Python Frequently Asked Questions
Siirim 3.9.20

Guido van Rossum
and the Python development team

Eylil 08, 2024

Python Software Foundation
Email: docs@python.org

icindekiler

1 General Python FAQ
General Information L e e e e e e

1.1

1.2

1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7
1.1.8
1.1.9
1.1.10
1.1.11
1.1.12
1.1.13
1.1.14
1.1.15
1.1.16
1.1.17

What is the Python Software Foundation?
Are there copyright restrictions on the use of Python?
Why was Python created in the first place? L.
What is Python good for?
How does the Python version numbering scheme work?
How do I obtain a copy of the Python source?
How do I get documentation on Python?
I've never programmed before. Is there a Python tutorial?

How do I submit bug reports and patches for Python?
Are there any published articles about Python that I can reference?
Are there any books on Python? oo
Where in the world is www.python.org located?

Do I have to like “Monty Python’s Flying Circus™?

Pythoninthereal world

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6

What new developments are expected for Python in the future?
Is it reasonable to propose incompatible changes to Python?
Is Python a good language for beginning programmers?

2 Programming FAQ
General QUESHIONS e e e e e e e e e e e e e e e e

2.1

22

2.1.1
212
2.1.3
2.14

Is there a source code level debugger with breakpoints, single-stepping, etc.?
Are there tools to help find bugs or perform static analysis?
How can I create a stand-alone binary from a Python script?
Are there coding standards or a style guide for Python programs?

Core Language e

221
222
223
224
225
22.6
227

Why am I getting an UnboundLocalError when the variable has a value?
What are the rules for local and global variables in Python?
Why do lambdas defined in a loop with different values all return the same result?

How do I share global variables across modules?
What are the “best practices” for using import ina module?
Why are default values shared between objects?
How can I pass optional or keyword parameters from one function to another?

—

2.3

24

25

2.6

2.7

228

229

2.2.10
22.11
22.12
2.2.13
22.14
2.2.15
2.2.16
2217
2.2.18

What is the difference between arguments and parameters?
Why did changing list ’y’ also change list*xX™?
How do I write a function with output parameters (call by reference)?
How do you make a higher order function in Python?

How can I find the methods or attributes of an object?
How can my code discover the name of anobject?
What's up with the comma operator’s precedence?
Is there an equivalent of C’s “?:” ternary operator?
Is it possible to write obfuscated one-liners in Python?
What does the slash(/) in the parameter list of a function mean?

Numbers and Strings L L e e e e e e e

2.3.1 How do I specify hexadecimal and octal integers?
232 Whydoes-22//10return =37o
2.3.3 How do I get int literal attribute instead of SyntaxError?
234 Howdolconvertastringtoanumber?
23,5 Howdolconvertanumbertoastring? o
2.3.6 HowdolImodify astringinplace?
2.3.7 How do I use strings to call functions/methods?
2.3.8 Is there an equivalent to Perl’s chomp() for removing trailing newlines from strings?
2.3.9 Isthere ascanf() or sscanf() equivalent?
2.3.10 What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean?
Performance e
24.1 My program is too slow. How do I'speeditup?
2.4.2 What is the most efficient way to concatenate many strings together?

Sequences (Tuples/Lists) o o o o e e e e e

251
252
253
254
2.5.5
2.5.6
2.5.7
258
259
2.5.10
2.5.11
Objects
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.8
2.69
2.6.10
2.6.11
2.6.12
2.6.13
2.6.14
2.6.15

How do I convert between tuples and lists?
What's a negative index? e
How do I iterate over a sequence in reverse order?

How do you remove multiple items fromalist
How do you make an array in Python?
How do I create a multidimensional list?

Why does a_tuple[i] + = [‘item’] raise an exception when the addition works?
I want to do a complicated sort: can you do a Schwartzian Transform in Python?

What is delegation? L
How do I call a method defined in a base class from a derived class that overrides it? . . .
How can I organize my code to make it easier to change the base class?
How do I create static class data and static class methods?
How can I overload constructors (or methods) in Python?
I try to use __spam and I get an error about _SomeClassName__spam.
My class defines __del__ but it is not called when I delete the object.

When can I rely on identity tests with the is operator?
How can a subclass control what data is stored in an immutable instance?
HowdoIcreatea.pycfile? e
How do I find the current module name?
How can I have modules that mutually import each other?
__import__(‘X.y.z’) returns <module X’>; howdoIgetz?

16

35

2.7.5 WhenIedit an imported module and reimport it, the changes don’t show up. Why does this

happen? L e e e e e e 36

3 Design and History FAQ 37

3.1 Why does Python use indentation for grouping of statements? 37

3.2 Why am [getting strange results with simple arithmetic operations? 38

3.3 Why are floating-point calculations so inaccurate? oL 38

3.4 Why are Python strings immutable? 0oL oo 38

3.5 Why must ‘self” be used explicitly in method definitions and calls? 39

3.6 Why can’t I use an assignment in an expression?o e 39
3.7 Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g.

len(list))?o e e 39

3.8 Why is join() a string method instead of a list or tuple method? 40

3.9 Howfastare exceptions? e e e e e e e e 40

3.10 Why isn’t there a switch or case statement in Python? 41
3.11 Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implemen-

tation? ... e e 41

3.12 Why can’t lambda expressions contain statements? L. 0oL 41

3.13 Can Python be compiled to machine code, C or some other language? 42

3.14 How does Python manage memory? e 42

3.15 Why doesn’t CPython use a more traditional garbage collection scheme? 42

3.16 Why isn’t all memory freed when CPython exits? 43

3.17 Why are there separate tuple and list data types? e 43

3.18 How are lists implemented in CPython? L. 43

3.19 How are dictionaries implemented in CPython? 43

3.20 Why must dictionary keys be immutable? oL Lo 44

3.21 Why doesn't list.sort() return the sorted list? e 45

3.22 How do you specify and enforce an interface spec in Python? 45

3.23 Whyisthere no goto? e e e e e e 46

3.24 Why can’t raw strings (r-strings) end with a backslash? 46

3.25 Why doesn’t Python have a “with” statement for attribute assignments? 46

3.26 Why don’t generators support the with statement? oL 47

3.27 Why are colons required for the if/while/def/class statements? 47

3.28 Why does Python allow commas at the end of lists and tuples? 48

4 Library and Extension FAQ 49

4.1 General Library QUestions i i i it e e e e e e e e e e e e 49

4.1.1 How do I find a module or application to perform task X? 49

4.1.2 Where is the math.py (socket.py, regex.py, etc.) source file? 49

4.1.3 How do I make a Python script executable on Unix? 50

4.1.4 Is there a curses/termcap package for Python? 50

4.1.5 Is there an equivalent to C’s onexit() in Python? 50

4.1.6 Why don't my signal handlers work? oL oo, 50

42 Commontasks L e e e e e e e 51

4.2.1 How do I test a Python program or component? 51

4.2.2 How do I create documentation from doc strings? 51

423 Howdolgetasingle keypressatatime?, 51

43 Threads 51

43.1 HowdoIprogramusing threads? 51

4.3.2 None of my threads seem torun: why? 52

4.3.3 How do I parcel out work among a bunch of worker threads? 52

4.3.4 What kinds of global value mutation are thread-safe? 53

4.3.5 Can't we get rid of the Global Interpreter Lock? 54

44 Inputand OULPUL L L e e e e e e e e e e e e 55

44.1 How do I delete a file? (And other file questions...) 55

442 Howdolcopyafile? e 55

443 HowdolIread (or write) binarydata? 55

4.4.4 Tcan't seem to use os.read() on a pipe created with os.popen(); why? 56

4.4.5 HowdoIaccess the serial (RS232) port? 56
4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it? 56
4.5 Network/Internet Programming L e 56
4.5.1 What WWW tools are there for Python? 0. 56
4.5.2 How can I mimic CGI form submission (METHOD =POST)? 57
4.5.3 What module should I use to help with generating HTML? 57
454 How do I send mail from a Python script? 57
4.5.5 How do I avoid blocking in the connect() method of a socket? 58
4.6 Databases 58
4.6.1 Are there any interfaces to database packages in Python? 58
4.6.2 How do you implement persistent objects in Python? 59
4.7 Mathematics and NUMETICS 0 i it e e e e e e e e e e e e e e e 59
47.1 How do I generate random numbers in Python? 59
5 Genisletme/Ekleme SSS 61
5.1 C4de kendi fonksiyonlarimi olugturabilir miyim? 61
5.2 C++’da kendi fonksiyonlarimi olusturabilir miyim? L. 61
5.3 Cyazmak zor; bagka alternatifler varm1? oL o o 61
5.4 Cden rastgele Python komutlarmni nasil caligtirabilirim?o 62
5.5 Ciden rastgele Python komutlarint nasil degerlendirebilirim? 62
5.6 Bir Python nesnesinden C degerlerini nasil ¢ikarabilirim? 62
5.7 Istege bagli uzunlukta bir tuple olusturmak icin Py_BuildValue() islevini nasil kullanabilirim? . . . 62
5.8 C4de bir nesnenin metodunu nasil ¢agirabilirim? oL L Lo 62
5.9 PyErr_Print() islevinden (veya stdout/stderr'e yazdiran herhangi bir seyden) gelen ¢iktiy1 nasil ya-
kalayabilirim? e e 63
5.10 Python’'da yazilmig bir modiile C’den nasil erisebilirim? 63
5.11 Python’dan C++ nesnelerine nasil arayiiz olusturabilirim? 64
5.12 Kurulum dosyasini kullanarak bir modiil ekledim ve derleme basarisiz oldu; neden? 64
5.13 Bir uzantida nasil hata ayiklayabilirim? 0oL oo 64
5.14 Linux sistemimde bir Python modiilii derlemek istiyorum, ancak bazi dosyalar eksik. Neden? . .. 64
5.15 “Eksik girdi” ile “gecersiz girdi’yi nasil ayirt edebilirim?o 0oL 65
5.16 Tammlanmamig g++ sembolleri __builtin_new veya __pure_virtual't nasi bulabilirim? 65
5.17 Bazi yontemleri C'de, bazi yontemleri Python’da (6rnegin miras yoluyla) uygulanan bir nesne sinifi
olusturabilir miyim? e 65
6 Python on Windows FAQ 67
6.1 How do I run a Python program under Windows? 67
6.2 How do I make Python scripts executable? L 68
6.3 Why does Python sometimes take so long tostart? 68
6.4 How do I make an executable from a Pythonscript? 69
6.5 Isa~*.pydfilethesameasaDLL?, 69
6.6 How can I embed Python into a Windows application? 69
6.7 How do I keep editors from inserting tabs into my Python source? 70
6.8 How do I check for a keypress without blocking? 70
7 Grafik Kullanic1 Arayiizii SSS 71
7.1 Genel GKA Sorulart 71
7.2 Python icin hangi GKA arag setleri var? 71
7.3 TKInter sorulart Lo e e e e e e e e 71
7.3.1 Tkinter uygulamalarini nasil dondurabilirim?o 0oL 71
7.3.2 G/Cyi beklerken Tk olaylarini igleyebilir miyim? 72
7.3.3 Tkinterda ¢calismak i¢in anahtar baglamalarini alamiyorum: neden? 72
8 “Python Bilgisayarimda Neden Yiiklii?”> SSS 73
8.1 Pythonnedir? e e e e e e e e e e 73
8.2 Python makinemde neden yuklii? L o 73
8.3 Python'usilebilir miyim?o e e e e e e 74
A Sozliik 75

B Dokiimanlar hakkinda
Python Dokiimantasyonuna Katkida Bulunanlar

B.1

C Tarihge ve Lisans

C.1

Yazilimin tarihcesi

C.2 Pythona erigsmek veya bagka bir sekilde kullanmak i¢in sartlar ve kogullar
PYTHON ICIN PSF LISANS ANLASMASI3.9.20
PYTHON 2.0 iCIN BEOPEN.COM LISANS SOZLESMESI
PYTHON 1.6.1 ICIN CNRILISANS ANLASMASI
0.9.0 ARASI 1.2 PYTHON ICIN CWI LISANS SOZLESMESI
PYTHON 3.9.20 BELGELERINDEKI KOD ICIN SIFIR MADDE BSD LISANSI.. . . .
Tiizel Yazilimlar icin Lisanslar ve Onaylar

C3

C.2.1
C22
C23
Cc24
C.25

C3.1
C32
C33
C34
C35
C3.6
C3.7
C3.38
C3.9
C.3.10
C3.11
C3.12
C3.13
C3.14
C3.15
C.3.16
C3.17
C3.18

D Telif Hakk:

Dizin

Mersenne Twister't . .
Soketler

Asenkron soket hizmetleri e e

Cerez yonetimi
Caligtirma izleme . . .

UUencode ve UUdecode fonksiyonlart
XML Uzaktan Yordam Cagrilart oL e

test_epoll
kqueue segin
SipHash24
strtod ve dtoa
OpenSSL
expat.
libffi
zZlib ...
cfuhash
libmpdec

W3C CI14N test paketi

89
89

91
91
92
92
93
94
95
95
95
96
96
97
97
98
98
99
99
100
100
101
101
103
104
104
105
106
106

109

111

Vi

BOLUM 1

General Python FAQ

1.1 General Information

1.1.1 What is Python?

Python is an interpreted, interactive, object-oriented programming language. It incorporates modules, exceptions,
dynamic typing, very high level dynamic data types, and classes. It supports multiple programming paradigms beyond
object-oriented programming, such as procedural and functional programming. Python combines remarkable power
with very clear syntax. It has interfaces to many system calls and libraries, as well as to various window systems,
and is extensible in C or C++. It is also usable as an extension language for applications that need a programmable
interface. Finally, Python is portable: it runs on many Unix variants including Linux and macOS, and on Windows.

To find out more, start with tutorial-index. The Beginner’s Guide to Python links to other introductory tutorials and
resources for learning Python.

1.1.2 What is the Python Software Foundation?

The Python Software Foundation is an independent non-profit organization that holds the copyright on Python ver-
sions 2.1 and newer. The PSF’s mission is to advance open source technology related to the Python programming
language and to publicize the use of Python. The PSF’s home page is at https://www.python.org/psf/.

Donations to the PSF are tax-exempt in the US. If you use Python and find it helpful, please contribute via the PSF
donation page.

1.1.3 Are there copyright restrictions on the use of Python?

You can do anything you want with the source, as long as you leave the copyrights in and display those copyrights
in any documentation about Python that you produce. If you honor the copyright rules, it’'s OK to use Python for
commercial use, to sell copies of Python in source or binary form (modified or unmodified), or to sell products that
incorporate Python in some form. We would still like to know about all commercial use of Python, of course.

See the PSF license page to find further explanations and a link to the full text of the license.

The Python logo is trademarked, and in certain cases permission is required to use it. Consult the Trademark Usage
Policy for more information.

https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/psf/
https://www.python.org/psf/donations/
https://www.python.org/psf/donations/
https://www.python.org/psf/license/
https://www.python.org/psf/trademarks/
https://www.python.org/psf/trademarks/

Python Frequently Asked Questions, Siiriim 3.9.20

1.1.4 Why was Python created in the first place?

Here’s a very brief summary of what started it all, written by Guido van Rossum:

I had extensive experience with implementing an interpreted language in the ABC group at CWI, and
from working with this group I had learned a lot about language design. This is the origin of many Python
features, including the use of indentation for statement grouping and the inclusion of very-high-level data
types (although the details are all different in Python).

I had a number of gripes about the ABC language, but also liked many of its features. It was impossible
to extend the ABC language (or its implementation) to remedy my complaints - in fact its lack of
extensibility was one of its biggest problems. I had some experience with using Modula-2+ and talked
with the designers of Modula-3 and read the Modula-3 report. Modula-3 is the origin of the syntax and
semantics used for exceptions, and some other Python features.

I was working in the Amoeba distributed operating system group at CWI. We needed a better way to
do system administration than by writing either C programs or Bourne shell scripts, since Amoeba had
its own system call interface which wasn’t easily accessible from the Bourne shell. My experience with
error handling in Amoeba made me acutely aware of the importance of exceptions as a programming
language feature.

It occurred to me that a scripting language with a syntax like ABC but with access to the Amoeba system
calls would fill the need. I realized that it would be foolish to write an Amoeba-specific language, so 1
decided that I needed a language that was generally extensible.

During the 1989 Christmas holidays, I had a lot of time on my hand, so I decided to give it a try. During
the next year, while still mostly working on it in my own time, Python was used in the Amoeba project
with increasing success, and the feedback from colleagues made me add many early improvements.

In February 1991, after just over a year of development, I decided to post to USENET. The rest is in
the Misc/HISTORY file.

1.1.5 What is Python good for?

Python is a high-level general-purpose programming language that can be applied to many different classes of prob-
lems.

The language comes with a large standard library that covers areas such as string processing (regular expressions,
Unicode, calculating differences between files), Internet protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP,
CGI programming), software engineering (unit testing, logging, profiling, parsing Python code), and operating system
interfaces (system calls, filesystems, TCP/IP sockets). Look at the table of contents for library-index to get an idea
of what's available. A wide variety of third-party extensions are also available. Consult the Python Package Index to
find packages of interest to you.

1.1.6 How does the Python version nhumbering scheme work?

Python versions are numbered A.B.C or A.B. A is the major version number - it is only incremented for really
major changes in the language. B is the minor version number, incremented for less earth-shattering changes. C is
the micro-level - it is incremented for each bugfix release. See PEP 6 for more information about bugfix releases.

Not all releases are bugfix releases. In the run-up to a new major release, a series of development releases are made,
denoted as alpha, beta, or release candidate. Alphas are early releases in which interfaces aren’t yet finalized; it’s
not unexpected to see an interface change between two alpha releases. Betas are more stable, preserving existing
interfaces but possibly adding new modules, and release candidates are frozen, making no changes except as needed
to fix critical bugs.

Alpha, beta and release candidate versions have an additional suffix. The suffix for an alpha version is “aN” for some
small number N, the suffix for a beta version is “bN” for some small number N, and the suffix for a release candidate
version is “rcN” for some small number N. In other words, all versions labeled 2.0aN precede the versions labeled
2.0bN, which precede versions labeled 2.0rcN, and those precede 2.0.

2 Boélim 1. General Python FAQ

https://pypi.org
https://www.python.org/dev/peps/pep-0006

Python Frequently Asked Questions, Siiriim 3.9.20

You may also find version numbers with a “+” suffix, e.g. “2.2+”. These are unreleased versions, built directly from
the CPython development repository. In practice, after a final minor release is made, the version is incremented to
the next minor version, which becomes the “a0” version, e.g. “2.4a0”.

See also the documentation for sys.version, sys.hexversion,and sys.version_info.

1.1.7 How do | obtain a copy of the Python source?
The latest Python source distribution is always available from python.org, at https://www.python.org/downloads/.
The latest development sources can be obtained at https://github.com/python/cpython/.

The source distribution is a gzipped tar file containing the complete C source, Sphinx-formatted documentation,
Python library modules, example programs, and several useful pieces of freely distributable software. The source
will compile and run out of the box on most UNIX platforms.

Consult the Getting Started section of the Python Developer’s Guide for more information on getting the source code
and compiling it.

1.1.8 How do | get documentation on Python?
The standard documentation for the current stable version of Python is available at https://docs.python.org/3/. PDF,
plain text, and downloadable HTML versions are also available at https://docs.python.org/3/download.html.

The documentation is written in reStructuredText and processed by the Sphinx documentation tool. The reStructu-
redText source for the documentation is part of the Python source distribution.

1.1.9 I've never programmed before. Is there a Python tutorial?

There are numerous tutorials and books available. The standard documentation includes tutorial-index.

Consult the Beginner’s Guide to find information for beginning Python programmers, including lists of tutorials.

1.1.10 Is there a newsgroup or mailing list devoted to Python?

There is a newsgroup, comp. lang.python, and a mailing list, python-list. The newsgroup and mailing list are
gatewayed into each other — if you can read news it’s unnecessary to subscribe to the mailing list. comp. Iang.
python is high-traffic, receiving hundreds of postings every day, and Usenet readers are often more able to cope
with this volume.

Announcements of new software releases and events can be found in comp.lang.python.announce, a low-traffic mo-
derated list that receives about five postings per day. It’s available as the python-announce mailing list.

More info about other mailing lists and newsgroups can be found at https://www.python.org/community/lists/.

1.1.11 How do | get a beta test version of Python?

Alpha and beta releases are available from https://www.python.org/downloads/. All releases are announced on the
comp.lang.python and comp.lang.python.announce newsgroups and on the Python home page at https://www.python.
org/; an RSS feed of news is available.

You can also access the development version of Python through Git. See The Python Developer’s Guide for details.

1.1. General Information 3

https://www.python.org/downloads/
https://github.com/python/cpython/
https://devguide.python.org/setup/
https://docs.python.org/3/
https://docs.python.org/3/download.html
http://sphinx-doc.org/
https://wiki.python.org/moin/BeginnersGuide
https://mail.python.org/mailman/listinfo/python-list
https://mail.python.org/mailman/listinfo/python-announce-list
https://www.python.org/community/lists/
https://www.python.org/downloads/
https://www.python.org/
https://www.python.org/
https://devguide.python.org/

Python Frequently Asked Questions, Siiriim 3.9.20

1.1.12 How do | submit bug reports and patches for Python?

To report a bug or submit a patch, please use the Roundup installation at https://bugs.python.org/.

You must have a Roundup account to report bugs; this makes it possible for us to contact you if we have follow-
up questions. It will also enable Roundup to send you updates as we act on your bug. If you had previously used
SourceForge to report bugs to Python, you can obtain your Roundup password through Roundup’s password reset
procedure.

For more information on how Python is developed, consult the Python Developer’s Guide.

1.1.13 Are there any published articles about Python that | can reference?

It’s probably best to cite your favorite book about Python.
The very first article about Python was written in 1991 and is now quite outdated.

Guido van Rossum and Jelke de Boer, “Interactively Testing Remote Servers Using the Python Prog-
ramming Language”, CWI Quarterly, Volume 4, Issue 4 (December 1991), Amsterdam, pp 283-303.

1.1.14 Are there any books on Python?

Yes, there are many, and more are being published. See the python.org wiki at https://wiki.python.org/moin/
PythonBooks for a list.

You can also search online bookstores for “Python” and filter out the Monty Python references; or perhaps search for
“Python” and “language”.

1.1.15 Where in the world is www.python.org located?

The Python project’s infrastructure is located all over the world and is managed by the Python Infrastructure Team.
Details here.

1.1.16 Why is it called Python?

When he began implementing Python, Guido van Rossum was also reading the published scripts from “Monty Pyt-
hon’s Flying Circus”, a BBC comedy series from the 1970s. Van Rossum thought he needed a name that was short,
unique, and slightly mysterious, so he decided to call the language Python.

1.1.17 Do | have to like “Monty Python’s Flying Circus”?

No, but it helps. :)

1.2 Python in the real world

1.2.1 How stable is Python?

Very stable. New, stable releases have been coming out roughly every 6 to 18 months since 1991, and this seems
likely to continue. As of version 3.9, Python will have a major new release every 12 months (PEP 602).

The developers issue “bugfix” releases of older versions, so the stability of existing releases gradually improves.
Bugfix releases, indicated by a third component of the version number (e.g. 3.5.3, 3.6.2), are managed for stability;
only fixes for known problems are included in a bugfix release, and it’s guaranteed that interfaces will remain the
same throughout a series of bugfix releases.

4 Bélim 1. General Python FAQ

https://bugs.python.org/
https://bugs.python.org/user?@template=forgotten
https://bugs.python.org/user?@template=forgotten
https://devguide.python.org/
https://wiki.python.org/moin/PythonBooks
https://wiki.python.org/moin/PythonBooks
http://infra.psf.io
https://en.wikipedia.org/wiki/Monty_Python
https://en.wikipedia.org/wiki/Monty_Python
https://www.python.org/dev/peps/pep-0602

Python Frequently Asked Questions, Siiriim 3.9.20

The latest stable releases can always be found on the Python download page. There are two production-ready versions
of Python: 2.x and 3.x. The recommended version is 3.x, which is supported by most widely used libraries. Although
2.x is still widely used, it is not maintained anymore.

1.2.2 How many people are using Python?

There are probably millions of users, though it’s difficult to obtain an exact count.

Python is available for free download, so there are no sales figures, and it’s available from many different sites and
packaged with many Linux distributions, so download statistics don’t tell the whole story either.

The comp.lang.python newsgroup is very active, but not all Python users post to the group or even read it.

1.2.3 Have any significant projects been done in Python?

See https://www.python.org/about/success for a list of projects that use Python. Consulting the proceedings for past
Python conferences will reveal contributions from many different companies and organizations.

High-profile Python projects include the Mailman mailing list manager and the Zope application server. Several Linux
distributions, most notably Red Hat, have written part or all of their installer and system administration software in
Python. Companies that use Python internally include Google, Yahoo, and Lucasfilm Ltd.

1.2.4 What new developments are expected for Python in the future?

See https://www.python.org/dev/peps/ for the Python Enhancement Proposals (PEPs). PEPs are design documents
describing a suggested new feature for Python, providing a concise technical specification and a rationale. Look for
a PEP titled “Python X.Y Release Schedule”, where X.Y is a version that hasn’t been publicly released yet.

New development is discussed on the python-dev mailing list.

1.2.5 Is it reasonable to propose incompatible changes to Python?

In general, no. There are already millions of lines of Python code around the world, so any change in the language
that invalidates more than a very small fraction of existing programs has to be frowned upon. Even if you can provide
a conversion program, there’s still the problem of updating all documentation; many books have been written about
Python, and we don’t want to invalidate them all at a single stroke.

Providing a gradual upgrade path is necessary if a feature has to be changed. PEP 5 describes the procedure followed
for introducing backward-incompatible changes while minimizing disruption for users.

1.2.6 Is Python a good language for beginning programmers?

Yes.

It is still common to start students with a procedural and statically typed language such as Pascal, C, or a subset of
C++ or Java. Students may be better served by learning Python as their first language. Python has a very simple and
consistent syntax and a large standard library and, most importantly, using Python in a beginning programming course
lets students concentrate on important programming skills such as problem decomposition and data type design. With
Python, students can be quickly introduced to basic concepts such as loops and procedures. They can probably even
work with user-defined objects in their very first course.

For a student who has never programmed before, using a statically typed language seems unnatural. It presents ad-
ditional complexity that the student must master and slows the pace of the course. The students are trying to learn
to think like a computer, decompose problems, design consistent interfaces, and encapsulate data. While learning
to use a statically typed language is important in the long term, it is not necessarily the best topic to address in the
students’ first programming course.

1.2. Python in the real world 5

https://www.python.org/downloads/
https://www.python.org/dev/peps/pep-0373/
https://www.python.org/about/success
https://www.python.org/community/workshops/
https://www.python.org/community/workshops/
http://www.list.org
http://www.zope.org
https://www.redhat.com
https://www.python.org/dev/peps/
https://mail.python.org/mailman/listinfo/python-dev/
https://www.python.org/dev/peps/pep-0005

Python Frequently Asked Questions, Siiriim 3.9.20

Many other aspects of Python make it a good first language. Like Java, Python has a large standard library so that
students can be assigned programming projects very early in the course that do something. Assignments aren’t rest-
ricted to the standard four-function calculator and check balancing programs. By using the standard library, students
can gain the satisfaction of working on realistic applications as they learn the fundamentals of programming. Using
the standard library also teaches students about code reuse. Third-party modules such as PyGame are also helpful in
extending the students’ reach.

Python’s interactive interpreter enables students to test language features while they’re programming. They can keep a
window with the interpreter running while they enter their program’s source in another window. If they can’t remember
the methods for a list, they can do something like this:

>>> L = []

>>> dir (L)

['_add__', '__class__', '_ _contains_ ', '__delattr__', '__delitem__"',
' _dir__', '__doc__', ' _eq ', '__format__', '_ge__"',

' __getattribute ', '__getitem_ ', '__ gt ', ' _hash__ ', '__diadd__"',
' dimul_ ', '__dinit_ ', '__iter_ ', ' _le_ ', '_len_ ', '__1t__"',

' mul_ ', '_ne_ ', ' _new_ ', '__reduce_ ', '_ reduce_ex_ ',

' _repr_ ', '__reversed_ ', '_rmul__', '__setattr__ ', '__setitem__ ',
' sizeof ', '__str__ ', '_ _subclasshook__', 'append',6 'clear',

'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',

'reverse', 'sort']

>>> [d for d in dir(L) if ' ' not in d]

["append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
—'reverse', 'sort']

>>> help (L.append)
Help on built-in function append:

append (...)
L.append(object) —-> None —-- append object to end

>>> L.append (1)
>>> L

[1]

With the interpreter, documentation is never far from the student as they are programming.

There are also good IDEs for Python. IDLE is a cross-platform IDE for Python that is written in Python using Tkinter.
PythonWin is a Windows-specific IDE. Emacs users will be happy to know that there is a very good Python mode
for Emacs. All of these programming environments provide syntax highlighting, auto-indenting, and access to the
interactive interpreter while coding. Consult the Python wiki for a full list of Python editing environments.

If you want to discuss Python’s use in education, you may be interested in joining the edu-sig mailing list.

6 Boélim 1. General Python FAQ

https://wiki.python.org/moin/PythonEditors
https://www.python.org/community/sigs/current/edu-sig

BOLUM 2

Programming FAQ

2.1 General Questions

2.1.1 Is there a source code level debugger with breakpoints, single-stepping,
etc.?

Yes.

Several debuggers for Python are described below, and the built-in function breakpoint () allows you to drop
into any of them.

The pdb module is a simple but adequate console-mode debugger for Python. It is part of the standard Python library,
and is documented in the Library Reference Manual. You can also write your own debugger by
using the code for pdb as an example.

The IDLE interactive development environment, which is part of the standard Python distribution (normally available
as Tools/scripts/idle), includes a graphical debugger.

PythonWin is a Python IDE that includes a GUI debugger based on pdb. The PythonWin debugger colors breakpoints
and has quite a few cool features such as debugging non-PythonWin programs. PythonWin is available as part of
pywin32 project and as a part of the ActivePython distribution.

Eric is an IDE built on PyQt and the Scintilla editing component.
trepan3k is a gdb-like debugger.
Visual Studio Code is an IDE with debugging tools that integrates with version-control software.
There are a number of commercial Python IDEs that include graphical debuggers. They include:
» Wing IDE
» Komodo IDE
e PyCharm

https://github.com/mhammond/pywin32
https://www.activestate.com/products/python/
http://eric-ide.python-projects.org/
https://github.com/rocky/python3-trepan/
https://code.visualstudio.com/
https://wingware.com/
https://www.activestate.com/products/komodo-ide/
https://www.jetbrains.com/pycharm/

Python Frequently Asked Questions, Siiriim 3.9.20

2.1.2 Are there tools to help find bugs or perform static analysis?

Yes.
Pylint and Pyflakes do basic checking that will help you catch bugs sooner.

Static type checkers such as Mypy, Pyre, and Pytype can check type hints in Python source code.

2.1.3 How can | create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a stand-alone program that users can
download and run without having to install the Python distribution first. There are a number of tools that determine
the set of modules required by a program and bind these modules together with a Python binary to produce a single
executable.

One is to use the freeze tool, which is included in the Python source tree as Tools/freeze. It converts Python
byte code to C arrays; with a C compiler you can embed all your modules into a new program, which is then linked
with the standard Python modules.

It works by scanning your source recursively for import statements (in both forms) and looking for the modules in the
standard Python path as well as in the source directory (for built-in modules). It then turns the bytecode for modules
written in Python into C code (array initializers that can be turned into code objects using the marshal module) and
creates a custom-made config file that only contains those built-in modules which are actually used in the program.
It then compiles the generated C code and links it with the rest of the Python interpreter to form a self-contained
binary which acts exactly like your script.

The following packages can help with the creation of console and GUI executables:
o Nuitka (Cross-platform)
« Pylnstaller (Cross-platform)
« PyOxidizer (Cross-platform)
o cx_Freeze (Cross-platform)
» py2app (macOS only)
e py2exe (Windows only)

2.1.4 Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as PEP 8.

2.2 Core Language

2.2.1 Why am | getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working code when it is modified by adding an
assignment statement somewhere in the body of a function.

This code:

>>> x = 10

>>> def bar():
print (x)

>>> bar ()

10

works, but this code:

8 Boliim 2. Programming FAQ

https://www.pylint.org/
https://github.com/PyCQA/pyflakes
http://mypy-lang.org/
https://pyre-check.org/
https://github.com/google/pytype
https://nuitka.net/
http://www.pyinstaller.org/
https://pyoxidizer.readthedocs.io/en/stable/
https://marcelotduarte.github.io/cx_Freeze/
https://github.com/ronaldoussoren/py2app
http://www.py2exe.org/
https://www.python.org/dev/peps/pep-0008

Python Frequently Asked Questions, Siiriim 3.9.20

>>> x = 10

>>> def fool():
print (x)
x += 1

results in an UnboundLocalError:

>>> foo ()
Traceback (most recent call last):

UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that variable becomes local to that scope
and shadows any similarly named variable in the outer scope. Since the last statement in foo assigns a new value to
x, the compiler recognizes it as a local variable. Consequently when the earlier print (x) attempts to print the
uninitialized local variable and an error results.

In the example above you can access the outer scope variable by declaring it global:

>>> x = 10

>>> def foobar():
global x
print (x)

Ce x += 1

>>> foobar ()

10

This explicit declaration is required in order to remind you that (unlike the superficially analogous situation with class
and instance variables) you are actually modifying the value of the variable in the outer scope:

>>> print (x)
11

You can do a similar thing in a nested scope using the nonlocal keyword:

>>> def foo():

x = 10
def bar():
nonlocal x
print (x)
X += 1
bar ()
print (x)
>>> foo ()
10
11

2.2.2 What are the rules for local and global variables in Python?

In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned a value
anywhere within the function’s body, it’s assumed to be a local unless explicitly declared as global.

Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring global for assigned
variables provides a bar against unintended side-effects. On the other hand, if global was required for all global
references, you'd be using global all the time. You’d have to declare as global every reference to a built-in function
or to a component of an imported module. This clutter would defeat the usefulness of the global declaration for
identifying side-effects.

2.2. Core Language 9

Python Frequently Asked Questions, Siiriim 3.9.20

2.2.3 Why do lambdas defined in a loop with different values all return the same
result?

Assume you use a for loop to define a few different lambdas (or even plain functions), e.g.:

>>> squares = []
>>> for x in range(5):
squares.append (lambda: x**2)

This gives you a list that contains 5 lambdas that calculate x* *2. You might expect that, when called, they would
return, respectively, 0, 1, 4, 9, and 1 6. However, when you actually try you will see that they all return 1 6:

>>> squares[2] ()
16
>>> squares[4] ()
16

This happens because x is not local to the lambdas, but is defined in the outer scope, and it is accessed when the
lambda is called — not when it is defined. At the end of the loop, the value of x is 4, so all the functions now return
4**2 1i.e. 16. You can also verify this by changing the value of x and see how the results of the lambdas change:

>>> x = 8
>>> squares[2] ()
64

In order to avoid this, you need to save the values in variables local to the lambdas, so that they don’t rely on the value
of the global x:

>>> squares = []
>>> for x in range(5):
squares.append (lambda n=x: n**2)

Here, n =x creates a new variable n local to the lambda and computed when the lambda is defined so that it has the
same value that x had at that point in the loop. This means that the value of n will be 0 in the first lambda, 1 in the
second, 2 in the third, and so on. Therefore each lambda will now return the correct result:

>>> squares[2] ()
4

>>> squares[4] ()
16

Note that this behaviour is not peculiar to lambdas, but applies to regular functions too.

2.2.4 How do | share global variables across modules?

The canonical way to share information across modules within a single program is to create a special module (often
called config or cfg). Just import the config module in all modules of your application; the module then becomes
available as a global name. Because there is only one instance of each module, any changes made to the module object
get reflected everywhere. For example:

config.py:

x =0 # Default value of the 'x' configuration setting
mod.py:

import config

config.x = 1

main.py:

10 Boliim 2. Programming FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

import config
import mod
print (config.x)

Note that using a module is also the basis for implementing the Singleton design pattern, for the same reason.

2.2.5 What are the “best practices” for using import in a module?

In general, don’t use from modulename import *.Doing so clutters the importer’s namespace, and makes it
much harder for linters to detect undefined names.

Import modules at the top of a file. Doing so makes it clear what other modules your code requires and avoids
questions of whether the module name is in scope. Using one import per line makes it easy to add and delete module
imports, but using multiple imports per line uses less screen space.

It’s good practice if you import modules in the following order:
1. standard library modules - e.g. sys, os, getopt, re

2. third-party library modules (anything installed in Python’s site-packages directory) — e.g. mx.DateTime,
ZODB, PIL.Image, etc.

3. locally-developed modules

It is sometimes necessary to move imports to a function or class to avoid problems with circular imports. Gordon
McMillan says:

Circular imports are fine where both modules use the “import <module>” form of import. They fail when
the 2nd module wants to grab a name out of the first (“from module import name”) and the import is
at the top level. That’s because names in the 1st are not yet available, because the first module is busy
importing the 2nd.

In this case, if the second module is only used in one function, then the import can easily be moved into that function.
By the time the import is called, the first module will have finished initializing, and the second module can do its
import.

It may also be necessary to move imports out of the top level of code if some of the modules are platform-specific.
In that case, it may not even be possible to import all of the modules at the top of the file. In this case, importing the
correct modules in the corresponding platform-specific code is a good option.

Only move imports into a local scope, such as inside a function definition, if it’s necessary to solve a problem such
as avoiding a circular import or are trying to reduce the initialization time of a module. This technique is especially
helpful if many of the imports are unnecessary depending on how the program executes. You may also want to
move imports into a function if the modules are only ever used in that function. Note that loading a module the first
time may be expensive because of the one time initialization of the module, but loading a module multiple times
is virtually free, costing only a couple of dictionary lookups. Even if the module name has gone out of scope, the
module is probably available in sys.modules.

2.2.6 Why are default values shared between objects?

This type of bug commonly bites neophyte programmers. Consider this function:

def foo (mydict={}): # Danger: shared reference to one dict for all calls
compute something ...
mydict [key] = value

return mydict

The first time you call this function, mydict contains a single item. The second time, mydict contains two items
because when foo () begins executing, mydict starts out with an item already in it.

2.2. Core Language 11

Python Frequently Asked Questions, Siiriim 3.9.20

It is often expected that a function call creates new objects for default values. This is not what happens. Default values
are created exactly once, when the function is defined. If that object is changed, like the dictionary in this example,
subsequent calls to the function will refer to this changed object.

By definition, immutable objects such as numbers, strings, tuples, and None, are safe from change. Changes to
mutable objects such as dictionaries, lists, and class instances can lead to confusion.

Because of this feature, it is good programming practice to not use mutable objects as default values. Inste-
ad, use None as the default value and inside the function, check if the parameter is None and create a new
list/dictionary/whatever if it is. For example, don’t write:

def foo(mydict={}):

but:

def foo (mydict=None) :
if mydict is None:
mydict = {} # create a new dict for local namespace

This feature can be useful. When you have a function that’s time-consuming to compute, a common technique is to
cache the parameters and the resulting value of each call to the function, and return the cached value if the same
value is requested again. This is called “memoizing”, and can be implemented like this:

Callers can only provide two parameters and optionally pass _cache by keyword
def expensive(argl, arg2, *, _cache={}):
if (argl, arg2) in _cache:
return _cache[(argl, arg2)]

Calculate the value

result = ... expensive computation

_cache[(argl, arg2)] = result # Store result in the cache
return result

You could use a global variable containing a dictionary instead of the default value; it’s a matter of taste.

2.2.7 How can | pass optional or keyword parameters from one function to anot-
her?

Collect the arguments using the * and ** specifiers in the function’s parameter list; this gives you the positional
arguments as a tuple and the keyword arguments as a dictionary. You can then pass these arguments when calling
another function by using * and * *:

def f(x, *args, **kwargs):
kwargs['width'] = "14.3c’

g(x, *args, **kwargs)

12 Boliim 2. Programming FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

2.2.8 What is the difference between arguments and parameters?

Parameters are defined by the names that appear in a function definition, whereas arguments are the values actually
passed to a function when calling it. Parameters define what types of arguments a function can accept. For example,
given the function definition:

def func(foo, bar=None, **kwargs):
pass

foo, bar and kwargs are parameters of func. However, when calling func, for example:

func (42, bar=314, extra=somevar)

the values 42, 314, and somevar are arguments.

2.2.9 Why did changing list ‘y’ also change list ‘x’?

If you wrote code like:

>>>

= Il
>>> = X
>>> .append (10)
>>>
[10]
>>> x

[10]

MKOKRRX

you might be wondering why appending an element to y changed x too.
There are two factors that produce this result:

1) Variables are simply names that refer to objects. Doing vy = x doesn’t create a copy of the list — it creates a
new variable y that refers to the same object x refers to. This means that there is only one object (the list), and
both x and y refer to it.

2) Lists are mutable, which means that you can change their content.

After the call to append (), the content of the mutable object has changed from [] to [10]. Since both the
variables refer to the same object, using either name accesses the modified value [10].

If we instead assign an immutable object to x:

>>> = 5 # ints are immutable

>>> = X

>>> =x + 1 # 5 can't be mutated, we are creating a new object here

XXX

>>>
6
>>> y

we can see that in this case x and y are not equal anymore. This is because integers are immutable, and when we do
x = x + 1 we are not mutating the int 5 by incrementing its value; instead, we are creating a new object (the int
6) and assigning it to x (that is, changing which object x refers to). After this assignment we have two objects (the
ints 6 and 5) and two variables that refer to them (x now refers to 6 but y still refers to 5).

Some operations (for example y . append (10) and y.sort ()) mutate the object, whereas superficially similar
operations (for example y = y + [10] and sorted (y)) create a new object. In general in Python (and in all
cases in the standard library) a method that mutates an object will return None to help avoid getting the two types
of operations confused. So if you mistakenly write v . sort () thinking it will give you a sorted copy of y, you'll
instead end up with None, which will likely cause your program to generate an easily diagnosed error.

However, there is one class of operations where the same operation sometimes has different behaviors with different
types: the augmented assignment operators. For example, + = mutates lists but not tuples or ints (a_list + =

2.2. Core Language 13

Python Frequently Asked Questions, Siiriim 3.9.20

[1, 2, 3] isequivalentto a_list.extend([1, 2, 3]) and mutates a_1list, whereas some_tuple
+ = (1, 2, 3) and some_int + = 1 create new objects).

In other words:

« If we have a mutable object (1ist, dict, set, etc.), we can use some specific operations to mutate it and
all the variables that refer to it will see the change.

« If we have an immutable object (str, int, tuple, etc.), all the variables that refer to it will always see the
same value, but operations that transform that value into a new value always return a new object.

If you want to know if two variables refer to the same object or not, you can use the is operator, or the built-in
function id ().

2.2.10 How do | write a function with output parameters (call by reference)?

Remember that arguments are passed by assignment in Python. Since assignment just creates references to objects,
there’s no alias between an argument name in the caller and callee, and so no call-by-reference per se. You can achieve
the desired effect in a number of ways.

1) By returning a tuple of the results:

>>> def funcl(a, b):

a = 'new-value' # a and b are local names
b =Db + 1 # assigned to new objects
return a, b # return new values

>>> x, y = 'old-value', 99

>>> funcl (x, V)
("new-value', 100)

This is almost always the clearest solution.
2) By using global variables. This isn’t thread-safe, and is not recommended.

3) By passing a mutable (changeable in-place) object:

>>> def func2(a):

al0] 'new-value' # 'a' references a mutable 1ist
all] = a[l1] + 1 # changes a shared object
>>> args = ['old-value', 99]

>>> func?2 (args)
>>> args
['new-value', 100]

4) By passing in a dictionary that gets mutated:

>>> def func3(args):

args['a'] = 'new-value' # args 1is a mutable dictionary
args['b'] = args['b'] + 1 # change it in-place
>>> args = {'a': 'old-value', 'b': 99}

>>> func3(args)
>>> args
{'a': '"nmew-value', 'b': 100}

5) Or bundle up values in a class instance:

>>> class Namespace:
def __init__ (self, /, **args):
for key, value in args.items{():
setattr(self, key, wvalue)

(continues on next page)

14 Boliim 2. Programming FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

>>> def funcéd (args):
args.a = 'new-value' # args is a mutable Namespace
args.b = args.b + 1 # change object in-place

>>> args = Namespace (a='old-value', b=99)
>>> funcéd (args)

>>> vars (args)

{'a': '"mew-value', 'b': 100}

There’s almost never a good reason to get this complicated.
Your best choice is to return a tuple containing the multiple results.

2.2.11 How do you make a higher order function in Python?

You have two choices: you can use nested scopes or you can use callable objects. For example, suppose you wanted
to define 1inear (a, b) which returns a function f (x) that computes the value a* x+b. Using nested scopes:

def linear(a, b):

def result (x):
return a * x + b

return result

Or using a callable object:

class linear:

def _ init_ (self, a, b):
self.a, self.b = a, b

def _ call_ (self, x):
return self.a * x + self.b

In both cases,

taxes = linear (0.3, 2)

gives a callable object where taxes (10e6) == 0.3 * 10e6 + 2.

The callable object approach has the disadvantage that it is a bit slower and results in slightly longer code. However,
note that a collection of callables can share their signature via inheritance:

class exponential (linear):
__init__ inherited
def _ call_(self, x):
return self.a * (x ** self.b)

Object can encapsulate state for several methods:

class counter:

value = 0

def set (self, x):
self.value = x

def up(self):
self.value = self.value + 1

(continues on next page)

2.2. Core Language 15

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

def down (self):
self.value = self.value - 1
count = counter ()
inc, dec, reset = count.up, count.down, count.set

Here inc (), dec () and reset () act like functions which share the same counting variable.

2.2.12 How do | copy an object in Python?

In general, try copy.copy () or copy.deepcopy () for the general case. Not all objects can be copied, but
most can.

Some objects can be copied more easily. Dictionaries have a copy () method:

’newdict = olddict.copy ()

Sequences can be copied by slicing:

’new_l = 1[:]

2.2.13 How can I find the methods or attributes of an object?

For an instance x of a user-defined class, dir (x) returns an alphabetized list of the names containing the instance
attributes and methods and attributes defined by its class.

2.2.14 How can my code discover the name of an object?

Generally speaking, it can’t, because objects don’t really have names. Essentially, assignment always binds a name to
a value; the same is true of de f and class statements, but in that case the value is a callable. Consider the following
code:

>>> class A:

pass
>>> B = A
>>> a = B()
>>> b = a

>>> print (b)
<__main__.A object at 0x16D07CC>
>>> print (a)
<__main__ .A object at 0x16D07CC>

Arguably the class has a name: even though it is bound to two names and invoked through the name B the created
instance is still reported as an instance of class A. However, it is impossible to say whether the instance’s name is a
or b, since both names are bound to the same value.

Generally speaking it should not be necessary for your code to “know the names” of particular values. Unless you are
deliberately writing introspective programs, this is usually an indication that a change of approach might be beneficial.

In comp.lang.python, Fredrik Lundh once gave an excellent analogy in answer to this question:

The same way as you get the name of that cat you found on your porch: the cat (object) itself cannot
tell you its name, and it doesn’t really care — so the only way to find out what it’s called is to ask all your
neighbours (namespaces) if it’s their cat (object)...

....and don’t be surprised if you’ll find that it’s known by many names, or no name at all!

16 Boliim 2. Programming FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

2.2.15 What’s up with the comma operator’s precedence?

Comma is not an operator in Python. Consider this session:

>>> "all ln llbll, "all
(False, 'a')

Since the comma is not an operator, but a separator between expressions the above is evaluated as if you had entered:

’(nan in llbll), ngn ‘

not:

’na" in ("b", nan) ‘

The same is true of the various assignment operators (=, + = etc). They are not truly operators but syntactic delimiters
in assignment statements.

2.2.16 Is there an equivalent of C’s “?:” ternary operator?

Yes, there is. The syntax is as follows:

[on_true] if [expression] else [on_false]

x, y = 50, 25
small x if x < y else y

Before this syntax was introduced in Python 2.5, a common idiom was to use logical operators:

[expression] and [on_true] or [on_false]

However, this idiom is unsafe, as it can give wrong results when on_true has a false boolean value. Therefore, it is
always better touse the . .. if ... else ... form.

2.2.17 lIs it possible to write obfuscated one-liners in Python?

Yes. Usually this is done by nesting 1ambda within 1ambda. See the following three examples, due to Ulf Bartelt:

from functools import reduce

Primes < 1000
print (list (filter (None,map (lambda y:y*reduce (lambda x,y:x*y!=0,
map (lambda x,y=y:y%x,range (2, int (pow(y,0.5)+1))), 1), range(2,1000)))))

First 10 Fibonaccl numbers
print (list (map (lambda x, f=lambda x,f: (f(x-1,f)+f(x-2,f)) if x>1 else 1:
f(x,f), range(10))))

Mandelbrot set

print ((lambda Ru,Ro, Iu,Io, IM, Sx,Sy:reduce (lambda x,y:x+y,map (lambda vy,
Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda yc, Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,i=IM,
Sx=Sx, Sy=Sy:reduce (lambda x,y:x+y,map (lambda x,xc=Ru, yc=yc,Ru=Ru, Ro=Ro,
i=i, Sx=Sx,F=lambda xc,yc,x,vy,k, f=lambda xc,yc,x,v,k,f: (k<=0)or (x*x+y*y
>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f):f(xc,yc,x,y,k,f):chr(
64+F (Ru+x* (Ro-Ru) /Sx,yc,0,0,1)),range (Sx))) :L(Iuty* (Io-TIu)/Sy), range (Sy

y)) (=2.1, 0.7, -1.2, 1.2, 30, 80, 24))

)

\ /N /] / |__ lines on screen

174 \% / / columns on screen

/ / / maximum of "iterations"

(continues on next page)

2.2. Core Language 17

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

H

range on y axis
/ range on x axis

Don't try this at home, kids!

2.2.18 What does the slash(/) in the parameter list of a function mean?

A slash in the argument list of a function denotes that the parameters prior to it are positional-only. Positional-
only parameters are the ones without an externally-usable name. Upon calling a function that accepts positional-
only parameters, arguments are mapped to parameters based solely on their position. For example, divmod () isa
function that accepts positional-only parameters. Its documentation looks like this:

>>> help (divmod)
Help on built-in function divmod in module builtins:

divmod(x, vy, /)
Return the tuple (x//y, x%y). Invariant: div*y + mod == x.

The slash at the end of the parameter list means that both parameters are positional-only. Thus, calling divmod ()
with keyword arguments would lead to an error:

>>> divmod (x=3, y=4)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: divmod() takes no keyword arguments

2.3 Numbers and strings

2.3.1 How do | specify hexadecimal and octal integers?

To specify an octal digit, precede the octal value with a zero, and then a lower or uppercase “0”. For example, to set
the variable “a” to the octal value “10” (8 in decimal), type:

>>> a = 0010
>>> a
8

Hexadecimal is just as easy. Simply precede the hexadecimal number with a zero, and then a lower or uppercase “x”.
Hexadecimal digits can be specified in lower or uppercase. For example, in the Python interpreter:

>>> a = 0xab
>>> a
165
>>> Db
>>> Db
178

0XB2

18 Boliim 2. Programming FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

2.3.2 Why does -22 // 10 return -3?

It’s primarily driven by the desire that 1 % 3 have the same sign as j. If you want that, and also want:

i==(// 3 *3+ (1 %3

then integer division has to return the floor. C also requires that identity to hold, and then compilers that truncate i
// Jjneedtomake 1 % J have the same sign as i.

There are few real use cases for 1 % j when j is negative. When j is positive, there are many, and in virtually all
of them it’'s more useful for i % jtobe > = O0.If the clock says 10 now, what did it say 200 hours ago? -190 %
12 == 2isuseful; -190 % 12 == -10 is a bug waiting to bite.

2.3.3 How do | get int literal attribute instead of SyntaxError?

Trying to lookup an int literal attribute in the normal manner gives a syntax error because the period is seen as a
decimal point:

>>> 1. class
File "<stdin>", line 1
1.__class_

A

SyntaxError: invalid decimal literal

The solution is to separate the literal from the period with either a space or parentheses.

>>> 1 ._ class_
<class 'int'>
>>> (1).__class_

<class 'int'>

2.3.4 How do | convert a string to a number?

For integers, use the built-in int () type constructor, e.g. int ('144"') == 144.Similarly, float () converts
to floating-point, e.g. float ('144"') == 144.0.

By default, these interpret the number as decimal, so that int ('0144') == 144 holds true, and
int ('0x144") raises ValueError. int (string, base) takes the base to convert from as a second opti-
onal argument, so int ('0x144', 16) == 324.If the base is specified as 0, the number is interpreted using
Python’s rules: a leading ‘00’ indicates octal, and ‘Ox’ indicates a hex number.

Do not use the built-in function eval () if all you need is to convert strings to numbers. eval () will be significantly
slower and it presents a security risk: someone could pass you a Python expression that might have unwanted side
effects. For example, someone could pass __import__ ('os') .system("rm —-rf $HOME") which would
erase your home directory.

eval () also has the effect of interpreting numbers as Python expressions, so thate.g. eval (' 09"') gives a syntax
error because Python does not allow leading ‘0’ in a decimal number (except ‘0’).

2.3. Numbers and strings 19

Python Frequently Asked Questions, Siiriim 3.9.20

2.3.5 How do | convert a number to a string?

To convert, e.g., the number 144 to the string ‘144°, use the built-in type constructor str () . If you want a hexadeci-
mal or octal representation, use the built-in functions hex () or oct () . For fancy formatting, see the f-strings and
formatstrings sections, e.g. "{ : 04d}" . format (144) yields '0144 " and "{:.3f}".format (1.0/3.0)
yields '0.333".

2.3.6 How do | modify a string in place?

You can’t, because strings are immutable. In most situations, you should simply construct a new string from the various
parts you want to assemble it from. However, if you need an object with the ability to modify in-place unicode data,
try using an io.StringIO object or the array module:

>>> import io

>>> s = "Hello, world"
>>> sio = i0.StringIO(s)
>>> sio.getvalue ()
'Hello, world'

>>> sio.seek (7)

7

>>> sio.write ("there!")
6

>>> sio.getvalue ()
'Hello, there!'!

>>> import array

>>> a = array.array('u', s)
>>> print (a)

array('u', 'Hello, world'")
>>> a[0] = 'y’

>>> print (a)

array('u', 'yello, world'")
>>> a.tounicode ()

'vello, world'

2.3.7 How do | use strings to call functions/methods?

There are various techniques.

« The best is to use a dictionary that maps strings to functions. The primary advantage of this technique is that
the strings do not need to match the names of the functions. This is also the primary technique used to emulate
a case construct:

def a():
pass

def b():
pass

dispatch = {'go': a, 'stop': b} # Note lack of parens for funcs

dispatch([get_input ()] () # Note trailing parens to call function

¢ Use the built-in function getattr ():

import foo
getattr (foo, 'bar') ()

Note that getattr () works on any object, including classes, class instances, modules, and so on.

20 Boliim 2. Programming FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

This is used in several places in the standard library, like this:

class Foo:
def do_foo(self):

def do_bar (self):

f = getattr(foo_instance, 'do_ ' + opname)
£0

Use 1locals () to resolve the function name:

def myFunc () :
print ("hello™)

fname = "myFunc"
f = locals () [fname]
£0

2.3.8 Is there an equivalent to Perl’s chomp() for removing trailing newlines from
strings?

Youcanuse S.rstrip ("\r\n") toremove all occurrences of any line terminator from the end of the string S
without removing other trailing whitespace. If the string S represents more than one line, with several empty lines at
the end, the line terminators for all the blank lines will be removed:

>>> lines = ("line 1 \r\n"
"\r\n"

- "\r\n")

>>> lines.rstrip ("\n\z")

'line 1 "'

Since this is typically only desired when reading text one line at a time, using S.rstrip () this way works well.

2.3.9 Is there a scanf() or sscanf() equivalent?

Not as such.

For simple input parsing, the easiest approach is usually to split the line into whitespace-delimited words using the
split () method of string objects and then convert decimal strings to numeric values using int () or float ().
split () supports an optional “sep” parameter which is useful if the line uses something other than whitespace as
a separator.

For more complicated input parsing, regular expressions are more powerful than C’s sscanf () and better suited
for the task.

2.3. Numbers and strings 21

Python Frequently Asked Questions, Siiriim 3.9.20

2.3.10 What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean?

See the unicode-howto.

2.4

Performance

2.4.1 My program is too slow. How do | speed it up?

That’s a tough one, in general. First, here are a list of things to remember before diving further:

Performance characteristics vary across Python implementations. This FAQ focuses on CPython.
Behaviour can vary across operating systems, especially when talking about I/O or multi-threading.

You should always find the hot spots in your program before attempting to optimize any code (see theprofile
module).

Writing benchmark scripts will allow you to iterate quickly when searching for improvements (see the t imeit
module).

It is highly recommended to have good code coverage (through unit testing or any other technique) before
potentially introducing regressions hidden in sophisticated optimizations.

That being said, there are many tricks to speed up Python code. Here are some general principles which go a long
way towards reaching acceptable performance levels:

Making your algorithms faster (or changing to faster ones) can yield much larger benefits than trying to sprinkle
micro-optimization tricks all over your code.

Use the right data structures. Study documentation for the bltin-types and the collections module.

When the standard library provides a primitive for doing something, it is likely (although not guaranteed) to
be faster than any alternative you may come up with. This is doubly true for primitives written in C, such as
builtins and some extension types. For example, be sure to use either the 1ist.sort () built-in method or
the related sorted () function to do sorting (and see the sortinghowto for examples of moderately advanced
usage).

Abstractions tend to create indirections and force the interpreter to work more. If the levels of indirection
outweigh the amount of useful work done, your program will be slower. You should avoid excessive abstraction,
especially under the form of tiny functions or methods (which are also often detrimental to readability).

If you have reached the limit of what pure Python can allow, there are tools to take you further away. For example,
Cython can compile a slightly modified version of Python code into a C extension, and can be used on many different
platforms. Cython can take advantage of compilation (and optional type annotations) to make your code significantly
faster than when interpreted. If you are confident in your C programming skills, you can also write a C extension
module yourself.

Ayrica bkz.:

The wiki page devoted to performance tips.

22

Boliim 2. Programming FAQ

http://cython.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Python Frequently Asked Questions, Siiriim 3.9.20

2.4.2 What is the most efficient way to concatenate many strings together?
str and bytes objects are immutable, therefore concatenating many strings together is inefficient as each conca-
tenation creates a new object. In the general case, the total runtime cost is quadratic in the total string length.

To accumulate many st r objects, the recommended idiom is to place them into a list and call str. join () at the
end:

chunks = []

for s in my_strings:
chunks.append(s)

result = ''.join(chunks)

(another reasonably efficient idiom is to use io.StringIO)

To accumulate many bytes objects, the recommended idiom is to extend a bytearray object using in-place
concatenation (the + = operator):

result = bytearray()
for b in my_bytes_objects:
result += b

2.5 Sequences (Tuples/Lists)

2.5.1 How do | convert between tuples and lists?

The type constructor tuple (seq) converts any sequence (actually, any iterable) into a tuple with the same items
in the same order.

For example, tuple ([1, 2, 3]) yields (1, 2, 3) and tuple('abc') yields ('a', 'b', 'c").If
the argument is a tuple, it does not make a copy but returns the same object, so it is cheap to call tuple () when
you aren’t sure that an object is already a tuple.

The type constructor 1ist (seq) converts any sequence or iterable into a list with the same items in the same order.
For example, 1ist ((1, 2, 3)) yields [1, 2, 3]andlist('abc') yields ['a', 'b', 'c'].Ifthe
argument is a list, it makes a copy just like seq [:] would.

2.5.2 What’s a negative index?

Python sequences are indexed with positive numbers and negative numbers. For positive numbers 0 is the first index
1 is the second index and so forth. For negative indices -1 is the last index and -2 is the penultimate (next to last)
index and so forth. Think of seq[-n] as the same as seqg[len (seq) —-n].

Using negative indices can be very convenient. For example S [: -1 is all of the string except for its last character,
which is useful for removing the trailing newline from a string.

2.5.3 How do | iterate over a sequence in reverse order?

Use the reversed () built-in function:

for x in reversed(sequence) :
do something with x ...

This won’t touch your original sequence, but build a new copy with reversed order to iterate over.

2.5. Sequences (Tuples/Lists) 23

Python Frequently Asked Questions, Siiriim 3.9.20

2.5.4 How do you remove duplicates from a list?

See the Python Cookbook for a long discussion of many ways to do this:
https://code.activestate.com/recipes/52560/

If you don’t mind reordering the list, sort it and then scan from the end of the list, deleting duplicates as you go:

if mylist:
mylist.sort ()
last = mylist[-1]
for i in range(len(mylist)-2, -1, -1):
if last == mylist[i]:
del mylist[i]
else:
last = mylist[i]

If all elements of the list may be used as set keys (i.e. they are all hashable) this is often faster

mylist = list(set (mylist))

This converts the list into a set, thereby removing duplicates, and then back into a list.

2.5.5 How do you remove multiple items from a list

As with removing duplicates, explicitly iterating in reverse with a delete condition is one possibility. However, it is
easier and faster to use slice replacement with an implicit or explicit forward iteration. Here are three variations.:

mylist[:] = filter (keep_function, mylist)
mylist([:] (x for x in mylist if keep_condition)
mylist/[:] [x for x in mylist if keep_condition]

The list comprehension may be fastest.

2.5.6 How do you make an array in Python?

Use a list:

["thj_S", 1’ "]._S", llanu’ "array"]

Lists are equivalent to C or Pascal arrays in their time complexity; the primary difference is that a Python list can
contain objects of many different types.

The array module also provides methods for creating arrays of fixed types with compact representations, but they
are slower to index than lists. Also note that NumPy and other third party packages define array-like structures with
various characteristics as well.

To get Lisp-style linked lists, you can emulate cons cells using tuples:

lisp_list = ("like", ("this", ("example", None)))

If mutability is desired, you could use lists instead of tuples. Here the analogue of lisp caris 1isp_list [0] and
the analogue of cdris 1isp_list [1]. Only do this if you're sure you really need to, because it’s usually a lot
slower than using Python lists.

24 Boliim 2. Programming FAQ

https://code.activestate.com/recipes/52560/

Python Frequently Asked Questions, Siiriim 3.9.20

2.5.7 How do | create a multidimensional list?

You probably tried to make a multidimensional array like this:

>>> A = [[None] * 2] * 3

This looks correct if you print it:

>>> A
[[None, None], [None, None], [None, None]]

But when you assign a value, it shows up in multiple places:

>>> A[0][0] = 5
>>> A
[[5, None], [5, None], [5, None]]

The reason is that replicating a list with * doesn’t create copies, it only creates references to the existing objects. The
* 3 creates a list containing 3 references to the same list of length two. Changes to one row will show in all rows,
which is almost certainly not what you want.

The suggested approach is to create a list of the desired length first and then fill in each element with a newly created
list:

A = [None] * 3
for i in range(3):
A[i] = [None] * 2

This generates a list containing 3 different lists of length two. You can also use a list comprehension:

w, h =2, 3
A = [[None] * w for i in range (h)]

Or, you can use an extension that provides a matrix datatype; NumPYy is the best known.

2.5.8 How do | apply a method to a sequence of objects?

Use a list comprehension:

result = [obj.method() for obj in mylist]

2.5.9 Why does a_tuple[i] + = ['item’] raise an exception when the addition works?
This is because of a combination of the fact that augmented assignment operators are assignment operators, and the
difference between mutable and immutable objects in Python.

This discussion applies in general when augmented assignment operators are applied to elements of a tuple that point
to mutable objects, but we'll use a 1ist and + = as our exemplar.

If you wrote:

>>> a_tuple = (1, 2)
>>> a_tuple[0] += 1
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The reason for the exception should be immediately clear: 1 is added to the object a_tuple[0] points to (1),
producing the result object, 2, but when we attempt to assign the result of the computation, 2, to element O of the
tuple, we get an error because we can’t change what an element of a tuple points to.

2.5. Sequences (Tuples/Lists) 25

http://www.numpy.org/

Python Frequently Asked Questions, Siiriim 3.9.20

Under the covers, what this augmented assignment statement is doing is approximately this:

>>> result = a_tuple[0] + 1
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

It is the assignment part of the operation that produces the error, since a tuple is immutable.

When you write something like:

>>> a_tuple = (['foo']l, 'bar')
>>> a_tuple[0] += ['item']
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The exception is a bit more surprising, and even more surprising is the fact that even though there was an error, the
append worked:

>>> a_tuple[0]
["foo', 'item']

To see why this happens, you need to know that (a) if an object implements an __iadd___ magic method, it gets
called when the + = augmented assignment is executed, and its return value is what gets used in the assignment
statement; and (b) for lists, __iadd___is equivalent to calling extend on the list and returning the list. That’s why
we say that for lists, + = is a “shorthand” for 1ist .extend:

>>> a_list = []
>>> a_list += [1]
>>> g_list

[1]

This is equivalent to:

>>> result = a_list.__iadd__ ([1])
>>> a_list = result

The object pointed to by a_list has been mutated, and the pointer to the mutated object is assigned back to a_list.
The end result of the assignment is a no-op, since it is a pointer to the same object that a_ 11 st was previously
pointing to, but the assignment still happens.

Thus, in our tuple example what is happening is equivalent to:

>>> result = a_tuple[0].__iadd__ (['item'])
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The __iadd__ succeeds, and thus the list is extended, but even though result points to the same object that
a_tuple[0] already points to, that final assignment still results in an error, because tuples are immutable.

26 Boliim 2. Programming FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

2.5.10 | want to do a complicated sort: can you do a Schwartzian Transform in
Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric which
maps each element to its “sort value”. In Python, use the key argument for the 1ist.sort () method:

Isorted = L[:]
Isorted.sort (key=lambda s: int(s[10:15]))

2.5.11 How can | sort one list by values from another list?

Merge them into an iterator of tuples, sort the resulting list, and then pick out the element you want.

>>> listl = ["what", "I'm", "sorting", "by"]

>>> 1ist2 = ["something", "else", "to", "sort"]

>>> pairs = zip(listl, list2)

>>> pairs = sorted(pairs)

>>> pairs

[("I'm", 'else'), ('by', 'sort'), ('sorting', 'to'), ('what', 'something')]
>>> result = [x[1] for x in pairs]

>>> result
['else', 'sort', 'to', 'something']

2.6 Objects

2.6.1 What is a class?

A class is the particular object type created by executing a class statement. Class objects are used as templates to
create instance objects, which embody both the data (attributes) and code (methods) specific to a datatype.

A class can be based on one or more other classes, called its base class(es). It then inherits the attributes and met-
hods of its base classes. This allows an object model to be successively refined by inheritance. You might have a
generic Ma1ilbox class that provides basic accessor methods for a mailbox, and subclasses such as MboxMailbox,
MaildirMailbox, OutlookMailbox that handle various specific mailbox formats.

2.6.2 What is a method?

A method is a function on some object x that you normally call as x.name (arguments. . .). Methods are
defined as functions inside the class definition:

class C:
def meth(self, arg):
return arg * 2 + self.attribute

2.6. Objects 27

Python Frequently Asked Questions, Siiriim 3.9.20

2.6.3 What is self?

Self is merely a conventional name for the first argument of a method. A method defined asmeth (self, a, b,
c) should be called as x.meth (a, b, c) for some instance x of the class in which the definition occurs; the
called method will think it is called as meth (x, a, b, c).

See also Why must ‘self” be used explicitly in method definitions and calls?.

2.6.4 How do | check if an object is an instance of a given class or of a subclass
of it?

Use the built-in function isinstance (obj, cls). Youcancheck if an object is an instance of any of a number
of classes by providing a tuple instead of a single class, e.g. isinstance (obj, (classl, class2,

)), and can also check whether an object is one of Python’s built-in types, e.g. isinstance (obj, str) or
isinstance (obj, (int, float, complex)).

Note that isinstance () also checks for virtual inheritance from an abstract base class. So, the test will return
True for a registered class even if hasn’t directly or indirectly inherited from it. To test for “true inheritance”, scan
the MRO of the class:

from collections.abc import Mapping

class P:
pass

class C(P):
pass

Mapping.register (P)

>>> ¢ = C()

>>> isinstance(c, C) # direct
True

>>> isinstance(c, P) # indirect
True

>>> isinstance (c, Mapping) # virtual
True

Actual inheritance chain
>>> type(c)._ mro_
(<class 'C'>, <class 'P'>, <class 'object'>)

Test for "true inheritance"
>>> Mapping in type(c). mro
False

Note that most programs do not use i sinstance () on user-defined classes very often. If you are developing the
classes yourself, a more proper object-oriented style is to define methods on the classes that encapsulate a particular
behaviour, instead of checking the object’s class and doing a different thing based on what class it is. For example, if
you have a function that does something:

def search (obj):
if isinstance(obj, Mailbox) :
code to search a mailbox
elif isinstance (obj, Document) :
. # code to search a document
elif

A better approach is to define a search () method on all the classes and just call it:

28 Boliim 2. Programming FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

class Mailbox:
def search(self):
code to search a mailbox

class Document:
def search(self):

code to search a document

obj.search()

2.6.5 What is delegation?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x and want to
change the behaviour of just one of its methods. You can create a new class that provides a new implementation of
the method you’re interested in changing and delegates all other methods to the corresponding method of x.

Python programmers can easily implement delegation. For example, the following class implements a class that
behaves like a file but converts all written data to uppercase:

class UpperOut:

def _ init_ (self, outfile):
self. outfile = outfile

def write(self, s):
self. outfile.write(s.upper())

def _ _getattr_ (self, name):
return getattr(self._outfile, name)

Here the UpperoOut class redefines the write () method to convert the argument string to uppercase before calling
the underlying self. outfile.write () method. All other methods are delegated to the underlying self.
_outfile object. The delegation is accomplished via the __getattr__ method; consult the language reference
for more information about controlling attribute access.

Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved,
the class must define a ___setattr__ () method too, and it must do so carefully. The basic implementation of
__setattr__ () is roughly equivalent to the following:

class X:
def _ setattr_ (self, name, value):
self. dict [name] = wvalue
Most __setattr__ () implementations must modify self.__dict__ to store local state for self without ca-

using an infinite recursion.

2.6.6 How do | call a method defined in a base class from a derived class that
overrides it?

Use the built-in super () function:

class Derived (Base) :
def meth (self):
super (Derived, self) .meth()

2.6. Objects 29

Python Frequently Asked Questions, Siiriim 3.9.20

For version prior to 3.0, you may be using classic classes: For a class definition suchas class Derived (Base) :
... you can call method meth () defined in Base (or one of Base’s base classes) as Base.meth (self,
arguments. . .). Here, Base.meth is an unbound method, so you need to provide the se1f argument.

2.6.7 How can | organize my code to make it easier to change the base class?

You could assign the base class to an alias and derive from the alias. Then all you have to change is the value assigned
to the alias. Incidentally, this trick is also handy if you want to decide dynamically (e.g. depending on availability of
resources) which base class to use. Example:

class Base:

BaseAlias = Base

class Derived (BaseAlias) :

2.6.8 How do | create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported in Python.

For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly use the
class name in the assignment:

class C:
count = 0 # number of times C.__init___ called

def @ init_ (self):
C.count = C.count + 1

def getcount (self):
return C.count # or return self.count

c.count also refers to C. count for any ¢ such that isinstance (c, C) holds, unless overridden by c itself
or by some class on the base-class search path from c.___class__ back to C.

Caution: within a method of C, an assignment like self.count = 42 creates a new and unrelated instance
named “count” in self’s own dict. Rebinding of a class-static data name must always specify the class whether
inside a method or not:

C.count = 314

Static methods are possible:

class C:
@staticmethod
def static(argl, arg2, arg3):
No 'self' parameter!

However, a far more straightforward way to get the effect of a static method is via a simple module-level function:

def getcount () :
return C.count

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies the
desired encapsulation.

30 Boliim 2. Programming FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

2.6.9 How can | overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up first in the context of constructors.

In C++ you’'d write

class C {
C() { cout << "No arguments\n"; }
C(int i) { cout << "Argument is " << i << "\n"; }

}

In Python you have to write a single constructor that catches all cases using default arguments. For example:

class C:
def _ init_ (self, i=None):
if i is None:
print ("No arguments")
else:
print ("Argument is", 1)

This is not entirely equivalent, but close enough in practice.

You could also try a variable-length argument list, e.g.

def _ _init__ (self, *args):

The same approach works for all method definitions.

2.6.10 | try to use __spam and | get an error about _SomeClassName__spam.

Variable names with double leading underscores are “mangled” to provide a simple but effective way to define class
private variables. Any identifier of the form _ spam (at least two leading underscores, at most one trailing un-
derscore) is textually replaced with _classname__spam, where classname is the current class name with any
leading underscores stripped.

This doesn’t guarantee privacy: an outside user can still deliberately access the “_classname__spam” attribute, and
private values are visible in the object’s ___dict__ . Many Python programmers never bother to use private variable
names at all.

2.6.11 My class defines __del__ but it is not called when | delete the object.

There are several possible reasons for this.

The del statement does not necessarily call __del__ () - it simply decrements the object’s reference count, and if
this reaches zero __del__ () is called.

If your data structures contain circular links (e.g. a tree where each child has a parent reference and each parent has
a list of children) the reference counts will never go back to zero. Once in a while Python runs an algorithm to detect
such cycles, but the garbage collector might run some time after the last reference to your data structure vanishes, so
your __del__ () method may be called at an inconvenient and random time. This is inconvenient if you're trying
to reproduce a problem. Worse, the order in which object’s ___del__ () methods are executed is arbitrary. You can
rungc.collect () to force a collection, but there are pathological cases where objects will never be collected.

Despite the cycle collector, it’s still a good idea to define an explicit close () method on objects to be called
whenever you're done with them. The close () method can then remove attributes that refer to subobjects. Don’t
call _ _del_ () directly - __del__ () should call close () and close () should make sure that it can be
called more than once for the same object.

2.6. Objects 31

Python Frequently Asked Questions, Siiriim 3.9.20

Another way to avoid cyclical references is to use the weak re £ module, which allows you to point to objects without
incrementing their reference count. Tree data structures, for instance, should use weak references for their parent and
sibling references (if they need them!).

Finally, if your __del__ () method raises an exception, a warning message is printed to sys.stderr.

2.6.12 How do | get a list of all instances of a given class?

Python does not keep track of all instances of a class (or of a built-in type). You can program the class’s constructor
to keep track of all instances by keeping a list of weak references to each instance.

2.6.13 Why does the result of id () appear to be not unique?

The id () builtin returns an integer that is guaranteed to be unique during the lifetime of the object. Since in CPython,
this is the object’s memory address, it happens frequently that after an object is deleted from memory, the next freshly
created object is allocated at the same position in memory. This is illustrated by this example:

>>> 1d(1000)
13901272
>>> 1d(2000)
13901272

The two ids belong to different integer objects that are created before, and deleted immediately after execution of
the 1d () call. To be sure that objects whose id you want to examine are still alive, create another reference to the
object:

>>> a = 1000; b = 2000
>>> id(a)
13901272
>>> id(b)
13891296

2.6.14 When can | rely on identity tests with the is operator?

The is operator tests for object identity. The testa is b isequivalentto id (a) == id(b).

The most important property of an identity test is that an object is always identical to itself, a is a always returns
True. Identity tests are usually faster than equality tests. And unlike equality tests, identity tests are guaranteed to
return a boolean True or False.

However, identity tests can only be substituted for equality tests when object identity is assured. Generally, there are
three circumstances where identity is guaranteed:

1) Assignments create new names but do not change object identity. After the assignment new = old, it is gu-
aranteed that new is old.

2) Putting an object in a container that stores object references does not change object identity. After the list assign-
ment s [0] = x,itis guaranteed that s[0] is x.

3) If an object is a singleton, it means that only one instance of that object can exist. After the assignments a =
None and b = None, it is guaranteed that a is b because None is a singleton.

In most other circumstances, identity tests are inadvisable and equality tests are preferred. In particular, identity tests
should not be used to check constants such as int and st r which aren’t guaranteed to be singletons:

>>> a = 1000
>>> b = 500
>>> ¢ = b + 500
>>> a is c

(continues on next page)

32 Boliim 2. Programming FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

False

>>> a = 'Python'
>>> b = 'Py'

>>> ¢ = b + 'thon'
>>> a is c

False

Likewise, new instances of mutable containers are never identical:

>>> a = []
>>> b = []
>>> a is b
False

In the standard library code, you will see several common patterns for correctly using identity tests:

1) As recommended by PEP 8, an identity test is the preferred way to check for None. This reads like plain English
in code and avoids confusion with other objects that may have boolean values that evaluate to false.

2) Detecting optional arguments can be tricky when None is a valid input value. In those situations, you can create
a singleton sentinel object guaranteed to be distinct from other objects. For example, here is how to implement a
method that behaves like dict .pop ():

_sentinel = object ()

def pop(self, key, default=_sentinel):
if key in self:
value = self[key]
del self[key]
return value
if default is _sentinel:
raise KeyError (key)
return default

3) Container implementations sometimes need to augment equality tests with identity tests. This prevents the code
from being confused by objects such as f1loat ('NaN') that are not equal to themselves.

For example, here is the implementation of collections.abc.Sequence.___contains__ ():

def _ contains__ (self, wvalue):
for v in self:
if v is value or v == value:
return True
return False

2.6.15 How can a subclass control what data is stored in an immutable instance?

When subclassing an immutable type, override the __new__ () method instead of the __init__ () method. The
latter only runs after an instance is created, which is too late to alter data in an immutable instance.

All of these immutable classes have a different signature than their parent class:

from datetime import date

class FirstOfMonthDate (date) :
"Always choose the first day of the month"
def _ new_ (cls, year, month, day):
return super()._ new__ (cls, year, month, 1)

(continues on next page)

2.6. Objects 33

https://www.python.org/dev/peps/pep-0008

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

class NamedInt (int) :
"Allow text names for some numbers"

xlat = {'zero': 0, 'one': 1, 'ten': 10}
def _ new_ (cls, wvalue):
value = cls.xlat.get (value, value)
return super()._ _new__ (cls, value)

class TitleStr(str):
"Convert str to name suitable for a URL path"

def _ new__ (cls, s):
s = s.lower() .replace(' ', '-")
s = '"'".Join([c for c in s if c.isalnum() or c == "'-"])
return super()._ _new__ (cls, s)

The classes can be used like this:

>>> FirstOfMonthDate (2012, 2, 14)
FirstOfMonthDate (2012, 2, 1)

>>> NamedInt ('ten')

10

>>> NamedInt (20)

20

>>> TitleStr('Blog: Why Python Rocks')
'blog-why-python-rocks'

2.7 Modules

2.7.1 How do | create a .pyc file?

When a module is imported for the first time (or when the source file has changed since the current compiled file
was created) a . pyc file containing the compiled code should be created ina ___pycache___ subdirectory of the
directory containing the . py file. The . pyc file will have a filename that starts with the same name as the . py file,
and ends with . pyc, with a middle component that depends on the particular python binary that created it. (See
PEP 3147 for details.)

One reason that a . pyc file may not be created is a permissions problem with the directory containing the source
file, meaning that the __pycache___ subdirectory cannot be created. This can happen, for example, if you develop
as one user but run as another, such as if you are testing with a web server.

Unless the PYTHONDONTWRITEBYTECODE environment variable is set, creation of a .pyc file is automatic if
you're importing a module and Python has the ability (permissions, free space, etc...) to create a __pycache___
subdirectory and write the compiled module to that subdirectory.

Running Python on a top level script is not considered an import and no . pyc will be created. For example, if you
have a top-level module foo . py that imports another module xyz . py, when you run foo (by typing python
foo.py as a shell command), a . pyc will be created for xyz because xyz is imported, but no . pyc file will be
created for foo since foo . py isn’t being imported.

If you need to create a . pyc file for foo - that is, to create a . pyc file for a module that is not imported — you
can, using the py_compile and compileall modules.

The py_compile module can manually compile any module. One way is to use the compile () function in that
module interactively:

>>> import py_compile
>>> py_compile.compile('foo.py")

This will write the .pyc toa __pycache___ subdirectory in the same location as foo . py (or you can override
that with the optional parameter cfile).

34 Boliim 2. Programming FAQ

https://www.python.org/dev/peps/pep-3147

Python Frequently Asked Questions, Siiriim 3.9.20

You can also automatically compile all files in a directory or directories using the compileall module. You can
do it from the shell prompt by running compileall . py and providing the path of a directory containing Python
files to compile:

python -m compileall .

2.7.2 How do | find the current module name?

A module can find out its own module name by looking at the predefined global variable __name__ . If this has the
value ' __main__ ', the program is running as a script. Many modules that are usually used by importing them also
provide a command-line interface or a self-test, and only execute this code after checking _name__ :

def main() :
print ("Running test...")

if name == '__main__ ':

main ()

2.7.3 How can | have modules that mutually import each other?

Suppose you have the following modules:

foo.py:

from bar import bar_var
foo_var = 1

bar.py:

from foo import foo_var
bar_var = 2

The problem is that the interpreter will perform the following steps:
» main imports foo
« Empty globals for foo are created
« foo is compiled and starts executing
« foo imports bar
» Empty globals for bar are created
« bar is compiled and starts executing
« bar imports foo (which is a no-op since there already is a module named foo)
« bar.foo_var = foo.foo_var

The last step fails, because Python isn't done with interpreting foo yet and the global symbol dictionary for foo is
still empty.

The same thing happens when you use import foo, and then try to access foo. foo_var in global code.
There are (at least) three possible workarounds for this problem.

Guido van Rossum recommends avoiding all uses of from <module> import .. .,and placingall code inside
functions. Initializations of global variables and class variables should use constants or built-in functions only. This
means everything from an imported module is referenced as <module> . <name>.

Jim Roskind suggests performing steps in the following order in each module:

2.7. Modules 35

Python Frequently Asked Questions, Siiriim 3.9.20

« exports (globals, functions, and classes that don’t need imported base classes)

e import statements

« active code (including globals that are initialized from imported values).
Van Rossum doesn’t like this approach much because the imports appear in a strange place, but it does work.
Matthias Urlichs recommends restructuring your code so that the recursive import is not necessary in the first place.

These solutions are not mutually exclusive.

2.7.4 __import__(‘x.y.Z’) returns <module ‘x’>; how do | get z?

Consider using the convenience function import_module () from importlib instead:

z = importlib.import_module('x.y.z')

2.7.5 When | edit an imported module and reimport it, the changes don’t show
up. Why does this happen?

For reasons of efficiency as well as consistency, Python only reads the module file on the first time a module is
imported. If it didn’t, in a program consisting of many modules where each one imports the same basic module, the
basic module would be parsed and re-parsed many times. To force re-reading of a changed module, do this:

import importlib
import modname
importlib.reload (modname)

Warning: this technique is not 100% fool-proof. In particular, modules containing statements like

from modname import some_objects

will continue to work with the old version of the imported objects. If the module contains class definitions, exis-
ting class instances will not be updated to use the new class definition. This can result in the following paradoxical
behaviour:

>>> import importlib

>>> import cls

>>> ¢ = cls.C() # Create an instance of C
>>> importlib.reload(cls)

<module 'cls' from 'cls.py'>

>>> isinstance(c, cls.C) # isinstance 1is false?!?
False

The nature of the problem is made clear if you print out the “identity” of the class objects:

>>> hex (id(c. class 1))
'0x7352a0"

>>> hex (id(cls.C))
'0x4198d0"

36 Boliim 2. Programming FAQ

BOLOM 3

Design and History FAQ

3.1 Why does Python use indentation for grouping of statements?

Guido van Rossum believes that using indentation for grouping is extremely elegant and contributes a lot to the clarity
of the average Python program. Most people learn to love this feature after a while.

Since there are no begin/end brackets there cannot be a disagreement between grouping perceived by the parser and
the human reader. Occasionally C programmers will encounter a fragment of code like this:

if (x <= vy)
X++5;
y——i
z++;

Only the x++ statement is executed if the condition is true, but the indentation leads many to believe otherwise. Even
experienced C programmers will sometimes stare at it a long time wondering as to why vy is being decremented even
forx > y.

Because there are no begin/end brackets, Python is much less prone to coding-style conflicts. In C there are many
different ways to place the braces. After becoming used to reading and writing code using a particular style, it is
normal to feel somewhat uneasy when reading (or being required to write) in a different one.

Many coding styles place begin/end brackets on a line by themselves. This makes programs considerably longer and
wastes valuable screen space, making it harder to get a good overview of a program. Ideally, a function should fit on
one screen (say, 20-30 lines). 20 lines of Python can do a lot more work than 20 lines of C. This is not solely due to
the lack of begin/end brackets — the lack of declarations and the high-level data types are also responsible — but the
indentation-based syntax certainly helps.

37

Python Frequently Asked Questions, Siiriim 3.9.20

3.2 Why am | getting strange results with simple arithmetic opera-
tions?

See the next question.

3.3 Why are floating-point calculations so inaccurate?

Users are often surprised by results like this:

>> 1.2 - 1.0
0.1999999999999999¢6

and think it is a bug in Python. It’s not. This has little to do with Python, and much more to do with how the underlying
platform handles floating-point numbers.

The £loat type in CPython uses a C double for storage. A f1oat object’s value is stored in binary floating-point
with a fixed precision (typically 53 bits) and Python uses C operations, which in turn rely on the hardware imple-
mentation in the processor, to perform floating-point operations. This means that as far as floating-point operations
are concerned, Python behaves like many popular languages including C and Java.

Many numbers that can be written easily in decimal notation cannot be expressed exactly in binary floating-point.
For example, after:

>>> x = 1.2

the value stored for x is a (very good) approximation to the decimal value 1 .2, but is not exactly equal to it. On a
typical machine, the actual stored value is:

’ 1.0011001100110011001100110011001100110011001100110011 (binary)

which is exactly:

’ 1.1999999999999999555910790149937383830547332763671875 (decimal)

The typical precision of 53 bits provides Python floats with 15-16 decimal digits of accuracy.

For a fuller explanation, please see the floating point arithmetic chapter in the Python tutorial.

3.4 Why are Python strings immutable?

There are several advantages.

One is performance: knowing that a string is immutable means we can allocate space for it at creation time, and the
storage requirements are fixed and unchanging. This is also one of the reasons for the distinction between tuples and
lists.

Another advantage is that strings in Python are considered as “elemental” as numbers. No amount of activity will
change the value 8 to anything else, and in Python, no amount of activity will change the string “eight” to anything
else.

38 Boliim 3. Design and History FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

3.5 Why must ‘self’ be used explicitly in method definitions and
calls?

The idea was borrowed from Modula-3. It turns out to be very useful, for a variety of reasons.

First, it’s more obvious that you are using a method or instance attribute instead of a local variable. Reading se1f.x
or self.meth () makes it absolutely clear that an instance variable or method is used even if you don’t know the
class definition by heart. In C++, you can sort of tell by the lack of a local variable declaration (assuming globals
are rare or easily recognizable) — but in Python, there are no local variable declarations, so you'd have to look up the
class definition to be sure. Some C++ and Java coding standards call for instance attributes to have an m__ prefix, so
this explicitness is still useful in those languages, too.

Second, it means that no special syntax is necessary if you want to explicitly reference or call the method from
a particular class. In C++, if you want to use a method from a base class which is overridden in a derived class,
you have to use the : : operator - in Python you can write baseclass.methodname (self, <argument
1list>).Thisis particularly useful for__init__ () methods, and in general in cases where a derived class method
wants to extend the base class method of the same name and thus has to call the base class method somehow.

Finally, for instance variables it solves a syntactic problem with assignment: since local variables in Python are (by
definition!) those variables to which a value is assigned in a function body (and that aren’t explicitly declared global),
there has to be some way to tell the interpreter that an assignment was meant to assign to an instance variable instead
of to alocal variable, and it should preferably be syntactic (for efficiency reasons). C++ does this through declarations,
but Python doesn’t have declarations and it would be a pity having to introduce them just for this purpose. Using the
explicit self . var solves this nicely. Similarly, for using instance variables, having to write self . var means that
references to unqualified names inside a method don’t have to search the instance’s directories. To put it another way,
local variables and instance variables live in two different namespaces, and you need to tell Python which namespace
to use.

3.6 Why can’t | use an assignment in an expression?

Starting in Python 3.8, you can!

Assignment expressions using the walrus operator := assign a variable in an expression:

while chunk := fp.read(200):
print (chunk)

See PEP 572 for more information.

3.7 Why does Python use methods for some functionality (e.g.
list.index()) but functions for other (e.g. len(list))?

As Guido said:

(a) For some operations, prefix notation just reads better than postfix — prefix (and infix!) operations
have a long tradition in mathematics which likes notations where the visuals help the mathematician
thinking about a problem. Compare the easy with which we rewrite a formula like x*(a+b) into x*a +
x*b to the clumsiness of doing the same thing using a raw OO notation.

(b) When I read code that says len(x) I know that it is asking for the length of something. This tells
me two things: the result is an integer, and the argument is some kind of container. To the contrary,
when I read x.len(), I have to already know that x is some kind of container implementing an interface
or inheriting from a class that has a standard len(). Witness the confusion we occasionally have when a
class that is not implementing a mapping has a get() or keys() method, or something that isn’t a file has
a write() method.

—https://mail.python.org/pipermail/python-3000/2006-November/004643.html

3.5. Why must ‘self’ be used explicitly in method definitions and calls? 39

https://www.python.org/dev/peps/pep-0572
https://mail.python.org/pipermail/python-3000/2006-November/004643.html

Python Frequently Asked Questions, Siiriim 3.9.20

3.8 Why is join() a string method instead of a list or tuple method?

Strings became much more like other standard types starting in Python 1.6, when methods were added which give
the same functionality that has always been available using the functions of the string module. Most of these new
methods have been widely accepted, but the one which appears to make some programmers feel uncomfortable is:

H, ".join(['l', |2v, 141, '8', '16'])

which gives the result:

"1, 2, 4, 8, 16"

There are two common arguments against this usage.

The first runs along the lines of: “It looks really ugly using a method of a string literal (string constant)”, to which the
answer is that it might, but a string literal is just a fixed value. If the methods are to be allowed on names bound to
strings there is no logical reason to make them unavailable on literals.

The second objection is typically cast as: “I am really telling a sequence to join its members together with a string
constant”. Sadly, you aren’t. For some reason there seems to be much less difficulty with having split () asastring
method, since in that case it is easy to see that

"1, 2, 4, 8, 16".split (", ")

is an instruction to a string literal to return the substrings delimited by the given separator (or, by default, arbitrary
runs of white space).

join () is astring method because in using it you are telling the separator string to iterate over a sequence of strings
and insert itself between adjacent elements. This method can be used with any argument which obeys the rules for
sequence objects, including any new classes you might define yourself. Similar methods exist for bytes and bytearray
objects.

3.9 How fast are exceptions?

A try/except block is extremely efficient if no exceptions are raised. Actually catching an exception is expensive. In
versions of Python prior to 2.0 it was common to use this idiom:

try:
value = mydict [key]

except KeyError:
mydict [key] = getvalue (key)
value = mydict [key]

This only made sense when you expected the dict to have the key almost all the time. If that wasn’t the case, you
coded it like this:

if key in mydict:
value = mydict [key]
else:
value = mydict[key] = getvalue (key)

For this specific case, you could also use value = dict.setdefault (key, getvalue (key)),butonly
if the getvalue () call is cheap enough because it is evaluated in all cases.

40 Boliim 3. Design and History FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

3.10 Why isn’t there a switch or case statement in Python?

You can do this easily enough with a sequence of if... elif... elif... else. There have been some
proposals for switch statement syntax, but there is no consensus (yet) on whether and how to do range tests. See PEP
275 for complete details and the current status.

For cases where you need to choose from a very large number of possibilities, you can create a dictionary mapping
case values to functions to call. For example:

functions = {'a': function_1,
'b': function_2,
'c': self.method_ 1}

func = functions[value]
func ()

For calling methods on objects, you can simplify yet further by using the getattr () built-in to retrieve methods
with a particular name:

class MyVisitor:
def visit_a(self):

def dispatch(self, wvalue):

method_name = 'visit_ ' + str(value)
method = getattr(self, method_name)
method ()

It’s suggested that you use a prefix for the method names, such as visit_ in this example. Without such a prefix,
if values are coming from an untrusted source, an attacker would be able to call any method on your object.

3.11 Can’t you emulate threads in the interpreter instead of relying
on an OS-specific thread implementation?

Answer 1: Unfortunately, the interpreter pushes at least one C stack frame for each Python stack frame. Also, exten-
sions can call back into Python at almost random moments. Therefore, a complete threads implementation requires
thread support for C.

Answer 2: Fortunately, there is Stackless Python, which has a completely redesigned interpreter loop that avoids the
C stack.

3.12 Why can’t lambda expressions contain statements?

Python lambda expressions cannot contain statements because Python’s syntactic framework can’t handle statements
nested inside expressions. However, in Python, this is not a serious problem. Unlike lambda forms in other languages,
where they add functionality, Python lambdas are only a shorthand notation if you're too lazy to define a function.

Functions are already first class objects in Python, and can be declared in a local scope. Therefore the only advantage
of using a lambda instead of a locally-defined function is that you don’t need to invent a name for the function —
but that’s just a local variable to which the function object (which is exactly the same type of object that a lambda
expression yields) is assigned!

3.10. Why isn’t there a switch or case statement in Python? 41

https://www.python.org/dev/peps/pep-0275
https://www.python.org/dev/peps/pep-0275
https://github.com/stackless-dev/stackless/wiki

Python Frequently Asked Questions, Siiriim 3.9.20

3.13 Can Python be compiled to machine code, C or some other
language?

Cython compiles a modified version of Python with optional annotations into C extensions. Nuitka is an up-and-
coming compiler of Python into C++ code, aiming to support the full Python language. For compiling to Java you
can consider VOC.

3.14 How does Python manage memory?

The details of Python memory management depend on the implementation. The standard implementation of Python,
CPython, uses reference counting to detect inaccessible objects, and another mechanism to collect reference cycles,
periodically executing a cycle detection algorithm which looks for inaccessible cycles and deletes the objects involved.
The gc module provides functions to perform a garbage collection, obtain debugging statistics, and tune the collector’s
parameters.

Other implementations (such as Jython or PyPy), however, can rely on a different mechanism such as a full-blown
garbage collector. This difference can cause some subtle porting problems if your Python code depends on the be-
havior of the reference counting implementation.

In some Python implementations, the following code (which is fine in CPython) will probably run out of file desc-
riptors:

for file in very_long_list_of files:
f = open(file)
c = f.read (1)

Indeed, using CPython’s reference counting and destructor scheme, each new assignment to f closes the previous file.
With a traditional GC, however, those file objects will only get collected (and closed) at varying and possibly long
intervals.

If you want to write code that will work with any Python implementation, you should explicitly close the file or use
the with statement; this will work regardless of memory management scheme:

for file in very_long_list_of_ files:
with open(file) as f:
c = f.read (1)

3.15 Why doesn’t CPython use a more traditional garbage collecti-
on scheme?

For one thing, this is not a C standard feature and hence it’s not portable. (Yes, we know about the Boehm GC library.
It has bits of assembler code for most common platforms, not for all of them, and although it is mostly transparent,
it isn’t completely transparent; patches are required to get Python to work with it.)

Traditional GC also becomes a problem when Python is embedded into other applications. While in a standalone
Python it’s fine to replace the standard malloc() and free() with versions provided by the GC library, an application
embedding Python may want to have its own substitute for malloc() and free(), and may not want Python’s. Right
now, CPython works with anything that implements malloc() and free() properly.

42 Boliim 3. Design and History FAQ

http://cython.org/
http://www.nuitka.net/
https://voc.readthedocs.io
http://www.jython.org
http://www.pypy.org

Python Frequently Asked Questions, Siiriim 3.9.20

3.16 Why isn’t all memory freed when CPython exits?

Objects referenced from the global namespaces of Python modules are not always deallocated when Python exits.
This may happen if there are circular references. There are also certain bits of memory that are allocated by the C
library that are impossible to free (e.g. a tool like Purify will complain about these). Python is, however, aggressive
about cleaning up memory on exit and does try to destroy every single object.

If you want to force Python to delete certain things on deallocation use the atexit module to run a function that
will force those deletions.

3.17 Why are there separate tuple and list data types?

Lists and tuples, while similar in many respects, are generally used in fundamentally different ways. Tuples can be
thought of as being similar to Pascal records or C structs; they’re small collections of related data which may be of
different types which are operated on as a group. For example, a Cartesian coordinate is appropriately represented as
a tuple of two or three numbers.

Lists, on the other hand, are more like arrays in other languages. They tend to hold a varying number of objects all
of which have the same type and which are operated on one-by-one. For example, os.listdir ('."') returns a
list of strings representing the files in the current directory. Functions which operate on this output would generally
not break if you added another file or two to the directory.

Tuples are immutable, meaning that once a tuple has been created, you can’t replace any of its elements with a new
value. Lists are mutable, meaning that you can always change a list’s elements. Only immutable elements can be used
as dictionary keys, and hence only tuples and not lists can be used as keys.

3.18 How are lists implemented in CPython?

CPython’s lists are really variable-length arrays, not Lisp-style linked lists. The implementation uses a contiguous
array of references to other objects, and keeps a pointer to this array and the array’s length in a list head structure.

This makes indexing a list a [1] an operation whose cost is independent of the size of the list or the value of the
index.

When items are appended or inserted, the array of references is resized. Some cleverness is applied to improve the
performance of appending items repeatedly; when the array must be grown, some extra space is allocated so the next
few times don’t require an actual resize.

3.19 How are dictionaries implemented in CPython?

CPython’s dictionaries are implemented as resizable hash tables. Compared to B-trees, this gives better performance
for lookup (the most common operation by far) under most circumstances, and the implementation is simpler.

Dictionaries work by computing a hash code for each key stored in the dictionary using the hash () built-in function.
The hash code varies widely depending on the key and a per-process seed; for example, “Python” could hash to -
539294296 while “python”, a string that differs by a single bit, could hash to 1142331976. The hash code is then
used to calculate a location in an internal array where the value will be stored. Assuming that you’re storing keys that
all have different hash values, this means that dictionaries take constant time — O(1), in Big-O notation - to retrieve
a key.

3.16. Why isn’t all memory freed when CPython exits? 43

Python Frequently Asked Questions, Siiriim 3.9.20

3.20 Why must dictionary keys be immutable?

The hash table implementation of dictionaries uses a hash value calculated from the key value to find the key. If the
key were a mutable object, its value could change, and thus its hash could also change. But since whoever changes
the key object can’t tell that it was being used as a dictionary key, it can’t move the entry around in the dictionary.
Then, when you try to look up the same object in the dictionary it won’t be found because its hash value is different.
If you tried to look up the old value it wouldn’t be found either, because the value of the object found in that hash bin
would be different.

If you want a dictionary indexed with a list, simply convert the list to a tuple first; the function tuple (L) creates
a tuple with the same entries as the list L. Tuples are immutable and can therefore be used as dictionary keys.

Some unacceptable solutions that have been proposed:

« Hash lists by their address (object ID). This doesn’t work because if you construct a new list with the same
value it won’t be found; e.g.:

mydict = {[1, 2]: "12"}
print (mydict[[1, 211)

would raise a KeyError exception because the id of the [1, 2] used in the second line differs from that
in the first line. In other words, dictionary keys should be compared using ==, not using is.

« Make a copy when using a list as a key. This doesn’t work because the list, being a mutable object, could contain
a reference to itself, and then the copying code would run into an infinite loop.

« Allow lists as keys but tell the user not to modify them. This would allow a class of hard-to-track bugs in prog-
rams when you forgot or modified a list by accident. It also invalidates an important invariant of dictionaries:
every value in d. keys () is usable as a key of the dictionary.

o Mark lists as read-only once they are used as a dictionary key. The problem is that it’s not just the top-level
object that could change its value; you could use a tuple containing a list as a key. Entering anything as a key into
a dictionary would require marking all objects reachable from there as read-only — and again, self-referential
objects could cause an infinite loop.

There is a trick to get around this if you need to, but use it at your own risk: You can wrap a mutable structure inside
a class instance which hasbotha __eq () anda__hash__ () method. You must then make sure that the hash
value for all such wrapper objects that reside in a dictionary (or other hash based structure), remain fixed while the
object is in the dictionary (or other structure).

class ListWrapper:
def _ init_ (self, the_list):
self.the_list = the_list

def _ _eg_ (self, other):
return self.the_list == other.the_list

def = hash (self):
1l = self.the_list
result = 98767 - len(l)*555
for i, el in enumerate(l):
try:
result = result + (hash(el) % 9999999) * 1001 + 1
except Exception:
result = (result % 7777777) + i * 333
return result

Note that the hash computation is complicated by the possibility that some members of the list may be unhashable
and also by the possibility of arithmetic overflow.

Furthermore it must always be the case thatif o1 == o2 (ieol.__eq_ (02) 1is True)thenhash (ol) ==
hash(o2) (ie,0l.__hash_ () == o02.__hash__ ()), regardless of whether the object is in a dictionary
or not. If you fail to meet these restrictions dictionaries and other hash based structures will misbehave.

44 Béliim 3. Design and History FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

In the case of ListWrapper, whenever the wrapper object is in a dictionary the wrapped list must not change to avoid
anomalies. Don’t do this unless you are prepared to think hard about the requirements and the consequences of not
meeting them correctly. Consider yourself warned.

3.21 Why doesn’t list.sort() return the sorted list?

In situations where performance matters, making a copy of the list just to sort it would be wasteful. Therefore, 1ist .
sort () sorts the list in place. In order to remind you of that fact, it does not return the sorted list. This way, you
won’t be fooled into accidentally overwriting a list when you need a sorted copy but also need to keep the unsorted
version around.

If you want to return a new list, use the built-in sorted () function instead. This function creates a new list from
a provided iterable, sorts it and returns it. For example, here’s how to iterate over the keys of a dictionary in sorted
order:

for key in sorted (mydict):
do whatever with mydict [key]...

3.22 How do you specify and enforce an interface spec in Python?

An interface specification for a module as provided by languages such as C++ and Java describes the prototypes for
the methods and functions of the module. Many feel that compile-time enforcement of interface specifications helps
in the construction of large programs.

Python 2.6 adds an abc module that lets you define Abstract Base Classes (ABCs). You can then use
isinstance () and issubclass () to check whether an instance or a class implements a particular ABC.
The collections.abc module defines a set of useful ABCs such as Iterable, Container, and
MutableMapping.

For Python, many of the advantages of interface specifications can be obtained by an appropriate test discipline for
components.

A good test suite for a module can both provide a regression test and serve as a module interface specification and a
set of examples. Many Python modules can be run as a script to provide a simple “self test.” Even modules which use
complex external interfaces can often be tested in isolation using trivial “stub” emulations of the external interface.
The doctest and unittest modules or third-party test frameworks can be used to construct exhaustive test
suites that exercise every line of code in a module.

An appropriate testing discipline can help build large complex applications in Python as well as having interface
specifications would. In fact, it can be better because an interface specification cannot test certain properties of a
program. For example, the append () method is expected to add new elements to the end of some internal list; an
interface specification cannot test that your append () implementation will actually do this correctly, but it’s trivial
to check this property in a test suite.

Writing test suites is very helpful, and you might want to design your code to make it easily tested. One increasingly
popular technique, test-driven development, calls for writing parts of the test suite first, before you write any of the
actual code. Of course Python allows you to be sloppy and not write test cases at all.

3.21. Why doesn't list.sort() return the sorted list? 45

Python Frequently Asked Questions, Siiriim 3.9.20

3.23 Why is there no goto?

In the 1970s people realized that unrestricted goto could lead to messy “spaghetti” code that was hard to understand
and revise. In a high-level language, it is also unneeded as long as there are ways to branch (in Python, with if
statements and or, and, and i f—e1se expressions) and loop (with while and for statements, possibly containing
continue and break).

One can also use exceptions to provide a “structured goto” that works even across function calls. Many feel that
exceptions can conveniently emulate all reasonable uses of the “go” or “goto” constructs of C, Fortran, and other
languages. For example:

class label (Exception): pass # declare a label

try:

if condition: raise label () # goto label
except label: # where to goto

pass

This doesn’t allow you to jump into the middle of a loop, but that’s usually considered an abuse of goto anyway. Use
sparingly.

3.24 Why can’t raw strings (r-strings) end with a backslash?

More precisely, they can’t end with an odd number of backslashes: the unpaired backslash at the end escapes the
closing quote character, leaving an unterminated string.

Raw strings were designed to ease creating input for processors (chiefly regular expression engines) that want to
do their own backslash escape processing. Such processors consider an unmatched trailing backslash to be an error
anyway, so raw strings disallow that. In return, they allow you to pass on the string quote character by escaping it
with a backslash. These rules work well when r-strings are used for their intended purpose.

If you’re trying to build Windows pathnames, note that all Windows system calls accept forward slashes too:

f = open("/mydir/file.txt") # works fine!

If you're trying to build a pathname for a DOS command, try e.g. one of

dir = r"\this\is\my\dos\dir" "\\"
dir = r"\this\is\my\dos\dir\ "[:-1]
dir = "\\this\\is\\my\\dos\\dir\\"

3.25 Why doesn’t Python have a “with” statement for attribute as-
signments?

Python has a ‘with’ statement that wraps the execution of a block, calling code on the entrance and exit from the
block. Some languages have a construct that looks like this:

with obj:
a =1 # equivalent to obj.a = 1
total = total + 1 # obj.total = obj.total + 1

In Python, such a construct would be ambiguous.

46 Boliim 3. Design and History FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

Other languages, such as Object Pascal, Delphi, and C++, use static types, so it’s possible to know, in an unambiguous
way, what member is being assigned to. This is the main point of static typing — the compiler always knows the scope
of every variable at compile time.

Python uses dynamic types. It is impossible to know in advance which attribute will be referenced at runtime. Member
attributes may be added or removed from objects on the fly. This makes it impossible to know, from a simple reading,
what attribute is being referenced: a local one, a global one, or a member attribute?

For instance, take the following incomplete snippet:

def foo(a):
with a:
print (x)

The snippet assumes that “a” must have a member attribute called “x”. However, there is nothing in Python that tells
the interpreter this. What should happen if “a” is, let us say, an integer? If there is a global variable named “x”, will
it be used inside the with block? As you see, the dynamic nature of Python makes such choices much harder.

The primary benefit of “with” and similar language features (reduction of code volume) can, however, easily be
achieved in Python by assignment. Instead of:

function (args) .mydict [index] [index].a = 21
function (args) .mydict[index] [index] .b = 42
function (args) .mydict [index] [index].c = 63
write this:

ref = function(args) .mydict[index] [index]
ref.a = 21

ref.b = 42

ref.c = 63

This also has the side-effect of increasing execution speed because name bindings are resolved at run-time in Python,
and the second version only needs to perform the resolution once.

3.26 Why don’t generators support the with statement?

For technical reasons, a generator used directly as a context manager would not work correctly. When, as is most
common, a generator is used as an iterator run to completion, no closing is needed. When it is, wrap it as “context-
lib.closing(generator)” in the ‘with’ statement.

3.27 Why are colons required for the if/while/def/class statements?

The colon is required primarily to enhance readability (one of the results of the experimental ABC language). Con-
sider this:

if a == Db
print (a)

versus

if a ==
print (a)

Notice how the second one is slightly easier to read. Notice further how a colon sets off the example in this FAQ
answer; it’s a standard usage in English.

3.26. Why don’t generators support the with statement? 47

Python Frequently Asked Questions, Siiriim 3.9.20

Another minor reason is that the colon makes it easier for editors with syntax highlighting; they can look for colons
to decide when indentation needs to be increased instead of having to do a more elaborate parsing of the program
text.

3.28 Why does Python allow commas at the end of lists and tuples?

Python lets you add a trailing comma at the end of lists, tuples, and dictionaries:

"B": [6, 71, # last trailing comma is optional but good style

There are several reasons to allow this.

When you have a literal value for a list, tuple, or dictionary spread across multiple lines, it’s easier to add more
elements because you don’t have to remember to add a comma to the previous line. The lines can also be reordered
without creating a syntax error.

Accidentally omitting the comma can lead to errors that are hard to diagnose. For example:

x = [
llfee",
"fie"
Ufooll,
llfum"

This list looks like it has four elements, but it actually contains three: “fee”, “fiefoo” and “fum”. Always adding the
comma avoids this source of error.

Allowing the trailing comma may also make programmatic code generation easier.

48 Boliim 3. Design and History FAQ

BOLUM 4

Library and Extension FAQ

4.1 General Library Questions

4.1.1 How do | find a module or application to perform task X?
Check the Library Reference to see if there’s a relevant standard library module. (Eventually you’ll learn what’s in
the standard library and will be able to skip this step.)

For third-party packages, search the Python Package Index or try Google or another Web search engine. Searching
for “Python” plus a keyword or two for your topic of interest will usually find something helpful.

4.1.2 Where is the math.py (socket.py, regex.py, etc.) source file?

If you can’t find a source file for a module it may be a built-in or dynamically loaded module implemented in C, C++ or
other compiled language. In this case you may not have the source file or it may be something like mathmodule. c,
somewhere in a C source directory (not on the Python Path).

There are (at least) three kinds of modules in Python:
1) modules written in Python (.py);
2) modules written in C and dynamically loaded (.dll, .pyd, .so, .sl, etc);

3) modules written in C and linked with the interpreter; to get a list of these, type:

import sys
print (sys.builtin_module_names)

49

https://pypi.org
https://www.google.com

Python Frequently Asked Questions, Siiriim 3.9.20

4.1.3 How do | make a Python script executable on Unix?

You need to do two things: the script file’s mode must be executable and the first line must begin with # ! followed
by the path of the Python interpreter.

The first is done by executing chmod +x scriptfile or perhaps chmod 755 scriptfile.

The second can be done in a number of ways. The most straightforward way is to write

#!/usr/local/bin/python

as the very first line of your file, using the pathname for where the Python interpreter is installed on your platform.

If you would like the script to be independent of where the Python interpreter lives, you can use the env program.
Almost all Unix variants support the following, assuming the Python interpreter is in a directory on the user’s PATH:

#!/usr/bin/env python

Don’t do this for CGI scripts. The PATH variable for CGI scripts is often very minimal, so you need to use the actual
absolute pathname of the interpreter.

Occasionally, a user’s environment is so full that the /usr/bin/env program fails; or there’s no env program at
all. In that case, you can try the following hack (due to Alex Rezinsky):

#! /bin/sh

nww.n

exec python 50 1+"s@"

nwn

The minor disadvantage is that this defines the script’s __doc__ string. However, you can fix that by adding

doc = ""r_ . Whatever..."""

4.1.4 Is there a curses/termcap package for Python?

For Unix variants: The standard Python source distribution comes with a curses module in the Modules subdirectory,
though it’s not compiled by default. (Note that this is not available in the Windows distribution - there is no curses
module for Windows.)

The curses module supports basic curses features as well as many additional functions from ncurses and SYSV
curses such as colour, alternative character set support, pads, and mouse support. This means the module isn’t com-
patible with operating systems that only have BSD curses, but there don’t seem to be any currently maintained OSes
that fall into this category.

4.1.5 Is there an equivalent to C’s onexit() in Python?

The atexit module provides a register function that is similar to C’s onexit ().

4.1.6 Why don’t my signal handlers work?

The most common problem is that the signal handler is declared with the wrong argument list. It is called as

handler (signum, frame)

so it should be declared with two parameters:

def handler (signum, frame):

50 Bo6lim 4. Library and Extension FAQ

https://github.com/python/cpython/tree/3.9/Modules

Python Frequently Asked Questions, Siiriim 3.9.20

4.2 Common tasks

4.2.1 How do | test a Python program or component?

Python comes with two testing frameworks. The doctest module finds examples in the docstrings for a module
and runs them, comparing the output with the expected output given in the docstring.

The unittest module is a fancier testing framework modelled on Java and Smalltalk testing frameworks.

To make testing easier, you should use good modular design in your program. Your program should have almost all
functionality encapsulated in either functions or class methods - and this sometimes has the surprising and delightful
effect of making the program run faster (because local variable accesses are faster than global accesses). Furthermore
the program should avoid depending on mutating global variables, since this makes testing much more difficult to do.

The “global main logic” of your program may be as simple as

if name == "__main_ ":

main_logic ()

at the bottom of the main module of your program.

Once your program is organized as a tractable collection of function and class behaviours, you should write test
functions that exercise the behaviours. A test suite that automates a sequence of tests can be associated with each
module. This sounds like a lot of work, but since Python is so terse and flexible it’s surprisingly easy. You can make
coding much more pleasant and fun by writing your test functions in parallel with the “production code”, since this
makes it easy to find bugs and even design flaws earlier.

“Support modules” that are not intended to be the main module of a program may include a self-test of the module.

if name == "__main__ ":

self_test ()

Even programs that interact with complex external interfaces may be tested when the external interfaces are unava-
ilable by using “fake” interfaces implemented in Python.

4.2.2 How do | create documentation from doc strings?

The pydoc module can create HTML from the doc strings in your Python source code. An alternative for creating
API documentation purely from docstrings is epydoc. Sphinx can also include docstring content.

4.2.3 How do | get a single keypress at a time?

For Unix variants there are several solutions. It’s straightforward to do this using curses, but curses is a fairly large
module to learn.

4.3 Threads

4.3.1 How do | program using threads?

Be sure to use the threading module and not the _thread module. The threading module builds convenient
abstractions on top of the low-level primitives provided by the _thread module.

4.2. Common tasks 51

http://epydoc.sourceforge.net/
http://sphinx-doc.org

Python Frequently Asked Questions, Siiriim 3.9.20

4.3.2 None of my threads seem to run: why?

As soon as the main thread exits, all threads are killed. Your main thread is running too quickly, giving the threads
no time to do any work.

A simple fix is to add a sleep to the end of the program that’s long enough for all the threads to finish:

import threading, time

def thread_ task (name, n):
for i in range(n):
print (name, 1)

for i in range (10):
T = threading.Thread(target=thread_task, args=(str(i), 1i))
T.start ()

time.sleep(10) # < !

But now (on many platforms) the threads don’t run in parallel, but appear to run sequentially, one at a time! The
reason is that the OS thread scheduler doesn’t start a new thread until the previous thread is blocked.

A simple fix is to add a tiny sleep to the start of the run function:

def thread_task (name, n):
time.sleep(0.001) # <——— !
for i in range(n):
print (name, 1i)

for i in range(10):
T = threading.Thread(target=thread_task, args=(str(i), 1i))
T.start ()

time.sleep(10)

Instead of trying to guess a good delay value for t ime . sleep (), it’s better to use some kind of semaphore mec-
hanism. One idea is to use the queue module to create a queue object, let each thread append a token to the queue
when it finishes, and let the main thread read as many tokens from the queue as there are threads.

4.3.3 How do | parcel out work among a bunch of worker threads?

The easiest way is to use the concurrent . futures module, especially the ThreadPoolExecutor class.

Or, if you want fine control over the dispatching algorithm, you can write your own logic manually. Use the queue
module to create a queue containing a list of jobs. The Queue class maintains a list of objects and has a . put (ob3j)
method that adds items to the queue and a . get () method to return them. The class will take care of the locking
necessary to ensure that each job is handed out exactly once.

Here’s a trivial example:

import threading, queue, time

The worker thread gets jobs off the queue. When the queue is empty, it
assumes there will be no more work and exits.
(Realistically workers will run until terminated.)
def worker () :
print ('Running worker"')
time.sleep(0.1)
while True:
try:
arg = g.get (block=False)
except queue.Empty:

(continues on next page)

52 Bo6lim 4. Library and Extension FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

print ('Worker', threading.currentThread(), end=' ")
print ('queue empty')
break

else:
print ('Worker', threading.currentThread(), end=' ")
print ('running with argument', arg)
time.sleep(0.5)

Create queue
d = queue.Queue ()

Start a pool of 5 workers

for i in range (5):
t = threading.Thread(target=worker, name='worker Y% (1i+1))
t.start ()

Begin adding work to the queue
for i in range(50):
g.put (1)

Give threads time to run
print ('Main thread sleeping')
time.sleep (5)

When run, this will produce the following output:

Running worker
Running worker
Running worker
Running worker
Running worker
Main thread sleeping

Worker <Thread(worker 1, started 130283832797456)> running with argument 0
Worker <Thread(worker 2, started 130283824404752)> running with argument 1
Worker <Thread(worker 3, started 130283816012048)> running with argument 2
Worker <Thread(worker 4, started 130283807619344)> running with argument 3
Worker <Thread(worker 5, started 130283799226640)> running with argument 4
Worker <Thread(worker 1, started 130283832797456)> running with argument 5

Consult the module’s documentation for more details; the Queue class provides a featureful interface.

4.3.4 What kinds of global value mutation are thread-safe?

A global interpreter lock (GIL) is used internally to ensure that only one thread runs in the Python VM at a time. In
general, Python offers to switch among threads only between bytecode instructions; how frequently it switches can be
set via sys.setswitchinterval (). Each bytecode instruction and therefore all the C implementation code
reached from each instruction is therefore atomic from the point of view of a Python program.

In theory, this means an exact accounting requires an exact understanding of the PVM bytecode implementation. In
practice, it means that operations on shared variables of built-in data types (ints, lists, dicts, etc) that “look atomic”
really are.

For example, the following operations are all atomic (L, L1, L2 are lists, D, D1, D2 are dicts, x, y are objects, i, j are
ints):

L.append (x)
Ll.extend (L2)
x = L[1]

x = L.pop ()

(continues on next page)

4.3. Threads 53

Python Frequently Asked Questions, Siiriim 3.9.20

(onceki sayfadan devam)

L1[i:3] = L2
L.sort ()

X =y
x.field =y
D[x] =y
D1.update (D2)
D.keys ()

These aren’t:

i =1i+1
L.append (L[-1])
L[i] = L[j]
D[x] = D[x] + 1

Operations that replace other objects may invoke those other objects’ __del__ () method when their reference
count reaches zero, and that can affect things. This is especially true for the mass updates to dictionaries and lists.
When in doubt, use a mutex!

4.3.5 Can’t we get rid of the Global Interpreter Lock?

The global interpreter lock (GIL) is often seen as a hindrance to Python’s deployment on high-end multiprocessor
server machines, because a multi-threaded Python program effectively only uses one CPU, due to the insistence that
(almost) all Python code can only run while the GIL is held.

Back in the days of Python 1.5, Greg Stein actually implemented a comprehensive patch set (the “free threading”
patches) that removed the GIL and replaced it with fine-grained locking. Adam Olsen recently did a similar ex-
periment in his python-safethread project. Unfortunately, both experiments exhibited a sharp drop in single-thread
performance (at least 30% slower), due to the amount of fine-grained locking necessary to compensate for the re-
moval of the GIL.

This doesn’t mean that you can’t make good use of Python on multi-CPU machines! You just have to be creative with
dividing the work up between multiple processes rather than multiple threads. The ProcessPoolExecutor class
in the new concurrent . futures module provides an easy way of doing so; the multiprocessing module
provides a lower-level API in case you want more control over dispatching of tasks.

Judicious use of C extensions will also help; if you use a C extension to perform a time-consuming task, the extension
can release the GIL while the thread of execution is in the C code and allow other threads to get some work done.
Some standard library modules such as z1ib and hashlib already do this.

It has been suggested that the GIL should be a per-interpreter-state lock rather than truly global; interpreters then
wouldn’t be able to share objects. Unfortunately, this isn’t likely to happen either. It would be a tremendous amount of
work, because many object implementations currently have global state. For example, small integers and short strings
are cached; these caches would have to be moved to the interpreter state. Other object types have their own free list;
these free lists would have to be moved to the interpreter state. And so on.

And I doubt that it can even be done in finite time, because the same problem exists for 3rd party extensions. It is
likely that 3rd party extensions are being written at a faster rate than you can convert them to store all their global
state in the interpreter state.

And finally, once you have multiple interpreters not sharing any state, what have you gained over running each
interpreter in a separate process?

54 Bo6lim 4. Library and Extension FAQ

https://code.google.com/archive/p/python-safethread

Python Frequently Asked Questions, Siiriim 3.9.20

4.4 Input and Output

4.4.1 How do | delete a file? (And other file questions...)
Use os.remove (filename) or os.unlink (filename) ; for documentation, see the os module. The two
functions are identical; unlink () is simply the name of the Unix system call for this function.

To remove a directory, use os.rmdir (); use os.mkdir () to create one. os.makedirs (path) will cre-
ate any intermediate directories in path that don't exist. os.removedirs (path) will remove intermediate
directories as long as they’re empty; if you want to delete an entire directory tree and its contents, use shutil.
rmtree ().

To rename a file, use os . rename (o1d_path, new_path).

To truncate a file, open it using £ = open (filename, "rb+"),and use f.truncate (offset); offset
defaults to the current seek position. There’s also os.ftruncate (fd, offset) for files opened with os.
open (), where fd is the file descriptor (a small integer).

The shut il module also contains a number of functions to work on files including copyfile (), copytree (),
and rmtree ().

4.4.2 How do | copy a file?

The shutil module contains a copyfile () function. Note that on MacOS 9 it doesn’t copy the resource fork
and Finder info.

4.4.3 How do | read (or write) binary data?

To read or write complex binary data formats, it’s best to use the st ruct module. It allows you to take a string
containing binary data (usually numbers) and convert it to Python objects; and vice versa.

For example, the following code reads two 2-byte integers and one 4-byte integer in big-endian format from a file:

import struct

with open(filename, "rb") as f:
s = f.read(8)
X, y, z = struct.unpack(">hhl", s)

The >’ in the format string forces big-endian data; the letter ‘h’ reads one “short integer” (2 bytes), and I’ reads one
“long integer” (4 bytes) from the string.

For data that is more regular (e.g. a homogeneous list of ints or floats), you can also use the array module.

Not: To read and write binary data, it is mandatory to open the file in binary mode (here, passing " rb" to open ()).
If youuse " r" instead (the default), the file will be open in text mode and f . read () will return st r objects rather
than bytes objects.

4.4. Input and Output 55

Python Frequently Asked Questions, Siiriim 3.9.20

4.4.4 | can’t seem to use os.read() on a pipe created with os.popen(); why?

os.read () is alow-level function which takes a file descriptor, a small integer representing the opened file. os .
popen () creates a high-level file object, the same type returned by the built-in open () function. Thus, to read n
bytes from a pipe p created with os . popen (), youneed to use p.read (n).

4.4.5 How do | access the serial (RS232) port?

For Win32, OSX, Linux, BSD, Jython, IronPython:
https://pypi.org/project/pyserial/
For Unix, see a Usenet post by Mitch Chapman:

https://groups.google.com/groups?selm=34 A04430.CF9 @ohioee.com

4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it?

Python file objects are a high-level layer of abstraction on low-level C file descriptors.

For most file objects you create in Python via the built-in open () function, f£.close () marks the Python file
object as being closed from Python’s point of view, and also arranges to close the underlying C file descriptor. This
also happens automatically in £’s destructor, when £ becomes garbage.

But stdin, stdout and stderr are treated specially by Python, because of the special status also given to them by
C. Running sys.stdout.close () marks the Python-level file object as being closed, but does not close the
associated C file descriptor.

To close the underlying C file descriptor for one of these three, you should first be sure that’s what you really want
to do (e.g., you may confuse extension modules trying to do I/O). If it is, use os.close ():

os.close(stdin.fileno())
os.close (stdout.fileno())
os.close(stderr.fileno())

Or you can use the numeric constants 0, 1 and 2, respectively.

4.5 Network/Internet Programming

4.5.1 What WWW tools are there for Python?

See the chapters titled internet and netdata in the Library Reference Manual. Python has many modules that will help
you build server-side and client-side web systems.

A summary of available frameworks is maintained by Paul Boddie at https://wiki.python.org/moin/
WebProgramming.

Cameron Laird maintains a useful set of pages about Python web technologies at http://phaseit.net/claird/comp.lang.
python/web_python.

56 Bo6lim 4. Library and Extension FAQ

https://pypi.org/project/pyserial/
https://groups.google.com/groups?selm=34A04430.CF9@ohioee.com
https://wiki.python.org/moin/WebProgramming
https://wiki.python.org/moin/WebProgramming
http://phaseit.net/claird/comp.lang.python/web_python
http://phaseit.net/claird/comp.lang.python/web_python

Python Frequently Asked Questions, Siiriim 3.9.20

4.5.2 How can | mimic CGI form submission (METHOD =POST)?

I would like to retrieve web pages that are the result of POSTing a form. Is there existing code that would let me do
this easily?

Yes. Here’s a simple example that uses ur11lib. request:

#!/usr/local/bin/python
import urllib.request

build the query string
gs = "First =Josephine&MI =Q&Last =Public"

connect and send the server a path
req = urllib.request.urlopen('http://www.some-server.out—there'
'/cgi-bin/some-cgi-script', data=gs)
with req:
msg, hdrs = reqg.read(), reg.info()

Note that in general for percent-encoded POST operations, query strings must be quoted using urllib.parse.
urlencode (). For example, to send name =Guy Steele, Jr.:

>>> import urllib.parse
>>> urllib.parse.urlencode ({'name': 'Guy Steele, Jr.'})
'name =Guy+Steele%2C+Jr."'

Ayrica bkz.:
urllib-howto for extensive examples.

4.5.3 What module should | use to help with generating HTML?

You can find a collection of useful links on the Web Programming wiki page.

4.5.4 How do | send mail from a Python script?

Use the standard library module smtplib.

Here’s a very simple interactive mail sender that uses it. This method will work on any host that supports an SMTP
listener.

import sys, smtplib

fromaddr = input ("From: ")
toaddrs = input("To: ").split(',")
print ("Enter message, end with ~D:")
msg = "'
while True:

line = sys.stdin.readline ()

if not line:

break

msg += line

The actual mail send

server = smtplib.SMTP ('localhost')
server.sendmail (fromaddr, toaddrs, msqg)
server.quit ()

4.5. Network/Internet Programming 57

https://wiki.python.org/moin/WebProgramming

Python Frequently Asked Questions, Siiriim 3.9.20

A Unix-only alternative uses sendmail. The location of the sendmail program varies between systems; sometimes it
is /usr/lib/sendmail, sometimes /usr/sbin/sendmail. The sendmail manual page will help you out.
Here’s some sample code:

import os

SENDMAIL = "/usr/sbin/sendmail" # sendmail location
p = os.popen (" -t —-i" % SENDMAIL, "w")
p.write("To: receiver@example.com\n")
p.write("Subject: test\n")
p.write ("\n") # blank line separating headers from body
P "Some text\n")
.write ("some more text\n")
sts = p.close()
if sts != 0:
print ("Sendmail exit status", sts)

.write

el

4.5.5 How do | avoid blocking in the connect() method of a socket?

The select module is commonly used to help with asynchronous I/O on sockets.

To prevent the TCP connect from blocking, you can set the socket to non-blocking mode. Then when you do the
socket.connect (), you will either connect immediately (unlikely) or get an exception that contains the error
number as .errno. errno.EINPROGRESS indicates that the connection is in progress, but hasn’t finished yet.
Different OSes will return different values, so you're going to have to check what’s returned on your system.

You can use the socket .connect_ex () method to avoid creating an exception. It will just return the errno
value. To poll, you can call socket.connect_ex () again later - 0 or errno.EISCONN indicate that you're
connected — or you can pass this socket to select.select () to check if it’s writable.

Not: The asyncio module provides a general purpose single-threaded and concurrent asynchronous library, which
can be used for writing non-blocking network code. The third-party Twisted library is a popular and feature-rich
alternative.

4.6 Databases

4.6.1 Are there any interfaces to database packages in Python?

Yes.

Interfaces to disk-based hashes such as DBM and GDBM are also included with standard Python. There is also the
sglite3 module, which provides a lightweight disk-based relational database.

Support for most relational databases is available. See the DatabaseProgramming wiki page for details.

58 Bo6lim 4. Library and Extension FAQ

https://twistedmatrix.com/trac/
https://wiki.python.org/moin/DatabaseProgramming

Python Frequently Asked Questions, Siiriim 3.9.20

4.6.2 How do you implement persistent objects in Python?

The pickle library module solves this in a very general way (though you still can’t store things like open files,
sockets or windows), and the she 1ve library module uses pickle and (g)dbm to create persistent mappings containing

arbitrary Python objects.

4.7 Mathematics and Numerics

4.7.1 How do | generate random numbers in Python?

The standard module random implements a random number generator. Usage is simple:

import random
random. random ()

This returns a random floating point number in the range [0, 1).
There are also many other specialized generators in this module, such as:

« randrange (a, b) chooses an integer in the range [a, b).

e uniform(a, b) chooses a floating point number in the range [a, b).

e normalvariate (mean, sdev) samples the normal (Gaussian) distribution.
Some higher-level functions operate on sequences directly, such as:

e choice (S) chooses a random element from a given sequence.

e shuffle (L) shuffles a list in-place, i.e. permutes it randomly.

There’s also a Random class you can instantiate to create independent multiple random number generators.

4.7. Mathematics and Numerics

59

Python Frequently Asked Questions, Siiriim 3.9.20

60

Bo6lim 4. Library and Extension FAQ

BOLUM D

Genigletme/Ekleme SSS

5.1 C’de kendi fonksiyonlarimi olusturabilir miyim?

Evet, C’de fonksiyonlar, degiskenler, istisnalar ve hatta yeni tipler igeren yerlesik modiiller olusturabilirsiniz. Bu konu
extending-index dosyasinda aciklanmugtir.

Cogu orta veya ileri seviye Python kitab1 da bu konuyu ele alacaktir.

5.2 C++’da kendi fonksiyonlarimi olusturabilir miyim?

Evet, C++'da bulunan C uyumluluk 6zelliklerini kullanarak. extern "C" { ... } komutunu Python include
dosyalarinin etrafina yerlestirin ve Python yorumlayicisi tarafindan ¢agrilacak her fonksiyonun 6niine extern "C"
koyun. Yapicilari olan global veya statik C++ nesneleri muhtemelen iyi bir fikir degildir.

5.3 C yazmak zor; baska alternatifler var mi?

Ne yapmaya calistiginiza bagh olarak, kendi C uzantilarinizi yazmanin bir dizi alternatifi vardir.

Cython and its relative Pyrex are compilers that accept a slightly modified form of Python and generate the cor-
responding C code. Cython and Pyrex make it possible to write an extension without having to learn Python’s C
APL

If you need to interface to some C or C++ library for which no Python extension currently exists, you can try wrapping
the library’s data types and functions with a tool such as SWIG. SIP, CXX Boost, or Weave are also alternatives for
wrapping C++ libraries.

61

http://cython.org
https://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.swig.org
https://riverbankcomputing.com/software/sip/intro
http://cxx.sourceforge.net/
http://www.boost.org/libs/python/doc/index.html
https://github.com/scipy/weave

Python Frequently Asked Questions, Siiriim 3.9.20

5.4 C’den rastgele Python komutlarini nasil calistirabilirim?

Bunu yapan en st diizey fonksiyon PyRun_SimpleString () olup, _ main__ modiilii baglaminda caligtiril-
mak lizere tek bir string argiiman alir ve bagari i¢in O, bir istisna olustugunda (SyntaxError dahil) -1 dondii-
riir. Daha fazla kontrol istiyorsaniz, PyRun_String () kullanin; PyRun_SimpleString () i¢in Python/
pythonrun. c icindeki kaynaga bakin.

5.5 C’den rastgele Python komutlarini nasil degerlendirebilirim?

Onceki sorudaki PyRun_String () fonksiyonunuPy_eval_input baslangic semboliiile cagirn; bu fonksiyon
bir ifadeyi ayristirir, degerlendirir ve degerini dondiiriir.

5.6 Bir Python nesnesinden C degerlerini nasil ¢cikarabilirim?

Bu, nesnenin tiirtine baghdir. Eger bir tuple ise, PyTuple_Size () uzunlugunu dondiiriir ve
PyTuple_GetItem() belirtilen indeksteki ©geyi dondiiriir. Listelerin de benzer fonksiyonlari vardir,
PyListSize () ve PyList_GetItem().

Baytlar icin, PyBytes_Size () uzunlugunu dondiiriir ve PyBytes_AsStringAndSize () degerine ve uzun-
luguna bir isaretci saglar. Python bayt nesnelerinin null bayt igerebilecegini unutmayin, bu nedenle C'nin strlen ()
ozelligi kullanilmamalidir.

Bir nesnenin tiiriinii test etmek i¢in, once NULL olmadigindan emin olun ve ardindan PyBytes_Check (),
PyTuple_Check (), PyList_Check () vb. kullanin.

Ayrica Python nesneleri icin ‘abstract’ arayiizi tarafindan saglanan {iist diizey bir API de vardir — daha fazla ayrinti
icin Include/abstract .hdosyasini okuyun. PySequence_Length (),PySequence_GetItem(), vb.
gibi cagrilar1 kullanarak her tiirlii Python dizisi ile arayiiz olusturmanin yani sira sayilar (PyNumber_Index () ve
digerleri) ve PyMapping APTlerindeki eslemeler gibi diger bircok yararl protokolii de saglar.

5.7 istege bagh uzunlukta bir tuple olusturmak icin Py_BuildValue()
islevini nasil kullanabilirim?

Bunu yapamazsiniz. Bunun yerine PyTuple_Pack () kullanin.

5.8 C’de bir nesnenin metodunu nasil ¢cagirabilirim?

PyObject_CallMethod () fonksiyonu, bir nesnenin rastgele bir metodunu ¢agirmak icin kullanilabilir. Para-
metreler nesne, ¢agrilacak yontemin adi, Py_BuildValue () ile kullanilan gibi bir string ve degisken degerleridir:

PyObject *
PyObject_CallMethod (PyObject *object, const char *method_name,
const char *arg_format, ...);

Bu, ister yerlesik ister kullanici tanimli olsun, yontemleri olan herhangi bir nesne i¢in gecerlidir. Sonunda doniis
degerini :Py_DECREF () lemekten siz sorumlusunuz.

Ornegin, bir dosya nesnesinin “seek” yontemini 10, 0 argiimanlariyla gagirmak igin (dosya nesnesi isaretgisinin “f”
oldugunu varsayarak):

62 Boliim 5. Genisletme/Ekleme SSS

Python Frequently Asked Questions, Siiriim 3.9.20

res = PyObject_CallMethod(f, "seek", "(ii)", 10, 0);
if (res == NULL) {
. an exception occurred ...
}
else {
Py_DECREF (res);
}

PyObject_CallObject () her zaman argiiman listesi icin bir tuple istediginden, argiimansiz bir fonksiyon ca-
Sirmak i¢in format olarak “()” ve tek argtimanli bir fonksiyon ¢agirmak i¢in argiimani parantez igine alin, 6rnegin

“1)”.

5.9 PyErr_Print() islevinden (veya stdout/stderr’e yazdiran herhangi
bir seyden) gelen ciktiyi nasil yakalayabilirim?

Python kodunda, write () metodunu destekleyen bir nesne tanimlaym. Bu nesneyi sys.stdout ve sys.
stderr 6gelerine atayin. Print_error'1 ¢cagirin ya da sadece standart geri izleme mekanizmasinin ¢aligmasina izin
verin. Ardindan, ¢ikti write () yonteminizin gonderdigi yere gidecektir.

Bunu yapmanin en kolay yolu io . St ringIO sinifini kullanmaktir:

>>> import io, sys

>>> sys.stdout = i0.StringIO()

>>> print ('foo')

>>> print ('hello world!")

>>> sys.stderr.write(sys.stdout.getvalue())
foo

hello world!

Ayni1 seyi yapan 6zel bir nesne soyle goriinecektir:

>>> import io, sys
>>> class StdoutCatcher (io.TextIOBase) :
def __init__ (self):
self.data = []
def write(self, stuff):
self.data.append(stuff)

>>> import sys

>>> sys.stdout = StdoutCatcher ()

>>> print ('foo')

>>> print ('hello world!")

>>> gys.stderr.write(''.join(sys.stdout.data))
foo

hello world!

5.10 Python’da yazilmis bir module C’den nasil erisebilirim?

Modiil nesnesine asagidaki gibi bir isaret¢i alabilirsiniz:

’module = PyImport_TImportModule ("<modulename>");

Modiil heniiz ice aktarilmamigsa (yani sy s .modules icinde heniiz mevcut degilse), bu modiilii baglatir; aksi tak-
dirde sadece sys.modules ["<modulename>"] degerini dondiiriir. Modiilii herhangi bir isim alanina girme-
digine dikkat edin - sadece baglatildigindan ve sy s .modules i¢inde saklandigindan emin olur.

Daha sonra modiiliin 6zniteliklerine (yani modiilde tanimlanan herhangi bir isme) asagidaki sekilde erisebilirsiniz:

5.9. PyErr_Print() islevinden (veya stdout/stderr’e yazdiran herhangi bir seyden) gelen ciktiyr 63
nasil yakalayabilirim?

Python Frequently Asked Questions, Siiriim 3.9.20

’attr = PyObject_GetAttrString(module, "<attrname>");

Modiildeki degiskenlere atamak icin PyObject_SetAttrString () cagrist da ¢alisir.

5.11 Python’dan C++ nesnelerine nasil arayliz olusturabilirim?

Gereksinimlerinize bagh olarak, bir¢ok yaklagim vardir. Bunu manuel olarak yapmak i¢in the “Extending and Em-
bedding” belgesini okuyarak baglaym. Python calisma zamani sistemi igin, C ve C++ arasinda ¢ok fazla fark olma-
diginin farkina varin — bu nedenle bir C yapi (isaret¢i) tiirii etrafinda yeni bir Python tiirii olugturma stratejisi C++
nesneleri i¢in de ise yarayacaktir.

C++ kiitiiphaneleri i¢in bakimiz C yazmak zor; baska alternatifler var mi?.

5.12 Kurulum dosyasini kullanarak bir modil ekledim ve derleme
basarisiz oldu; neden?

Kurulum bir satir sonu ile bitmelidir, eger satir sonu yoksa derleme iglemi basarisiz olur. (Bunu diizeltmek i¢in biraz
bigimsiz shell script diizenlemesi gerekir ve bu hata o kadar kiiciik ki cabaya degmez gibi goriintiyor)

5.13 Bir uzantida nasil hata ayiklayabilirim?

Dinamik olarak yiiklenen uzantilarla GDB kullanirken, uzantiniz yiiklenene kadar uzantinizda bir kesme noktasi
ayarlayamazsiniz.

.gdbinit dosyaniza (veya etkilesimli olarak) su komutu ekleyin:

br _PyImport_LoadDynamicModule

Sonra, GDB'yi ¢alistirdiginizda:

$ gdb /local/bin/python
gdb) run myscript.py

gdb) continue # repeat until your extension is loaded
gdb) finish # so that your extension is loaded

gdb) br myfunction.c:50

gdb) continue

5.14 Linux sistemimde bir Python modiilii derlemek istiyorum, an-
cak bazi dosyalar eksik. Neden?

Python’un paketlenmis siirtimlerinin ¢ogu, Python uzantilarin1 derlemek igin gerekli ¢esitli dosyalari iceren /uszr/
lib/python2.x/config/ dizinini igermez.

Red Hat icin, gerekli dosyalar1 almak i¢in python-devel RPM yiikleyin.

Debian igin apt—get install python-dev komutunu ¢aligtirin.

64 Boliim 5. Genisletme/Ekleme SSS

Python Frequently Asked Questions, Siiriim 3.9.20

5.15 “Eksik girdi” ile “gecersiz girdi’yi nasil ayirt edebilirim?

Bazen Python etkilesimli yorumlayicisinin davramgini taklit etmek istersiniz; girdi eksik oldugunda size bir devam
istemi verir (6rnegin, bir “if” deyiminin baglangicin1 yazdiniz veya parantezlerinizi veya liglii dize tirnaklarinizi ka-
patmadiniz), ancak girdi gecersiz oldugunda size hemen bir s6zdizimi hata mesaj1 verir.

Python'da, ayrigtiricinin davramigina yeterince yaklasan codeop modiiliinii kullanabilirsiniz. Ornegin IDLE bunu
kullanir.

Bunu Cde yapmanmn en kolay yolu PyRun_InteractiveLoop () c¢agirmak (belki ayr1 bir
is parcaciginda) ve Python yorumlayicisinin girdiyi sizin ic¢in islemesine izin vermektir. Ayrica
PyOS_ReadlineFunctionPointer () ‘1 ozel girdi fonksiyonunuza isaret edecek sekilde ayarlayabilir-
siniz. Daha fazla ipucu i¢in Modules/readline.c ve Parser/myreadline. c dosyalarina bakin.

5.16 Tanimlanmamis g++ sembolleri _ builtin_new veya _ pu-
re_virtual’t nasil bulabilirim?

G++ uzant1 modiillerini dinamik olarak yiiklemek i¢in Python’u yeniden derlemeli, g++ kullanarak yeniden baglamali
(Python Modules Makefile’da LINKCC’yi degistirin) ve uzant1 modiiliiniizti g++ kullanarak baglamalisiniz (6rnegin,
g++ —-shared -o mymodule.so mymodule.o).

5.17 Bazi yontemleri C’de, bazi yontemleri Python’da (6rnegin mi-
ras yoluyla) uygulanan bir nesne sinifi olusturabilir miyim?

Evet, int, 1ist, dict, vb. gibi yerlesik siniflardan miras alabilirsiniz.

The Boost Python Library (BPL, http://www.boost.org/libs/python/doc/index.html) provides a way of doing this
from C++ (i.e. you can inherit from an extension class written in C++ using the BPL).

5.15. “Eksik girdi” ile “gecersiz girdi’yi nasil ayirt edebilirim? 65

http://www.boost.org/libs/python/doc/index.html

Python Frequently Asked Questions, Siiriim 3.9.20

66

Boliim 5. Genisletme/Ekleme SSS

BOLUM O

Python on Windows FAQ

6.1 How do | run a Python program under Windows?

This is not necessarily a straightforward question. If you are already familiar with running programs from the Windows
command line then everything will seem obvious; otherwise, you might need a little more guidance.

Unless you use some sort of integrated development environment, you will end up #yping Windows commands into
what is referred to as a “Command prompt window”. Usually you can create such a window from your search bar
by searching for cmd. You should be able to recognize when you have started such a window because you will see a
Windows “command prompt”, which usually looks like this:

’C:\>

The letter may be different, and there might be other things after it, so you might just as easily see something like:

’D:\YourName\Projects\Python>

depending on how your computer has been set up and what else you have recently done with it. Once you have started
such a window, you are well on the way to running Python programs.

You need to realize that your Python scripts have to be processed by another program called the Python inferpreter.
The interpreter reads your script, compiles it into bytecodes, and then executes the bytecodes to run your program.
So, how do you arrange for the interpreter to handle your Python?

First, you need to make sure that your command window recognises the word “py” as an instruction to start the
interpreter. If you have opened a command window, you should try entering the command py and hitting return:

C:\Users\YourName> py

You should then see something like:

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:04:45) [MSC v.1900 32 bit (Intel)].
—on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

You have started the interpreter in “interactive mode”. That means you can enter Python statements or expressions
interactively and have them executed or evaluated while you wait. This is one of Python’s strongest features. Check
it by entering a few expressions of your choice and seeing the results:

67

Python Frequently Asked Questions, Siiriim 3.9.20

>>> print ("Hello")

Hello
>>> "Hello" * 3
'HelloHelloHello'

Many people use the interactive mode as a convenient yet highly programmable calculator. When you want to end
your interactive Python session, call the exit () function or hold the Ct r1 key down while you enter a Z, then hit
the “Enter” key to get back to your Windows command prompt.

You may also find that you have a Start-menu entry such as Start » Programs » Python 3.x » Python (command line) that
results in you seeing the >>> prompt in a new window. If so, the window will disappear after you call the exit ()
function or enter the Ct r1-7 character; Windows is running a single “python” command in the window, and closes
it when you terminate the interpreter.

Now that we know the py command is recognized, you can give your Python script to it. You’ll have to give either an
absolute or a relative path to the Python script. Let’s say your Python script is located in your desktop and is named
hello.py, and your command prompt is nicely opened in your home directory so you're seeing something similar
to:

C:\Users\YourName>

So now you’ll ask the py command to give your script to Python by typing py followed by your script path:

C:\Users\YourName> py Desktop\hello.py
hello

6.2 How do | make Python scripts executable?

On Windows, the standard Python installer already associates the .py extension with a file type (Python.File) and
gives that file type an open command that runs the interpreter (D: \Program Files\Python\python.exe
"%1"™ %*). This is enough to make scripts executable from the command prompt as ‘foo.py’. If you’d rather be able
to execute the script by simple typing ‘foo’ with no extension you need to add .py to the PATHEXT environment
variable.

6.3 Why does Python sometimes take so long to start?

Usually Python starts very quickly on Windows, but occasionally there are bug reports that Python suddenly begins
to take a long time to start up. This is made even more puzzling because Python will work fine on other Windows
systems which appear to be configured identically.

The problem may be caused by a misconfiguration of virus checking software on the problem machine. Some virus
scanners have been known to introduce startup overhead of two orders of magnitude when the scanner is configured
to monitor all reads from the filesystem. Try checking the configuration of virus scanning software on your systems
to ensure that they are indeed configured identically. McAfee, when configured to scan all file system read activity,
is a particular offender.

68 Boliim 6. Python on Windows FAQ

Python Frequently Asked Questions, Siiriim 3.9.20

6.4 How do | make an executable from a Python script?

See How can I create a stand-alone binary from a Python script? for a list of tools that can be used to make executables.

6.5 Is a * . pyd file the same as a DLL?

Yes, .pyd files are dlII’s, but there are a few differences. If you have a DLL named foo.pyd, then it must have a
function PyInit_foo (). You can then write Python “import foo”, and Python will search for foo.pyd (as well as
foo.py, foo.pyc) and if it finds it, will attempt to call PyInit_foo () to initialize it. You do not link your .exe with
foo.lib, as that would cause Windows to require the DLL to be present.

Note that the search path for foo.pyd is PYTHONPATH, not the same as the path that Windows uses to search for
foo.dll. Also, foo.pyd need not be present to run your program, whereas if you linked your program with a dll, the
dll is required. Of course, foo.pyd is required if you want to say import foo.InaDLL, linkage is declared in the
source code with ___declspec (dllexport).Ina.pyd, linkage is defined in a list of available functions.

6.6 How can | embed Python into a Windows application?

Embedding the Python interpreter in a Windows app can be summarized as follows:

1.

Do _not_ build Python into your .exe file directly. On Windows, Python must be a DLL to handle importing
modules that are themselves DLL’s. (This is the first key undocumented fact.) Instead, link to pythonNN.
d11;itis typically installed in C: \Windows\System. NN is the Python version, a number such as “33” for
Python 3.3.

You can link to Python in two different ways. Load-time linking means linking against pythonNN. 1ib,
while run-time linking means linking against pythonNN.d11. (General note: pythonNN. 11ib is the so-
called “import lib” corresponding to pythonNN . d11. It merely defines symbols for the linker.)

Run-time linking greatly simplifies link options; everything happens at run time. Your code must load
pythonNN.d11 using the Windows LoadLibraryEx () routine. The code must also use access ro-
utines and data in pythonNN.d11 (that is, Python’s C API’s) using pointers obtained by the Windows
GetProcAddress () routine. Macros can make using these pointers transparent to any C code that calls
routines in Python’s C APL

. If you use SWIG, it is easy to create a Python “extension module” that will make the app’s data and methods

available to Python. SWIG will handle just about all the grungy details for you. The result is C code that you
link info your .exe file (!) You do _not_ have to create a DLL file, and this also simplifies linking.

. SWIG will create an init function (a C function) whose name depends on the name of the extension module.

For example, if the name of the module is leo, the init function will be called initleo(). If you use SWIG shadow
classes, as you should, the init function will be called initleoc(). This initializes a mostly hidden helper class
used by the shadow class.

The reason you can link the C code in step 2 into your .exe file is that calling the initialization function is
equivalent to importing the module into Python! (This is the second key undocumented fact.)

. In short, you can use the following code to initialize the Python interpreter with your extension module.

#include "python.h"

Py_Initialize(); // Initialize Python.
initmyAppc(); // Initialize (import) the helper class.
PyRun_SimpleString ("import myApp"); // Import the shadow class.

. There are two problems with Python’s C API which will become apparent if you use a compiler other than

MSVC, the compiler used to build pythonNN.dIL

6.4.

How do | make an executable from a Python script? 69

Python Frequently Asked Questions, Siiriim 3.9.20

Problem 1: The so-called “Very High Level” functions that take FILE * arguments will not work in a multi-
compiler environment because each compiler’s notion of a struct FILE will be different. From an implemen-
tation standpoint these are very _low_ level functions.

Problem 2: SWIG generates the following code when generating wrappers to void functions:

Py_INCREF (Py_None) ;
_resultobj = Py_None;
return _resultobi;

Alas, Py_None is a macro that expands to a reference to a complex data structure called _Py_NoneStruct inside
pythonNN.dIl. Again, this code will fail in a mult-compiler environment. Replace such code by:

return Py_BuildvValue("");

It may be possible to use SWIG’s $t ypemap command to make the change automatically, though I have not
been able to get this to work (I'm a complete SWIG newbie).

6. Using a Python shell script to put up a Python interpreter window from inside your Windows app is not a
good idea; the resulting window will be independent of your app’s windowing system. Rather, you (or the
wxPythonWindow class) should create a “native” interpreter window. It is easy to connect that window to the
Python interpreter. You can redirect Python’s i/o to _any_ object that supports read and write, so all you need
is a Python object (defined in your extension module) that contains read() and write() methods.

6.7 How do | keep editors from inserting tabs into my Python sour-
ce?

The FAQ does not recommend using tabs, and the Python style guide, PEP 8, recommends 4 spaces for distributed
Python code; this is also the Emacs python-mode default.

Under any editor, mixing tabs and spaces is a bad idea. MSVC is no different in this respect, and is easily configured
to use spaces: Take Tools » Options » Tabs, and for file type “Default” set “Tab size” and “Indent size” to 4, and select
the “Insert spaces” radio button.

Python raises IndentationError or TabError if mixed tabs and spaces are causing problems in leading
whitespace. You may also run the tabnanny module to check a directory tree in batch mode.

6.8 How do | check for a keypress without blocking?

Use the msvcrt module. This is a standard Windows-specific extension module. It defines a function kbhit ()
which checks whether a keyboard hit is present, and get ch () which gets one character without echoing it.

70 Boliim 6. Python on Windows FAQ

https://www.python.org/dev/peps/pep-0008

BOLUM 7

Grafik Kullanici Araylzi SSS

7.1 Genel GKA Sorulari

7.2 Python icin hangi GKA arac setleri var?

Python’'un standart yapilari, tkinter adli Tcl/Tk pencere 6gesi kiimesine yonelik nesne yonelimli bir arayiiz icerir. Bu
muhtemelen kurulumu ve kullanim1 en kolay olamidir (¢iinkii gogu Python’in ikili dagitimlar kisminda bulunur) ve
kullanilandir. Kaynak isaretciler de dahil olmak tizere Tk hakkinda daha fazla bilgi i¢in Tcl/Tk ana sayfasina bakin.
Tcl/Tk, macOS, Windows ve Unix platformlarina tamamen taginabilir.

Hangi platformlar1 hedeflediginize bagh olarak, birkac alternatif de mevcuttur. Bir cross-platform listesi ve spesifik
platform GKA ¢ergeveleri Python Wiki’de bulunabilir.

7.3 Tkinter sorulari

7.3.1 Tkinter uygulamalarini nasil dondurabilirim?

Dondurma iglemi, tek bagina bagimsiz uygulamalar olusturmak i¢in bir aragtir. Tkinter uygulamalarini dondururken,
uygulama hala Tcl ve Tk kiitiiphanelerine ihtiya¢ duyacagindan, uygulamalar gergekten bagimsiz olmayacaktir.

Coziimlerden biri, uygulamayi Tcl ve Tk kiitiiphaneleri ile birlikte gondermek ve ¢alisma zamaninda TCL_LIBRARY
ve TK_LIBRARY ortam degigkenlerini kullanarak onlara igaret etmektir.

To get truly stand-alone applications, the Tcl scripts that form the library have to be integrated into the application
as well. One tool supporting that is SAM (stand-alone modules), which is part of the Tix distribution (http://tix.
sourceforge.net/).

SAM etkinken Tix olugturun, Python'un Modules/tkappinit.c i¢indeki Tclsam_init () vb. i¢in uygun
cagriy1 yapin ve libtclsam ve libtksam ile baglant1 kurun (Tix kiitiiphanelerini da dahil edebilirsiniz)).

7

https://www.python.org/downloads/
https://www.tcl.tk
https://wiki.python.org/moin/GuiProgramming#Cross-Platform_Frameworks
https://wiki.python.org/moin/GuiProgramming#Platform-specific_Frameworks
https://wiki.python.org/moin/GuiProgramming#Platform-specific_Frameworks
http://tix.sourceforge.net/
http://tix.sourceforge.net/

Python Frequently Asked Questions, Siiriim 3.9.20

7.3.2 G/C’yi beklerken Tk olaylarini isleyebilir miyim?

Windows digindaki platformlarda, evet ve is parcacigina bile ihtiyaciniz yok! Ancak G/C kodunuzu tekrardan ya-
pilandirmaniz gerekecek. Tk, Xt'nin Xt AddInput () ¢agrisina esdegerdir; bu, bir dosya taniticisinda G/C miim-
kiin oldugunda Tk ana dongtisiinden ¢agrilacak bir geri arama iglevini kaydetmenize olanak tanir. Bkz. tkinter-file-
handlers

7.3.3 Tkinter’da calismak icin anahtar baglamalarini alamiyorum: neden?

Sik¢a duyulan bir sikayet, bind () yontemiyle olaylara baglanan isleyicilerin uygun tusa basildiginda bile islenme-
mesidir.

En yaygin neden, baglamanin uygulandig1 pencere dgesinin “klavye odagmna” sahip olmamasidir. Focus komutu i¢in
Tk dokiimantasyonuna bakin. Genellikle Wigdet'lara tiklanilarak klavye odagi verilir (ancak etiketler icin degil; odak
alma secenegine bakin).

72 Boliim 7. Grafik Kullanici Araytizii SSS

BOLUM 8

“Python Bilgisayarimda Neden YUkIG?” SSS

8.1 Python nedir?

Python bir programlama dilidir. Bir¢ok farkli uygulama i¢in kullanilir. Python’'un 6grenilmesi kolay oldugu i¢in bazi
lise ve tiniversitelerdeprogramlamaya girig dili olarak kullanilir, ancak ayni zamanda Google, NASA ve Lucasfilm
Ltd. gibi yerlerde profesyonel yazilim gelistiriciler tarafindan da kullanilir.

Python hakkinda daha fazla bilgi edinmek istiyorsaniz, Beginner’s Guide to Python ile baglayin.

8.2 Python makinemde neden yuklu?

Python'un sisteminizde yiiklii oldugunu goriiyor ancak yiiklediginizi hatirlamiyorsaniz, Python’un sisteminize gir-
mesinin birkag olast yolu vardir.

« Belki de bilgisayardaki bagka bir kullanic1 programlama 6grenmek istedi ve bunu yiikledi; makineyi kimin
kullandigin1 ve bunu kimin yiiklemis olabilecegini bulmaniz gerekecek.

« Makineye yiiklenen iigiincii parti bir uygulama Python ile yazilmig ve bir Python yiiklemesi igeriyor olabilir.
GUI programlarindan ag sunucularina ve yonetim komut dosyalarma kadar bu tiir birgok uygulama vardir.

« Bazi Windows makinelerde Python da yiikliidiir. Bu yaziy1 yazarken Hewlett-Packard ve Compaq’in Python
iceren bilgisayarlarindan haberdariz. Goriiniise gore HP/Compaq’'in bazi yonetim araglar1 Python ile yazilmas.

e MacOS ve baz1 Linux dagitimlar1 gibi Unix uyumlu bir¢ok igletim sisteminde Python varsayilan olarak yiik-
liidiir; temel kuruluma dahildir.

73

https://wiki.python.org/moin/BeginnersGuide

Python Frequently Asked Questions, Siiriim 3.9.20

8.3 Python’u silebilir miyim?

Bu Python’un nereden geldigine baghdir.

Birisi kasith olarak yiiklediyse, hicbir seye zarar vermeden kaldirabilirsiniz. Windows’ta, Denetim Masasi’ndaki
Program Ekle/Kaldir simgesini kullanin.

Python iiciincii parti bir uygulama tarafindan yiiklenmigse, onu da kaldirabilirsiniz, ancak bu uygulama artik ¢alig-
mayacaktir. Python’'u dogrudan kaldirmak yerine o uygulamanin kaldiricisini kullanmalisiniz.

Python igletim sisteminizle birlikte geliyorsa, kaldirilmast 6nerilmez. Kaldirirsaniz, Python'da yazilmis olan araglar
artik ¢alismayacaktir ve bunlardan bazilari sizin i¢in 6nemli olabilir. Bu durumda isleri tekrar diizeltmek i¢in tim
sistemi yeniden yiiklemek gerekecektir.

74 Bolim 8. “Python Bilgisayarimda Neden Yiikli?” SSS

ek A

So6zIuk

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed inte-
ractively in the interpreter.

. .. Sunlara bagvurabilir:

« Girintili bir kod blogu i¢in kod girerken, eslesen bir ¢ift sol ve sag smirlayici (parantez, koseli paran-
tez, kagh ayra¢ veya ticlii tirnak) icindeyken veya bir dekorator belirttikten sonra etkilesimli kabugun
varsayilan Python istemi.

e Elipsis yerlesik sabiti.

2to3 Kaynag ayristirarak ve ayristirma agacinda gezinerek tespit edilebilecek uyumsuzluklarin cogunu isleyerek
Python 2.x kodunu Python 3.x koduna doniistiirmeye c¢alisan bir arag.

2to3, standart kitaplikta 1ib2to3"'; bagimsiz bir giris noktasi su sekilde
saglanir:file: Tools/scripts/2to3. Bakimz 2to3-reference.

soyut temel sinif Soyut temel siniflar duck-typing ‘i, hasattr () gibi diger teknikler beceriksiz veya tama-
men yanlig oldugunda arayiizleri tanimlamanin bir yolunu saglayarak tamamlar (6rnegin sihirli yontemlerle).
ABC'’ler, bir siniftan miras almayan ancak yine de isinstance () ve issubclass () tarafindan taninan
siniflar olan sanal alt siniflar1 tanitir; abc modiil belgelerine bakin. Python comes with many built-in ABCs for
data structures (inthe collections . abc module), numbers (in the numbers module), streams (in the io
module), import finders and loaders (in the import1lib.abc module). abc modiilii ile kendi ABC’lerinizi
olugturabilirsiniz.

dipnot A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.

Yerel degiskenlerin agiklamalarina ¢alisma zamaninda erisilemez, ancak global degiskenlerin, siif nitelikle-
rinin ve iglevlerin a¢iklamalari, sirastyla modiillerin, siniflarin ve iglevlerin ___annotations__ ozel ozelli-
ginde saklanir.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.
argiiman A value passed to a function (or method) when calling the function. There are two kinds of argument:

o keyword argument: bir islev ¢cagrisinda bir tanimlayicinin (6r. ad =) Oniine gegen veya bir sozliikte * * ile
baglayan bir deger olarak gecirilen bir argiiman. Ornegin, 3 ve 5, asagidaki complex () : cagrilarinda
anahtar kelimenin argtimanleridir:

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

75

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Frequently Asked Questions, Siiriim 3.9.20

o positional argument: anahtar kelime argiimani olmayan bir argiiman. Konumsal argiimanler, bir argii-
man listesinin basinda goriinebilir ve/veya * ile baslayan bir iterable 6gesinin 6geleri olarak iletilebilir.
Ornegin, 3 ve 5, asagidaki ¢agrilarda konumsal argiimanlerdir:

complex (3, 5)
complex (* (3, 5))

argiimanler, bir islev govdesindeki adlandirilmis yerel degiskenlere atanir. Bu atamay1 yoneten kurallar igin
calls boliimiine bakin. S6zdizimsel olarak, bir argiimani temsil etmek i¢in herhangi bir ifade kullanilabilir;
degerlendirilen deger yerel degigkene atanir.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asenkron baglam yoneticisi async with ifadesinde goriilen ortami1__aenter_ () ve__aexit__ () yon-
temlerini tanimlayarak kontrol eden bir nesne. PEP 492 de anlatild.

asenkron jenerator asynchronous generator iterator dondiiren bir iglev. Bir async for dongiisiinde kullanilabi-
len bir dizi deger iiretmek icin yield ifadeleri icermesi diginda async def ile tanimlanmig bir egyordam
islevine benziyor.

Genellikle bir asenkron iireteg islevine atifta bulunur, ancak bazi baglamlarda bir asynchronous generator ite-
rator ‘e karsilik gelebilir. Amaglanan anlamin net olmadigi durumlarda, tam terimlerin kullanilmasi belirsizligi
onler.

Bir asenkron iiretici fonksiyonu, await ifadelerinin yani sira async for ve async with ifadeleri ige-
rebilir.

asenkron jenerator yineleyici Bir asynchronous generator iglevi tarafindan olusturulan bir nesne.

Bu, __anext__ () yontemi kullanilarak ¢agrildifinda, bir sonraki yield ifadesine kadar asynchronous
generator iglevinin govdesini yiiriitecek, beklenebilir bir nesne dondiiren bir asynchronous iterator.

Her yield, konum yiiriitme durumunu hatirlayarak (yerel degiskenler ve bekleyen try ifadeleri dahil) igle-
meyi gecici olarak askiya alir. asynchronous generator iterator, __anext__ () tarafindan dondiiriilen bagka
birbeklenebilir ile etkili bir sekilde devam ettiginde, kaldig1 yerden devam eder. Bkz. PEP 492 ve PEP 525.

eszamansiz yinelenebilir Bir async for ifadesinde kullanilabilen bir nesne. __aiter__ () yonteminden bir
asynchronous iterator dondiirmelidir. PEP 492 ‘de tanitildi.

asenkron yineleyici An object that implements the __aiter_ () and __anext__ () methods. __anext_
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__ () method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

nitelik A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

beklenebilir await ifadesinde kullanilabilen bir nesne. Bir coroutine veya __await__ () yontemine sahip bir
nesne olabilir. Ayrica bakiniz PEP 492.

BDFL Benevolent Dictator For Life, nami1 diger Guido van Rossum, Python’un yaraticisi.

ikili dosya Bir dosya nesnesi bayt benzeri nesneler okuyabilir ve yazabilir. Ikili dosya 6rnekleri, ikili modda ac1-
lan dosyalardir ('rb', 'wb' veya 'rb+'), sys.stdin.buffer, sys.stdout.buffer ve io.
BytesIOve gzip.GzipFile ornekleri.

Ayrica st r nesnelerini okuyabilen ve yazabilen bir dosya nesnesi igin fext file ‘a bakin.

bayt benzeri nesne bufferobjects ‘i destekleyen ve bir C-contiguous arabellegini disa aktarabilen bir nesne. Bu, tim
bytes,bytearrayvearray.array nesnelerinin yani sira bircok yaygin memoryview nesnesini igerir.
Bayt benzeri nesneler, ikili verilerle calisan ¢esitli iglemler i¢in kullanilabilir; bunlara sikigtirma, ikili dosyaya
kaydetme ve bir soket tizerinden gonderme dahildir.

Baz1 islemler, degigsken olmast icin ikili verilere ihtiyac duyar. Belgeler genellikle bunlara “okuma-yazma
bayt benzeri nesneler” olarak atifta bulunur. Ornek degistirilebilir arabellek nesneleri bytearray ve bir
bytearray memoryview icerir. Diger islemler, ikili verilerin degismez nesnelerde (“salt okunur bayt

76 Ek A. Sézlik

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

Python Frequently Asked Questions, Siiriim 3.9.20

benzeri nesneler”) depolanmasini gerektirir; bunlarin 6rnekleri arasinda bytes ve bir bytes nesnesinin
memoryview bulunur.

bayt kodu Python kaynak kodu, bir Python programimin CPython yorumlayicisindaki dahili temsili olan bayt ko-
dunda derlenir. Bayt kodu ayrica .pyc dosyalarinda onbellege alinir, boylece ayni dosyanin ikinci kez ¢a-
Ligtirilmast daha hizli olur (kaynaktan bayt koduna yeniden derleme onlenebilir). Bu “ara dilin”, her bir bayt
koduna kargilik gelen makine kodunu yiirtiten bir sanal makine tizerinde ¢alistig1 sdylenir. Bayt kodlarinin
farkli Python sanal makineleri arasinda calismasi veya Python stiriimleri arasinda kararli olmasi beklenmedi-
§ini unutmayin.

Bayt kodu talimatlarimin bir listesi bytecodes dokiimaninda bulunabilir.
geri cagirmak Gelecekte bir noktada yiiriitiilecek bir argiiman olarak iletilen bir alt program iglevi.

smif Kullanici tanimli nesneler olugturmak icin bir sablon. Sinif tanimlar1 normalde sinifin 6rnekleri tizerinde ¢aligan
yontem tanimlarini igerir.

smif degiskeni Bir sinifta tanimlanmis ve yalnizca sinif diizeyinde (yani sinifin bir 6rneginde degil) degistirilmesi
amaclanan bir degisken.

zorlama Ayni tiirden iki argiiman iceren bir iglem sirasinda bir tiir 6rneginin digerine ortiik olarak doniisttirtilmesi.
Ornegin, int (3.15), kayan noktali sayly1 3 tamsayisina doniistiiriir, ancak 3+4 .5 ‘te her argiiman farkli
tiirdedir (bir int, bir kayan nokta), ve her ikisi de eklenmeden 6nce ayni tiire doniistiiriilmelidir, aksi takdirde
bir TypeError yiikseltir. Zorlama olmadan, uyumlu tiirlerin bile tiim argtimanlarinin programci tarafindan
ayni degere normallegtirilmesi gerekir, 6rnegin: 3+4, 5 yerine £ loat (3) +4, 5.

karmasgik say1 Tiim sayilarin bir reel kistm ve bir sanal kisim toplami olarak ifade edildigi bilinen gercek say1 sis-
teminin bir uzantisi. Hayali sayilar, hayali birimin gercek katlaridir (-1 ‘in karekokii), genellikle matematikte
i veya mithendislikte 7 ile yazilir. Python, bu son gosterimle yazilan karmagik sayilar icin yerlesik destege sa-
hiptir; hayali kisim bir j son ekiyle yazilir, 6rnegin 3+1 j. math modiiliiniin karmagsik esdegerlerine erismek
icin cmath kullanin. Karmagik sayilarin kullanimi oldukga gelismis bir matematiksel ozelliktir. Onlara olan
ihtiyacin farkinda degilseniz, onlar1 giivenle gérmezden gelebileceginiz neredeyse kesindir.

baglam yoneticisi with ifadesinde goriilen ortami __enter__ () ve __exit__ () yontemlerini tanimlayarak
kontrol eden bir nesne. Bakiniz PEP 343.

baglam degiskeni Baglamina bagl olarak farkli degerler alabilen bir degisken. Bu, her yiiriitme is pargaciginin
bir degisken icin farkli bir degere sahip olabilecegi Thread-Local Storage’a benzer. Bununla birlikte, baglam
degiskenleriyle, bir yiirtitme is parcaciginda birkac baglam olabilir ve baglam degiskenlerinin ana kullanimi,
eszamanli zaman uyumsuz gorevlerde degiskenleri izlemektir. Bakiniz contextvars.

bitisik Bir arabellek, C-bitisik veya Fortran bitiik ise tam olarak bitisik olarak kabul edilir. Sifir boyutlu arabellekler
C ve Fortran bitigiktir. Tek boyutlu dizilerde, 6geler sifirdan baglayarak artan dizinler sirasina gore bellekte
yan yana yerlestirilmelidir. Cok boyutlu C-bitisik dizilerde, 6Zeleri bellek adresi sirasina gore ziyaret ederken
son dizin en hizli sekilde degisir. Ancak, Fortran bitisik dizilerinde, ilk dizin en hizli sekilde degisir.

esyordam Egyordamlar, altyordamlarin daha genellestirilmis bir bicimidir. Alt programlara bir noktada girilir ve
baska bir noktada cikilir. Egyordamlar bir¢ok farkli noktada girilebilir, ¢ikilabilir ve devam ettirilebilir. async
def ifadesi ile uygulanabilirler. Ayrica bakiniz PEP 492.

esyordam islevi Bir coroutine nesnesi dondiiren bir iglev. Bir esyordam iglevi async def ifadesiyle tanimlana-
bilir ve await, async for ve async with anahtar kelimelerini igerebilir. Bunlar PEP 492 tarafindan
tanitildi.

CPython Python programlama dilinin python.org iizerinde dagitildig: sekliyle kuralli uygulamasi. “CPython” terimi,
gerektiginde bu uygulamayi Jython veya IronPython gibi digerlerinden ayirmak i¢in kullanilir.

dekorator Genellikle @wrapper sozdizimi kullanilarak bir islev doniigtimii olarak uygulanan, bagka bir iglevi don-
diiren bir iglev. Dekoratorler i¢in yaygin ornekler sunlardir: classmethod () ve staticmethod ().

Dekorator sozdizimi yalnizca sozdizimsel sekerdir, asagidaki iki islev tanim1 anlamsal olarak esdegerdir:

def f (arqg):

f = staticmethod (f)

(continues on next page)

77

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Python Frequently Asked Questions, Siiriim 3.9.20

(onceki sayfadan devam)

@staticmethod
def f (arqg):

Ayni1 kavram siniflar i¢in de mevcuttur, ancak orada daha az kullanilir. Dekoratorler hakkinda daha fazla bilgi
icin function definitions ve class definitions belgelerine bakin.

tanimlayic1 __get_ (),__set_ () veya__delete__ () yontemlerini tanimlayan herhangi bir nesne. Bir
sinif 6zniteligi bir tanimlayict oldugunda, 6znitelik aramast iizerine 6zel baglama davranist tetiklenir. Normal-
de, bir 6zniteligi almak, ayarlamak veya silmek i¢in a.b kullanmak, a icin sinif sozliigtinde b adli nesneyi arar,
ancak b bir tanimlayici ise, ilgili tanimlayici yontemi ¢agrilir. Tanimlayicilar: anlamak, Python’u derinleme-
sine anlamanin anahtaridir ¢iinkii bunlar, iglevler, yontemler, ozellikler, sinif yontemleri, statik yontemler ve

stiper siniflara bagvuru gibi bir¢ok tzelligin temelidir.

Tanmimlayicilarin yontemleri hakkinda daha fazla bilgi icin, bkz. descriptors veya Descriptor How To Guide.

sozliikk Rasgele anahtarlarin degerlerle eslendigi iliskisel bir dizi. Anahtarlar,
temleriyle herhangi bir nesne olabilir. Perl'de karma denir.

hash__ () ve __eq__ () yon-

sozlitk anlama Ogelerin tiimiinii veya bir kismim yinelenebilir bir sekilde islemenin ve sonuglar1 iceren bir soz-
liik dondiirmenin kompakt bir yolu. results = {n: n ** 2 for range(10)},n ** 2 degerine
eslenmis n anahtarimi iceren bir sozliik olusturur. Bkz. comprehensions.

sozliik goriiniimii dict.keys (), dict.values () ve dict.items () ‘den dondiiriilen nesnelere sozlikk
goriiniimleri denir. Sozliigiin girigleri {izerinde dinamik bir goriiniim saglarlar; bu, sozlilk degistiginde go-
riiniimiin bu degisiklikleri yansittig1 anlamina gelir. Sozlik goriintimiinii tam liste olmaya zorlamak icin
list (dictview) kullanin. Bakiniz dict-views.

belge dizisi Bir sinif, islev veya modiilde ilk ifade olarak goriinen bir dize degismezi. Paket yiiriitiildiigiinde yoksa-
yilirken, derleyici tarafindan taninir ve ¢evreleyen smifin, iglevin veya modiiliin __doc___ 6zniteligine yer-
lestirilir. I¢ gozlem yoluyla erisilebilir oldugundan, nesnenin belgelenmesi icin kurall yerdir.

duck-typing Dogru arayiize sahip olup olmadigini belirlemek icin bir nesnenin tiirtine bakmayan bir programlama
stili; bunun yerine, yontem veya nitelik basitce cagrilir veya kullanilir (“Ordek gibi goriiniiyorsa ve drdek gibi
vakliyorsa, ordek olmahdir.”) lyi tasarlanmis kod, belirli tiirlerden ziyade arayiizleri vurgulayarak, polimorfik
ikameye izin vererek esnekligini artirir. Ordek yazma, t ype () veya isinstance () kullanan testleri 6nler.
(Ancak, ordek yazmanin abstract base class ile tamamlanabilecegini unutmayin.) Bunun yerine, genellikle
hasattr () testleri veya EAFP programlamasini kullanir.

EAFP Af dilemek izin almaktan daha kolaydir. Bu yaygin Python kodlama stili, gecerli anahtarlarin veya niteliklerin
varligini varsayar ve varsayimin yanlis cikmasi durumunda istisnalar1 yakalar. Bu temiz ve hizli stil, birgok t ry
ve except ifadesinin varlig ile karakterize edilir. Teknik, C gibi diger bircok dilde ortak olan LBYL stiliyle
celisir.

ifade (deger dondiiriir) Bir degere gore degerlendirilebilecek bir sozdizimi pargasi. Bagka bir deyisle, bir ifade,
tiimii bir deger dondiiren sabit degerler, adlar, 6znitelik erisimi, islegler veya islev cagrilar gibi ifade dgelerinin
bir toplamidir. Diger bircok dilin aksine, tiim dil yapilar1 ifade degildir. Ayrica while gibi kullanilamayan
ifadeler de vardir. Atamalar da deger dondiirmeyen ifadelerdir (statement).

uzatma modiilii Cekirdekle ve kullanici koduyla etkilesim kurmak i¢in Python'un C APT’sini kullanan, C veya C++
ile yazilmis bir modiil.

f-string Oneki '£' veya 'F' olan dize degismezleri genellikle “f-strings” olarak adlandirilir; bu, formatted string
literals ‘in kisaltmasidir. Ayrica bkz. PEP 498.

dosya nesnesi Dosya yonelimli bir API'yi (read () veya write () gibi yontemlerle) temel alinan bir kaynaga
gosteren bir nesne. Olusturulma sekline bagli olarak, bir dosya nesnesi gergek bir disk iizerindeki dosyaya
veya bagka bir tiir depolama veya iletisim aygitina (6rnegin standart giris/cikis, bellek i¢i arabellekler, yuvalar,
borular vb.) erisime aracilik edebilir. . Dosya nesneleri ayrica file-like objects veya streams olarak da adlandirilir.

Aslinda ti¢ dosya nesnesi kategorisi vardir: ham binary files, arabellege alinmis binary files ve text files. Arayiiz-
leri 1o modiiliinde tanimlanmistir. Bir dosya nesnesi yaratmanin kuralli yolu open () islevini kullanmaktir.

78 Ek A. Sézlik

https://www.python.org/dev/peps/pep-0498

Python Frequently Asked Questions, Siiriim 3.9.20

dosya benzeri nesne dosya nesnesi ile esanlamlidir.
bulucu ige aktarilmakta olan bir modiil igin loader ‘1 bulmaya galigan bir nesne.

Python 3.3’ten beri, iki ¢esit bulucu vardir: sys.meta_path ile kullamilmak tizere meta yol bulucular, ve
sys.path_hooks ile kullanilmak iizere yol girisi bulucular.

Daha fazla ayrint1 i¢in PEP 302, PEP 420 ve PEP 451 bakin.

kat boliimii En yakin tam saytya yuvarlayan matematiksel bolme. Kat bolme operatorii // seklindedir. Ornegin,
11 // 4 ifadesi, gergek yiizer bolme tarafindan dondiiriilen 2 . 75 degerinin aksine 2 olarak degerlendirilir.
(=11) // 4 ‘in -3 olduguna dikkat edin, ciinkii bu -2 . 75 yuvarlatilmis asagi. Bakiniz PEP 238.

fonksiyon Bir arayana bir deger dondiiren bir dizi ifade. Ayrica, govdenin yiiriitilmesinde kullanilabilen sifir veya
daha fazla argiiman iletilebilir. Ayrica parameter, method ve function bolimiine bakin.

fonksiyon aciklamasi Bir islev parametresinin veya doniis degerinin ek agiklamast.

Islev ek aciklamalar1 genellikle rype hints icin kullanilir: Grnegin, bu fonksiyonun iki int argiiman almasi ve
ayrica bir int doniis degerine sahip olmasi beklenir

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Islev agiklama sozdizimi function boliimiinde aciklanmaktadir.
See variable annotation and PEP 484, which describe this functionality.

_ future__ Bir future ifadesi, from __ future__ import <feature>, derleyiciyi, Python'un gelecekteki
bir stirimiinde standart hale gelecek olan sozdizimini veya semantigi kullanarak mevcut modiilii derlemeye
yonlendirir. ___future__ modiilli, feature’in olasi degerlerini belgeler. Bu modiilii ice aktararak ve degis-
kenlerini degerlendirerek, dile ilk kez yeni bir 6zellifin ne zaman eklendigini ve ne zaman varsayilan olacagini
(ya da yaptigini1) gorebilirsiniz:

>>> import _ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

¢op toplama Artik kullanilmadiginda bellegi bogaltma islemi. Python, referans sayimi ve referans dongiilerini al-
gilay1p kirabilen bir dongiisel ¢op toplayict aracilifiyla cop toplama gergeklestirir. Cop toplayict gc modiilii
kullanilarak kontrol edilebilir.

jenerator Bir generator iterator dondiiren bir islev. Bir for dongiisiinde kullanilabilen bir dizi deger iiretmek icin
yield ifadeleri icermesi veya next () isleviyle birer birer alinabilmesi disinda normal bir igleve benziyor.

Genellikle bir iiretici iglevine atifta bulunur, ancak bazi baglamlarda bir jenerator yineleyicisine atifta buluna-
bilir. Amaglanan anlamin net olmadig1 durumlarda, tam terimlerin kullanilmas1 belirsizligi onler.

jenerator yineleyici Bir generator iglevi tarafindan olugturulan bir nesne.

Her yield, konum yiiriitme durumunu hatirlayarak (yerel degiskenler ve bekleyen try ifadeleri dahil) islemeyi
gecici olarak askiya alir. jenerator yineleyici devam ettiginde, kaldig1 yerden devam eder (her ¢agrida yeniden
baglayan iglevlerin aksine).

jenerator ifadesi Yineleyici dondiiren bir ifade. Bir dongii degiskenini, aralifi ve istege bagli bir i £ yan tiimcesini
tanimlayan bir for yan timcesinin takip ettigi normal bir ifadeye benziyor. Birlestirilmis ifade, bir ¢cevreleyen
icin degerler tiretir:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

genel islev Farkl tiirler icin ayni islemi uygulayan birden cok islevden olusan bir islev. Bir ¢agri sirasinda hangi
uygulamanin kullanilmasi gerektigi, gonderme algoritmast tarafindan belirlenir.

Ayrica single dispatch sozliik girdisine, functools.singledispatch () dekoratoriine ve PEP 443 ‘e
bakin.

79

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0443

Python Frequently Asked Questions, Siiriim 3.9.20

genel tip Parametrelendirilebilen bir 7ype; tipik olarak bir konteyner sinifi, 6rnegin 1ist veya dict. rype hint ve
annotation i¢in kullanilir.

Daha fazla ayrint1 i¢in generic allias types, PEP 483, PEP 484, PEP 585 ve t yping modiiliine bakin.
GIL Bakinz global interpreter lock.

genel terciiman Kkilidi CPyrhon yorumlayicisi tarafindan ayni anda yalnizca bir ig parcaciginin Python byrecode u
yiiriitmesini saglamak icin kullanilan mekanizma. Bu, nesne modelini (dict gibi kritik yerlesik tiirler da-
hil) eszamanli erisime kars1 ortiik olarak giivenli hale getirerek CPython uygulamasini basitlestirir. Tiim yo-
rumlayiciy kilitlemek, ¢ok islemcili makinelerin sagladig paralellifin ¢cogu pahasina, yorumlayicinin ¢ok ig
parcacikli olmasini kolaylagtirir.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.

“Serbest ig pargacikli” bir yorumlayici (paylasilan verileri cok daha ince bir ayrint1 diizeyinde kilitleyen) olug-
turma cabalari, ortak tek iglemcili durumda performans duistigii icin basarili olmamistir. Bu performans soru-
nunun iistesinden gelinmesinin uygulamay1 cok daha karmagik hale getirecegine ve dolayisiyla bakimini daha
maliyetli hale getirecegine inanilmaktadir.

karma tabanh pyc Gecerliligini belirlemek i¢in ilgili kaynak dosyanin son degistirilme zamamn yerine karma dege-
rini kullanan bir bayt kodu 6nbellek dosyasi. Bakiniz pyc-invalidation.

yikanabilir Bir nesne, dmrii boyunca asla degismeyen bir karma degere sahipse (bir __hash__ () yOntemine
ihtiyac duyar) ve diger nesnelerle kargilagtirilabilirse (bir __eq__ () yontemine ihtiya¢ duyar) hashable olur.
. Esit kargilagtiran Hashable nesneleri ayn1 karma degerine sahip olmalidir.

Hashability, bir nesneyi bir sozliik anahtart ve bir set iiyesi olarak kullanilabilir hale getirir, ¢linkii bu veri
yapilar1 hash degerini dahili olarak kullanir.

Python’un degismez yerlesik nesnelerinin ¢ogu, yikanabilir; degistirilebilir kaplar (listeler veya sozliikler gibi)
degildir; degismez kaplar (ttipler ve donmus kiimeler gibi) yalnizca 6gelerinin yikanabilir olmasi durumunda
yikanabilirdir. Kullanici tanimli siniflarin 6rnekleri olan nesneler varsayilan olarak hash edilebilirdir. Hepsi
esit olmayani karsilagtirir (kendileriyle haric) ve hash degerleri 1d () ‘lerinden turetilir.

BOSTA An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python.

degismez Sabit degeri olan bir nesne. Degismez nesneler arasinda sayilar, dizeler ve demetler bulunur. Boyle bir
nesne degistirilemez. Farkli bir degerin saklanmas1 gerekiyorsa yeni bir nesne olusturulmahdir. Ornegin bir
sozliikte anahtar olarak, sabit bir karma degerinin gerekli oldugu yerlerde 6nemli bir rol oynarlar.

ice aktarim yolu ice aktarilacak modiiller igin path based finder tarafindan aranan konumlarin (veya path entries)
listesi. Ice aktarma sirasinda, bu konum listesi genellikle sy's . path adresinden gelir, ancak alt paketler icin
iist paketin __path__ ozelliginden de gelebilir.

ice aktarma Bir modiildeki Python kodunun bagka bir modiildeki Python koduna sunulmas siireci.
ice aktaric1 Bir modiili hem bulan hem de yiikleyen bir nesne; hem bir finder hem de loader nesnesi.

etkilesimli Python’un etkilesimli bir yorumlayicis1 vardir; bu, yorumlayici isteminde ifadeler ve ifadeler girebilece-
giniz, bunlar1 hemen caligtirabileceginiz ve sonuglarin1 gorebileceginiz anlamina gelir. Herhangi bir argiiman
olmadan python ‘u baglatmaniz yeterlidir (muhtemelen bilgisayarinizin ana meniisiinden secerek). Yeni fi-
kirleri test etmenin veya modiilleri ve paketleri incelemenin ¢ok giiclii bir yoludur (help (x) ‘i unutmayin).

yorumlanmis Python, derlenmis bir dilin aksine yorumlanmig bir dildir, ancak bayt kodu derleyicisinin varligi
nedeniyle ayrim bulanik olabilir. Bu, kaynak dosyalarin daha sonra caligtirilacak bir yiiriitiilebilir dosya olus-
turmadan dogrudan calistirilabilecegi anlamina gelir. Yorumlanan diller genellikle derlenmis dillerden daha
kisa bir gelistirme/hata ayiklama dongiisiine sahiptir, ancak programlari genellikle daha yavag caligir. Ayrica
bkz. interactive.

terciiman kapatma Kapatilmasi istendiginde, Python yorumlayicisi, modiiller ve gesitli kritik i¢ yapilar gibi tahsis
edilen tiim kaynaklar1 kademeli olarak serbest biraktif1 6zel bir asamaya girer. Ayrica garbage collector igin

80 Ek A. Sézlik

https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

Python Frequently Asked Questions, Siiriim 3.9.20

birkag cagr1 yapar. Bu, kullanic1 taniml yikicilarda veya zayif referans geri aramalarinda kodun yiirtitiilmesi-
ni tetikleyebilir. Kapatma asamasinda yiiriitiilen kod, dayandig1 kaynaklar artik ¢alismayabileceginden cesitli
istisnalarla karsilagabilir (yaygin ornekler kitaplik modiilleri veya uyari makineleridir).

Yorumlayicinin kapatilmasinin ana nedeni, __main__ modiiliiniin veya ¢alistirilan betigin yiiriitmeyi bitirmis
olmasidir.

yinelenebilir Uyelerini teker teker dondiirebilen bir nesne. Yineleme ornekleri, tiim dizi tiirlerini (1ist, str, and
tuple gibi) ve dict, dosya objeleri gibi bazi dizi olmayan tiirleri ve bir __iter_ () yontemiyle veya dizi
semantigini uygulayan bir __getitem__ () yontemiyle tanimladigimz tiim siniflarin nesnelerini igerir.

Yinelenebilirler bir for dongiistinde ve bir dizinin gerekli oldugu diger bir¢ok yerde kullanilabilir (zip (),
map (), ...). Yerlesik iter () islevine argiman olarak yinelenebilir bir nesne iletildiginde, nesne i¢in bir
yineleyici dondiiriir. Bu yineleyici, degerler kiimesi iizerinden bir gecis i¢in iyidir. Yinelenebilirleri kullanirken,
genellikle iter () cagirmaniz veya yineleyici nesnelerle kendiniz ilgilenmeniz gerekmez. for ifadesi bunu
sizin i¢in otomatik olarak yapar ve yineleyiciyi dongii siiresince tutmak icin gegici bir adsiz degisken olugturur.
Ayrica bkz. iterator, sequence ve generator.

yineleyici Bir veri akisini temsil eden bir nesne. Yineleyicinin ___next__ () yontemine (veya yerlesik next () is-
levine iletilmesi) yinelenen ¢agrilar, akistaki ardigik 6geleri dondiiriir. Daha fazla veri bulunmadiginda, bunun
yerine bir StopIteration istisnasi olusturulur. Bu noktada, yineleyici nesnesi tiikenir ve ___next__ ()
yontemine yapilan diger ¢agrilar yalmzca StopIteration dgesini yeniden yiikseltir. Yineleyicilerin, yi-
neleyici nesnesinin kendisini dondiiren bir __iter__ () yontemine sahip olmalar1 gerekir, boylece her yi-
neleyici de yinelenebilir ve diger yinelenebilirlerin kabul edildigi cogu yerde kullanilabilir. Dikkate deger bir
istisna, birden cok yineleme gecisini deneyen koddur. Bir kapsayici nesnesi (6rnegin bir 1ist), onu iter ()
islevine her ilettiginizde veya onu bir for dongiisiinde kullandifinizda yeni bir yineleyici iiretir. Bunu bir
yineleyiciyle denemek, onceki yineleme gecisinde kullanilan aym tiikkenmig yineleyici nesnesini dondiirerek
bos bir kap gibi goriinmesini saglar.

Daha fazla bilgi typeiter i¢inde bulunabilir.

anahtar islev Anahtar iglevi veya harmanlama iglevi, siralama veya siralama igin kullanilan bir degeri dondiiren bir
cagrilabilir. Ornegin, locale.strxfrm (), yerel ayara 6zgii siralama kurallarinin farkinda olan bir siralama
anahtar1 tiretmek icin kullanilir.

Python'daki bir dizi arag, 68elerin nasil siralandigini veya gruplandirildigini kontrol etmek icin temel is-
levleri kabul eder. Bunlar min (), max (), sorted (), list.sort (), heapg.merge (), heapq.
nsmallest (), heapg.nlargest () ve itertools.groupby ().

Bir tus islevi olusturmanin birkag yolu vardir. Ornegin. str.lower () yontemi, biiyiik/kiiciik harfe duyarlt
olmayan siralamalar i¢in bir anahtar iglev iglevi gorebilir. Alternatif olarak, lambda r: (r[0], r[2])
gibi bir lambda ifadesinden bir anahtar iglevi olusturulabilir. Ayrica, operator modili {i¢ temel islev
kurucusu saglar: attrgetter (), itemgetter () vemethodcaller (). Anahtar iglevlerin nasil olug-
turulacagi ve kullanilacagina iliskin 6rnekler i¢in Sorting HOW TO béliimiine bakin.

anahtar kelime argiimam Bakiniz argument.

lambda islev cagrildiginda degerlendirilen tek bir expression ‘dan olusan anonim bir satir ici islev. Bir lambda islevi
olugturmak i¢in sozdizimi lambda [parametreler]: ifade seklindedir

LBYL Ziplamadan 6nce Bak. Bu kodlama stili, arama veya arama yapmadan 6nce 6n kogullar1 agikca test eder. Bu
stil, EAFP yaklasimiyla celigir ve bircok i f ifadesinin varligi ile karakterize edilir.

Cok is parcacikli bir ortamda, LBYL yaklagimi “bakan” ve “sicrayan” arasinda bir yaris kosulu getirme riskini
tagtyabilir. Ornegin, 1f key in mapping: return mapping[key] kodu, testten sonra, ancak ara-
madan 6nce bagka bir is parcacigi eslemeden key kaldirirsa basarisiz olabilir. Bu sorun, kilitlerle veya EAFP
yaklagimi kullanilarak ¢oziilebilir.

liste Yerlesik bir Python dizi. Adina ragmen, 6gelere erisim O(1) oldugundan, diger dillerdeki bir diziye, baglantil
bir listeden daha yakindir.

liste anlama Bir dizideki 6gelerin tiimiinii veya bir kismini islemenin ve sonuglari igeren bir liste dondiirmenin kom-
paktbiryolu. sonu¢ = ['{:#04x}'.format (x) for range(256) if x % 2 == 0],dizin-
de c¢ift onaltilik sayilar (0x..) iceren bir diziler listesi olugturur. O ile 255 arasindadir. if yan tiimcesi istege
baghdir. Atlanirsa, “aralik(256)” icindeki tiim ogeler iglenir.

81

Python Frequently Asked Questions, Siiriim 3.9.20

yiikleyici Modiil yiikleyen bir nesne. 1load_module () adinda bir yontem tanimlamalidir. Bir yiikleyici genellikle
bir finder ile dondiiriiliir. Ayrintilar icin PEP 302 ve bir soyut temel simif igin importlib.abc.Loader
boliimiine bakin.

sihirli yontem special method igin gayri resmi bir egsanlamli.

haritalama Keyfi anahtar aramalarini destekleyen ve Mapping veya MutableMapping collections-abstract-
base-classes icinde belirtilen yontemleri uygulayan bir kapsayici nesnesi temel smiflar. Ornekler ara-
sinda dict, collections.defaultdict, collections.OrderedDict ve collections.
Counter sayilabilir.

meta yol bulucu Bir finder, sys .meta_path aramasiyla dondiiriiliir. Meta yol bulucular, yol girisi buluculari ile
iligkilidir, ancak onlardan farklidir.

Meta yol bulucularin uyguladigi yontemler i¢in importlib.abc.MetaPathFinder bolumiine bakin.

metasimf Bir sinifin sinifi. Siif tanimlari, bir sinif adi, bir sinif sozliigu ve temel siiflarin bir listesini olusturur.
Metasmnif, bu ti¢ argiimani almaktan ve sinifi olugturmaktan sorumludur. Cogu nesne yonelimli programlama
dili, varsayilan bir uygulama saglar. Python’u 6zel yapan sey, 6zel metasiniflar olusturmanin miimkiin olmasidir.
Cogu kullanici bu araca hi¢bir zaman ihtiya¢ duymaz, ancak ihtiya¢ duyuldugunda, metasimiflar giiglii ve zarif
coziimler saglayabilir. Nitelik erisimini giinlige kaydetmek, is parcacig1 giivenligi eklemek, nesne olusturmay1
izlemek, tekilleri uygulamak ve diger bir¢ok gorev icin kullanilmiglardir.

Daha fazla bilgi metaclasses iginde bulunabilir.

metot Bir sinif govdesi i¢inde tanimlanan bir iglev. Bu smifin bir 6rneginin 6zniteligi olarak ¢agrilirsa, yontem 6rnek
nesnesini ilk argument (genellikle se1f olarak adlandirilir) olarak alir. Bkz. function ve nested scope.

metot kalite siralamas1 Metot Coziim Sirasi, arama sirasinda bir iiye igin temel siniflarin arandigr siradir. 2.3 sii-
riimiinden bu yana Python yorumlayicisi tarafindan kullanilan algoritmanin ayrintilari i¢in bkz. The Python
2.3 Method Resolution Order

modiil Python kodunun kurulug birimi olarak hizmet eden bir nesne. Modiiller, rastgele Python nesneleri iceren bir
ad alanina sahiptir. Modiiller, importing islemiyle Python’a yiiklenir.

Ayrica bakimz package.

modiil 6zelligi Bir modiili yiiklemek icin kullanilan ice aktarmayla ilgili bilgileri iceren bir ad alami. Bir
importlib.machinery.ModuleSpec drnegi.

MRO Bakiniz metot ¢iziim sirast.

degistirilebilir Degistirilebilir (mutable) nesneler degerlerini degistirebilir ancak idlerini koruyabilirler. Ayrica
bkz. immutable.

adlandirilmis demet “named tuple” terimi, demetten miras alan ve dizinlenebilir 6gelerine de adlandirilmis nite-
likler kullanilarak erigilebilen herhangi bir tiir veya siif igin gecerlidir. Tiir veya sinifin bagka ozellikleri de
olabilir.

Cesitli yerlesik tiirler, t ime . localtime () veos.stat () tarafindan dondiiriilen degerler de dahil olmak
tizere, tanimlama gruplari olarak adlandirilir. Bagka bir 6rnek sys.float_info:

>>> sys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Bazi adlandirilmis demetler yerlesik tiirlerdir (yukaridaki ornekler gibi). Alternatif olarak, tuple 6gesinden
miras alan ve adlandirilmis alanlari tanimlayan normal bir sinif tanimindan adlandirilmig bir tanimlama grubu
olugturulabilir. Boyle bir sinif elle yazilabilir veya fabrika iglevi collections.namedtuple () ile olug-
turulabilir. Tkinci teknik ayrica elle yazilmis veya yerlesik adlandirilmis demetlerde bulunmayan baz1 ekstra
yontemler ekler.

ad alam1 Degiskenin saklandig1 yer. Ad alanlar1 sozliikler olarak uygulanir. Nesnelerde (yontemlerde) yerel, genel
ve yerlesik ad alanlarinin yani sira i¢ ice ad alanlar1 vardir. Ad alanlari, adlandirma cakigmalarint 6nleyerek

82 Ek A. Sézlik

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

Python Frequently Asked Questions, Siiriim 3.9.20

modiilerligi destekler. Ornegin, builtins.open ve os.open () islevleri ad alanlartyla ayirt edilir. Ad
alanlari, hangi modiiliin bir islevi uyguladigini acik¢a belirterek okunabilirlige ve stirdiirtilebilirlige de yardimci
olur. Ornegin, random. seed () veya itertools.islice () yazmak, bu islevlerin sirastyla random
ve itertools modiilleri tarafindan uygulandifini acik¢a gosterir.

ad alani paketi A PEP 420 package, yalnizca alt paketler icin bir kap olarak hizmet eder. Ad alan1 paketlerinin
higbir fiziksel temsili olmayabilir ve __init__ .py dosyasi olmadigindan 6zellikle regular package gibi
degildirler.

Ayrica bkz. module.

ic ice kapsam Kapsamli bir tanimdaki bir degiskene atifta bulunma yetenegi. Ornegin, bagka bir fonksiyonun i¢inde
tanimlanan bir fonksiyon, dis fonksiyondaki degiskenlere atifta bulunabilir. i¢ ice kapsamlarin varsayilan olarak
yalnizca bagvuru i¢in caligtigini ve atama i¢in caligmadigini unutmayin. Yerel degiskenler en icteki kapsamda
hem okur hem de yazar. Benzer sekilde, global degiskenler global ad alanini okur ve yazar. nonlocal, dig
kapsamlara yazmaya izin verir.

yeni stil stmif Artik tiim sinif nesneleri icin kullanilan smiflarin lezzetinin eski adi. Onceki Python siiriimlerinde,
yalnizca yeni stil siniflar1 Python'un ___slots__, tammlayicilar, 6zellikler, getattribute_ (), simf
yontemleri ve statik yontemler gibi daha yeni, ¢ok yonlii 6zelliklerini kullanabilirdi.

obje Durum (6znitelikler veya deger) ve tanimlanmig davranig (yontemler) igeren herhangi bir veri. Ayrica herhangi
bir yeni tarz sinifin nihai temel smifi.

paket A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with an __path___ attribute.

Ayrica bkz. regular package ve namespace package.

parametre Bir function (veya yontem) taniminda, islevin kabul edebilecegi bir argument (veya bazi durumlarda,
argiimanlar) belirten adlandirilmis bir varlik. Bes ¢esit parametre vardir:

e positional-or-keyword: pozisyonel veya bir keyword argiimani olarak iletilebilen bir argiiman belirtir. Bu,
varsayilan parametre tuiriidiir, 6rnegin asagidakilerde foo ve bar:

def func(foo, bar=None):

o positional-only: yalmizca konuma gore saglanabilen bir argiiman belirtir. Yalnizca konumsal parametreler,
onlardan sonra fonksiyon taniminin parametre listesine bir / karakteri eklenerek tanimlanabilir, 6rnegin
asagidakilerde posonlyl ve posonly2:

’def func (posonlyl, posonly2, /, positional_or_keyword) :

o keyword-only: sadece anahtar kelime ile saglanabilen bir argiiman belirtir. Yalnizca anahtar kelime
(keyword-only) parametreleri, onlardan 6nceki fonksiyon taniminin parametre listesine tek bir degis-
ken konumlu parametre veya ¢iplak * dahil edilerek tanimlanabilir, 6rnegin agagidakilerde kw_onlyl ve
kw_only2:

def func(arg, *, kw_onlyl, kw_only2):

« var-positional: keyfi bir pozisyonel argiiman dizisinin saglanabilecegini belirtir (diger parametreler tara-
findan zaten kabul edilmis herhangi bir konumsal argiimana ek olarak). Boyle bir parametre, parametre
adinin basina * eklenerek tanimlanabilir, 6rnegin asagidakilerde args:

’def func (*args, **kwargs):

 var-keyword: keyfi olarak bir¢ok anahtar kelime argiimaninin saglanabilecegini belirtir (diger parametre-
ler tarafindan zaten kabul edilen herhangi bir anahtar kelime argiimanina ek olarak). Boyle bir parametre,
parametre adinin bagina * *, drnegin yukaridaki 6rnekte kwargs eklenerek tanimlanabilir.

Parametreler, hem istege bagli hem de gerekli argiimanleri ve ayrica bazi istege bagh bagimsiz degiskenler i¢in
varsayilan degerleri belirtebilir.

Ayrica bkz. argiiman, argiimanlar ve parametreler arasindaki fark, inspect .Parameter, function ve
PEP 362.

83

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0362

Python Frequently Asked Questions, Siiriim 3.9.20

yol girisi path based finder ige aktarma modiillerini bulmak i¢in bagvurdugu import path tizerindeki tek bir konum.

yol girisi bulucu Bir finder sys.path_hooks (yani bir yol giris kancast) lizerinde bir ¢agrilabilir tarafindan
dondurtiliir ve path entry verilen modiillerin nasil bulunacagin bilir.

Yol girigi bulucularinin uyguladigt yontemler i¢in importlib.abc.PathEntryFinder boliimiine ba-
kin.

yol giris kancas1 sys.path_hook listesinde, belirli bir yol girisindeki modiilleri nasil bulacagini biliyorsa, bir yol
girisi bulucu dondiiren bir ¢cagrilabilir.

yol tabanh bulucu Modiiller i¢in bir import path arayan varsayilan meta yol buluculardan biri.

yol benzeri nesne Bir dosya sistemi yolunu temsil eden bir nesne. Yol benzeri bir nesne, bir yolu temsil eden bir
str veya bytes nesnesi veya os.PathLike protokoliinii uygulayan bir nesnedir. os.PathLike pro-
tokoliinti destekleyen bir nesne, os . fspath () islevi cagrilarak bir st r veya bytes dosya sistemi yoluna
doniigtiirtilebilir; os . fsdecode () ve os.fsencode (), bunun yerine sirasiyla str veya bytes sonu-
cunu garanti etmek i¢in kullanilabilir. PEP 519 tarafindan tanitildu.

PEP Python Gelistirme Onerisi. PEP, Python topluluguna bilgi saglayan veya Python veya siirecleri ya da ortami
icin yeni bir 6zelligi aciklayan bir tasarim belgesidir. PEP’ler, 6nerilen 6zellikler i¢in 6zlii bir teknik sartname
ve bir gerekce saglamalidir.

PEP’lerin, 6nemli yeni ozellikler 6nermek, bir sorun hakkinda topluluk girdisi toplamak ve Pythona giren
tasarim kararlarimi belgelemek icin birincil mekanizmalar olmasi amaglanmugtir. PEP yazari, topluluk i¢inde
fikir birligi olusturmaktan ve muhalif goriisleri belgelemekten sorumludur.

Bakimiz PEP 1.

kisim PEP 420 icinde tanimlandig: gibi, bir ad alan1 paketine katkida bulunan tek bir dizindeki (muhtemelen bir
zip dosyasinda depolanan) bir dizi dosya.

konumsal argiiman Bakiniz argument.

gecici API Gegici bir API, standart kitapligin geriye doniik uyumluluk garantilerinden kasitl olarak harig tutulan bir
APTdir. Bu tiir arayiizlerde biiytik degisiklikler beklenmese de, gegici olarak isaretlendikleri siirece, ¢ekirdek
gelistiriciler tarafindan gerekli goriildiigii takdirde geriye doniik uyumsuz degisiklikler (arayiiztin kaldirilma-
sina kadar ve buna kadar) meydana gelebilir. Bu tiir degisiklikler karsiliksiz yapilmayacaktir - bunlar yalnizca
APTI'nin eklenmesinden 6nce gozden kacan ciddi temel kusurlar ortaya cikarsa gergeklesecektir.

Gecici APT’ler icin bile, geriye doniik uyumsuz degisiklikler “son care ¢oziimii” olarak goriiliir - tanimlanan
herhangi bir soruna geriye doniik uyumlu bir ¢6ziim bulmak i¢in her tiirlii girisimde bulunulacaktir.

Bu siireg, standart kitapligin, uzun siireler boyunca sorunlu tasarim hatalarina kilitlenmeden zaman i¢inde
gelismeye devam etmesini saglar. Daha fazla ayrint1 i¢in bkz. PEP 411.

gecici paket Bakiniz provisional API.

Python 3000 Python 3.x siiriim satirinin takma adi (uzun zaman once siiriim 3’tin piyasaya siiriilmesi uzak bir ge-
lecekte oldugu zaman ortaya cikti.) Bu ayn1 zamanda “Py3k” olarak da kisaltilir.

Pythonic Diger dillerde ortak kavramlar1 kullanarak kod uygulamak yerine Python dilinin en yaygin deyimlerini
yakindan takip eden bir fikir veya kod parcasi. Ornegin, Python’da yaygin bir deyim, bir for ifadesi kullanarak
yinelenebilir bir 6genin tiim 6geleri lizerinde dongii olusturmaktir. Diger bir¢ok dilde bu tiir bir yap1 yoktur,
bu nedenle Python’a agina olmayan kigiler bazen bunun yerine sayisal bir saya¢ kullanir:

for i in range(len(food)):
print (food[i])

Temizleyicinin aksine, Pythonic yontemi:

for piece in food:
print (piece)

nitelikli isim PEP 3155 i¢inde tanimlandig gibi, bir modiiliin genel kapsamindan o modiilde tanimlanan bir sinifa,
isleve veya yonteme giden “yolu” gosteren noktal ad. Ust diizey islevler ve smiflar icin nitelikli ad, nesnenin
adiyla aymidir:

84 Ek A. Sézlik

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Python Frequently Asked Questions, Siiriim 3.9.20

>>> class C:
class D:
def meth (self):
pass

>>> C.__ _qualname_

IC’

>>> C.D.__gualname

'C.D'

>>> C.D.meth.__gualname
'C.D.meth'

Modiillere atifta bulunmak i¢in kullanildiginda, tam nitelenmis ad, herhangi bir tist paket de dahil olmak iizere,
modiile giden tiim noktal1 yol anlamina gelir, 6rn. email .mime.text:

>>> import email.mime.text
>>> email.mime.text. name
'email.mime.text'

referans sayis1 Bir nesneye yapilan basvurularin sayisi. Bir nesnenin referans sayisi sifira diistiigiinde, yerinden
cikarilir. Referans sayimi genellikle Python kodunda goriilmez, ancak CPython uygulamasinin 6nemli bir 6ge-
sidir. sy s modiilii, programcilarin belirli bir nesne i¢in referans sayisin1 dondiirmek tizere cagirabilecekleri
bir getrefcount () islevini tanimlar.

siirekli paketleme ___init__ .py dosyasi igeren bir dizin gibi geleneksel bir package.
Ayrica bkz. ad alani paketi.

_ slots__ Ornek 6znitelikleri igin 6nceden yer bildirerek ve 6rnek sozliiklerini ortadan kaldirarak bellekten tasarruf
saglayan bir sinif icindeki bildirim. Popiiler olmasina ragmen, teknigin dogru olmasi biraz zor ve en iyi, bellek
acisindan kritik bir uygulamada ¢ok sayida 6rnegin bulundugu nadir durumlar i¢in ayrilmigtir.

dizi _ getitem__ () ozel yontemi araciligiyla tamsay: dizinlerini kullanarak verimli 6ge erisimini destekleyen
ve dizinin uzunlugunu dondiiren bir __len__ () yOntemini tanimlayan bir iterable. Baz1 yerlesik dizi tiirleri
sunlardir: 1ist, str, tuple ve bytes. dict ayrica__getitem__ () ve __len__ () ‘ide destekle-
digine dikkat edin, ancak aramalar tamsayilar yerine rastgele immutable anahtarlar1 kullandigindan bir diziden
ziyade bir esleme olarak kabul edilir.

collections.abc.Sequence soyut temel sinift;, count (), index (), contains__ (), ve
__reversed__ () ekleyereksadece _getitem__ () ve___len__ () ‘in0tesine gegen cok daha zengin
bir arayiizii tanimlar. Bu genisletilmig arabirimi uygulayan tiirler, register () kullanilarak agikca kayde-
dilebilir.

anlamak Ogelerin tiimiinii veya bir kismin1 yinelenebilir bir sekilde islemenin ve sonuglarla birlikte bir kii-
me dondiirmenin kompakt bir yolu. results = {c for c in 'abracadabra' if c not in
'abc'}, {'r', 'd'} dizelerini olusturur. Bakiniz comprehensions.

tek sevk Uygulamanin tek bir argiiman tiirtine gore secildigi bir generic function gonderimi bigimi.

parcalamak Genellikle bir sequence ‘nin bir bolimiinii iceren bir nesne. Bir dilim, 6rnegin
variable_name[1:3:5] ‘de oldugu gibi, birka¢ tane verildiginde, sayilar arasinda iki nokta ist
iiste koyarak, [] alt simge gosterimi kullanilarak olugturulur. Koseli ayrag (alt simge) gosterimi, dahili olarak
s1ice nesnelerini kullanir.

0zel metod Toplama gibi bir tiir iizerinde belirli bir islemi yiirtitmek i¢in Python tarafindan ortiik olarak cagrilan
bir yontem. Bu tiir yontemlerin cift alt ¢izgi ile baslayan ve biten adlar1 vardir. Ozel yontemler specialnames
icinde belgelenmistir.

ifade (deger dondiirmez) Bir ifade, bir paketin pargasidir (kod “blogu”). Bir ifade, bir expression veya 1 £, while
veya for gibi bir anahtar kelimeye sahip birkac yapidan biridir.

yaz1 ¢oziimleme Python’da bir dize, bir Unicode kod noktalar1 dizisidir (U+0000-U+10FFFF aralifinda). Bir di-
zeyi depolamak veya aktarmak i¢in, bir bayt dizisi olarak seri hale getirilmesi gerekir.

85

Python Frequently Asked Questions, Siiriim 3.9.20

Bir dizeyi bir bayt dizisi halinde seri hale getirmek “kodlama (encoding)” olarak bilinir ve dizeyi bayt dizisinden
yeniden olusturmak “kod ¢ozme (decoding)” olarak bilinir.

Toplu olarak “metin kodlamalar1” olarak adlandirilan ¢esitli farkli metin serilestirme kodekleri vardir.

yaz1 dosyas1 A file object st r nesnelerini okuyabilir ve yazabilir. Cogu zaman, bir metin dosyasi aslinda bir bayt yo-
nelimli veri akigina erigir ve otomatik olarak rext encoding igler. Metin dosyalarina 6rnek olarak metin modunda
acilan dosyalar ('r' veya 'w'), sys.stdin, sys.stdout ve io.StringIO ornekleri verilebilir.

Ayrica ikili dosyalar: okuyabilen ve yazabilen bir dosya nesnesi i¢in bayt benzeri nesnelere bakin.

ii¢ tirnakh dize Ug tirnak isareti (”) veya kesme isareti () ile smirlanan bir dize. Tek tirnakli dizelerde bulunmayan
herhangi bir islevsellik saglamasalar da, birka¢c nedenden dolay: faydalidirlar. bir dizeye ¢ikigsiz tek ve c¢ift
tirnak eklemeniz gerekir ve bunlar, devam karakterini kullanmadan birden ¢ok satira yayilabilir, bu da onlar1
ozellikle belge dizileri yazarken kullanigh hale getirir.

tip Bir Python nesnesinin tiirii, onun ne tiir bir nesne oldugunu belirler; her nesnenin bir tiirii vardir. Bir nesnenin
tipine ___class__ niteligi ile erigilebilir veya t ype (obj) ile alinabilir.

tip takma ad1 Bir tanimlayiciya tiir atanarak olugturulan, bir tiir igin es anlaml.

Tiir takma adlari, #iir ipuclari basitlestirmek igin kullamglidir. Ornegin:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplelint, int, int]]:
pass

bu sekilde daha okunakli hale getirilebilir:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:
pass

Bu iglevi aciklayan t yping ve PEP 484 boliimlerine bakin.

tiir ipucu Bir degisken, bir sinif niteligi veya bir iglev parametresi veya doniis degeri icin beklenen tiirii belirten bir
ek aciklama.

Ttr ipuglari istege baghdir ve Python tarafindan uygulanmaz, ancak bunlar statik tip analiz araglar1 i¢in fay-
dalidir ve kod tamamlama ve yeniden diizenleme ile IDE’lere yardimci olur.

Genel degiskenlerin, sinif ozniteliklerinin ve islevlerin tiir ipuglarina, yerel degiskenlere degil, typing.
get_type_hints () kullanmlarak erisilebilir.

Bu islevi aciklayan t yping ve PEP 484 boliimlerine bakin.

evrensel yeni satirlar Asagidakilerin tiimiiniin bir satirin bitisi olarak kabul edildigi metin akiglarin1 yorumlama-
nin bir yolu: Unix satir sonu kurali \n"', Windows kurali1 * \r\n"', ve eski Macintosh kurali '\r'. Ek bir
kullanim i¢in PEP 278 ve PEP 3116 ve ayrica bytes.splitlines () bakin.

degisken aciklama Bir degiskenin veya bir sinif 6zniteliginin ek aciklamast.

Bir degiskene veya sinif niteligine agiklama eklerken atama istege baglidir:

class C:
field: 'annotation'

Degisken aciklamalar1 genellikle fir ipuclar: igin kullanilir: 6rnegin, bu degiskenin int degerlerini almasi
beklenir:

count: int = 0

Degisken agiklama sozdizimi annassign bolimiinde agiklanmistir.

See function annotation, PEP 484 and PEP 526, which describe this functionality.

86 Ek A. Sézlik

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Python Frequently Asked Questions, Siiriim 3.9.20

sanal ortam Python kullanicilariin ve uygulamalarmin, ayni sistem tizerinde calisan diger Python uygulamalarinin
davranisina miidahale etmeden Python dagitim paketlerini kurmasina ve yiikseltmesine olanak tantyan, igbirligi
icinde yalitilmig bir ¢aligma zamani ortama.

Ayrica bakiniz venv.

sanal makine Tamamen yazilimla tanimlanmusg bir bilgisayar. Python’un sanal makinesi, bayt kodu derleyicisi ta-
rafindan yayinlanan bytecode ‘u ¢alistirir.

Python’un Zen’i Dili anlamaya ve kullanmaya yardimci olan Python tasarim ilkeleri ve felsefelerinin listesi. Liste,
etkilesimli komut isteminde “import this” yazarak bulunabilir.

87

Python Frequently Asked Questions, Siiriim 3.9.20

88

Ek A. Sézlik

ex B

Dokumanlar hakkinda

Bu dokiimanlar, Python dokiimanlar1 i¢in 6zel olarak yazilmis bir dokiiman iglemcisi olan Sphinx tarafindan reSt-
ructuredText kaynaklarindan olugturulur.

Dokiimantasyonun ve arag zincirinin gelistirilmesi, tipk1 Python’un kendisi gibi tamamen goniillui bir cabadir. Katkida
bulunmak istiyorsaniz, nasil yapacaginiza iligkin bilgi i¢in liitfen reporting-bugs sayfasina goz atin. Yeni goniilliilere
her zaman aci181z!

Destekleri i¢in tesekkiirler:
 Fred L. Drake, Jr., orijinal Python dokiimantasyon arag setinin yaraticisi ve icerigin ¢ogunun yazart;
« the Docutils project for creating reStructuredText and the Docutils suite;

 Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Python Dokimantasyonuna Katkida Bulunanlar

Bir¢ok kisi Python diline, Python standart kiitiiphanesine ve Python belgelerine katkida bulunmustur. Katkida bulu-
nanlarin kismi listesi i¢in Python kaynak dagitiminda Misc/ACKS adresine bakin.

Python toplulugunun girdileri ve katkilariyla Python boyle harika bir dokiimantasyona sahip — Tesekkiirler!

89

http://sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/
https://github.com/python/cpython/tree/3.9/Misc/ACKS

Python Frequently Asked Questions, Siiriim 3.9.20

90

Ek B. Dokiimanlar hakkinda

ek G

Tarihge ve Lisans

C.1 Yazilimin tarihcesi

Python, 1990’larin baginda Guido van Rossum tarafindan Hollanda’da Stichting Mathematisch Centrum’da (CWI,
bkz. https://www.cwi.nl/) ABC adli bir dilin devam1 olarak olusturuldu. Guido, digerlerinin oldukga katkisi olmasina
ragmen, Python’un ana yazari olmaya devam ediyor.

1995’te Guido, yazilimin gesitli siiriimlerini yaymladig1 Virginia, Reston’daki Ulusal Arastirma Girigimleri Kuru-
mu’'nda (CNRI, bkz. https://www.cnri.reston.va.us/) Python iizerindeki ¢aligmalarina devam etti.

Mayis 2000°’de, Guido ve Python c¢ekirdek gelistirme ekibi, BeOpen PythonLabs ekibini olugturmak icin Be-
Open.com’a tagindi. Ayni1 yilin Ekim ayinda PythonLabs ekibi Digital Creations’a (simdi Zope Corporation; bkz.
https://www.zope.org/) tagindi. 2001 yilinda, Python Yazilim Vakf1 (PSF, bkz. https://www.python.org/psf/) kurul-
du, ozellikle Python ile ilgili Fikri Miilkiyete sahip olmak i¢in olusturulmug kar amaci giitmeyen bir organizasyon.
Zope Corporation, PSF’nin sponsor tiyesidir.

Tiim Python stirtimleri Agik Kaynaklidir (A¢ik Kaynak Tanimu i¢in bkz. https://opensource.org/). Tarihsel olarak,
tiimii olmasa da ¢cogu Python siiriimleri de GPL uyumluydu; agagidaki tablo cesitli yayinlar1 6zetlemektedir.

Yayin Sundan tiredi: | Yil Sahibi GPL uyumlu mu?
0.9.0dan 1.2’ye | n/a 1991-1995 CWI evet
1.3dan 1.5.2’ye | 1.2 1995-1999 CNRI evet
1.6 1.5.2 2000 CNRI hayir
2.0 1.6 2000 BeOpen.com | hayir
1.6.1 1.6 2001 CNRI hay1r
2.1 2.0+1.6.1 2001 PSF hayir
2.0.1 2.0+1.6.1 2001 PSF evet
2.1.1 2.14+2.0.1 2001 PSF evet
2.1.2 2.1.1 2002 PSF evet
2.13 2.1.2 2002 PSF evet
2.2 ve lizeri 2.1.1 2001-Giintimiiz | PSF evet

Not: GPL uyumlu olmasi, Python’u GPL kapsaminda dagittigimiz anlamina gelmez. Tiim Python lisanslari, GPL'den
farkli olarak, degisikliklerinizi agik kaynak yapmadan degistirilmig bir siiriimii dagitmaniza izin verir. GPL uyumlu
lisanslar, Python'u GPL kapsaminda yayinlanan diger yazilimlarla birlestirmeyi miimkiin kilar; digerleri yapmaz.

91

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Frequently Asked Questions, Siiriim 3.9.20

Bu yayinlar1 miimkiin kilmak i¢in Guido'nun yonetimi altinda ¢alisan bircok goniilliiye tesekkiirler.

C.2 Python’a erismek veya baska bir sekilde kullanmak icin sartlar
ve kosullar

Python yazilimi ve belgeleri PSF Lisans Anlasmas: kapsaminda lisanslanmastir.

Python 3.8.6’dan baslayarak, belgelerdeki 6rnekler, tarifler ve diger kodlar, PSF Lisans Sozlesmesi ve Zero-Clause
BSD license kapsaminda ¢ift lisanshdir.

Python’a dahil edilen baz1 yazilimlar farkli lisanslar altindadir. Lisanslar, bu lisansa giren kodla listelenir. Bu lisans-
larin eksik listesi i¢in bkz. Tiizel Yazilimlar icin Lisanslar ve Onaylar.

C.2.1 PYTHON iCiN PSF LISANS ANLASMASI 3.9.20

1. This LICENSE AGREEMENT is between the Python Software Foundation.
— ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.9.20 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF.
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.9.20 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All.
—Rights

Reserved" are retained in Python 3.9.20 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.9.20 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.9.20.

4. PSF is making Python 3.9.20 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY.
—OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY.
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF PYTHON 3.9.20 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.9.20

92 Ek C. Tarihce ve Lisans

Python Frequently Asked Questions, Siiriim 3.9.20

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A.
—RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.9.20, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—~relationship

of agency, partnership, or joint venture between PSF and Licensee. .
—This License

Agreement does not grant permission to use PSF trademarks or trade name.
—~in a

trademark sense to endorse or promote products or services of Licensee,.
—O0or any

third party.

8. By copying, installing or otherwise using Python 3.9.20, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 PYTHON 2.0 iCiN BEOPEN.COM LiSANS SOZLESMESI

BEOPEN PYTHON ACIK KAYNAK LISANS SOZLESMESI SURUM 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any

(continues on next page)

C.2. Python’a erismek veya baska bir sekilde kullanmak icin sartlar ve kosullar 93

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 PYTHON 1.6.1 iCIN CNRI LISANS ANLASMASI

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,

(continues on next page)

94

Ek C. Tarihce ve Lisans

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 0.9.0 ARASI 1.2 PYTHON iCiN CWI LISANS SOZLESMESI

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 PYTHON 3.9.20 BELGELERINDEKIi KOD iCiN SIFIR MADDE BSD LiSANSI

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 Tuzel Yazilimlar icin Lisanslar ve Onaylar

Bu boliim, Python dagitimina dahil edilmis tigiincii taraf yazilimlar icin tamamlanmamis ancak biiyiiyen bir lisans
ve onay listesidir.

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 95

Python Frequently Asked Questions, Siiriim 3.9.20

C.3.1 Mersenne Twister’i

_random modiilt, http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html adresinden in-
dirilen kodu temel alir. Orijinal koddan kelimesi kelimesine yorumlar asagidadir:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array (init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Soketler

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

(continues on next page)

96 Ek C. Tarihce ve Lisans

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.wide.ad.jp/

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.
3. Neither the name of the project nor the names of its contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ' "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asenkron soket hizmetleri

asynchat ve asyncore modiilleri agsagidaki uyary1 icerir:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cerez yonetimi

http.cookies modiilii asagidaki uyariyi icerir:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written

(continues on next page)

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 97

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Calistirma izleme

trace modiilii asagidaki uyarty igerir:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode ve UUdecode fonksiyonlari

uu modiilii agagidaki uyariy1 igerir:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

(continues on next page)

98 Ek C. Tarihce ve Lisans

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Uzaktan Yordam Cagrilari

xmlrpc.client modiilii asagidaki uyarty: igerir:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

test_epoll modiili agagidaki uyariy: icerir:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be

(continues on next page)

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 99

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 kqueue secin

select modiilii, kqueue araylizii icin asagidaki uyary1 icerir:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " 'AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

Python/pyhash. c dosyasi, Dan Bernstein'in SipHash24 algoritmasinin Marek Majkowski uygulamasini icerir.
Burada asagidaki not yer alir:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(continues on next page)

100 Ek C. Tarihce ve Lisans

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod ve dtoa

The file Python/dtoa. ¢, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/.
The original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**‘k***‘k‘k***********‘k***********‘k****‘k***************************

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*

WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

*

***/

C.3.12 OpenSSL

hashlib, posix, ssl, crypt modiilleri, isletim sistemi tarafindan saglanmissa ek performans i¢cin OpenSSL
kutiiphanesini kullanir. Ek olarak, Python icin Windows ve macOS yiikleyicileri, OpenSSL kiittiphanelerinin bir
kopyasini igerebilir, bu nedenle buraya OpenSSL lisansinin bir kopyasini ekliyoruz:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

* % % ok %

are met:

(continues on next page)

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 101

http://www.netlib.org/fp/

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

L T R S e T S S S S N S S S S SN S N S N S S S i T S N S N S e S S N T N N N .

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project” must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eayl@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*

* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

*

* This library is free for commercial and non-commercial use as long as

* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

(continues on next page)

102 Ek C. Tarihce ve Lisans

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ' "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

EORE I A S S N S N S S SN S SN T N S N S A e S N S N S N S . SN T N N

C.3.13 expat

pyexpat uzantisi, derleme ——with-system-expat seklinde yapilandirilmadig: siirece, expat kaynaklarinin
dahil edildigi bir kopya kullanilarak olugturulur:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,

(continues on next page)

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 103

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

_ctypes uzantisi, yapt ——with-system-1ibffi olarak yapilandirilmadig siirece libffi kaynaklarmin dahil
edildigi bir kopya kullanilarak olugturulur:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘'Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

z11ib uzantisi, sistemde bulunan zlib siiriimii derleme i¢in kullanilamayacak kadar eskiyse, zlib kaynaklarinin dahil
edildigi bir kopya kullanilarak olugturulur:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as—-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

(continues on next page)

104 Ek C. Tarihce ve Lisans

Python Frequently Asked Questions, Siiriim 3.9.20

(6nceki sayfadan devam)

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

tracemalloc tarafindan kullanilan hash tablosunun uygulanmasi cfuhash projesine dayanmaktadir:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 105

Python Frequently Asked Questions, Siiriim 3.9.20

C.3.17 libmpdec

_decimal modiilii, yapt ——with-system-1libmpdec seklinde yapilandirilmadig: siirece libmpdec kitapligi-
nin dahil edildigi bir kopya kullanilarak olusturulur:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test paketi

test paketindeki C14N 2.0 test paketi (Lib/test/xmltestdata/c14n-20/), https://www.w3.org/TR/
xml-c14n2-testcases/ adresindeki W3C web sitesinden alinmigtir ve 3 maddeli BSD lisansi altinda dagitilmakta-
dur:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

(continues on next page)

106 Ek C. Tarihce ve Lisans

https://www.w3.org/TR/xml-c14n2-testcases/
https://www.w3.org/TR/xml-c14n2-testcases/

Python Frequently Asked Questions, Siiriim 3.9.20

(onceki sayfadan devam)

THEORY OF LIABILITY, WHETHER IN CONTRACT,

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

STRICT LIABILITY,

OR TORT

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar

107

Python Frequently Asked Questions, Siiriim 3.9.20

108 Ek C. Tarihce ve Lisans

ex D

Telif Hakki

Python ve bu dokiimantasyon:

Telif Hakki © 2001-2023 Python Software Foundation. Tiim haklar1 saklidir.

Telif Hakki © 2000 BeOpen.com. Tiim haklar1 saklidir.

Telif Hakk1 © 1995-2000 Ulusal Arastirma Girigimleri Kurumu. Tiim haklart saklidir.
Telif Hakki © 1991-1995 Stichting Mathematisch Centrum. Tiim haklar1 saklidur.

Biitiin lisans ve izin bilgileri i¢in Tarih¢e ve Lisans ‘a goz atin.

109

Python Frequently Asked Questions, Siiriim 3.9.20

110 Ek D. Telif Hakki

Dizin

Non-alphabetical

..., 175
2to3,75
>>>. 75
_ future_ ,79
__slots_ ,85

A

ad alanaz, 82
ad alani paketi, 83
adlandirilmis demet, 82
anahtar islev, 81
anahtar kelime argimanazi, 81
anlamak, 85
argument

difference from parameter, 12
argiman, 75
asenkron badlam ydneticisi, 76
asenkron jeneratdr, 76
asenkron Jjeneratdr yineleyici, 76
asenkron yineleyici, 76

B

baglam dediskeni, 77
baglam yodneticisi, 77
bayt benzeri nesne, 76
bayt kodu, 77

BDFL, 76
beklenebilir, 76

belge dizisi, 78
bitisik, 77

BOSTA, 80

bulucu, 79

C

C-contiguous, 77
CPython, 77

G

cevre degiskeni
PATH, 50
PYTHONDONTWRITEBYTECODE, 34
TCL_LIBRARY, 71

TK_LIBRARY, 71
¢cop toplama, 79

D

dedisken acgiklama, 86
degismez, 80
dedistirilebilir, 82
dekorator, 77

dipnot, 75

dizi, 85

dosya benzeri nesne, 79
dosya nesnesi, 78
duck-typing, 78

E

EAFP, 78

esyordam, 77

esyordam islevi, 77
eszamansiz yinelenebilir, 76
etkilesimli, 80

evrensel yeni satirlar, 86

F

f-string, 78
fonksiyon, 79

fonksiyon ag¢iklamaszi, 79
Fortran contiguous, 77

G

gecici API, 84

gecici paket, 84

genel islev,79

genel terciman kilidi, 80
genel tip, 80
generator, 79

generator expression,79
geri cagirmak, 77

GIL, 80

F{

haritalama, 82

i¢ ice kapsam, 83

111

Python Frequently Asked Questions, Siiriim 3.9.20

ice aktarica, 80 Python 3000, 84
igce aktarim yolu, 80 PYTHONDONTWRITEBYTECODE, 34
i¢ce aktarma, 80 Python'i Iyilestirme Onerileri
ifade (deger dondiirmez), 85 PEP 1,84
ifade (deger dondiiriir), 78 PEP 5,5
ikili dosya, 76 PEP 6,2
PEP 8,8,33,70
J PEP 238,79
jeneratdr, 79 PEP 275,41
jeneratdér ifadesi,79 PEP 278, 86
jeneratdr yineleyici,79 PEP 302,79,82
PEP 343,77
K PEP 362,76, 83
PEP 411,84

karma tabanli pyc, 80

karmasik sayaz, 77 PEP 420,79, 83, 84
kat bolimid, 79 PEP 443,79
kisim, 84 PEP 451,79
konumsal argiiman, 84 PEP 483, 80
PEP 484,75,79, 80, 86
L PEP 492,76,77
PEP 498,78
lambda, 81 PED 510, 84
LB B PEP 525,76
l}Ste’Sl PEP 526,75, 86
liste anlama, 81 PEP 57239
M PEP 585, 80
- PEP 602, 4
nagre PEP 3116, 86
method. 52 PEP 3147,34
meta yol bulucu, 82 PEP 315584

metasinif, 82 Pythonic, 84

method Python'un Zen'i, 87
magic, 82
special, 85 R

metot, 82

metot kalite siralamaszi, 82 referans sayisi, 85

modiil, 82 S

modiil 6zelligi, 82

MRO, 82 sanal makine, 87

sanal ortam, 87
N sinif, 77
nitelik, 76 sinif degdiskeni, 77

sihirli ydntem, 82
soyut temel sinif,75
O sozlik, 78

sodzlik anlama, 78

nitelikli isim, 84

bje, 83

obJe sézliik gdriiniimii, 78
(--) special

method, 85
6zel metod, 85 slirekli paketleme, 85
paket, 83 tanimlayici, 78
parameter TCL_LIBRARY, 71

difference from argument, 12 tek sevk, 85

parametre, 83 terctman kapatma, 80
parcalamak, 85 tip, 86
PATH, 50 tip takma adi, 86
PEP, 84 TK_LIBRARY, 71

112 Dizin

Python Frequently Asked Questions, Siiriim 3.9.20

tir ipucu, 86

U

uzatma modiili, 78

0

U¢ tirnakli dize, 86

Y

yazi ¢ozimleme, 85
yazi dosyaszi, 86

yeni stil sinif, 83
yikanabilir, 80
yinelenebilir, 81
yineleyici, 81

yol benzeri nesne, 84
yol giris kancasai, 84
yol girisi, 84

yol girisi bulucu, 84
yol tabanli bulucu, 84
yorumlanmis, 80
yikleyici, 82

Z

zorlama, 77

Dizin

113

	General Python FAQ
	General Information
	What is Python?
	What is the Python Software Foundation?
	Are there copyright restrictions on the use of Python?
	Why was Python created in the first place?
	What is Python good for?
	How does the Python version numbering scheme work?
	How do I obtain a copy of the Python source?
	How do I get documentation on Python?
	I’ve never programmed before. Is there a Python tutorial?
	Is there a newsgroup or mailing list devoted to Python?
	How do I get a beta test version of Python?
	How do I submit bug reports and patches for Python?
	Are there any published articles about Python that I can reference?
	Are there any books on Python?
	Where in the world is www.python.org located?
	Why is it called Python?
	Do I have to like “Monty Python’s Flying Circus”?

	Python in the real world
	How stable is Python?
	How many people are using Python?
	Have any significant projects been done in Python?
	What new developments are expected for Python in the future?
	Is it reasonable to propose incompatible changes to Python?
	Is Python a good language for beginning programmers?

	Programming FAQ
	General Questions
	Is there a source code level debugger with breakpoints, single-stepping, etc.?
	Are there tools to help find bugs or perform static analysis?
	How can I create a stand-alone binary from a Python script?
	Are there coding standards or a style guide for Python programs?

	Core Language
	Why am I getting an UnboundLocalError when the variable has a value?
	What are the rules for local and global variables in Python?
	Why do lambdas defined in a loop with different values all return the same result?
	How do I share global variables across modules?
	What are the “best practices” for using import in a module?
	Why are default values shared between objects?
	How can I pass optional or keyword parameters from one function to another?
	What is the difference between arguments and parameters?
	Why did changing list ‘y’ also change list ‘x’?
	How do I write a function with output parameters (call by reference)?
	How do you make a higher order function in Python?
	How do I copy an object in Python?
	How can I find the methods or attributes of an object?
	How can my code discover the name of an object?
	What’s up with the comma operator’s precedence?
	Is there an equivalent of C’s “?:” ternary operator?
	Is it possible to write obfuscated one-liners in Python?
	What does the slash(/) in the parameter list of a function mean?

	Numbers and strings
	How do I specify hexadecimal and octal integers?
	Why does -22 // 10 return -3?
	How do I get int literal attribute instead of SyntaxError?
	How do I convert a string to a number?
	How do I convert a number to a string?
	How do I modify a string in place?
	How do I use strings to call functions/methods?
	Is there an equivalent to Perl’s chomp() for removing trailing newlines from strings?
	Is there a scanf() or sscanf() equivalent?
	What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean?

	Performance
	My program is too slow. How do I speed it up?
	What is the most efficient way to concatenate many strings together?

	Sequences (Tuples/Lists)
	How do I convert between tuples and lists?
	What’s a negative index?
	How do I iterate over a sequence in reverse order?
	How do you remove duplicates from a list?
	How do you remove multiple items from a list
	How do you make an array in Python?
	How do I create a multidimensional list?
	How do I apply a method to a sequence of objects?
	Why does a_tuple[i] += [‘item’] raise an exception when the addition works?
	I want to do a complicated sort: can you do a Schwartzian Transform in Python?
	How can I sort one list by values from another list?

	Objects
	What is a class?
	What is a method?
	What is self?
	How do I check if an object is an instance of a given class or of a subclass of it?
	What is delegation?
	How do I call a method defined in a base class from a derived class that overrides it?
	How can I organize my code to make it easier to change the base class?
	How do I create static class data and static class methods?
	How can I overload constructors (or methods) in Python?
	I try to use __spam and I get an error about _SomeClassName__spam.
	My class defines __del__ but it is not called when I delete the object.
	How do I get a list of all instances of a given class?
	Why does the result of id() appear to be not unique?
	When can I rely on identity tests with the is operator?
	How can a subclass control what data is stored in an immutable instance?

	Modules
	How do I create a .pyc file?
	How do I find the current module name?
	How can I have modules that mutually import each other?
	__import__(‘x.y.z’) returns <module ‘x’>; how do I get z?
	When I edit an imported module and reimport it, the changes don’t show up. Why does this happen?

	Design and History FAQ
	Why does Python use indentation for grouping of statements?
	Why am I getting strange results with simple arithmetic operations?
	Why are floating-point calculations so inaccurate?
	Why are Python strings immutable?
	Why must ‘self’ be used explicitly in method definitions and calls?
	Why can’t I use an assignment in an expression?
	Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g. len(list))?
	Why is join() a string method instead of a list or tuple method?
	How fast are exceptions?
	Why isn’t there a switch or case statement in Python?
	Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implementation?
	Why can’t lambda expressions contain statements?
	Can Python be compiled to machine code, C or some other language?
	How does Python manage memory?
	Why doesn’t CPython use a more traditional garbage collection scheme?
	Why isn’t all memory freed when CPython exits?
	Why are there separate tuple and list data types?
	How are lists implemented in CPython?
	How are dictionaries implemented in CPython?
	Why must dictionary keys be immutable?
	Why doesn’t list.sort() return the sorted list?
	How do you specify and enforce an interface spec in Python?
	Why is there no goto?
	Why can’t raw strings (r-strings) end with a backslash?
	Why doesn’t Python have a “with” statement for attribute assignments?
	Why don’t generators support the with statement?
	Why are colons required for the if/while/def/class statements?
	Why does Python allow commas at the end of lists and tuples?

	Library and Extension FAQ
	General Library Questions
	How do I find a module or application to perform task X?
	Where is the math.py (socket.py, regex.py, etc.) source file?
	How do I make a Python script executable on Unix?
	Is there a curses/termcap package for Python?
	Is there an equivalent to C’s onexit() in Python?
	Why don’t my signal handlers work?

	Common tasks
	How do I test a Python program or component?
	How do I create documentation from doc strings?
	How do I get a single keypress at a time?

	Threads
	How do I program using threads?
	None of my threads seem to run: why?
	How do I parcel out work among a bunch of worker threads?
	What kinds of global value mutation are thread-safe?
	Can’t we get rid of the Global Interpreter Lock?

	Input and Output
	How do I delete a file? (And other file questions…)
	How do I copy a file?
	How do I read (or write) binary data?
	I can’t seem to use os.read() on a pipe created with os.popen(); why?
	How do I access the serial (RS232) port?
	Why doesn’t closing sys.stdout (stdin, stderr) really close it?

	Network/Internet Programming
	What WWW tools are there for Python?
	How can I mimic CGI form submission (METHOD=POST)?
	What module should I use to help with generating HTML?
	How do I send mail from a Python script?
	How do I avoid blocking in the connect() method of a socket?

	Databases
	Are there any interfaces to database packages in Python?
	How do you implement persistent objects in Python?

	Mathematics and Numerics
	How do I generate random numbers in Python?

	Genişletme/Ekleme SSS
	C’de kendi fonksiyonlarımı oluşturabilir miyim?
	C++’da kendi fonksiyonlarımı oluşturabilir miyim?
	C yazmak zor; başka alternatifler var mı?
	C’den rastgele Python komutlarını nasıl çalıştırabilirim?
	C’den rastgele Python komutlarını nasıl değerlendirebilirim?
	Bir Python nesnesinden C değerlerini nasıl çıkarabilirim?
	İsteğe bağlı uzunlukta bir tuple oluşturmak için Py_BuildValue() işlevini nasıl kullanabilirim?
	C’de bir nesnenin metodunu nasıl çağırabilirim?
	PyErr_Print() işlevinden (veya stdout/stderr’e yazdıran herhangi bir şeyden) gelen çıktıyı nasıl yakalayabilirim?
	Python’da yazılmış bir modüle C’den nasıl erişebilirim?
	Python’dan C++ nesnelerine nasıl arayüz oluşturabilirim?
	Kurulum dosyasını kullanarak bir modül ekledim ve derleme başarısız oldu; neden?
	Bir uzantıda nasıl hata ayıklayabilirim?
	Linux sistemimde bir Python modülü derlemek istiyorum, ancak bazı dosyalar eksik. Neden?
	“Eksik girdi” ile “geçersiz girdi’yi nasıl ayırt edebilirim?
	Tanımlanmamış g++ sembolleri __builtin_new veya __pure_virtual’ı nasıl bulabilirim?
	Bazı yöntemleri C’de, bazı yöntemleri Python’da (örneğin miras yoluyla) uygulanan bir nesne sınıfı oluşturabilir miyim?

	Python on Windows FAQ
	How do I run a Python program under Windows?
	How do I make Python scripts executable?
	Why does Python sometimes take so long to start?
	How do I make an executable from a Python script?
	Is a *.pyd file the same as a DLL?
	How can I embed Python into a Windows application?
	How do I keep editors from inserting tabs into my Python source?
	How do I check for a keypress without blocking?

	Grafik Kullanıcı Arayüzü SSS
	Genel GKA Soruları
	Python için hangi GKA araç setleri var?
	Tkinter soruları
	Tkinter uygulamalarını nasıl dondurabilirim?
	G/Ç’yi beklerken Tk olaylarını işleyebilir miyim?
	Tkinter’da çalışmak için anahtar bağlamalarını alamıyorum: neden?

	“Python Bilgisayarımda Neden Yüklü?” SSS
	Python nedir?
	Python makinemde neden yüklü?
	Python’u silebilir miyim?

	Sözlük
	Dokümanlar hakkında
	Python Dokümantasyonuna Katkıda Bulunanlar

	Tarihçe ve Lisans
	Yazılımın tarihçesi
	Python’a erişmek veya başka bir şekilde kullanmak için şartlar ve koşullar
	PYTHON İÇİN PSF LİSANS ANLAŞMASI 3.9.20
	PYTHON 2.0 İÇİN BEOPEN.COM LİSANS SÖZLEŞMESİ
	PYTHON 1.6.1 İÇİN CNRI LİSANS ANLAŞMASI
	0.9.0 ARASI 1.2 PYTHON İÇİN CWI LİSANS SÖZLEŞMESİ
	PYTHON 3.9.20 BELGELERİNDEKİ KOD İÇİN SIFIR MADDE BSD LİSANSI

	Tüzel Yazılımlar için Lisanslar ve Onaylar
	Mersenne Twister’ı
	Soketler
	Asenkron soket hizmetleri
	Çerez yönetimi
	Çalıştırma izleme
	UUencode ve UUdecode fonksiyonları
	XML Uzaktan Yordam Çağrıları
	test_epoll
	kqueue seçin
	SipHash24
	strtod ve dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test paketi

	Telif Hakkı
	Dizin

