Stability

The Python/C API, Yayim 3.12.3

e PyDict_GetItemWithError ()
* PyDict_Items ()

e PyDict_Keys ()

e PyDict_Merge ()

* PyDict_MergeFromSeqZ ()

e PyDict_New/()

e PyDict_Next ()

e PyDict_SetItem()

e PyDict_SetItemString()

e PyDict_Size /()

e PyDict_Type

* PyDict_Update ()

* PyDict_Values ()

* PyEllipsis_Type

e PyEnum_Type

* PyErr BadArgument ()

* PyErr BadInternalCall ()

e PyErr CheckSignals ()

* PyErr Clear /()

e PyErr_Display ()

* PyErr DisplayException()

e PyErr ExceptionMatches ()

e PyErr Fetch()

* PyErr Format ()

* PyErr FormatV()

* PyErr GetExcInfo ()

e PyErr GetHandledException ()
e PyErr GetRaisedException ()
e PyErr GivenExceptionMatches ()
e PyErr NewException ()

* PyErr NewExceptionWithDoc ()
* PyErr NoMemory ()

e PyErr NormalizeException ()
* PyErr Occurred/()

* PyErr Print ()

* PyErr PrintEx ()

2.4. Contents of Limited API 21

The Python/C API, Yayim 3.12.3

PyErr_ProgramText ()
PyErr_ResourceWarning ()

PyErr Restore()

PyErr_ SetExcFromWindowsErr ()

PyErr SetExcFromWindowsErrWithFilename ()
PyErr SetExcFromWindowsErrWithFilenameObject ()
PyErr SetExcFromWindowsErrWithFilenameObjects ()
PyErr_SetExcInfo/()

PyErr_ SetFromErrno ()

PyErr SetFromErrnoWithFilename ()

PyErr SetFromErrnoWithFilenameObject ()
PyErr_ SetFromErrnoWithFilenameObjects ()
PyErr_SetFromWindowsErr ()
PyErr_SetFromWindowsErrWithFilename ()
PyErr_ SetHandledException ()
PyErr_SetImportError ()

PyErr_ SetImportErrorSubclass()
PyErr_SetInterrupt ()
PyErr_SetInterruptEx()

PyErr_SetNone ()

PyErr_SetObject ()
PyErr_SetRaisedException ()
PyErr_SetString()
PyErr_SyntaxLocation ()
PyErr_SyntaxLocationEx ()

PyErr_WarnEx ()

PyErr WarnExplicit ()

PyErr WarnFormat ()
PyErr_WriteUnraisable ()
PyEval_AcquireLock ()
PyEval_AcquireThread /()
PyEval_CallFunction()
PyEval_CallMethod ()
PyEval_CallObjectWithKeywords ()
PyEval_EvalCode ()

PyEval_EvalCodeEx ()

22

Bolum 2. C API Stability

The Python/C API, Yayim 3.12.3

PyEval_EvalFrame ()

PyEval_ EvalFrameEx ()
PyEval_ GetBuiltins ()
PyEval_GetFrame ()
PyEval_GetFuncDesc ()
PyEval_GetFuncName ()
PyEval_GetGlobals ()
PyEval_GetLocals ()
PyEval_InitThreads ()
PyEval_ReleaseLock ()
PyEval_ReleaseThread()
PyEval_RestoreThread()
PyEval_SaveThread/()
PyEval_ThreadsInitialized()
PyExc_ArithmeticError
PyExc_AssertionError
PyExc_AttributeError
PyExc_BaseException
PyExc_BaseExceptionGroup
PyExc_BlockingIOError
PyExc_BrokenPipeError
PyExc_BRufferError
PyExc_BytesWarning
PyExc_ChildProcessError
PyExc_ConnectionAbortedError
PyExc_ConnectionError
PyExc_ConnectionRefusedError
PyExc_ConnectionResetError
PyExc_DeprecationWarning
PyExc_EOFError
PyExc_EncodingWarning
PyExc_EnvironmentError
PyExc_Exception
PyExc_FileExistsError
PyExc_FileNotFoundError

PyExc_FloatingPointError

2.4. Contents of Limited API

23

The Python/C API, Yayim 3.12.3

PyExc_FutureWarning
PyExc_GeneratorExit
PyExc_IOError
PyExc_ImportError
PyExc_ImportWarning
PyExc_IndentationError
PyExc_IndexError
PyExc_InterruptedError
PyExc_IsADirectoryError
PyExc_KeyError
PyExc_KeyboardInterrupt
PyExc_LookupError
PyExc_MemoryError
PyExc_ModuleNotFoundError
PyExc_NameError
PyExc_NotADirectoryError
PyExc_NotImplementedError
PyExc_OSError

PyExc_OverflowError

PyExc_PendingDeprecationWarning

PyExc_PermissionError
PyExc_ProcessLookupError
PyExc_RecursionError
PyExc_ReferenceError
PyExc_ResourceWarning
PyExc_RuntimeError
PyExc_RuntimeWarning
PyExc_StopAsyncIteration
PyExc_StopIteration
PyExc_SyntaxError
PyExc_SyntaxWarning
PyExc_SystemError
PyExc_SystemExit
PyExc_TabError
PyExc_TimeoutError

PyExc_TypeError

24

Bolum 2. C API Stability

The Python/C API, Yayim 3.12.3

e PyExc_UnboundLocalError
* PyExc_UnicodeDecodeError
* PyExc_UnicodeEncodeError
* PyExc_UnicodeError

* PyExc_UnicodeTranslateError
* PyExc_UnicodeWarning

* PyExc_UserWarning

e PyExc_ValueError

* PyExc_Warning

* PyExc_WindowsError

e PyExc_ZeroDivisionError
* PyExceptionClass_Name ()
* PyException_GetArgs ()

s PyException_GetCause ()

e PyException_GetContext ()
s PyException_GetTraceback ()
* PyException_SetArgs ()

e PyException_SetCause ()

e PyException_SetContext ()
s PyException_SetTraceback ()
e PyFile FromFd()

e PyFile GetLine()

e PyFile WriteObject ()

e PyFile WriteString/()

e PyFilter_ Type

e PyFloat_AsDouble ()

e PyFloat_FromDouble ()

e PyFloat_FromString /()

* PyFloat_GetInfo()

e PyFloat_GetMax ()

e PyFloat_GetMin ()

e PyFloat_Type

* PyFrameObject

* PyFrame_GetCode ()

* PyFrame_GetLineNumber ()

* PyFrozenSet_New ()

2.4. Contents of Limited API 25

The Python/C API, Yayim 3.12.3

PyFrozenSet_Type

PyGC_Collect ()

PyGC_Disable ()

PyGC_Enable ()

PyGC_IsEnabled()

PyGILState Ensure()

PyGILState GetThisThreadState ()
PyGILState_Release ()
PyGILState_ STATE

PyGetSetDef

PyGetSetDescr_Type
PyImport_AddModule ()
PyImport_AddModuleObject ()
PyImport_AppendInittab ()
PyImport_ExecCodeModule ()
PyImport_ExecCodeModuleEx ()
PyImport_ExecCodeModuleObject ()
PyImport_ExecCodeModuleWithPathnames ()
PyImport_GetImporter ()
PyImport_GetMagicNumber ()
PyImport_GetMagicTag ()
PyImport_GetModule ()
PyImport_GetModuleDict ()
PyImport_Import ()
PyImport_ImportFrozenModule ()
PyImport_ImportFrozenModuleObject ()
PyImport_ImportModule ()
PyImport_ImportModuleLevel ()
PyImport_ImportModuleLevelObject ()
PyImport__ImportModuleNoBlock ()
PyImport_ReloadModule ()
PyIndex_Check ()
PyInterpreterState
PyInterpreterState_Clear()
PyInterpreterState_Delete ()

PyInterpreterState_Get ()

26

Bolum 2. C API Stability

The Python/C API, Yayim 3.12.3

e PyInterpreterState_GetDict ()
e PyInterpreterState_GetID()
* PyInterpreterState_New()

s PyIter Check ()

e PyIter_ Next ()

e PyIter_Send()

e PyListIter_Type

e PyListRevIter_Type

e PyList_Append()

e PyList_AsTuple()

e PyList_GetItem()

e PyList_GetSlice()

e PyList_Insert ()

* PyList_New/()

e PyList_Reverse()

e PyList_SetItem()

e PyList_SetSlice()

e PyList_Size()

* PyList_Sort ()

e PyList_Type

* PyLongObject

¢ PyLongRangelIter_Type

* PyLong _AsDouble ()

* PyLong_AsLong()

* PyLong_AsLongAndOverflow/()
* PyLong_AsLongLong()

* PyLong_AsLongLongAndOverflow ()
* PyLong_AsSize_t ()

* PyLong_AsSsize_t ()

e PyLong _AsUnsignedLong ()

* PyLong AsUnsignedLongLong ()
* PyLong AsUnsignedLongLongMask ()
* PyLong_AsUnsignedLongMask ()
* PyLong _AsVoidPtr ()

* PyLong_FromDouble ()

* PyLong_ FromLong()

2.4. Contents of Limited API 27

The Python/C API, Yayim 3.12.3

* PyLong_FromLongLong ()

* PyLong FromSize_ t ()

* PyLong FromSsize_t ()

* PyLong_FromString/()

* PyLong_FromUnsignedLong ()
* PyLong FromUnsignedLongLong ()
e PyLong_FromVoidPtr ()

e PyLong_GetInfo ()

* PyLong_Type

e PyMap_Type

* PyMapping Check ()

e PyMapping_GetItemString()
* PyMapping_HasKey ()

* PyMapping HasKeyString()
* PyMapping Items ()

s PyMapping_Keys ()

* PyMapping_Length ()

* PyMapping_SetItemString()
* PyMapping Size ()

* PyMapping_Values ()

* PyMem_ Calloc ()

* PyMem Free()

* PyMem Malloc ()

* PyMem Realloc ()

* PyMemberDef

e PyMemberDescr_Type

* PyMember_GetOne ()

* PyMember_SetOne ()

e PyMemoryView_ FromBuffer ()
* PyMemoryView_FromMemory ()
* PyMemoryView_FromObject ()
* PyMemoryView_GetContiguous ()
s PyMemoryView_Type

* PyMethodDef

* PyMethodDescr_Type

* PyModuleDef

28 Bolum 2. C API Stability

The Python/C API, Yayim 3.12.3

e PyModuleDef_Base

¢ PyModuleDef_ Init ()

* PyModuleDef_Type

e PyModule_AddFunctions ()

e PyModule_ AddIntConstant ()
* PyModule_ AddObject ()

* PyModule_AddObjectRef ()

e PyModule_ AddStringConstant ()
e PyModule_ AddType ()

¢ PyModule_Createl ()

* PyModule_ ExecDef ()

* PyModule_FromDefAndSpecZ ()
e PyModule_GetDef ()

* PyModule_ GetDict ()

e PyModule_ GetFilename ()

* PyModule_GetFilenameObject ()
* PyModule_GetName ()

s PyModule_GetNameObject ()

e PyModule_GetState ()

* PyModule_ New ()

* PyModule_NewObject ()

e PyModule_SetDocString/()

e PyModule_Type

* PyNumber_Absolute ()

* PyNumber_ Add ()

* PyNumber_And/()

e PyNumber_AsSsize_t ()

* PyNumber_Check ()

e PyNumber_Divmod ()

e PyNumber_ Float ()

* PyNumber_ FloorDivide ()

* PyNumber_InPlaceAdd ()

e PyNumber_InPlaceAnd()

* PyNumber_InPlaceFloorDivide ()
* PyNumber_ InPlaceLshift ()

e PyNumber_ InPlaceMatrixMultiply ()

2.4. Contents of Limited API 29

The Python/C API, Yayim 3.12.3

PyNumber_InPlaceMultiply ()
PyNumber_InPlaceOr ()

PyNumber_InPlacePower ()

PyNumber_InPlaceRemainder ()

PyNumber_InPlaceRshift ()

PyNumber InPlaceSubtract ()

PyNumber_InPlaceTrueDivide ()

PyNumber_InPlaceXor ()
PyNumber_Index ()
PyNumber_ Invert ()
PyNumber_Long ()
PyNumber_Lshift ()
PyNumber_MatrixMultiply ()
PyNumber Multiply()
PyNumber_Negative ()
PyNumber_Or ()
PyNumber_Positive()
PyNumber_Power ()
PyNumber_Remainder ()
PyNumber_Rshift ()
PyNumber_ Subtract ()
PyNumber_ToBase ()
PyNumber_TrueDivide ()
PyNumber_Xor ()
PyOS_AfterFork ()
PyOS_AfterFork_Child()
PyOS_AfterFork_Parent ()
PyOS_BeforeFork ()
PyOS_CheckStack ()
PyOS_FSPath ()
PyOS_InputHook
PyOS_InterruptOccurred()
PyOS_double_to_string()
Py0OS_getsig ()
PyOS_mystricmp ()

PyOS_mystrnicmp ()

30

Bolum 2. C API Stability

The Python/C API, Yayim 3.12.3

e PyOS_setsig()

* PyOS_sighandler_t

* PyOS_snprintf ()

e PyOS_string to_double ()

e PyOS_strtol ()

* PyOS_strtoul ()

* PyOS_vsnprintf ()

e PyObject

* PyObject.ob_refcnt

* PyObject.ob_type

* PyObject_ASCII()

* PyObject_AsCharBuffer ()

* PyObject_AsFileDescriptor ()
* PyObject_AsReadBuffer ()

e PyObject_AsWriteBuffer ()

e PyObject_Bytes ()

e PyObject_Call()

* PyObject_CallFunction()

e PyObject_CallFunctionObjArgs ()
* PyObject_CallMethod/()

* PyObject_CallMethodObjArgs ()
e PyObject_CallNoArgs ()

* PyObject_CallObject ()

* PyObject_Calloc()

* PyObject_CheckBuffer()

e PyObject_CheckReadBuffer ()
e PyObject_ClearWeakRefs ()

s PyObject_CopyData ()

* PyObject_Delltem()

* PyObject_DelIlItemString()

* PyObject_Dir ()

* PyObject_Format ()

e PyObject_Free ()

* PyObject_GC_Del ()

e PyObject_GC_IsFinalized()

* PyObject_GC_IsTracked()

2.4. Contents of Limited API 31

The Python/C API, Yayim 3.12.3

* PyObject_GC_Track ()

* PyObject_GC_UnTrack ()

* PyObject_GenericGetAttr ()
e PyObject_GenericGetDict ()
* PyObject_GenericSetAttr ()

* PyObject_GenericSetDict ()

e PyObject_GetAIter ()

* PyObject_GetAttr ()

e PyObject_GetAttrString()

s PyObject_GetBuffer ()
* PyObject_GetItem()

e PyObject_GetIter ()

* PyObject_GetTypeData ()

e PyObject_HasAttr ()

e PyObject_HasAttrString()

* PyObject_Hash ()

* PyObject_HashNotImplemented/()

* PyObject_Init ()

e PyObject_InitVar()

* PyObject_IsInstance ()
* PyObject_IsSubclass ()
e PyObject_IsTrue ()

* PyObject_Length ()

* PyObject_Malloc ()

* PyObject_Not ()

* PyObject_Realloc ()

* PyObject_Repr ()

* PyObject_RichCompare ()

e PyObject_RichCompareBool ()

* PyObject_SelflIter()

* PyObject_SetAttr ()

e PyObject_SetAttrString()

* PyObject_SetItem()
* PyObject_Size()
* PyObject_Str()

e PyObject_Type ()

32

Bolum 2. C API Stability

The Python/C API, Yayim 3.12.3

e PyObject_Vectorcall ()
e PyObject_VectorcallMethod()
* PyProperty_ Type

¢ PyRangelIter_Type

* PyRange_Type

* PyReversed_Type

* PySeqglter New()

* PySeqglter_ Type

e PySequence_Check ()

* PySequence_Concat ()

e PySequence_Contains ()
e PySequence_Count ()

s PySequence_DelItem()
* PySequence_DelSlice ()
* PySequence_Fast ()

e PySequence_GetItem()
* PySequence_GetSlice ()
* PySequence_In()

* PySequence_InPlaceConcat ()
* PySequence_InPlaceRepeat ()
* PySequence_Index ()

* PySequence_Length ()

* PySequence_List ()

* PySequence_Repeat ()

* PySequence_SetItem()
e PySequence_SetSlice ()
s PySequence_Size ()

* PySequence_Tuple ()

e PySetIter_Type

e PySet_Add()

e PySet_Clear()

e PySet_Contains ()

* PySet_Discard()

e PySet_New ()

s PySet_Pop ()

e PySet_Size()

2.4. Contents of Limited API 33

The Python/C API, Yayim 3.12.3

PySet_Type
PySlice_AdjustIndices ()
PySlice_GetIndices ()
PySlice_GetIndicesEx ()
PySlice_New()

PySlice_Type
PySlice_Unpack ()
PyState_AddModule ()
PyState_FindModule ()
PyState_RemoveModule ()
PyStructSequence_Desc
PyStructSequence_Field
PyStructSequence_GetItem()
PyStructSequence_New ()
PyStructSequence_NewIype ()
PyStructSequence_SetItem()
PyStructSequence_UnnamedField
PySuper_Type
PySys_AddWarnOption ()
PySys_AddWarnOptionUnicode ()
PySys_AddXOption ()
PySys_FormatStderr ()
PySys_FormatStdout ()
PySys_GetObject ()
PySys_GetXOptions ()
PySys_HasWarnOptions ()
PySys_ResetWarnOptions ()
PySys_SetArgv()
PySys_SetArgvEx ()
PySys_SetObject ()
PySys_SetPath ()
PySys_WriteStderr ()
PySys_WriteStdout ()
PyThreadState
PyThreadState_Clear ()

PyThreadState_Delete ()

34

Bolum 2. C API Stability

The Python/C API, Yayim 3.12.3

* PyThreadState_Get ()

* PyThreadState_GetDict ()

* PyThreadState_GetFrame ()

* PyThreadState_GetID()

e PyThreadState_GetInterpreter ()
* PyThreadState_New ()

* PyThreadState_ SetAsyncExc ()
* PyThreadState_Swap ()

e PyThread_GetInfo()

* PyThread ReInitTLS ()

* PyThread_acquire_lock ()

* PyThread_acquire_lock_timed()
e PyThread_allocate_lock ()

* PyThread_create_key ()

* PyThread _delete_key ()

* PyThread delete_key_value ()
* PyThread_exit_thread()

e PyThread_free_lock()

e PyThread_get_key_value()

e PyThread_get_stacksize ()

e PyThread_get_thread_ident ()
e PyThread_get_thread_native_id()
e PyThread_init_thread()

e PyThread_release_lock ()

* PyThread_ set_key_value ()

e PyThread_set_stacksize ()

e PyThread_start_new_thread()
* PyThread tss_alloc ()

* PyThread_ tss_create()

e PyThread_tss_delete ()

* PyThread tss_free ()

* PyThread tss_get ()

e PyThread_ tss_1is_created()

* PyThread tss_set ()

* PyTraceBack_Here ()

* PyTraceBack_Print ()

2.4. Contents of Limited API 35

The Python/C API, Yayim 3.12.3

e PyTraceBack_Type

* PyTuplelIter_Type

* PyTuple_GetItem()

e PyTuple_GetSlice ()

e PyTuple_New/()

* PyTuple Pack ()

* PyTuple_SetItem()

s PyTuple_Size()

* PyTuple_ Type

s PyTypeObject

* PyType_ClearCache ()

* PyType_ FromMetaclass ()

s PyType FromModuleAndSpec ()

* PyType FromSpec ()

e PyType_FromSpecWithBases ()

* PyType_GenericAlloc ()

s PyType_GenericNew ()

* PyType_GetFlags ()

e PyType_GetModule ()

* PyType_ GetModuleState ()

* PyType_GetName ()

e PyType_GetQualName ()

* PyType_GetSlot ()

e PyType_GetTypeDataSize ()

e PyType IsSubtype ()

e PyType_Modified()

e PyType_Ready ()

* PyType_Slot

* PyType_Spec

e PyType_Type

* PyUnicodeDecodeError_Create()
e PyUnicodeDecodeError_GetEncoding()
e PyUnicodeDecodeError_GetEnd/()
* PyUnicodeDecodeError_GetObject ()
* PyUnicodeDecodeError_GetReason ()

e PyUnicodeDecodeError_GetStart ()

36 Bolum 2. C API Stability

The Python/C API, Yayim 3.12.3

e PyUnicodeDecodeError_SetEnd()

* PyUnicodeDecodeError_SetReason ()

* PyUnicodeDecodeError_SetStart ()

e PyUnicodeEncodeError_GetEncoding ()
e PyUnicodeEncodeError_GetEnd ()

* PyUnicodeEncodeError_GetObject ()

* PyUnicodeEncodeError_GetReason ()

* PyUnicodeEncodeError_GetStart ()

e PyUnicodeEncodeError_SetEnd ()

* PyUnicodeEncodeError_SetReason ()

* PyUnicodeEncodeError_SetStart ()

* PyUnicodeIter_Type

* PyUnicodeTranslateError_GetEnd/()

* PyUnicodeTranslateError_ GetObject ()
e PyUnicodeTranslateError_GetReason ()
e PyUnicodeTranslateError_GetStart ()
* PyUnicodeTranslateError_SetEnd/()

* PyUnicodeTranslateError_SetReason ()
e PyUnicodeTranslateError_SetStart ()
e PyUnicode_Append/()

* PyUnicode_AppendAndDel ()

e PyUnicode AsASCIIString/()

e PyUnicode_AsCharmapString/()

* PyUnicode_AsDecodedObject ()

* PyUnicode_AsDecodedUnicode ()

* PyUnicode_AsEncodedObject ()

* PyUnicode_AsEncodedString/()

* PyUnicode_AsEncodedUnicode ()

® PyUnicode_AsLatinlString/()

e PyUnicode_AsMBCSString()

* PyUnicode_AsRawUnicodeEscapeString ()
* PyUnicode_AsUCS4 ()

e PyUnicode_AsUCS4Copy ()

* PyUnicode_AsUTF16String()

* PyUnicode_AsUTF32String()

* PyUnicode AsUTF8AndSize ()

2.4. Contents of Limited API 37

The Python/C API, Yayim 3.12.3

PyUnicode_AsUTF8String/()
PyUnicode_AsUnicodeEscapeString()
PyUnicode_AsWideChar ()
PyUnicode_AsWideCharString/()
PyUnicode_BuildEncodingMap ()
PyUnicode_Compare ()
PyUnicode_CompareWithASCIIString ()
PyUnicode_Concat ()
PyUnicode_Contains ()
PyUnicode_Count ()
PyUnicode_Decode ()
PyUnicode_DecodeASCITI ()
PyUnicode_DecodeCharmap ()
PyUnicode_DecodeCodePageStateful ()
PyUnicode_DecodeFSDefault ()
PyUnicode_DecodeFSDefaultAndSize ()
PyUnicode_DecodeLatinl ()
PyUnicode_DecodeLocale ()
PyUnicode_DecodeLocaleAndSize ()
PyUnicode_DecodeMBCS ()
PyUnicode_DecodeMBCSStateful ()
PyUnicode_DecodeRawUnicodeEscape ()
PyUnicode_DecodeUTF16 ()
PyUnicode_DecodeUTFl16Stateful ()
PyUnicode_DecodeUTF32 ()
PyUnicode_DecodeUTF32Stateful ()
PyUnicode_DecodeUTF7 ()
PyUnicode_DecodeUTF7Stateful ()
PyUnicode_DecodeUTFS8 ()
PyUnicode_DecodeUTF8Stateful ()
PyUnicode_DecodeUnicodeEscape ()
PyUnicode_EncodeCodePage ()
PyUnicode_FEncodeFSDefault ()
PyUnicode_EncodeLocale ()
PyUnicode_FSConverter ()

PyUnicode_FSDecoder ()

38

Bolum 2. C API Stability

The Python/C API, Yayim 3.12.3

e PyUnicode_Find()

e PyUnicode_FindChar ()

¢ PyUnicode_Format ()

e PyUnicode_FromEncodedObject ()
* PyUnicode_FromFormat ()

* PyUnicode_FromFormatV ()

e PyUnicode_FromObject ()

* PyUnicode_FromOrdinal ()

e PyUnicode_FromString ()

* PyUnicode_FromStringAndSize ()
e PyUnicode_FromWideChar ()

* PyUnicode_GetDefaultEncoding ()
* PyUnicode_GetLength ()

e PyUnicode_InternFromString ()
e PyUnicode_InternInPlace ()

e PyUnicode_IsIdentifier()

e PyUnicode_Join ()

* PyUnicode_Partition()

e PyUnicode_RPartition ()

e PyUnicode_RSplit ()

e PyUnicode_ReadChar ()

e PyUnicode_Replace ()

* PyUnicode_Resize ()

* PyUnicode_RichCompare ()

e PyUnicode_Split ()

e PyUnicode_Splitlines ()

* PyUnicode_Substring()

* PyUnicode_Tailmatch ()

e PyUnicode_Translate ()

e PyUnicode_Type

* PyUnicode_WriteChar ()

e PyVarObject

e PyVarObject.ob_base

* PyVarObject.ob_size

s PyVectorcall Call ()

e PyVectorcall_ NARGS ()

2.4. Contents of Limited API 39

The Python/C API, Yayim 3.12.3

PyWeakReference
PyWeakref_ GetObject ()
PyWeakref_ NewProxy ()
PyWeakref NewRef ()
PyWrapperDescr_Type
PyWrapper_New ()
PyZip_Type
Py_AddPendingCall ()

Py AtExit ()

Py BEGIN_ALLOW_THREADS
Py BLOCK_THREADS

Py _BuildValue ()

Py _BytesMain ()

Py CompileString/()
Py_DecRef ()
Py_DecodeLocale ()

Py END_ALLOW_THREADS
Py_EncodeLocale ()
Py_EndInterpreter()

Py _EnterRecursiveCall ()
Py Exit ()

Py FatalError ()
Py_FileSystemDefaultEncodeErrors
Py_FileSystemDefaultEncoding
Py_Finalize ()
Py_FinalizeEx()

Py _GenericAlias ()

Py _GenericAliasType
Py_GetBuildInfo ()
Py_GetCompiler ()

Py _GetCopyright ()
Py_GetExecPrefix()
Py_GetPath ()
Py_GetPlatform()

Py GetPrefix()

Py _GetProgramFullPath ()

40

Bolum 2. C API Stability

The Python/C API, Yayim 3.12.3

* Py GetProgramName ()

* Py _GetPythonHome ()

* Py_GetRecursionLimit ()
* Py GetVersion()

* Py_HasFileSystemDefaultEncoding
* Py _IncRef ()

e Py Initialize()

e Py InitializeEx()

e Py Is()

* Py IsFalse()

* Py IsInitialized()

e Py _IsNone ()

e Py IsTrue()

e Py _LeaveRecursiveCall ()
* Py Main()

* Py_MakePendingCalls ()
* Py NewInterpreter()

* Py NewRef ()

* Py ReprEnter ()

* Py ReprLeave ()

* Py SetPath()

* Py SetProgramName ()

* Py _SetPythonHome ()

* Py_SetRecursionLimit ()
e Py _UCS4

e Py UNBLOCK_THREADS

e Py_UTF8Mode

* Py VaBuildValue ()

* Py Version

e Py XNewRef ()

e Py buffer

e Py_intptr_t

* Py ssize_t

* Py_uintptr_t

* allocfunc

e binaryfunc

2.4. Contents of Limited API 41

The Python/C API, Yayim 3.12.3

* descrgetfunc

* descrsetfunc

* destructor

* getattrfunc

e getattrofunc

s getbufferproc

e getiterfunc

* getter

* hashfunc

e initproc

e inquiry

e iternextfunc

e lenfunc

* newfunc

* objobjargproc

* objobjproc

s releasebufferproc
* reprfunc

e richcmpfunc

* setattrfunc

* setattrofunc

e setter

* ssizeargfunc

* ssizeobjargproc
* ssizessizeargfunc
* ssizessizeobjargproc
e symtable

* ternaryfunc

* traverseproc

* unaryfunc

* vectorcallfunc

e visitproc

42 Bolum 2. C API Stability

BOLUM 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input,Py_file_input,and Py_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled care-
fully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least),
it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.

int Py_Madin (int argc, wchar_t **argv)

Bir parcast Kararli ABI. The main program for the standard interpreter. This is made available for programs which
embed Python. The argc and argv parameters should be prepared exactly as those which are passed to a C program’s
main () function (converted to wchar_t according to the user’s locale). It is important to note that the argument
list may be modified (but the contents of the strings pointed to by the argument list are not). The return value will
be 0 if the interpreter exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or
2 if the parameter list does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
aslongas PyConfig.inspect is zero.

int Py_BytesMain (int argc, char **argv)
Bir parcast Kararli ABI 3.8 siiriimiinden beri. Similar to Py_Main () but argv is an array of bytes strings.
Added in version 3.8.

int PyRun_AnyFile (FILE *fp, const char *filename)

This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to O and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to O.

43

The Python/C API, Yayim 3.12.3

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal), re-
turn the value of PyRun_TInteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys.getfilesystemencoding()). If filena-
me i1s NULL, this function uses "?27?7?" as the filename. If closeit is true, the file is closed before
PyRun_SimpleFileExFlags () returns.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags*®
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)

Executes the Python source code from command in the __main__ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or —1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return —1, but exit the process,
aslongas PyConfig. inspect is zero.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from filesystem encoding and error handler.
If closeit is true, the file is closed before PyRun_SimpleFileExFlags () returns.

Not: On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb")).Otherwise, Python
may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys .ps1 and sys.ps2. filename is decoded from the filesystem encoding and
error handler.

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode . h is not
included by Python. h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute statements from a file associated with an interactive device until EOF is reached. The user will
be prompted using sys .ps1 and sys.ps2. filename is decoded from the filesystem encoding and error handler.
Returns 0 at EOF or a negative number upon failure.

44 Boliim 3. The Very High Level Layer

The Python/C API, Yayim 3.12.3

int (*PyOS_InputHook)(void)
Bir pargasi Kararl1 ABIL Can be set to point to a function with the prototype int func (void). The function
will be called when Python’s interpreter prompt is about to become idle and wait for user input from the terminal.
The return value is ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other event
loops, as done in the Modules/_tkinter.c in the Python source code.

3.12 siiriimiinde degisti: This function is only called from the main interpreter.

char *(*PyOS_ReadlineFunctionPointer)(FILE*, FILE*, const char*)

Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’s prompt.
The function is expected to output the string prompt if it’s not NULL, and then read a line of input from the provided
standard input file, returning the resulting string. For example, The readline module sets this hook to provide
line-editing and tab-completion features.

The result must be a string allocated by PyMem RawMalloc () or PyMem_RawRealloc (), or NULL if an
error occurred.

3.4 siirtimiinde degisti: The result must be allocated by PyMem RawMalloc () or PyMem RawRealloc (),
instead of being allocated by PyMem_Malloc () or PyMem Realloc ().

3.12 siiriimiinde degisti: This function is only called from the main interpreter.

PyObject *PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Dondiirdiigii deger: Yeni referans. This is a simplified interface to PyRun_StringFlags () below, leaving flags
set to NULL.
PyObject *PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompilerFlags
*flags)

Dondiirdiigii deger: Yeni referans. Execute Python source code from st in the context specified by the objects
globals and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object
that implements the mapping protocol. The parameter start specifies the start token that should be used to parse
the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject *PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)

Dondiirdiigii deger: Yeni referans. This is a simplified interface to PyRun_FileExFlags () below, leaving
closeit set to 0 and flags set to NULL.

PyObject *PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals, int closeit)
Dondiirdiigii deger: Yeni referans. This is a simplified interface to PyRun_FileExFlags () below, leaving flags
set to NULL.

PyObject *PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *1ocals,

PyCompilerFlags *flags)
Dondiirdiigii deger: Yeni referans. This is a simplified interface to PyRun_FileExFlags () below, leaving
closeit set to 0.

PyObject *PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *1ocals, int

closeit, PyCompilerFlags *flags)

Dondiirdiigii deger: Yeni referans. Similar to PyRun_StringFlags (), but the Python source code is read from
Jp instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
and error handler. If closeit is true, the file is closed before PyRun_FileExFlags () returns.

PyObject *Py_CompileString (const char *str, const char *filename, int start)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararlh ABIL This is a simplified interface to
Py_CompileStringFlags () below, leaving flags set to NULL.

45

The Python/C API, Yayim 3.12.3

PyObject *Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompilerFlags *flags)

Dondiirdiigii deger: Yeni referans. This is a simplified interface to Py_CompileStringExFlags () below,
with optimize set to —1.

PyObject *Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompilerFlags *flags, int
optimize)

Dondiirdiigii deger: Yeni referans. Parse and compile the Python source code in str, returning the resulting code
object. The start token is given by start; this can be used to constrain the code which can be compiled and should be
Py_eval_input, Py_file_input,or Py_single_input. The filename specified by filename is used
to construct the code object and may appear in tracebacks or SyntaxError exception messages. This returns
NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization level of
the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is true), 1 (asserts are
removed, __debug___is false) or 2 (docstrings are removed too).

Added in version 3.4.

PyObject *Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompilerFlags *flags,
int optimize)
Dondiirdiigii deger: Yeni referans. Like Py_CompileStringObject (), but filename is a byte string decoded
from the filesystem encoding and error handler.

Added in version 3.2.

PyObject *PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *1ocals)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararlh ABIL This is a simplified interface to
PyEval_FEvalCodeEx (), with just the code object, and global and local variables. The other arguments are
set to NULL.

PyObject *PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args, int
argcount, PyObject *const ¥*kws, int kwcount, PyObject *const *defs, int
defcount, PyObject *kwdefs, PyObject *closure)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Evaluate a precompiled code object, given a particular
environment for its evaluation. This environment consists of a dictionary of global variables, a mapping object
of local variables, arrays of arguments, keywords and defaults, a dictionary of default values for keyword-only
arguments and a closure tuple of cells.

PyObject *PyEval_EvalFrame (PyFrameObject *f)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Evaluate an execution frame. This is a simplified inter-
face to PyEval_ EvalFrameEx (), for backward compatibility.

PyObject *PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL This is the main, unvarnished function of Python interp-
retation. The code object associated with the execution frame f is executed, interpreting bytecode and executing
calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes an exception to
immediately be thrown; this is used for the throw () methods of generator objects.

3.4 siiriimiinde degisti: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

int PyEval_MergeCompilerFlags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.
int Py_eval_input

The start symbol from the Python grammar for isolated expressions; for use with Py_ CompileString ().

46 Boliim 3. The Very High Level Layer

The Python/C API, Yayim 3.12.3

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source code.
int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py CompileString (). This
is the symbol used for the interactive interpreter loop.
struct PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __ future__ import can modify flags.

Whenever PyCompilerFlags *flagsis NULL, cf_flags is treated as equal to 0, and any modification
dueto from _ future_ import is discarded.

intcf_flags
Compiler flags.

int cf_feature_version

¢f_feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSION.
The field is ignored by default, it is used if and only if PyCF_ONLY_AST flagis setin cf_flags.
3.8 siiriimiinde degisti: Added cf_feature_version field.
int CO_FUTURE_DIVISION

This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP 238.

47

https://peps.python.org/pep-0238/

The Python/C API, Yayim 3.12.3

48 Boliim 3. The Very High Level Layer

BoLOM 4

Reference Counting

The functions and macros in this section are used for managing reference counts of Python objects.
Py_ssize_t Py_REFCNT (PyObject *0)
Get the reference count of the Python object o.

Note that the returned value may not actually reflect how many references to the object are actually held. For
example, some objects are “immortal” and have a very high refcount that does not reflect the actual number of
references. Consequently, do not rely on the returned value to be accurate, other than a value of 0 or 1.

Use the Py SET REFCNT () function to set an object reference count.
3.10 siiriimiinde degisti: Py_ REFCNT () is changed to the inline static function.
3.11 siiriimiinde degisti: The parameter type is no longer const PyObject*.

void Py_SET_REFCNT (PyObject *o, Py_ssize_t refcnt)
Set the object o reference counter to refcnt.

Note that this function has no effect on immortal objects.
Added in version 3.9.
3.12 siiriimiinde degisti: Immortal objects are not modified.
void Py_ INCREF (PyObject *0)
Indicate taking a new strong reference to object o, indicating it is in use and should not be destroyed.

This function is usually used to convert a borrowed reference to a strong reference in-place. The Py_NewRef ()
function can be used to create a new strong reference.

When done using the object, release it by calling Py_ DECREF ().
The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py_ XINCREF ().
Do not expect this function to actually modify o in any way. For at least some objects, this function has no effect.

3.12 siiriimiinde degisti: Immortal objects are not modified.

49

https://peps.python.org/pep-0683/
https://peps.python.org/pep-0683/

The Python/C API, Yayim 3.12.3

void Py_XINCREF (PyObject *0)
Similar to Py_ TNCREF (), but the object o can be NULL, in which case this has no effect.
See also Py XNewRef ().

PyObject *Py_NewRef (PyObject *0)

Bir parcast Kararli ABI 3. 10 siiriimiinden beri. Create a new strong reference to an object: call Py_ TNCREF () on
o0 and return the object o.

When the strong reference is no longer needed, Py_ DECREF () should be called on it to release the reference.
The object 0 must not be NULL; use Py_ XNewRef () if o can be NULL.

For example:

Py_INCREF (obj) ;
self->attr = obj;

can be written as:

[self7>attr = Py_NewRef (obj) ;

See also Py ITNCREF ().
Added in version 3.10.
PyObject *Py_XNewRe£ (PyObject *0)
Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Similar to Py_NewRef (), but the object o can be NULL.
If the object o is NULL, the function just returns NULL.
Added in version 3.10.

void Py_DECREF (PyObject *0)
Release a strong reference to object o, indicating the reference is no longer used.

Once the last strong reference is released (i.e. the object’s reference count reaches 0), the object’s type’s deallocation
function (which must not be NULL) is invoked.

This function is usually used to delete a strong reference before exiting its scope.
The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py_ XDECREF ().

Do not expect this function to actually modify o in any way. For at least some objects, this function has no effect.

Uyar1: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance
witha __del__ () method is deallocated). While exceptions in such code are not propagated, the executed
code has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state before Py DECREF () is invoked. For example, code to delete an object
from a list should copy a reference to the deleted object in a temporary variable, update the list data structure,
and then call Py DECREF () for the temporary variable.

3.12 siiriimiinde degisti: Immortal objects are not modified.

void Py_XDECREF (PyObject *0)

Similar to Py_ DECREF (), but the object o can be NULL, in which case this has no effect. The same warning from
Py_DECREF () applies here as well.

50 Boliim 4. Reference Counting

https://peps.python.org/pep-0683/

The Python/C API, Yayim 3.12.3

void Py_ CLEAR (PyObject *0)

Release a strong reference for object o. The object may be NULL, in which case the macro has no effect; otherwise
the effect is the same as for Py_ DECREF (), except that the argument is also set to NULL. The warning for
Py_DECREF () does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before releasing the reference.

Itis a good idea to use this macro whenever releasing a reference to an object that might be traversed during garbage
collection.

3.12 siirtimiinde degisti: The macro argument is now only evaluated once. If the argument has side effects, these
are no longer duplicated.

void Py_IncRef (PyObject *0)

Bir parcasi Kararli ABI. Indicate taking a new strong reference to object o. A function version of Py XTNCREF ().
It can be used for runtime dynamic embedding of Python.

void Py_DecRef (PyObject *0)

Bir parcas: Kararli ABI. Release a strong reference to object o. A function version of Py XDECREEF (). It can be
used for runtime dynamic embedding of Python.

Py_SETREF (dst, src)

Macro safely releasing a strong reference to object dst and setting dst to src.

Asin case of Py CLEAR (), “the obvious” code can be deadly:

Py_DECREF (dst) ;
dst = src;

The safe way is:

[Py_SETREF (dst, src);]

That arranges to set dst to src _before_ releasing the reference to the old value of dst, so that any code triggered as
a side-effect of dst getting torn down no longer believes dst points to a valid object.

Added in version 3.6.

3.12 siiriimiinde degisti: The macro arguments are now only evaluated once. If an argument has side effects, these
are no longer duplicated.

Py_XSETREF (dst, src)
Variant of Py SETREF macro that uses Py XDECREF () instead of Py DECREF ().

Added in version 3.6.

3.12 siiriimiinde degisti: The macro arguments are now only evaluated once. If an argument has side effects, these
are no longer duplicated.

51

The Python/C API, Yayim 3.12.3

52 Boliim 4. Reference Counting

BOLUM D

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will set it to
indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if they are
supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* functions return 1 for success and
0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the tra-
ceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for example
you can’t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

Not: The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not
yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

53

The Python/C API, Yayim 3.12.3

5.1 Printing and clearing

void PyErr_Clear ()

Bir parcasi Kararli ABL Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)

Bir parcast Kararli ABL Print a standard traceback to sys.stderr and clear the error indicator. Unless the
error is a SystemEx1it, in that case no traceback is printed and the Python process will exit with the error code
specified by the SystemEx1it instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last_vars is nonzero, the variable sys.last_exc is set to the printed exception. For backwards com-
patibility, the deprecated variables sys.last_type, sys.last_value and sys.last_traceback are
also set to the type, value and traceback of this exception, respectively.

3.12 siiriimiinde degisti: The setting of sys. last_exc was added.

void PyErr_Print ()

Bir parcast Kararli ABIL. Alias for PyErr_PrintEx (1).

void PyErr_ WriteUnraisable (PyObject *obj)

Bir parcast Kararli ABIL Call sys.unraisablehook () using the current exception and obj argument.

This utility function prints a warning message to sys . stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
del_ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message. If obj is NULL, only the traceback is
printed.

An exception must be set when calling this function.
3.4 siirtimiinde degisti: Print a traceback. Print only traceback if obj is NULL.

3.8 siiriimiinde degisti: Use sys.unraisablehook ().

void PyErr_DisplayException (PyObject *exc)

Bir parcast Kararli ABI 3.12 siiriimiinden beri. Print the standard traceback display of exc to sys.stderr,
including chained exceptions and notes.

Added in version 3.12.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)

Bir parcasi Kararli ABL This is the most common way to set the error indicator. The first argument specifies the
exception type; it is normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not create
a new strong reference to it (e.g. with Py_ TNCREF ()). The second argument is an error message; it is decoded
from 'ut£-8"'.

54

Béliim 5. Exception Handling

The Python/C API, Yayim 3.12.3

void PyErr_SetObject (PyObject *type, PyObject *value)
Bir parcast Kararli ABI. This function is similar to PyErr_SetString () but lets you specify an arbitrary
Python object for the “value” of the exception.

PyObject *PyErr_Format (PyObject *exception, const char *format, ...)

Dondiirdiigii deger: Her zaman NULL. Bir pargast Kararli ABIL This function sets the error indicator and returns
NULL. exception should be a Python exception class. The format and subsequent parameters help format the error
message; they have the same meaning and values as in PyUnicode_FromFormat (). format is an ASCII-
encoded string.

PyObject *PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Dondiirdiigii deger: Her zaman NULL. Bir parcasi Kararli ABI 3.5 siiriimiinden beri. Same as PyErr Format (),
but taking a va_ 11 st argument rather than a variable number of arguments.

Added in version 3.5.

void PyErr_SetNone (PyObject *type)
Bir parcast Kararli ABL This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_BadArgument ()

Bir parcast Kararli ABL This is a shorthand for PyErr_SetString (PyExc_TypeError, message),
where message indicates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject *PyErr_NoMemory ()
Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararh ABIL This is a shorthand for

PyErr_SetNone (PyExc_MemoryError); it returns NULL so an object allocation function can wri-
te return PyErr_NoMemory () ; when it runs out of memory.

PyObject *PyErr_SetFromErrno (PyObject *type)

Dondiirdiigii deger: Her zaman NULL. Bir parcasi Kararli ABI. This is a convenience function to raise an exception
when a C library function has returned an error and set the C variable errno. It constructs a tuple object whose
first item is the integer errno value and whose second item is the corresponding error message (gotten from
strerror ()), and then calls PyErr_SetObject (type, object).On Unix, when the errno value is
EINTR, indicating an interrupted system call, this calls PyErr CheckSignals (), and if that set the error
indicator, leaves it set to that. The function always returns NULL, so a wrapper function around a system call can
write return PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject *PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
Dondiirdiigii deger: Her zaman NULL. Bir pargas: Kararli ABI. Similar to PyErr_SetFromErrno (), with the

additional behavior that if filenameObject is not NULL, it is passed to the constructor of fype as a third parameter.
In the case of OSError exception, this is used to define the £ilename attribute of the exception instance.

PyObject *PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)

Dondiirdiigii deger: Her zaman NULL. Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Similar to
PyErr_SetFromErrnoWithFilenameObject (), but takes a second filename object, for raising
errors when a function that takes two filenames fails.

Added in version 3.4.

PyObject *PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)

Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararl ABIL Similar to
PyErr_SetFromErrnoWithFilenameObject (), but the filename is given as a C string. filename
is decoded from the filesystem encoding and error handler.

5.2. Raising exceptions 55

The Python/C API, Yayim 3.12.3

PyObject *PyErr_SetFromWindowsErr (int ierr)

Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararli ABI on Windows 3.7 siiriimiinden beri. This is a conveni-
ence function to raise OSError. If called with ierr of 0, the error code returned by a callto Get LastError () is
used instead. It calls the Win32 function FormatMessage () to retrieve the Windows description of error code
given by ierr or Get LastError (), then it constructs a OSError object with the winerror attribute set to the
error code, the st rerror attribute set to the corresponding error message (gotten from FormatMessage ()),
and then calls PyErr_SetObject (PyExc_OSError, object). This function always returns NULL.

Auvailability: Windows.

PyObject *PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Dondiirdiigii deger: Her zaman NULL. Bir parcasi Kararli ABI on Windows 3.7 siiriimiinden beri. Similar to
PyErr_SetFromWindowsErr (), with an additional parameter specifying the exception type to be raised.
Availability: Windows.

PyObject *PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)

Dondiirdiigii deger: Her zaman NULL. Bir parcasi Kararli ABI on Windows 3.7 siiriimiinden beri. Similar to
PyErr SetFromWindowsErr (), with the additional behavior that if filename is not NULL, it is decoded
from the filesystem encoding (os . fsdecode ()) and passed to the constructor of OSError as a third parame-
ter to be used to define the £ilename attribute of the exception instance.

Availability: Windows.
PyObject *PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyObject
*filename)

Dondiirdiigii deger: Her zaman NULL. Bir parcasi Kararli ABI on Windows 3.7 siiriimiinden beri. Similar to
PyErr SetExcFromWindowsErr (), with the additional behavior that if filename is not NULL, it is pas-
sed to the constructor of OSError as a third parameter to be used to define the £ilename attribute of the
exception instance.

Auvailability: Windows.
PyObject *PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyObject
*filename, PyObject *filename2)

Dondiirdiigii deger: Her zaman NULL. Bir parcasi Kararli ABI on Windows 3.7 siiriimiinden beri. Similar to
PyErr SetExcFromWindowsErrWithFilenameObject (), butaccepts a second filename object.

Availability: Windows.
Added in version 3.4.

PyObject *PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *filename)

Dondiirdiigii deger: Her zaman NULL. Bir parcasi Kararli ABI on Windows 3.7 siiriimiinden beri. Similar to
PyErr_SetFromWindowsErrWithFilename (), with an additional parameter specifying the exception
type to be raised.

Availability: Windows.
PyObject *PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
Dondiirdiigii deger: Her zaman NULL. Bir par¢asi Kararli ABI 3.7 siiriimiinden beri. This is a convenience function

to raise ImportError. msg will be set as the exception’s message string. name and path, both of which can be
NULL, will be set as the ImportError’s respective name and path attributes.

Added in version 3.3.

PyObject *PyErr_SetImportErrorSubclass (PyObject *exception, PyObject *msg, PyObject *name, PyObject
%
path)

Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararh ABI 3.6 siiriimiinden beri. Much like

56 Béliim 5. Exception Handling

The Python/C API, Yayim 3.12.3

PyErr_SetImportError () but this function allows for specifying a subclass of ImportError to
raise.

Added in version 3.6.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)

Set file, line, and offset information for the current exception. If the current exceptionisnota SyntaxError, then
it sets additional attributes, which make the exception printing subsystem think the exception isa SyntaxError.

Added in version 3.4.

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)

Bir parcasi Kararli ABI 3.7 siirtimiinden beri. Like PyErr_SyntaxLocationObject (), but filename is a
byte string decoded from the filesystem encoding and error handler.

Added in version 3.2.

void PyErr_SyntaxLocation (const char *filename, int lineno)

Bir parcast Kararli ABIL. Like PyErr SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()

Bir parcasi Kararli ABL This is a shorthand for PyErr_SetString (PyExc_SystemError, message),
where message indicates that an internal operation (e.g. a Python/C API function) was invoked with an illegal
argument. It is mostly for internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified that
warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the functions
raise an exception because of a problem with the warning machinery. The return value is O if no exception is raised, or
-1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor what the
reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py_DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)

Bir parcast Kararli ABL Issue a warning message. The category argument is a warning category (see below) or
NULL; the message argument is a UTF-8 encoded string. stack_level is a positive number giving a number of stack
frames; the warning will be issued from the currently executing line of code in that stack frame. A stack_level of 1
is the function calling PyErr_WarnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_Runt imeWarning. The standard Python war-
ning categories are available as global variables whose names are enumerated at Standard Warning Categories.

For information about warning control, see the documentation for the warnings module and the —W option in
the command line documentation. There is no C API for warning control.

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit () ;see there for more information. The module and registry
arguments may be set to NULL to get the default effect described there.

Added in version 3.4.

5.3. Issuing warnings 57

The Python/C API, Yayim 3.12.3

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const char
*module, PyObject *registry)

Bir parcasi Kararli ABIL. Similar to PyErr WarnExplicitObject () except that message and module are
UTF-8 encoded strings, and filename is decoded from the filesystem encoding and error handler.
int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)

Bir parcast Kararli ABI. Function similar to PyErr_WarnEx (), but use PyUnicode_FromFormat () to
format the warning message. format is an ASCII-encoded string.

Added in version 3.2.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)

Bir parcasi Kararli ABI 3.6 siiriimiinden beri. Function similar to PyErr WarnFormat (), but category is
ResourceWarning and it passes source to warnings.WarningMessage.

Added in version 3.6.

5.4 Querying the error indicator

PyObject *PyErr_Occurred ()

Dondiirdiigii deger: Odiing alinmug referans. Bir parcast Kararli ABL. Test whether the error indicator is set. If
set, return the exception fype (the first argument to the last call to one of the PyErr_Set* functions or to
PyErr_Restore ()). If not set, return NULL. You do not own a reference to the return value, so you do not
need to Py_ DECREF () it.

The caller must hold the GIL.

Not: Do not compare the return value to a specific exception; use PyErr_ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Bir parcasi Kararli ABIL Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred(),
exc) . This should only be called when an exception is actually set; a memory access violation will occur if no
exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Bir pargasi Kararl1 ABL Return true if the given exception matches the exception type in exc. If exc is a class object,
this also returns true when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and
recursively in subtuples) are searched for a match.

PyObject *PyErr_GetRaisedException (void)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.12 siiriimiinden beri. Return the exception currently
being raised, clearing the error indicator at the same time. Return NULL if the error indicator is not set.

This function is used by code that needs to catch exceptions, or code that needs to save and restore the error indicator
temporarily.

For example:

{
PyObject *exc = PyErr_GetRaisedException();

(sonraki sayfaya devam)

58 Béliim 5. Exception Handling

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

/* ... code that might produce other errors ... */

PyErr_SetRaisedException (exc);

Ayrica bakiniz:
PyErr_GetHandledException (), to save the exception currently being handled.
Added in version 3.12.

void PyErr_SetRaisedException (PyObject *exc)

Bir parcast Kararli ABI 3.12 siiriimiinden beri. Set exc as the exception currently being raised, clearing the existing
exception if one is set.

Uyar1: This call steals a reference to exc, which must be a valid exception.

Added in version 3.12.
void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Bir parcast Kararli ABI. 3.12 siiriimiinden beri kullanim dis1: Use PyErr_ GetRaisedException () instead.

Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all
three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

Not: This function is normally only used by legacy code that needs to catch exceptions or save and restore the error
indicator temporarily.

For example:

{
PyObject *type, *value, *traceback;
PyErr_Fetch (&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Bir pargasi Kararli ABI. 3.12 siirtimiinden beri kullanim dist: Use PyErr_SetRaisedException () instead.

Set the error indicator from the three objects, type, value, and traceback, clearing the existing exception if one is set.
If the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or traceback.
The exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules will
cause subtle problems later.) This call takes away a reference to each object: you must own a reference to each
object before the call and after the call you no longer own these references. (If you don’t understand this, don’t use
this function. I warned you.)

Not: This function is normally only used by legacy code that needs to save and restore the error indicator tempo-
rarily. Use PyErr_Fetch () to save the current error indicator.

5.4. Querying the error indicator 59

The Python/C API, Yayim 3.12.3

void PyErr_NormalizeException (PyObject **exc, PyObject **val, PyObject **tb)

Bir parcast Kararli ABIL 3.12 siiriimiinden beri kullanim disi: Use PyErr_GetRaisedException () instead,
to avoid any possible de-normalization.

Under certain circumstances, the values returned by PyErr_ Fetch () below can be “unnormalized”, meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

Not: This function does not implicitly set the ___traceback___ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) <
PyException_SetTraceback (val, tb);
}

PyObject *PyErr_GetHandledException (void)

Bir parcast Kararli ABI 3.11 siiriimiinden beri. Retrieve the active exception instance, as would be returned by
sys.exception (). This refers to an exception that was already caught, not to an exception that was freshly
raised. Returns a new reference to the exception or NULL. Does not modify the interpreter’s exception state.

Not: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr_ SetHandledException () to restore
or clear the exception state.

Added in version 3.11.

void PyErr_SetHandledException (PyObject *exc)

Bir pargasi Kararlt ABI 3.11 siiriimiinden beri. Set the active exception, as known from sy s . exception (). This
refers to an exception that was already caught, not to an exception that was freshly raised. To clear the exception
state, pass NULL.

Not: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr_GetHandledException () to get the
exception state.

Added in version 3.11.

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Bir parcast Kararli ABI 3.7 siiriimiinden beri. Retrieve the old-style representation of the exception info, as known
from sys.exc_info (). This refers to an exception that was already caught, not to an exception that was freshly
raised. Returns new references for the three objects, any of which may be NULL. Does not modify the exception info
state. This function is kept for backwards compatibility. Prefer using PyErr_ GetHandledException ().

Not: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr_SetExcInfo () to restore or clear the
exception state.

Added in version 3.3.

60

Béliim 5. Exception Handling

The Python/C API, Yayim 3.12.3

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)
Bir parcas: Kararli ABI 3.7 siiriimiinden beri. Set the exception info, as known from sys.exc_info (). This
refers to an exception that was already caught, not to an exception that was freshly raised. This function steals the
references of the arguments. To clear the exception state, pass NULL for all three arguments. This function is kept
for backwards compatibility. Prefer using PyErr SetHandledException ().

Not: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr_GetExcInfo () to read the exception
state.

Added in version 3.3.

3.11 stirimiinde degisti: The type and t raceback arguments are no longer used and can be NULL. The in-
terpreter now derives them from the exception instance (the value argument). The function still steals references
of all three arguments.

5.5 Signal Handling

int PyErr_CheckSignals ()
Bir pargasi Kararli ABL This function interacts with Python’s signal handling.

If the function is called from the main thread and under the main Python interpreter, it checks whether a signal has
been sent to the processes and if so, invokes the corresponding signal handler. If the s ignal module is supported,
this can invoke a signal handler written in Python.

The function attempts to handle all pending signals, and then returns 0. However, if a Python signal handler raises
an exception, the error indicator is set and the function returns —1 immediately (such that other pending signals
may not have been handled yet: they will be on the next PyErr_ CheckSignals () invocation).

If the function is called from a non-main thread, or under a non-main Python interpreter, it does nothing and returns
0.

This function can be called by long-running C code that wants to be interruptible by user requests (such as by
pressing Ctrl-C).

Not: The default Python signal handler for STGINT raises the KeyboardInterrupt exception.

void PyErr_SetInterrupt ()

Bir parcasi Kararli ABI. Simulate the effect of a SIGINT signal arriving. This is equivalent to
PyErr_SetInterruptEx (SIGINT).

Not: This function is async-signal-safe. It can be called without the G/L and from a C signal handler.

int PyErr_SetInterruptEx (int signum)

Bir parcast Kararli ABI 3.10 siiriimiinden beri. Simulate the effect of a signal arriving. The next time
PyErr_CheckSignals () is called, the Python signal handler for the given signal number will be called.

This function can be called by C code that sets up its own signal handling and wants Python signal handlers to be
invoked as expected when an interruption is requested (for example when the user presses Ctrl-C to interrupt an
operation).

5.5. Signal Handling 61

The Python/C API, Yayim 3.12.3

If the given signal isn’t handled by Python (it was set to signal .SIG_DFL or signal.SIG_IGN), it will be
ignored.

If signum is outside of the allowed range of signal numbers, -1 is returned. Otherwise, 0 is returned. The error
indicator is never changed by this function.

Not: This function is async-signal-safe. It can be called without the G/ and from a C signal handler.

Added in version 3.10.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever a
signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_£fd ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.

3.5 stirtimiinde degisti: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject *PyErr_NewException (const char *name, PyObject *base, PyObject *dict)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. This utility function creates and returns a new exception
class. The name argument must be the name of the new exception, a C string of the form module.classname.
The base and dict arguments are normally NULL. This creates a class object derived from Except ion (accessible
inCas PyExc_Exception).

The __module___attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base
classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject *PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyObject *dict)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararl1 ABI. Same as PyErr NewException (), except that the
new exception class can easily be given a docstring: If doc is non-NULL, it will be used as the docstring for the
exception class.

Added in version 3.2.

5.7 Exception Objects

PyObject *PyException_GetTraceback (PyObject *ex)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Return the traceback associated with the exception
as a new reference, as accessible from Python through the __traceback___ attribute. If there is no traceback
associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)

Bir parcast Kararli ABI Set the traceback associated with the exception to tb. Use Py_None to clear it.

62 Béliim 5. Exception Handling

The Python/C API, Yayim 3.12.3

PyObject *PyException_GetContext (PyObject *ex)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Return the context (another exception instance during
whose handling ex was raised) associated with the exception as a new reference, as accessible from Python through
the __context___ attribute. If there is no context associated, this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Bir parcast Kararli ABI. Set the context associated with the exception to ctx. Use NULL to clear it. There is no type
check to make sure that ctx is an exception instance. This steals a reference to ctx.

PyObject *PyException_GetCause (PyObject *ex)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Return the cause (either an exception instance, or None,
set by raise ... from ...) associated with the exception as a new reference, as accessible from Python
through the ___cause___ attribute.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Bir parcast Kararli ABL. Set the cause associated with the exception to cause. Use NULL to clear it. There is no
type check to make sure that cause is either an exception instance or None. This steals a reference to cause.

The __suppress_context___ attribute is implicitly set to True by this function.
PyObject *PyException_GetArgs (PyObject *ex)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI 3.12 siiriimiinden beri. Return args of exception ex.
void PyException_SetArgs (PyObject *ex, PyObject *args)

Bir pargast Kararli ABI 3.12 siiriimiinden beri. Set args of exception ex to args.

PyObject *PyUnstable_Exc_PrepReraiseStar (PyObject *orig, PyObject *excs)

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyar1 olmadan degisebilir.

Implement part of the interpreter’s implementation of except *. orig is the original exception that was caught,
and excs is the list of the exceptions that need to be raised. This list contains the unhandled part of orig, if any, as
well as the exceptions that were raised from the except * clauses (so they have a different traceback from orig)
and those that were reraised (and have the same traceback as orig). Return the Except ionGroup that needs to
be reraised in the end, or None if there is nothing to reraise.

Added in version 3.12.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.
PyObject *PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *reason)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Create a UnicodeDecodeError object with the
attributes encoding, object, length, start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject *PyUnicodeDecodeError_GetEncoding (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Return the encoding attribute of the given exception
object.

PyObject *PyUnicodeDecodeError_GetObject (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetObject (PyObject *exc)

5.8. Unicode Exception Objects 63

The Python/C API, Yayim 3.12.3

PyObject *PyUnicodeTranslateError_GetObject (PyObject *exc)
Dondiirdiigii deger: Yeni referans. Bir pargasi Kararli ABIL. Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Bir parcast Kararli ABIL Get the start attribute of the given exception object and place it into *start. start must not
be NULL. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Bir parcast Kararli ABI. Set the start attribute of the given exception object to start. Return 0 on success, —1 on
failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Bir parcast Kararli ABI. Get the end attribute of the given exception object and place it into *end. end must not be
NULL. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)

int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)

int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Bir parcast Kararli ABI. Set the end attribute of the given exception object to end. Return O on success, —1 on
failure.

PyObject *PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeTranslateError_GetReason (PyObject *exc)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)

Bir parcasi Kararli ABI. Set the reason attribute of the given exception object to reason. Return O on success, —1
on failure.

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mo-
dules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically). They are also not needed for #p_call implementations because the call protocol takes care of recursion
handling.

int Py_EnterRecursiveCall (const char *where)

Bir parcasi Kararli ABI 3.9 siiriimiinden beri. Marks a point where a recursive C-level call is about to be performed.

If USE_ STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack ().
If this is the case, it sets a MemoryError and returns a nonzero value.

64 Béliim 5. Exception Handling

The Python/C API, Yayim 3.12.3

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a UTF-8 encoded string such as " in instance check" to be concatenated to the
RecursionError message caused by the recursion depth limit.

3.9 siirtimiinde degisti: This function is now also available in the /imited API.

void Py_LeaveRecursiveCall (void)
Bir parcast Kararli ABI 3.9 siiriimiinden beri. Ends a Py_EnterRecursiveCall (). Must be called once for
each successful invocation of Py_FEnterRecursiveCall ().

3.9 siiriimiinde degisti: This function is now also available in the limited API.

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_ repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().
int Py_ReprEnter (PyObject *object)

Bir parcast Kararli ABI. Called at the beginning of the t p_ repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_ repr imple-

mentation should return a string object indicating a cycle. As examples, dict objects return { ...} and 1ist
objects return [...].

The function will return a negative integer if the recursion limit is reached. In that case the tp_ repr implemen-
tation should typically return NULL.

Otherwise, the function returns zero and the t p_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)
Bir parcast Kararlh ABL Ends a Py ReprEnter (). Must be called once for each invocation of
Py_ReprEnter () that returns zero.

5.10 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc__ followed by the Python ex-
ception name. These have the type PyOb ject*; they are all class objects. For completeness, here are all the variables:

C Name Python Name Notes
PyExc_BaseException BaseException .
PyExc_Exception Exception Sayfa 66, 1
PyExc_ArithmeticError ArithmeticError SR8, 1
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError
PyExc_ChildProcessError ChildProcessError
PyExc_ConnectionAbortedEr ConnectionAbortedError
PyExc_ConnectionError ConnectionError

PyExc_ConnectionRefusedEr ConnectionRefusedError
PyExc_ConnectionResetErro ConnectionResetError
PyExc_EOFError EOFError
PyExc_FileExistsError FileExistsError

sonraki sayfaya devam

5.10. Standard Exceptions 65

The Python/C API, Yayim 3.12.3

Tablo 1 - 6nceki sayfadan devam
C Name Python Name Notes

PyExc_FileNotFoundError FileNotFoundError
PyExc_FloatingPointError FloatingPointError

PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError
PyExc_IsADirectoryError IsADirectoryError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError Sayfa 66, 1
PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundError ModuleNotFoundError
PyExc_NameError NameError
PyExc_NotADirectoryError NotADirectoryError
PyExc_NotImplementedError NotImplementedError
PyExc_OSError OSError !
PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError
PyExc_RuntimeError RuntimeError
PyExc_StopAsynclteration StopAsynclteration
PyExc_StoplIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError
PyExc_UnboundLocalError UnboundLocalError
PyExc_UnicodeDecodeError UnicodeDecodeError
PyExc_UnicodeEncodeError UnicodeEncodeError
PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateErr UnicodeTranslateError
PyExc_ValueError ValueError
PyExc_ZeroDivisionError ZeroDivisionError
Added in version 3.3 PyExc_BlockingIOError, PyExc_BrokenPipeError,

PyExc_ChildProcessError, PyExc_ConnectionError, PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError, PyExc_ConnectionResetError, PyExc_FileExistsError,
PyExc_FileNotFoundError, PyExc_InterruptedError, PyExc_IsADirectoryError,
PyExc_NotADirectoryError, PyExc_PermissionError, PyExc_ProcessLookupError and
PyExc_TimeoutError were introduced following PEP 3151.

Added in version 3.5: PyExc_StopAsynclteration and PyExc_RecursionError
Added in version 3.6: PyExc_ModuleNotFoundError.

These are compatibility aliases to PyExc_OSError:

! This is a base class for other standard exceptions.

66 Béliim 5. Exception Handling

https://peps.python.org/pep-3151/

The Python/C API, Yayim 3.12.3

C Name

Notes

PyExc_EnvironmentError

PyExc_IOError

PyExc_WindowsError

3.3 siirtimiinde degisti: These aliases used to be separate exception types.

Notes:

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyOb ject*; they are all class objects. For completeness, here are all the variables:

C Name

Python Name Notes

PyExc_Warning
PyExc_BytesWarning
PyExc_DeprecationWarning
PyExc_FutureWarning
PyExc_ImportWarning
PyExc_PendingDeprecationWarning
PyExc_ResourceWarning
PyExc_RuntimeWarning
PyExc_SyntaxWarning
PyExc_UnicodeWarning
PyExc_UserWarning

Warning g

BytesWarning
DeprecationWarning
FutureWarning
ImportWarning
PendingDeprecationWarning
ResourceWarning
RuntimeWarning
SyntaxWarning
UnicodeWarning
UserWarning

Added in version 3.2: PyExc_ResourceWarning

Notes:

2 Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is defined.

3 This is a base class for other standard warning categories.

5.11. Standard Warning Categories

67

The Python/C API, Yayim 3.12.3

68 Béliim 5. Exception Handling

BOLUM O

Utilities

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across platforms,
using Python modules from C, and parsing function arguments and constructing Python values from C values.

6.1 Operating System Utilities

PyObject *PyOS_FSPath (PyObject *path)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.6 siiriimiinden beri. Return the file system represen-
tation for path. If the object is a str or bytes object, then a new strong reference is returned. If the object
implements the os.PathLike interface, then __ fspath__ () is returned as long as it is a str or bytes
object. Otherwise TypeError is raised and NULL is returned.

Added in version 3.6.

int Py_FdIsInteractive (FILE *fp, const char *filename)

Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty (fileno (fp)) istrue. If the PyConfig. interactive is non-zero, this function also
returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"'or '?22?"'.

This function must not be called before Python is initialized.

void PyOS_BeforeFork ()

Bir parcast Kararli ABI on platforms with fork() 3.7 siiriimiinden beri. Function to prepare some internal state
before a process fork. This should be called before calling fork () or any similar function that clones the current
process. Only available on systems where fork () is defined.

Uyar1: The C fork () call should only be made from the “main” thread (of the “main” interpreter). The same
is true for PyOS_BeforeFork ().

Added in version 3.7.

69

The Python/C API, Yayim 3.12.3

void PyOS_AfterFork_Parent ()

Bir parcast Kararli ABI on platforms with fork() 3.7 siiriimiinden beri. Function to update some internal state after
a process fork. This should be called from the parent process after calling fork () or any similar function that
clones the current process, regardless of whether process cloning was successful. Only available on systems where
fork () is defined.

Uyar1: The C fork () call should only be made from the ‘main”thread (of the “main” interpreter). The same
is true for PyOS_AfterFork_Parent ().

Added in version 3.7.
void PyOS_AfterFork_Child()

Bir parcast Kararli ABI on platforms with fork() 3.7 stiriimiinden beri. Function to update internal interpreter state
after a process fork. This must be called from the child process after calling fork (), or any similar function
that clones the current process, if there is any chance the process will call back into the Python interpreter. Only
available on systems where fork () is defined.

Uyar1: The C fork () call should only be made from the ‘main” thread (of the “main” interpreter). The same
is true for PyOS_AfterFork_Child ().

Added in version 3.7.
Ayrica bakimz:

os.register_at_fork () allows registering custom Python functions to be called by
PyOS_BeforeFork (), PyOS_AfterFork_Parent () and PyOS_AfterFork_Child().
void PyOS_AfterFork ()

Bir parcasi Kararli ABI on platforms with fork(). Function to update some internal state after a process fork; this
should be called in the new process if the Python interpreter will continue to be used. If a new executable is loaded
into the new process, this function does not need to be called.

3.7 siiriimiinden beri kullanim dist: This function is superseded by PyOS_AfterFork_Child().

int PyOS_CheckStack ()
Bir parcast Kararli ABI on platforms with USE_STACKCHECK 3.7 siirtimiinden beri. Return true when the interp-
reter runs out of stack space. This is a reliable check, but is only available when USE_STACKCHECK is defined
(currently on certain versions of Windows using the Microsoft Visual C++ compiler). USE_STACKCHECK will
be defined automatically; you should never change the definition in your own code.

typedef void (*PyOS_sighandler_t)(int)
Bir parcast Kararli ABIL

PyOS_sighandler_t PyOS_getsig (int1i)
Bir parcasi Kararli ABI. Return the current signal handler for signal i. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly!

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t h)
Bir parcast Kararli ABL Set the signal handler for signal i to be h; return the old signal handler. This is a thin
wrapper around either sigaction () or signal (). Do not call those functions directly!

wchar_t *Py_DecodeLocale (const char *arg, size_t *size)

Bir parcast Kararli ABI 3.7 siiriimiinden beri.

70 Boliim 6. Utilities

The Python/C API, Yayim 3.12.3

Uyar1: This function should not be called directly: use the PyConfig APl with the
PyConfig_SetBytesString () function which ensures that Python is preinitialized.

This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py_PreTInitialize () function.

Decode a byte string from the filesystem encoding and error handler. If the error handler is surrogateescape error
handler, undecodable bytes are decoded as characters in range U+DC80..U+DCFF; and if a byte sequence can be
decoded as a surrogate character, the bytes are escaped using the surrogateescape error handler instead of decoding
them.

Return a pointer to a newly allocated wide character string, use PyMem RawFree () to free the memory. If size
is not NULL, write the number of wide characters excluding the null character into *size

Return NULL on decoding error or memory allocation error. If size is not NULL, *size issetto (size_t) -1
on memory error or set to (size_t) —2 on decoding error.

The filesystem encoding and error handler are selected by PyConfig Read ():see filesystem encoding
and filesystem errors members of PyConfig.

Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale () function to encode the character string back to a byte string.
Ayrica bakimz:

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize ()
functions.

Added in version 3.5.
3.7 siiriimiinde degisti: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

3.8 stirimiinde degisti: The function now uses the UTF-8 encoding on Windows if PyPreConfig.
legacy_windows_fs_encoding is zero;
char *Py_EncodeLocale (const wchar_t *text, size_t *error_pos)

Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Encode a wide character string to the filesystem encoding and error
handler. If the error handler is surrogateescape error handler, surrogate characters in the range U+DC80..U+DCFF
are converted to bytes 0x80..0xFF.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error.

If error_pos is not NULL, *error_pos is set to (size_t)—1 on success, or set to the index of the invalid
character on encoding error.

The filesystem encoding and error handler are selected by PyConfig Read ():see filesystem encoding
and filesystem _errors members of PyConfig.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.

Uyar1: This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is
properly configured: see the Py PreTnitialize () function.

Ayrica bakiniz:
The PyUnicode EncodeFSDefault () and PyUnicode_ EncodeLocale () functions.
Added in version 3.5.

6.1. Operating System Utilities 71

The Python/C API, Yayim 3.12.3

3.7 siirtimiinde degisti: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

3.8 siiriimiinde degisti: The function now uses the UTF-8 encoding on Windows if PyPreConfig.
legacy_windows_fs_encoding is zero.

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with the
current interpreter thread’s sy s module’s dict, which is contained in the internal thread state structure.
PyObject *PySys_GetObject (const char *name)
Dondiirdiigii deger: Odiing alinmus referans. Bir parcasi Kararli ABL. Return the object name from the sys module
or NULL if it does not exist, without setting an exception.
int PySys_SetObject (const char *name, PyObject *v)
Bir parcasi Kararli ABL Set name in the sy s module to v unless v is NULL, in which case name is deleted from
the sys module. Returns O on success, —1 on error.
void PySys_ResetWarnOptions ()
Bir parcast Kararli ABL. Reset sys.warnoptions to an empty list. This function may be called prior to
Py Initialize().
void PySys_AddWarnOption (const wchar_t *s)
Bir parcasi Kararli ABI. This AP is kept for backward compatibility: setting PyConfig. warnopt ions should

be used instead, see Python Initialization Configuration.

Append sto sys .warnoptions. This function must be called prior to Py_Tnitialize () in order to affect
the warnings filter list.

3.11 siiriimiinden beri kullanim dig1.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Bir parcasi Kararli ABI. This AP is kept for backward compatibility: setting PyConfig. warnopt ions should
be used instead, see Python Initialization Configuration.

Append unicode to sys .warnoptions.

Note: this function is not currently usable from outside the CPython implementation, as it must be called prior to
the implicit import of warningsin Py_Tnitialize () to be effective, but can’t be called until enough of the
runtime has been initialized to permit the creation of Unicode objects.

3.11 siiriimiinden beri kullanim dis1.

void PySys_SetPath (const wchar_t *path)

Bir parcast Kararli ABI. This API is kept for backward compatibility: setting PyConfig.
module_search_paths and PyConfig.module_search_paths_set should be used instead,
see Python Initialization Configuration.

Set sys.path to alist object of paths found in path which should be a list of paths separated with the platform’s
search path delimiter (: on Unix, ; on Windows).

3.11 siiriimiinden beri kullanim dig1.

void PySys_WriteStdout (const char *format, ...)
Bir parcast Kararli ABIL. Write the output string described by format to sys . stdout. No exceptions are raised,
even if truncation occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should be limited

72 Boliim 6. Utilities

The Python/C API, Yayim 3.12.3

using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of other formatted
text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
Bir parcast Kararli ABL. As PySys_WriteStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)

Bir parcasi Kararli ABIL Function similar to PySys_WriteStdout() but format the message using
PyUnicode_FromFormatV () and don’t truncate the message to an arbitrary length.

Added in version 3.2.

void PySys_FormatStderr (const char *format, ...)

Bir pargast Kararli ABL. As PySys_FormatStdout (), but write to sys . stderr or stderr instead.
Added in version 3.2.

void PySys_AddXOption (const wchar_t *s)

Bir parcasi Kararli ABI 3.7 siiriimiinden beri. This API is kept for backward compatibility: setting PyConfig.
xoptions should be used instead, see Python Initialization Configuration.

Parse s as a set of -X options and add them to the current options mapping as returned by
PySys_GetXOptions (). This function may be called prior to Py_Tnitialize ().

Added in version 3.2.
3.11 siiriimiinden beri kullanim dig1.
PyObject *PySys_GetXOptions ()

Dondiirdiigii deger: Odiing alinmus referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return the current dic-
tionary of —X options, similarly to sys._xoptions. On error, NULL is returned and an exception is set.

Added in version 3.2.

int PySys_Audit (const char *event, const char *format, ...)
Raise an auditing event with any active hooks. Return zero for success and non-zero with an exception set on failure.
If any hooks have been added, format and other arguments will be used to construct a tuple to pass. Apart from N,
the same format characters as used in Py_BuildValue () are available. If the built value is not a tuple, it will

be added into a single-element tuple. (The N format option consumes a reference, but since there is no way to know
whether arguments to this function will be consumed, using it may cause reference leaks.)

Note that # format characters should always be treated as Py ssize t, regardless of whether
PY_SSIZE_T_CLEAN was defined.

sys.audit () performs the same function from Python code.
Added in version 3.8.

3.8.2 siirtimiinde degisti: Require Py_ssize_t for # format characters. Previously, an unavoidable deprecation
warning was raised.

int PySys_AddAuditHook (Py_AuditHookFunction hook, void *userData)

Append the callable hook to the list of active auditing hooks. Return zero on success and non-zero on failure. If the
runtime has been initialized, also set an error on failure. Hooks added through this API are called for all interpreters
created by the runtime.

The userData pointer is passed into the hook function. Since hook functions may be called from different runtimes,
this pointer should not refer directly to Python state.

6.2. System Functions 73

The Python/C API, Yayim 3.12.3

This function is safe to call before Py_Tnitialize (). When called after runtime initialization, existing audit
hooks are notified and may silently abort the operation by raising an error subclassed from Exception (other
errors will not be silenced).

The hook function is always called with the GIL held by the Python interpreter that raised the event.

See PEP 578 for a detailed description of auditing. Functions in the runtime and standard library that raise events
are listed in the audit events table. Details are in each function’s documentation.

If the interpreter is initialized, this function raises an auditing event sys . addaudithook with no arguments. If
any existing hooks raise an exception derived from Except i on, the new hook will not be added and the exception
is cleared. As a result, callers cannot assume that their hook has been added unless they control all existing hooks.
typedef int (*Py_AuditHookFunction)(const char *event, PyObject *args, void *userData)
The type of the hook function. event is the C string event argument passed to Py Sys_Audit (). args is
guaranteed to be a PyTupleObject. userData is the argument passed to PySys_AddAuditHook().

Added in version 3.8.

6.3 Process Control

void Py_FatalError (const char *message)

Bir parcast Kararli ABI. Print a fatal error message and kill the process. No cleanup is performed. This function
should only be invoked when a condition is detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be corrupted. On Unix, the standard C library function
abort () is called which will attempt to produce a core file.

The Py_FatalError () function is replaced with a macro which logs automatically the name of the current
function, unless the Py_L.IMITED_APT macro is defined.

3.9 siiriimiinde degisti: Log the function name automatically.

void Py_Exit (int status)

Bir pargasi Kararli ABI. Exit the current process. This calls Py_FinalizeEx () and then calls the standard C
library function exit (status).If Py_FinalizeEx () indicates an error, the exit status is set to 120.

3.6 stirtimiinde degisti: Errors from finalization no longer ignored.

int Py_AtExit (void (*func)())

Bir parcasi Kararli ABI. Register a cleanup function to be called by Py_FinalizeEx (). The cleanup function
will be called with no arguments and should return no value. At most 32 cleanup functions can be registered. When
the registration is successful, Py_AtExit () returns O; on failure, it returns —1. The cleanup function registered
last is called first. Each cleanup function will be called at most once. Since Python’s internal finalization will have
completed before the cleanup function, no Python APIs should be called by func.

74

Boliim 6. Utilities

https://peps.python.org/pep-0578/

The Python/C API, Yayim 3.12.3

6.4 Importing Modules

PyObject *PyImport_ImportModule (const char *name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL This is a wrapper around Py Import_Import ()
which takes a const char* as an argument instead of a PyObject*.

PyObject *PyImport_ImportModuleNoBlock (const char *name)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL This function is a deprecated alias of

PyImport_ImportModule ().

3.3 siiriimiinde degisti: This function used to fail immediately when the import lock was held by another thread. In
Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this function’s special
behaviour isn’t needed anymore.

PyObject *PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)
Dondiirdiigii deger: Yeni referans. Import a module. This is best described by referring to the built-in Python function

_ _import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Import_ImportModule ().
PyObject *PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyObject *locals,
PyObject *fromlist, int level)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Import a module. This is best
described by referring to the built-in Python function__import__ (), asthestandard__import__ () function
calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

Added in version 3.3.
PyObject *PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist, int level)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararh ABL Similar to
PyImport_ImportModuleLevelObject (), but the name is a UTF-8 encoded string instead of a
Unicode object.

3.3 siirtimiinde degisti: Negative values for level are no longer accepted.

PyObject *PyImport_Import (PyObject *name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL This is a higher-level interface that calls the current
“import hook function” (with an explicit level of 0, meaning absolute import). It invokes the ___import__ ()

function from the __builtins___ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment.

This function always uses absolute imports.
PyObject *PyImport_ReloadModule (PyObject *m)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Reload a module. Return a new reference to the reloaded
module, or NULL with an exception set on failure (the module still exists in this case).

6.4. Importing Modules 75

The Python/C API, Yayim 3.12.3

PyObject *PyImport_AddModuleObiject (PyObject *name)

Dondiirdiigii deger: Odiing alinmus referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return the module object
corresponding to a module name. The name argument may be of the form package .module. First check the
modules dictionary if there’s one there, and if not, create a new one and insert it in the modules dictionary. Return
NULL with an exception set on failure.

Not: This function does not load or import the module; if the module wasn’t already loaded, you will get an
empty module object. Use Py Import_ImportModule () or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

Added in version 3.3.

PyObject *PyImport_AddModule (const char *name)

Dondiirdiigii deger: Odiing alinmig referans. Bir parcast ~ Kararh ~ ABL Similar to
PyImport_AddModuleObject (), but the name is a UTF-8 encoded string instead of a Unicode ob-
ject.

PyObject *PyImport_ExecCodeModule (const char *name, PyObject *co)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Given a module name (possibly of the form package.
module) and a code object read from a Python bytecode file or obtained from the built-in function compile (),
load the module. Return a new reference to the module object, or NULL with an exception set if an error occurred.
name is removed from sys.modules in error cases, even if name was already in sys .modules on entry to
PyImport_ExecCodeModule ().Leaving incompletely initialized modules in sy s . modules is dangerous,
as imports of such modules have no way to know that the module object is an unknown (and probably damaged
with respect to the module author’s intents) state.

The module’s __spec___and___loader__ will be set, if not set already, with the appropriate values. The spec’s
loader will be set to the module’s __1oader__ (if set) and to an instance of SourceFileLoader otherwise.

The module’s __file___ attribute will be set to the code object’s co_filename. If applicable, __cached___
will also be set.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created will
still not be created.

See also Py Import_ExecCodeModuleEx () and PyImport_ExecCodeModuleWithPathnames ().

3.12 siiriimiinde degisti: The setting of __cached___ and __loader__ is deprecated. See ModuleSpec for
alternatives.

PyObject *PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Like Py Import_ExecCodeModule (), but the
__file__ attribute of the module object is set to pathname if it is non-NULL.

See also Py ITmport_ExecCodeModuleWithPathnames ().

PyObject *PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname, PyObject

*cpathname)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararlh ABl 3.7 siiriimiinden beri. Like
PyImport_ExecCodeModuleEx (), but the __ _cached__ attribute of the module object is set to
cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.

Added in version 3.3.

3.12 siirlimiinde degisti: Setting ___cached___ is deprecated. See ModuleSpec for alternatives.

76

Boliim 6. Utilities

The Python/C API, Yayim 3.12.3

PyObject *PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const char
*pathname, const char *cpathname)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Like Py Import_ExecCodeModuleObject (),
but name, pathname and cpathname are UTF-8 encoded strings. Attempts are also made to figure out what the
value for pathname should be from cpathname if the former is set to NULL.

Added in version 3.2.

3.3 stirtimiinde degisti: Uses imp . source_from_cache () in calculating the source path if only the bytecode
path is provided.

3.12 siirimiinde degisti: No longer uses the removed imp module.

long PyImport_GetMagicNumber ()
Bir parcast Kararli ABIL Return the magic number for Python bytecode files (a.k.a. . pyc file). The magic number
should be present in the first four bytes of the bytecode file, in little-endian byte order. Returns —1 on error.

3.3 stirtimiinde degisti: Return value of —1 upon failure.

const char *PyImport_GetMagicTag ()

Bir pargasi Kararli ABIL. Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in
mind that the value at sys . implementation.cache_tag is authoritative and should be used instead of this
function.

Added in version 3.2.

PyObject *PyImport_GetModuleDict ()
Dondiirdiigii deger: Odiing alinmus referans. Bir parcast Kararli ABL Return the dictionary used for the module
administration (a.k.a. sys.modules). Note that this is a per-interpreter variable.

PyObject *PyImport_GetModule (PyObject ¥name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.8 siiriimiinden beri. Return the already imported module

with the given name. If the module has not been imported yet then returns NULL but does not set an error. Returns
NULL and sets an error if the lookup failed.

Added in version 3.7.
PyObject *PyImport_GetImporter (PyObject *path)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a finder object for a sys.path/pkg.
__path___ item path, possibly by fetching it from the sys.path_importer_cache dict. If it wasn’t yet
cached, traverse sys .path_hooks until a hook is found that can handle the path item. Return None if no hook
could; this tells our caller that the path based finder could not find a finder for this path item. Cache the result in
sys.path_importer_cache. Return a new reference to the finder object.

int PyImport_ImportFrozenModuleObject (PyObject ¥*name)

Bir pargasi Kararli ABI 3.7 siiriimiinden beri. Load a frozen module named name. Return 1 for success, 0 if the
module is not found, and —1 with an exception set if the initialization failed. To access the imported module on
a successful load, use Py Import_ImportModule (). (Note the misnomer — this function would reload the
module if it was already imported.)

Added in version 3.3.
3.4 siirtimiinde degisti: The ___file_ attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)

Bir parcasi Kararli ABI. Similar to Py Import_ImportFrozenModuleObject (),butthe name isa UTF-8
encoded string instead of a Unicode object.

6.4. Importing Modules 77

https://peps.python.org/pep-3147/

The Python/C API, Yayim 3.12.3

struct _frozen

This is the structure type definition for frozen module descriptors, as generated by the freeze utility (see Tools/
freeze/ in the Python source distribution). Its definition, found in Include/import.h, is:

struct _frozen {
const char *name;
const unsigned char *code;
int size;
bool is_package;
i

3.11 siiriimiinde degisti: The new is_package field indicates whether the module is a package or not. This
replaces setting the size field to a negative value.

const struct _frozen *PyImport_FrozenModules
This pointer is initialized to point to an array of _ frozen records, terminated by one whose members are all
NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play tricks
with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject *(*initfunc)(void))
Bir parcasi Kararli ABL. Add a single module to the existing table of built-in modules. This is a convenience
wrapper around PyImport_ExtendInittab (), returning —1 if the table could not be extended. The new
module can be imported by the name name, and uses the function initfunc as the initialization function called on
the first attempted import. This should be called before Py_Tnitialize ().

struct _inittab
Structure describing a single entry in the list of built-in modules. Programs which embed Python may use an array
of these structures in conjunction with Py Tmport_ExtendInittab () to provide additional built-in modules.
The structure consists of two members:
const char *name

The module name, as an ASCII encoded string.
PyObject *(*init func)(void)
Initialization function for a module built into the interpreter.
int PyImport_ExtendInittab (struct _inittab *newtab)

Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0 on
success or —1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This must be called before Py Initialize ().

If Python is initialized multiple times, PyImport_AppendInittab () or
PyImport_ExtendInittab () must be called before each Python initialization.

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module. There
are functions to write data into the serialization format, and additional functions that can be used to read the data back.
Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version O is the historical version, version 1 shares interned strings in
the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers. Py_MARSHAL_VERSION
indicates the current file format (currently 2).

78 Boliim 6. Utilities

The Python/C API, Yayim 3.12.3

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)

Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of the
size of the native 1ong type. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr_ Occurred () to check for that.
void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)

Marshal a Python object, value, to file. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr_Occurred () to check for that.
PyObject *PyMarshal_WriteObjectToString (PyObject *value, int version)

Dondiirdiigii deger: Yeni referans. Return a bytes object containing the marshalled representation of value. version
indicates the file format.

The following functions allow marshalled values to be read back in.

long PyMarshal_ReadLongFromFile (FILE *file)

Return a C 1long from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of 1ong.

On error, sets the appropriate exception (EOFError) and returns —1.

int PyMarshal_ReadShortFromFile (FILE *file)

Return a C short from the data stream in a FILE * opened for reading. Only a 16-bit value can be read in using
this function, regardless of the native size of short.

On error, sets the appropriate exception (EOFError) and returns —1.

PyObject *PyMarshal_ReadObjectFromFile (FILE *file)
Dondiirdiigii deger: Yeni referans. Return a Python object from the data stream in a FILE * opened for reading.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadLastObjectFromFile (FILE *file)

Dondiirdiigii deger: Yeni referans. Return a Python object from the data stream in a FILE* opened for reading.
Unlike PyMarshal ReadObjectFromFile (), this function assumes that no further objects will be read
from the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from
data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain that you
won’t be reading anything else from the file.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)

Dondiirdiigii deger: Yeni referans. Return a Python object from the data stream in a byte buffer containing len bytes
pointed to by data.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and examp-
les are available in extending-index.

The first three of these functions described, PyArg ParseTuple (), PyArg ParseTupleAndKeywords (),
and PyArg Parse (), all use format strings which are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

6.6. Parsing arguments and building values 79

The Python/C API, Yayim 3.12.3

6.6.1 Parsing arguments

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the quoted
form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit; and the
entry in [square] brackets is the type of the C variable(s) whose address should be passed.

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for the
returned unicode or bytes area.

Unless otherwise stated, buffers are not NUL-terminated.
There are three ways strings and buffers can be converted to C:

e Formats such as y* and s* fill a Py_buf fer structure. This locks the underlying buffer so that the caller can
subsequently use the buffer even inside a Py BEGIN_ALLOW_THREADS block without the risk of mutable da-
ta being resized or destroyed. As a result, you have to call PyBuffer Release () after you have finished
processing the data (or in any early abort case).

e The es, es#, et and et # formats allocate the result buffer. You have to call PyMem Free () after you have
finished processing the data (or in any early abort case).

¢ Other formats take a st r or a read-only bytes-like object, such as bytes, and provide a const char * pointer
to its buffer. In this case the buffer is “borrowed”: it is managed by the corresponding Python object, and shares the
lifetime of this object. You won’t have to release any memory yourself.

To ensure that the underlying buffer may be safely borrowed, the object’s PyBufferProcs.
bf _releasebuffer field must be NULL. This disallows common mutable objects such as bytearray, but
also some read-only objects such as memoryview of bytes.

Besides thisbf__releasebuf fer requirement, there is no check to verify whether the input object is immutable
(e.g. whether it would honor a request for a writable buffer, or whether another thread can mutate the data).

Not: For all # variants of formats (s#, y#, etc.), the macro PY_SSIZE_T_CLEAN must be defined before including
Python.h. On Python 3.9 and older, the type of the length argumentis Py_ssize_t ifthe PY_SSIZE_T_CLEAN
macro is defined, or int otherwise.

s (str) [const char *]
Convert a Unicode object to a C pointer to a character string. A pointer to an existing string is stored in the
character pointer variable whose address you pass. The C string is NUL-terminated. The Python string must not
contain embedded null code points; if it does, a ValueError exception is raised. Unicode objects are converted
to C strings using 'ut £-8"' encoding. If this conversion fails, a UnicodeError is raised.

Not: This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them to C
character strings, it is preferable to use the O& format with PyUnicode FSConverter () as converter.

3.5 stirtimiinde degisti: Previously, TypeError was raised when embedded null code points were encountered in
the Python string.

s* (str or bytes-like object) [Py_buffer]
This format accepts Unicode objects as well as bytes-like objects. It fills a Py buf fer structure provided by the

80 Bolim 6. Utilities

The Python/C API, Yayim 3.12.3

caller. In this case the resulting C string may contain embedded NUL bytes. Unicode objects are converted to C
strings using 'ut £-8"' encoding.

s# (str, read-only byfes-like object) [const char *, Py _ssize_t]
Like s*, except that it provides a borrowed buffer. The result is stored into two C variables, the first one a pointer
to a C string, the second one its length. The string may contain embedded null bytes. Unicode objects are converted
to C strings using 'ut £-8"' encoding.

z (str or None) [const char *]
Like s, but the Python object may also be None, in which case the C pointer is set to NULL.

z* (str, bytes-like object or None) [Py_buffer]
Like s*, but the Python object may also be None, in which case the buf member of the Py_buf fer structure
is set to NULL.

z# (str, read-only byfes-like object or None) [const char *, Py ssize t]
Like s#, but the Python object may also be None, in which case the C pointer is set to NULL.

y (read-only bytes-like object) [const char *]
This format converts a bytes-like object to a C pointer to a borrowed character string; it does not accept Unicode
objects. The bytes buffer must not contain embedded null bytes; if it does, a ValueError exception is raised.

3.5 siiriimiinde degisti: Previously, TypeError was raised when embedded null bytes were encountered in the
bytes buffer.

y* (bytes-like object) [Py_buffer]
This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This is the recommended way to
accept binary data.

y# (read-only bytes-like object) [const char *, Py _ssize t]
This variant on s# doesn’t accept Unicode objects, only bytes-like objects.

S (bytes) [PyBytesObject *]
Requires that the Python object is a byt es object, without attempting any conversion. Raises TypeError if the
object is not a bytes object. The C variable may also be declared as PyOb ject*.

Y (bytearray) [PyByteArrayObject *]
Requires that the Python object is a byt earray object, without attempting any conversion. Raises TypeError
if the object is not a bytearray object. The C variable may also be declared as PyObject*.

U (str) [PyObject *]
Requires that the Python object is a Unicode object, without attempting any conversion. Raises TypeError if
the object is not a Unicode object. The C variable may also be declared as PyObject*.

w* (read-write bytes-like object) [Py_buffer]
This format accepts any object which implements the read-write buffer interface. It fills a Py buffer
structure provided by the caller. The buffer may contain embedded null bytes. The caller have to call
PyBuffer Release () when it is done with the buffer.

es (str) [const char *encoding, char **buffer]
This variant on s is used for encoding Unicode into a character buffer. It only works for encoded data without
embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char* *; the
value of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument.

PyArg_ParseTuple () will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem_Free () to

6.6. Parsing arguments and building values 81

The Python/C API, Yayim 3.12.3

free the allocated buffer after use.

et (str,bytes or bytearray) [const char *encoding, char **buffer]

Same as e s except that byte string objects are passed through without recoding them. Instead, the implementation

assumes that the byte string object uses the encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, Py_ssize_t *buffer_length]

This variant on s# is used for encoding Unicode into a character buffer. Unlike the e s format, this variant allows

input data which contains NUL characters.

It requires three arguments. The first is only used as input, and must be a const char* which points to the name
of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument must be a char * *; the value of the
pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in the
encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced integer

will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded da-
ta into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling

PyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the encoded

data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be set.
In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (str,bytes or bytearray) [const char *encoding, char **buffer, Py ssize_ t *buffer_length]

Same as e s # except that byte string objects are passed through without recoding them. Instead, the implementation

assumes that the byte string object uses the encoding passed in as parameter.

3.12 siirtimiinde degisti: u, u#, Z, and Z# are removed because they used a legacy Py_UNICODE* representation.

Numbers

b (int) [unsigned char]
Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned char.

B (int) [unsigned char]
Convert a Python integer to a tiny int without overflow checking, stored ina C unsigned char.

h (int) [short int]
Convert a Python integer to a C short int.

H (int) [unsigned short int]

Convert a Python integer to a C unsigned short int, without overflow checking.
i (int) [int]

Convert a Python integer to a plain C int.

I (int) [unsigned int]
Convert a Python integer to a C unsigned int, without overflow checking.

1 (int) [long int]
Convert a Python integer toa C long int.

k (int) [unsigned long]
Convert a Python integer to a C unsigned long without overflow checking.

82 Bolim 6. Utilities

The Python/C API, Yayim 3.12.3

L (int) [long long]
Convert a Python integer toa C 1long long.

K (int) [unsigned long long]
Convert a Python integer to a C unsigned long long without overflow checking.

n (int) [Py_ssize_t]
Convert a Python integertoa C Py_ssize_t.

c (bytes or bytearray of length 1) [char]

Convert a Python byte, represented as a bytes or bytearray object of length 1, to a C char.

3.3 siirtimiinde degisti: Allow bytearray objects.

C (str of length 1) [int]
Convert a Python character, represented as a st r object of length 1,toa C int.

f (float) [float]
Convert a Python floating point number to a C £loat.

d (float) [double]
Convert a Python floating point number to a C double.

D (complex) [Py_complex]
Convert a Python complex number to a C Py complex structure.

Other objects

O (object) [PyObject *]

Store a Python object (without any conversion) in a C object pointer. The C program thus receives the actual object
that was passed. A new strong reference to the object is not created (i.e. its reference count is not increased). The

pointer stored is not NULL.

0! (object) [typeobject, PyObject *]

Store a Python object in a C object pointer. This is similar to O, but takes two C arguments: the first is the address
of a Python type object, the second is the address of the C variable (of type PyObject*) into which the object

pointer is stored. If the Python object does not have the required type, TypeError is raised.

0& (object) [converter, anything]

Convert a Python object to a C variable through a converter function. This takes two arguments: the first is a
function, the second is the address of a C variable (of arbitrary type), converted to void*. The converter function

in turn is called as follows:

[status = converter (object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parse* function. The returned status should be 1 for a successful conversion and 0 if the conversion has
failed. When the conversion fails, the converter function should raise an exception and leave the content of address

unmodified.

If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second

call, the object parameter will be NULL; address will have the same value as in the original call.
3.1 siirlimiinde degisti: Py_ CLEANUP__SUPPORTED was added.
p (bool) [int]

Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C true/false integer
value. Sets the int to 1 if the expression was true and 0 if it was false. This accepts any valid Python value. See

truth for more information about how Python tests values for truth.

6.6. Parsing arguments and building values

83

The Python/C API, Yayim 3.12.3

Added in version 3.3.

(items) (tuple) [matching-items]
The object must be a Python sequence whose length is the number of format units in ifems. The C arguments must
correspond to the individual format units in ifems. Format units for sequences may be nested.

It is possible to pass “long” integers (integers whose value exceeds the platform’s LONG_MAX) however no proper range
checking is done — the most significant bits are silently truncated when the receiving field is too small to receive the
value (actually, the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

|
Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg ParseTuple () does not touch the contents of the corresponding C variable(s).

PyArg_ParseTupleAndKeywords () only: Indicates that the remaining arguments in the Python argument
list are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must always
be specified before $ in the format string.

Added in version 3.3.

The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception that PyArg _ParseTuple () raises).

The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not release them (i.e.
do not decrement their reference count)!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding format
unit in that case.

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse* functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse* functions fail due to conversion failure in one of the format units, the variables at the addresses cor-
responding to that and the following format units are left untouched.

API Functions

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
Bir parcasi Kararli ABI. Parse the parameters of a function that takes only positional parameters into local variables.
Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
Bir pargasi Kararli ABL Identical to PyArg_ParseTuple (), except that it accepts a va_list rather than a va-
riable number of arguments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *keywords[], ...)

Bir parcast Kararlt ABI. Parse the parameters of a function that takes both positional and keyword parameters into
local variables. The keywords argument is a NULL-terminated array of keyword parameter names. Empty names

84 Bolim 6. Utilities

The Python/C API, Yayim 3.12.3

denote positional-only parameters. Returns true on success; on failure, it returns false and raises the appropriate
exception.

3.6 siiriimiinde degisti: Added support for positional-only parameters.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *keywords[],
va_list vargs)

Bir parcasi Kararli ABL Identical to PyArg ParseTupleAndKeywords (), except that it accepts a va_list
rather than a variable number of arguments.

int PyArg_ValidateKeywordArguments (PyObject*)

Bir parcasi Kararli ABIL Ensure that the keys in the keywords argument dictionary are strings. This is only needed
if PyArg ParseTupleAndKeywords () is not used, since the latter already does this check.

Added in version 3.2.

int PyArg_Parse (PyObject *args, const char *format, ...)

Bir parcasi Kararl1 ABIL. Function used to deconstruct the argument lists of “old-style” functions — these are
functions which use the METH_OLDARGS parameter parsing method, which has been removed in Python 3. This
is not recommended for use in parameter parsing in new code, and most code in the standard interpreter has been
modified to no longer use this for that purpose. It does remain a convenient way to decompose other tuples, however,
and may continue to be used for that purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

Bir parcasi Kararli ABL. A simpler form of parameter retrieval which does not use a format string to specify
the types of the arguments. Functions which use this method to retrieve their parameters should be declared as
METH_VARARGS in function or method tables. The tuple containing the actual parameters should be passed as
args; it must actually be a tuple. The length of the tuple must be at least min and no more than max; min and
max may be equal. Additional arguments must be passed to the function, each of which should be a pointer to a
PyObject* variable; these will be filled in with the values from args; they will contain borrowed references. The
variables which correspond to optional parameters not given by args will not be filled in; these should be initialized
by the caller. This function returns true on success and false if args is not a tuple or contains the wrong number of
elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the _weakre £ helper module for weak
references:

static PyObject *
weakref_ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_ NewRef (object, callback);
}

return result;

The call to PyArg UnpackTuple () in this example is entirely equivalent to this call to
PyArg_ParseTuple():

[PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

6.6. Parsing arguments and building values 85

The Python/C API, Yayim 3.12.3

6.6.2 Building values

PyObject *Py_BuildValue (const char *format, ...)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Create a new value based on a format string similar to
those accepted by the PyArg_Parse* family of functions and a sequence of values. Returns the value or NULL
in the case of an error; an exception will be raised if NULL is returned.

Py_BuildValue () does not always build a tuple. It builds a tuple only if its format string contains two or more
format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns whatever
object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# for-
mats, the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py_BuildValue (). In other words, if your code invokes malloc () and passes the allocated memory to
Py_BuildValue (), your code is responsible for calling free () for that memory once Py_BuildValue ()
returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as s #).
This can be used to make long format strings a tad more readable.

s (str or None) [const char *]
Convert a null-terminated C string to a Python st r object using 'ut £-8"' encoding. If the C string pointer
is NULL, None is used.

s# (str or None) [const char *, Py _ssize t]
Convert a C string and its length to a Python st r object using 'ut £-8"' encoding. If the C string pointer is
NULL, the length is ignored and None is returned.

y (bytes) [const char *]
This converts a C string to a Python bytes object. If the C string pointer is NULL, None is returned.

y# (bytes) [const char *, Py ssize t]
This converts a C string and its lengths to a Python object. If the C string pointer is NULL, None is returned.

z (str or None) [const char *]
Same as s.

z# (str or None) [const char *, Py _ssize t]
Same as s#.

u (str) [const wchar_t *]
Convert a null-terminated wchar__t buffer of Unicode (UTF-16 or UCS-4) data to a Python Unicode object.
If the Unicode buffer pointer is NULL, None is returned.

u#t (str) [const wchar_t *, Py _ssize t]
Convert a Unicode (UTF-16 or UCS-4) data buffer and its length to a Python Unicode object. If the Unicode
buffer pointer is NULL, the length is ignored and None is returned.

U (str or None) [const char *]
Same as s.

U# (str or None) [const char *, Py _ssize t]
Same as s#.

i (int) [int]
Convert a plain C int to a Python integer object.

86

Boliim 6. Utilities

The Python/C API, Yayim 3.12.3

b (int) [char]
Convert a plain C char to a Python integer object.
h (int) [short int]
Convert a plain C short int to a Python integer object.

1 (int) [long int]
Convert a C long int to a Python integer object.

B (int) [unsigned char]
Convert a C unsigned char to a Python integer object.

H (int) [unsigned short int]
Convert a C unsigned short int to a Python integer object.

I (int) [unsigned int]
Convert a C unsigned int to a Python integer object.

k (int) [unsigned long]
Convert a C unsigned long to a Python integer object.

L (int) [long long]
Convert a C 1long long to a Python integer object.
K (int) [unsigned long long]
Convert a C unsigned long long to a Python integer object.

n (int) [Py_ssize_t]
Converta C Py_ssize_t toaPython integer.

c (bytes of length 1) [char]
Convert a C int representing a byte to a Python bytes object of length 1.

C (str of length 1) [int]
Convert a C int representing a character to Python st r object of length 1.

d (float) [double]
Convert a C double to a Python floating point number.

f (float) [float]
Convert a C float to a Python floating point number.

D (complex) [Py_complex *]
Convert a C Py_ complex structure to a Python complex number.

O (object) [PyObject *]
Pass a Python object untouched but create a new strong reference to it (i.e. its reference count is incremented
by one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception. Therefore, Py_BuildValue () will return NULL but
won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *]
Same as O.

N (object) [PyObject *]
Same as O, except it doesn’t create a new strong reference. Useful when the object is created by a call to an
object constructor in the argument list.

0& (object) [converter, anything]
Convert anything to a Python object through a converter function. The function is called with anything (which
should be compatible with void*) as its argument and should return a “new” Python object, or NULL if an
error occurred.

6.6. Parsing arguments and building values 87

The Python/C API, Yayim 3.12.3

(items) (tuple) [matching-items]
Convert a sequence of C values to a Python tuple with the same number of items.

[items] (1ist) [matching-items]
Convert a sequence of C values to a Python list with the same number of items.

{items} (dict) [matching-items]
Convert a sequence of C values to a Python dictionary. Each pair of consecutive C values adds one item to
the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject *Py_VaBuildValue (const char *format, va_list vargs)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Identical to Py__BuildValue (),except thatitaccepts
a va_list rather than a variable number of arguments.

6.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprint£ (char *str, size_t size, const char *format, ...)
Bir parcast Kararli ABIL. Output not more than size bytes to str according to the format string format and the extra
arguments. See the Unix man page snprintf (3).

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)
Bir parcasi Kararli ABIL. Output not more than size bytes to str according to the format string format and the variable
argument list va. Unix man page vsnprintf (3).

PyOS_snprintf () and PyOS_vsnprintf () wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure that str [size—-1] isalways '\ 0 ' upon return. They never write more than size bytes (including
the trailing ' \ 0 ') into str. Both functions require that str != NULL,size > 0,format != NULLandsize <
INT_MAX. Note that this means there is no equivalent to the C99 n = snprintf (NULL, 0, ...) which would
determine the necessary buffer size.

The return value (7v) for these functions should be interpreted as follows:

* When0 < = rv < size,the output conversion was successful and rv characters were written to str (excluding
the trailing '\0"' byteat str[rv]).

e When rv > = size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str[size—1]1is '\0"' in this case.

e When rv < 0, “something bad happened.” str [size—-1] is "\ 0" in this case too, but the rest of st is unde-
fined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

unsigned long PyOS_strtoul (const char *str, char **ptr, int base)

Bir parcast Kararli ABIL. Convert the initial part of the string in str to an unsigned long value according to
the given base, which must be between 2 and 36 inclusive, or be the special value 0.

Leading white space and case of characters are ignored. If base is zero it looks for a leading 0b, 0o or 0x to
tell which base. If these are absent it defaults to 1 0. Base must be 0 or between 2 and 36 (inclusive). If ptr is
non-NULL it will contain a pointer to the end of the scan.

88 Bolim 6. Utilities

https://manpages.debian.org/snprintf(3)
https://manpages.debian.org/vsnprintf(3)

The Python/C API, Yayim 3.12.3

If the converted value falls out of range of corresponding return type, range error occurs (errno is set to ERANGE)
and ULONG_MAX is returned. If no conversion can be performed, 0 is returned.

See also the Unix man page st rtoul (3).
Added in version 3.2.

long PyOS_strtol (const char *str, char **ptr, int base)

Bir parcast Kararli ABL Convert the initial part of the string in str to an long value according to the given
base, which must be between 2 and 36 inclusive, or be the special value 0.

Same as PyOS_strtoul (), butreturn a 1ong value instead and LONG_MAX on overflows.
See also the Unix man page strtol (3).
Added in version 3.2.

double PyOS_string_ to_double (const char *s, char **endptr, PyObject *overflow_exception)

Bir parcasi Kararli ABI. Convert a string s to a double, raising a Python exception on failure. The set of accepted
strings corresponds to the set of strings accepted by Python’s f1oat () constructor, except that s must not have
leading or trailing whitespace. The conversion is independent of the current locale.

If endptr is NULL, convert the whole string. Raise ValueError and return —1. 0 if the string is not a valid
representation of a floating-point number.

If endptr is not NULL, convert as much of the string as possible and set *endpt r to point to the first unconverted
character. If no initial segment of the string is the valid representation of a floating-point number, set *endptr
to point to the beginning of the string, raise ValueError, and return -1 . 0.

If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many platforms)
then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and don’t set any
exception. Otherwise, over f low_except ion must point to a Python exception object; raise that exception and
return —1 . 0. In both cases, set *endpt r to point to the first character after the converted value.

If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate Python
exception and return -1 . 0.

Added in version 3.1.
char *PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)
Bir parcast Kararli ABIL Convert a double val to a string using supplied format_code, precision, and flags.

format_code mustbe oneof 'e', 'E', '£','F', 'g','G" or 'r'.For 'r', the supplied precision must be 0
and is ignored. The ' r' format code specifies the standard repr () format.

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_O0, or Py_DTSF_ALT, or-ed
together:

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

e Py_DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf () '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set toone of Py_DTST_FINITE,Py_DTST_INFINITE,
or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem Free ().

Added in version 3.1.

6.7. String conversion and formatting 89

https://manpages.debian.org/strtoul(3)
https://manpages.debian.org/strtol(3)

The Python/C API, Yayim 3.12.3

int PyOS_stricmp (const char *s1, const char *s2)

Case insensitive comparison of strings. The function works almost identically to st rcmp () except that it ignores
the case.

int PyOS_strnicmp (const char *s1, const char *s2, Py_ssize_t size)

Case insensitive comparison of strings. The function works almost identically to st rncmp () except that it ignores
the case.

6.8 PyHash API

See also the Py TypeOb ject . tp_hash member.

type Py_hash_t
Hash value type: signed integer.

Added in version 3.2.
type Py_uhash_t

Hash value type: unsigned integer.
Added in version 3.2.
type PyHash_FuncDef
Hash function definition used by PyHash_GetFuncDef ().
const char *name
Hash function name (UTF-8 encoded string).
const int hash_bits
Internal size of the hash value in bits.

const int seed_bits

Size of seed input in bits.
Added in version 3.4.

PyHash_FuncDef *PyHash_GetFuncDef (void)
Get the hash function definition.

Ayrica bakimz:

9

PEP 456 “Secure and interchangeable hash algorithm”.
Added in version 3.4.

6.9 Reflection

PyObject *PyEval_GetBuiltins (void)
Dondiirdiigii deger: Odiing alinmis referans. Bir parcast Kararli ABI. Return a dictionary of the builtins in the
current execution frame, or the interpreter of the thread state if no frame is currently executing.

PyObject *PyEval_GetLocals (void)
Dindiirdiigii deger: Odiing alinmus referans. Bir parcast Kararh ABL. Return a dictionary of the local variables in
the current execution frame, or NULL if no frame is currently executing.

90 Bolim 6. Utilities

https://peps.python.org/pep-0456/

The Python/C API, Yayim 3.12.3

PyObject *PyEval_GetGlobals (void)
Déndiirdiigii deger: Odiing alinmusg referans. Bir parcast Kararli ABIL Return a dictionary of the global variables in
the current execution frame, or NULL if no frame is currently executing.

PyFrameObject *PyEval_GetFrame (void)
Dondiirdiigii deger: Odiing alinmus referans. Bir parcast Kararli ABI. Return the current thread state’s frame, which
is NULL if no frame is currently executing.

See also PyThreadState_GetFrame ().

const char *PyEval_GetFuncName (PyObject *func)
Bir parcast Kararli ABI. Return the name of func if it is a function, class or instance object, else the name of funcs
type.

const char *PyEval_GetFuncDesc (PyObject *func)

Bir parcast Kararli ABL. Return a description string, depending on the type of func. Return values inclu-
de “()” for functions and methods, “ constructor”, “ instance”, and “ object”. Concatenated with the result of
PyEval_GetFuncName (), the result will be a description of func.

6.10 Codec registry and support functions

int PyCodec_Register (PyObject *search_function)
Bir parcast Kararli ABI. Register a new codec search function.
As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first in the
list of search functions.

int PyCodec_Unregister (PyObject *search_function)
Bir parcast Kararli ABI 3. 10 siiriimiinden beri. Unregister a codec search function and clear the registry’s cache. If
the search function is not registered, do nothing. Return 0 on success. Raise an exception and return -1 on error.

Added in version 3.10.

int PyCodec_KnownEncoding (const char *encoding)
Bir parcasi Kararli ABI. Return 1 or 0 depending on whether there is a registered codec for the given encoding.
This function always succeeds.

PyObject *PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Generic codec based encoding API.
object is passed through the encoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

PyObject *PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL. Generic codec based decoding API.
object is passed through the decoder function found for the given encoding using the error handling method defined

by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

6.10. Codec registry and support functions 91

The Python/C API, Yayim 3.12.3

6.10.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes encodings
looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set and NULL
returned.

PyObject *PyCodec_Encoder (const char *encoding)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararlit ABL. Get an encoder function for the given encoding.

PyObject *PyCodec_Decoder (const char *encoding)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Get a decoder function for the given encoding.

PyObject *PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Get an IncrementalEncoder object for the given
encoding.

PyObject *PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Get an IncrementalDecoder object for the given
encoding.

PyObject *PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Get a St reamReader factory function for the given
encoding.

PyObject *PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Get a StreamWriter factory function for the given
encoding.

6.10.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError (const char *name, PyObject *error)

Bir parcasi Kararli ABIL Register the error handling callback function error under the given name. This callback
function will be called by a codec when it encounters unencodable characters/undecodable bytes and name is spe-
cified as the error parameter in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes and
their offset in the original string (see Unicode Exception Objects for functions to extract this information). The
callback must either raise the given exception, or return a two-item tuple containing the replacement for the prob-
lematic sequence, and an integer giving the offset in the original string at which encoding/decoding should be
resumed.

Return 0 on success, —1 on error.

PyObject *PyCodec_LookupError (const char *name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Lookup the error handling callback function registered
under name. As a special case NULL can be passed, in which case the error handling callback for “strict” will be
returned.

PyObject *PyCodec_StrictErrors (PyObject *exc)
Dondiirdiigii deger: Her zaman NULL. Bir parcasi Kararli ABL Raise exc as an exception.

PyObject *PyCodec_IgnoreErrors (PyObject *exc)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Ignore the unicode error, skipping the faulty input.

92 Bolim 6. Utilities

The Python/C API, Yayim 3.12.3

PyObject *PyCodec_ReplaceErrors (PyObject *exc)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Replace the unicode encode error with ? or U+FFFD.
PyObject *PyCodec_XMLCharRefReplaceErrors (PyObject *exc)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Replace the unicode encode error with XML character
references.

PyObject *PyCodec_BackslashReplaceErrors (PyObject *exc)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Replace the unicode encode error with backslash escapes
(\x, \u and \U).

PyObject *PyCodec_NameReplaceErrors (PyObject *exc)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararlh ABI 3.7 siiriimiinden beri. Replace the unicode encode error
with \N{ . ..} escapes.

Added in version 3.5.

6.11 Support for Perf Maps

On supported platforms (as of this writing, only Linux), the runtime can take advantage of perf map files to make Python
functions visible to an external profiling tool (such as perf). A running process may create a file in the /tmp directory,
which contains entries that can map a section of executable code to a name. This interface is described in the documen-
tation of the Linux Perf tool.

In Python, these helper APIs can be used by libraries and features that rely on generating machine code on the fly.
Note that holding the Global Interpreter Lock (GIL) is not required for these APIs.

int PyUnstable_PerfMapState_Init (void)

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyar1 olmadan degisebilir.

Open the /tmp/perf-S$pid.map file, unless it’s already opened, and create a lock to ensure thread-safe writes
to the file (provided the writes are done through PyUnstable_WritePerfMapEntry ()). Normally, there’s
no need to call this explicitly; just use PyUnstable WritePerfMapEntry () and it will initialize the state
on first call.

Returns 0 on success, —1 on failure to create/open the perf map file, or -2 on failure to create a lock. Check
errno for more information about the cause of a failure.

int PyUnstable_WritePerfMapEntry (const void *code_addr, unsigned int code_size, const char
*entry_name)

Bu Kararsiz API. Bu, kiigtik (minor) siirtimlerde uyar1 olmadan degisebilir.

Write one single entry to the /tmp/perf-$pid.map file. This function is thread safe. Here is what an example

entry looks like:
address size name
7£3529fcf759 b py::bar:/run/t.py

Willcall PyUnstable PerfMapState_Init () before writing the entry, if the perf map file is not already
opened. Returns 0 on success, or the same error codes as PyUnstable_ PerfMapState_Init () onfailure.

6.11. Support for Perf Maps 93

https://perf.wiki.kernel.org/index.php/Main_Page
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/jit-interface.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/jit-interface.txt

The Python/C API, Yayim 3.12.3

void PyUnstable_PerfMapState_Fini (void)

Bu Kararsiz API. Bu, kiigtik (minor) stirtimlerde uyar1 olmadan degisebilir.

Close the perf map file opened by PyUnstable PerfMapState_Init (). This is called by the runtime
itself during interpreter shut-down. In general, there shouldn’t be a reason to explicitly call this, except to handle
specific scenarios such as forking.

94 Bolim 6. Utilities

BOLOM 7/

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will raise a
Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been created
by PyList_New (), but whose items have not been set to some non-NULL value yet.

7.1 Object Protocol

PyObject *Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type combi-
nation.

Py_RETURN_NOTIMPLEMENTED
Properly handle returning Py_ Not Implemented from within a C function (that is, create a new strong reference
to Notlmplemented and return it).

Py _PRINT RAW

Flag to be used with multiple functions that print the object (like PyObject_Print () and
PyFile _WriteObject ()). If passed, these function would use the str () of the object instead of
the repr ().

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns —1 on error. The flags argument is used to enable certain printing options. The
only option currently supported is Py_ PRINT_RAI; if given, the str () of the object is written instead of the
repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)

Bir parcast Kararli ABIL Returns 1 if o has the attribute aftr_name, and 0 otherwise. This is equivalent to the
Python expression hasattr (o, attr_name). This function always succeeds.

95

The Python/C API, Yayim 3.12.3

Not: Exceptions that occur when this calls __getattr__ () and __getattribute__ () methods are si-
lently ignored. For proper error handling, use PyOb ject_GetAttr () instead.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)

Bir parcasi Kararli ABIL. This is the same as PyObject_HasAttr (), but attr_name is specified as a const
char* UTF-8 encoded bytes string, rather than a PyOb ject*.

Not: Exceptions that occur when this calls __getattr__ () and __getattribute__ () met-
hods or while creating the temporary str object are silently ignored. For proper error handling, use
PyObject_GetAttrString () instead.

PyObject *PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Retrieve an attribute named attr_name from object o.

Returns the attribute value on success, or NULL on failure. This is the equivalent of the Python expression o.
attr_name.

PyObject *PyObject_GetAttrString (PyObject *o, const char *attr_name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. This is the same as PyObject_GetAttr (), but
attr_name is specified as a const char* UTF-8 encoded bytes string, rather than a PyObject*.
PyObject *PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Generic attribute getter function that is meant to be put
into a type object’s t p_getattro slot. It looks for a descriptor in the dictionary of classes in the object's MRO
as well as an attribute in the object’s __dict___ (if present). As outlined in descriptors, data descriptors take
preference over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is raised.
int PyObject_SetAttr (PyObject *0, PyObject *attr_name, PyObject *v)
Bir parcasi Kararli ABIL. Set the value of the attribute named attr_name, for object o, to the value v. Raise an excep-

tion and return —1 on failure; return O on success. This is the equivalent of the Python statement o . attr_name
= V.

If v is NULL, the attribute is deleted. This behaviour is deprecated in favour of using PyOb ject_DelAttr (),
but there are currently no plans to remove it.

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *Vv)
Bir parcasi Kararli ABIL. This is the same as PyObject_SetAttr (), but attr_name is specified as a const
char* UTF-8 encoded bytes string, rather than a PyOb ject*.

If v is NULL, the attribute is deleted, but this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Bir parcasi Kararli ABL Generic attribute setter and deleter function that is meant to be put into a type object’s
tp_setattro slot. It looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found
it takes preference over setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set
or deleted in the object’s ___dict___ (if present). On success, O is returned, otherwise an AttributeError is
raised and -1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)

Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

96 Béliim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.3

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
This is the same as PyOb ject_DelAttr (), but attr_name is specified as a const char* UTF-8 encoded
bytes string, rather than a PyObject*.

PyObject *PyObject_GenericGetDict (PyObject *o, void *context)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABI 3.10 siiriimiinden beri. A generic implementation for the
getter of a __dict___ descriptor. It creates the dictionary if necessary.

This function may also be called to get the __dict__ of the object 0. Pass NULL for context when cal-
ling it. Since this function may need to allocate memory for the dictionary, it may be more efficient to call
PyObject_GetAttr () when accessing an attribute on the object.

On failure, returns NULL with an exception set.
Added in version 3.3.

int PyObject_GenericSetDict (PyObject *o, PyObject *value, void *context)

Bir parcast Kararli ABI 3.7 siiriimiinden beri. A generic implementation for the setter of a ___dict___ descriptor.
This implementation does not allow the dictionary to be deleted.

Added in version 3.3.
PyObject **_PyObject_GetDictPtr (PyObject *obj)

Return a pointer to __dict__ of the object obj. If there is no __dict
exception.

, return NULL without setting an

This function may need to allocate memory for the dictionary, so it may be more efficient to call
PyObject_GetAttr () when accessing an attribute on the object.

PyObject *PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Compare the values of o/ and 02 using the operation
specified by opid, which must be one of Py_ LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to
<, < =,==, !=,> or> =respectively. This is the equivalent of the Python expression o1 op 02, where op is
the operator corresponding to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)

Bir parcasi Kararli ABL. Compare the values of ol and o2 using the operation specified by opid, like
PyObject_RichCompare (), butreturns —1 on error, O if the result is false, 1 otherwise.

Not: If ol and 02 are the same object, PyOb ject_RichCompareBool () will always return 1 for Py_EQ and 0
for Py_NE.

PyObject *PyObject_Format (PyObject *obj, PyObject *format_spec)
Bir parcast Kararli ABL Format obj using format_spec. This is equivalent to the Python expression format (ob 7,
format_spec).

format_spec may be NULL. In this case the call is equivalent to format (obj) . Returns the formatted string on
success, NULL on failure.

PyObject *PyObject_Repr (PyObject *0)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Compute a string representation of object o. Returns
the string representation on success, NULL on failure. This is the equivalent of the Python expression repr (o).
Called by the repr () built-in function.

3.4 siiriimiinde degisti: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

7.1. Object Protocol 97

The Python/C API, Yayim 3.12.3

PyObject *PyObject_ASCII (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. As PyObject_Repr (), compute a string represen-
tation of object o, but escape the non-ASCII characters in the string returned by PyOb ject_Repr () with \x,
\u or \U escapes. This generates a string similar to that returned by PyObject_Repr () in Python 2. Called
by the ascii () built-in function.

PyObject *PyObject_Str (PyObject *0)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Compute a string representation of object 0. Returns the
string representation on success, NULL on failure. This is the equivalent of the Python expression st r (o) . Called
by the str () built-in function and, therefore, by the print () function.

3.4 stirtimiinde degisti: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.
PyObject *PyObject_Bytes (PyObject *0)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Compute a bytes representation of object 0. NULL is
returned on failure and a bytes object on success. This is equivalent to the Python expression bytes (o), when o
is not an integer. Unlike bytes (o), a TypeError is raised when o is an integer instead of a zero-initialized bytes
object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Bir parcast Kararli ABL Return 1 if the class derived is identical to or derived from the class cls, otherwise return

0. In case of an error, return —1.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

If cls has a _ _subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in cls.
mro

Normally only class objects, i.e. instances of t ype or a derived class, are considered classes. However, objects can
override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)

Bir parcasi Kararli ABIL. Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error,
returns —1 and sets an exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

If clshasa___instancecheck__ () method, it will be called to determine the subclass status as described in
PEP 3119. Otherwise, inst is an instance of cIs if its class is a subclass of cIs.

An instance inst can override what is considered its class by havinga ___class__ attribute.

An object cls can override if it is considered a class, and what its base classes are, by havinga ___bases___ attribute
(which must be a tuple of base classes).

Py_hash_t PyObject_Hash (PyObject *0)

Bir parcast Kararli ABI. Compute and return the hash value of an object 0. On failure, return —1. This is the
equivalent of the Python expression hash (o).

3.2 siirimiinde degisti: The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

Py_hash_t PyObject_HashNotImplemented (PyObject *0)

Bir parcast Kararli ABL Seta TypeError indicating that t ype (o) is not hashable and return —1. This function
receives special treatment when stored in a t p_hash slot, allowing a type to explicitly indicate to the interpreter
that it is not hashable.

98 Béliim 7. Abstract Objects Layer

https://peps.python.org/pep-3119/
https://peps.python.org/pep-3119/

The Python/C API, Yayim 3.12.3

int PyObject_IsTrue (PyObject ¥0)
Bir pargasi Kararli ABIL Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to
the Python expression not not o. On failure, return —1.

int PyObject_Not (PyObject *0)
Bir pargasi Kararli ABIL Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to
the Python expression not o. On failure, return - 1.

PyObject *PyObject_Type (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. When o is non-NULL, returns a type object corresponding
to the object type of object 0. On failure, raises SystemError and returns NULL. This is equivalent to the Python
expression type (o) . This function creates a new strong reference to the return value. There’s really no reason to
use this function instead of the Py_ TYPE () function, which returns a pointer of type Py TypeOb ject*, except
when a new strong reference is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return non-zero if the object o is of type fype or a subtype of fype, and O otherwise. Both parameters must be
non-NULL.

Py_ssize_t PyObject_Size (PyObject *0)

Py_ssize_t PyObject_Length (PyObject *0)
Bir parcasi Kararli ABI. Return the length of object o. If the object o provides either the sequence and mapping
protocols, the sequence length is returned. On error, —1 is returned. This is the equivalent to the Python expression
len(0).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t defaultvalue)

Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__ (), and finally return the default value. On error return —1. This is the equivalent to the
Python expression operator.length_hint (o, defaultvalue).

Added in version 3.4.

PyObject *PyObject_GetItem (PyObject *o, PyObject *key)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL Return element of o corresponding to the object key or
NULL on failure. This is the equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *V)
Bir parcast Kararli ABI. Map the object key to the value v. Raise an exception and return —1 on failure; return 0
on success. This is the equivalent of the Python statement o [key] = wv. This function does not steal a reference
to v.

int PyObject_DelItem (PyObject *o, PyObject *key)
Bir pargasi Kararl1 ABL. Remove the mapping for the object key from the object 0. Return -1 on failure. This is
equivalent to the Python statement del o [key].

PyObject *PyObject_Dir (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL This is equivalent to the Python expression dir (o),
returning a (possibly empty) list of strings appropriate for the object argument, or NULL if there was an error. If
the argument is NULL, this is like the Python dir (), returning the names of the current locals; in this case, if no
execution frame is active then NULL is returned but PyErr_ Occurred () will return false.

PyObject *PyObject_GetIter (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL This is equivalent to the Python expression iter (o).

It returns a new iterator for the object argument, or the object itself if the object is already an iterator. Raises
TypeError and returns NULL if the object cannot be iterated.

7.1. Object Protocol 99

The Python/C API, Yayim 3.12.3

PyObject *PyObject_GetAIter (PyObject *0)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI 3.10 siiriimiinden beri. This is the equivalent to the
Python expression aiter (o). Takesan AsyncIterable object and returns an AsyncIterator forit. This
is typically a new iterator but if the argument is an AsyncIterator, this returns itself. Raises TypeError
and returns NULL if the object cannot be iterated.

Added in version 3.10.
void *PyObject_GetTypeData (PyObject *o, PyTypeObject *cls)
Bir parcas: Kararli ABI 3.12 siiriimiinden beri. Get a pointer to subclass-specific data reserved for cis.

The object 0 must be an instance of cls, and cls must have been created using negative PyType_Spec.
basicsize. Python does not check this.

On error, set an exception and return NULL.
Added in version 3.12.
Py_ssize_t PyType_GetTypeDataSize (PyTypeObject *cls)

Bir parcasi Kararli ABI 3.12 siiriimiinden beri. Return the size of the instance memory space reserved for cIs, i.e.
the size of the memory PyObject_Get TypeData () returns.

This may be larger than requested using ~PyType_Spec.basicsize;itis safe to use this larger size (e.g. with
memset ()).

The type cls must have been created using negative Py Type Spec.basicsize. Python does not check this.
On error, set an exception and return a negative value.
Added in version 3.12.

void *PyObject_GetItemData (PyObject *0)
Get a pointer to per-item data for a class with Py_ TPFLAGS_TTEMS_AT_END.

On error, set an exception and return NULL. TypeError is raised if o does not have
Py TPFLAGS_ITEMS_AT END set.

Added in version 3.12.

7.2 Call Protocol

CPython supports two different calling protocols: #p_call and vectorcall.

7.2.1 The ip_call Protocol

Instances of classes that set tp_call are callable. The signature of the slot is:

[PyObject *tp_call (PyObject *callable, PyObject *args, PyObject *kwargs);]

A call is made using a tuple for the positional arguments and a dict for the keyword arguments, similarly to
callable (*args, **kwargs) in Python code. args must be non-NULL (use an empty tuple if there are no
arguments) but kwargs may be NULL if there are no keyword arguments.

This convention is not only used by #p_call: tp_new and tp_init also pass arguments this way.

To call an object, use PyObject_Call () or another call API.

100 Béliim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.3

7.2.2 The Vectorcall Protocol

Added in version 3.9.
The vectorcall protocol was introduced in PEP 590 as an additional protocol for making calls more efficient.

As rule of thumb, CPython will prefer the vectorcall for internal calls if the callable supports it. However, this is not a hard
rule. Additionally, some third-party extensions use #p_call directly (rather than using PyObject_Call ()). Therefore,
a class supporting vectorcall must also implement tp_ ca 1 1. Moreover, the callable must behave the same regardless of
which protocol is used. The recommended way to achieve this is by setting tp_callto PyVectorcall Call ().
This bears repeating:

Uyar1: A class supporting vectorcall must also implement tp_call with the same semantics.

3.12 siirtimiinde degisti: The Py TPFLAGS HAVE_VECTORCALL flag is now removed from a class when the class’s
__call__ () method is reassigned. (This internally sets t p_cal 1 only, and thus may make it behave differently than
the vectorcall function.) In earlier Python versions, vectorcall should only be used with immutable or static types.

A class should not implement vectorcall if that would be slower than #p_call. For example, if the callee needs to convert
the arguments to an args tuple and kwargs dict anyway, then there is no point in implementing vectorcall.

Classes can implement the vectorcall protocol by enabling the Py TPFLAGS_HAVE_VECTORCALL flag and setting
tp_vectorcall_offset tothe offset inside the object structure where a vectorcallfunc appears. This is a pointer to
a function with the following signature:

typedef PyObject *(*vectorcallfunc)(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Bir parcast Kararli ABI 3.12 siiriimiinden beri.
* callable is the object being called.

* args is a C array consisting of the positional arguments followed by the
values of the keyword arguments. This can be NULL if there are no arguments.

* nargsf is the number of positional arguments plus possibly the
PY_VECTORCALIL_ARGUMENTS_OFFSET flag. To get the actual number of positional arguments from
nargsf, use PyVectorcall_NARGS ().

¢ kwnames is a tuple containing the names of the keyword arguments;
in other words, the keys of the kwargs dict. These names must be strings (instances of st r or a subclass) and
they must be unique. If there are no keyword arguments, then kwnames can instead be NULL.

PY_VECTORCALL_ARGUMENTS_OFFSET

Bir parcasi Kararli ABI 3. 12 siiriimiinden beri. If this flag is set in a vectorcall nargsf argument, the callee is allowed
to temporarily change args [—-1]. In other words, args points to argument 1 (not 0) in the allocated vector. The
callee must restore the value of args [—1] before returning.

For PyObject_VectorcallMethod (), this flag means instead that args [0] may be changed.

Whenever they can do so cheaply (without additional allocation), callers are encouraged to use
PY_VECTORCALI_ARGUMENTS_OFFSET. Doing so will allow callables such as bound methods to ma-
ke their onward calls (which include a prepended self argument) very efficiently.

Added in version 3.8.

To call an object that implements vectorcall, use a call API function as with any other -callable.
PyObject_Vectorcall () will usually be most efficient.

7.2. Call Protocol 101

https://peps.python.org/pep-0590/

The Python/C API, Yayim 3.12.3

Not: In CPython 3.8, the vectorcall API and related functions were available provisionally under na-
mes with a leading wunderscore: _PyObject_Vectorcall, _Py_ TPFLAGS_HAVE_VECTORCALL,
_PyObject_VectorcallMethod, _PyVectorcall Function, _PyObject_CallOneArg,
_PyObject_CallMethodNoArgs, _PyObject_CallMethodOneArg. Additionally,
PyObject_VectorcallDict was available as _PyObject_FastCallDict. The old names are still de-
fined as aliases of the new, non-underscored names.

Recursion Control
When using #p_call, callees do not need to worry about recursion: CPython uses Py_EnterRecursiveCall () and
Py_LeaveRecursiveCall () for calls made using tp_call.

For efficiency, this is not the case for calls done using vectorcall: the callee should use Py_EnterRecursiveCall and
Py_LeaveRecursiveCall if needed.

Vectorcall Support API

Py_ssize_t PyVectorcall_ NARGS (size_t nargsf)

Bir parcast Kararli ABI 3.12 siiriimiinden beri. Given a vectorcall nargsf argument, return the actual number of
arguments. Currently equivalent to:

[(Py_ssize_t) (nargsf & ~PY_VECTORCALL_ARGUMENTS_OFFSET)

However, the function PyVectorcall_NARGS should be used to allow for future extensions.
Added in version 3.8.

vectorcallfunc PyVectorcall_Function (PyObject *op)

If op does not support the vectorcall protocol (either because the type does not or because the specific instance
does not), return NULL. Otherwise, return the vectorcall function pointer stored in op. This function never raises
an exception.

This is mostly useful to check whether or not op supports vectorcall, which can be done by checking
PyVectorcall_Function (op) != NULL.

Added in version 3.9.
PyObject *PyVectorcall_Call (PyObject *callable, PyObject *tuple, PyObject *dict)

Bir parcas: Kararli ABI 3.12 siiriimiinden beri. Call callable’s vectorcallfunc with positional and keyword
arguments given in a tuple and dict, respectively.

This is a specialized function, intended to be put in the tp_call slot or be used in an implementation of
tp_call.ltdoesnotcheckthe Py_TPFLAGS_HAVE_VECTORCALLflaganditdoesnotfall backtotp_call.

Added in version 3.8.

102 Béliim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.3

7.2.3 Object Calling API

Various functions are available for calling a Python object. Each converts its arguments to a convention supported by the
called object — either #p_call or vectorcall. In order to do as little conversion as possible, pick one that best fits the format
of data you have available.

The following table summarizes the available functions; please see individual documentation for details.

Function callable args kwargs
PyObject_Call () PyObject * tuple dict/NULL
PyObject_CallNoArgs () PyObject * — —
PyObject_CallOneArg () PyObject * 1 object —
PyObject_CallObject () PyObject * tuple/NULL —
PyObject_CallFunction () PyObject * format —
PyObject_CallMethod () obj + char* format —
PyObject_CallFunctionObjArgs () PyObject * variadic —
PyObject_CallMethodObjArgs () obj + name variadic —
PyObject_CallMethodNoArgs () obj + name — —
PyObject_CallMethodOneArqg () obj + name 1 object —
PyObject_Vectorcall () PyObject * vectorcall vectorcall
PyObject_VectorcallDict () PyObject * vectorcall dict/NULL

PyObject_VectorcallMethod () arg + name vectorcall vectorcall

PyObject *PyObiject_Call (PyObject *callable, PyObject *args, PyObject *kwargs)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Call a callable Python object callable, with arguments
given by the tuple args, and named arguments given by the dictionary kwargs.

args must not be NULL; use an empty tuple if no arguments are needed. If no named arguments are needed, kwargs
can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args, **kwargs).

PyObject *PyObject_CallNoArgs (PyObject *callable)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.10 siiriimiinden beri. Call a callable Python object
callable without any arguments. It is the most efficient way to call a callable Python object without any argument.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.
PyObject *PyObject_CallOneArg (PyObject *callable, PyObject *arg)

Dondiirdiigii deger: Yeni referans. Call a callable Python object callable with exactly 1 positional argument arg and
no keyword arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.
PyObject *PyObject_CallObject (PyObject *callable, PyObject *args)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Call a callable Python object callable, with arguments
given by the tuple args. If no arguments are needed, then args can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: callable (*args).

7.2. Call Protocol 103

The Python/C API, Yayim 3.12.3

PyObject *PyObject_CallFunction (PyObject *callable, const char *format, ...)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Call a callable Python object callable, with a variable
number of C arguments. The C arguments are described using a Py_ BuildValue () style format string. The
format can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args).
Note that if you only pass PyOb ject* args, PyObject_CallFunctionObjArgs () is a faster alternative.

3.4 siiriimiinde degisti: The type of format was changed from char *.

PyObject *PyObject_CallMethod (PyObject *obj, const char *name, const char *format, ...)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Call the method named name of object obj with a
variable number of C arguments. The C arguments are described by a Py BuildValue () format string that
should produce a tuple.

The format can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: obj.name (argl, arg2, ...).

Note that if you only pass PyOb ject* args, PyObject_CallMethodObjArgs () is a faster alternative.

3.4 siirtimiinde degisti: The types of name and format were changed from char *.

PyObject *PyObject_CallFunctionObjArgs (PyObject *callable, ...)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Call a callable Python object callable, with a variable
number of PyOb ject* arguments. The arguments are provided as a variable number of parameters followed by
NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: callable (argl, arg2, ...).

PyObject *PyObject_CallMethodObjArgs (PyObject *obj, PyObject *name, ...)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABI. Call a method of the Python object obj, where the name
of the method is given as a Python string object in name. It is called with a variable number of PyObject*
arguments. The arguments are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

PyObject *PyObject_CallMethodNoArgs (PyObject *obj, PyObject ¥name)

Call a method of the Python object obj without arguments, where the name of the method is given as a Python
string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.

Added in version 3.9.

PyObject *PyObject_CallMethodOneArg (PyObject *obj, PyObject *name, PyObject *arg)

Call a method of the Python object obj with a single positional argument arg, where the name of the method is
given as a Python string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.

Added in version 3.9.

104

Béliim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.3

PyObject *PyObject_Vectorcall (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject *kwnames)
Bir parcasi Kararli ABI 3. 12 siiriimiinden beri. Call a callable Python object callable. The arguments are the same as
for vectorcallfunc.If callable supports vectorcall, this directly calls the vectorcall function stored in callable.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.

PyObject *PyObject_VectorcallDict (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwdict)

Call callable with positional arguments passed exactly as in the vectorcall protocol, but with keyword arguments
passed as a dictionary kwdict. The args array contains only the positional arguments.

Regardless of which protocol is used internally, a conversion of arguments needs to be done. Therefore, this function
should only be used if the caller already has a dictionary ready to use for the keyword arguments, but not a tuple
for the positional arguments.

Added in version 3.9.
PyObject *PyObject_VectorcallMethod (PyObject *name, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Bir parcasi Kararli ABI 3.12 siiriimiinden beri. Call a method using the vectorcall calling convention. The na-
me of the method is given as a Python string name. The object whose method is called is args/0], and the args
array starting at args/1] represents the arguments of the call. There must be at least one positional argument.
nargsf is the number of positional arguments including args[0], plus PY_VECTORCALI_ARGUMENTS_OFFSET
if the value of args[0] may temporarily be changed. Keyword arguments can be passed just like in
PyObject_Vectorcall ().

If the object has the Py TPFLAGS METHOD_DESCRIPTOR feature, this will call the unbound method object
with the full args vector as arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.

Added in version 3.9.

7.2.4 Call Support API

int PyCallable_Check (PyObject *0)

Bir parcasi Kararli ABI. Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise.
This function always succeeds.

7.3 Number Protocol

int PyNumber_Check (PyObject *0)

Bir pargasi Kararli ABIL Returns 1 if the object o provides numeric protocols, and false otherwise. This function
always succeeds.

3.8 siiriimiinde degisti: Returns 1 if o is an index integer.
PyObject *PyNumber_Add (PyObject *ol, PyObject *02)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Returns the result of adding o/ and 02, or NULL on
failure. This is the equivalent of the Python expression o1 + o2.

7.3. Number Protocol 105

The Python/C API, Yayim 3.12.3

PyObject *PyNumber_Subtract (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Returns the result of subtracting 02 from o/, or NULL
on failure. This is the equivalent of the Python expression o1 — o02.

PyObject *PyNumber_Multiply (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABIL. Returns the result of multiplying o/ and 02, or NULL
on failure. This is the equivalent of the Python expression 01 * 02.

PyObject *PyNumber_MatrixMultiply (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI 3.7 siirtimiinden beri. Returns the result of matrix mul-
tiplication on ol and 02, or NULL on failure. This is the equivalent of the Python expression o1 @ o2.

Added in version 3.5.

PyObject *PyNumber_FloorDivide (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir par¢ast Kararli ABIL Return the floor of o/ divided by 02, or NULL on failure.
This is the equivalent of the Python expression o1 // o02.

PyObject *PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Return a reasonable approximation for the mathematical
value of o/ divided by 02, or NULL on failure. The return value is “approximate” because binary floating point
numbers are approximate; it is not possible to represent all real numbers in base two. This function can return a
floating point value when passed two integers. This is the equivalent of the Python expression o1 / 02.

PyObject *PyNumber_Remainder (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Returns the remainder of dividing ol by 02, or NULL
on failure. This is the equivalent of the Python expression o1 % o02.

PyObject *PyNumber_Divmod (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL See the built-in function divmod (). Returns NULL
on failure. This is the equivalent of the Python expression divmod (01, 02).

PyObject *PyNumber_Power (PyObject *ol, PyObject *02, PyObject *03)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL See the built-in function pow () . Returns NULL on
failure. This is the equivalent of the Python expression pow (01, 02, 03), where o3 is optional. If 03 is to be
ignored, pass Py_ None in its place (passing NULL for 03 would cause an illegal memory access).

PyObject *PyNumber_Negative (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABIL Returns the negation of o on success, or NULL on failure.
This is the equivalent of the Python expression —o.

PyObject *PyNumber_Positive (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Returns o on success, or NULL on failure. This is the
equivalent of the Python expression +o.

PyObject *PyNumber_Absolute (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Returns the absolute value of o, or NULL on failure.
This is the equivalent of the Python expression abs (o) .

PyObject *PyNumber_Invert (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Returns the bitwise negation of o on success, or NULL
on failure. This is the equivalent of the Python expression ~o.

PyObject *PyNumber_Lshift (PyObject *ol, PyObject *02)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL. Returns the result of left shifting o/ by 02 on success,
or NULL on failure. This is the equivalent of the Python expression o1 << 02.

106 Béliim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.3

PyObject *PyNumber_Rshift (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Returns the result of right shifting o/ by 02 on success,
or NULL on failure. This is the equivalent of the Python expression 01 >> o02.

PyObject *PyNumber_And (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Returns the “bitwise and” of o/ and 02 on success and
NULL on failure. This is the equivalent of the Python expression o1 & o2.

PyObject *PyNumber_Xor (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Returns the “bitwise exclusive or” of 0l by 02 on success,
or NULL on failure. This is the equivalent of the Python expression o1 *~ o2.

PyObject *PyNumber_Oxr (PyObject *ol, PyObject *¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Returns the “bitwise or” of ol and 02 on success, or
NULL on failure. This is the equivalent of the Python expression o1 | 02.

PyObject *PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Returns the result of adding o/ and 02, or NULL on
failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 + =
o2.

PyObject *PyNumber_InPlaceSubtract (PyObject *ol, PyObject *02)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Returns the result of subtracting 02 from o/, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1
-= 02.

PyObject *PyNumber_InPlaceMultiply (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Returns the result of multiplying o/ and 02, or NULL

on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1
* = o02.

PyObject *PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Returns the result of matrix multip-

lication on o/ and 02, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent
of the Python statement 01 @ = o2.

Added in version 3.5.

PyObject *PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Returns the mathematical floor of dividing ol by 02, or

NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol //= o2.

PyObject *PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Return a reasonable approximation for the mathematical
value of o/ divided by 02, or NULL on failure. The return value is “approximate” because binary floating point
numbers are approximate; it is not possible to represent all real numbers in base two. This function can return

a floating point value when passed two integers. The operation is done in-place when ol supports it. This is the
equivalent of the Python statement 01 /= 02.

PyObject *PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Returns the remainder of dividing o/ by 02, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1

[o)

$ = o2.

7.3. Number Protocol 107

The Python/C API, Yayim 3.12.3

PyObject *PyNumber__InPlacePower (PyObject *ol, PyObject *02, PyObject ¥03)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. See the built-in function pow () . Returns NULL on
failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 ** =
02 when 03 is Py_ None, or an in-place variant of pow (01, 02, o03) otherwise. If 03 is to be ignored, pass
Py_None in its place (passing NULL for o3 would cause an illegal memory access).

PyObject *PyNumber_InPlaceLshift (PyObject *ol, PyObject *¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Returns the result of left shifting o/ by 02 on success, or
NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol << = 02.

PyObject *PyNumber_InPlaceRshift (PyObject *ol, PyObject *¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Returns the result of right shifting o/ by 02 on success, or
NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol >> = o02.

PyObject *PyNumber_InPlaceAnd (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Returns the “bitwise and” of o/ and 02 on success and
NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol & = o02.

PyObject *PyNumber_InPlaceXor (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Returns the “bitwise exclusive or” of 0/ by 02 on success,
or NULL on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement
ol "= o2.

PyObject *PyNumber__InPlaceOr (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Returns the “bitwise or” of ol and 02 on success, or
NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol | = o2.

PyObject *PyNumber_Long (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Returns the o converted to an integer object on success,
or NULL on failure. This is the equivalent of the Python expression int (o).

PyObject *PyNumber_Float (PyObject ¥0)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI Returns the o converted to a float object on success, or
NULL on failure. This is the equivalent of the Python expression f1oat (o).

PyObject *PyNumber_Index (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Returns the o converted to a Python int on success or
NULL with a TypeError exception raised on failure.

3.10 siiriimiinde degisti: The result always has exact type int. Previously, the result could have been an instance
of a subclass of int.

PyObject *PyNumber_ToBase (PyObject *n, int base)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Returns the integer n converted to base base as a string.
The base argument must be one of 2, 8, 10, or 16. For base 2, 8, or 16, the returned string is prefixed with a base
markerof '0b"', '0o"',or ' 0x ', respectively. If n is not a Python int, it is converted with PyNumber_ Tndex ()
first.

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
Bir parcast Kararli ABL Returns o converted toa Py_ssize_ t value if o can be interpreted as an integer. If the
call fails, an exception is raised and -1 is returned.

If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError or

108 Béliim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.3

OverflowError). If excis NULL, then the exception is cleared and the value is clipped to PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE_T_MAX for a positive integer.
int PyIndex_Check (PyObject *0)

Bir parcas: Kararli ABI 3.8 siiriimiinden beri. Returns 1 if o is an index integer (has the nb_index slot of the
tp_as_number structure filled in), and 0 otherwise. This function always succeeds.

7.4 Sequence Protocol

int PySequence_Check (PyObject *0)
Bir parcasi Kararlt ABIL Return 1 if the object provides the sequence protocol, and O otherwise. Note that it
returns 1 for Python classes witha __getitem__ () method, unless they are dict subclasses, since in general
it is impossible to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *0)
Bir parcasi Kararli ABIL. Returns the number of objects in sequence o on success, and —1 on failure. This is equ-
ivalent to the Python expression len (o).

PyObject *PySequence_Concat (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Return the concatenation of o/ and 02 on success, and
NULL on failure. This is the equivalent of the Python expression 01 + 02.

PyObject *PySequence_Repeat (PyObject *0, Py_ssize_t count)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararl1 ABIL. Return the result of repeating sequence object o count
times, or NULL on failure. This is the equivalent of the Python expression o * count.

PyObject *PySequence_InPlaceConcat (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararl1 ABIL Return the concatenation of o/ and 02 on success, and
NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python expression
ol + = o2.

PyObject *PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return the result of repeating sequence object o count
times, or NULL on failure. The operation is done in-place when o supports it. This is the equivalent of the Python
expression o * = count.

PyObject *PySequence_GetItem (PyObject *0, Py_ssize_t 1)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return the ith element of o, or NULL on failure. This is
the equivalent of the Python expression o [1].

PyObject *PySequence_GetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return the slice of sequence object o between i/ and i2,
or NULL on failure. This is the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *V)
Bir parcast Kararli ABIL Assign object v to the ith element of 0. Raise an exception and return -1 on failure; return

0 on success. This is the equivalent of the Python statement o [1] = wv. This function does not steal a reference
tov.

If vis NULL, the element is deleted, but this feature is deprecated in favour of using Py Sequence_DelItem().

int PySequence_DelItem (PyObject *0, Py_ssize_t 1)
Bir parcast Kararli ABI. Delete the ith element of object 0. Returns —1 on failure. This is the equivalent of the
Python statement del o[1i].

7.4. Sequence Protocol 109

The Python/C API, Yayim 3.12.3

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t 12, PyObject *Vv)
Bir parcast Kararli ABI. Assign the sequence object v to the slice in sequence object o from i/ to i2. This is the
equivalent of the Python statement o [11:12] = wv.

int PySequence_DelSlice (PyObject *0, Py_ssize_t il, Py_ssize_t i2)
Bir parcast Kararli ABL Delete the slice in sequence object o from i/ to i2. Returns —1 on failure. This is the
equivalent of the Python statement del o[il:i2].

Py_ssize_t PySequence_Count (PyObject *o, PyObject *value)
Bir parcasi Kararlit ABIL Return the number of occurrences of value in o, that is, return the number of keys for which
olkey] == value. On failure, return —1. This is equivalent to the Python expression o . count (value).

int PySequence_Contains (PyObject *o, PyObject *value)
Bir parcast Kararli ABIL Determine if o contains value. If an item in o is equal to value, return 1, otherwise return
0. On error, return —1. This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index (PyObject *o, PyObject *value)
Bir parcasi Kararli ABIL. Return the first index i for which o [1] == wvalue. On error, return —1. This is equ-
ivalent to the Python expression o . index (value).

PyObject *PySequence_List (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a list object with the same contents as the sequ-
ence or iterable o, or NULL on failure. The returned list is guaranteed to be new. This is equivalent to the Python
expression 1ist (o).

PyObject *PySequence_Tuple (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Return a tuple object with the same contents as the
sequence or iterable o, or NULL on failure. If o is a tuple, a new reference will be returned, otherwise a tuple will
be constructed with the appropriate contents. This is equivalent to the Python expression tuple (o).

PyObject *PySequence_Fast (PyObject *o, const char *m)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Return the sequence or iterable o as an object usab-

le by the other PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises
TypeError with m as the message text. Returns NULL on failure.

The PySequence_Fast* functions are thus named because they assume o is a PyTupleObject or a
PyListObject and access the data fields of o directly.

As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that o was returned by PySequence_Fast () and that o is not NULL. The
size can also be retrieved by calling PySequence_Size () ono, but PySequence_Fast_GET_SIZE () is
faster because it can assume o is a list or tuple.

PyObject *PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t 1)
Dondiirdiigii deger: Odiing alinmis referans. Return the ith element of o, assuming that o was returned by
PySequence_Fast (), o0is not NULL, and that i is within bounds.

PyObject **PySequence_Fast_ITEMS (PyObject *0)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast () and
01is not NULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array pointer
in contexts where the sequence cannot change.

110 Béliim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.3

PyObject *PySequence_ITEM (PyObject *o0, Py_ssize_t 1)
Dondiirdiigii deger: Yeni referans. Return the ith element of o or NULL on failure. Faster form of
PySequence_GetItem () but without checking that PySequence Check () on o is true and without ad-
justment for negative indices.

7.5 Mapping Protocol

See also PyObject_GetItem (), PyObject_SetItem() and PyObject_DelIltem().

int PyMapping_Check (PyObject *0)
Bir parcast Kararli ABI. Return 1 if the object provides the mapping protocol or supports slicing, and O otherwise.
Note that it returns 1 for Python classes with a __getitem__ () method, since in general it is impossible to
determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

Py_ssize_t PyMapping_Length (PyObject *0)
Bir parcasi Kararli ABIL. Returns the number of keys in object o on success, and —1 on failure. This is equivalent
to the Python expression 1len (o).

PyObject *PyMapping_GetItemString (PyObject *o, const char *key)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. This is the same as PyObject_GetItem (), butkey
is specified as a const char* UTF-8 encoded bytes string, rather than a PyOb ject*.

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
Bir parcast Kararli ABI. This is the same as PyObject_SetItem (), butkeyis specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

int PyMapping_DelItem (PyObject *o, PyObject *key)
This is an alias of PyObject_DelItem().

int PyMapping_DelItemString (PyObject *o, const char *key)
This is the same as PyObject_DelItem/(), but key is specified as a const char* UTF-8 encoded bytes
string, rather than a PyOb ject*.

int PyMapping_HasKey (PyObject *0, PyObject *key)
Bir parcast Kararli ABIL Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the
Python expression key in o. This function always succeeds.

Not: Exceptions which occur when this calls __getitem__ () method are silently ignored. For proper error
handling, use PyObject_GetItem () instead.

int PyMapping_HasKeyString (PyObject *o, const char *key)
Bir parcast Kararli ABL This is the same as PyMapping HasKey (), but keyis specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

Not: Exceptions that occur when this calls__getitem__ () method or while creating the temporary st r object
are silently ignored. For proper error handling, use PyMapping GetItemString () instead.

PyObject *PyMapping_Keys (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. On success, return a list of the keys in object 0. On
failure, return NULL.

7.5. Mapping Protocol 111

The Python/C API, Yayim 3.12.3

3.7 stirtimiinde degisti: Previously, the function returned a list or a tuple.
PyObject *PyMapping_Values (PyObject *0)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. On success, return a list of the values in object 0. On
failure, return NULL.

3.7 siiriimiinde degisti: Previously, the function returned a list or a tuple.
PyObject *PyMapping_Items (PyObject *0)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL On success, return a list of the items in object o, where
each item is a tuple containing a key-value pair. On failure, return NULL.

3.7 stirtimiinde degisti: Previously, the function returned a list or a tuple.

7.6 lterator Protocol

There are two functions specifically for working with iterators.

int PyIter_Check (PyObject *0)
Bir parcast Kararli ABI 3.8 siiriimiinden beri. Return non-zero if the object o can be safely passed to
PyIter_ Next (), and O otherwise. This function always succeeds.

int PyAIter_Check (PyObject *0)
Bir parcas: Kararli ABI 3.10 siiriimiinden beri. Return non-zero if the object o provides the AsyncIterator
protocol, and 0 otherwise. This function always succeeds.
Added in version 3.10.

PyObject *PyIter_Next (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Return the next value from the iterator o. The object
must be an iterator according to PyIter Check () (itis up to the caller to check this). If there are no remaining

values, returns NULL with no exception set. If an error occurs while retrieving the item, returns NULL and passes
along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while ((item = PyIter_Next (iterator))) {
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;
s

Py_DECREF (iterator);

if (PyErr_Occurred()) {
/* propagate error */
}
else {
(sonraki sayfaya devam)

112 Béliim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

/* continue doing useful work */

type PySendResult
The enum value used to represent different results of PyTter Send ().

Added in version 3.10.

PySendResult PyIter_Send (PyObject *iter, PyObject *arg, PyObject **presult)
Bir parcast Kararli ABI 3.10 siiriimiinden beri. Sends the arg value into the iterator iter. Returns:

e PYGEN_RETURN if iterator returns. Return value is returned via presult.
e PYGEN_NEXT if iterator yields. Yielded value is returned via presult.
* PYGEN_ERROR if iterator has raised and exception. presult is set to NULL.

Added in version 3.10.

7.7 Buffer Protocol

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the built-in
bytes and bytearray, and some extension types like array.array. Third-party libraries may define their own
types for special purposes, such as image processing or numeric analysis.

While each of these types have their own semantics, they share the common characteristic of being backed by a possibly
large memory buffer. It is then desirable, in some situations, to access that buffer directly and without intermediate copying.

Python provides such a facility at the C level in the form of the buffer protocol. This protocol has two sides:

* on the producer side, a type can export a “buffer interface” which allows objects of that type to expose information
about their underlying buffer. This interface is described in the section Buffer Object Structures;

* on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object (for
example a method parameter).

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms are
possible; for example, the elements exposed by an array .array can be multi-byte values.

An example consumer of the buffer interface is the write () method of file objects: any object that can export a series
of bytes through the buffer interface can be written to a file. While write () only needs read-only access to the internal
contents of the object passed to it, other methods such as readinto () need write access to the contents of their
argument. The buffer interface allows objects to selectively allow or reject exporting of read-write and read-only buffers.

There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:
e call PyObject_GetBuffer () with the right parameters;
e call PyArg_ParseTuple () (or one of its siblings) with one of the y*, w* or s* format codes.

In both cases, PyBuffer Release () must be called when the buffer isn’t needed anymore. Failure to do so could
lead to various issues such as resource leaks.

7.7. Buffer Protocol 113

The Python/C API, Yayim 3.12.3

7.7.1 Buffer structure

Buffer structures (or simply “buffers”) are useful as a way to expose the binary data from another object to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory,
it is possible to expose any data to the Python programmer quite easily. The memory could be a large, constant array in
a C extension, it could be a raw block of memory for manipulation before passing to an operating system library, or it
could be used to pass around structured data in its native, in-memory format.

Contrary to most data types exposed by the Python interpreter, buffers are not PyOb ject pointers but rather simple C
structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is needed, a
memoryview object can be created.

For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer().
type Py_buffer

Bir parcast Kararli ABI (tiim iiyeler dahil) 3.11 siiriimiinden beri.

void *buf

A pointer to the start of the logical structure described by the buffer fields. This can be any location within
the underlying physical memory block of the exporter. For example, with negative st rides the value may
point to the end of the memory block.

For contiguous arrays, the value points to the beginning of the memory block.
PyObject *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically released

(i.e. reference count decremented) and set to NULL by PyBuffer_ Release (). Thefield is the equivalent
of the return value of any standard C-API function.

As a special case, for temporary buffers that are wrapped by PyMemoryView FromBuffer () or
PyBuffer FillInfo () this field is NULL. In general, exporting objects MUST NOT use this sche-
me.

Py_ssize_t 1len

product (shape) * itemsize. For contiguous arrays, this is the length of the underlying memory
block. For non-contiguous arrays, it is the length that the logical structure would have if it were copied to a
contiguous representation.

Accessing ((char *)buf) [0] up to ((char *)buf) [len-1] is only valid if the buffer has
been obtained by a request that guarantees contiguity. In most cases such a request will be PyBUF_STMPLE
or PyBUF_WRITABLE.

int readonly
An indicator of whether the buffer is read-only. This field is controlled by the PyBUF _WRITABLE flag.

Py _ssize_t itemsize

Item size in bytes of a single element. Same as the value of struct.calcsize () called on non-NULL
format values.

Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will be set
to NULL, but i temsi ze still has the value for the original format.

If shape is present, the equality product (shape) * itemsize == len still holds and the consu-
mer can use itemsize to navigate the buffer.

If shapeis NULL as aresult of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer must
disregard i temsize and assume itemsize == 1.

114 Béliim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.3

const char *format
A NUL terminated string in st ruct module style syntax describing the contents of a single item. If this is
NULL, "B" (unsigned bytes) is assumed.
This field is controlled by the PyBUF_FORMAT flag.

int ndim
The number of dimensions the memory represents as an n-dimensional array. If it is 0, buf points to a
single item representing a scalar. In this case, shape, strides and suboffsets MUST be NULL. The
maximum number of dimensions is given by PyBUF_MAX_NDIM.

Py_ssize_t *shape
An array of Py_ssize_t of length ndim indicating the shape of the memory as an n-dimensional array.

Note that shape [0] * ... * shape[ndim-1] * itemsize MUST be equalto len.

Shape values are restricted to shape [n] > = 0. The case shape [n] == 0 requires special attention.
See complex arrays for further information.

The shape array is read-only for the consumer.
Py_ssize_t *strides
An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element in

each dimension.

Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST be
able to handle the case strides[n] < = 0. See complex arrays for further information.

The strides array is read-only for the consumer.
Py_ssize_t *suboffsets

An array of Py_ssize t of length ndim. If suboffsets[n] > = 0, the values stored along the
nth dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after de-
referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding in a
contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for further
information how to access elements of such an array.

The suboffsets array is read-only for the consumer.

void *internal

This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer MUST NOT alter this value.

Constants:
PyBUF_MAX_NDIM

The maximum number of dimensions the memory represents. Exporters MUST respect this limit, consumers of
multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_ND IM dimensions. Currently set to 64.

7.7. Buffer Protocol 115

The Python/C API, Yayim 3.12.3

7.7.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyObject_GetBuffer (). Since
the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument to specify
the exact buffer type it can handle.

All Py_buffer fields are unambiguously defined by the request type.

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: obj, buf, len,
itemsize, ndim.

readonly, format

PyBUF_WRITABLE

Controls the readon 1y field. If set, the exporter MUST provide a writable buffer or else report failure.
Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice MUST be
consistent for all consumers.

PyBUF_FORMAT

Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field MUST
be NULL.

PyBUF_WRITABLE can be I'd to any of the flags in the next section. Since PyBUF_SIMPLE is defined as O,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT can be I'd to any of the flags except PyBUF_SIMPLE. The latter already implies format B (unsigned
bytes).

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each flag
contains all bits of the flags below it.

Request shape | strides | suboffsets |

yes yes if needed
PyBUF_INDIRECT

yes yes NULL
PyBUF_STRIDES

yes NULL | NULL
PyBUF_ND

NULL | NULL | NULL
PyBUF_SIMPLE

116 Béliim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.3

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information, the
buffer must be C-contiguous.

Request shape strides | suboffsets = contig |
yes yes NULL C
PyBUF_C_CONTIGUOUS
yes yes NULL F
PyBUF_F_CONTIGUOUS
yes yes NULL CorF
PyBUF_ANY_ CONTIGUOUS
PyBUF_ND yes NULL | NULL C

compound requests
All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.

In the following table U stands for undefined contiguity. The consumer would have to call
PyBuffer IsContiguous () to determine contiguity.

| Request | shape | strides | suboffsets | contig readonly | format |

yes yes if needed U 0 yes
PyBUF_FULL

yes yes if needed U lor0 yes
PyBUF_FULL_RO

yes yes NULL U 0 yes
PyBUF_RECORDS

yes yes NULL U lor0 yes
PyBUF_RECORDS_RO

yes yes NULL U 0 NULL
PyBUF_STRIDED

yes yes NULL U lor0 NULL
PyBUF_STRIDED_RO

yes NULL | NULL C 0 NULL
PyBUF_CONTIG

yes NULL | NULL C lor0 NULL
PyBUF_CONTIG_RO

7.7. Buffer Protocol 117

The Python/C API, Yayim 3.12.3

7.7.3 Complex arrays

NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by i temsize, ndim, shape and st rides.

If ndim == 0, the memory location pointed to by bu £ is interpreted as a scalar of size i temsi ze. In that case, both
shape and st rides are NULL.

If st ridesis NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must access
an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = *((typeof (item) *)ptr);

As noted above, buf can point to any location within the actual memory block. An exporter can check the validity of a
buffer with this function:

def verify_structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
"o
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v $ itemsize for v in strides):
return False

if ndim <= 0:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[j]* (shape[j]l-1) for j in range (ndim)
if strides[j] <= 0)
imax = sum(strides[j]* (shape[j]l-1) for j in range (ndim)

if strides[j] > 0)

return 0 <= offset+imin and offset+imaxtitemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the next
element in a dimension. For example, the regular three-dimensional C-array char v [2][2] [3] can also be viewed
as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2]) [2] [3]. In suboffsets representation, those two
pointers can be embedded at the start of bu £, pointing to two char x[2] [3] arrays that can be located anywhere in
memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when there
are both non-NULL strides and suboffsets:

118 Béliim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.3

void *get_item_pointer (int ndim, wvoid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; i++)

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = * ((char**)pointer) + suboffsets[i];
}
I3

return (void*)pointer;

7.7.4 Buffer-related functions

int PyObject_CheckBuffer (PyObject *obj)
Bir parcasi Kararli ABI 3.11 siiriimiinden beri. Return 1 if obj supports the buffer interface otherwise 0. When 1
is returned, it doesn’t guarantee that PyObject_GetBuffer () will succeed. This function always succeeds.
int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)

Bir parcast Kararli ABI 3.11 siiriimiinden beri. Send a request to exporter to fill in view as specified by flags. If the
exporter cannot provide a buffer of the exact type, it MUST raise Buf ferError, set view—>o0bj to NULL and
return —1.

On success, fill in view, set view—>ob7j to a new reference to exporter and return 0. In the case of chained buffer
providers that redirect requests to a single object, view—>obj MAY refer to this object instead of exporter (See
Buffer Object Structures).

Successful calls to PyOb ject_GetBuffer () must be paired with calls to PyBuffer_ Release (), similar
tomalloc () and free (). Thus, after the consumer is done with the buffer, PyBuffer Release () must
be called exactly once.

void PyBuffer Release (Py_buffer *view)

Bir parcas: Kararli ABI 3.11 siiriimiinden beri. Release the buffer view and release the strong reference (i.e. decre-
ment the reference count) to the view’s supporting object, view—>obj. This function MUST be called when the
buffer is no longer being used, otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer ().

Py_ssize_t PyBuffer_SizeFromFormat (const char *format)
Bir parcast Kararli ABI 3.11 siiriimiinden beri. Return the implied i t emsize from format. On error, raise an
exception and return -1.

Added in version 3.9.

int PyBuffer IsContiguous (const Py_buffer *view, char order)

Bir parcast Kararli ABI 3.11 siirtimiinden beri. Return 1 if the memory defined by the view is C-style (order is
'C") or Fortran-style (order is 'F ') contiguous or either one (order is 'A"). Return O otherwise. This function
always succeeds.

void *PyBuf fer_GetPointer (const Py_buffer *view, const Py_ssize_t *indices)

Bir parcas: Kararli ABI 3.11 siiriimiinden beri. Get the memory area pointed to by the indices inside the given view.
indices must point to an array of view->ndim indices.

7.7. Buffer Protocol 119

The Python/C API, Yayim 3.12.3

int PyBuffer_FromContiguous (const Py_buffer *view, const void *buf, Py_ssize_t len, char fort)
Bir parcast Kararli ABI 3.11 siiriimiinden beri. Copy contiguous len bytes from buf to view. fort can be 'C' or
'"F' (for C-style or Fortran-style ordering). O is returned on success, —1 on error.

int PyBuffer_ToContiguous (void *buf, const Py_buffer *src, Py_ssize_t len, char order)

Bir parcasi Kararli ABI 3.11 siiriimiinden beri. Copy len bytes from src to its contiguous representation in buf. order
canbe 'C' or 'F' or 'A' (for C-style or Fortran-style ordering or either one). 0 is returned on success, —1 on
error.

This function fails if len != src->len.

int PyObject_CopyData (PyObject *dest, PyObject *src)
Bir parcast Kararli ABI 3.11 siiriimiinden beri. Copy data from src to dest buffer. Can convert between C-style and
or Fortran-style buffers.
0 is returned on success, —1 on error.
void PyBuffer FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize, char
order)
Bir parcast Kararli ABI 3.11 siiriimiinden beri. Fill the strides array with byte-strides of a contiguous (C-style if
orderis ' C' or Fortran-style if order is ' F ') array of the given shape with the given number of bytes per element.
int PyBuffer_FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly, int flags)
Bir parcast Kararli ABI 3.11 siiriimiinden beri. Handle buffer requests for an exporter that wants to expose buf of

size len with writability set according to readonly. buf is interpreted as a sequence of unsigned bytes.

The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf
has been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view—>ob7j to a new reference to exporter and return 0. Otherwise, raise Buf ferError, set
view->o0b7j to NULL and return —1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must be
passed unmodified. Otherwise, exporter MUST be NULL.

7.8 Old Buffer Protocol

3.0 siiriimiinden beri kullanim digt.

These functions were part of the “old buffer protocol” API in Python 2. In Python 3, this protocol doesn’t exist anymore
but the functions are still exposed to ease porting 2.x code. They act as a compatibility wrapper around the new buffer
protocol, but they don’t give you control over the lifetime of the resources acquired when a buffer is exported.

Therefore, it is recommended that you call PyObject_GetBuffer () (or the y* or w* format codes with the
PyArg_ParseTuple () family of functions) to get a buffer view over an object, and PyBuffer_ Release ()
when the buffer view can be released.

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)

Bir parcast Kararli ABIL. Returns a pointer to a read-only memory location usable as character-based input. The
obj argument must support the single-segment character buffer interface. On success, returns 0, sets buffer to the
memory location and buffer_len to the buffer length. Returns —1 and sets a TypeError on error.

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)

Bir parcast Kararli ABI. Returns a pointer to a read-only memory location containing arbitrary data. The obj argu-
ment must support the single-segment readable buffer interface. On success, returns 0, sets buffer to the memory
location and buffer_len to the buffer length. Returns —1 and sets a TypeError on error.

120 Béliim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.3

int PyObject_CheckReadBuffer (PyObject *0)
Bir parcast Kararli ABI. Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns O.
This function always succeeds.

Note that this function tries to get and release a buffer, and exceptions which occur while calling corresponding
functions will get suppressed. To get error reporting use PyObject_GetBuffer () instead.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)

Bir parcast Kararli ABI. Returns a pointer to a writable memory location. The obj argument must support the
single-segment, character buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len
to the buffer length. Returns -1 and sets a TypeError on error.

7.8. Old Buffer Protocol 121

The Python/C API, Yayim 3.12.3

122 Boliim 7. Abstract Objects Layer

BOLUM 8

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is not
a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you must
perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check (). The chapter is
structured like the “family tree” of Python object types.

Uyar1: While the functions described in this chapter carefully check the type of the objects which are passed in,
many of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can
cause memory access violations and immediate termination of the interpreter.

8.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

8.1.1 Type Objects

type PyTypeObject

Bir parcast Sinirli AP (bir opak yapr olarak). The C structure of the objects used to describe built-in types.
PyTypeObject PyType_Type

Bir parcast Kararli ABI This is the type object for type objects; it is the same object as t ype in the Python layer.
int PyType_Check (PyObject *0)

Return non-zero if the object o is a type object, including instances of types derived from the standard type object.
Return 0 in all other cases. This function always succeeds.

int PyType_CheckExact (PyObject *0)

Return non-zero if the object o is a type object, but not a subtype of the standard type object. Return 0 in all other
cases. This function always succeeds.

123

The Python/C API, Yayim 3.12.3

unsigned int PyType_ClearCache ()
Bir parcast Kararli ABL Clear the internal lookup cache. Return the current version tag.
unsigned long PyType_GetFlags (PyTypeObject *type)
Bir parcast Kararli ABL Return the tp_ f1ags member of type. This function is primarily meant for use with

Py_LIMITED_APT; the individual flag bits are guaranteed to be stable across Python releases, but access to
tp_flags itself is not part of the limited API.

Added in version 3.2.
3.4 siirtimiinde degisti: The return type is now unsigned long rather than long.
PyObject *PyType_GetDict (PyTypeObject *type)
Return the type object’s internal namespace, which is otherwise only exposed via a read-only proxy (cls.

__dict__). This is a replacement for accessing tp_dict directly. The returned dictionary must be treated
as read-only.

This function is meant for specific embedding and language-binding cases, where direct access to the dict is ne-
cessary and indirect access (e.g. via the proxy or PyObject_GetAttr ())isn’t adequate.

Extension modules should continue to use tp_dict, directly or indirectly, when setting up their own types.
Added in version 3.12.

void PyType_Modified (PyTypeObject *type)
Bir parcast Kararli ABIL Invalidate the internal lookup cache for the type and all of its subtypes. This function must
be called after any manual modification of the attributes or base classes of the type.

int PyType_AddWatcher (PyType_WatchCallback callback)

Register callback as a type watcher. Return a non-negative integer ID which must be passed to future calls to
PyType_Watch (). In case of error (e.g. no more watcher IDs available), return —1 and set an exception.

Added in version 3.12.

int PyType_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id (previously returned from Py Type_AddWatcher ()). Return O on suc-
cess, —1 on error (e.g. if watcher_id was never registered.)

An extension should never call PyType_ClearWatcher with a watcher_id that was not returned to it by a
previous call to Py Type_AddWatcher ().

Added in version 3.12.

int PyType_Watch (int watcher_id, PyObject *type)

Mark fype as watched. The callback granted watcher_id by Py Type_AddWatcher () will be called whenever
PyType_Modified () reports a change to fype. (The callback may be called only once for a series of conse-
cutive modifications to type, if _PyType_Lookup () is not called on type between the modifications; this is an
implementation detail and subject to change.)

An extension should never call PyType_Wat ch with a watcher_id that was not returned to it by a previous call
to PyType_AddWatcher ().

Added in version 3.12.
typedef int (*PyType_WatchCallback)(PyObject *type)
Type of a type-watcher callback function.

The callback must not modify fype or cause Py Type_Modified () to be called on type or any type in its MRO;
violating this rule could cause infinite recursion.

Added in version 3.12.

124 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

int PyType_HasFeature (PyTypeObject *o, int feature)
Return non-zero if the type object o sets the feature feature. Type features are denoted by single bit flags.
int PyType_IS_GC (PyTypeObject *0)

Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS_HAVE_ GC.

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Bir parcast Kararli ABI Return true if a is a subtype of b.

This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on b.
Call PyObject_TIsSubclass () todo the same check that issubclass () would do.

PyObject *PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Generic handler for the t p_al1oc slotof atype object.
Use Python’s default memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.
PyObject *PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject ¥*kwds)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Generic handler for the tp_new slot of a type object.
Create a new instance using the type’s tp_alloc slot.
int PyType_Ready (PyTypeObject *type)

Bir parcas: Kararli ABI. Finalize a type object. This should be called on all type objects to finish their initialization.
This function is responsible for adding inherited slots from a type’s base class. Return 0 on success, or return —1
and sets an exception on error.

Not: If some of the base classes implements the GC protocol and the provided type does not include the
Py_TPFLAGS_HAVE_GC in its flags, then the GC protocol will be automatically implemented from its parents.
On the contrary, if the type being created does include Py TPFLAGS_HAVE_GC in its flags then it must imple-
ment the GC protocol itself by at least implementing the tp_ t raverse handle.

PyObject *PyType_GetName (PyTypeObject *type)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI 3.11 siiriimiinden beri. Return the type’s name. Equivalent
to getting the type’s ___name___ attribute.

Added in version 3.11.
PyObject *PyType_GetQualName (PyTypeObject *type)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararlit ABI 3.11 siiriimiinden beri. Return the type’s qualified name.
Equivalent to getting the type’s ___qualname___ attribute.

Added in version 3.11.
void *PyType_GetSlot (PyTypeObject *type, int slot)

Bir parcasi Kararli ABI 3.4 siiriimiinden beri. Return the function pointer stored in the given slot. If the result is
NULL, this indicates that either the slot is NULL, or that the function was called with invalid parameters. Callers
will typically cast the result pointer into the appropriate function type.

See PyType_Slot.slot for possible values of the slot argument.
Added in version 3.4.

3.10 siirlimiinde degisti: Py Type_GetSlot () cannow accept all types. Previously, it was limited to heap types.
PyObject *PyType_GetModule (PyTypeObject *type)

Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Return the module object associated with the given type when the
type was created using Py Type_FromModuleAndSpec ().

8.1. Fundamental Objects 125

The Python/C API, Yayim 3.12.3

If no module is associated with the given type, sets TypeError and returns NULL.

This function is usually used to get the module in which a method is defined. Note that in such a method,
PyType_GetModule (Py_TYPE (self)) may not return the intended result. Py_TYPE (self) may be
a subclass of the intended class, and subclasses are not necessarily defined in the same module as their superclass.
See PyCMethod to get the class that defines the method. See Py Type GetModuleByDef () for cases when
PyCMethod cannot be used.

Added in version 3.9.

void *PyType_GetModuleState (PyTypeObject *type)

Bir parcasi Kararli ABI 3. 10 siirtimiinden beri. Return the state of the module object associated with the given type.
This is a shortcut for calling PyModule GetState () onthe result of PyType GetModule ().

If no module is associated with the given type, sets TypeError and returns NULL.
If the rype has an associated module but its state is NULL, returns NULL without setting an exception.

Added in version 3.9.

PyObject *PyType_GetModuleByDef (PyTypeObject *type, struct PyModuleDef *def)

Find the first superclass whose module was created from the given PyModuleDef def, and return that module.
If no module is found, raises a TypeError and returns NULL.

This function is intended to be used together with PyModule GetState () to get module state from slot met-
hods (such as tp_init or nb_add) and other places where a method’s defining class cannot be passed using the
PyCMethod calling convention.

Added in version 3.11.

int PyUnstable_Type_AssignVersionTag (PyTypeObject *type)

Bu Kararsiz API. Bu, kiigtik (minor) stirtimlerde uyar1 olmadan degisebilir.

Attempt to assign a version tag to the given type.

Returns 1 if the type already had a valid version tag or a new one was assigned, or O if a new tag could not be
assigned.

Added in version 3.12.

Creating Heap-Allocated Types

The following functions and structs are used to create heap types.

PyObject *PyType_FromMetaclass (PyTypeObject *metaclass, PyObject *module, PyType_Spec *spec, PyObject

*bases)

Bir parcast Kararli ABI 3.12 siiriimiinden beri. Create and return a heap type from the spec (see
Py_TPFLAGS_HEAPTYPE).

The metaclass metaclass is used to construct the resulting type object. When metaclass is NULL, the metaclass is
derived from bases (or Py_tp_base[s] slots if bases is NULL, see below).

Metaclasses that override t p_ new are not supported, except if tpp_new is NULL. (For backwards compatibility,
other PyType_From* functions allow such metaclasses. They ignore t p_new, which may result in incomplete
initialization. This is deprecated and in Python 3.14+ such metaclasses will not be supported.)

126

Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

The bases argument can be used to specify base classes; it can either be only one class or a tuple of classes. If bases
is NULL, the Py_tp_bases slot is used instead. If that also is NULL, the Py_#p_base slot is used instead. If that also
is NULL, the new type derives from object.

The module argument can be used to record the module in which the new class is defined. It must be a mo-
dule object or NULL. If not NULL, the module is associated with the new type and can later be retrieved with
PyType_GetModule (). The associated module is not inherited by subclasses; it must be specified for each
class individually.

This function calls PyType_Ready () on the new type.

Note that this function does not fully match the behavior of calling t ype () or using the class statement. With
user-provided base types or metaclasses, prefer calling t ype (or the metaclass) over Py Type_From* functions.
Specifically:

e _ new__ () isnot called on the new class (and it must be set to type.__ _new__).
e init__ () is not called on the new class.
e __init_subclass__ () isnotcalled on any bases.
e ___set_name__ () isnot called on new descriptors.
Added in version 3.12.
PyObject *PyType_FromModuleAndSpec (PyObject *module, PyType_Spec *spec, PyObject *bases)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.10 siiriimiinden beri. Equivalent to
PyType_FromMetaclass (NULL, module, spec, bases).

Added in version 3.9.

3.10 siirtimiinde degisti: The function now accepts a single class as the bases argument and NULL as the tp_doc
slot.

3.12 siiriimiinde degisti: The function now finds and uses a metaclass corresponding to the provided base classes.
Previously, only t ype instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

PyObject *PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararlh ABI 3.3 siiriimiinden beri. Equivalent to
PyType_FromMetaclass (NULL, NULL, spec, bases).
Added in version 3.3.

3.12 siiriimiinde degisti: The function now finds and uses a metaclass corresponding to the provided base classes.
Previously, only t ype instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

PyObject *PyType_FromSpec (PyType_Spec *spec)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL. Equivalent to PyType_FromMetaclass (NULL,
NULL, spec, NULL).

3.12 siiriimiinde degisti: The function now finds and uses a metaclass corresponding to the base classes provided
in Py_tp_base[s] slots. Previously, only t ype instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

8.1. Fundamental Objects 127

The Python/C API, Yayim 3.12.3

type PyType_Spec
Bir parcasi Kararli ABI (fiim tiyeler dahil). Structure defining a type’s behavior.

const char *name

Name of the type, used to set Py TypeObject . tp_name.

intbasicsize

If positive, specifies the size of the instance in bytes. It is used to set Py TypeObject.tp_basicsize.
If zero, specifies that tp_basicsize should be inherited.

If negative, the absolute value specifies how much space instances of the class need in addition to the su-

perclass. Use PyObject_GetTypeData () to get a pointer to subclass-specific memory reserved this
way.

3.12 siiriimiinde degisti: Previously, this field could not be negative.

int itemsize

Size of one element of a variable-size type, in bytes. Used to set Py TypeObject.tp_itemsize. See
tp_itemsize documentation for caveats.

If zero, tp_itemsize is inherited. Extending arbitrary variable-sized classes is dangerous, since some
types use a fixed offset for variable-sized memory, which can then overlap fixed-sized memory used by a
subclass. To help prevent mistakes, inheriting i temsize is only possible in the following situations:

¢ The base is not variable-sized (its tp_itemsize).

* Therequested PyType_Spec.basicsizeispositive, suggesting that the memory layout of the base
class is known.

¢ The requested Py Type_Spec.basicsize is zero, suggesting that the subclass does not access the
instance’s memory directly.

e Withthe Py TPFLAGS_ITEMS_AT_END flag.

unsigned int £lags

Type flags, used to set PyTypeObject.tp_flags.

If the Py_TPFLAGS_HEAPTYPE flag is not set, PyType_FromSpecWithBases () sets it automati-
cally.

PyType_Slot *slots
Array of PyType_S1ot structures. Terminated by the special slot value {0, NULL}.
Each slot ID should be specified at most once.
type PyType_Slot

Bir parcast Kararli ABI (fiim iiyeler dahil). Structure defining optional functionality of a type, containing a slot ID
and a value pointer.

int slot

A slot ID.

Slot IDs are named like the field names of the structures Py TypeOb ject, PyNumberMet hods,
PySequenceMethods, PyMappingMethods and PyAsyncMethods with an added Py_
prefix. For example, use:

e Py_tp_dealloctoset PyTypeObject.tp_dealloc
* Py_nb_addtoset PyNumberMethods.nb_add

* Py_sqg_lengthtoset PySequenceMethods.sq_length

128 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

The following “offset” fields cannot be set using Py Type_Slot:

* tp_weaklistoffset (use Py _TPFLAGS_MANAGED_WEAKREF instead if pos-

sible)

e tp_dictoffset (use Py_TPFLAGS_MANAGED_DICT instead if possible)

* tp_vectorcall_offset (use "__vectorcalloffset__" in PyMember-
Def)

If it is not possible to switch to a MANAGED flag (for example, for vectorcall or to sup-
port Python older than 3.12), specify the offset in Py_ t p_members. See PyMemberDef
documentation for details.

The following fields cannot be set at all when creating a heap type:
e tp_vectorcall (use tp_newand/or tp_init)
e Internal fields: tp_dict, tp_mro, tp_cache, tp_subclasses,and tp_weaklist.

Setting Py_tp_bases or Py_tp_base may be problematic on some platforms. To avoid issues,
use the bases argument of PyType_ FromSpecWithBases () instead.

3.9 siirtimiinde degisti: Slots in PyBufferProcs may be set in the unlimited API.

3.11 siiriimiinde degisti: bf_getbuffer and bf_releasebuffer are now available under the limited
API.

void *pfunc
The desired value of the slot. In most cases, this is a pointer to a function.

Slots other than Py_ tp_doc may not be NULL.

8.1.2 The None Object
Note that the Py TypeOb ject for None is not directly exposed in the Python/C API. Since None is a singleton, testing
for object identity (using == in C) is sufficient. There is no PyNone_Check () function for the same reason.
PyObject *Py_None

The Python None object, denoting lack of value. This object has no methods and is immortal.
3.12 siiriimiinde degisti: Py_ None is immortal.

Py_RETURN_NONE

Return Py None from a function.

8.2 Numeric Objects

8.2.1 Integer Objects

All integers are implemented as “long” integer objects of arbitrary size.

On error, most PyLong_As* APIs return (return type) -1 which cannot be distinguished from a number. Use
PyErr_Occurred () to disambiguate.

type PyLongObject
Bir pargast Smirli API (bir opak yapt olarak). This subtype of PyOb ject represents a Python integer object.

8.2. Numeric Objects 129

https://peps.python.org/pep-0683/

The Python/C API, Yayim 3.12.3

PyTypeObject PyLong_Type
Bir pargasit Kararli ABI This instance of PyTypeObject represents the Python integer type. This is the same
object as int in the Python layer.

int PyLong_Check (PyObject *p)

Return true if its argumentisa Py LongOb ject or asubtype of PyLongOb ject. This function always succeeds.

int PyLong_CheckExact (PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongOb ject. This function always
succeeds.

PyObject *PyLong_FromLong (long v)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Return anew PyLongObject object from v, or NULL

on failure.

The current implementation keeps an array of integer objects for all integers between —5 and 256. When you
create an int in that range you actually just get back a reference to the existing object.

PyObject *PyLong_FromUnsignedLong (unsigned long v)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a new PyLongObject object from a C
unsigned long, or NULL on failure.

PyObject *PyLong_FromSsize_t (Py_ssize_t V)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a new PyLongObject object from a C
Py_ssize_t,or NULL on failure.

PyObject *PyLong_FromSize_t (size_tV)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a new PyLongObject object from a C
size_t,or NULL on failure.

PyObject *PyLong_FromLongLong (long long v)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Return anew PyLongOb ject object froma C long
long, or NULL on failure.

PyObject *PyLong_FromUnsignedLongLong (unsigned long long v)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a new PyLongObject object from a C
unsigned long long, or NULL on failure.

PyObject *PyLong_FromDouble (double v)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Return a new PyLongOb ject object from the integer
part of v, or NULL on failure.

PyObject *PyLong_FromString (const char *str, char **pend, int base)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Returnanew PyLongOb ject based on the string value
in str, which is interpreted according to the radix in base, or NULL on failure. If pend is non-NULL, *pend will point
to the end of str on success or to the first character that could not be processed on error. If base is 0, str is interpreted
using the integers definition; in this case, leading zeros in a non-zero decimal number raises a ValueError. If
base is not 0, it must be between 2 and 36, inclusive. Leading and trailing whitespace and single underscores after
a base specifier and between digits are ignored. If there are no digits or st is not NULL-terminated following the
digits and trailing whitespace, ValueError will be raised.

Ayrica bakimz:

Python methods int.to_bytes () and int.from_bytes () to convert a PyLongObject to/from an
array of bytes in base 256. You can call those from C using PyObject_CallMethod ().

130 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

PyObject *PyLong_FromUnicodeObject (PyObject *u, int base)
Dondiirdiigii deger: Yeni referans. Convert a sequence of Unicode digits in the string u to a Python integer value.
Added in version 3.3.

PyObject *PyLong_FromVoidPtr (void *p)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Create a Python integer from the pointer p. The pointer
value can be retrieved from the resulting value using PyLong_AsVoidPtr ().

long PyLong_AsLong (PyObject *obj)

Bir parcast Kararli ABIL. Return a C 1ong representation of obj. If obj is not an instance of PyLongObject,
first call its __index__ () method (if present) to convert it to a PyLongOb ject.

Raise OverflowError if the value of obj is out of range for a 1ong.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

3.8 siiriimiinde degisti: Use __index__ () if available.

3.10 siirtimiinde degisti: This function will no longer use __int__ ().
long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)

Bir parcast Kararli ABIL. Return a C 1ong representation of obj. If obj is not an instance of PyLongObject,
first callits ___index__ () method (if present) to convertittoa PyLongObject.

If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or —1, respectively, and
return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return —1 as usual.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

3.8 stirtimiinde degisti: Use __index__ () if available.

3.10 siiriimiinde degisti: This function will no longer use __int__ ().
long long PyLong_AsLongLong (PyObject *obj)

Bir parcast Kararli ABL Return a C long long representation of obj. If obj is not an instance of
PyLongObject,firstcall its __index__ () method (if present) to convert it to a PyLongObject.

Raise OverflowError if the value of obj is out of range fora long long.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.

3.8 siirtimiinde degisti: Use __index__ () if available.

3.10 siirtimiinde degisti: This function will no longer use __int__ ().

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)

Bir parcast Kararli ABIL. Return a C long long representation of obj. If obj is not an instance of
PyLongObject,firstcallits __index__ () method (if present) to convert it to a PyLongOb ject.

If the value of obj is greater than LLONG_MAX or less than LLONG_MIN, set *overflow to 1 or —1, respectively,

and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return —1 as
usual.

Returns -1 on error. Use PyErr_Occurred () to disambiguate.
Added in version 3.2.
3.8 siirtimiinde degisti: Use __index__ () if available.

3.10 siirtimiinde degisti: This function will no longer use __int__ ().

8.2. Numeric Objects 131

The Python/C API, Yayim 3.12.3

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)

Bir parcast Kararli ABL Return a C Py_ssize_t representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range fora Py_ssize_t.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)

Bir pargasi Kararli ABIL. Return a C unsigned long representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range for a unsigned long.

Returns (unsigned long) -1 onerror. Use PyErr_Occurred () to disambiguate.

size_t PyLong_AsSize_t (PyObject *pylong)

Bir parcasi Kararli ABL Return a C size_t representation of pylong. pylong must be an instance of
PyLongObiject.

Raise OverflowError if the value of pylong is out of range fora size_t.

Returns (size_t) -1 onerror. Use PyErr_Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong (PyObject *pylong)

Bir parcasi Kararli ABL Return a C unsigned long long representation of pylong. pylong must be an ins-
tance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long) -1 onerror. Use PyErr_Occurred () to disambiguate.

3.1 siirtimiinde degisti: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)

Bir parcast Kararli ABL. Return a C unsigned long representation of obj. If obj is not an instance of
PyLongObject,firstcall its __index__ () method (if present) to convert it to a PyLongObject.

If the value of 0bj is out of range for an unsigned long, return the reduction of that value modulo ULONG_MAX
+ 1.

Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.
3.8 siiriimiinde degisti: Use __index__ () if available.

3.10 siirtimiinde degisti: This function will no longer use __int__ ().

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obj)

Bir parcasi Kararli1 ABL Return a C unsigned long long representation of obj. If obj is not an instance of
PyLongObject, firstcallits __index__ () method (if present) to convertittoa PyLongObject.

If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
ULLONG_MAX + 1.

Returns (unsigned long long) -1 onerror. Use PyErr Occurred () to disambiguate.
3.8 stirtimiinde degisti: Use __index__ () if available.

3.10 siiriimiinde degisti: This function will no longer use __int__ ().

132

Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

double PyLong_AsDouble (PyObject *pylong)

Bir parcast Kararli ABL Return a C double representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range for a double.
Returns —1 . 0 on error. Use PyErr_Occurred () to disambiguate.
void *PyLong_AsVoidPtr (PyObject *pylong)

Bir parcasi Kararli ABL. Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an
OverflowError will be raised. This is only assured to produce a usable void pointer for values created with
PyLong_FromVoidPtr ().

Returns NULL on error. Use PyErr_Occurred () to disambiguate.

int PyUnstable_Long_IsCompact (const PyLongObject *op)

Bu Kararsiz API. Bu, kii¢lik (minor) siirtimlerde uyar1 olmadan degisebilir.

Return 1 if op is compact, O otherwise.

This function makes it possible for performance-critical code to implement a “fast path” for small integers. For
compact values use PyUnstable_Long_CompactValue ();forothersfall back toa PyLong As * function
orcalling int.to_bytes().

The speedup is expected to be negligible for most users.
Exactly what values are considered compact is an implementation detail and is subject to change.

Py_ssize_t PyUnstable_Long_CompactValue (const PyLongObject *op)

Bu Kararsiz API. Bu, kii¢iik (minor) siirtimlerde uyar1 olmadan degisebilir.

If op is compact, as determined by PyUnstable_Long_IsCompact (), return its value.

Otherwise, the return value is undefined.

8.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_Falseand Py_True.
As such, the normal creation and deletion functions don’t apply to booleans. The following macros are available, however.

PyTypeObject PyBool_Type

Bir parcast Kararl1 ABI. This instance of Py TypeObject represents the Python boolean type; it is the same
object as bool in the Python layer.

int PyBool_Check (PyObject *0)

Return true if o is of type PyBool_Type. This function always succeeds.
PyObject *Py_False

The Python False object. This object has no methods and is immortal.

3.12 siiriimiinde degisti: Py_False is immortal.

8.2. Numeric Objects 133

https://peps.python.org/pep-0683/

The Python/C API, Yayim 3.12.3

PyObject *Py_True
The Python True object. This object has no methods and is immortal.

3.12 siiriimiinde degisti: Py_ True is immortal.
Py_RETURN_FALSE

Return Py_False from a function.
Py_RETURN_TRUE

Return Py_ True from a function.
PyObject *PyBool_FromLong (long v)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return Py_True or Py_False, depending on the
truth value of v.

8.2.3 Floating Point Objects

type PyFloatObject
This subtype of PyOb ject represents a Python floating point object.
PyTypeObject PyFloat_Type

Bir pargasi Kararlt ABL This instance of PyTypeOb ject represents the Python floating point type. This is the
same object as £1oat in the Python layer.

int PyFloat_Check (PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatObject. This function always
succeeds.

int PyFloat_CheckExact (PyObject *p)
Return true if its argument is a PyFloatObject, but not a subtype of PyF1oatObject. This function always
succeeds.

PyObject *PyFloat_FromString (PyObject *str)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Create a PyF1oatObject object based on the string
value in str, or NULL on failure.

PyObject *PyFloat_FromDouble (double v)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Create a PyFloatOb ject object from v, or NULL
on failure.

double PyFloat_AsDouble (PyObject *pyfloat)

Bir parcasi Kararli ABL Return a C double representation of the contents of pyfloat. If pyfloat is not a Python
floating point object but hasa ___float__ () method, this method will first be called to convert pyfloat into a
float. If __float__ () is not defined then it falls back to __index__ (). This method returns —1 .0 upon
failure, so one should call PyErr_ Occurred () to check for errors.

3.8 stirtimiinde degisti: Use __index__ () if available.
double PyFloat_AS_DOUBLE (PyObject *pyfloat)

Return a C double representation of the contents of pyfloat, but without error checking.
PyObject *PyFloat_GetInfo (void)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Return a structseq instance which contains information
about the precision, minimum and maximum values of a float. It’s a thin wrapper around the header file f1oat . h.

134 Béliim 8. Concrete Objects Layer

https://peps.python.org/pep-0683/

The Python/C API, Yayim 3.12.3

double PyFloat_GetMax ()
Bir parcast Kararli ABL Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin ()
Bir pargast Kararli ABIL Return the minimum normalized positive float DBL_MIN as C double.

Pack and Unpack functions

The pack and unpack functions provide an efficient platform-independent way to store floating-point values as byte strings.
The Pack routines produce a bytes string from a C double, and the Unpack routines produce a C double from such
a bytes string. The suffix (2, 4 or 8) specifies the number of bytes in the bytes string.

On platforms that appear to use IEEE 754 formats these functions work by copying bits. On other platforms, the 2-byte
format is identical to the IEEE 754 binary16 half-precision format, the 4-byte format (32-bit) is identical to the IEEE
7754 binary32 single precision format, and the 8-byte format to the IEEE 754 binary64 double precision format, although
the packing of INFs and NaNs (if such things exist on the platform) isn’t handled correctly, and attempting to unpack a
bytes string containing an IEEE INF or NaN will raise an exception.

On non-IEEE platforms with more precision, or larger dynamic range, than IEEE 754 supports, not all values can be
packed; on non-IEEE platforms with less precision, or smaller dynamic range, not all values can be unpacked. What
happens in such cases is partly accidental (alas).

Added in version 3.11.

Pack functions

The pack routines write 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if you want the bytes string in
little-endian format (exponent last, at p+1, p+3, or p+6 p+7), zero if you want big-endian format (exponent first, at p).
The PY_BIG_ENDIAN constant can be used to use the native endian: it is equal to 1 on big endian processor, or O on
little endian processor.

Return value: 0 if all is OK, —1 if error (and an exception is set, most likely OverflowError).
There are two problems on non-IEEE platforms:
¢ What this does is undefined if x is a NaN or infinity.
e —0.0 and +0 . 0 produce the same bytes string.
int PyFloat_Pack2 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary16 half-precision format.
int PyFloat_Pack4 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary32 single precision format.

int PyFloat_Pack8 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary64 double precision format.

8.2. Numeric Objects 135

The Python/C API, Yayim 3.12.3

Unpack functions

The unpack routines read 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if the bytes string is in little-endian
format (exponent last, at p+1, p+3 or p+6 and p+7), zero if big-endian (exponent first, at p). The PY_BIG_ENDIAN
constant can be used to use the native endian: it is equal to 1 on big endian processor, or 0 on little endian processor.

Return value: The unpacked double. On error, thisis =1 .0 and PyErr_Occurred () is true (and an exception is set,
most likely OverflowError).

Note that on a non-IEEE platform this will refuse to unpack a bytes string that represents a NaN or infinity.

double PyFloat_Unpack2 (const unsigned char *p, int le)
Unpack the IEEE 754 binary16 half-precision format as a C double.

double PyFloat_Unpack4 (const unsigned char *p, int le)
Unpack the IEEE 754 binary32 single precision format as a C double.

double PyFloat_Unpack8 (const unsigned char *p, int le)
Unpack the IEEE 754 binary64 double precision format as a C double.

8.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the Python
object exposed to Python programs, and the other is a C structure which represents the actual complex number value. The
API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by value rather than
dereferencing them through pointers. This is consistent throughout the API.

type Py_complex

The C structure which corresponds to the value portion of a Python complex number object. Most of the functions
for dealing with complex number objects use structures of this type as input or output values, as appropriate. It is
defined as:

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)

Return the sum of two complex numbers, using the C Py_ complex representation.
Py_complex _Py_c_diff (Py_complex left, Py_complex right)

Return the difference between two complex numbers, using the C Py comp 1 ex representation.
Py_complex _Py_c_neg (Py_complex num)

Return the negation of the complex number num, using the C Py_ compex representation.
Py_complex _Py_c_prod (Py_complex left, Py_complex right)

Return the product of two complex numbers, using the C Py compex representation.

136 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)
Return the quotient of two complex numbers, using the C Py_ comp1ex representation.
If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
Return the exponentiation of num by exp, using the C Py_ comp 1 ex representation.

If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

Complex Numbers as Python Objects

type PyComplexObject
This subtype of PyOb ject represents a Python complex number object.
PyTypeObject PyComplex_Type
Bir pargast Kararli ABIL This instance of Py TypeOb ject represents the Python complex number type. It is the
same object as complex in the Python layer.
int PyComplex_Check (PyObject *p)
Return true if its argument is a PyComplexOb ject or asubtype of PyComplexOb ject. This function always
succeeds.
int PyComplex_CheckExact (PyObject *p)
Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject. This function
always succeeds.
PyObject *PyComplex_FromCComplex (Py_complex v)
Dondiirdiigii deger: Yeni referans. Create a new Python complex number object from a C Py_ complex value.
PyObject *PyComplex_FromDoubles (double real, double imag)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return a new PyComplexOb ject object from real
and imag.
double PyComplex_RealAsDouble (PyObject *op)
Bir pargast Kararli ABI. Return the real part of op as a C double.
double PyComplex_ImagAsDouble (PyObject *op)
Bir par¢ast Kararli ABIL. Return the imaginary part of op as a C double.
Py_complex PyComplex_AsCComplex (PyObject *op)

Return the Py_ complex value of the complex number op.

If op is not a Python complex number object but has a __complex__ () method, this method will first be
called to convert op to a Python complex number object. If __complex__ () is not defined then it falls back
to__float__ ().If __float__ () is not defined then it falls back to __index__ (). Upon failure, this

method returns —1 . O as a real value.

3.8 stirtimiinde degisti: Use __index__ () if available.

8.2. Numeric Objects 137

The Python/C API, Yayim 3.12.3

8.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific kinds
of sequence objects that are intrinsic to the Python language.

8.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and called with a non-bytes parameter.

type PyBytesObject
This subtype of PyOb ject represents a Python bytes object.

PyTypeObject PyBytes_Type
Bir parcast Kararli ABIL This instance of Py TypeOb ject represents the Python bytes type; it is the same object
as bytes in the Python layer.

int PyBytes_Check (PyObject *0)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type. This function always
succeeds.

int PyBytes_CheckExact (PyObject *0)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type. This function always
succeeds.

PyObject *PyBytes_FromString (const char *v)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Return a new bytes object with a copy of the string v as
value on success, and NULL on failure. The parameter v must not be NULL; it will not be checked.

PyObject *PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Return a new bytes object with a copy of the string v as
value and length len on success, and NULL on failure. If vis NULL, the contents of the bytes object are uninitialized.

PyObject *PyBytes_FromFormat (const char *format, ...)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Take a C print £ () -style format string and a variable
number of arguments, calculate the size of the resulting Python bytes object and return a bytes object with the values
formatted into it. The variable arguments must be C types and must correspond exactly to the format characters in
the format string. The following format characters are allowed:

| Format Characters | Type Comment

%% n/a The literal % character.

$C int A single byte, represented as a C int.

sd int Equivalent to print £ ("%d").!

$u unsigned int Equivalent to print £ ("%u") foayiafBel

%1d long Equivalent to printf ("$1d") Sy 1382, 1

$1u unsigned long Equivalent to print f ("$1u") 5w 1391

$zd Py _ssize_t Equivalentto printf ("$zd") S 1252 1

$zu size_t Equivalent to print f ("$zu") S» 1391

%1 int Equivalent to print £ ("gi") Swf 1391

$x int Equivalent to print £ ("gx") Sw 1391

$s const char* A null-terminated C character array.

$p const void* The hex representation of a C pointer. Mostly equivalent to
printf ("$p") except that it is guaranteed to start with the
literal Ox regardless of what the platform’s print f yields.

138 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object, and
any extra arguments discarded.

PyObject *PyBytes_FromFormatV (const char *format, va_list vargs)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL Identical to PyBytes_FromFormat () except that
it takes exactly two arguments.

PyObject *PyBytes_FromObject (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Return the bytes representation of object o that imple-
ments the buffer protocol.

Py_ssize_t PyBytes_Size (PyObject *0)
Bir parcast Kararli ABIL Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE (PyObject *0)
Similar to PyBytes_Size (), but without error checking.

char *PyBytes_AsString (PyObject *0)
Bir parcasi Kararli ABI. Return a pointer to the contents of o. The pointer refers to the internal buffer of o,
which consists of 1en (o) + 1 bytes. The last byte in the buffer is always null, regardless of whether there
are any other null bytes. The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It must not be deallocated. If o is not a bytes object at
all, PyBytes_AsString () returns NULL and raises TypeError.

char *PyBytes_AS_STRING (PyObject *string)
Similar to PyBytes_AsString (), but without error checking.

int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)
Bir parcasi Kararli ABIL Return the null-terminated contents of the object 0bj through the output variables buffer

and length. Returns O on success.

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns —1 and a
ValueError is raised.

The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not co-
unted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It must not be deallocated. If obj is not a bytes object
atall, PyBytes_AsStringAndSize () returns —1 and raises TypeError.

3.5 siiriimiinde degisti: Previously, TypeError was raised when embedded null bytes were encountered in the
bytes object.

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)

Bir parcast Kararli ABIL. Create a new bytes object in *byfes containing the contents of newpart appended to bytes;
the caller will own the new reference. The reference to the old value of bytes will be stolen. If the new object
cannot be created, the old reference to bytes will still be discarded and the value of *byfes will be set to NULL; the
appropriate exception will be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)
Bir parcast Kararli ABL Create a new bytes object in *byfes containing the contents of newpart appended to bytes.
This version releases the strong reference to newpart (i.e. decrements its reference count).

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)

A way to resize a bytes object even though it is “immutable”. Only use this to build up a brand new bytes object;
don’t use this if the bytes may already be known in other parts of the code. It is an error to call this function if
the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an lvalue (it may
be written into), and the new size desired. On success, *byfes holds the resized bytes object and O is returned;

! For integer specifiers (d, u, Id, lu, zd, zu, i, x): the O-conversion flag has effect even when a precision is given.

8.3. Sequence Objects 139

The Python/C API, Yayim 3.12.3

the address in *bytes may differ from its input value. If the reallocation fails, the original bytes object at *byfes is
deallocated, *bytes is set to NULL, MemoryError is set, and —1 is returned.

8.3.2 Byte Array Objects

type PyByteArrayObject
This subtype of PyOb ject represents a Python bytearray object.
PyTypeObject PyByteArray_Type

Bir parcas: Kararli ABL. This instance of PyTypeOb ject represents the Python bytearray type; it is the same
object as bytearray in the Python layer.

Type check macros

int PyByteArray_Check (PyObject *0)
Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type. This function
always succeeds.

int PyByteArray_CheckExact (PyObject *0)
Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type. This function
always succeeds.

Direct API functions

PyObject *PyByteArray_FromObject (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return a new bytearray object from any object, o, that
implements the buffer protocol.

PyObject *PyByteArray_FromStringAndSize (const char *string, Py_ssize_t len)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Create a new bytearray object from string and its length,
len. On failure, NULL is returned.

PyObject *PyByteArray_Concat (PyObject *a, PyObject *b)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Concat bytearrays a and b and return a new bytearray
with the result.

Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Bir parcast Kararli ABI. Return the size of bytearray after checking for a NULL pointer.

char *PyByteArray_AsString (PyObject *bytearray)

Bir parcasi Kararli ABIL Return the contents of bytearray as a char array after checking for a NULL pointer. The
returned array always has an extra null byte appended.

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
Bir parcast Kararli ABI. Resize the internal buffer of bytearray to len.

140 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

Macros

These macros trade safety for speed and they don’t check pointers.
char *PyByteArray_AS_STRING (PyObject *bytearray)
Similar to PyByteArray_AsString (), but without error checking.

Py_ssize_t PyByteArray_ GET_SIZE (PyObject *bytearray)
Similar to PyByteArray_Size (), but without error checking.

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in order
to allow handling the complete range of Unicode characters while staying memory efficient. There are special cases for
strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112 (which is the
full Unicode range).

UTF-8 representation is created on demand and cached in the Unicode object.

Not: The Py UNICODE representation has been removed since Python 3.12 with deprecated APIs. See PEP 623 for
more information.

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:

type Py_UCS4

type Py_UCS2

type Py_UCS1
Bir parcast Kararli ABIL These types are typedefs for unsigned integer types wide enough to contain characters of
32 bits, 16 bits and 8 bits, respectively. When dealing with single Unicode characters, use Py_UCS4.
Added in version 3.3.

type Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.
3.3 siirtimiinde degisti: In previous versions, this was a 16-bit type or a 32-bit type depending on whether you
selected a “narrow” or “wide” Unicode version of Python at build time.

type PyASCIIObject

type PyCompactUnicodeObject

type PyUnicodeObject
These subtypes of PyObject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

Added in version 3.3.

8.3. Sequence Objects 141

https://peps.python.org/pep-0393/
https://peps.python.org/pep-0623/

The Python/C API, Yayim 3.12.3

PyTypeObject PyUnicode_Type
Bir pargasi Kararlt ABL This instance of PyTypeOb ject represents the Python Unicode type. It is exposed to
Python code as str.

The following APIs are C macros and static inlined functions for fast checks and access to internal read-only data of
Unicode objects:

int PyUnicode_Check (PyObject *obj)

Return true if the object 0bj is a Unicode object or an instance of a Unicode subtype. This function always succeeds.
int PyUnicode_CheckExact (PyObject *obj)

Return true if the object 0bj is a Unicode object, but not an instance of a subtype. This function always succeeds.
int PyUnicode_READY (PyObject *unicode)

Returns 0. This APT is kept only for backward compatibility.

Added in version 3.3.
3.10 siiriimiinden beri kullanim digi: This API does nothing since Python 3.12.
Py_ssize_t PyUnicode_GET_LENGTH (PyObject *unicode)

Return the length of the Unicode string, in code points. unicode has to be a Unicode object in the “canonical”
representation (not checked).

Added in version 3.3.
Py_UCSI *PyUnicode_1BYTE_DATA (PyObject *unicode)
Py_UCS2 *PyUnicode_2BYTE_DATA (PyObject *unicode)
Py_UCS4 *PyUnicode_4BYTE_DATA (PyObject *unicode)

Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct cha-
racter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND () to select the right function.

Added in version 3.3.

PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND
Return values of the PyUnicode KIND () macro.
Added in version 3.3.
3.12 siirtimiinde degisti: PyUnicode_WCHAR_KIND has been removed.

int PyUnicode_KIND (PyObject *unicode)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Unicode
object uses to store its data. unicode has to be a Unicode object in the “canonical” representation (not checked).

Added in version 3.3.

void *PyUnicode_DATA (PyObject *unicode)

Return a void pointer to the raw Unicode buffer. unicode has to be a Unicode object in the “canonical” representation
(not checked).

Added in version 3.3.
void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)

Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This function performs no
sanity checks, and is intended for usage in loops. The caller should cache the kind value and data pointer as obtained

142 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

from other calls. index is the index in the string (starts at 0) and value is the new code point value which should be
written to that location.

Added in version 3.3.

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)

Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks or
ready calls are performed.

Added in version 3.3.

Py_UCS4 PyUnicode_READ_CHAR (PyObject *unicode, Py_ssize_t index)

Read a character from a Unicode object unicode, which must be in the “canonical” representation. This is less
efficient than PyUnicode_READ () if you do multiple consecutive reads.

Added in version 3.3.

Py_UCS4 PyUnicode_MAX_CHAR_VALUE (PyObject *unicode)

Return the maximum code point that is suitable for creating another string based on unicode, which must be in the
“canonical” representation. This is always an approximation but more efficient than iterating over the string.

Added in version 3.3.

int PyUnicode_IsIdentifier (PyObject *unicode)

Bir parcast Kararli ABIL. Return 1 if the string is a valid identifier according to the language definition, section
identifiers. Return 0 otherwise.

3.9 siiriimiinde degisti: The function does not call Py FatalError () anymore if the string is not ready.

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py UCS4 ch)

Return 1 or 0 depending on whether ch is a whitespace character.
int Py_UNICODE_ISLOWER (Py_UCS4 ch)

Return 1 or 0 depending on whether c/ is a lowercase character.
int Py_UNICODE_ISUPPER (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is an uppercase character.
int Py_UNICODE_ISTITLE (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a titlecase character.
int Py_UNICODE_ISLINEBREAK (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a linebreak character.
int Py_ UNICODE_ISDECIMAL (Py_UCS4 ch)

Return 1 or 0 depending on whether c/ is a decimal character.
int Py_UNICODE_ISDIGIT (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a digit character.
int Py_UNICODE_ISNUMERIC (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a numeric character.

8.3. Sequence Objects 143

The Python/C API, Yayim 3.12.3

int Py_UNICODE_ISALPHA (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is an alphabetic character.
int Py_UNICODE_ISALNUM (Py_UCS4 ch)
Return 1 or 0 depending on whether ch is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE (Py UCS4 ch)

Return 1 or 0 depending on whether c is a printable character. Nonprintable characters are those characters defined
in the Unicode character database as “Other” or “Separator”, excepting the ASCII space (0x20) which is considered
printable. (Note that printable characters in this context are those which should not be escaped when repr () is
invoked on a string. It has no bearing on the handling of strings written to sys . stdout or sys.stderr.)

These APIs can be used for fast direct character conversions:
Py_UCS4 Py_UNICODE_TOLOWER (Py_UCS4 ch)

Return the character ch converted to lower case.

3.3 siirtimiinden beri kullanim digt: This function uses simple case mappings.
Py_UCS4 Py_UNICODE_TOUPPER (Py UCS4 ch)

Return the character ch converted to upper case.

3.3 siiriimiinden beri kullanim disi: This function uses simple case mappings.
Py_UCS4 Py_UNICODE_TOTITLE (Py UCS4 ch)

Return the character ch converted to title case.

3.3 siirlimiinden beri kullanim dig1: This function uses simple case mappings.

int Py_UNICODE_TODECIMAL (Py UCS4 ch)

Return the character ch converted to a decimal positive integer. Return —1 if this is not possible. This function does
not raise exceptions.

int Py _UNICODE_TODIGIT (Py_UCS4 ch)

Return the character ch converted to a single digit integer. Return —1 if this is not possible. This function does not
raise exceptions.

double Py_UNICODE_TONUMERIC (Py_UCS4 ch)

Return the character ch converted to a double. Return —1 . 0 if this is not possible. This function does not raise
exceptions.

These APIs can be used to work with surrogates:
int Py_UNICODE_IS_SURROGATE (Py_UCS4 ch)
Check if ch is a surrogate (0xD800 < = ch < = OxDFFF).
int Py_UNICODE_IS_HIGH_SURROGATE (Py_ UCS4 ch)
Check if ch is a high surrogate (0xD800 < = ch < = O0xDBFF).
int Py_UNICODE_IS_LOW_SURROGATE (Py_ UCS4 ch)
Check if ch is a low surrogate (0xDC00 < = ch < = OxDFFF).
Py_UCS4 Py_UNICODE_JOIN_SURROGATES (Py_UCS4 high, Py_UCS4 low)

Join two surrogate characters and return a single Py UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair. high must be in the range [0xD800; 0xXDBFF] and low must be in the range
[0xDCO00; OxDFFF].

144 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:
PyObject *PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)

Dondiirdiigii deger: Yeni referans. Create a new Unicode object. maxchar should be the true maximum code point
to be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence 127, 255,
65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not resizable.
Added in version 3.3.

PyObject *PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)

Dondiirdiigii deger: Yeni referans. Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc., as returned by PyUnicode KIND ()). The buffer must point to an array
of size units of 1, 2 or 4 bytes per character, as given by the kind.

If necessary, the input buffer is copied and transformed into the canonical representation. For example, if the buffer
is a UCS4 string (PyUnicode_4BYTE_KIND) and it consists only of codepoints in the UCSI range, it will be
transformed into UCS1 (PyUnicode_1BYTE_KIND).

Added in version 3.3.

PyObject *PyUnicode_FromStringAndSize (const char *str, Py_ssize_t size)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Create a Unicode object from the char buffer str. The
bytes will be interpreted as being UTF-8 encoded. The buffer is copied into the new object. The return value might
be a shared object, i.e. modification of the data is not allowed.

This function raises SystemError when:
o size <0,
e stris NULL and size > 0
3.12 siiriimiinde degisti: str == NULL with size > 0 is not allowed anymore.

PyObject *PyUnicode_FromString (const char *str)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Create a Unicode object from a UTF-8 encoded null-
terminated char buffer str.

PyObject *PyUnicode_FromFormat (const char *format, ...)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABIL. Take a C print £ () -style format string and a variable
number of arguments, calculate the size of the resulting Python Unicode string and return a string with the values
formatted into it. The variable arguments must be C types and must correspond exactly to the format characters in
the format ASCII-encoded string.

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

1. The '$' character, which marks the start of the specifier.
2. Conversion flags (optional), which affect the result of some conversion types.

3. Minimum field width (optional). If specified as an ' * ' (asterisk), the actual width is given in the next ar-
gument, which must be of type int, and the object to convert comes after the minimum field width and
optional precision.

4. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' *' (an asterisk), the
actual precision is given in the next argument, which must be of type int, and the value to convert comes
after the precision.

8.3. Sequence Objects 145

The Python/C API, Yayim 3.12.3

5. Length modifier (optional).
6. Conversion type.

The conversion flag characters are:

| Flag Meaning \

0 The conversion will be zero padded for numeric values.
= The converted value is left adjusted (overrides the O flag if both are given).

The length modifiers for following integer conversions (d, i, o, u, x, or X) specify the type of the argument (int
by default):

Modifier | Types \

1 long orunsigned long

11 long longorunsigned long long
J intmax_t oruintmax_t

z size_torssize_t

t ptrdiff_t

The length modifier 1 for following conversions s or V specify that the type of the argument is const
wchar_t*.

The conversion specifiers are:

146 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

Con- Type Comment
version
Specifi-
er
% n/a The literal % character.
d, 1 Specified by the length The decimal representation of a signed C integer.
modifier
u Specified by the length The decimal representation of an unsigned C integer.
modifier
o Specified by the length The octal representation of an unsigned C integer.
modifier
x Specified by the length The hexadecimal representation of an unsigned C integer (lowercase).
modifier
X Specified by the length The hexadecimal representation of an unsigned C integer (uppercase).
modifier
int A single character.
s const char* or A null-terminated C character array.
const wchar_t*
P const void* The hex representation of a C pointer. Mostly equivalent to

printf ("$p") except that it is guaranteed to start with the lite-
ral Ox regardless of what the platform’s print £ yields.

A PyObject* The result of calling ascii ().

U PyObject* A Unicode object.

Y PyObject*,const A Unicode object (which may be NULL) and a null-terminated C character
char* or const array asasecond parameter (which will be used, if the first parameter is
wchar_t* NULL).

S PyObject* The result of calling PyOb ject_Str ().

R PyObject* The result of calling PyOb ject_Repr ().

Not: The width formatter unit is number of characters rather than bytes. The precision formatter unit is number
of bytes or wchar_t items (if the length modifier 1 is used) for "$s" and "$V" (if the PyObject * argument
is NULL), and a number of characters for "$A", "$U", "$S", "$R" and "%V" (if the PyObject* argument
is not NULL).

Not: Unlike to C printf () the O flag has effect even when a precision is given for integer conversions (d, i, u,
0, X, or X).

3.2 stirtimiinde degisti: Support for "$11d" and "$11u" added.
3.3 siirtimiinde degisti: Support for "$1i", "$111i" and "%z1i" added.
3.4 siirtimiinde degisti: Support width and precision formatter for "$s", "$A", "$U", "SV", "$3S", "$R" added.

3.12 siiriimiinde degisti: Support for conversion specifiers o and X. Support for length modifiers j and t. Length
modifiers are now applied to all integer conversions. Length modifier 1 is now applied to conversion specifiers s
and V. Support for variable width and precision *. Support for flag —.

An unrecognized format character now sets a SystemError. In previous versions it caused all the rest of the
format string to be copied as-is to the result string, and any extra arguments discarded.

8.3. Sequence Objects 147

The Python/C API, Yayim 3.12.3

PyObject *PyUnicode_FromFormatV (const char *format, va_list vargs)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Identical to PyUnicode_FromFormat () except
that it takes exactly two arguments.

PyObject *PyUnicode_FromObject (PyObject *obj)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Copy an instance of a Unicode subtype to a new true
Unicode object if necessary. If obj is already a true Unicode object (not a subtype), return a new strong reference
to the object.

Objects other than Unicode or its subtypes will cause a TypeError.

PyObject *PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Decode an encoded object obj to a Unicode object.

bytes, bytearray and other byfes-like objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in Codecs for
details).

All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Bir pargast Kararli ABI 3.7 siirtimiinden beri. Return the length of the Unicode object, in code points.
Added in version 3.3.
Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t to_start, PyObject *from, Py_ssize_t
from_start, Py_ssize_t how_many)

Copy characters from one Unicode object into another. This function performs character conversion when necessary
and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise returns the number
of copied characters.

Added in version 3.3.

Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)

Fill a string with a character: write fill_char into unicode [start:start+length].

Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return —1 and raise an exception on error.

Added in version 3.3.

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)

Bir parcast Kararli ABI 3.7 siiriimiinden beri. Write a character to a string. The string must have been created
through PyUnicode_New (). Since Unicode strings are supposed to be immutable, the string must not be shared,
or have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object can
be modified safely (i.e. that it its reference count is one).

Added in version 3.3.

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)

Bir parcast Kararli ABI 3.7 siiriimiinden beri. Read a character from a string. This function checks that unicode is a
Unicode object and the index is not out of bounds, in contrast to PyUnicode_ READ_CHAR (), which performs
no error checking.

Added in version 3.3.

148 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

PyObject *PyUnicode_Substring (PyObject *unicode, Py_ssize_t start, Py_ssize_t end)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Return a substring of unicode, from
character index start (included) to character index end (excluded). Negative indices are not supported.

Added in version 3.3.

Py_UCS4 *PyUnicode_AsUCS4 (PyObject *unicode, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)

Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Copy the string unicode into a UCS4 buffer, including a null character,
if copy_null is set. Returns NULL and sets an exception on error (in particular, a Sy stemError if buflen is smaller
than the length of unicode). buffer is returned on success.

Added in version 3.3.

Py_UCS4 *PyUnicode_AsUCS4Copy (PyObject *unicode)

Bir parcast Kararli ABI 3.7 siirtimiinden beri. Copy the string unicode into a new UCS4 buffer that is allocated
using PyMem_Malloc (). If this fails, NULL is returned with a MemoryError set. The returned buffer always
has an extra null code point appended.

Added in version 3.3.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject *PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t length, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Decode a string from UTF-8 on
Android and VxWorks, or from the current locale encoding on other platforms. The supported error handlers are
"strict" and "surrogateescape" (PEP 383). The decoder uses "strict" error handler if errors is
NULL. st# must end with a null character but cannot contain embedded null characters.

Use PyUnicode_DecodeFSDefaultAndSize () todecode a string from the filesystem encoding and error
handler.

This function ignores the Python UTF-8 Mode.
Ayrica bakimz:

The Py_DecodeLocale () function.
Added in version 3.3.

3.7 stiriimiinde degisti: The function now also uses the current locale encoding for the surrogateescape error
handler, except on Android. Previously, Py_DecodeLocale () was used for the surrogateescape, and
the current locale encoding was used for strict.

PyObject *PyUnicode_DecodeLocale (const char *str, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Similar to
PyUnicode_DecodeLocaleAndSize (), but compute the string length using strlen ().
Added in version 3.3.

PyObject *PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Encode a Unicode object to UTF-8
on Android and VxWorks, or to the current locale encoding on other platforms. The supported error handlers are
"strict" and "surrogateescape" (PEP 383). The encoder uses "strict" error handler if errors is
NULL. Return a bytes object. unicode cannot contain embedded null characters.

Use PyUnicode_EncodeFSDefault () toencode a string to the filesystem encoding and error handler.

This function ignores the Python UTF-8 Mode.

8.3. Sequence Objects 149

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0383/

The Python/C API, Yayim 3.12.3

Ayrica bakiniz:
The Py_EncodeLocale () function.
Added in version 3.3.

3.7 siiriimiinde degisti: The function now also uses the current locale encoding for the surrogateescape error
handler, except on Android. Previously, Py_EncodeLocale () was used for the surrogateescape, and
the current locale encoding was used for strict.

File System Encoding

Functions encoding to and decoding from the filesystem encoding and error handler (PEP 383 and PEP 529).

To encode file names to bytes during argument parsing, the "O&" converter should be used, passing
PyUnicode FSConverter () asthe conversion function:

int PyUnicode_FSConverter (PyObject *obj, void *result)

Bir parcast Kararli ABIL ParseTuple converter: encode str objects — obtained directly or through the os.
PathLike interface—tobytesusing PyUnicode_EncodeFSDefault ();bytes objects are output as-is.
result must be a PyBytesObject* which must be released when it is no longer used.

Added in version 3.1.
3.6 siirtimiinde degisti: Accepts a path-like object.

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_ FSDecoder () as the conversion function:

int PyUnicode_FSDecoder (PyObject *obj, void *result)

Bir parcasi Kararli ABIL. ParseTuple converter: decode bytes objects — obtained either directly or indirectly
through the os .PathLike interface — to str using PyUnicode_DecodeFSDefaultAndSize (); str
objects are output as-is. result must be a PyUnicodeOb ject* which must be released when it is no longer used.

Added in version 3.2.
3.6 siiriimiinde degisti: Accepts a path-like object.

PyObject *PyUnicode_DecodeFSDefaultAndSize (const char *str, Py_ssize_t size)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Decode a string from the filesystem encoding and error
handler.

If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize ().

Ayrica bakimz:
The Py_DecodeLocale () function.
3.6 stirtimiinde degisti: The filesystem error handler is now used.

PyObject *PyUnicode_DecodeFSDefault (const char *str)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Decode a null-terminated string from the filesystem
encoding and error handler.

If the string length is known, use PyUnicode_DecodeFSDefaultAndSize ().

3.6 stirtimiinde degisti: The filesystem error handler is now used.

150 Béliim 8. Concrete Objects Layer

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0529/

The Python/C API, Yayim 3.12.3

PyObject *PyUnicode_EncodeFSDefault (PyObject *unicode)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Encode a Unicode object to the filesystem encoding and
error handler, and return bytes. Note that the resulting bytes object can contain null bytes.
If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale ().
Ayrica bakimz:
The Py_EncodeLocale () function.
Added in version 3.2.

3.6 siirlimiinde degisti: The filesystem error handler is now used.

wchar_t Support

wchar_t support for platforms which support it:

PyObject *PyUnicode_FromWideChar (const wchar_t *wstr, Py_ssize_t size)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Create a Unicode object from the wchar_t buffer wstr

of the given size. Passing —1 as the size indicates that the function must itself compute the length, usingwcslen ().
Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *wstr, Py_ssize_t size)

Bir parcast Kararli ABI. Copy the Unicode object contents into the wchar_t buffer wstr. At most size wchar_t
characters are copied (excluding a possibly trailing null termination character). Return the number of wchar_t
characters copied or -1 in case of an error.

When wstr is NULL, instead return the size that would be required to store all of unicode including a terminating
null.

Note that the resulting wchar_t * string may or may not be null-terminated. It is the responsibility of the caller to
make sure that the wchar_t * string is null-terminated in case this is required by the application. Also, note that
the wchar_t * string might contain null characters, which would cause the string to be truncated when used with
most C functions.

wchar_t *PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)

Bir parcast Kararli ABI 3.7 siiriimiinden beri. Convert the Unicode object to a wide character string. The output
string always ends with a null character. If size is not NULL, write the number of wide characters (excluding the
trailing null termination character) into *size. Note that the resulting wchar_t string might contain null characters,
which would cause the string to be truncated when used with most C functions. If size is NULL and the wchar_t*
string contains null characters a ValueError is raised.

Returns a buffer allocated by PyMem New (use PyMem_Free () to free it) on success. On error, returns NULL
and *size is undefined. Raises a MemoryError if memory allocation is failed.

Added in version 3.2.

3.7 siiriimiinde degisti: Raises a ValueError if sizeis NULL and the wchar_t * string contains null characters.

8.3. Sequence Objects 151

The Python/C API, Yayim 3.12.3

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in st r () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is UTF-8. The file system calls should use
PyUnicode_FSConverter () for encoding file names. This uses the filesystem encoding and error handler inter-
nally.

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec.
Default error handling for all built-in codecs is “strict” (ValueError is raised).

The codecs all use a similar interface. Only deviations from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:

PyObject *PyUnicode_Decode (const char *str, Py_ssize_t size, const char *encoding, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Create a Unicode object by decoding size bytes of the
encoded string str. encoding and errors have the same meaning as the parameters of the same name in the str ()
built-in function. The codec to be used is looked up using the Python codec registry. Return NULL if an exception
was raised by the codec.

PyObject *PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL. Encode a Unicode object and return the result as Python
bytes object. encoding and errors have the same meaning as the parameters of the same name in the Unicode
encode () method. The codec to be used is looked up using the Python codec registry. Return NULL if an
exception was raised by the codec.

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject *PyUnicode_DecodeUTF8 (const char *str, Py_ssize_t size, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Create a Unicode object by decoding size bytes of the
UTF-8 encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF8Stateful (const char *str, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL If consumed is NULL, behave like
PyUnicode_DecodeUTFS8 (). If consumed is not NULL, trailing incomplete UTF-8 byte sequences will

not be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded will
be stored in consumed.

PyObject *PyUnicode_AsUTF8String (PyObject *unicode)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABIL. Encode a Unicode object using UTF-8 and return the
result as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

152 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

const char *PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)
Bir parcast Kararli ABI 3.10 siiriimiinden beri. Return a pointer to the UTF-8 encoding of the Unicode object,
and store the size of the encoded representation (in bytes) in size. The size argument can be NULL; in this case no
size will be stored. The returned buffer always has an extra null byte appended (not included in size), regardless of
whether there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a pointer
to the same buffer. The caller is not responsible for deallocating the buffer. The buffer is deallocated and pointers
to it become invalid when the Unicode object is garbage collected.

Added in version 3.3.
3.7 siirtimiinde degisti: The return type is now const char * rather of char *.
3.10 siiriimiinde degisti: This function is a part of the limited API.

const char *PyUnicode_AsUTF8 (PyObject *unicode)
As PyUnicode_AsUTF8AndSize (), but does not store the size.

Added in version 3.3.

3.7 siiriimiinde degisti: The return type is now const char * rather of char *.

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject *PyUnicode_DecodeUTF32 (const char *str, Py_ssize_t size, const char *errors, int *byteorder)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Decode size bytes from a UTF-32 encoded buffer string
and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*pbyteorder == 1: Dbig endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeUTF32Stateful (const char *str, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararh ABL If consumed is NULL, behave like
PyUnicode_DecodeUTF32 (). If consumed is not NULL, PyUnicode_ DecodeUTF32Stateful ()
will not treat trailing incomplete UTF-32 byte sequences (such as a number of bytes not divisible by four) as an
error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject *PyUnicode_AsUTF32String (PyObject *unicode)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Return a Python byte string using the UTF-32 encoding
in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return NULL if an
exception was raised by the codec.

8.3. Sequence Objects 153

The Python/C API, Yayim 3.12.3

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject *PyUnicode_DecodeUTF16 (const char *str, Py_ssize_t size, const char *errors, int *byteorder)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Decode size bytes from a UTF-16 encoded buffer string
and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is —1 or
1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \uf f fe character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeUTF16Stateful (const char *str, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL If consumed is NULL, behave like
PyUnicode_DecodeUTF16 (). If consumed is not NULL, PyUnicode_DecodeUTF16Stateful ()
will not treat trailing incomplete UTF-16 byte sequences (such as an odd number of bytes or a split surrogate pair)
as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in
consumed.

PyObject *PyUnicode_AsUTF16String (PyObject *unicode)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Return a Python byte string using the UTF-16 encoding
in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return NULL if an
exception was raised by the codec.

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject *PyUnicode_DecodeUTF 7 (const char *str, Py_ssize_t size, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Create a Unicode object by decoding size bytes of the
UTF-7 encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF7Stateful (const char *str, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararh ABL If consumed is NULL, behave like
PyUnicode_DecodeUTF7 (). If consumed is not NULL, trailing incomplete UTF-7 base-64 sections
will not be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded
will be stored in consumed.

154 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:

PyObject *PyUnicode_DecodeUnicodeEscape (const char *str, Py_ssize_t size, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Create a Unicode object by decoding size bytes of the
Unicode-Escape encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsUnicodeEscapeString (PyObject *unicode)

Dondiirdiigii deger: Yeni referans. Bir pargast Kararli ABI. Encode a Unicode object using Unicode-Escape and
return the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

Raw-Unicode-Escape Codecs

These are the “Raw Unicode Escape” codec APIs:

PyObject *PyUnicode_DecodeRawUnicodeEscape (const char *str, Py_ssize_t size, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Create a Unicode object by decoding size bytes of the
Raw-Unicode-Escape encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Encode a Unicode object using Raw-Unicode-Escape

and return the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by
the codecs during encoding.
PyObject *PyUnicode_DecodeLatinl (const char *str, Py_ssize_t size, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Create a Unicode object by decoding size bytes of the
Latin-1 encoded string str. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_AsLatinlString (PyObject *unicode)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL Encode a Unicode object using Latin-1 and return the
result as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject *PyUnicode_DecodeASCITI (const char *str, Py_ssize_t size, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Create a Unicode object by decoding size bytes of the
ASCII encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsASCIIString (PyObject *unicode)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Encode a Unicode object using ASCII and return the
result as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

8.3. Sequence Objects 155

The Python/C API, Yayim 3.12.3

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mappings to encode and
decode characters. The mapping objects provided must support the __getitem__ () mapping interface; dictionaries
and sequences work well.

These are the mapping codec APIs:
PyObject *PyUnicode_DecodeCharmap (const char *str, Py_ssize_t length, PyObject *mapping, const char
*errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Create a Unicode object by decoding size bytes of the

encoded string str using the given mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the range
from 0 to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None. Unmapped
data bytes — ones which cause a LookupError, as well as ones which get mapped to None, OXFFFE or '\
ufffe', are treated as undefined mappings and cause an error.

PyObject *PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Encode a Unicode object using the given mapping object

and return the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are treated
as “undefined mapping” and cause an error.

The following codec API is special in that maps Unicode to Unicode.

PyObject *PyUnicode_Translate (PyObject *unicode, PyObject *table, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Translate a string by applying a character mapping table
to it and return the resulting Unicode object. Return NULL if an exception was raised by the codec.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the __getitem__ () interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is
defined by the user settings on the machine running the codec.

PyObject *PyUnicode_DecodeMBCS (const char *str, Py_ssize_t size, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI on Windows 3.7 siiriimiinden beri. Create a Unicode
object by decoding size bytes of the MBCS encoded string str. Return NULL if an exception was raised by the
codec.

PyObject *PyUnicode_DecodeMBCSStateful (const char *str, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)

Dondiirdiigii - deger: Yeni referans. Bir parcast Kararlh ABI on Windows 3.7 siiriimiinden beri.
If consumed is NULL, behave like PyUnicode_DecodeMBCS (). If consumed is not NULL,

156 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

PyUnicode_DecodeMBCSStateful () will not decode trailing lead byte and the number of bytes
that have been decoded will be stored in consumed.

PyObject *PyUnicode_AsMBCSString (PyObject *unicode)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI on Windows 3.7 siiriimiinden beri. Encode a Unicode
object using MBCS and return the result as Python bytes object. Error handling is “strict”. Return NULL if an
exception was raised by the codec.

PyObject *PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI on Windows 3.7 siirtimiinden beri. Encode the Unicode
object using the specified code page and return a Python bytes object. Return NULL if an exception was raised by
the codec. Use CP_ACP code page to get the MBCS encoder.

Added in version 3.3.

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or —1 if an exception occurs.

PyObject *PyUnicode_Concat (PyObject *left, PyObject *right)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Concat two strings giving a new Unicode string.

PyObject *PyUnicode_Split (PyObject *unicode, PyObject *sep, Py_ssize_t maxsplit)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Split a string giving a list of Unicode strings. If sep is
NULL, splitting will be done at all whitespace substrings. Otherwise, splits occur at the given separator. At most
maxsplit splits will be done. If negative, no limit is set. Separators are not included in the resulting list.

PyObject *PyUnicode_Splitlines (PyObject *unicode, int keepends)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Split a Unicode string at line breaks, returning a list
of Unicode strings. CRLF is considered to be one line break. If keepends is 0, the Line break characters are not
included in the resulting strings.

PyObject *PyUnicode_Join (PyObject *separator, PyObject *seq)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Join a sequence of strings using the given separator and
return the resulting Unicode string.

Py_ssize_t PyUnicode_Tailmatch (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int

direction)

Bir parcast Kararli ABIL. Return 1 if substr matches unicode [start :end] at the given tail end (direction ==
-1 means to do a prefix match, direction == 1 a suffix match), 0 otherwise. Return -1 if an error occurred.

Py_ssize_t PyUnicode_Find (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Bir parcas: Kararli ABL Return the first position of substr in unicode [start :end] using the given direction
(direction == 1 means to do a forward search, direction == —1 a backward search). The return value is the index
of the first match; a value of —1 indicates that no match was found, and —2 indicates that an error occurred and an
exception has been set.

Py_ssize_t PyUnicode_FindChar (PyObject *unicode, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direction)
Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return the first position of the character ch in

8.3. Sequence Objects 157

The Python/C API, Yayim 3.12.3

unicode[start:end] using the given direction (direction == 1 means to do a forward search, directi-
on == —1 a backward search). The return value is the index of the first match; a value of —1 indicates that no
match was found, and -2 indicates that an error occurred and an exception has been set.

Added in version 3.3.
3.7 stirtimiinde degisti: start and end are now adjusted to behave like unicode [start:end].

Py_ssize_t PyUnicode_Count (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end)

Bir parcast Kararlh ABIL Return the number of non-overlapping occurrences of substr in
unicode[start:end]. Return -1 if an error occurred.

PyObject *PyUnicode_Replace (PyObject *unicode, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Replace at most maxcount occurrences of substr in
unicode with replstr and return the resulting Unicode object. maxcount == —1 means replace all occurrences.

int PyUnicode_Compare (PyObject *left, PyObject *right)

Bir pargasi Kararl1 ABI. Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

This function returns —1 upon failure, so one should call PyErr_Occurred () to check for errors.

int PyUnicode_CompareWithASCIIString (PyObject *unicode, const char *string)

Bir parcasi Kararli ABL. Compare a Unicode object, unicode, with string and return -1, 0, 1 for less than, equal,
and greater than, respectively. It is best to pass only ASCII-encoded strings, but the function interprets the input
string as ISO-8859-1 if it contains non-ASCII characters.

This function does not raise exceptions.
PyObject *PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABIL Rich compare two Unicode strings and return one of
the following:
* NULL in case an exception was raised
e Py_Trueor Py_False for successful comparisons
* Py NotImplemented in case the type combination is unknown
Possible values for op are Py_ GT, Py_GE, Py_EQ, Py NE, Py_LT,and Py_LE.

PyObject *PyUnicode_Format (PyObject *format, PyObject *args)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a new string object from format and args; this is
analogous to format % args.

int PyUnicode_Contains (PyObject *unicode, PyObject *substr)
Bir parcast Kararli ABIL. Check whether substr is contained in unicode and return true or false accordingly.

substr has to coerce to a one element Unicode string. —1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **p_unicode)

Bir parcast Kararli ABIL Intern the argument *p_unicode in place. The argument must be the address of a
pointer variable pointing to a Python Unicode string object. If there is an existing interned string that is the same
as *p_unicode, it sets *p_unicode to it (releasing the reference to the old string object and creating a new
strong reference to the interned string object), otherwise it leaves * p_unicode alone and interns it (creating a
new strong reference). (Clarification: even though there is a lot of talk about references, think of this function as
reference-neutral; you own the object after the call if and only if you owned it before the call.)

PyObject *PyUnicode_InternFromString (const char *str)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. A combination of PyUnicode_ FromString()
and PyUnicode_InternInPlace (), returning either a new Unicode string object that has been interned, or
a new (“owned”) reference to an earlier interned string object with the same value.

158 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

8.3.4 Tuple Objects

type PyTupleObject
This subtype of PyOb ject represents a Python tuple object.
PyTypeObject PyTuple_Type
Bir parcast Kararli ABL This instance of PyTypeOb ject represents the Python tuple type; it is the same object
as tuple in the Python layer.
int PyTuple_Check (PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type. This function always succeeds.
int PyTuple_CheckExact (PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type. This function always succeeds.
PyObject *PyTuple_New (Py_ssize_t len)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararlt ABL Return a new tuple object of size len, or NULL on failure.
PyObject *PyTuple_Pack (Py_ssize_tn, ...)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return a new tuple object of size n, or NULL on failure.
The tuple values are initialized to the subsequent n C arguments pointing to Python objects. PyTuple_Pack (2,
a, b) isequivalentto Py_Buildvalue (" (00)", a, b).
Py_ssize_t PyTuple_Size (PyObject *p)
Bir parcast Kararli ABI. Take a pointer to a tuple object, and return the size of that tuple.
Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.
PyObject *PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Dondiirdiigii deger: Odiing alinmus referans. Bir parcast Kararli ABI Return the object at position pos in the tuple

pointed to by p. If pos is negative or out of bounds, return NULL and set an IndexError exception.

The returned reference is borrowed from the tuple p (that is: it is only valid as long as you hold a reference to p).
To get a strong reference, use Py_NewRef (PyTuple_GetItem(...)) or PySequence_GetItem().
PyObject *PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Dondiirdiigii deger: Odiing alinmus referans. Like Py Tuple_Get Item(),but does no checking of its arguments.
PyObject *PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return the slice of the tuple pointed to by p between
low and high, or NULL on failure. This is the equivalent of the Python expression p [Low:high]. Indexing from
the end of the tuple is not supported.
int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)

Bir parcasi Kararli ABL Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on
success. If pos is out of bounds, return —1 and set an IndexError exception.

Not: This function “steals” a reference to o and discards a reference to an item already in the tuple at the affected
position.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *0)
Like PyTuple_SetItem (), but does no error checking, and should only be used to fill in brand new tuples.

8.3. Sequence Objects 159

The Python/C API, Yayim 3.12.3

Not: This function “steals” a reference to o, and, unlike PyTuple SetItem (), does not discard a reference to
any item that is being replaced; any reference in the tuple at position pos will be leaked.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of this as
destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code should never
assume that the resulting value of *p will be the same as before calling this function. If the object referenced by *p
is replaced, the original *p is destroyed. On failure, returns —1 and sets *p to NULL, and raises MemoryError
or SystemError.

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be accessed
through attributes. To create a struct sequence, you first have to create a specific struct sequence type.

PyTypeObject *PyStructSequence_NewType (PyStructSequence_Desc *desc)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Create a new struct sequence type from the data in desc,
described below. Instances of the resulting type can be created with Py St ruct Sequence_New ().

void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)

Initializes a struct sequence type type from desc in place.

int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)

The same as PyStruct Sequence_InitType, but returns 0 on success and —1 on failure.

Added in version 3.4.

type PyStructSequence_Desc

Bir pargast Kararli ABI (tiim tiyeler dahil). Contains the meta information of a struct sequence type to create.
const char *name
Name of the struct sequence type.
const char *doc
Pointer to docstring for the type or NULL to omit.
PyStructSequence_Field *£ields
Pointer to NULL-terminated array with field names of the new type.
intn_in_sequence

Number of fields visible to the Python side (if used as tuple).

type PyStructSequence_Field

Bir parcasi Kararli ABI (tiim iiyeler dahil). Describes a field of a struct sequence. As a struct sequence is modeled as
atuple, all fields are typed as PyObject*. Theindex inthe fields array of the PySt ruct Sequence_Desc
determines which field of the struct sequence is described.

const char *name

Name for the field or NULL to end the list of named fields, setto Py St ruct Sequence_UnnamedField
to leave unnamed.

160

Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

const char *doc
Field docstring or NULL to omit.

const char *const PyStruct Sequence_UnnamedField
Bir parcast Kararli ABI 3.11 siiriimiinden beri. Special value for a field name to leave it unnamed.

3.9 siiriimiinde degisti: The type was changed from char *.

PyObject *PyStructSequence_New (PyTypeObject *type)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL. Creates an instance of fype, which must have been
created with Py St ruct Sequence_NewType ().

PyObject *PyStructSequence_GetItem (PyObject *p, Py_ssize_t pos)
Dondiirdiigii deger: Odiing alinmug referans. Bir parcasi Kararli ABL Return the object at position pos in the struct
sequence pointed to by p. No bounds checking is performed.

PyObject *PyStructSequence_GET_ITEM (PyObject *p, Py_ssize_t pos)
Dondiirdiigii deger: Odiing alinmus referans. Macro equivalent of Py St ruct Sequence_GetItem().

void PyStructSequence_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)

Bir parcast Kararli ABL Sets the field at index pos of the struct sequence p to value o. Like
PyTuple_ SET_TTEM/(), this should only be used to fill in brand new instances.

Not: This function “steals” a reference to o.

void PyStructSequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *0)

Similar to Py St ruct Sequence_SetItem (), but implemented as a static inlined function.

Not: This function “steals” a reference to o.

8.3.6 List Objects

type PyListObject
This subtype of PyOb ject represents a Python list object.
PyTypeObject PyList_Type
Bir parcast Kararli ABL This instance of Py TypeOb ject represents the Python list type. This is the same object
as 1ist in the Python layer.
int PyList_Check (PyObject *p)
Return true if p is a list object or an instance of a subtype of the list type. This function always succeeds.
int PyList_CheckExact (PyObject *p)
Return true if p is a list object, but not an instance of a subtype of the list type. This function always succeeds.
PyObject *PyList_New (Py_ssize_t len)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Return a new list of length len on success, or NULL on
failure.

Not: If len is greater than zero, the returned list object’s items are set to NULL. Thus you cannot use abstract API
functions such as PySequence_SetItem () or expose the object to Python code before setting all items to a
real object with PyList_SetItem().

8.3. Sequence Objects 161

The Python/C API, Yayim 3.12.3

Py_ssize_t PyList_Size (PyObject *list)

Bir parcasi Kararli ABI. Return the length of the list object in /ist; this is equivalent to 1en (1ist) on a list object.
Py_ssize_t PyList_GET_SIZE (PyObject *list)

Similar to PyList_Size (), but without error checking.
PyObject *PyList_GetItem (PyObject *list, Py_ssize_t index)

Déndiirdiigii deger: Odiing alinnus referans. Bir parcast Kararli ABI. Return the object at position index in the list

pointed to by list. The position must be non-negative; indexing from the end of the list is not supported. If index is
out of bounds (<0 or > =len(list)), return NULL and set an IndexError exception.

PyObject *PyList_GET_ITEM (PyObject *list, Py_ssize_t 1)
Dondiirdiigii deger: Odiing alinmus referans. Similar to PyList_Get Item (), but without error checking.
int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)

Bir parcasi Kararli ABI. Set the item at index index in list to ifem. Return 0 on success. If index is out of bounds,
return —1 and set an IndexError exception.

Not: This function “steals” a reference to ifem and discards a reference to an item already in the list at the affected
position.

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *0)
Macro form of PyList_Set Item () without error checking. This is normally only used to fill in new lists where
there is no previous content.

Not: This macro “steals” a reference to item, and, unlike PyList_SetItem (), does not discard a reference to
any item that is being replaced; any reference in list at position i will be leaked.

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
Bir parcast Kararli ABI. Insert the item item into list /ist in front of index index. Return 0 if successful; return —1
and set an exception if unsuccessful. Analogous to 1ist.insert (index, item).

int PyList_Append (PyObject *list, PyObject *item)
Bir parcast Kararli ABL. Append the object item at the end of list /ist. Return 0 if successful; return —1 and set an
exception if unsuccessful. Analogous to 1ist .append (item).

PyObject *PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return a list of the objects in /ist containing the objects
between low and high. Return NULL and set an exception if unsuccessful. Analogous to 1ist [low:high].
Indexing from the end of the list is not supported.

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Bir parcast Kararli ABIL Set the slice of list between low and high to the contents of itemlist. Analogous to
list[low:high] = itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice
deletion). Return 0 on success, —1 on failure. Indexing from the end of the list is not supported.

int PyList_Sort (PyObject *list)
Bir parcas: Kararli ABL. Sort the items of /ist in place. Return 0 on success, —1 on failure. This is equivalent to
list.sort ().

int PyList_Reverse (PyObject *list)
Bir par¢asit Kararlt ABI. Reverse the items of /ist in place. Return O on success, —1 on failure. This is the equivalent
of list.reverse ().

162 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

PyObject *PyList_AsTuple (PyObject *list)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Return a new tuple object containing the contents of
list; equivalent to tuple (list).

8.4 Container Objects

8.4.1 Dictionary Objects

type PyDictObject
This subtype of PyOb ject represents a Python dictionary object.
PyTypeObject PyDict_Type
Bir parcas: Kararli ABIL This instance of Py TypeOb ject represents the Python dictionary type. This is the same
object as dict in the Python layer.
int PyDict_Check (PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type. This function always succeeds.
int PyDict_CheckExact (PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type. This function always succeeds.
PyObject *PyDict_New ()
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Return a new empty dictionary, or NULL on failure.
PyObject *PyDictProxy_New (PyObject *mapping)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a types .MappingProxyType object for a
mapping which enforces read-only behavior. This is normally used to create a view to prevent modification of the
dictionary for non-dynamic class types.
void PyDict_Clear (PyObject *p)
Bir pargast Kararli ABL. Empty an existing dictionary of all key-value pairs.
int PyDict_Contains (PyObject *p, PyObject *key)
Bir parcast Kararli ABL. Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise
return 0. On error, return —1. This is equivalent to the Python expression key in p.
PyObject *PyDict_Copy (PyObject *p)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlit ABL Return a new dictionary that contains the same key-value
pairs as p.
int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
Bir parcast Kararli ABI. Insert val into the dictionary p with a key of key. key must be hashable; if it isn’t,
TypeError will be raised. Return 0 on success or —1 on failure. This function does not steal a reference to
val.
int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
Bir pargast Kararli ABI. This is the same as PyDict_SetItem(), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.
int PyDict_DelItem (PyObject *p, PyObject *key)
Bir parcast Kararli ABL. Remove the entry in dictionary p with key key. key must be hashable; if it isn’t,

TypeError is raised. If key is not in the dictionary, KeyError is raised. Return O on success or —1 on fa-
ilure.

8.4. Container Objects 163

The Python/C API, Yayim 3.12.3

int PyDict_DelItemString (PyObject *p, const char *key)
Bir parcast Kararli ABL This is the same as PyDict_DelItem(), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

PyObject *PyDict_GetItem (PyObject *p, PyObject *key)

Dondiirdiigii deger: Odiing alinmus referans. Bir parcasi Kararli ABL. Return the object from dictionary p which has
a key key. Return NULL if the key key is not present, but without setting an exception.

Not: Exceptions that occur while this calls __hash__ () and __eqg__ () methods are silently ignored. Prefer
the PyDict_GetItemWithError () function instead.

3.10 siiriimiinde degisti: Calling this API without GIL held had been allowed for historical reason. It is no longer
allowed.

PyObject *PyDict_GetItemWithError (PyObject *p, PyObject *key)
Dondiirdiigii deger: Odiing alinmug referans. Bir pargast Kararli ABIL Variant of PyDict_Get Ttem () that does
not suppress exceptions. Return NULL with an exception set if an exception occurred. Return NULL without an
exception set if the key wasn’t present.

PyObject *PyDict_GetItemString (PyObject *p, const char *key)

Dondiirdiigii deger: Odiing alinmis referans. Bir parcast Kararli ABL This is the same as PyDict_GetItem(),
but key is specified as a const char* UTF-8 encoded bytes string, rather than a PyObject*.

Not: Exceptions that occur while this calls __hash__ () and __eqg__ () methods or while creating the tem-
porary str object are silently ignored. Prefer using the PyDict_ GetItemwWithError () function with your
own PyUnicode_ FromString () key instead.

PyObject *PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *defaultobj)

Dondiirdiigii deger: Odiing alinmugs referans. This is the same as the Python-level dict .setdefault (). If
present, it returns the value corresponding to key from the dictionary p. If the key is not in the dict, it is inserted
with value defaultobj and defaultobj is returned. This function evaluates the hash function of key only once, instead
of evaluating it independently for the lookup and the insertion.

Added in version 3.4.
PyObject *PyDict_Items (PyObject *p)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a PyListObject containing all the items
from the dictionary.
PyObject *PyDict_Keys (PyObject *p)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Returna PyListObject containing all the keys from
the dictionary.
PyObject *PyDict_Values (PyObject *p)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Return a PyListObject containing all the values
from the dictionary p.
Py _ssize_t PyDict_Size (PyObject *p)
Bir pargasi Kararli ABI. Return the number of items in the dictionary. This is equivalent to 1en (p) onadictionary.
int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Bir parcast Kararli ABI. Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos

must be initialized to O prior to the first call to this function to start the iteration; the function returns true for each
pair in the dictionary, and false once all pairs have been reported. The parameters pkey and pvalue should either

164 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

point to PyObject* variables that will be filled in with each key and value, respectively, or may be NULL. Any
references returned through them are borrowed. ppos should not be altered during iteration. Its value represents
offsets within the internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.

For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
/* do something interesting with the values... */

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) A
return -1;
}
PyObject *o = PyLong_FromLong (i + 1);
if (o == NULL)
return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (o) ;
return -1;
}
Py_DECREF (o) ;
I3

L

int PyDict_Merge (PyObject *a, PyObject *b, int override)
Bir parcasi: Kararli ABI. Iterate over mapping object b adding key-value pairs to dictionary a. b may be a dictionary,
or any object supporting PyMapping Keys () and PyObject_GetItem ().If override is true, existing pairs
in a will be replaced if a matching key is found in b, otherwise pairs will only be added if there is not a matching
key in a. Return 0O on success or —1 if an exception was raised.

int PyDict_Update (PyObject *a, PyObject *b)
Bir pargasi Kararli ABL This is the same as PyDict_Merge (a, b, 1) inC,andissimilartoa.update (b)

in Python except that PyDict_Update () doesn’t fall back to the iterating over a sequence of key value pairs if
the second argument has no “keys” attribute. Return O on success or —1 if an exception was raised.

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq?2, int override)

Bir parcast Kararli ABL. Update or merge into dictionary a, from the key-value pairs in seq2. seg2 must be an
iterable object producing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the last
wins if override is true, else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent Python
(except for the return value):

def PyDict_MergeFromSeq2 (a, seqg2, override):
for key, value in seqg2:
if override or key not in a:
alkey] = value

8.4. Container Objects 165

The Python/C API, Yayim 3.12.3

int PyDict_AddWatcher (PyDict_WatchCallback callback)
Register callback as a dictionary watcher. Return a non-negative integer id which must be passed to future calls to
PyDict_Watch (). In case of error (e.g. no more watcher IDs available), return —1 and set an exception.

Added in version 3.12.

int PyDict_ClearWatcher (int watcher_id)
Clear watcher identified by watcher_id previously returned from PyDict_Addwatcher (). Return O on suc-
cess, —1 on error (e.g. if the given watcher_id was never registered.)
Added in version 3.12.

int PyDict_Watch (int watcher_id, PyObject *dict)
Mark dictionary dict as watched. The callback granted watcher_id by PyDict_Addwatcher () will be called
when dict is modified or deallocated. Return O on success or —1 on error.

Added in version 3.12.

int PyDict_Unwatch (int watcher_id, PyObject *dict)
Mark dictionary dict as no longer watched. The callback granted watcher_id by PyDict_AddWatcher () will
no longer be called when dict is modified or deallocated. The dict must previously have been watched by this
watcher. Return O on success or —1 on error.

Added in version 3.12.

type PyDict_WatchEvent
Enumeration of possible dictionary watcher events: PyDict_EVENT_ADDED, PyDict_EVENT_MODIFIED,
PyDict_EVENT_DELETED, PyDict_EVENT_CLONED, PyDict_EVENT_CLEARED, or
PyDict_EVENT_DEALLOCATED.

Added in version 3.12.
typedef int (*PyDict_WatchCallback)(PyDict_WatchEvent event, PyObject *dict, PyObject *key, PyObject
*new_value)
Type of a dict watcher callback function.
If event is PyDict _EVENT_CLEARED or PyDict_EVENT_DEALLOCATED, both key and new_value will be
NULL. If event is PyDict_EVENT_ADDED or PyDict_EVENT_MODIF IED, new_value will be the new value

for key. If event is PyDict_EVENT_DELETED, key is being deleted from the dictionary and new_value will be
NULL.

PyDict_EVENT_CLONED occurs when dict was previously empty and another dict is merged into it. To maintain
efficiency of this operation, per-key PyDict_EVENT_ADDED events are not issued in this case; instead a single
PyDict_EVENT_CLONED is issued, and key will be the source dictionary.

The callback may inspect but must not modify dict; doing so could have unpredictable effects, including infinite
recursion. Do not trigger Python code execution in the callback, as it could modify the dict as a side effect.

If eventisPyDict_EVENT_DEALLOCATED, taking a new reference in the callback to the about-to-be-destroyed
dictionary will resurrect it and prevent it from being freed at this time. When the resurrected object is destroyed
later, any watcher callbacks active at that time will be called again.

Callbacks occur before the notified modification to dict takes place, so the prior state of dict can be inspected.

If the callback sets an exception, it must return —1; this exception will be printed as an unraisable exception using
PyErr WriteUnraisable (). Otherwise it should return 0.

There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.

Added in version 3.12.

166 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

8.4.2 Set Objects

This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using either the abstract object protocol (including PyObject_CallMethod(),
PyObject_RichCompareBool (), PyObject_Hash (), PyObject_Repr (), PyObject_IsTrue(),
PyObject_Print (), and PyObject_GetIter()) or the abstract number protocol (inclu-
ding PyNumber_And (), PyNumber_Subtract (), PyNumber_Or (), PyNumber_Xor (),
PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract (), PyNumber_InPlaceOr (), and
PyNumber_InPlaceXor ()).

type PySetObject

This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of
this structure should be considered public and all are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type

Bir parcast Kararli ABI. This is an instance of Py TypeOb ject representing the Python set type.
PyTypeObject PyFrozenSet_Type

Bir parcast Kararli ABL This is an instance of Py TypeObject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work with
any iterable Python object.

int PySet_Check (PyObject *p)
Return true if p is a set object or an instance of a subtype. This function always succeeds.
int PyFrozenSet_Check (PyObject *p)
Return true if pis a frozenset object or an instance of a subtype. This function always succeeds.
int PyAnySet_Check (PyObject *p)
Return true if pis a set object, a frozenset object, or an instance of a subtype. This function always succeeds.
int PySet_CheckExact (PyObject *p)

Return true if p is a set object but not an instance of a subtype. This function always succeeds.
Added in version 3.10.
int PyAnySet_CheckExact (PyObject *p)
Return true if p is a set object or a frozenset object but not an instance of a subtype. This function always
succeeds.
int PyFrozenSet_CheckExact (PyObject *p)
Return true if pis a frozenset object but not an instance of a subtype. This function always succeeds.
PyObject *PySet_New (PyObject *iterable)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Return a new set containing objects returned by the ife-
rable. The iterable may be NULL to create a new empty set. Return the new set on success or NULL on failure. Raise
TypeError if iterable is not actually iterable. The constructor is also useful for copying a set (¢ =set (s)).

PyObject *PyFrozenSet_New (PyObject *iterable)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABIL. Return a new frozenset containing objects returned
by the iterable. The iterable may be NULL to create a new empty frozenset. Return the new set on success or NULL
on failure. Raise TypeError if iferable is not actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

8.4. Container Objects 167

The Python/C API, Yayim 3.12.3

Py_ssize_t PySet_Size (PyObject *anyset)
Bir parcasi Kararli ABIL Return the length of a set or frozenset object. Equivalentto 1en (anyset) . Raises
aSystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
Macro form of PySet_Size () without error checking.

int PySet_Contains (PyObject *anyset, PyObject *key)
Bir pargasi Kararli ABIL Return 1 if found, O if not found, and -1 if an error is encountered. Unlike the Python
__contains__ () method, this function does not automatically convert unhashable sets into temporary frozen-
sets. Raise a TypeError if the key is unhashable. Raise SystemError if anyset is not a set, frozenset,
or an instance of a subtype.

int PySet_Add (PyObject *set, PyObject *key)
Bir parcasi Kararli ABL. Add key to a set instance. Also works with frozenset instances (like
PyTuple_SetItem() it can be used to fill in the values of brand new frozensets before they are exposed
to other code). Return 0 on success or —1 on failure. Raise a TypeError if the key is unhashable. Raise a

MemoryError if there is no room to grow. Raise a SystemError if set is not an instance of set or its
subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its

subtypes.

int PySet_Discard (PyObject *set, PyObject *key)
Bir parcast Kararli ABL Return 1 if found and removed, 0 if not found (no action taken), and —1 if an error is
encountered. Does not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike
the Python discard () method, this function does not automatically convert unhashable sets into temporary
frozensets. Raise SystemError if sef is not an instance of set or its subtype.

PyObject *PySet_Pop (PyObject *set)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Return a new reference to an arbitrary object in the
set, and removes the object from the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a
SystemError if set is not an instance of set or its subtype.

int PySet_Clear (PyObject *set)
Bir parcast Kararli ABL. Empty an existing set of all elements. Return 0 on success. Return —1 and raise
SystemError if sef is not an instance of set or its subtype.

8.5 Function Objects

8.5.1 Function Objects

There are a few functions specific to Python functions.

type PyFunctionObject
The C structure used for functions.

PyTypeObject PyFunction_Type
This is an instance of Py TypeOb ject and represents the Python function type. It is exposed to Python program-
mers as types.FunctionType.

int PyFunction_Check (PyObject *0)

Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL. This
function always succeeds.

168 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

PyObject *PyFunction_New (PyObject *code, PyObject *globals)
Dondiirdiigii deger: Yeni referans. Return a new function object associated with the code object code. globals must
be a dictionary with the global variables accessible to the function.

The function’s docstring and name are retrieved from the code object. __module___is retrieved from globals.
The argument defaults, annotations and closure are set to NULL. ___qualname___is set to the same value as the
code object’s co_qualname field.

PyObject *PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)
Dondiirdiigii deger: Yeni referans. As PyFunction_New (), but also allows setting the function object’s

__qualname___ attribute. qualname should be a unicode object or NULL; if NULL, the __qualname___ attri-
bute is set to the same value as the code object’s co_qualname field.

Added in version 3.3.
PyObject *PyFunction_GetCode (PyObject *op)

Dondiirdiigii deger: Odiing alinmug referans. Return the code object associated with the function object op.
PyObject *PyFunction_GetGlobals (PyObject *op)

Dondiirdiigii deger: Odiing alinmugs referans. Return the globals dictionary associated with the function object op.
PyObject *PyFunction_GetModule (PyObject *op)

Dondiirdiigii deger: Odiing alinmigs referans. Return a borrowed reference to the __module___ attribute of the
function object op. It can be NULL.

This is normally a st ring containing the module name, but can be set to any other object by Python code.
PyObject *PyFunction_GetDefaults (PyObject *op)

Déndiirdiigii deger: Odiing alinmus referans. Return the argument default values of the function object op. This can
be a tuple of arguments or NULL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.

Raises SystemError and returns —1 on failure.

void PyFunction_SetVectorcall (PyFunctionObject *func, vectorcallfunc vectorcall)

Set the vectorcall field of a given function object func.
Warning: extensions using this API must preserve the behavior of the unaltered (default) vectorcall function!
Added in version 3.12.

PyObject *PyFunction_GetClosure (PyObject *op)

Dondiirdiigii deger: Odiing alinmus referans. Return the closure associated with the function object op. This can be
NULL or a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.

Raises SystemError and returns —1 on failure.

PyObject *PyFunction_GetAnnotations (PyObject *op)

Dondiirdiigii deger: Odiin¢ alinmusg referans. Return the annotations of the function object op. This can be a mutable
dictionary or NULL.

int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)

Set the annotations for the function object op. annotations must be a dictionary or Py_None.

Raises SystemError and returns —1 on failure.

8.5. Function Objects 169

The Python/C API, Yayim 3.12.3

int PyFunction_AddWatcher (PyFunction_WatchCallback callback)

Register callback as a function watcher for the current interpreter. Return an ID which may be passed to
PyFunction_ClearWatcher (). In case of error (e.g. no more watcher IDs available), return —1 and set
an exception.

Added in version 3.12.

int PyFunction_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id previously returned from PyFunction_Addwatcher () for the current
interpreter. Return O on success, or —1 and set an exception on error (e.g. if the given watcher_id was never
registered.)

Added in version 3.12.

type PyFunction_WatchEvent

Enumeration of possible function watcher events: - PyFunction_EVENT_CREATE
- PyFunction_EVENT_DESTROY - PyFunction_EVENT_MODIFY_CODE -
PyFunction_EVENT_MODIFY_DEFAULTS -PyFunction_EVENT_MODIFY_ KWDEFAULTS

Added in version 3.12.

typedef int (*PyFunction_WatchCallback)(PyFunction_WatchEvent event, PyFunctionObject *func, PyObject
*new_value)

Type of a function watcher callback function.

If event is PyFunction_EVENT_CREATE or PyFunction_EVENT_DESTROY then new_value will be
NULL. Otherwise, new_value will hold a borrowed reference to the new value that is about to be stored in func for
the attribute that is being modified.

The callback may inspect but must not modify func; doing so could have unpredictable effects, including infinite
recursion.

If event is PyFunction_EVENT_CREATE, then the callback is invoked after func has been fully initialized.
Otherwise, the callback is invoked before the modification to func takes place, so the prior state of func can be
inspected. The runtime is permitted to optimize away the creation of function objects when possible. In such cases
no event will be emitted. Although this creates the possibility of an observable difference of runtime behavior
depending on optimization decisions, it does not change the semantics of the Python code being executed.

If event is PyFunction_EVENT_DESTROY, Taking a reference in the callback to the about-to-be-destroyed
function will resurrect it, preventing it from being freed at this time. When the resurrected object is destroyed later,
any watcher callbacks active at that time will be called again.

If the callback sets an exception, it must return —1; this exception will be printed as an unraisable exception using
PyErr_WriteUnraisable (). Otherwise it should return 0.

There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.

Added in version 3.12.

170 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

8.5.2 Instance Method Objects

An instance method is a wrapper for a PyCFunct ion and the new way to bind a PyCFunction to a class object. It
replaces the former call PyMethod_New (func, NULL, class).

PyTypeObject PyInstanceMethod_Type

This instance of Py TypeOb ject represents the Python instance method type. It is not exposed to Python prog-
rams.

int PyInstanceMethod_Check (PyObject *0)

Return true if o is an instance method object (has type Py InstanceMethod_Type). The parameter must not
be NULL. This function always succeeds.

PyObject *PyInstanceMethod_New (PyObject *func)

Dondiirdiigii deger: Yeni referans. Return a new instance method object, with func being any callable object. func
is the function that will be called when the instance method is called.

PyObject *PyInstanceMethod_Function (PyObject *im)
Dondiirdiigii deger: Odiing alinms referans. Return the function object associated with the instance method im.
PyObject *PyInstanceMethod_GET_FUNCTION (PyObject *im)

Dondiirdiigii deger: Odiing alinmus referans. Macro version of PyInstanceMethod_Function () which avo-
ids error checking.

8.5.3 Method Objects

Methods are bound function objects. Methods are always bound to an instance of a user-defined class. Unbound methods
(methods bound to a class object) are no longer available.

PyTypeObject PyMethod_Type

This instance of Py TypeObject represents the Python method type. This is exposed to Python programs as
types.MethodType.

int PyMethod_Check (PyObject *0)

Return true if o is a method object (has type PyMethod_ Type). The parameter must not be NULL. This function
always succeeds.

PyObject *PyMethod_New (PyObject *func, PyObject *self)

Dondiirdiigii deger: Yeni referans. Return a new method object, with func being any callable object and self the
instance the method should be bound. func is the function that will be called when the method is called. self must
not be NULL.

PyObject *PyMethod_Function (PyObject *meth)
Déndiirdiigii deger: Odiing alinmug referans. Return the function object associated with the method meth.
PyObject *PyMethod_GET_FUNCTION (PyObject *meth)

Dondiirdiigii deger: Odu'ng: alinmis referans. Macro version of PyMethod_ Function () which avoids error
checking.

PyObject *PyMethod_Self£ (PyObject *meth)
Dondiirdiigii deger: Odiing alinms referans. Return the instance associated with the method meth.
PyObject *PyMethod_GET_SELF (PyObject *meth)

Dondiirdiigii deger: Odiing alinmus referans. Macro version of PyMethod_Sel f () which avoids error checking.

8.5. Function Objects 171

The Python/C API, Yayim 3.12.3

8.5.4 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the cells
from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used instead
of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code; these are not
automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.

type PyCellObject
The C structure used for cell objects.
PyTypeObject PyCell_Type
The type object corresponding to cell objects.
int PyCell_Check (PyObject *ob)
Return true if ob is a cell object; ob must not be NULL. This function always succeeds.
PyObject *PyCell_New (PyObject *ob)

Dondiirdiigii deger: Yeni referans. Create and return a new cell object containing the value ob. The parameter may
be NULL.

PyObject *PyCell_Get (PyObject *cell)
Dondiirdiigii deger: Yeni referans. Return the contents of the cell cell.
PyObject *PyCell_GET (PyObject *cell)

Dondiirdiigii deger: Odiing alinmig referans. Return the contents of the cell cell, but without checking that cell is
non-NULL and a cell object.

int PyCell_Set (PyObject *cell, PyObject *value)

Set the contents of the cell object cell to value. This releases the reference to any current content of the cell. value
may be NULL. cell must be non-NULL; if it is not a cell object, —1 will be returned. On success, O will be returned.

void PyCell_SET (PyObject *cell, PyObject *value)

Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for safety;
cell must be non-NULL and must be a cell object.

8.5.5 Code Objects

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable code that
hasn’t yet been bound into a function.

type PyCodeObject

The C structure of the objects used to describe code objects. The fields of this type are subject to change at any
time.

PyTypeObject PyCode_Type

This is an instance of Py TypeOb ject representing the Python code object.
int PyCode_Check (PyObject *co)

Return true if co is a code object. This function always succeeds.
Py_ssize_t PyCode_GetNumFree (PyCodeObject *co)

Return the number of free variables in a code object.

int PyCode_GetFirstFree (PyCodeObject *co)

Return the position of the first free variable in a code object.

172 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

PyCodeObject *PyUnstable_Code_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject *names, PyObject
*varnames, PyObject *freevars, PyObject *cellvars, PyObject *filename,
PyObject *name, PyObject *qualname, int firstlineno, PyObject
*linetable, PyObject *exceptiontable)

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyar1 olmadan degisebilir.

Return a new code object. If you need a dummy code object to create a frame, use PyCode_NewEmpty ()
instead.

Since the definition of the bytecode changes often, calling PyUnstable Code_New () directly can bind you
to a precise Python version.

The many arguments of this function are inter-dependent in complex ways, meaning that subtle changes to values
are likely to result in incorrect execution or VM crashes. Use this function only with extreme care.

3.11 siiriimiinde degisti: Added qualname and exceptiontable parameters.

3.12 stirimiinde degisti: Renamed from PyCode_New as part of Unstable C API. The old name is deprecated,
but will remain available until the signature changes again.

PyCodeObject *PyUnstable_Code_NewWithPosOnlyArgs (int argcount, int posonlyargcount, int
kwonlyargcount, int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject
*names, PyObject *varnames, PyObject *freevars,
PyObject *cellvars, PyObject *filename, PyObject
*name, PyObject *qualname, int firstlineno,
PyObject *linetable, PyObject *exceptiontable)

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyar1 olmadan degisebilir.

Similar to PyUnstable_Code_New (), but with an extra “posonlyargcount” for positional-only arguments. The
same caveats that apply to PyUnstable_Code_New also apply to this function.

Added in version 3.8: as PyCode_NewWithPosOnlyArgs
3.11 siiriimiinde degisti: Added qualname and exceptiontalble parameters.

3.12 siiriimiinde degisti: Renamed to PyUnstable_Code_NewWithPosOnlyArgs. The old name is depre-
cated, but will remain available until the signature changes again.

PyCodeObject *PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)

Dondiirdiigii deger: Yeni referans. Return a new empty code object with the specified filename, function name, and
first line number. The resulting code object will raise an Except ion if executed.

int PyCode_Addr2Line (PyCodeObject *co, int byte_offset)

Return the line number of the instruction that occurs on or before byte_offset and ends after it. If you just
need the line number of a frame, use PyFrame GetLineNumber () instead.

For efficiently iterating over the line numbers in a code object, use the API described in PEP 626.

int PyCode_Addr2Location (PyObject *co, int byte_offset, int *start_line, int *start_column, int *end_line, int
*end_column)

Sets the passed int pointers to the source code line and column numbers for the instruction at byte_offset.
Sets the value to 0 when information is not available for any particular element.

8.5. Function Objects 173

https://peps.python.org/pep-0626/#out-of-process-debuggers-and-profilers

The Python/C API, Yayim 3.12.3

Returns 1 if the function succeeds and O otherwise.
Added in version 3.11.

PyObject *PyCode_GetCode (PyCodeObject *co)

Equivalent to the Python code getattr(co, 'co_code'). Returns a strong reference to a
PyBytesObject representing the bytecode in a code object. On error, NULL is returned and an excep-
tion is raised.

This PyBytesObject may be created on-demand by the interpreter and does not necessarily represent the
bytecode actually executed by CPython. The primary use case for this function is debuggers and profilers.

Added in version 3.11.

PyObject *PyCode_GetVarnames (PyCodeObject *co)

Equivalent to the Python code getattr(co, 'co_varnames'). Returns a new reference to a
PyTupleObject containing the names of the local variables. On error, NULL is returned and an exception
is raised.

Added in version 3.11.

PyObject *PyCode_GetCellvars (PyCodeObject *co)

Equivalent to the Python code getattr(co, 'co_cellvars'). Returns a new reference to a
PyTupleObject containing the names of the local variables that are referenced by nested functions. On er-
ror, NULL is returned and an exception is raised.

Added in version 3.11.

PyObject *PyCode_GetFreevars (PyCodeObject *co)
Equivalent to the Python code getattr(co, 'co_freevars'). Returns a new reference to a

PyTupleObject containing the names of the free variables. On error, NULL is returned and an exception is
raised.

Added in version 3.11.

int PyCode_AddWatcher (PyCode_WatchCallback callback)

Register callback as a code object watcher for the current interpreter. Return an ID which may be passed to
PyCode_ClearWatcher ().In case of error (e.g. no more watcher IDs available), return —1 and set an excep-
tion.

Added in version 3.12.

int PyCode_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id previously returned from PyCode_Addwatcher () for the current in-
terpreter. Return O on success, or —1 and set an exception on error (e.g. if the given watcher_id was never regis-
tered.)

Added in version 3.12.

type PyCodeEvent

Enumeration of possible code object watcher events: - PY_CODE_EVENT_CREATE -
PY_CODE_EVENT_DESTROY

Added in version 3.12.

typedef int (*PyCode_WatchCallback)(PyCodeEvent event, PyCodeObject *co)
Type of a code object watcher callback function.

If event is PY_CODE_EVENT_CREATE, then the callback is invoked after co has been fully initialized. Otherwise,
the callback is invoked before the destruction of co takes place, so the prior state of co can be inspected.

174 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

If event is PY_CODE_EVENT_DESTROY, taking a reference in the callback to the about-to-be-destroyed code
object will resurrect it and prevent it from being freed at this time. When the resurrected object is destroyed later,
any watcher callbacks active at that time will be called again.

Users of this API should not rely on internal runtime implementation details. Such details may include, but are not
limited to, the exact order and timing of creation and destruction of code objects. While changes in these details
may result in differences observable by watchers (including whether a callback is invoked or not), it does not change
the semantics of the Python code being executed.

If the callback sets an exception, it must return —1; this exception will be printed as an unraisable exception using
PyErr WriteUnraisable (). Otherwise it should return 0.

There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.

Added in version 3.12.

8.5.6 Extra information
To support low-level extensions to frame evaluation, such as external just-in-time compilers, it is possible to attach arbitrary
extra data to code objects.

These functions are part of the unstable C API tier: this functionality is a CPython implementation detail, and the API
may change without deprecation warnings.

Py_ssize_t PyUnstable_Eval_RequestCodeExtralndex (freefunc free)

Bu Kararsiz API. Bu, kiiglik (minor) siirtimlerde uyar1 olmadan degisebilir.

Return a new an opaque index value used to adding data to code objects.

You generally call this function once (per interpreter) and use the result with PyCode_GetExtra and
PyCode_SetExtra to manipulate data on individual code objects.

If free is not NULL: when a code object is deallocated, free will be called on non-NULL data stored under the new
index. Use Py_DecRef () when storing PyObject.

Added in version 3.6: as _PyEval_RequestCodeExtraIndex

3.12 siiriimiinde degisti: Renamed to PyUnstable_Eval_RequestCodeExtraIndex. The old private na-
me is deprecated, but will be available until the API changes.

int PyUnstable_Code_GetExtra (PyObject *code, Py_ssize_t index, void **extra)

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyari olmadan degisebilir.

Set extra to the extra data stored under the given index. Return O on success. Set an exception and return -1 on
failure.

If no data was set under the index, set extra to NULL and return O without setting an exception.
Added in version 3.6: as _PyCode_GetExtra

3.12 stirtimiinde degisti: Renamed to PyUnstable_Code_GetExtra. The old private name is deprecated, but
will be available until the API changes.

8.5. Function Objects 175

The Python/C API, Yayim 3.12.3

int PyUnstable_Code_SetExtra (PyObject *code, Py_ssize_t index, void *extra)

Bu Kararsiz API. Bu, kiigtik (minor) stirtimlerde uyar1 olmadan degisebilir.

Set the extra data stored under the given index to extra. Return O on success. Set an exception and return -1 on
failure.

Added in version 3.6: as _PyCode_SetExtra

3.12 siiriimiinde degisti: Renamed to PyUnstable_Code_SetExtra. The old private name is deprecated, but
will be available until the API changes.

8.6 Other Objects

8.6.1 File Objects

These APIs are a minimal emulation of the Python 2 C API for built-in file objects, which used to rely on the buffered
I/O (FILE*) support from the C standard library. In Python 3, files and streams use the new i o module, which defines
several layers over the low-level unbuffered I/O of the operating system. The functions described below are convenience C
wrappers over these new APIs, and meant mostly for internal error reporting in the interpreter; third-party code is advised
to access the 1o APIs instead.

PyObject *PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char *encoding, const
char *errors, const char *newline, int closefd)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Create a Python file object from the file descriptor of an
already opened file fd. The arguments name, encoding, errors and newline can be NULL to use the defaults; buffering
can be -/ to use the default. name is ignored and kept for backward compatibility. Return NULL on failure. For a
more comprehensive description of the arguments, please refer to the io. open () function documentation.

Uyar1: Since Python streams have their own buffering layer, mixing them with OS-level file descriptors can
produce various issues (such as unexpected ordering of data).

3.2 siirlimiinde degisti: Ignore name attribute.

int PyObject_AsFileDescriptor (PyObject *p)
Bir parcast Kararl1 ABI. Return the file descriptor associated with p as an int. If the object is an integer, its value

is returned. If not, the object’s £ileno () method is called if it exists; the method must return an integer, which
is returned as the file descriptor value. Sets an exception and returns —1 on failure.

PyObject *PyFile_GetLine (PyObject *p, int n)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL. Equivalenttop. readline ([n]), this function reads
one line from the object p. p may be a file object or any object with a readline () method. If n is 0, exactly
one line is read, regardless of the length of the line. If n is greater than 0, no more than n bytes will be read from
the file; a partial line can be returned. In both cases, an empty string is returned if the end of the file is reached
immediately. If 7 is less than 0, however, one line is read regardless of length, but EOFError is raised if the end
of the file is reached immediately.

int PyFile_SetOpenCodeHook (Py_OpenCodeHookFunction handler)
Overrides the normal behavior of io.open_code () to pass its parameter through the provided handler.

The handler is a function of type:

176 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

type Py_OpenCodeHookFunction

Equivalent of PyObject * (*) (PyObject *path, void *userData), where path is guarante-
ed tobe PyUnicodeObject.

The userData pointer is passed into the hook function. Since hook functions may be called from different runtimes,
this pointer should not refer directly to Python state.

As this hook is intentionally used during import, avoid importing new modules during its execution unless they are
known to be frozen or available in sys.modules.

Once a hook has been set, it cannot be removed or replaced, and later calls to PyFile_SetOpenCodeHook ()
will fail. On failure, the function returns -1 and sets an exception if the interpreter has been initialized.

This function is safe to call before Py_Tnitialize ().
Raises an auditing event set opencodehook with no arguments.
Added in version 3.8.

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)
Bir parcasi Kararli ABL. Write object obj to file object p. The only supported flag for flags is Py_ PRINT_RAW;
if given, the str () of the object is written instead of the repr (). Return O on success or —1 on failure; the
appropriate exception will be set.

int PyFile_WriteString (const char *s, PyObject *p)
Bir parcasi Kararli ABI. Write string s to file object p. Return 0 on success or —1 on failure; the appropriate
exception will be set.

8.6.2 Module Objects

PyTypeObject PyModule_Type
Bir parcast Kararli ABI. This instance of Py TypeOb ject represents the Python module type. This is exposed to
Python programs as t ypes .ModuleType.

int PyModule_Check (PyObject *p)

Return true if p is a module object, or a subtype of a module object. This function always succeeds.
int PyModule_CheckExact (PyObject *p)

Return true if p is a module object, but not a subtype of PyModule_Type. This function always succeeds.
PyObject *PyModule_NewObject (PyObject *name)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return a new module object with

the __name___attribute set to name. The module’s__name_ ,_ doc_ ,_ package_ ,and___loader_
attributes are filled in (all but __name___ are set to None); the caller is responsible for providinga ___file_
attribute.

Added in version 3.3.
3.4 stirimiinde degisti: __package___and __loader___ are set to None.

PyObject *PyModule_New (const char *name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABL Similar to PyModule NewObject (), but the name
is a UTF-8 encoded string instead of a Unicode object.

PyObject *PyModule_GetDict (PyObject *module)

Dondiirdiigii deger: Odiing alinmis referans. Bir parcast Kararli ABL Return the dictionary object that implements
module’s namespace; this object is the same as the ___dict___ attribute of the module object. If module is not a
module object (or a subtype of a module object), SystemError is raised and NULL is returned.

8.6. Other Objects 177

The Python/C API, Yayim 3.12.3

It is recommended extensions use other PyModule_* and PyObject_* functions rather than directly manipu-
late a module’s __dict__.
PyObject *PyModule_GetNameObject (PyObject ¥*module)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI 3.7 stiriimiinden beri. Return module’s __name___ value.
If the module does not provide one, or if it is not a string, SystemError is raised and NULL is returned.

Added in version 3.3.

const char *PyModule_GetName (PyObject *module)
Bir pargasi Kararli ABI. Similar to PyModule_GetNameObject () butreturn the name encodedto 'ut £-8"'.
void *PyModule_GetState (PyObject *module)
Bir parcast Kararli ABL. Return the “state” of the module, that is, a pointer to the block of memory allocated at
module creation time, or NULL. See PyModuleDef.m_size.
PyModuleDef *PyModule_GetDef (PyObject *module)
Bir parcas: Kararli ABIL Return a pointer to the PyModuleDef struct from which the module was created, or
NULL if the module wasn’t created from a definition.
PyObject *PyModule_GetFilenameObject (PyObject *module)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Return the name of the file from which module was lo-
aded usingmodule’s __file_ _attribute. If this is not defined, or if it is not a unicode string, raise SystemError
and return NULL; otherwise return a reference to a Unicode object.

Added in version 3.2.

const char *PyModule_GetFilename (PyObject *module)
Bir parcasi Kararli ABL Similar to PyModule_GetFilenameObject () but return the filename encoded to
‘utf-8’.

3.2 siirtimiinden beri kullanim dig1: PyModule_GetFilename () raises UnicodeEncodeError on unen-
codable filenames, use PyModule_ GetFilenameObject () instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function), or
compiled-in modules (where the initialization function is added using Py Import_AppendInittab ()).See building
or extending-with-embedding for details.

The initialization function can either pass a module definition instance to PyModule_ Create (), and return the re-
sulting module object, or request “multi-phase initialization” by returning the definition struct itself.
type PyModuleDef
Bir parcasi Kararli ABI (tiim iiyeler dahil). The module definition struct, which holds all information needed to
create a module object. There is usually only one statically initialized variable of this type for each module.
PyModuleDef_Base m_base
Always initialize this member to PyModuleDef_ HEAD_INIT.

const char *m_name

Name for the new module.

const char *m_doc

Docstring for the module; usually a docstring variable created with PyDoc_ STRVAR is used.

178 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

Py _ssize_tm_size

Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState (), rather than in static globals. This makes modules safe for use in multip-
le sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_ £ ree function has been called, if present.

Setting m_size to —1 means that the module does not support sub-interpreters, because it has global state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m__size is required for multi-phase initialization.

See PEP 3121 for more details.

PyMethodDef *m_methods
A pointer to a table of module-level functions, described by PyMethodDe £ values. Can be NULL if no
functions are present.

PyModuleDef _Slot *m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When using
single-phase initialization, m_slots must be NULL.

3.5 siirtimiinde degisti: Prior to version 3.5, this member was always set to NULL, and was defined as:

inquirym_reload

traverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case im-
mediately after the module is created and before the module is executed (Py_mod_exec function). Mo-

re precisely, this function is not called if m_size is greater than 0 and the module state (as returned by
PyModule_GetState ())is NULL.

3.9 siirtimiinde degisti: No longer called before the module state is allocated.
inquirym_clear
A clear function to call during GC clearing of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case im-
mediately after the module is created and before the module is executed (Py_mod_exec function). Mo-

re precisely, this function is not called if m_size is greater than 0 and the module state (as returned by
PyModule_ GetState ())is NULL.

Like PyTypeObject . tp_clear, this function is not always called before a module is deallocated. For
example, when reference counting is enough to determine that an object is no longer used, the cyclic garbage
collector is not involved and m_ free is called directly.

3.9 siirlimiinde degisti: No longer called before the module state is allocated.

[freefunc m_£free
A function to call during deallocation of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case im-
mediately after the module is created and before the module is executed (Py_mod_exec function). Mo-

re precisely, this function is not called if m_size is greater than 0 and the module state (as returned by
PyModule_ GetState ())is NULL.

3.9 siirtimiinde degisti: No longer called before the module state is allocated.

8.6. Other Objects 179

https://peps.python.org/pep-3121/

The Python/C API, Yayim 3.12.3

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as “single-phase
initialization”, and uses one of the following two module creation functions:
PyObject *PyModule_Create (PyModuleDef *def)
Dondiirdiigii deger: Yeni referans. Create a new module object, given the definition in def. This behaves like
PyModule_Createl () with module_api_version set to PYTHON_API_VERSION.
PyObject *PyModule_Create2 (PyModuleDef *def, int module_api_version)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Create a new module object, given the definition in def,
assuming the API version module_api_version. If that version does not match the version of the running interpreter,
aRuntimeWarning is emitted.

Not: Most uses of this function should be using PyModule Create () instead; only use this if you are sure
you need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using functions
like PyModule_AddObjectRef ().

Multi-phase initialization

An alternate way to specify extensions is to request “multi-phase initialization”. Extension modules created this way behave
more like Python modules: the initialization is split between the creation phase, when the module object is created, and
the execution phase, when it is populated. The distinction is similar to the __new__ () and __init__ () methods of
classes.

Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry is
removed and the module is re-imported, a new module object is created, and the old module is subject to normal garbage
collection — as with Python modules. By default, multiple modules created from the same definition should be independent:
changes to one should not affect the others. This means that all state should be specific to the module object (using e.g.
using PyModule_GetState ()), or its contents (such as the module’s __dict__ or individual classes created with
PyType_FromSpec()).

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple mo-
dules are independent is typically enough to achieve this.

To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDef instance
with non-empty m_s1ots. Before it is returned, the PyModuleDef instance must be initialized with the following
function:

PyObject *PyModuleDef_Init (PyModuleDef *def)

Dondiirdiigii deger: Odiing alinmug referans. Bir parcast Kararli ABI 3.5 siiriimiinden beri. Ensures a module defi-
nition is a properly initialized Python object that correctly reports its type and reference count.

Returns def cast to PyObject™*, or NULL if an error occurred.

Added in version 3.5.
The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:
type PyModuleDef_Slot

int slot

A slot ID, chosen from the available values explained below.

180 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

void *value

Value of the slot, whose meaning depends on the slot ID.
Added in version 3.5.
The m_slots array must be terminated by a slot with id 0.
The available slot types are:

Py_mod_create

Specifies a function that is called to create the module object itself. The value pointer of this slot must point to a
function of the signature:

PyObject *create_module (PyObject *spec, PyModuleDef *def)
The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should return
a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import the
same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New (). The name is taken from spec, not the definition, to allow extension modules to dynami-
cally adjust to their place in the module hierarchy and be imported under different names through symlinks, all
while sharing a single module definition.

There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be used, as
long as it supports setting and getting import-related attributes. However, only PyModule_Type instances may
be returned if the PyModuleDef has non-NULL m_traverse, m_clear, m_free; non-zero m_size; or
slots other than Py_mod_create.

Py_mod_exec

Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python module:
typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module (PyObject *module)

If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

Py_mod multiple_interpreters
Specifies one of the following values:
Py_MOD_MULTIPLE_INTERPRETERS_NOT SUPPORTED

The module does not support being imported in subinterpreters.

Py_MOD_MULTIPLE_INTERPRETERS_SUPPORTED

The module supports being imported in subinterpreters, but only when they share the main interpreter’s GIL.
(See isolating-extensions-howto.)

Py_MOD_PER_INTERPRETER_GII_SUPPORTED

The module supports being imported in subinterpreters, even when they have their own GIL. (See isolating-
extensions-howto.)

This slot determines whether or not importing this module in a subinterpreter will fail.
Multiple Py_mod_multiple_interpreters slots may not be specified in one module definition.

If Py_mod_multiple_interpreters 1is not specified, the import machinery defaults to
Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED.

Added in version 3.12.

8.6. Other Objects 181

https://peps.python.org/pep-0451/

The Python/C API, Yayim 3.12.3

See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used di-
rectly, for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.

PyObject *PyModule_FromDefAndSpec (PyModuleDef *def, PyObject *spec)

Dondiirdiigii deger: Yeni referans. Create a new module object, given the definition in def and the Mo-
duleSpec spec. This behaves like PyModule FromDefAndSpecZ2 () with module_api_version set to
PYTHON_API_VERSION.

Added in version 3.5.

PyObject *PyModule_FromDefAndSpec2 (PyModuleDef *def, PyObject *spec, int module_api_version)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Create a new module object, given
the definition in def and the ModuleSpec spec, assuming the API version module_api_version. If that version does
not match the version of the running interpreter, a Runt imeWarning is emitted.

Not: Most uses of this function should be using PyModule_ FromDe fAndSpec () instead; only use this if you
are sure you need it.

Added in version 3.5.

int PyModule_ExecDef£ (PyObject *module, PyModuleDef *def)

Bir pargast Kararli ABI 3.7 siiriimiinden beri. Process any execution slots (Py_mod_exec) given in def.

Added in version 3.5.

int PyModule_SetDocString (PyObject *module, const char *docstring)

Bir parcast Kararli ABI 3.7 siiriimiinden beri. Set the docstring for module to docstring. This function is
called automatically when creating a module from PyModuleDef, using either PyModule_Create or
PyModule_FromDefAndSpec.

Added in version 3.5.

int PyModule_AddFunctions (PyObject *module, PyMethodDef *functions)

Bir parcasit Kararli ABI 3.7 siiriimiinden beri. Add the functions from the NULL terminated functions array to
module. Refer to the PyMet hodDe f documentation for details on individual entries (due to the lack of a shared
module namespace, module level “functions” implemented in C typically receive the module as their first parameter,
making them similar to instance methods on Python classes). This function is called automatically when creating a
module from PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.

Added in version 3.5.

182

Béliim 8. Concrete Objects Layer

https://peps.python.org/pep-0489/

The Python/C API, Yayim 3.12.3

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution slot
(if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObjectRef (PyObject *module, const char *name, PyObject *value)

Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Add an object to module as name. This is a convenience function
which can be used from the module’s initialization function.

On success, return 0. On error, raise an exception and return —1.
Return NULL if value is NULL. It must be called with an exception raised in this case.

Example usage:

static int
add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong (value);
if (obj == NULL) {
return -1;
}
int res = PyModule_AddObjectRef (module, "spam", obj);
Py_DECREF (obj) ;
return res;

}

.

The example can also be written without checking explicitly if obj is NULL:

p
static int

add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong(value);
int res = PyModule_AddObjectRef (module, "spam", obj);
Py_XDECREF (obj) ;
return res;

Note that Py_ XDECREF () should be used instead of Py_DECREF () in this case, since obj can be NULL.
Added in version 3.10.

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)
Bir parcast Kararli ABL. Similar to PyModule AddObjectRef (), but steals a reference to value on success
(if it returns 0).

The new PyModule_ AddObjectRef () function is recommended, since it is easy to introduce reference leaks
by misusing the PyModule_AddObject () function.

Not: Unlike other functions that steal references, PyModule_AddObject () only releases the reference to
value on success.

This means that its return value must be checked, and calling code must Py_ DECREF () value manually on error.

Example usage:

8.6. Other Objects 183

The Python/C API, Yayim 3.12.3

p
static int

add_spam (PyObject *module, int wvalue)
{
PyObject *obj = PyLong_FromLong(value);
if (obj == NULL) {
return -1;
}
if (PyModule_AddObject (module, "spam", obj) < 0) {
Py_DECREF (ob7j) ;
return -1;
}
// PyModule_ AddObject () stole a reference to obj:
// Py_DECREF (obj) 1is not needed here
return 0;

The example can also be written without checking explicitly if obj is NULL:

static int
add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong (value);
if (PyModule_AddObject (module, "spam", obj) < 0) {
Py_XDECREF (obj) ;
return -1;
3
// PyModule_ AddObject () stole a reference to obj:
// Py_DECREF (obj) is not needed here
return 0O;

Note that Py_ XDECREF () should be used instead of Py_DECREF () in this case, since obj can be NULL.

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Bir parcasi Kararli ABL. Add an integer constant to module as name. This convenience function can be used from
the module’s initialization function. Return —1 on error, O on success.
int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Bir parcast Kararli ABI. Add a string constant to module as name. This convenience function can be used from the
module’s initialization function. The string value must be NULL-terminated. Return —1 on error, O on success.
PyModule_AddIntMacro (module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return —1 on error, O on success.
PyModule_AddStringMacro (module, macro)
Add a string constant to module.
int PyModule_AddType (PyObject *module, PyTypeObject *type)
Bir parcast Kararli ABI 3.10 siiriimiinden beri. Add a type object to module. The type object is finalized by calling

internally Py Type_Ready (). The name of the type object is taken from the last component of tp_name after
dot. Return —1 on error, O on success.

Added in version 3.9.

184 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter. This
allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can be

created from a single definition.

PyObject *PyState_FindModule (PyModuleDef *def)
Dondiirdiigii deger: Odiing alinmus referans. Bir pargast Kararli ABL Returns the module object that was created
from def for the current interpreter. This method requires that the module object has been attached to the interpreter
state with PyState_AddModule () beforehand. In case the corresponding module object is not found or has
not been attached to the interpreter state yet, it returns NULL.

int PyState_AddModule (PyObject *module, PyModuleDef *def)
Bir pargasi Kararli ABI 3.3 siiriimiinden beri. Attaches the module object passed to the function to the interpreter
state. This allows the module object to be accessible via PyState_ FindModule ().
Only effective on modules created using single-phase initialization.

Python calls PyState_AddModule automatically after importing a module, so it is unnecessary (but harmless)
to call it from module initialization code. An explicit call is needed only if the module’s own init code subsequently
calls PyState_FindModule. The function is mainly intended for implementing alternative import mechanisms
(either by calling it directly, or by referring to its implementation for details of the required state updates).

The caller must hold the GIL.
Return 0 on success or -1 on failure.
Added in version 3.3.

int PyState_RemoveModule (PyModuleDef *def)
Bir parcas: Kararli ABI 3.3 siiriimiinden beri. Removes the module object created from def from the interpreter
state. Return O on success or -1 on failure.

The caller must hold the GIL.
Added in version 3.3.

8.6.3 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__ () method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.
PyTypeObject PySeqlter_Type
Bir parcast Kararli ABL Type object for iterator objects returned by PySegIter New () and the one-argument
form of the iter () built-in function for built-in sequence types.
int PySeqIter_Check (PyObject *op)
Return true if the type of op is PySegIter_Type. This function always succeeds.
PyObject *PySeqIter_New (PyObject *seq)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return an iterator that works with a general sequence
object, seq. The iteration ends when the sequence raises IndexError for the subscripting operation.
PyTypeObject PyCallIter_Type
Bir parcasi Kararli ABI. Type object for iterator objects returned by PyCallTter New () and the two-argument
form of the iter () built-in function.

8.6. Other Objects 185

The Python/C API, Yayim 3.12.3

int PyCallIter_Check (PyObject *op)

Return true if the type of opis PyCallIter_Type. This function always succeeds.

PyObject *PyCallIter_New (PyObject *callable, PyObject *sentinel)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABIL Return a new iterator. The first parameter, callable, can
be any Python callable object that can be called with no parameters; each call to it should return the next item in
the iteration. When callable returns a value equal to sentinel, the iteration will be terminated.

8.6.4 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty_Type

Bir parcasi Kararli ABIL The type object for the built-in descriptor types.

PyObject *PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL

PyObject *PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL

PyObject *PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL

PyObject *PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)

Dondiirdiigii deger: Yeni referans.

PyObject *PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL

int PyDescr_IsData (PyObject *descr)

Return non-zero if the descriptor objects descr describes a data attribute, or O if it describes a method. descr must
be a descriptor object; there is no error checking.

PyObject *PyWrapper_New (PyObject*, PyObject™*)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL

8.6.5 Slice Objects

PyTypeObject PySlice_Type

Bir parcas: Kararli ABI. The type object for slice objects. This is the same as s1ice in the Python layer.

int PySlice_Check (PyObject *ob)

Return true if ob is a slice object; ob must not be NULL. This function always succeeds.

PyObject *PySlice_New (PyObject *start, PyObject *stop, PyObject *step)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return a new slice object with the given values. The
start, stop, and step parameters are used as the values of the slice object attributes of the same names. Any of the
values may be NULL, in which case the None will be used for the corresponding attribute. Return NULL if the
new object could not be allocated.

186

Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

int PySlice_GetIndices (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
Bir parcas: Kararli ABI. Retrieve the start, stop and step indices from the slice object slice, assuming a sequence
of length length. Treats indices greater than length as errors.

Returns O on success and —1 on error with no exception set (unless one of the indices was not None and failed to
be converted to an integer, in which case —1 is returned with an exception set).

You probably do not want to use this function.
3.2 siirtimiinde degisti: The parameter type for the slice parameter was PyS1iceObject * before.

int PySlice_GetIndicesEx (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t
*step, Py_ssize_t *slicelength)
Bir parcasi Kararlt ABL Usable replacement for PyS1ice_GetIndices (). Retrieve the start, stop, and step

indices from the slice object slice assuming a sequence of length length, and store the length of the slice in slicelength.
Out of bounds indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and —1 on error with exception set.

Not: This function is considered not safe for resizable sequences. Its invocation should be replaced by a combination
of PySlice_Unpack () and PySlice AdjustIndices () where

-

if (PySlice_GetIndicesEx(slice, length, &start, &stop, &step, &slicelength) < 0) {
// return error

is replaced by

if (PySlice_Unpack(slice, &start, &stop, é&step) < 0) |
// return error
I3
slicelength = PySlice_AdjustIndices (length, &start, &stop, step);

3.2 siiriimiinde degisti: The parameter type for the slice parameter was PyS1iceObject * before.

3.6.1 siirlimiinde degisti: If Py_LIMITED_APT is not set or set to the value between 0x03050400 and
0x03060000 (not including) or 0x03060100 or higher PySlice_GetIndicesEx () isimplemented as a
macro using PySlice_Unpack () and PySlice_AdjustIndices (). Arguments start, stop and step are
evaluated more than once.

3.6.1 siirtimiinden beri kullanim dig1: If Py_LIMITED_APT is set to the value less than 0x030504 00 or between
0x03060000 and 0x03060100 (not including) PySlice_GetIndicesEx () is a deprecated function.

int PySlice_Unpack (PyObject *slice, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
Bir parcasi Kararli ABI 3.7 siirtimiinden beri. Extract the start, stop and step data members from a slice object as
C integers. Silently reduce values larger than PY_SSIZE_T_MAX toPY_SSIZE_T_MAX, silently boost the start

and stop values less than PY_SSIZE_T_MINtoPY_SSIZE_T_MIN, and silently boost the step values less than
-PY_SSIZE_T_MAXto-PY_SSIZE_T_MAX

Return —1 on error, O on success.
Added in version 3.6.1.
Py_ssize_t PySlice_AdjustIndices (Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t step)

Bir pargasit Kararli ABI 3.7 siiriimiinden beri. Adjust start/end slice indices assuming a sequence of the specified
length. Out of bounds indices are clipped in a manner consistent with the handling of normal slices.

Return the length of the slice. Always successful. Doesn’t call Python code.

8.6. Other Objects 187

The Python/C API, Yayim 3.12.3

Added in version 3.6.1.

Ellipsis Object

PyObject *Py_Ellipsis
The Python E11ipsis object. This object has no methods. Like Py None, it is an immortal. singleton object.

3.12 siiriimiinde degisti: Py_E11ipsis is immortal.

8.6.6 MemoryView objects

A memoryview object exposes the C level buffer interface as a Python object which can then be passed around like any
other object.
PyObject *PyMemoryView_FromObject (PyObject *obj)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Create a memoryview object from an object that provides
the buffer interface. If obj supports writable buffer exports, the memoryview object will be read/write, otherwise it
may be either read-only or read/write at the discretion of the exporter.
PyBUF_READ
Flag to request a readonly buffer.
PyBUF_WRITE

Flag to request a writable buffer.

PyObject *PyMemoryView_FromMemory (char *mem, Py_ssize_t size, int flags)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Create a memoryview object using
mem as the underlying buffer. flags can be one of PyBUF_READ or PyBUF_WRITE.
Added in version 3.3.

PyObject *PyMemoryView_FromBuffer (const Py_buffer *view)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.11 siiriimiinden beri. Create a memoryview object
wrapping the given buffer structure view. For simple byte buffers, PyMemoryView FromMemory () is the
preferred function.

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Create a memoryview object to a contiguous chunk of
memory (in either ‘C’ or ‘Fortran order) from an object that defines the buffer interface. If memory is contiguous,
the memoryview object points to the original memory. Otherwise, a copy is made and the memoryview points to a
new bytes object.

buffertype can be one of PyBUF_READ or PyBUF_WRITE.

int PyMemoryView_Check (PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview. This function always succeeds.

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
Return a pointer to the memoryview’s private copy of the exporter’s buffer. mview must be a memoryview instance;
this macro doesn’t check its type, you must do it yourself or you will risk crashes.

PyObject *PyMemoryView_GET_BASE (PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if the memoryview has be-

en created by one of the functions PyMemoryView FromMemory () or PyMemoryView FromBuffer ().
mview must be a memoryview instance.

188 Béliim 8. Concrete Objects Layer

https://peps.python.org/pep-0683/

The Python/C API, Yayim 3.12.3

8.6.7 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement weak
references. The first is a simple reference object, and the second acts as a proxy for the original object as much as it can.
int PyWeakref_Check (PyObject *ob)

Return true if ob is either a reference or proxy object. This function always succeeds.

int PyWeakref_CheckRef (PyObject *ob)

Return true if ob is a reference object. This function always succeeds.

int PyWeakref_CheckProxy (PyObject *ob)
Return true if ob is a proxy object. This function always succeeds.

PyObject *PyWeakref_NewRef (PyObject *ob, PyObject *callback)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return a weak reference object for the object ob. This
will always return a new reference, but is not guaranteed to create a new object; an existing reference object may
be returned. The second parameter, callback, can be a callable object that receives notification when ob is garbage
collected; it should accept a single parameter, which will be the weak reference object itself. callback may also be

None or NULL. If ob is not a weakly referencable object, or if callback is not callable, None, or NULL, this will
return NULL and raise TypeError.

PyObject *PyWeakref_NewProxy (PyObject *ob, PyObject *callback)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Return a weak reference proxy object for the object ob.
This will always return a new reference, but is not guaranteed to create a new object; an existing proxy object may
be returned. The second parameter, callback, can be a callable object that receives notification when ob is garbage
collected; it should accept a single parameter, which will be the weak reference object itself. callback may also be

None or NULL. If ob is not a weakly referencable object, or if callback is not callable, None, or NULL, this will
return NULL and raise TypeError.

PyObject *PyWeakref_GetObject (PyObject *ref)

Dondiirdiigii deger: Odiing alinmus referans. Bir parcast Kararli ABL Return the referenced object from a weak
reference, ref. If the referent is no longer live, returns Py_None.

Not: This function returns a borrowed reference to the referenced object. This means that you should always call
Py_INCREF () on the object except when it cannot be destroyed before the last usage of the borrowed reference.

PyObject *PyWeakref_GET_OBJECT (PyObject *ref)

Dondiirdiigii deger: Odiing alinnug referans. Similar to PylWeakref GetObject (), butdoes no error checking.
void PyObject_ClearWeakRefs (PyObject *object)

Bir parcas: Kararli ABI. This function is called by the t p_dealloc handler to clear weak references.

This iterates through the weak references for object and calls callbacks for those references which have one. It
returns when all callbacks have been attempted.

8.6. Other Objects 189

The Python/C API, Yayim 3.12.3

8.6.8 Capsules

Refer to using-capsules for more information on using these objects.
Added in version 3.1.
type PyCapsule

This subtype of PyOb ject represents an opaque value, useful for C extension modules who need to pass an opaque
value (as a void* pointer) through Python code to other C code. It is often used to make a C function pointer
defined in one module available to other modules, so the regular import mechanism can be used to access C APIs
defined in dynamically loaded modules.

type PyCapsule_Destructor
Bir parcast Kararli ABIL The type of a destructor callback for a capsule. Defined as:

[typedef void (*PyCapsule_Destructor) (PyObject *);

See PyCapsule_New () for the semantics of PyCapsule_Destructor callbacks.

int PyCapsule_CheckExact (PyObject *p)
Return true if its argument is a PyCapsule. This function always succeeds.

PyObject *PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL. Create a PyCapsule encapsulating the pointer. The
pointer argument may not be NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule_Import ().
void *PyCapsule_GetPointer (PyObject *capsule, const char *name)
Bir parcast Kararli ABL Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.
The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule is
NULL, the name passed in must also be NULL. Python uses the C function st rcmp () to compare capsule names.
PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Bir parcast Kararli ABI. Return the current destructor stored in the capsule. On failure, set an exception and return
NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr Occurred () to disambiguate.

void *PyCapsule_GetContext (PyObject *capsule)
Bir pargasi Kararli ABIL. Return the current context stored in the capsule. On failure, set an exception and return
NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.
const char *PyCapsule_GetName (PyObject *capsule)

Bir parcast Kararli ABI. Return the current name stored in the capsule. On failure, set an exception and return
NULL.

190 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.

void *PyCapsule_Import (const char *name, int no_block)

Bir parcast Kararli ABIL Import a pointer to a C object from a capsule attribute in a module. The name parameter
should specify the full name to the attribute, as in module.attribute. The name stored in the capsule must
match this string exactly.

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.
3.3 siiriimiinde degisti: no_block has no effect anymore.

int PyCapsule_IsValid (PyObject *capsule, const char *name)

Bir parcast Kararli ABI. Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact (), has a non-NULL pointer stored in it, and its internal name matches the name
parameter. (See PyCapsule_GetPointer () for information on how capsule names are compared.)

In other words, if PyCapsule_IsValid () returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get) are guaranteed to succeed.

Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext (PyObject *capsule, void *context)

Bir parcas: Kararli ABI. Set the context pointer inside capsule to context.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)

Bir parcast Kararli ABL Set the destructor inside capsule to destructor.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName (PyObject *capsule, const char *name)

Bir parcast Kararli ABI Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If
the previous name stored in the capsule was not NULL, no attempt is made to free it.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Bir parcas: Kararli ABI. Set the void pointer inside capsule to pointer. The pointer may not be NULL.

Return 0 on success. Return nonzero and set an exception on failure.

8.6.9 Frame Objects

type PyFrameObject
Bir parcast Simirli AP (bir opak yapi olarak). The C structure of the objects used to describe frame objects.

There are no public members in this structure.

3.11 siiriimiinde degisti: The members of this structure were removed from the public C API. Refer to the What’s
New entry for details.

The PyEval_ GetFrame () and PyThreadState_GetFrame () functions can be used to get a frame object.

See also Reflection.

8.6. Other Objects 191

The Python/C API, Yayim 3.12.3

PyTypeObject PyFrame_Type
The type of frame objects. It is the same object as t ypes . FrameType in the Python layer.
3.11 siiriimiinde degisti: Previously, this type was only available after including <frameobject .h>.
int PyFrame_Check (PyObject *obj)
Return non-zero if obj is a frame object.
3.11 siiriimiinde degisti: Previously, this function was only available after including <frameobject .h>.

PyFrameObject *PyFrame_GetBack (PyFrameObject *frame)

Get the frame next outer frame.
Return a strong reference, or NULL if frame has no outer frame.
Added in version 3.9.
PyObject *PyFrame_GetBuiltins (PyFrameObject *frame)
Get the frame’s f_builtins attribute.

Return a strong reference. The result cannot be NULL.
Added in version 3.11.

PyCodeObject *PyFrame_GetCode (PyFrameObject *frame)
Bir parcast Kararli ABI 3. 10 siiriimiinden beri. Get the frame code.

Return a strong reference.
The result (frame code) cannot be NULL.
Added in version 3.9.

PyObject *PyFrame_GetGenerator (PyFrameObject *frame)

Get the generator, coroutine, or async generator that owns this frame, or NULL if this frame is not owned by a

generator. Does not raise an exception, even if the return value is NULL.
Return a strong reference, or NULL.
Added in version 3.11.

PyObject *PyFrame_GetGlobals (PyFrameObject *frame)
Get the frame’s f_globals attribute.

Return a strong reference. The result cannot be NULL.
Added in version 3.11.

int PyFrame_GetLasti (PyFrameObject *frame)
Get the frame’s f_lasti attribute.

Returns -1 if frame.f_lasti is None.
Added in version 3.11.

PyObject *PyFrame_GetVar (PyFrameObject *frame, PyObject *name)

Get the variable name of frame.
e Return a strong reference to the variable value on success.
¢ Raise NameError and return NULL if the variable does not exist.

* Raise an exception and return NULL on error.

192 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

name type must be a str.
Added in version 3.12.

PyObject *PyFrame_GetVarString (PyFrameObject *frame, const char *name)
Similar to PyFrame_GetVar (), but the variable name is a C string encoded in UTF-8.

Added in version 3.12.

PyObject *PyFrame_GetLocals (PyFrameObject *frame)
Get the frame’s £_locals attribute (dict).

Return a strong reference.
Added in version 3.11.

int PyFrame_GetLineNumber (PyFrameObject *frame)

Bir parcast Kararli ABI 3. 10 siiriimiinden beri. Return the line number that frame is currently executing.

Internal Frames

Unless using PEP 523, you will not need this.

struct _PyInterpreterFrame

The interpreter’s internal frame representation.
Added in version 3.11.

PyObject *PyUnstable_InterpreterFrame_GetCode (struct _PylnterpreterFrame *frame) ;

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyar1 olmadan degisebilir.

Return a strong reference to the code object for the frame.

Added in version 3.12.

int PyUnstable_InterpreterFrame_GetLasti (struct _PylnterpreterFrame *frame) ;

Bu Kararsiz API. Bu, kiigtik (minor) stirtimlerde uyar1 olmadan degisebilir.

Return the byte offset into the last executed instruction.
Added in version 3.12.

int PyUnstable_InterpreterFrame_GetLine (struct _PylnterpreterFrame *frame) ;

Bu Kararsiz API. Bu, kiigiik (minor) stirtimlerde uyar1 olmadan degisebilir.

Return the currently executing line number, or -1 if there is no line number.

Added in version 3.12.

8.6. Other Objects 193

https://peps.python.org/pep-0523/

The Python/C API, Yayim 3.12.3

8.6.10 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over a
function that yields values, rather than explicitly calling PyGen_New () or PyGen_NewlWithQualName ().

type PyGenObject
The C structure used for generator objects.
PyTypeObject PyGen_Type
The type object corresponding to generator objects.
int PyGen_Check (PyObject *ob)
Return true if ob is a generator object; ob must not be NULL. This function always succeeds.
int PyGen_CheckExact (PyObject *ob)
Return true if ob’s type is PyGen_ Type; ob must not be NULL. This function always succeeds.
PyObject *PyGen_New (PyFrameObject *frame)

Dondiirdiigii deger: Yeni referans. Create and return a new generator object based on the frame object. A reference
to frame is stolen by this function. The argument must not be NULL.

PyObject *PyGen_NewWithQualName (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Dondiirdiigii deger: Yeni referans. Create and return a new generator object based on the frame object, with

__name__ and __qualname___ set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.11 Coroutine Objects

Added in version 3.5.
Coroutine objects are what functions declared with an async keyword return.

type PyCoroObject
The C structure used for coroutine objects.

PyTypeObject PyCoro_Type
The type object corresponding to coroutine objects.

int PyCoro_CheckExact (PyObject *ob)
Return true if ob’s type is PyCoro_ Type; ob must not be NULL. This function always succeeds.
PyObject *PyCoro_New (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Dondiirdiigii deger: Yeni referans. Create and return a new coroutine object based on the frame object, with

__name___and __qualname___ set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.12 Context Variables Objects

Added in version 3.7.

3.7.1 siirtimiinde degisti:

Not: In Python 3.7.1 the signatures of all context variables C APIs were changed to use PyOb ject pointers instead of
PyContext, PyContextVar, and PyContext Token, e.g.:

194 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

// in 3.7.0:
PyContext *PyContext_New (void) ;

// in 3.7.1+:
PyObject *PyContext_New (wvoid) ;

See bpo-34762 for more details.

This section details the public C API for the contextvars module.

type PyContext
The C structure used to represent a contextvars.Context object.

type PyContextVar

The C structure used to represent a contextvars.ContextVar object.
type PyContextToken

The C structure used to represent a contextvars . Token object.
PyTypeObject PyContext_Type

The type object representing the context type.
PyTypeObject PyContextVar_Type

The type object representing the context variable type.
PyTypeObject PyContextToken_Type

The type object representing the context variable token type.

Type-check macros:

int PyContext_CheckExact (PyObject *0)
Return true if o is of type PyContext_Type. o must not be NULL. This function always succeeds.
int PyContextVar_CheckExact (PyObject *0)
Return true if o is of type PyContextVar_Type. o must not be NULL. This function always succeeds.

int PyContextToken_CheckExact (PyObject *0)

Return true if o is of type PyContext Token_Type. o must not be NULL. This function always succeeds.
Context object management functions:
PyObject *PyContext_New (void)

Dondiirdiigii deger: Yeni referans. Create a new empty context object. Returns NULL if an error has occurred.
PyObject *PyContext_Copy (PyObject *ctx)

Dondiirdiigii deger: Yeni referans. Create a shallow copy of the passed ctx context object. Returns NULL if an error
has occurred.

PyObject *PyContext_CopyCurrent (void)
Dondiirdiigii deger: Yeni referans. Create a shallow copy of the current thread context. Returns NULL if an error
has occurred.

int PyContext_Enter (PyObject *ctx)
Set ctx as the current context for the current thread. Returns O on success, and —1 on error.

int PyContext_Exit (PyObject *ctx)

Deactivate the ctx context and restore the previous context as the current context for the current thread. Returns 0
on success, and —1 on error.

8.6. Other Objects 195

https://bugs.python.org/issue?@action=redirect&bpo=34762

The Python/C API, Yayim 3.12.3

Context variable functions:

PyObject *PyContextVar_New (const char *name, PyObject *def)
Dondiirdiigii deger: Yeni referans. Create anew ContextVar object. The name parameter is used for introspection
and debug purposes. The def parameter specifies a default value for the context variable, or NULL for no default.
If an error has occurred, this function returns NULL.

int PyContextVar_Get (PyObject *var, PyObject *default_value, PyObject **value)
Get the value of a context variable. Returns —1 if an error has occurred during lookup, and 0 if no error occurred,
whether or not a value was found.

If the context variable was found, value will be a pointer to it. If the context variable was not found, value will point
to:

e default_value, if not NULL;
¢ the default value of var, if not NULL;
e NULL
Except for NULL, the function returns a new reference.

PyObject *PyContextVar_Set (PyObject *var, PyObject *value)
Dondiirdiigii deger: Yeni referans. Set the value of var to value in the current context. Returns a new token object
for this change, or NULL if an error has occurred.

int PyContextVar_Reset (PyObject *var, PyObject *token)

Reset the state of the var context variable to that it was in before PyContextVar_Set () thatreturned the token
was called. This function returns O on success and —1 on error.

8.6.13 DateTime Objects

Various date and time objects are supplied by the datet ime module. Before using any of these functions, the he-
ader file datetime . h must be included in your source (note that this is not included by Python. h), and the macro
PyDateTime_ IMPORT must be invoked, usually as part of the module initialisation function. The macro puts a pointer
to a C structure into a static variable, PyDateTimeAPT, that is used by the following macros.

type PyDateTime_Date

This subtype of PyOb ject represents a Python date object.

type PyDateTime_DateTime
This subtype of PyOb ject represents a Python datetime object.

type PyDateTime_Time
This subtype of PyOb ject represents a Python time object.

type PyDateTime_Delta
This subtype of PyOb ject represents the difference between two datetime values.

PyTypeObject PyDateTime_DateType
This instance of Py TypeOb ject represents the Python date type; it is the same object as datetime.date in
the Python layer.

PyTypeObject PyDateTime_DateTimeType

This instance of PyTypeObject represents the Python datetime type; it is the same object as datetime.
datetime in the Python layer.

196 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

PyTypeObject PyDateTime_TimeType
This instance of Py TypeOb ject represents the Python time type; it is the same object as datet ime.time in
the Python layer.

PyTypeObject PyDateTime_DeltaType

This instance of Py TypeOb ject represents Python type for the difference between two datetime values; it is the
same object as datetime.timedelta in the Python layer.

PyTypeObject PyDateTime_TZInfoType

This instance of Py TypeOb ject represents the Python time zone info type; it is the same object as datet ime.
tzinfo in the Python layer.

Macro for access to the UTC singleton:

PyObject *PyDateTime_TimeZone_UTC
Returns the time zone singleton representing UTC, the same object as datetime.timezone.utc.
Added in version 3.7.

Type-check macros:

int PyDate_Check (PyObject *ob)

Return true if ob is of type PyDateTime_DateType or asubtype of PyDateTime_DateType. ob must not
be NULL. This function always succeeds.

int PyDate_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime DateType. ob must not be NULL. This function always succeeds.
int PyDateTime_Check (PyObject *ob)

Return true if obis of type PyDateTime_DateTimeType orasubtype of PyDateTime_DateTimeType.
ob must not be NULL. This function always succeeds.

int PyDateTime_CheckExact (PyObject *ob)

Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL. This function always suc-
ceeds.

int PyTime_Check (PyObject *ob)
Return true if 0b is of type PyDateTime_TimeType or asubtype of PyDateTime_TimeType. ob must not
be NULL. This function always succeeds.

int PyTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL. This function always succeeds.
int PyDelta_Check (PyObject *ob)

Return true if ob is of type PyDateTime_DeltaType or asubtype of PyDateTime_DeltaType. ob must
not be NULL. This function always succeeds.

int PyDelta_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL. This function always succeeds.
int PyTZInfo_Check (PyObject *ob)

Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType. ob
must not be NULL. This function always succeeds.

int PyTZInfo_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_ TZInfoType. obmust not be NULL. This function always succeeds.

Macros to create objects:

8.6. Other Objects 197

The Python/C API, Yayim 3.12.3

PyObject *PyDate_FromDate (int year, int month, int day)

Dondiirdiigii deger: Yeni referans. Return a datet ime . date object with the specified year, month and day.

PyObject *PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second, int
usecond)

Dondiirdiigii deger: Yeni referans. Return a datet ime . datetime object with the specified year, month, day,
hour, minute, second and microsecond.

PyObject *PyDateTime_FromDateAndTimeAndFold (int year, int month, int day, int hour, int minute, int
second, int usecond, int fold)

Dondiirdiigii deger: Yeni referans. Return a datetime .datet ime object with the specified year, month, day,
hour, minute, second, microsecond and fold.

Added in version 3.6.

PyObject *PyTime_FromTime (int hour, int minute, int second, int usecond)

Dondiirdiigii deger: Yeni referans. Return a datetime . t ime object with the specified hour, minute, second and
microsecond.

PyObject *PyTime_FromTimeAndFold (int hour, int minute, int second, int usecond, int fold)

Dondiirdiigii deger: Yeni referans. Return a datetime .t ime object with the specified hour, minute, second,
microsecond and fold.

Added in version 3.6.

PyObject *PyDelta_FromDSU (int days, int seconds, int useconds)

Dondiirdiigii deger: Yeni referans. Return a datetime.timedelta object representing the given number of
days, seconds and microseconds. Normalization is performed so that the resulting number of microseconds and
seconds lie in the ranges documented for datetime.timedelta objects.

PyObject *PyTimeZone_FromOffset (PyObject *offset)
Dondiirdiigii deger: Yeni referans. Return a datetime.timezone object with an unnamed fixed offset repre-
sented by the offset argument.

Added in version 3.7.

PyObject *PyTimeZone_FromOffsetAndName (PyObject *offset, PyObject *name)

Dondiirdiigii deger: Yeni referans. Return a datet ime . t imezone object with a fixed offset represented by the
offset argument and with tzname name.

Added in version 3.7.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Dat e, including subc-
lasses (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR (PyDateTime_Date *0)
Return the year, as a positive int.

int PyDateTime_GET_MONTH (PyDateTime_Date *0)
Return the month, as an int from 1 through 12.

int PyDateTime_GET_DAY (PyDateTime_Date *0)
Return the day, as an int from 1 through 31.

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime, inc-
luding subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR (PyDateTime_DateTime *0)

Return the hour, as an int from O through 23.

198 Béliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.3

int PyDateTime_DATE_GET_MINUTE (PyDateTime_DateTime *0)

Return the minute, as an int from O through 59.

int PyDateTime_DATE_GET_SECOND (PyDateTime_DateTime *0)
Return the second, as an int from 0 through 59.

int PyDateTime_DATE_GET_MICROSECOND (PyDateTime_DateTime *0)
Return the microsecond, as an int from O through 999999.

int PyDateTime_DATE_GET_FOLD (PyDateTime_DateTime *0)
Return the fold, as an int from O through 1.
Added in version 3.6.

PyObject *PyDateTime_DATE_GET_TZINFO (PyDateTime_DateTime *0)
Return the tzinfo (which may be None).

Added in version 3.10.

Macros to extract fields from time objects. The argument must be an instance of PyDate Time_ Time, including subc-
lasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR (PyDateTime_Time *0)
Return the hour, as an int from O through 23.

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *0)
Return the minute, as an int from O through 59.

int PyDateTime_TIME_GET_SECOND (PyDateTime_Time *0)
Return the second, as an int from 0 through 59.

int PyDateTime_TIME_GET_MICROSECOND (PyDateTime_Time *0)
Return the microsecond, as an int from 0 through 999999.

int PyDateTime_TIME_GET_FOLD (PyDateTime_Time *0)
Return the fold, as an int from O through 1.
Added in version 3.6.

PyObject *PyDateTime_TIME_GET_TZINFO (PyDateTime_Time *0)
Return the tzinfo (which may be None).

Added in version 3.10.

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delt a, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DELTA_GET_DAYS (PyDateTime_Delta *0)
Return the number of days, as an int from -999999999 to 999999999.

Added in version 3.3.

int PyDateTime_DELTA_GET_SECONDS (PyDateTime_Delta *0)
Return the number of seconds, as an int from O through 86399.
Added in version 3.3.

int PyDateTime_DELTA_GET_MICROSECONDS (PyDateTime_Delta *0)
Return the number of microseconds, as an int from 0 through 999999.

Added in version 3.3.

8.6. Other Objects 199

The Python/C API, Yayim 3.12.3

Macros for the convenience of modules implementing the DB API:

PyObject *PyDateTime_FromTimestamp (PyObject *args)
Dondiirdiigii deger: Yeni referans. Create and return a new datetime.datetime object given an argument
tuple suitable for passing to datetime.datetime.fromtimestamp ().

PyObject *PyDate_FromTimestamp (PyObject *args)

Dondiirdiigii deger: Yeni referans. Create and return a new datetime.date object given an argument tuple
suitable for passing to datetime.date.fromtimestamp ().

8.6.14 Objects for Type Hinting

Various built-in types for type hinting are provided. Currently, two types exist — GenericAlias and Union. Only

GenericAlias is exposed to C.

PyObject *Py_GenericAlias (PyObject *origin, PyObject *args)
Bir parcast Kararli ABI 3.9 siirtimiinden beri. Create a GenericAlias object. Equivalent to calling the Python
class types.GenericAlias. The origin and args arguments set the GenericAlias‘’s __origin__ and
__args___ attributes respectively. origin should be a Py TypeObject*,and argscanbe a Py TupleObject*
or any PyObject*. If args passed is not a tuple, a 1-tuple is automatically constructed and __args___ is set
to (args,). Minimal checking is done for the arguments, so the function will succeed even if origin is not a

type. The GenericAlias's __parameters__ attribute is constructed lazily from __args__. On failure,
an exception is raised and NULL is returned.

Here’s an example of how to make an extension type generic:

-

static PyMethodDef my_obj_methods[] = {
// Other methods.

{"__class_getitem__", Py_GenericAlias, METH_O|METH_CLASS, "See PEP 585"}

Ayrica bakimz:
The data model method __class_getitem__ ().
Added in version 3.9.

PyTypeObject Py_GenericAliasType
Bir parcast Kararli ABI 3.9 siiriimiinden beri. The C type of the object returned by Py_GenericAlias ().
Equivalent to types.GenericAlias in Python.

Added in version 3.9.

200 Béliim 8. Concrete Objects Layer

BOLUM 9

Initialization, Finalization, and Threads

See also Python Initialization Configuration.

9.1 Before Python Initialization

In an application embedding Python, the Py Tnitialize () function must be called before using any other Python/C
API functions; with the exception of a few functions and the global configuration variables.

The following functions can be safely called before Python is initialized:

* Configuration functions:

PyImport_AppendInittab ()
PyImport_ExtendInittab ()
PyInitFrozenExtensions ()
PyMem_SetAllocator ()

PyMem_ SetupDebugHooks ()
PyObject_SetArenaAllocator ()
Py_SetPath()

Py _SetProgramName ()

Py _SetPythonHome ()
Py_SetStandardStreamEncoding ()
PySys_AddWarnOption ()
PySys_AddXOption ()

PySys_ResetWarnOptions ()

¢ Informative functions:

201

The Python/C API, Yayim 3.12.3

— Py _IsInitialized()
— PyMem GetAllocator()
— PyObject_GetArenaAllocator ()
— Py_GetBuildInfo()
— Py_GetCompiler()
— Py_GetCopyright ()
— Py GetPlatform()
— Py_GetVersion()
« Utilities:
— Py_DecodeLocale ()
¢ Memory allocators:
— PyMem_ RawMalloc ()
— PyMem RawRealloc ()

— PyMem RawCalloc ()

PyMem_ RawFree ()

Not: The following functions should not be called before Py Tnitialize(): Py_EncodeLocale (),
Py_GetPath(), Py GetPrefix(), Py GetExecPrefix(), Py_GetProgramFullPath(),
Py_GetPythonHome (), Py_GetProgramName () and PyEval_InitThreads ().

9.2 Global configuration variables

Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.

When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, —b sets
Py_BytesWarningFlagtoland —bb sets Py _BytesWarningFlag to 2.

int Py_BytesWarningFlag

This API is kept for backward compatibility: setting PyConfig.bytes_warning should be used instead, see
Python Initialization Configuration.

Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if greater
or equal to 2.

Set by the —b option.
3.12 siirtimiinden beri kullanim dig1.

int Py_DebugFlag

This API is kept for backward compatibility: setting PyConfig.parser_debug should be used instead, see
Python Initialization Configuration.

Turn on parser debugging output (for expert only, depending on compilation options).
Set by the —d option and the PYTHONDEBUG environment variable.

3.12 siiriimiinden beri kullanim dig1.

202 Boliim 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.3

int Py_DontWriteBytecodeFlag

This API is kept for backward compatibility: setting PyConfig.write_bytecode should be used instead,
see Python Initialization Configuration.

If set to non-zero, Python won'’t try to write . pyc files on the import of source modules.
Set by the —B option and the PYTHONDONTWRITEBYTECODE environment variable.
3.12 siiriimiinden beri kullanim dig1.

int Py_FrozenFlag

This API is kept for backward compatibility: setting PyConfig.pathconfig_warnings should be used
instead, see Python Initialization Configuration.

Suppress error messages when calculating the module search path in Py_GetPath ().
Private flag used by _freeze_module and frozenmain programs.
3.12 siiriimiinden beri kullanim dig1.

int Py_HashRandomizationFlag

This API is kept for backward compatibility: setting PyConfig.hash_seed and PyConfig.
use_hash_seed should be used instead, see Python Initialization Configuration.

Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.
If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.
3.12 siiriimiinden beri kullanim dig1.

int Py_IgnoreEnvironmentFlag

This API is kept for backward compatibility: setting PyConfig.use_environment should be used instead,
see Python Initialization Configuration.

Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.
Set by the —E and - I options.
3.12 siiriimiinden beri kullanim dig1.

int Py_InspectFlag

This API is kept for backward compatibility: setting PyConfig. inspect should be used instead, see Python
Initialization Configuration.

When a script is passed as first argument or the —c option is used, enter interactive mode after executing the script
or the command, even when sys . stdin does not appear to be a terminal.

Set by the —1i option and the PYTHONINSPECT environment variable.
3.12 siiriimiinden beri kullanim dis1.

int Py_InteractiveFlag

This API is kept for backward compatibility: setting PyConfig. interactive should be used instead, see
Python Initialization Configuration.

Set by the —1 option.
3.12 siiriimiinden beri kullanim dig1.

int Py_IsolatedFlag

This API is kept for backward compatibility: setting PyConfig. isolated should be used instead, see Python
Initialization Configuration.

9.2. Global configuration variables 203

The Python/C API, Yayim 3.12.3

Run Python in isolated mode. In isolated mode sys.path contains neither the script’s directory nor the user’s
site-packages directory.

Set by the — I option.
Added in version 3.4.
3.12 siirtimiinden beri kullanim dig1.

int Py_LegacyWindowsFSEncodingFlag

This API is kept for backward compatibility: setting PyPreConfig. legacy_windows_fs_encoding
should be used instead, see Python Initialization Configuration.

If the flag is non-zero, use the mbcs encoding with replace error handler, instead of the UTF-8 encoding with
surrogatepass error handler, for the filesystem encoding and error handler.

Set to 1 if the PYTHONLEGACYWINDOWSFSENCODING environment variable is set to a non-empty string.
See PEP 529 for more details.

Availability: Windows.

3.12 siiriimiinden beri kullanim dig1.

int Py_LegacyWindowsStdioFlag

This API is kept for backward compatibility: setting PyConfig. legacy_windows_stdio should be used
instead, see Python Initialization Configuration.

If the flag is non-zero, use io.FileIO instead of io._WindowsConsoleIO for sys standard streams.
Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.

See PEP 528 for more details.

Auvailability: Windows.

3.12 siiriimiinden beri kullanim dig1.

int Py_NoSiteFlag

This API is kept for backward compatibility: setting PyConfig.site_import should be used instead, see
Python Initialization Configuration.

Disable the import of the module site and the site-dependent manipulations of sys.path that it entails. Also
disable these manipulations if site is explicitly imported later (call site.main () if you want them to be
triggered).

Set by the —S option.
3.12 siiriimiinden beri kullanim dig1.

int Py_NoUserSiteDirectory

This API is kept for backward compatibility: setting PyConfig.user_site_directory should be used
instead, see Python Initialization Configuration.

Don’t add the user site-packages directorytosys.path.
Set by the —s and - I options, and the PYTHONNOUSERSITE environment variable.
3.12 siiriimiinden beri kullanim dig1.

int Py_OptimizeFlag

This API is kept for backward compatibility: setting PyConfig.optimization_Ilevel should be used ins-
tead, see Python Initialization Configuration.

Set by the —O option and the PYTHONOPTIMIZE environment variable.

204 Boliim 9. Initialization, Finalization, and Threads

https://peps.python.org/pep-0529/
https://peps.python.org/pep-0528/

The Python/C API, Yayim 3.12.3

3.12 siirtimiinden beri kullanim digi.

int Py_QuietFlag

This API is kept for backward compatibility: setting PyConfig.quiet should be used instead, see Python
Initialization Configuration.

Don’t display the copyright and version messages even in interactive mode.
Set by the —g option.

Added in version 3.2.

3.12 siiriimiinden beri kullanim dig1.

int Py_UnbufferedStdioFlag

This API is kept for backward compatibility: setting PyConfig.buffered_stdio should be used instead,
see Python Initialization Configuration.

Force the stdout and stderr streams to be unbuffered.
Set by the —u option and the PYTHONUNBUFFERED environment variable.
3.12 siiriimiinden beri kullanim dig1.

int Py_VerboseFlag

This API is kept for backward compatibility: setting PyConfig. verbose should be used instead, see Python
Initialization Configuration.

Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is
loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a module. Also
provides information on module cleanup at exit.

Set by the —v option and the PYTHONVERBOSE environment variable.

3.12 siiriimiinden beri kullanim dig1.

9.3 Initializing and finalizing the interpreter

void Py_Initialize ()

Bir parcasi Kararli ABI. Initialize the Python interpreter. In an application embedding Python, this should be called
before using any other Python/C API functions; see Before Python Initialization for the few exceptions.

This initializes the table of loaded modules (sys .modules), and creates the fundamental modules builtins,
__main__ and sys. It also initializes the module search path (sys.path). It does not set sys.argv;
use PySys_SetArgvEx () for that. This is a no-op when called for a second time (without calling
Py_FinalizeEx () first). There is no return value; it is a fatal error if the initialization fails.

Usethe Py_InitializeFromConfig () function to customize the Python Initialization Configuration.

Not: On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect non-Python
uses of the console using the C Runtime.

void Py_InitializeEx (int initsigs)

Bir parcast Kararli ABL This function works like Py_Tnitialize () if initsigs is 1. If initsigs is O, it skips
initialization registration of signal handlers, which might be useful when Python is embedded.

Usethe Py_TnitializeFromConfig () function to customize the Python Initialization Configuration.

9.3. Initializing and finalizing the interpreter 205

The Python/C API, Yayim 3.12.3

int Py_IsInitialized()

Bir parcast Kararli ABIL. Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not.
After Py _FinalizeEx () is called, this returns false until Py_Tnitialize () is called again.

int Py_FinalizeEx ()

Bir parcast Kararli ABI 3.6 siirtimiinden beri. Undo all initializations made by Py Tnitialize () and subsequ-
ent use of Python/C API functions, and destroy all sub-interpreters (see Py_NewInterpreter () below) that
were created and not yet destroyed since the lastcall to Py Tnitialize ().ldeally, this frees all memory alloca-
ted by the Python interpreter. This is a no-op when called for a second time (without calling Py Tnitialize ()
again first). Normally the return value is O. If there were errors during finalization (flushing buffered data), -1 is
returned.

This function is provided for a number of reasons. An embedding application might want to restart Python without
having to restart the application itself. An application that has loaded the Python interpreter from a dynamically
loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During
a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before
exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del__ () methods) to fail when they depend on other objects (even functions) or modules. Dy-
namically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by
the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references
between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions
may not work properly if their initialization routine is called more than once; this can happen if an application calls
Py _Initialize () and Py FinalizeEx () more than once.

Raises an auditing event cpython._PySys_ClearAuditHooks with no arguments.

Added in version 3.6.

void Py_Finalize ()

Bir parcasi Kararli ABL This is a backwards-compatible version of Py_FinalizeEx () that disregards the
return value.

9.4 Process-wide parameters

int Py_SetStandardStreamEncoding (const char *encoding, const char *errors)

This API is kept for backward compatibility: setting PyConfig.stdio_encoding and PyConfig.
stdio_errors should be used instead, see Python Initialization Configuration.

This function should be called before Py_Tnitialize (), if itis called at all. It specifies which encoding and
error handling to use with standard 10, with the same meanings as in str.encode ().

It overrides PYTHONIOENCOD ING values, and allows embedding code to control IO encoding when the environ-
ment variable does not work.

encoding and/or errors may be NULL to use PYTHONIOENCODING and/or default values (depending on other
settings).

Note that sys . stderr always uses the “backslashreplace” error handler, regardless of this (or any other) setting.

If Py_FinalizeEx () is called, this function will need to be called again in order to affect subsequent calls to
Py_Initialize().

Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).

Added in version 3.4.

206

Boliim 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.3

3.11 siirimiinden beri kullanim dig1.

void Py_SetProgramName (const wchar_t *name)

Bir parcasi Kararl1 ABIL This API is kept for backward compatibility: setting PyConfig.program_name
should be used instead, see Python Initialization Configuration.

This function should be called before Py Tnitialize () is called for the first time, if it is called at all. It
tells the interpreter the value of the argv [0] argument to the main () function of the program (converted to
wide characters). This is used by Py_GetPath () and some other functions below to find the Python run-time
libraries relative to the interpreter executable. The default value is 'python'. The argument should point to
a zero-terminated wide character string in static storage whose contents will not change for the duration of the
program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_t* string.
3.11 siirimiinden beri kullanim dig1.

wchar_t *Py_GetProgramName ()

Bir parcasi Kararli ABIL. Return the program name set with Py_ Set ProgramName (), or the default. The re-
turned string points into static storage; the caller should not modify its value.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.
3.10 siiriimiinde degisti: It now returns NULL if called before Py_Tnitialize ().

wchar_t *Py_GetPrefix ()

Bir pargasi Kararli ABL Return the prefix for installed platform-independent files. This is derived through a number
of complicated rules from the program name set with Py Set ProgramName () and some environment variab-
les; for example, if the program name is ' /usr/local/bin/python’, the prefixis ' /usr/local'. The
returned string points into static storage; the caller should not modify its value. This corresponds to the prefix
variable in the top-level Makefile and the ——prefix argument to the configure script at build time. The
value is available to Python code as sys . prefix. Itis only useful on Unix. See also the next function.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.
3.10 siiriimiinde degisti: It now returns NULL if called before Py Tnitialize ().

wchar_t *Py_GetExecPrefix ()

Bir parcast Kararli ABL Return the exec-prefix for installed platform-dependent files. This is derived through a
number of complicated rules from the program name set with Py SetProgramName () and some environ-
ment variables; for example, if the program name is ' /usr/local/bin/python’, the exec-prefix is '/
usr/local"'. The returned string points into static storage; the caller should not modify its value. This corres-
ponds to the exec_prefix variable in the top-level Makefile and the ——exec-prefix argument to the
configure script at build time. The value is available to Python code as sy s .exec_prefix. Itis only useful
on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared
libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed
inthe /usr/local/plat subtree while platform independent may be installed in /usr/local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running
the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are
another platform, and Intel machines running Linux are yet another platform. Different major revisions of the same
operating system generally also form different platforms. Non-Unix operating systems are a different story; the
installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set to
the empty string. Note that compiled Python bytecode files are platform independent (but not independent from
the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

9.4. Process-wide parameters 207

The Python/C API, Yayim 3.12.3

This function should not be called before Py Tnitialize (), otherwise it returns NULL.

3.10 siiriimiinde degisti: It now returns NULL if called before Py Tnitialize ().

wchar_t *Py_GetProgramFullPath ()

Bir parcast Kararli ABI. Return the full program name of the Python executable; this is computed as a side-effect
of deriving the default module search path from the program name (set by Py_SetProgramName () above).
The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.executable.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.

3.10 siirlimiinde degisti: It now returns NULL if called before Py_Initialize ().

wchar_t *Py_GetPath ()

Bir parcasi Kararli ABIL. Return the default module search path; this is computed from the program name (set by
Py_SetProgramName () above) and some environment variables. The returned string consists of a series of
directory names separated by a platform dependent delimiter character. The delimiter character is ' : ' on Unix
and macOS, '; ' on Windows. The returned string points into static storage; the caller should not modify its value.
The list sys . path is initialized with this value on interpreter startup; it can be (and usually is) modified later to
change the search path for loading modules.

This function should not be called before Py Initialize (), otherwise it returns NULL.

3.10 siiriimiinde degisti: It now returns NULL if called before Py Tnitialize ().

void Py_SetPath (const wchar_t*)

Bir pargasi Kararli ABI 3.7 siiriimiinden beri. This API is kept for backward compatibility: setting PyConfig.
module_search_paths and PyConfig.module_search_paths_set should be used instead, see
Python Initialization Configuration.

Set the default module search path. If this function is called before Py Tnitialize (),then Py _GetPath ()
won’t attempt to compute a default search path but uses the one provided instead. This is useful if Python is em-
bedded by an application that has full knowledge of the location of all modules. The path components should be
separated by the platform dependent delimiter character, which is ' : ' on Unix and macOS, '; ' on Windows.

This also causes sys.executable to be set to the program full path (see Py_GetProgramFullPath ())
and for sys.prefix and sys.exec_prefix to be empty. It is up to the caller to modify these if required
after calling Py_Initialize ().

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
The path argument is copied internally, so the caller may free it after the call completes.
3.8 stirtimiinde degisti: The program full path is now used for sys.executable, instead of the program name.

3.11 siiriimiinden beri kullanim dig1.

const char *Py_GetVersion ()

Bir pargast Kararli ABI Return the version of this Python interpreter. This is a string that looks something like

["3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

)

The first word (up to the first space character) is the current Python version; the first characters are the major and
minor version separated by a period. The returned string points into static storage; the caller should not modify its
value. The value is available to Python code as sys.version.

See also the Py_ Version constant.

208

Boliim 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.3

const char *Py_GetPlatform ()

Bir parcast Kararli ABI. Return the platform identifier for the current platform. On Unix, this is formed from
the “official” name of the operating system, converted to lower case, followed by the major revision number; e.g.,
for Solaris 2.x, which is also known as SunOS 5.x, the value is 'sunos5'. On macOS, it is 'darwin'. On
Windows, it is 'win'. The returned string points into static storage; the caller should not modify its value. The
value is available to Python code as sys.platform.

const char *Py_GetCopyright ()

Bir parcas: Kararli ABI. Return the official copyright string for the current Python version, for example
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'’

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.copyright.
const char *Py_GetCompiler ()

Bir pargasi Kararli ABIL Return an indication of the compiler used to build the current Python version, in square
brackets, for example:

["[GCC 2.7.2.21"]

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

const char *Py_GetBuildInfo ()

Bir parcast Kararli ABIL. Return information about the sequence number and build date and time of the current
Python interpreter instance, for example

["#67, Aug 1 1997, 22:34:28"]

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

void PySys_SetArgvEx (int argc, wchar_t **argv, int updatepath)
Bir pargasi Kararl1 ABI This API is kept for backward compatibility: setting PyConfig.argv, PyConfig.
parse_argvand PyConfig.safe_path should be used instead, see Python Initialization Configuration.

Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main ()
function with the difference that the first entry should refer to the script file to be executed rather than the executable
hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argy can be an empty string.
If this function fails to initialize sy s . argv, a fatal condition is signalled using Py_FatalError ().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys.path
according to the following algorithm:

* If the name of an existing script is passed in argv [0], the absolute path of the directory where the script
is located is prepended to sys .path.

¢ Otherwise (that is, if argc is 0 or argv [0] doesn’t point to an existing file name), an empty string is pre-
pended to sys.path, which is the same as prepending the current working directory (" . ").

Use Py_DecodeLocale () to decode a bytes string to get a wchar_* string.

See also PyConfig.orig_argvand PyConfig.argv members of the Python Initialization Configuration.

Not: It is recommended that applications embedding the Python interpreter for purposes other than executing a
single script pass 0 as updatepath, and update sy s . path themselves if desired. See CVE-2008-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sys . path element after
having called PySys_SetArgv (), for example using:

9.4. Process-wide parameters 209

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, Yayim 3.12.3

[PyRun_SimpleString("import sys; sys.path.pop(0)\n");

Added in version 3.1.3.
3.11 siiriimiinden beri kullanim dig1.

void PySys_SetArgv (int argc, wchar_t **argv)

Bir parcasi Kararli ABIL. This APIis kept for backward compatibility: setting PyConfig.argvand PyConfig.
parse_argv should be used instead, see Python Initialization Configuration.

This function works like PySys_SetArgvEx () with updatepath set to 1 unless the python interpreter was
started with the —T.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

See also PyConfig.orig_argvand PyConfig.argv members of the Python Initialization Configuration.
3.4 siirtimiinde degisti: The updatepath value depends on —1I.

3.11 siiriimiinden beri kullanim dig1.

void Py_SetPythonHome (const wchar_t *home)
Bir parcasi Kararli ABI. This API is kept for backward compatibility: setting PyConfig. home should be used
instead, see Python Initialization Configuration.

Set the default “home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for the
meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will not change for
the duration of the program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
3.11 siiriimiinden beri kullanim dig1.

wchar_t *Py_GetPythonHome ()

Bir parcasi Kararli ABIL. Return the default “home”, that is, the value set by a previous call to
Py_SetPythonHome (), or the value of the PYTHONHOME environment variable if it is set.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.

3.10 siirlimiinde degisti: It now returns NULL if called before Py_Initialize ().

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global lock,
called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python objects.
Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example, when
two threads simultaneously increment the reference count of the same object, the reference count could end up being
incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see sys.
setswitchinterval ()). Thelock is also released around potentially blocking I/O operations like reading or writing
a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_Get ().

210 Boliim 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.3

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
. Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
. Do some blocking I/O operation
Py_END_ALLOW_THREADS

The Py BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.

The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
. Do some blocking I/O operation
PyEval_RestoreThread (_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is
released (since another thread could immediately acquire the lock and store its own thread state in the global variable).
Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread
state pointer.

Not: Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard z11ib and hash1 ib modules release the GIL when
compressing or hashing data.

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is auto-
matically associated to them and the code showed above is therefore correct. However, when threads are created from
C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there a thread
state structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the aforementioned
third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then
acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you
are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.

The PyGILState_Ensure () and PyGILState_Release () functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

9.5. Thread State and the Global Interpreter Lock 211

The Python/C API, Yayim 3.12.3

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction () ;
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* functions assume there is only one global interpreter (created automatically by
Py _Initialize ()). Python supports the creation of additional interpreters (using Py_NewInterpreter ()),
but mixing multiple interpreters and the PyGILState_* API is unsupported.

9.5.3 Cautions about fork()

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems with
fork (), after a process forks only the thread that issued the fork will exist. This has a concrete impact both on how
locks must be handled and on all stored state in CPython’s runtime.

The fact that only the “current” thread remains means any locks held by other threads will never be released. Python solves
this for os . fork () byacquiring the locks it uses internally before the fork, and releasing them afterwards. In addition, it
resets any lock-objects in the child. When extending or embedding Python, there is no way to inform Python of additional
(non-Python) locks that need to be acquired before or reset after a fork. OS facilities such as pthread_atfork ()
would need to be used to accomplish the same thing. Additionally, when extending or embedding Python, calling fork ()
directly rather than through os. fork () (and returning to or calling into Python) may result in a deadlock by one of
Python’s internal locks being held by a thread that is defunct after the fork. PyOS_AfterFork_Child () tries to reset
the necessary locks, but is not always able to.

The fact that all other threads go away also means that CPython’s runtime state there must be cleaned up properly, which
os.fork () does. This means finalizing all other Py ThreadState objects belonging to the current interpreter and
all other PyInterpreterState objects. Due to this and the special nature of the ‘main” interpreter, fork () should
only be called in that interpreter’s “main” thread, where the CPython global runtime was originally initialized. The only
exception is if exec () will be called immediately after.

9.5.4 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the Python
interpreter:

type PyInterpreterState

Bir parcast Smrli API (bir opak yapr olarak). This data structure represents the state shared by a number of
cooperating threads. Threads belonging to the same interpreter share their module administration and a few other
internal items. There are no public members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory, open
file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter
they belong.

type PyThreadState

Bir parcasi Sinirlt AP (bir opak yapt olarak). This data structure represents the state of a single thread. The only
public data member is:

212 Boliim 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.3

PylInterpreterState *interp
This thread’s interpreter state.
void PyEval_InitThreads ()
Bir pargasi Kararli ABIL Deprecated function which does nothing.
In Python 3.6 and older, this function created the GIL if it didn’t exist.
3.9 siiriimiinde degisti: The function now does nothing.

3.7 siirtimiinde degisti: This function is now called by Py Tnitialize (), so you don’t have to call it yourself
anymore.

3.2 siirtimiinde degisti: This function cannot be called before Py Tnitialize () anymore.
3.9 siirlimiinden beri kullanim digt.

int PyEval_ThreadsInitialized()

Bir parcas: Kararli ABI. Returns a non-zero value if PyEval_ TInitThreads () has been called. This function
can be called without holding the GIL, and therefore can be used to avoid calls to the locking API when running
single-threaded.

3.7 stirtimiinde degisti: The GIL is now initialized by Py_Tnitialize ().
3.9 siirlimiinden beri kullanim digt.

PyThreadState *PyEval_SaveThread ()

Bir parcast Kararli ABI. Release the global interpreter lock (if it has been created) and reset the thread state to
NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it.

void PyEval_RestoreThread (PyThreadState *tstate)

Bir parcast Kararli ABL Acquire the global interpreter lock (if it has been created) and set the thread state to zstate,
which must not be NULL. If the lock has been created, the current thread must not have acquired it, otherwise
deadlock ensues.

Not: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread
was not created by Python. You can use _Py_TIsFinalizing() or sys.is_finalizing() to check if
the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

PyThreadState *PyThreadState_Get ()

Bir parcasi Kararl1 ABIL Return the current thread state. The global interpreter lock must be held. When the current
thread state is NULL, this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState *PyThreadState_Swap (PyThreadState *tstate)

Bir parcast Kararli ABIL. Swap the current thread state with the thread state given by the argument #state, which may
be NULL. The global interpreter lock must be held and is not released.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState_STATE PyGILState_Ensure ()

Bir parcast Kararli ABIL Ensure that the current thread is ready to call the Python C API regardless of the current
state of Python, or of the global interpreter lock. This may be called as many times as desired by a thread as long as
each call is matched withacallto PyGILState_Release ().In general, other thread-related APIs may be used
between PyGILState_Ensure () and PyGILState_Release () callsaslong as the thread state is restored
to its previous state before the Release(). For example, normal usage of the Py BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS macros is acceptable.

9.5. Thread State and the Global Interpreter Lock 213

The Python/C API, Yayim 3.12.3

The return value is an opaque “handle” to the thread state when PyGILState Ensure () was called, and must
be passed to PyGILState_Release () to ensure Python is left in the same state. Even though recursive calls
are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure () must save the handle
forits call to PyGILState Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure
is a fatal error.

Not: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread
was not created by Python. You can use _Py_TIsFinalizing() or sys.is_finalizing() to check if
the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

void PyGILState_Release (PyGILState_STATE)

Bir parcas: Kararli ABI. Release any resources previously acquired. After this call, Python’s state will be the same
as it was prior to the corresponding PyGILState_Ensure () call (but generally this state will be unknown to
the caller, hence the use of the GILState API).

Everycallto PyGILState_Ensure () mustbe matched byacallto PyGILState_Release () onthe same
thread.
PyThreadState *PyGILState_GetThisThreadState ()

Bir parcast Kararli ABL Get the current thread state for this thread. May return NULL if no GILState API has been
used on the current thread. Note that the main thread always has such a thread-state, even if no auto-thread-state
call has been made on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check ()

Return 1 if the current thread is holding the GIL and O otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return 1.
This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory allocation
functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or otherwise behave
differently.

Added in version 3.4.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.
Py_BEGIN_ALLOW_THREADS
Bir parcast Kararh ABI. This macro expands to { PyThreadState *_save; _save =
PyEval_SaveThread () ;. Note that it contains an opening brace; it must be matched with a following
Py_END_ALLOW_THREADS macro. See above for further discussion of this macro.
Py_END_ALLOW_THREADS
Bir parcasi Kararli ABL This macro expandsto PyEval_RestoreThread (_save); }.Note thatitcontains
a closing brace; it must be matched with an earlier Py BEGIN_ALLOW_THREADS macro. See above for further
discussion of this macro.
Py_BLOCK_THREADS
Bir parcasi Kararli ABL. This macro expands to PyEval_RestoreThread (_save) ;: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace.
Py_UNBLOCK_THREADS

Bir parcasi Kararli ABI. This macro expands to _save = PyEval_SaveThread () ;: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

214 Boliim 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.3

9.5.5 Low-level API

All of the following functions must be called after Py_Tnitialize ().
3.7 siiriimiinde degisti: Py_Initialize () now initializes the GIL.

PylnterpreterState *PyInterpreterState_New ()

Bir parcast Kararli1 ABIL. Create a new interpreter state object. The global interpreter lock need not be held, but
may be held if it is necessary to serialize calls to this function.

Raises an auditing event coython.PyInterpreterState_New with no arguments.

void PyInterpreterState_Clear (PylnterpreterState *interp)

Bir parcast Kararli ABIL Reset all information in an interpreter state object. The global interpreter lock must be
held.

Raises an auditing event cpython.PyInterpreterState_Clear with no arguments.

void PyInterpreterState_Delete (PylnterpreterState *interp)

Bir parcasit Kararli ABL. Destroy an interpreter state object. The global interpreter lock need not be held. The
interpreter state must have been reset with a previous call to Py InterpreterState_Clear ().

PyThreadState *PyThreadState_New (PylnterpreterState *interp)

Bir parcast Kararli ABIL. Create a new thread state object belonging to the given interpreter object. The global
interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)

Bir parcast Kararli ABI Reset all information in a thread state object. The global interpreter lock must be held.

3.9 siiriimiinde degisti: This function now calls the PyThreadState.on_delete callback. Previously, that
happened in PyThreadState _Delete ().

void PyThreadState_Delete (PyThreadState *tstate)

Bir parcast Kararli ABI. Destroy a thread state object. The global interpreter lock need not be held. The thread
state must have been reset with a previous call to PyThreadState_Clear ().

void PyThreadState_DeleteCurrent (void)

Destroy the current thread state and release the global interpreter lock. Like PyThreadState_Delete (),
the global interpreter lock need not be held. The thread state must have been reset with a previous call to
PyThreadState_Clear().

PyFrameObject *PyThreadState_GetFrame (PyThreadState *tstate)

Bir pargast Kararli ABI 3.10 siiriimiinden beri. Get the current frame of the Python thread state zstate.
Return a strong reference. Return NULL if no frame is currently executing.

See also PyEval_ GetFrame ().

tstate must not be NULL.

Added in version 3.9.

uint64_t PyThreadState_Get ID (PyThreadState *tstate)

Bir parcas: Kararli ABI 3.10 siiriimiinden beri. Get the unique thread state identifier of the Python thread state
tstate.

tstate must not be NULL.

Added in version 3.9.

9.5. Thread State and the Global Interpreter Lock 215

The Python/C API, Yayim 3.12.3

PylInterpreterState *PyThreadState_GetInterpreter (PyThreadState *tstate)

Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Get the interpreter of the Python thread state zstate.
tstate must not be NULL.

Added in version 3.9.

void PyThreadState_EnterTracing (PyThreadState *tstate)

Suspend tracing and profiling in the Python thread state zstate.
Resume them using the Py ThreadState_LeaveTracing () function.

Added in version 3.11.

void PyThreadState_LeaveTracing (PyThreadState *tstate)

Resume tracing and profiling in the Python thread state 1#state suspended by the
PyThreadState_ EnterTracing () function.

See also PyEval_SetTrace () and PyEval_SetProfile () functions.
Added in version 3.11.

PylnterpreterState *PyInterpreterState_Get (void)

Bir parcast Kararli ABI 3.9 siiriimiinden beri. Get the current interpreter.

Issue a fatal error if there no current Python thread state or no current interpreter. It cannot return NULL.
The caller must hold the GIL.

Added in version 3.9.

int64_t PyInterpreterState_GetID (PylnterpreterState *interp)

Bir parcast Kararli ABI 3.7 siirtimiinden beri. Return the interpreter’s unique ID. If there was any error in doing so
then -1 is returned and an error is set.

The caller must hold the GIL.
Added in version 3.7.

PyObject *PyInterpreterState_GetDict (PylnterpreterState *interp)

Bir parcast Kararlt ABI 3.8 siiriimiinden beri. Return a dictionary in which interpreter-specific data may be stored.
If this function returns NULL then no exception has been raised and the caller should assume no interpreter-specific
dict is available.

This is not a replacement for PyModule_GetState (), which extensions should use to store interpreter-specific
state information.

Added in version 3.8.

typedef PyObject *(*_PyFrameEvalFunction)(PyThreadState *tstate, _PylnterpreterFrame *frame, int throwflag)

Type of a frame evaluation function.
The throwflag parameter is used by the throw () method of generators: if non-zero, handle the current exception.
3.9 siiriimiinde degisti: The function now takes a tstate parameter.

3.11 stirimiinde degisti: The frame parameter changed from PyFrameObject* to
_PyInterpreterFrame*.

_PyFrameEvalFunction _PyInterpreterState_GetEvalFrameFunc (PylnterpreterState *interp)

Get the frame evaluation function.
See the PEP 523 “Adding a frame evaluation API to CPython”.
Added in version 3.9.

216

Boliim 9. Initialization, Finalization, and Threads

https://peps.python.org/pep-0523/

The Python/C API, Yayim 3.12.3

void _PyInterpreterState_SetEvalFrameFunc (PylnterpreterState *interp, _PyFrameEvalFunction
eval_frame)

Set the frame evaluation function.
See the PEP 523 “Adding a frame evaluation API to CPython”.
Added in version 3.9.

PyObject *PyThreadState_GetDict ()

Dondiirdiigii deger: Odiing alinnus referans. Bir parcast Kararli ABL Return a dictionary in which extensions can
store thread-specific state information. Each extension should use a unique key to use to store state in the dictionary.
It is okay to call this function when no current thread state is available. If this function returns NULL, no exception
has been raised and the caller should assume no current thread state is available.

int PyThreadState_SetAsyncExc (unsigned long id, PyObject *exc)

Bir parcast Kararli ABIL. Asynchronously raise an exception in a thread. The id argument is the thread id of the
target thread; exc is the exception object to be raised. This function does not steal any references to exc. To prevent
naive misuse, you must write your own C extension to call this. Must be called with the GIL held. Returns the
number of thread states modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL,
the pending exception (if any) for the thread is cleared. This raises no exceptions.

3.7 siiriimiinde degisti: The type of the id parameter changed from 1ong to unsigned long.

void PyEval_AcquireThread (PyThreadState *tstate)

Bir parcasi Kararli ABL. Acquire the global interpreter lock and set the current thread state to fstate, which must
not be NULL. The lock must have been created earlier. If this thread already has the lock, deadlock ensues.

Not: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread
was not created by Python. You can use _Py_TIsFinalizing() or sys.is_finalizing() to check if
the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

3.8 siriimiinde degisti: Updated to be consistent with PyEval RestoreThread(),
Py_END_ALLOW_THREADS (), and PyGILState Ensure (), and terminate the current thread if
called while the interpreter is finalizing.

PyEval_RestoreThread () is a higher-level function which is always available (even when threads have not
been initialized).
void PyEval_ReleaseThread (PyThreadState *tstate)

Bir parcasi Kararl1 ABI. Reset the current thread state to NULL and release the global interpreter lock. The lock
must have been created earlier and must be held by the current thread. The fstate argument, which must not be
NULL, is only used to check that it represents the current thread state — if it isn’t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when threads have not been
initialized).

void PyEval_AcquireLock ()
Bir parcast Kararlt ABIL. Acquire the global interpreter lock. The lock must have been created earlier. If this thread
already has the lock, a deadlock ensues.

3.2 siiriimiinden beri kullanim digi: This function does not update the current thread state. Please use
PyEval_RestoreThread () or PyEval_AcquireThread () instead.

Not: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread
was not created by Python. You can use _Py_TIsFinalizing () or sys.is_finalizing () to check if
the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

9.5. Thread State and the Global Interpreter Lock 217

https://peps.python.org/pep-0523/

The Python/C API, Yayim 3.12.3

3.8 siriimiinde degisti: Updated to be consistent with PyEval RestoreThread(),
Py_END_ALLOW_THREADS (), and PyGILState Ensure (), and terminate the current thread if
called while the interpreter is finalizing.

void PyEval_ReleaseLock ()
Bir parcas: Kararli ABI. Release the global interpreter lock. The lock must have been created earlier.

3.2 siirimiinden beri kullanim digi: This function does not update the current thread state. Please use
PyEval_SaveThread () or PyEval_ReleaseThread () instead.

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.

The “main” interpreter is the first one created when the runtime initializes. It is usually the only Python interpreter in a
process. Unlike sub-interpreters, the main interpreter has unique process-global responsibilities like signal handling. It is
also responsible for execution during runtime initialization and is usually the active interpreter during runtime finalization.
The PyInterpreterState_Main () function returns a pointer to its state.

You can switch between sub-interpreters using the PyThreadState_Swap () function. You can create and destroy
them using the following functions:
type PyInterpreterConfig
Structure containing most parameters to configure a sub-interpreter. Its values are used only in
Py_NewInterpreterFromConfig () and never modified by the runtime.
Added in version 3.12.

Structure fields:

int use_main_obmalloc
If this is 0 then the sub-interpreter will use its own “object” allocator state. Otherwise it will use (share) the
main interpreter’s.

If thisis O then check_multi_interp extensions mustbe 1 (non-zero). If thisis 1 then gi I must
notbe PyInterpreterConfig OWN_GIL.

intallow_fork
If this is O then the runtime will not support forking the process in any thread where the sub-interpreter is
currently active. Otherwise fork is unrestricted.

Note that the subprocess module still works when fork is disallowed.

intallow_exec
If this is O then the runtime will not support replacing the current process via exec (e.g. os.execv ())in
any thread where the sub-interpreter is currently active. Otherwise exec is unrestricted.

Note that the subprocess module still works when exec is disallowed.

int allow_threads
If this is 0 then the sub-interpreter’s threading module won’t create threads. Otherwise threads are allo-
wed.

int allow_daemon_threads

If this is O then the sub-interpreter’s threading module won’t create daemon threads. Otherwise daemon
threads are allowed (as long as a1 low_threads is non-zero).

218 Boliim 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.3

int check_multi_interp_extensions

If this is 0 then all extension modules may be imported, including legacy (single-phase init) modules, in any
thread where the sub-interpreter is currently active. Otherwise only multi-phase init extension modules (see
PEP 489) may be imported. (Also see Py_mod_multiple_interpreters.)

This must be 1 (non-zero) if use_main_obmallocis 0.
intgil
This determines the operation of the GIL for the sub-interpreter. It may be one of the following:

PyInterpreterConfig_DEFAULT_ GIL
Use the default selection (PyInterpreterConfig SHARED_ GIL).

PyInterpreterConfig_SHARED_GIL
Use (share) the main interpreter’s GIL.

PyInterpreterConfig_OWN_GIL
Use the sub-interpreter’s own GIL.

If this is PyInterpreterConfig_ OWN_GIL then PyInterpreterConfig.
use _main_obmalloc mustbe 0.

PyStatus Py_NewInterpreterFromConfig (PyThreadState **tstate_p, const PylnterpreterConfig *config)

Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the fun-
damental modules builtins, _ main__ and sys. The table of loaded modules (sys.modules) and the
module search path (sys .path) are also separate. The new environment has no sys . argv variable. It has new
standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr (however these refer to the
same underlying file descriptors).

The given config controls the options with which the interpreter is initialized.

Upon success, tstate_p will be set to the first thread state created in the new sub-interpreter. This thread state is
made in the current thread state. Note that no actual thread is created; see the discussion of thread states below. If
creation of the new interpreter is unsuccessful, fstate_p is set to NULL; no exception is set since the exception state
is stored in the current thread state and there may not be a current thread state.

Like all other Python/C API functions, the global interpreter lock must be held before calling this function and
is still held when it returns. Likewise a current thread state must be set on entry. On success, the returned thread
state will be set as current. If the sub-interpreter is created with its own GIL then the GIL of the calling interpreter
will be released. When the function returns, the new interpreter’s GIL will be held by the current thread and the
previously interpreter’s GIL will remain released here.

Added in version 3.12.

Sub-interpreters are most effective when isolated from each other, with certain functionality restricted:

PyInterpreterConfig config = {
.use_main_obmalloc = 0,
.allow_fork = 0,
.allow_exec = 0,
.allow_threads = 1,
.allow_daemon_threads = 0O,
.check_multi_interp_extensions = 1,
.gil = PyInterpreterConfig OWN_GIL,
bi
PyThreadState *tstate = Py_NewlInterpreterFromConfig(&config);

9.6. Sub-interpreter support 219

https://peps.python.org/pep-0489/

The Python/C API, Yayim 3.12.3

Note that the config is used only briefly and does not get modified. During initialization the config’s values are
converted into various Py InterpreterState values. A read-only copy of the config may be stored internally
onthe PyInterpreterState.

Extension modules are shared between (sub-)interpreters as follows:

» For modules using multi-phase initialization, e.g. PyModule_FromDefAndSpec (), a separate module
object is created and initialized for each interpreter. Only C-level static and global variables are shared between
these module objects.

* For modules using single-phase initialization, e.g. PyModule_ Create (), the first time a particular exten-
sion is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away.
When the same extension is imported by another (sub-)interpreter, a new module is initialized and filled with
the contents of this copy; the extension’s init function is not called. Objects in the module’s dictionary thus
end up shared across (sub-)interpreters, which might cause unwanted behavior (see Bugs and caveats below).

Note that this is different from what happens when an extension is imported after the interpreter has be-
en completely re-initialized by calling Py_FinalizeEx () and Py_TInitialize ();in that case, the
extension’s initmodule function is called again. As with multi-phase initialization, this means that only
C-level static and global variables are shared between these modules.

PyThreadState *Py_NewInterpreter (void)

Bir parcast Kararlh ABIL Create a new sub-interpreter. This is essentially just a wrapper around
Py_NewInterpreterFromConfig () with a config that preserves the existing behavior. The result is an
unisolated sub-interpreter that shares the main interpreter’s GIL, allows fork/exec, allows daemon threads, and
allows single-phase init modules.

void Py_EndInterpreter (PyThreadState *tstate)

Bir parcas: Kararl1 ABL Destroy the (sub-)interpreter represented by the given thread state. The given thread state
must be the current thread state. See the discussion of thread states below. When the call returns, the current thread
state is NULL. All thread states associated with this interpreter are destroyed. The global interpreter lock used by
the target interpreter must be held before calling this function. No GIL is held when it returns.

Py_FinalizeEx () will destroy all sub-interpreters that haven’t been explicitly destroyed at that point.

9.6.1 A Per-Interpreter GIL

Using Py_NewInterpreterFromConfig () youcan create a sub-interpreter that is completely isolated from other
interpreters, including having its own GIL. The most important benefit of this isolation is that such an interpreter can
execute Python code without being blocked by other interpreters or blocking any others. Thus a single Python process
can truly take advantage of multiple CPU cores when running Python code. The isolation also encourages a different
approach to concurrency than that of just using threads. (See PEP 554.)

Using an isolated interpreter requires vigilance in preserving that isolation. That especially means not sharing any objects
or mutable state without guarantees about thread-safety. Even objects that are otherwise immutable (e.g. None, (1,
5)) can’t normally be shared because of the refcount. One simple but less-efficient approach around this is to use a global
lock around all use of some state (or object). Alternately, effectively immutable objects (like integers or strings) can be
made safe in spite of their refcounts by making them “immortal”. In fact, this has been done for the builtin singletons,
small integers, and a number of other builtin objects.

If you preserve isolation then you will have access to proper multi-core computing without the complications that come
with free-threading. Failure to preserve isolation will expose you to the full consequences of free-threading, including
races and hard-to-debug crashes.

Aside from that, one of the main challenges of using multiple isolated interpreters is how to communicate between them
safely (not break isolation) and efficiently. The runtime and stdlib do not provide any standard approach to this yet. A
future stdlib module would help mitigate the effort of preserving isolation and expose effective tools for communicating
(and sharing) data between interpreters.

220 Boliim 9. Initialization, Finalization, and Threads

https://peps.python.org/pep-0554/

The Python/C API, Yayim 3.12.3

Added in version 3.12.

9.6.2 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t perfect
— for example, using low-level file operations like os.close () they can (accidentally or maliciously) affect each
other’s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not work
properly; this is especially likely when using single-phase initialization or (static) global variables. It is possible to insert
objects created in one sub-interpreter into a namespace of another (sub-)interpreter; this should be avoided if possible.

Special care should be taken to avoid sharing user-defined functions, methods, instances or classes between sub-
interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dictionary of
loaded modules. It is equally important to avoid sharing objects from which the above are reachable.

Also note that combining this functionality with PyGILState_* APIs is delicate, because these APIs assume a bi-
jection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters. It
is highly recommended that you don’t switch sub-interpreters between a pair of matching PyGILState_Ensure ()
and PyGILState_Release () calls. Furthermore, extensions (such as ct ypes) using these APIs to allow calling of
Python code from non-Python created threads will probably be broken when using sub-interpreters.

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the
form of a function pointer and a void pointer argument.

int Py_AddPendingCall (int (*func)(void*), void *arg)

Bir parcasi Kararl1 ABI. Schedule a function to be called from the main interpreter thread. On success, 0 is returned
and func is queued for being called in the main thread. On failure, —1 is returned without setting any exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument arg.
It will be called asynchronously with respect to normally running Python code, but with both these conditions met:

* on a bytecode boundary;
 with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return O on success, or —1 on failure with an exception set. func won’t be interrupted to perform another
asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock
is released.

This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

To call this function in a subinterpreter, the caller must hold the GIL. Otherwise, the function func can be scheduled
to be called from the wrong interpreter.

Uyar1: This is a low-level function, only useful for very special cases. There is no guarantee that func will be
called as quick as possible. If the main thread is busy executing a system call, func won’t be called before the
system call returns. This function is generally not suitable for calling Python code from arbitrary C threads.
Instead, use the PyGILState API.

Added in version 3.1.

3.9 stirtimiinde degisti: If this function is called in a subinterpreter, the function func is now scheduled to be called
from the subinterpreter, rather than being called from the main interpreter. Each subinterpreter now has its own list
of scheduled calls.

9.7. Asynchronous Notifications 221

The Python/C API, Yayim 3.12.3

9.8 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are
used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects,
making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace
functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported
to the Python-level trace functions in previous versions.

typedef int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval SetProfile () and PyEval SetTrace (). The
first parameter is the object passed to the registration function as obj, frame is the frame object to which the event
pertains, what is one of the constants PyTrace_CALL, PyTrace EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace C_EXCEPTION, PyTrace_C_RETURN, or
PyTrace_OPCODE, and arg depends on the value of what:

Value of what Meaning of arg

PyTrace_CALL Always Py_None.

PyTrace_EXCEPTION Exception information as returned by sys.exc_info ().
PyTrace_LINE Always Py_None.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.

PyTrace_C_EXCEPTION Function object being called.

PyTrace_ C_RETURN Function object being called.

PyTrace_OPCODE Always Py_None.

int PyTrace_CALL

The value of the what parameter to a Py_ t racefunc function when a new call to a function or method is being
reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not
reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION

The value of the what parameter to a Py_ t race func function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception becomes
set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to
unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives
these events; they are not needed by the profiler.

int PyTrace_LINE

The value passed as the what parameter to a Py_tracefunc function (but not a profiling function) when a
line-number event is being reported. It may be disabled for a frame by setting £ _trace_lines to 0 on that
frame.

int PyTrace_RETURN

The value for the what parameter to Py_ t race func functions when a call is about to return.
int PyTrace_C_CALL

The value for the what parameter to Py_ t race func functions when a C function is about to be called.
int PyTrace_C_EXCEPTION

The value for the what parameter to Py_ t race func functions when a C function has raised an exception.

222 Boliim 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.3

int PyTrace_C_RETURN
The value for the what parameter to Py_ t race func functions when a C function has returned.

int PyTrace_OPCODE

The value for the what parameter to Py_t racefunc functions (but not profiling functions) when a new op-
code is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to I on the frame.

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)

Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be
any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj for each
thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events
except PyTrace_ LINE PyTrace_OPCODE and PyTrace_EXCEPTION.

See also the sys.setprofile () function.
The caller must hold the GIL.

void PyEval_SetProfileAllThreads (Py_tracefunc func, PyObject *obj)

Like PyEval_SetProfile () but sets the profile function in all running threads belonging to the current in-
terpreter instead of the setting it only on the current thread.

The caller must hold the GIL.

As PyEval_ SetProfile (), this function ignores any exceptions raised while setting the profile functions in
all threads.

Added in version 3.12.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval SetProfile (), except the tracing function does
receive line-number events and per-opcode events, but does not receive any event related to C function objects
being called. Any trace function registered using PyEval_SetTrace () will not receive PyTrace_C_CALL,
PyTrace_ C_EXCEPTION or PyTrace_ C_RETURN as a value for the what parameter.

See also the sys.settrace () function.
The caller must hold the GIL.

void PyEval_SetTraceAllThreads (Py_tracefunc func, PyObject *obj)

Like PyEval_SetTrace () but sets the tracing function in all running threads belonging to the current interp-
reter instead of the setting it only on the current thread.

The caller must hold the GIL.

As PyEval_SetTrace (), this function ignores any exceptions raised while setting the trace functions in all
threads.

Added in version 3.12.

9.8. Profiling and Tracing 223

The Python/C API, Yayim 3.12.3

9.9 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylInterpreterState *PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.

PylInterpreterState *PyInterpreterState_Main ()
Return the main interpreter state object.

PylnterpreterState *PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.

PyThreadState *PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first Py ThreadState object in the list of threads associated with the interpreter interp.

PyThreadState *PyThreadState_Next (PyThreadState *tstate)

Return the next thread state object after fstafe from the list of all such objects belonging to the same
PyInterpreterState object.

9.10 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native TLS
implementation to support the Python-level thread local storage API (threading. local). The CPython C level APIs
are similar to those offered by pthreads and Windows: use a thread key and functions to associate a void* value per
thread.

The GIL does not need to be held when calling these functions; they supply their own locking.

Note that Python.h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

Not: None of these API functions handle memory management on behalf of the void* values. You need to allocate and
deallocate them yourself. If the void* values happen to be PyOb ject*, these functions don’t do refcount operations
on them either.

9.10.1 Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses a new
type Py_tss_t instead of int to represent thread keys.

Added in version 3.7.
Ayrica bakimz:
“A New C-API for Thread-Local Storage in CPython” (PEP 539)
type Py_tss_t
This data structure represents the state of a thread key, the definition of which may depend on the underlying TLS

implementation, and it has an internal field representing the key’s initialization state. There are no public members
in this structure.

When Py_LIMITED_API is not defined, static allocation of this type by Py_tss_ NEEDS_INIT is allowed.

224 Boliim 9. Initialization, Finalization, and Threads

https://peps.python.org/pep-0539/

The Python/C API, Yayim 3.12.3

Py _tss_NEEDS_INIT

This macro expands to the initializer for Py_tss_t variables. Note that this macro won’t be defined with
Py_LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py_ t ss_t, required in extension modules built with Py_LIMITED_API, where static alloca-
tion of this type is not possible due to its implementation being opaque at build time.
Py_tss_t *PyThread_tss_alloc ()
Bir parcast Kararli ABI 3.7 siirtimiinden beri. Return a value which is the same state as a value initialized with
Py_tss_NEEDS_INIT,or NULL in the case of dynamic allocation failure.
void PyThread_tss_free (Py_tss_t *key)

Bir parcast Kararli ABI 3.7 siiriimiinden beri. Free the given key allocated by Py Thread _tss_alloc (), after
first calling PyThread_tss_delete () to ensure any associated thread locals have been unassigned. This is a
no-op if the key argument is NULL.

Not: A freed key becomes a dangling pointer. You should reset the key to NULL.

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread tss_set ()
and PyThread_tss_get () are undefined if the given Py _tss_t has not been initialized by
PyThread_tss_create().

int PyThread_tss_is_created (Py_sss_t *key)
Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return a non-zero value if the given Py_ t ss_ t has been initialized
by PyThread_tss_create().

int PyThread_tss_create (Py_iss_t *key)

Bir parcast Kararli ABI 3.7 siirtimiinden beri. Return a zero value on successful initialization of a TSS key. The
behavior is undefined if the value pointed to by the key argument is not initialized by Py_tss_NEEDS_INIT.
This function can be called repeatedly on the same key — calling it on an already initialized key is a no-op and
immediately returns success.

void PyThread_tss_delete (Py_tss_t *key)

Bir parcast Kararli ABI 3.7 siiriimiinden beri. Destroy a TSS key to forget the values associated with the key across
all threads, and change the key’s initialization state to uninitialized. A destroyed key is able to be initialized again by
PyThread_tss_create (). This function can be called repeatedly on the same key — calling it on an already
destroyed key is a no-op.

int PyThread_tss_set (Py_tss_t *key, void *value)
Bir parcast Kararlt ABI 3.7 siiriimiinden beri. Return a zero value to indicate successfully associating a void*
value with a TSS key in the current thread. Each thread has a distinct mapping of the key to a void* value.

void *PyThread_tss_get (Py_tss_t *key)

Bir parcas: Kararli ABI 3.7 siiriimiinden beri. Return the void* value associated with a TSS key in the current
thread. This returns NULL if no value is associated with the key in the current thread.

9.10. Thread Local Storage Support 225

The Python/C API, Yayim 3.12.3

9.10.2 Thread Local Storage (TLS) API

3.7 siirtimiinden beri kullanim dis1: This API is superseded by Thread Specific Storage (TSS) API.

Not: This version of the API does not support platforms where the native TLS key is defined in a way that cannot be
safely cast to int. On such platforms, PyThread_create_key () will return immediately with a failure status, and
the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.

int PyThread_create_key ()
Bir parcast Kararli ABIL

void PyThread_delete_key (int key)
Bir parcast Kararli ABIL

int PyThread_set_key_value (int key, void *value)

Bir parcast Kararli ABIL

void *PyThread_get_key_value (int key)
Bir parcast Kararli ABIL

void PyThread_delete_key_value (int key)
Bir parcast Kararli ABIL

void PyThread_ReInitTLS ()
Bir parcast Kararli ABIL

226 Boliim 9. Initialization, Finalization, and Threads

goLom 10

Python Initialization Configuration

Added in version 3.8.

Python can be initialized with Py_TnitializeFromConfig () and the PyConfig structure. It can be preinitiali-
zed with Py _Prelnitialize () and the PyPreConfig structure.

There are two kinds of configuration:

e The Python Configuration can be used to build a customized Python which behaves as the regular Python. For
example, environment variables and command line arguments are used to configure Python.

 The Isolated Configuration can be used to embed Python into an application. It isolates Python from the system.
For example, environment variables are ignored, the LC_CTYPE locale is left unchanged and no signal handler is
registered.

The Py_RunMain () function can be used to write a customized Python program.
See also Initialization, Finalization, and Threads.
Ayrica bakimz:

PEP 587 “Python Initialization Configuration”.

10.1 Example

Example of customized Python always running in isolated mode:

int main(int argc, char **argv)
{
PyStatus status;

PyConfig config;
PyConfig_ InitPythonConfig(&confiqg);
config.isolated = 1;

/* Decode command line arguments.
(sonraki sayfaya devam)

227

https://peps.python.org/pep-0587/

The Python/C API, Yayim 3.12.3

Implicitly preinitialize Python (in isolated mode) .

status = PyConfig_SetBytesArgv (&config, argv)
if (PyStatus_Exception(status)) A

goto exception;

argc,

status Py_InitializeFromConfig(&confiqg);
if (PyStatus_Exception (status)) {
goto exception;

}
PyConfig_Clear (&configqg);

return Py_RunMain () ;

exception:

PyConfig_Clear (&configqg);
if (PyStatus_IsExit (status)) {
return status.exitcode;

}

(onceki sayfadan devam)
*/

’

/* Display the error message and exit the process with

non-zero exit code */
Py_ExitStatusException(status);

10.2 PyWideStringList

type PyWideStringList

List of wchar_t* strings.
If length is non-zero, items must be non-NULL and all strings must be

Methods:

non-NULL.

PyStatus PyWideStringList_Append (PyWideStringList *list, const wchar_t *item)

Append item to list.

Python must be preinitialized to call this function.

PyStatus PyWideStringList_Insert (PyWideStringList *list, Py_ssize_t index, const wchar_t *item)

Insert item into list at index.
If index is greater than or equal to /ist length, append item to list.
index must be greater than or equal to 0.
Python must be preinitialized to call this function.
Structure fields:
Py_ssize_t length
List length.
wchar_t **items

List items.

228

Bolim 10

. Python Initialization Configuration

The Python/C API, Yayim 3.12.3

10.3 PyStatus

type PyStatus

Structure to store an initialization function status: success, error or exit.
For an error, it can store the C function name which created the error.
Structure fields:

int exitcode
Exit code. Argument passed to exit ().
const char *err_msg
Error message.
const char *func
Name of the function which created an error, can be NULL.
Functions to create a status:
PyStatus PyStatus_Ok (void)
Success.
PyStatus PyStatus_Error (const char *err_msg)
Initialization error with a message.
err_msg must not be NULL.
PyStatus PyStatus_NoMemory (void)
Memory allocation failure (out of memory).
PyStatus PyStatus_Exit (int exitcode)
Exit Python with the specified exit code.

Functions to handle a status:

int PyStatus_Exception (PyStatus status)
Is the status an error or an exit? If true, the exception must be handled; by calling
Py _ExitStatusException () for example.

int PyStatus_IsError (PyStatus status)
Is the result an error?

int PyStatus_IsExit (PyStatus status)
Is the result an exit?

void Py_ExitStatusException (PyStatus status)

Call exit (exitcode) if status is an exit. Print the error message and exit with a non-zero exit code if
status is an error. Must only be called if PyStatus_Exception (status) is non-zero.

Not: Internally, Python uses macros which set PyStatus. func, whereas functions to create a status set func to
NULL.

Example:

10.3. PyStatus 229

The Python/C API, Yayim 3.12.3

PyStatus alloc (void **ptr, size_t size)

{
*ptr =

PyMem_RawMalloc (size);

if (*ptr == NULL) {
return PyStatus_NoMemory () ;

}

return PyStatus_Ok () ;

int main(int argc, char **argv)

void *ptr;

PyStatus status = alloc (&ptr, 16);

if (PyStatus_Exception(status)) A
Py_ExitStatusException (status);

}

PyMem_Free (ptr);
return O;

10.4 PyPreConfig

type PyPreConfig

Structure used to preinitialize Python.

Function to initialize a preconfiguration:

void PyPreConfig_InitPythonConfig (PyPreConfig *preconfig)

Initialize the preconfiguration with Python Configuration.

void PyPreConfig_InitIsolatedConfig (PyPreConfig *preconfig)

Initialize the preconfiguration with Isolated Configuration.

Structure fields:

int allocator

Name of the Python memory allocators:

PYMEM_ALLOCATOR_NOT_SET (0): don’t change memory allocators (use defaults).
PYMEM_ALLOCATOR_DEFAULT (1): default memory allocators.
PYMEM_ALLOCATOR_DEBUG (2): default memory allocators with debug hooks.
PYMEM_ALLOCATOR_MALLOC (3):usemalloc () of the C library.
PYMEM_ALLOCATOR_MALLOC_DEBUG (4): force usage of malloc () with debug hooks.
PYMEM_ALLOCATOR_PYMALLOC (5): Python pymalloc memory allocator.

PYMEM_ALLOCATOR_PYMALLOC_DEBUG (6): Python pymalloc memory allocator with debug hooks.

PYMEM_ALLOCATOR_PYMALLOC and PYMEM_ALLOCATOR_PYMALLOC_DEBUG are not supported if
Python is configured using --without-pymalloc.

See Memory Management.

Default: PYMEM_ALLOCATOR_NOT_SET.

230

B6liim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.3

int configure_locale
Set the LC_CTYPE locale to the user preferred locale.

If equals to O, set coerce_c_localeand coerce_c_locale_warn members to O.
See the locale encoding.
Default: 1 in Python config, 0 in isolated config.

int coerce_c_locale

If equals to 2, coerce the C locale.

If equals to 1, read the LC_CTYPE locale to decide if it should be coerced.
See the locale encoding.

Default: -1 in Python config, 0 in isolated config.

int coerce_c_locale_warn

If non-zero, emit a warning if the C locale is coerced.
Default: -1 in Python config, 0 in isolated config.

int dev_mode

Python Development Mode: see PyConfig. dev_mode.
Default: -1 in Python mode, 0 in isolated mode.

int isolated
Isolated mode: see PyConfig.isolated.

Default: 0 in Python mode, 1 in isolated mode.

int legacy_windows_fs_encoding

If non-zero:
e Set PyPreConfig.utf8_mode to 0,
e Set PyConfig.filesystem_encodingto "mbcs",
e Set PyConfig.filesystem errorsto "replace".
Initialized the from PYTHONLEGACYWINDOWSF SENCOD ING environment variable value.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.
Default: 0.

int parse_argv
If non-zero, Py _PrelnitializeFromArgs () and Py PrelnitializeFromBytesArgs ()
parse their argv argument the same way the regular Python parses command line arguments: see Com-
mand Line Arguments.

Default: 1 in Python config, 0 in isolated config.

int use_environment

Use environment variables? See PyConfig.use_environment.

Default: 1 in Python config and 0 in isolated config.

10.4. PyPreConfig 231

The Python/C API, Yayim 3.12.3

int ut £8_mode
If non-zero, enable the Python UTF-8 Mode.

Setto 0 or 1 by the -X ut £8 command line option and the PYTHONUTF 8 environment variable.
Also set to 1 if the LC_CTYPE locale is C or POSIX.

Default: -1 in Python config and 0 in isolated config.

10.5 Preinitialize Python with PyPreConfig

The preinitialization of Python:

¢ Set the Python memory allocators (PyPreConfig.allocator)

¢ Configure the LC_CTYPE locale (locale encoding)

* Set the Python UTF-8 Mode (PyPreConfig.utf8_mode)
The current preconfiguration (PyPreConfig type) is stored in _PyRuntime.preconfig.
Functions to preinitialize Python:

PyStatus Py_PreInitialize (const PyPreConfig *preconfig)
Preinitialize Python from preconfig preconfiguration.

preconfig must not be NULL.

PyStatus Py_PrelInitializeFromBytesArgs (const PyPreConfig *preconfig, int arge, char *const *argv)

Preinitialize Python from preconfig preconfiguration.
Parse argv command line arguments (bytes strings) if parse_argv of preconfig is non-zero.
preconfig must not be NULL.

PyStatus Py_PreInitializeFromArgs (const PyPreConfig *preconfig, int arge, wchar_t *const *argv)

Preinitialize Python from preconfig preconfiguration.
Parse argv command line arguments (wide strings) if parse_arqgv of preconfig is non-zero.
preconfig must not be NULL.

The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception() and
Py ExitStatusException ().

For Python Configuration (PyPreConfig_InitPythonConfig()), if Python is initialized with command line
arguments, the command line arguments must also be passed to preinitialize Python, since they have an effect on the
pre-configuration like encodings. For example, the -X ut £8 command line option enables the Python UTF-8 Mode.

PyMem_SetAllocator () can be called after Py PreInitialize() and before
Py _InitializeFromConfig() to install a custom memory allocator. It can be called before
Py _PrelInitialize () if PyPreConfig.allocatorissetto PYMEM ALLOCATOR_NOT_SET.

Python memory allocation functions like PyMem RawMalloc () must not be used before the Python preinitialization,
whereas calling directly malloc () and free () is always safe. Py_DecodelLocale () must not be called before
the Python preinitialization.

Example using the preinitialization to enable the Python UTF-8 Mode:

232 B6liim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.3

PyStatus status;
PyPreConfig preconfig;
PyPreConfig_InitPythonConfig (&preconfigqg);

preconfig.utf8_mode = 1;

status = Py_PrelInitialize (&preconfiqg);

if (PyStatus_Exception(status)) A
Py_ExitStatusException(status);

I3

/* at this point, Python speaks UTF-8 */
Py_Initialize();

/* ... use Python API here ... */
Py_Finalize();

10.6 PyConfig

type PyConfig
Structure containing most parameters to configure Python.

When done, the PyConfig Clear () function must be used to release the configuration memory.
Structure methods:

void PyConfig_InitPythonConfig (PyConfig *config)

Initialize configuration with the Python Configuration.

void PyConfig_InitIsolatedConfig (PyConfig *config)

Initialize configuration with the Isolated Configuration.

PyStatus PyConfig_SetString (PyConfig *config, wchar_t *const *config_str, const wchar_t *str)

Copy the wide character string str into *config_str.
Preinitialize Python if needed.

PyStatus PyConfig_SetBytesString (PyConfig *config, wchar_t *const *config_str, const char *str)
Decode str using Py_DecodeLocale () and set the result into *config_str.

Preinitialize Python if needed.

PyStatus PyConfig_SetArgv (PyConfig *config, int argc, wchar_t *const *argv)

Set command line arguments (argv member of config) from the argv list of wide character strings.
Preinitialize Python if needed.

PyStatus PyConfig_SetBytesArgv (PyConfig *config, int arge, char *const *argv)

Set command line arguments (argv member of config) from the argv list of bytes strings. Decode bytes
using Py_DecodeLocale ().

Preinitialize Python if needed.

PyStatus PyConfig_SetWideStringList (PyConfig *config, Py WideStringList *list, Py_ssize_t length,
wchar_t **items)

Set the list of wide strings list to length and items.

Preinitialize Python if needed.

10.6. PyConfig 233

The Python/C API, Yayim 3.12.3

PyStatus PyConfig_Read (PyConfig *config)
Read all Python configuration.
Fields which are already initialized are left unchanged.

Fields for path configuration are no longer calculated or modified when calling this function, as of Python
3.11.

The PyConfig_Read () function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are strippped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.

Preinitialize Python if needed.

3.10 siirimiinde degisti: The PyConfig.argv arguments are now only parsed once, PyConfig.
parse_argv is set to 2 after arguments are parsed, and arguments are only parsed if PyConfig.
parse_argvequals 1.

3.11 stiriimiinde degisti: PyConfig_Read () nolonger calculates all paths, and so fields listed under Python
Path Configuration may no longer be updated until Py InitializeFromConfig () is called.

void PyConfig_Clear (PyConfig *config)

Release configuration memory.

Most PyConfig methods preinitialize Python if needed. In that case, the Python preinitialization configuration
(PyPreConfig)inbasedonthe PyConfig.If configuration fields which are in common with PyPreConfig
are tuned, they must be set before calling a PyConfig method:

* PyConfig.dev_mode

e PyConfig.isolated

e PyConfig.parse_argv

* PyConfig.use_environment

Moreover, if PyConfig SetArgv () or PyConfig SetBytesArgv () is used, this method must be
called before other methods, since the preinitialization configuration depends on command line arguments (if
parse_argv is non-zero).

The caller of these methods is responsible to handle exceptions (error or exit) using PyStatus_Exception ()
and Py_ExitStatusException ().

Structure fields:
PyWideStringList axgv
Command line arguments: sys.argv.

Set parse_argvto 1 to parse argv the same way the regular Python parses Python command line argu-
ments and then to strip Python arguments from argv.

If argv is empty, an empty string is added to ensure that sy s . argv always exists and is never empty.
Default: NULL.
See also the orig argv member.

int safe_path
If equals to zero, Py_RunMain () prepends a potentially unsafe path to sys.path at startup:

e If argv/[0] isequal to L"-m" (python -m module), prepend the current working directory.

* If running a script (python script.py), prepend the script’s directory. If it’s a symbolic link, re-
solve symbolic links.

234 B6liim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.3

¢ Otherwise (python —c code and python), prepend an empty string, which means the current wor-
king directory.

Set to 1 by the —P command line option and the PYTHONSAFEPATH environment variable.
Default: 0 in Python config, 1 in isolated config.
Added in version 3.11.

wchar_t *base_exec_prefix

sys.base_exec_prefix.
Default: NULL.
Part of the Python Path Configuration output.

wchar_t *base_executable

Python base executable: sys._base_executable.

Set by the __ PYVENV_LAUNCHER___ environment variable.
Set from PyConfig.executable if NULL.

Default: NULL.

Part of the Python Path Configuration output.

wchar_t *base_prefix

sys.base_prefix.
Default: NULL.
Part of the Python Path Configuration output.

int buffered_stdio
If equals to O and configure_c_stdio is non-zero, disable buffering on the C streams stdout and stderr.

Set to 0 by the —u command line option and the PYTHONUNBUFFERED environment variable.
stdin is always opened in buffered mode.
Default: 1.

int bytes_warning

If equals to 1, issue a warning when comparing bytes or bytearray with str, or comparing bytes
with int.

If equal or greater to 2, raise a BytesWarning exception in these cases.
Incremented by the —b command line option.
Default: 0.

int warn_default_encoding

If non-zero, emit a EncodingWarning warning when io.Text IOWrapper uses its default encoding.
See i0-encoding-warning for details.

Default: 0.
Added in version 3.10.

10.6. PyConfig 235

The Python/C API, Yayim 3.12.3

int code_debug_ranges

If equals to O, disables the inclusion of the end line and column mappings in code objects. Also disables
traceback printing carets to specific error locations.

Set to 0 by the PYTHONNODEBUGRANGES environment variable and by the -X no_debug_ranges
command line option.

Default: 1.
Added in version 3.11.

wchar_t *check_hash_pycs_mode

Control the validation behavior of hash-based . pyc files: value of the ——check—hash-based-pycs
command line option.

Valid values:
* L"always": Hash the source file for invalidation regardless of value of the ‘check_source’ flag.
e L"never": Assume that hash-based pycs always are valid.
e L"default": The ‘check_source’ flag in hash-based pycs determines invalidation.

Default: L"default".

See also PEP 552 “Deterministic pycs”.

int configure_c_stdio

If non-zero, configure C standard streams:

¢ On Windows, set the binary mode (O_BINARY) on stdin, stdout and stderr.

e If buffered_ stdio equals zero, disable buffering of stdin, stdout and stderr streams.

e If interactive is non-zero, enable stream buffering on stdin and stdout (only stdout on Windows).
Default: 1 in Python config, 0 in isolated config.

int dev_mode

If non-zero, enable the Python Development Mode.
Set to 1 by the -X dewv option and the PYTHONDEVMODE environment variable.
Default: -1 in Python mode, 0 in isolated mode.

int dump_refs

Dump Python references?
If non-zero, dump all objects which are still alive at exit.
Set to 1 by the PYTHONDUMPREF' S environment variable.

Need a special build of Python with the Py_TRACE_REFS macro defined: see the configure
—--with-trace-refs option.

Default: 0.

wchar_t *exec_prefix

The site-specific directory prefix where the platform-dependent Python files are installed: sys.
exec_prefix.

Default: NULL.

Part of the Python Path Configuration output.

236 B6liim 10. Python Initialization Configuration

https://peps.python.org/pep-0552/

The Python/C API, Yayim 3.12.3

wchar_t *executable
The absolute path of the executable binary for the Python interpreter: sys.executable.

Default: NULL.
Part of the Python Path Configuration output.

int faulthandler
Enable faulthandler?

If non-zero, call faulthandler.enable () atstartup.
Setto 1 by -X faulthandler and the PYTHONFAULTHANDLER environment variable.
Default: -1 in Python mode, 0 in isolated mode.

wchar_t *filesystem_encoding

Filesystem encoding: sys .getfilesystemencoding ().
On macOS, Android and VxWorks: use "ut £-8" by default.

On Windows: use "utf-8" by default, or "mbcs" if legacy_windows_fs_encoding of
PyPreConfig is non-zero.

Default encoding on other platforms:
e "utf-8"if PyPreConfig.utf8_mode is non-zero.

e "ascii"if Pythondetectsthatnl_langinfo (CODESET) announces the ASCII encoding, whereas
the mbstowcs () function decodes from a different encoding (usually Latinl).

e "utf-8"ifnl_langinfo (CODESET) returns an empty string.
¢ Otherwise, use the locale encoding: n1_langinfo (CODESET) result.

At Python startup, the encoding name is normalized to the Python codec name. For example, "ANSI_X3.
4-1968" is replaced with "ascii".

See also the i lesystem errors member.

wchar_t *filesystem_errors

Filesystem error handler: sys .getfilesystemencodeerrors ().

On Windows: use "surrogatepass" by default, or "replace" if
legacy_windows_fs_encoding of PyPreConfig is non-zero.

On other platforms: use "surrogateescape" by default.
Supported error handlers:
e "strict"
* "surrogateescape"
e "surrogatepass" (only supported with the UTF-8 encoding)
See also the filesystem encoding member.
unsigned long hash_seed
int use_hash_seed
Randomized hash function seed.
If use_hash_seedis zero, a seed is chosen randomly at Python startup, and hash_seed is ignored.

Set by the PYTHONHASHSEED environment variable.

10.6. PyConfig 237

The Python/C API, Yayim 3.12.3

Default use_hash_seed value: —1 in Python mode, 0 in isolated mode.

wchar_t *home

Python home directory.
If Py_SetPythonHome () has been called, use its argument if it is not NULL.
Set by the PYTHONHOME environment variable.
Default: NULL.
Part of the Python Path Configuration input.
int import_time
If non-zero, profile import time.
Setthe 1 by the -X importtime optionand the PYTHONPROF ILEIMPORTTIME environment variable.
Default: 0.
int inspect
Enter interactive mode after executing a script or a command.

If greater than 0, enable inspect: when a script is passed as first argument or the -c option is used, enter
interactive mode after executing the script or the command, even when sys. stdin does not appear to be
a terminal.

Incremented by the —i command line option. Set to 1 if the PYTHONINSPECT environment variable is
non-empty.
Default: 0.
int install_signal_handlers
Install Python signal handlers?
Default: 1 in Python mode, 0 in isolated mode.

int interactive

If greater than 0, enable the interactive mode (REPL).
Incremented by the —i command line option.
Default: 0.

int int_max_str_digits
Configures the integer string conversion length limitation. An initial value of —1 means the value will
be taken from the command line or environment or otherwise default to 4300 (sys.int_info.
default_max_str_digits). A value of O disables the limitation. Values greater than zero but less
than 640 (sys.int_info.str_digits_check_threshold) are unsupported and will produce an
error.

Configured by the -X int_max_str_digitscommand line flagorthe PYTHONINTMAXSTRDIGITS
environment variable.

Default: —1 in Python mode. 4300 (sys.int_info.default_max_str_digits) inisolated mode.
Added in version 3.12.

int isolated

If greater than 0, enable isolated mode:

e Set safe_pathto 1:don’t prepend a potentially unsafe path to sys . path at Python startup, such as
the current directory, the script’s directory or an empty string.

238 B6liim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.3

e Set use_environment to 0:ignore PYTHON environment variables.
e Set user_site_directoryto 0:don’t add the user site directory to sys.path.

* Python REPL doesn’t import readline nor enable default readline configuration on interactive
prompts.

Set to 1 by the —I command line option.
Default: 0 in Python mode, 1 in isolated mode.
See also the Isolated Configuration and PyPreConfig.isolated.

int legacy_windows_stdio

If non-zero, use io.FileIO instead of io._WindowsConsoleIO for sys.stdin, sys.stdout
and sys.stderr.

Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.
Default: 0.

See also the PEP 528 (Change Windows console encoding to UTF-8).

intmalloc_stats

If non-zero, dump statistics on Python pymalloc memory allocator at exit.

Set to 1 by the PYTHONMALLOCSTATS environment variable.

The option is ignored if Python is configured using the —--without-pymalloc option.
Default: 0.

wchar_t *platlibdir
Platform library directory name: sys.platlibdir.

Set by the PYTHONPLATLIBDIR environment variable.

Default: value of the PLATLIBDIR macro which is set by the configure —--with-platlibdir
option (default: "1ib", or "DLLs" on Windows).

Part of the Python Path Configuration input.
Added in version 3.9.

3.11 siirtimiinde degisti: This macro is now used on Windows to locate the standard library extension modules,
typically under DLLs. However, for compatibility, note that this value is ignored for any non-standard layouts,
including in-tree builds and virtual environments.

wchar_t *pythonpath_env
Module search paths (sys.path) as a string separated by DELIM (os .pathsep).

Set by the PYTHONPATH environment variable.
Default: NULL.
Part of the Python Path Configuration input.
PyWideStringList module_search_paths
int module_search_paths_set
Module search paths: sys.path.

If module_search_paths_set is equal to 0, Py_TnitializeFromConfig () will replace
module_search_paths and sets module_search_paths_set to 1.

10.6. PyConfig 239

https://peps.python.org/pep-0528/

The Python/C API, Yayim 3.12.3

Default: empty list (nodule_search_paths)and 0 (module_search_paths_set).

Part of the Python Path Configuration output.

int optimization_level

Compilation optimization level:
* 0: Peephole optimizer, set __debug__ to True.
¢ 1:Level 0, remove assertions, set __debug__ to False.
e 2:Level 1, strip docstrings.
Incremented by the —O command line option. Set to the PYTHONOPTIMI ZE environment variable value.

Default: 0.

PyWideStringList orig_argv

The list of the original command line arguments passed to the Python executable: sys.orig_argv.

If orig_argv listis empty and argv is not a list only containing an empty string, PyConfig_Read ()
copies argv into orig_argv before modifying argv (if parse_argv is non-zero).

See also the a rgv member and the Py GetArgcArgv () function.
Default: empty list.
Added in version 3.10.

int parse_argv

Parse command line arguments?

If equals to 1, parse a rgv the same way the regular Python parses command line arguments, and strip Python
arguments from argv.

The PyConfig_Read () function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are strippped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.

Default: 1 in Python mode, 0 in isolated mode.

3.10 siiriimiinde degisti: The PyConfig.argv arguments are now only parsed if PyConfig.
parse_argv equalsto 1.

int parser_debug

Parser debug mode. If greater than O, turn on parser debugging output (for expert only, depending on com-
pilation options).

Incremented by the —d command line option. Set to the PYTHONDEBUG environment variable value.
Need a debug build of Python (the Py_DEBUG macro must be defined).
Default: 0.

int pathconfig_warnings

If non-zero, calculation of path configuration is allowed to log warnings into st derr. If equals to O, suppress
these warnings.

Default: 1 in Python mode, 0 in isolated mode.
Part of the Python Path Configuration input.

3.11 siiriimiinde degisti: Now also applies on Windows.

240

B6liim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.3

wchar_t *prefix

The site-specific directory prefix where the platform independent Python files are installed: sys.prefix.
Default: NULL.
Part of the Python Path Configuration output.

wchar_t *program_name

Program name used to initialize executable and in early error messages during Python initialization.
e If Py_SetProgramName () has been called, use its argument.
¢ On macOS, use PYTHONEXECUTABLE environment variable if set.

e If the WITH_NEXT_FRAMEWORK macro is defined, use __PYVENV_LAUNCHER___ environment va-
riable if set.

* Use argv [0] of argv if available and non-empty.

¢ Otherwise, use L"python" on Windows, or L"python3" on other platforms.
Default: NULL.
Part of the Python Path Configuration input.

wchar_t *pycache_prefix

Directory where cached . pyc files are written: sys.pycache_prefix.

Set by the -X pycache_prefix =PATH command line option and the PYTHONPYCACHEPREFIX
environment variable.

If NULL, sys.pycache_prefixissetto None.
Default: NULL.
int quiet
Quiet mode. If greater than 0, don’t display the copyright and version at Python startup in interactive mode.
Incremented by the —g command line option.
Default: 0.

wchar_t *run_command

Value of the —c command line option.
Used by Py_RunMain ().
Default: NULL.

wchar_t *run_filename

Filename passed on the command line: trailing command line argument without —c or —m. It is used by the
Py_RunMain () function.

For example, it is set to script .py by the python3 script.py argcommand line.
See also the PyConfig. skip_source_first_1ine option.
Default: NULL.

wchar_t *run_module

Value of the —m command line option.
Used by Py_ RunMain ().

Default: NULL.

10.6. PyConfig 241

The Python/C API, Yayim 3.12.3

int show_ref_count

Show total reference count at exit (excluding immortal objects)?
Setto 1 by -X showrefcount command line option.
Need a debug build of Python (the Py_REF_DEBUG macro must be defined).
Default: 0.
int site_import
Import the site module at startup?

If equal to zero, disable the import of the module site and the site-dependent manipulations of sys.path
that it entails.

Also disable these manipulations if the site module is explicitly imported later (call site.main () if you
want them to be triggered).

Set to 0 by the —S command line option.
sys.flags.no_site is set to the inverted value of site_ import.
Default: 1.

int skip_source_first_line

If non-zero, skip the first line of the PyConfig. run_filename source.
It allows the usage of non-Unix forms of # ! cmd. This is intended for a DOS specific hack only.
Set to 1 by the —x command line option.
Default: 0.
wchar_t *stdio_encoding

wchar_t *stdio_errors

Encoding and encoding errors of sys.stdin, sys.stdout and sys.stderr (but sys.stderr
always uses "backslashreplace™" error handler).

If Py_SetStandardStreamEncoding () has been called, use its error and errors arguments if they
are not NULL.

Use the PYTHONIOENCODING environment variable if it is non-empty.
Default encoding:

e "UTF-8" if PyPreConfig.utf8_ mode is non-zero.

¢ Otherwise, use the locale encoding.
Default error handler:

¢ On Windows: use "surrogateescape".

e "surrogateescape" if PyPreConfig.ut f8_mode is non-zero, or if the LC_CTYPE locale
is “C” or “POSIX”.

e "strict" otherwise.

int tracemalloc
Enable tracemalloc?

If non-zero, call tracemalloc.start () atstartup.

Set by -X tracemalloc =N command line option and by the PYTHONTRACEMALLOC environment
variable.

242 B6liim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.3

Default: -1 in Python mode, 0 in isolated mode.
int perf_profiling
Enable compatibility mode with the perf profiler?
If non-zero, initialize the perf trampoline. See perf_profiling for more information.
Set by -X perf command line option and by the PYTHONPERF SUPPORT environment variable.
Default: -1.
Added in version 3.12.

int use_environment

Use environment variables?

If equals to zero, ignore the environment variables.
Set to 0 by the —E environment variable.

Default: 1 in Python config and 0 in isolated config.

intuser_site_directory

If non-zero, add the user site directory to sys.path.

Set to 0 by the —s and —I command line options.

Set to 0 by the PYTHONNOUSERSITE environment variable.
Default: 1 in Python mode, O in isolated mode.

int verbose

Verbose mode. If greater than 0, print a message each time a module is imported, showing the place (filename
or built-in module) from which it is loaded.

If greater than or equal to 2, print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit.

Incremented by the —v command line option.
Set by the PYTHONVERBOSE environment variable value.
Default: 0.

PyWideStringList warnoptions

Options of the warnings module to build warnings filters, lowest to highest priority: sys.
warnoptions.

The warnings module adds sys.warnoptions in the reverse order: the last PyConfig.
warnoptions item becomes the first item of warnings.filters which is checked first (highest
priority).

The —W command line options adds its value to warnopt ions, it can be used multiple times.

The PYTHONWARNINGS environment variable can also be used to add warning options. Multiple options
can be specified, separated by commas (,).

Default: empty list.

int write_bytecode
If equal to 0, Python won’t try to write . pyc files on the import of source modules.

Set to 0 by the —B command line option and the PYTHONDONTWRITEBYTECODE environment variable.

sys.dont_write_bytecode is initialized to the inverted value of write bytecode.

10.6. PyConfig 243

The Python/C API, Yayim 3.12.3

Default: 1.

PyWideStringList xoptions
Values of the —X command line options: sys._xoptions.
Default: empty list.

If parse_argv is non-zero, argv arguments are parsed the same way the regular Python parses command line argu-
ments, and Python arguments are stripped from argv.

The xopt ions options are parsed to set other options: see the —X command line option.

3.9 siirtimiinde degisti: The show_alloc_count field has been removed.

10.7 Initialization with PyConfig

Function to initialize Python:

PyStatus Py_InitializeFromConfig (const PyConfig *config)

Initialize Python from config configuration.

The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception() and
Py ExitStatusException ().

If PyImport_FrozenModules (), PyImport_AppendInittab () or PyImport_ExtendInittab ()
are used, they must be set or called after Python preinitialization and before the Python initialization. If Python is initiali-
zed multiple times, Py Import_AppendInittab () or PyImport_ExtendInittab () must be called before
each Python initialization.

The current configuration (PyConfig type) is stored in PyInterpreterState.config.

Example setting the program name:

void init_python (void)
{
PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);

/* Set the program name. Implicitly preinitialize Python. */
status = PyConfig_SetString(&config, &config.program_name,
L"/path/to/my_program") ;
if (PyStatus_Exception(status)) {
goto exception;

status = Py_InitializeFromConfig(&config);
if (PyStatus_Exception(status)) {
goto exception;
}
PyConfig_Clear (&configqg);
return;

exception:
PyConfig_Clear (&configqg);
Py_ExitStatusException (status);

244 B6liim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.3

More complete example modifying the default configuration, read the configuration, and then override some parameters.
Note that since 3.11, many parameters are not calculated until initialization, and so values cannot be read from the
configuration structure. Any values set before initialize is called will be left unchanged by initialization:

PyStatus init_python (const char *program_name)

{

PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);

/* Set the program name before reading the configuration
(decode byte string from the locale encoding).

Implicitly preinitialize Python. */
status = PyConfig_SetBytesString(&config, &config.program_name,
program_name) ;
if (PyStatus_Exception(status)) {
goto done;

/* Read all configuration at once */

status = PyConfig_Read (&config);

if (PyStatus_Exception(status)) A
goto done;

/* Specify sys.path explicitly */
/* If you want to modify the default set of paths, finish
initialization first and then use PySys_GetObject ("path") */
config.module_search_paths_set = 1;
status = PyWideStringList_Append (&config.module_search_paths,
L"/path/to/stdlib") ;
if (PyStatus_Exception (status)) {
goto done;
}
status = PyWideStringList_Append(&config.module_search_paths,
L"/path/to/more/modules") ;
if (PyStatus_Exception(status)) {
goto done;

/* Override executable computed by PyConfig Read() */
status = PyConfig_SetString(&config, &config.executable,
L"/path/to/my_executable") ;
if (PyStatus_Exception (status)) {
goto done;

status = Py_InitializeFromConfig(&config);

done:

PyConfig_Clear (&configqg);
return status;

10.7. Initialization with PyConfig 245

The Python/C API, Yayim 3.12.3

10.8 Isolated Configuration

PyPreConfig InitIsolatedConfig() and PyConfig InitIsolatedConfig () functions create a
configuration to isolate Python from the system. For example, to embed Python into an application.

This configuration ignores global configuration variables, environment variables, command line arguments (PyConfig.
argv is not parsed) and user site directory. The C standard streams (ex: stdout) and the LC_CTYPE locale are left
unchanged. Signal handlers are not installed.

Configuration files are still used with this configuration to determine paths that are unspecified. Ensure PyConfig.
home is specified to avoid computing the default path configuration.

10.9 Python Configuration

PyPreConfig_InitPythonConfig () and PyConfig InitPythonConfig () functions create a configu-
ration to build a customized Python which behaves as the regular Python.

Environments variables and command line arguments are used to configure Python, whereas global configuration variables
are ignored.

This function enables C locale coercion (PEP 538) and Python UTF-8 Mode (PEP 540) depending on the LC_CTYPE
locale, PYTHONUTF 8 and PYTHONCOERCECLOCALE environment variables.

10.10 Python Path Configuration

PyConfig contains multiple fields for the path configuration:

* Path configuration inputs:

PyConfig.home

PyConfig.platlibdir

PyConfig.pathconfig warnings

PyConfig.program_name

PyConfig.pythonpath_env

current working directory: to get absolute paths

PATH environment variable to get the program full path (from PyConfig. program name)

___PYVENV_LAUNCHER___ environment variable

(Windows only) Application paths in the registry under “SoftwarePythonPythonCoreX.YPythonPath” of
HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE (where X.Y is the Python version).

* Path configuration output fields:

PyConfig.base_exec_prefix

PyConfig.base_executable

PyConfig.base_prefix

PyConfig.exec_prefix

PyConfig.executable

246 B6liim 10. Python Initialization Configuration

https://peps.python.org/pep-0538/
https://peps.python.org/pep-0540/

The Python/C API, Yayim 3.12.3

— PyConfig.module_search_paths_set, PyConfig.module_search_paths
— PyConfig.prefix

If at least one “output field” is not set, Python calculates the path configuration to fill unset fi-
elds. If module_search_paths_set 1is equal to 0, module_search_paths 1is overridden and
module_search_paths_setissetto 1.

It is possible to completely ignore the function calculating the default path configuration by setting explicitly all path
configuration output fields listed above. A string is considered as set even if it is non-empty. module_search_paths
is considered as set if module_search_paths_set is set to 1. In this case, module_search_paths will be
used without modification.

Set pathconfig warnings to 0O to suppress warnings when calculating the path configuration (Unix only, Windows
does not log any warning).

If base prefix or base_exec_prefix fields are not set, they inherit their value from prefix and
exec_prefix respectively.

Py_RunMain () and Py_Main () modify sys.path:

e If run_filename issetand is a directory which contains a __main___.py script, prepend run_filename
to sys.path.

e If isolatedis zero:

— If run_module is set, prepend the current directory to sys.path. Do nothing if the current directory
cannot be read.

— If run_filename is set, prepend the directory of the filename to sys.path.
— Otherwise, prepend an empty string to sys . path.

If site_import is non-zero, sys.path can be modified by the site module. If user site_directoryis
non-zero and the user’s site-package directory exists, the s ite module appends the user’s site-package directory to sy s .
path.

The following configuration files are used by the path configuration:
* pyvenv.cfg
e ._pthfile (ex: python._pth)
e pybuilddir.txt (Unix only)
If a . _pth file is present:
e Set isolatedto 1.
* Set use_environment to 0.
e Set site_import to 0.
e Set safe _pathtol.

The _ PYVENV_LAUNCHER___ environment variable is used to set PyConfig.base_executable

10.10. Python Path Configuration 247

The Python/C API, Yayim 3.12.3

10.11 Py_RunMain()

int Py_RunMain (void)

Execute the command (PyConfig. run_command),thescript(PyConfiqg. run_filename)or the module
(PyConfig.run_module) specified on the command line or in the configuration.

By default and when if —i option is used, run the REPL.
Finally, finalizes Python and returns an exit status that can be passed to the exit () function.

See Python Configuration for an example of customized Python always running in isolated mode using Py_ RunMain ().

10.12 Py_GetArgcArgv()

void Py_GetArgcArgv (int *argc, wchar_t ***argv)
Get the original command line arguments, before Python modified them.

See also PyConfig.orig_argv member.

10.13 Multi-Phase Initialization Private Provisional API

This section is a private provisional API introducing multi-phase initialization, the core feature of PEP 432:

¢ “Core” initialization phase, “bare minimum Python”:

Builtin types;

Builtin exceptions;

Builtin and frozen modules;
— The sys module is only partially initialized (ex: sys . path doesn’t exist yet).

* “Main” initialization phase, Python is fully initialized:

Install and configure importlib;

Apply the Path Configuration;

Install signal handlers;

Finish sys module initialization (ex: create sys.stdout and sys.path);

Enable optional features like faulthandler and tracemalloc;

Import the site module;
- etc.
Private provisional API:

e PyConfig._init_main:ifsetto 0, Py _InitializeFromConfig () stops atthe “Core” initialization
phase.

PyStatus _Py_InitializeMain (void)

Move to the “Main” initialization phase, finish the Python initialization.

248 B6liim 10. Python Initialization Configuration

https://peps.python.org/pep-0432/

The Python/C API, Yayim 3.12.3

No module is imported during the “Core” phase and the import1ib module is not configured: the Path Configura-
tion is only applied during the “Main” phase. It may allow to customize Python in Python to override or tune the Path
Configuration, maybe install a custom sy s .meta_path importer or an import hook, etc.

It may become possible to calculate the Path Configuration in Python, after the Core phase and before the Main phase,
which is one of the PEP 432 motivation.

The “Core” phase is not properly defined: what should be and what should not be available at this phase is not specified
yet. The API is marked as private and provisional: the API can be modified or even be removed anytime until a proper
public API is designed.

Example running Python code between “Core” and “Main” initialization phases:

void init_python (void)
{
PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&confiqg);

config._init_main = 0;
/* ... customize 'config' configuration ... */
status = Py_InitializeFromConfig(&config);

PyConfig_Clear (&configqg);
if (PyStatus_Exception(status)) {
Py_ExitStatusException (status);

/* Use sys.stderr because sys.stdout is only created
by _Py_ InitializeMain() */
int res = PyRun_SimpleString(
"import sys; "
"print ('Run Python code before _Py_InitializeMain', "

"file =sys.stderr)");
if (res < 0) {
exit (1) ;
}
/* ... put more configuration code here ... */
status = _Py_InitializeMain();

if (PyStatus_Exception(status)) A
Py_ExitStatusException (status);

10.13. Multi-Phase Initialization Private Provisional API 249

https://peps.python.org/pep-0432/

The Python/C API, Yayim 3.12.3

250 B6liim 10. Python Initialization Configuration

BoLOM 11

Memory Management

11.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The management
of this private heap is ensured internally by the Python memory manager. The Python memory manager has different
components which deal with various dynamic storage management aspects, like sharing, segmentation, preallocation or
caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all Python-
related data by interacting with the memory manager of the operating system. On top of the raw memory allocator, several
object-specific allocators operate on the same heap and implement distinct memory management policies adapted to the
peculiarities of every object type. For example, integer objects are managed differently within the heap than strings, tuples
or dictionaries because integers imply different storage requirements and speed/space tradeoffs. The Python memory
manager thus delegates some of the work to the object-specific allocators, but ensures that the latter operate within the
bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions exported
by the C library: malloc (), calloc (), realloc () and free (). This will result in mixed calls between the C
allocator and the Python memory manager with fatal consequences, because they implement different algorithms and
operate on different heaps. However, one may safely allocate and release memory blocks with the C library allocator for
individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc (BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory () ;
...Do some I/O operation involving buf...
res = PyBytes_FromString (buf) ;
(sonraki sayfaya devam)

251

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory manager
is involved only in the allocation of the bytes object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter
is under control of the Python memory manager. For example, this is required when the interpreter is extended with new
object types written in C. Another reason for using the Python heap is the desire to inform the Python memory manager
about the memory needs of the extension module. Even when the requested memory is used exclusively for internal,
highly specific purposes, delegating all memory requests to the Python memory manager causes the interpreter to have a
more accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the Python memory
manager may or may not trigger appropriate actions, like garbage collection, memory compaction or other preventive
procedures. Note that by using the C library allocator as shown in the previous example, the allocated memory for the
I/0 buffer escapes completely the Python memory manager.

Ayrica bakimz:
The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.

The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator every
time a new pymalloc object arena is created, and on shutdown.

11.2 Allocator Domains

All allocating functions belong to one of three different “domains” (see also PyMemAllocatorDomain). These do-
mains represent different allocation strategies and are optimized for different purposes. The specific details on how every
domain allocates memory or what internal functions each domain calls is considered an implementation detail, but for
debugging purposes a simplified table can be found at sere. There is no hard requirement to use the memory returned
by the allocation functions belonging to a given domain for only the purposes hinted by that domain (although this is the
recommended practice). For example, one could use the memory returned by PyMem RawMalloc () for allocating
Python objects or the memory returned by PyOb ject_Malloc () for allocating memory for buffers.

The three allocation domains are:

* Raw domain: intended for allocating memory for general-purpose memory buffers where the allocation must go to
the system allocator or where the allocator can operate without the G/L. The memory is requested directly to the
system.

¢ “Mem” domain: intended for allocating memory for Python buffers and general-purpose memory buffers where the
allocation must be performed with the GIL held. The memory is taken from the Python private heap.

¢ Object domain: intended for allocating memory belonging to Python objects. The memory is taken from the Python
private heap.

When freeing memory previously allocated by the allocating functions belonging to a given domain,the matching speci-
fic deallocating functions must be used. For example, PyMem_Free () must be used to free memory allocated using
PyMem_Malloc ().

252 Boliim 11. Memory Management

The Python/C API, Yayim 3.12.3

11.3 Raw Memory Interface

The following function sets are wrappers to the system allocator. These functions are thread-safe, the GIL does not need
to be held.

The default raw memory allocator uses the following functions: malloc (), calloc (), realloc () and free ();
calmalloc (1) (or calloc (1, 1)) when requesting zero bytes.

Added in version 3.4.
void *PyMem_RawMalloc (size_tn)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc (1) had been
called instead. The memory will not have been initialized in any way.

void *PyMem_RawCalloc (size_t nelem, size_t elsize)

Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc (1, 1) had been called instead.

Added in version 3.5.

void *PyMem_RawRealloc (void *p, size_t n)

Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.

If p is NULL, the call is equivalent to PyMem_RawMalloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem RawMalloc (),
PyMem RawRealloc () or PyMem RawCalloc ().

If the request fails, PyMem_RawRealloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_RawFree (void *p)

Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_RawMalloc (), PyMem_RawRealloc () or PyMem RawCalloc (). Otherwise, or if
PyMem_RawFree (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

11.4 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.

The default memory allocator uses the pymalloc memory allocator.

Uyar1: The G/L must be held when using these functions.

3.6 siiriimiinde degisti: The default allocator is now pymalloc instead of system malloc ().

11.3. Raw Memory Interface 253

The Python/C API, Yayim 3.12.3

void *PyMem_Malloc (size_tn)

Bir parcast Kararli ABI. Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL
if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc (1) had been called
instead. The memory will not have been initialized in any way.

void *PyMem_Calloc (size_t nelem, size_t elsize)

Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc (1, 1) had been called instead.

Added in version 3.5.

void *PyMem_Realloc (void *p, size_t n)

Bir parcasi Kararli ABL Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to
the minimum of the old and the new sizes.

If p is NULL, the call is equivalent to PyMem_Malloc (n) ;else if n is equal to zero, the memory block is resized
but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem Malloc (), PyMem Realloc ()
or PyMem_Calloc ().

If the request fails, PyMem Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free (void *p)

Bir parcas: Kararli ABIL Frees the memory block pointed to by p, which must have been returned by a previous call
to PyMem Malloc (),PyMem Realloc () or PyMem_Calloc ().Otherwise,orif PyMem_Free (p) has
been called before, undefined behavior occurs.

If p is NULL, no operation is performed.
The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

PyMem_New (TYPE, n)

Same as PyMem_Malloc (), butallocates (n * sizeof (TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

PyMem_Resize (p, TYPE, n)

Same as PyMem_Realloc (), but the memory block is resized to (n * sizeof (TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.

This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory when
handling errors.

void PyMem_Del (void *p)

Same as PyMem Free ().

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving the
C API functions listed above. However, note that their use does not preserve binary compatibility across Python versions
and is therefore deprecated in extension modules.

¢ PyMem MALLOC (size)
e PyMem_NEW (type, size)

e PyMem_REALLOC (ptr, size)

254 Boliim 11. Memory Management

The Python/C API, Yayim 3.12.3

e PyMem_RESIZE (ptr, type, size)
e PyMem_FREE (ptr)

¢ PyMem DEL (ptr)

11.5 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.

Not: There is no guarantee that the memory returned by these allocators can be successfully cast to a Python object when
intercepting the allocating functions in this domain by the methods described in the Customize Memory Allocators section.

The default object allocator uses the pymalloc memory allocator.

Uyar1: The GIL must be held when using these functions.

void *PyObject_Malloc (size_tn)
Bir parcast Kararli ABL. Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL
if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc (1) had been
called instead. The memory will not have been initialized in any way.

void *PyObject_Calloc (size_t nelem, size_t elsize)
Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc (1, 1) had been called instead.

Added in version 3.5.

void *PyObject_Realloc (void *p, size_t n)
Bir parcasi Kararli ABI. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to
the minimum of the old and the new sizes.

If p is NULL, the call is equivalent to PyObject_Malloc (n);else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc () or PyObject_Calloc ().

If the request fails, PyOb ject_Realloc () returns NULL and p remains a valid pointer to the previous memory
area.
void PyObject_Free (void *p)

Bir parcast Kararli ABIL. Frees the memory block pointed to by p, which must have been returned by a previ-
ous call to PyObject_Malloc (), PyObject_Realloc () or PyObject_Calloc (). Otherwise, or if
PyObject_Free (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

11.5. Object allocators 255

The Python/C API, Yayim 3.12.3

11.6 Default Memory Allocators

Default memory allocators:

Configuration Name Py- PyMem_Malloc PyOb-
Mem_RawMalloc ject_Malloc
Release build "pymalloc" malloc pymalloc pymalloc
Debug build "pymalloc_debug malloc + debug pymalloc +de- pymalloc +de-
bug bug
Release build, without py- "malloc" malloc malloc malloc

malloc
Debug build, without py-

"malloc_debug"

malloc + debug

malloc + debug

malloc + debug

malloc

Legend:

¢ Name: value for PYTHONMALLOC environment variable.

* malloc:system allocators from the standard C library, C functions: malloc (), calloc (), realloc () and

free().

e pymalloc: pymalloc memory allocator.

e “+ debug”: with debug hooks on the Python memory allocators.

* “Debug build”: Python build in debug mode.

11.7 Customize Memory Allocators

Added in version 3.4.
type PyMemAllocatorEx

Structure used to describe a memory block allocator. The structure has the following fields:

Field

Meaning

void *ctx
void* malloc (void *ctx,

void* calloc (void *ctx,

elsize)

void* realloc (void *ctx,
new_size)

void free (void *ctx,

size_t size)
size_t nelem,

void *ptr,

void *ptr)

size_t

size_t

user context passed as first argument
allocate a memory block

allocate a memory block initialized with
Zeros

allocate or resize a memory block

free a memory block

3.5 stirtimiinde degisti: The PyMemAl locator structure was renamed to PyMemAllocatorEx and a new

calloc field was added.

type PyMemAllocatorDomain

Enum used to identify an allocator domain. Domains:

PYMEM DOMAIN_RAW

Functions:

256

Boliim 11. Memory Management

The Python/C API, Yayim 3.12.3

* PyMem RawMalloc ()
* PyMem RawRealloc ()
* PyMem RawCalloc ()
* PyMem RawFree ()

PYMEM DOMAIN_ MEM

Functions:
e PyMem Malloc(),
* PyMem Realloc()
e PyMem_ Calloc /()
* PyMem Free()

PYMEM DOMAIN_OBJ
Functions:

e PyObject_Malloc/()
e PyObject_Realloc ()
e PyObject_Calloc()
* PyObject_Free()

void PyMem_GetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Get the memory block allocator of the specified domain.

void PyMem_SetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Set the memory block allocator of the specified domain.

The new allocator must return a distinct non-NULL pointer when requesting zero bytes.

For the PYMEM DOMAIN_ RAW domain, the allocator must be thread-safe: the GIL is not held when the allocator
is called.

For the remaining domains, the allocator must also be thread-safe: the allocator may be called in different interp-
reters that do not share a GIL.

If the new allocator is not a hook (does not call the previous allocator), the PyMem SetupDebugHooks ()
function must be called to reinstall the debug hooks on top on the new allocator.

See also PyPreConfig.allocator and Preinitialize Python with PyPreConfig.

Uyari: PyMem_SetAllocator () does have the following contract:

e It can be called after Py Prelnitialize () and before Py TnitializeFromConfig() to
install a custom memory allocator. There are no restrictions over the installed allocator other than the
ones imposed by the domain (for instance, the Raw Domain allows the allocator to be called without the
GIL held). See the section on allocator domains for more information.

o If called after Python has finish initializing (after Py_TnitializeFromConfig () hasbeen called)
the allocator must wrap the existing allocator. Substituting the current allocator for some other arbitrary
one is not supported.

3.12 siiriimiinde degisti: All allocators must be thread-safe.

11.7. Customize Memory Allocators 257

The Python/C API, Yayim 3.12.3

void PyMem_SetupDebugHooks (void)

Setup debug hooks in the Python memory allocators to detect memory errors.

11.8 Debug hooks on the Python memory allocators

When Python is built in debug mode, the PyMem SetupDebugHooks () function is called at the Python preinitiali-
zation to setup debug hooks on Python memory allocators to detect memory errors.

The PYTHONMALLOC environment variable can be used to install debug hooks on a Python compiled in release mode
(ex: PYTHONMALLOC =debug).

The PyMem_SetupDebugHooks () function can be wused to set debug hooks after calling
PyMem_SetAllocator ().

These debug hooks fill dynamically allocated memory blocks with special, recognizable bit patterns. Newly al-
located memory is filled with the byte 0xCD (PYMEM_CLEANBYTE), freed memory is filled with the byte
0xDD (PYMEM_DEADBYTE). Memory blocks are surrounded by “forbidden bytes” filled with the byte OxFD
(PYMEM_FORBIDDENBYTE). Strings of these bytes are unlikely to be valid addresses, floats, or ASCII strings.

Runtime checks:

» Detect API violations. For example, detect if PyObject_Free () is called on a memory block allocated by
PyMem Malloc ().

¢ Detect write before the start of the buffer (buffer underflow).
¢ Detect write after the end of the buffer (buffer overflow).

¢ Check that the GIL is held when allocator functions of PYMEM DOMATN_OBJ (ex: PyObject_Malloc ())
and PYMEM _DOMAIN_MEM (ex: PyMem Malloc ()) domains are called.

On error, the debug hooks use the t racemalloc module to get the traceback where a memory block was allocated. The
traceback is only displayed if t racemalloc is tracing Python memory allocations and the memory block was traced.

Let S=sizeof (size_t).2*S bytes are added at each end of each block of N bytes requested. The memory layout
is like so, where p represents the address returned by a malloc-like or realloc-like function (p [1:] means the slice of
bytes from * (p+1) inclusive up to * (p+7) exclusive; note that the treatment of negative indices differs from a Python
slice):

pl-2*s:-8]
Number of bytes originally asked for. This is a size_t, big-endian (easier to read in a memory dump).
p[-s]

API identifier (ASCII character):
e 'r' for PYMEM DOMAIN_RAW.
e 'm' for PYMEM _DOMAIN_MEM.

e 'o' for PYMEM DOMAIN_OBJ.

pl[—-S+1:0]
Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads.
pl[0:N]

The requested memory, filled with copies of PYMEM_CLEANBYTE, used to catch reference to uninitialized
memory. When a realloc-like function is called requesting a larger memory block, the new excess bytes are
also filled with PYMEM_CLEANBYTE. When a free-like function is called, these are overwritten with PY-
MEM_DEADBYTE, to catch reference to freed memory. When a realloc- like function is called requesting a
smaller memory block, the excess old bytes are also filled with PYMEM_DEADBYTE.

258 Boliim 11. Memory Management

The Python/C API, Yayim 3.12.3

PIN:N+S]
Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads.

pIN+S:N+2*S]
Only used if the PYMEM_DEBUG_SERIALNO macro is defined (not defined by default).

A serial number, incremented by 1 on each call to a malloc-like or realloc-like function. Big-endian size_t. If
“bad memory” is detected later, the serial number gives an excellent way to set a breakpoint on the next run, to
capture the instant at which this block was passed out. The static function bumpserialno() in obmalloc.c is the only
place the serial number is incremented, and exists so you can set such a breakpoint easily.

A realloc-like or free-like function first checks that the PYMEM_FORBIDDENBYTE bytes at each end are intact. If
they’ve been altered, diagnostic output is written to stderr, and the program is aborted via Py_FatalError(). The other
main failure mode is provoking a memory error when a program reads up one of the special bit patterns and tries to
use it as an address. If you get in a debugger then and look at the object, you’re likely to see that it’s entirely filled with
PYMEM_DEADBYTE (meaning freed memory is getting used) or PYMEM_CLEANBYTE (meaning uninitialized
memory is getting used).

3.6 siiriimiinde degisti: The PyMem SetupDebugHooks () function now also works on Python compiled in release
mode. On error, the debug hooks now use t racemalloc to get the traceback where a memory block was allocated. The
debug hooks now also check if the GIL is held when functions of PYMEM_DOMATIN_OBJ and PYMEM _DOMAIN_MEM
domains are called.

3.8 stirimiinde degisti: Byte patterns 0xCB (PYMEM_CLEANBYTE), 0xDB (PYMEM_DEADBYTE) and OxFB
(PYMEM_FORBIDDENBYTE) have been replaced with 0xCD, 0xDD and OxFD to use the same values than Windo-
ws CRT debugmalloc () and free ().

11.9 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It uses
memory mappings called “arenas” with a fixed size of either 256 KiB on 32-bit platforms or 1 MiB on 64-bit platforms.
It falls back to PyMem RawMalloc () and PyMem RawRealloc () for allocations larger than 512 bytes.

pymalloc is the default allocator of the PYMEM_DOMATN_MEM (ex: PyMem _Malloc ())and PYMEM _DOMATIN_OBJ
(ex: PyObject_Malloc ()) domains.

The arena allocator uses the following functions:
e VirtualAlloc () and VirtualFree () on Windows,
e mmap () and munmap () if available,
* malloc () and free () otherwise.

This allocator is disabled if Python is configured with the ——without-pymalloc option. It can also be disabled at
runtime using the PYTHONMALLOC environment variable (ex: PYTHONMALLOC =malloc).

11.9. The pymalloc allocator 259

The Python/C API, Yayim 3.12.3

11.9.1 Customize pymalloc Arena Allocator

Added in version 3.4.

type PyObjectArenaAllocator
Structure used to describe an arena allocator. The structure has three fields:

Field Meaning
void *ctx user context passed as first argument
void* alloc(void *ctx, size_t size) allocate an arena of size bytes

void free (void *ctx, void *ptr, size_t size) free anarena

void PyObject_GetArenaAllocator (PyObjectArenaAllocator *allocator)

Get the arena allocator.

void PyObject_SetArenaAllocator (PyObjectArenaAllocator *allocator)

Set the arena allocator.

11.10 tracemalloc C API

Added in version 3.7.

int PyTraceMalloc_Track (unsigned int domain, uintptr_t ptr, size_t size)

Track an allocated memory block in the t racemalloc module.

Return 0 on success, return —1 on error (failed to allocate memory to store the trace). Return -2 if tracemalloc is
disabled.

If memory block is already tracked, update the existing trace.

int PyTraceMalloc_Untrack (unsigned int domain, uintptr_t ptr)

Untrack an allocated memory block in the t racemalloc module. Do nothing if the block was not tracked.

Return -2 if tracemalloc is disabled, otherwise return O.

11.11 Examples

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python heap by using
the first function set:

PyObject *res;

char *buf = (char *) PyMem Malloc (BUFSIZ); /* for I/0 */
if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf) ;
PyMem_Free (buf); /* allocated with PyMem Malloc */
return res;

The same code using the type-oriented function set:

260 Boliim 11. Memory Management

The Python/C API, Yayim 3.12.3

PyObject *res;
char *buf = PyMem_New (char, BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString (buf) ;
PyMem_Del (buf); /* allocated with PyMem New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed, it
is required to use the same memory API family for a given memory block, so that the risk of mixing different allocators
is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as fatal because it
mixes two different allocators operating on different heaps.

char *bufl = PyMem_New (char, BUFSIZ);
char *buf2 = (char *) malloc (BUFSIZ);
char *buf3 = (char *) PyMem_Malloc (BUFSIZ);

PyMem_Del (buf3) ; /* Wrong —-—- should be PyMem Free() */

free (buf2); /* Right ——- allocated via malloc() */
free (bufl); /* Fatal —-- should be PyMem_Del () */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are allocated
and released with PyOb ject_New, PyObject_NewVar and PyObject_Del ().

These will be explained in the next chapter on defining and implementing new object types in C.

11.11. Examples 261

The Python/C API, Yayim 3.12.3

262 Boliim 11. Memory Management

BOLOM 12

Object Implementation Support

This chapter describes the functions, types, and macros used when defining new object types.

12.1 Allocating Objects on the Heap

PyObject *_PyObject_New (PyTypeObject *type)
Dondiirdiigii deger: Yeni referans.

PyVarObject *_PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)
Dondiirdiigii deger: Yeni referans.

PyObject *PyObject_Init (PyObject *op, PyTypeObject *type)
Dondiirdiigii deger: Odiing alinmis referans. Bir parcast Kararli ABL. Initialize a newly allocated object op with its
type and initial reference. Returns the initialized object. If type indicates that the object participates in the cyclic
garbage detector, it is added to the detector’s set of observed objects. Other fields of the object are not affected.

PyVarObject *PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Dondiirdiigii deger: Odiing alinms referans. Bir parcast Kararli ABL This does everything PyObject_Tnit ()
does, and also initializes the length information for a variable-size object.

PyObject_New (TYPE, typeobj)
Allocate a new Python object using the C structure type TYPE and the Python type object typeobj
(PyTypeObject *). Fields not defined by the Python object header are not initialized. The caller will own the
only reference to the object (i.e. its reference count will be one). The size of the memory allocation is determined
from the tp_basicsize field of the type object.

PyObject_NewVar (TYPE, typeobj, size)
Allocate a new Python object using the C structure type TYPE and the Python type object typeobj
(PyTypeObject*). Fields not defined by the Python object header are not initialized. The allocated memory
allows for the TYPE structure plus size (Py_ssize_t) fields of the size given by the tp_itemsize field of
typeobj. This is useful for implementing objects like tuples, which are able to determine their size at construction
time. Embedding the array of fields into the same allocation decreases the number of allocations, improving the
memory management efficiency.

263

The Python/C API, Yayim 3.12.3

void PyObject_Del (void *op)
Releases memory allocated to an object using PyOb ject_New or PyObject_NewVar. This is normally called
from the tp_ dealloc handler specified in the object’s type. The fields of the object should not be accessed after
this call as the memory is no longer a valid Python object.

PyObject _Py_NoneStruct
Object which is visible in Python as None. This should only be accessed using the Py_ None macro, which eva-
luates to a pointer to this object.

Ayrica bakimz:

PyModule_ Create ()
To allocate and create extension modules.

12.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section describes
these structures and how they are used.

12.2.1 Base object types and macros

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects. Additional macros can
be found under reference counting.

type PyObject
Bir parcast Sinith AP (Sadece bazi iiyeler kararli ABI'in bir parcasidir.) All object types are extensions of this
type. This is a type which contains the information Python needs to treat a pointer to an object as an object. In a
normal “release” build, it contains only the object’s reference count and a pointer to the corresponding type object.
Nothing is actually declared to be a PyOb ject, but every pointer to a Python object can be casttoa PyObject*.
Access to the members must be done by using the macros Py REFCNT and Py_ TYPE.

type PyVarObject
Bir parcast Sinirli APL. (Sadece bazt iiyeler kararlt ABI'in bir parcasidir.) This is an extension of PyObject that
adds the ob_ size field. This is only used for objects that have some notion of length. This type does not often
appear in the Python/C API. Access to the members must be done by using the macros Py_ REFCNT, Py_ TYPE,
and Py_STZE.

PyObject_HEAD
This is a macro used when declaring new types which represent objects without a varying length. The PyOb-
ject_HEAD macro expands to:

[PyObject ob_base;

See documentation of PyOb ject above.

PyObject_VAR_HEAD
This is a macro used when declaring new types which represent objects with a length that varies from instance to
instance. The PyObject_ VAR_HEAD macro expands to:

[PyVarObject ob_base;]

See documentation of PyVarObject above.

264 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

int Py_ Is (PyObject *x, PyObject *y)
Bir parcasi Kararli ABI 3.10 siirtimiinden beri. Test if the x object is the y object, the same as x is vy in Python.
Added in version 3.10.

int Py_IsNone (PyObject *X)

Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Test if an object is the None singleton, the same as x is None
in Python.

Added in version 3.10.

int Py_IsTrue (PyObject *x)

Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Test if an object is the True singleton, the same as x is True
in Python.

Added in version 3.10.

int Py_IsFalse (PyObject *X)

Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Test if an object is the False singleton, thesameasx is False
in Python.

Added in version 3.10.
PyTypeObject *Py_TYPE (PyObject *0)
Get the type of the Python object o.
Return a borrowed reference.
Use the Py_SET_TYPE () function to set an object type.

3.11 siiriimiinde degisti: Py_ TYPE () is changed to an inline static function. The parameter type is no longer
const PyObject*.

int Py_IS_TYPE (PyObject *o, PyTypeObject *type)
Return non-zero if the object o type is fype. Return zero otherwise. Equivalent to: Py_TYPE (o) == type.
Added in version 3.9.
void Py_SET_TYPE (PyObject *o, PyTypeObject *type)
Set the object o type to fype.
Added in version 3.9.
Py_ssize_t Py_SIZE (PyVarObject *0)
Get the size of the Python object o.
Use the Py_SET SIZE () function to set an object size.

3.11 siiriimiinde degisti: Py_STZE () is changed to an inline static function. The parameter type is no longer
const PyVarObject*.

void Py_SET_SIZE (PyVarObject *¥o, Py_ssize_t size)
Set the object o size to size.
Added in version 3.9.
PyObject_HEAD_INIT (type)
This is a macro which expands to initialization values for a new PyOb ject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

12.2. Common Object Structures 265

The Python/C API, Yayim 3.12.3

PyVarObject_HEAD_INIT (type, size)

This is a macro which expands to initialization values for a new PyVarObject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

12.2.2 Implementing functions and methods

type PyCFunction

Bir parcast Kararli ABL Type of the functions used to implement most Python callables in C. Functions of this
type take two PyOb ject* parameters and return one such value. If the return value is NULL, an exception shall
have been set. If not NULL, the return value is interpreted as the return value of the function as exposed in Python.
The function must return a new reference.

The function signature is:

PyObject *PyCFunction (PyObject *self,
PyObject *args);

type PyCFunctionWithKeywords

Bir parcast Kararli ABI. Type of the functions used to implement Python callables in C with signature
METH_VARARGS | METH_KEYWORDS. The function signature is:

PyObject *PyCFunctionWithKeywords (PyObject *self,
PyObject *args,
PyObject *kwargs);

type _PyCFunctionFast

Type of the functions used to implement Python callables in C with signature METH FASTCALL. The function
signature is:

PyObject *_PyCFunctionFast (PyObject *self,
PyObject *const *args,
Py_ssize_t nargs);

type _PyCFunctionFastWithKeywords

Type of the functions used to implement Python callables in C with signature METH FASTCALL |
METH_KEYWORDS. The function signature is:

PyObject *_PyCFunctionFastWithKeywords (PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) ;

type PyCMethod

Type of the functions used to implement Python callables in C with signature METH METHOD |
METH_FASTCALL | METH_KEYWORDS. The function signature is:

PyObject *PyCMethod (PyObject *self,
PyTypeObject *defining_class,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames)

266 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

Added in version 3.9.

type PyMethodDef
Bir parcast Kararli ABI (tiim iiyeler dahil). Structure used to describe a method of an extension type. This structure
has four fields:
const char *m1_name
Name of the method.

PyCFunction m1_meth
Pointer to the C implementation.
intml_flags
Flags bits indicating how the call should be constructed.

const char *ml_doc

Points to the contents of the docstring.

The m1_methisaC function pointer. The functions may be of different types, but they always return PyOb ject*. If the
function is not of the PyCFunct i on, the compiler will require a cast in the method table. Even though PyCFunction
defines the first parameter as PyOb ject*, it is common that the method implementation uses the specific C type of the
self object.

The m1_fIlags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.

There are these calling conventions:

METH_VARARGS

This is the typical calling convention, where the methods have the type PyCFunct i on. The function expects two
PyObject* values. The first one is the self object for methods; for module functions, it is the module object.
The second parameter (often called args) is a tuple object representing all arguments. This parameter is typically
processed using PyArg_ParseTuple () of PyArg_UnpackTuple ().

METH_KEYWORDS

Can only be used in certain combinations with other flags: METH_VARARGS | METH_KEYWORDS,
METH FASTCALL | METH KEYWORDS and METH _METHOD | METH FASTCALL | METH _KEYWORDS.

METH_VARARGS | METH_KEYWORDS
Methods with these flags must be of type PyCFunctioniithKeywords. The function expects three parame-
ters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or possibly NULL if there are no
keyword arguments. The parameters are typically processed using PyArg_ParseTupleAndKeywords ().

METH_FASTCALL
Fast calling convention supporting only positional arguments. The methods have the type _ PyCFunctionFast.

The first parameter is self, the second parameter is a C array of PyOb ject * values indicating the arguments and
the third parameter is the number of arguments (the length of the array).

Added in version 3.7.
3.10 siiriimiinde degisti: METH_FASTCALL is now part of the stable ABI.

METH _FASTCALL | METH_KEYWORDS
Extension of METH FASTCALL supporting also keyword arguments, with methods of type
_PyCFunctionFastWithKeywords. Keyword arguments are passed the same way as in the vector-
call protocol: there is an additional fourth PyOb ject* parameter which is a tuple representing the names of the
keyword arguments (which are guaranteed to be strings) or possibly NULL if there are no keywords. The values
of the keyword arguments are stored in the args array, after the positional arguments.

Added in version 3.7.

12.2. Common Object Structures 267

The Python/C API, Yayim 3.12.3

METH_METHOD
Can only be used in the combination with other flags: METH_METHOD | METH_FASTCALL | METH_KEYWORDS.
METH_METHOD | METH_FASTCALL | METH_KEYWORDS

Extension of METH _FASTCALL | METH _KEYWORDS supporting the defining class, that is, the class that contains
the method in question. The defining class might be a superclass of Py_TYPE (self).

The method needs to be of type PyCMethod, the same as for METH_FASTCALL | METH_KEYWORDS with
defining_class argument added after self.

Added in version 3.9.

METH_NOARGS

Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunct ion. The first parameter is typically named self and
will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

The function must have 2 parameters. Since the second parameter is unused, Py_ UNUSED can be used to prevent
a compiler warning.
METH_O

Methods with a single object argument can be listed with the METH O flag, instead of invoking
PyArg_ParseTuple () witha "O" argument. They have the type PyCFunct ion, with the self parameter,
and a PyOb ject* parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.
METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to create class methods, similar to what is created when using the classmethod () built-in function.
METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to create
static methods, similar to what is created when using the staticmethod () built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. Without METH COEXIST, the default is to skip repe-
ated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains slot, for
example, would generate a wrapped method named __contains__ () and preclude the loading of a corres-
ponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in place of the
wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are optimized more
than wrapper object calls.

PyObject *PyCMethod_New (PyMethodDef *ml, PyObject *self, PyObject *module, PyTypeObject *cls)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI 3.9 siiriimiinden beri. Turn ml into a Python callable
object. The caller must ensure that m! outlives the callable. Typically, ml is defined as a static variable.

The self parameter will be passed as the self argument to the C function in m1->ml_meth when invoked. self
can be NULL.

The callable object’s __module___ attribute can be set from the given module argument. module should be a
Python string, which will be used as name of the module the function is defined in. If unavailable, it can be set to
None or NULL.

Ayrica bakiniz:

function._ _module_

268 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

The cls parameter will be passed as the defining_class argument to the C function. Must be set if METH_METHOD
issetonml->ml_flags.

Added in version 3.9.

PyObject *PyCFunction_NewEx (PyMethodDef *ml, PyObject *self, PyObject *module)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Equivalent to PyCMethod_New (ml, self,
module, NULL).

PyObject *PyCFunction_New (PyMethodDef *ml, PyObject *self)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI 3.4 siiriimiinden beri. Equivalent to
PyCMethod_New (ml, self, NULL, NULL).

12.2.3 Accessing attributes of extension types

type PyMemberDef

Bir parcas: Kararl1 ABI (tiim iiyeler dahil). Structure which describes an attribute of a type which corresponds to a
C struct member. When defining a class, put a NULL-terminated array of these structures in the t p_members
slot.

Its fields are, in order:

const char *name
Name of the member. A NULL value marks the end of a PyMemberDef [] array.

The string should be static, no copy is made of it.

int type
The type of the member in the C struct. See Member types for the possible values.

Py _ssize_t offset
The offset in bytes that the member is located on the type’s object struct.

int £lags
Zero or more of the Member flags, combined using bitwise OR.

const char *doe

The docstring, or NULL. The string should be static, no copy is made of it. Typically, it is defined using
PyDoc_STR.

By default (when f1ags is 0), members allow both read and write access. Use the Py READONLY flag for read-
only access. Certain types, like Py T STRING, imply Py READONLY.Only Py T OBJECT_EX (and legacy
T_OBJECT) members can be deleted.

For heap-allocated types (created using Py Type_FromSpec () or similar), PyMemberDe f may contain a defi-
nition for the special member "__vectorcalloffset__", corresponding to tp_vectorcall_ offset
in type objects. These must be defined with Py_T_PYSSIZET and Py_READONLY, for example:

static PyMemberDef spam_type_members[] = {
{"__vectorcalloffset__ ", Py_T_PYSSIZET,
offsetof (Spam_object, vectorcall), Py_READONLY},
{NULL} /* Sentinel */

bi

(You may need to #include <stddef.h> foroffsetof().)

The legacy offsets tp dictoffset and tp_weaklistoffset can be defined similarly using
"__dictoffset_ " and "__weaklistoffset__ " members, but extensions are strongly encouraged to
use Py_ TPFLAGS_MANAGED_DICT and Py_TPFLAGS_MANAGED_WEAKREF instead.

12.2. Common Object Structures 269

The Python/C API, Yayim 3.12.3

3.12 siiriimiinde degisti: PyMemberDef is always available. Previously, it required including " st ructmember .
h".
PyObject *PyMember_GetOne (const char *obj_addr, struct PyMemberDef *m)

Bir parcast Kararli ABL Get an attribute belonging to the object at address obj_addr. The attribute is described by
PyMemberDef m. Returns NULL on error.

3.12 siirtimiinde degisti: PyMember_ GetOne is always available. Previously, it required including
"structmember.h".

int PyMember_SetOne (char *obj_addr, struct PyMemberDef *m, PyObject *0)

Bir pargasit Kararli ABIL Set an attribute belonging to the object at address obj_addr to object o. The attribute to
set is described by PyMemberDef m. Returns 0 if successful and a negative value on failure.

3.12 siirlimiinde degisti: PyMember_SetOne is always available. Previously, it required including
"structmember.h".

Member flags

The following flags can be used with PyMemberDef. flags:

Py_READONLY
Not writable.

Py_AUDIT_ READ
Emit an object.__getattr__ audit event before reading.

Py_RELATIVE_OFFSET

Indicates that the o fset of this PyMemberDef entry indicates an offset from the subclass-specific data, rather
than from PyObject.

Can only be used as part of Py_tp_members slot when creating a class using negative basicsize. It is
mandatory in that case.

This flag is only used in Py Type_SI1ot. When setting t p_membe rs during class creation, Python clears it and
sets PyMemberDef.offset to the offset from the PyObject struct.

3.10 siiriimiinde degisti: The RESTRICTED, READ_RESTRICTED and WRITE_RESTRICTED macros available
with #include "structmember.h" are deprecated. READ_RESTRICTED and RESTRICTED are equivalent
to Py _AUDIT READ;WRITE_RESTRICTED does nothing.

3.12 siirlimiinde degisti: The READONLY macro was renamed to Py_READONLY. The PY_AUDIT_READ macro
was renamed with the Py_ prefix. The new names are now always available. Previously, these required #include
"structmember.h". The header is still available and it provides the old names.

Member types

PyMemberDef . type can be one of the following macros corresponding to various C types. When the member is
accessed in Python, it will be converted to the equivalent Python type. When it is set from Python, it will be converted
back to the C type. If that is not possible, an exception such as TypeError or ValueError is raised.

Unless marked (D), attributes defined this way cannot be deleted using e.g. del or delattr ().

270 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

Macro name C type Python type

char int
Py_T_BYTE

short int
Py_T_SHORT

int int
Py_T_INT

long int
Py_T_LONG

long long int
Py_T_LONGLONG

unsigned char int
Py_T_UBYTE

unsigned int int
Py_T_UINT

unsigned short int
Py_T_USHORT

unsigned long int
Py_T_ULONG

unsigned long long int
Py_T_ULONGLONG

Py _ssize t int
Py _T_PYSSIZET

float float
Py_T_FLOAT

double float
Py_T_DOUBLE

char (written as O or 1) bool
Py_T_BOOL

const char* (¥) str (RO)
Py_T_STRING

const char[] (¥) str (RO)
Py_T_STRING_INPLACE

char (0-127) str (*%)
Py_T_CHAR

PyObject* object (D)

Py_T_OBJECT_ EX

12.2. Common Object Structures

271

The Python/C API, Yayim 3.12.3

(*): Zero-terminated, UTF8-encoded C string. With Py_T_STRING the C representation is a pointer; with
Py_T_STRING_INPLACE the string is stored directly in the structure.

(**): String of length 1. Only ASCII is accepted.
(RO): Implies Py_ READONLY .

(D): Can be deleted, in which case the pointer is set to NULL. Reading a NULL pointer raises
AttributeError.

Added in version 3.12: In previous versions, the macros were only available with #include "structmember.h"
and were named without the Py__ prefix (e.g. as T_INT). The header is still available and contains the old names, along
with the following deprecated types:

T_OBJECT

Like Py_T_OBJECT_EX, but NULL is converted to None. This results in surprising behavior in Python: deleting
the attribute effectively sets it to None.

T_NONE

Always None. Must be used with Py_ READONLY.

Defining Getters and Setters

type PyGetSetDef

Bir parcasi Kararli ABI (tiim iiyeler dahil). Structure to define property-like access for a type. See also description
of the PyTypeObject.tp _getset slot.

const char *name
attribute name
getter get
C function to get the attribute.
setter set
Optional C function to set or delete the attribute. If NULL, the attribute is read-only.
const char *doc
optional docstring
void *closure

Optional user data pointer, providing additional data for getter and setter.

typedef PyObject *(*gettex)(PyObject*, void*)

Bir parcasi Kararli ABI. The get function takes one PyOb ject* parameter (the instance) and a user data pointer
(the associated closure):

It should return a new reference on success or NULL with a set exception on failure.

typedef int (*setter)(PyObject*, PyObject*, void*)

Bir parcasi Kararli ABI. set functions take two PyObject* parameters (the instance and the value to be set)
and a user data pointer (the associated closure):

In case the attribute should be deleted the second parameter is NULL. Should return 0 on success or —1 with a set
exception on failure.

272

Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

12.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of the PyObject_* or PyType_ * functions, but
do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects behave, so
they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object stores
a large number of values, mostly C function pointers, each of which implements a small part of the type’s functionality.
The fields of the type object are examined in detail in this section. The fields will be described in the order in which they

occur in the structure.

In addition to the following quick reference, the Examples section provides at-a-glance insight into the meaning and use

of PyTypeObject.

12.3.1 Quick Reference

“tp slots”

PyTypeObject Slot>» 2741

Type

special methods/attrs

In-
fOSayfa 274,2

CTDI

<R> tp_name const char * __name__ X X

tp_basicsize Py _ssize_t X X X
tp_itemsize Py ssize_t X X
tp_dealloc destructor X X X
tp_vectorcall_offset Py _ssize_t X X
(tp_getattr) getattrfunc __getattribute__, __getattr__ G
(tp_setattr) setattrfunc __setattr__, _ delattr__ G
tp_as_async PyAsyncMethods * sub-slots %
tp_repr reprfunc _repr__ X X X
tp_as_number PyNumberMethods * sub-slots %
tp_as_sequence PySequenceMethods * sub-slots %
tp_as_mapping PyMappingMethods * sub-slots %
tp_hash hashfunc __hash__ X G
tp_call ternaryfunc _call__ X X
tp_str reprfunc __str__ X X
tp_getattro getattrofunc __getattribute__, __ getattr__ X X G
tp_setattro setattrofunc __setattr__, _ delattr__ X X G
tp_as_buffer PyBufferProcs * %
tp_flags unsigned long X X ?
tp_doc const char * __doc X X

tp_traverse traverseproc X G
tp_clear inquiry X G
tp_richcompare richcmpfunc It . _le , _eq ,_ne , X G

gt,_ge

(tp_weaklistoffset) Py_ssize_ t X ?
tp_iter getiterfunc iter X
tp_iternext iternextfunc next X
tp_methods PyMethodDef [] X X

tp_members PyMemberDef [] X

sonraki sayfaya devam

12.3. Type Objects

273

The Python/C API, Yayim 3.12.3

Tablo 1 - 6nceki sayfadan devam

PyTypeObject Slot>» 274 1 Type special methods/attrs Info?
CTDI
tp_getset PyGetSetDef [] X X
tp_base PyTypeObject * _ base__ X
tp_dict PyObject * _ dict__ ?
tp_descr_get descrget func _get X
tp_descr_set descrsetfunc __set_ ., delete_ X
(tp_dictoffset) Py_ssize t X ?
tp_init initproc __init__ X X X
tp_alloc allocfunc X ?
tp_new newfunc __new__ X X ?
tp_free freefunc X X ?
tp_is_gc inquiry X X
<tp_bases> PyObject * _ bases__ ~
<tp_mro> PyObject * __mro__ ~
[tp_cache] PyObject *
[tp_subclasses] void * __subclasses__
[tp_weaklist] PyObject *
(tp_del) destructor
[tp_version_tag] unsigned int
tp_finalize destructor _del__ X
tp_vectorcall vectorcallfunc

[tp_watched]

unsigned char

! (): A slot name in parentheses indicates it is (effectively) deprecated.

<>: Names in angle brackets should be initially set to NULL and treated as read-only.

[1: Names in square brackets are for internal use only.
<R> (as a prefix) means the field is required (must be non-NULL).

2 Columns:

“0”: seton PyBaseObject_Type
“T”:seton PyType_Type
“D”: default (if slot is set to NULL)

X - PyType_Ready sets this value if it is NULL
~ — PyType_Ready always sets this wvalue

(it should be NULL)

? — PyType_Ready may set this value depending on other slots
ylyp Yy y P g

Also see the inheritance column ("I").

“I”: inheritance

>

oe

Q)

Note that some slots are effectively inherited through the normal attribute lookup chain.

- it's complicated;

- type slot is inherited via *PyType_Ready* if defined with a *NULL* value
— the slots of the sub-struct are inherited individually
— inherited, but only in combination with other slots;
see the slot's description

see the slot's description

274

Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

sub-slots
Slot Type special methods
am_await unaryfunc __await__
am_aiter unaryfunc __aiter___
am_anext unaryfunc __anext__
am_send sendfunc
nb_add binaryfunc _add__ _ radd__
nb_inplace_add binaryfunc __dadd__
nb_subtract binaryfunc _sub___ rsub__
nb_inplace_subtract binaryfunc __isub__
nb_multiply binaryfunc _mul__ _ rmul__
nb_inplace_multiply binaryfunc __imul__
nb_remainder binaryfunc _mod__ _ rmod__
nb_inplace_remainder binaryfunc __imod__
nb_divmod binaryfunc __divmod__ __ rdiv-
mod___
nb_power ternaryfunc __pow__ __ rpow__
nb_inplace_power ternaryfunc __ipow__
nb_negative unaryfunc __neg
nb_positive unaryfunc __pos__
nb_absolute unaryfunc __abs__
nb_bool inquiry __bool__
nb_invert unaryfunc __invert__
nb_1lshift binaryfunc _ Ishift_ _ rlshift
nb_inplace_lshift binaryfunc __ilshift
nb_rshift binaryfunc __rshift rrshift
nb_inplace_rshift binaryfunc __irshift__
nb_and binaryfunc _and__ _ rand__
nb_inplace_and binaryfunc __dand__
nb_xor binaryfunc __XOr__ __ IXOr__
nb_inplace_xor binaryfunc __ixor__
nb_or binaryfunc __Oor__ __ror__
nb_inplace_or binaryfunc __dor__
nb_int unaryfunc _int__
nb_reserved void *
nb_float unaryfunc _ float__
nb_floor_divide binaryfunc __floordiv__
nb_inplace_floor_divide binaryfunc __ifloordiv__
nb_true_divide binaryfunc __truediv__
nb_inplace_true_divide binaryfunc __dtruediv__
nb_index unaryfunc __index___
nb_matrix_multiply binaryfunc __matmul__ __ rmat-
mul__
nb_inplace _matrix _multiply binaryfunc __imatmul__
mp_length lenfunc __len__
mp_subscript binaryfunc __getitem__
mp_ass_subscript objobjargproc __setitem__, __ deli-
tem

sonraki sayfaya devam

12.3. Type Objects

275

The Python/C API, Yayim 3.12.3

Tablo 2 - dnceki sayfadan devam

Slot Type special methods
sqg_length lenfunc _len__
sqg_concat binaryfunc _add__
sq_repeat ssizeargfunc _ mul__
sg_item ssizeargfunc __getitem__
sg_ass_item ssizeobjargproc _ setitem____ deli-
tem__
sg_contains objobjproc __contains__
sqg_inplace_concat binaryfunc _ dadd__
sq_inplace_repeat ssizeargfunc _ imul__

bf_getbuffer
bf releasebuffer

getbufferproc ()
releasebufferproc ()

276

Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

slot typedefs

typedef Parameter Types Return Type

allocfunc PyObject *
PyTypeObject *
Py ssize_t

destructor PyObject * void

freefunc void * void

traverseproc int
PyObject *
visitproc
void *

newfunc PyObject *
PyObject *
PyObject *
PyObject *

initproc int
PyObject *
PyObject *
PyObject *

reprfunc PyObject * PyObject *

getattrfunc PyObject *
PyObject *
const char *

setattrfunc int
PyObject *
const char *
PyObject *

getattrofunc PyObject *
PyObject *
PyObject *

setattrofunc int
PyObject *
PyObject *
PyObject *

descrgetfunc PyObject *
PyObject *
PyObject *
PyObject *

12.3. Type Objects 277

descrsetfunc int
PyObject *

DrrAA = A ~+ %k

The Python/C API, Yayim 3.12.3

See Slot Type typedefs below for more detail.

12.3.2 PyTypeObject Definition

The structure definition for Py TypeObject can be found in Include/object . h. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

Py_ssize_t tp_vectorcall offset;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;
(sonraki sayfaya devam)

278 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

// Strong reference on a heap type, borrowed reference on a static type
struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;
vectorcallfunc tp_vectorcall;

/* bitset of which type-watchers care about this type */
unsigned char tp_watched;
} PyTypeObject;

12.3.3 PyObiject Slots

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (cre-
ated by type_new (), usually called from a class statement). Note that Py Type_Type (the metatype) initializes
tp_1itemsize, which means that its instances (i.e. type objects) must have the ob_ s i ze field.

Py_ssize_ t PyObject .ob_refecnt

Bir parcasi Kararli ABL This is the type object’s reference count, initialized to 1 by the PyObject_HEAD_INIT
macro. Note that for statically allocated type objects, the type’s instances (objects whose ob_ t ype points back to
the type) do not count as references. But for dynamically allocated type objects, the instances do count as references.

Inheritance:
This field is not inherited by subtypes.

PyTypeObject *PyObject .ob_type
Bir parcas: Kararli ABI. This is the type’s type, in other words its metatype. It is initialized by the argument to the

PyObject_HEAD_INIT macro, and its value should normally be &Py Type_Type. However, for dynamically
loadable extension modules that must be usable on Windows (at least), the compiler complains that this is not a valid

12.3. Type Objects 279

The Python/C API, Yayim 3.12.3

initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT macro and to initialize this
field explicitly at the start of the module’s initialization function, before doing anything else. This is typically done
like this:

[Foo_Type .0b_type = &PyType_Type;

This should be done before any instances of the type are created. PyType_Ready () checks if ob_type is
NULL, and if so, initializes it to the ob_ t ype field of the base class. Py Type_Ready () will not change this
field if it is non-zero.

Inheritance:

This field is inherited by subtypes.

PyObject *PyOb ject . _ob_next

PyObject *PyObject ._ob_prev

These fields are only present when the macro Py_TRACE_REFS is defined (see the configure
—-—with-trace-refs option).

Their initialization to NULL is taken care of by the PyObject_HEAD_INIT macro. For statically allocated
objects, these fields always remain NULL. For dynamically allocated objects, these two fields are used to link the
object into a doubly linked list of all live objects on the heap.

This could be used for various debugging purposes; currently the only uses are the sys . getobjects () function
and to print the objects that are still alive at the end of a run when the environment variable PYTHONDUMPREF S
is set.

Inheritance:

These fields are not inherited by subtypes.

12.3.4 PyVarObject Slots

Py _ssize_t PyVarObject .ob_size

Bir parcast Kararli ABL For statically allocated type objects, this should be initialized to zero. For dynamically
allocated type objects, this field has a special internal meaning.

Inheritance:

This field is not inherited by subtypes.

12.3.5 PyTypeObject Slots

Each slot has a section describing inheritance. If PyType Ready () may set a value when the field is set to NULL
then there will also be a “Default” section. (Note that many fields set on PyBaseObject_Type and PyType_Type
effectively act as defaults.)

const char *PyTypeOb ject .tp_name

Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module globals,
the string should be the full module name, followed by a dot, followed by the type name; for built-in types, it should
be just the type name. If the module is a submodule of a package, the full package name is part of the full module
name. For example, a type named T defined in module M in subpackage Q in package P should have the t p_name
initializer "P.Q.M.T".

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored in
the type dict as the value for key ' __module_ '.

280

Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is made
accessible as the __module___ attribute, and everything after the last dot is made accessible as the __name___
attribute.

If no dot is present, the entire tp_name field is made accessible as the _ name__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means your
type will be impossible to pickle. Additionally, it will not be listed in module documentations created with pydoc.

This field must not be NULL. It is the only required field in PyTypeObject () (other than potentially
tp_itemsize).

Inheritance:
This field is not inherited by subtypes.

Py _ssize_t PyTypeObject.tp_basicsize
Py _ssize_t PyTypeObject.tp_itemsize

These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero tp_ i t ems i ze field. For a type with fixed-length instances, all instances
have the same size, given in tp_basicsize.

For a type with variable-length instances, the instances must have an ob_size field, and the instance size is
tp_basicsizeplus Ntimes tp_itemsize, where N is the “length” of the object. The value of N is typically
stored in the instance’s ob__ s i ze field. There are exceptions: for example, ints use a negative ob_ s i ze to indicate
anegative number, and N is abs (ob_size) there. Also, the presence of an ob_ s i ze field in the instance layout
doesn’t mean that the instance structure is variable-length (for example, the structure for the list type has fixed-
length instances, yet those instances have a meaningful ob_ s i ze field).

The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an initiali-
zer for the tp_basicsizeisto use the sizeof operator on the struct used to declare the instance layout. The
basic size does not include the GC header size.

A note about alignment: if the variable items require a particular alignment, this should be taken ca-
re of by the value of tp_basicsize. Example: suppose a type implements an array of double.
tp_itemsizeis sizeof (double). It is the programmer’s responsibility that tp_basicsize is a mul-
tiple of sizeof (double) (assuming this is the alignment requirement for double).

For any type with variable-length instances, this field must not be NULL.
Inheritance:

These fields are inherited separately by subtypes. If the base type has a non-zero tp_ i tems1i ze, it is generally not
safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the implementation
of the base type).

destructor PyTypeObject .tp_dealloc

A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and E11ipsis). The function signature
is:

[void tp_dealloc (PyObject *self);]

The destructor function is called by the Py_DECREF () and Py_XDECREF () macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor func-
tion should free all references which the instance owns, free all memory buffers owned by the instance (using the
freeing function corresponding to the allocation function used to allocate the buffer), and call the type’s tp_free

12.3. Type Objects 281

The Python/C API, Yayim 3.12.3

function. If the type is not subtypable (doesn’t have the Py TPFLAGS_BASETYPE flag bit set), it is permissible
to call the object deallocator directly instead of via tp_ free. The object deallocator should be the one used to
allocate the instance; this is normally PyObject_Del () if the instance was allocated using PyObject_New
or PyObject_NewVar,or PyObject_GC_Del () if the instance was allocated using PyObject_GC_New
or PyObject_GC_NewVar.

If the type supports garbage collection (has the Py TPFLAGS_HAVE_GC flag bit set), the destructor should call
PyObject_GC_UnTrack () before clearing any member fields.

static void foo_dealloc (foo_object *self) {
PyObject_GC_UnTrack (self);
Py_CLEAR (self->ref);
Py_TYPE (self)->tp_free ((PyObject *)self);

Finally, if the type is heap allocated (Py_ TPFLAGS_HEAPTYPE), the deallocator should release the owned refe-
rence to its type object (via Py_ DECREF ()) after calling the type deallocator. In order to avoid dangling pointers,
the recommended way to achieve this is:

static void foo_dealloc (foo_object *self) {
PyTypeObject *tp = Py_TYPE (self);
// free references and buffers here
tp—>tp_free (self);
Py_DECREF (tp) ;

Inheritance:
This field is inherited by subtypes.

Py _ssize_t PyTypeObject.tp_vectorcall_offset
An optional offset to a per-instance function that implements calling the object using the vectorcall protocol, a more
efficient alternative of the simpler tp_call.

This field is only used if the flag Py TPFLAGS HAVE_VECTORCALL is set. If so, this must be a positive integer
containing the offset in the instance of a vectorcall func pointer.

The vectorcallfunc pointer may be NULL, in which case the instance behaves as if
Py_TPFLAGS_HAVE_VECTORCALL was not set: calling the instance falls back to tp_call.

Any class that sets Py_ TPFLAGS_HAVE_VECTORCALL must also set t p_call and make sure its behaviour is
consistent with the vectorcallfunc function. This can be done by setting #p_call to PyVectorcall Call ().

3.8 siirtimiinde degisti: Before version 3.8, this slot was named tp_print. In Python 2.x, it was used for printing
to a file. In Python 3.0 to 3.7, it was unused.

3.12 siirlimiinde degisti: Before version 3.12, it was not recommended for mutable heap types to implement the
vectorcall protocol. When a user sets ___call__ in Python code, only #p_call is updated, likely making it incon-
sistent with the vectorcall function. Since 3.12, setting __call__ will disable vectorcall optimization by clearing
the Py TPFLAGS_HAVE_VECTORCALL flag.

Inheritance:

This field is always inherited. However, the Py TPFLAGS_HAVE_VECTORCALL flag is not always inherited. If
it’s not set, then the subclass won’t use vectorcall, except when PyVectorcall_Call () is explicitly called.

getattrfunc Py TypeObject .tp_getattr

An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name.

282 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

Inheritance:
Group: tp_getattr, tp_getattro

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

setattrfunc Py TypeObject .tp_setattr

An optional pointer to the function for setting and deleting attributes.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name.

Inheritance:
Group: tp_setattr, tp_setattro

This field is inherited by subtypes together with tp_setattro: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

PyAsyncMethods *PyTypeObject .tp_as_async

Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and
asynchronous iterator protocols at the C-level. See Async Object Structures for details.

Added in version 3.5: Formerly known as t p_compare and tp_reserved.
Inheritance:
The tp_as_async field is not inherited, but the contained fields are inherited individually.

reprfunc Py TypeObject .tp_repr
An optional pointer to a function that implements the built-in function repr ().

The signature is the same as for PyObject_Repr():

[PyObject *tp_repr (PyObject *self);

The function must return a string or a Unicode object. Ideally, this function should return a string that, when passed
to eval (), given a suitable environment, returns an object with the same value. If this is not feasible, it should
return a string starting with ' <' and ending with ' >' from which both the type and the value of the object can be
deduced.

Inheritance:
This field is inherited by subtypes.
Default:

When this field is not set, a string of the form <$s object at %p> isreturned, where s is replaced by the
type name, and $p by the object’s memory address.

PyNumberMethods *PyTypeObject .tp_as_number

Pointer to an additional structure that contains fields relevant only to objects which implement the number protocol.
These fields are documented in Number Object Structures.

Inheritance:
The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods *PyTypeObject .tp_as_sequence

Pointer to an additional structure that contains fields relevant only to objects which implement the sequence pro-
tocol. These fields are documented in Sequence Object Structures.

Inheritance:

12.3. Type Objects 283

The Python/C API, Yayim 3.12.3

The tp_as_sequence field is not inherited, but the contained fields are inherited individually.
PyMappingMethods *PyTypeObject .tp_as_mapping

Pointer to an additional structure that contains fields relevant only to objects which implement the mapping protocol.
These fields are documented in Mapping Object Structures.

Inheritance:
The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject .tp_hash

An optional pointer to a function that implements the built-in function hash ().

The signature is the same as for PyObject_Hash ():

[Py_hash_t tp_hash (PyObject *); J

The value -1 should not be returned as a normal return value; when an error occurs during the computation of the
hash value, the function should set an exception and return —1.

When this field is not set (and tp_richcompare is not set), an attempt to take the hash of the object raises
TypeError. This is the same as setting it to PyObject_HashNot Implemented ().

This field can be set explicitly to PyObject_HashNotImplemented () to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash__ = None at the Python level,
causing isinstance (o, collections.Hashable) to correctly return False. Note that the converse
is also true - setting __hash___ = None on a class at the Python level will result in the t p_hash slot being set
to PyObject_HashNotImplemented ().

Inheritance:
Group: tp_hash, tp_richcompare

This field is inherited by subtypes together with tp_ richcompare: a subtype inherits both of
tp_richcompare and tp_hash, when the subtype’s tp_richcompare and tp_hash are both NULL.
ternaryfunc PyTypeObject .tp_call

An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call ():

[PyObject *tp_call (PyObject *self, PyObject *args, PyObject *kwargs); J

Inheritance:
This field is inherited by subtypes.
reprfunc PyTypeObject .tp_str

An optional pointer to a function that implements the built-in operation st r () . (Note that st r is a type now, and
str () calls the constructor for that type. This constructor calls PyObject_Str () to do the actual work, and
PyObject_Str () will call this handler.)

The signature is the same as for PyObject_Str ():

[PyObject *tp_str (PyObject *self);]

The function must return a string or a Unicode object. It should be a “friendly” string representation of the object,
as this is the representation that will be used, among other things, by the print () function.

Inheritance:

This field is inherited by subtypes.

284 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

Default:

When this field is not set, PyObject_Repr () is called to return a string representation.

getattrofunc Py TypeObject .tp_getattro
An optional pointer to the get-attribute function.

The signature is the same as for PyObject_GetAttr():

[PyObject *tp_getattro (PyObject *self, PyObject *attr);]

It is usually convenient to set this field to PyObject_GenericGetAttr (), which implements the normal way
of looking for object attributes.

Inheritance:
Group: tp_getattr, tp_getattro

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

Default:
PyBaseObject_Type uses PyObject_GenericGetAttr ().

setattrofunc Py TypeObject .tp_setattro

An optional pointer to the function for setting and deleting attributes.

The signature is the same as for PyObject_SetAttr ():

[int tp_setattro (PyObject *self, PyObject *attr, PyObject *value);]

In addition, setting value to NULL to delete an attribute must be supported. It is usually convenient to set this field
to PyObject_GenericSetAttr (), which implements the normal way of setting object attributes.

Inheritance:
Group: tp_setattr, tp_setattro

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

Default:

PyBaseObject_Type uses PyObject_GenericSetAttr ().
PyBufferProcs *PyTypeObject .tp_as_buffer

Pointer to an additional structure that contains fields relevant only to objects which implement the buffer interface.
These fields are documented in Buffer Object Structures.

Inheritance:

The tp_as_buffer field is not inherited, but the contained fields are inherited individually.
unsigned long Py TypeObject .tp_£flags

This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others are used
to indicate that certain fields in the type object (or in the extension structures referenced via tp_as_number,
tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not always present are

valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be considered to have a zero
or NULL value instead.

Inheritance:

12.3. Type Objects 285

The Python/C API, Yayim 3.12.3

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py TPFLAGS HAVE_GC flag bit is inherited together with the
tp_traverse and tp_clear fields, i.e. if the Py TPFLAGS_HAVE_GC flag bit is clear in the subtype and
the tp_traverse and tp_clear fields in the subtype exist and have NULL values. .. XXX are most flag bits
really inherited individually?

Default:
PyBaseObject_Type uses Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE.
Bit Masks:

The following bit masks are currently defined; these can be ORed together using the | operator to form the value of
the tp_ flags field. The macro PyType_ HasFeature () takes a type and a flags value, #p and f, and checks
whether tp—>tp_flags & £ isnon-zero.

Py_TPFLAGS_HEAPTYPE

This bit is set when the type object itself is allocated on the heap, for example, types created dynamically using
PyType_FromSpec (). In this case, the ob_ t ype field of its instances is considered a reference to the
type, and the type object is INCREF ed when a new instance is created, and DECREF ed when an instance is
destroyed (this does not apply to instances of subtypes; only the type referenced by the instance’s ob_type gets
INCREFed or DECREF’ed). Heap types should also support garbage collection as they can form a reference
cycle with their own module object.

Inheritance:
77?

Py_TPFLAGS_BASETYPE

This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar to a “final” class in Java).

Inheritance:
7
Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by Py Type_Ready ().
Inheritance:
777
Py_TPFLAGS_READYING
This bit is set while Py Type Ready () is in the process of initializing the type object.
Inheritance:
7
Py_TPFLAGS_HAVE_GC

This bit is set when the object supports garbage collection. If this bit is set, instances must be created
using PyOb ject_GC_New and destroyed using PyObject_GC_Del (). More information in section
Supporting Cyclic Garbage Collection. This bit also implies that the GC-related fields tp_traverse and
tp_clear are present in the type object.

Inheritance:

Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear

286

Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

The Py_TPFLAGS_HAVE_GC flag bit is inherited together with the tp_traverse and tp_clear
fields, i.e. if the Py TPFLAGS_HAVE_GC flag bit is clear in the subtype and the tp_traverse and
tp_clear fields in the subtype exist and have NULL values.

Py_TPFLAGS_DEFAULT

This is a bitmask of all the bits that pertain to the existence of certain fields in the type object and its extension
structures. Currently, it includes the following bits: Py_ TPFLAGS_HAVE_STACKLESS_EXTENSION.

Inheritance:
7?7
Py_TPFLAGS_METHOD_DESCRIPTOR
This bit indicates that objects behave like unbound methods.
If this flag is set for t ype (meth), then:

e meth.__get__ (obj, cls) (*args, **kwds) (with obj not None) must be equivalent to
meth (obj, *args, **kwds).

e meth.__get__ (None, cls) (*args, **kwds) must be equivalent to meth (*args,
**kwds).

This flag enables an optimization for typical method calls like obj .meth () : it avoids creating a temporary
“bound method” object for obj .meth.

Added in version 3.8.
Inheritance:

This flag is never inherited by types without the Py_ TPFLAGS_TMMUTABLETYPE flag set. For extension
types, it is inherited whenever tp_descr_get is inherited.

Py_TPFLAGS_MANAGED_DICT

This bit indicates that instances of the class have a ___dict___ attribute, and that the space for the dictionary
is managed by the VM.

If this flag is set, Py TPFLAGS_HAVE_ GC should also be set.

Added in version 3.12.

Inheritance:

This flag is inherited unless the tp_dictoffset field is set in a superclass.

Py_TPFLAGS_MANAGED_ WEAKREF
This bit indicates that instances of the class should be weakly referenceable.

Added in version 3.12.
Inheritance:
This flag is inherited unless the tp_weaklistoffset field is set in a superclass.

Py_TPFLAGS_ITEMS_AT_END

Only usable with variable-size types, i.e. ones with non-zero tp_itemsize.

Indicates that the variable-sized portion of an instance of this type is at the end of the instance’s memory area,
at an offset of Py_TYPE (obj) —>tp_basicsize (which may be different in each subclass).

When setting this flag, be sure that all superclasses either use this memory layout, or are not variable-sized.
Python does not check this.

Added in version 3.12.

12.3. Type Objects 287

The Python/C API, Yayim 3.12.3

Inheritance:

This flag is inherited.

Py_TPFLAGS_LONG_SUBCLASS
Py_TPFLAGS_LIST_SUBCLASS
Py_TPFLAGS_TUPLE_SUBCLASS
Py_TPFLAGS_BYTES_SUBCLASS
Py_TPFLAGS_UNICODE_SUBCLASS
Py_TPFLAGS_DICT_SUBCLASS
Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS

These flags are used by functions such as PyLong_Check () to quickly determine if a type is a subclass
of a built-in type; such specific checks are faster than a generic check, like PyObject_IsInstance ().
Custom types that inherit from built-ins should have their tp_f1ags set appropriately, or the code that
interacts with such types will behave differently depending on what kind of check is used.

Py_TPFLAGS_HAVE_FINALIZE

This bit is set when the tp_finalize slotis present in the type structure.
Added in version 3.4.

3.8 siiriimiinden beri kullanim disi: This flag isn’t necessary anymore, as the interpreter assumes the
tp_finalize slotis always present in the type structure.

Py_TPFLAGS_HAVE_VECTORCALL

This bit is set when the class implements the vectorcall protocol. See tp_vectorcall_offset for details.
Inheritance:

This bit is inherited if tp_call is also inherited.

Added in version 3.9.

3.12 siirtimiinde degisti: This flag is now removed from a class when the class’s __call__ () method is
reassigned.

This flag can now be inherited by mutable classes.

Py TPFLAGS_IMMUTABLETYPE

This bit is set for type objects that are immutable: type attributes cannot be set nor deleted.
PyType_Ready () automatically applies this flag to static types.

Inheritance:

This flag is not inherited.

Added in version 3.10.

Py_TPFLAGS_DISALLOW_INSTANTIATION

Disallow creating instances of the type: set t p_new to NULL and don’t create the __new___key in the type
dictionary.

The flag must be set before creating the type, not after. For example, it must be set before Py Type_ Ready ()
is called on the type.

288

Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

The flag is set automatically on static types if tp_baseis NULL or §PyBaseObject_Typeand tp_new
is NULL.

Inheritance:

This flag is not inherited. However, subclasses will not be instantiable unless they provide a non-NULL
tp_new (which is only possible via the C API).

Not: To disallow instantiating a class directly but allow instantiating its subclasses (e.g. for an abstract base
class), do not use this flag. Instead, make tp_new only succeed for subclasses.

Added in version 3.10.

Py_TPFLAGS_MAPPING

This bit indicates that instances of the class may match mapping patterns when used as the subject of amatch
block. It is automatically set when registering or subclassing collections.abc.Mapping, and unset
when registering collections.abc.Sequence.

Not: Py TPFLAGS _MAPPING and Py_TPFLAGS_SEQUENCE are mutually exclusive; it is an error to
enable both flags simultaneously.

Inheritance:
This flag is inherited by types that do not already set Py_ TPFLAGS_SEQUENCE.
Ayrica bakimz:
PEP 634 — Structural Pattern Matching: Specification
Added in version 3.10.
Py_TPFLAGS_SEQUENCE

This bit indicates that instances of the class may match sequence patterns when used as the subject of amatch
block. It is automatically set when registering or subclassing collections.abc.Sequence, and unset
when registering collections.abc.Mapping.

Not: Py TPFLAGS _MAPPING and Py _TPFLAGS_SEQUENCE are mutually exclusive; it is an error to
enable both flags simultaneously.

Inheritance:

This flag is inherited by types that do not already set Py TPFLAGS MAPPING.
Ayrica bakiniz:

PEP 634 — Structural Pattern Matching: Specification

Added in version 3.10.

Py_TPFLAGS_VALID_VERSION_TAG
Internal. Do not set or unset this flag. To indicate that a class has changed call Py Type Modified ()

Uyar1: This flag is present in header files, but is an internal feature and should not be used. It will be
removed in a future version of CPython

12.3. Type Objects 289

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0634/

The Python/C API, Yayim 3.12.3

const char *Py TypeObject .tp_doc

An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as the
__doc___ attribute on the type and instances of the type.

Inheritance:

This field is not inherited by subtypes.

traverseproc Py TypeObject .tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. The signature is:

[int tp_traverse (PyObject *self, visitproc visit, wvoid *arg);

)

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

The tp_t raverse pointer is used by the garbage collector to detect reference cycles. A typical implementation of
a tp_traverse function simply calls Py_ VISIT () on each of the instance’s members that are Python objects
that the instance owns. For example, this is function local_traverse () fromthe _thread extension module:

p
static int

local_traverse (localobject *self, visitproc visit, woid *arg)
{

Py_VISIT (self->args);

Py_VISIT (self->kw);

Py_VISIT (self->dict);

return 0;

Note that Py_ VISIT () is called only on those members that can participate in reference cycles. Although there
is also a sel f—>key member, it can only be NULL or a Python string and therefore cannot be part of a reference
cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want to
visit it anyway just so the gc module’s get _referents () function will include it.

Uyarri: When implementing tp_traverse, only the members that the instance owns (by having strong
references to them) must be visited. For instance, if an object supports weak references viathe tp_weaklist
slot, the pointer supporting the linked list (what #p_weaklist points to) must not be visited as the instance does
not directly own the weak references to itself (the weakreference list is there to support the weak reference
machinery, but the instance has no strong reference to the elements inside it, as they are allowed to be removed
even if the instance is still alive).

Note that Py_ VISTIT () requires the visit and arg parameters to local_traverse () to have these specific
names; don’t name them just anything.

Instances of heap-allocated types hold a reference to their type. Their traversal function must therefore either visit
Py TYPE (self),or delegate this responsibility by calling t p_t raverse of another heap-allocated type (such
as a heap-allocated superclass). If they do not, the type object may not be garbage-collected.

3.9 stirtimiinde degisti: Heap-allocated types are expected to visit Py_TYPE (self) intp_traverse. Inearlier
versions of Python, due to bug 40217, doing this may lead to crashes in subclasses.

Inheritance:

Group: Py TPFLAGS_HAVE_GC, tp_traverse, tp_clear

290

Béliim 12. Object Implementation Support

https://bugs.python.org/issue40217

The Python/C API, Yayim 3.12.3

This field is inherited by subtypes together with tp_clear and the Py TPFLAGS_HAVE_GC flag bit: the flag

bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.
inquiry PyTypeObject .tp_clear

An optional pointer to a clear function for the garbage collector. This is only used if the Py TPFLAGS_HAVE_GC

flag bit is set. The signature is:

[int tp_clear (PyObject *);

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_ clear functions in the system must combine to break all reference cycles. This
is subtle, and if in any doubt supply a tp_clear function. For example, the tuple type does not implement a
tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_clear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.

Implementations of tp_clear should drop the instance’s references to those of its members that may be Python
objects, and set its pointers to those members to NULL, as in the following example:

static int

local_clear (localobject *self)

{
Py_CLEAR (self->key);
Py_CLEAR(self->args);
Py_CLEAR (self->kw);
Py_CLEAR(self->dict);
return 0O;

The Py_CLEAR () macro should be used, because clearing references is delicate: the reference to the contained
object must not be released (via Py_ DECREF ()) until after the pointer to the contained object is set to NULL. This
is because releasing the reference may cause the contained object to become trash, triggering a chain of reclamation
activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated with the
contained object). If it’s possible for such code to reference self again, it’s important that the pointer to the contained
object be NULL at that time, so that self knows the contained object can no longer be used. The Py CLEAR ()
macro performs the operations in a safe order.

Note that tp_clear is not always called before an instance is deallocated. For example, when reference co-
unting is enough to determine that an object is no longer used, the cyclic garbage collector is not involved and
tp_dealloc is called directly.

Because the goal of tp_ clear functions is to break reference cycles, it’s not necessary to clear contained objects
like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it may be
convenient to clear all contained Python objects, and write the type’s t p_dea 1 1 oc function to invoke tp_clear.

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

Inheritance:
Group: Py TPFLAGS_HAVE_GC, tp_traverse, tp_clear

This field is inherited by subtypes together with tp_traverse and the Py TPFLAGS HAVE_GC flag bit: the
flag bit, tp_traverse,and tp_clear are all inherited from the base type if they are all zero in the subtype.

richcmpfunc Py TypeOb ject .tp_richcompare

An optional pointer to the rich comparison function, whose signature is:

12.3. Type Objects 291

The Python/C API, Yayim 3.12.3

[Pyobject *tp_richcompare (PyObject *self, PyObject *other, int op);

The first parameter is guaranteed to be an instance of the type that is defined by Py TypeOb ject.

The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_Not Implemented, if another error occurred it must return NULL and set an
exception condition.

The following constants are defined to be used as the third argument for tp_richcompare and for
PyObject_RichCompare ():

Constant Comparison

<
Py_LT

< =
Py_LE
Py_EQ o

!_
Py_NE

>
Py_GT

> =
Py_GE

The following macro is defined to ease writing rich comparison functions:

Py_RETURN_RICHCOMPARE (VAL_A, VAL_B, op)

Return Py_True or Py_False from the function, depending on the result of a comparison. VAL_A and
VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats). The third
argument specifies the requested operation, as for PyObject_RichCompare ().

The returned value is a new strong reference.
On error, sets an exception and returns NULL from the function.
Added in version 3.7.

Inheritance:

Group: tp_hash, tp_richcompare

This field is inherited by subtypes together with t p_hash: a subtype inherits tp_ richcompareand tp_hash
when the subtype’s tp_richcompare and tp_hash are both NULL.

Default:

PyBaseObject_Type provides a tp_richcompare implementation, which may be inherited. However, if
only tp_hash is defined, not even the inherited function is used and instances of the type will not be able to
participate in any comparisons.

292

Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

Py _ssize_t PyTypeObject.tp_weaklistoffset
While this field is still supported, Py_ TPFLAGS_MANAGED_WEAKREF should be used instead, if at all possible.

If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs () and the PyWeakref_* functions. The instance structure needs to include a
field of type PyOb ject* which is initialized to NULL.

Do not confuse this field with tp_weak 11 st; that is the list head for weak references to the type object itself.
It is an error to set both the Py TPFLAGS_MANAGED _WEAKREF bitand tp weaklist.
Inheritance:

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found via
tp_weaklistoffset, this should not be a problem.

Default:

If the Py_ TPFLAGS MANAGED_ WEAKREEF bitis setinthe tp_dict field, then tp_weaklistoffset will
be set to a negative value, to indicate that it is unsafe to use this field.

getiterfunc PyTypeObject .tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the instances
of this type are iterable (although sequences may be iterable without this function).

This function has the same signature as PyOb ject_GetIter ():

[PyObject *tp_iter (PyObject *self);]

Inheritance:
This field is inherited by subtypes.

iternextfunc Py TypeObject .tp_iternext

An optional pointer to a function that returns the next item in an iferator. The signature is:

[PyObject *tp_iternext (PyObject *self);]

When the iterator is exhausted, it must return NULL; a StopIteration exception may or may not be set. When
another error occurs, it must return NULL too. Its presence signals that the instances of this type are iterators.

Tterator types should also define the tp_ i t er function, and that function should return the iterator instance itself
(not a new iterator instance).

This function has the same signature as Py Iter_ Next ().
Inheritance:
This field is inherited by subtypes.

struct PyMethodDef *PyTypeObject .tp_methods

An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a method
descriptor.

Inheritance:

This field is not inherited by subtypes (methods are inherited through a different mechanism).

12.3. Type Objects 293

The Python/C API, Yayim 3.12.3

struct PyMemberDef *PyTypeObject .tp_members

An optional pointer to a static NULL-terminated array of PyMemberDe £ structures, declaring regular data mem-
bers (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a member
descriptor.

Inheritance:

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef *PyTypeObject .tp_getset

An optional pointer to a static NULL-terminated array of PyGet SetDe £ structures, declaring computed attributes
of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.

Inheritance:

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

PyTypeObject *Py TypeObject .tp_base

An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance is
supported; multiple inheritance require dynamically creating a type object by calling the metatype.

Not: Slot initialization is subject to the rules of initializing globals. C99 requires the initializers to be “address
constants”. Function designators like Py Type_GenericNew (), with implicit conversion to a pointer, are valid
C99 address constants.

However, the unary ‘&’ operator applied to a non-static variable like PyBaseObject_Type is not required to
produce an address constant. Compilers may support this (gcc does), MSVC does not. Both compilers are strictly
standard conforming in this particular behavior.

Consequently, tp_base should be set in the extension module’s init function.

Inheritance:
This field is not inherited by subtypes (obviously).
Default:

This field defaults to sPyBaseObject_Type (which to Python programmers is known as the type object).

PyObject *PyTypeObject .tp_dict

The type’s dictionary is stored here by Py Type_Ready ().

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once PyType_Ready () has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations (like
add___ ()). Once initialization for the type has finished, this field should be treated as read-only.

Some types may not store their dictionary in this slot. Use Py Type_GetDict () to retrieve the dictionary for an
arbitrary type.

3.12 siiriimiinde degisti: Internals detail: For static builtin types, this is always NULL. Instead, the dict for such
types is stored on PyInterpreterState. Use PyType GetDict () to get the dict for an arbitrary type.

Inheritance:

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

294

Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

Default:

If this field is NULL, Py Type_Ready () will assign a new dictionary to it.

Uyari: It is not safe to use PyDict_SetItem () on or otherwise modify tp_dict with the dictionary
C-APL

descrgetfunc PyTypeObject .tp_descr_get
An optional pointer to a “descriptor get” function.

The function signature is:

[PyObject * tp_descr_get (PyObject *self, PyObject *obj, PyObject *type);

Inheritance:
This field is inherited by subtypes.

descrsetfunc PyTypeObject .tp_descr_set

An optional pointer to a function for setting and deleting a descriptor’s value.

The function signature is:

[int tp_descr_set (PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value.
Inheritance:
This field is inherited by subtypes.

Py _ssize_t PyTypeObject.tp_dictoffset
While this field is still supported, Py TPFLAGS_MANAGED_DICT should be used instead, if at all possible.

If the instances of this type have a dictionary containing instance variables, this field is non-zero and con-
tains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr ().

Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.
The value specifies the offset of the dictionary from the start of the instance structure.

The tp_dictoffset should be regarded as write-only. To get the pointer to the dictionary call
PyObject_GenericGetDict (). Calling PyObject_GenericGetDict () may need to allocate me-
mory for the dictionary, so it is may be more efficient to call PyOb ject_GetAttr () when accessing an attri-
bute on the object.

It is an error to set both the Py TPFLAGS MANAGED_ _WEAKREF bitand tp_dictoffset.
Inheritance:

This field is inherited by subtypes. A subtype should not override this offset; doing so could be unsa-
fe, if C code tries to access the dictionary at the previous offset. To properly support inheritance, use
Py TPFLAGS_MANAGED_DICT.

Default:
This slot has no default. For static types, if the field is NULL thenno __dict__ gets created for instances.

If the Py_ TPFLAGS MANAGED_DICT bitis setin the tp_dict field, then tp_dictoffset will be set to
—1, to indicate that it is unsafe to use this field.

12.3. Type Objects 295

The Python/C API, Yayim 3.12.3

initproc PyTypeObject .tp_init

An optional pointer to an instance initialization function.

This function corresponds tothe __init__ () method of classes. Like __init__ (), itis possible to create an
instance without calling __init__ (), and it is possible to reinitialize an instance by calling its __init__ ()
method again.

The function signature is:

[int tp_init (PyObject *self, PyObject *args, PyObject *kwds);]

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the callto __init__ ().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after the
type’s t p_new function has returned an instance of the type. If the t p_ new function returns an instance of some
other type that is not a subtype of the original type, no tp_ init function is called; if tp_new returns an instance
of a subtype of the original type, the subtype’s tp_init is called.

Returns 0 on success, —1 and sets an exception on error.
Inheritance:

This field is inherited by subtypes.

Default:

For static types this field does not have a default.

allocfunc PyTypeObject .tp_alloc

An optional pointer to an instance allocation function.

The function signature is:

[PyObject *tp_alloc (PyTypeObject *self, Py_ssize_t nitems);]

Inheritance:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement).
Default:

For dynamic subtypes, this field is always set to Py Type GenericAlloc (),toforce astandard heap allocation
Strategy.

For static subtypes, PyBaseObject_Type uses PyType_GenericAlloc (). Thatis the recommended va-
lue for all statically defined types.

newfunc PyTypeObject .tp_new

An optional pointer to an instance creation function.

The function signature is:

[Pyobject *tp_new (PyTypeObject *subtype, PyObject *args, PyObject *kwds);]

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).

The tp_new function should call subtype->tp_alloc (subtype, nitems) to allocate space for the
object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be
ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for immutable types,

296 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

all initialization should take place in tp_new, while for mutable types, most initialization should be deferred to
tp_init.

Setthe Py TPFLAGS _DISALLOW_INSTANTIATION flag to disallow creating instances of the type in Python.
Inheritance:

This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type.

Default:

For static types this field has no default. This means if the slot is defined as NULL, the type cannot be called to
create new instances; presumably there is some other way to create instances, like a factory function.

freefunc PyTypeObject .tp_£free
An optional pointer to an instance deallocation function. Its signature is:

[Void tp_free(void *self);

An initializer that is compatible with this signature is PyObject_Free ().

Inheritance:

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement)
Default:

In dynamic subtypes, this field is set to a deallocator suitable to match PyType_GenericAlloc () and the
value of the Py TPFLAGS_HAVE_GC flag bit.

For static subtypes, PyBaseObject_Type uses PyObject_Del ().

inquiry PyTypeObject .tp_is_gc

An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient to
look at the object’s type’s t p_ f1ags field, and check the Py TPFLAGS_HAVE_ GC flag bit. But some types have
a mixture of statically and dynamically allocated instances, and the statically allocated instances are not collectible.
Such types should define this function; it should return 1 for a collectible instance, and O for a non-collectible
instance. The signature is:

[int tp_is_gc (PyObject *self);

(The only example of this are types themselves. The metatype, Py Type_ Type, defines this function to distinguish
between statically and dynamically allocated types.)

Inheritance:

This field is inherited by subtypes.

Default:

This slot has no default. If this field is NULL, Py_ TPFLAGS_HAVE_GC is used as the functional equivalent.
PyObject *PyTypeObject .tp_bases

Tuple of base types.

This field should be set to NULL and treated as read-only. Python will fill it in when the type is initialized.

For dynamically created classes, the Py_tp_bases slot can be used instead of the bases argument of
PyType_FromSpecWithBases (). The argument form is preferred.

12.3. Type Objects 297

The Python/C API, Yayim 3.12.3

Uyar1: Multiple inheritance does not work well for statically defined types. If you set tp_bases to a tuple,
Python will not raise an error, but some slots will only be inherited from the first base.

Inheritance:
This field is not inherited.

PyObject *PyTypeObject .tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object, in Method
Resolution Order.

This field should be set to NULL and treated as read-only. Python will fill it in when the type is initialized.
Inheritance:
This field is not inherited; it is calculated fresh by Py Type_Ready ().

PyObject *PyTypeObject .tp_cache

Unused. Internal use only.
Inheritance:
This field is not inherited.

void *PyTypeObject .tp_subclasses
A collection of subclasses. Internal use only. May be an invalid pointer.

To get a list of subclasses, call the Python method ___subclasses__ ().

3.12 stirtimiinde degisti: For some types, this field does not hold a valid PyOb ject*. The type was changed to
void* to indicate this.

Inheritance:
This field is not inherited.

PyObject ¥*PyTypeObject .tp_weaklist

Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

3.12 stirtimiinde degisti: Internals detail: For the static builtin types this is always NULL, even if weakrefs are added.
Instead, the weakrefs for each are stored on PyInterpreterState. Use the public C-API or the internal
_PyObject_GET_WEAKREFS_LISTPTR () macro to avoid the distinction.

Inheritance:
This field is not inherited.

destructor Py TypeObject .tp_del
This field is deprecated. Use tp_finalize instead.

unsigned int Py TypeObject .tp_version_tag

Used to index into the method cache. Internal use only.
Inheritance:
This field is not inherited.

destructor PyTypeObject .tp_finalize
An optional pointer to an instance finalization function. Its signature is:

[void tp_finalize (PyObject *self);

298 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

If tp_finalizeisset, the interpreter calls it once when finalizing an instance. It is called either from the garbage
collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated. Either way,
it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the object in a sane

state.

tp_finalize should not mutate the current exception status; therefore, a recommended way to write a non-

trivial finalizer is:

static void
local_finalize (PyObject *self)
{

/* Save the current exception, if any. */

/% coo %Y
/* Restore the saved exception. */

}

L

PyObject *error_type, *error_value, *error_traceback;

PyErr_Fetch (&error_type, &error_value, &error_traceback);

PyErr_Restore(error_type, error_value, error_traceback);

Also, note that, in a garbage collected Python, tp_deal1oc may be called from any Python thread, not just the
thread which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a
garbage collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc
is called will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects
from some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which

called tp_dealloc will not violate any assumptions of the library.

Inheritance:
This field is inherited by subtypes.
Added in version 3.4.

3.8 siiriimiinde degisti: Before version 3.8 it was necessary to set the Py TPFLAGS_HAVE_FINALIZE flags bit

in order for this field to be used. This is no longer required.
Ayrica bakiniz:
“Safe object finalization” (PEP 442)

vectorcallfunc Py TypeObject .tp_vectorcall

Vectorcall function to use for calls of this type object. In other words, it is used to implement vectorcall for

type.__call__. If tp_vectorcall is NULL, the default call implementation using __new___

_init__ () isused.
Inheritance:

This field is never inherited.

Added in version 3.9: (the field exists since 3.8 but it’s only used since 3.9)

unsigned char Py TypeObject .tp_watched
Internal. Do not use.

Added in version 3.12.

() and

12.3. Type Objects

299

https://peps.python.org/pep-0442/

The Python/C API, Yayim 3.12.3

12.3.6 Static Types

Traditionally, types defined in C code are static, that is, a static Py TypeOb ject structure is defined directly in code
and initialized using Py Type_Ready ().

This results in types that are limited relative to types defined in Python:
« Static types are limited to one base, i.e. they cannot use multiple inheritance.

* Static type objects (but not necessarily their instances) are immutable. It is not possible to add or modify the type
object’s attributes from Python.

« Static type objects are shared across sub-interpreters, so they should not include any subinterpreter-specific state.

Also, since Py TypeOb ject is only part of the Limited API as an opaque struct, any extension modules using static types
must be compiled for a specific Python minor version.

12.3.7 Heap Types
An alternative to static types is heap-allocated types, or heap types for short, which correspond closely to classes created
by Python’s c1lass statement. Heap types have the Py TPFLAGS_HEAPTYPE flag set.

This is done by filling a PyType_ Spec structure and calling PyType_ FromSpec (),
PyType_FromSpecWithBases (), PyType_FromModuleAndSpec (),or PyType FromMetaclass ().

12.4 Number Object Structures

type PyNumberMethods

This structure holds pointers to the functions which an object uses to implement the number protocol. Each function
is used by the function of similar name documented in the Number Protocol section.

Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_1lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;

binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;

(sonraki sayfaya devam)

300 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_1lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

unaryfunc nb_index;
binaryfunc nb_matrix_multiply;

binaryfunc nb_inplace_matrix_multiply;
} PyNumberMethods;

Not: Binary and ternary functions must check the type of all their operands, and implement the necessary conver-
sions (at least one of the operands is an instance of the defined type). If the operation is not defined for the given
operands, binary and ternary functions must return Py_ Not Implemented, if another error occurred they must
return NULL and set an exception.

Not: The nb_reserved field should always be NULL. It was previously called nb_1ong, and was renamed in
Python 3.0.1.

binaryfunc PyNumberMet hods .nb_add
binaryfunc PyNumberMet hods .nb_subtract
binaryfunc PyNumberMethods.nb_multiply
binaryfunc PyNumberMethods .nb_remainder
binaryfunc PyNumberMethods .nb_divmod
ternaryfunc PyNumberMethods .nb_power
unaryfunc PyNumberMethods .nb_negative
unaryfunc PyNumberMethods .nb_positive
unaryfunc PyNumberMethods.nb_absolute
inquiry PyNumberMethods .nb_bool
unaryfunc PyNumberMethods.nb_invert
binaryfunc PyNumberMethods .nb_lshift

binaryfunc PyNumberMethods .nb_rshift

12.4. Number Object Structures 301

The Python/C API, Yayim 3.12.3

binaryfunc PyNumberMet hods .nb_and

binaryfunc PyNumberMet hods.nb_xor

binaryfunc PyNumberMethods .nb_or

unaryfunc PyNumberMethods.nb_int

void ¥*PyNumberMethods .nb_reserved

unaryfunc PyNumberMethods.nb_float

binaryfunc PyNumberMethods .nb_inplace_add
binaryfunc PyNumberMet hods.nb_inplace_subtract
binaryfunc PyNumberMethods.nb_inplace_multiply
binaryfunc PyNumberMethods.nb_inplace_remainder
ternaryfunc PyNumberMethods .nb_inplace_power
binaryfunc PyNumberMethods.nb_inplace_lshift
binaryfunc PyNumberMethods .nb_inplace_rshift
binaryfunc PyNumberMet hods.nb_inplace_and
binaryfunc PyNumberMethods .nb_inplace_xor
binaryfunc PyNumberMethods .nb_inplace_or
binaryfunc PyNumberMethods .nb_floor_divide
binaryfunc PyNumberMethods .nb_true_divide
binaryfunc PyNumberMethods .nb_inplace_floor_divide
binaryfunc PyNumberMethods.nb_inplace_true_divide
unaryfunc PyNumberMethods.nb_index

binaryfunc PyNumberMethods.nb_matrix_multiply

binaryfunc PyNumberMethods.nb_inplace_matrix_multiply

12.5 Mapping Object Structures

type PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has three
members:

lenfunc PyMappingMethods.mp_length

This function is used by PyMapping _Size () and PyObject_Size (), and has the same signature. This slot
may be set to NULL if the object has no defined length.

302 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

binaryfunc PyMappingMethods.mp_subscript
This function is used by PyOb ject_GetItem () and PySequence_GetSlice (), and has the same signa-
ture as PyObject_GetItem (). This slot must be filled for the PyMapping Check () function to return 1,
it can be NULL otherwise.

objobjargproc PyMappingMethods.mp_ass_subscript

This functionisused by PyObject_SetItem(),PyObject_DelItem(),PySequence_SetSlice ()
and PySequence_DelS1ice ().Ithas the same signature as PyObject_SetItem (), butvcan also be set
to NULL to delete an item. If this slot is NULL, the object does not support item assignment and deletion.

12.6 Sequence Object Structures

type PySequenceMethods

This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence_Size () and PyObject_Size (), and has the same signature. It is
also used for handling negative indices via the sg_itemand the sqg_ass_itemslots.

binaryfunc PySequenceMethods.sq_concat
This function is used by PySequence_Concat () and has the same signature. It is also used by the + operator,
after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by PySequence_Repeat () and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq_item

This function is used by PySequence_GetItem() and has the same signature. It is also used by
PyObject_GetItem/ (), after trying the subscription via the mp_subscript slot. This slot must be filled
for the PySequence_Check () function to return 1, it can be NULL otherwise.

Negative indexes are handled as follows: if the sg_Iength slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sg_item. If sq_length is NULL, the index is passed as is
to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence_SetItem() and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem (), after trying the item assignment and deletion via the

mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment and
deletion.

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains () and has the same signature. This slot may be left to
NULL, in this case PySequence_Contains () simply traverses the sequence until it finds a match.
binaryfunc PySequenceMethods.sq_inplace_concat

This function is used by PySequence_InPlaceConcat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceConcat () will
fall back to PySequence_Concat (). It is also used by the augmented assignment + =, after trying numeric
in-place addition via the nb_inplace_add slot.

12.6. Sequence Object Structures 303

The Python/C API, Yayim 3.12.3

ssizeargfunc PySequenceMethods.sq_inplace_repeat

This function is used by PySequence_InPlaceRepeat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceRepeat () will
fall back to PySequence_Repeat (). Itis also used by the augmented assignment * =, after trying numeric
in-place multiplication via the nb_inplace_multiply slot.

12.7 Buffer Object Structures

type PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an exporter
object can expose its internal data to consumer objects.

getbufferproc PyBufferProcs.bf_getbuffer
The signature of this function is:

[int (PyObject *exporter, Py_buffer *view, int flags);]

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:

(1) Check if the request can be met. If not, raise Buf ferError, set view->obj to NULL and return - 1.
(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view->o0b7j to exporter and increment view—>obJ.
(5) Return 0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

» Re-export: Each member of the tree acts as the exporting object and sets view—>obj to a new reference to
itself.

» Redirect: The buffer request is redirected to the root object of the tree. Here, view->ob7j will be a new
reference to the root object.

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to
specific requests are in section Buffer request types.

All memory pointed to in the Py__buffer structure belongs to the exporter and must remain valid until there are
no consumers left. format, shape, strides, suboffsetsand internal are read-only for the consumer.

PyBuffer FillInfo () provides an easy way of exposing a simple bytes buffer while dealing correctly with
all request types.

PyObject_GetBuffer () is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs.bf_releasebuffer
The signature of this function is:

[void (PyObject *exporter, Py_buffer *view); J

Handle a request to release the resources of the buffer. If no resources need to be released, PyBufferProcs.
bf releasebuffer may be NULL. Otherwise, a standard implementation of this function will take these
optional steps:

(1) Decrement an internal counter for the number of exports.

304 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

(2) If the counter is 0, free all memory associated with view.

The exporter MUST use the internal field to keep track of buffer-specific resources. This field is guaranteed

to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.

This function MUST NOT decrement view—>o0b j, since that is done automatically in PyBuffer_ Release ()

(this scheme is useful for breaking reference cycles).

PyBuffer_ Release () is the interface for the consumer that wraps this function.

12.8 Async Object Structures

Added in version 3.5.

type PyAsyncMethods

This structure holds pointers to the functions required to implement awaitable and asynchronous iterator objects.

Here is the structure definition:

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;
sendfunc am_send;

} PyAsyncMethods;

unaryfunc PyAsyncMethods.am_await

The signature of this function is:

[PyObject *am_await (PyObject *self);

The returned object must be an iterator, i.e. PyIter_ Check () mustreturn 1 for it.
This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter

The signature of this function is:

[PyObject *am_aiter (PyObject *self);

Must return an asynchronous iterator object. See __anext___ () for details.

This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods.am_anext

The signature of this function is:

[Pyobject *am_anext (PyObject *self);

Must return an awaitable object. See __anext__ () for details. This slot may be set to NULL.

sendfunc PyAsyncMethods.am_send

The signature of this function is:

[PySendResult am_send (PyObject *self, PyObject *arg, PyObject **result);

See PyIter_ Send () for details. This slot may be set to NULL.
Added in version 3.10.

12.8. Async Object Structures

305

The Python/C API, Yayim 3.12.3

12.9 Slot Type typedefs

typedef PyObject *(*alloefune)(PyTypeObject *cls, Py_ssize_t nitems)
Bir parcast Kararlit ABIL The purpose of this function is to separate memory allocation from memory initialization.
It should return a pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to
zeros, but with ob_refcntsetto 1 and ob_ t ype set to the type argument. If the type’s t p_ i temsize is non-
zero, the object’s ob__s 1 ze field should be initialized to nitems and the length of the allocated memory block should
be tp_basicsize + nitems*tp_itemsize,rounded up toa multiple of sizeof (void*);otherwise,
nitems is not used and the length of the block should be tp_basicsize.

This function should not do any other instance initialization, not even to allocate additional memory; that should be
done by tp_new.

typedef void (*destructor)(PyObject*)
Bir pargast Kararli ABL
typedef void (*£reefunc)(void*)
See tp_free.
typedef PyObject *(*newfunc)(PyObject*, PyObject*, PyObject™)
Bir parcast Kararli ABL See tp_new.
typedef int (*initproc)(PyObject*, PyObject*, PyObject*)
Bir parcast Kararli ABL See tp_init.
typedef PyObject *(*reprfunc)(PyObject*)
Bir pargast Kararli ABL See tp_repr.
typedef PyObject *(*getattrfunc)(PyObject *self, char *attr)

Bir parcast Kararli ABI Return the value of the named attribute for the object.

typedef int (*setattrfunc)(PyObject *self, char *attr, PyObject *value)

Bir parcast Kararli ABI. Set the value of the named attribute for the object. The value argument is set to NULL to
delete the attribute.

typedef PyObject *(*getattrofunc)(PyObject *self, PyObject *attr)
Bir parcas: Kararli ABIL Return the value of the named attribute for the object.
See tp_getattro.

typedef int (¥*setattrofunc)(PyObject *self, PyObject *attr, PyObject *value)

Bir pargast Kararli ABI. Set the value of the named attribute for the object. The value argument is set to NULL to
delete the attribute.

See tp_setattro.
typedef PyObject *(*descrget func)(PyObject*, PyObject*, PyObject*)
Bir parcast Kararli ABL See tp_descr_get.
typedef int (*descrset func)(PyObject*, PyObject*, PyObject™*)
Bir parcast Kararli ABIL See tp_descr_set.
typedef Py_hash_t (*hashfunc)(PyObject*)
Bir parcast Kararli ABIL See tp_hash.
typedef PyObject *(*richempfunc)(PyObject*, PyObject*, int)
Bir pargast Kararli ABIL See tp_richcompare.

306 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

typedef PyObject *(*getiterfunc)(PyObject*)
Bir parcast Kararl1 ABIL. See tp_iter.

typedef PyObject *(*iternext func)(PyObject*)
Bir parcast Kararl1 ABIL. See tp_iternext.

typedef Py_ssize_t (*1lenfunc)(PyObject*)
Bir parcast Kararli ABIL

typedef int (*getbufferproc)(PyObject*, Py_buffer*, int)
Bir pargasi Kararli ABI 3.12 siiriimiinden beri.

typedef void (*releasebufferproc)(PyObject*, Py_buffer*)
Bir parcasi Kararli ABI 3.12 siiriimiinden beri.

typedef PyObject *(*unaryfunc)(PyObject*)
Bir parcast Kararli ABIL

typedef PyObject *(*binaryfunc)(PyObject*, PyObject*)
Bir parcast Kararli ABIL

typedef PySendResult (*sendfunc)(PyObject*, PyObject*, PyObject**)
See am send.

typedef PyObject *(*ternaryfunc)(PyObject*, PyObject*, PyObject*)
Bir parcast Kararli ABIL

typedef PyObject *(*ssizeargfunc)(PyObject*, Py_ssize_t)
Bir parcast Kararli ABIL

typedef int (*ssizeobjargproc)(PyObject*, Py_ssize_t, PyObject*)
Bir parcast Kararli ABIL

typedef int (*objobjproc)(PyObject*, PyObject*)
Bir parcast Kararli ABIL

typedef int (*objobjargproc)(PyObject*, PyObject*, PyObject*)
Bir parcast Kararli ABIL

12.10 Examples

The following are simple examples of Python type definitions. They include common usage you may encounter. Some
demonstrate tricky corner cases. For more examples, practical info, and a tutorial, see defining-new-types and new-types-
topics.

A basic static type:

typedef struct {
PyObject_HEAD
const char *data;
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof (MyObject),
(sonraki sayfaya devam)

12.10. Examples 307

The Python/C API, Yayim 3.12.3

(6nceki sayfadan devam)

.tp_doc = PyDoc_STR("My objects"),

.tp_new = myobj_new,
.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,

bi

You may also find older code (especially in the CPython code base) with a more verbose initializer:

static PyTypeObject MyObject_Type = {
PyVarObject_ HEAD_INIT (NULL, O)
"mymod.MyObject", /* tp_name */
sizeof (MyObject), /* tp_basicsize */
, /* tp_itemsize */
(destructor)myobj_dealloc, /* tp_dealloc */
0, /* tp_vectorcall_offset */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
(reprfunc)myobj_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
0, /* tp_flags */
PyDoc_STR ("My objects"), /* tp_doc */
/* tp_traverse */
/* tp_clear */
/* tp_richcompare */
/* tp_weaklistoffset */
/* tp_iter */
/* tp_iternext */
/* tp_methods */
/* tp_members */
/* tp_getset */
/* tp_base */
/% ge elleie “/
/* tp_descr_get */
/* tp_descr_set */
/* tp _dictoffset */
/* tp_init */
/* tp_alloc */
myobj_new, /* tp_new */

N~ SN N SN N O~ O~

~

N~ SN SN N~ N~ O~

O O O O O O O O O OO oo o o o
~

~

bi

A type that supports weakrefs, instance dicts, and hashing:

typedef struct {
PyObject_HEAD
const char *data;
} MyObject;

static PyTypeObject MyObject_Type = {
(sonraki sayfaya devam)

308 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

PyVarObject_ HEAD_INIT (NULL, O)

.tp_name = "mymod.MyObject",

.tp_basicsize = sizeof (MyObject),

.tp_doc = PyDoc_STR("My objects"),

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_MANAGED_DICT |
Py_TPFLAGS_MANAGED_WEAKREF,

.tp_new = myobj_new,

.tp_traverse = (traverseproc)myobj_traverse,
.tp_clear = (inquiry)myobj_clear,

.tp_alloc = PyType_GenericNew,

.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,

.tp_hash = (hashfunc)myobj_hash,

.tp_richcompare = PyBaseObject_Type.tp_richcompare,
bi

A str subclass that cannot be subclassed and cannot be called to create instances (e.g. uses a separate factory func) using
Py _TPFLAGS_DISALLOW_INSTANTIATION flag:

typedef struct {
PyUnicodeObject raw;
char *extra;

} MyStr;

static PyTypeObject MyStr_Type = {
PyVarObject_ HEAD_INIT (NULL, O0)
.tp_name = "mymod.MyStr",
.tp_basicsize = sizeof (MyStr),
.tp_base = NULL, // set to &PyUnicode_Type in module init
.tp_doc = PyDoc_STR("my custom str"),
.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_DISALLOW_INSTANTIATION,
.tp_repr = (reprfunc)myobj_repr,

bi

The simplest static type with fixed-length instances:

typedef struct {
PyObject_HEAD
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT (NULL, O0)
.tp_name = "mymod.MyObject",

bi

The simplest static type with variable-length instances:

typedef struct {
PyObject_VAR_HEAD
const char *datall];
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT (NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof (MyObject) - sizeof (char *),
(sonraki sayfaya devam)

12.10. Examples 309

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

.tp_itemsize = sizeof (char *),
bi

12.11 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are “containers” for other objects which may also be containers. Types which do not store references to other
objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any explicit
support for garbage collection.

To create a container type, the tp_f1lags field of the type object must include the Py TPFLAGS_HAVE_GC and
provide an implementation of the tp_traverse handler. If instances of the type are mutable, a tp_clear imple-
mentation must also be provided.

Py _TPFLAGS_HAVE_GC
Objects with a type with this flag set must conform with the rules documented here. For convenience these objects
will be referred to as container objects.

Constructors for container types must conform to two rules:
1. The memory for the object must be allocated using PyOb ject_GC_New or PyObject_GC_NewVar.

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject_GC_Track().

Similarly, the deallocator for the object must conform to a similar pair of rules:
1. Before fields which refer to other containers are invalidated, PyOb ject_GC_UnTrack () must be called.

2. The object’s memory must be deallocated using PyOb ject_GC_Del ().

Uyar1: If a type adds the Py TPFLAGS_HAVE_GC, then it must implement at least a tp_traverse
handler or explicitly use one from its subclass or subclasses.

When calling PyType Ready () or some of the APIs that indirectly «call it like
PyType_FromSpecWithBases () or PyType_FromSpec () the interpreter will automatically
populate the tp_flags, tp_traverse and tp_clear fields if the type inherits from a class that
implements the garbage collector protocol and the child class does not include the Py_ TPFLAGS_HAVE_GC
flag.

PyObject_GC_New (TYPE, typeobj)
Analogous to PyOb ject_New but for container objects with the Py_ TPFLAGS_HAVE_ GC flag set.

PyObject_GC_NewVar (TYPE, typeobj, size)
Analogous to PyObject_NewVar but for container objects with the Py TPFLAGS HAVE_GC flag set.

PyObject *PyUnstable_Object_GC_NewWithExtraData (PyTypeObject *type, size_t extra_size)

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyar1 olmadan degisebilir.

Analogous to PyObject_GC_New but allocates extra_size bytes at the end of the object (at offset
tp_basicsize). The allocated memory is initialized to zeros, except for the Pyt hon object header.

The extra data will be deallocated with the object, but otherwise it is not managed by Python.

310 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

Uyar1: The function is marked as unstable because the final mechanism for reserving extra data after an instance
is not yet decided. For allocating a variable number of fields, prefer using PyVarObject and tp_itemsize
instead.

Added in version 3.12.

PyObject_GC_Resize (TYPE, op, newsize)
Resize an object allocated by PyObject_NewVar. Returns the resized object of type TYPE* (refers to any C
type) or NULL on failure.

op must be of type PyVarObject* and must not be tracked by the collector yet. newsize must be of type
Py_ssize_t.

void PyObject_GC_Track (PyObject *op)
Bir parcasi Kararli ABL. Adds the object op to the set of container objects tracked by the collector. The collector

can run at unexpected times so objects must be valid while being tracked. This should be called once all the fields
followed by the tp_t raverse handler become valid, usually near the end of the constructor.

int PyObject_IS_GC (PyObject *obj)
Returns non-zero if the object implements the garbage collector protocol, otherwise returns 0.

The object cannot be tracked by the garbage collector if this function returns 0.
int PyObject_GC_IsTracked (PyObject *op)

Bir parcasi Kararli ABI 3.9 siirtimiinden beri. Returns 1 if the object type of op implements the GC protocol and
op is being currently tracked by the garbage collector and O otherwise.

This is analogous to the Python function gc.is_tracked ().
Added in version 3.9.
int PyObject_GC_IsFinalized (PyObject *op)
Bir parcasi Kararli ABI 3.9 siirtimiinden beri. Returns 1 if the object type of op implements the GC protocol and
op has been already finalized by the garbage collector and 0 otherwise.
This is analogous to the Python function gc.is_finalized ().

Added in version 3.9.

void PyObject_GC_Del (void *op)

Bir parcast Kararli ABIL Releases memory allocated to an object using PyObject_GC_New or
PyObject_GC_NewVar.

void PyObject_GC_UnTrack (void *op)
Bir parcast Kararli ABIL. Remove the object op from the set of container objects tracked by the collector. Note that
PyObject_GC_Track () can be called again on this object to add it back to the set of tracked objects. The deal-
locator (tp_dealloc handler) should call this for the object before any of the fields used by the tp_traverse
handler become invalid.

3.8 siiriimiinde degisti: The _PyObject_GC_TRACK () and _PyObject_GC_UNTRACK () macros have been re-
moved from the public C API.

The tp_traverse handler accepts a function parameter of this type:

typedef int (*visitproc)(PyObject *object, void *arg)
Bir parcasi Kararli ABL Type of the visitor function passed to the tp_ t raverse handler. The function should
be called with an object to traverse as object and the third parameter to the tp_t raverse handler as arg. The
Python core uses several visitor functions to implement cyclic garbage detection; it’s not expected that users will
need to write their own visitor functions.

12.11. Supporting Cyclic Garbage Collection 311

The Python/C API, Yayim 3.12.3

The tp_t raverse handler must have the following type:

typedef int (*traverseproc)(PyObject *self, visitproc visit, void *arg)

Bir parcast Kararli ABI. Traversal function for a container object. Implementations must call the visit function
for each object directly contained by self, with the parameters to visit being the contained object and the arg value
passed to the handler. The visit function must not be called with a NULL object argument. If visif returns a non-zero
value that value should be returned immediately.

To simplify writing tp_traverse handlers, a Py_VISIT () macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:

void Py_VISIT (PyObject *0)

If o is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return it.
Using this macro, tp_ t raverse handlers look like:

p
static int

my_traverse (Noddy *self, visitproc visit, woid *arqg)
{

Py_VISIT (self->foo0);

Py_VISIT (self->bar);

return 0;

}

L

The tp_clear handler must be of the i nquiry type, or NULL if the object is immutable.
typedef int (*inquiry)(PyObject *self)

Bir parcasi Kararli ABIL. Drop references that may have created reference cycles. Immutable objects do not have
to define this method since they can never directly create reference cycles. Note that the object must still be valid
after calling this method (don’t just call Py_ DECREF () on a reference). The collector will call this method if it
detects that this object is involved in a reference cycle.

12.11.1 Controlling the Garbage Collector State

The C-API provides the following functions for controlling garbage collection runs.

Py_ssize_t PyGC_Collect (void)

Bir parcast Kararli ABI. Perform a full garbage collection, if the garbage collector is enabled. (Note that gc.
collect () runs it unconditionally.)

Returns the number of collected + unreachable objects which cannot be collected. If the garbage collector is
disabled or already collecting, returns 0 immediately. Errors during garbage collection are passed to sys.
unraisablehook. This function does not raise exceptions.

int PyGC_Enable (void)

Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Enable the garbage collector: similar to gc.enable (). Returns
the previous state, 0 for disabled and 1 for enabled.

Added in version 3.10.

int PyGC_Disable (void)

Bir parcasi Kararli ABI 3. 10 siiriimiinden beri. Disable the garbage collector: similar to gc . disable () . Returns
the previous state, O for disabled and 1 for enabled.

Added in version 3.10.

312 Béliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.3

int PyGC_IsEnabled (void)

Bir parcast Kararli ABI 3.10 siiriimiinden beri. Query the state of the garbage collector: similar to gc.
isenabled (). Returns the current state, O for disabled and 1 for enabled.

Added in version 3.10.

12.11.2 Querying Garbage Collector State

The C-API provides the following interface for querying information about the garbage collector.

void PyUnstable_GC_VisitObjects (gevisitobjects_t callback, void *arg)

Bu Kararsiz API. Bu, kiigtik (minor) siirtimlerde uyar1 olmadan degisebilir.

Run supplied callback on all live GC-capable objects. arg is passed through to all invocations of callback.

Uyar1: If new objects are (de)allocated by the callback it is undefined if they will be visited.

Garbage collection is disabled during operation. Explicitly running a collection in the callback may lead to
undefined behaviour e.g. visiting the same objects multiple times or not at all.

Added in version 3.12.

typedef int (*gevisitobjects_t)(PyObject *object, void *arg)
Type of the visitor function to be passed to PyUnstable GC_VisitObjects (). arg is the same as the arg

passed to PyUnstable_GC_VisitObjects. Return O to continue iteration, return 1 to stop iteration. Other
return values are reserved for now so behavior on returning anything else is undefined.

Added in version 3.12.

12.11. Supporting Cyclic Garbage Collection 313

The Python/C API, Yayim 3.12.3

314 Boliim 12. Object Implementation Support

BoLOM 13

API and ABI Versioning

CPython exposes its version number in the following macros. Note that these correspond to the version code is built with,
not necessarily the version used at run time.

See C API Stability for a discussion of API and ABI stability across versions.
PY_MAJOR_VERSION
The 3in3.4.1a2.
PY_MINOR_VERSION
The 4in3.4.1a2.
PY_MICRO_VERSION
The 1in3.4.1a2.
PY_RELEASE_LEVEL
The ain 3.4 .1a2. This can be 0xA for alpha, 0xB for beta, 0xC for release candidate or 0xF for final.
PY_RELEASE_SERIAL
The 2 in 3.4 .1a2. Zero for final releases.
PY_VERSION_HEX

The Python version number encoded in a single integer.

The underlying version information can be found by treating it as a 32 bit number in the following manner:

Bytes Bits (big endian order) Meaning Value for 3.4.1a2
1 1-8 PY_MAJOR_VERSION 0x03
2 9-16 PY_MINOR_VERSION 0x04
3 17-24 PY_MICRO_VERSION 0x01
4 25-28 PY_RELEASE_LEVEL OxA
29-32 PY RELEASE_SERIAL 0x2

Thus 3.4 .1a2 is hexversion 0x030401a2 and 3.10. 0 is hexversion 0x030a00£0.

315

The Python/C API, Yayim 3.12.3

Use this for numeric comparisons, e.g. #1f PY_VERSION_HEX > =
This version is also available via the symbol Py_Version.

const unsigned long Py_Version

Bir parcasi Kararli ABI 3.11 siiriimiinden beri. The Python runtime version number encoded in a single constant
integer, with the same format as the PY_VERSTON_HEX macro. This contains the Python version used at run
time.

Added in version 3.11.

All the given macros are defined in Include/patchlevel.h.

316 Boliim 13. APl and ABI Versioning

https://github.com/python/cpython/tree/3.12/Include/patchlevel.h

ek A

Sozluk

>>>

2to3

Etkilesimli kabugun varsayilan Python istemi. Genellikle yorumlayicida etkilesimli olarak yiiriitiilebilen kod o6r-
nekleri igin goriiliir.

Sunlara bagvurabilir:

« Girintili bir kod blogu i¢in kod girerken, eslesen bir ¢ift sol ve sag sinirlayici (parantez, koseli parantez, kagl
ayrag veya iiclii tirnak) icindeyken veya bir dekorator belirttikten sonra etkilesimli kabugun varsayilan Python
istemi.

* Elipsis yerlesik sabiti.

Kaynag ayristirarak ve ayristirma agacinda gezinerek tespit edilebilecek uyumsuzluklarin ¢cogunu igleyerek Python
2.x kodunu Python 3.x koduna doniistiirmeye ¢alisan bir arac.

2t03, standart kiitiiphanede 1lib2to3'; badimsiz bir giris noktasi su sekilde
sadlanir:file: Tools/scripts/2to3. Bakinz 2to3-reference.

soyut temel simif

Soyut temel siiflar duck-typing ‘i, hasattr () gibi diger teknikler beceriksiz veya tamamen yanlis oldugun-
da arayiizleri tanimlamanin bir yolunu saglayarak tamamlar (6rnegin sihirli yontemlerle). ABC’ler, bir siniftan
miras almayan ancak yine de isinstance () ve issubclass () tarafindan tanmnan siniflar olan sanal alt si-
niflar1 tanitir; abc modiil belgelerine bakin. Python comes with many built-in ABCs for data structures (in the
collections.abc module), numbers (in the numbers module), streams (in the i o module), import finders
and loaders (in the importlib.abc module). abc modiilii ile kendi ABC’lerinizi olusturabilirsiniz.

dipnot

Bir degiskenle, bir sinif niteligiyle veya bir fonksiyon parametresiyle veya bir doniis degeriyle iligkilendirilen, ge-
lenek olarak rype hint bi¢ciminde kullanilan bir etiket.

Yerel degiskenlerin agiklamalarina ¢alisma zamaninda erisilemez, ancak global degiskenlerin, sinif niteliklerinin ve
islevlerin agiklamalari, sirastyla modiillerin, siniflarin ve iglevlerin __annotations__ ozel 6zelliginde saklanir.

Bu iglevi aciklayan variable annotation, function annotation, PEP 484 ve PEP 526’e bakin. Ek agiklamalarla
caligmaya iligkin en iyi uygulamalar icin ayrica bkz. annotations-howto.

317

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python/C API, Yayim 3.12.3

argiiman
Fonksiyon cagrilirken bir function ‘a (veya method) gegirilen bir deger. Iki tiir argiiman vardir:

* keyword argument: bir iglev ¢agrisinda bir tanimlayicinin (6r. ad =) Oniine gecen veya bir sozliikte * * ile
baslayan bir deger olarak gegirilen bir argiiman. Ornegin, 3 ve 5, asagidaki complex () : ¢agrilarinda anahtar
kelimenin argiimanleridir:

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

e positional argument: anahtar kelime argiimani olmayan bir argliman. Konumsal argiimanler, bir argiiman lis-
tesinin baginda goriinebilir ve/veya * ile baglayan bir iterable 6gesinin 6geleri olarak iletilebilir. Ornegin, 3
ve 5, asagidaki ¢agrilarda konumsal argiimanlerdir:

complex (3, 5)
complex (* (3, 5))

Argiimanler, bir fonksiyon govdesindeki adlandirilmis yerel degiskenlere atanir. Bu atamay1 yoneten kurallar i¢in
calls boliimiine bakin. S6zdizimsel olarak, bir argiimani temsil etmek i¢in herhangi bir ifade kullanilabilir; deger-
lendirilen deger yerel degiskene atanir.

Ayrica parameter sozligii girisine, the difference between arguments and parameters hakkindaki SSS sorusuna ve
PEP 362 ‘ye bakin.

asenkron baglam yoneticisi
An object which controls the environment seen in an async with statement by defining __aenter__ () and
__aexit__ () methods. Introduced by PEP 492.

asenkron jenerator
asynchronous generator iterator dondiiren bir iglev. Bir async for dongiisiinde kullanilabilen bir dizi deger iiret-
mek icin yield ifadeleri icermesi diginda async def ile tanimlanmig bir esyordam iglevine benziyor.

Genellikle bir asenkron iirete¢ iglevine atifta bulunur, ancak bazi baglamlarda bir asynchronous generator iterator
‘e kargilik gelebilir. Amaglanan anlamin net olmadigi durumlarda, tam terimlerin kullanilmasi belirsizligi 6nler.

Bir asenkron iiretici fonksiyonu, await ifadelerinin yani sira async for ve async with ifadeleri icerebilir.

asenkron jenerator yineleyici
Bir asynchronous generator iglevi tarafindan olusturulan bir nesne.

This is an asynchronous iterator which when called using the __anext___ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by ___anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

eszamansiz yinelenebilir
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__ () method. Introduced by PEP 492.

asenkron yineleyici
An object that implements the __aiter_ () and __anext__ () methods. __anext__ () must return an
awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s __anext__ ()
method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

nitelik
Noktali ifadeler kullanilarak adiyla bagvurulan bir nesneyle iliskili deger. Ornegin, o nesnesinin a ozniteligi varsa,
bu nesneye o.a olarak bagvurulur.

318 Ek A. Sézluk

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

The Python/C API, Yayim 3.12.3

Bir nesneye, eger nesne izin veriyorsa, 6rnegin setattr () kullanarak, adi identifiers tarafindan tanimlandig gibi
tanimlayici olmayan bir 6znitelik vermek miimkiindiir. Boyle bir 6znitelige noktal1 bir ifade kullanilarak erisilemez
ve bunun yerine getattr () ile alinmasi gerekir.

beklenebilir
An object that can be used in an await expression. Can be a coroutine or an object with an __await__ ()
method. See also PEP 492.

BDFL
Benevolent Dictator For Life, nami1 diger Guido van Rossum, Python’un yaraticisi.

ikili dosya
A file object able to read and write byfes-like objects. Examples of binary files are files opened in binary mode
("rb', 'wb' or 'rb+"'), sys.stdin.buffer, sys.stdout .buffer, and instances of 10.BytesIO
and gzip.GzipFile.

Ayrica st r nesnelerini okuyabilen ve yazabilen bir dosya nesnesi i¢in zext file ‘a bakin.

odiin¢ alinan referans
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not own
the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection can remove
the last strong reference to the object and so destroy it.

borrowed reference iizerinde Py_ INCREF () ¢agirmak, nesnenin 6diing alinanin son kullanimindan 6nce yok
edilemedigi durumlar diginda, onu yerinde bir strong reference ‘a doniistiirmek igin tavsiye edilir. referans.
Py_NewRef () islevi, yeni bir strong reference olusturmak i¢in kullanilabilir.

bayt benzeri nesne
Buffer Protocol ‘i destekleyen ve bir C-contiguous arabellegini disa aktarabilen bir nesne. Bu, tim bytes,
bytearray ve array.array nesnelerinin yani sira bir¢ok yaygin memoryview nesnesini icerir. Bayt ben-
zeri nesneler, ikili verilerle ¢alisan gesitli islemler igin kullanilabilir; bunlara sikistirma, ikili dosyaya kaydetme ve
bir soket iizerinden gonderme dahildir.

Bazi islemler, degisken olmast i¢in ikili verilere ihtiya¢ duyar. Belgeler genellikle bunlara “okuma-yazma bayt ben-
zeri nesneler” olarak atifta bulunur. Ornek degistirilebilir arabellek nesneleri bytearray ve bir bytearray
memoryview icerir. Diger iglemler, ikili verilerin degismez nesnelerde (“salt okunur bayt benzeri nesneler”) de-
polanmasini gerektirir; bunlarin 6rnekleri arasinda bytes ve bir bytes nesnesinin memoryview bulunur.

bayt kodu
Python kaynak kodu, bir Python programinin CPython yorumlayicisindaki dahili temsili olan bayt kodunda derlenir.
Bayt kodu ayrica . pyc dosyalarinda 6nbellege alinir, boylece ayn1 dosyanin ikinci kez ¢aligtirilmasi daha hizh olur
(kaynaktan bayt koduna yeniden derleme onlenebilir). Bu “ara dilin”, her bir bayt koduna karsilik gelen makine
kodunu yiiriiten bir sanal makine tizerinde ¢alisti1 soylenir. Bayt kodlariin farkli Python sanal makineleri arasinda
calismasi veya Python siiriimleri arasinda kararlh olmasi beklenmedigini unutmayin.

Bayt kodu talimatlarinin bir listesi bytecodes dokiimaninda bulunabilir.

cagirilabilir
Bir cagrilabilir, muhtemelen bir dizi argiimanla (bkz. argument) ve asagidaki sozdizimiyle cagrilabilen bir nesnedir:

[callable(argumentl, argument?2, argumentN)]

Bir fonksiyon ve uzantisi olarak bir mefot bir cagrilabilirdir. __call__ () yontemini uygulayan bir sinif ornegi
de bir cagrilabilirdir.

geri cagirmak
Gelecekte bir noktada yiiriitiilecek bir argliman olarak iletilen bir alt program islevi.

simf
Kullanici tanimli nesneler olugturmak icin bir gsablon. Smif tanimlar1 normalde sinifin 6rnekleri tizerinde caligan
yontem tanimlarini icerir.

319

https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

The Python/C API, Yayim 3.12.3

smif degiskeni
Bir sinifta tanimlanmis ve yalnizca sinif diizeyinde (yani sinifin bir 6rneginde degil) degistirilmesi amaglanan bir
degisken.

karmasik say1
Tiim sayilarin bir reel kisim ve bir sanal kisim toplamui olarak ifade edildigi bilinen gergek say1 sisteminin bir uzan-
tis1. Hayali sayilar, hayali birimin gercek katlaridir (-1 ‘in karekokii), genellikle matematikte i veya miihendislikte
j ile yazilir. Python, bu son gosterimle yazilan karmagik sayilar igin yerlesik destege sahiptir; hayali kisim bir j son
ekiyle yazilir, 6rnegin 3+17j. math modiiliiniin karmagik es degerlerine erismek i¢in cmath kullanin. Karmasik
sayilarin kullanim1 oldukca gelismig bir matematiksel 6zelliktir. Onlara olan ihtiyacin farkinda degilseniz, onlari
giivenle gormezden gelebileceginiz neredeyse kesindir.

baglam yoneticisi
An object which controls the environment seen in a with statement by defining __enter__ () and
__exit__ () methods. See PEP 343.

baglam degiskeni
Baglamina bagli olarak farkli degerler alabilen bir degigken. Bu, her yiiriitme ig parcaciginin bir degisken icin farkli
bir degere sahip olabilecegi Thread-Local Storage’a benzer. Bununla birlikte, baglam degiskenleriyle, bir yiiriitme is
parcaciginda birkag baglam olabilir ve baglam degiskenlerinin ana kullanimi, eszamanli zaman uyumsuz gorevlerde
degiskenleri izlemektir. Bakimiz contextvars.

bitisik
Bir arabellek, C-bitisik veya Fortran bitisik ise tam olarak bitisik olarak kabul edilir. Sifir boyutlu arabellekler C
ve Fortran bitigiktir. Tek boyutlu dizilerde, 6geler sifirdan baglayarak artan dizinler sirasina gore bellekte yan yana
yerlestirilmelidir. Cok boyutlu C-bitisik dizilerde, 6geleri bellek adresi sirasina gore ziyaret ederken son dizin en
hizli sekilde degisir. Ancak, Fortran bitisik dizilerinde, ilk dizin en hizl sekilde degisir.

esyordam
Esyordamlar, altyordamlarin daha genellestirilmis bir bigimidir. Alt programlara bir noktada girilir ve bagka bir
noktada ¢ikilir. Egyordamlar bir¢ok farkli noktada girilebilir, ¢ikilabilir ve devam ettirilebilir. async def ifadesi
ile uygulanabilirler. Ayrica bakiniz PEP 492.

esyordam islevi
Bir coroutine nesnesi dondiiren bir iglev. Bir esyordam iglevi async def ifadesiyle tanimlanabilir ve await,
async for ve async with anahtar kelimelerini i¢erebilir. Bunlar PEP 492 tarafindan tanitildi.

CPython
Python programlama dilinin python.org iizerinde dagitildig: sekliyle kuralli uygulamasi. “CPython” terimi, gerek-
tiginde bu uygulamay1 Jython veya IronPython gibi digerlerinden ayirmak i¢in kullanilir.

dekorator
Genellikle @wrapper sozdizimi kullanilarak bir islev doniisiimii olarak uygulanan, baska bir islevi dondiiren bir
islev. Dekoratorler icin yaygin ornekler sunlardir: classmethod () ve staticmethod ().

Dekorator s6zdizimi yalnizca sozdizimsel sekerdir, asagidaki iki iglev tanimi anlamsal olarak es degerdir:

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arg):

Ayni kavram siniflar i¢in de mevcuttur, ancak orada daha az kullanilir. Dekoratérler hakkinda daha fazla bilgi i¢in
function definitions ve class definitions belgelerine bakin.

tanimlayici
Any object which defines the methods __get__ (),__set__ (),or__delete__ ().Whenaclassattribute is

320 Ek A. Sézluk

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

The Python/C API, Yayim 3.12.3

a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get, set or delete
an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the respective descriptor
method gets called. Understanding descriptors is a key to a deep understanding of Python because they are the basis
for many features including functions, methods, properties, class methods, static methods, and reference to super
classes.

Tanimlayicilarin yontemleri hakkinda daha fazla bilgi igin, bkz. descriptors veya Descriptor How To Guide.

sozliik
An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__ ()
and __eqg__ () methods. Called a hash in Perl.

sozliik anlama
Ogelerin tiimiinii veya bir kismini yinelenebilir bir sekilde islemenin ve sonuglari iceren bir s6zliik déndiirmenin
kompakt bir yolu. results = {n: n ** 2 for range(10)},n ** 2 degerine eslenmis n anahtarini
iceren bir sozliik olusturur. Bkz. comprehensions.

sozliik goriiniimii
dict.keys(),dict.values () vedict.items () ‘den dondiiriilen nesnelere sozlilk goriiniimleri denir.
Sozliigiin girisleri iizerinde dinamik bir goriiniim saglarlar; bu, sozliik degistiginde goriiniimiin bu degisiklikle-
ri yansittig1 anlamina gelir. Sozliik goriiniimiinii tam liste olmaya zorlamak igin 1ist (dictview) kullanin.
Bakiniz dict-views.

belge dizisi
A string literal which appears as the first expression in a class, function or module. While ignored when the suite is
executed, it is recognized by the compiler and put into the ___doc___ attribute of the enclosing class, function or
module. Since it is available via introspection, it is the canonical place for documentation of the object.

ordek yazma
Dogru arayiize sahip olup olmadigini belirlemek igin bir nesnenin tiiriine bakmayan bir programlama stili; bunun
yerine, yontem veya nitelik basitce cagrilir veya kullanilir (“Ordek gibi goriiniiyorsa ve 6rdek gibi vakliyorsa, drdek
olmahdir.”) Iyi tasarlanmig kod, belirli tiirlerden ziyade arayiizleri vurgulayarak, polimorfik ikameye izin vererek
esnekligini artirir. Ordek yazma, t ype () veya isinstance () kullanan testleri 6nler. (Ancak, 6rdek yazmanin
abstract base class ile tamamlanabilecegini unutmayin.) Bunun yerine, genellikle hasattr () testleri veya EAFP
programlamasini kullanir.

EAFP
Af dilemek izin almaktan daha kolaydir. Bu yaygin Python kodlama stili, gecerli anahtarlarin veya niteliklerin
varligini varsayar ve varsayimin yanlis ¢tkmasi durumunda istisnalar1 yakalar. Bu temiz ve hizli stil, birgok t ry ve
except ifadesinin varlig: ile karakterize edilir. Teknik, C gibi diger bir¢ok dilde ortak olan LBYL stiliyle celisir.

ifade (deger dondiiriir)
Bir degere gore degerlendirilebilecek bir s6zdizimi parcasi. Bagka bir deyisle, bir ifade, tiimii bir deger dondiiren
sabit degerler, adlar, dznitelik erisimi, islecler veya islev ¢agrilari gibi ifade dgelerinin bir toplamidir. Diger bir¢ok
dilin aksine, tiim dil yapilar1 ifade degildir. Ayrica while gibi kullanilamayan ifadeler de vardir. Atamalar da
deger dondiirmeyen ifadelerdir (statement).

uzatma modiilii
Cekirdekle ve kullanici koduyla etkilesim kurmak i¢in Python’'un C APT’sini kullanan, C veya C++ ile yazilmig bir
modiil.

f-string
Oneki '£' veya 'F' olan dize degismezleri genellikle “f-strings” olarak adlandirilir; bu, formatted string literals
‘m kisaltmasidir. Ayrica bkz. PEP 498.

dosya nesnesi
An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying resource.
Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of

321

https://peps.python.org/pep-0498/

The Python/C API, Yayim 3.12.3

storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.). File
objects are also called file-like objects or streams.

Aslinda ii¢ dosya nesnesi kategorisi vardir: ham binary files, arabellege alinmis binary files ve text files. Arayiizleri
io modiiliinde tanimlanmustir. Bir dosya nesnesi yaratmanin kuralli yolu open () islevini kullanmaktir.

dosya benzeri nesne
dosya nesnesi ile esanlamlidir.

dosya sistemi kodlamasi ve hata isleyicisi
Python tarafindan isletim sistemindeki baytlarm kodunu ¢ézmek ve Unicode’u igletim sistemine kodlamak icin
kullanilan kodlama ve hata igleyici.

Dosya sistemi kodlamasi, 128’in altindaki tiim baytlarin kodunu basariyla ¢6zmeyi garanti etmelidir. Dosya sistemi
kodlamasi bu garantiyi saglayamazsa, API iglevleri UnicodeError degerini yiikseltebilir.

sys.getfilesystemencoding () ve sys.getfilesystemencodeerrors () islevleri, dosya siste-
mi kodlamasini ve hata isleyicisini almak i¢in kullanilabilir.

filesystem encoding and error handler Python baglangicinda PyConfig Read () isleviyle yapilandirilir: bkz.
filesystem_encodingve filesystem errors iyeleri PyConfig.

Ayrica bkz. locale encoding.

bulucu
Ice aktarilmakta olan bir modiil i¢in /oader ‘1 bulmaya calisan bir nesne.

Python 3.3’ten beri, iki ¢esit bulucu vardir: sys .meta_path ile kullamilmak {izere meta yol bulucular, ve sys .
path_hooks ile kullamlmak tizere yol girisi bulucular.

Daha fazla ayrint1 icin PEP 302, PEP 420 ve PEP 451 bakin.

kat boliimii
En yakin tam saytya yuvarlayan matematiksel bolme. Kat bolme operatorii // seklindedir. Ornegin, 11 // 4
ifadesi, gercek yiizer bolme tarafindan dondiiriilen 2 . 75 degerinin aksine 2 olarak degerlendirilir. (-11) // 4
‘lin -3 olduguna dikkat edin, ¢iinkii bu -2 . 75 yuvarlatilmig asagi. Bakiniz PEP 238.

fonksiyon

Bir arayana bir deger dondiiren bir dizi ifade. Ayrica, govdenin yiriitiilmesinde kullanilabilen sifir veya daha fazla
argtiman iletilebilir. Ayrica parameter, method ve function boliimiine bakin.

fonksiyon aciklamasi
Bir iglev parametresinin veya doniis degerinin ek aciklamast.

Islev ek agiklamalar1 genellikle 7ype hints igin kullanilir: 6rnegin, bu fonksiyonun iki int argiiman almasi ve ayrica
bir int doniis degerine sahip olmasi beklenir

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Islev agiklama s6zdizimi function béliimiinde agiklanmaktadir.

Bu islevi aciklayan variable annotation ve PEP 484 ‘e bakin. Ek agiklamalarla ¢aligmaya iliskin en iyi uygulamalar
icin ayrica annotations-howto konusuna bakin.

future
Bir future ifadesi, from __future__ import <feature>, derleyiciyi, Python’un gelecekteki bir siirii-
miinde standart hale gelecek olan sézdizimini veya semantigi kullanarak mevcut modiilii derlemeye yonlendirir.
__future__ modiili, feature'in olasi degerlerini belgeler. Bu modiilii ice aktararak ve degigkenlerini degerlen-
direrek, dile ilk kez yeni bir 6zelligin ne zaman eklendigini ve ne zaman varsayilan olacagini (ya da yaptigini)
gorebilirsiniz:

322 Ek A. Sézluk

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

The Python/C API, Yayim 3.12.3

>>> import __ future_
>>> _ future__ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

¢op toplama
Artik kullanilmadiginda bellegi bosaltma iglemi. Python, referans sayimi ve referans dongiilerini algilayip kirabilen
bir dongiisel ¢cop toplayici araciligiyla ¢op toplama gergeklestirir. Cop toplayict gc modiilii kullanilarak kontrol
edilebilir.

jenerator
Bir generator iterator dondiiren bir iglev. Bir for dongiisiinde kullanilabilen bir dizi deger iiretmek icin yield
ifadeleri icermesi veya next () isleviyle birer birer alinabilmesi diginda normal bir igleve benziyor.

Genellikle bir iiretici iglevine atifta bulunur, ancak bazi baglamlarda bir jenerator yineleyicisine atifta bulunabilir.
Amaglanan anlamin net olmadig1 durumlarda, tam terimlerin kullanilmast belirsizligi onler.

jenerator yineleyici
Bir generator islevi tarafindan olusturulan bir nesne.

Her yield, konum yiiriitme durumunu hatirlayarak (yerel degiskenler ve bekleyen try ifadeleri dahil) isleme-
yi gecici olarak askiya alir. jenerator yineleyici devam ettiginde, kaldig1 yerden devam eder (her cagrida yeniden
baslayan iglevlerin aksine).

jenerator ifadesi
Yineleyici dondiiren bir ifade. Bir dongii degiskenini, aralig1 ve istege bagl bir i f yan tiimcesini tanimlayan bir
for yan tiimcesinin takip ettifi normal bir ifadeye benziyor. Birlestirilmis ifade, bir ¢evreleyen icin degerler iiretir:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

genel islev
Farkl tiirler i¢in ayn1 islemi uygulayan birden ¢ok iglevden olusan bir islev. Bir ¢agri sirasinda hangi uygulamanin
kullanilmast gerektigi, gonderme algoritmasi tarafindan belirlenir.

Ayrica single dispatch sozliik girdisine, functools.singledispatch () dekoratoriine ve PEP 443 ‘e bakin.

genel tip
Parametrelendirilebilen bir rype; tipik olarak bir konteyner sinift, ornegin 11 st veya dict. type hint ve annotation
icin kullanilir.

Daha fazla ayrint1 icin generic allias types, PEP 483, PEP 484, PEP 585 ve t yping modiiliine bakin.

GIL
Bakiiz global interpreter lock.

genel terciiman kilidi
CPython yorumlayicisi tarafindan ayni anda yalnizca bir i par¢aciginin Python byfecode ‘u yiiriitmesini saglamak
icin kullanilan mekanizma. Bu, nesne modelini (dict gibi kritik yerlesik tiirler dahil) eszamanli erisime kargi
ortiik olarak giivenli hale getirerek CPython uygulamasini basitlestirir. Tiim yorumlayiciy: kilitlemek, ¢ok islemcili
makinelerin sagladig1 paralelligin ¢ogu pahasina, yorumlayicinin ¢ok ig pargacikli olmasini kolaylastirir.

Bununla birlikte, standart veya ligiincii taraf baz1 genigletme modiilleri, sikistirma veya karma gibi hesaplama ag1-
sindan yogun gorevler yaparken GIL’yi serbest birakacak sekilde tasarlanmistir. Ayrica, GIL, G/C yaparken her
zaman serbest birakilir.

“Serbest is pargacikli” bir yorumlayici (paylagilan verileri cok daha ince bir ayrint1 diizeyinde kilitleyen) olustur-
ma ¢abalari, ortak tek islemcili durumda performans dustiigii i¢in basarili olmamigtir. Bu performans sorununun
tistesinden gelinmesinin uygulamay1 ¢cok daha karmagik hale getirecegine ve dolayisiyla bakimini daha maliyetli
hale getirecegine inanilmaktadir.

323

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python/C API, Yayim 3.12.3

karma tabanl pyc
Gecerliligini belirlemek i¢in ilgili kaynak dosyanin son degistirilme zamani yerine karma degerini kullanan bir bayt
kodu onbellek dosyasi. Bakiniz pyc-invalidation.

yikanabilir
An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__ ()
method), and can be compared to other objects (it needsan __eq___ () method). Hashable objects which compare
equal must have the same hash value.

Hashability, bir nesneyi bir sozliik anahtar1 ve bir set iiyesi olarak kullanilabilir hale getirir, ¢linkii bu veri yapilari
hash degerini dahili olarak kullanir.

Python’un degismez yerlesik nesnelerinin ¢ogu, yikanabilir; degistirilebilir kaplar (listeler veya sozliikler gibi) de-
gildir; degismez kaplar (tiipler ve donmus kiimeler gibi) yalnizca 6gelerinin yikanabilir olmas1 durumunda yikana-
bilirdir. Kullanic1 tanimli siniflarin 6rnekleri olan nesneler varsayilan olarak hash edilebilirdir. Hepsi esit olmayani
kargilagtirir (kendileriyle haric) ve hash degerleri id () ‘lerinden tiiretilir.

BOSTA
Python icin Entegre Gelistirme Ortamu. idle, Python’un standart dagitimiyla birlikte gelen temel bir diizenleyici ve
yorumlayici ortamidir.

degismez
Sabit degeri olan bir nesne. Degismez nesneler arasinda sayilar, dizeler ve demetler bulunur. Boyle bir nesne degis-
tirilemez. Farkli bir degerin saklanmasi gerekiyorsa yeni bir nesne olusturulmalidir. Ornegin bir sozliikte anahtar
olarak, sabit bir karma degerinin gerekli oldugu yerlerde 6nemli bir rol oynarlar.

ice aktarim yolu
Ice aktarilacak modiiller icin path based finder tarafindan aranan konumlarin (veya path entries) listesi. Ice aktarma
sirasinda, bu konum listesi genellikle sys . path adresinden gelir, ancak alt paketler i¢in iist paketin __path
ozelliginden de gelebilir.

ice aktarma
Bir modiildeki Python kodunun bagka bir modiildeki Python koduna sunulmasi siireci.

ice aktarici
Bir modiilii hem bulan hem de yiikleyen bir nesne; hem bir finder hem de loader nesnesi.

etkilesimli
Python’un etkilesimli bir yorumlayicisi vardir; bu, yorumlayici isteminde ifadeler ve ifadeler girebileceginiz, bunlar
hemen calistirabileceginiz ve sonuglarini gorebileceginiz anlamina gelir. Herhangi bir argiiman olmadan python
‘u baglatmaniz yeterlidir (muhtemelen bilgisayarimizin ana meniisiinden segerek). Yeni fikirleri test etmenin veya
modiilleri ve paketleri incelemenin ¢ok giiclii bir yoludur (help (x) ‘i unutmayn).

yorumlanmis
Python, derlenmis bir dilin aksine yorumlanmuisg bir dildir, ancak bayt kodu derleyicisinin varlig1 nedeniyle ayrim
bulanik olabilir. Bu, kaynak dosyalarin daha sonra calistirilacak bir yiiriitiilebilir dosya olusturmadan dogrudan
caligtirilabilecegi anlamina gelir. Yorumlanan diller genellikle derlenmis dillerden daha kisa bir gelistirme/hata
ayiklama dongiisiine sahiptir, ancak programlari genellikle daha yavag ¢alisir. Ayrica bkz. interactive.

terciiman kapatma
Kapatilmasi istendiginde, Python yorumlayicisi, modiiller ve cesitli kritik i¢ yapilar gibi tahsis edilen tiim kaynak-
lar1 kademeli olarak serbest biraktig1 6zel bir asamaya girer. Ayrica garbage collector i¢in birkag ¢agr1 yapar. Bu,
kullanici taniml yikicilarda veya zayif referans geri aramalarinda kodun yiiriitiilmesini tetikleyebilir. Kapatma asa-
masinda yiiriitiilen kod, dayandig1 kaynaklar artik calismayabileceginden cesitli istisnalarla karsilagabilir (yaygin
ornekler kiitiiphane modiilleri veya uyar1 makineleridir).

Yorumlayicinin kapatilmasinin ana nedeni,
olmasidir.

main__ modiiliiniin veya caligtirilan betigin yiiriitmeyi bitirmis

324 Ek A. Sézluk

The Python/C API, Yayim 3.12.3

yinelenebilir
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define withan __iter__ () methodor witha___getitem__ () method that implements sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (), ...).
When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter () or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generator.

yineleyici

An object representing a stream of data. Repeated calls to the iterator’s __next__ () method (or passing it
to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
toits__next__ () method just raise StopIteration again. Iterators are required to have an __iter_ ()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a 1ist) produces a fresh new iterator each time you pass it to the iter () function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

Daha fazla bilgi typeiter icinde bulunabilir.

CPython uygulama ayrintisi: CPython does not consistently apply the requirement that an iterator define
__iter_ ().

anahtar islev
Anahtar iglevi veya harmanlama islevi, siralama veya siralama icin kullanilan bir degeri dondiiren bir ¢agrilabi-
lir. Ornegin, locale.strxfrm(), yerel ayara 6zgii siralama kurallarmin farkinda olan bir siralama anahtari
tiretmek icin kullanilir.

Python’daki bir dizi arag, 6gelerin nasil siralandigini veya gruplandirildigini kontrol etmek icin temel iglevleri ka-
bul eder. Bunlarmin () ,max (), sorted (), list.sort (), heapg.merge (), heapg.nsmallest (),
heapg.nlargest () ve itertools.groupby ().

Bir tus fonksiyonu olusturmanin birkag yolu vardir. Ornegin. st r . Lower () yontemi, biiyiik/kiigiik harfe duyarlt
olmayan siralamalar i¢in bir anahtar fonksiyonu islevi gorebilir. Alternatif olarak, lambda r: (r[0], r[2])
gibi bir 1ambda ifadesinden bir anahtar islevi olugturulabilir. Ayrica, attrgetter (), itemgetter () ve
methodcaller () fonksiyonlar: ii¢ anahtar fonksiyon kurucularidir. Anahtar islevlerin nasil olusturulacag ve
kullanilacagina iliskin ornekler i¢in Sorting HOW TO boliimiine bakin.

anahtar kelime argiimani
Bakiniz argument.

lambda
Islev cagrildiginda degerlendirilen tek bir expression ‘dan olusan anonim bir satir ici islev. Bir lambda islevi olus-
turmak i¢in s6zdizimi 1ambda [parametreler]: ifade seklindedir

LBYL
Ziplamadan 6nce Bak. Bu kodlama stili, arama veya arama yapmadan 6nce 6n kosullari acikca test eder. Bu stil,
EAFP yaklagimiyla celigir ve birgok i f ifadesinin varlig1 ile karakterize edilir.

Cok is pargacikli bir ortamda, LBYL yaklagim1 “bakan” ve “sicrayan” arasinda bir yaris kosulu getirme riskini ta-
styabilir. Ornegin, 1f key in mapping: return mapping[key] kodu, testten sonra, ancak aramadan
once baska bir ig parcacigi eslemeden key kaldirirsa bagarisiz olabilir. Bu sorun, kilitlerle veya EAFP yaklagimi
kullanilarak coziilebilir.

325

The Python/C API, Yayim 3.12.3

liste
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since
access to elements is O(1).

liste anlama
Bir dizideki 6gelerin tiimiinii veya bir kismini iglemenin ve sonuglart igeren bir liste dondiirmenin kompakt bir yo-
Iu. sonug = ['{:#04x}'.format (x) for range (256) if x % 2 == 0], dizinde ¢ift onaltilik
sayilar (0x..) iceren bir diziler listesi olusturur. O ile 255 arasindadir. i f yan tiimcesi istege baghdir. Atlanirsa,
“aralik(256)” icindeki tiim 6geler islenir.

yiikleyici
Modiil yiikleyen bir nesne. 1oad_module () adinda bir yontem tanimlamalidir. Bir yiikleyici genellikle bir finder
ile dondiiriiliir. Ayrintilar i¢in PEP 302 ve bir soyut temel sinif igin import1lib.abc.Loader boliimiine bakin.

yerel kodlama
Unixte, LC_CTYPE yerel ayarmin kodlamasidir. locale.setlocale(locale.LC_CTYPE,
new_locale) ile ayarlanabilir.

Windows’ta bu, ANSI kod sayfasidir (6r. "cpl1252™").

Android ve VxWorks’te Python, yerel kodlama olarak "ut £-8" kullanir.
locale.getencoding () can be used to get the locale encoding.
Ayrica filesystem encoding and error handler ‘ne bakin.

sihirli yontem
special method i¢in gayri resmi bir esanlaml.

haritalama
Keyfi anahtar aramalarin1 destekleyen ve Mapping veya MutableMapping collections-abstract-base-classes
icinde belirtilen yontemleri uygulayan bir kapsayict nesnesi. Ornekler arasinda dict, collections.
defaultdict, collections.OrderedDict ve collections.Counter sayilabilir.

meta yol bulucu
Bir finder, sys .meta_path aramasiyla dondiiriiliir. Meta yol bulucular, yo! girisi buluculart ile iligkilidir, ancak
onlardan farklidir.

Meta yol bulucularin uyguladigi yontemler i¢in importlib.abc.MetaPathFinder boliimiine bakin.

metasinif
Bir sinifin sinifi. Sf tanimlari, bir sinif adi, bir siif s6z1igii ve temel siniflarin bir listesini olugturur. Metasinif,
bu ti¢ argiimani almaktan ve sinift olusturmaktan sorumludur. Cogu nesne yonelimli programlama dili, varsayilan
bir uygulama saglar. Python’u 6zel yapan sey, 6zel metasiniflar olusturmanin miimkiin olmasidir. Cogu kullanict
bu araca hicbir zaman ihtiya¢ duymaz, ancak ihtiya¢ duyuldugunda, metasiiflar giiclii ve zarif ¢oziimler sagla-
yabilir. Nitelik erigimini giinliife kaydetmek, is parcacig1 giivenligi eklemek, nesne olusturmayi izlemek, tekilleri
uygulamak ve diger bircok gorev icin kullanilmiglardir.

Daha fazla bilgi metaclasses i¢inde bulunabilir.

metot
Bir smif govdesi iginde tanimlanan bir iglev. Bu sinifin bir 6érneginin 6zniteligi olarak ¢agrilirsa, yontem 6rnek
nesnesini ilk argument (genellikle se 1 f olarak adlandirilir) olarak alir. Bkz. function ve nested scope.

metot kalite siralamasi
Method Resolution Order is the order in which base classes are searched for a member during lookup. See pyt-
hon_2.3_mro for details of the algorithm used by the Python interpreter since the 2.3 release.

modiil
Python kodunun kurulus birimi olarak hizmet eden bir nesne. Modiiller, rastgele Python nesneleri igeren bir ad
alanina sahiptir. Modiiller, importing islemiyle Python’a yiiklenir.

326 Ek A. Sézluk

https://peps.python.org/pep-0302/

The Python/C API, Yayim 3.12.3

Ayrica bakiniz package.

modiil 6zelligi
Bir modiilii yiiklemek icin kullanilan ice aktarmayla ilgili bilgileri igeren bir ad alami. Bir importlib.
machinery.ModuleSpec Ornegi.

MRO
Bakiniz metot ¢oziim sirasi.

degistirilebilir
Degistirilebilir (mutable) nesneler degerlerini degistirebilir ancak 1dlerini koruyabilirler. Ayrica bkz. immu-
table.

adlandirilmis demet
“named tuple” terimi, demetten miras alan ve dizinlenebilir 6gelerine de adlandirilmis nitelikler kullanilarak eri-
silebilen herhangi bir tiir veya sinif icin gegerlidir. Tiir veya sinifin bagka 6zellikleri de olabilir.

Cesitli yerlesik tiirler, time.localtime () ve os.stat () tarafindan dondiiriilen degerler de dahil olmak
iizere, tanimlama gruplar1 olarak adlandirilir. Bagka bir 6rnek sys.float_info:

>>> sys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand, or it can be created by inheriting t yping . NamedTuple, or with the factory function collections.
namedtuple (). The latter techniques also add some extra methods that may not be found in hand-written or
built-in named tuples.

ad alam
Degiskenin saklandig1 yer. Ad alanlar1 sozliikler olarak uygulanir. Nesnelerde (yontemlerde) yerel, genel ve yerle-
sik ad alanlarinin yani sira i¢ ice ad alanlar1 vardir. Ad alanlari, adlandirma ¢akigmalarini 6nleyerek modiilerligi
destekler. Ornegin, builtins.open ve os.open () islevleri ad alanlariyla ayirt edilir. Ad alanlari, hangi
modiiliin bir islevi uyguladigini acik¢a belirterek okunabilirlige ve siirdiiriilebilirlige de yardimer olur. Ornegin,
random.seed () veya itertools.islice () yazmak, bu iglevlerin sirastyla random ve itertools
modiilleri tarafindan uygulandigini agikga gosterir.

ad alam paketi
A PEP 420 package, yalmzca alt paketler icin bir kap olarak hizmet eder. Ad alan1 paketlerinin higbir fiziksel
temsili olmayabilir ve __init__ .py dosyasi olmadigindan 6zellikle regular package gibi degildirler.

Ayrica bkz. module.

i¢ ice kapsam
Kapsamli bir tanimdaki bir degiskene atifta bulunma yetenegi. Ornegin, bagka bir fonksiyonun icinde tanimlanan bir
fonksiyon, dis fonksiyondaki degiskenlere atifta bulunabilir. I¢ ice kapsamlarin varsayilan olarak yalnizca basvuru
icin calistigini ve atama icin calisgmadigini unutmayn. Yerel degiskenler en icteki kapsamda hem okur hem de yazar.
Benzer sekilde, global degiskenler global ad alanini okur ve yazar. nonlocal, dig kapsamlara yazmaya izin verir.

yeni stil simf
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only new-style classes
could use Python’s newer, versatile features like ___slots__, descriptors, properties, __getattribute__ (),
class methods, and static methods.

obje
Durum (6znitelikler veya deger) ve tanimlanmig davranig (yontemler) iceren herhangi bir veri. Ayrica herhangi bir

327

https://peps.python.org/pep-0420/

The Python/C API, Yayim 3.12.3

yeni tarz sinifin nihai temel sinifi.

paket
Alt modiiller veya yinelemeli olarak alt paketler icerebilen bir Python module. Teknik olarak bir paket,
Ozniteligine sahip bir Python modiiliidiir.

path__

Ayrica bkz. regular package ve namespace package.

parametre
Bir function (veya yontem) taniminda, islevin kabul edebilecegi bir argument (veya bazi durumlarda, argiimanlar)
belirten adlandirilmig bir varlik. Bes ¢esit parametre vardir:

* positional-or-keyword: pozisyonel veya bir keyword argiiman: olarak iletilebilen bir argiiman belirtir. Bu,
varsayilan parametre tiiriidiir, 6rnegin asagidakilerde foo ve bar:

[def func (foo, bar=None): ... J

* positional-only: yalnizca konuma gore saglanabilen bir argliman belirtir. Yalnizca konumsal parametreler,
onlardan sonra fonksiyon taniminin parametre listesine bir / karakteri eklenerek tanimlanabilir, 6rnegin asa-
&idakilerde posonlyl ve posonly2:

[def func (posonlyl, posonly2, /, positional_or_keyword): ... J

* keyword-only: sadece anahtar kelime ile saglanabilen bir argiiman belirtir. Yalnizca anahtar kelime (keyword-
only) parametreleri, onlardan 6nceki fonksiyon taniminin parametre listesine tek bir degisken konumlu pa-
rametre veya ¢iplak * dahil edilerek tanimlanabilir, 6rnegin asagidakilerde kw_onlyl ve kw_only2:

[def func (arg, *, kw_onlyl, kw_only2): ...]

* var-positional: keyfi bir pozisyonel argiiman dizisinin saglanabilecegini belirtir (diger parametreler tarafindan
zaten kabul edilmis herhangi bir konumsal argiimana ek olarak). Boyle bir parametre, parametre adinin bagina
* eklenerek tanimlanabilir, 6rnegin agagidakilerde args:

[def func (*args, **kwargs): ...]

* var-keyword: keyfi olarak bircok anahtar kelime argiimaninin saglanabilecegini belirtir (diger parametre-
ler tarafindan zaten kabul edilen herhangi bir anahtar kelime argiimanina ek olarak). Boyle bir parametre,
parametre adinin bagina * *, 6rnegin yukaridaki ornekte kwargs eklenerek tanimlanabilir.

Parametreler, hem istege bagl hem de gerekli argtimanleri ve ayrica bazi istege bagli bagimsiz degiskenler icin
varsayilan degerleri belirtebilir.

Ayrica bkz. argiiman, arglimanlar ve parametreler arasindaki fark, inspect .Parameter, function ve PEP
362.

yol girisi
path based finder i¢e aktarma modiillerini bulmak i¢in bagvurdugu import path tizerindeki tek bir konum.

yol girisi bulucu
Bir finder sys.path_hooks (yani bir yol giris kancast) iizerinde bir ¢agrilabilir tarafindan dondiiriiliir ve path
entry verilen modiillerin nasil bulunacagin bilir.

Yol girisi bulucularinin uyguladigi yontemler i¢in importlib.abc.PathEntryFinder bolimiine bakin.

yol giris kancasi
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules on a
specific path entry.

yol tabanl bulucu
Modiiller icin bir import path arayan varsayilan meta yol buluculardan biri.

328 Ek A. Sézluk

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0362/

The Python/C API, Yayim 3.12.3

yol benzeri nesne

PEP

Bir dosya sistemi yolunu temsil eden bir nesne. Yol benzeri bir nesne, bir yolu temsil eden bir st r veya bytes
nesnesi veya os.PathLike protokoliinii uygulayan bir nesnedir. os.PathLike protokoliinii destekleyen
bir nesne, os . fspath () islevi ¢agrilarak bir str veya bytes dosya sistemi yoluna doniistiiriilebilir; os .
fsdecode () ve os.fsencode (), bunun yerine sirasiyla st r veya bytes sonucunu garanti etmek i¢in kul-
lanilabilir. PEP 519 tarafindan tanitildi.

Python Gelistirme Onerisi. PEP, Python topluluguna bilgi saglayan veya Python veya siirecleri ya da ortami igin
yeni bir 6zelligi aciklayan bir tasarim belgesidir. PEP’ler, onerilen 6zellikler icin 6zIii bir teknik sartname ve bir
gerekge saglamalidir.

PEP’lerin, 6nemli yeni 6zellikler 6nermek, bir sorun hakkinda topluluk girdisi toplamak ve Python’a giren tasarim
kararlarini belgelemek i¢in birincil mekanizmalar olmas1 amaglanmistir. PEP yazari, topluluk icinde fikir birligi
olusturmaktan ve muhalif goriigleri belgelemekten sorumludur.

Bakiniz PEP 1.

Kisim

PEP 420 icinde tanimlandig1 gibi, bir ad alan1 paketine katkida bulunan tek bir dizindeki (muhtemelen bir zip
dosyasinda depolanan) bir dizi dosya.

konumsal argiiman

Bakiniz argument.

gecici API

Gegici bir API, standart kitapligin geriye doniik uyumluluk garantilerinden kasitli olarak hari¢ tutulan bir APT'dir.
Bu tiir arayiizlerde biiyiik degisiklikler beklenmese de, gecici olarak isaretlendikleri siirece, ¢ekirdek gelistiriciler
tarafindan gerekli goriildiigii takdirde geriye doniik uyumsuz degisiklikler (arayiiziin kaldirilmasina kadar ve buna
kadar) meydana gelebilir. Bu tiir degisiklikler kargiliksiz yapilmayacaktir - bunlar yalnizca API'nin eklenmesinden
once gozden kagan ciddi temel kusurlar ortaya ¢ikarsa gergeklesecektir.

Gecici APT'’ler icin bile, geriye doniik uyumsuz degisiklikler “son care ¢coziimii” olarak goriiliir - tanimlanan her-
hangi bir soruna geriye doniik uyumlu bir ¢dziim bulmak i¢in her tiirlii girisimde bulunulacaktir.

Bussiirec, standart kitapligin, uzun siireler boyunca sorunlu tasarim hatalarina kilitlenmeden zaman i¢inde gelismeye
devam etmesini saglar. Daha fazla ayrint1 igin bkz. PEP 411.

gecici paket

Bakiniz provisional API.

Python 3000

Python 3.x siiriim satirinin takma adi (uzun zaman 6nce siirlim 3’iin piyasaya stiriilmesi uzak bir gelecekte oldugu
zaman ortaya ¢ikti.) Bu ayn1 zamanda “Py3k” olarak da kisaltilir.

Pythonic

Diger dillerde ortak kavramlar1 kullanarak kod uygulamak yerine Python dilinin en yaygin deyimlerini yakindan
takip eden bir fikir veya kod parcasi. Ornegin, Python’da yaygin bir deyim, bir £ or ifadesi kullanarak yinelenebilir
bir 6genin tiim 6geleri tizerinde dongii olusturmaktir. Diger birgok dilde bu tiir bir yap1 yoktur, bu nedenle Python’a
agina olmayan kigiler bazen bunun yerine sayisal bir saya¢ kullanir:

g
for i in range(len(food)):

print (food[i])

L

Temizleyicinin aksine, Pythonic yontemi:

p
for piece in food:
print (piece)

329

https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

The Python/C API, Yayim 3.12.3

nitelikli isim
PEP 3155 i¢inde tanimlandig1 gibi, bir modiiliin genel kapsamindan o modiilde tanimlanan bir sinifa, igleve veya
yonteme giden “yolu” gosteren noktal ad. Ust diizey islevler ve smiflar i¢in nitelikli ad, nesnenin adiyla aymdir:

p
>>> class C:

class D:
def meth (self):
pass

>>> C.__ _qgualname___

YC’

>>> C.D.__gqualname_
'C.D'

>>> C.D.meth.__ _qualname_
'C.D.meth'

Modiillere atifta bulunmak i¢in kullanildiginda, fam nitelenmis ad, herhangi bir iist paket de dahil olmak iizere,
modiile giden tiim noktali yol anlamina gelir, 6rn. email .mime.text:

>>> import email .mime.text
>>> email.mime.text._ name_
'email .mime.text'

referans sayisi
The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Some objects are “immortal” and have reference counts that are never modified, and therefore the objects are never
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. Programmers can call the sys.getrefcount () function to return the reference count for a
particular object.

siirekli paketleme
__init__ .py dosyasi iceren bir dizin gibi geleneksel bir package.

Ayrica bkz. ad alani paketi.

slots
Ornek oznitelikleri i¢in &nceden yer bildirerek ve 6rnek sozliiklerini ortadan kaldirarak bellekten tasarruf saglayan
bir sinif i¢indeki bildirim. Popiiler olmasina ragmen, teknigin dogru olmasi biraz zor ve en iyi, bellek acgisindan
kritik bir uygulamada ¢ok sayida 6rnegin bulundugu nadir durumlar igin ayrilmastir.
dizi

An iterable which supports efficient element access using integer indices viathe __getitem__ () special method
and definesa ___len__ () method that returns the length of the sequence. Some built-in sequence typesare 1ist,
str,tuple,and bytes. Note that dict alsosupports __getitem__ () and__len__ (), butis considered
a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just _ _getitem__ () and __len__ (), adding count (), index (), contains__ (), and
__reversed__ (). Types that implement this expanded interface can be registered explicitly using
register (). For more documentation on sequence methods generally, see Common Sequence Operations.

anlamak
Ogelerin tiimiinii veya bir kismim yinelenebilir bir sekilde islemenin ve sonuglarla birlikte bir kiime dondiirme-
nin kompakt bir yolu. results = {c¢ for ¢ in 'abracadabra' if ¢ not in 'abc'}, {'r',
'd"' } dizelerini olusturur. Bakiniz comprehensions.

tek sevk
Uygulamanin tek bir argiiman tiiriine gore secildigi bir generic function gonderimi bi¢imi.

330 Ek A. Sézluk

https://peps.python.org/pep-3155/

The Python/C API, Yayim 3.12.3

parcalamak
Genellikle bir sequence ‘nin bir boliimiinii igeren bir nesne. Bir dilim, 6rnegin variable_name[1:3:5] ‘de
oldugu gibi, birkag tane verildiginde, sayilar arasinda iki nokta iist iiste koyarak, [] alt simge gosterimi kullanilarak
olusturulur. Koseli ayrag (alt simge) gosterimi, dahili olarak s11ice nesnelerini kullanir.

0zel metod
Toplama gibi bir tiir izerinde belirli bir iglemi yiiriitmek i¢in Python tarafindan ortiik olarak cagrilan bir yontem. Bu
tiir yontemlerin cift alt cizgi ile baglayan ve biten adlar1 vardir. Ozel yontemler specialnames icinde belgelenmistir.

ifade (deger dondiirmez)
Bir ifade, bir paketin parcgasidir (kod “blogu”). Bir ifade, bir expression veya 1 £, while veya for gibi bir anahtar
kelimeye sahip birkac yapidan biridir.

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also rype
hints and the t yping module.

giiclii referans
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the refe-
rence. The strong reference is taken by calling Py TNCREF () when the reference is created and released with
Py_DECREF () when the reference is deleted.

Py_NewRef () fonksiyonu, bir nesneye giicli bir basgvuru olugturmak icin kullanilabilir. Genellikle
Py_DECREF () fonksiyonu, bir referansin sizmasini 6nlemek igin giiclii referans kapsamindan ¢ikmadan 6nce
giiclii referansta ¢agrilmalidir.

Ayrica bkz. ddiing alinan referans.

yaz1 ¢oziimleme
Python’da bir dize, bir Unicode kod noktalar1 dizisidir (U+0000-U+10FFFF araliginda). Bir dizeyi depolamak
veya aktarmak icin, bir bayt dizisi olarak seri hale getirilmesi gerekir.

Bir dizeyi bir bayt dizisi halinde seri hale getirmek “kodlama (encoding)” olarak bilinir ve dizeyi bayt dizisinden
yeniden olusturmak “kod ¢dzme (decoding)” olarak bilinir.

Toplu olarak “metin kodlamalar1” olarak adlandirilan ¢esitli farkli metin serilestirme kodekleri vardir.

yaz1 dosyasi
A file object st r nesnelerini okuyabilir ve yazabilir. Cogu zaman, bir metin dosyasi aslinda bir bayt yonelimli veri
akigina erisir ve otomatik olarak rext encoding isler. Metin dosyalarina 6rnek olarak metin modunda acilan dosyalar
("r'veya 'w'), sys.stdin, sys.stdout ve 1o.StringIO ornekleri verilebilir.

Ayrica ikili dosyalar: okuyabilen ve yazabilen bir dosya nesnesi i¢in bayt benzeri nesnelere bakin.

ii¢c tirnakh dize
Ucg tirnak isareti (”) veya kesme isareti () ile sinirlanan bir dize. Tek tirnakli dizelerde bulunmayan herhangi bir
islevsellik saglamasalar da, birka¢ nedenden dolay: faydalidirlar. bir dizeye ¢ikigsiz tek ve ¢ift tirnak eklemeniz
gerekir ve bunlar, devam karakterini kullanmadan birden ¢ok satira yayilabilir, bu da onlar1 6zellikle belge dizileri
yazarken kullanigh hale getirir.

tip
Bir Python nesnesinin tiirii, onun ne tiir bir nesne oldugunu belirler; her nesnenin bir tiirii vardir. Bir nesnenin tipine
__class__ niteligi ile erisilebilir veya t ype (ob7j) ile alinabilir.

tip takma adi

Bir tanimlayiciya tiir atanarak olusturulan, bir tiir igin es anlaml.

Tiir takma adlari, #iir ipuclarin basitlestirmek igin kullamslhidir. Ornegin:

331

The Python/C API, Yayim 3.12.3

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplel[int, int, int]]:
pass

bu sekilde daha okunakli hale getirilebilir:

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

Bu iglevi agiklayan t yping ve PEP 484 boliimlerine bakin.

tiir ipucu
Bir degisken, bir sinif niteligi veya bir iglev parametresi veya doniis degeri i¢in beklenen tiirii belirten bir ek acik-
lama.

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can also aid
IDEs with code completion and refactoring.

Genel degiskenlerin, smif Ozniteliklerinin ve islevlerin tiir ipuglarina, yerel degiskenlere degil, typing.
get_type_hints () kullanmlarak erisilebilir.

Bu iglevi agiklayan t yping ve PEP 484 boliimlerine bakin.

evrensel yeni satirlar
Asagidakilerin tiimiiniin bir satirin bitisi olarak kabul edildigi metin akiglarin1 yorumlamanin bir yolu: Unix satir
sonu kurali \n', Windows kurali '\r\n"', ve eski Macintosh kurali '\r'. Ek bir kullanim i¢cin PEP 278 ve
PEP 3116 ve ayricabytes.splitlines () bakin.

degisken aciklama
Bir degiskenin veya bir sinif ozniteliginin ek aciklamast.

Bir degiskene veya siif nitelifine aciklama eklerken atama istege baghdir:

class C:
field: 'annotation'

Degisken agiklamalar1 genellikle #ir ipuclar: i¢in kullanilir: 6rnegin, bu degiskenin int degerlerini almasi beklenir:

[count: int = 0]

Degisken aciklama so6zdizimi annassign boliimiinde agiklanmigtir.

Bu islevi aciklayan; function annotation, PEP 484 ve PEP 526 boliimlerine bakin. Ek agiklamalarla ¢alismaya
iligkin en iyi uygulamalar i¢in ayrica bkz. annotations-howto.

sanal ortam
Python kullanicilariin ve uygulamalarinin, ayni sistem tizerinde ¢alisan diger Python uygulamalarinin davranigina
miidahale etmeden Python dagitim paketlerini kurmasina ve yiikseltmesine olanak taniyan, igbirligi icinde yalitilmig
bir caligma zamani ortami.

Ayrica bakiniz venv.

sanal makine
Tamamen yazilimla tanimlanmig bir bilgisayar. Python’un sanal makinesi, bayt kodu derleyicisi tarafindan yayin-
lanan bytecode ‘u ¢aligtirir.

Python’un Zen’i
Dili anlamaya ve kullanmaya yardimci olan Python tasarim ilkeleri ve felsefelerinin listesi. Liste, etkilesimli komut
isteminde “import this” yazarak bulunabilir.

332 Ek A. Sézluk

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

ex B

Bu dokumanlar hakkinda

Bu dokiimanlar, Python dokiimanlari i¢in 6zel olarak yazilmig bir dokiiman islemcisi olan Sphinx tarafindan reStructu-
redText kaynaklarmdan olusturulur.

Dokiimantasyonun ve arag zincirinin gelistirilmesi, tipki Python’un kendisi gibi tamamen goniillii bir ¢cabadir. Katkida
bulunmak istiyorsaniz, nasil yapacaginiza iliskin bilgi icin liitfen reporting-bugs sayfasina gz atin. Yeni goniilliilere her
zaman agi1z!

Destekleri igin tesekkiirler:
¢ Fred L. Drake, Jr., orijinal Python dokiimantasyon arag setinin yaraticisi ve i¢erigin ¢ogunun yazart;
 Docutils projesi, reStructuredText ve Docutils paketini olugturduklari i¢in;

* Fredrik Lundh, Sphinx’in pek ¢ok iyi fikir edindigi Alternatif Python Referans: projesi icin.

B.1 Python Dokiimantasyonuna Katkida Bulunanlar

Birgok kisi Python diline, Python standart kiitiiphanesine ve Python dokiimantasyonuna katkida bulunmugtur. Katkida
bulunanlarin kismi bir listesi icin Python kaynak dagitiminda Misc/ACKS dosyasina bakin.

Python toplulugunun girdileri ve katkilar1 sayesinde boyle harika bir dokiimantasyona sahibiz — Tegekkiirler!

333

https://www.sphinx-doc.org/
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.12/Misc/ACKS

The Python/C API, Yayim 3.12.3

334 Ek B. Bu dokiimanlar hakkinda

ex G

Tarihce ve Lisans

C.1 Yazilimin tarihcgesi

Python, 1990’larin baginda Guido van Rossum tarafindan Hollanda’da Stichting Mathematisch Centrum’da (CWI, bkz.
https://www.cwi.nl/) ABC adli bir dilin devam1 olarak olusturuldu. Guido, digerlerinin olduk¢a katkis1 olmasina ragmen,
Python’un ana yazari olmaya devam ediyor.

1995’te Guido, yazilimin ¢egitli siiriimlerini yayinladig1 Virginia, Reston’daki Ulusal Aragtirma Girisimleri Kurumu’nda
(CNRI, bkz. https://www.cnri.reston.va.us/) Python tizerindeki ¢aligmalarina devam etti.

May1s 2000°de, Guido ve Python ¢ekirdek gelistirme ekibi, BeOpen PythonLabs ekibini olusturmak i¢in BeOpen.com’a
tagind1. Ayn1 yilin Ekim ayinda PythonLabs ekibi Digital Creations’a (simdi Zope Corporation; bkz. https://www.zope.
org/) tagindi. 2001 yilinda, Python Yazilim Vakfi (PSF, bkz. https://www.python.org/psf/) kuruldu, 6zellikle Python ile
ilgili Fikri Miilkiyete sahip olmak icin olusturulmus kar amaci giitmeyen bir organizasyon. Zope Corporation, PSF’nin
sponsor iiyesidir.

Tiim Python siirtimleri A¢ik Kaynaklidir (A¢ik Kaynak Tanimi icin bkz. https://opensource.org/). Tarihsel olarak, tiimii
olmasa da ¢ogu Python siirtimleri de GPL uyumluydu; asagidaki tablo ¢esitli yayinlar1 6zetlemektedir.

Yayin Sundan tiiredi: Yil Sahibi GPL uyumlu mu?
0.9.0dan 1.2’ye n/a 1991-1995 CWI evet
1.3°dan 1.5.2’ye 1.2 1995-1999 CNRI evet
1.6 1.5.2 2000 CNRI hayir
2.0 1.6 2000 BeOpen.com hayir
1.6.1 1.6 2001 CNRI hayir
2.1 2.0+1.6.1 2001 PSF hayir
2.0.1 2.0+1.6.1 2001 PSF evet
2.1.1 2.1+2.0.1 2001 PSF evet
2.1.2 2.1.1 2002 PSF evet
2.1.3 2.1.2 2002 PSF evet
2.2 ve lizeri 2.1.1 2001-Giiniimiiz PSF evet

335

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python/C API, Yayim 3.12.3

Not: GPL uyumlu olmasi, Python’u GPL kapsaminda dagittigimiz anlamina gelmez. Tiim Python lisanslari, GPL’den
farkli olarak, degisikliklerinizi agik kaynak yapmadan degistirilmis bir siiriimii dagitmaniza izin verir. GPL uyumlu li-
sanslar, Python’u GPL kapsaminda yayilanan diger yazilimlarla birlestirmeyi miimkiin kilar; digerleri yapmaz.

Bu yayinlar1 miimkiin kilmak i¢in Guido’nun yonetimi altinda ¢aligan bir¢ok goniilliiye tegekkiirler.

C.2 Python’a erismek veya baska bir sekilde kullanmak icin sartlar
ve kosullar

Python yazilim1 ve belgeleri PSF Lisans Anlasmas: kapsaminda lisanslanmugtir.

Python 3.8.6’dan baglayarak, belgelerdeki 6rnekler, tarifler ve diger kodlar, PSF Lisans Sozlesmesi ve Zero-Clause BSD
license kapsaminda cift lisanshdir.

Python’a dahil edilen bazi yazilimlar farkl lisanslar altindadir. Lisanslar, bu lisansa giren kodla listelenir. Bu lisanslarin
eksik listesi i¢in bkz. Tiizel Yazilimlar icin Lisanslar ve Onaylar.

C.2.1 PYTHON iCiN PSF LISANS ANLASMASI 3.12.3

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),.
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

3.12.3 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.12.3 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All_
—Rights
Reserved" are retained in Python 3.12.3 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.12.3 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.12.3.

4. PSF is making Python 3.12.3 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION.
<~>OR

336 Ek C. Tarihce ve Lisans

The Python/C API, Yayim 3.12.3

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT..
—THE
USE OF PYTHON 3.12.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.12.3

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.12.3, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach.
—of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.12.3, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 PYTHON 2.0 iCiN BEOPEN.COM LiSANS SOZLESMESI

BEOPEN PYTHON ACIK KAYNAK LISANS SOZLESMESi SURUM 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.
(sonraki sayfaya devam)

C.2. Python’a erismek veya baska bir sekilde kullanmak icin sartlar ve kosullar 337

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 PYTHON 1.6.1 iCiN CNRI LISANS ANLASMASI

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.
(sonraki sayfaya devam)

338 Ek C. Tarihce ve Lisans

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 0.9.0 ARASI 1.2 PYTHON iCiN CWI LISANS SOZLESMESI

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE .

C.2. Python’a erismek veya baska bir sekilde kullanmak icin sartlar ve kosullar 339

The Python/C API, Yayim 3.12.3

C.2.5 PYTHON 3.12.3 BELGELERINDEKI KOD iCiN SIFIR MADDE BSD LiSANSI

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 Tuzel Yazilimlar icin Lisanslar ve Onaylar

Bu boliim, Python dagitimina dahil edilmis tigiincti taraf yazilimlar icin tamamlanmamis ancak biiyiiyen bir lisans ve onay
listesidir.

C.3.1 Mersenne Twister’

random modiiliiniin altyapsini olusturan _random C uzantist, http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html adresinden indirilen kodu temel alir. Orijinal koddan kelimesi kelimesine yorumlar agagidadir:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array (init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
(sonraki sayfaya devam)

340 Ek C. Tarihce ve Lisans

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Soketler

socket modiilii, https://www.wide.ad.jp/ adresindeki WIDE Projesinden ayr1 kaynak dosyalarinda kodlanan
getaddrinfo () ve getnameinfo () fonksiyonlarim kullanir.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asenkron soket hizmetleri

The test.support.asynchat and test.support.asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved
Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

(sonraki sayfaya devam)

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 341

https://www.wide.ad.jp/

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cerez yonetimi

http.cookies modiilii agagidaki uyarty1 icerir:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Calistirma izleme

trace modiilii agagidaki uyar1yi igerir:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.

(sonraki sayfaya devam)

342 Ek C. Tarihce ve Lisans

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode ve UUdecode fonksiyonlari

uu modiilii agagidaki uyarry1 igerir:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 343

The Python/C API, Yayim 3.12.3

C.3.7 XML Uzaktan Yordam Cagrilari

xmlrpc.client modiilii asagidaki uyariy1 igerir:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

test.test_epoll modiilii asagidaki uyariy1 icerir:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

344 Ek C. Tarihge ve Lisans

The Python/C API, Yayim 3.12.3

C.3.9 kqueue sec¢in

select modiilii, kqueue arayiizii i¢in agagidaki uyar1y1 igerir:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

Python/pyhash.c dosyasi, Dan Bernstein’in SipHash24 algoritmasinin Marek Majkowski uygulamasini igerir. Bu-
rada asagidaki not yer alir:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 345

The Python/C API, Yayim 3.12.3

C.3.11 strtod ve dtoa

C double’larinin dizelere ve dizelerden doniistiiriilmesi i¢in dtoa ve strtod C fonksiyonlarini saglayan Python/dtoa.c
dosyast, su anda https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c ‘den erisilebilen David
M. Gay tarafindan ayni adli dosyadan tiiretilmigtir. 16 Mart 2009°da alinan orijinal dosya asagidaki telif hakk: ve lisans
bildirimini igerir:

/**

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*

WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived from
that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

(sonraki sayfaya devam)

346 Ek C. Tarihce ve Lisans

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
(sonraki sayfaya devam)

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 347

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

Contribution(s) alone or by combination of their Contribution (s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
(sonraki sayfaya devam)

348 Ek C. Tarihce ve Lisans

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
——-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
(sonraki sayfaya devam)

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 349

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT .
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

ctypes modiiliiniin altyapsini olusturan _ct ypes C uzantisi, ——with-system—1ibf fi olarak yapilandiriimadig
siirece libffi kaynaklarmin dahil edildigi bir kopya kullanilarak olusturulur:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the

‘" Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

z 11ib uzantist, sistemde bulunan zlib siiriimii derleme i¢in kullanilamayacak kadar eskiyse, zlib kaynaklarinin dahil edil-
digi bir kopya kullanilarak olusturulur:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
(sonraki sayfaya devam)

350 Ek C. Tarihce ve Lisans

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

tracemalloc tarafindan kullanilan hash tablosunun uygulanmasi cfuhash projesine dayanmaktadir:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 351

The Python/C API, Yayim 3.12.3

C.3.17 libmpdec

The _decimal C extension underlying the decimal module is built using an included copy of the libmpdec library
unless the build is configured ——with-system—1ibmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test paketi

test paketindeki CI14N 2.0 test paketi (Lib/test/xmltestdata/cl14n-20/), https://www.w3.org/TR/
xml-c14n2-testcases/ adresindeki W3C web sitesinden alinmistir ve 3 maddeli BSD lisansi altinda dagitilmaktadir:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
(sonraki sayfaya devam)

352 Ek C. Tarihce ve Lisans

https://www.w3.org/TR/xml-c14n2-testcases/
https://www.w3.org/TR/xml-c14n2-testcases/

The Python/C API, Yayim 3.12.3

(onceki sayfadan devam)

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project. https://sourceforge.net/projects/sox/files/sox/
12.17.7/s0x-12.17.7 .tar.gz

This source code is a product of Sun Microsystems, Inc. and is provided for unrestricted use. Users may copy
or modify this source code without charge.

SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PUR-
POSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.

Sun source code is provided with no support and without any obligation on the part of Sun Microsystems,
Inc. to assist in its use, correction, modification or enhancement.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGE-
MENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE OR ANY
PART THEREOF.

In no event will Sun Microsystems, Inc. be liable for any lost revenue or profits or other special, indirect and
consequential damages, even if Sun has been advised of the possibility of such damages.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, California 94043

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Tuzel Yazihmlar icin Lisanslar ve Onaylar 353

https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://github.com/MagicStack/uvloop/tree/v0.16.0

The Python/C API, Yayim 3.12.3

354 Ek C. Tarihge ve Lisans

ek D

Telif Hakki

Python ve bu dokiimantasyon:

Telif Hakki © 2001-2023 Python Software Foundation. Ttim haklart saklidir.

Telif Hakk1 © 2000 BeOpen.com. Tiim haklar1 saklidir.

Telif Hakki © 1995-2000 Ulusal Aragtirma Girisimleri Kurumu. Tiim haklar1 saklidir.
Telif Hakki © 1991-1995 Stichting Mathematisch Centrum. Tiim haklari saklidir.

Biitiin lisans ve izin bilgileri i¢in Tarihce ve Lisans ‘a gbz atin.

355

The Python/C API, Yayim 3.12.3

356 Ek D. Telif Hakki

Dizin

Alfabetik olmayan

..., 317
2to3, 317
>>> 317
__all__ (package variable), 75
__dict__ (module attribute), 177
__doc__ (module attribute), 177
_ file_ (module attribute), 177, 178
_ future_ , 322
__import_

built-in function,75
__ loader__ (module attribute), 177
_ _main___

module, 12, 205, 219, 220
__name___ (module attribute), 177, 178
__ package__ (module attribute), 177
__PYVENV_LAUNCHER__, 235, 241
__slots__,330
_frozen (Cstruct), 77
_inittab (C struct), 78
_inittab.initfunc (C member), 78
_inittab.name (C member), 78
_Py_c_diff (C function), 136
_Py_c_neq (C function), 136
_Py_c_pow (C function), 137
_Py_c_prod (C function), 136
_Py_c_quot (C function), 136
_Py_c_sum (C function), 136
_Py_InitializeMain (C function), 248
_Py_NoneStruct (Cvar), 264
_PyBytes_Resize (C function), 139
_PyCFunctionFast (Ctype), 266
_PyCFunctionFastWithKeywords (C type), 266
_PyCode_GetExtra (C function), 175
_PyCode_SetExtra (C function), 176
_PyEval_RequestCodeExtralndex (C function),

175

_PyFrameEvalFunction (Ctype), 216
_PyInterpreterFrame (C struct), 193

_PyInterpreterState_GetEvalFrameFunc (C
function), 216
_PyInterpreterState_SetEvalFrameFunc (C
function), 216
_PyObject_GetDictPtr (C function), 97
_PyObject_New (C function), 263
_PyObject_NewVar (C function), 263
_PyTuple_Resize (C function), 160
_thread
module, 213

A

abort (C function), 74
abs

built-in function, 106
ad alanzi, 327
ad alani paketi, 327
adlandirilmis demet, 327
allocfunc (Ctype), 306
anahtar islev, 325
anahtar kelime arglimanz, 325
anlamak, 330
argiiman, 318
argv (in module sys), 209
ascii

built-in function, 98
baglam ydneticisi, 318
jeneratdr, 318
jeneratdr yineleyici, 318
yineleyici, 318

asenkron
asenkron
asenkron
asenkron

B

baglam dediskeni, 320
baglam ydneticisi, 320
bayt benzeri nesne, 319
bayt kodu, 319

BDFL, 319

beklenebilir, 319

belge dizisi, 321
binaryfunc (Ctype), 307

357

The Python/C API, Yayim 3.12.3

bitisik, 320
BOSTA, 324
buffer interface

(see buffer protocol), 113

buffer object

(see buffer protocol), 113

buffer protocol, 113
built-in function
__import_ ,75
abs, 106
ascii, 98
bytes, 98
classmethod, 268
compile, 76
divmod, 106
float, 108
hash, 98, 284
int, 108
len, 99,109, 111, 162, 164, 168
pow, 106, 108
repr, 97, 283
staticmethod, 268
tuple, 110, 163
type, 99
builtins
module, 12, 205, 219, 220
bulucu, 322
bytearray
object, 140
bytes
built-in function, 98
object, 138

C

calloc (C function), 251
Capsule

object, 190
C-contiguous, 116, 320
classmethod

built—-in function, 268
cleanup functions, 74
close (in module os), 220
CO_FUTURE_DIVISION (C var), 47
code object, 172
compile

built-in function, 76
complex number

object, 136
contiguous, 116
copyright (in module sys), 209
CPython, 320

G

cadirilabilir, 319

¢dp toplama, 323

D

deJisken acgiklama, 332
degismez, 324
degistirilebilir, 327
dekoratédr, 320
descrgetfunc (C type), 306
descrsetfunc (Ctype), 306
destructor (Ctype), 306
dictionary

object, 163
dipnot, 317
divmod

built-in function, 106
dizi, 330
dosya benzeri nesne, 322
dosya nesnesi, 321
dosya sistemi kodlamasi ve hata

igsleyicisi, 322

E

EAFP, 321

EOFError (built-in exception), 176
esyordam, 320

esyordam islevi, 320
eszamansiz yinelenebilir, 318
etkilesimli, 324

evrensel yeni satirlar, 332
exc_info (in module sys), 11
executable (in module sys), 208
exit (C function), 74

F

f-string, 321
file
object, 176
float
built—-in function, 108
floating point
object, 134
fonksiyon, 322
fonksiyon acgiklamasz, 322
Fortran contiguous, 116,320
free (C function), 251
freefunc (C type), 306
freeze utility, 78
frozenset
object, 167
function
object, 168

G

gcvisitobjects_t (Ctype), 313

358

Dizin

The Python/C API, Yayim 3.12.3

gecici API, 329

gecici paket, 329

genel islev, 323

genel terciman kilidi, 323
genel tip, 323

geri cagirmak, 319
getattrfunc (C type), 306
getattrofunc (C type), 306
getbufferproc (C type), 307
getiterfunc (Ctype), 306
getter (Ctype), 272

GIL, 323

global interpreter lock,210
gligli referans, 331

F{

haritalama, 326
hash

built-in function, 98, 284
hashfunc (C type), 306
|
i¢ ice kapsam, 327
ice aktarica, 324
i¢ge aktaraim yolu, 324
ice aktarma, 324
ifade (deger dondiirmez), 331
ifade (deger dondiiriir), 321
ikili dosya, 319
incr_item(), 11,12
initproc (Ctype), 306
inquiry (C type), 312
instancemethod

object, 171
int

built—-in function, 108
integer

object, 129
interpreter lock, 210
iternextfunc (C type), 307

J

jeneratdr, 323
jeneratdr ifadesi, 323
jeneratdr yineleyici, 323

K

karma tabanli pyc, 324

karmasik sayaz, 320

kat b&liimi, 322

KeyboardInterrupt (built-in exception), 61
kisim, 329

konumsal argiiman, 329

L

lambda, 325
LBYL, 325
len
built-in function, 99, 109, 111, 162, 164,
168
lenfunc (C type), 307
list
object, 161
liste, 326
liste anlama, 326
lock, interpreter,?210
long integer
object, 129
LONG_MAX (C macro), 131

M
magic

metot, 326
main (), 206, 207, 209
malloc (C function), 251
mapping

object, 163
memoryview

object, 188
meta yol bulucu, 326
metasinif, 326
METH_CLASS (C macro), 268
METH_COEXIST (C macro), 268
METH_FASTCALL (C macro), 267
METH_KEYWORDS (C macro), 267
METH_METHOD (C macro), 267
METH_NOARGS (C macro), 268
METH_O (C macro), 268
METH_STATIC (C macro), 268
METH_VARARGS (C macro), 267
method

object, 171
MethodType (in module types), 168, 171
metot, 326

magic, 326

special, 331
metot kalite siralamaszi, 326
module

_ _main_ , 12,205,219, 220

_thread, 213

builtins, 12, 205, 219, 220

object, 177

search path, 12, 205, 208

signal, 61

sys, 12,205, 219, 220
modules (in module sys), 75, 205
ModuleType (in module types), 177
modiil, 326

Dizin

359

The Python/C API, Yayim 3.12.3

modiil 6zelligi, 327
MRO, 327

N

newfunc (C type), 306
nitelik, 318
nitelikli isim, 330

None
object, 129

numeric
object, 129

O

obje, 327

object
bytearray, 140
bytes, 138
Capsule, 190
code, 172

complex number, 136
dictionary, 163
file, 176
floating point, 134
frozenset, 167
function, 168
instancemethod, 171
integer, 129
list, 161
long integer, 129
mapping, 163
memoryview, 188
method, 171
module, 177
None, 129
numeric, 129
sequence, 138
set, 167
tuple, 159
type, 7, 123
objobjargproc (C type), 307
objobjproc (C type), 307
ortam degiskeni
_ PYVENV_LAUNCHER
PATH, 13
PYTHONCOERCECLOCALE, 246
PYTHONDEBUG, 202, 240
PYTHONDEVMODE, 236
PYTHONDONTWRITEBYTECODE, 203, 243
PYTHONDUMPREFS, 236, 280
PYTHONEXECUTABLE, 241
PYTHONFAULTHANDLER, 237
PYTHONHASHSEED, 203, 237
PYTHONHOME, 13, 203, 210, 238
PYTHONINSPECT, 203, 238

, 235,241

PYTHONINTMAXSTRDIGITS, 238
PYTHONIOENCODING, 206, 242
PYTHONLEGACYWINDOWSFSENCODING, 204,
231
PYTHONLEGACYWINDOWSSTDIO, 204, 239
PYTHONMALLOC, 252, 256, 258, 259
PYTHONMALLOCSTATS, 239, 252
PYTHONNODEBUGRANGES, 236
PYTHONNOUSERSITE, 204, 243
PYTHONOPTIMIZE, 204, 240
PYTHONPATH, 13, 203, 239
PYTHONPERFSUPPORT, 243
PYTHONPLATLIBDIR, 239
PYTHONPROFILEIMPORTTIME, 238
PYTHONPYCACHEPREFIX, 241
PYTHONSAFEPATH, 235
PYTHONTRACEMALLOC, 242
PYTHONUNBUFFERED, 205, 235
PYTHONUTFS, 232, 246
PYTHONVERBOSE, 205, 243
PYTHONWARNINGS, 243
OverflowError (built-in exception), 131, 132

ddiing alinan referans, 319
drdek yazma, 321
dzel metod, 331

package variable
all,75
paket, 328

parametre, 328
parcalamak, 331
PATH, 13
path

module search, 12, 205, 208
path (in module sys), 12, 205, 208
PEP, 329
plat form (in module sys), 209
pow

built—-in function, 106, 108
Py_ABS (C macro), 5
Py_AddPendingCall (C function), 221
Py_ALWAYS_INLINE (C macro), 5
Py_AtExit (C function), 74
Py_AUDIT_READ (C macro), 270
Py_AuditHookFunction (C type), 74
Py_BEGIN_ALLOW_THREADS(Cnma@)21L214
Py_BLOCK_THREADS (C macro), 214
Py_buffer (Ctype), 114
Py_buffer.buf (C member), 114
Py_buffer.format (C member), 114
Py_buffer.internal (C member), 115

360

Dizin

The Python/C API, Yayim 3.12.3

Py_buffer.itemsize (C member), 114
Py_buffer.len (C member), 114
Py_buffer.ndim (C member), 115
Py_buffer.ob]j (Cmember), 114
Py_buffer.readonly (C member), 114
Py_buffer.shape (C member), 115
Py_buffer.strides (C member), 115
Py_buffer.suboffsets (C member), 115
Py_Buildvalue (C function), 86
Py_BytesMain (C function), 43
Py_BytesWarningFlag (C var), 202
Py_CHARMASK (C macro), 5

Py_CLEAR (C function), 50
Py_CompileString (C function), 4547
Py_CompileStringExFlags (C function), 46
Py_CompileStringFlags (C function), 45
Py_CompileStringObject (C function), 46
Py_complex (Ctype), 136

Py_DEBUG (C macro), 13

Py_DebugFlag (C var), 202
Py_DecodeLocale (C function), 70
Py_DECREF (C function), 7, 50

Py_DecRef (C function), 51
Py_DEPRECATED (C macro), 5
Py_DontWriteBytecodeFlag (C var), 203
Py_Ellipsis (Cvar), 188
Py_EncodeLocale (C function), 71
Py_END_ALLOW_THREADS (C macro), 211, 214
Py_EndInterpreter (C function), 220
Py_EnterRecursiveCall (C function), 64
Py_EQ (C macro), 292

Py_eval_input (Cvar), 46

Py_Exit (C function), 74
Py_ExitStatusException (C function), 229
Py_False (Cvar), 133

Py_FatalError (C function), 74
Py_FatalError (), 209
Py_FdIsInteractive (C function), 69
Py_file_input (Cvar), 46

Py_Finalize (C function), 206
Py_FinalizeEx (C function), 74,205, 206, 220
Py_FrozenFlag (Cvar), 203

Py_GE (C macro), 292

Py_GenericAlias (C function), 200
Py_GenericAliasType (C var), 200
Py_GetArgcArgv (C function), 248
Py_GetBuildInfo (C function), 209
Py_GetCompiler (C function), 209
Py_GetCopyright (C function), 209
Py_GETENV (C macro), 5
Py_GetExecPrefix (C function), 13, 207
Py_GetPath (C function), 13, 208
Py_GetPath (), 207, 208
Py_GetPlatform (C function), 208

Py_GetPrefix (C function), 13, 207
Py_GetProgramFullPath (C function), 13, 208
Py_GetProgramName (C function), 207
Py_GetPythonHome (C function), 210
Py_GetVersion (C function), 208

Py_GT (C macro), 292

Py_hash_t (Ctype), 90
Py_HashRandomizationFlag (C var), 203
Py_IgnoreEnvironmentFlag (C var), 203
Py_INCREF (C function), 7,49

Py_IncRef (C function), 51

Py_Initialize (C function), 12,205, 220
Py_Initialize (), 206,207
Py_InitializeEx (C function), 205
Py_InitializeFromConfig (C function), 244
Py_InspectFlag (Cvar), 203
Py_InteractiveFlag (Cvar), 203

Py_1Is (C function), 264

Py_IS_TYPE (C function), 265

Py_IsFalse (C function), 265
Py_IsInitialized (C function), 13,205
Py_TIsNone (C function), 265
Py_IsolatedFlag (Cvar), 203

Py_IsTrue (C function), 265

Py_LE (C macro), 292
Py_LeaveRecursiveCall (C function), 65
Py_LegacyWindowsFSEncodingFlag (Cvar), 204
Py_LegacyWindowsStdioFlag (C var), 204
Py_LIMITED_APTI (C macro), 16

Py_LT (C macro), 292

Py_Main (C function), 43
PY_MAJOR_VERSION (C macro), 315

Py_MAX (C macro), 5

Py_MEMBER_SIZE (C macro), 5
PY_MICRO_VERSION (C macro), 315

Py_MIN (C macro), 6
PY_MINOR_VERSION (C macro), 315
Py_mod_create (C macro), 181
Py_mod_exec (C macro), 181

Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED

(C macro), 181
Py_MOD_MULTIPLE_INTERPRETERS_SUPPORTED
(C macro), 181
Py_mod_multiple_interpreters (C macro), 181
Py_MOD_PER_INTERPRETER_GIIL_SUPPORTED (C
macro), 181
Py_NE (C macro), 292
Py_NewInterpreter (C function), 220
Py_NewInterpreterFromConfig (C function),219
Py_NewRef (C function), 50
Py_NO_INLINE (C macro), 6
Py_None (C var), 129
Py_NoSiteFlag (Cvar), 204
Py_NotImplemented (C var), 95

Dizin

361

The Python/C API, Yayim 3.12.3

Py_NoUserSiteDirectory (Cvar), 204
Py_OptimizeFlag (C var), 204
Py_PrelInitialize (C function), 232
Py_PrelInitializeFromArgs (C function), 232
Py_PreInitializeFromBytesArgs (C function),
232
Py_PRINT_RAW (C macro), 95, 177
Py_QuietFlag (C var), 205
Py_READONLY (C macro), 270
Py_REFCNT (C function), 49
Py_RELATIVE_OFFSET (C macro), 270
PY_RELEASE_LEVEL (C macro), 315
PY_RELEASE_SERIAL (C macro), 315
Py_ReprEnter (C function), 65
Py_ReprLeave (C function), 65
Py_RETURN_FALSE (C macro), 134
Py_RETURN_NONE (C macro), 129
Py_RETURN_NOTIMPLEMENTED (C macro), 95
Py_RETURN_RICHCOMPARE (C macro), 292
Py_RETURN_TRUE (C macro), 134
Py_RunMain (C function), 248
Py_SET_REFCNT (C function), 49
Py_SET_SIZE (C function), 265
Py_SET_TYPE (C function), 265
Py_SetPath (C function), 208
Py_SetPath (), 208
Py_SetProgramName (C function), 13, 207
Py_SetProgramName (), 205, 207, 208
Py_SetPythonHome (C function), 210
Py_SETREF (C macro), 51
Py_SetStandardStreamkEncoding (C function),
206
Py_SIZE (C function), 265
Py_single_input (Cvar), 47
PY_SSIZE_T_MAX (C macro), 132
Py_ssize_t (Ctype), 10
Py_STRINGIFY (C macro), 6
Py_T_BOOL (C macro), 271
Py_T_BYTE (C macro), 271
Py_T_CHAR (C macro), 271
Py_T_DOUBLE (C macro), 271
Py_T_FLOAT (C macro), 271
Py_T_INT (C macro), 271
Py_T_LONG (C macro), 271
Py_T_LONGLONG (C macro), 271
Py_T_OBJECT_EX (C macro), 271
Py_T_PYSSIZET (C macro), 271
Py_T_SHORT (C macro), 271
Py_T_STRING (C macro), 271
Py_T_STRING_INPLACE (C macro), 271
Py_T_UBYTE (C macro), 271
Py_T_UINT (C macro), 271
Py_T_ULONG (C macro), 271
Py_T_ULONGLONG (C macro), 271

Py_T_USHORT (C macro), 271
Py_TPFLAGS_BASE_EXC_SUBCLASS (C macro), 288
Py_TPFLAGS_BASETYPE (C macro), 286
Py_TPFLAGS_BYTES_SUBCLASS (C macro), 288
Py_TPFLAGS_DEFAULT (C macro), 287
Py_TPFLAGS_DICT_SUBCLASS (C macro), 288
Py_TPFLAGS_DISALLOW_INSTANTIATION (C
macro), 288
Py_TPFLAGS_HAVE_FINALIZE (C macro), 288
Py_TPFLAGS_HAVE_GC (C macro), 286
Py_TPFLAGS_HAVE_VECTORCALL (C macro), 288
Py_TPFLAGS_HEAPTYPE (C macro), 286
Py_TPFLAGS_IMMUTABLETYPE (C macro), 288
Py_TPFLAGS_ITEMS_AT_END (C macro), 287
Py_TPFLAGS_LIST_SUBCLASS (C macro), 288
Py_TPFLAGS_LONG_SUBCLASS (C macro), 288
Py_TPFLAGS_MANAGED_DICT (C macro), 287
Py_TPFLAGS_MANAGED_WEAKREF (C macro), 287
Py_TPFLAGS_MAPPING (C macro), 289
Py_TPFLAGS_METHOD_DESCRIPTOR (C macro), 287
Py_TPFLAGS_READY (C macro), 286
Py_TPFLAGS_READYING (C macro), 286
Py_TPFLAGS_SEQUENCE (C macro), 289
Py_TPFLAGS_TUPLE_SUBCLASS (C macro), 288
Py_TPFLAGS_TYPE_SUBCLASS (C macro), 288
Py_TPFLAGS_UNICODE_SUBCLASS (C macro), 288
Py_TPFLAGS_VALID_VERSION_TAG (C macro), 289
Py_tracefunc (Ctype), 222
Py_True (Cvar), 133
Py_tss_NEEDS_INIT (C macro), 224
Py_tss_t (Ctype), 224
Py_TYPE (C function), 265
Py_UCS1 (Ctype), 141
Py_UCS2 (C type), 141
Py_UCS4 (Ctype), 141
Py_uhash_t (Ctype), 90
Py_UNBLOCK_THREADS (C macro), 214
Py_UnbufferedStdioFlag (C var), 205
Py_UNICODE (C type), 141
Py_UNICODE_IS_HIGH_SURROGATE (C function),
144
Py_UNICODE_IS_LOW_SURROGATE (C function), 144
Py_UNICODE_TIS_SURROGATE (C function), 144
Py_UNICODE_TISALNUM (C function), 144
Py_UNICODE_ISALPHA (C function), 143
Py_UNICODE_ISDECIMAL (C function), 143
Py_UNICODE_ISDIGIT (C function), 143
Py_UNICODE_ISLINEBREAK (C function), 143
Py_UNICODE_TISLOWER (C function), 143
Py_UNICODE_ISNUMERIC (C function), 143
Py_UNICODE_ISPRINTARBLE (C function), 144
Py_UNICODE_ISSPACE (C function), 143
Py_UNICODE_ISTITLE (C function), 143
Py_UNICODE_ISUPPER (C function), 143

362

Dizin

The Python/C API, Yayim 3.12.3

Py_UNICODE_JOIN_SURROGATES (C function), 144

Py_UNICODE_TODECIMAL (C function), 144

Py_UNICODE_TODIGIT (C function), 144

Py_UNICODE_TOLOWER (C function), 144

Py_UNICODE_TONUMERIC (C function), 144

Py_UNICODE_TOTITLE (C function), 144

Py_UNICODE_TOUPPER (C function), 144

Py_UNREACHABLE (C macro), 6

Py_UNUSED (C macro), 6

Py_VaBuildvValue (C function), 88

PY_VECTORCALL_ARGUMENTS_OFFSET (C macro),
101

Py_VerboseFlag (C var), 205

PY_VERSION_HEX (C macro), 315

Py_Version (Cvar), 316

Py_VISIT (C function), 312

Py_XDECREF (C function), 12, 50

Py_XINCREF (C function), 49

Py_XNewRef (C function), 50

Py_XSETREF (C macro), 51

PyAIter_Check (C function), 112

PyAnySet_Check (C function), 167

PyAnySet_CheckExact (C function), 167

PyArg_Parse (C function), 85

PyArg_ParseTuple (C function), 84

PyArg_ParseTupleAndKeywords (C function), 84

PyArg_UnpackTuple (C function), 85

PyArg_ValidateKeywordArguments (C functi-
on), 85

PyArg_VaParse (C function), 84

PyArg_VaParseTupleAndKeywords (C function),
85

PyASCIIObject (Ctype), 141

PyAsyncMethods (C type), 305

PyAsyncMethods.am_aiter (C member), 305

PyAsyncMethods.am_anext (C member), 305

PyAsyncMethods.am_await (C member), 305

PyAsyncMethods.am_send (C member), 305

PyBool_Check (C function), 133

PyBool_FromLong (C function), 134

PyBool_Type (Cvar), 133

PyBUF_ANY_CONTIGUOUS (C macro), 117

PyBUF_C_CONTIGUOUS (C macro), 117

PyBUF_CONTIG (C macro), 117

PyBUF_CONTIG_RO (C macro), 117

PyBUF_F_CONTIGUOUS (C macro), 117

PyBUF_FORMAT (C macro), 116

PyBUF_FULL (C macro), 117

PyBUF_FULL_RO (C macro), 117

PyBUF_INDIRECT (C macro), 116

PyBUF_MAX_NDIM (C macro), 115

PyBUF_ND (C macro), 116

PyBUF_READ (C macro), 188

PyBUF_RECORDS (C macro), 117

PyBUF_RECORDS_RO (C macro), 117
PyBUF_SIMPLE (C macro), 116
PyBUF_STRIDED (C macro), 117
PyBUF_STRIDED_RO (C macro), 117
PyBUF_STRIDES (C macro), 116
PyBUF_WRITABLE (C macro), 116
PyBUF_WRITE (C macro), 188
PyBuffer_FillContiguousStrides (C functi-
on), 120
PyBuffer_FillInfo (C function), 120
PyBuffer_FromContiguous (C function), 119
PyBuffer_GetPointer (C function), 119
PyBuffer_IsContiguous (C function), 119
PyBuffer_Release (C function), 119
PyBuffer_SizeFromFormat (C function), 119
PyBuffer_ToContiguous (C function), 120
PyBufferProcs (Ctype), 113,304
PyBufferProcs.bf_getbuffer (C member), 304
PyBufferProcs.bf_releasebuffer (Cmember),
304
PyByteArray_AS_STRING (C function), 141
PyByteArray_AsString (C function), 140
PyByteArray_Check (C function), 140
PyByteArray_CheckExact (C function), 140
PyByteArray_Concat (C function), 140
PyByteArray_FromObject (C function), 140
PyByteArray_FromStringAndSize (C function),
140
PyByteArray_GET_SIZE (C function), 141
PyByteArray_Resize (C function), 140
PyByteArray_Size (C function), 140
PyByteArray_Type (Cvar), 140
PyByteArrayObject (C type), 140
PyBytes_AS_STRING (C function), 139
PyBytes_AsString (C function), 139
PyBytes_AsStringAndSize (C function), 139
PyBytes_Check (C function), 138
PyBytes_CheckExact (C function), 138
PyBytes_Concat (C function), 139
PyBytes_ConcatAndDel (C function), 139
PyBytes_FromFormat (C function), 138
PyBytes_FromFormatV (C function), 139
PyBytes_FromObject (C function), 139
PyBytes_FromString (C function), 138
PyBytes_FromStringAndSize (C function), 138
PyBytes_GET_SIZE (C function), 139
PyBytes_Size (C function), 139
PyBytes_Type (Cvar), 138
PyBytesObject (Ctype), 138
PyCallable_Check (C function), 105
PyCallIter_Check (C function), 185
PyCallIter_New (C function), 186
PyCalllIter_Type (Cvar), 185
PyCapsule (Ctype), 190

Dizin

363

The Python/C API, Yayim 3.12.3

PyCapsule_CheckExact (C function), 190
PyCapsule_Destructor (C type), 190
PyCapsule_GetContext (C function), 190
PyCapsule_GetDestructor (C function), 190
PyCapsule_GetName (C function), 190
PyCapsule_GetPointer (C function), 190
PyCapsule_Import (C function), 191
PyCapsule_IsValid (C function), 191
PyCapsule_New (C function), 190
PyCapsule_SetContext (C function), 191
PyCapsule_SetDestructor (C function), 191
PyCapsule_SetName (C function), 191
PyCapsule_SetPointer (C function), 191
PyCell_Check (C function), 172
PyCell_GET (C function), 172
PyCell_Get (C function), 172
PyCell_New (C function), 172
PyCell_SET (C function), 172
PyCell_Set (C function), 172
PyCell_Type (Cvar), 172
PyCellObject (Ctype), 172
PyCFunction (C type), 266
PyCFunction_New (C function), 269
PyCFunction_NewEx (C function), 269
PyCFunctionWithKeywords (C type), 266
PyCMethod (C type), 266
PyCMethod_New (C function), 268
PyCode_Addr2Line (C function), 173
PyCode_Addr2Location (C function), 173
PyCode_AddwWatcher (C function), 174
PyCode_Check (C function), 172
PyCode_ClearWatcher (C function), 174
PyCode_GetCellvars (C function), 174
PyCode_GetCode (C function), 174
PyCode_GetFirstFree (C function), 172
PyCode_GetFreevars (C function), 174
PyCode_GetNumFree (C function), 172
PyCode_GetVarnames (C function), 174
PyCode_New (C function), 173
PyCode_NewEmpty (C function), 173
PyCode_NewWithPosOnlyArgs (C function), 173
PyCode_Type (Cvar), 172
PyCode_WatchCallback (C type), 174
PyCodec_BRackslashReplaceErrors (C functi-
on), 93
PyCodec_Decode (C function), 91
PyCodec_Decoder (C function), 92
PyCodec_Encode (C function), 91
PyCodec_Encoder (C function), 92
PyCodec_IgnoreErrors (C function), 92
PyCodec_IncrementalDecoder (C function), 92
PyCodec_IncrementalEncoder (C function), 92
PyCodec_KnownEncoding (C function), 91
PyCodec_LookupError (C function), 92

PyCodec_NameReplaceErrors (C function), 93
PyCodec_Register (C function), 91
PyCodec_RegisterError (C function), 92
PyCodec_ReplaceErrors (C function), 92
PyCodec_StreamReader (C function), 92
PyCodec_StreamWriter (C function), 92
PyCodec_StrictErrors (C function), 92
PyCodec_Unregister (C function), 91
PyCodec_XMLCharRefReplaceErrors (C functi-
on), 93
PyCodeEvent (C type), 174
PyCodeObject (Ctype), 172
PyCompactUnicodeObject (C type), 141
PyCompilerFlags (C struct), 47
PyCompilerFlags.cf_feature_version (C
member), 47
PyCompilerFlags.cf_flags (C member), 47
PyComplex_AsCComplex (C function), 137
PyComplex_Check (C function), 137
PyComplex_CheckExact (C function), 137
PyComplex_FromCComplex (C function), 137
PyComplex_FromDoubles (C function), 137
PyComplex_ImagAsDouble (C function), 137
PyComplex_RealAsDouble (C function), 137
PyComplex_Type (C var), 137
PyComplexObject (C type), 137
PyConfig (Ctype), 233
PyConfig_Clear (C function), 234
PyConfig_InitIsolatedConfig (C function),233
PyConfig_InitPythonConfig (C function), 233
PyConfig_Read (C function), 234
PyConfig_SetArgv (C function), 233
PyConfig_SetBytesArgv (C function), 233
PyConfig_SetBytesString (C function), 233
PyConfig_SetString (C function), 233
PyConfig_SetWideStringList (C function), 233
PyConfig.argv (C member), 234
PyConfig.base_exec_prefix (C member), 235
PyConfig.base_executable (C member), 235
PyConfig.base_prefix (C member), 235
PyConfig.buffered_stdio (C member), 235
PyConfig.bytes_warning (C member), 235
PyConfig.check_hash_pycs_mode (C member),
236
PyConfig.code_debug_ranges (C member), 235
PyConfig.configure_c_stdio (C member), 236
PyConfig.dev_mode (C member), 236
PyConfig.dump_refs (C member), 236
PyConfig.exec_prefix (C member), 236
PyConfig.executable (C member), 236
PyConfig.faulthandler (C member), 237
PyConfig.filesystem_encoding (C member),
237
PyConfig.filesystem_errors (C member), 237

364

Dizin

The Python/C API, Yayim 3.12.3

PyConfig.hash_seed (C member), 237
PyConfig.home (C member), 238
PyConfig.import_time (C member), 238
PyConfig.inspect (C member), 238
PyConfig.install_signal_handlers (C mem-
ber), 238
PyConfig.int_max_str_digits (Cmember), 238
PyConfig.interactive (C member), 238
PyConfig.isolated (C member), 238
PyConfig.legacy_windows_stdio (C member),
239
PyConfig.malloc_stats (C member), 239
PyConfig.module_search_paths (C member),
239
PyConfig.module_search_paths_set (C mem-
ber), 239
PyConfig.optimization_level (Cmember), 240
PyConfig.orig_argv (C member), 240
PyConfig.parse_argv (C member), 240
PyConfig.parser_debug (C member), 240
PyConfig.pathconfig_warnings (C member),
240
PyConfig.perf_profiling (C member), 243
PyConfig.platlibdir (C member), 239
PyConfig.prefix (Cmember), 240
PyConfig.program_name (C member), 241
PyConfig.pycache_prefix (C member), 241
PyConfig.pythonpath_env (C member), 239
PyConfig.quiet (C member), 241
PyConfig.run_command (C member), 241
PyConfig.run_filename (C member), 241
PyConfig.run_module (C member), 241
PyConfig.safe_path (C member), 234
PyConfig.show_ref_count (C member), 241
PyConfig.site_import (C member), 242
PyConfig.skip_source_first_line (C mem-
ber), 242
PyConfig.stdio_encoding (C member), 242
PyConfig.stdio_errors (C member), 242
PyConfig.tracemalloc (C member), 242
PyConfig.use_environment (C member), 243
PyConfig.use_hash_seed (C member), 237
PyConfig.user_site_directory (C member),
243
PyConfig.verbose (C member), 243
PyConfig.warn_default_encoding (Cmember),
235
PyConfig.warnoptions (C member), 243
PyConfig.write_bytecode (C member), 243
PyConfig.xoptions (C member), 244
PyContext (C type), 195
PyContext_CheckExact (C function), 195
PyContext_Copy (C function), 195
PyContext_CopyCurrent (C function), 195

PyContext_Enter (C function), 195
PyContext_Exit (C function), 195
PyContext_New (C function), 195
PyContext_Type (Cvar), 195
PyContextToken (C type), 195
PyContextToken_CheckExact (C function), 195
PyContextToken_Type (Cvar), 195
PyContextVar (C type), 195
PyContextVar_CheckExact (C function), 195
PyContextVar_Get (C function), 196
PyContextVar_New (C function), 196
PyContextVar_Reset (C function), 196
PyContextVar_Set (C function), 196
PyContextVar_Type (Cvar), 195
PyCoro_CheckExact (C function), 194
PyCoro_New (C function), 194
PyCoro_Type (Cvar), 194
PyCoroObject (Ctype), 194
PyDate_Check (C function), 197
PyDate_CheckExact (C function), 197
PyDate_FromDate (C function), 197
PyDate_FromTimestamp (C function), 200
PyDateTime_Check (C function), 197
PyDateTime_CheckExact (C function), 197
PyDateTime_Date (Ctype), 196
PyDateTime_DATE_GET_FOLD (C function), 199
PyDateTime_DATE_GET_HOUR (C function), 198
PyDateTime_DATE_GET_MICROSECOND (C functi-
on), 199
PyDateTime_DATE_GET_MINUTE (C function), 198
PyDateTime_DATE_GET_SECOND (C function), 199
PyDateTime_DATE_GET_TZINFO (C function), 199
PyDateTime_DateTime (C type), 196
PyDateTime_DateTimeType (C var), 196
PyDateTime_DateType (C var), 196
PyDateTime_Delta (Ctype), 196
PyDateTime_DELTA_GET_DAYS (C function), 199
PyDateTime_DELTA_GET_MICROSECONDS c
function), 199
PyDateTime_DELTA_GET_SECONDS (C function),
199
PyDateTime_DeltaType (Cvar), 197
PyDateTime_FromDateAndTime (C function), 198
PyDateTime_FromDateAndTimeAndFold c
function), 198
PyDateTime_FromTimestamp (C function), 200
PyDateTime_GET_DAY (C function), 198
PyDateTime_GET_MONTH (C function), 198
PyDateTime_GET_YEAR (C function), 198
PyDateTime_TIME_GET_FOLD (C function), 199
PyDateTime_TIME_GET_HOUR (C function), 199
PyDateTime_TIME_GET_MICROSECOND (C functi-
on), 199
PyDateTime_TIME_GET_MINUTE (C function), 199

Dizin

365

The Python/C API, Yayim 3.12.3

PyDateTime_TIME_GET_SECOND (C function), 199
PyDateTime_TIME_GET_TZINFO (C function), 199
PyDateTime_Time (C type), 196
PyDateTime_TimeType (C var), 196
PyDateTime_TimeZone_UTC (Cvar), 197
PyDateTime_TZInfoType (Cvar), 197
PyDelta_Check (C function), 197
PyDelta_CheckExact (C function), 197
PyDelta_FromDSU (C function), 198
PyDescr_IsData (C function), 186
PyDescr_NewClassMethod (C function), 186
PyDescr_NewGetSet (C function), 186
PyDescr_NewMember (C function), 186
PyDescr_NewMethod (C function), 186
PyDescr_NewWrapper (C function), 186
PyDict_AddWatcher (C function), 165
PyDict_Check (C function), 163
PyDict_CheckExact (C function), 163
PyDict_Clear (C function), 163
PyDict_ClearWatcher (C function), 166
PyDict_Contains (C function), 163
PyDict_Copy (C function), 163
PyDict_DelItem (C function), 163
PyDict_DelItemString (C function), 163
PyDict_GetItem (C function), 164
PyDict_GetItemString (C function), 164
PyDict_GetItemWithError (C function), 164
PyDict_TItems (C function), 164
PyDict_Keys (C function), 164
PyDict_Merge (C function), 165
PyDict_MergeFromSeq2 (C function), 165
PyDict_New (C function), 163
PyDict_Next (C function), 164
PyDict_SetDefault (C function), 164
PyDict_SetItem (C function), 163
PyDict_SetItemString (C function), 163
PyDict_Size (C function), 164
PyDict_Type (Cvar), 163
PyDict_Unwatch (C function), 166
PyDict_Update (C function), 165
PyDict_Values (C function), 164
PyDict_Watch (C function), 166
PyDict_WatchCallback (C type), 166
PyDict_WatchEvent (C type), 166
PyDictObject (Ctype), 163
PyDictProxy_New (C function), 163
PyDoc_STR (C macro), 7

PyDoc_STRVAR (C macro), 6
PyErr_BadArgument (C function), 55
PyErr_BadInternalCall (C function), 57
PyErr_CheckSignals (C function), 61
PyErr_Clear (C function), 11, 12, 54
PyErr_DisplayException (C function), 54
PyErr_ExceptionMatches (C function), 12, 58

PyErr_Fetch (C function), 59
PyErr_Format (C function), 55
PyErr_FormatV (C function), 55
PyErr_GetExcInfo (C function), 60
PyErr_GetHandledException (C function), 60
PyErr_GetRaisedException (C function), 58
PyErr_GivenExceptionMatches (C function), 58
PyErr_NewException (C function), 62
PyErr_NewExceptionWithDoc (C function), 62
PyErr_NoMemory (C function), 55
PyErr_NormalizeException (C function), 59
PyErr_Occurred (C function), 11, 58
PyErr_Print (C function), 54
PyErr_PrintEx (C function), 54
PyErr_ResourceWarning (C function), 58
PyErr_Restore (C function), 59
PyErr_SetExcFromWindowsErr (C function), 56
PyErr_SetExcFromWindowsErrWithFilename
(C function), 56

PyErr_SetExcFromWindowsErrWithFilenameObject

(C function), 56

PyErr_SetExcFromWindowsErrWithFilenameObjects

(C function), 56
PyErr_SetExcInfo (C function), 60
PyErr_SetFromErrno (C function), 55
PyErr_SetFromErrnoWithFilename (C functi-
on), 55
PyErr_SetFromErrnoWithFilenameObject (C
function), 55
PyErr_SetFromErrnoWithFilenameObjects
(C function), 55
PyErr_SetFromWindowsErr (C function), 55
PyErr_SetFromWindowsErrWithFilename (C
function), 56
PyErr_SetHandledException (C function), 60
PyErr_SetImportError (C function), 56
PyErr_SetImportErrorSubclass (C function),
56
PyErr_SetInterrupt (C function), 61
PyErr_SetInterruptEx (C function), 61
PyErr_SetNone (C function), 55
PyErr_SetObject (C function), 54
PyErr_SetRaisedException (C function), 59
PyErr_SetString (C function), 11, 54
PyErr_SyntaxLocation (C function), 57
PyErr_SyntaxLocationEx (C function), 57
PyErr_SyntaxLocationObject (C function), 57
PyErr_WarnEx (C function), 57
PyErr_WarnExplicit (C function), 57
PyErr_WarnExplicitObject (C function), 57
PyErr_WarnFormat (C function), 58
PyErr_WriteUnraisable (C function), 54
PyEval_AcquireLock (C function), 217
PyEval_AcquireThread (C function), 217

366

Dizin

The Python/C API, Yayim 3.12.3

PyEval_AcquireThread(), 213
PyEval_EvalCode (C function), 46
PyEval_EvalCodeEx (C function), 46
PyEval_EvalFrame (C function), 46
PyEval_EvalFrameEx (C function), 46
PyEval_GetBuiltins (C function), 90
PyEval_GetFrame (C function), 91
PyEval_GetFuncDesc (C function), 91
PyEval_GetFuncName (C function), 91
PyEval_GetGlobals (C function), 90
PyEval_GetLocals (C function), 90
PyEval_InitThreads (C function), 213
PyEval_InitThreads (), 205
PyEval_MergeCompilerFlags (C function), 46
PyEval_ReleaseLock (C function), 218
PyEval_ReleaseThread (C function), 217
PyEval_ReleaseThread(), 213
PyEval_RestoreThread (C function), 211,213
PyEval_RestoreThread (), 213
PyEval_SaveThread (C function), 211,213
PyEval_SaveThread(), 213
PyEval_SetProfile (C function), 223

PyEval_SetProfileAllThreads (C function), 223

PyEval_SetTrace (C function), 223
PyEval_SetTraceAllThreads (C function), 223
PyEval_ThreadsInitialized (C function), 213
PyExc_ArithmeticError (Cvar), 65
PyExc_AssertionError (C var), 65
PyExc_AttributeError (C var), 65
PyExc_BaseException (Cvar), 65
PyExc_BlockingIOError (C var), 65
PyExc_BrokenPipeError (C var), 65
PyExc_BufferError (Cvar), 65
PyExc_BytesWarning (Cvar), 67
PyExc_ChildProcessError (Cvar), 65
PyExc_ConnectionAbortedError (Cvar), 65
PyExc_ConnectionError (C var), 65
PyExc_ConnectionRefusedError (C var), 65
PyExc_ConnectionResetError (C var), 65
PyExc_DeprecationWarning (C var), 67
PyExc_EnvironmentError (C var), 66
PyExc_EOFError (C var), 65
PyExc_Exception (Cvar), 65
PyExc_FileExistsError (Cvar), 65
PyExc_FileNotFoundError (C var), 65
PyExc_FloatingPointError (C var), 65
PyExc_FutureWarning (C var), 67
PyExc_GeneratorExit (Cvar), 65
PyExc_ImportError (C var), 65
PyExc_ImportWarning (C var), 67
PyExc_IndentationError (C var), 65
PyExc_IndexError (C var), 65
PyExc_InterruptedError (Cvar), 65
PyExc_IOError (Cvar), 66

PyExc_IsADirectoryError (Cvar), 65
PyExc_KeyboardInterrupt (C var), 65
PyExc_KeyError (Cvar), 65
PyExc_LookupError (C var), 65
PyExc_MemoryError (C var), 65
PyExc_ModuleNotFoundError (C var), 65
PyExc_NameError (C var), 65
PyExc_NotADirectoryError (C var), 65
PyExc_NotImplementedError (C var), 65
PyExc_OSError (Cvar), 65
PyExc_OverflowError (Cvar), 65
PyExc_PendingDeprecationWarning (Cvar),67
PyExc_PermissionError (C var), 65
PyExc_ProcessLookupError (Cvar), 65
PyExc_RecursionError (C var), 65
PyExc_ReferenceError (C var), 65
PyExc_ResourceWarning (C var), 67
PyExc_RuntimeError (C var), 65
PyExc_RuntimeWarning (C var), 67
PyExc_StopAsyncIteration (Cvar), 65
PyExc_StopIteration (Cvar), 65
PyExc_SyntaxError (Cvar), 65
PyExc_SyntaxWarning (C var), 67
PyExc_SystemError (C var), 65
PyExc_SystemExit (C var), 65
PyExc_TabError (C var), 65
PyExc_TimeoutError (Cvar), 65
PyExc_TypeError (Cvar), 65
PyExc_UnboundLocalError (Cvar), 65
PyExc_UnicodeDecodeError (C var), 65
PyExc_UnicodeEncodeError (C var), 65
PyExc_UnicodeError (Cvar), 65
PyExc_UnicodeTranslateError (C var), 65
PyExc_UnicodeWarning (C var), 67
PyExc_UserWarning (C var), 67
PyExc_ValueError (C var), 65
PyExc_Warning (Cvar), 67
PyExc_WindowsError (C var), 66
PyExc_ZeroDivisionError (C var), 65
PyException_GetArgs (C function), 63
PyException_GetCause (C function), 63
PyException_GetContext (C function), 62
PyException_GetTraceback (C function), 62
PyException_SetArgs (C function), 63
PyException_SetCause (C function), 63
PyException_SetContext (C function), 63
PyException_SetTraceback (C function), 62
PyFile_FromFd (C function), 176
PyFile_GetLine (C function), 176
PyFile_SetOpenCodeHook (C function), 176
PyFile_SetOpenCodeHook.Py_OpenCodeHookFunction
(Ctype), 176
PyFile_WriteObject (C function), 177
PyFile_WriteString (C function), 177

Dizin

367

The Python/C API, Yayim 3.12.3

PyFloat_AS_DOUBLE (C function), 134
PyFloat_AsDouble (C function), 134
PyFloat_Check (C function), 134
PyFloat_CheckExact (C function), 134
PyFloat_FromDouble (C function), 134
PyFloat_FromString (C function), 134
PyFloat_GetInfo (C function), 134
PyFloat_GetMax (C function), 134
PyFloat_GetMin (C function), 135
PyFloat_Pack2 (C function), 135
PyFloat_Pack4 (C function), 135
PyFloat_Pack8 (C function), 135
PyFloat_Type (Cvar), 134
PyFloat_Unpack?2 (C function), 136
PyFloat_Unpack4 (C function), 136
PyFloat_Unpack8 (C function), 136
PyFloatObject (Ctype), 134
PyFrame_Check (C function), 192
PyFrame_GetBack (C function), 192
PyFrame_GetBuiltins (C function), 192
PyFrame_GetCode (C function), 192
PyFrame_GetGenerator (C function), 192
PyFrame_GetGlobals (C function), 192
PyFrame_GetLasti (C function), 192
PyFrame_GetLineNumber (C function), 193
PyFrame_GetLocals (C function), 193
PyFrame_GetVar (C function), 192
PyFrame_GetVarString (C function), 193
PyFrame_Type (Cvar), 191
PyFrameObject (Ctype), 191
PyFrozenSet_Check (C function), 167
PyFrozenSet_CheckExact (C function), 167
PyFrozenSet_New (C function), 167
PyFrozenSet_Type (Cvar), 167
PyFunction_AddWatcher (C function), 169
PyFunction_Check (C function), 168
PyFunction_ClearWatcher (C function), 170
PyFunction_GetAnnotations (C function), 169
PyFunction_GetClosure (C function), 169
PyFunction_GetCode (C function), 169
PyFunction_GetDefaults (C function), 169
PyFunction_GetGlobals (C function), 169
PyFunction_GetModule (C function), 169
PyFunction_New (C function), 168
PyFunction_NewWithQualName (C function), 169
PyFunction_SetAnnotations (C function), 169
PyFunction_SetClosure (C function), 169
PyFunction_SetDefaults (C function), 169
PyFunction_SetVectorcall (C function), 169
PyFunction_Type (C var), 168
PyFunction_WatchCallback (Ctype), 170
PyFunction_WatchEvent (C type), 170
PyFunctionObject (C type), 168
PyGC_Collect (C function), 312

PyGC_Disable (C function), 312
PyGC_Enable (C function), 312
PyGC_IsEnabled (C function), 312
PyGen_Check (C function), 194
PyGen_CheckExact (C function), 194
PyGen_New (C function), 194
PyGen_NewWithQualName (C function), 194
PyGen_Type (Cvar), 194
PyGenObject (C type), 194
PyGetSetDef (C type), 272
PyGetSetDef.closure (C member), 272
PyGetSetDef.doc (C member), 272
PyGetSetDef.get (C member), 272
PyGetSetDef .name (C member), 272
PyGetSetDef.set (C member), 272
PyGILState_Check (C function), 214
PyGILState_Ensure (C function), 213
PyGILState_GetThisThreadState (C function),
214
PyGILState_Release (C function), 214
PyHash_FuncDef (C type), 90
PyHash_FuncDef.hash_bits (C member), 90
PyHash_FuncDef .name (C member), 90
PyHash_FuncDef.seed_bits (C member), 90
PyHash_GetFuncDef (C function), 90
PyImport_AddModule (C function), 76
PyImport_AddModuleObject (C function), 75
PyImport_AppendInittab (C function), 78
PyImport_ExecCodeModule (C function), 76
PyImport_ExecCodeModuleEx (C function), 76
PyImport_ExecCodeModuleObject (C function),
76
PyImport_ExecCodeModuleWithPathnames (C
function), 76
PyImport_ExtendInittab (C function), 78
PyImport_FrozenModules (Cvar), 78
PyImport_GetImporter (C function), 77
PyImport_GetMagicNumber (C function), 77
PyImport_GetMagicTag (C function), 77
PyImport_GetModule (C function), 77
PyImport_GetModuleDict (C function), 77
PyImport_Import (C function), 75
PyImport_ImportFrozenModule (C function), 77
PyImport_ImportFrozenModuleObject c
function), 77
PyImport_ImportModule (C function), 75
PyImport_ImportModuleEx (C function), 75
PyImport_ImportModulelLevel (C function), 75
PyImport_ImportModuleLevelObject (C func-
tion), 75
PyImport_ImportModuleNoBlock (C function),
75
PyImport_ReloadModule (C function), 75
PyIndex_Check (C function), 109

368

Dizin

The Python/C API, Yayim 3.12.3

PyInstanceMethod_Check (C function), 171

PyInstanceMethod_Function (C function), 171

PyInstanceMethod_GET_FUNCTION (C function),
171

PyInstanceMethod_New (C function), 171

PyInstanceMethod_Type (Cvar), 171

PyInterpreterConfig (Ctype), 218

PyInterpreterConfig_DEFAULT_GIL (Cmacro),
219

PyInterpreterConfig_OWN_GIL (C macro), 219

PyInterpreterConfig_ SHARED_GIL (C macro),
219

PyList_Size (C function), 161

PyList_Sort (C function), 162

PyList_Type (Cvar), 161

PyListObject (Ctype), 161

PyLong_AsDouble (C function), 132

PyLong_AsLong (C function), 131

PyLong_AsLongAndOverflow (C function), 131

PyLong_AsLongLong (C function), 131

PyLong_AsLongLongAndOverflow (C function),
131

PyLong_AsSize_t (C function), 132

PyLong_AsSsize_t (C function), 131

PyInterpreterConfig.allow_daemon_threadsPyLong_AsUnsignedLong (C function), 132

(C member), 218
PyInterpreterConfig.
218
PyInterpreterConfig.
218
PyInterpreterConfig.
member), 218
PyInterpreterConfig.
(C member), 218
PyInterpreterConfig.
PyInterpreterConfig.
(C member), 218
PyInterpreterState (Ctype), 212
PyInterpreterState_Clear (C function), 215
PyInterpreterState_Delete (C function), 215
PyInterpreterState_Get (C function), 216
PyInterpreterState_GetDict (C function), 216
PyInterpreterState_GetID (C function), 216
PyInterpreterState_Head (C function), 224
PyInterpreterState_Main (C function), 224
PyInterpreterState_New (C function), 215
PyInterpreterState_Next (C function), 224
PyInterpreterState_ThreadHead (C function),
224
PyIter_Check (C function), 112
PyIter_Next (C function), 112
PyIter_Send (C function), 113
PyList_Append (C function), 162
PyList_AsTuple (C function), 162
PyList_Check (C function), 161
PyList_CheckExact (C function), 161
PyList_GET_ITEM (C function), 162
PyList_GET_SIZE (C function), 162
PyList_GetItem (C function), 9, 162
PyList_GetSlice (C function), 162
PyList_TInsert (C function), 162
PyList_New (C function), 161
PyList_Reverse (C function), 162
PyList_SET_ITEM (C function), 162
PyList_SetItem (C function), 8, 162
PyList_SetSlice (C function), 162

allow_exec (Cmember),
allow_fork (Cmember),

allow_threads c

gil (C member), 219
use_main_obmalloc

PyLong_AsUnsignedLongLong (C function), 132

PyLong_AsUnsignedLongLongMask (C function),
132

PyLong_AsUnsignedLongMask (C function), 132

PyLong_AsVoidPtr (C function), 133

PyLong_Check (C function), 130

PyLong_CheckExact (C function), 130

check_multi_interp_eRybosgoRsomDouble (C function), 130

PyLong_FromLong (C function), 130
PyLong_FromLongLong (C function), 130
PyLong_FromSize_t (C function), 130
PyLong_FromSsize_t (C function), 130
PyLong_FromString (C function), 130
PyLong_FromUnicodeObject (C function), 130
PyLong_FromUnsignedLong (C function), 130
PyLong_FromUnsignedLongLong (C function), 130
PyLong_FromvVoidPtr (C function), 131
PyLong_Type (C var), 129
PyLongObject (Ctype), 129
PyMapping_Check (C function), 111
PyMapping_DelItem (C function), 111
PyMapping_DelItemString (C function), 111
PyMapping_GetItemString (C function), 111
PyMapping_HasKey (C function), 111
PyMapping_HasKeyString (C function), 111
PyMapping_Items (C function), 112
PyMapping_Keys (C function), 111
PyMapping_Length (C function), 111
PyMapping_SetItemString (C function), 111
PyMapping_Size (C function), 111
PyMapping_Values (C function), 112
PyMappingMethods (C type), 302
PyMappingMethods.mp_ass_subscript (e
member), 303
PyMappingMethods .mp_length (C member), 302
PyMappingMethods.mp_subscript (C member),
302
PyMarshal_ReadLastObjectFromFile (C func-
tion), 79
PyMarshal_ReadLongFromFile (C function), 79

Dizin

369

The Python/C API, Yayim 3.12.3

PyMarshal_ReadObjectFromFile (C function),
79
PyMarshal_ReadObjectFromString (C functi-
on), 79
PyMarshal_ReadShortFromFile (C function), 79
PyMarshal_WriteLongToFile (C function), 78
PyMarshal_WriteObjectToFile (C function), 79
PyMarshal_WriteObjectToString (C function),
79
PyMem_Calloc (C function), 254
PyMem_Del (C function), 254
PYMEM_DOMAIN_MEM (C macro), 257
PYMEM_DOMAIN_OBJ (C macro), 257
PYMEM_DOMAIN_RAW (C macro), 256
PyMem_Free (C function), 254
PyMem_GetAllocator (C function), 257
PyMem_Malloc (C function), 253
PyMem_New (C macro), 254
PyMem_RawCalloc (C function), 253
PyMem_RawFree (C function), 253
PyMem_RawMalloc (C function), 253
PyMem_RawRealloc (C function), 253
PyMem_Realloc (C function), 254
PyMem_Resize (C macro), 254
PyMem_SetAllocator (C function), 257
PyMem_SetupDebugHooks (C function), 257
PyMemAllocatorDomain (C type), 256
PyMemAllocatorEx (C type), 256
PyMember_GetOne (C function), 270
PyMember_SetOne (C function), 270
PyMemberDef (C type), 269
PyMemberDef . doc (C member), 269
PyMemberDef . flags (C member), 269
PyMemberDef .name (C member), 269
PyMemberDef .of fset (C member), 269
PyMemberDef . type (C member), 269
PyMemoryView_Check (C function), 188
PyMemoryView_FromBuffer (C function), 188
PyMemoryView_FromMemory (C function), 188
PyMemoryView_FromObject (C function), 188
PyMemoryView_GET_BASE (C function), 188
PyMemoryView_GET_BUFFER (C function), 188
PyMemoryView_GetContiguous (C function), 188
PyMethod_Check (C function), 171
PyMethod_Function (C function), 171
PyMethod_GET_FUNCTION (C function), 171
PyMethod_GET_SELF (C function), 171
PyMethod_New (C function), 171
PyMethod_Self (C function), 171
PyMethod_Type (Cvar), 171
PyMethodDef (C type), 267
PyMethodDef .ml_doc (C member), 267
PyMethodDef .ml_flags (C member), 267
PyMethodDef .ml_meth (C member), 267

PyMethodDef .ml_name (C member), 267
PyMODINIT_FUNC (C macro), 4
PyModule_AddFunctions (C function), 182
PyModule_AddIntConstant (C function), 184
PyModule_AddIntMacro (C macro), 184
PyModule_AddObject (C function), 183
PyModule_AddObjectRef (C function), 183
PyModule_AddStringConstant (C function), 184
PyModule_AddStringMacro (C macro), 184
PyModule_AddType (C function), 184
PyModule_Check (C function), 177
PyModule_CheckExact (C function), 177
PyModule_Create (C function), 180
PyModule_Create?2 (C function), 180
PyModule_ExecDef (C function), 182
PyModule_FromDefAndSpec (C function), 182
PyModule_FromDefAndSpec?2 (C function), 182
PyModule_GetDef (C function), 178
PyModule_GetDict (C function), 177
PyModule_GetFilename (C function), 178
PyModule_GetFilenameObject (C function), 178
PyModule_GetName (C function), 178
PyModule_GetNameObject (C function), 178
PyModule_GetState (C function), 178
PyModule_New (C function), 177
PyModule_NewObject (C function), 177
PyModule_SetDocString (C function), 182
PyModule_Type (Cvar), 177
PyModuleDef (C type), 178
PyModuleDef_Init (C function), 180
PyModuleDef_Slot (Ctype), 180
PyModuleDef_Slot.slot (C member), 180
PyModuleDef_Slot.value (C member), 180
PyModuleDef .m_base (C member), 178
PyModuleDef.m_clear (C member), 179
PyModuleDef .m_doc (C member), 178
PyModuleDef .m_free (C member), 179
PyModuleDef .m_methods (C member), 179
PyModuleDef .m_name (C member), 178
PyModuleDef .m_size (C member), 178
PyModuleDef .m_slots (C member), 179
PyModuleDef.m_slots.m_reload (C member),
179
PyModuleDef .m_traverse (C member), 179
PyNumber_Absolute (C function), 106
PyNumber_Add (C function), 105
PyNumber_And (C function), 107
PyNumber_AsSsize_t (C function), 108
PyNumber_Check (C function), 105
PyNumber_Divmod (C function), 106
PyNumber_Float (C function), 108
PyNumber_FloorDivide (C function), 106
PyNumber_Index (C function), 108
PyNumber_InPlaceAdd (C function), 107

370

Dizin

The Python/C API, Yayim 3.12.3

PyNumber_InPlaceAnd (C function), 108
PyNumber_InPlaceFloorDivide (C function), 107
PyNumber_InPlaceLshift (C function), 108
PyNumber_InPlaceMatrixMultiply (C functi-
on), 107
PyNumber_InPlaceMultiply (C function), 107
PyNumber_InPlaceOr (C function), 108
PyNumber_InPlacePower (C function), 107
PyNumber_InPlaceRemainder (C function), 107
PyNumber_InPlaceRshift (C function), 108
PyNumber_InPlaceSubtract (C function), 107
PyNumber_InPlaceTrueDivide (C function), 107
PyNumber_InPlaceXor (C function), 108
PyNumber_Invert (C function), 106
PyNumber_Long (C function), 108
PyNumber_Lshift (C function), 106
PyNumber_MatrixMultiply (C function), 106
PyNumber_Multiply (C function), 106
PyNumber_Negative (C function), 106
PyNumber_Or (C function), 107
PyNumber_Positive (C function), 106
PyNumber_Power (C function), 106
PyNumber_Remainder (C function), 106
PyNumber_Rshift (C function), 106
PyNumber_Subtract (C function), 105
PyNumber_ToBase (C function), 108
PyNumber_TrueDivide (C function), 106
PyNumber_Xor (C function), 107
PyNumberMethods (C type), 300

PyNumberMethods

.nb_inplace_remainder (C

member), 302

PyNumberMethods.nb_inplace_rshift (c
member), 302
PyNumberMethods.nb_inplace_subtract (C

member), 302

PyNumberMethods
(C member),
PyNumberMethods
302
PyNumberMethods
PyNumberMethods
PyNumberMethods
PyNumberMethods

.nb_inplace_true_divide
302
.nb_inplace_xor (Cmember),

.nb_int (C member), 302
.nb_invert (C member), 301
.nb_1shift (C member), 301

.nb_matrix_multiply (C

member), 302

PyNumberMethods
PyNumberMethods
PyNumberMethods
PyNumberMethods
PyNumberMethods
PyNumberMethods
301
PyNumberMethods
PyNumberMethods
PyNumberMethods
PyNumberMethods
302
PyNumberMethods

.nb_multiply (Cmember), 301
.nb_negative (Cmember), 301
.nb_or (C member), 302
.nb_positive (Cmember), 301
.nb_power (C member), 301
.nb_remainder (C member),

.nb_reserved (C member), 302
.nb_rshift (C member), 301

.nb_subtract (C member), 301
.nb_true_divide (Cmember),

.nb_xor (C member), 302

PyObject (C type), 264

PyNumberMethods
PyNumberMethods
PyNumberMethods
PyNumberMethods
PyNumberMethods
PyNumberMethods
PyNumberMethods
ber), 302
PyNumberMethods
PyNumberMethods
302
PyNumberMethods
302

PyNumberMethods.nb_inplace_floor_divide

.nb_absolute (C member), 301
.nb_add (C member), 301
.nb_and (C member), 301
.nb_bool (C member), 301
.nb_divmod (C member), 301
.nb_float (C member), 302
.nb_floor_divide (C mem-

.nb_index (C member), 302
.nb_inplace_add (Cmember),

.nb_inplace_and (Cmember),

(C member), 302

PyNumberMethods.
member), 302

nb_inplace_lshift c

PyObject_AsCharBuffer (C function), 120
PyObject_ASCII (C function), 97
PyObject_AsFileDescriptor (C function), 176
PyObject_AsReadBuffer (C function), 120
PyObject_AsWriteBuffer (C function), 121
PyObject_Bytes (C function), 98
PyObject_Call (C function), 103
PyObject_CallFunction (C function), 103
PyObject_CallFunctionObjArgs (C function),
104
PyObject_CallMethod (C function), 104
PyObject_CallMethodNoArgs (C function), 104
PyObject_CallMethodObjArgs (C function), 104
PyObject_CallMethodOneArg (C function), 104
PyObject_CallNoArgs (C function), 103
PyObject_CallObject (C function), 103
PyObject_Calloc (C function), 255

PyNumberMethods.nb_inplace_matrix_multipRByObject_CallOneArg (C function), 103
(C member), 302

PyNumberMethods.
member), 302
PyNumberMethods.

302

PyNumberMethods.

ber), 302

nb_inplace_multiply (C
nb_inplace_or (C member),

nb_inplace_power (C mem-

PyObject_CheckBuffer (C function), 119
PyObject_CheckReadBuffer (C function), 120
PyObject_ClearWeakRefs (C function), 189
PyObject_CopyData (C function), 120
PyObject_Del (C function), 264
PyObject_DelAttr (C function), 96
PyObject_DelAttrString (C function), 96

Dizin

371

The Python/C API, Yayim 3.12.3

PyObject_DelItem (C function), 99
PyObject_Dir (C function), 99
PyObject_Format (C function), 97
PyObject_Free (C function), 255
PyObject_GC_Del (C function), 311
PyObject_GC_IsFinalized (C function), 311
PyObject_GC_IsTracked (C function), 311
PyObject_GC_New (C macro), 310
PyObject_GC_NewVar (C macro), 310
PyObject_GC_Resize (Cmacro), 311
PyObject_GC_Track (C function), 311
PyObject_GC_UnTrack (C function), 311
PyObject_GenericGetAttr (C function), 96
PyObject_GenericGetDict (C function), 97
PyObject_GenericSetAttr (C function), 96
PyObject_GenericSetDict (C function), 97
PyObject_GetATIter (C function), 99
PyObject_GetArenaAllocator (C function), 260
PyObject_GetAttr (C function), 96
PyObject_GetAttrString (C function), 96
PyObject_GetBuffer (C function), 119
PyObject_GetItem (C function), 99
PyObject_GetItemData (C function), 100
PyObject_GetIter (C function), 99
PyObject_GetTypeData (C function), 100
PyObject_HasAttr (C function), 95
PyObject_HasAttrString (C function), 96
PyObject_Hash (C function), 98
PyObject_HashNotImplemented (C function), 98
PyObject_HEAD (C macro), 264
PyObject_HEAD_INIT (C macro), 265
PyObject_Init (C function), 263
PyObject_InitVar (C function), 263
PyObject_IS_GC (C function), 311
PyObject_IsInstance (C function), 98
PyObject_IsSubclass (C function), 98
PyObject_IsTrue (C function), 98
PyObject_Length (C function), 99
PyObject_LengthHint (C function), 99
PyObject_Malloc (C function), 255
PyObject_New (C macro), 263
PyObject_NewVar (C macro), 263
PyObject_Not (C function), 99
PyObject._ob_next (C member), 280
PyObject._ob_prev (C member), 280
PyObject_Print (C function), 95
PyObject_Realloc (C function), 255
PyObject_Repr (C function), 97
PyObject_RichCompare (C function), 97
PyObject_RichCompareBool (C function), 97
PyObject_SetArenaAllocator (C function), 260
PyObject_SetAttr (C function), 96
PyObject_SetAttrString (C function), 96
PyObject_SetItem (C function), 99

PyObject_Size (C function), 99
PyObject_Str (C function), 98
PyObject_Type (C function), 99
PyObject_TypeCheck (C function), 99
PyObject_VAR_HEAD (C macro), 264
PyObject_Vectorcall (C function), 104
PyObject_VectorcallDict (C function), 105
PyObject_VectorcallMethod (C function), 105
PyObjectArenaAllocator (C type), 260
PyObject.ob_refcnt (C member), 279
PyObject.ob_type (C member), 279
PyOS_AfterFork (C function), 70
PyOS_AfterFork_Child (C function), 70
PyOS_AfterFork_Parent (C function), 69
PyOS_BeforeFork (C function), 69
PyOS_CheckStack (C function), 70
PyOS_double_to_string (C function), 89
PyOS_FSPath (C function), 69
PyOS_getsig (C function), 70
PyOS_InputHook (Cvar), 44
PyOS_ReadlineFunctionPointer (C var), 45
PyOS_setsig (C function), 70
PyOS_sighandler_t (Ctype), 70
PyOS_snprintf (C function), 88
PyOS_stricmp (C function), 89
PyOS_string_to_double (C function), 89
PyOS_strnicmp (C function), 90
PyOS_strtol (C function), 89
PyOS_strtoul (C function), 88
PyOS_vsnprintf (C function), 88
PyPreConfig (C type), 230
PyPreConfig InitIsolatedConfig (C functi-
on), 230
PyPreConfig_InitPythonConfig (C function),
230
PyPreConfig.allocator (C member), 230
PyPreConfig.coerce_c_locale (C member),231
PyPreConfig.coerce_c_locale_warn (C mem-
ber), 231
PyPreConfig.configure_locale (C member),
230
PyPreConfig.dev_mode (C member), 231
PyPreConfig.isolated (C member), 231
PyPreConfig.legacy_windows_fs_encoding
(C member), 231
PyPreConfig.parse_argv (C member), 231
PyPreConfig.use_environment (Cmember),231
PyPreConfig.utf8_mode (C member), 231
PyProperty_Type (C var), 186
PyRun_AnyFile (C function), 43
PyRun_AnyFileEx (C function), 43
PyRun_AnyFileExFlags (C function), 44
PyRun_AnyFileFlags (C function), 43
PyRun_File (C function), 45

372

Dizin

The Python/C API, Yayim 3.12.3

PyRun_FileEx (C function), 45
PyRun_FileExFlags (C function), 45
PyRun_FileFlags (C function), 45
PyRun_InteractiveLoop (C function), 44
PyRun_InteractiveLoopFlags (C function), 44
PyRun_InteractiveOne (C function), 44
PyRun_InteractiveOneFlags (C function), 44
PyRun_SimpleFile (C function), 44
PyRun_SimpleFileEx (C function), 44
PyRun_SimpleFileExFlags (C function), 44
PyRun_SimpleString (C function), 44
PyRun_SimpleStringFlags (C function), 44
PyRun_String (C function), 45
PyRun_StringFlags (C function), 45
PySendResult (Ctype), 113
PySeqlter_Check (C function), 185
PySeqglter_New (C function), 185
PySeqglter_Type (Cvar), 185
PySequence_Check (C function), 109
PySequence_Concat (C function), 109
PySequence_Contains (C function), 110
PySequence_Count (C function), 110
PySequence_DelItem (C function), 109
PySequence_DelSlice (C function), 110
PySequence_Fast (C function), 110
PySequence_Fast_GET_ITEM (C function), 110
PySequence_Fast_GET_SIZE (C function), 110
PySequence_Fast_ITEMS (C function), 110
PySequence_GetItem (C function), 9, 109
PySequence_GetSlice (C function), 109
PySequence_Index (C function), 110
PySequence_InPlaceConcat (C function), 109
PySequence_InPlaceRepeat (C function), 109
PySequence_ITEM (C function), 110
PySequence_Length (C function), 109
PySequence_List (C function), 110
PySequence_Repeat (C function), 109
PySequence_SetItem (C function), 109
PySequence_SetSlice (C function), 109
PySequence_Size (C function), 109
PySequence_Tuple (C function), 110
PySequenceMethods (C type), 303
PySequenceMethods.sq ass_item (C member),
303
PySequenceMethods.
PySequenceMethods.
303
PySequenceMethods.
member), 303
PySequenceMethods
member), 303
PySequenceMethods.
PySequenceMethods.
PySequenceMethods.

sq_concat (C member), 303
sq_contains (C member),

sq_inplace_concat (C
.sq_inplace_repeat (C
sq_item (C member), 303

sq_length (C member), 303
sq_repeat (C member), 303

PySet_Add (C function), 168
PySet_Check (C function), 167
PySet_CheckExact (C function), 167
PySet_Clear (C function), 168
PySet_Contains (C function), 168
PySet_Discard (C function), 168
PySet_GET_SIZE (C function), 168
PySet_New (C function), 167
PySet_Pop (C function), 168
PySet_Size (C function), 167
PySet_Type (Cvar), 167
PySetObject (Ctype), 167
PySignal_SetWakeupFd (C function), 62
PySlice_AdjustIndices (C function), 187
PySlice_Check (C function), 186
PySlice_GetIndices (C function), 186
PySlice_GetIndicesEx (C function), 187
PySlice_New (C function), 186
PySlice_Type (Cvar), 186
PySlice_Unpack (C function), 187
PyState_AddModule (C function), 185
PyState_FindModule (C function), 185
PyState_RemoveModule (C function), 185
PyStatus (C type), 229
PyStatus_Error (C function), 229
PyStatus_Exception (C function), 229
PyStatus_Exit (C function), 229
PyStatus_IsError (C function), 229
PyStatus_IsExit (C function), 229
PyStatus_NoMemory (C function), 229
PyStatus_0k (C function), 229
PyStatus.err_msqg (C member), 229
PyStatus.exitcode (C member), 229
PyStatus. func (C member), 229
PyStructSequence_Desc (C type), 160
PyStructSequence_Desc.doc (C member), 160
PyStructSequence_Desc.fields (C member),
160
PyStructSequence_Desc.n_in_sequence (C
member), 160
PyStructSequence_Desc.name (C member), 160
PyStructSequence_Field (Ctype), 160
PyStructSequence_Field.doc (C member), 160
PyStructSequence_Field.name (Cmember), 160
PyStructSequence_GET_ITEM (C function), 161
PyStructSequence_GetItem (C function), 161
PyStructSequence_InitType (C function), 160
PyStructSequence_InitType?2 (C function), 160
PyStructSequence_New (C function), 161
PyStructSequence_NewType (C function), 160
PyStructSequence_SET_ITEM (C function), 161
PyStructSequence_SetItem (C function), 161
PyStructSequence_UnnamedField (Cvar), 161
PySys_AddAuditHook (C function), 73

Dizin

373

The Python/C API, Yayim 3.12.3

PySys_AddWarnOption (C function), 72
PySys_AddWarnOptionUnicode (C function), 72

PySys_AddXOption (C function), 73
PySys_Audit (C function), 73

PySys_FormatStderr (C function), 73
PySys_FormatStdout (C function), 73

PySys_GetObject (C function), 72

PySys_GetXOptions (C function), 73
PySys_ResetWarnOptions (C function), 72
PySys_SetArgv (C function), 205, 210
PySys_SetArgvEx (C function), 205, 209

PySys_SetObject (C function), 72
PySys_SetPath (C function), 72

PySys_WriteStderr (C function), 73
PySys_WriteStdout (C function), 72

Python
Python

PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP

3000, 329
Gelistirme Onerileri
1,329

7,3,6,7
238,47,322
278,332
302,322, 326
343,320

353, 10
362,318,328
383, 149, 150
387,15

393, 141
411,329

420, 322,327,329
432,248,249
442,299
443,323

451, 181, 322
456,90

483,323
484,317, 322,323,332
489,182,219
492, 318320
498,321
519,329
523,193,216, 217
525,318
526,317,332
528,204,239
529, 150, 204
538,246
539,224

540, 246
552,236
554,220

578,74

585,323
587,227

PEP 590, 101

PEP 623, 141

PEP 634,289

PEP 3116, 332

PEP 3119,98

PEP 3121,179

PEP 3147,77

PEP 3151, 66

PEP 3155, 330
PYTHONCOERCECLOCALE, 246
PYTHONDEBUG, 202, 240
PYTHONDEVMODE, 236
PYTHONDONTWRITEBYTECODE, 203, 243
PYTHONDUMPREF'S, 236, 280
PYTHONEXECUTABLE, 241
PYTHONFAULTHANDLER, 237
PYTHONHASHSEED, 203, 237
PYTHONHOME, 13, 203, 210, 238
PYTHONINSPECT, 203, 238
PYTHONINTMAXSTRDIGITS, 238
PYTHONIOENCODING, 206, 242
Pythonic, 329

PYTHONLEGACYWINDOWSFSENCODING, 204, 231

PYTHONLEGACYWINDOWSSTDIO, 204, 239
PYTHONMALLOC, 252, 256, 258, 259
PYTHONMALLOCSTATS, 239, 252
PYTHONNODEBUGRANGES, 236
PYTHONNOUSERSITE, 204, 243
PYTHONOPTIMIZE, 204, 240
PYTHONPATH, 13, 203, 239
PYTHONPERFSUPPORT, 243
PYTHONPLATLIBDIR, 239
PYTHONPROFILEIMPORTTIME, 238
PYTHONPYCACHEPREFIX, 241
PYTHONSAFEPATH, 235
PYTHONTRACEMALLOC, 242

Python'un Zen'i, 332
PYTHONUNBUFFERED, 205, 235
PYTHONUTFS8, 232, 246

PYTHONVERBOSE, 205, 243
PYTHONWARNINGS, 243
PyThread_create_key (C function), 226
PyThread_delete_key (C function), 226

PyThread_delete_key_value (C function), 226

PyThread_get_key_value (C function), 226
PyThread_ReInitTLS (C function), 226
PyThread_set_key_value (C function), 226
PyThread_tss_alloc (C function), 225
PyThread_tss_create (C function), 225
PyThread_tss_delete (C function), 225
PyThread_tss_free (C function), 225
PyThread_tss_get (C function), 225

PyThread_tss_is_created (C function), 225

PyThread_tss_set (C function), 225

374

Dizin

The Python/C API, Yayim 3.12.3

PyThreadState (Ctype), 210, 212
PyThreadState_Clear (C function), 215
PyThreadState_Delete (C function), 215
PyThreadState_DeleteCurrent (C function), 215
PyThreadState_EnterTracing (C function), 216
PyThreadState_Get (C function), 213
PyThreadState_GetDict (C function), 217
PyThreadState_GetFrame (C function), 215
PyThreadState_GetID (C function), 215
PyThreadState_GetInterpreter (C function),
215
PyThreadState_LeaveTracing (C function), 216
PyThreadState_New (C function), 215
PyThreadState_Next (C function), 224
PyThreadState_SetAsyncExc (C function), 217
PyThreadState_Swap (C function), 213
PyThreadState.interp (C member), 212
PyTime_Check (C function), 197
PyTime_CheckExact (C function), 197
PyTime_FromTime (C function), 198
PyTime_FromTimeAndFold (C function), 198
PyTimeZone_FromOffset (C function), 198
PyTimeZone_FromOffsetAndName (C function),
198
PyTrace_C_CALL (Cvar), 222
PyTrace_C_EXCEPTION (C var), 222
PyTrace_C_RETURN (C var), 222
PyTrace_CALL (Cvar), 222
PyTrace_EXCEPTION (C var), 222
PyTrace_LINE (C var), 222
PyTrace_OPCODE (C var), 223
PyTrace_RETURN (C var), 222
PyTraceMalloc_Track (C function), 260
PyTraceMalloc_Untrack (C function), 260
PyTuple_Check (C function), 159
PyTuple_CheckExact (C function), 159
PyTuple_GET_ITEM (C function), 159
PyTuple_GET_SIZE (C function), 159
PyTuple_GetItem (C function), 159
PyTuple_GetSlice (C function), 159
PyTuple_New (C function), 159
PyTuple_Pack (C function), 159
PyTuple_SET_ITEM (C function), 159
PyTuple_SetItem (C function), 8, 159
PyTuple_Size (C function), 159
PyTuple_Type (Cvar), 159
PyTupleObject (Ctype), 159
PyType_AddWatcher (C function), 124
PyType_Check (C function), 123
PyType_CheckExact (C function), 123
PyType_ClearCache (C function), 123
PyType_ClearWatcher (C function), 124
PyType_FromMetaclass (C function), 126
PyType_FromModuleAndSpec (C function), 127

PyType_FromS
PyType_FromS

pec (C function), 127
pecWithBases (C function), 127

PyType_GenericAlloc (C function), 125
PyType_GenericNew (C function), 125

PyType_GetDi
PyType_GetF1l

ct (C function), 124
ags (C function), 124

PyType_GetModule (C function), 125
PyType_GetModuleByDef (C function), 126
PyType_GetModuleState (C function), 126
PyType_GetName (C function), 125
PyType_GetQualName (C function), 125

PyType_GetS1l

ot (C function), 125

PyType_GetTypeDataSize (C function), 100

PyType_HasFe

ature (C function), 124

PyType_IS_GC (C function), 125
PyType_IsSubtype (C function), 125
PyType_Modified (C function), 124
PyType_Ready (C function), 125
PyType_Slot (Ctype), 128

PyType_Slot.
PyType_Slot.

pfunc (C member), 129
slot (C member), 128

PyType_Spec (C type), 127

PyType_Spec.
PyType_Spec.
PyType_Spec.
PyType_Spec.
PyType_Spec.

basicsize (C member), 128
flags (C member), 128
itemsize (C member), 128
name (C member), 128
slots (C member), 128

PyType_Type (Cvar), 123
PyType_Watch (C function), 124
PyType_WatchCallback (Ctype), 124

PyTypeObject
PyTypeObject
PyTypeObject

PyTypeObject.

PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject

PyTypeObject.

PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject
PyTypeObject

(Ctype), 123
.tp_alloc (C member), 296
.tp_as_async (C member), 283
tp_as_buffer (C member), 285
.tp_as_mapping (C member), 284
.tp_as_number (C member), 283
.tp_as_sequence (Cmember), 283
.tp_base (C member), 294
.tp_bases (C member), 297
.tp_basicsize (C member), 281
.tp_cache (C member), 298
.tp_call (C member), 284
.tp_clear (C member), 291
.tp_dealloc (C member), 281
.tp_del (C member), 298
.tp_descr_get (C member), 295
tp_descr_set (C member), 295
.tp_dict (C member), 294
.tp_dictoffset (C member), 295
.tp_doc (C member), 289
.tp_finalize (C member), 298
.tp_flags (C member), 285
.tp_free (C member), 297
.tp_getattr (C member), 282

Dizin

375

The Python/C API, Yayim 3.12.3

PyTypeObject.tp_getattro (C member), 285
PyTypeObject.tp_getset (Cmember), 294
PyTypeObject.tp_hash (C member), 284
PyTypeObject.tp_init (C member), 295
PyTypeObject.tp_1is_gc (C member), 297
PyTypeObject.tp_itemsize (C member), 281
PyTypeObject.tp_iter (C member), 293
PyTypeObject.tp_iternext (C member), 293
PyTypeObject.tp_members (C member), 293
PyTypeObject.tp_methods (C member), 293
PyTypeObject.tp_mro (C member), 298
PyTypeObject.tp_name (C member), 280
PyTypeObject.tp_new (C member), 296
PyTypeObject.tp_repr (C member), 283
PyTypeObject.tp_richcompare (Cmember),291
PyTypeObject.tp_setattr (C member), 283
PyTypeObject.tp_setattro (C member), 285
PyTypeObject.tp_str (C member), 284
PyTypeObject.tp_subclasses (C member), 298
PyTypeObject.tp_traverse (C member), 290
PyTypeObject.tp_vectorcall (Cmember), 299
PyTypeObject.tp_vectorcall_offset c
member), 282
PyTypeObject.tp_version_tag (Cmember), 298
PyTypeObject.tp_watched (C member), 299
PyTypeObject.tp_weaklist (C member), 298
PyTypeObject.tp_weaklistoffset (Cmember),
292
PyTZInfo_Check (C function), 197
PyTZInfo_CheckExact (C function), 197
PyUnicode_1BYTE_DATA (C function), 142
PyUnicode_1BYTE_KIND (C macro), 142
PyUnicode_2BYTE_DATA (C function), 142
PyUnicode_2BYTE_KIND (C macro), 142
PyUnicode_4BYTE_DATA (C function), 142
PyUnicode_4BYTE_KIND (C macro), 142
PyUnicode_AsASCIIString (C function), 155
PyUnicode_AsCharmapString (C function), 156
PyUnicode_AsEncodedString (C function), 152
PyUnicode_AsLatinlString (C function), 155
PyUnicode_AsMBCSString (C function), 157
PyUnicode_AsRawUnicodeEscapeString (C
function), 155
PyUnicode_AsUCS4 (C function), 149
PyUnicode_AsUCS4Copy (C function), 149
PyUnicode_AsUnicodeEscapeString (C functi-
on), 155
PyUnicode_AsUTF8 (C function), 153
PyUnicode_AsUTF8AndSize (C function), 152
PyUnicode_AsUTF8String (C function), 152
PyUnicode_AsUTF16String (C function), 154
PyUnicode_AsUTF32String (C function), 153
PyUnicode_AsWideChar (C function), 151
PyUnicode_AsWideCharString (C function), 151

PyUnicode_Check (C function), 142
PyUnicode_CheckExact (C function), 142
PyUnicode_Compare (C function), 158
PyUnicode_CompareWithASCIIString (C func-
tion), 158
PyUnicode_Concat (C function), 157
PyUnicode_Contains (C function), 158
PyUnicode_CopyCharacters (C function), 148
PyUnicode_Count (C function), 158
PyUnicode_DATA (C function), 142
PyUnicode_Decode (C function), 152
PyUnicode_DecodeASCII (C function), 155
PyUnicode_DecodeCharmap (C function), 156
PyUnicode_DecodeFSDefault (C function), 150
PyUnicode_DecodeFSDefaultAndSize (C func-
tion), 150
PyUnicode_DecodelLatinl (C function), 155
PyUnicode_DecodeLocale (C function), 149
PyUnicode_DecodeLocaleAndSize (C function),
149
PyUnicode_DecodeMBCS (C function), 156
PyUnicode_DecodeMBCSStateful (C function),
156
PyUnicode_DecodeRawUnicodeEscape (C func-
tion), 155
PyUnicode_DecodeUnicodeEscape (C function),
155
PyUnicode_DecodeUTF7 (C function), 154
PyUnicode_DecodeUTF7Stateful (C function),
154
PyUnicode_DecodeUTFE8 (C function), 152
PyUnicode_DecodeUTF8Stateful (C function),
152
PyUnicode_DecodeUTF16 (C function), 154
PyUnicode_DecodeUTF1l6Stateful (C function),
154
PyUnicode_DecodeUTF32 (C function), 153
PyUnicode_DecodeUTF32Stateful (C function),
153
PyUnicode_EncodeCodePage (C function), 157
PyUnicode_EncodeFSDefault (C function), 150
PyUnicode_EncodeLocale (C function), 149
PyUnicode_Fill (C function), 148
PyUnicode_Find (C function), 157
PyUnicode_FindChar (C function), 157
PyUnicode_Format (C function), 158
PyUnicode_FromEncodedObject (C function), 148
PyUnicode_FromFormat (C function), 145
PyUnicode_FromFormatV (C function), 147
PyUnicode_FromKindAndData (C function), 145
PyUnicode_FromObject (C function), 148
PyUnicode_FromString (C function), 145
PyUnicode_FromStringAndSize (C function), 145
PyUnicode_FromWideChar (C function), 151

376

Dizin

The Python/C API, Yayim 3.12.3

PyUnicode_FSConverter (C function), 150
PyUnicode_FSDecoder (C function), 150
PyUnicode_GET_LENGTH (C function), 142
PyUnicode_GetLength (C function), 148
PyUnicode_InternFromString (C function), 158
PyUnicode_InternInPlace (C function), 158
PyUnicode_TIsIdentifier (C function), 143
PyUnicode_Join (C function), 157
PyUnicode_KIND (C function), 142
PyUnicode_MAX_CHAR_VALUE (C function), 143
PyUnicode_New (C function), 145
PyUnicode_READ (C function), 143
PyUnicode_READ_CHAR (C function), 143
PyUnicode_ReadChar (C function), 148
PyUnicode_READY (C function), 142
PyUnicode_Replace (C function), 158
PyUnicode_RichCompare (C function), 158
PyUnicode_Split (C function), 157
PyUnicode_Splitlines (C function), 157
PyUnicode_Substring (C function), 148
PyUnicode_Tailmatch (C function), 157
PyUnicode_Translate (C function), 156
PyUnicode_Type (Cvar), 141
PyUnicode_WRITE (C function), 142
PyUnicode_WriteChar (C function), 148
PyUnicodeDecodeError_Create (C function), 63
PyUnicodeDecodeError_GetEncoding (C func-
tion), 63
PyUnicodeDecodeError_GetEnd (C function), 64
PyUnicodeDecodeError_GetObject (C functi-
on), 63
PyUnicodeDecodeError_GetReason (C functi-
on), 64
PyUnicodeDecodeError_GetStart (C function),
64
PyUnicodeDecodeError_SetEnd (C function), 64
PyUnicodeDecodeError_SetReason (C functi-
on), 64
PyUnicodeDecodeError_SetStart (C function),
64
PyUnicodeEncodeError_GetEncoding (C func-
tion), 63
PyUnicodeEncodeError_GetEnd (C function), 64
PyUnicodeEncodeError_GetObject (C functi-
on), 63
PyUnicodeEncodeError_GetReason (C functi-
on), 64
PyUnicodeEncodeError_GetStart (C function),
64
PyUnicodeEncodeError_SetEnd (C function), 64
PyUnicodeEncodeError_SetReason (C functi-
on), 64
PyUnicodeEncodeError_SetStart (C function),
64

PyUnicodeObject (C type), 141
PyUnicodeTranslateError_GetEnd (C functi-

on), 64
PyUnicodeTranslateError_GetObject (c

function), 63
PyUnicodeTranslateError_GetReason c

function), 64
PyUnicodeTranslateError_GetStart (C func-

tion), 64
PyUnicodeTranslateError_SetEnd (C functi-

on), 64
PyUnicodeTranslateError_SetReason (o

function), 64
PyUnicodeTranslateError_SetStart (C func-
tion), 64
PyUnstable, 15
PyUnstable_Code_GetExtra (C function), 175
PyUnstable_Code_New (C function), 172
PyUnstable_Code_NewWithPosOnlyArgs (c
Sfunction), 173
PyUnstable_Code_SetExtra (C function), 175
PyUnstable_Eval_RequestCodeExtralndex
(C function), 175
PyUnstable_Exc_PrepReraiseStar (C functi-
on), 63
PyUnstable_GC_VisitObjects (C function), 313
PyUnstable_InterpreterFrame_GetCode (C
function), 193
PyUnstable_InterpreterFrame_GetLasti (C
function), 193
PyUnstable_InterpreterFrame_GetLine (C
function), 193
PyUnstable_Long_CompactValue (C function),
133
PyUnstable_Long_IsCompact (C function), 133
PyUnstable_Object_GC_NewWithExtraData
(C function), 310
PyUnstable_PerfMapState_Fini (C function),
93
PyUnstable_PerfMapState_Init (C function),
93
PyUnstable_Type_AssignVersionTag (C func-
tion), 126
PyUnstable_WritePerfMapEntry (C function),
93
PyVarObject (C type), 264
PyVarObject_HEAD_INIT (C macro), 265
PyVarObject.ob_size (C member), 280
PyVectorcall_Call (C function), 102
PyVectorcall_Function (C function), 102
PyVectorcall_NARGS (C function), 102
PyWeakref_Check (C function), 189
PyWeakref_CheckProxy (C function), 189
PyWeakref_CheckRef (C function), 189

Dizin

377

The Python/C API, Yayim 3.12.3

PyWeakref_GET_OBJECT (C function), 189
PyWeakref_GetObject (C function), 189
PyWeakref_NewProxy (C function), 189
PyWeakref_NewRef (C function), 189
PyWideStringList (C type), 228
PyWideStringList_Append (C function), 228
PyWideStringList_Insert (C function), 228
PyWideStringList.items (C member), 228
PyWideStringList.length (C member), 228
PyWrapper_New (C function), 186

R

READ_RESTRICTED (C macro), 270
READONLY (C macro), 270
realloc (C function), 251
referans sayisi, 330
releasebufferproc (Ctype), 307
repr

built-in function, 97,283
reprfunc (Ctype), 306
RESTRICTED (C macro), 270
richcmpfunc (C type), 306

S

sanal makine, 332
sanal ortam, 332
sdterr

stdin stdout, 206
search

path, module, 12, 205, 208
sendfunc (C type), 307
sequence

object, 138
set

object, 167
set_all(),9
setattrfunc (Ctype), 306
setattrofunc (Ctype), 306
setswitchinterval (in module sys), 210
setter (Ctype), 272
SIGINT (C macro), 61
sinif, 319
sinif dediskeni, 320
SIZE_MAX (C macro), 132
signal

module, 61
sihirli ydntem, 326
soyut temel sinaif, 317
s6zliik, 321
s6z1liik anlama, 321
s6zlik gdriintimii, 321
special

metot, 331
ssizeargfunc (C type), 307

ssizeobjargproc (Ctype), 307
static type checker, 331
staticmethod

built-in function, 268
stderr (in module sys), 219, 220
stdin

stdout sdterr, 206
stdin (in module sys), 219, 220
stdout

sdterr, stdin, 206
stdout (in module sys), 219, 220
strerror (C function), 55
string

PyObject_Str (C function), 98

structmember.h, 272
sum_list (), 10

sum_sequence (), 10, 11
siirekli paketleme, 330
Sys

module, 12, 205, 219, 220

SystemError (built-in exception), 178

T

T_BOOL (C macro), 272
T_BYTE (C macro), 272
T_CHAR (C macro), 272
T_DOUBLE (C macro), 272
T_FLOAT (C macro), 272
T_INT (C macro), 272
T_LONG (C macro), 272
T_LONGLONG (C macro), 272
T_NONE (C macro), 272
T_OBJECT (C macro), 272
T_OBJECT_EX (C macro), 272
T_PYSSIZET (C macro), 272
T_SHORT (C macro), 272
T_STRING (C macro), 272

T_STRING_INPLACE (C macro), 272

T_UBYTE (C macro), 272
T_UINT (C macro), 272
T_ULONG (C macro), 272
T_ULONGULONG (C macro), 272
T_USHORT (C macro), 272
tanimlayicz, 320

tek sevk, 330

tercliman kapatma, 324
ternaryfunc (C type), 307
tip, 331

tip takma adazi, 331
traverseproc (Ctype), 312
tuple

built-in function, 110, 163

object, 159
tiir ipucu, 332

378

The Python/C API, Yayim 3.12.3

type
built-in function, 99
object, 7,123

U

ULONG_MAX (C macro), 132
unaryfunc (C type), 307
USE_STACKCHECK (C macro), 70
uzatma modiilii, 321

0

i¢ tirnakli dize, 331

Vv

vectorcallfunc (Ctype), 101
version (in module sys), 208, 209
visitproc (Ctype), 311

W

WRITE_RESTRICTED (C macro), 270

Y

yazi ¢dziimleme, 331
yazi1i dosyasi, 331

yeni stil sainaif, 327
yerel kodlama, 326
yikanabilir, 324
yinelenebilir, 325
yineleyici, 325

yol benzeri nesne, 329
yol giris kancasai, 328
yol girisi, 328

yol girisi bulucu, 328
yol tabanli bulucu, 328
yorumlanmis, 324
yikleyici, 326

Dizin

379

	Introduction
	Coding standards
	Include Files
	Useful macros
	Objects, Types and Reference Counts
	Reference Counts
	Reference Count Details

	Types

	Exceptions
	Embedding Python
	Debugging Builds

	C API Stability
	Unstable C API
	Stable Application Binary Interface
	Limited C API
	Stable ABI
	Limited API Scope and Performance
	Limited API Caveats

	Platform Considerations
	Contents of Limited API

	The Very High Level Layer
	Reference Counting
	Exception Handling
	Printing and clearing
	Raising exceptions
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Exception Objects
	Unicode Exception Objects
	Recursion Control
	Standard Exceptions
	Standard Warning Categories

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	Parsing arguments
	Strings and buffers
	Numbers
	Other objects
	API Functions

	Building values

	String conversion and formatting
	PyHash API
	Reflection
	Codec registry and support functions
	Codec lookup API
	Registry API for Unicode encoding error handlers

	Support for Perf Maps

	Abstract Objects Layer
	Object Protocol
	Call Protocol
	The tp_call Protocol
	The Vectorcall Protocol
	Recursion Control
	Vectorcall Support API

	Object Calling API
	Call Support API

	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol
	Buffer structure
	Buffer request types
	request-independent fields
	readonly, format
	shape, strides, suboffsets
	contiguity requests
	compound requests

	Complex arrays
	NumPy-style: shape and strides
	PIL-style: shape, strides and suboffsets

	Buffer-related functions

	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Type Objects
	Creating Heap-Allocated Types

	The None Object

	Numeric Objects
	Integer Objects
	Boolean Objects
	Floating Point Objects
	Pack and Unpack functions
	Pack functions
	Unpack functions

	Complex Number Objects
	Complex Numbers as C Structures
	Complex Numbers as Python Objects

	Sequence Objects
	Bytes Objects
	Byte Array Objects
	Type check macros
	Direct API functions
	Macros

	Unicode Objects and Codecs
	Unicode Objects
	Unicode Type
	Unicode Character Properties
	Creating and accessing Unicode strings
	Locale Encoding
	File System Encoding
	wchar_t Support

	Built-in Codecs
	Generic Codecs
	UTF-8 Codecs
	UTF-32 Codecs
	UTF-16 Codecs
	UTF-7 Codecs
	Unicode-Escape Codecs
	Raw-Unicode-Escape Codecs
	Latin-1 Codecs
	ASCII Codecs
	Character Map Codecs
	MBCS codecs for Windows
	Methods & Slots

	Methods and Slot Functions

	Tuple Objects
	Struct Sequence Objects
	List Objects

	Container Objects
	Dictionary Objects
	Set Objects

	Function Objects
	Function Objects
	Instance Method Objects
	Method Objects
	Cell Objects
	Code Objects
	Extra information

	Other Objects
	File Objects
	Module Objects
	Initializing C modules
	Single-phase initialization
	Multi-phase initialization
	Low-level module creation functions
	Support functions

	Module lookup

	Iterator Objects
	Descriptor Objects
	Slice Objects
	Ellipsis Object

	MemoryView objects
	Weak Reference Objects
	Capsules
	Frame Objects
	Internal Frames

	Generator Objects
	Coroutine Objects
	Context Variables Objects
	DateTime Objects
	Objects for Type Hinting

	Initialization, Finalization, and Threads
	Before Python Initialization
	Global configuration variables
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Releasing the GIL from extension code
	Non-Python created threads
	Cautions about fork()
	High-level API
	Low-level API

	Sub-interpreter support
	A Per-Interpreter GIL
	Bugs and caveats

	Asynchronous Notifications
	Profiling and Tracing
	Advanced Debugger Support
	Thread Local Storage Support
	Thread Specific Storage (TSS) API
	Dynamic Allocation
	Methods

	Thread Local Storage (TLS) API

	Python Initialization Configuration
	Example
	PyWideStringList
	PyStatus
	PyPreConfig
	Preinitialize Python with PyPreConfig
	PyConfig
	Initialization with PyConfig
	Isolated Configuration
	Python Configuration
	Python Path Configuration
	Py_RunMain()
	Py_GetArgcArgv()
	Multi-Phase Initialization Private Provisional API

	Memory Management
	Overview
	Allocator Domains
	Raw Memory Interface
	Memory Interface
	Object allocators
	Default Memory Allocators
	Customize Memory Allocators
	Debug hooks on the Python memory allocators
	The pymalloc allocator
	Customize pymalloc Arena Allocator

	tracemalloc C API
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Base object types and macros
	Implementing functions and methods
	Accessing attributes of extension types
	Member flags
	Member types
	Defining Getters and Setters

	Type Objects
	Quick Reference
	“tp slots”
	sub-slots
	slot typedefs

	PyTypeObject Definition
	PyObject Slots
	PyVarObject Slots
	PyTypeObject Slots
	Static Types
	Heap Types

	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	Slot Type typedefs
	Examples
	Supporting Cyclic Garbage Collection
	Controlling the Garbage Collector State
	Querying Garbage Collector State

	API and ABI Versioning
	Sözlük
	Bu dokümanlar hakkında
	Python Dokümantasyonuna Katkıda Bulunanlar

	Tarihçe ve Lisans
	Yazılımın tarihçesi
	Python’a erişmek veya başka bir şekilde kullanmak için şartlar ve koşullar
	PYTHON İÇİN PSF LİSANS ANLAŞMASI 3.12.3
	PYTHON 2.0 İÇİN BEOPEN.COM LİSANS SÖZLEŞMESİ
	PYTHON 1.6.1 İÇİN CNRI LİSANS ANLAŞMASI
	0.9.0 ARASI 1.2 PYTHON İÇİN CWI LİSANS SÖZLEŞMESİ
	PYTHON 3.12.3 BELGELERİNDEKİ KOD İÇİN SIFIR MADDE BSD LİSANSI

	Tüzel Yazılımlar için Lisanslar ve Onaylar
	Mersenne Twister’ı
	Soketler
	Asenkron soket hizmetleri
	Çerez yönetimi
	Çalıştırma izleme
	UUencode ve UUdecode fonksiyonları
	XML Uzaktan Yordam Çağrıları
	test_epoll
	kqueue seçin
	SipHash24
	strtod ve dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test paketi
	Audioop
	asyncio

	Telif Hakkı
	Dizin

