Python Setup and Usage
Yayim 3.12.3

Guido van Rossum and the Python development team

Mayis 04, 2024

Python Software Foundation
Email: docs@python.org

Igindekiler

1 Command line and environment 3
I[.1. Commandline i e e e 3
1.1.1 Imnterface options L e e 3

1.1.2 Generic Optionso e e e 5

1.1.3 Miscellaneous options oot e e e e 6

1.1.4 Options you shouldn’tuse 0 i i i i et e e e e 10

1.2 Environment variables L e e 10
1.2.1 Debug-mode variables e 15

2 Using Python on Unix platforms 17
2.1 Getting and installing the latest versionof Python 17
2.1 OnLinux e e e e e 17

2.1.2 OnFreeBSDandOpenBSD 17

2.2 Building Python. e 18
2.3 Python-related paths and files e 18
24 Miscellaneous e e e e e e 18
2.5 Custom OpenSSL o . e e e e 19
3 Configure Python 21
3.1 BuildRequirements e e e e e e e e e e e e e 21
3.2 Generatedfiles e 21
32,1 configure SCript e e e e e e e e e e e e 22

33 Configure OptionSs ot it i e e e e e e e e e e e e e 22
331 General OptionsS v v v v e 22

3.3.2 WebAssembly Options o o o i e e e e e e e e e 24

333 Install Options e e e 24

334 Performance optionsl e 25

33,5 PythonDebugBuild 26

33.6 Debugoptions e e e e e e 27

337 LAnKer Ooptions o v v e 27

3.3.8 LibrarieS Options e e e e e e e e e e e e e e e 28

3.3.9 Security Options oo e e e e e e e e e e e e 28
3310 macOSOPLions e 29
3.3.11 Cross Compiling Options oo v vt it e e e 30

34 Python Build System e e e e e e 30
34.1 Mainfiles of the build system e 30

342 Mainbuildsteps e e e 31

343 Main Makefile targets e 31

344 CexXenSiONS . . . v v v v vt v it e e e e e e e e e e e e e e 31

3.5 Compilerand linkerflags L e e e e 32
3.5.1 Preprocessor flags e e e 32

352 Compilerflags e
3,53 Linkerflags oL e e e e e e
4 Using Python on Windows
4.1 Thefullinstaller e e e e e e
4.1.1 Installation StEPS v v v v e e e e e e e e e e e e e e e e e e
4.1.2 Removing the MAX_PATH Limitation
4.1.3 Installing Without UL o
4.1.4 Installing Without Downloading,
4.1.5 Modifyinganinstallo
4.2 The Microsoft Store package i e e e e e e e
421 Knownissues e e e e e e
4.3 Thenugetorgpackages L e
4.4 Theembeddable package L e e e e
4.4.1 Python Application L e
442 Embedding Python e
4.5 Alternative bundles e e e e
4.6 Configuring Python o e
4.6.1 Excursus: Setting environment variables oL
4.6.2 Finding the Python executable,
47 UTF-8mode e
4.8 Python Launcher for Windows e
4.8.1 Gettingstarted e e e e e e e e
4.8.2 Shebanglines e
4.8.3 Argumentsinshebanglines L o
4.8.4 Customization vt v e e e e e e e e e e
4.8.5 DIagnostiCs v i e e e e e e e e e e e e e e e e e e e
486 DryRun e e e
4.8.77 Installondemand e
48.8 Returncodes e e e
4.9 Findingmodules e
4.10 Additional modules L. e e e e
4.10.1 PyWiIn32 e
4102 cox_Freeze L
4.11 Compiling Pythonon Windows 0. e
4.12 Other Platforms e e
Using Python on a Mac
5.1 Getting and Installing Python L
5.1.1 HowtorunaPythonscript
5.1.2 Runningscripts witha GUI
5.1.3 Configuration L. e e e e
52 ThelDE . . . e e
5.3 Installing Additional Python Packages
54 GUIProgramming o v v ittt e e e e e e e e
5.5 Distributing Python Applications e
5.6 Other Resources i i i it e e e
Editors and IDEs
Sozlitk

Bu dokiimanlar hakkinda
Python Dokiimantasyonuna Katkida Bulunanlar

B.1

Tarihge ve Lisans

C.1

Yazilimin tarihgesi

C.2 Python’a erismek veya bagka bir sekilde kullanmak icin sartlar ve kogullar
C.2.1 PYTHON ICIN PSF LISANS ANLASMASI3.12.3o oo vttt

55
55
56
56
56
56
56
57
57
57

59

61

77
77

C3

C.2.2 PYTHON 2.0 ICIN BEOPEN.COM LISANS SOZLESMESI
PYTHON 1.6.1 ICIN CNRI LISANS ANLASMASI
C.2.4 0.9.0 ARASI 1.2 PYTHON ICIN CWI LISANS SOZLESMESI
PYTHON 3.12.3 BELGELERINDEKI KOD ICIN SIFIR MADDE BSD LISANSI

Tiizel Yazihmlar i¢in Lisanslar ve Onaylar

C23

C25

C3.1
C32
C33
C34
C3.5
C3.6
C3.7
C3.8
C39
C.3.10
C3.11
C3.12
C3.13
C3.14
C3.15
C3.16
C3.17
C3.18
C.3.19
C.3.20

D Telif Hakki

Dizin

Mersenne
Soketler
Asenkron

TWISEI'T . . v o v o e e e e e e e e e e

sokethizmetleri e

Cerez yOnetimi o v e e e e e e e e e e e e e
Calistrmaizleme L e
UUencode ve UUdecode fonksiyonlart
XML Uzaktan Yordam Cagrilart e

test_epoll

kqueuesecin e e e e
SipHash24 e
strtod ve dtoa L L . e e e e e e e e e e e e

libmpdec

W3C Cl4Ntestpaketi i i i e e e e e e e e e e e e e

Audioop
asyncio

Python Setup and Usage, Yayim 3.12.3

This part of the documentation is devoted to general information on the setup of the Python environment on different
platforms, the invocation of the interpreter and things that make working with Python easier.

icindekiler 1

Python Setup and Usage, Yayim 3.12.3

2 icindekiler

BOLOM 1

Command line and environment

The CPython interpreter scans the command line and the environment for various settings.

CPython uygulama ayrintisi: Other implementations’ command line schemes may differ. See implementations for
further resources.

1.1 Command line

When invoking Python, you may specify any of these options:

[python [-bBdEhiIOgsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

[python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:

¢ When called with standard input connected to a tty device, it prompts for commands and executes them until
an EOF (an end-of-file character, you can produce that with Ctr1-D on UNIX or Ctrl-Z, Enter on
Windows) is read.

* When called with a file name argument or with a file as standard input, it reads and executes a script from that
file.

¢ When called with a directory name argument, it reads and executes an appropriately named script from that
directory.

* When called with —c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

¢ When called with -m module-name, the given module is located on the Python module path and executed
as a script.

Python Setup and Usage, Yayim 3.12.3

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end
up in sys . argv — note that the first element, subscript zero (sys.argv [0]), is a string reflecting the program’s
source.

—-c <command>
Execute the Python code in command. command can be one or more statements separated by newlines, with

significant leading whitespace as in normal module code.

If this option is given, the first element of sys.argv will be "—c" and the current directory will be added
to the start of sys.path (allowing modules in that directory to be imported as top level modules).

Raises an auditing event cpython . run_command with argument command.

-m <module—name>

Search sys.path for the named module and execute its contents as the __main___ module.

Since the argument is a module name, you must not give a file extension (. py). The module name should be
a valid absolute Python module name, but the implementation may not always enforce this (e.g. it may allow
you to use a name that includes a hyphen).

Package names (including namespace packages) are also permitted. When a package name is supplied instead
of a normal module, the interpreter will execute <pkg>.__main___ as the main module. This behaviour is
deliberately similar to the handling of directories and zipfiles that are passed to the interpreter as the script
argument.

Not: This option cannot be used with built-in modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source
file is not available.

If this option is given, the first element of sys . argv will be the full path to the module file (while the module
file is being located, the first element will be set to "-m"). As with the —c option, the current directory will
be added to the start of sys.path.

—TI option can be used to run the script in isolated mode where sys.path contains neither the current di-
rectory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python -m timeit -s "setup here" "benchmarked code here"
python -m timeit -h # for details

Raises an auditing event cpython. run_module with argument module-name.
Ayrica bakiniz:
runpy.run_module ()
Equivalent functionality directly available to Python code
PEP 338 — Executing modules as scripts
3.1 siirtimiinde degisti: Supply the package name to runa __main__ submodule.

3.4 siiriimiinde degisti: namespace packages are also supported

Read commands from standard input (sys . stdin). If standard input is a terminal, -1 is implied.

If this option is given, the first element of sys.argv will be "—" and the current directory will be added to
the start of sys.path.

Raises an auditing event cpython. run_stdin with no arguments.

4 Bolim 1. Command line and environment

https://peps.python.org/pep-0338/

Python Setup and Usage, Yayim 3.12.3

<script>

Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring to
either a Python file, a directory containing a __main__ .py file, or a zipfile containing a __main__ .py
file.

If this option is given, the first element of sys . argv will be the script name as given on the command line.

If the script name refers directly to a Python file, the directory containing that file is added to the start of
sys.path, and the file is executed as the __main__ module.

If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
__main__ .py file in that location is executed as the __main__ module.

—TI option can be used to run the script in isolated mode where sy s .path contains neither the script’s di-
rectory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Raises an auditing event coython.run_file with argument £ilename.
Ayrica bakimz:

runpy .run_path ()
Equivalent functionality directly available to Python code

If no interface option is given, —1 is implied, sys.argv [0] is an empty string (" ") and the current directory will
be added to the start of sys.path. Also, tab-completion and history editing is automatically enabled, if available
on your platform (see rlcompleter-config).

Ayrica bakiniz:
tut-invoking

3.4 siirlimiinde degisti: Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-2
-h
——help

Print a short description of all command line options and corresponding environment variables and exit.

——help-env

Print a short description of Python-specific environment variables and exit.
Added in version 3.11.
—-help—xoptions
Print a description of implementation-specific —X options and exit.
Added in version 3.11.
--help-all
Print complete usage information and exit.
Added in version 3.11.
-V
——version

Print the Python version number and exit. Example output could be:

[Python 3.8.0b2+

When given twice, print more information about the build, like:

1.1. Command line 5

Python Setup and Usage, Yayim 3.12.3

Python 3.8.0b2+ (3.8:0c076caaa8, Apr 20 2019, 21:55:00)
[GCC 6.2.0 20161005]

Added in version 3.6: The —VV option.

1.1.3 Miscellaneous options

-b

Issue a warning when converting bytes or bytearray to str without specifying encoding or comparing
bytesorbytearray with str or bytes with int. Issue an error when the option is given twice (-bb).

3.5 stirtimiinde degisti: Affects also comparisons of bytes with int.

If given, Python won’t try to write .pyc files on the import of source modules. See also
PYTHONDONTWRITEBYTECODE.

——check-hash-based-pycs default|always|never

-i

Control the validation behavior of hash-based . pyc files. See pyc-invalidation. When set to default, chec-
ked and unchecked hash-based bytecode cache files are validated according to their default semantics. When
set to always, all hash-based . pyc files, whether checked or unchecked, are validated against their corres-
ponding source file. When set to never, hash-based . pyc files are not validated against their corresponding
source files.

The semantics of timestamp-based . pyc files are unaffected by this option.

Turn on parser debugging output (for expert only). See also the PYTHONDEBUG environment variable.

This option requires a debug build of Python, otherwise it’s ignored.

Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

See also the —P and - (isolated) options.

When a script is passed as first argument or the —c option is used, enter interactive mode after executing the
script or the command, even when sys . stdin does not appear to be a terminal. The PYTHONSTARTUP
file is not read.

This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

Run Python in isolated mode. This also implies —E, —P and —s options.

In isolated mode sys . path contains neither the script’s directory nor the user’s site-packages directory. All
PYTHON* environment variables are ignored, too. Further restrictions may be imposed to prevent the user
from injecting malicious code.

Added in version 3.4.

Remove assert statements and any code conditional on the value of __debug__. Augment the filena-
me for compiled (byfecode) files by adding . opt—1 before the .pyc extension (see PEP 488). See also
PYTHONOPTIMIZE.

3.5 siirtimiinde degisti: Modify . pyc filenames according to PEP 488.

Bolim 1. Command line and environment

https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/

Python Setup and Usage, Yayim 3.12.3

-q

-u

Do -0 and also discard docstrings. Augment the filename for compiled (byfecode) files by adding . opt -2
before the . pyc extension (see PEP 488).

3.5 siiriimiinde degisti: Modify . pyc filenames according to PEP 488.

Don’t prepend a potentially unsafe path to sys.path:
* python -m module command line: Don’t prepend the current working directory.

e python script.py command line: Don’t prepend the script’s directory. If it’s a symbolic link, re-
solve symbolic links.

e python —-c codeand python (REPL)command lines: Don’t prepend an empty string, which means
the current working directory.

See also the PYTHONSAFEPATH environment variable, and —E and - T (isolated) options.

Added in version 3.11.

Don’t display the copyright and version messages even in interactive mode.

Added in version 3.2.

Turn on hash randomization. This option only has an effect if the PYTHONHASHSEED environment variable
is set to 0, since hash randomization is enabled by default.

On previous versions of Python, this option turns on hash randomization, so that the __hash__ () values of
str and bytes objects are “salted” with an unpredictable random value. Although they remain constant within
an individual Python process, they are not predictable between repeated invocations of Python.

Hash randomization is intended to provide protection against a denial-of-service caused by carefully chosen
inputs that exploit the worst case performance of a dict construction, O(n*) complexity. See http://ocert.org/
advisories/ocert-2011-003.html for details.

PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.
Added in version 3.2.3.

3.7 siiriimiinde degisti: The option is no longer ignored.

Don’t add the user site-packages directorytosys.path.
See also PYTHONNOUSERSITE.
Ayrica bakimz:

PEP 370 — Per user site-packages directory

Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main () if you want them
to be triggered).

Force the stdout and stderr streams to be unbuffered. This option has no effect on the stdin stream.
See also PYTHONUNBUFFERED.

3.7 siiriimiinde degisti: The text layer of the stdout and stderr streams now is unbuffered.

1.1. Command line 7

https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/
http://ocert.org/advisories/ocert-2011-003.html
http://ocert.org/advisories/ocert-2011-003.html
https://peps.python.org/pep-0370/

Python Setup and Usage, Yayim 3.12.3

-v
Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. When given twice (—vv), print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit.
3.10 siirtimiinde degisti: The site module reports the site-specific paths and . pth files being processed.
See also PYTHONVERBOSE.
-W arg
Warning control. Python’s warning machinery by default prints warning messages to sys.stderr.
The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those
that are otherwise ignored by default):
-Wdefault # Warn once per call location
-Werror # Convert to exceptions
-Walways # Warn every time
—Wmodule # Warn once per calling module
—-Wonce # Warn once per Python process
—-Wignore # Never warn
The action names can be abbreviated as desired and the interpreter will resolve them to the appropriate action
name. For example, —W1i is the same as ~-Wignore.
The full form of argument is:

[action:message:category:module:lineno }
Empty fields match all values; trailing empty fields may be omitted. For example -W
ignore: :DeprecationWarning ignores all DeprecationWarning warnings.

The action field is as explained above but only applies to warnings that match the remaining fields.

The message field must match the whole warning message; this match is case-insensitive.

The category field matches the warning category (ex: DeprecationWarning). This must be a class name;
the match test whether the actual warning category of the message is a subclass of the specified warning
category.

The module field matches the (fully qualified) module name; this match is case-sensitive.

The lineno field matches the line number, where zero matches all line numbers and is thus equivalent to an
omitted line number.

Multiple —7 options can be given; when a warning matches more than one option, the action for the last
matching option is performed. Invalid —7 options are ignored (though, a warning message is printed about
invalid options when the first warning is issued).

Warnings can also be controlled using the PYTHONWARNINGS environment variable and from within a Python
program using the warnings module. For example, the warnings.filterwarnings () function can
be used to use a regular expression on the warning message.
See warning-filter and describing-warning-filters for more details.

-x
Skip the first line of the source, allowing use of non-Unix forms of # ! cmd. This is intended for a DOS specific
hack only.

-X

Reserved for various implementation-specific options. CPython currently defines the following possible values:
e -X faulthandler toenable faulthandler. See also PYTHONFAULTHANDLER.
Added in version 3.3.

8 Bolim 1. Command line and environment

Python Setup and Usage, Yayim 3.12.3

* —-X showrefcount to output the total reference count and number of used memory blocks when the
program finishes or after each statement in the interactive interpreter. This only works on debug builds.

Added in version 3.4.

e —-X tracemalloc to start tracing Python memory allocations using the tracemalloc mo-
dule. By default, only the most recent frame is stored in a traceback of a trace. Use -X
tracemalloc =NFRAME to start tracing with a traceback limit of NFRAME frames. See
tracemalloc.start () and PYTHONTRACEMALLOC for more information.

Added in version 3.4.

e —-X int_max_str_digits configures the integer string conversion length limitation. See also
PYTHONINTMAXSTRDIGITS.

Added in version 3.11.

e —-X importtime toshow how long each import takes. It shows module name, cumulative time (inclu-
ding nested imports) and self time (excluding nested imports). Note that its output may be broken in multi-
threaded application. Typical usage is python3 -X importtime -c 'import asyncio'.
See also PYTHONPROF ILEIMPORTTIME.

Added in version 3.7.

e —X dev: enable Python Development Mode, introducing additional runtime checks that are too expen-
sive to be enabled by default. See also PYTHONDEVMODE.

Added in version 3.7.

e —X utf8 enables the Python UTF-8 Mode. -X ut£8 =0 explicitly disables Python UTF-8 Mode
(even when it would otherwise activate automatically). See also PYTHONUTES.

Added in version 3.7.

e —X pycache_prefix =PATH enables writing .pyc files to a parallel tree rooted at the given di-
rectory instead of to the code tree. See also PYTHONPYCACHEPREFIX.

Added in version 3.8.

e -X warn_default_encodingissuesa EncodingWarning when the locale-specific default en-
coding is used for opening files. See also PYTHONWARNDEFAULTENCODING.

Added in version 3.10.

¢ —-X no_debug_ranges disables the inclusion of the tables mapping extra location information (end
line, start column offset and end column offset) to every instruction in code objects. This is useful when
smaller code objects and pyc files are desired as well as suppressing the extra visual location indicators
when the interpreter displays tracebacks. See also PY THONNODEBUGRANGES.

Added in version 3.11.

e —-X frozen_modules determines whether or not frozen modules are ignored by the import machi-
nery. A value of “on” means they get imported and “off” means they are ignored. The default is “on” if
this is an installed Python (the normal case). If it’s under development (running from the source tree)
then the default is “off”. Note that the “importlib_bootstrap” and “importlib_bootstrap_external” frozen
modules are always used, even if this flag is set to “off”.

Added in version 3.11.

e —X perf enables support for the Linux per f profiler. When this option is provided, the per f profiler
will be able to report Python calls. This option is only available on some platforms and will do nothing
if is not supported on the current system. The default value is “oft”. See also PYTHONPERFSUPPORT
and perf_profiling.

Added in version 3.12.
It also allows passing arbitrary values and retrieving them through the sys._xoptions dictionary.

Added in version 3.2.

1.1. Command line 9

Python Setup and Usage, Yayim 3.12.3

3.9 siirtimiinde degisti: Removed the -X showalloccount option.

3.10 siirimiinde degisti: Removed the -X oldparser option.

1.1.4 Options you shouldn’t use

-J

Reserved for use by Jython.

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line switches other
than -E or -I. It is customary that command-line switches override environmental variables where there is a conflict.

PYTHONHOME

Change the location of the standard Python libraries. By default, the libraries are searched in prefix/1ib/
pythonversion and exec_prefix/lib/pythonversion, where prefix and exec_prefix
are installation-dependent directories, both defaulting to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces both prefix and exec_prefix. To
specify different values for these, set PYTHONHOME to prefix:exec_prefix.

PYTHONPATH

Augment the default search path for module files. The format is the same as the shell’s PATH: one or more
directory pathnames separated by os.pathsep (e.g. colons on Unix or semicolons on Windows). Non-
existent directories are silently ignored.

In addition to normal directories, individual PY THONPA TH entries may refer to zipfiles containing pure Python
modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.

The default search path is installation dependent, but generally begins with prefix/l1ib/
pythonversion (see PYTHONHOME above). It is always appended to PYTHONPATH.

An additional directory will be inserted in the search path in front of PYTHONPATH as described above under
Interface options. The search path can be manipulated from within a Python program as the variable sys .
path.

PYTHONSAFEPATH

If this is set to a non-empty string, don’t prepend a potentially unsafe path to sys.path: see the —P option
for details.

Added in version 3.11.

PYTHONPLATLIBDIR

If this is set to a non-empty string, it overrides the sys.platlibdir value.

Added in version 3.9.

PYTHONSTARTUP

If this is the name of a readable file, the Python commands in that file are executed before the first prompt
is displayed in interactive mode. The file is executed in the same namespace where interactive commands are
executed so that objects defined or imported in it can be used without qualification in the interactive session.
You can also change the prompts sys.ps1 and sys.ps?2 and the hook sys.__interactivehook___
in this file.

Raises an auditing event cpython. run_startup with the filename as the argument when called on star-
tup.

10

Bolim 1. Command line and environment

https://www.jython.org/

Python Setup and Usage, Yayim 3.12.3

PYTHONOPTIMIZE
If this is set to a non-empty string it is equivalent to specifying the —O option. If set to an integer, it is equivalent
to specifying —O multiple times.

PYTHONBREAKPOINT

If this is set, it names a callable using dotted-path notation. The module containing the callable will be im-
ported and then the callable will be run by the default implementation of sys.breakpointhook ()
which itself is called by built-in breakpoint (). If not set, or set to the empty string, it is equiva-
lent to the value “pdb.set_trace”. Setting this to the string “0” causes the default implementation of sys.
breakpointhook () to do nothing but return immediately.

Added in version 3.7.

PYTHONDEBUG

If this is set to a non-empty string it is equivalent to specifying the —d option. If set to an integer, it is equivalent
to specifying —d multiple times.

This environment variable requires a debug build of Python, otherwise it’s ignored.
PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the —i option.

This variable can also be modified by Python code using os .environ to force inspect mode on program
termination.

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the —u option.
PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the —v option. If set to an integer, it is equivalent
to specifying —v multiple times.
PYTHONCASEOK
If this is set, Python ignores case in import statements. This only works on Windows and macOS.
PYTHONDONTWRITEBYTECODE
If this is set to a non-empty string, Python won’t try to write . pyc files on the import of source modules. This
is equivalent to specifying the —B option.
PYTHONPYCACHEPREFIX

If this is set, Python will write . pyc files in a mirror directory tree at this path, instead of in __pycache___
directories within the source tree. This is equivalent to specifying the ~X pycache_prefix =PATH option.

Added in version 3.8.
PYTHONHASHSEED
If this variable is not set or set to random, a random value is used to seed the hashes of str and bytes objects.

If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the
types covered by the hash randomization.

Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a cluster of
python processes to share hash values.

The integer must be a decimal number in the range [0,4294967295]. Specifying the value 0 will disable hash
randomization.

Added in version 3.2.3.
PYTHONINTMAXSTRDIGITS

If this variable is set to an integer, it is used to configure the interpreter’s global integer string conversion length
limitation.

Added in version 3.11.

1.2. Environment variables 11

Python Setup and Usage, Yayim 3.12.3

PYTHONIOENCODING

If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in the syn-
tax encodingname:errorhandler. Both the encodingname and the : errorhandler parts are
optional and have the same meaning as in str.encode ().

For stderr, the : errorhandler part is ignored; the handler will always be 'backslashreplace’.
3.4 siirtimiinde degisti: The encodingname part is now optional.

3.6 siirtimiinde degisti: On Windows, the encoding specified by this variable is ignored for interactive console
buffers unless PYTHONLEGACYWINDOWSSTDIO is also specified. Files and pipes redirected through the
standard streams are not affected.

PYTHONNOUSERSITE

If this is set, Python won’t add the user site-packages directorytosys.path.
Ayrica bakimz:

PEP 370 — Per user site-packages directory

PYTHONUSERBASE

Definesthe user base directory,whichisused to compute the path of the user site-packages
directory and installation paths for python -m pip install --user.

Ayrica bakimz:

PEP 370 — Per user site-packages directory

PYTHONEXECUTABLE

If this environment variable is set, sys.argv [0] will be set to its value instead of the value got through the
C runtime. Only works on macOS.

PYTHONWARNINGS

This is equivalent to the — v option. If set to a comma separated string, it is equivalent to specifying — multiple
times, with filters later in the list taking precedence over those earlier in the list.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those
that are otherwise ignored by default):

Warn once per call location
Convert to exceptions

Warn once per calling module
Warn once per Python process

#
#
Warn every time
#
#
Never warn

See warning-filter and describing-warning-filters for more details.

PYTHONFAULTHANDLER

If this environment variable is set to a non-empty string, faulthandler.enable () is called at startup:
install a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python
traceback. This is equivalent to —X faulthandler option.

Added in version 3.3.

PYTHONTRACEMALLOC

If this environment variable is set to a non-empty string, start tracing Python memory allocations using
the tracemalloc module. The value of the variable is the maximum number of frames stored in
a traceback of a trace. For example, PYTHONTRACEMALLOC =1 stores only the most recent frame.
See the tracemalloc.start () function for more information. This is equivalent to setting the —X
tracemalloc option.

Added in version 3.4.

12

Bolim 1. Command line and environment

https://peps.python.org/pep-0370/
https://peps.python.org/pep-0370/

Python Setup and Usage, Yayim 3.12.3

PYTHONPROFILEIMPORTTIME

If this environment variable is set to a non-empty string, Python will show how long each import takes. This is
equivalent to setting the —X importt ime option.

Added in version 3.7.

PYTHONASYNCIODEBUG
If this environment variable is set to a non-empty string, enable the debug mode of the asyncio module.

Added in version 3.4.

PYTHONMALLOC
Set the Python memory allocators and/or install debug hooks.

Set the family of memory allocators used by Python:
e default: use the default memory allocators.

* malloc: use the malloc () function of the C library for all domains (PYMEM_DOMAIN_RAW,
PYMEM_DOMAIN_MEM, PYMEM_DOMAIN_OBJ).

e pymalloc: use the pymalloc allocator for PYMEM_DOMAIN_MEM and PYMEM_DOMAIN_OBJ do-
mains and use the malloc () function for the PYMEM_ DOMAIN_RAW domain.

Install debug hooks:
* debug: install debug hooks on top of the default memory allocators.
* malloc_debug: same as malloc but also install debug hooks.
e pymalloc_debug: same as pymalloc but also install debug hooks.
Added in version 3.6.
3.7 siirtimiinde degisti: Added the "default" allocator.
PYTHONMALLOCSTATS

If set to a non-empty string, Python will print statistics of the pymalloc memory allocator every time a new
pymalloc object arena is created, and on shutdown.

This variable is ignored if the PYTHONMALLOC environment variable is used to force themalloc () allocator
of the C library, or if Python is configured without pymalloc support.

3.6 siiriimiinde degisti: This variable can now also be used on Python compiled in release mode. It now has no
effect if set to an empty string.

PYTHONLEGACYWINDOWSFSENCODING

If set to a non-empty string, the default filesystem encoding and error handler mode will revert to their pre-3.6
values of ‘mbcs’ and ‘replace’, respectively. Otherwise, the new defaults ‘utf-8” and ‘surrogatepass’ are used.

This may also be enabled at runtime with sys._enablelegacywindowsfsencoding ().
Availability: Windows.
Added in version 3.6: See PEP 529 for more details.

PYTHONLEGACYWINDOWSSTDIO

If set to a non-empty string, does not use the new console reader and writer. This means that Unicode characters
will be encoded according to the active console code page, rather than using utf-8.

This variable is ignored if the standard streams are redirected (to files or pipes) rather than referring to console
buffers.

Availability: Windows.
Added in version 3.6.

1.2. Environment variables 13

https://peps.python.org/pep-0529/

Python Setup and Usage, Yayim 3.12.3

PYTHONCOERCECLOCALE
If set to the value 0, causes the main Python command line application to skip coercing the legacy ASCII-based
C and POSIX locales to a more capable UTF-8 based alternative.

If this variable is not set (or is set to a value other than 0), the LC_ALL locale override environment variable is
also not set, and the current locale reported for the LC_CTYPE category is either the default C locale, or else
the explicitly ASCII-based POSIX locale, then the Python CLI will attempt to configure the following locales
for the LC_CTYPE category in the order listed before loading the interpreter runtime:

e C.UTF-8
e C.utfs8
e UTF-8

If setting one of these locale categories succeeds, then the LC_CTYPE environment variable will also be set
accordingly in the current process environment before the Python runtime is initialized. This ensures that in
addition to being seen by both the interpreter itself and other locale-aware components running in the same
process (such as the GNU readline library), the updated setting is also seen in subprocesses (regardless
of whether or not those processes are running a Python interpreter), as well as in operations that query the
environment rather than the current C locale (such as Python’s own locale.getdefaultlocale ()).

Configuring one of these locales (either explicitly or via the above implicit locale coercion) automatically enab-
les the surrogateescape error handler for sys.stdin and sys.stdout (sys.stderr continues
touse backslashreplace asitdoes in any other locale). This stream handling behavior can be overridden
using PYTHONIOENCODING as usual.

For debugging purposes, setting PYTHONCOERCECLOCALE =warn will cause Python to emit warning mes-
sages on stderr if either the locale coercion activates, or else if a locale that would have triggered coercion
is still active when the Python runtime is initialized.

Also note that even when locale coercion is disabled, or when it fails to find a suitable target locale,
PYTHONUTF 8 will still activate by default in legacy ASCII-based locales. Both features must be disabled
in order to force the interpreter to use ASCIT instead of UTF -8 for system interfaces.

Auvailability: Unix.
Added in version 3.7: See PEP 538 for more details.
PYTHONDEVMODE

If this environment variable is set to a non-empty string, enable Python Development Mode, introducing addi-
tional runtime checks that are too expensive to be enabled by default. This is equivalent to setting the —X dev
option.

Added in version 3.7.

PYTHONUTF8
If set to 1, enable the Python UTF-8 Mode.

If set to 0, disable the Python UTF-8 Mode.
Setting any other non-empty string causes an error during interpreter initialisation.
Added in version 3.7.

PYTHONWARNDEFAULTENCODING

If this environment variable is set to a non-empty string, issue a EncodingWarning when the locale-specific
default encoding is used.

See i0-encoding-warning for details.
Added in version 3.10.

PYTHONNODEBUGRANGES

If this variable is set, it disables the inclusion of the tables mapping extra location information (end line, start
column offset and end column offset) to every instruction in code objects. This is useful when smaller code

14 Bolim 1. Command line and environment

https://peps.python.org/pep-0538/

Python Setup and Usage, Yayim 3.12.3

objects and pyc files are desired as well as suppressing the extra visual location indicators when the interpreter
displays tracebacks.

Added in version 3.11.

PYTHONPERF SUPPORT

If this variable is set to a nonzero value, it enables support for the Linux per £ profiler so Python calls can be
detected by it.

If set to 0, disable Linux perf profiler support.
See also the —~X perf command-line option and perf_profiling.

Added in version 3.12.

1.2.1 Debug-mode variables

PYTHONDUMPREF'S
If set, Python will dump objects and reference counts still alive after shutting down the interpreter.
Need Python configured with the ——~with-trace—refs build option.
PYTHONDUMPREFSFILE =FILENAME

If set, Python will dump objects and reference counts still alive after shutting down the interpreter into a file
called FILENAME.

Need Python configured with the ——with—trace—refs build option.
Added in version 3.11.

1.2. Environment variables 15

Python Setup and Usage, Yayim 3.12.3

16 Bolim 1. Command line and environment

BOLOM 2

Using Python on Unix platforms

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there
are certain features you might want to use that are not available on your distro’s package. You can easily compile the
latest version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages
for your own distro. Have a look at the following links:

Ayrica bakiniz:

https://www.debian.org/doc/manuals/maint-guide/first.en.html
for Debian users

https://en.opensuse.org/Portal:Packaging
for OpenSuse users

https://docs.fedoraproject.org/en-US/package-maintainers/Packaging_Tutorial_GNU_Hello/
for Fedora users

https://slackbook.org/html/package-management-making-packages.html
for Slackware users

2.1.2 On FreeBSD and OpenBSD

* FreeBSD users, to add the package use:

[pkg install python3

e OpenBSD users, to add the package use:

pkg_add -r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your.
—architecture here>/python-<version>.tgz

17

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs.fedoraproject.org/en-US/package-maintainers/Packaging_Tutorial_GNU_Hello/
https://slackbook.org/html/package-management-making-packages.html

Python Setup and Usage, Yayim 3.12.3

For example 1386 users get the 2.5.1 version of Python using:

[pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/1386/python-2.5.1p2.tgz }

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh clone. (If you want to contribute patches, you will need a clone.)

The build process consists of the usual commands:

./configure
make
make install

Configuration options and caveats for specific Unix platforms are extensively documented in the README.rst file in
the root of the Python source tree.

Uyar1: make install canoverwrite or masquerade the python3 binary.make altinstall istherefore
recommended instead of make install since it only installs exec_prefix/bin/pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix and exec_prefix are
installation-dependent and should be interpreted as for GNU software; they may be the same.

For example, on most Linux systems, the default for both is /usr.

File/directory Meaning

exec_prefix/bin/python3 Recommended location of the interpreter.
prefix/lib/pythonversion, Recommended locations of the directories containing the standard
exec_prefix/lib/ modules.

pythonversion

prefix/include/pythonversion, Recommended locations of the directories containing the include
exec_prefix/include/ files needed for developing Python extensions and embedding the
pythonversion interpreter.

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

[$ chmod +x script }

and put an appropriate Shebang line at the top of the script. A good choice is usually

[#J/usr/bin/env python3 J

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env command,
so you may need to hardcode /usr/bin/python3 as the interpreter path.

To use shell commands in your Python scripts, look at the subprocess module.

18 B6liim 2. Using Python on Unix platforms

https://www.python.org/downloads/source/
https://devguide.python.org/setup/#get-the-source-code
https://github.com/python/cpython/tree/3.12/README.rst

Python Setup and Usage, Yayim 3.12.3

2.5 Custom OpenSSL

1. To use your vendor’s OpenSSL configuration and system trust store, locate the directory with openssl.
cnf file or symlink in /et c. On most distribution the file is either in /etc/ssl or /etc/pki/tls. The
directory should also contain a cert . pem file and/or a cert s directory.

$ find /etc/ —name openssl.cnf —printf "%h\n"
/etc/ssl

2. Download, build, and install OpenSSL. Make sure you use install_sw and not install. The
install_sw target does not override openssl.cnf.

-

curl -O https://www.openssl.org/source/openssl-VERSION.tar.gz

tar xzf openssl-VERSION

pushd openssl-VERSION

./config \
——prefix=/usr/local/custom-openssl \
——libdir=1ib \
——openssldir=/etc/ssl

make -jl1 depend

make -38

make install_sw

popd

v“r » 0

v » »nn

3. Build Python with custom OpenSSL (see the configure --with-openssl and
--with-openssl-rpath options)

$ pushd python-3.x.x

$./configure -C \
——with-openssl=/usr/local/custom-openssl \
——with-openssl-rpath=auto \
——prefix=/usr/local/python-3.x.x

$ make -78

$ make altinstall

Not: Patch releases of OpenSSL have a backwards compatible ABI. You don’t need to recompile Python to update
OpenSSL. It’s sufficient to replace the custom OpenSSL installation with a newer version.

2.5. Custom OpenSSL 19

Python Setup and Usage, Yayim 3.12.3

20

Boélim 2. Using Python on Unix platforms

BOLUM 3

Configure Python

3.1 Build Requirements

Features required to build CPython:
e A C11 compiler. Optional C11 features are not required.
* Support for IEEE 754 floating point numbers and floating point Not-a-Number (NaN).
* Support for threads.
e OpenSSL 1.1.1 or newer for the ss1 and hashlib modules.
¢ On Windows, Microsoft Visual Studio 2017 or later is required.
3.5 siiriimiinde degisti: On Windows, Visual Studio 2015 or later is required.

3.6 siirtimiinde degisti: Selected C99 features are now required, like <stdint .h>and static inline functi-
ons.

3.7 siiriimiinde degisti: Thread support and OpenSSL 1.0.2 are now required.
3.10 siiriimiinde degisti: OpenSSL 1.1.1 is now required.

3.11 stirtimiinde degisti: C11 compiler, IEEE 754 and NaN support are now required. On Windows, Visual Studio
2017 or later is required.

See also PEP 7 “Style Guide for C Code” and PEP 11 “CPython platform support”.

3.2 Generated files

To reduce build dependencies, Python source code contains multiple generated files. Commands to regenerate all
generated files:

make regen-all

make regen-stdlib-module—names
make regen-limited-abi

make regen-configure

The Makefile.pre. in file documents generated files, their inputs, and tools used to regenerate them. Search
for regen—* make targets.

21

https://en.cppreference.com/w/c/11
https://en.wikipedia.org/wiki/C11_(C_standard_revision)#Optional_features
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/NaN#Floating_point
https://peps.python.org/pep-0007/
https://peps.python.org/pep-0011/

Python Setup and Usage, Yayim 3.12.3

3.2.1 configure script

The make regen-configure command regenerates the aclocal .m4 file and the configure script using
the Tools/build/regen-configure. sh shell script which uses an Ubuntu container to get the same tools
versions and have a reproducible output.

The container is optional, the following command can be run locally:

[autoreconf —-ivf -Werror }

The generated files can change depending on the exact autoconf-archive, aclocal and pkg-config
versions.

3.3 Configure Options

Listall . /configure script options using:

[./configure —--help }

See also the Misc/SpecialBuilds. txt in the Python source distribution.

3.3.1 General Options

—-—enable-loadable-sqglite—extensions

Support loadable extensions in the _sglite extension module (default is no) of the sglite3 module.
See the sglite3.Connection.enable_load_extension () method of the sgqlite3 module.
Added in version 3.6.
——disable-ipv6
Disable IPv6 support (enabled by default if supported), see the socket module.
——enable-big-digits=[15]|30]
Define the size in bits of Python int digits: 15 or 30 bits.
By default, the digit size is 30.
Define the PYLONG_BITS_IN_DIGIT to 15 or 30.
See sys.int_info.bits_per_digit.

——with-suffix=SUFFIX
Set the Python executable suffix to SUFFIX.

The default suffix is . exe on Windows and macOS (python . exe executable), . js on Emscripten node, .
html on Emscripten browser, . wa smon WASI, and an empty string on other platforms (pyt hon executable).

3.11 siirimiinde degisti: The default suffix on WASM platform is one of . s, .html or .wasm.

——with-tzpath=<list of absolute paths separated by pathsep>

Select the default time zone search path for zoneinfo.TZPATH. See the Compile-time configuration of the
zoneinfo module.

Default: /usr/share/zoneinfo:/usr/lib/zoneinfo:/usr/share/lib/zoneinfo:/
etc/zoneinfo.

See os.pathsep path separator.

Added in version 3.9.

22 Béliim 3. Configure Python

Python Setup and Usage, Yayim 3.12.3

——without-decimal-contextvar

Build the _decimal extension module using a thread-local context rather than a coroutine-local context
(default), see the decimal module.

See decimal.HAVE_CONTEXTVAR and the contextvars module.
Added in version 3.9.

——with-dbmliborder=<list of backend names>
Opverride order to check db backends for the dbm module

A valid value is a colon (:) separated string with the backend names:
e ndbm;
e gdbm;
e bdb.

——without-c—-locale-coercion
Disable C locale coercion to a UTF-8 based locale (enabled by default).

Don’t define the PY _COERCE_C_LOCALE macro.
See PYTHONCOERCECLOCALE and the PEP 538.

——without-freelists

Disable all freelists except the empty tuple singleton.
Added in version 3.11.

—--with-platlibdir=DIRNAME
Python library directory name (default is 1ib).

Fedora and SuSE use 1ib64 on 64-bit platforms.
See sys.platlibdir.
Added in version 3.9.
—--with-wheel-pkg-dir=PATH
Directory of wheel packages used by the ensurepip module (none by default).

Some Linux distribution packaging policies recommend against bundling dependencies. For example, Fe-
dora installs wheel packages in the /usr/share/python-wheels/ directory and don’t install the
ensurepip._bundled package.

Added in version 3.10.

—--with-pkg-config=[check|yes|no]
Whether configure should use pkg—con£fig to detect build dependencies.

¢ check (default): pkg—config is optional

* yes: pkg—config is mandatory

¢ no: configure does not use pkg—config even when present
Added in version 3.11.

——enable-pystats
Turn on internal statistics gathering.

The statistics will be dumped to a arbitrary (probably unique) file in /tmp/py_stats/, or C: \temp\
py_stats\ on Windows. If that directory does not exist, results will be printed on stdout.

Use Tools/scripts/summarize_stats.py to read the stats.

Added in version 3.11.

3.3. Configure Options 23

https://peps.python.org/pep-0538/

Python Setup and Usage, Yayim 3.12.3

3.3.2 WebAssembly Options

—--with-emscripten-target=[browser|node]

Set build flavor for wasm32-emscripten.
¢ browser (default): preload minimal stdlib, default MEMFS.
* node: NODERAWES and pthread support.

Added in version 3.11.

——enable-wasm—-dynamic-linking

Turn on dynamic linking support for WASM.

Dynamic linking enables d1open. File size of the executable increases due to limited dead code elimination
and additional features.

Added in version 3.11.

——enable-wasm—-pthreads

Turn on pthreads support for WASM.
Added in version 3.11.

3.3.3 Install Options

——prefix=PREFIX
Install architecture-independent files in PREFIX. On Unix, it defaults to /usr/local.

This value can be retrieved at runtime using sys .prefix.
As an example, one can use ——prefix ="$HOME/.local/" to install a Python in its home directory.

——exec-prefix=EPREFIX
Install architecture-dependent files in EPREFIX, defaults to ——prefix.

This value can be retrieved at runtime using sys .exec_prefix.

——disable-test—-modules

Don’t build nor install test modules, like the test package or the _testcapi extension module (built and
installed by default).

Added in version 3.10.

——with-ensurepip=[upgrade|install|no]

Select the ensurepip command run on Python installation:
e upgrade (default): run python -m ensurepip --altinstall --upgrade command.
e install:run python -m ensurepip —-altinstall command;
* no: don’t run ensurepip;

Added in version 3.6.

24 Boliim 3. Configure Python

Python Setup and Usage, Yayim 3.12.3

3.3.4 Performance options
Configuring Python using ——enable-optimizations --with-1to (PGO +LTO)isrecommended for best
performance. The experimental ——enable-bolt flag can also be used to improve performance.

——enable-optimizations
Enable Profile Guided Optimization (PGO) using PROFILE_TASK (disabled by default).

The C compiler Clang requires 1 1 vm—-profdata program for PGO. On macOS, GCC also requires it: GCC
is just an alias to Clang on macOS.

Disable also semantic interposition in libpython if ——-enable-shared and GCC is used: add
—-fno-semantic-interposition to the compiler and linker flags.

Not: During the build, you may encounter compiler warnings about profile data not being availab-
le for some source files. These warnings are harmless, as only a subset of the code is exercised du-
ring profile data acquisition. To disable these warnings on Clang, manually suppress them by adding
—-Wno-profile—-instr-unprofiledto CFLAGS.

Added in version 3.6.
3.10 siiriimiinde degisti: Use —~fno-semantic-interposition on GCC.
PROFILE_TASK
Environment variable used in the Makefile: Python command line arguments for the PGO generation task.
Default: -m test --pgo —--timeout =$(TESTTIMEOUT).
Added in version 3.8.
——with-1lto=[full|thin|no|yes]
Enable Link Time Optimization (LTO) in any build (disabled by default).

The C compiler Clang requires 1 1vm—ar for LTO (ar on macOS), as well as an LTO-aware linker (1d . gold
or 11d).

Added in version 3.6.
Added in version 3.11: To use ThinL. TO feature, use ——with-1to =thin on Clang.

3.12 siiriimiinde degisti: Use ThinLTO as the default optimization policy on Clang if the compiler accepts the
flag.

——enable-bolt
Enable usage of the BOLT post-link binary optimizer (disabled by default).

BOLT is part of the LLVM project but is not always included in their binary distributions. This flag requires
that 11vm-bolt and merge-fdata are available.

BOLT is still a fairly new project so this flag should be considered experimental for now. Because this tool
operates on machine code its success is dependent on a combination of the build environment + the other
optimization configure args + the CPU architecture, and not all combinations are supported. BOLT versions
before LLVM 16 are known to crash BOLT under some scenarios. Use of LLVM 16 or newer for BOLT
optimization is strongly encouraged.

The BOLT_INSTRUMENT_FLAGS and BOLT_APPLY_FLAGS configure variables can be defined to
override the default set of arguments for 11vm-bolt to instrument and apply BOLT data to binaries, res-
pectively.

Added in version 3.12.

——with—-computed—-gotos

Enable computed gotos in evaluation loop (enabled by default on supported compilers).

3.3. Configure Options 25

https://github.com/llvm/llvm-project/tree/main/bolt

Python Setup and Usage, Yayim 3.12.3

——without-pymalloc

Disable the specialized Python memory allocator pymalloc (enabled by default).

See also PYTHONMALLOC environment variable.

—--without-doc-strings

Disable static documentation strings to reduce the memory footprint (enabled by default). Documentation
strings defined in Python are not affected.

Don’t define the WITH_DOC_STRINGS macro.

See the PyDoc_STRVAR () macro.

——enable-profiling

Enable C-level code profiling with gprof (disabled by default).

——with-strict-overflow

Add -fstrict-overflow to the C compiler flags (by default we add —~fno-strict-overflow ins-
tead).

3.3.5 Python Debug Build

A debug build is Python built with the ——with-pydebug configure option.
Effects of a debug build:

Display all warnings by default: the list of default warning filters is empty in the warnings module.
Add dto sys.abiflags.

Add sys.gettotalrefcount () function.

Add -X showrefcount command line option.

Add —d command line option and PYTHONDEBUG environment variable to debug the parser.

Add support for the __11trace__ variable: enable low-level tracing in the bytecode evaluation loop if the
variable is defined.

Install debug hooks on memory allocators to detect buffer overflow and other memory errors.
Define Py_DEBUG and Py_ REF_DEBUG macros.

Add runtime checks: code surrounded by #ifdef Py DEBUG and #endif. Enable assert (.
.) and _PyObject_ASSERT (...) assertions: don’t set the NDEBUG macro (see also the
——with-assertions configure option). Main runtime checks:

— Add sanity checks on the function arguments.

— Unicode and int objects are created with their memory filled with a pattern to detect usage of uninitialized
objects.

— Ensure that functions which can clear or replace the current exception are not called with an exception
raised.

— Check that deallocator functions don’t change the current exception.
— The garbage collector (gc.collect () function) runs some basic checks on objects consistency.

— The Py_SAFE_DOWNCAST () macro checks for integer underflow and overflow when downcasting
from wide types to narrow types.

See also the Python Development Mode and the ——with-trace-refs configure option.

3.8 stirtimiinde degisti: Release builds and debug builds are now ABI compatible: defining the Py _DEBUG macro no
longer implies the Py_TRACE_REFS macro (see the ——with-trace-refs option), which introduces the only
ABI incompatibility.

26

Boliim 3. Configure Python

Python Setup and Usage, Yayim 3.12.3

3.3.6 Debug options

—--with-pydebug
Build Python in debug mode: define the Py_DEBUG macro (disabled by default).

—--with-trace-refs
Enable tracing references for debugging purpose (disabled by default).

Effects:
¢ Define the Py_TRACE_REFS macro.
¢ Add sys.getobjects () function.
e Add PYTHONDUMPREF S environment variable.

This build is not ABI compatible with release build (default build) or debug build (Py_DEBUG and
Py_REF_DEBUG macros).

Added in version 3.8.

——with-assertions
Build with C assertions enabled (default is no): assert (...); and _PyObject_ASSERT(...);.

If set, the NDEBUG macro is not defined in the OP T compiler variable.
See also the ——with-pydebug option (debug build) which also enables assertions.
Added in version 3.6.
—-with-valgrind
Enable Valgrind support (default is no).

—--with-dtrace
Enable DTrace support (default is no).

See Instrumenting CPython with DTrace and SystemTap.
Added in version 3.6.

——with—-address—sanitizer

Enable AddressSanitizer memory error detector, asan (default is no).
Added in version 3.6.

—-with-memory-sanitizer

Enable MemorySanitizer allocation error detector, msan (default is no).
Added in version 3.6.

——with-undefined-behavior-sanitizer

Enable UndefinedBehaviorSanitizer undefined behaviour detector, ubsan (default is no).

Added in version 3.6.

3.3.7 Linker options

——enable-shared
Enable building a shared Python library: 1 ibpython (default is no).

——without-static-libpython
Do not build 1 ibpythonMAJOR.MINOR. a and do not install python . o (built and enabled by default).

Added in version 3.10.

3.3. Configure Options 27

Python Setup and Usage, Yayim 3.12.3

3.3.8 Libraries options

——with-1libs="1ibl ...'
Link against additional libraries (default is no).

—--with-system—-expat
Build the pyexpat module using an installed expat library (default is no).

—--with-system—-libmpdec
Build the _decimal extension module using an installed mpdec library, see the decimal module (default
iS no).

Added in version 3.3.

——with-readline=editline

Use editline library for backend of the readline module.
Define the WITH_EDITLINE macro.
Added in version 3.10.

——without-readline
Don’t build the readl ine module (built by default).

Don’t define the HAVE_ LIBREADLINE macro.
Added in version 3.10.

—--with-1ibm=STRING
Override 11ibm math library to STRING (default is system-dependent).

—--with-1ibc=STRING

Override 1ibc C library to STRING (default is system-dependent).
—-with-openssl=DIR

Root of the OpenSSL directory.

Added in version 3.7.

——with-openssl-rpath=[no|auto|DIR]
Set runtime library directory (rpath) for OpenSSL libraries:

¢ no (default): don’t set rpath;
e auto: auto-detect rpath from ——with-openssl and pkg-config;
¢ DIR: set an explicit rpath.

Added in version 3.10.

3.3.9 Security Options

—-with-hash-algorithm=[fnv|siphashl3|siphash24]
Select hash algorithm for use in Python/pyhash. c:

¢ siphashi13 (default);
* siphash24;
e fnv.

Added in version 3.4.

Added in version 3.11: siphash13 is added and it is the new default.

28 Boliim 3. Configure Python

Python Setup and Usage, Yayim 3.12.3

——with-builtin-hashlib-hashes=md5, shal, sha256, sha512, sha3,blake2

Built-in hash modules:
e md>5;
e shal;
e sha256;
e shab512;
¢ sha3 (with shake);
* blake2.
Added in version 3.9.

——with-ssl-default-suites=[python|openssl|STRING]
Override the OpenSSL default cipher suites string:

* python (default): use Python’s preferred selection;
e openssl:leave OpenSSL’s defaults untouched;
* STRING: use a custom string

See the ss1 module.

Added in version 3.7.

3.10 siiriimiinde degisti: The settings python and STRING also set TLS 1.2 as minimum protocol version.

3.3.10 macOS Options

See Mac/README . rst.
——enable-universalsdk

——enable—universalsdk=SDKDIR

Create a universal binary build. SDKDIR specifies which macOS SDK should be used to perform the build
(default is no).

——enable-framework

——enable-framework=INSTALLDIR

Create a Python.framework rather than a traditional Unix install. Optional INSTALLDIR specifies the installa-
tion path (default is no).

——with-universal—-archs=ARCH

Specify the kind of universal binary that should be created. This option is only valid when
——enable-universalsdk is set.

Options:

e universal?2;
e 32-bit;

* 64-bit;

* 3-way;

e intel;

e intel-32;

e intel-64;

e all.

3.3. Configure Options 29

Python Setup and Usage, Yayim 3.12.3

——with-framework—name=FRAMEWORK

Specify the name for the python framework on macOS only valid when ——enable-framework is set
(default: Python).

3.3.11 Cross Compiling Options

Cross compiling, also known as cross building, can be used to build Python for another CPU architecture or platform.
Cross compiling requires a Python interpreter for the build platform. The version of the build Python must match the
version of the cross compiled host Python.

—-build=BUILD
configure for building on BUILD, usually guessed by config. guess.

——host=HOST

cross-compile to build programs to run on HOST (target platform)

—-with-build-python=path/to/python
path to build python binary for cross compiling

Added in version 3.11.

CONFIG_SITE=file

An environment variable that points to a file with configure overrides.

Example config.site file:

config.site—aarché64
ac_cv_buggy_getaddrinfo=no
ac_cv_file__dev_ptmx=yes
ac_cv_file__dev_ptc=no

Cross compiling example:

CONFIG_SITE=config.site—-aarché64 ../configure \
—-build=x86_64-pc—linux—-gnu \
——host=aarch64-unknown-linux-gnu \
-—with-build-python=../x86_64/python

3.4 Python Build System

3.4.1 Main files of the build system

e configure.ac=>configure;
* Makefile.pre.in=>Makefile (created by configure);
e pyconfig.h (created by configure);

* Modules/Setup: C extensions built by the Makefile using Module/makesetup shell script;

30 Boliim 3. Configure Python

Python Setup and Usage, Yayim 3.12.3

3.4.2 Main build steps

e Cfiles (. c) are built as object files (. o).
* A static libpython library (. a) is created from objects files.
e python. o and the static 1 ibpython library are linked into the final python program.

¢ C extensions are built by the Makefile (see Modules/Setup).

3.4.3 Main Makefile targets

* make: Build Python with the standard library.
* make platform:: build the python program, but don’t build the standard library extension modules.

* make profile-opt: build Python using Profile Guided Optimization (PGO). You can use the configure
——enable-optimizations option to make this the default target of the make command (make all
or just make).

* make buildbottest:Build Python and run the Python test suite, the same way than buildbots test Python.
Set TESTTIMEOUT variable (in seconds) to change the test timeout (1200 by default: 20 minutes).

* make install: Build and install Python.

* make regen-all: Regenerate (almost) all generated files; make regen-stdlib-module-names
and aut oconf must be run separately for the remaining generated files.

e make clean: Remove built files.

* make distclean:Same than make clean, but remove also files created by the configure script.

3.4.4 C extensions

Some C extensions are built as built-in modules, like the sys module. They are built with the
Py_BUILD_CORE_BUILTIN macro defined. Built-in modules have no ___file_ attribute:

>>> import sys

>>> sys
<module 'sys' (built-in)>
>>> sys._ file
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'sys' has no attribute '__ file_ '

Other C extensions are built as dynamic libraries, like the _asyncio module. They are built with the
Py_BUILD_CORE_MODULE macro defined. Example on Linux x86-64:

>>> import _asyncio

>>> _asyncio

<module '_asyncio' from '/usr/lib64/python3.9/1lib-dynload/_asyncio.cpython-39-x86_
—~64-1linux—gnu.so'>

>>> _asyncio._ file
'/usr/1ib64/python3.9/1lib-dynload/_asyncio.cpython-39-x86_64-1inux—-gnu.so'

Modules/Setup is used to generate Makefile targets to build C extensions. At the beginning of the files, C exten-
sions are built as built-in modules. Extensions defined after the * shared* marker are built as dynamic libraries.

The PyAPI_FUNC (), PyAPI_DATA () and PyMODINIT_FUNC macros of Include/exports.h are defi-
ned differently depending if the Py_BUILD_CORE_MODULE macro is defined:

e Use Py_EXPORTED_SYMBOL if the Py_BUILD_CORE_MODULE is defined

e Use Py_IMPORTED_SYMBOL otherwise.

3.4. Python Build System 31

Python Setup and Usage, Yayim 3.12.3

If the Py_BUILD_CORE_BUILTIN macro is used by mistake on a C extension built as a shared library, its
PyInit_xxx () function is not exported, causing an ImportError on import.

3.5 Compiler and linker flags

Options set by the . /configure script and environment variables and used by Makefile.

3.5.1 Preprocessor flags

CONFIGURE_CPPFLAGS

Value of CPPFLAGS variable passed to the . /configure script.
Added in version 3.6.

CPPFLAGS

(Objective) C/C++ preprocessor flags, e.g. ~Tinclude_dir if you have headers in a nonstandard directory
include_dir.

Both CPPFLAGS and LDFLAGS need to contain the shell’s value to be able to build extension modules using
the directories specified in the environment variables.

BASECPPFLAGS

Added in version 3.4.

PY_ CPPFLAGS

Extra preprocessor flags added for building the interpreter object files.

Default: $ (BASECPPFLAGS) -I. -IS(srcdir)/Include $(CONFIGURE_CPPFLAGS)
$ (CPPFLAGS).

Added in version 3.2.

3.5.2 Compiler flags

cC

CXX

C compiler command.

Example: gcc -pthread.

C++ compiler command.

Example: g++ -pthread.

CFLAGS

C compiler flags.

CFLAGS_NODIST

CFLAGS_NODIST is used for building the interpreter and stdlib C extensions. Use it when a compiler flag
should not be part of CFLAGS once Python is installed (gh-65320).

In particular, CFLAGS should not contain:

* the compiler flag —I (for setting the search path for include files). The —I flags are processed from left
to right, and any flags in CFLAGS would take precedence over user- and package-supplied —T flags.

* hardening flags such as —-Werror because distributions cannot control whether packages installed by
users conform to such heightened standards.

Added in version 3.5.

32

Boliim 3. Configure Python

https://github.com/python/cpython/issues/65320

Python Setup and Usage, Yayim 3.12.3

COMPILEALL_OPTS

Options passed to the compileall command line when building PYC files in make install. Default:
-50.
Added in version 3.12.
EXTRA_CFLAGS
Extra C compiler flags.
CONFIGURE_CFLAGS
Value of CFLAGS variable passed to the . /configure script.
Added in version 3.2.
CONFIGURE_CFLAGS_NODIST
Value of CFLAGS_NODIST variable passed to the . /configure script.
Added in version 3.5.
BASECFLAGS
Base compiler flags.
OPT
Optimization flags.
CFLAGS_ALIASING
Strict or non-strict aliasing flags used to compile Python/dtoa.c.
Added in version 3.7.
CCSHARED
Compiler flags used to build a shared library.
For example, —~fPIC is used on Linux and on BSD.
CFLAGSFORSHARED
Extra C flags added for building the interpreter object files.
Default: $ (CCSHARED) when ——enable-shared is used, or an empty string otherwise.

PY_CFLAGS

Default: $ (BASECFLAGS) $(OPT) $(CONFIGURE_CFLAGS) $ (CFLAGS)
$ (EXTRA_CFLAGS).

PY_CFLAGS_NODIST

Default: S (CONFIGURE_CFLAGS_NODIST) $(CFLAGS_NODIST) -IS$S(srcdir)/Include/
internal.

Added in version 3.5.

PY_STDMODULE_CFLAGS
C flags used for building the interpreter object files.

Default: S (PY_CFLAGS) $(PY_CFLAGS_NODIST) $(PY_CPPFLAGS)
S (CFLAGSFORSHARED) .

Added in version 3.7.

PY_CORE_CFLAGS
Default: $ (PY_STDMODULE_CFLAGS) -DPy_BUILD_CORE.

Added in version 3.2.

3.5. Compiler and linker flags 33

Python Setup and Usage, Yayim 3.12.3

PY_ BUILTIN_MODULE_CFLAGS

Compiler flags to build a standard library extension module as a built-in module, like the posix module.
Default: $ (PY_STDMODULE_CFLAGS) -DPy_BUILD_CORE_BUILTIN.
Added in version 3.8.

PURIFY
Purify command. Purify is a memory debugger program.

Default: empty string (not used).

3.5.3 Linker flags

LINKCC
Linker command used to build programs like python and _testembed.
Default: $ (PURIFY) $(CC).

CONFIGURE_LDFLAGS

Value of LDFLAGS variable passed to the . /configure script.

Avoid assigning CFLAGS, LDFLAGS, etc. so users can use them on the command line to append to these
values without stomping the pre-set values.

Added in version 3.2.

LDFLAGS_NODIST

LDFLAGS_NODIST is used in the same manner as CEFLAGS_NODIST. Use it when a linker flag should not
be part of LDFLAGS once Python is installed (gh-65320).

In particular, ZLDF'LAGS should not contain:

¢ the compiler flag —L (for setting the search path for libraries). The —L flags are processed from left to
right, and any flags in LDFLAGS would take precedence over user- and package-supplied —L flags.

CONFIGURE_LDFLAGS_NODIST
Value of LDFLAGS_NODIST variable passed to the . /configure script.
Added in version 3.8.
LDFLAGS
Linker flags, e.g. ~-L11ib_dir if you have libraries in a nonstandard directory lib_dir.

Both CPPFLAGS and LDFLAGS need to contain the shell’s value to be able to build extension modules using
the directories specified in the environment variables.

LIBS

Linker flags to pass libraries to the linker when linking the Python executable.
Example: -1rt.

LDSHARED
Command to build a shared library.

Default: eLDSHARED@ $ (PY_LDFLAGS).

BLDSHARED
Command to build 1 ibpython shared library.

Default: @BLDSHARED@ $ (PY_CORE_LDFLAGS).

PY_LDFLAGS
Default: $ (CONFIGURE_LDFLAGS) $ (LDFLAGS).

34 Boliim 3. Configure Python

https://github.com/python/cpython/issues/65320

Python Setup and Usage, Yayim 3.12.3

PY_LDFLAGS_NODIST
Default: $ (CONFIGURE_LDFLAGS_NODIST) $ (LDFLAGS_NODIST).

Added in version 3.8.

PY CORE_LDFLAGS

Linker flags used for building the interpreter object files.

Added in version 3.8.

3.5. Compiler and linker flags 35

Python Setup and Usage, Yayim 3.12.3

36

Boliim 3. Configure Python

BoLOM 4

Using Python on Windows

This document aims to give an overview of Windows-specific behaviour you should know about when using Python
on Microsoft Windows.

Unlike most Unix systems and services, Windows does not include a system supported installation of Python. To
make Python available, the CPython team has compiled Windows installers with every release for many years. These
installers are primarily intended to add a per-user installation of Python, with the core interpreter and library being
used by a single user. The installer is also able to install for all users of a single machine, and a separate ZIP file is
available for application-local distributions.

As specified in PEP 11, a Python release only supports a Windows platform while Microsoft considers the platform
under extended support. This means that Python 3.12 supports Windows 8.1 and newer. If you require Windows 7
support, please install Python 3.8.

There are a number of different installers available for Windows, each with certain benefits and downsides.
The full installer contains all components and is the best option for developers using Python for any kind of project.

The Microsoft Store package is a simple installation of Python that is suitable for running scripts and packages, and
using IDLE or other development environments. It requires Windows 10 and above, but can be safely installed without
corrupting other programs. It also provides many convenient commands for launching Python and its tools.

The nuget.org packages are lightweight installations intended for continuous integration systems. It can be used to
build Python packages or run scripts, but is not updateable and has no user interface tools.

The embeddable package is a minimal package of Python suitable for embedding into a larger application.

4.1 The full installer

4.1.1 Installation steps

Four Python 3.12 installers are available for download - two each for the 32-bit and 64-bit versions of the interpreter.
The web installer is a small initial download, and it will automatically download the required components as neces-
sary. The offline installer includes the components necessary for a default installation and only requires an internet
connection for optional features. See Installing Without Downloading for other ways to avoid downloading during
installation.

After starting the installer, one of two options may be selected:

37

https://www.python.org/downloads/
https://peps.python.org/pep-0011/

Python Setup and Usage, Yayim 3.12.3

&5 Python 2.8.0 (64-bit) Setup — 4

pgthfqn

Wiﬂd()WS [] Add Python 3.8 to PATH Trred

Install Python 3.8.0 (64-bit)

Select Install Mow to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
Ch\Users' ol AppData\Local\Programs\Python'\Python38

Includes IDLE, pip and decumentaticn
Creates shortcuts and file associations

— Customize installation
Choose location and features

Install launcher for all users (recommended)

If you select “Install Now”:

You will not need to be an administrator (unless a system update for the C Runtime Library is required or you
install the Python Launcher for Windows for all users)

Python will be installed into your user directory

The Python Launcher for Windows will be installed according to the option at the bottom of the first page
The standard library, test suite, launcher and pip will be installed

If selected, the install directory will be added to your PATH

Shortcuts will only be visible for the current user

Selecting “Customize installation” will allow you to select the features to install, the installation location and other
options or post-install actions. To install debugging symbols or binaries, you will need to use this option.

To perform an all-users installation, you should select “Customize installation”. In this case:

You may be required to provide administrative credentials or approval

Python will be installed into the Program Files directory

The Python Launcher for Windows will be installed into the Windows directory
Optional features may be selected during installation

The standard library can be pre-compiled to bytecode

If selected, the install directory will be added to the system PATH

Shortcuts are available for all users

38

B6liim 4. Using Python on Windows

Python Setup and Usage, Yayim 3.12.3

4.1.2 Removing the MAX_PATH Limitation

Windows historically has limited path lengths to 260 characters. This meant that paths longer than this would not
resolve and errors would result.

In the latest versions of Windows, this limitation can be expanded to approximately 32,000 characters. Your admi-
nistrator will need to activate the “Enable Win32 long paths” group policy, or set LongPathsEnabled to 1 in the
registry key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystemn.

This allows the open () function, the os module and most other path functionality to accept and return paths longer
than 260 characters.

After changing the above option, no further configuration is required.

3.6 siirtimiinde degisti: Support for long paths was enabled in Python.

4.1.3 Installing Without Ul

All of the options available in the installer UI can also be specified from the command line, allowing scripted ins-
tallers to replicate an installation on many machines without user interaction. These options may also be set without
suppressing the Ul in order to change some of the defaults.

The following options (found by executing the installer with / ?) can be passed into the installer:

Name Description

/passive to display progress without requiring user interaction
/quiet to install/uninstall without displaying any UI

/simple to prevent user customization

/uninstall to remove Python (without confirmation)

Mayout [directory] to pre-download all components

/log [filename] to specify log files location

All other options are passed as name =value, where the value is usually O to disable a feature, 1 to enable a
feature, or a path. The full list of available options is shown below.

4.1. The full installer 39

Python Setup and Usage, Yayim 3.12.3

herOnly

will override most other options.

Name Description Default
Instal- Perform a system-wide installa- 0
1ANIU- tion.
sers
Target- The installation directory Selected based on InstallAllUsers
Dir
Defaul- The default installation directory $ProgramFiles$%$\Python X.Y or
tAllU- for all-user installs $ProgramFiles (x86)%$\Python X.Y
sersTar-
getDir
Default- The default install directory for $LocalAppData%\Programs\Python\PythonXY or
JustFor- just-for-me installs %$LocalAppData%\Programs\Python\PythonXY-32
MeTar- or %$LocalAppData%$\Programs\Python\
getDir PythonXY-64
Default- The default custom install direc- (empty)
Custom- tory displayed in the UI
Target-
Dir
Associ- Create file associations if the la- 1
ateFiles uncher is also installed.
Compi- Compile all . py filesto .pyc. 0
leAll
Prepend- Prepend install and Scripts di- O
Path rectories to PATH and add .PY
to PATHEXT
Append- Append install and Scripts direc- 0
Path tories to PATH and add .PY to
PATHEXT
Short- Create shortcuts for the interpre- 1
cuts ter, documentation and IDLE if
installed.
Inclu- Install Python manual 1
de_doc
Inclu- Install debug binaries 0
de_debug
Inclu- Install developer headers and 1
de_dev libraries. Omitting this may lead
to an unusable installation.
Inclu- Install python.exe and rela- 1
de_exe ted files. Omitting this may lead
to an unusable installation.
Inclu- Install Python Launcher for 1
de_launche Windows.
Install- Installs the launcher for 1
Launc- all users. Also requires
herAllU- Include_launcher to
sers besetto 1
Inclu- Install standard library and ex- 1
de_lib tension modules. Omitting this
may lead to an unusable instal-
lation.
Inclu- Install bundled pip and setupto- 1
de_pip ols
Inclu- Install debugging symbols (*. O
de_symbol pdb)
Inclu- Install Tcl/Tk support and IDLE 1
de_tcltk
Inclu- Install standard library test suite 1
€_Test —— . .
4§nclu- Tnstall utility scripts 1 Bolim 4. Using Python on Windows
de_tools
Launc- Only installs the launcher. This 0

Python Setup and Usage, Yayim 3.12.3

For example, to silently install a default, system-wide Python installation, you could use the following command (from
an elevated command prompt):

[pythonf3.9.0.exe /quiet InstallAllUsers =1 PrependPath =1 Include_test =0 }

To allow users to easily install a personal copy of Python without the test suite, you could provide a shortcut with the
following command. This will display a simplified initial page and disallow customization:

python-3.9.0.exe InstallAllUsers =0 Include_launcher =0 Include_test =0
SimpleInstall =1 SimplelInstallDescription ="Just for me, no test suite."

(Note that omitting the launcher also omits file associations, and is only recommended for per-user installs when
there is also a system-wide installation that included the launcher.)

The options listed above can also be provided in a file named unattend.xml alongside the executable. This file
specifies a list of options and values. When a value is provided as an attribute, it will be converted to a number if
possible. Values provided as element text are always left as strings. This example file sets the same options as the
previous example:

<Options>

<Option Name ="InstallAllUsers" Value ="no" />

<Option Name ="Include_launcher" Value ="0" />

<Option Name ="Include_test" Value ="no" />

<Option Name ="SimpleInstall" Value ="yes" />

<Option Name ="SimpleInstallDescription">Just for me, no test suite</Option>
</Options>

4.1.4 Installing Without Downloading

As some features of Python are not included in the initial installer download, selecting those features may require an
internet connection. To avoid this need, all possible components may be downloaded on-demand to create a complete
layout that will no longer require an internet connection regardless of the selected features. Note that this download
may be bigger than required, but where a large number of installations are going to be performed it is very useful to
have a locally cached copy.

Execute the following command from Command Prompt to download all possible required files. Remember to subs-
titute python-3.9. 0. exe for the actual name of your installer, and to create layouts in their own directories to
avoid collisions between files with the same name.

[python—3.9.0.exe /layout [optional target directory]]

You may also specify the /quiet option to hide the progress display.

4.1.5 Modifying an install

Once Python has been installed, you can add or remove features through the Programs and Features tool that is part
of Windows. Select the Python entry and choose “Uninstall/Change” to open the installer in maintenance mode.

“Modify” allows you to add or remove features by modifying the checkboxes - unchanged checkboxes will not install
or remove anything. Some options cannot be changed in this mode, such as the install directory; to modify these, you
will need to remove and then reinstall Python completely.

“Repair” will verify all the files that should be installed using the current settings and replace any that have been
removed or modified.

“Uninstall” will remove Python entirely, with the exception of the Python Launcher for Windows, which has its own
entry in Programs and Features.

4.1. The full installer 41

Python Setup and Usage, Yayim 3.12.3

4.2 The Microsoft Store package

Added in version 3.7.2.

The Microsoft Store package is an easily installable Python interpreter that is intended mainly for interactive use, for
example, by students.

To install the package, ensure you have the latest Windows 10 updates and search the Microsoft Store app for “Python
3.12”. Ensure that the app you select is published by the Python Software Foundation, and install it.

Uyar1: Python will always be available for free on the Microsoft Store. If you are asked to pay for it, you have
not selected the correct package.

After installation, Python may be launched by finding it in Start. Alternatively, it will be available from any Command
Prompt or PowerShell session by typing python. Further, pip and IDLE may be used by typing pip or idle.IDLE
can also be found in Start.

All three commands are also available with version number suffixes, for example, as python3.exe andpython3.
x.exeaswellaspython.exe (where 3. x is the specific version you want to launch, such as 3.12). Open “Manage
App Execution Aliases” through Start to select which version of Python is associated with each command. It is
recommended to make sure that pip and id1le are consistent with whichever version of python is selected.

Virtual environments can be created with python -m venv and activated and used as normal.

If you have installed another version of Python and added it to your PATH variable, it will be available as python.
exe rather than the one from the Microsoft Store. To access the new installation, use python3.exe or python3.
x.exe.

The py . exe launcher will detect this Python installation, but will prefer installations from the traditional installer.

To remove Python, open Settings and use Apps and Features, or else find Python in Start and right-click to select
Uninstall. Uninstalling will remove all packages you installed directly into this Python installation, but will not remove
any virtual environments

4.2.1 Known issues

Redirection of local data, registry, and temporary paths

Because of restrictions on Microsoft Store apps, Python scripts may not have full write access to shared locations such
as TEMP and the registry. Instead, it will write to a private copy. If your scripts must modify the shared locations,
you will need to install the full installer.

At runtime, Python will use a private copy of well-known Windows folders and the registry. For example,
if the environment variable $APPDATA% is c:\Users\<user>\AppData\, then when writing to C:\
Users\<user>\AppData\Local will write to C:\Users\<user>\AppData\Local\Packages\
PythonSoftwareFoundation.Python.3.8_gbz5n2kfra8p0\LocalCache\Local\.

When reading files, Windows will return the file from the private folder, or if that does not exist, the real Windows
directory. For example reading C: \Windows\System32 returns the contents of C:\Windows\System32
plus the contents of C: \Program Files\WindowsApps\package_name\VFS\SystemX86.

You can find the real path of any existing file using os .path.realpath ():

>>> import os

>>> test_file = 'C:\\Users\\example\\AppData\\Local\\test.txt"

>>> os.path.realpath(test_file)
'C:\\Users\\example\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.8_
—qgbzbn2kfra8p0\\LocalCache\\Local\\test.txt"

When writing to the Windows Registry, the following behaviors exist:

42 B6liim 4. Using Python on Windows

Python Setup and Usage, Yayim 3.12.3

* Reading from HKLM\\Software is allowed and results are merged with the registry.dat file in the
package.

» Writing to HKLM\ \Software is not allowed if the corresponding key/value exists, i.e. modifying existing
keys.

* Writing to HKLM\ \Software is allowed as long as a corresponding key/value does not exist in the package
and the user has the correct access permissions.

For more detail on the technical basis for these limitations, please consult Microsoft’s documentation on packaged
full-trust apps, currently available at docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-
scenes

4.3 The nuget.org packages

Added in version 3.5.2.

The nuget.org package is a reduced size Python environment intended for use on continuous integration and build
systems that do not have a system-wide install of Python. While nuget is “the package manager for .NET”, it also
works perfectly fine for packages containing build-time tools.

Visit nuget.org for the most up-to-date information on using nuget. What follows is a summary that is sufficient for
Python developers.

The nuget . exe command line tool may be downloaded directly from https://aka.ms/nugetclidl, for
example, using curl or PowerShell. With the tool, the latest version of Python for 64-bit or 32-bit machines is installed
using:

nuget .exe install python -ExcludeVersion -OutputDirectory .
nuget.exe install pythonx86 -ExcludeVersion -OutputDirectory .

To select a particular version, add a —Version 3.x.y. The output directory may be changed from ., and the
package will be installed into a subdirectory. By default, the subdirectory is named the same as the package, and
without the ~-ExcludeVersion option this name will include the specific version installed. Inside the subdirectory
is a tools directory that contains the Python installation:

Without -ExcludeVersion
> .\python.3.5.2\tools\python.exe -V
Python 3.5.2

With -ExcludeVersion
> .\python\tools\python.exe -V
Python 3.5.2

In general, nuget packages are not upgradeable, and newer versions should be installed side-by-side and referenced
using the full path. Alternatively, delete the package directory manually and install it again. Many CI systems will do
this automatically if they do not preserve files between builds.

Alongside the t ools directory is a build\nat ive directory. This contains a MSBuild properties file python.
props that can be used in a C++ project to reference the Python install. Including the settings will automatically use
the headers and import libraries in your build.

The package information pages on nuget.org are www.nuget.org/packages/python for the 64-bit version and
www.nuget.org/packages/pythonx86 for the 32-bit version.

4.3. The nuget.org packages 43

https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://www.nuget.org/
https://www.nuget.org/packages/python
https://www.nuget.org/packages/pythonx86

Python Setup and Usage, Yayim 3.12.3

4.4 The embeddable package

Added in version 3.5.

The embedded distribution is a ZIP file containing a minimal Python environment. It is intended for acting as part
of another application, rather than being directly accessed by end-users.

When extracted, the embedded distribution is (almost) fully isolated from the user’s system, including environment
variables, system registry settings, and installed packages. The standard library is included as pre-compiled and op-
timized .pyc files in a ZIP, and python3.d11, python37.d1l1, python.exe and pythonw.exe are all
provided. Tcl/tk (including all dependents, such as Idle), pip and the Python documentation are not included.

Not: The embedded distribution does not include the Microsoft C Runtime and it is the responsibility of the applicati-
on installer to provide this. The runtime may have already been installed on a user’s system previously or automatically
via Windows Update, and can be detected by finding ucrtbase.dl1 in the system directory.

Third-party packages should be installed by the application installer alongside the embedded distribution. Using pip
to manage dependencies as for a regular Python installation is not supported with this distribution, though with some
care it may be possible to include and use pip for automatic updates. In general, third-party packages should be
treated as part of the application (“vendoring”) so that the developer can ensure compatibility with newer versions
before providing updates to users.

The two recommended use cases for this distribution are described below.

4.4.1 Python Application

An application written in Python does not necessarily require users to be aware of that fact. The embedded distribution
may be used in this case to include a private version of Python in an install package. Depending on how transparent
it should be (or conversely, how professional it should appear), there are two options.

Using a specialized executable as a launcher requires some coding, but provides the most transparent experience for
users. With a customized launcher, there are no obvious indications that the program is running on Python: icons can
be customized, company and version information can be specified, and file associations behave properly. In most
cases, a custom launcher should simply be able to call Py_Main with a hard-coded command line.

The simpler approach is to provide a batch file or generated shortcut that directly calls the python.exe or
pythonw.exe with the required command-line arguments. In this case, the application will appear to be Pyt-
hon and not its actual name, and users may have trouble distinguishing it from other running Python processes or file
associations.

With the latter approach, packages should be installed as directories alongside the Python executable to ensure they
are available on the path. With the specialized launcher, packages can be located in other locations as there is an
opportunity to specify the search path before launching the application.

4.4.2 Embedding Python

Applications written in native code often require some form of scripting language, and the embedded Python distri-
bution can be used for this purpose. In general, the majority of the application is in native code, and some part will
either invoke python . exe or directly use python3.d11. For either case, extracting the embedded distribution
to a subdirectory of the application installation is sufficient to provide a loadable Python interpreter.

As with the application use, packages can be installed to any location as there is an opportunity to specify search
paths before initializing the interpreter. Otherwise, there is no fundamental differences between using the embedded
distribution and a regular installation.

44 B6liim 4. Using Python on Windows

https://docs.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist#visual-studio-2015-2017-2019-and-2022

Python Setup and Usage, Yayim 3.12.3

4.5 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality. The fol-
lowing is a list of popular versions and their key features:

ActivePython
Installer with multi-platform compatibility, documentation, PyWin32

Anaconda
Popular scientific modules (such as numpy, scipy and pandas) and the conda package manager.

Enthought Deployment Manager
“The Next Generation Python Environment and Package Manager”.

Previously Enthought provided Canopy, but it reached end of life in 2016.

WinPython
Windows-specific distribution with prebuilt scientific packages and tools for building packages.

Note that these packages may not include the latest versions of Python or other libraries, and are not maintained or
supported by the core Python team.

4.6 Configuring Python

To run Python conveniently from a command prompt, you might consider changing some default environment vari-
ables in Windows. While the installer provides an option to configure the PATH and PATHEXT variables for you,
this is only reliable for a single, system-wide installation. If you regularly use multiple versions of Python, consider
using the Python Launcher for Windows.

4.6.1 Excursus: Setting environment variables

Windows allows environment variables to be configured permanently at both the User level and the System level, or
temporarily in a command prompt.

To temporarily set environment variables, open Command Prompt and use the set command:

C:\>set PATH=C:\Program Files\Python 3.9;%PATH%
C:\>set PYTHONPATH=%PYTHONPATHS%;C:\My_python_lib
C:\>python

These changes will apply to any further commands executed in that console, and will be inherited by any applications
started from the console.

Including the variable name within percent signs will expand to the existing value, allowing you to add your new
value at either the start or the end. Modifying PATH by adding the directory containing python . exe to the start
is a common way to ensure the correct version of Python is launched.

To permanently modify the default environment variables, click Start and search for ‘edit environment variables’,
or open System properties, Advanced system settings and click the Environment Variables button. In this dialog, you
can add or modify User and System variables. To change System variables, you need non-restricted access to your
machine (i.e. Administrator rights).

Not: Windows will concatenate User variables after System variables, which may cause unexpected results when
modifying PATH.

The PYTHONPATH variable is used by all versions of Python, so you should not permanently configure it unless the
listed paths only include code that is compatible with all of your installed Python versions.

Ayrica bakiniz:

4.5. Alternative bundles 45

https://www.activestate.com/products/python/
https://www.anaconda.com/download/
https://www.enthought.com/edm/
https://support.enthought.com/hc/en-us/articles/360038600051-Canopy-GUI-end-of-life-transition-to-the-Enthought-Deployment-Manager-EDM-and-Visual-Studio-Code
https://winpython.github.io/

Python Setup and Usage, Yayim 3.12.3

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables
Overview of environment variables on Windows

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
The set command, for temporarily modifying environment variables

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
The setx command, for permanently modifying environment variables

4.6.2 Finding the Python executable

3.5 siirtimiinde degisti.

Besides using the automatically created start menu entry for the Python interpreter, you might want to start Python
in the command prompt. The installer has an option to set that up for you.

On the first page of the installer, an option labelled “Add Python to PATH” may be selected to have the installer
add the install location into the PATH. The location of the Scripts\ folder is also added. This allows you to type
python to run the interpreter, and pip for the package installer. Thus, you can also execute your scripts with
command line options, see Command line documentation.

If you don’t enable this option at install time, you can always re-run the installer, select Modify, and enable it. Alterna-
tively, you can manually modify the PATH using the directions in Excursus: Setting environment variables. You need
to set your PATH environment variable to include the directory of your Python installation, delimited by a semicolon
from other entries. An example variable could look like this (assuming the first two entries already existed):

[C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Python 3.9

4.7 UTF-8 mode

Added in version 3.7.

Windows still uses legacy encodings for the system encoding (the ANSI Code Page). Python uses it for the default
encoding of text files (e.g. locale.getencoding ()).

This may cause issues because UTF-8 is widely used on the internet and most Unix systems, including WSL (Windows
Subsystem for Linux).

You can use the Python UTF-8 Mode to change the default text encoding to UTF-8. You can enable the Python UTF-8
Mode via the —X ut £8 command line option, or the PYTHONUTF8 =1 environment variable. See PYTHONUTF 8
for enabling UTF-8 mode, and Excursus: Setting environment variables for how to modify environment variables.

When the Python UTF-8 Mode is enabled, you can still use the system encoding (the ANSI Code Page) via the
“mbcs” codec.

Note that adding PYTHONUTF8 =1 to the default environment variables will affect all Python 3.7+ applications on
your system. If you have any Python 3.7+ applications which rely on the legacy system encoding, it is recommended
to set the environment variable temporarily or use the —X ut £8 command line option.

Not: Even when UTF-8 mode is disabled, Python uses UTF-8 by default on Windows for:
¢ Console I/0 including standard I/O (see PEP 528 for details).
e The filesystem encoding (see PEP 529 for details).

46 B6liim 4. Using Python on Windows

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://peps.python.org/pep-0528/
https://peps.python.org/pep-0529/

Python Setup and Usage, Yayim 3.12.3

4.8 Python Launcher for Windows

Added in version 3.3.

The Python launcher for Windows is a utility which aids in locating and executing of different Python versions. It
allows scripts (or the command-line) to indicate a preference for a specific Python version, and will locate and execute
that version.

Unlike the PATH variable, the launcher will correctly select the most appropriate version of Python. It will prefer per-
user installations over system-wide ones, and orders by language version rather than using the most recently installed
version.

The launcher was originally specified in PEP 397.

4.8.1 Getting started

From the command-line

3.6 siiriimiinde degisti.

System-wide installations of Python 3.3 and later will put the launcher on your PATH. The launcher is compatible
with all available versions of Python, so it does not matter which version is installed. To check that the launcher is
available, execute the following command in Command Prompt:

&)

You should find that the latest version of Python you have installed is started - it can be exited as normal, and any
additional command-line arguments specified will be sent directly to Python.

If you have multiple versions of Python installed (e.g., 3.7 and 3.12) you will have noticed that Python 3.12 was
started - to launch Python 3.7, try the command:

[py =3.7]

If you want the latest version of Python 2 you have installed, try the command:

CE |

If you see the following error, you do not have the launcher installed:

'py' is not recognized as an internal or external command,
operable program or batch file.

The command:

[py —-—list }

displays the currently installed version(s) of Python.

The —x . y argument is the short form of the -V : Company/Tag argument, which allows selecting a specific Python
runtime, including those that may have come from somewhere other than python.org. Any runtime registered by
following PEP 514 will be discoverable. The ——11st command lists all available runtimes using the -~V : format.

When using the -V : argument, specifying the Company will limit selection to runtimes from that provider, while
specifying only the Tag will select from all providers. Note that omitting the slash implies a tag:

Select any '3.*' tagged runtime
py —-V:3

Select any 'PythonCore' released runtime
py -V:PythonCore/
(sonraki sayfaya devam)

4.8. Python Launcher for Windows 47

https://peps.python.org/pep-0397/
https://peps.python.org/pep-0514/

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)

Select PythonCore's latest Python 3 runtime
py -V:PythonCore/3

The short form of the argument (- 3) only ever selects from core Python releases, and not other distributions. However,
the longer form (-V : 3) will select from any.

The Company is matched on the full string, case-insenitive. The Tag is matched oneither the full string, or a prefix,
provided the next character is a dot or a hyphen. This allows —V: 3.1 to match 3.1-32, but not 3.10. Tags are
sorted using numerical ordering (3. 10 is newer than 3. 1), but are compared using text (-V: 3. 01 does not match
3.1).

Virtual environments

Added in version 3.5.

If the launcher is run with no explicit Python version specification, and a virtual environment (created with the
standard library venv module or the external virtualenv tool) active, the launcher will run the virtual environ-
ment’s interpreter rather than the global one. To run the global interpreter, either deactivate the virtual environment,
or explicitly specify the global Python version.

From a script

Let’s create a test Python script - create a file called hello . py with the following contents

#! python
import sys
sys.stdout.write("hello from Python \n" % (sys.version,))

From the directory in which hello.py lives, execute the command:

[py hello.py

)

You should notice the version number of your latest Python 2.x installation is printed. Now try changing the first line
to be:

[# ! python3

Re-executing the command should now print the latest Python 3.x information. As with the above command-line
examples, you can specify a more explicit version qualifier. Assuming you have Python 3.7 installed, try changing
the first line to #! python3.7 and you should find the 3.7 version information printed.

Note that unlike interactive use, a bare “python” will use the latest version of Python 2.x that you have installed.
This is for backward compatibility and for compatibility with Unix, where the command python typically refers to
Python 2.

From file associations

The launcher should have been associated with Python files (i.e. .py, .pyw, .pyc files) when it was installed.
This means that when you double-click on one of these files from Windows explorer the launcher will be used, and
therefore you can use the same facilities described above to have the script specify the version which should be used.

The key benefit of this is that a single launcher can support multiple Python versions at the same time depending on
the contents of the first line.

48 B6liim 4. Using Python on Windows

Python Setup and Usage, Yayim 3.12.3

4.8.2 Shebang Lines

If the first line of a script file starts with # !, it is known as a “shebang” line. Linux and other Unix like operating
systems have native support for such lines and they are commonly used on such systems to indicate how a script should
be executed. This launcher allows the same facilities to be used with Python scripts on Windows and the examples
above demonstrate their use.

To allow shebang lines in Python scripts to be portable between Unix and Windows, this launcher supports a number
of ‘virtual’ commands to specify which interpreter to use. The supported virtual commands are:

e /usr/bin/env

* /usr/bin/python

* /usr/local/bin/python
* python

For example, if the first line of your script starts with

[#/ /usr/bin/python

The default Python will be located and used. As many Python scripts written to work on Unix will already have this
line, you should find these scripts can be used by the launcher without modification. If you are writing a new script
on Windows which you hope will be useful on Unix, you should use one of the shebang lines starting with /usr.

Any of the above virtual commands can be suffixed with an explicit version (either just the major version, or the
major and minor version). Furthermore the 32-bit version can be requested by adding “-32” after the minor version.
Le. /usr/bin/python3.7-32 will request usage of the 32-bit python 3.7.

Added in version 3.7: Beginning with python launcher 3.7 it is possible to request 64-bit version by the “-64” suffix.
Furthermore it is possible to specify a major and architecture without minor (i.e. /usr/bin/python3-64).

3.11 siiriimiinde degisti: The “-64” suffix is deprecated, and now implies “any architecture that is not provably i386/32-
bit”. To request a specific environment, use the new —V : TAG argument with the complete tag.

The /usr/bin/env form of shebang line has one further special property. Before looking for installed Pyt-
hon interpreters, this form will search the executable PATH for a Python executable matching the name provided
as the first argument. This corresponds to the behaviour of the Unix env program, which performs a PATH se-
arch. If an executable matching the first argument after the env command cannot be found, but the argument
starts with python, it will be handled as described for the other virtual commands. The environment variable
PYLAUNCHER_NO_SEARCH_PATH may be set (to any value) to skip this search of PATH.

Shebang lines that do not match any of these patterns are looked up in the [commands] section of the launcher’s
.INI file. This may be used to handle certain commands in a way that makes sense for your system. The name of the
command must be a single argument (no spaces in the shebang executable), and the value substituted is the full path
to the executable (additional arguments specified in the .INI will be quoted as part of the filename).

[commands]
/bin/xpython=C:\Program Files\XPython\python.exe

Any commands not found in the .INI file are treated as Windows executable paths that are absolute or relative to
the directory containing the script file. This is a convenience for Windows-only scripts, such as those generated by
an installer, since the behavior is not compatible with Unix-style shells. These paths may be quoted, and may include
multiple arguments, after which the path to the script and any additional arguments will be appended.

4.8. Python Launcher for Windows 49

Python Setup and Usage, Yayim 3.12.3

4.8.3 Arguments in shebang lines

The shebang lines can also specify additional options to be passed to the Python interpreter. For example, if you have
a shebang line:

[# ! /usr/bin/python -v

Then Python will be started with the —v option

4.8.4 Customization

Customization via INI files

Two .ini files will be searched by the launcher - py.ini in the current user’s application data directory
($LOCALAPPDATAS or $Senv:LocalAppData) and py.ini in the same directory as the launcher. The sa-
me .ini files are used for both the ‘console’ version of the launcher (i.e. py.exe) and for the ‘windows’ version (i.e.
pyw.exe).

Customization specified in the “application directory” will have precedence over the one next to the executable, so a
user, who may not have write access to the .ini file next to the launcher, can override commands in that global .ini
file.

Customizing default Python versions

In some cases, a version qualifier can be included in a command to dictate which version of Python will be used by
the command. A version qualifier starts with a major version number and can optionally be followed by a period (*.’)
and a minor version specifier. Furthermore it is possible to specify if a 32 or 64 bit implementation shall be requested
by adding “-32” or “-64”.

For example, a shebang line of # ! python has no version qualifier, while # ! python3 has a version qualifier which
specifies only a major version.

If no version qualifiers are found in a command, the environment variable PY_PYTHON can be set to specify the
default version qualifier. If it is not set, the default is “3”. The variable can specify any value that may be passed on
the command line, such as “3”, “3.7”, “3.7-32” or “3.7-64”. (Note that the “-64” option is only available with the
launcher included with Python 3.7 or newer.)

If no minor version qualifiers are found, the environment variable PY_PYTHON{major} (where {major} is the
current major version qualifier as determined above) can be set to specify the full version. If no such option is found,
the launcher will enumerate the installed Python versions and use the latest minor release found for the major version,
which is likely, although not guaranteed, to be the most recently installed version in that family.

On 64-bit Windows with both 32-bit and 64-bit implementations of the same (major.minor) Python version installed,
the 64-bit version will always be preferred. This will be true for both 32-bit and 64-bit implementations of the launcher
- a 32-bit launcher will prefer to execute a 64-bit Python installation of the specified version if available. This is so the
behavior of the launcher can be predicted knowing only what versions are installed on the PC and without regard to the
order in which they were installed (i.e., without knowing whether a 32 or 64-bit version of Python and corresponding
launcher was installed last). As noted above, an optional “-32” or “-64” suffix can be used on a version specifier to
change this behaviour.

Examples:

* If no relevant options are set, the commands python and python2 will use the latest Python 2.x version
installed and the command python3 will use the latest Python 3.x installed.

* The command python3. 7 will not consult any options at all as the versions are fully specified.
e IfPY_PYTHON =3, the commands python and python3 will both use the latest installed Python 3 version.

e If PY_PYTHON =3.7-32, the command python will use the 32-bit implementation of 3.7 whereas the
command python3 will use the latest installed Python (PY_PYTHON was not considered at all as a major
version was specified.)

50 B6liim 4. Using Python on Windows

Python Setup and Usage, Yayim 3.12.3

e f PY_PYTHON =3 and PY_PYTHON3 =3.7, the commands python and python3 will both use spe-
cifically 3.7

In addition to environment variables, the same settings can be configured in the .INI file used by the launcher. The
section in the INI file is called [defaults] and the key name will be the same as the environment variables
without the leading PY__ prefix (and note that the key names in the INI file are case insensitive.) The contents of an
environment variable will override things specified in the INI file.

For example:

e Setting PY_PYTHON =3. 7 is equivalent to the INI file containing:

[defaults]
python=3.7

e Setting PY_PYTHON =3 and PY_PYTHON3 =3.7 is equivalent to the INI file containing:

[defaults]
python=3
python3=3.7

4.8.5 Diagnostics

If an environment variable PYLAUNCHER_DEBUG is set (to any value), the launcher will print diagnostic information
to stderr (i.e. to the console). While this information manages to be simultaneously verbose and terse, it should allow
you to see what versions of Python were located, why a particular version was chosen and the exact command-line
used to execute the target Python. It is primarily intended for testing and debugging.

4.8.6 Dry Run

If an environment variable PYLAUNCHER_DRYRUN is set (to any value), the launcher will output the command it
would have run, but will not actually launch Python. This may be useful for tools that want to use the launcher to
detect and then launch Python directly. Note that the command written to standard output is always encoded using
UTF-8, and may not render correctly in the console.

4.8.7 Install on demand

If an environment variable PYLAUNCHER_ALLOW_INSTALL is set (to any value), and the requested Python version
is not installed but is available on the Microsoft Store, the launcher will attempt to install it. This may require user
interaction to complete, and you may need to run the command again.

An additional PYLAUNCHER_ALWAYS_INSTALL variable causes the launcher to always try to install Python, even
if it is detected. This is mainly intended for testing (and should be used with PYLAUNCHER_DRYRUN).

4.8.8 Return codes
The following exit codes may be returned by the Python launcher. Unfortunately, there is no way to distinguish these
from the exit code of Python itself.

The names of codes are as used in the sources, and are only for reference. There is no way to access or resolve them
apart from reading this page. Entries are listed in alphabetical order of names.

4.8. Python Launcher for Windows 51

Python Setup and Usage, Yayim 3.12.3

Name Va- Description
lue
RC_BAD_VENV_CFG 107 A pyvenv.cfg was found but is corrupt.
RC_CREATE_PROCESS 101 Failed to launch Python.
RC_INSTALLING 111 An install was started, but the command will need to be re-run after it comp-
letes.
RC_INTERNAL_ERROR 109 Unexpected error. Please report a bug.
RC_NO_COMMANDLINI 108 Unable to obtain command line from the operating system.
RC_NO_PYTHON 103 Unable to locate the requested version.
RC_NO_VENV_CFG 106 A pyvenv.cfg was required but not found.

4.9

Finding modules

These notes supplement the description at sys-path-init with detailed Windows notes.

When no ._pth file is found, this is how sys.path is populated on Windows:

An empty entry is added at the start, which corresponds to the current directory.

If the environment variable PYTHONPA TH exists, as described in Environment variables, its entries are added
next. Note that on Windows, paths in this variable must be separated by semicolons, to distinguish them from
the colon used in drive identifiers (C: \ etc.).

Additional “application paths” can be added in the registry as subkeys of \SOFTWARE\
Python\PythonCore{version}\PythonPath under both the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE hives. Subkeys which have semicolon-delimited path strings as their default value
will cause each path to be added to sys.path. (Note that all known installers only use HKLM, so HKCU
is typically empty.)

If the environment variable PYTHONHOME is set, it is assumed as “Python Home”. Otherwise, the path of
the main Python executable is used to locate a “landmark file” (either Lib\os.py or pythonXY.zip)
to deduce the “Python Home”. If a Python home is found, the relevant sub-directories added to sys.path
(Lib, plat-win, etc) are based on that folder. Otherwise, the core Python path is constructed from the
PythonPath stored in the registry.

If the Python Home cannot be located, no PYTHONPATH is specified in the environment, and no registry
entries can be found, a default path with relative entries is used (e.g. . \Lib; . \plat—-win, etc).

If apyvenv. cfg file is found alongside the main executable or in the directory one level above the executable, the
following variations apply:

If home is an absolute path and PYTHONHOME is not set, this path is used instead of the path to the main
executable when deducing the home location.

The end result of all this is:

When running python.exe, or any other .exe in the main Python directory (either an installed version, or
directly from the PCbuild directory), the core path is deduced, and the core paths in the registry are ignored.
Other “application paths” in the registry are always read.

When Python is hosted in another .exe (different directory, embedded via COM, etc), the “Python Home” will
not be deduced, so the core path from the registry is used. Other “application paths” in the registry are always
read.

If Python can’t find its home and there are no registry value (frozen .exe, some very strange installation setup)
you get a path with some default, but relative, paths.

For those who want to bundle Python into their application or distribution, the following advice will prevent conflicts
with other installations:

52

B6liim 4. Using Python on Windows

Python Setup and Usage, Yayim 3.12.3

¢ Include a . _pth file alongside your executable containing the directories to include. This will ignore paths
listed in the registry and environment variables, and also ignore site unless import site is listed.

e If you are loading python3.dll or python37.dll in your own executable, explicitly call
Py_SetPath () or (at least) Py_SetProgramName () before Py_Initialize ().

* Clear and/or overwrite PYTHONPATH and set PYTHONHOME before launching python.exe from your
application.

 If you cannot use the previous suggestions (for example, you are a distribution that allows people to run
python.exe directly), ensure that the landmark file (Lib\os.py) exists in your install directory. (No-
te that it will not be detected inside a ZIP file, but a correctly named ZIP file will be detected instead.)

These will ensure that the files in a system-wide installation will not take precedence over the copy of the standard
library bundled with your application. Otherwise, your users may experience problems using your application. Note
that the first suggestion is the best, as the others may still be susceptible to non-standard paths in the registry and user
site-packages.

3.6 siiriimiinde degisti: Add . _pth file support and removes applocal option from pyvenv.cfg.
3.6 siiriimiinde degisti: Add pythonXX. zip as a potential landmark when directly adjacent to the executable.

3.6 siiriimiinden beri kullanim dis1: Modules specified in the registry under Modules (not PythonPath) may be
imported by importlib.machinery.WindowsRegistryFinder. This finder is enabled on Windows in
3.6.0 and earlier, but may need to be explicitly added to sys .meta_path in the future.

4.10 Additional modules

Even though Python aims to be portable among all platforms, there are features that are unique to Windows. A couple
of modules, both in the standard library and external, and snippets exist to use these features.

The Windows-specific standard modules are documented in mswin-specific-services.

4.10.1 PyWin32

The PyWin32 module by Mark Hammond is a collection of modules for advanced Windows-specific support. This
includes utilities for:

» Component Object Model (COM)

e Win32 API calls

* Registry

* Event log

e Microsoft Foundation Classes (MFC) user interfaces
PythonWin is a sample MFC application shipped with PyWin32. It is an embeddable IDE with a built-in debugger.
Ayrica bakimz:

Win32 How Do I...?
by Tim Golden

Python and COM
by David and Paul Boddie

4.10. Additional modules 53

https://pypi.org/project/PyWin32/
https://docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications
https://web.archive.org/web/20060524042422/https://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
https://www.boddie.org.uk/python/COM.html

Python Setup and Usage, Yayim 3.12.3

4.10.2 cx_Freeze

cx_Freeze wraps Python scripts into executable Windows programs (*. exe files). When you have done this, you
can distribute your application without requiring your users to install Python.

4.11 Compiling Python on Windows

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh checkout.

The source tree contains a build solution and project files for Microsoft Visual Studio, which is the compiler used to
build the official Python releases. These files are in the PCbui 1d directory.

Check PCbuild/readme. txt for general information on the build process.

For extension modules, consult building-on-windows.

4.12 Other Platforms

With ongoing development of Python, some platforms that used to be supported earlier are no longer supported (due
to the lack of users or developers). Check PEP 11 for details on all unsupported platforms.

* Windows CE is no longer supported since Python 3 (if it ever was).
¢ The Cygwin installer offers to install the Python interpreter as well

See Python for Windows for detailed information about platforms with pre-compiled installers.

54 B6liim 4. Using Python on Windows

https://cx-freeze.readthedocs.io/en/latest/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#get-the-source-code
https://peps.python.org/pep-0011/
https://pythonce.sourceforge.net/
https://github.com/python/cpython/issues/71542
https://cygwin.com/
https://cygwin.com/packages/summary/python3.html
https://www.python.org/downloads/windows/

BOLUM D

Using Python on a Mac

Author
Bob Savage <bobsavage@mac.com>

Python on a Mac running macOS is in principle very similar to Python on any other Unix platform, but there are a
number of additional features such as the integrated development environment (IDE) and the Package Manager that
are worth pointing out.

5.1 Getting and Installing Python

macOS used to come with Python 2.7 pre-installed between versions 10.8 and 12.3. You are invited to install the
most recent version of Python 3 from the Python website. A current “universal2 binary” build of Python, which runs
natively on the Mac’s new Apple Silicon and legacy Intel processors, is available there.

What you get after installing is a number of things:

* A Python 3.12 folder in your Applications folder. In here you find IDLE, the development envi-
ronment that is a standard part of official Python distributions; and Python Launcher, which handles
double-clicking Python scripts from the Finder.

e A framework /Library/Frameworks/Python.framework, which includes the Python executable
and libraries. The installer adds this location to your shell path. To uninstall Python, you can remove these
three things. A symlink to the Python executable is placed in /usr/local/bin/.

Not: On macOS 10.8-12.3, the Apple-provided build of Python is installed in /System/Library/
Frameworks/Python. framework and /usr/bin/python, respectively. You should never modify or de-
lete these, as they are Apple-controlled and are used by Apple- or third-party software. Remember that if you choose
to install a newer Python version from python.org, you will have two different but functional Python installations on
your computer, so it will be important that your paths and usages are consistent with what you want to do.

IDLE includes a Help menu that allows you to access Python documentation. If you are completely new to Python
you should start reading the tutorial introduction in that document.

If you are familiar with Python on other Unix platforms you should read the section on running Python scripts from
the Unix shell.

55

mailto:bobsavage@mac.com
https://developer.apple.com/documentation/macos-release-notes/macos-12_3-release-notes#Python
https://www.python.org/downloads/macos/

Python Setup and Usage, Yayim 3.12.3

5.1.1 How to run a Python script
Your best way to get started with Python on macOS is through the IDLE integrated development environment; see
section The IDE and use the Help menu when the IDE is running.

If you want to run Python scripts from the Terminal window command line or from the Finder you first need an
editor to create your script. macOS comes with a number of standard Unix command line editors, vim nano among
them. If you want a more Mac-like editor, BBEdit from Bare Bones Software (see https://www.barebones.com/
products/bbedit/index.html) are good choices, as is TextMate (see https://macromates.com). Other editors include
MacVim (https://macvim.org) and Aquamacs (https://aquamacs.org).

To run your script from the Terminal window you must make sure that /usr/local/bin is in your shell search
path.

To run your script from the Finder you have two options:
* Dragitto Python Launcher.

¢ Select Python Launcher as the default application to open your script (or any . py script) through the
finder Info window and double-click it. Python Launcher has various preferences to control how your
script is launched. Option-dragging allows you to change these for one invocation, or use its Preferences menu
to change things globally.

5.1.2 Running scripts with a GUI

With older versions of Python, there is one macOS quirk that you need to be aware of: programs that talk to the Aqua
window manager (in other words, anything that has a GUI) need to be run in a special way. Use pythonw instead
of python to start such scripts.

With Python 3.9, you can use either python or pythonw.

5.1.3 Configuration

Python on macOS honors all standard Unix environment variables such as PYTHONPATH, but setting these variables
for programs started from the Finder is non-standard as the Finder does not read your .profile or .cshrc at
startup. You need to create a file ~/ .MacOSX/environment .plist. See Apple’s Technical Q&A QA1067
for details.

For more information on installation Python packages, see section Installing Additional Python Packages.

5.2 The IDE

Python ships with the standard IDLE development environment. A good introduction to using IDLE can be found at
https://www.hashcollision.org/hkn/python/idle_intro/index.html.

5.3 Installing Additional Python Packages

This section has moved to the Python Packaging User Guide.

56 Boliim 5. Using Python on a Mac

https://www.barebones.com/products/bbedit/index.html
https://www.barebones.com/products/bbedit/index.html
https://macromates.com
https://macvim.org
https://aquamacs.org
https://developer.apple.com/library/archive/qa/qa1067/_index.html
https://www.hashcollision.org/hkn/python/idle_intro/index.html
https://packaging.python.org/en/latest/tutorials/installing-packages/

Python Setup and Usage, Yayim 3.12.3

5.4 GUI Programming

There are several options for building GUI applications on the Mac with Python.

PyObjC is a Python binding to Apple’s Objective-C/Cocoa framework, which is the foundation of most modern Mac
development. Information on PyObjC is available from pyobjc.

The standard Python GUI toolkitis t k int er, based on the cross-platform Tk toolkit (https://www.tcl.tk). An Aqua-
native version of Tk is bundled with macOS by Apple, and the latest version can be downloaded and installed from
https://www.activestate.com; it can also be built from source.

A number of alternative macOS GUI toolkits are available:
 PySide: Official Python bindings to the Qt GUI toolkit.
e PyQt: Alternative Python bindings to Qt.
¢ Kivy: A cross-platform GUI toolkit that supports desktop and mobile platforms.
* Toga: Part of the BeeWare Project; supports desktop, mobile, web and console apps.

* wxPython: A cross-platform toolkit that supports desktop operating systems.

5.5 Distributing Python Applications

A range of tools exist for converting your Python code into a standalone distributable application:
* py2app: Supports creating macOS . app bundles from a Python project.

* Briefcase: Part of the BeeWare Project; a cross-platform packaging tool that supports creation of . app bundles
on macOS, as well as managing signing and notarization.

 Pylnstaller: A cross-platform packaging tool that creates a single file or folder as a distributable artifact.

5.6 Other Resources

The Pythonmac-SIG mailing list is an excellent support resource for Python users and developers on the Mac:
https://www.python.org/community/sigs/current/pythonmac-sig/
Another useful resource is the MacPython wiki:

https://wiki.python.org/moin/MacPython

5.4. GUI Programming 57

https://pypi.org/project/pyobjc/
https://www.tcl.tk
https://www.activestate.com
https://www.qt.io/qt-for-python
https://qt.io
https://riverbankcomputing.com/software/pyqt/intro
https://kivy.org
https://toga.readthedocs.io
https://beeware.org
https://www.wxpython.org
https://pypi.org/project/py2app/
https://briefcase.readthedocs.io
https://beeware.org
https://pyinstaller.org/
https://www.python.org/community/sigs/current/pythonmac-sig/
https://wiki.python.org/moin/MacPython

Python Setup and Usage, Yayim 3.12.3

58

Boliim 5. Using Python on a Mac

BOLUM O

Editors and IDEs

There are a number of IDEs that support Python programming language. Many editors and IDEs provide syntax
highlighting, debugging tools, and PEP 8 checks.

Please go to Python Editors and Integrated Development Environments for a comprehensive list.

59

https://peps.python.org/pep-0008/
https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Python Setup and Usage, Yayim 3.12.3

60

Bolum 6. Editors and IDEs

ek A

Sozluk

>>>
Etkilesimli kabugun varsayilan Python istemi. Genellikle yorumlayicida etkilesimli olarak yiiriitiilebilen kod
ornekleri i¢in goriiliir.

Sunlara bagvurabilir:

* Girintili bir kod blogu i¢in kod girerken, eslesen bir ¢ift sol ve sag sinirlayici (parantez, koseli paran-
tez, kagh ayra¢ veya ticlii tirnak) icindeyken veya bir dekorator belirttikten sonra etkilesimli kabugun
varsayilan Python istemi.

* Elipsis yerlesik sabiti.

2to3
Kaynag1 ayristirarak ve ayristirma agacinda gezinerek tespit edilebilecek uyumsuzluklarin ¢ogunu isleyerek
Python 2.x kodunu Python 3.x koduna doniistiirmeye ¢alisan bir arac.

2to3, standart kiitliphanede 1ib2to3'; badimsiz bir giris noktasi su sekilde
sadlanir:file: Tools/scripts/2to3. Bakinz 2to3-reference.

soyut temel simif
Soyut temel siniflar duck-typing ‘i, hasattr () gibidiger teknikler beceriksiz veya tamamen yanlis oldugunda
arayiizleri tanimlamanin bir yolunu saglayarak tamamlar (6rnegin sihirli yontemlerle). ABC’ler, bir siniftan
miras almayan ancak yine de isinstance () ve issubclass () tarafindan taninan siniflar olan sanal alt
smiflar1 tanitir; abc modiil belgelerine bakin. Python comes with many built-in ABCs for data structures (in
the collections.abc module), numbers (in the numbers module), streams (in the 1o module), import
finders and loaders (in the import1lib.abc module). abc modiilii ile kendi ABC’lerinizi olusturabilirsiniz.

dipnot
Bir degiskenle, bir sinif niteligiyle veya bir fonksiyon parametresiyle veya bir doniis degeriyle iliskilendirilen,
gelenek olarak type hint bigiminde kullanilan bir etiket.

Yerel degiskenlerin agiklamalarina ¢alisma zamaninda erisilemez, ancak global degiskenlerin, sinif nitelikle-
rinin ve iglevlerin agiklamalari, sirasiyla modiillerin, siniflarin ve iglevlerin __annotations__ ozel ozelli-
ginde saklanir.

Bu islevi agiklayan variable annotation, function annotation, PEP 484 ve PEP 526’e bakin. Ek a¢iklamalarla
calismaya iligkin en iyi uygulamalar i¢in ayrica bkz. annotations-howto.

argiiman
Fonksiyon cagrilirken bir function ‘a (veya method) gegirilen bir deger. Iki tiir argiiman vardur:

61

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Python Setup and Usage, Yayim 3.12.3

* keyword argument: bir iglev cagrisinda bir tanimlayicinin (6r. ad =) 6niine gecen veya bir sozliikte * * ile
baslayan bir deger olarak gecirilen bir argiiman. Ornegin, 3 ve 5, asagidaki complex () : cagrilarinda
anahtar kelimenin argiimanleridir:

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

e positional argument: anahtar kelime argiimani olmayan bir argiiman. Konumsal argtimanler, bir argiiman
listesinin baginda goriinebilir ve/veya * ile baglayan bir iterable 5gesinin 6geleri olarak iletilebilir. Ornegin,
3 ve 5, asagidaki cagrilarda konumsal arglimanlerdir:

complex (* (3, 5))

complex (3, 5) J

Argiimanler, bir fonksiyon gévdesindeki adlandirilmis yerel degiskenlere atanir. Bu atamay1 yoneten kurallar
icin calls boliimiine bakin. Sozdizimsel olarak, bir argiimani temsil etmek igin herhangi bir ifade kullanilabilir;
degerlendirilen deger yerel degiskene atanur.

Ayrica parameter sozliigii girisine, the difference between arguments and parameters hakkindaki SSS sorusuna
ve PEP 362 ‘ye bakin.

asenkron baglam yoneticisi
An object which controls the environment seen in an async with statement by defining __aenter__ ()
and __aexit__ () methods. Introduced by PEP 492.

asenkron jenerator
asynchronous generator iterator dondiiren bir iglev. Bir async for dongiisiinde kullanilabilen bir dizi deger
iretmek i¢in yield ifadeleri igermesi disinda async def ile tanimlanmis bir esyordam iglevine benziyor.

Genellikle bir asenkron iireteg islevine atifta bulunur, ancak bazi baglamlarda bir asynchronous generator ite-
rator ‘e karsilik gelebilir. Amaglanan anlamin net olmadig1 durumlarda, tam terimlerin kullanilmast belirsizligi
onler.

Bir asenkron iiretici fonksiyonu, await ifadelerinin yami sira async for ve async with ifadeleri ice-
rebilir.

asenkron jenerator yineleyici
Bir asynchronous generator iglevi tarafindan olusturulan bir nesne.

This is an asynchronous iterator which when called using the __anext__ () method returns an awaitable
object which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the asynchronous generator iterator effectively resumes with another
awaitable returned by ___anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

eszamansiz yinelenebilir
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__ () method. Introduced by PEP 492.

asenkron yineleyici
An object that implements the __aiter__ () and __anext__ () methods. __anext__ () must re-
turn an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__ () method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

nitelik
Noktali ifadeler kullanilarak adiyla bagvurulan bir nesneyle iliskili deger. Ornegin, o nesnesinin a 6zniteligi
varsa, bu nesneye o.a olarak bagvurulur.

Bir nesneye, eger nesne izin veriyorsa, 6rnegin setattr () kullanarak, adi identifiers tarafindan tanimlandigi
gibi tanimlayic1 olmayan bir 6znitelik vermek miimkiindiir. Boyle bir 6znitelige noktali bir ifade kullanilarak
erisilemez ve bunun yerine getattr () ile alinmas: gerekir.

beklenebilir
An object that can be used in an awa it expression. Can be a coroutine or an object with an __await__ ()

62 Ek A. Soézluk

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

Python Setup and Usage, Yayim 3.12.3

method. See also PEP 492.

BDFL
Benevolent Dictator For Life, nami diger Guido van Rossum, Python’un yaraticisi.

ikili dosya
A file object able to read and write byfes-like objects. Examples of binary files are files opened in binary
mode ('rb', 'wb' or 'rb+"'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.
BytesIOand gzip.GzipFile.

Ayrica st r nesnelerini okuyabilen ve yazabilen bir dosya nesnesi icin zext file ‘a bakin.

odiin¢ alinan referans
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

borrowed reference izerinde Py__INCREF () cagirmak, nesnenin 6diing alinanin son kullanimindan 6nce yok
edilemedigi durumlar diginda, onu yerinde bir strong reference ‘a doniistiirmek igin tavsiye edilir. referans.
Py_NewRef () islevi, yeni bir strong reference olusturmak i¢in kullanilabilir.

bayt benzeri nesne
bufferobjects ‘i destekleyen ve bir C-contiguous arabellegini disa aktarabilen bir nesne. Bu, tim bytes,
bytearray ve array.array nesnelerinin yani sira bir¢ok yaygin memoryview nesnesini igerir. Bayt
benzeri nesneler, ikili verilerle ¢alisan ¢esitli iglemler i¢in kullanilabilir; bunlara sikistirma, ikili dosyaya kay-
detme ve bir soket iizerinden génderme dahildir.

Bazi iglemler, degisken olmast igin ikili verilere ihtiya¢ duyar. Belgeler genellikle bunlara “okuma-yazma
bayt benzeri nesneler” olarak atifta bulunur. Ornek degistirilebilir arabellek nesneleri bytearray ve bir
bytearray memoryview icerir. Diger iglemler, ikili verilerin degismez nesnelerde (“salt okunur bayt
benzeri nesneler”) depolanmasint gerektirir; bunlarin 6rnekleri arasinda bytes ve bir bytes nesnesinin
memoryview bulunur.

bayt kodu
Python kaynak kodu, bir Python programimin CPython yorumlayicisindaki dahili temsili olan bayt kodunda
derlenir. Bayt kodu ayrica . pyc dosyalarinda 6nbellege alinir, boylece ayni dosyanin ikinci kez ¢alistirilmasi
daha hizli olur (kaynaktan bayt koduna yeniden derleme 6nlenebilir). Bu “ara dilin”, her bir bayt koduna karsilik
gelen makine kodunu yiiriiten bir sanal makine tizerinde ¢aligtig1 sdylenir. Bayt kodlarinin farkli Python sanal
makineleri arasinda caligmasi veya Python siiriimleri arasinda kararl olmasi beklenmedigini unutmayin.

Bayt kodu talimatlarinin bir listesi bytecodes dokiimaninda bulunabilir.

cagirilabilir
Bir cagrilabilir, muhtemelen bir dizi argiimanla (bkz. argument) ve asagidaki sozdizimiyle ¢agrilabilen bir
nesnedir:

[callable(argumentl, argument?2, argumentN) }

Bir fonksiyon ve uzantist olarak bir mefot bir cagrilabilirdir. __call__ () yOntemini uygulayan bir siif
ornegi de bir ¢agrilabilirdir.

geri cagirmak
Gelecekte bir noktada yiiriitiilecek bir argiiman olarak iletilen bir alt program islevi.

simf
Kullanici tanimli nesneler olusturmak i¢in bir sablon. Sinif tanimlar1 normalde sinifin 6rnekleri iizerinde ¢aligan
yontem tanimlarini icerir.

smif degiskeni
Bir sinifta tanimlanmig ve yalnizca sinif diizeyinde (yani sinifin bir 6rneginde degil) degistirilmesi amaglanan
bir degisken.

karmasik say1
Ttim sayilarin bir reel kisim ve bir sanal kisim toplami1 olarak ifade edildigi bilinen gercek say1 sisteminin
bir uzantisi. Hayali sayilar, hayali birimin gergek katlaridir (-1 ‘in karekokii), genellikle matematikte i veya

63

https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

Python Setup and Usage, Yayim 3.12.3

miihendislikte j ile yazilir. Python, bu son gosterimle yazilan karmagik sayilar i¢in yerlesik destege sahip-
tir; hayali kisim bir j son ekiyle yazilir, 6rnegin 3+1 j. math modiiliiniin karmagik es degerlerine erismek
icin cmath kullanin. Karmagik sayilarin kullanimi oldukga gelismis bir matematiksel 6zelliktir. Onlara olan
ihtiyacin farkinda degilseniz, onlar1 giivenle gormezden gelebileceginiz neredeyse kesindir.

baglam yoneticisi
An object which controls the environment seen in a with statement by defining _ _enter__ () and
__exit__ () methods. See PEP 343.

baglam degiskeni
Baglamina bagli olarak farkli degerler alabilen bir degisken. Bu, her yiiriitme is par¢aciginin bir degisken icin
farkli bir degere sahip olabilecegi Thread-Local Storage’a benzer. Bununla birlikte, baglam degiskenleriyle,
bir yiiriitme ig parc¢aciginda birka¢ baglam olabilir ve baglam degiskenlerinin ana kullanimi, eszamanli zaman
uyumsuz gorevlerde degiskenleri izlemektir. Bakiniz contextvars.

bitisik
Bir arabellek, C-bitisik veya Fortran bitigik ise tam olarak bitisik olarak kabul edilir. Sifir boyutlu arabellekler
C ve Fortran bitisiktir. Tek boyutlu dizilerde, 6geler sifirdan baglayarak artan dizinler sirasina gore bellekte yan
yana yerlestirilmelidir. Cok boyutlu C-bitisik dizilerde, 6geleri bellek adresi sirasina gore ziyaret ederken son
dizin en hizli sekilde degisir. Ancak, Fortran bitisik dizilerinde, ilk dizin en hizli sekilde degisir.

esyordam
Esyordamlar, altyordamlarin daha genellestirilmis bir bigimidir. Alt programlara bir noktada girilir ve bagka
bir noktada ¢ikilir. Esyordamlar bircok farkli noktada girilebilir, ¢ikilabilir ve devam ettirilebilir. async def
ifadesi ile uygulanabilirler. Ayrica bakiniz PEP 492.

esyordam iglevi
Bir coroutine nesnesi dondiiren bir iglev. Bir esyordam iglevi async def£ ifadesiyle tanimlanabilir ve await,
async for ve async with anahtar kelimelerini igcerebilir. Bunlar PEP 492 tarafindan tanitildi.

CPython
Python programlama dilinin python.org iizerinde dagitildig1 sekliyle kuralli uygulamasi. “CPython” terimi,
gerektiginde bu uygulamay1 Jython veya IronPython gibi digerlerinden ayirmak i¢in kullanilir.

dekorator
Genellikle @wrapper sozdizimi kullanilarak bir islev doniisiimii olarak uygulanan, bagka bir islevi dondiiren
bir islev. Dekoratorler icin yaygin 6rnekler sunlardir: classmethod () ve staticmethod ().

Dekorator sozdizimi yalnizca sozdizimsel sekerdir, asagidaki iki islev tanim1 anlamsal olarak es degerdir:

def f (arg):
f = staticmethod (f)

@staticmethod
def f (arqg):

L J

Ayn1 kavram siniflar i¢in de mevcuttur, ancak orada daha az kullanilir. Dekoratorler hakkinda daha fazla bilgi
icin function definitions ve class definitions belgelerine bakin.

tanimlayici
Any object which defines the methods __get__ (), __set__ (),or __delete__ (). When a class att-
ribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

Tanimlayicilarin yontemleri hakkinda daha fazla bilgi i¢in, bkz. descriptors veya Descriptor How To Guide.

sozliik
An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eq__ () methods. Called a hash in Perl.

64 Ek A. Soézluk

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

Python Setup and Usage, Yayim 3.12.3

sozliik anlama
Ogelerin tiimiinii veya bir kismini yinelenebilir bir sekilde islemenin ve sonuglar1 igeren bir sozliik dondiir-
menin kompakt bir yolu. results = {n: n ** 2 for range(10)},n ** 2 degerine eslenmis n
anahtarini igeren bir sozliik olusturur. Bkz. comprehensions.

sozliik goriiniimii
dict.keys (), dict.values () ve dict.items () ‘den dondiiriilen nesnelere sozliik goriiniimleri
denir. Sozliigiin girigleri iizerinde dinamik bir goriiniim saglarlar; bu, sozliik degistifinde gériiniimiin bu degi-
siklikleri yansittig1 anlamina gelir. Sozliik goriiniimiinii tam liste olmaya zorlamak i¢in 1ist (dictview)
kullanin. Bakiniz dict-views.

belge dizisi
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

ordek yazma
Dogru arayiize sahip olup olmadigini belirlemek igin bir nesnenin tiiriine bakmayan bir programlama stili;
bunun yerine, yontem veya nitelik basitce cagrilir veya kullanilir (“Ordek gibi goriiniiyorsa ve 6rdek gibi vak-
liyorsa, drdek olmalidir.”) Tyi tasarlanmig kod, belirli tiirlerden ziyade arayiizleri vurgulayarak, polimorfik
ikameye izin vererek esnekligini artirir. Ordek yazma, type () veya isinstance () kullanan testleri 6n-
ler. (Ancak, 6rdek yazmanin abstract base class ile tamamlanabilecegini unutmayin.) Bunun yerine, genellikle
hasattr () testleri veya EAFP programlamasini kullanir.

EAFP
Af dilemek izin almaktan daha kolaydir. Bu yaygin Python kodlama stili, gegerli anahtarlarin veya niteliklerin
varligini varsayar ve varsayimin yanlig ¢ikmast durumunda istisnalari yakalar. Bu temiz ve hizli stil, bir¢ok
try ve except ifadesinin varligi ile karakterize edilir. Teknik, C gibi diger bir¢ok dilde ortak olan LBYL
stiliyle celisir.

ifade (deger dondiiriir)
Bir degere gore degerlendirilebilecek bir sozdizimi parcgasi. Bagka bir deyisle, bir ifade, tiimii bir deger don-
diiren sabit degerler, adlar, oznitelik erigimi, islecler veya iglev ¢agrilart gibi ifade 6gelerinin bir toplamudir.
Diger birgok dilin aksine, tiim dil yapilar ifade degildir. Ayrica while gibi kullanilamayan ifadeler de vardir.
Atamalar da deger dondiirmeyen ifadelerdir (statement).

uzatma modiilii
Cekirdekle ve kullanict koduyla etkilesim kurmak i¢in Python’un C APTI’sini kullanan, C veya C++ ile yazilmig
bir modiil.

f-string
Oneki '£' veya 'F' olan dize degismezleri genellikle “f-strings” olarak adlandirihir; bu, formatted string
literals ‘1n kisaltmasidir. Ayrica bkz. PEP 498.

dosya nesnesi
An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying reso-
urce. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets,
pipes, etc.). File objects are also called file-like objects or streams.

Aslinda ii¢ dosya nesnesi kategorisi vardir: ham binary files, arabellege alinmis binary files ve text files. Arayiiz-
leri io modiilinde tanimlanmistir. Bir dosya nesnesi yaratmanin kuralli yolu open () islevini kullanmaktir.

dosya benzeri nesne
dosya nesnesi ile esanlamlidir.

dosya sistemi kodlamasi ve hata isleyicisi
Python tarafindan igletim sistemindeki baytlarin kodunu ¢6zmek ve Unicode’u isletim sistemine kodlamak i¢in
kullanilan kodlama ve hata igleyici.

Dosya sistemi kodlamasi, 128’in altindaki tiim baytlarin kodunu basariyla ¢6zmeyi garanti etmelidir. Dosya
sistemi kodlamasi bu garantiyi saglayamazsa, API islevleri UnicodeError degerini yiikseltebilir.

65

https://peps.python.org/pep-0498/

Python Setup and Usage, Yayim 3.12.3

sys.getfilesystemencoding () ve sys.getfilesystemencodeerrors () islevleri, dosya
sistemi kodlamasini ve hata isleyicisini almak i¢in kullanilabilir.

filesystem encoding and error handler Python baglangicinda PyConfig_Read () isleviyle yapilandirilir: bkz.
filesystem_encodingve filesystem_errors iiyeleri PyConfig.

Ayrica bkz. locale encoding.

bulucu
Ice aktarilmakta olan bir modiil i¢in /oader ‘1 bulmaya calisan bir nesne.

Python 3.3’ten beri, iki cesit bulucu vardir: sys.meta_path ile kullanilmak iizere meta yol bulucular, ve
sys.path_hooks ile kullamilmak tizere yol girisi bulucular.

Daha fazla ayrint1 icin PEP 302, PEP 420 ve PEP 451 bakin.

kat boliimii
En yakin tam saytya yuvarlayan matematiksel bolme. Kat bolme operatorii // seklindedir. Ornegin, 11 //
4 ifadesi, gercek yiizer bolme tarafindan dondiiriilen 2 . 75 degerinin aksine 2 olarak degerlendirilir. (-11)
// 4 ‘in -3 olduguna dikkat edin, ¢linkii bu -2 . 75 yuvarlatilmis asagi. Bakimz PEP 238.

fonksiyon
Bir arayana bir deger dondiiren bir dizi ifade. Ayrica, gévdenin yiiriitiilmesinde kullanilabilen sifir veya daha
fazla argiiman iletilebilir. Ayrica parameter, method ve function boliimiine bakin.

fonksiyon aciklamasi
Bir iglev parametresinin veya doniis degerinin ek aciklamast.

Islev ek agiklamalar1 genellikle 7ype hints igin kullantlir: 6rnegin, bu fonksiyonun iki int argiiman almasi ve
ayrica bir int doniig degerine sahip olmasi beklenir

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Islev aciklama sozdizimi function boliimiinde agiklanmaktadir.

Bu islevi aciklayan variable annotation ve PEP 484 ‘e bakin. Ek agiklamalarla calismaya iligkin en iyi uygu-
lamalar i¢in ayrica annotations-howto konusuna bakin.

future
Bir future ifadesi, from __future_ import <feature>,derleyiciyi, Python’un gelecekteki bir sii-
riimiinde standart hale gelecek olan s6zdizimini veya semantigi kullanarak mevcut modiilii derlemeye yonlen-
dirir. ___future__ modiilii, feature’i olasi degerlerini belgeler. Bu modiilii ice aktararak ve degiskenlerini
degerlendirerek, dile ilk kez yeni bir 6zelligin ne zaman eklendigini ve ne zaman varsayilan olacagini (ya da
yaptigini) gorebilirsiniz:

>>> import __ future_
>>> _ future__ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

¢cop toplama
Artik kullanilmadiginda bellegi bosaltma iglemi. Python, referans sayimi ve referans dongiilerini algilayip ki-
rabilen bir dongiisel ¢op toplayici araciligiyla ¢op toplama gerceklestirir. Cop toplayici gc modiilii kullanilarak
kontrol edilebilir.

jenerator
Bir generator iterator dondiiren bir iglev. Bir for dongiisiinde kullanilabilen bir dizi deger iiretmek i¢in yield
ifadeleri icermesi veya next () isleviyle birer birer alinabilmesi diginda normal bir igleve benziyor.

Genellikle bir iiretici iglevine atifta bulunur, ancak bazi baglamlarda bir jenerator yineleyicisine atifta buluna-
bilir. Amaglanan anlamin net olmadig1 durumlarda, tam terimlerin kullanilmasi belirsizligi onler.

jenerator yineleyici
Bir generator islevi tarafindan olugturulan bir nesne.

66 Ek A. Soézluk

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

Python Setup and Usage, Yayim 3.12.3

Her yield, konum yiiriitme durumunu hatirlayarak (yerel degiskenler ve bekleyen try ifadeleri dahil) islemeyi
gecici olarak askiya alir. jenerator yineleyici devam ettiginde, kaldig1 yerden devam eder (her cagrida yeniden
baglayan iglevlerin aksine).

jenerator ifadesi
Yineleyici dondiiren bir ifade. Bir dongii degigkenini, aralig1 ve istege bagli bir i £ yan tiimcesini tanimlayan bir
for yan tiimeesinin takip ettigi normal bir ifadeye benziyor. Birlestirilmis ifade, bir cevreleyen i¢in degerler
tiretir:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

genel islev
Farkl: tiirler icin ayni1 islemi uygulayan birden ¢ok islevden olusan bir iglev. Bir ¢agri sirasinda hangi uygula-
manin kullanilmas1 gerektigi, gonderme algoritmasi tarafindan belirlenir.

Ayrica single dispatch sozliik girdisine, functools.singledispatch () dekoratoriine ve PEP 443 ‘e
bakin.

genel tip
Parametrelendirilebilen bir rype; tipik olarak bir konteyner sinifi, 6rnegin 1ist veya dict. type hint ve an-
notation i¢in kullanilir.

Daha fazla ayrint1 icin generic allias types, PEP 483, PEP 484, PEP 585 ve t yping modiiliine bakin.

GIL
Bakiiz global interpreter lock.

genel terciiman kilidi
CPython yorumlayicist tarafindan ayni anda yalnizca bir ig par¢aciginin Python byfecode ‘u yiiriitmesini sagla-
mak i¢in kullanilan mekanizma. Bu, nesne modelini (dict gibi kritik yerlesik tiirler dahil) eszamanl erigsime
karg1 ortiik olarak giivenli hale getirerek CPython uygulamasini basitlestirir. Tiim yorumlayiciyr kilitlemek,
cok iglemcili makinelerin sagladig: paralelli§in ¢ogu pahasina, yorumlayicinin ¢ok is parcacikli olmasini ko-
laylagtirir.

Bununla birlikte, standart veya ligiincii taraf bazi genisletme modiilleri, sikigstirma veya karma gibi hesaplama
acisindan yogun gorevler yaparken GIL’yi serbest birakacak sekilde tasarlanmistir. Ayrica, GIL, G/C yaparken
her zaman serbest birakilir.

“Serbest ig parcacikli” bir yorumlayici (paylasilan verileri cok daha ince bir ayrint1 diizeyinde kilitleyen) olus-
turma cabalari, ortak tek iglemcili durumda performans diistiigii icin bagarili olmamustir. Bu performans soru-
nunun iistesinden gelinmesinin uygulamay1 ¢ok daha karmagik hale getirecegine ve dolayisiyla bakimin1 daha
maliyetli hale getirecegine inanilmaktadir.

karma tabanh pyc
Gecerliligini belirlemek icin ilgili kaynak dosyanin son degistirilme zamani yerine karma degerini kullanan bir
bayt kodu 6nbellek dosyasi. Bakiniz pyc-invalidation.

yikanabilir
An object is hashable if it has a hash value which never changes during its lifetime (it needsa __hash__ ()
method), and can be compared to other objects (it needs an __eqg__ () method). Hashable objects which
compare equal must have the same hash value.

Hashability, bir nesneyi bir sozlilk anahtar1 ve bir set tiyesi olarak kullamilabilir hale getirir, ¢linkii bu veri
yapilar1 hash degerini dahili olarak kullanir.

Python’un degismez yerlesik nesnelerinin ¢ogu, yikanabilir; degistirilebilir kaplar (listeler veya sozliikler gibi)
degildir; degismez kaplar (tiipler ve donmusg kiimeler gibi) yalnizca dgelerinin yikanabilir olmasi durumunda
yikanabilirdir. Kullanici tanimli siniflarin 6rnekleri olan nesneler varsayilan olarak hash edilebilirdir. Hepsi esit
olmayani karsilastirir (kendileriyle haric) ve hash degerleri 1d () ‘lerinden tiiretilir.

BOSTA
Python i¢in Entegre Gelistirme Ortami. idle, Pythonun standart dagitimiyla birlikte gelen temel bir diizenleyici
ve yorumlayic ortamudir.

67

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

Python Setup and Usage, Yayim 3.12.3

degismez
Sabit degeri olan bir nesne. Degismez nesneler arasinda sayilar, dizeler ve demetler bulunur. Boyle bir nesne
degistirilemez. Farkl1 bir degerin saklanmasi gerekiyorsa yeni bir nesne olusturulmalidir. Ornegin bir sozliikte
anahtar olarak, sabit bir karma degerinin gerekli oldugu yerlerde 6nemli bir rol oynarlar.

ice aktarim yolu
Ice aktarilacak modiiller igin path based finder tarafindan aranan konumlarin (veya path entries) listesi. Ige
aktarma sirasinda, bu konum listesi genellikle sys . path adresinden gelir, ancak alt paketler i¢in iist paketin
__path__ ozelliginden de gelebilir.

ice aktarma
Bir modiildeki Python kodunun bagka bir modiildeki Python koduna sunulmast siireci.

ice aktarici
Bir modiilii hem bulan hem de yiikleyen bir nesne; hem bir finder hem de loader nesnesi.

etkilesimli
Python’un etkilesimli bir yorumlayicis1 vardir; bu, yorumlayici isteminde ifadeler ve ifadeler girebileceginiz,
bunlar1 hemen ¢alistirabileceginiz ve sonuglarini gorebileceginiz anlamina gelir. Herhangi bir argtiman olmadan
python ‘u baglatmaniz yeterlidir (muhtemelen bilgisayarinizin ana meniisiinden secerek). Yeni fikirleri test
etmenin veya modiilleri ve paketleri incelemenin ¢ok giiclii bir yoludur (help (x) ‘1 unutmayn).

yorumlanmig
Python, derlenmis bir dilin aksine yorumlanmuis bir dildir, ancak bayt kodu derleyicisinin varlig1 nedeniyle ayrim
bulanik olabilir. Bu, kaynak dosyalarin daha sonra ¢alistirtlacak bir yiiriitiilebilir dosya olusturmadan dogrudan
calistirilabilecegi anlamina gelir. Yorumlanan diller genellikle derlenmis dillerden daha kisa bir gelistirme/hata
ayiklama dongiisiine sahiptir, ancak programlari genellikle daha yavag ¢alisir. Ayrica bkz. interactive.

terciiman kapatma
Kapatilmasi istendiginde, Python yorumlayicisi, modiiller ve cesitli kritik i¢ yapilar gibi tahsis edilen tiim kay-
naklart kademeli olarak serbest biraktig1 6zel bir agamaya girer. Ayrica garbage collector igin birkag ¢agri
yapar. Bu, kullanic1 tanimli yikicilarda veya zayif referans geri aramalarinda kodun yiiriitiilmesini tetikleye-
bilir. Kapatma agsamasinda yiiriitiilen kod, dayandig1 kaynaklar artik ¢alismayabileceginden cesitli istisnalarla
karsilagabilir (yaygin 6rnekler kiitiiphane modiilleri veya uyar1 makineleridir).

Yorumlayicinin kapatilmasinin ana nedeni,
olmasidir.

main__ modiiliiniin veya ¢aligtirilan betigin yiiriitmeyi bitirmis

yinelenebilir
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes
you define with an __iter__ () method or witha __getitem__ () method that implements sequence
semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter () or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

yineleyici

An object representing a stream of data. Repeated calls to the iterator’s __next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any furt-
her calls to its __next__ () method just raise StopIteration again. Iterators are required to have an
__iter__ () method that returns the iterator object itself so every iterator is also iterable and may be used
in most places where other iterables are accepted. One notable exception is code which attempts multiple ite-
ration passes. A container object (such as a 11 st) produces a fresh new iterator each time you pass it to the
iter () function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

Daha fazla bilgi typeiter i¢inde bulunabilir.

68 Ek A. Soézluk

Python Setup and Usage, Yayim 3.12.3

CPython uygulama ayrintisi: CPython does not consistently apply the requirement that an iterator define
__iter_ ().

anahtar islev
Anahtar iglevi veya harmanlama iglevi, siralama veya siralama igin kullanilan bir degeri dondiiren bir ¢ag-
rilabilir. Ornegin, locale.strxfrm(), yerel ayara 6zgii siralama kurallarmin farkinda olan bir siralama
anahtar1 tiretmek icin kullanilir.

Python’daki bir dizi arag, dgelerin nasil siralandifin1 veya gruplandirildifini kontrol etmek icin temel is-
levleri kabul eder. Bunlar min (), max (), sorted (), list.sort (), heapg.merge (), heapq.
nsmallest (), heapg.nlargest () ve itertools.groupby ().

Bir tus fonksiyonu olusturmanin birkag yolu vardir. Ornegin. str.lower () yontemi, biiyiik/kiiciik har-
fe duyarli olmayan siralamalar i¢in bir anahtar fonksiyonu islevi gorebilir. Alternatif olarak, lambda r:
(r[0], r[2]) gibi bir lambda ifadesinden bir anahtar iglevi olusturulabilir. Ayrica, attrgetter (),
itemgetter () vemethodcaller () fonksiyonlar: ii¢ anahtar fonksiyon kurucularidir. Anahtar iglevle-
rin nasil olugturulacagi ve kullanilacagina iliskin 6rnekler i¢in Sorting HOW TO béliimiine bakin.

anahtar kelime argiimam
Bakiniz argument.

lambda
Islev cagrildiginda degerlendirilen tek bir expression ‘dan olusan anonim bir satir ici islev. Bir lambda islevi
olugturmak i¢in sozdizimi lambda [parametreler]: ifade seklindedir

LBYL
Ziplamadan 6nce Bak. Bu kodlama stili, arama veya arama yapmadan 6nce 6n kosullar1 acikca test eder. Bu
stil, EAFP yaklagimiyla celisir ve bir¢ok i f ifadesinin varligi ile karakterize edilir.

Cok is parcacikli bir ortamda, LBYL yaklagimi “bakan” ve “sigrayan” arasinda bir yarig kogulu getirme riskini
tagtyabilir. Ornegin, if key in mapping: return mapping[key] kodu, testten sonra, ancak ara-
madan Once bagka bir is parcacig1 eslemeden key kaldirirsa basarisiz olabilir. Bu sorun, kilitlerle veya EAFP
yaklagimi kullanilarak ¢oziilebilir.

liste
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

liste anlama
Bir dizideki 6gelerin tlimiinii veya bir kismini islemenin ve sonuglar1 igeren bir liste dondiirmenin kom-
paktbiryolu. sonug = ['{:#04x}"'.format (x) for range(256) if x % 2 == 0],dizin-
de cift onaltilik sayilar (0x..) iceren bir diziler listesi olugturur. O ile 255 arasindadir. i f yan tiimcesi istege

baghidir. Atlanirsa, “aralik(256)” igindeki tiim ogeler iglenir.

yiikleyici
Modiil yiikleyen bir nesne. 1oad_module () adinda bir yontem tanimlamalidir. Bir yiikleyici genellikle bir
finder ile dondiiriiliir. Ayrintilar icin PEP 302 ve bir soyut temel sinif i¢in importlib.abc.Loader
boliimiine bakin.

yerel kodlama
Unix’te, LC_CTYPE yerel ayarinin kodlamasidir. locale.setlocale (locale.LC_CTYPE,
new_locale) ile ayarlanabilir.

Windows’ta bu, ANSI kod sayfasidir (6r. "cpl1252™").

Android ve VxWorks’te Python, yerel kodlama olarak "ut £-8" kullanir.
locale.getencoding () can be used to get the locale encoding.
Ayrica filesystem encoding and error handler ‘ne bakm.

sihirli yontem
special method i¢in gayri resmi bir esanlaml.

haritalama
Keyfi anahtar aramalarin1 destekleyen ve Mapping veya MutableMapping collections-abstract-
base-classes icinde belirtilen yontemleri uygulayan bir kapsayici nesnesi. Ornekler arasmnda dict,

69

https://peps.python.org/pep-0302/

Python Setup and Usage, Yayim 3.12.3

collections.defaultdict,collections.OrderedDict vecollections.Counter sayi-
labilir.

meta yol bulucu

Bir finder, sys .meta_path aramasiyla dondiiriiliir. Meta yol bulucular, yol girisi buluculari ile iligkilidir,
ancak onlardan farklidir.

Meta yol bulucularin uyguladigi yontemler i¢in importlib.abc.MetaPathFinder boliimiine bakin.

metasimif

metot

metot

Bir sinifin sinift. Simif tanimlari, bir smif adi, bir simif sozIiigii ve temel siniflarin bir listesini olusturur. Meta-
sintf, bu ii¢ argimani almaktan ve sinifi olusturmaktan sorumludur. Cogu nesne yonelimli programlama dili,
varsayilan bir uygulama saglar. Python’u 6zel yapan sey, 6zel metasiniflar olugturmanin miimkiin olmasidir.
Cogu kullanici bu araca hicbir zaman ihtiyag duymaz, ancak ihtiya¢ duyuldugunda, metasiniflar giiclii ve zarif
coziimler saglayabilir. Nitelik erisimini giinliige kaydetmek, is parcacig1 giivenligi eklemek, nesne olusturmay1
izlemek, tekilleri uygulamak ve diger bir¢ok gorev icin kullanilmiglardir.

Daha fazla bilgi metaclasses i¢inde bulunabilir.

Bir sinif govdesi icinde tanimlanan bir iglev. Bu siifin bir 6rneginin 6zniteligi olarak ¢agrilirsa, yontem ornek
nesnesini ilk argument (genellikle self olarak adlandirilir) olarak alir. Bkz. function ve nested scope.

kalite siralamasi
Method Resolution Order is the order in which base classes are searched for a member during lookup. See
python_2.3_mro for details of the algorithm used by the Python interpreter since the 2.3 release.

modiil

Python kodunun kurulug birimi olarak hizmet eden bir nesne. Modiiller, rastgele Python nesneleri iceren bir
ad alanina sahiptir. Modiiller, importing islemiyle Python’a yiiklenir.

Ayrica bakiniz package.

modiil 6zelligi

MRO

Bir modiilii yiiklemek icin kullanilan ice aktarmayla ilgili bilgileri iceren bir ad alanmi. Bir importlib.
machinery.ModuleSpec Ornegi.

Bakiniz metot ¢oziim sirasi.

degistirilebilir

Degistirilebilir (mutable) nesneler degerlerini degistirebilir ancak idlerini koruyabilirler. Ayrica bkz. im-
mutable.

adlandirilmis demet

“named tuple” terimi, demetten miras alan ve dizinlenebilir 6gelerine de adlandirilmis nitelikler kullanilarak
erigilebilen herhangi bir tiir veya sinif icin gecerlidir. Tiir veya sinifin bagka 6zellikleri de olabilir.

Cesitli yerlesik tiirler, t ime . localtime () ve os.stat () tarafindan dondiiriilen degerler de dahil olmak
tizere, tanimlama gruplari olarak adlandirilir. Bagka bir 6rnek sys.float_info:

>>> sys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be
written by hand, or it can be created by inheriting t yping.NamedTuple, or with the factory function
collections.namedtuple (). The latter techniques also add some extra methods that may not be found
in hand-written or built-in named tuples.

ad alam

Degiskenin saklandig1 yer. Ad alanlari sozliikler olarak uygulanir. Nesnelerde (yontemlerde) yerel, genel ve

70

Ek A. Soézluk

Python Setup and Usage, Yayim 3.12.3

yerlesik ad alanlarinin yani sira i¢ ice ad alanlar1 vardir. Ad alanlari, adlandirma ¢akigmalarini 6nleyerek mo-
diilerligi destekler. Ornegin, builtins.open ve os.open () islevleri ad alanlariyla ayirt edilir. Ad alan-
lar1, hangi modiiliin bir iglevi uyguladigmni agikca belirterek okunabilirlie ve siirdiiriilebilirlige de yardimci
olur. Ornegin, random.seed () veya itertools.islice () yazmak, bu islevlerin sirastyla random
ve itertools modiilleri tarafindan uygulandigini agikca gosterir.

ad alam paketi
A PEP 420 package, yalnizca alt paketler icin bir kap olarak hizmet eder. Ad alan1 paketlerinin hicbir fiziksel
temsili olmayabilir ve __init__ .py dosyasi olmadigindan 6zellikle regular package gibi degildirler.

Ayrica bkz. module.

ic ice kapsam
Kapsamli bir tanimdaki bir degiskene atifta bulunma yetenegi. Ornegin, bagka bir fonksiyonun icinde tanim-
lanan bir fonksiyon, dig fonksiyondaki degiskenlere atifta bulunabilir. i¢ ige kapsamlarm varsayilan olarak
yalnizca bagvuru i¢in ¢alistigini ve atama icin calismadigin1 unutmayn. Yerel degiskenler en igteki kapsamda
hem okur hem de yazar. Benzer sekilde, global degiskenler global ad alanini okur ve yazar. nonlocal, dig
kapsamlara yazmaya izin verir.

yeni stil simf
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only
new-style classes could use Python’s newer, versatile features like _ slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

obje
Durum (6znitelikler veya deger) ve tanimlanmig davranig (yontemler) iceren herhangi bir veri. Ayrica herhangi
bir yeni tarz sinifin nihai temel sinifi.

paket
Alt modiiller veya yinelemeli olarak alt paketler icerebilen bir Python module. Teknik olarak bir paket,
__path__ ozniteligine sahip bir Python modiiliidiir.

Ayrica bkz. regular package ve namespace package.

parametre
Bir function (veya yontem) taniminda, islevin kabul edebilecegi bir argument (veya bazi durumlarda, argii-
manlar) belirten adlandirilmis bir varlik. Beg cesit parametre vardir:

e positional-or-keyword: pozisyonel veya bir keyword argiimani olarak iletilebilen bir argiiman belirtir. Bu,
varsayilan parametre tiiriidiir, 6rnegin asagidakilerde foo ve bar:

[def func (foo, bar=None): ... J

* positional-only: yalnizca konuma gore saglanabilen bir argliman belirtir. Yalnizca konumsal parametreler,
onlardan sonra fonksiyon taniminin parametre listesine bir / karakteri eklenerek tanimlanabilir, 6rnegin
asagidakilerde posonlyl ve posonly2:

[def func (posonlyl, posonly2, /, positional_or_keyword): ... }

* keyword-only: sadece anahtar kelime ile saglanabilen bir argiiman belirtir. Yalnizca anahtar kelime
(keyword-only) parametreleri, onlardan 6nceki fonksiyon taniminin parametre listesine tek bir degis-
ken konumlu parametre veya ¢iplak * dahil edilerek tanimlanabilir, 6rnegin agagidakilerde kw_onlyl ve
kw_only?2:

[def func(arg, *, kw_onlyl, kw_only2): ... J

* var-positional: keyfi bir pozisyonel argliman dizisinin saglanabilecegini belirtir (diger parametreler tara-
findan zaten kabul edilmis herhangi bir konumsal argiimana ek olarak). Boyle bir parametre, parametre
admin basma * eklenerek tanimlanabilir, 6rnegin agagidakilerde args:

[def func (*args, **kwargs): ... }

7

https://peps.python.org/pep-0420/

Python Setup and Usage, Yayim 3.12.3

* var-keyword: keyfi olarak bir¢ok anahtar kelime argiimaninin saglanabilecegini belirtir (diger parametre-
ler tarafindan zaten kabul edilen herhangi bir anahtar kelime argiimanina ek olarak). Boyle bir parametre,
parametre adinin bagina * *, 6rnegin yukaridaki drnekte kwargs eklenerek tanimlanabilir.

Parametreler, hem istege bagli hem de gerekli argiimanleri ve ayrica bazi istege bagh bagimsiz degiskenler icin
varsayilan degerleri belirtebilir.

Ayrica bkz. argiiman, arglimanlar ve parametreler arasindaki fark, inspect . Parameter, function ve PEP
362.

yol girisi
path based finder ige aktarma modiillerini bulmak igin bagvurdugu import path iizerindeki tek bir konum.

yol girisi bulucu
Bir finder sys.path_hooks (yani bir yol giris kancast) izerinde bir ¢agrilabilir tarafindan dondiiriiliir ve
path entry verilen modiillerin nasil bulunacagin1 bilir.

Yol girisi bulucularinin uyguladigi yontemler i¢in importlib.abc.PathEntryFinder boliimiine ba-
kin.

yol giris kancasi
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules
on a specific path entry.

yol tabanl bulucu
Modiiller i¢in bir import path arayan varsayilan meta yol buluculardan biri.

yol benzeri nesne
Bir dosya sistemi yolunu temsil eden bir nesne. Yol benzeri bir nesne, bir yolu temsil eden bir st r veyabytes
nesnesi veya os . PathLike protokoliinii uygulayan bir nesnedir. os . PathLike protokoliinii destekleyen
bir nesne, os . fspath () islevi cagrilarak bir st r veya bytes dosya sistemi yoluna doniistiiriilebilir; os .
fsdecode () ve os.fsencode (), bunun yerine sirasiyla st r veya bytes sonucunu garanti etmek icin
kullanilabilir. PEP 519 tarafindan tanitildi.

PEP
Python Gelistirme Onerisi. PEP, Python topluluguna bilgi saglayan veya Python veya siirecleri ya da ortami
icin yeni bir 6zelligi aciklayan bir tasarim belgesidir. PEP’ler, 6nerilen 6zellikler i¢in 6zl bir teknik sartname
ve bir gerekge saglamalidir.

PEP’lerin, 6nemli yeni 6zellikler 6nermek, bir sorun hakkinda topluluk girdisi toplamak ve Python’a giren
tasarim kararlarin1 belgelemek icin birincil mekanizmalar olmasi amaglanmigtir. PEP yazari, topluluk icinde
fikir birligi olugturmaktan ve muhalif goriisleri belgelemekten sorumludur.

Bakimiz PEP 1.

kisim
PEP 420 i¢cinde tanimlandig1 gibi, bir ad alan1 paketine katkida bulunan tek bir dizindeki (muhtemelen bir zip
dosyasinda depolanan) bir dizi dosya.

konumsal argiiman
Bakiniz argument.

gecici API
Gecici bir API, standart kitaphigin geriye doniik uyumluluk garantilerinden kasith olarak hari¢ tutulan bir
APTdir. Bu tiir arayiizlerde biiyiik degisiklikler beklenmese de, gecici olarak igaretlendikleri siirece, ¢cekirdek
gelistiriciler tarafindan gerekli goriildtigii takdirde geriye doniik uyumsuz degisiklikler (arayiiziin kaldirilma-
sina kadar ve buna kadar) meydana gelebilir. Bu tiir degisiklikler karsiliksiz yapilmayacaktir - bunlar yalnizca
APTnin eklenmesinden 6nce gézden kacan ciddi temel kusurlar ortaya ¢ikarsa gerceklesecektir.

Gecici APT’ler i¢in bile, geriye doniik uyumsuz degisiklikler “son ¢are ¢oziimii” olarak goriiliir - tanimlanan
herhangi bir soruna geriye doniik uyumlu bir ¢6ziim bulmak i¢in her tiirlii girisimde bulunulacaktir.

Bu siireg, standart kitapligin, uzun siireler boyunca sorunlu tasarim hatalarina kilitlenmeden zaman icinde
gelismeye devam etmesini saglar. Daha fazla ayrinti i¢in bkz. PEP 411.

gecici paket
Bakiniz provisional API.

72 Ek A. Soézluk

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

Python Setup and Usage, Yayim 3.12.3

Python 3000

Python 3.x siiriim satirinin takma adi (uzun zaman 6nce siirtim 3’iin piyasaya siiriilmesi uzak bir gelecekte
oldugu zaman ortaya ¢ikti.) Bu ayn1 zamanda “Py3k” olarak da kisaltilir.

Pythonic

Diger dillerde ortak kavramlari kullanarak kod uygulamak yerine Python dilinin en yaygin deyimlerini yakin-
dan takip eden bir fikir veya kod parcasi. Ornegin, Python’da yaygin bir deyim, bir for ifadesi kullanarak
yinelenebilir bir 6genin tiim 6geleri iizerinde dongii olusturmaktir. Diger bir¢ok dilde bu tiir bir yap1 yoktur,
bu nedenle Python’a asina olmayan kisiler bazen bunun yerine sayisal bir saya¢ kullanir:

for i in range(len (food)):
print (food[i])

Temizleyicinin aksine, Pythonic yontemi:

{

for piece in food:
print (piece)

nitelikli isim

PEP 3155 icinde tanimlandig1 gibi, bir modiiliin genel kapsamindan o modiilde tanimlanan bir smnifa, isleve
veya yonteme giden “yolu” gosteren noktali ad. Ust diizey islevler ve siniflar icin nitelikli ad, nesnenin adryla
aynidir:

L

>>> class C:

class D:
def meth (self):
pass
>>> C.__qualname_
ICI
>>> C.D.__ _qgualname___
'C.D'
>>> C.D.meth._ _qualname_
'C.D.meth'

Modiillere atifta bulunmak i¢in kullanildiginda, zam nitelenmis ad, herhangi bir iist paket de dahil olmak {iizere,
modiile giden tiim noktali yol anlamina gelir, 6rn. email .mime.text:

>>> import email.mime.text
>>> email.mime.text. name_
'email .mime.text'

referans sayisi

The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Some objects are “immortal” and have reference counts that are never modified, and therefore the objects are
never deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPython implementation. Programmers can call the sys . getrefcount () function to return the reference
count for a particular object.

siirekli paketleme

__init__ .py dosyasi iceren bir dizin gibi geleneksel bir package.

Ayrica bkz. ad alant paketi.

__slots__

dizi

Ornek oznitelikleri igin 6nceden yer bildirerek ve ornek sozliiklerini ortadan kaldirarak bellekten tasarruf sag-
layan bir sinif icindeki bildirim. Popiiler olmasina ragmen, teknigin dogru olmasi biraz zor ve en iyi, bellek
acisindan kritik bir uygulamada c¢ok sayida 6rnegin bulundugu nadir durumlar i¢in ayrilmigtir.

An iferable which supports efficient element access using integer indices via the __getitem__ () spe-
cial method and defines a __len___ () method that returns the length of the sequence. Some built-in se-
quence types are 1ist, str, tuple, and bytes. Note that dict also supports __getitem__ () and

73

https://peps.python.org/pep-3155/

Python Setup and Usage, Yayim 3.12.3

__len__ (), butisconsidered a mapping rather than a sequence because the lookups use arbitrary immutable
keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__ () and __len__ (), adding count (), index (), __contains__ (), and
__reversed__ (). Types that implement this expanded interface can be registered explicitly using
register (). For more documentation on sequence methods generally, see Common Sequence Operati-

ons.

anlamak
Ogelerin tiimiinii veya bir kismini yinelenebilir bir sekilde islemenin ve sonuglarla birlikte bir kiime dondiir-
menin kompakt bir yolu. results = {c for c in 'abracadabra' if c not in 'abc'},

{'r', 'd'} dizelerini olusturur. Bakiniz comprehensions.

tek sevk
Uygulamanin tek bir argiiman tiiriine gore secildigi bir generic function gonderimi bi¢imi.

parcalamak
Genellikle bir sequence ‘nin bir bolimiinii iceren bir nesne. Bir dilim, 6rnegin variable_name[1:3:5]
‘de oldugu gibi, birkac tane verildiginde, sayilar arasinda iki nokta iist iiste koyarak, [] alt simge gosterimi
kullanilarak olugturulur. Koseli ayrag (alt simge) gosterimi, dahili olarak s1ice nesnelerini kullanir.

ozel metod
Toplama gibi bir tiir tizerinde belirli bir iglemi yiiriitmek i¢in Python tarafindan ortiik olarak ¢agrilan bir yon-
tem. Bu tiir yontemlerin cift alt cizgi ile baglayan ve biten adlar1 vardir. Ozel yontemler specialnames iginde
belgelenmistir.

ifade (deger dondiirmez)
Bir ifade, bir paketin pargasidir (kod “blogu”). Bir ifade, bir expression veya 1f, while veya for gibi bir
anahtar kelimeye sahip birka¢ yapidan biridir.

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also type
hints and the t yping module.

giiclii referans
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py_ INCREF () when the reference is created and released
with Py_DECREF () when the reference is deleted.

Py_NewRef () fonksiyonu, bir nesneye giiclii bir bagvuru olusturmak icin kullanilabilir. Genellikle
Py_DECREF () fonksiyonu, bir referansin sizmasini 6nlemek igin giiclii referans kapsamindan ¢ikmadan 6nce
giiclii referansta ¢agrilmalidir.

Ayrica bkz. ddiing alinan referans.

yaz1 ¢oziimleme
Python’da bir dize, bir Unicode kod noktalari dizisidir (U+0000-U+10FFFF aralifinda). Bir dizeyi depola-
mak veya aktarmak icin, bir bayt dizisi olarak seri hale getirilmesi gerekir.

Bir dizeyi bir bayt dizisi halinde seri hale getirmek “kodlama (encoding)” olarak bilinir ve dizeyi bayt dizisinden
yeniden olusturmak “kod ¢dzme (decoding)” olarak bilinir.

Toplu olarak “metin kodlamalar1” olarak adlandirilan ¢esitli farkli metin serilestirme kodekleri vardir.

yaz1 dosyasi
A file object st r nesnelerini okuyabilir ve yazabilir. Cogu zaman, bir metin dosyasi aslinda bir bayt yonelimli
veri akigina erisir ve otomatik olarak fext encoding isler. Metin dosyalarma 6rnek olarak metin modunda agilan
dosyalar ('r"' veya 'w'), sys.stdin, sys.stdout ve 1o.StringIO ornekleri verilebilir.

Ayrica ikili dosyalar: okuyabilen ve yazabilen bir dosya nesnesi i¢in bayt benzeri nesnelere bakin.

ii¢ tirnakh dize
Ug tirnak isareti (”) veya kesme isareti () ile sinirlanan bir dize. Tek tirnakli dizelerde bulunmayan herhangi bir
islevsellik saglamasalar da, birka¢ nedenden dolay1 faydalidirlar. bir dizeye ¢ikigsiz tek ve ¢ift tirnak eklemeniz

74 Ek A. Soézluk

Python Setup and Usage, Yayim 3.12.3

gerekir ve bunlar, devam karakterini kullanmadan birden ¢ok satira yayilabilir, bu da onlar1 6zellikle belge
dizileri yazarken kullanigh hale getirir.

tip
Bir Python nesnesinin tiirii, onun ne tiir bir nesne oldugunu belirler; her nesnenin bir tiirti vardir. Bir nesnenin
tipine ___class___ niteligi ile erisilebilir veya t ype (ob3j) ile alinabilir.

tip takma adi
Bir tanimlayiciya tiir atanarak olusturulan, bir tiir icin es anlaml.

Tiir takma adlaru, #ir ipuclarin basitlestirmek icin kullamshdir. Ornegin:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplelint, int, int]]:
pass

bu sekilde daha okunakli hale getirilebilir:

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) —-> list[Color]:
pass

Bu iglevi agiklayan t yping ve PEP 484 boliimlerine bakin.

tiir ipucu
Bir degigken, bir sinif niteligi veya bir iglev parametresi veya doniis degeri icin beklenen tiirii belirten bir ek
aciklama.

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can also
aid IDEs with code completion and refactoring.

Genel degiskenlerin, sinif 6zniteliklerinin ve iglevlerin tiir ipuglarina, yerel degiskenlere degil, typing.
get_type_hints () kullanilarak erisilebilir.

Bu iglevi agiklayan t yping ve PEP 484 boliimlerine bakin.

evrensel yeni satirlar
Asagidakilerin tiimiiniin bir satirin bitisi olarak kabul edildigi metin akiglarini yorumlamanin bir yolu: Unix
satir sonu kuralt \n"', Windows kurali '\r\n", ve eski Macintosh kurali '\ r'. Ek bir kullanim i¢in PEP
278 ve PEP 3116 ve ayrica bytes.splitlines () bakin.

degisken aciklama
Bir degiskenin veya bir sinif 6zniteliginin ek aciklamasi.

Bir degiskene veya sinif niteligine agiklama eklerken atama istege baglidir:

class C:
field: 'annotation'

Degisken aciklamalar1 genellikle #ir ipuclar: i¢in kullanilir: 6rnegin, bu degiskenin int degerlerini almasi
beklenir:

[count: int = 0

Degisken aciklama s6zdizimi annassign boliimiinde agiklanmaistir.

Bu islevi aciklayan; function annotation, PEP 484 ve PEP 526 boliimlerine bakin. Ek aciklamalarla ¢alismaya
iliskin en iyi uygulamalar i¢in ayrica bkz. annotations-howto.

sanal ortam
Python kullanicilarinin ve uygulamalarinin, ayni sistem {izerinde calisan diger Python uygulamalarinin dav-
ranigina miidahale etmeden Python dagitim paketlerini kurmasina ve yiikseltmesine olanak taniyan, igbirligi
icinde yalitilmig bir ¢caligma zamani ortami.

Ayrica bakiniz venv.

75

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Python Setup and Usage, Yayim 3.12.3

sanal makine
Tamamen yazilimla tantmlanmig bir bilgisayar. Python’'un sanal makinesi, bayt kodu derleyicisi tarafindan
yaymlanan bytecode ‘u ¢alistirir.

Python’un Zen’i
Dili anlamaya ve kullanmaya yardimci olan Python tasarim ilkeleri ve felsefelerinin listesi. Liste, etkilesimli
komut isteminde “import this” yazarak bulunabilir.

76 Ek A. Soézluk

ek B

Bu dokumanlar hakkinda

Bu dokiimanlar, Python dokiimanlari i¢in 6zel olarak yazilmis bir dokiiman islemcisi olan Sphinx tarafindan reSt-
ructuredText kaynaklaridan olusturulur.

Dokiimantasyonun ve arag zincirinin gelistirilmesi, tipki Python’un kendisi gibi tamamen goniillii bir cabadir. Katkida
bulunmak istiyorsaniz, nasil yapacagmiza iligkin bilgi i¢in liitfen reporting-bugs sayfasina goéz atin. Yeni goniilliilere
her zaman aci81z!

Destekleri igin tesekkiirler:
¢ Fred L. Drake, Jr., orijinal Python dokiimantasyon arag setinin yaraticisi ve i¢erigin ¢ogunun yazart;
 Docutils projesi, reStructuredText ve Docutils paketini olugturduklari i¢in;

* Fredrik Lundh, Sphinx’in pek ¢ok iyi fikir edindigi Alternatif Python Referans: projesi icin.

B.1 Python Dokiimantasyonuna Katkida Bulunanlar

Birgok kisi Python diline, Python standart kiitiiphanesine ve Python dokiimantasyonuna katkida bulunmustur. Kat-
kida bulunanlarin kismi bir listesi icin Python kaynak dagitiminda Misc/ACKS dosyasina bakin.

Python toplulugunun girdileri ve katkilar1 sayesinde boyle harika bir dokiimantasyona sahibiz — Tegekkiirler!

77

https://www.sphinx-doc.org/
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.12/Misc/ACKS

Python Setup and Usage, Yayim 3.12.3

78

Ek B. Bu dokiimanlar hakkinda

ek G

Tarihce ve Lisans

C.1 Yazilimin tarihcgesi

Python, 1990’larin baginda Guido van Rossum tarafindan Hollanda’da Stichting Mathematisch Centrum’da (CWI,
bkz. https://www.cwi.nl/) ABC adl bir dilin devamt olarak olusturuldu. Guido, digerlerinin oldukga katkisi olmasina
ragmen, Python’un ana yazar1 olmaya devam ediyor.

1995’te Guido, yazilimin ¢esitli siirtimlerini yayimladig1 Virginia, Reston’daki Ulusal Arastirma Girigimleri Kuru-
mu’'nda (CNRI, bkz. https://www.cnri.reston.va.us/) Python iizerindeki ¢aligmalarina devam etti.

Mayis 2000°’de, Guido ve Python cekirdek gelistirme ekibi, BeOpen PythonLabs ekibini olusturmak igin Be-
Open.com’a tagindi. Ayni yilin Ekim ayinda PythonLabs ekibi Digital Creations’a (simdi Zope Corporation; bkz.
https://www.zope.org/) tagindi. 2001 yilinda, Python Yazilim Vakfi (PSF, bkz. https://www.python.org/psf/) kurul-
du, ozellikle Python ile ilgili Fikri Miilkiyete sahip olmak i¢in olusturulmug kar amaci giitmeyen bir organizasyon.
Zope Corporation, PSF’nin sponsor tiyesidir.

Tiim Python stirtimleri Agik Kaynaklidir (A¢ik Kaynak Tanimu i¢in bkz. https://opensource.org/). Tarihsel olarak,
tiimii olmasa da ¢cogu Python siiriimleri de GPL uyumluydu; asagidaki tablo cesitli yayinlar1 6zetlemektedir.

Yayin Sundan tiiredi: Yil Sahibi GPL uyumlu mu?
0.9.0)dan 1.2’ye n/a 1991-1995 CWI evet
1.3°dan 1.5.2’ye 1.2 1995-1999 CNRI evet
1.6 1.5.2 2000 CNRI hayir
2.0 1.6 2000 BeOpen.com hayir
1.6.1 1.6 2001 CNRI hayir
2.1 2.0+1.6.1 2001 PSF hayir
2.0.1 2.0+1.6.1 2001 PSF evet
2.1.1 2.1+2.0.1 2001 PSF evet
2.1.2 2.1.1 2002 PSF evet
2.1.3 2.1.2 2002 PSF evet
2.2 ve lizeri 2.1.1 2001-Giintimiiz PSF evet

Not: GPL uyumlu olmasi, Python’u GPL kapsaminda dagitti§imiz anlamina gelmez. Tiim Python lisanslari, GPL’den
farkli olarak, degisikliklerinizi agik kaynak yapmadan degistirilmig bir siiriimii dagitmaniza izin verir. GPL uyumlu
lisanslar, Python’u GPL kapsaminda yayinlanan diger yazilimlarla birlestirmeyi miimkiin kilar; digerleri yapmaz.

79

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Setup and Usage, Yayim 3.12.3

Bu yayinlar1 miimkiin kilmak i¢in Guido’nun yonetimi altinda ¢aligan bir¢ok goniilliiye tesekkiirler.

C.2 Python’a erismek veya baska bir sekilde kullanmak icin sartlar
ve kosullar

Python yazilim1 ve belgeleri PSF Lisans Anlasmas: kapsaminda lisanslanmugtir.

Python 3.8.6’dan baglayarak, belgelerdeki ¢rnekler, tarifler ve diger kodlar, PSF Lisans Sozlesmesi ve Zero-Clause
BSD license kapsaminda ¢ift lisanshdir.

Python’a dahil edilen bazi yazilimlar farkli lisanslar altindadir. Lisanslar, bu lisansa giren kodla listelenir. Bu lisans-
larin eksik listesi icin bkz. Tiizel Yazilimlar igin Lisanslar ve Onaylar.

C.2.1 PYTHON iCiN PSF LISANS ANLASMASI 3.12.3

1. This LICENSE AGREEMENT is between the Python Software Foundation.
— ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.12.3 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF.
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.12.3 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All.
—Rights

Reserved" are retained in Python 3.12.3 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.12.3 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.12.3.

4. PSF is making Python 3.12.3 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY..
—OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY.
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF PYTHON 3.12.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.12.3

80 Ek C. Tarihge ve Lisans

Python Setup and Usage, Yayim 3.12.3

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A.
—RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.12.3, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—~relationship

of agency, partnership, or joint venture between PSF and Licensee. .
—This License

Agreement does not grant permission to use PSF trademarks or trade name.
—~in a

trademark sense to endorse or promote products or services of Licensee,.
—O0or any

third party.

8. By copying, installing or otherwise using Python 3.12.3, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 PYTHON 2.0 iCiN BEOPEN.COM LiSANS SOZLESMESI

BEOPEN PYTHON ACIK KAYNAK LISANS SOZLESMESI SURUM 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
(sonraki sayfaya devam)

C.2. Python’a erismek veya baska bir sekilde kullanmak icin sartlar ve kosullar 81

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 PYTHON 1.6.1 iCIN CNRI LISANS ANLASMASI

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
(sonraki sayfaya devam)

82

Ek C. Tarihce ve Lisans

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)

partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 0.9.0 ARASI 1.2 PYTHON iCiN CWI LISANS SOZLESMESI

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 PYTHON 3.12.3 BELGELERINDEKIi KOD iCiN SIFIR MADDE BSD LiSANSI

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 Tuzel Yazilimlar icin Lisanslar ve Onaylar

Bu boliim, Python dagitimina dahil edilmis iigiincii taraf yazilimlar i¢in tamamlanmamig ancak biiyiiyen bir lisans ve
onay listesidir.

C.3. Tuzel Yazilimlar icin Lisanslar ve Onaylar 83

Python Setup and Usage, Yayim 3.12.3

C.3.1 Mersenne Twister’i

random modiiliiniin altyapsini olusturan _random C uzantisi, http://www.math.sci.hiroshima-u.ac.jp/~m-mat/
MT/MT2002/emt19937ar.html adresinden indirilen kodu temel alir. Orijinal koddan kelimesi kelimesine yorum-
lar agagidadir:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Soketler

socket modiilli, https://www.wide.ad.jp/ adresindeki WIDE Projesi'nden ayri kaynak dosyalarinda kodlanan
getaddrinfo () ve getnameinfo () fonksiyonlarim kullanir.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
(sonraki sayfaya devam)

84 Ek C. Tarihce ve Lisans

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
https://www.wide.ad.jp/

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asenkron soket hizmetleri

The test.support.asynchat and test.support.asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cerez yonetimi

http.cookies modiilii agagidaki uyarry igerir:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

(sonraki sayfaya devam)

C.3. Tuzel Yazilimlar icin Lisanslar ve Onaylar 85

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Calistirma izleme

trace modiilii agagidaki uyar1yi igerir:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode ve UUdecode fonksiyonlari

uu modiilii agagidaki uyarty: icerir:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO

(sonraki sayfaya devam)

86 Ek C. Tarihge ve Lisans

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Uzaktan Yordam Cagrilari

xmlrpc.client modiilii asagidaki uyariy: igerir:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

test.test_epoll modiili asagidaki uyariy icerir:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

(sonraki sayfaya devam)

C.3. Tuzel Yazilimlar icin Lisanslar ve Onaylar 87

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 kqueue secin

select modiilii, kqueue arayiizii i¢in agagidaki uyar1y1 icerir:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

Python/pyhash. c dosyasi, Dan Bernstein'in SipHash24 algoritmasinin Marek Majkowski uygulamasini icerir.
Burada agagidaki not yer alir:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

</MIT License>

(sonraki sayfaya devam)

88 Ek C. Tarihge ve Lisans

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1ittle2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod ve dtoa

C double’larinin dizelere ve dizelerden doniistiiriilmesi i¢in dtoa ve strtod C fonksiyonlarm saglayan Python/
dtoa.c dosyasi, su anda https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c ‘den eri-
silebilen David M. Gay tarafindan aym: adli dosyadan tiiretilmistir. 16 Mart 2009’da alan orijinal dosya asagidaki
telif hakki ve lisans bildirimini icerir:

/**

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
*

is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

E

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

L

*************~k***********~k****~k******~k*************************/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
(sonraki sayfaya devam)

C.3. Tuzel Yazilimlar icin Lisanslar ve Onaylar 89

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)

control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual,

worldwide, non-exclusive, no-charge, royalty-free, irrevocable

copyright license to reproduce, prepare Derivative Works of,

publicly display, publicly perform, sublicense, and distribute the

Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual,

worldwide, non-exclusive, no-charge, royalty-free, irrevocable

(except as stated in this section) patent license to make, have made,

use, offer to sell, sell, import, and otherwise transfer the Work,

(sonraki sayfaya devam)

920 Ek C. Tarihge ve Lisans

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)

where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution (s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade

(sonraki sayfaya devam)

C.3. Tuzel Yazilimlar icin Lisanslar ve Onaylar 91

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)

names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
——with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
(sonraki sayfaya devam)

92 Ek C. Tarihge ve Lisans

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

ctypes modiiliiniin altyapsint olugturan _ctypes C uzantisi, ——with-system—1ibffi olarak yapilandiril-
madig siirece libffi kaynaklarinin dahil edildigi bir kopya kullanilarak olugturulur:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘"Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

z11ib uzantisi, sistemde bulunan zlib siirtimii derleme i¢in kullanilamayacak kadar eskiyse, zlib kaynaklarinin dahil
edildigi bir kopya kullanilarak olusturulur:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as—-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

(sonraki sayfaya devam)

C.3. Tuzel Yazilimlar icin Lisanslar ve Onaylar 93

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

tracemalloc tarafindan kullanilan hash tablosunun uygulanmasi cfuhash projesine dayanmaktadir:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal C extension underlying the de cimal module is built using an included copy of the libmpdec library
unless the build is configured ——with-system-1libmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

(sonraki sayfaya devam)

94 Ek C. Tarihce ve Lisans

Python Setup and Usage, Yayim 3.12.3

(6nceki sayfadan devam)

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test paketi

test paketindeki C14N 2.0 test paketi (Lib/test/xmltestdata/c14n-20/), https://www.w3.org/TR/
xml-c14n2-testcases/ adresindeki W3C web sitesinden alinmistir ve 3 maddeli BSD lisansi altinda dagitilmaktadir:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Tuzel Yazilimlar icin Lisanslar ve Onaylar 95

https://www.w3.org/TR/xml-c14n2-testcases/
https://www.w3.org/TR/xml-c14n2-testcases/

Python Setup and Usage, Yayim 3.12.3

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project. https://sourceforge.net/projects/sox/files/
sox/12.17.7/sox-12.17.7 tar.gz

This source code is a product of Sun Microsystems, Inc. and is provided for unrestricted use. Users may
copy or modify this source code without charge.

SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLU-
DING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTI-
CE.

Sun source code is provided with no support and without any obligation on the part of Sun Microsystems,
Inc. to assist in its use, correction, modification or enhancement.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRIN-
GEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE OR
ANY PART THEREOF.

In no event will Sun Microsystems, Inc. be liable for any lost revenue or profits or other special, indirect
and consequential damages, even if Sun has been advised of the possibility of such damages.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, California 94043

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

96 Ek C. Tarihge ve Lisans

https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://github.com/MagicStack/uvloop/tree/v0.16.0

ek D

Telif Hakki

Python ve bu dokiimantasyon:

Telif Hakki © 2001-2023 Python Software Foundation. Ttim haklart saklidir.

Telif Hakk1 © 2000 BeOpen.com. Tiim haklar1 saklidir.

Telif Hakki © 1995-2000 Ulusal Aragtirma Girisimleri Kurumu. Tiim haklar1 saklidir.
Telif Hakki © 1991-1995 Stichting Mathematisch Centrum. Tiim haklari saklidir.

Biitiin lisans ve izin bilgileri i¢in Tarihce ve Lisans ‘a gbz atin.

97

Python Setup and Usage, Yayim 3.12.3

98

Ek D. Telif Hakki

Dizin

Alfabetik olmayan
.,61

komut satiri segenedi,5
$APPDATA%, 42

2to3, 61
>>> 61
_ future__, 66
_ slots_ ,73

A

ad alani, 70

ad alani paketi,71
adlandirilmis demet, 70
anahtar islev, 69

anahtar kelime argitimani, 69
anlamak, 74

argiiman, 61

asenkron badlam ydneticisi, 62
asenkron jeneratdr, 62
asenkron Jjeneratdr yineleyici, 62
asenkron yineleyici, 62

B
-B
komut satiri secenedi,6
-b
komut satiri secenedi, 6
badlam dediskeni, 64
badlam ydneticisi, 64
bayt benzeri nesne, 63
bayt kodu, 63
BDFL, 63
beklenebilir, 62
belge dizisi, 65
bitisik, 64
BOSTA, 67
--build
komut satiri secgenedi, 30
bulucu, 66

C

—-C

komut satiri secgenedi,4
C-contiguous, 64
CFLAGS, 25, 3234
CFLAGS_NODIST, 3234
——check-hash-based-pycs

komut satiri secenedi,b6
CONFIG_SITE

komut satiri secenedi, 30
CPPFLAGS, 32, 34
CPython, 64

G

¢cagirilabilir, 63
¢op toplama, 66

D
-d
komut satiri secenedi, 6
dedisken acgiklama, 75
degismez, 68
deJistirilebilir, 70
dekoratdr, 64
dipnot, 61
——disable-ipv6
komut satiri segenedi,?22
——disable-test-modules
komut satiri secgenedi,?24
dizi, 73
dosya benzeri nesne, 65
dosya nesnesi, 65
dosya sistemi kodlamasi ve hata
isleyicisi, 65

E
-E

komut satiri secenedi, 6
EAFP, 65
—-—enable-big-digits

komut satiri secgenedi,?22
——enable-bolt

komut satiri secenedi, 25
——enable-framework

komut satiri secgenedi, 29

99

Python Setup and Usage, Yayim 3.12.3

—-—enable-loadable-sglite-extensions

komut satiri segenedi, 22
——enable-optimizations

komut satiri segenedi,?25
——enable-profiling

komut satiri secgenedi, 26
—-—enable-pystats

komut satiri secenedi, 23
——enable-shared

komut satiri segenedi, 27
——enable-universalsdk

komut satiri secenedi, 29
——enable-wasm-dynamic-linking

komut satiri segenedi,?24
——enable-wasm-pthreads

komut satiri secenedi,?24
esyordam, 64
esyordam islevi, 64
eszamansiz yinelenebilir, 62
etkilesimli, 68
evrensel yeni satairlar,75
—-—exec-prefix

komut satiri secgenedi, 24

F

f-string, 65
fonksiyon, 66

fonksiyon agiklamasi, 66
Fortran contiguous, 64

G

gecici API,72

gecici paket, 72

genel islev, 67

genel tercliman kilidi, 67
genel tip, 67

geri cagirmak, 63

GIL, 67

glicli referans, 74

Fl
-h

komut satiri secenedi,5
haritalama, 69
—-—help

komut satiri secenedi,5
——help-all

komut satiri secenedi,5
——help-env

komut satiri segenedi, 5
——help-xoptions

komut satiri secenedi,5
—-—host

komut satiri secgenedi, 30

-1
komut satiri segenedi, 6

komut satiri secenedi, 6
i¢ ige kapsam,71
ice aktarici, 68
ice aktarim yolu, 68
ice aktarma, 68
ifade (deger dondiirmez), 74
ifade (deger dondiiriir), 65
ikili dosvya, 63

J
-J

komut satiri secenedi, 10
jeneratdr, 66
jeneratdr ifadesi, 67
jeneratdr yineleyici, 66

K

karma tabanli pyc, 67

karmasik sayai, 63

kat bolimi, 66

kisim, 72

komut satiri segenegdgi
-2,5
-B, 6
-b, 6
—--build, 30
-c, 4
——check-hash-based-pycs, 6
CONFIG_SITE, 30
-d, 6
-—disable-ipve6, 22
——disable-test-modules, 24
-E, 6
—-—enable-big-digits, 22
——enable-bolt, 25
—-—-enable-framework, 29
—-—enable-loadable-sglite-extensions,

22

——enable-optimizations, 25
-—enable-profiling, 26
—-—enable-pystats, 23
-—-enable-shared, 27
——enable-universalsdk, 29
——enable-wasm—-dynamic-linking, 24
——enable-wasm-pthreads, 24
-—exec-prefix, 24
-h,5
--help, 5
—--help-all,>5
——help-env, 5
—-help-xoptions,5
—-host, 30
-1,6
-i,6
-J,10

100

Dizin

Python Setup and Usage, Yayim 3.12.3

-m, 4 L
-0,6 lambda, 69
-00,6 LBYL, 69
-p,7 . LDFLAGS, 32, 34
——prefix, 24 LDFLAGS_NODIST, 34
-q,7 liste, 69
—R,; liste anlama, 69
-3,
-s,7 hA
-u, 7 -m
_V’g komut satiri secenedi,4
v .
) magic
——vgrsion,S metot, 69
-W,

meta yol bulucu, 70

—-with-address—-sanitizer, 27 metasinif, 70

—-—with-assertions, 27

metot, 70
—-with-build-python, 30 magic, 69
——with-builtin-hashlib-hashes, 28 speci:ﬂ 74
——w%th—compgted—gotos,25 metot kalite siralamaszi, 70
—-with-dbmliborder, 23 modiil, 70

--with-dtrace,?27 modiil 6zelligi,70

—--with-emscripten-target, 24 MRO. 70
—--with-ensurepip, 24 '
——with-framework—-name, 29 h]

—-—with-hash-algorithm, 28
--with-1ibc, 28
——with-1libm, 28
—-with-1libs, 28 ()
——with-1to, 25

nitelik, 62
nitelikli isim,73

——with-memory-sanitizer, 27 -0 .

, komut satiri secenedi, 6
--with-openssl, 28 bie 71
--with-openssl-rpath, 28 Ooée’
——without—-c-locale-coercion, 23 K ‘ ‘ i 6
—--without-decimal-contextvar, 22 oPT £$nu satiri secenegt,

——without-doc-strings, 26
—-without-freelists,?23
——without-pymalloc, 25
——without-readline, 28
—-without-static-libpython, 27
——with-pkg-config, 23
—-with-platlibdir, 23
--with-pydebug, 27
——with-readline, 28
——with-ssl-default-suites, 29
——with-strict-overflow, 26
——with-suffix, 22
-—with-system-expat, 28
—--with-system-libmpdec, 28
—-—with-trace-refs, 27
——with-tzpath, 22
—--with-undefined-behavior-sanitizer,
27

—--with-universal-archs, 29
—-—with-valgrind, 27
——with-wheel-pkg-dir, 23
-X,8
-x,8

konumsal argiliman, 72

ortam degiskeni
$APPDATA%, 42
BASECFLAGS, 33
BASECPPFLAGS, 32
BLDSHARED, 34
cc, 32
CCSHARED, 33
CFLAGS, 25, 3234
CFLAGS_ALIASING, 33
CFLAGS_NODIST, 3234
CFLAGSFORSHARED, 33
COMPILEALL_OPTS, 32
CONFIGURE_CFLAGS, 33
CONFIGURE_CFLAGS_NODIST, 33
CONFIGURE_CPPFLAGS, 32
CONFIGURE_LDFLAGS, 34
CONFIGURE_LDFLAGS_NODIST, 34
CPPFLAGS, 32, 34
CXX, 32
EXTRA_CFLAGS, 33
LDFLAGS, 32, 34
LDFLAGS_NODIST, 34
LDSHARED, 34
LIBS, 34

Dizin 101

Python Setup and Usage, Yayim 3.12.3

LINKCC, 34

OPT, 27, 33

PATH, 10, 18, 38, 40, 4547, 49
PATHEXT, 40

PROFILE_TASK, 25

PURIFY, 34
PY_BUILTIN_MODULE_CFLAGS, 33
PY_CFLAGS, 33
PY_CFLAGS_NODIST, 33
PY_CORE_CFLAGS, 33
PY_CORE_LDFLAGS, 35
PY_CPPFLAGS, 32

PY_LDFLAGS, 34
PY_LDFLAGS_NODIST, 34
PY_PYTHON, 50
PY_STDMODULE_CFLAGS, 33
PYLAUNCHER_ALLOW_INSTALL, 51
PYLAUNCHER_ALWAYS_INSTALL, 51
PYLAUNCHER_DEBUG, 51
PYLAUNCHER_DRYRUN, 51
PYLAUNCHER_NO_SEARCH_PATH, 49
PYTHONASYNCIODEBUG, 13
PYTHONBREAKPOINT, 11
PYTHONCASEOQK, 11
PYTHONCOERCECLOCALE, 13, 23
PYTHONDEBUG, 6, 11, 26
PYTHONDEVMODE, 9, 14
PYTHONDONTWRITEBYTECODE, 6, 11
PYTHONDUMPREF'S, 15, 27
PYTHONDUMPREFSFILE =FILENAME, 15
PYTHONEXECUTABLE, 12
PYTHONFAULTHANDLER, 8, 12
PYTHONHASHSEED, 7, 11
PYTHONHOME, 6, 10, 52, 53
PYTHONINSPECT, 6, 11
PYTHONINTMAXSTRDIGITS,9, 11
PYTHONIOENCODING, 11, 14
PYTHONLEGACYWINDOWSFSENCODING, 13
PYTHONLEGACYWINDOWSSTDIO, 12, 13
PYTHONMALLOC, 13, 26
PYTHONMALLOCSTATS, 13
PYTHONNODEBUGRANGES, 9, 14
PYTHONNOUSERSITE, 7, 12
PYTHONOPTIMIZE, 6, 10
PYTHONPATH, 6, 10, 45, 52, 53, 56
PYTHONPERFSUPPORT, 9, 15
PYTHONPLATLIBDIR, 10
PYTHONPROFILEIMPORTTIME, 9, 12
PYTHONPYCACHEPREFIX, 9, 11
PYTHONSAFEPATH, 7, 10
PYTHONSTARTUP, 6, 10
PYTHONTRACEMALLOC, 9, 12
PYTHONUNBUFFERED, 7, 11
PYTHONUSERBASE, 12
PYTHONUTFS, 9, 14, 46
PYTHONVERBOSE, 8, 11
PYTHONWARNDEFAULTENCODING, 9, 14
PYTHONWARNINGS, 8, 12

TEMP, 42

ddiing alinan referans, 63
drdek yazma, 65
bzel metod, 74

F)
-P

komut satiri segenegdi,”7
paket, 71
parametre, 71
parcalamak, 74
PATH, 10, 18, 38, 40, 4547, 49
PATHEXT, 40
PEP, 72
——prefix

komut satiri segenedi, 24
PROFILE_TASK, 25
PY_PYTHON, 50
PYLAUNCHER_ALLOW_INSTALL, 51
PYLAUNCHER_ALWAYS_INSTALL, 51
PYLAUNCHER_DEBUG, 51
PYLAUNCHER_DRYRUN, 51
PYLAUNCHER_NO_SEARCH_PATH, 49
Python 3000,73
Python Gelistirme Onerileri

PEP 1,72

PEP 7,21

PEP 8,59

PEP 11,21,37,54

PEP 238,66

PEP 278,75

PEP 302, 66,69

PEP 338,4

PEP 343,64

PEP 362,62,72

PEP 370,7,12

PEP 397,47

PEP 411,72

PEP 420,66,71,72

PEP 443,67

PEP 451,66

PEP 483,67

PEP 484,61, 606, 67,75

PEP 488,6,7

PEP 492, 6264

PEP 498,065

PEP 514,47

PEP 519,72

PEP 525,62

PEP 526,61,75

PEP 528,46

PEP 529,13,46

PEP 538, 14,23

PEP 585,67

PEP 3116,75

PEP 3155,73

102

Dizin

Python Setup and Usage, Yayim 3.12.3

PYTHONCOERCECLOCALE, 23
PYTHONDEBUG, 6, 26
PYTHONDEVMODE, 9
PYTHONDONTWRITEBYTECODE, 6
PYTHONDUMPREF'S, 27
PYTHONFAULTHANDLER, 8
PYTHONHASHSEED, 7, 11
PYTHONHOME, 6, 10, 52, 53
PYTHONINSPECT, 6
PYTHONINTMAXSTRDIGITS, 9
PYTHONIOENCODING, 14
Pythonic, 73
PYTHONLEGACYWINDOWSSTDIO, 12
PYTHONMALLOC, 13, 26
PYTHONNODEBUGRANGES, 9
PYTHONNOUSERSITE, 7
PYTHONOPTIMIZE, 6
PYTHONPATH, 6, 10, 45, 52, 53, 56
PYTHONPERFSUPPORT, 9
PYTHONPROFILEIMPORTTIME, 9
PYTHONPYCACHEPREFIX, 9
PYTHONSAFEPATH, 7
PYTHONSTARTUP, 6
PYTHONTRACEMALLOC, 9
Python'un Zen'i, 76
PYTHONUNBUFFERED, 7
PYTHONUTFS, 9, 14, 46
PYTHONVERBOSE, 8
PYTHONWARNDEFAULTENCODING, 9
PYTHONWARNINGS, 8

-q
komut satiri secenedi,’

-R
komut satiri secgenedi,’?
referans sayisi,73

S
-S
komut satiri secgenedi,’
-3
komut satiri secenedi,’
sanal makine, 76
sanal ortam,75
sinif, 63
sinif dediskeni, 63
sihirli ydntem, 69
soyut temel sinaif, 61
s&z1liik, 64
s6zliikk anlama, 65
sézlik gdriintimii, 65
special
metot, 74
static type checker, 74
siirekli paketleme, 73

T

tanimlayicz, 64

tek sevk,74

TEMP, 42

terciiman kapatma, 68
tip, 75

tip takma adi,75
tir ipucu,75

-u
komut satiri secenedi,’
uzatma modiili, 65

0

i¢ tirnakli dize, 74

-V
komut satiri segenedi,5

komut satiri secenedi,’
—-—-version
komut satiri secenedi,5

W
-W

komut satiri secenedi,8
—--with-address-sanitizer

komut satiri secgenedi, 27
—-with-assertions

komut satiri segenedi, 27
—-—with-build-python

komut satiri secgenedi, 30

——with-builtin-hashlib-hashes

komut satiri secenedi, 28
—--with-computed-gotos

komut satiri secgenedi, 25
—-—with-dbmliborder

komut satiri secenedi, 23
—--with-dtrace

komut satiri segenedi, 27
—--with-emscripten-target

komut satiri secgenedi,?24
—--with-ensurepip

komut satiri segenedi, 24
——with-framework—-name

komut satiri segenedi, 29
—-—with-hash-algorithm

komut satiri secenedi, 28
-—with-1libc

komut satiri secenedi, 28
——with-1libm

komut satiri secgenedi, 28
-—with-1libs

komut satiri secenedi, 28
--with-1to

Dizin

103

Python Setup and Usage, Yayim 3.12.3

komut satiri secenedi, 25 \(
—-with-memory-sanitizer

komut satiri secgenedi, 27
—--with-openssl

komut satiri secgenedi, 28
—-—with-openssl-rpath

komut satiri secenedi, 28
—--without-c—-locale-coercion

komut satiri segenedi, 23
—--without-decimal-contextvar

komut satiri secgenedi,?22 yol girisi,72
—--without-doc-strings yol girisi bulucu,72

komut satiri secenedi, 26 yol tabanli bulucu, 72
——-without-freelists

komut satiri segenedi, 23
——without-pymalloc

komut satiri secenedi, 25
—--without-readline

komut satiri secenedi, 28
—--without-static-libpython

komut satiri secgenedi, 27
—-—with-pkg-config

komut satiri secenedi, 23
—-with-platlibdir

komut satiri segenedi, 23
—--with-pydebug

komut satiri secenedi, 27
—--with-readline

komut satiri secenedi, 28
——with-ssl-default-suites

komut satiri segenedi,?29
——with-strict-overflow

komut satiri secgenedi, 26
——with-suffix

komut satiri segenedi, 22
—-with-system-expat

komut satiri secgenedi, 28
——with-system-libmpdec

komut satiri secenedi, 28
——-with-trace-refs

komut satiri segenedi, 27
—--with-tzpath

komut satiri secgenedi,?22
—-with-undefined-behavior-sanitizer

komut satiri secenedi, 27
——-with-universal-archs

komut satiri segenedi, 29
—-with-valgrind

komut satiri secenedi, 27
——with-wheel-pkg-dir

komut satiri secenedi, 23

yazi ¢dzimleme, 74
yazi dosyasi, 74

yeni stil sinaif,71
yerel kodlama, 69
yikanabilir, 67
yinelenebilir, 68
yineleyici, 68

yol benzeri nesne, 72
yol giris kancasi, 72

yorumlanmis, 68
yiikleyici, 69

-X
komut satiri secenedi,8

komut satiri secenedi,$§

104 Dizin

	Command line and environment
	Command line
	Interface options
	Generic options
	Miscellaneous options
	Options you shouldn’t use

	Environment variables
	Debug-mode variables

	Using Python on Unix platforms
	Getting and installing the latest version of Python
	On Linux
	On FreeBSD and OpenBSD

	Building Python
	Python-related paths and files
	Miscellaneous
	Custom OpenSSL

	Configure Python
	Build Requirements
	Generated files
	configure script

	Configure Options
	General Options
	WebAssembly Options
	Install Options
	Performance options
	Python Debug Build
	Debug options
	Linker options
	Libraries options
	Security Options
	macOS Options
	Cross Compiling Options

	Python Build System
	Main files of the build system
	Main build steps
	Main Makefile targets
	C extensions

	Compiler and linker flags
	Preprocessor flags
	Compiler flags
	Linker flags

	Using Python on Windows
	The full installer
	Installation steps
	Removing the MAX_PATH Limitation
	Installing Without UI
	Installing Without Downloading
	Modifying an install

	The Microsoft Store package
	Known issues
	Redirection of local data, registry, and temporary paths

	The nuget.org packages
	The embeddable package
	Python Application
	Embedding Python

	Alternative bundles
	Configuring Python
	Excursus: Setting environment variables
	Finding the Python executable

	UTF-8 mode
	Python Launcher for Windows
	Getting started
	From the command-line
	Virtual environments
	From a script
	From file associations

	Shebang Lines
	Arguments in shebang lines
	Customization
	Customization via INI files
	Customizing default Python versions

	Diagnostics
	Dry Run
	Install on demand
	Return codes

	Finding modules
	Additional modules
	PyWin32
	cx_Freeze

	Compiling Python on Windows
	Other Platforms

	Using Python on a Mac
	Getting and Installing Python
	How to run a Python script
	Running scripts with a GUI
	Configuration

	The IDE
	Installing Additional Python Packages
	GUI Programming
	Distributing Python Applications
	Other Resources

	Editors and IDEs
	Sözlük
	Bu dokümanlar hakkında
	Python Dokümantasyonuna Katkıda Bulunanlar

	Tarihçe ve Lisans
	Yazılımın tarihçesi
	Python’a erişmek veya başka bir şekilde kullanmak için şartlar ve koşullar
	PYTHON İÇİN PSF LİSANS ANLAŞMASI 3.12.3
	PYTHON 2.0 İÇİN BEOPEN.COM LİSANS SÖZLEŞMESİ
	PYTHON 1.6.1 İÇİN CNRI LİSANS ANLAŞMASI
	0.9.0 ARASI 1.2 PYTHON İÇİN CWI LİSANS SÖZLEŞMESİ
	PYTHON 3.12.3 BELGELERİNDEKİ KOD İÇİN SIFIR MADDE BSD LİSANSI

	Tüzel Yazılımlar için Lisanslar ve Onaylar
	Mersenne Twister’ı
	Soketler
	Asenkron soket hizmetleri
	Çerez yönetimi
	Çalıştırma izleme
	UUencode ve UUdecode fonksiyonları
	XML Uzaktan Yordam Çağrıları
	test_epoll
	kqueue seçin
	SipHash24
	strtod ve dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test paketi
	Audioop
	asyncio

	Telif Hakkı
	Dizin

