
The Python Language Reference
Sürüm 3.9.20

Guido van Rossum
and the Python development team

Eylül 08, 2024

Python Software Foundation
Email: docs@python.org

İçindekiler

1 Introduction 3
1.1 Alternate Implementations . 3
1.2 Notation . 4

2 Lexical analysis 5
2.1 Line structure . 5

2.1.1 Logical lines . 5
2.1.2 Physical lines . 5
2.1.3 Comments . 6
2.1.4 Encoding declarations . 6
2.1.5 Explicit line joining . 6
2.1.6 Implicit line joining . 6
2.1.7 Blank lines . 7
2.1.8 Indentation . 7
2.1.9 Whitespace between tokens . 8

2.2 Other tokens . 8
2.3 Identifiers and keywords . 8

2.3.1 Keywords . 9
2.3.2 Reserved classes of identifiers . 9

2.4 Literals . 9
2.4.1 String and Bytes literals . 10
2.4.2 String literal concatenation . 12
2.4.3 Formatted string literals . 12
2.4.4 Numeric literals . 14
2.4.5 Integer literals . 14
2.4.6 Floating point literals . 15
2.4.7 Imaginary literals . 15

2.5 Operators . 15
2.6 Delimiters . 15

3 Data model 17
3.1 Objects, values and types . 17
3.2 The standard type hierarchy . 18
3.3 Special method names . 26

3.3.1 Basic customization . 26
3.3.2 Customizing attribute access . 29
3.3.3 Customizing class creation . 34
3.3.4 Customizing instance and subclass checks . 36
3.3.5 Emulating generic types . 37
3.3.6 Emulating callable objects . 39
3.3.7 Emulating container types . 39

i

3.3.8 Emulating numeric types . 41
3.3.9 With Statement Context Managers . 43
3.3.10 Special method lookup . 43

3.4 Coroutines . 44
3.4.1 Awaitable Objects . 44
3.4.2 Coroutine Objects . 45
3.4.3 Asynchronous Iterators . 45
3.4.4 Asynchronous Context Managers . 46

4 Execution model 47
4.1 Structure of a program . 47
4.2 Naming and binding . 47

4.2.1 Binding of names . 47
4.2.2 Resolution of names . 48
4.2.3 Builtins and restricted execution . 48
4.2.4 Interaction with dynamic features . 49

4.3 Exceptions . 49

5 The import system 51
5.1 importlib . 52
5.2 Packages . 52

5.2.1 Regular packages . 52
5.2.2 Namespace packages . 53

5.3 Searching . 53
5.3.1 The module cache . 53
5.3.2 Finders and loaders . 54
5.3.3 Import hooks . 54
5.3.4 The meta path . 54

5.4 Loading . 55
5.4.1 Loaders . 56
5.4.2 Submodules . 57
5.4.3 Module spec . 57
5.4.4 Import-related module attributes . 57
5.4.5 module.__path__ . 58
5.4.6 Module reprs . 59
5.4.7 Cached bytecode invalidation . 59

5.5 The Path Based Finder . 59
5.5.1 Path entry finders . 60
5.5.2 Path entry finder protocol . 61

5.6 Replacing the standard import system . 61
5.7 Package Relative Imports . 62
5.8 Special considerations for __main__ . 62

5.8.1 __main__.__spec__ . 62
5.9 Open issues . 63
5.10 References . 63

6 Expressions 65
6.1 Arithmetic conversions . 65
6.2 Atoms . 65

6.2.1 Identifiers (Names) . 66
6.2.2 Literals . 66
6.2.3 Parenthesized forms . 66
6.2.4 Displays for lists, sets and dictionaries . 67
6.2.5 List displays . 67
6.2.6 Set displays . 68
6.2.7 Dictionary displays . 68
6.2.8 Generator expressions . 68
6.2.9 Yield expressions . 69

6.3 Primaries . 73

ii

6.3.1 Attribute references . 73
6.3.2 Subscriptions . 73
6.3.3 Slicings . 74
6.3.4 Calls . 74

6.4 Await expression . 76
6.5 The power operator . 76
6.6 Unary arithmetic and bitwise operations . 76
6.7 Binary arithmetic operations . 77
6.8 Shifting operations . 78
6.9 Binary bitwise operations . 78
6.10 Comparisons . 78

6.10.1 Value comparisons . 79
6.10.2 Membership test operations . 81
6.10.3 Identity comparisons . 81

6.11 Boolean operations . 81
6.12 Assignment expressions . 82
6.13 Conditional expressions . 82
6.14 Lambdas . 82
6.15 Expression lists . 83
6.16 Evaluation order . 83
6.17 Operator precedence . 83

7 Simple statements 85
7.1 Expression statements . 85
7.2 Assignment statements . 86

7.2.1 Augmented assignment statements . 88
7.2.2 Annotated assignment statements . 88

7.3 The assert statement . 89
7.4 The pass statement . 89
7.5 The del statement . 89
7.6 The return statement . 90
7.7 The yield statement . 90
7.8 The raise statement . 91
7.9 The break statement . 92
7.10 The continue statement . 92
7.11 The import statement . 92

7.11.1 Future statements . 94
7.12 The global statement . 95
7.13 The nonlocal statement . 95

8 Compound statements 97
8.1 The if statement . 98
8.2 The while statement . 98
8.3 The for statement . 98
8.4 The try statement . 99
8.5 The with statement . 101
8.6 Function definitions . 102
8.7 Class definitions . 104
8.8 Coroutines . 105

8.8.1 Coroutine function definition . 105
8.8.2 The async for statement . 105
8.8.3 The async with statement . 106

9 Top-level components 107
9.1 Complete Python programs . 107
9.2 File input . 107
9.3 Interactive input . 108
9.4 Expression input . 108

iii

10 Full Grammar specification 109

A Sözlük 119

B Dokümanlar hakkında 133
B.1 Python Dokümantasyonuna Katkıda Bulunanlar . 133

C Tarihçe ve Lisans 135
C.1 Yazılımın tarihçesi . 135
C.2 Python’a erişmek veya başka bir şekilde kullanmak için şartlar ve koşullar 136

C.2.1 PYTHON İÇİN PSF LİSANS ANLAŞMASI 3.9.20 . 136
C.2.2 PYTHON 2.0 İÇİN BEOPEN.COM LİSANS SÖZLEŞMESİ 137
C.2.3 PYTHON 1.6.1 İÇİN CNRI LİSANS ANLAŞMASI . 138
C.2.4 0.9.0 ARASI 1.2 PYTHON İÇİN CWI LİSANS SÖZLEŞMESİ 139
C.2.5 PYTHON 3.9.20 BELGELERİNDEKİ KOD İÇİN SIFIR MADDE BSD LİSANSI 139

C.3 Tüzel Yazılımlar için Lisanslar ve Onaylar . 139
C.3.1 Mersenne Twister’ı . 140
C.3.2 Soketler . 140
C.3.3 Asenkron soket hizmetleri . 141
C.3.4 Çerez yönetimi . 141
C.3.5 Çalıştırma izleme . 142
C.3.6 UUencode ve UUdecode fonksiyonları . 142
C.3.7 XML Uzaktan Yordam Çağrıları . 143
C.3.8 test_epoll . 143
C.3.9 kqueue seçin . 144
C.3.10 SipHash24 . 144
C.3.11 strtod ve dtoa . 145
C.3.12 OpenSSL . 145
C.3.13 expat . 147
C.3.14 libffi . 148
C.3.15 zlib . 148
C.3.16 cfuhash . 149
C.3.17 libmpdec . 150
C.3.18 W3C C14N test paketi . 150

D Telif Hakkı 153

Dizin 155

iv

The Python Language Reference, Sürüm 3.9.20

This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to be exact
and complete. The semantics of non-essential built-in object types and of the built-in functions and modules are desc-
ribed in library-index. For an informal introduction to the language, see tutorial-index. For C or C++ programmers,
two additional manuals exist: extending-index describes the high-level picture of how to write a Python extension
module, and the c-api-index describes the interfaces available to C/C++ programmers in detail.

İçindekiler 1

The Python Language Reference, Sürüm 3.9.20

2 İçindekiler

BÖLÜM1

Introduction

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but
will leave room for ambiguities. Consequently, if you were coming fromMars and tried to re-implement Python from
this document alone, you might have to guess things and in fact you would probably end up implementing quite a
different language. On the other hand, if you are using Python and wonder what the precise rules about a particular
area of the language are, you should definitely be able to find them here. If you would like to see a more formal
definition of the language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document— the implementation may
change, and other implementations of the same language may work differently. On the other hand, CPython is the
one Python implementation in widespread use (although alternate implementations continue to gain support), and
its particular quirks are sometimes worth being mentioned, especially where the implementation imposes additional
limitations. Therefore, you’ll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are documented in
library-index. A few built-in modules are mentioned when they interact in a significant way with the language defi-
nition.

1.1 Alternate Implementations

Though there is one Python implementation which is by far the most popular, there are some alternate implementa-
tions which are of particular interest to different audiences.

Known implementations include:

CPython This is the original and most-maintained implementation of Python, written in C. New language features
generally appear here first.

Jython Python implemented in Java. This implementation can be used as a scripting language for Java applications,
or can be used to create applications using the Java class libraries. It is also often used to create tests for Java
libraries. More information can be found at the Jython website.

Python for .NET This implementation actually uses the CPython implementation, but is a managed .NET applica-
tion and makes .NET libraries available. It was created by Brian Lloyd. For more information, see the Python
for .NET home page.

3

http://www.jython.org/
https://pythonnet.github.io/
https://pythonnet.github.io/

The Python Language Reference, Sürüm 3.9.20

IronPython An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that
generates IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the
original creator of Jython. For more information, see the IronPython website.

PyPy An implementation of Python written completely in Python. It supports several advanced features not found
in other implementations like stackless support and a Just in Time compiler. One of the goals of the project is
to encourage experimentation with the language itself by making it easier to modify the interpreter (since it is
written in Python). Additional information is available on the PyPy project’s home page.

Each of these implementations varies in someway from the language as documented in this manual, or introduces spe-
cific information beyond what’s covered in the standard Python documentation. Please refer to the implementation-
specific documentation to determine what else you need to know about the specific implementation you’re using.

1.2 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following style
of definition:

name ::= lc_letter (lc_letter | "_")*
lc_letter ::= "a"..."z"

The first line says that a name is an lc_letter followed by a sequence of zero or more lc_letters and
underscores. An lc_letter in turn is any of the single characters 'a' through 'z'. (This rule is actually adhered
to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and ::=. A vertical bar (|) is used to separate
alternatives; it is the least binding operator in this notation. A star (*) means zero or more repetitions of the preceding
item; likewise, a plus (+) means one or more repetitions, and a phrase enclosed in square brackets ([]) means zero
or one occurrences (in other words, the enclosed phrase is optional). The * and + operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively
with each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by
three dots mean a choice of any single character in the given (inclusive) range of ASCII characters. A phrase between
angular brackets (<...>) gives an informal description of the symbol defined; e.g., this could be used to describe
the notion of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(“Lexical Analysis”) are lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Bölüm 1. Introduction

http://ironpython.net/
http://pypy.org/

BÖLÜM2

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of tokens, generated by the lexical analyzer.
This chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding decla-
ration and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError is
raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any
of the standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the
Windows form using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the
ASCII CR (return) character. All of these forms can be used equally, regardless of platform. The end of input also
serves as an implicit terminator for the final physical line.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

5

https://www.python.org/dev/peps/pep-3120

The Python Language Reference, Sürüm 3.9.20

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical
line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are
ignored by the syntax.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding[=:]\s*([-\
w.]+), this comment is processed as an encoding declaration; the first group of this expression names the encoding
of the source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first
line must also be a comment-only line. The recommended forms of an encoding expression are

-*- coding: <encoding-name> -*-

which is recognized also by GNU Emacs, and

vim:fileencoding =<encoding-name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. In addition, if the first bytes of the file are the
UTF-8 byte-order mark (b'\xef\xbb\xbf'), the declared file encoding is UTF-8 (this is supported, among
others, by Microsoft’s notepad).

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding
is used for all lexical analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date

return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without
using backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

6 Bölüm 2. Lexical analysis

The Python Language Reference, Sürüm 3.9.20

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e.
one containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of
the line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of
spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over
multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes themeaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use
a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms
may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may
reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring
on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT
token is generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that
is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of l

if len(l) <= 1:
return [l]

r = []
for i in range(len(l)):

s = l[:i] + l[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)

return r

The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented

s = l[:i] + l[i+1:]
p = perm(l[:i] + l[i+1:]) # error: unexpected indent
for x in p:

r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

2.1. Line structure 7

The Python Language Reference, Sürüm 3.9.20

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be
used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.3 Identifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes
as defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the
uppercase and lowercase letters A through Z, the underscore _ and, except for the first character, the digits 0 through
9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier ::= xid_start xid_continue*
id_start ::= <all characters in general categories Lu, Ll, Lt, Lm, Lo, Nl, the underscore, and characters with the Other_ID_Start property>
id_continue ::= <all characters in id_start, plus characters in the categories Mn, Mc, Nd, Pc and others with the Other_ID_Continue property>
xid_start ::= <all characters in id_start whose NFKC normalization is in "id_start xid_continue*">
xid_continue ::= <all characters in id_continue whose NFKC normalization is in "id_continue*">

The Unicode category codes mentioned above stand for:

• Lu - uppercase letters

• Ll - lowercase letters

• Lt - titlecase letters

• Lm - modifier letters

• Lo - other letters

• Nl - letter numbers

• Mn - nonspacing marks

• Mc - spacing combining marks

• Nd - decimal numbers

• Pc - connector punctuations

8 Bölüm 2. Lexical analysis

https://www.python.org/dev/peps/pep-3131
https://www.python.org/dev/peps/pep-3131

The Python Language Reference, Sürüm 3.9.20

• Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility

• Other_ID_Continue - likewise

All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 4.1 can be found at https://www.
unicode.org/Public/13.0.0/ucd/DerivedCoreProperties.txt

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try
as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns
of leading and trailing underscore characters:

_* Not imported by from module import *. The special identifier _ is used in the interactive interpreter to
store the result of the last evaluation; it is stored in the builtins module. When not in interactive mode, _
has no special meaning and is not defined. See section The import statement.

Not: The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

__*__ System-defined names, informally known as “dunder” names. These names are defined by the interpreter
and its implementation (including the standard library). Current system names are discussed in the Special
method names section and elsewhere. More will likely be defined in future versions of Python. Any use of
__*__ names, in any context, that does not follow explicitly documented use, is subject to breakage without
warning.

__* Class-private names. Names in this category, when used within the context of a class definition, are re-written
to use a mangled form to help avoid name clashes between “private” attributes of base and derived classes. See
section Identifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4. Literals 9

https://www.unicode.org/Public/13.0.0/ucd/PropList.txt
https://www.unicode.org/Public/13.0.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/13.0.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, Sürüm 3.9.20

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral ::= [stringprefix](shortstring | longstring)
stringprefix ::= "r" | "u" | "R" | "U" | "f" | "F"

| "fr" | "Fr" | "fR" | "FR" | "rf" | "rF" | "Rf" | "RF"
shortstring ::= "'" shortstringitem* "'" | '"' shortstringitem* '"'
longstring ::= "'''" longstringitem* "'''" | '"""' longstringitem* '"""'
shortstringitem ::= shortstringchar | stringescapeseq
longstringitem ::= longstringchar | stringescapeseq
shortstringchar ::= <any source character except "\" or newline or the quote>
longstringchar ::= <any source character except "\">
stringescapeseq ::= "\" <any source character>

bytesliteral ::= bytesprefix(shortbytes | longbytes)
bytesprefix ::= "b" | "B" | "br" | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb" | "RB"
shortbytes ::= "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes ::= "'''" longbytesitem* "'''" | '"""' longbytesitem* '"""'
shortbytesitem ::= shortbyteschar | bytesescapeseq
longbytesitem ::= longbyteschar | bytesescapeseq
shortbyteschar ::= <any ASCII character except "\" or newline or the quote>
longbyteschar ::= <any ASCII character except "\">
bytesescapeseq ::= "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix or bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can
also be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted
strings). The backslash (\) character is used to give special meaning to otherwise ordinary characters like n, which
means ‘newline’ when escaped (\n). It can also be used to escape characters that otherwise have a special meaning,
such as newline, backslash itself, or the quote character. See escape sequences below for examples.

Bytes literals are always prefixed with 'b' or 'B'; they produce an instance of the bytes type instead of the str
type. They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with
escapes.

Both string and bytes literals may optionally be prefixed with a letter 'r' or 'R'; such strings are called raw strings
and treat backslashes as literal characters. As a result, in string literals, '\U' and '\u' escapes in raw strings are not
treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s the 'ur' syntax
is not supported.

3.3 sürümüyle geldi: The 'rb' prefix of raw bytes literals has been added as a synonym of 'br'.

3.3 sürümüyle geldi: Support for the unicode legacy literal (u'value') was reintroduced to simplify the mainte-
nance of dual Python 2.x and 3.x codebases. See PEP 414 for more information.

A string literal with 'f' or 'F' in its prefix is a formatted string literal; see Formatted string literals. The 'f' may
be combined with 'r', but not with 'b' or 'u', therefore raw formatted strings are possible, but formatted bytes
literals are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
quotes in a row terminate the literal. (A “quote” is the character used to open the literal, i.e. either ' or ".)

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to
rules similar to those used by Standard C. The recognized escape sequences are:

10 Bölüm 2. Lexical analysis

https://www.python.org/dev/peps/pep-0414

The Python Language Reference, Sürüm 3.9.20

Escape Sequence Meaning Notes
\newline Backslash and newline ignored
\\ Backslash (\)
\' Single quote (')
\" Double quote (")
\a ASCII Bell (BEL)
\b ASCII Backspace (BS)
\f ASCII Formfeed (FF)
\n ASCII Linefeed (LF)
\r ASCII Carriage Return (CR)
\t ASCII Horizontal Tab (TAB)
\v ASCII Vertical Tab (VT)
\ooo Character with octal value ooo (1,3)
\xhh Character with hex value hh (2,3)

Escape sequences only recognized in string literals are:

Escape Sequence Meaning Notes
\N{name} Character named name in the Unicode database (4)
\uxxxx Character with 16-bit hex value xxxx (5)
\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx (6)

Notes:

(1) As in Standard C, up to three octal digits are accepted.

(2) Unlike in Standard C, exactly two hex digits are required.

(3) In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

(4) 3.3 sürümünde değişti: Support for name aliases1 has been added.

(5) Exactly four hex digits are required.

(6) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in
the result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more
easily recognized as broken.) It is also important to note that the escape sequences only recognized in string literals
fall into the category of unrecognized escapes for bytes literals.

3.6 sürümünde değişti: Unrecognized escape sequences produce a DeprecationWarning. In a fu-
ture Python version they will be a SyntaxWarning and eventually a SyntaxError.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; r"\" is not a valid string
literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a
single backslash (since the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the literal, not as a line continuation.

1 https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

2.4. Literals 11

https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

The Python Language Reference, Sürüm 3.9.20

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings con-
veniently across long lines, or even to add comments to parts of strings, for example:

re.compile("[A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’ operator must
be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting
styles for each component (even mixing raw strings and triple quoted strings), and formatted string literals may be
concatenated with plain string literals.

2.4.3 Formatted string literals

3.6 sürümüyle geldi.

A formatted string literal or f-string is a string literal that is prefixed with 'f' or 'F'. These strings may contain
replacement fields, which are expressions delimited by curly braces {}. While other string literals always have a
constant value, formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string).
After decoding, the grammar for the contents of the string is:

f_string ::= (literal_char | "{{" | "}}" | replacement_field)*
replacement_field ::= "{" f_expression [" ="] ["!" conversion] [":" format_spec] "}"
f_expression ::= (conditional_expression | "*" or_expr)

("," conditional_expression | "," "*" or_expr)* [","]
| yield_expression

conversion ::= "s" | "r" | "a"
format_spec ::= (literal_char | NULL | replacement_field)*
literal_char ::= <any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces '{{' or '}}'
are replaced with the corresponding single curly brace. A single opening curly bracket '{'marks a replacement field,
which starts with a Python expression. To display both the expression text and its value after evaluation, (useful in
debugging), an equal sign '=' may be added after the expression. A conversion field, introduced by an exclamation
point '!' may follow. A format specifier may also be appended, introduced by a colon ':'. A replacement field
ends with a closing curly bracket '}'.

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with
a few exceptions. An empty expression is not allowed, and both lambda and assignment expressions := must be
surrounded by explicit parentheses. Replacement expressions can contain line breaks (e.g. in triple-quoted strings),
but they cannot contain comments. Each expression is evaluated in the context where the formatted string literal
appears, in order from left to right.

3.7 sürümünde değişti: Prior to Python 3.7, an await expression and comprehensions containing an async for
clause were illegal in the expressions in formatted string literals due to a problem with the implementation.

When the equal sign '=' is provided, the output will have the expression text, the '=' and the evaluated value.
Spaces after the opening brace '{', within the expression and after the '=' are all retained in the output. By
default, the '=' causes the repr() of the expression to be provided, unless there is a format specified. When a
format is specified it defaults to the str() of the expression unless a conversion '!r' is declared.

3.8 sürümüyle geldi: The equal sign '='.

12 Bölüm 2. Lexical analysis

The Python Language Reference, Sürüm 3.9.20

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion '!s'
calls str() on the result, '!r' calls repr(), and '!a' calls ascii().

The result is then formatted using the format() protocol. The format specifier is passed to the __format__()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own con-
version fields and format specifiers, but may not include more deeply-nested replacement fields. The format specifier
mini-language is the same as that used by the str.format() method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

>>> name = "Fred"
>>> f"He said his name is {name!r}."
"He said his name is 'Fred'."
>>> f"He said his name is {repr(name)}." # repr() is equivalent to !r
"He said his name is 'Fred'."
>>> width = 10
>>> precision = 4
>>> value = decimal.Decimal("12.34567")
>>> f"result: {value:{width}.{precision}}" # nested fields
'result: 12.35'
>>> today = datetime(year=2017, month=1, day=27)
>>> f"{today:%B %d, %Y}" # using date format specifier
'January 27, 2017'
>>> f"{today=:%B %d, %Y}" # using date format specifier and debugging
'today =January 27, 2017'
>>> number = 1024
>>> f"{number:#0x}" # using integer format specifier
'0x400'
>>> foo = "bar"
>>> f"{ foo = }" # preserves whitespace
" foo = 'bar'"
>>> line = "The mill's closed"
>>> f"{line = }"
'line = "The mill\'s closed"'
>>> f"{line = :20}"
"line = The mill's closed "
>>> f"{line = !r:20}"
'line = "The mill\'s closed" '

A consequence of sharing the same syntax as regular string literals is that characters in the replacement fields must
not conflict with the quoting used in the outer formatted string literal:

f"abc {a["x"]} def" # error: outer string literal ended prematurely
f"abc {a['x']} def" # workaround: use different quoting

Backslashes are not allowed in format expressions and will raise an error:

f"newline: {ord('\n')}" # raises SyntaxError

To include a value in which a backslash escape is required, create a temporary variable.

>>> newline = ord('\n')
>>> f"newline: {newline}"
'newline: 10'

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

2.4. Literals 13

The Python Language Reference, Sürüm 3.9.20

>>> def foo():
... f"Not a docstring"
...
>>> foo.__doc__ is None
True

See also PEP 498 for the proposal that added formatted string literals, and str.format(), which uses a related
format string mechanism.

2.4.4 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no
complex literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary
operator ‘-’ and the literal 1.

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer ::= decinteger | bininteger | octinteger | hexinteger
decinteger ::= nonzerodigit (["_"] digit)* | "0"+ (["_"] "0")*
bininteger ::= "0" ("b" | "B") (["_"] bindigit)+
octinteger ::= "0" ("o" | "O") (["_"] octdigit)+
hexinteger ::= "0" ("x" | "X") (["_"] hexdigit)+
nonzerodigit ::= "1"..."9"
digit ::= "0"..."9"
bindigit ::= "0" | "1"
octdigit ::= "0"..."7"
hexdigit ::= digit | "a"..."f" | "A"..."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for en-
hanced readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

Some examples of integer literals:

7 2147483647 0o177 0b100110111
3 79228162514264337593543950336 0o377 0xdeadbeef

100_000_000_000 0b_1110_0101

3.6 sürümünde değişti: Underscores are now allowed for grouping purposes in literals.

14 Bölüm 2. Lexical analysis

https://www.python.org/dev/peps/pep-0498

The Python Language Reference, Sürüm 3.9.20

2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber ::= pointfloat | exponentfloat
pointfloat ::= [digitpart] fraction | digitpart "."
exponentfloat ::= (digitpart | pointfloat) exponent
digitpart ::= digit (["_"] digit)*
fraction ::= "." digitpart
exponent ::= ("e" | "E") ["+" | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077e010 is legal, and
denotes the same number as 77e10. The allowed range of floating point literals is implementation-dependent. As
in integer literals, underscores are supported for digit grouping.

Some examples of floating point literals:

3.14 10. .001 1e100 3.14e-10 0e0 3.14_15_93

3.6 sürümünde değişti: Underscores are now allowed for grouping purposes in literals.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber ::= (floatnumber | digitpart) ("j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero
real part, add a floating point number to it, e.g., (3+4j). Some examples of imaginary literals:

3.14j 10.j 10j .001j 1e100j 3.14e-10j 3.14_15_93j

2.5 Operators

The following tokens are operators:

+ - * ** / // % @
<< >> & | ^ ~ :=
< > <= >= == !=

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() [] { }
, : . ; @ = ->
+ = -= * = /= //= %= @ =
&= | = ^= >>= <<= ** =

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

2.5. Operators 15

The Python Language Reference, Sürüm 3.9.20

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

' " # \

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

$? `

16 Bölüm 2. Lexical analysis

BÖLÜM3

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer”, code is
also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you
may think of it as the object’s address in memory. The ‘is’ operator compares the identity of two objects; the id()
function returns an integer representing its identity.

CPython implementation detail: For CPython, id(x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., “does it have a length?”) and also defines
the possible values for objects of that type. The type() function returns an object’s type (which is an object itself).
Like its identity, an object’s type is also unchangeable.1

The value of some objects can change. Objects whose value can change are said to bemutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains
a reference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same
as having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance,
numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation
quality how garbage collection is implemented, as long as no objects are collected that are still reachable.

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed de-
tection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not
guaranteed to collect garbage containing circular references. See the documentation of the gc module for informa-
tion on controlling the collection of cyclic garbage. Other implementations act differently and CPython may change.
Do not depend on immediate finalization of objects when they become unreachable (so you should always close files
explicitly).

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception with a ‘try…except’ statement may keep objects alive.

1 It is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can
lead to some very strange behaviour if it is handled incorrectly.

17

The Python Language Reference, Sürüm 3.9.20

Some objects contain references to “external” resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, usually a close()method. Programs are
strongly recommended to explicitly close such objects. The ‘try…finally’ statement and the ‘with’ statement
provide convenient ways to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples,
lists and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a
container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability
of a container, only the identities of the immediately contained objects are implied. So, if an immutable container
(like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object with
the same type and value, while for mutable objects this is not allowed. E.g., after a = 1; b = 1, a and b may
or may not refer to the same object with the value one, depending on the implementation, but after c = []; d =
[], c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = []
assigns the same object to both c and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be
provided via the standard library instead.

Some of the type descriptions below contain a paragraph listing ‘special attributes.’ These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

None This type has a single value. There is a single object with this value. This object is accessed through the built-in
name None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions
that don’t explicitly return anything. Its truth value is false.

NotImplemented This type has a single value. There is a single object with this value. This object is accessed
through the built-in name NotImplemented. Numeric methods and rich comparison methods should return
this value if they do not implement the operation for the operands provided. (The interpreter will then try the
reflected operation, or some other fallback, depending on the operator.) It should not be evaluated in a boolean
context.

See implementing-the-arithmetic-operations for more details.

3.9 sürümünde değişti: Evaluating NotImplemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of
Python.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the
literal ... or the built-in name Ellipsis. Its truth value is true.

numbers.Number These are created by numeric literals and returned as results by arithmetic operators and arith-
metic built-in functions. Numeric objects are immutable; once created their value never changes. Python num-
bers are of course strongly related to mathematical numbers, but subject to the limitations of numerical rep-
resentation in computers.

The string representations of the numeric classes, computed by __repr__() and __str__(), have the
following properties:

• They are valid numeric literals which, when passed to their class constructor, produce an object having
the value of the original numeric.

• The representation is in base 10, when possible.

• Leading zeros, possibly excepting a single zero before a decimal point, are not shown.

18 Bölüm 3. Data model

The Python Language Reference, Sürüm 3.9.20

• Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.

• A sign is shown only when the number is negative.

Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral These represent elements from the mathematical set of integers (positive and nega-
tive).

There are two types of integers:

Integers (int) These represent numbers in an unlimited range, subject to available (virtual) memory
only. For the purpose of shift and mask operations, a binary representation is assumed, and negative
numbers are represented in a variant of 2’s complement which gives the illusion of an infinite string
of sign bits extending to the left.

Booleans (bool) These represent the truth values False and True. The two objects representing the
values False and True are the only Boolean objects. The Boolean type is a subtype of the integer
type, and Boolean values behave like the values 0 and 1, respectively, in almost all contexts, the
exception being that when converted to a string, the strings "False" or "True" are returned,
respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and
mask operations involving negative integers.

numbers.Real (float) These represent machine-level double precision floating point numbers. You are
at the mercy of the underlying machine architecture (and C or Java implementation) for the accepted
range and handling of overflow. Python does not support single-precision floating point numbers; the
savings in processor and memory usage that are usually the reason for using these are dwarfed by the
overhead of using objects in Python, so there is no reason to complicate the language with two kinds of
floating point numbers.

numbers.Complex (complex) These represent complex numbers as a pair of machine-level double pre-
cision floating point numbers. The same caveats apply as for floating point numbers. The real and ima-
ginary parts of a complex number z can be retrieved through the read-only attributes z.real and
z.imag.

Sequences These represent finite ordered sets indexed by non-negative numbers. The built-in function len() re-
turns the number of items of a sequence.When the length of a sequence is n, the index set contains the numbers
0, 1, …, n-1. Item i of sequence a is selected by a[i].

Sequences also support slicing: a[i:j] selects all items with index k such that i < = k < j. When used as an
expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it starts
at 0.

Some sequences also support “extended slicing” with a third “step” parameter: a[i:j:k] selects all items of
a with index x where x = i + n*k, n > = 0 and i < = x < j.

Sequences are distinguished according to their mutability:

Immutable sequences An object of an immutable sequence type cannot change once it is created. (If the
object contains references to other objects, these other objects may be mutable and may be changed;
however, the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings A string is a sequence of values that represent Unicode code points. All the code points in
the range U+0000 - U+10FFFF can be represented in a string. Python doesn’t have a char
type; instead, every code point in the string is represented as a string object with length 1. The
built-in function ord() converts a code point from its string form to an integer in the range 0
- 10FFFF; chr() converts an integer in the range 0 - 10FFFF to the corresponding length
1 string object. str.encode() can be used to convert a str to bytes using the given text
encoding, and bytes.decode() can be used to achieve the opposite.

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by
comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affixing

3.2. The standard type hierarchy 19

The Python Language Reference, Sürüm 3.9.20

a comma to an expression (an expression by itself does not create a tuple, since parentheses must be
usable for grouping of expressions). An empty tuple can be formed by an empty pair of parentheses.

Bytes Abytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range
0 < = x < 256. Bytes literals (like b'abc') and the built-in bytes() constructor can be used to
create bytes objects. Also, bytes objects can be decoded to strings via the decode() method.

Mutable sequences Mutable sequences can be changed after they are created. The subscription and slicing
notations can be used as the target of assignment and del (delete) statements.

There are currently two intrinsic mutable sequence types:

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated
list of expressions in square brackets. (Note that there are no special cases needed to form lists of
length 0 or 1.)

Byte Arrays A bytearray object is a mutable array. They are created by the built-in bytearray()
constructor. Aside from being mutable (and hence unhashable), byte arrays otherwise provide the
same interface and functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable sequence type, as does the
collections module.

Set types These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by
any subscript. However, they can be iterated over, and the built-in function len() returns the number of
items in a set. Common uses for sets are fast membership testing, removing duplicates from a sequence, and
computing mathematical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the
normal rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1.0), only one of them can
be contained in a set.

There are currently two intrinsic set types:

Sets These represent a mutable set. They are created by the built-in set() constructor and can be modified
afterwards by several methods, such as add().

Frozen sets These represent an immutable set. They are created by the built-in frozenset() constructor.
As a frozenset is immutable and hashable, it can be used again as an element of another set, or as a
dictionary key.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a[k] selects
the item indexed by k from the mapping a; this can be used in expressions and as the target of assignments or
del statements. The built-in function len() returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of va-
lues not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity, the reason being that the efficient implementation of
dictionaries requires a key’s hash value to remain constant. Numeric types used for keys obey the normal
rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1.0) then they can be used
interchangeably to index the same dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were
added sequentially over the dictionary. Replacing an existing key does not change the order, however
removing a key and re-inserting it will add it to the end instead of keeping its old place.

Dictionaries are mutable; they can be created by the {...} notation (see section Dictionary displays).

The extension modules dbm.ndbm and dbm.gnu provide additional examples of mapping types, as
does the collections module.

3.7 sürümünde değişti: Dictionaries did not preserve insertion order in versions of Python before 3.6. In
CPython 3.6, insertion order was preserved, but it was considered an implementation detail at that time
rather than a language guarantee.

Callable types These are the types to which the function call operation (see section Calls) can be applied:

20 Bölüm 3. Data model

The Python Language Reference, Sürüm 3.9.20

User-defined functions A user-defined function object is created by a function definition (see section Func-
tion definitions). It should be called with an argument list containing the same number of items as the
function’s formal parameter list.

Special attributes:

Attribute Meaning
__doc__ The function’s documentation string, or None if unavailable;

not inherited by subclasses.
Writable

__name__ The function’s name. Writable
__qualname__ The function’s qualified name.

3.3 sürümüyle geldi.
Writable

__module__ The name of the module the function was defined in, or
None if unavailable.

Writable

__defaults__ A tuple containing default argument values for those
arguments that have defaults, or None if no arguments have
a default value.

Writable

__code__ The code object representing the compiled function body. Writable
__globals__ A reference to the dictionary that holds the function’s global

variables — the global namespace of the module in which
the function was defined.

Read-only

__dict__ The namespace supporting arbitrary function attributes. Writable
__closure__ None or a tuple of cells that contain bindings for the

function’s free variables. See below for information on the
cell_contents attribute.

Read-only

__annotations__ A dict containing annotations of parameters. The keys of the
dict are the parameter names, and 'return' for the return
annotation, if provided.

Writable

__kwdefaults__ A dict containing defaults for keyword-only parameters. Writable

Most of the attributes labelled “Writable” check the type of the assigned value.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to
attach metadata to functions. Regular attribute dot-notation is used to get and set such attributes.Note that
the current implementation only supports function attributes on user-defined functions. Function attributes
on built-in functions may be supported in the future.

A cell object has the attribute cell_contents. This can be used to get the value of the cell, as well
as set the value.

Additional information about a function’s definition can be retrieved from its code object; see the desc-
ription of internal types below. The cell type can be accessed in the types module.

Instance methods An instance method object combines a class, a class instance and any callable object (nor-
mally a user-defined function).

Special read-only attributes: __self__ is the class instance object, __func__ is the function object;
__doc__ is the method’s documentation (same as __func__.__doc__); __name__ is the method
name (same as __func__.__name__); __module__ is the name of the module the method was
defined in, or None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying func-
tion object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance
of that class), if that attribute is a user-defined function object or a class method object.

When an instance method object is created by retrieving a user-defined function object from a class via
one of its instances, its __self__ attribute is the instance, and the method object is said to be bound.
The new method’s __func__ attribute is the original function object.

3.2. The standard type hierarchy 21

The Python Language Reference, Sürüm 3.9.20

When an instance method object is created by retrieving a class method object from a class or instance,
its __self__ attribute is the class itself, and its __func__ attribute is the function object underlying
the class method.

When an instance method object is called, the underlying function (__func__) is called, inserting the
class instance (__self__) in front of the argument list. For instance, when C is a class which contains a
definition for a function f(), and x is an instance of C, calling x.f(1) is equivalent to calling C.f(x,
1).

When an instance method object is derived from a class method object, the “class instance” stored in
__self__ will actually be the class itself, so that calling either x.f(1) or C.f(1) is equivalent to
calling f(C,1) where f is the underlying function.

Note that the transformation from function object to instance method object happens each time the
attribute is retrieved from the instance. In some cases, a fruitful optimization is to assign the attribu-
te to a local variable and call that local variable. Also notice that this transformation only happens for
user-defined functions; other callable objects (and all non-callable objects) are retrieved without trans-
formation. It is also important to note that user-defined functions which are attributes of a class instance
are not converted to bound methods; this only happens when the function is an attribute of the class.

Generator functions A function ormethod which uses theyield statement (see section The yield statement)
is called a generator function. Such a function, when called, always returns an iterator object which can be
used to execute the body of the function: calling the iterator’s iterator.__next__() method will
cause the function to execute until it provides a value using the yield statement. When the function
executes a return statement or falls off the end, a StopIteration exception is raised and the
iterator will have reached the end of the set of values to be returned.

Coroutine functions A function ormethodwhich is defined usingasync def is called a coroutine function.
Such a function, when called, returns a coroutine object. It may contain await expressions, as well as
async with and async for statements. See also the Coroutine Objects section.

Asynchronous generator functions A function or method which is defined using async def and which
uses the yield statement is called a asynchronous generator function. Such a function, when called,
returns an asynchronous iterator object which can be used in an async for statement to execute the
body of the function.

Calling the asynchronous iterator’s aiterator.__anext__ method will return an awaitable which
when awaited will execute until it provides a value using the yield expression. When the function
executes an empty return statement or falls off the end, a StopAsyncIteration exception is
raised and the asynchronous iterator will have reached the end of the set of values to be yielded.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in functi-
ons are len() and math.sin() (math is a standard built-in module). The number and type of the
arguments are determined by the C function. Special read-only attributes: __doc__ is the function’s
documentation string, or None if unavailable; __name__ is the function’s name; __self__ is set to
None (but see the next item); __module__ is the name of the module the function was defined in or
None if unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an object passed
to the C function as an implicit extra argument. An example of a built-in method is alist.append(),
assuming alist is a list object. In this case, the special read-only attribute __self__ is set to the object
denoted by alist.

Classes Classes are callable. These objects normally act as factories for new instances of themselves, but
variations are possible for class types that override __new__(). The arguments of the call are passed
to __new__() and, in the typical case, to __init__() to initialize the new instance.

Class Instances Instances of arbitrary classes can be made callable by defining a __call__() method in
their class.

Modules Modules are a basic organizational unit of Python code, and are created by the import system as invoked
either by the import statement, or by calling functions such as importlib.import_module() and
built-in __import__(). A module object has a namespace implemented by a dictionary object (this is the

22 Bölüm 3. Data model

The Python Language Reference, Sürüm 3.9.20

dictionary referenced by the __globals__ attribute of functions defined in the module). Attribute referen-
ces are translated to lookups in this dictionary, e.g., m.x is equivalent to m.__dict__["x"]. A module
object does not contain the code object used to initialize the module (since it isn’t needed once the initialization
is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.
__dict__["x"] = 1.

Predefined (writable) attributes: __name__ is the module’s name; __doc__ is the module’s documentation
string, orNone if unavailable;__annotations__ (optional) is a dictionary containing variable annotations
collected during module body execution; __file__ is the pathname of the file from which the module was
loaded, if it was loaded from a file. The __file__ attribute may be missing for certain types of modules,
such as Cmodules that are statically linked into the interpreter; for extension modules loaded dynamically from
a shared library, it is the pathname of the shared library file.

Special read-only attribute: __dict__ is the module’s namespace as a dictionary object.

CPython implementation detail: Because of the way CPython clears module dictionaries, the module dic-
tionary will be cleared when the module falls out of scope even if the dictionary still has live references. To
avoid this, copy the dictionary or keep the module around while using its dictionary directly.

Custom classes Custom class types are typically created by class definitions (see section Class definitions). A class
has a namespace implemented by a dictionary object. Class attribute references are translated to lookups in
this dictionary, e.g., C.x is translated to C.__dict__["x"] (although there are a number of hooks which
allow for other means of locating attributes). When the attribute name is not found there, the attribute search
continues in the base classes. This search of the base classes uses the C3method resolution order which behaves
correctly even in the presence of ‘diamond’ inheritance structures where there are multiple inheritance paths
leading back to a common ancestor. Additional details on the C3 MRO used by Python can be found in the
documentation accompanying the 2.3 release at https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into
an instance method object whose __self__ attribute is C. When it would yield a static method object,
it is transformed into the object wrapped by the static method object. See section Implementing Descriptors
for another way in which attributes retrieved from a class may differ from those actually contained in its
__dict__.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.

A class object can be called (see above) to yield a class instance (see below).

Special attributes: __name__ is the class name; __module__ is the module name in which the class was
defined; __dict__ is the dictionary containing the class’s namespace; __bases__ is a tuple containing
the base classes, in the order of their occurrence in the base class list; __doc__ is the class’s documentation
string, or None if undefined; __annotations__ (optional) is a dictionary containing variable annotations
collected during class body execution.

Class instances A class instance is created by calling a class object (see above). A class instance has a namespace
implemented as a dictionary which is the first place in which attribute references are searched. When an
attribute is not found there, and the instance’s class has an attribute by that name, the search continues with
the class attributes. If a class attribute is found that is a user-defined function object, it is transformed into an
instance method object whose __self__ attribute is the instance. Static method and class method objects
are also transformed; see above under “Classes”. See section Implementing Descriptors for another way in
which attributes of a class retrieved via its instances may differ from the objects actually stored in the class’s
__dict__. If no class attribute is found, and the object’s class has a __getattr__() method, that is
called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has
a __setattr__() or __delattr__()method, this is called instead of updating the instance dictionary
directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special
names. See section Special method names.

Special attributes: __dict__ is the attribute dictionary; __class__ is the instance’s class.

3.2. The standard type hierarchy 23

https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Sürüm 3.9.20

I/O objects (also known as file objects) A file object represents an open file. Various shortcuts are available
to create file objects: the open() built-in function, and also os.popen(), os.fdopen(), and the
makefile() method of socket objects (and perhaps by other functions or methods provided by extensi-
on modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to
the interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow
the interface defined by the io.TextIOBase abstract class.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may change
with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represent byte-compiled executable Python code, or bytecode. The difference be-
tween a code object and a function object is that the function object contains an explicit reference to
the function’s globals (the module in which it was defined), while a code object contains no context; also
the default argument values are stored in the function object, not in the code object (because they repre-
sent values calculated at run-time). Unlike function objects, code objects are immutable and contain no
references (directly or indirectly) to mutable objects.

Special read-only attributes: co_name gives the function name; co_argcount is the total num-
ber of positional arguments (including positional-only arguments and arguments with default values);
co_posonlyargcount is the number of positional-only arguments (including arguments with de-
fault values); co_kwonlyargcount is the number of keyword-only arguments (including arguments
with default values); co_nlocals is the number of local variables used by the function (including
arguments); co_varnames is a tuple containing the names of the local variables (starting with the ar-
gument names); co_cellvars is a tuple containing the names of local variables that are referenced by
nested functions; co_freevars is a tuple containing the names of free variables; co_code is a string
representing the sequence of bytecode instructions; co_consts is a tuple containing the literals used
by the bytecode; co_names is a tuple containing the names used by the bytecode; co_filename is
the filename from which the code was compiled; co_firstlineno is the first line number of the
function; co_lnotab is a string encoding the mapping from bytecode offsets to line numbers (for de-
tails see the source code of the interpreter); co_stacksize is the required stack size; co_flags is
an integer encoding a number of flags for the interpreter.

The following flag bits are defined forco_flags: bit0x04 is set if the function uses the*arguments
syntax to accept an arbitrary number of positional arguments; bit 0x08 is set if the function uses the
**keywords syntax to accept arbitrary keyword arguments; bit 0x20 is set if the function is a gene-
rator.

Future feature declarations (from __future__ import division) also use bits in co_flags
to indicate whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if
the function was compiled with future division enabled; bits 0x10 and 0x1000 were used in earlier
versions of Python.

Other bits in co_flags are reserved for internal use.

If a code object represents a function, the first item in co_consts is the documentation string of the
function, or None if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see below),
and are also passed to registered trace functions.

Special read-only attributes: f_back is to the previous stack frame (towards the caller), or None if
this is the bottom stack frame; f_code is the code object being executed in this frame; f_locals is
the dictionary used to look up local variables; f_globals is used for global variables; f_builtins
is used for built-in (intrinsic) names; f_lasti gives the precise instruction (this is an index into the
bytecode string of the code object).

Accessing f_code raises an auditing event object.__getattr__ with arguments obj and
"f_code".

Special writable attributes: f_trace, if not None, is a function called for various events during code
execution (this is used by the debugger). Normally an event is triggered for each new source line - this
can be disabled by setting f_trace_lines to False.

24 Bölüm 3. Data model

The Python Language Reference, Sürüm 3.9.20

Implementations may allow per-opcode events to be requested by setting f_trace_opcodes to
True. Note that this may lead to undefined interpreter behaviour if exceptions raised by the trace func-
tion escape to the function being traced.

f_lineno is the current line number of the frame—writing to this from within a trace function jumps
to the given line (only for the bottom-most frame). A debugger can implement a Jump command (aka
Set Next Statement) by writing to f_lineno.

Frame objects support one method:

frame.clear()
This method clears all references to local variables held by the frame. Also, if the frame belonged
to a generator, the generator is finalized. This helps break reference cycles involving frame objects
(for example when catching an exception and storing its traceback for later use).

RuntimeError is raised if the frame is currently executing.

3.4 sürümüyle geldi.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is imp-
licitly created when an exception occurs, and may also be explicitly created by calling types.
TracebackType.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack,
at each unwound level a traceback object is inserted in front of the current traceback. When an exception
handler is entered, the stack trace is made available to the program. (See section The try statement.) It is
accessible as the third item of the tuple returned by sys.exc_info(), and as the __traceback__
attribute of the caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the
standard error stream; if the interpreter is interactive, it is also made available to the user as sys.
last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the tb_next
attributes should be linked to form a full stack trace.

Special read-only attributes: tb_frame points to the execution frame of the current level; tb_lineno
gives the line number where the exception occurred; tb_lasti indicates the precise instruction. The
line number and last instruction in the traceback may differ from the line number of its frame object if
the exception occurred in a try statement with no matching except clause or with a finally clause.

Accessing tb_frame raises an auditing event object.__getattr__ with arguments obj and
"tb_frame".

Special writable attribute: tb_next is the next level in the stack trace (towards the frame where the
exception occurred), or None if there is no next level.

3.7 sürümünde değişti: Traceback objects can now be explicitly instantiated from Python code, and the
tb_next attribute of existing instances can be updated.

Slice objects Slice objects are used to represent slices for __getitem__()methods. They are also created
by the built-in slice() function.

Special read-only attributes: start is the lower bound; stop is the upper bound; step is the step
value; each is None if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices(self, length)
This method takes a single integer argument length and computes information about the slice that
the slice object would describe if applied to a sequence of length items. It returns a tuple of three
integers; respectively these are the start and stop indices and the step or stride length of the slice.
Missing or out-of-bounds indices are handled in a manner consistent with regular slices.

Static method objects Static method objects provide a way of defeating the transformation of function objects
to method objects described above. A static method object is a wrapper around any other object, usually a
user-defined method object. When a static method object is retrieved from a class or a class instance, the

3.2. The standard type hierarchy 25

The Python Language Reference, Sürüm 3.9.20

object actually returned is the wrapped object, which is not subject to any further transformation. Static
method objects are not themselves callable, although the objects they wrap usually are. Static method
objects are created by the built-in staticmethod() constructor.

Class method objects A class method object, like a static method object, is a wrapper around another object
that alters the way in which that object is retrieved from classes and class instances. The behaviour of
class method objects upon such retrieval is described above, under “User-definedmethods”. Class method
objects are created by the built-in classmethod() constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subsc-
ripting and slicing) by defining methods with special names. This is Python’s approach to operator overloading,
allowing classes to define their own behavior with respect to language operators. For instance, if a class defines a
method named __getitem__(), and x is an instance of this class, then x[i] is roughly equivalent to type(x).
__getitem__(x, i). Except where mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined (typically AttributeError or TypeError).

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class
sets __iter__() to None, the class is not iterable, so calling iter() on its instances will raise a TypeError
(without falling back to __getitem__()).2

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of this is the NodeList
interface in the W3C’s Document Object Model.)

3.3.1 Basic customization

object.__new__(cls[, ...])
Called to create a new instance of class cls. __new__() is a static method (special-cased so you need not
declare it as such) that takes the class of which an instance was requested as its first argument. The remaining
arguments are those passed to the object constructor expression (the call to the class). The return value of
__new__() should be the new object instance (usually an instance of cls).

Typical implementations create a new instance of the class by invoking the superclass’s __new__() method
using super().__new__(cls[, ...]) with appropriate arguments and then modifying the newly-
created instance as necessary before returning it.

If __new__() is invoked during object construction and it returns an instance of cls, then the new instance’s
__init__() method will be invoked like __init__(self[, ...]), where self is the new instance
and the remaining arguments are the same as were passed to the object constructor.

If __new__() does not return an instance of cls, then the new instance’s __init__() method will not be
invoked.

__new__() is intended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize
instance creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init__(self[, ...])
Called after the instance has been created (by __new__()), but before it is returned to the caller. The argu-
ments are those passed to the class constructor expression. If a base class has an __init__() method, the
derived class’s __init__() method, if any, must explicitly call it to ensure proper initialization of the base
class part of the instance; for example: super().__init__([args...]).

Because __new__() and __init__() work together in constructing objects (__new__() to create it,
and __init__() to customize it), no non-None value may be returned by __init__(); doing so will
cause a TypeError to be raised at runtime.

2 The __hash__(), __iter__(), __reversed__(), and __contains__() methods have special handling for this; others will
still raise a TypeError, but may do so by relying on the behavior that None is not callable.

26 Bölüm 3. Data model

The Python Language Reference, Sürüm 3.9.20

object.__del__(self)
Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor. If
a base class has a __del__() method, the derived class’s __del__() method, if any, must explicitly call
it to ensure proper deletion of the base class part of the instance.

It is possible (though not recommended!) for the __del__()method to postpone destruction of the instance
by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether
__del__() is called a second time when a resurrected object is about to be destroyed; the current CPython
implementation only calls it once.

It is not guaranteed that __del__() methods are called for objects that still exist when the interpreter exits.

Not: del x doesn’t directly call x.__del__()— the former decrements the reference count for x by one,
and the latter is only called when x’s reference count reaches zero.

CPython implementation detail: It is possible for a reference cycle to prevent the reference count of an object
from going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage collector. A
common cause of reference cycles is when an exception has been caught in a local variable. The frame’s locals
then reference the exception, which references its own traceback, which references the locals of all frames
caught in the traceback.

Ayrıca bkz.:

Documentation for the gc module.

Uyarı: Due to the precarious circumstances under which __del__() methods are invoked, excepti-
ons that occur during their execution are ignored, and a warning is printed to sys.stderr instead. In
particular:

• __del__() can be invoked when arbitrary code is being executed, including from any arbitrary
thread. If __del__() needs to take a lock or invoke any other blocking resource, it may deadlock
as the resource may already be taken by the code that gets interrupted to execute __del__().

• __del__() can be executed during interpreter shutdown. As a consequence, the global variables
it needs to access (including other modules) may already have been deleted or set to None. Python
guarantees that globals whose name begins with a single underscore are deleted from their module
before other globals are deleted; if no other references to such globals exist, this may help in assuring
that imported modules are still available at the time when the __del__() method is called.

object.__repr__(self)
Called by the repr() built-in function to compute the “official” string representation of an object. If at
all possible, this should look like a valid Python expression that could be used to recreate an object with
the same value (given an appropriate environment). If this is not possible, a string of the form <...some
useful description...> should be returned. The return value must be a string object. If a class de-
fines __repr__() but not __str__(), then __repr__() is also used when an “informal” string repre-
sentation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and unambi-
guous.

object.__str__(self)
Called by str(object) and the built-in functions format() and print() to compute the “informal”
or nicely printable string representation of an object. The return value must be a string object.

This method differs from object.__repr__() in that there is no expectation that __str__() return a
valid Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object.__repr__().

object.__bytes__(self)
Called by bytes to compute a byte-string representation of an object. This should return a bytes object.

3.3. Special method names 27

The Python Language Reference, Sürüm 3.9.20

object.__format__(self, format_spec)
Called by the format() built-in function, and by extension, evaluation of formatted string literals and the
str.format() method, to produce a “formatted” string representation of an object. The format_spec ar-
gument is a string that contains a description of the formatting options desired. The interpretation of the
format_spec argument is up to the type implementing __format__(), however most classes will either
delegate formatting to one of the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.

The return value must be a string object.

3.4 sürümünde değişti: The __format__ method of object itself raises a TypeError if passed any non-
empty string.

3.7 sürümünde değişti: object.__format__(x, '') is now equivalent to str(x) rather than
format(str(x), '').

object.__lt__(self, other)
object.__le__(self, other)
object.__eq__(self, other)
object.__ne__(self, other)
object.__gt__(self, other)
object.__ge__(self, other)

These are the so-called “rich comparison”methods. The correspondence between operator symbols andmethod
names is as follows: x<y calls x.__lt__(y), x< =y calls x.__le__(y), x ==y calls x.__eq__(y),
x!=y calls x.__ne__(y), x>y calls x.__gt__(y), and x> =y calls x.__ge__(y).

A rich comparison method may return the singleton NotImplemented if it does not implement the opera-
tion for a given pair of arguments. By convention, False and True are returned for a successful comparison.
However, these methods can return any value, so if the comparison operator is used in a Boolean context (e.g.,
in the condition of an if statement), Python will call bool() on the value to determine if the result is true
or false.

By default, object implements __eq__() by using is, returning NotImplemented in the case of a
false comparison: True if x is y else NotImplemented. For __ne__(), by default it delega-
tes to __eq__() and inverts the result unless it is NotImplemented. There are no other implied rela-
tionships among the comparison operators or default implementations; for example, the truth of (x<y or
x ==y) does not imply x< =y. To automatically generate ordering operations from a single root operation,
see functools.total_ordering().

See the paragraph on __hash__() for some important notes on creating hashable objects which support
custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support
the operation but the right argument does); rather, __lt__() and __gt__() are each other’s reflection,
__le__() and __ge__() are each other’s reflection, and __eq__() and __ne__() are their own ref-
lection. If the operands are of different types, and right operand’s type is a direct or indirect subclass of the
left operand’s type, the reflected method of the right operand has priority, otherwise the left operand’s method
has priority. Virtual subclassing is not considered.

object.__hash__(self)
Called by built-in function hash() and for operations on members of hashed collections including set,
frozenset, and dict. The __hash__()method should return an integer. The only required property is
that objects which compare equal have the same hash value; it is advised to mix together the hash values of
the components of the object that also play a part in comparison of objects by packing them into a tuple and
hashing the tuple. Example:

def __hash__(self):
return hash((self.name, self.nick, self.color))

Not: hash() truncates the value returned from an object’s custom __hash__() method to the size
of a Py_ssize_t. This is typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s

28 Bölüm 3. Data model

The Python Language Reference, Sürüm 3.9.20

__hash__() must interoperate on builds of different bit sizes, be sure to check the width on all suppor-
ted builds. An easy way to do this is with python -c "import sys; print(sys.hash_info.
width)".

If a class does not define an __eq__() method it should not define a __hash__() operation either; if it
defines __eq__() but not __hash__(), its instances will not be usable as items in hashable collections. If a
class defines mutable objects and implements an __eq__()method, it should not implement __hash__(),
since the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s
hash value changes, it will be in the wrong hash bucket).

User-defined classes have __eq__() and __hash__() methods by default; with them, all objects com-
pare unequal (except with themselves) and x.__hash__() returns an appropriate value such that x == y
implies both that x is y and hash(x) == hash(y).

A class that overrides __eq__() and does not define __hash__() will have its __hash__() implicitly
set to None. When the __hash__() method of a class is None, instances of the class will raise an approp-
riate TypeError when a program attempts to retrieve their hash value, and will also be correctly identified
as unhashable when checking isinstance(obj, collections.abc.Hashable).

If a class that overrides __eq__() needs to retain the implementation of __hash__() from a parent class,
the interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__.

If a class that does not override __eq__() wishes to suppress hash support, it should include __hash__
= None in the class definition. A class which defines its own __hash__() that explicitly raises a
TypeError would be incorrectly identified as hashable by an isinstance(obj, collections.
abc.Hashable) call.

Not: By default, the __hash__() values of str and bytes objects are “salted” with an unpredictable random
value. Although they remain constant within an individual Python process, they are not predictable between
repeated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully-chosen inputs that exp-
loit the worst case performance of a dict insertion, O(n2) complexity. See http://www.ocert.org/advisories/
ocert-2011-003.html for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this ordering
(and it typically varies between 32-bit and 64-bit builds).

See also PYTHONHASHSEED.

3.3 sürümünde değişti: Hash randomization is enabled by default.

object.__bool__(self)
Called to implement truth value testing and the built-in operation bool(); should return False or True.
When this method is not defined, __len__() is called, if it is defined, and the object is considered true if its
result is nonzero. If a class defines neither __len__() nor __bool__(), all its instances are considered
true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion
of x.name) for class instances.

object.__getattr__(self, name)
Called when the default attribute access fails with an AttributeError (either __getattribute__()
raises an AttributeError because name is not an instance attribute or an attribute in the class tree for
self; or __get__() of a name property raises AttributeError). This method should either return
the (computed) attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, __getattr__() is not called. (This is an
intentional asymmetry between __getattr__() and __setattr__().) This is done both for efficiency

3.3. Special method names 29

http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, Sürüm 3.9.20

reasons and because otherwise__getattr__()would have noway to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance
attribute dictionary (but instead inserting them in another object). See the __getattribute__()method
below for a way to actually get total control over attribute access.

object.__getattribute__(self, name)
Called unconditionally to implement attribute accesses for instances of the class. If the class also defines
__getattr__(), the latter will not be called unless __getattribute__() either calls it explicitly
or raises an AttributeError. This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation should
always call the base class method with the same name to access any attributes it needs, for example, object.
__getattribute__(self, name).

Not: This method may still be bypassed when looking up special methods as the result of implicit invocation
via language syntax or built-in functions. See Special method lookup.

For certain sensitive attribute accesses, raises an auditing event object.__getattr__ with arguments
obj and name.

object.__setattr__(self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store
the value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If __setattr__() wants to assign to an instance attribute, it should call the base class method with the
same name, for example, object.__setattr__(self, name, value).

For certain sensitive attribute assignments, raises an auditing event object.__setattr__with arguments
obj, name, value.

object.__delattr__(self, name)
Like __setattr__() but for attribute deletion instead of assignment. This should only be implemented if
del obj.name is meaningful for the object.

For certain sensitive attribute deletions, raises an auditing event object.__delattr__ with arguments
obj and name.

object.__dir__(self)
Called when dir() is called on the object. A sequence must be returned. dir() converts the returned
sequence to a list and sorts it.

Customizing module attribute access

Special names __getattr__ and __dir__ can be also used to customize access to module attributes. The
__getattr__ function at the module level should accept one argument which is the name of an attribute and
return the computed value or raise an AttributeError. If an attribute is not found on a module object thro-
ugh the normal lookup, i.e. object.__getattribute__(), then __getattr__ is searched in the module
__dict__ before raising an AttributeError. If found, it is called with the attribute name and the result is
returned.

The __dir__ function should accept no arguments, and return a sequence of strings that represents the names
accessible on module. If present, this function overrides the standard dir() search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the
__class__ attribute of a module object to a subclass of types.ModuleType. For example:

import sys
from types import ModuleType

class VerboseModule(ModuleType):
def __repr__(self):

return f'Verbose {self.__name__}'

(continues on next page)

30 Bölüm 3. Data model

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

def __setattr__(self, attr, value):
print(f'Setting {attr}...')
super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule

Not: Defining module __getattr__ and setting module __class__ only affect lookups made using the attri-
bute access syntax – directly accessing the module globals (whether by code within the module, or via a reference to
the module’s globals dictionary) is unaffected.

3.5 sürümünde değişti: __class__ module attribute is now writable.

3.7 sürümüyle geldi: __getattr__ and __dir__ module attributes.

Ayrıca bkz.:

PEP 562 - Module __getattr__ and __dir__ Describes the__getattr__ and__dir__ functions onmodules.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for
one of its parents). In the examples below, “the attribute” refers to the attribute whose name is the key of the property
in the owner class’ __dict__.

object.__get__(self, instance, owner =None)
Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance
attribute access). The optional owner argument is the owner class, while instance is the instance that the attribute
was accessed through, or None when the attribute is accessed through the owner.

This method should return the computed attribute value or raise an AttributeError exception.

PEP 252 specifies that __get__() is callable with one or two arguments. Python’s own built-in descriptors
support this specification; however, it is likely that some third-party tools have descriptors that require both
arguments. Python’s own __getattribute__() implementation always passes in both arguments whether
they are required or not.

object.__set__(self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.

Note, adding __set__() or __delete__() changes the kind of descriptor to a “data descriptor”. See
Invoking Descriptors for more details.

object.__delete__(self, instance)
Called to delete the attribute on an instance instance of the owner class.

object.__set_name__(self, owner, name)
Called at the time the owning class owner is created. The descriptor has been assigned to name.

Not: __set_name__() is only called implicitly as part of the type constructor, so it will need to be called
explicitly with the appropriate parameters when a descriptor is added to a class after initial creation:

class A:
pass

descr = custom_descriptor()
A.attr = descr
descr.__set_name__(A, 'attr')

3.3. Special method names 31

https://www.python.org/dev/peps/pep-0562
https://www.python.org/dev/peps/pep-0252

The Python Language Reference, Sürüm 3.9.20

See Creating the class object for more details.

3.6 sürümüyle geldi.

The attribute __objclass__ is interpreted by the inspectmodule as specifying the class where this object was
defined (setting this appropriately can assist in runtime introspection of dynamic class attributes). For callables, it
may indicate that an instance of the given type (or a subclass) is expected or required as the first positional argument
(for example, CPython sets this attribute for unbound methods that are implemented in C).

Invoking Descriptors

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden
by methods in the descriptor protocol: __get__(), __set__(), and __delete__(). If any of those methods
are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance,
a.x has a lookup chain starting with a.__dict__['x'], then type(a).__dict__['x'], and continuing
through the base classes of type(a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on
which descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a.x. How the arguments are assembled depends on a:

Direct Call The simplest and least common call is when user code directly invokes a descriptor method: x.
__get__(a).

Instance Binding If binding to an object instance, a.x is transformed into the call: type(a).
__dict__['x'].__get__(a, type(a)).

Class Binding If binding to a class, A.x is transformed into the call: A.__dict__['x'].__get__(None,
A).

Super Binding If a is an instance of super, then the binding super(B, obj).m() searches obj.
__class__.__mro__ for the base class A immediately following B and then invokes the descriptor with
the call: A.__dict__['m'].__get__(obj, obj.__class__).

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined. A
descriptor can define any combination of __get__(), __set__() and __delete__(). If it does not define
__get__(), then accessing the attribute will return the descriptor object itself unless there is a value in the object’s
instance dictionary. If the descriptor defines __set__() and/or __delete__(), it is a data descriptor; if it
defines neither, it is a non-data descriptor. Normally, data descriptors define both __get__() and __set__(),
while non-data descriptors have just the__get__()method. Data descriptors with__get__() and__set__()
(and/or __delete__()) defined always override a redefinition in an instance dictionary. In contrast, non-data
descriptors can be overridden by instances.

Python methods (including those decorated with @staticmethod and @classmethod) are implemented as
non-data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to
acquire behaviors that differ from other instances of the same class.

The property() function is implemented as a data descriptor. Accordingly, instances cannot override the behavior
of a property.

32 Bölüm 3. Data model

The Python Language Reference, Sürüm 3.9.20

__slots__

__slots__ allow us to explicitly declare data members (like properties) and deny the creation of __dict__ and
__weakref__ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using __dict__ can be significant. Attribute lookup speed can be significantly improved as
well.

object.__slots__
This class variable can be assigned a string, iterable, or sequence of strings with variable names used by ins-
tances. __slots__ reserves space for the declared variables and prevents the automatic creation of __dict__
and __weakref__ for each instance.

Notes on using __slots__

• When inheriting from a class without __slots__, the __dict__ and __weakref__ attribute of the instances
will always be accessible.

• Without a __dict__ variable, instances cannot be assigned new variables not listed in the __slots__ defini-
tion. Attempts to assign to an unlisted variable name raises AttributeError. If dynamic assignment of
new variables is desired, then add '__dict__' to the sequence of strings in the __slots__ declaration.

• Without a __weakref__ variable for each instance, classes defining __slots__ do not support weak
references to its instances. If weak reference support is needed, then add '__weakref__' to the se-
quence of strings in the __slots__ declaration.

• __slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class
attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class
attribute would overwrite the descriptor assignment.

• The action of a __slots__ declaration is not limited to the class where it is defined. __slots__ declared in parents
are available in child classes. However, child subclasses will get a __dict__ and __weakref__ unless they
also define __slots__ (which should only contain names of any additional slots).

• If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is
inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of the
program undefined. In the future, a check may be added to prevent this.

• Nonempty __slots__ does not work for classes derived from “variable-length” built-in types such as int,
bytes and tuple.

• Any non-string iterable may be assigned to __slots__.

• If a dictionary is used to assign __slots__, the dictionary keys will be used as the slot names. The va-
lues of the dictionary can be used to provide per-attribute docstrings that will be recognised by inspect.
getdoc() and displayed in the output of help().

• __class__ assignment works only if both classes have the same __slots__.

• Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have
attributes created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

• If an iterator is used for __slots__ then a descriptor is created for each of the iterator’s values. However, the
__slots__ attribute will be an empty iterator.

3.3. Special method names 33

The Python Language Reference, Sürüm 3.9.20

3.3.3 Customizing class creation

Whenever a class inherits from another class, __init_subclass__() is called on the parent class. This way, it
is possible to write classes which change the behavior of subclasses. This is closely related to class decorators, but
where class decorators only affect the specific class they’re applied to, __init_subclass__ solely applies to
future subclasses of the class defining the method.

classmethod object.__init_subclass__(cls)
This method is called whenever the containing class is subclassed. cls is then the new subclass. If defined as a
normal instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent’s class __init_subclass__.
For compatibility with other classes using __init_subclass__, one should take out the needed keyword
arguments and pass the others over to the base class, as in:

class Philosopher:
def __init_subclass__(cls, /, default_name, **kwargs):

super().__init_subclass__(**kwargs)
cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
pass

The default implementation object.__init_subclass__ does nothing, but raises an error if it is called
with any arguments.

Not: The metaclass hint metaclass is consumed by the rest of the type machinery, and is never passed to
__init_subclass__ implementations. The actual metaclass (rather than the explicit hint) can be accessed
as type(cls).

3.6 sürümüyle geldi.

Metaclasses

By default, classes are constructed using type(). The class body is executed in a new namespace and the class name
is bound locally to the result of type(name, bases, namespace).

The class creation process can be customized by passing the metaclass keyword argument in the class definition
line, or by inheriting from an existing class that included such an argument. In the following example, both MyClass
and MySubclass are instances of Meta:

class Meta(type):
pass

class MyClass(metaclass=Meta):
pass

class MySubclass(MyClass):
pass

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations
described below.

When a class definition is executed, the following steps occur:

• MRO entries are resolved;

• the appropriate metaclass is determined;

• the class namespace is prepared;

• the class body is executed;

34 Bölüm 3. Data model

The Python Language Reference, Sürüm 3.9.20

• the class object is created.

Resolving MRO entries

If a base that appears in class definition is not an instance oftype, then an__mro_entries__method is searched
on it. If found, it is called with the original bases tuple. This method must return a tuple of classes that will be used
instead of this base. The tuple may be empty, in such case the original base is ignored.

Ayrıca bkz.:

PEP 560 - Core support for typing module and generic types

Determining the appropriate metaclass

The appropriate metaclass for a class definition is determined as follows:

• if no bases and no explicit metaclass are given, then type() is used;

• if an explicit metaclass is given and it is not an instance of type(), then it is used directly as the metaclass;

• if an instance of type() is given as the explicit metaclass, or bases are defined, then the most derived me-
taclass is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type(cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these
candidate metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail
with TypeError.

Preparing the class namespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass has
a __prepare__ attribute, it is called as namespace = metaclass.__prepare__(name, bases,
**kwds) (where the additional keyword arguments, if any, come from the class definition). The __prepare__
method should be implemented as a classmethod. The namespace returned by __prepare__ is passed in to
__new__, but when the final class object is created the namespace is copied into a new dict.

If the metaclass has no __prepare__ attribute, then the class namespace is initialised as an empty ordered map-
ping.

Ayrıca bkz.:

PEP 3115 - Metaclasses in Python 3000 Introduced the __prepare__ namespace hook

Executing the class body

The class body is executed (approximately) as exec(body, globals(), namespace). The key difference
from a normal call to exec() is that lexical scoping allows the class body (including any methods) to reference
names from the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see
names defined at the class scope. Class variables must be accessed through the first parameter of instance or class
methods, or through the implicit lexically scoped __class__ reference described in the next section.

3.3. Special method names 35

https://www.python.org/dev/peps/pep-0560
https://www.python.org/dev/peps/pep-3115

The Python Language Reference, Sürüm 3.9.20

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass(name, bases, namespace, **kwds) (the additional keywords passed here are the same as
those passed to __prepare__).

This class object is the one that will be referenced by the zero-argument form of super(). __class__ is an
implicit closure reference created by the compiler if any methods in a class body refer to either __class__ or
super. This allows the zero argument form of super() to correctly identify the class being defined based on
lexical scoping, while the class or instance that was used to make the current call is identified based on the first
argument passed to the method.

CPython implementation detail: In CPython 3.6 and later, the __class__ cell is passed to the metaclass as a
__classcell__ entry in the class namespace. If present, this must be propagated up to the type.__new__
call in order for the class to be initialised correctly. Failing to do so will result in a RuntimeError in Python 3.8.

When using the default metaclass type, or any metaclass that ultimately calls type.__new__, the following
additional customisation steps are invoked after creating the class object:

• first, type.__new__ collects all of the descriptors in the class namespace that define a __set_name__()
method;

• second, all of these __set_name__ methods are called with the class being defined and the assigned name
of that particular descriptor;

• finally, the __init_subclass__() hook is called on the immediate parent of the new class in its method
resolution order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the
resulting object is bound in the local namespace as the defined class.

When a new class is created by type.__new__, the object provided as the namespace parameter is copied to a
new ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which
becomes the __dict__ attribute of the class object.

Ayrıca bkz.:

PEP 3135 - New super Describes the implicit __class__ closure reference

Uses for metaclasses

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging, in-
terface checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource
locking/synchronization.

3.3.4 Customizing instance and subclass checks

The following methods are used to override the default behavior of the isinstance() and issubclass()
built-in functions.

In particular, the metaclass abc.ABCMeta implements these methods in order to allow the addition of Abstract
Base Classes (ABCs) as “virtual base classes” to any class or type (including built-in types), including other ABCs.

class.__instancecheck__(self, instance)
Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to imp-
lement isinstance(instance, class).

class.__subclasscheck__(self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to imp-
lement issubclass(subclass, class).

36 Bölüm 3. Data model

https://www.python.org/dev/peps/pep-3135

The Python Language Reference, Sürüm 3.9.20

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods
in the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case
the instance is itself a class.

Ayrıca bkz.:

PEP 3119 - Introducing Abstract Base Classes Includes the specification for customizing isinstance() and
issubclass() behavior through __instancecheck__() and __subclasscheck__(), with mo-
tivation for this functionality in the context of adding Abstract Base Classes (see the abc module) to the
language.

3.3.5 Emulating generic types

When using type annotations, it is often useful to parameterize a generic type using Python’s square-brackets notation.
For example, the annotation list[int] might be used to signify a list in which all the elements are of type
int.

Ayrıca bkz.:

PEP 484 - Type Hints Introducing Python’s framework for type annotations

Generic Alias Types Documentation for objects representing parameterized generic classes

Generics, user-defined generics and typing.Generic Documentation on how to implement generic classes
that can be parameterized at runtime and understood by static type-checkers.

A class can generally only be parameterized if it defines the special class method __class_getitem__().

classmethod object.__class_getitem__(cls, key)
Return an object representing the specialization of a generic class by type arguments found in key.

When defined on a class, __class_getitem__() is automatically a class method. As such, there is no
need for it to be decorated with @classmethod when it is defined.

The purpose of __class_getitem__

The purpose of __class_getitem__() is to allow runtime parameterization of standard-library generic classes
in order to more easily apply type hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers,
users should either inherit from a standard library class that already implements __class_getitem__(), or
inherit from typing.Generic, which has its own implementation of __class_getitem__().

Custom implementations of __class_getitem__() on classes defined outside of the standard library may
not be understood by third-party type-checkers such as mypy. Using __class_getitem__() on any class for
purposes other than type hinting is discouraged.

__class_getitem__ versus __getitem__

Usually, the subscription of an object using square brackets will call the __getitem__() instance met-
hod defined on the object’s class. However, if the object being subscribed is itself a class, the class method
__class_getitem__() may be called instead. __class_getitem__() should return a GenericAlias ob-
ject if it is properly defined.

Presented with the expression obj[x], the Python interpreter follows something like the following process to decide
whether __getitem__() or __class_getitem__() should be called:

from inspect import isclass

def subscribe(obj, x):
"""Return the result of the expression `obj[x]`"""

(continues on next page)

3.3. Special method names 37

https://www.python.org/dev/peps/pep-3119
https://www.python.org/dev/peps/pep-0484

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

class_of_obj = type(obj)

If the class of obj defines __getitem__,
call class_of_obj.__getitem__(obj, x)
if hasattr(class_of_obj, '__getitem__'):

return class_of_obj.__getitem__(obj, x)

Else, if obj is a class and defines __class_getitem__,
call obj.__class_getitem__(x)
elif isclass(obj) and hasattr(obj, '__class_getitem__'):

return obj.__class_getitem__(x)

Else, raise an exception
else:

raise TypeError(
f"'{class_of_obj.__name__}' object is not subscriptable"

)

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’s me-
taclass, and most classes have the type class as their metaclass. type does not define __getitem__(), me-
aning that expressions such as list[int], dict[str, float] and tuple[str, bytes] all result in
__class_getitem__() being called:

>>> # list has class "type" as its metaclass, like most classes:
>>> type(list)
<class 'type'>
>>> type(dict) == type(list) == type(tuple) == type(str) == type(bytes)
True
>>> # "list[int]" calls "list.__class_getitem__(int)"
>>> list[int]
list[int]
>>> # list.__class_getitem__ returns a GenericAlias object:
>>> type(list[int])
<class 'types.GenericAlias'>

However, if a class has a custom metaclass that defines __getitem__(), subscribing the class may result in
different behaviour. An example of this can be found in the enum module:

>>> from enum import Enum
>>> class Menu(Enum):
... """A breakfast menu"""
... SPAM = 'spam'
... BACON = 'bacon'
...
>>> # Enum classes have a custom metaclass:
>>> type(Menu)
<class 'enum.EnumMeta'>
>>> # EnumMeta defines __getitem__,
>>> # so __class_getitem__ is not called,
>>> # and the result is not a GenericAlias object:
>>> Menu['SPAM']
<Menu.SPAM: 'spam'>
>>> type(Menu['SPAM'])
<enum 'Menu'>

Ayrıca bkz.:

PEP 560 - Core Support for typing module and generic types Introducing __class_getitem__(),
and outlining when a subscription results in __class_getitem__() being called instead of
__getitem__()

38 Bölüm 3. Data model

https://www.python.org/dev/peps/pep-0560

The Python Language Reference, Sürüm 3.9.20

3.3.6 Emulating callable objects

object.__call__(self[, args...])
Called when the instance is “called” as a function; if this method is defined,x(arg1, arg2, ...) roughly
translates to type(x).__call__(x, arg1, ...).

3.3.7 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as
lists or tuples) or mappings (like dictionaries), but can represent other containers as well. The first
set of methods is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequen-
ce, the allowable keys should be the integers k for which 0 < = k < N where N is the length of the sequence, or
slice objects, which define a range of items. It is also recommended that mappings provide the methods keys(),
values(), items(), get(), clear(), setdefault(), pop(), popitem(), copy(), and update()
behaving similar to those for Python’s standard dictionary objects. The collections.abc module provi-
des a MutableMapping abstract base class to help create those methods from a base set of __getitem__(),
__setitem__(), __delitem__(), and keys(). Mutable sequences should provide methods append(),
count(), index(), extend(), insert(), pop(), remove(), reverse() and sort(), like Python
standard list objects. Finally, sequence types should implement addition (meaning concatenation) and multipli-
cation (meaning repetition) by defining the methods __add__(), __radd__(), __iadd__(), __mul__(),
__rmul__() and __imul__() described below; they should not define other numerical operators. It is recom-
mended that both mappings and sequences implement the __contains__() method to allow efficient use of
the in operator; for mappings, in should search the mapping’s keys; for sequences, it should search through the
values. It is further recommended that both mappings and sequences implement the __iter__()method to allow
efficient iteration through the container; for mappings, __iter__() should iterate through the object’s keys; for
sequences, it should iterate through the values.

object.__len__(self)
Called to implement the built-in function len(). Should return the length of the object, an integer > = 0.
Also, an object that doesn’t define a __bool__() method and whose __len__() method returns zero is
considered to be false in a Boolean context.

CPython implementation detail: In CPython, the length is required to be at most sys.maxsize. If the
length is larger than sys.maxsize some features (such as len()) may raise OverflowError. To pre-
vent raising OverflowError by truth value testing, an object must define a __bool__() method.

object.__length_hint__(self)
Called to implementoperator.length_hint(). Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer > = 0. The return value may also
be NotImplemented, which is treated the same as if the __length_hint__ method didn’t exist at all.
This method is purely an optimization and is never required for correctness.

3.4 sürümüyle geldi.

Not: Slicing is done exclusively with the following three methods. A call like

a[1:2] = b

is translated to

a[slice(1, 2, None)] = b

and so forth. Missing slice items are always filled in with None.

object.__getitem__(self, key)
Called to implement evaluation of self[key]. For sequence types, the accepted keys should be integers and
slice objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a sequence
type) is up to the __getitem__()method. If key is of an inappropriate type, TypeErrormay be raised;

3.3. Special method names 39

The Python Language Reference, Sürüm 3.9.20

if of a value outside the set of indexes for the sequence (after any special interpretation of negative values),
IndexError should be raised. Formapping types, if key is missing (not in the container), KeyError should
be raised.

Not: for loops expect that an IndexError will be raised for illegal indexes to allow proper detection of
the end of the sequence.

Not: When subscripting a class, the special class method __class_getitem__() may be called instead
of __getitem__(). See __class_getitem__ versus __getitem__ for more details.

object.__setitem__(self, key, value)
Called to implement assignment to self[key]. Same note as for __getitem__(). This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added,
or for sequences if elements can be replaced. The same exceptions should be raised for improper key values as
for the __getitem__() method.

object.__delitem__(self, key)
Called to implement deletion of self[key]. Same note as for __getitem__(). This should only be
implemented for mappings if the objects support removal of keys, or for sequences if elements can be removed
from the sequence. The same exceptions should be raised for improper key values as for the__getitem__()
method.

object.__missing__(self, key)
Called by dict.__getitem__() to implement self[key] for dict subclasses when key is not in the
dictionary.

object.__iter__(self)
This method is called when an iterator is required for a container. This method should return a new iterator
object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the
container.

Iterator objects also need to implement this method; they are required to return themselves. For more infor-
mation on iterator objects, see typeiter.

object.__reversed__(self)
Called (if present) by the reversed() built-in to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.

If the __reversed__() method is not provided, the reversed() built-in will fall back to using the
sequence protocol (__len__() and __getitem__()). Objects that support the sequence protocol should
only provide __reversed__() if they can provide an implementation that is more efficient than the one
provided by reversed().

The membership test operators (in and not in) are normally implemented as an iteration through a container.
However, container objects can supply the following special method with a more efficient implementation, which
also does not require the object be iterable.

object.__contains__(self, item)
Called to implement membership test operators. Should return true if item is in self, false otherwise. For
mapping objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don’t define __contains__(), the membership test first tries iteration via __iter__(),
then the old sequence iteration protocol via __getitem__(), see this section in the language reference.

40 Bölüm 3. Data model

The Python Language Reference, Sürüm 3.9.20

3.3.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should
be left undefined.

object.__add__(self, other)
object.__sub__(self, other)
object.__mul__(self, other)
object.__matmul__(self, other)
object.__truediv__(self, other)
object.__floordiv__(self, other)
object.__mod__(self, other)
object.__divmod__(self, other)
object.__pow__(self, other[, modulo])
object.__lshift__(self, other)
object.__rshift__(self, other)
object.__and__(self, other)
object.__xor__(self, other)
object.__or__(self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod(),
pow(), **, <<, >>, &, ^, |). For instance, to evaluate the expression x + y, where x is an instance of a class
that has an __add__() method, x.__add__(y) is called. The __divmod__() method should be the
equivalent to using __floordiv__() and __mod__(); it should not be related to __truediv__().
Note that __pow__() should be defined to accept an optional third argument if the ternary version of the
built-in pow() function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return
NotImplemented.

object.__radd__(self, other)
object.__rsub__(self, other)
object.__rmul__(self, other)
object.__rmatmul__(self, other)
object.__rtruediv__(self, other)
object.__rfloordiv__(self, other)
object.__rmod__(self, other)
object.__rdivmod__(self, other)
object.__rpow__(self, other[, modulo])
object.__rlshift__(self, other)
object.__rrshift__(self, other)
object.__rand__(self, other)
object.__rxor__(self, other)
object.__ror__(self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod(),
pow(), **, <<, >>, &, ^, |) with reflected (swapped) operands. These functions are only called if the left
operand does not support the corresponding operation3 and the operands are of different types.4 For instance,
to evaluate the expression x - y, where y is an instance of a class that has an __rsub__() method, y.
__rsub__(x) is called if x.__sub__(y) returns NotImplemented.

Note that ternary pow() will not try calling __rpow__() (the coercion rules would become too complica-
ted).

Not: If the right operand’s type is a subclass of the left operand’s type and that subclass provides a different
implementation of the reflected method for the operation, this method will be called before the left operand’s

3 “Does not support” here means that the class has no such method, or the method returns NotImplemented. Do not set the method to
None if you want to force fallback to the right operand’s reflected method—that will instead have the opposite effect of explicitly blocking such
fallback.

4 For operands of the same type, it is assumed that if the non-reflected method – such as __add__() – fails then the overall operation is not
supported, which is why the reflected method is not called.

3.3. Special method names 41

The Python Language Reference, Sürüm 3.9.20

non-reflected method. This behavior allows subclasses to override their ancestors’ operations.

object.__iadd__(self, other)
object.__isub__(self, other)
object.__imul__(self, other)
object.__imatmul__(self, other)
object.__itruediv__(self, other)
object.__ifloordiv__(self, other)
object.__imod__(self, other)
object.__ipow__(self, other[, modulo])
object.__ilshift__(self, other)
object.__irshift__(self, other)
object.__iand__(self, other)
object.__ixor__(self, other)
object.__ior__(self, other)

These methods are called to implement the augmented arithmetic assignments (+ =, -=, * =, @ =, /=, /
/=, % =, ** =, << =, >> =, & =, ^=, | =). These methods should attempt to do the operation in-place
(modifying self) and return the result (which could be, but does not have to be, self). If a specific method is
not defined, the augmented assignment falls back to the normal methods. For instance, if x is an instance of
a class with an __iadd__() method, x + = y is equivalent to x = x.__iadd__(y) . Otherwise, x.
__add__(y) and y.__radd__(x) are considered, as with the evaluation of x + y. In certain situations,
augmented assignment can result in unexpected errors (see faq-augmented-assignment-tuple-error), but this
behavior is in fact part of the data model.

Not: Due to a bug in the dispatching mechanism for ** =, a class that defines __ipow__() but returns
NotImplemented would fail to fall back to x.__pow__(y) and y.__rpow__(x). This bug is fixed
in Python 3.10.

object.__neg__(self)
object.__pos__(self)
object.__abs__(self)
object.__invert__(self)

Called to implement the unary arithmetic operations (-, +, abs() and ~).

object.__complex__(self)
object.__int__(self)
object.__float__(self)

Called to implement the built-in functions complex(), int() and float(). Should return a value of the
appropriate type.

object.__index__(self)
Called to implement operator.index(), and whenever Python needs to losslessly convert the numeric
object to an integer object (such as in slicing, or in the built-inbin(),hex() andoct() functions). Presence
of this method indicates that the numeric object is an integer type. Must return an integer.

If __int__(), __float__() and __complex__() are not defined then corresponding built-in func-
tions int(), float() and complex() fall back to __index__().

object.__round__(self[, ndigits])
object.__trunc__(self)
object.__floor__(self)
object.__ceil__(self)

Called to implement the built-in function round() and math functions trunc(), floor() and ceil().
Unless ndigits is passed to __round__() all these methods should return the value of the object truncated
to an Integral (typically an int).

The built-in function int() falls back to __trunc__() if neither __int__() nor __index__() is
defined.

42 Bölüm 3. Data model

The Python Language Reference, Sürüm 3.9.20

3.3.9 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a with statement.
The context manager handles the entry into, and the exit from, the desired runtime context for the execution of the
block of code. Context managers are normally invoked using the with statement (described in section The with
statement), but can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking
resources, closing opened files, etc.

For more information on context managers, see typecontextmanager.

object.__enter__(self)
Enter the runtime context related to this object. The with statement will bind this method’s return value to
the target(s) specified in the as clause of the statement, if any.

object.__exit__(self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The parameters describe the exception that caused the context
to be exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being propa-
gated), it should return a true value. Otherwise, the exception will be processed normally upon exit from this
method.

Note that __exit__()methods should not reraise the passed-in exception; this is the caller’s responsibility.

Ayrıca bkz.:

PEP 343 - The “with” statement The specification, background, and examples for the Python with statement.

3.3.10 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an
object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an
exception:

>>> class C:
... pass
...
>>> c = C()
>>> c.__len__ = lambda: 5
>>> len(c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods such as __hash__() and __repr__()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the con-
ventional lookup process, they would fail when invoked on the type object itself:

>>> 1 .__hash__() == hash(1)
True
>>> int.__hash__() == hash(int)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash__' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as ‘metaclass
confusion’, and is avoided by bypassing the instance when looking up special methods:

>>> type(1).__hash__(1) == hash(1)
True

(continues on next page)

3.3. Special method names 43

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

>>> type(int).__hash__(int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the __getattribute__() method even of the object’s metaclass:

>>> class Meta(type):
... def __getattribute__(*args):
... print("Metaclass getattribute invoked")
... return type.__getattribute__(*args)
...
>>> class C(object, metaclass=Meta):
... def __len__(self):
... return 10
... def __getattribute__(*args):
... print("Class getattribute invoked")
... return object.__getattribute__(*args)
...
>>> c = C()
>>> c.__len__() # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__(c) # Explicit lookup via type
Metaclass getattribute invoked
10
>>> len(c) # Implicit lookup
10

Bypassing the __getattribute__() machinery in this fashion provides significant scope for speed optimisati-
ons within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must
be set on the class object itself in order to be consistently invoked by the interpreter).

3.4 Coroutines

3.4.1 Awaitable Objects

An awaitable object generally implements an__await__()method.Coroutine objects returned fromasync def
functions are awaitable.

Not: The generator iterator objects returned from generators decorated with types.coroutine() or
asyncio.coroutine() are also awaitable, but they do not implement __await__().

object.__await__(self)
Must return an iterator. Should be used to implement awaitable objects. For instance, asyncio.Future
implements this method to be compatible with the await expression.

3.5 sürümüyle geldi.

Ayrıca bkz.:

PEP 492 for additional information about awaitable objects.

44 Bölüm 3. Data model

https://www.python.org/dev/peps/pep-0492

The Python Language Reference, Sürüm 3.9.20

3.4.2 Coroutine Objects

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling __await__() and ite-
rating over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration,
and the exception’s value attribute holds the return value. If the coroutine raises an exception, it is propagated by
the iterator. Coroutines should not directly raise unhandled StopIteration exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator
methods). However, unlike generators, coroutines do not directly support iteration.

3.5.2 sürümünde değişti: It is a RuntimeError to await on a coroutine more than once.

coroutine.send(value)
Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator
returned by __await__(). If value is not None, this method delegates to the send() method of the
iterator that caused the coroutine to suspend. The result (return value, StopIteration, or other exception)
is the same as when iterating over the __await__() return value, described above.

coroutine.throw(value)
coroutine.throw(type[, value[, traceback]])

Raises the specified exception in the coroutine. This method delegates to the throw()method of the iterator
that caused the coroutine to suspend, if it has such amethod. Otherwise, the exception is raised at the suspension
point. The result (return value, StopIteration, or other exception) is the same as when iterating over the
__await__() return value, described above. If the exception is not caught in the coroutine, it propagates
back to the caller.

coroutine.close()
Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the
close() method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up. Finally, the
coroutine is marked as having finished executing, even if it was never started.

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4.3 Asynchronous Iterators

An asynchronous iterator can call asynchronous code in its __anext__ method.

Asynchronous iterators can be used in an async for statement.

object.__aiter__(self)
Must return an asynchronous iterator object.

object.__anext__(self)
Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration
error when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline(self):

...

def __aiter__(self):
return self

async def __anext__(self):
val = await self.readline()
if val == b'':

raise StopAsyncIteration
return val

3.4. Coroutines 45

The Python Language Reference, Sürüm 3.9.20

3.5 sürümüyle geldi.

3.7 sürümünde değişti: Prior to Python 3.7, __aiter__() could return an awaitable that would resolve to an
asynchronous iterator.

Starting with Python 3.7, __aiter__() must return an asynchronous iterator object. Returning anything else will
result in a TypeError error.

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter__ and
__aexit__ methods.

Asynchronous context managers can be used in an async with statement.

object.__aenter__(self)
Semantically similar to __enter__(), the only difference being that it must return an awaitable.

object.__aexit__(self, exc_type, exc_value, traceback)
Semantically similar to __exit__(), the only difference being that it must return an awaitable.

An example of an asynchronous context manager class:

class AsyncContextManager:
async def __aenter__(self):

await log('entering context')

async def __aexit__(self, exc_type, exc, tb):
await log('exiting context')

3.5 sürümüyle geldi.

46 Bölüm 3. Data model

BÖLÜM4

Execution model

4.1 Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is executed as a
unit. The following are blocks: a module, a function body, and a class definition. Each command typed interactively
is a block. A script file (a file given as standard input to the interpreter or specified as a command line argument to
the interpreter) is a code block. A script command (a command specified on the interpreter command line with the
-c option) is a code block. A module run as a top level script (as module __main__) from the command line using
a -m argument is also a code block. The string argument passed to the built-in functions eval() and exec() is a
code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for debug-
ging) and determines where and how execution continues after the code block’s execution has completed.

4.2 Naming and binding

4.2.1 Binding of names

Names refer to objects. Names are introduced by name binding operations.

The following constructs bind names: formal parameters to functions, import statements, class and function defi-
nitions (these bind the class or function name in the defining block), and targets that are identifiers if occurring in
an assignment, for loop header, or after as in a with statement or except clause. The import statement of
the form from ... import * binds all names defined in the imported module, except those beginning with an
underscore. This form may only be used at the module level.

A target occurring in a del statement is also considered bound for this purpose (though the actual semantics are to
unbind the name).

Each assignment or import statement occurs within a block defined by a class or function definition or at the module
level (the top-level code block).

If a name is bound in a block, it is a local variable of that block, unless declared as nonlocal or global. If
a name is bound at the module level, it is a global variable. (The variables of the module code block are local and
global.) If a variable is used in a code block but not defined there, it is a free variable.

47

The Python Language Reference, Sürüm 3.9.20

Each occurrence of a name in the program text refers to the binding of that name established by the following name
resolution rules.

4.2.2 Resolution of names

A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes
that block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining
one, unless a contained block introduces a different binding for the name.

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes
visible to a code block is called the block’s environment.

When a name is not found at all, a NameError exception is raised. If the current scope is a function scope, and
the name refers to a local variable that has not yet been bound to a value at the point where the name is used, an
UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated
as references to the current block. This can lead to errors when a name is used within a block before it is bound. This
rule is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block.
The local variables of a code block can be determined by scanning the entire text of the block for name binding
operations.

If the global statement occurs within a block, all uses of the names specified in the statement refer to the bindings
of those names in the top-level namespace. Names are resolved in the top-level namespace by searching the global
namespace, i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace
of the module builtins. The global namespace is searched first. If the names are not found there, the builtins
namespace is searched. The global statement must precede all uses of the listed names.

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing
scope for a free variable contains a global statement, the free variable is treated as a global.

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing
function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function
scope.

The namespace for a module is automatically created the first time a module is imported. The main module for a
script is always called __main__.

Class definition blocks and arguments to exec() and eval() are special in the context of name resolution. A
class definition is an executable statement that may use and define names. These references follow the normal rules
for name resolution with an exception that unbound local variables are looked up in the global namespace. The
namespace of the class definition becomes the attribute dictionary of the class. The scope of names defined in a class
block is limited to the class block; it does not extend to the code blocks of methods – this includes comprehensions
and generator expressions since they are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + i for i in range(10))

4.2.3 Builtins and restricted execution

CPython implementation detail: Users should not touch __builtins__; it is strictly an implementation detail.
Users wanting to override values in the builtins namespace should import the builtins module and modify its
attributes appropriately.

The builtins namespace associated with the execution of a code block is actually found by looking up the name
__builtins__ in its global namespace; this should be a dictionary or a module (in the latter case the module’s dic-
tionary is used). By default, when in the __main__ module, __builtins__ is the built-in module builtins;
when in any other module, __builtins__ is an alias for the dictionary of the builtins module itself.

48 Bölüm 4. Execution model

The Python Language Reference, Sürüm 3.9.20

4.2.4 Interaction with dynamic features

Name resolution of free variables occurs at runtime, not at compile time. This means that the following code will
print 42:

i = 10
def f():

print(i)
i = 42
f()

The eval() and exec() functions do not have access to the full environment for resolving names. Names may
be resolved in the local and global namespaces of the caller. Free variables are not resolved in the nearest enclosing
namespace, but in the global namespace.1 The exec() and eval() functions have optional arguments to override
the global and local namespace. If only one namespace is specified, it is used for both.

4.3 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or
other exceptional conditions. An exception is raised at the point where the error is detected; it may be handled by
the surrounding code block or by any code block that directly or indirectly invoked the code block where the error
occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python
program can also explicitly raise an exception with the raise statement. Exception handlers are specified with the
try … except statement. The finally clause of such a statement can be used to specify cleanup code which
does not handle the exception, but is executed whether an exception occurred or not in the preceding code.

Python uses the “termination” model of error handling: an exception handler can find out what happened and continue
execution at an outer level, but it cannot repair the cause of the error and retry the failing operation (except by re-
entering the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its inte-
ractive main loop. In either case, it prints a stack traceback, except when the exception is SystemExit.

Exceptions are identified by class instances. The except clause is selected depending on the class of the instance:
it must reference the class of the instance or a non-virtual base class thereof. The instance can be received by the
handler and can carry additional information about the exceptional condition.

Not: Exception messages are not part of the Python API. Their contents may change from one version of Python to
the next without warning and should not be relied on by code which will run under multiple versions of the interpreter.

See also the description of the try statement in section The try statement and raise statement in section The raise
statement.

1 This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.

4.3. Exceptions 49

The Python Language Reference, Sürüm 3.9.20

50 Bölüm 4. Execution model

BÖLÜM5

The import system

Python code in one module gains access to the code in another module by the process of importing it. The import
statement is the most common way of invoking the import machinery, but it is not the only way. Functions such as
importlib.import_module() and built-in __import__() can also be used to invoke the import machi-
nery.

The import statement combines two operations; it searches for the named module, then it binds the results of
that search to a name in the local scope. The search operation of the import statement is defined as a call to
the __import__() function, with the appropriate arguments. The return value of __import__() is used to
perform the name binding operation of the import statement. See the import statement for the exact details of
that name binding operation.

A direct call to __import__() performs only the module search and, if found, the module creation operation.
While certain side-effects may occur, such as the importing of parent packages, and the updating of various caches
(including sys.modules), only the import statement performs a name binding operation.

When an import statement is executed, the standard builtin __import__() function is called. Other mec-
hanisms for invoking the import system (such as importlib.import_module()) may choose to bypass
__import__() and use their own solutions to implement import semantics.

When a module is first imported, Python searches for the module and if found, it creates a module object1, initiali-
zing it. If the named module cannot be found, a ModuleNotFoundError is raised. Python implements various
strategies to search for the named module when the import machinery is invoked. These strategies can be modified
and extended by using various hooks described in the sections below.

3.3 sürümünde değişti: The import system has been updated to fully implement the second phase ofPEP 302. There is
no longer any implicit import machinery - the full import system is exposed through sys.meta_path. In addition,
native namespace package support has been implemented (see PEP 420).

1 See types.ModuleType.

51

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Sürüm 3.9.20

5.1 importlib

The importlib module provides a rich API for interacting with the import system. For example importlib.
import_module() provides a recommended, simpler API than built-in __import__() for invoking the im-
port machinery. Refer to the importlib library documentation for additional detail.

5.2 Packages

Python has only one type of module object, and all modules are of this type, regardless of whether the module is
implemented in Python, C, or something else. To help organize modules and provide a naming hierarchy, Python has
a concept of packages.

You can think of packages as the directories on a file system and modules as files within directories, but don’t take
this analogy too literally since packages and modules need not originate from the file system. For the purposes of
this documentation, we’ll use this convenient analogy of directories and files. Like file system directories, packages
are organized hierarchically, and packages may themselves contain subpackages, as well as regular modules.

It’s important to keep in mind that all packages are modules, but not all modules are packages. Or put another way,
packages are just a special kind ofmodule. Specifically, anymodule that contains a__path__ attribute is considered
a package.

All modules have a name. Subpackage names are separated from their parent package name by a dot, akin to Python’s
standard attribute access syntax. Thus you might have a package called email, which in turn has a subpackage called
email.mime and a module within that subpackage called email.mime.text.

5.2.1 Regular packages

Python defines two types of packages, regular packages and namespace packages. Regular packages are traditional
packages as they existed in Python 3.2 and earlier. A regular package is typically implemented as a directory conta-
ining an __init__.py file. When a regular package is imported, this __init__.py file is implicitly executed,
and the objects it defines are bound to names in the package’s namespace. The __init__.py file can contain the
same Python code that any other module can contain, and Python will add some additional attributes to the module
when it is imported.

For example, the following file system layout defines a top level parent package with three subpackages:

parent/
__init__.py
one/

__init__.py
two/

__init__.py
three/

__init__.py

Importing parent.one will implicitly execute parent/__init__.py and parent/one/__init__.
py. Subsequent imports of parent.two or parent.three will execute parent/two/__init__.py and
parent/three/__init__.py respectively.

52 Bölüm 5. The import system

The Python Language Reference, Sürüm 3.9.20

5.2.2 Namespace packages

A namespace package is a composite of various portions, where each portion contributes a subpackage to the parent
package. Portions may reside in different locations on the file system. Portions may also be found in zip files, on
the network, or anywhere else that Python searches during import. Namespace packages may or may not correspond
directly to objects on the file system; they may be virtual modules that have no concrete representation.

Namespace packages do not use an ordinary list for their __path__ attribute. They instead use a custom iterable
type which will automatically perform a new search for package portions on the next import attempt within that
package if the path of their parent package (or sys.path for a top level package) changes.

With namespace packages, there is no parent/__init__.py file. In fact, there may be multiple parent direc-
tories found during import search, where each one is provided by a different portion. Thus parent/one may not
be physically located next to parent/two. In this case, Python will create a namespace package for the top-level
parent package whenever it or one of its subpackages is imported.

See also PEP 420 for the namespace package specification.

5.3 Searching

To begin the search, Python needs the fully qualified name of the module (or package, but for the purposes of this dis-
cussion, the difference is immaterial) being imported. This name may come from various arguments to the import
statement, or from the parameters to the importlib.import_module() or __import__() functions.

This name will be used in various phases of the import search, and it may be the dotted path to a submodule, e.g.
foo.bar.baz. In this case, Python first tries to import foo, then foo.bar, and finally foo.bar.baz. If any
of the intermediate imports fail, a ModuleNotFoundError is raised.

5.3.1 The module cache

The first place checked during import search is sys.modules. This mapping serves as a cache of all modules that
have been previously imported, including the intermediate paths. So if foo.bar.baz was previously imported,
sys.modules will contain entries for foo, foo.bar, and foo.bar.baz. Each key will have as its value the
corresponding module object.

During import, the module name is looked up in sys.modules and if present, the associated value is the module
satisfying the import, and the process completes. However, if the value is None, then a ModuleNotFoundError
is raised. If the module name is missing, Python will continue searching for the module.

sys.modules is writable. Deleting a key may not destroy the associated module (as other modules may hold
references to it), but it will invalidate the cache entry for the named module, causing Python to search anew for the
named module upon its next import. The key can also be assigned to None, forcing the next import of the module
to result in a ModuleNotFoundError.

Beware though, as if you keep a reference to themodule object, invalidate its cache entry insys.modules, and then
re-import the named module, the two module objects will not be the same. By contrast, importlib.reload()
will reuse the same module object, and simply reinitialise the module contents by rerunning the module’s code.

5.3. Searching 53

https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Sürüm 3.9.20

5.3.2 Finders and loaders

If the named module is not found in sys.modules, then Python’s import protocol is invoked to find and load the
module. This protocol consists of two conceptual objects, finders and loaders. A finder’s job is to determine whether
it can find the named module using whatever strategy it knows about. Objects that implement both of these interfaces
are referred to as importers - they return themselves when they find that they can load the requested module.

Python includes a number of default finders and importers. The first one knows how to locate built-in modules, and
the second knows how to locate frozen modules. A third default finder searches an import path for modules. The
import path is a list of locations that may name file system paths or zip files. It can also be extended to search for any
locatable resource, such as those identified by URLs.

The import machinery is extensible, so new finders can be added to extend the range and scope of module searching.

Finders do not actually load modules. If they can find the named module, they return amodule spec, an encapsulation
of the module’s import-related information, which the import machinery then uses when loading the module.

The following sections describe the protocol for finders and loaders in more detail, including how you can create and
register new ones to extend the import machinery.

3.4 sürümünde değişti: In previous versions of Python, finders returned loaders directly, whereas now they return
module specs which contain loaders. Loaders are still used during import but have fewer responsibilities.

5.3.3 Import hooks

The import machinery is designed to be extensible; the primary mechanism for this are the import hooks. There are
two types of import hooks: meta hooks and import path hooks.

Meta hooks are called at the start of import processing, before any other import processing has occurred, other than
sys.modules cache look up. This allows meta hooks to override sys.path processing, frozen modules, or even
built-in modules. Meta hooks are registered by adding new finder objects to sys.meta_path, as described below.

Import path hooks are called as part of sys.path (or package.__path__) processing, at the point where their
associated path item is encountered. Import path hooks are registered by adding new callables tosys.path_hooks
as described below.

5.3.4 The meta path

When the named module is not found in sys.modules, Python next searches sys.meta_path, which contains
a list of meta path finder objects. These finders are queried in order to see if they know how to handle the named
module. Meta path finders must implement a method called find_spec() which takes three arguments: a name,
an import path, and (optionally) a target module. The meta path finder can use any strategy it wants to determine
whether it can handle the named module or not.

If the meta path finder knows how to handle the named module, it returns a spec object. If it cannot handle the named
module, it returns None. If sys.meta_path processing reaches the end of its list without returning a spec, then
a ModuleNotFoundError is raised. Any other exceptions raised are simply propagated up, aborting the import
process.

Thefind_spec()method ofmeta path finders is called with two or three arguments. The first is the fully qualified
name of the module being imported, for example foo.bar.baz. The second argument is the path entries to use
for the module search. For top-level modules, the second argument is None, but for submodules or subpackages, the
second argument is the value of the parent package’s __path__ attribute. If the appropriate __path__ attribute
cannot be accessed, a ModuleNotFoundError is raised. The third argument is an existing module object that
will be the target of loading later. The import system passes in a target module only during reload.

Themeta pathmay be traversedmultiple times for a single import request. For example, assuming none of themodules
involved has already been cached, importing foo.bar.baz will first perform a top level import, calling mpf.
find_spec("foo", None, None) on each meta path finder (mpf). After foo has been imported, foo.
bar will be imported by traversing the meta path a second time, calling mpf.find_spec("foo.bar", foo.

54 Bölüm 5. The import system

The Python Language Reference, Sürüm 3.9.20

__path__, None). Once foo.bar has been imported, the final traversal will call mpf.find_spec("foo.
bar.baz", foo.bar.__path__, None).

Some meta path finders only support top level imports. These importers will always return None when anything
other than None is passed as the second argument.

Python’s default sys.meta_path has three meta path finders, one that knows how to import built-in modules, one
that knows how to import frozen modules, and one that knows how to import modules from an import path (i.e. the
path based finder).

3.4 sürümünde değişti: The find_spec() method of meta path finders replaced find_module(), which is
now deprecated. While it will continue to work without change, the import machinery will try it only if the finder
does not implement find_spec().

5.4 Loading

If and when a module spec is found, the import machinery will use it (and the loader it contains) when loading the
module. Here is an approximation of what happens during the loading portion of import:

module = None
if spec.loader is not None and hasattr(spec.loader, 'create_module'):

It is assumed 'exec_module' will also be defined on the loader.
module = spec.loader.create_module(spec)

if module is None:
module = ModuleType(spec.name)

The import-related module attributes get set here:
_init_module_attrs(spec, module)

if spec.loader is None:
unsupported
raise ImportError

if spec.origin is None and spec.submodule_search_locations is not None:
namespace package
sys.modules[spec.name] = module

elif not hasattr(spec.loader, 'exec_module'):
module = spec.loader.load_module(spec.name)
Set __loader__ and __package__ if missing.

else:
sys.modules[spec.name] = module
try:

spec.loader.exec_module(module)
except BaseException:

try:
del sys.modules[spec.name]

except KeyError:
pass

raise
return sys.modules[spec.name]

Note the following details:

• If there is an existing module object with the given name in sys.modules, import will have already returned
it.

• The module will exist in sys.modules before the loader executes the module code. This is crucial because
the module code may (directly or indirectly) import itself; adding it to sys.modules beforehand prevents
unbounded recursion in the worst case and multiple loading in the best.

• If loading fails, the failing module – and only the failing module – gets removed from sys.modules.
Any module already in the sys.modules cache, and any module that was successfully loaded as a side-
effect, must remain in the cache. This contrasts with reloading where even the failing module is left in sys.
modules.

5.4. Loading 55

The Python Language Reference, Sürüm 3.9.20

• After the module is created but before execution, the import machinery sets the import-related module attri-
butes (“_init_module_attrs” in the pseudo-code example above), as summarized in a later section.

• Module execution is the key moment of loading in which the module’s namespace gets populated. Execution
is entirely delegated to the loader, which gets to decide what gets populated and how.

• The module created during loading and passed to exec_module() may not be the one returned at the end of
import2.

3.4 sürümünde değişti: The import system has taken over the boilerplate responsibilities of loaders. These were
previously performed by the importlib.abc.Loader.load_module() method.

5.4.1 Loaders

Module loaders provide the critical function of loading: module execution. The import machinery calls the
importlib.abc.Loader.exec_module() method with a single argument, the module object to execute.
Any value returned from exec_module() is ignored.

Loaders must satisfy the following requirements:

• If the module is a Python module (as opposed to a built-in module or a dynamically loaded extension), the
loader should execute the module’s code in the module’s global name space (module.__dict__).

• If the loader cannot execute the module, it should raise an ImportError, although any other exception
raised during exec_module() will be propagated.

In many cases, the finder and loader can be the same object; in such cases the find_spec() method would just
return a spec with the loader set to self.

Module loaders may opt in to creating the module object during loading by implementing a create_module()
method. It takes one argument, the module spec, and returns the new module object to use during loading.
create_module() does not need to set any attributes on the module object. If the method returns None, the
import machinery will create the new module itself.

3.4 sürümüyle geldi: The create_module() method of loaders.

3.4 sürümünde değişti: The load_module() method was replaced by exec_module() and the import mac-
hinery assumed all the boilerplate responsibilities of loading.

For compatibility with existing loaders, the import machinery will use the load_module()method of loaders if it
exists and the loader does not also implementexec_module(). However,load_module() has been deprecated
and loaders should implement exec_module() instead.

The load_module()method must implement all the boilerplate loading functionality described above in addition
to executing the module. All the same constraints apply, with some additional clarification:

• If there is an existing module object with the given name in sys.modules, the loader must use that existing
module. (Otherwise, importlib.reload() will not work correctly.) If the named module does not exist
in sys.modules, the loader must create a new module object and add it to sys.modules.

• The module must exist in sys.modules before the loader executes the module code, to prevent unbounded
recursion or multiple loading.

• If loading fails, the loader must remove any modules it has inserted into sys.modules, but it must remove
only the failing module(s), and only if the loader itself has loaded the module(s) explicitly.

3.5 sürümünde değişti: A DeprecationWarning is raised when exec_module() is defined but
create_module() is not.

3.6 sürümünde değişti: An ImportError is raised when exec_module() is defined but create_module()
is not.

2 The importlib implementation avoids using the return value directly. Instead, it gets the module object by looking the module name up in
sys.modules. The indirect effect of this is that an imported module may replace itself in sys.modules. This is implementation-specific
behavior that is not guaranteed to work in other Python implementations.

56 Bölüm 5. The import system

The Python Language Reference, Sürüm 3.9.20

5.4.2 Submodules

When a submodule is loaded using any mechanism (e.g. importlib APIs, the import or import-from state-
ments, or built-in __import__()) a binding is placed in the parent module’s namespace to the submodule object.
For example, if package spam has a submodule foo, after importing spam.foo, spam will have an attribute foo
which is bound to the submodule. Let’s say you have the following directory structure:

spam/
__init__.py
foo.py

and spam/__init__.py has the following line in it:

from .foo import Foo

then executing the following puts name bindings for foo and Foo in the spam module:

>>> import spam
>>> spam.foo
<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> spam.Foo
<class 'spam.foo.Foo'>

Given Python’s familiar name binding rules this might seem surprising, but it’s actually a fundamental feature of the
import system. The invariant holding is that if you have sys.modules['spam'] and sys.modules['spam.
foo'] (as you would after the above import), the latter must appear as the foo attribute of the former.

5.4.3 Module spec

The import machinery uses a variety of information about eachmodule during import, especially before loading.Most
of the information is common to all modules. The purpose of a module’s spec is to encapsulate this import-related
information on a per-module basis.

Using a spec during import allows state to be transferred between import system components, e.g. between the finder
that creates the module spec and the loader that executes it. Most importantly, it allows the import machinery to
perform the boilerplate operations of loading, whereas without a module spec the loader had that responsibility.

The module’s spec is exposed as the __spec__ attribute on a module object. See ModuleSpec for details on the
contents of the module spec.

3.4 sürümüyle geldi.

5.4.4 Import-related module attributes

The import machinery fills in these attributes on each module object during loading, based on the module’s spec,
before the loader executes the module.

__name__
The __name__ attribute must be set to the fully-qualified name of the module. This name is used to uniquely
identify the module in the import system.

__loader__
The __loader__ attribute must be set to the loader object that the import machinery used when loading
the module. This is mostly for introspection, but can be used for additional loader-specific functionality, for
example getting data associated with a loader.

__package__
The module’s __package__ attribute must be set. Its value must be a string, but it can be the same value
as its __name__. When the module is a package, its __package__ value should be set to its __name__.
When the module is not a package, __package__ should be set to the empty string for top-level modules,
or for submodules, to the parent package’s name. See PEP 366 for further details.

5.4. Loading 57

https://www.python.org/dev/peps/pep-0366

The Python Language Reference, Sürüm 3.9.20

This attribute is used instead of __name__ to calculate explicit relative imports for main modules, as defined
in PEP 366. It is expected to have the same value as __spec__.parent.

3.6 sürümünde değişti: The value of __package__ is expected to be the same as __spec__.parent.

__spec__
The __spec__ attribute must be set to the module spec that was used when importing the module. Setting
__spec__ appropriately applies equally to modules initialized during interpreter startup. The one exception
is __main__, where __spec__ is set to None in some cases.

When __package__ is not defined, __spec__.parent is used as a fallback.

3.4 sürümüyle geldi.

3.6 sürümünde değişti: __spec__.parent is used as a fallback when __package__ is not defined.

__path__
If the module is a package (either regular or namespace), the module object’s __path__ attribute must be
set. The value must be iterable, but may be empty if __path__ has no further significance. If __path__ is
not empty, it must produce strings when iterated over. More details on the semantics of __path__ are given
below.

Non-package modules should not have a __path__ attribute.

__file__

__cached__
__file__ is optional. If set, this attribute’s value must be a string. The import system may opt to leave
__file__ unset if it has no semantic meaning (e.g. a module loaded from a database).

If __file__ is set, it may also be appropriate to set the __cached__ attribute which is the path to any
compiled version of the code (e.g. byte-compiled file). The file does not need to exist to set this attribute; the
path can simply point to where the compiled file would exist (see PEP 3147).

It is also appropriate to set __cached__when __file__ is not set. However, that scenario is quite atypical.
Ultimately, the loader is what makes use of __file__ and/or __cached__. So if a loader can load from
a cached module but otherwise does not load from a file, that atypical scenario may be appropriate.

5.4.5 module.__path__

By definition, if a module has a __path__ attribute, it is a package.

A package’s__path__ attribute is used during imports of its subpackages.Within the import machinery, it functions
much the same as sys.path, i.e. providing a list of locations to search for modules during import. However,
__path__ is typically much more constrained than sys.path.

__path__ must be an iterable of strings, but it may be empty. The same rules used for sys.path also apply
to a package’s __path__, and sys.path_hooks (described below) are consulted when traversing a package’s
__path__.

A package’s __init__.py file may set or alter the package’s __path__ attribute, and this was typically the way
namespace packages were implemented prior to PEP 420. With the adoption of PEP 420, namespace packages no
longer need to supply __init__.py files containing only __path__ manipulation code; the import machinery
automatically sets __path__ correctly for the namespace package.

58 Bölüm 5. The import system

https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-3147
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Sürüm 3.9.20

5.4.6 Module reprs

By default, all modules have a usable repr, however depending on the attributes set above, and in the module’s spec,
you can more explicitly control the repr of module objects.

If the module has a spec (__spec__), the import machinery will try to generate a repr from it. If that fails or there
is no spec, the import system will craft a default repr using whatever information is available on the module. It will
try to use the module.__name__, module.__file__, and module.__loader__ as input into the repr,
with defaults for whatever information is missing.

Here are the exact rules used:

• If the module has a __spec__ attribute, the information in the spec is used to generate the repr. The “name”,
“loader”, “origin”, and “has_location” attributes are consulted.

• If the module has a __file__ attribute, this is used as part of the module’s repr.

• If the module has no __file__ but does have a __loader__ that is not None, then the loader’s repr is
used as part of the module’s repr.

• Otherwise, just use the module’s __name__ in the repr.

3.4 sürümünde değişti: Use of loader.module_repr() has been deprecated and the module spec is now used
by the import machinery to generate a module repr.

For backward compatibility with Python 3.3, the module repr will be generated by calling the loader’s
module_repr() method, if defined, before trying either approach described above. However, the method is
deprecated.

5.4.7 Cached bytecode invalidation

Before Python loads cached bytecode from a .pyc file, it checks whether the cache is up-to-date with the source
.py file. By default, Python does this by storing the source’s last-modified timestamp and size in the cache file when
writing it. At runtime, the import system then validates the cache file by checking the stored metadata in the cache
file against the source’s metadata.

Python also supports “hash-based” cache files, which store a hash of the source file’s contents rather than its metadata.
There are two variants of hash-based .pyc files: checked and unchecked. For checked hash-based .pyc files,
Python validates the cache file by hashing the source file and comparing the resulting hash with the hash in the cache
file. If a checked hash-based cache file is found to be invalid, Python regenerates it and writes a new checked hash-
based cache file. For unchecked hash-based .pyc files, Python simply assumes the cache file is valid if it exists.
Hash-based .pyc files validation behavior may be overridden with the --check-hash-based-pycs flag.

3.7 sürümünde değişti: Added hash-based .pyc files. Previously, Python only supported timestamp-based invali-
dation of bytecode caches.

5.5 The Path Based Finder

As mentioned previously, Python comes with several default meta path finders. One of these, called the path based
finder (PathFinder), searches an import path, which contains a list of path entries. Each path entry names a
location to search for modules.

The path based finder itself doesn’t know how to import anything. Instead, it traverses the individual path entries,
associating each of them with a path entry finder that knows how to handle that particular kind of path.

The default set of path entry finders implement all the semantics for finding modules on the file system, handling
special file types such as Python source code (.py files), Python byte code (.pyc files) and shared libraries (e.g.
.so files). When supported by the zipimport module in the standard library, the default path entry finders also
handle loading all of these file types (other than shared libraries) from zipfiles.

Path entries need not be limited to file system locations. They can refer to URLs, database queries, or any other
location that can be specified as a string.

5.5. The Path Based Finder 59

The Python Language Reference, Sürüm 3.9.20

The path based finder provides additional hooks and protocols so that you can extend and customize the types of
searchable path entries. For example, if you wanted to support path entries as network URLs, you could write a hook
that implements HTTP semantics to find modules on the web. This hook (a callable) would return a path entry finder
supporting the protocol described below, which was then used to get a loader for the module from the web.

A word of warning: this section and the previous both use the term finder, distinguishing between them by using the
terms meta path finder and path entry finder. These two types of finders are very similar, support similar protocols,
and function in similar ways during the import process, but it’s important to keep in mind that they are subtly different.
In particular, meta path finders operate at the beginning of the import process, as keyed off the sys.meta_path
traversal.

By contrast, path entry finders are in a sense an implementation detail of the path based finder, and in fact, if the
path based finder were to be removed from sys.meta_path, none of the path entry finder semantics would be
invoked.

5.5.1 Path entry finders

The path based finder is responsible for finding and loading Python modules and packages whose location is specified
with a string path entry. Most path entries name locations in the file system, but they need not be limited to this.

As a meta path finder, the path based finder implements the find_spec() protocol previously described, however
it exposes additional hooks that can be used to customize how modules are found and loaded from the import path.

Three variables are used by the path based finder, sys.path, sys.path_hooks and sys.
path_importer_cache. The __path__ attributes on package objects are also used. These provide
additional ways that the import machinery can be customized.

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries
in sys.path can name directories on the file system, zip files, and potentially other “locations” (see the site
module) that should be searched for modules, such as URLs, or database queries. Only strings and bytes should be
present on sys.path; all other data types are ignored. The encoding of bytes entries is determined by the individual
path entry finders.

The path based finder is a meta path finder, so the import machinery begins the import path search by calling the
path based finder’s find_spec()method as described previously. When the path argument to find_spec()
is given, it will be a list of string paths to traverse - typically a package’s __path__ attribute for an import within
that package. If the path argument is None, this indicates a top level import and sys.path is used.

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate
path entry finder (PathEntryFinder) for the path entry. Because this can be an expensive operation (e.g. there
may be stat() call overheads for this search), the path based finder maintains a cache mapping path entries to path
entry finders. This cache is maintained in sys.path_importer_cache (despite the name, this cache actually
stores finder objects rather than being limited to importer objects). In this way, the expensive search for a particular
path entry location’s path entry finder need only be done once. User code is free to remove cache entries from sys.
path_importer_cache forcing the path based finder to perform the path entry search again3.

If the path entry is not present in the cache, the path based finder iterates over every callable in sys.path_hooks.
Each of the path entry hooks in this list is called with a single argument, the path entry to be searched. This callablemay
either return a path entry finder that can handle the path entry, or it may raise ImportError. An ImportError
is used by the path based finder to signal that the hook cannot find a path entry finder for that path entry. The
exception is ignored and import path iteration continues. The hook should expect either a string or bytes object; the
encoding of bytes objects is up to the hook (e.g. it may be a file system encoding, UTF-8, or something else), and if
the hook cannot decode the argument, it should raise ImportError.

If sys.path_hooks iteration ends with no path entry finder being returned, then the path based finder’s
find_spec() method will store None in sys.path_importer_cache (to indicate that there is no finder
for this path entry) and return None, indicating that this meta path finder could not find the module.

3 In legacy code, it is possible to find instances of imp.NullImporter in the sys.path_importer_cache. It is recommended that
code be changed to use None instead. See portingpythoncode for more details.

60 Bölüm 5. The import system

The Python Language Reference, Sürüm 3.9.20

If a path entry finder is returned by one of the path entry hook callables on sys.path_hooks, then the following
protocol is used to ask the finder for a module spec, which is then used when loading the module.

The current working directory – denoted by an empty string – is handled slightly differently from other ent-
ries on sys.path. First, if the current working directory is found to not exist, no value is stored in sys.
path_importer_cache. Second, the value for the current working directory is looked up fresh for each module
lookup. Third, the path used for sys.path_importer_cache and returned by importlib.machinery.
PathFinder.find_spec() will be the actual current working directory and not the empty string.

5.5.2 Path entry finder protocol

In order to support imports ofmodules and initialized packages and also to contribute portions to namespace packages,
path entry finders must implement the find_spec() method.

find_spec() takes two arguments: the fully qualified name of the module being imported, and the (optional)
target module. find_spec() returns a fully populated spec for the module. This spec will always have “loader”
set (with one exception).

To indicate to the import machinery that the spec represents a namespace portion, the path entry finder sets “sub-
module_search_locations” to a list containing the portion.

3.4 sürümünde değişti: find_spec() replaced find_loader() and find_module(), both of which are
now deprecated, but will be used if find_spec() is not defined.

Older path entry finders may implement one of these two deprecated methods instead of find_spec(). The
methods are still respected for the sake of backward compatibility. However, if find_spec() is implemented on
the path entry finder, the legacy methods are ignored.

find_loader() takes one argument, the fully qualified name of the module being imported. find_loader()
returns a 2-tuple where the first item is the loader and the second item is a namespace portion.

For backwards compatibility with other implementations of the import protocol, many path entry finders also sup-
port the same, traditional find_module() method that meta path finders support. However path entry finder
find_module() methods are never called with a path argument (they are expected to record the appropriate
path information from the initial call to the path hook).

The find_module() method on path entry finders is deprecated, as it does not allow the path entry finder to
contribute portions to namespace packages. If both find_loader() and find_module() exist on a path
entry finder, the import system will always call find_loader() in preference to find_module().

5.6 Replacing the standard import system

The most reliable mechanism for replacing the entire import system is to delete the default contents of sys.
meta_path, replacing them entirely with a custom meta path hook.

If it is acceptable to only alter the behaviour of import statements without affecting other APIs that access the import
system, then replacing the builtin __import__() function may be sufficient. This technique may also be employed
at the module level to only alter the behaviour of import statements within that module.

To selectively prevent the import of some modules from a hook early on the meta path (rather than disabling the
standard import system entirely), it is sufficient to raise ModuleNotFoundError directly from find_spec()
instead of returning None. The latter indicates that the meta path search should continue, while raising an exception
terminates it immediately.

5.6. Replacing the standard import system 61

The Python Language Reference, Sürüm 3.9.20

5.7 Package Relative Imports

Relative imports use leading dots. A single leading dot indicates a relative import, starting with the current package.
Two or more leading dots indicate a relative import to the parent(s) of the current package, one level per dot after
the first. For example, given the following package layout:

package/
__init__.py
subpackage1/

__init__.py
moduleX.py
moduleY.py

subpackage2/
__init__.py
moduleZ.py

moduleA.py

In either subpackage1/moduleX.py or subpackage1/__init__.py, the following are valid relative
imports:

from .moduleY import spam
from .moduleY import spam as ham
from . import moduleY
from ..subpackage1 import moduleY
from ..subpackage2.moduleZ import eggs
from ..moduleA import foo

Absolute imports may use either the import <> or from <> import <> syntax, but relative imports may
only use the second form; the reason for this is that:

import XXX.YYY.ZZZ

should expose XXX.YYY.ZZZ as a usable expression, but .moduleY is not a valid expression.

5.8 Special considerations for __main__

The __main__ module is a special case relative to Python’s import system. As noted elsewhere, the __main__
module is directly initialized at interpreter startup, much like sys and builtins. However, unlike those two, it
doesn’t strictly qualify as a built-in module. This is because the manner in which __main__ is initialized depends
on the flags and other options with which the interpreter is invoked.

5.8.1 __main__.__spec__

Depending on how __main__ is initialized, __main__.__spec__ gets set appropriately or to None.

When Python is started with the -m option, __spec__ is set to the module spec of the corresponding module
or package. __spec__ is also populated when the __main__ module is loaded as part of executing a directory,
zipfile or other sys.path entry.

In the remaining cases __main__.__spec__ is set to None, as the code used to populate the __main__ does
not correspond directly with an importable module:

• interactive prompt

• -c option

• running from stdin

• running directly from a source or bytecode file

62 Bölüm 5. The import system

The Python Language Reference, Sürüm 3.9.20

Note that __main__.__spec__ is always None in the last case, even if the file could technically be imported
directly as a module instead. Use the -m switch if valid module metadata is desired in __main__.

Note also that even when __main__ corresponds with an importable module and __main__.__spec__ is set
accordingly, they’re still considered distinct modules. This is due to the fact that blocks guarded by if __name__
== "__main__": checks only execute when the module is used to populate the __main__ namespace, and not
during normal import.

5.9 Open issues

XXX It would be really nice to have a diagram.

XXX * (import_machinery.rst) how about a section devoted just to the attributes of modules and packages, perhaps
expanding upon or supplanting the related entries in the data model reference page?

XXX runpy, pkgutil, et al in the library manual should all get “See Also” links at the top pointing to the new import
system section.

XXX Add more explanation regarding the different ways in which __main__ is initialized?

XXX Add more info on __main__ quirks/pitfalls (i.e. copy from PEP 395).

5.10 References

The import machinery has evolved considerably since Python’s early days. The original specification for packages is
still available to read, although some details have changed since the writing of that document.

The original specification for sys.meta_path was PEP 302, with subsequent extension in PEP 420.

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the find_loader() protocol
as an alternative to find_module().

PEP 366 describes the addition of the __package__ attribute for explicit relative imports in main modules.

PEP 328 introduced absolute and explicit relative imports and initially proposed __name__ for semantics PEP
366 would eventually specify for __package__.

PEP 338 defines executing modules as scripts.

PEP 451 adds the encapsulation of per-module import state in spec objects. It also off-loads most of the boilerplate
responsibilities of loaders back onto the import machinery. These changes allow the deprecation of several APIs in
the import system and also addition of new methods to finders and loaders.

5.9. Open issues 63

https://www.python.org/dev/peps/pep-0395
https://www.python.org/doc/essays/packages/
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0328
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0338
https://www.python.org/dev/peps/pep-0451

The Python Language Reference, Sürüm 3.9.20

64 Bölüm 5. The import system

BÖLÜM6

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name ::= othername

and no semantics are given, the semantics of this form of name are the same as for othername.

6.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a
common type”, this means that the operator implementation for built-in types works as follows:

• If either argument is a complex number, the other is converted to complex;

• otherwise, if either argument is a floating point number, the other is converted to floating point;

• otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the ‘%’ operator). Extensions
must define their own conversion behavior.

6.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom ::= identifier | literal | enclosure
enclosure ::= parenth_form | list_display | dict_display | set_display

| generator_expression | yield_atom

65

The Python Language Reference, Sürüm 3.9.20

6.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section
Naming and binding for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more
underscore characters and does not end in two or more underscores, it is considered a private name of that class.
Private names are transformed to a longer form before code is generated for them. The transformation inserts the
class name, with leading underscores removed and a single underscore inserted, in front of the name. For example,
the identifier __spam occurring in a class named Ham will be transformed to _Ham__spam. This transformation
is independent of the syntactical context in which the identifier is used. If the transformed name is extremely long
(longer than 255 characters), implementation defined truncation may happen. If the class name consists only of
underscores, no transformation is done.

6.2.2 Literals

Python supports string and bytes literals and various numeric literals:

literal ::= stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number)
with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals.
See section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value.Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence)
may obtain the same object or a different object with the same value.

6.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form ::= "(" [starred_expression] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it
yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals
apply (i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator. The exception is the
empty tuple, for which parentheses are required — allowing unparenthesized “nothing” in expressions would cause
ambiguities and allow common typos to pass uncaught.

66 Bölüm 6. Expressions

The Python Language Reference, Sürüm 3.9.20

6.2.4 Displays for lists, sets and dictionaries

For constructing a list, a set or a dictionary Python provides special syntax called “displays”, each of them in two
flavors:

• either the container contents are listed explicitly, or

• they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension ::= assignment_expression comp_for
comp_for ::= ["async"] "for" target_list "in" or_test [comp_iter]
comp_iter ::= comp_for | comp_if
comp_if ::= "if" or_test [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or if
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time
the innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate
implicitly nested scope. This ensures that names assigned to in the target list don’t “leak” into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an
argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause
cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For
example: [x*y for x in range(10) for y in range(x, x+10)].

To ensure the comprehension always results in a container of the appropriate type, yield and yield from exp-
ressions are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous
iterator. A comprehension in an async def function may consist of either a for or async for clause following
the leading expression, may contain additional for or async for clauses, and may also use await expressions.
If a comprehension contains either async for clauses or await expressions it is called an asynchronous compre-
hension. An asynchronous comprehension may suspend the execution of the coroutine function in which it appears.
See also PEP 530.

3.6 sürümüyle geldi: Asynchronous comprehensions were introduced.

3.8 sürümünde değişti: yield and yield from prohibited in the implicitly nested scope.

6.2.5 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display ::= "[" [starred_list | comprehension] "]"

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension.
When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into
the list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting
from the comprehension.

6.2. Atoms 67

https://www.python.org/dev/peps/pep-0530

The Python Language Reference, Sürüm 3.9.20

6.2.6 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating
keys and values:

set_display ::= "{" (starred_list | comprehension) "}"

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right
and added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting
from the comprehension.

An empty set cannot be constructed with {}; this literal constructs an empty dictionary.

6.2.7 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display ::= "{" [key_datum_list | dict_comprehension] "}"
key_datum_list ::= key_datum ("," key_datum)* [","]
key_datum ::= expression ":" expression | "**" or_expr
dict_comprehension ::= expression ":" expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of key/datum pairs is given, they are evaluated from left to right to define the entries
of the dictionary: each key object is used as a key into the dictionary to store the corresponding datum. This means
that you can specify the same key multiple times in the key/datum list, and the final dictionary’s value for that key
will be the last one given.

A double asterisk ** denotes dictionary unpacking. Its operandmust be amapping. Eachmapping item is added to the
new dictionary. Later values replace values already set by earlier key/datum pairs and earlier dictionary unpackings.

3.5 sürümüyle geldi: Unpacking into dictionary displays, originally proposed by PEP 448.

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon
followed by the usual “for” and “if” clauses. When the comprehension is run, the resulting key and value elements are
inserted in the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section The standard type hierarchy. (To summarize, the
key type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected;
the last datum (textually rightmost in the display) stored for a given key value prevails.

3.8 sürümünde değişti: Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was not
well-defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before the
value, as proposed by PEP 572.

6.2.8 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression ::= "(" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is
enclosed in parentheses instead of brackets or curly braces.

68 Bölüm 6. Expressions

https://www.python.org/dev/peps/pep-0448
https://www.python.org/dev/peps/pep-0572

The Python Language Reference, Sürüm 3.9.20

Variables used in the generator expression are evaluated lazily when the __next__()method is called for the gene-
rator object (in the same fashion as normal generators). However, the iterable expression in the leftmost for clause
is immediately evaluated, so that an error produced by it will be emitted at the point where the generator expression
is defined, rather than at the point where the first value is retrieved. Subsequent for clauses and any filter condition
in the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained
from the leftmost iterable. For example: (x*y for x in range(10) for y in range(x, x+10)).

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expression itself, yield and yield from exp-
ressions are prohibited in the implicitly defined generator.

If a generator expression contains either async for clauses or await expressions it is called an asynchronous
generator expression. An asynchronous generator expression returns a new asynchronous generator object, which is
an asynchronous iterator (see Asynchronous Iterators).

3.6 sürümüyle geldi: Asynchronous generator expressions were introduced.

3.7 sürümünde değişti: Prior to Python 3.7, asynchronous generator expressions could only appear in async def
coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

3.8 sürümünde değişti: yield and yield from prohibited in the implicitly nested scope.

6.2.9 Yield expressions

yield_atom ::= "(" yield_expression ")"
yield_expression ::= "yield" [expression_list | "from" expression]

The yield expression is used when defining a generator function or an asynchronous generator function and thus can
only be used in the body of a function definition. Using a yield expression in a function’s body causes that function
to be a generator function, and using it in an async def function’s body causes that coroutine function to be an
asynchronous generator function. For example:

def gen(): # defines a generator function
yield 123

async def agen(): # defines an asynchronous generator function
yield 123

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly
defined scopes used to implement comprehensions and generator expressions.

3.8 sürümünde değişti: Yield expressions prohibited in the implicitly nested scopes used to implement comprehen-
sions and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section
Asynchronous generator functions.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execu-
tion of the generator function. The execution starts when one of the generator’s methods is called. At that time, the exe-
cution proceeds to the first yield expression, where it is suspended again, returning the value ofexpression_list
to the generator’s caller. By suspended, we mean that all local state is retained, including the current bindings of lo-
cal variables, the instruction pointer, the internal evaluation stack, and the state of any exception handling. When
the execution is resumed by calling one of the generator’s methods, the function can proceed exactly as if the yield
expression were just another external call. The value of the yield expression after resuming depends on the method
which resumed the execution. If __next__() is used (typically via either a for or the next() builtin) then the
result is None. Otherwise, if send() is used, then the result will be the value passed in to that method.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one
entry point and their execution can be suspended. The only difference is that a generator function cannot control
where the execution should continue after it yields; the control is always transferred to the generator’s caller.

6.2. Atoms 69

The Python Language Reference, Sürüm 3.9.20

Yield expressions are allowed anywhere in a try construct. If the generator is not resumed before it is finalized (by
reaching a zero reference count or by being garbage collected), the generator-iterator’s close() method will be
called, allowing any pending finally clauses to execute.

Whenyield from <expr> is used, the supplied expressionmust be an iterable. The values produced by iterating
that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send()
and any exceptions passed in with throw() are passed to the underlying iterator if it has the appropriate methods.
If this is not the case, then send() will raise AttributeError or TypeError, while throw() will just raise
the passed in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes
the value of the yield expression. It can be either set explicitly when raising StopIteration, or automatically
when the subiterator is a generator (by returning a value from the subgenerator).

3.3 sürümünde değişti: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an assign-
ment statement.

Ayrıca bkz.:

PEP 255 - Simple Generators The proposal for adding generators and the yield statement to Python.

PEP 342 - Coroutines via Enhanced Generators The proposal to enhance the API and syntax of generators, ma-
king them usable as simple coroutines.

PEP 380 - Syntax for Delegating to a Subgenerator The proposal to introduce the yield_from syntax, ma-
king delegation to subgenerators easy.

PEP 525 - Asynchronous Generators The proposal that expanded on PEP 492 by adding generator capabilities
to coroutine functions.

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator
function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError
exception.

generator.__next__()
Starts the execution of a generator function or resumes it at the last executed yield expression.When a generator
function is resumed with a __next__()method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value
of the expression_list is returned to __next__()’s caller. If the generator exits without yielding
another value, a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next() function.

generator.send(value)
Resumes the execution and “sends” a value into the generator function. The value argument becomes the result
of the current yield expression. The send()method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send() is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive
the value.

generator.throw(value)
generator.throw(type[, value[, traceback]])

Raises an exception at the point where the generator was paused, and returns the next value yielded by the
generator function. If the generator exits without yielding another value, a StopIteration exception is
raised. If the generator function does not catch the passed-in exception, or raises a different exception, then
that exception propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

70 Bölüm 6. Expressions

https://www.python.org/dev/peps/pep-0255
https://www.python.org/dev/peps/pep-0342
https://www.python.org/dev/peps/pep-0380
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492

The Python Language Reference, Sürüm 3.9.20

For backwards compatability, however, the second signature is supported, following a convention from older
versions of Python. The type argument should be an exception class, and value should be an exception instance.
If the value is not provided, the type constructor is called to get an instance. If traceback is provided, it is set
on the exception, otherwise any existing __traceback__ attribute stored in value may be cleared.

generator.close()
Raises a GeneratorExit at the point where the generator function was paused. If the generator function
then exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close
returns to its caller. If the generator yields a value, a RuntimeError is raised. If the generator raises any
other exception, it is propagated to the caller. close() does nothing if the generator has already exited due
to an exception or normal exit.

Examples

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo(value=None):
... print("Execution starts when 'next()' is called for the first time.")
... try:
... while True:
... try:
... value = (yield value)
... except Exception as e:
... value = e
... finally:
... print("Don't forget to clean up when 'close()' is called.")
...
>>> generator = echo(1)
>>> print(next(generator))
Execution starts when 'next()' is called for the first time.
1
>>> print(next(generator))
None
>>> print(generator.send(2))
2
>>> generator.throw(TypeError, "spam")
TypeError('spam',)
>>> generator.close()
Don't forget to clean up when 'close()' is called.

For examples using yield from, see pep-380 in “What’s New in Python.”

Asynchronous generator functions

The presence of a yield expression in a function or method defined using async def further defines the function
as an asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous
generator object. That object then controls the execution of the generator function. An asynchronous generator object
is typically used in an async for statement in a coroutine function analogously to how a generator object would
be used in a for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this
object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again,
returning the value of expression_list to the awaiting coroutine. As with a generator, suspension means that all
local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation
stack, and the state of any exception handling. When the execution is resumed by awaiting on the next object returned
by the asynchronous generator’s methods, the function can proceed exactly as if the yield expression were just another
external call. The value of the yield expression after resuming depends on the method which resumed the execution.

6.2. Atoms 71

The Python Language Reference, Sürüm 3.9.20

If __anext__() is used then the result is None. Otherwise, if asend() is used, then the result will be the value
passed in to that method.

In an asynchronous generator function, yield expressions are allowed anywhere in a try construct. However, if an
asynchronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage
collected), then a yield expression within a try construct could result in a failure to execute pending finally
clauses. In this case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call
the asynchronous generator-iterator’s aclose() method and run the resulting coroutine object, thus allowing any
pending finally clauses to execute.

To take care of finalization, an event loop should define a finalizer function which takes an asynchronous generator-
iterator and presumably calls aclose() and executes the coroutine. This finalizer may be registered by calling
sys.set_asyncgen_hooks(). When first iterated over, an asynchronous generator-iterator will store the re-
gistered finalizer to be called upon finalization. For a reference example of a finalizermethod see the implementation
of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py.

The expression yield from <expr> is a syntax error when used in an asynchronous generator function.

Asynchronous generator-iterator methods

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution
of a generator function.

coroutine agen.__anext__()
Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last
executed yield expression. When an asynchronous generator function is resumed with an __anext__()
method, the current yield expression always evaluates to None in the returned awaitable, which when run will
continue to the next yield expression. The value of the expression_list of the yield expression is the
value of the StopIteration exception raised by the completing coroutine. If the asynchronous genera-
tor exits without yielding another value, the awaitable instead raises a StopAsyncIteration exception,
signalling that the asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

coroutine agen.asend(value)
Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the
send() method for a generator, this “sends” a value into the asynchronous generator function, and the va-
lue argument becomes the result of the current yield expression. The awaitable returned by the asend()
method will return the next value yielded by the generator as the value of the raised StopIteration, or
raises StopAsyncIteration if the asynchronous generator exits without yielding another value. When
asend() is called to start the asynchronous generator, it must be called with None as the argument, because
there is no yield expression that could receive the value.

coroutine agen.athrow(value)
coroutine agen.athrow(type[, value[, traceback]])

Returns an awaitable that raises an exception of type type at the point where the asynchronous gene-
rator was paused, and returns the next value yielded by the generator function as the value of the ra-
ised StopIteration exception. If the asynchronous generator exits without yielding another value, a
StopAsyncIteration exception is raised by the awaitable. If the generator function does not catch the
passed-in exception, or raises a different exception, then when the awaitable is run that exception propagates
to the caller of the awaitable.

coroutine agen.aclose()
Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator functi-
on at the point where it was paused. If the asynchronous generator function then exits gracefully, is already
closed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will raise
a StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous
generator will raise a StopAsyncIteration exception. If the asynchronous generator yields a value, a
RuntimeError is raised by the awaitable. If the asynchronous generator raises any other exception, it is
propagated to the caller of the awaitable. If the asynchronous generator has already exited due to an exception
or normal exit, then further calls to aclose() will return an awaitable that does nothing.

72 Bölüm 6. Expressions

https://github.com/python/cpython/tree/3.9/Lib/asyncio/base_events.py

The Python Language Reference, Sürüm 3.9.20

6.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary ::= atom | attributeref | subscription | slicing | call

6.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref ::= primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This
object is then asked to produce the attribute whose name is the identifier. This production can be customized by
overriding the __getattr__() method. If this attribute is not available, the exception AttributeError is
raised. Otherwise, the type and value of the object produced is determined by the object. Multiple evaluations of the
same attribute reference may yield different objects.

6.3.2 Subscriptions

The subscription of an instance of a container class will generally select an element from the container. The subsc-
ription of a generic class will generally return a GenericAlias object.

subscription ::= primary "[" expression_list "]"

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through
defining one or both of __getitem__() and __class_getitem__(). When the primary is subscripted,
the evaluated result of the expression list will be passed to one of these methods. For more details on when
__class_getitem__ is called instead of __getitem__, see __class_getitem__ versus __getitem__.

If the expression list contains at least one comma, it will evaluate to a tuple containing the items of the expression
list. Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via __getitem__():

1. Mappings. If the primary is a mapping, the expression list must evaluate to an object whose value is one of the
keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An
example of a builtin mapping class is the dict class.

2. Sequences. If the primary is a sequence, the expression list must evaluate to an int or a slice (as discussed
in the following section). Examples of builtin sequence classes include the str, list and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all
provide a __getitem__() method that interprets negative indices by adding the length of the sequence to the
index so that, for example, x[-1] selects the last item of x. The resulting value must be a nonnegative integer less
than the number of items in the sequence, and the subscription selects the item whose index is that value (counting
from zero). Since the support for negative indices and slicing occurs in the object’s __getitem__() method,
subclasses overriding this method will need to explicitly add that support.

A string is a special kind of sequence whose items are characters. A character is not a separate data type but a
string of exactly one character.

6.3. Primaries 73

The Python Language Reference, Sürüm 3.9.20

6.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions
or as targets in assignment or del statements. The syntax for a slicing:

slicing ::= primary "[" slice_list "]"
slice_list ::= slice_item ("," slice_item)* [","]
slice_item ::= expression | proper_slice
proper_slice ::= [lower_bound] ":" [upper_bound] [":" [stride]]
lower_bound ::= expression
upper_bound ::= expression
stride ::= expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so
any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated
by defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this
is the case if the slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same __getitem__() method as
normal subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one
comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice
item is the key. The conversion of a slice item that is an expression is that expression. The conversion of a proper
slice is a slice object (see section The standard type hierarchy) whose start, stop and step attributes are the
values of the expressions given as lower bound, upper bound and stride, respectively, substituting None for missing
expressions.

6.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call ::= primary "(" [argument_list [","] | comprehension] ")"
argument_list ::= positional_arguments ["," starred_and_keywords]

["," keywords_arguments]
| starred_and_keywords ["," keywords_arguments]
| keywords_arguments

positional_arguments ::= positional_item ("," positional_item)*
positional_item ::= assignment_expression | "*" expression
starred_and_keywords ::= ("*" expression | keyword_item)

("," "*" expression | "," keyword_item)*
keywords_arguments ::= (keyword_item | "**" expression)

("," keyword_item | "," "**" expression)*
keyword_item ::= identifier " =" expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the
semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and all objects having a __call__() method are callable). All argument
expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of
formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled
slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots.
Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the
same as the first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError
exception is raised. Otherwise, the value of the argument is placed in the slot, filling it (even if the expression is
None, it fills the slot). When all arguments have been processed, the slots that are still unfilled are filled with the

74 Bölüm 6. Expressions

The Python Language Reference, Sürüm 3.9.20

corresponding default value from the function definition. (Default values are calculated, once, when the function is
defined; thus, a mutable object such as a list or dictionary used as default value will be shared by all calls that don’t
specify an argument value for the corresponding slot; this should usually be avoided.) If there are any unfilled slots
for which no default value is specified, a TypeError exception is raised. Otherwise, the list of filled slots is used
as the argument list for the call.

CPython implementation detail: An implementation may provide built-in functions whose positional parameters
do not have names, even if they are ‘named’ for the purpose of documentation, and which therefore cannot be supplied
by keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple() to parse
their arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised,
unless a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a
tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised,
unless a formal parameter using the syntax **identifier is present; in this case, that formal parameter rece-
ives a dictionary containing the excess keyword arguments (using the keywords as keys and the argument values as
corresponding values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements
from these iterables are treated as if they were additional positional arguments. For the call f(x1, x2, *y,
x3, x4), if y evaluates to a sequence y1, …, yM, this is equivalent to a call with M+4 positional arguments x1, x2,
y1, …, yM, x3, x4.

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it
is processed before the keyword arguments (and any **expression arguments – see below). So:

>>> def f(a, b):
... print(a, b)
...
>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: f() got multiple values for keyword argument 'a'
>>> f(1, *(2,))
1 2

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice
this confusion does not arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping, the con-
tents of which are treated as additional keyword arguments. If a keyword is already present (as an explicit keyword
argument, or from another unpacking), a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument
slots or as keyword argument names.

3.5 sürümünde değişti: Function calls accept any number of * and ** unpackings, positional arguments may follow
iterable unpackings (*), and keyword arguments may follow dictionary unpackings (**). Originally proposed by
PEP 448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends
on the type of the callable object.

If it is—

a user-defined function: The code block for the function is executed, passing it the argument list. The first thing
the code block will do is bind the formal parameters to the arguments; this is described in section Function
definitions. When the code block executes a return statement, this specifies the return value of the function
call.

6.3. Primaries 75

https://www.python.org/dev/peps/pep-0448

The Python Language Reference, Sürüm 3.9.20

a built-in function or method: The result is up to the interpreter; see built-in-funcs for the descriptions of built-in
functions and methods.

a class object: A new instance of that class is returned.

a class instance method: The corresponding user-defined function is called, with an argument list that is one longer
than the argument list of the call: the instance becomes the first argument.

a class instance: The class must define a __call__() method; the effect is then the same as if that method was
called.

6.4 Await expression

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await_expr ::= "await" primary

3.5 sürümüyle geldi.

6.5 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on
its right. The syntax is:

power ::= (await_expr | primary) ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left
(this does not constrain the evaluation order for the operands): -1**2 results in -1.

The power operator has the same semantics as the built-in pow() function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common
type, and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case,
all arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**-2
returns 0.01.

Raising 0.0 to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional
power results in a complex number. (In earlier versions it raised a ValueError.)

This operation can be customized using the special __pow__() method.

6.6 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr ::= power | "-" u_expr | "+" u_expr | "~" u_expr

The unary - (minus) operator yields the negation of its numeric argument; the operation can be overridden with the
__neg__() special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the
__pos__() special method.

76 Bölüm 6. Expressions

The Python Language Reference, Sürüm 3.9.20

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is
defined as -(x+1). It only applies to integral numbers or to custom objects that override the __invert__()
special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators
and one for additive operators:

m_expr ::= u_expr | m_expr "*" u_expr | m_expr "@" m_expr |
m_expr "//" u_expr | m_expr "/" u_expr |
m_expr "%" u_expr

a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to a
common type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition
factor yields an empty sequence.

This operation can be customized using the special __mul__() and __rmul__() methods.

The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.

3.5 sürümüyle geldi.

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments
are first converted to a common type. Division of integers yields a float, while floor division of integers results in
an integer; the result is that of mathematical division with the ‘floor’ function applied to the result. Division by zero
raises the ZeroDivisionError exception.

This operation can be customized using the special __truediv__() and __floordiv__() methods.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raises the ZeroDivisionError excep-
tion. The arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 +
0.34.) The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute
value of the result is strictly smaller than the absolute value of the second operand1.

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y).
Floor division and modulo are also connected with the built-in function divmod(): divmod(x, y) == (x//
y, x%y).2.

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string objects to
perform old-style string formatting (also known as interpolation). The syntax for string formatting is described in the
Python Library Reference, section old-string-formatting.

The modulo operation can be customized using the special __mod__() method.

The floor division operator, the modulo operator, and the divmod() function are not defined for complex numbers.
Instead, convert to a floating point number using the abs() function if appropriate.

1 While abs(x%y) < abs(y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming
a platform on which a Python float is an IEEE 754 double-precision number, in order that -1e-100 % 1e100 have the same sign as 1e100,
the computed result is -1e-100 + 1e100, which is numerically exactly equal to 1e100. The function math.fmod() returns a result whose
sign matches the sign of the first argument instead, and so returns -1e-100 in this case. Which approach is more appropriate depends on the
application.

2 If x is very close to an exact integer multiple of y, it’s possible for x//y to be one larger than (x-x%y)//y due to rounding. In such cases,
Python returns the latter result, in order to preserve that divmod(x,y)[0] * y + x % y be very close to x.

6.7. Binary arithmetic operations 77

The Python Language Reference, Sürüm 3.9.20

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be
sequences of the same type. In the former case, the numbers are converted to a common type and then added together.
In the latter case, the sequences are concatenated.

This operation can be customized using the special __add__() and __radd__() methods.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a
common type.

This operation can be customized using the special __sub__() method.

6.8 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr ::= a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits
given by the second argument.

This operation can be customized using the special __lshift__() and __rshift__() methods.

A right shift by n bits is defined as floor division by pow(2,n). A left shift by n bits is defined as multiplication
with pow(2,n).

6.9 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr ::= shift_expr | and_expr "&" shift_expr
xor_expr ::= and_expr | xor_expr "^" and_expr
or_expr ::= xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom
object overriding __and__() or __rand__() special methods.

The ^ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must
be a custom object overriding __xor__() or __rxor__() special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a
custom object overriding __or__() or __ror__() special methods.

6.10 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic,
shifting or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conventional
in mathematics:

comparison ::= or_expr (comp_operator or_expr)*
comp_operator ::= "<" | ">" | " ==" | "> =" | "< =" | "!="

| "is" ["not"] | ["not"] "in"

78 Bölüm 6. Expressions

The Python Language Reference, Sürüm 3.9.20

Comparisons yield boolean values: True or False. Custom rich comparison methods may return non-boolean
values. In this case Python will call bool() on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y < = z is equivalent to x < y and y < = z, except that
y is evaluated only once (but in both cases z is not evaluated at all when x < y is found to be false).

Formally, if a, b, c, …, y, z are expressions and op1, op2, …, opN are comparison operators, then a op1 b op2 c
... y opN z is equivalent to a op1 b and b op2 c and ... y opN z, except that each expression
is evaluated at most once.

Note that a op1 b op2 c doesn’t imply any kind of comparison between a and c, so that, e.g., x < y > z is
perfectly legal (though perhaps not pretty).

6.10.1 Value comparisons

The operators <, >, ==, > =, < =, and != compare the values of two objects. The objects do not need to have the
same type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an
object is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value.
Also, there is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of
all its data attributes. Comparison operators implement a particular notion of what the value of an object is. One can
think of them as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior
from object. Types can customize their comparison behavior by implementing rich comparison methods like
__lt__(), described in Basic customization.

The default behavior for equality comparison (== and !=) is based on the identity of the objects. Hence, equality
comparison of instances with the same identity results in equality, and equality comparison of instances with different
identities results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive
(i.e. x is y implies x == y).

A default order comparison (<, >, < =, and > =) is not provided; an attempt raises TypeError. A motivation for
this default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be
in contrast to what types will need that have a sensible definition of object value and value-based equality. Such types
will need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

• Numbers of built-in numeric types (typesnumeric) and of the standard library types fractions.
Fraction and decimal.Decimal can be compared within and across their types, with the restriction
that complex numbers do not support order comparison. Within the limits of the types involved, they compare
mathematically (algorithmically) correct without loss of precision.

The not-a-number values float('NaN') and decimal.Decimal('NaN') are special. Any ordered
comparison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number
values are not equal to themselves. For example, if x = float('NaN'), 3 < x, x < 3 and x == x
are all false, while x != x is true. This behavior is compliant with IEEE 754.

• None and NotImplemented are singletons. PEP 8 advises that comparisons for singletons should always
be done with is or is not, never the equality operators.

• Binary sequences (instances of bytes or bytearray) can be compared within and across their types. They
compare lexicographically using the numeric values of their elements.

• Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result of
the built-in function ord()) of their characters.3

3 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. “LATIN CAPITAL LETTERA”).While
most abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in addition be
represented using a sequence of more than one code point. For example, the abstract character “LATIN CAPITAL LETTER CWITH CEDILLA”
can be represented as a single precomposed character at code position U+00C7, or as a sequence of a base character at code position U+0043

6.10. Comparisons 79

https://www.python.org/dev/peps/pep-0008

The Python Language Reference, Sürüm 3.9.20

Strings and binary sequences cannot be directly compared.

• Sequences (instances of tuple, list, or range) can be compared only within each of their types, with
the restriction that ranges do not support order comparison. Equality comparison across these types results in
inequality, and ordering comparison across these types raises TypeError.

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers
typically assume identical objects are equal to themselves. That lets them bypass equality tests for identical
objects to improve performance and to maintain their internal invariants.

Lexicographical comparison between built-in collections works as follows:

– For two collections to compare equal, they must be of the same type, have the same length, and each pair
of corresponding elements must compare equal (for example, [1,2] == (1,2) is false because the
type is not the same).

– Collections that support order comparison are ordered the same as their first unequal elements (for
example, [1,2,x] < = [1,2,y] has the same value as x < = y). If a corresponding element
does not exist, the shorter collection is ordered first (for example, [1,2] < [1,2,3] is true).

• Mappings (instances of dict) compare equal if and only if they have equal (key, value) pairs. Equality com-
parison of the keys and values enforces reflexivity.

Order comparisons (<, >, < =, and > =) raise TypeError.

• Sets (instances of set or frozenset) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total
orderings (for example, the two sets {1,2} and {2,3} are not equal, nor subsets of one another, nor supersets
of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering
(for example, min(), max(), and sorted() produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

• Most other built-in types have no comparison methods implemented, so they inherit the default comparison
behavior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:

• Equality comparison should be reflexive. In other words, identical objects should compare equal:

x is y implies x == y

• Comparison should be symmetric. In other words, the following expressions should have the same result:

x == y and y == x

x != y and y != x

x < y and y > x

x < = y and y > = x

• Comparison should be transitive. The following (non-exhaustive) examples illustrate that:

x > y and y > z implies x > z

x < y and y < = z implies x < z

• Inverse comparison should result in the boolean negation. In other words, the following expressions should
have the same result:

x == y and not x != y

x < y and not x > = y (for total ordering)

(LATIN CAPITAL LETTER C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).
The comparison operators on strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example,

"\u00C7" == "\u0043\u0327" is False, even though both strings represent the same abstract character “LATIN CAPITAL LETTER
C WITH CEDILLA”.
To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize().

80 Bölüm 6. Expressions

The Python Language Reference, Sürüm 3.9.20

x > y and not x < = y (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings).
See also the total_ordering() decorator.

• The hash() result should be consistent with equality. Objects that are equal should either have the same hash
value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following
these rules.

6.10.2 Membership test operations

The operators in and not in test for membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well
as dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set,
frozenset, dict, or collections.deque, the expression x in y is equivalent to any(x is e or x == e for
e in y).

For the string and bytes types, x in y is True if and only if x is a substring of y. An equivalent test is y.find(x)
!= -1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return
True.

For user-defined classes which define the __contains__() method, x in y returns True if y.
__contains__(x) returns a true value, and False otherwise.

For user-defined classes which do not define __contains__() but do define __iter__(), x in y is True
if some value z, for which the expression x is z or x == z is true, is produced while iterating over y. If an
exception is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem__(), x in y is True if and only if
there is a non-negative integer index i such that x is y[i] or x == y[i], and no lower integer index raises
the IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not in is defined to have the inverse truth value of in.

6.10.3 Identity comparisons

The operators is and is not test for an object’s identity: x is y is true if and only if x and y are the same object.
An Object’s identity is determined using the id() function. x is not y yields the inverse truth value.4

6.11 Boolean operations

or_test ::= and_test | or_test "or" and_test
and_test ::= not_test | and_test "and" not_test
not_test ::= comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following
values are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including
strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects
can customize their truth value by providing a __bool__() method.

The operator not yields True if its argument is false, False otherwise.

The expression x and y first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

4 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain
uses of the is operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

6.11. Boolean operations 81

The Python Language Reference, Sürüm 3.9.20

The expression x or y first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is
empty, the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a
boolean value regardless of the type of its argument (for example, not 'foo' produces False rather than ''.)

6.12 Assignment expressions

assignment_expression ::= [identifier ":="] expression

An assignment expression (sometimes also called a “named expression” or “walrus”) assigns an expression to an
identifier, while also returning the value of the expression.

One common use case is when handling matched regular expressions:

if matching := pattern.search(data):
do_something(matching)

Or, when processing a file stream in chunks:

while chunk := file.read(9000):
process(chunk)

3.8 sürümüyle geldi: See PEP 572 for more details about assignment expressions.

6.13 Conditional expressions

conditional_expression ::= or_test ["if" or_test "else" expression]
expression ::= conditional_expression | lambda_expr

Conditional expressions (sometimes called a “ternary operator”) have the lowest priority of all Python operations.

The expression x if C else y first evaluates the condition, C rather than x. If C is true, x is evaluated and its
value is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14 Lambdas

lambda_expr ::= "lambda" [parameter_list] ":" expression

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression
lambda parameters: expression yields a function object. The unnamed object behaves like a function
object defined with:

def <lambda>(parameters):
return expression

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expressions
cannot contain statements or annotations.

82 Bölüm 6. Expressions

https://www.python.org/dev/peps/pep-0572
https://www.python.org/dev/peps/pep-0308

The Python Language Reference, Sürüm 3.9.20

6.15 Expression lists

expression_list ::= expression ("," expression)* [","]
starred_list ::= starred_item ("," starred_item)* [","]
starred_expression ::= expression | (starred_item ",")* [starred_item]
starred_item ::= assignment_expression | "*" or_expr

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length
of the tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking. Its operand must be an iterable. The iterable is expanded into a sequence
of items, which are included in the new tuple, list, or set, at the site of the unpacking.

3.5 sürümüyle geldi: Iterable unpacking in expression lists, originally proposed by PEP 448.

The trailing comma is required only to create a single tuple (a.k.a. a singleton); it is optional in all other cases. A
single expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To
create an empty tuple, use an empty pair of parentheses: ().)

6.16 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is
evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

expr1, expr2, expr3, expr4
(expr1, expr2, expr3, expr4)
{expr1: expr2, expr3: expr4}
expr1 + expr2 * (expr3 - expr4)
expr1(expr2, expr3, *expr4, **expr5)
expr3, expr4 = expr1, expr2

6.17 Operator precedence

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest
precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for exponentiation, which groups from
right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right
chaining feature as described in the Comparisons section.

6.15. Expression lists 83

https://www.python.org/dev/peps/pep-0448

The Python Language Reference, Sürüm 3.9.20

Operator Description
(expressions...),
[expressions...], {key: value...},
{expressions...}

Binding or parenthesized expression, list display,
dictionary display, set display

x[index], x[index:index], x(arguments...),
x.attribute

Subscription, slicing, call, attribute reference

await x Await expression
** Exponentiation5

+x, -x, ~x Positive, negative, bitwise NOT
*, @, /, //, % Multiplication, matrix multiplication, division,

floor division, remainder6

+, - Addition and subtraction
<<, >> Shifts
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
in, not in, is, is not, <, < =, >, > =, !=, == Comparisons, including membership tests and

identity tests
not x Boolean NOT
and Boolean AND
or Boolean OR
if – else Conditional expression
lambda Lambda expression
:= Assignment expression

5 The power operator ** binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**-1 is 0.5.
6 The % operator is also used for string formatting; the same precedence applies.

84 Bölüm 6. Expressions

BÖLÜM7

Simple statements

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line
separated by semicolons. The syntax for simple statements is:

simple_stmt ::= expression_stmt
| assert_stmt
| assignment_stmt
| augmented_assignment_stmt
| annotated_assignment_stmt
| pass_stmt
| del_stmt
| return_stmt
| yield_stmt
| raise_stmt
| break_stmt
| continue_stmt
| import_stmt
| future_stmt
| global_stmt
| nonlocal_stmt

7.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a
function that returns no meaningful result; in Python, procedures return the value None). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt ::= starred_expression

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr() function and the
resulting string is written to standard output on a line by itself (except if the result is None, so that procedure calls
do not cause any output.)

85

The Python Language Reference, Sürüm 3.9.20

7.2 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt ::= (target_list " =")+ (starred_expression | yield_expression)
target_list ::= target ("," target)* [","]
target ::= identifier

| "(" [target_list] ")"
| "[" [target_list] "]"
| attributeref
| subscription
| slicing
| "*" target

(See section Primaries for the syntax definitions for attributeref, subscription, and slicing.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-
separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to
right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object
(an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide
about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types
and the exceptions raised are given with the definition of the object types (see section The standard type hierarchy).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined
as follows.

• If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to
that target.

• Else:

– If the target list contains one target prefixed with an asterisk, called a “starred” target: The object must
be an iterable with at least as many items as there are targets in the target list, minus one. The first items
of the iterable are assigned, from left to right, to the targets before the starred target. The final items of
the iterable are assigned to the targets after the starred target. A list of the remaining items in the iterable
is then assigned to the starred target (the list can be empty).

– Else: The object must be an iterable with the same number of items as there are targets in the target list,
and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.

• If the target is an identifier (name):

– If the name does not occur in a global or nonlocal statement in the current code block: the name
is bound to the object in the current local namespace.

– Otherwise: the name is bound to the object in the global namespace or the outer namespace determined
by nonlocal, respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be
called.

• If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an
object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to
assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception
(usually but not necessarily AttributeError).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator,
the right-hand side expression, a.x can access either an instance attribute or (if no instance attribute exists) a

86 Bölüm 7. Simple statements

The Python Language Reference, Sürüm 3.9.20

class attribute. The left-hand side target a.x is always set as an instance attribute, creating it if necessary. Thus,
the two occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression
refers to a class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

class Cls:
x = 3 # class variable

inst = Cls()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with
property().

• If the target is a subscription: The primary expression in the reference is evaluated. It should yield either
a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript
expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative,
the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s
length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of
range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/datum pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new
key/value pair (if no key with the same value existed).

For user-defined objects, the __setitem__() method is called with appropriate arguments.

• If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and
upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length.
The bounds should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The
resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence
object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be
different from the length of the assigned sequence, thus changing the length of the target sequence, if the
target sequence allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same as for
expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are
‘simultaneous’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to va-
riables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2]:

x = [0, 1]
i = 0
i, x[i] = 1, 2 # i is updated, then x[i] is updated
print(x)

Ayrıca bkz.:

PEP 3132 - Extended Iterable Unpacking The specification for the *target feature.

7.2. Assignment statements 87

https://www.python.org/dev/peps/pep-3132

The Python Language Reference, Sürüm 3.9.20

7.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt ::= augtarget augop (expression_list | yield_expression)
augtarget ::= identifier | attributeref | subscription | slicing
augop ::= "+ =" | "-=" | "* =" | "@ =" | "/=" | "//=" | "% =" | "** ="

| ">> =" | "<< =" | "& =" | "^=" | "| ="

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and
assigns the result to the original target. The target is only evaluated once.

An augmented assignment expression like x + = 1 can be rewritten as x = x + 1 to achieve a similar, but not
exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is
performed in-place, meaning that rather than creating a new object and assigning that to the target, the old object is
modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side.
For example, a[i] + = f(x) first looks-up a[i], then it evaluates f(x) and performs the addition, and lastly,
it writes the result back to a[i].

With the exception of assigning to tuples andmultiple targets in a single statement, the assignment done by augmented
assignment statements is handled the sameway as normal assignments. Similarly, with the exception of the possible in-
place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular
assignments.

7.2.2 Annotated assignment statements

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional
assignment statement:

annotated_assignment_stmt ::= augtarget ":" expression
[" =" (starred_expression | yield_expression)]

The difference from normal Assignment statements is that only single target is allowed.

For simple names as assignment targets, if in class or module scope, the annotations are evaluated and stored in a
special class or module attribute __annotations__ that is a dictionary mapping from variable names (mangled if
private) to evaluated annotations. This attribute is writable and is automatically created at the start of class or module
body execution, if annotations are found statically.

For expressions as assignment targets, the annotations are evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and
stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations
(where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the
target except for the last __setitem__() or __setattr__() call.

Ayrıca bkz.:

PEP 526 - Syntax for Variable Annotations The proposal that added syntax for annotating the types of variables
(including class variables and instance variables), instead of expressing them through comments.

88 Bölüm 7. Simple statements

https://www.python.org/dev/peps/pep-0526

The Python Language Reference, Sürüm 3.9.20

PEP 484 - Type hints The proposal that added the typing module to provide a standard syntax for type annota-
tions that can be used in static analysis tools and IDEs.

3.8 sürümünde değişti: Now annotated assignments allow same expressions in the right hand side as the regular
assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt ::= "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if __debug__:
if not expression: raise AssertionError

The extended form, assert expression1, expression2, is equivalent to

if __debug__:
if not expression1: raise AssertionError(expression2)

These equivalences assume that __debug__ and AssertionError refer to the built-in variables with those na-
mes. In the current implementation, the built-in variable __debug__ is True under normal circumstances, False
when optimization is requested (command line option -O). The current code generator emits no code for an assert
statement when optimization is requested at compile time. Note that it is unnecessary to include the source code for
the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to __debug__ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4 The pass statement

pass_stmt ::= "pass"

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is
required syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

7.5 The del statement

del_stmt ::= "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the
name occurs in a global statement in the same code block. If the name is unbound, a NameError exception will
be raised.

7.3. The assert statement 89

https://www.python.org/dev/peps/pep-0484

The Python Language Reference, Sürüm 3.9.20

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a
slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the
sliced object).

3.2 sürümünde değişti: Previously it was illegal to delete a name from the local namespace if it occurs as a free
variable in a nested block.

7.6 The return statement

return_stmt ::= "return" [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.

If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a try statement with a finally clause, that finally clause is executed
before really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration
to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the
StopIteration.value attribute.

In an asynchronous generator function, an empty return statement indicates that the asynchronous generator is
done and will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in
an asynchronous generator function.

7.7 The yield statement

yield_stmt ::= yield_expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the
parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield
statements

yield <expr>
yield from <expr>

are equivalent to the yield expression statements

(yield <expr>)
(yield from <expr>)

Yield expressions and statements are only used when defining a generator function, and are only used in the body of
the generator function. Using yield in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

90 Bölüm 7. Simple statements

The Python Language Reference, Sürüm 3.9.20

7.8 The raise statement

raise_stmt ::= "raise" [expression ["from" expression]]

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known
as the active exception. If there isn’t currently an active exception, a RuntimeError exception is raised indicating
that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance
of BaseException. If it is a class, the exception instance will be obtained when needed by instantiating the class
with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the
__traceback__ attribute, which is writable. You can create an exception and set your own traceback in one
step using the with_traceback() exception method (which returns the same exception instance, with its trace-
back set to its argument), like so:

raise Exception("foo occurred").with_traceback(tracebackobj)

The from clause is used for exception chaining: if given, the second expression must be another exception class
or instance. If the second expression is an exception instance, it will be attached to the raised exception as the
__cause__ attribute (which is writable). If the expression is an exception class, the class will be instantiated and
the resulting exception instance will be attached to the raised exception as the __cause__ attribute. If the raised
exception is not handled, both exceptions will be printed:

>>> try:
... print(1 / 0)
... except Exception as exc:
... raise RuntimeError("Something bad happened") from exc
...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>

RuntimeError: Something bad happened

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled.
An exception may be handled when an except or finally clause, or a with statement, is used. The previous
exception is then attached as the new exception’s __context__ attribute:

>>> try:
... print(1 / 0)
... except:
... raise RuntimeError("Something bad happened")
...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>

RuntimeError: Something bad happened

Exception chaining can be explicitly suppressed by specifying None in the from clause:

7.8. The raise statement 91

The Python Language Reference, Sürüm 3.9.20

>>> try:
... print(1 / 0)
... except:
... raise RuntimeError("Something bad happened") from None
...
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

Additional information on exceptions can be found in section Exceptions, and information about handling exceptions
is in section The try statement.

3.3 sürümünde değişti: None is now permitted as Y in raise X from Y.

3.3 sürümüyle geldi: The __suppress_context__ attribute to suppress automatic display of the exception
context.

7.9 The break statement

break_stmt ::= "break"

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition
within that loop.

It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.

If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed
before really leaving the loop.

7.10 The continue statement

continue_stmt ::= "continue"

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class
definition within that loop. It continues with the next cycle of the nearest enclosing loop.

When continue passes control out of a try statement with a finally clause, that finally clause is executed
before really starting the next loop cycle.

7.11 The import statement

import_stmt ::= "import" module ["as" identifier] ("," module ["as" identifier])*
| "from" relative_module "import" identifier ["as" identifier]
("," identifier ["as" identifier])*
| "from" relative_module "import" "(" identifier ["as" identifier]
("," identifier ["as" identifier])* [","] ")"
| "from" relative_module "import" "*"

module ::= (identifier ".")* identifier
relative_module ::= "."* module | "."+

The basic import statement (no from clause) is executed in two steps:

1. find a module, loading and initializing it if necessary

92 Bölüm 7. Simple statements

The Python Language Reference, Sürüm 3.9.20

2. define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for
each clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules are described in greater detail in the section on the import
system, which also describes the various types of packages and modules that can be imported, as well as all the hooks
that can be used to customize the import system. Note that failures in this step may indicate either that the module
could not be located, or that an error occurred while initializing the module, which includes execution of the module’s
code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three
ways:

• If the module name is followed by as, then the name following as is bound directly to the imported module.

• If no other name is specified, and the module being imported is a top level module, the module’s name is bound
in the local namespace as a reference to the imported module

• If the module being imported is not a top level module, then the name of the top level package that contains
the module is bound in the local namespace as a reference to the top level package. The imported module must
be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:

1. find the module specified in the from clause, loading and initializing it if necessary;

2. for each of the identifiers specified in the import clauses:

1. check if the imported module has an attribute by that name

2. if not, attempt to import a submodule with that name and then check the imported module again for that
attribute

3. if the attribute is not found, ImportError is raised.

4. otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if
it is present, otherwise using the attribute name

Examples:

import foo # foo imported and bound locally
import foo.bar.baz # foo, foo.bar, and foo.bar.baz imported, foo bound␣
↪→locally
import foo.bar.baz as fbb # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz␣
↪→bound as fbb
from foo.bar import baz # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz␣
↪→bound as baz
from foo import attr # foo imported and foo.attr bound as attr

If the list of identifiers is replaced by a star ('*'), all public names defined in the module are bound in the local
namespace for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named
__all__; if defined, it must be a sequence of strings which are names defined or imported by that module. The
names given in __all__ are all considered public and are required to exist. If __all__ is not defined, the set of
public names includes all names found in the module’s namespace which do not begin with an underscore character
('_'). __all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are
not part of the API (such as library modules which were imported and used within the module).

The wild card form of import — from module import *— is only allowed at the module level. Attempting
to use it in class or function definitions will raise a SyntaxError.

When specifying what module to import you do not have to specify the absolute name of the module. When a module
or package is contained within another package it is possible to make a relative import within the same top package
without having to mention the package name. By using leading dots in the specified module or package after from
you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading

7.11. The import statement 93

The Python Language Reference, Sürüm 3.9.20

dot means the current package where the module making the import exists. Two dots means up one package level.
Three dots is up two levels, etc. So if you execute from . import mod from a module in the pkg package
then you will end up importing pkg.mod. If you execute from ..subpkg2 import mod from within pkg.
subpkg1 you will import pkg.subpkg2.mod. The specification for relative imports is contained in the Package
Relative Imports section.

importlib.import_module() is provided to support applications that determine dynamically the modules to
be loaded.

Raises an auditing event import with arguments module, filename, sys.path, sys.meta_path, sys.
path_hooks.

7.11.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to
the language. It allows use of the new features on a per-module basis before the release in which the feature becomes
standard.

future_stmt ::= "from" "__future__" "import" feature ["as" identifier]
("," feature ["as" identifier])*
| "from" "__future__" "import" "(" feature ["as" identifier]
("," feature ["as" identifier])* [","] ")"

feature ::= identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement
are:

• the module docstring (if any),

• comments,

• blank lines, and

• other future statements.

The only feature that requires using the future statement is annotations (see PEP 563).

All historical features enabled by the future statement are still recognized by Python 3. The list
includes absolute_import, division, generators, generator_stop, unicode_literals,
print_function, nested_scopes and with_statement. They are all redundant because they are al-
ways enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs
are often implemented by generating different code. It may even be the case that a new feature introduces new incom-
patible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently.
Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error
if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

import __future__ [as name]

94 Bölüm 7. Simple statements

https://www.python.org/dev/peps/pep-0563

The Python Language Reference, Sürüm 3.9.20

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec() and compile() that occur in a module M containing a
future statement will, by default, use the new syntax or semantics associated with the future statement. This can be
controlled by optional arguments to compile()— see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session.
If an interpreter is started with the -i option, is passed a script name to execute, and the script includes a future
statement, it will be in effect in the interactive session started after the script is executed.

Ayrıca bkz.:

PEP 236 - Back to the __future__ The original proposal for the __future__ mechanism.

7.12 The global statement

global_stmt ::= "global" identifier ("," identifier)*

The global statement is a declaration which holds for the entire current code block. It means that the listed identi-
fiers are to be interpreted as globals. It would be impossible to assign to a global variable without global, although
free variables may refer to globals without being declared global.

Names listed in a global statement must not be used in the same code block textually preceding that global
statement.

Names listed in a global statement must not be defined as formal parameters or in a for loop control target,
class definition, function definition, import statement, or variable annotation.

CPython implementation detail: The current implementation does not enforce some of these restrictions, but prog-
rams should not abuse this freedom, as future implementations may enforce them or silently change the meaning of
the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the
global statement. In particular, a global statement contained in a string or code object supplied to the built-in
exec() function does not affect the code block containing the function call, and code contained in such a string is
unaffected by global statements in the code containing the function call. The same applies to the eval() and
compile() functions.

7.13 The nonlocal statement

nonlocal_stmt ::= "nonlocal" identifier ("," identifier)*

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest enclosing
scope excluding globals. This is important because the default behavior for binding is to search the local namespace
first. The statement allows encapsulated code to rebind variables outside of the local scope besides the global (module)
scope.

Names listed in a nonlocal statement, unlike those listed in a global statement, must refer to pre-existing
bindings in an enclosing scope (the scope in which a new binding should be created cannot be determined unambi-
guously).

Names listed in a nonlocal statement must not collide with pre-existing bindings in the local scope.

Ayrıca bkz.:

PEP 3104 - Access to Names in Outer Scopes The specification for the nonlocal statement.

7.12. The global statement 95

https://www.python.org/dev/peps/pep-0236
https://www.python.org/dev/peps/pep-3104

The Python Language Reference, Sürüm 3.9.20

96 Bölüm 7. Simple statements

BÖLÜM8

Compound statements

Compound statements contain (groups of) other statements; they affect or control the execution of those other sta-
tements in some way. In general, compound statements span multiple lines, although in simple incarnations a whole
compound statement may be contained in one line.

The if, while and for statements implement traditional control flow constructs. try specifies exception handlers
and/or cleanup code for a group of statements, while the with statement allows the execution of initialization and
finalization code around a block of code. Function and class definitions are also syntactically compound statements.

A compound statement consists of one or more ‘clauses.’ A clause consists of a header and a ‘suite.’ The clause headers
of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely
identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one
or more semicolon-separated simple statements on the same line as the header, following the header’s colon, or it can
be one or more indented statements on subsequent lines. Only the latter form of a suite can contain nested compound
statements; the following is illegal, mostly because it wouldn’t be clear to which if clause a following else clause
would belong:

if test1: if test2: print(x)

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all
or none of the print() calls are executed:

if x < y < z: print(x); print(y); print(z)

Summarizing:

compound_stmt ::= if_stmt
| while_stmt
| for_stmt
| try_stmt
| with_stmt
| funcdef
| classdef
| async_with_stmt
| async_for_stmt
| async_funcdef

suite ::= stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement ::= stmt_list NEWLINE | compound_stmt

97

The Python Language Reference, Sürüm 3.9.20

stmt_list ::= simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the ‘dangling else’
problem is solved in Python by requiring nested if statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

8.1 The if statement

The if statement is used for conditional execution:

if_stmt ::= "if" assignment_expression ":" suite
("elif" assignment_expression ":" suite)*
["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operations for the definition of true and false); then that suite is executed (and no other part of the if
statement is executed or evaluated). If all expressions are false, the suite of the else clause, if present, is executed.

8.2 The while statement

The while statement is used for repeated execution as long as an expression is true:

while_stmt ::= "while" assignment_expression ":" suite
["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be
the first time it is tested) the suite of the else clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

8.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for_stmt ::= "for" target_list "in" expression_list ":" suite
["else" ":" suite]

The expression list is evaluated once; it should yield an iterable object. An iterator is created for the result of the
expression_list. The suite is then executed once for each item provided by the iterator, in the order returned
by the iterator. Each item in turn is assigned to the target list using the standard rules for assignments (see Assignment
statements), and then the suite is executed. When the items are exhausted (which is immediately when the sequence
is empty or an iterator raises a StopIteration exception), the suite in the else clause, if present, is executed,
and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the else clause if there is no next item.

98 Bölüm 8. Compound statements

The Python Language Reference, Sürüm 3.9.20

The for-loop makes assignments to the variables in the target list. This overwrites all previous assignments to those
variables including those made in the suite of the for-loop:

for i in range(10):
print(i)
i = 5 # this will not affect the for-loop

because i will be overwritten with the next
index in the range

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have
been assigned to at all by the loop. Hint: the built-in function range() returns an iterator of integers suitable to
emulate the effect of Pascal’s for i := a to b do; e.g., list(range(3)) returns the list [0, 1, 2].

Not: There is a subtlety when the sequence is being modified by the loop (this can only occur for mutable sequences,
e.g. lists). An internal counter is used to keep track of which item is used next, and this is incremented on each
iteration. When this counter has reached the length of the sequence the loop terminates. This means that if the suite
deletes the current (or a previous) item from the sequence, the next item will be skipped (since it gets the index of
the current item which has already been treated). Likewise, if the suite inserts an item in the sequence before the
current item, the current item will be treated again the next time through the loop. This can lead to nasty bugs that
can be avoided by making a temporary copy using a slice of the whole sequence, e.g.,

for x in a[:]:
if x < 0: a.remove(x)

8.4 The try statement

The try statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt ::= try1_stmt | try2_stmt
try1_stmt ::= "try" ":" suite

("except" [expression ["as" identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]

try2_stmt ::= "try" ":" suite
"finally" ":" suite

The except clause(s) specify one or more exception handlers. When no exception occurs in the try clause, no
exception handler is executed.When an exception occurs in the try suite, a search for an exception handler is started.
This search inspects the except clauses in turn until one is found that matches the exception. An expression-less except
clause, if present, must be last; it matches any exception. For an except clause with an expression, that expression is
evaluated, and the clause matches the exception if the resulting object is “compatible” with the exception. An object
is compatible with an exception if the object is the class or a non-virtual base class of the exception object, or a tuple
containing an item that is the class or a non-virtual base class of the exception object.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code and
on the invocation stack.1

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a
handler is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is
treated as if the entire try statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified after the as keyword in that
except clause, if present, and the except clause’s suite is executed. All except clauses must have an executable block.
When the end of this block is reached, execution continues normally after the entire try statement. (This means that

1 The exception is propagated to the invocation stack unless there is a finally clause which happens to raise another exception. That new
exception causes the old one to be lost.

8.4. The try statement 99

The Python Language Reference, Sürüm 3.9.20

if two nested handlers exist for the same exception, and the exception occurs in the try clause of the inner handler,
the outer handler will not handle the exception.)

When an exception has been assigned using as target, it is cleared at the end of the except clause. This is as if

except E as N:
foo

was translated to

except E as N:
try:

foo
finally:

del N

This means the exception must be assigned to a different name to be able to refer to it after the except clause.
Exceptions are cleared because with the traceback attached to them, they form a reference cycle with the stack
frame, keeping all locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, details about the exception are stored in the sysmodule and can be acces-
sed via sys.exc_info(). sys.exc_info() returns a 3-tuple consisting of the exception class, the exception
instance and a traceback object (see section The standard type hierarchy) identifying the point in the program whe-
re the exception occurred. sys.exc_info() values are restored to their previous values (before the call) when
returning from a function that handled an exception.

The optional else clause is executed if the control flow leaves the try suite, no exception was raised, and no
return, continue, or break statement was executed. Exceptions in the else clause are not handled by the
preceding except clauses.

If finally is present, it specifies a ‘cleanup’ handler. The try clause is executed, including any except and
else clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved.
The finally clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If
the finally clause raises another exception, the saved exception is set as the context of the new exception. If the
finally clause executes a return, break or continue statement, the saved exception is discarded:

>>> def f():
... try:
... 1/0
... finally:
... return 42
...
>>> f()
42

The exception information is not available to the program during execution of the finally clause.

When a return, break or continue statement is executed in the try suite of a try…finally statement,
the finally clause is also executed ‘on the way out.’

The return value of a function is determined by the last return statement executed. Since the finally clause
always executes, a return statement executed in the finally clause will always be the last one executed:

>>> def foo():
... try:
... return 'try'
... finally:
... return 'finally'
...
>>> foo()
'finally'

Additional information on exceptions can be found in section Exceptions, and information on using the raise sta-
tement to generate exceptions may be found in section The raise statement.

100 Bölüm 8. Compound statements

The Python Language Reference, Sürüm 3.9.20

3.8 sürümünde değişti: Prior to Python 3.8, a continue statement was illegal in the finally clause due to a
problem with the implementation.

8.5 The with statement

The with statement is used to wrap the execution of a block with methods defined by a context manager (see
section With Statement Context Managers). This allows common try…except…finally usage patterns to be
encapsulated for convenient reuse.

with_stmt ::= "with" with_item ("," with_item)* ":" suite
with_item ::= expression ["as" target]

The execution of the with statement with one “item” proceeds as follows:

1. The context expression (the expression given in the with_item) is evaluated to obtain a context manager.

2. The context manager’s __enter__() is loaded for later use.

3. The context manager’s __exit__() is loaded for later use.

4. The context manager’s __enter__() method is invoked.

5. If a target was included in the with statement, the return value from __enter__() is assigned to it.

Not: The with statement guarantees that if the __enter__() method returns without an error, then
__exit__() will always be called. Thus, if an error occurs during the assignment to the target list, it will be
treated the same as an error occurring within the suite would be. See step 6 below.

6. The suite is executed.

7. The context manager’s __exit__() method is invoked. If an exception caused the suite to be exited, its
type, value, and traceback are passed as arguments to __exit__(). Otherwise, three None arguments are
supplied.

If the suite was exited due to an exception, and the return value from the __exit__()method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with
the statement following the with statement.

If the suite was exited for any reason other than an exception, the return value from __exit__() is ignored,
and execution proceeds at the normal location for the kind of exit that was taken.

The following code:

with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)
enter = type(manager).__enter__
exit = type(manager).__exit__
value = enter(manager)
hit_except = False

try:
TARGET = value
SUITE

except:
hit_except = True
if not exit(manager, *sys.exc_info()):

(continues on next page)

8.5. The with statement 101

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

raise
finally:

if not hit_except:
exit(manager, None, None, None)

With more than one item, the context managers are processed as if multiple with statements were nested:

with A() as a, B() as b:
SUITE

is semantically equivalent to:

with A() as a:
with B() as b:

SUITE

3.1 sürümünde değişti: Support for multiple context expressions.

Ayrıca bkz.:

PEP 343 - The “with” statement The specification, background, and examples for the Python with statement.

8.6 Function definitions

A function definition defines a user-defined function object (see section The standard type hierarchy):

funcdef ::= [decorators] "def" funcname "(" [parameter_list] ")"
["->" expression] ":" suite

decorators ::= decorator+
decorator ::= "@" assignment_expression NEWLINE
parameter_list ::= defparameter ("," defparameter)* "," "/" ["," [parameter_list_no_posonly]]

| parameter_list_no_posonly
parameter_list_no_posonly ::= defparameter ("," defparameter)* ["," [parameter_list_starargs]]

| parameter_list_starargs
parameter_list_starargs ::= "*" [parameter] ("," defparameter)* ["," ["**" parameter [","]]]

| "**" parameter [","]
parameter ::= identifier [":" expression]
defparameter ::= parameter [" =" expression]
funcname ::= identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace
to a function object (a wrapper around the executable code for the function). This function object contains a reference
to the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called.2

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated
when the function is defined, in the scope that contains the function definition. The result must be a callable, which
is invoked with the function object as the only argument. The returned value is bound to the function name instead
of the function object. Multiple decorators are applied in nested fashion. For example, the following code

@f1(arg)
@f2
def func(): pass

2 A string literal appearing as the first statement in the function body is transformed into the function’s __doc__ attribute and therefore the
function’s docstring.

102 Bölüm 8. Compound statements

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, Sürüm 3.9.20

is roughly equivalent to

def func(): pass
func = f1(arg)(f2(func))

except that the original function is not temporarily bound to the name func.

3.9 sürümünde değişti: Functions may be decorated with any valid assignment_expression. Previously, the
grammar was much more restrictive; see PEP 614 for details.

When one or more parameters have the form parameter = expression, the function is said to have “default parameter
values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in which case
the parameter’s default value is substituted. If a parameter has a default value, all following parameters up until the
“*” must also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This means
that the expression is evaluated once, when the function is defined, and that the same “pre-computed” value is used
for each call. This is especially important to understand when a default parameter is a mutable object, such as a list
or a dictionary: if the function modifies the object (e.g. by appending an item to a list), the default value is in effect
modified. This is generally not what was intended. A way around this is to use None as the default, and explicitly
test for it in the body of the function, e.g.:

def whats_on_the_telly(penguin=None):
if penguin is None:

penguin = []
penguin.append("property of the zoo")
return penguin

Function call semantics are described in more detail in section Calls. A function call always assigns values to all para-
meters mentioned in the parameter list, either from positional arguments, from keyword arguments, or from default
values. If the form “*identifier” is present, it is initialized to a tuple receiving any excess positional parameters,
defaulting to the empty tuple. If the form “**identifier” is present, it is initialized to a new ordered mapping
receiving any excess keyword arguments, defaulting to a new empty mapping of the same type. Parameters after
“*” or “*identifier” are keyword-only parameters and may only be passed by keyword arguments. Parameters
before “/” are positional-only parameters and may only be passed by positional arguments.

3.8 sürümünde değişti: The / function parameter syntax may be used to indicate positional-only parameters. See
PEP 570 for details.

Parameters may have an annotation of the form “: expression” following the parameter name. Any parameter
may have an annotation, even those of the form *identifier or **identifier. Functions may have “return”
annotation of the form “-> expression” after the parameter list. These annotations can be any valid Python
expression. The presence of annotations does not change the semantics of a function. The annotation values are
available as values of a dictionary keyed by the parameters’ names in the __annotations__ attribute of the
function object. If the annotations import from __future__ is used, annotations are preserved as strings at
runtime which enables postponed evaluation. Otherwise, they are evaluated when the function definition is executed.
In this case annotations may be evaluated in a different order than they appear in the source code.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions.
This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a shorthand
for a simplified function definition; a function defined in a “def” statement can be passed around or assigned to
another name just like a function defined by a lambda expression. The “def” form is actually more powerful since
it allows the execution of multiple statements and annotations.

Programmer’s note: Functions are first-class objects. A “def” statement executed inside a function definition
defines a local function that can be returned or passed around. Free variables used in the nested function can access
the local variables of the function containing the def. See section Naming and binding for details.

Ayrıca bkz.:

PEP 3107 - Function Annotations The original specification for function annotations.

PEP 484 - Type Hints Definition of a standard meaning for annotations: type hints.

8.6. Function definitions 103

https://www.python.org/dev/peps/pep-0614
https://www.python.org/dev/peps/pep-0570
https://www.python.org/dev/peps/pep-3107
https://www.python.org/dev/peps/pep-0484

The Python Language Reference, Sürüm 3.9.20

PEP 526 - Syntax for Variable Annotations Ability to type hint variable declarations, including class variables
and instance variables

PEP 563 - Postponed Evaluation of Annotations Support for forward references within annotations by preser-
ving annotations in a string form at runtime instead of eager evaluation.

8.7 Class definitions

A class definition defines a class object (see section The standard type hierarchy):

classdef ::= [decorators] "class" classname [inheritance] ":" suite
inheritance ::= "(" [argument_list] ")"
classname ::= identifier

A class definition is an executable statement. The inheritance list usually gives a list of base classes (seeMetaclasses
for more advanced uses), so each item in the list should evaluate to a class object which allows subclassing. Classes
without an inheritance list inherit, by default, from the base class object; hence,

class Foo:
pass

is equivalent to

class Foo(object):
pass

The class’s suite is then executed in a new execution frame (see Naming and binding), using a newly created local
namespace and the original global namespace. (Usually, the suite contains mostly function definitions.) When the
class’s suite finishes execution, its execution frame is discarded but its local namespace is saved.3 A class object is
then created using the inheritance list for the base classes and the saved local namespace for the attribute dictionary.
The class name is bound to this class object in the original local namespace.

The order in which attributes are defined in the class body is preserved in the new class’s __dict__. Note that this
is reliable only right after the class is created and only for classes that were defined using the definition syntax.

Class creation can be customized heavily using metaclasses.

Classes can also be decorated: just like when decorating functions,

@f1(arg)
@f2
class Foo: pass

is roughly equivalent to

class Foo: pass
Foo = f1(arg)(f2(Foo))

The evaluation rules for the decorator expressions are the same as for function decorators. The result is then bound
to the class name.

3.9 sürümünde değişti: Classes may be decorated with any valid assignment_expression. Previously, the
grammar was much more restrictive; see PEP 614 for details.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances.
Instance attributes can be set in a method with self.name = value. Both class and instance attributes are
accessible through the notation “self.name”, and an instance attribute hides a class attribute with the same name
when accessed in this way. Class attributes can be used as defaults for instance attributes, but using mutable values

3 A string literal appearing as the first statement in the class body is transformed into the namespace’s __doc__ item and therefore the class’s
docstring.

104 Bölüm 8. Compound statements

https://www.python.org/dev/peps/pep-0526
https://www.python.org/dev/peps/pep-0563
https://www.python.org/dev/peps/pep-0614

The Python Language Reference, Sürüm 3.9.20

there can lead to unexpected results.Descriptors can be used to create instance variables with different implementation
details.

Ayrıca bkz.:

PEP 3115 - Metaclasses in Python 3000 The proposal that changed the declaration of metaclasses to the current
syntax, and the semantics for how classes with metaclasses are constructed.

PEP 3129 - Class Decorators The proposal that added class decorators. Function and method decorators were int-
roduced in PEP 318.

8.8 Coroutines

3.5 sürümüyle geldi.

8.8.1 Coroutine function definition

async_funcdef ::= [decorators] "async" "def" funcname "(" [parameter_list] ")"
["->" expression] ":" suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). Inside the body of a
coroutine function, await and async identifiers become reserved keywords; await expressions, async for
and async with can only be used in coroutine function bodies.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await or
async keywords.

It is a SyntaxError to use a yield from expression inside the body of a coroutine function.

An example of a coroutine function:

async def func(param1, param2):
do_stuff()
await some_coroutine()

8.8.2 The async for statement

async_for_stmt ::= "async" for_stmt

An asynchronous iterable provides an __aiter__method that directly returns an asynchronous iterator, which can
call asynchronous code in its __anext__ method.

The async for statement allows convenient iteration over asynchronous iterables.

The following code:

async for TARGET in ITER:
SUITE

else:
SUITE2

Is semantically equivalent to:

iter = (ITER)
iter = type(iter).__aiter__(iter)
running = True

while running:

(continues on next page)

8.8. Coroutines 105

https://www.python.org/dev/peps/pep-3115
https://www.python.org/dev/peps/pep-3129
https://www.python.org/dev/peps/pep-0318

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

try:
TARGET = await type(iter).__anext__(iter)

except StopAsyncIteration:
running = False

else:
SUITE

else:
SUITE2

See also __aiter__() and __anext__() for details.

It is a SyntaxError to use an async for statement outside the body of a coroutine function.

8.8.3 The async with statement

async_with_stmt ::= "async" with_stmt

An asynchronous context manager is a context manager that is able to suspend execution in its enter and exit methods.

The following code:

async with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)
aenter = type(manager).__aenter__
aexit = type(manager).__aexit__
value = await aenter(manager)
hit_except = False

try:
TARGET = value
SUITE

except:
hit_except = True
if not await aexit(manager, *sys.exc_info()):

raise
finally:

if not hit_except:
await aexit(manager, None, None, None)

See also __aenter__() and __aexit__() for details.

It is a SyntaxError to use an async with statement outside the body of a coroutine function.

Ayrıca bkz.:

PEP 492 - Coroutines with async and await syntax The proposal that made coroutines a proper standalone con-
cept in Python, and added supporting syntax.

106 Bölüm 8. Compound statements

https://www.python.org/dev/peps/pep-0492

BÖLÜM9

Top-level components

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or as
program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in these
cases.

9.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion
of a complete Python program. A complete Python program is executed in a minimally initialized environment: all
built-in and standard modules are available, but none have been initialized, except for sys (various system services),
builtins (built-in functions, exceptions and None) and __main__. The latter is used to provide the local and
global namespace for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a complete program
but reads and executes one statement (possibly compound) at a time. The initial environment is identical to that of a
complete program; each statement is executed in the namespace of __main__.

A complete program can be passed to the interpreter in three forms: with the -c string command line option, as a
file passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the
interpreter enters interactive mode; otherwise, it executes the file as a complete program.

9.2 File input

All input read from non-interactive files has the same form:

file_input ::= (NEWLINE | statement)*

This syntax is used in the following situations:

• when parsing a complete Python program (from a file or from a string);

• when parsing a module;

• when parsing a string passed to the exec() function;

107

The Python Language Reference, Sürüm 3.9.20

9.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input ::= [stmt_list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed to
help the parser detect the end of the input.

9.4 Expression input

eval() is used for expression input. It ignores leading whitespace. The string argument to eval() must have the
following form:

eval_input ::= expression_list NEWLINE*

108 Bölüm 9. Top-level components

BÖLÜM10

Full Grammar specification

This is the full Python grammar, derived directly from the grammar used to generate the CPython parser (see Gram-
mar/python.gram). The version here omits details related to code generation and error recovery.

The notation is a mixture of EBNF and PEG. In particular, & followed by a symbol, token or parenthesized group
indicates a positive lookahead (i.e., is required to match but not consumed), while ! indicates a negative lookahead
(i.e., is required _not_ to match). We use the | separator to mean PEG’s “ordered choice” (written as / in traditional
PEG grammars).

PEG grammar for Python

file: [statements] ENDMARKER
interactive: statement_newline
eval: expressions NEWLINE* ENDMARKER
func_type: '(' [type_expressions] ')' '->' expression NEWLINE* ENDMARKER
fstring: star_expressions

type_expressions allow */** but ignore them
type_expressions:

| ','.expression+ ',' '*' expression ',' '**' expression
| ','.expression+ ',' '*' expression
| ','.expression+ ',' '**' expression
| '*' expression ',' '**' expression
| '*' expression
| '**' expression
| ','.expression+

statements: statement+
statement: compound_stmt | simple_stmt
statement_newline:

| compound_stmt NEWLINE
| simple_stmt
| NEWLINE
| ENDMARKER

simple_stmt:
| small_stmt !';' NEWLINE # Not needed, there for speedup
| ';'.small_stmt+ [';'] NEWLINE

NOTE: assignment MUST precede expression, else parsing a simple assignment
will throw a SyntaxError.

(continues on next page)

109

https://github.com/python/cpython/tree/3.9/Grammar/python.gram
https://github.com/python/cpython/tree/3.9/Grammar/python.gram
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing_expression_grammar

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

small_stmt:
| assignment
| star_expressions
| return_stmt
| import_stmt
| raise_stmt
| 'pass'
| del_stmt
| yield_stmt
| assert_stmt
| 'break'
| 'continue'
| global_stmt
| nonlocal_stmt

compound_stmt:
| function_def
| if_stmt
| class_def
| with_stmt
| for_stmt
| try_stmt
| while_stmt

NOTE: annotated_rhs may start with 'yield'; yield_expr must start with 'yield'
assignment:

| NAME ':' expression ['=' annotated_rhs]
| ('(' single_target ')'

| single_subscript_attribute_target) ':' expression ['=' annotated_rhs]
| (star_targets '=')+ (yield_expr | star_expressions) !'=' [TYPE_COMMENT]
| single_target augassign ~ (yield_expr | star_expressions)

augassign:
| '+ ='
| '-='
| '* ='
| '@ ='
| '/='
| '%='
| '&='
| '| ='
| '^='
| '<<='
| '>>='
| '** ='
| '//='

global_stmt: 'global' ','.NAME+
nonlocal_stmt: 'nonlocal' ','.NAME+

yield_stmt: yield_expr

assert_stmt: 'assert' expression [',' expression]

del_stmt:
| 'del' del_targets &(';' | NEWLINE)

import_stmt: import_name | import_from
import_name: 'import' dotted_as_names
note below: the ('.' | '...') is necessary because '...' is tokenized as ELLIPSIS
import_from:

| 'from' ('.' | '...')* dotted_name 'import' import_from_targets

(continues on next page)

110 Bölüm 10. Full Grammar specification

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

| 'from' ('.' | '...')+ 'import' import_from_targets
import_from_targets:

| '(' import_from_as_names [','] ')'
| import_from_as_names !','
| '*'

import_from_as_names:
| ','.import_from_as_name+

import_from_as_name:
| NAME ['as' NAME]

dotted_as_names:
| ','.dotted_as_name+

dotted_as_name:
| dotted_name ['as' NAME]

dotted_name:
| dotted_name '.' NAME
| NAME

if_stmt:
| 'if' named_expression ':' block elif_stmt
| 'if' named_expression ':' block [else_block]

elif_stmt:
| 'elif' named_expression ':' block elif_stmt
| 'elif' named_expression ':' block [else_block]

else_block: 'else' ':' block

while_stmt:
| 'while' named_expression ':' block [else_block]

for_stmt:
| 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_

↪→block]
| ASYNC 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block␣

↪→[else_block]

with_stmt:
| 'with' '(' ','.with_item+ ','? ')' ':' block
| 'with' ','.with_item+ ':' [TYPE_COMMENT] block
| ASYNC 'with' '(' ','.with_item+ ','? ')' ':' block
| ASYNC 'with' ','.with_item+ ':' [TYPE_COMMENT] block

with_item:
| expression 'as' star_target &(',' | ')' | ':')
| expression

try_stmt:
| 'try' ':' block finally_block
| 'try' ':' block except_block+ [else_block] [finally_block]

except_block:
| 'except' expression ['as' NAME] ':' block
| 'except' ':' block

finally_block: 'finally' ':' block

return_stmt:
| 'return' [star_expressions]

raise_stmt:
| 'raise' expression ['from' expression]
| 'raise'

function_def:
| decorators function_def_raw
| function_def_raw

(continues on next page)

111

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

function_def_raw:
| 'def' NAME '(' [params] ')' ['->' expression] ':' [func_type_comment] block
| ASYNC 'def' NAME '(' [params] ')' ['->' expression] ':' [func_type_comment]␣

↪→block
func_type_comment:

| NEWLINE TYPE_COMMENT &(NEWLINE INDENT) # Must be followed by indented block
| TYPE_COMMENT

params:
| parameters

parameters:
| slash_no_default param_no_default* param_with_default* [star_etc]
| slash_with_default param_with_default* [star_etc]
| param_no_default+ param_with_default* [star_etc]
| param_with_default+ [star_etc]
| star_etc

Some duplication here because we can't write (',' | &')'),
which is because we don't support empty alternatives (yet).
#
slash_no_default:

| param_no_default+ '/' ','
| param_no_default+ '/' &')'

slash_with_default:
| param_no_default* param_with_default+ '/' ','
| param_no_default* param_with_default+ '/' &')'

star_etc:
| '*' param_no_default param_maybe_default* [kwds]
| '*' ',' param_maybe_default+ [kwds]
| kwds

kwds: '**' param_no_default

One parameter. This *includes* a following comma and type comment.
#
There are three styles:
- No default
- With default
- Maybe with default
#
There are two alternative forms of each, to deal with type comments:
- Ends in a comma followed by an optional type comment
- No comma, optional type comment, must be followed by close paren
The latter form is for a final parameter without trailing comma.
#
param_no_default:

| param ',' TYPE_COMMENT?
| param TYPE_COMMENT? &')'

param_with_default:
| param default ',' TYPE_COMMENT?
| param default TYPE_COMMENT? &')'

param_maybe_default:
| param default? ',' TYPE_COMMENT?
| param default? TYPE_COMMENT? &')'

param: NAME annotation?

annotation: ':' expression
default: '=' expression

(continues on next page)

112 Bölüm 10. Full Grammar specification

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

decorators: ('@' named_expression NEWLINE)+

class_def:
| decorators class_def_raw
| class_def_raw

class_def_raw:
| 'class' NAME ['(' [arguments] ')'] ':' block

block:
| NEWLINE INDENT statements DEDENT
| simple_stmt

star_expressions:
| star_expression (',' star_expression)+ [',']
| star_expression ','
| star_expression

star_expression:
| '*' bitwise_or
| expression

star_named_expressions: ','.star_named_expression+ [',']
star_named_expression:

| '*' bitwise_or
| named_expression

named_expression:
| NAME ':=' ~ expression
| expression !':='

annotated_rhs: yield_expr | star_expressions

expressions:
| expression (',' expression)+ [',']
| expression ','
| expression

expression:
| disjunction 'if' disjunction 'else' expression
| disjunction
| lambdef

lambdef:
| 'lambda' [lambda_params] ':' expression

lambda_params:
| lambda_parameters

lambda_parameters etc. duplicates parameters but without annotations
or type comments, and if there's no comma after a parameter, we expect
a colon, not a close parenthesis. (For more, see parameters above.)
#
lambda_parameters:

| lambda_slash_no_default lambda_param_no_default* lambda_param_with_default*␣
↪→[lambda_star_etc]

| lambda_slash_with_default lambda_param_with_default* [lambda_star_etc]
| lambda_param_no_default+ lambda_param_with_default* [lambda_star_etc]
| lambda_param_with_default+ [lambda_star_etc]
| lambda_star_etc

lambda_slash_no_default:
| lambda_param_no_default+ '/' ','
| lambda_param_no_default+ '/' &':'

(continues on next page)

113

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

lambda_slash_with_default:
| lambda_param_no_default* lambda_param_with_default+ '/' ','
| lambda_param_no_default* lambda_param_with_default+ '/' &':'

lambda_star_etc:
| '*' lambda_param_no_default lambda_param_maybe_default* [lambda_kwds]
| '*' ',' lambda_param_maybe_default+ [lambda_kwds]
| lambda_kwds

lambda_kwds: '**' lambda_param_no_default

lambda_param_no_default:
| lambda_param ','
| lambda_param &':'

lambda_param_with_default:
| lambda_param default ','
| lambda_param default &':'

lambda_param_maybe_default:
| lambda_param default? ','
| lambda_param default? &':'

lambda_param: NAME

disjunction:
| conjunction ('or' conjunction)+
| conjunction

conjunction:
| inversion ('and' inversion)+
| inversion

inversion:
| 'not' inversion
| comparison

comparison:
| bitwise_or compare_op_bitwise_or_pair+
| bitwise_or

compare_op_bitwise_or_pair:
| eq_bitwise_or
| noteq_bitwise_or
| lte_bitwise_or
| lt_bitwise_or
| gte_bitwise_or
| gt_bitwise_or
| notin_bitwise_or
| in_bitwise_or
| isnot_bitwise_or
| is_bitwise_or

eq_bitwise_or: '==' bitwise_or
noteq_bitwise_or:

| ('!=') bitwise_or
lte_bitwise_or: '<=' bitwise_or
lt_bitwise_or: '<' bitwise_or
gte_bitwise_or: '>=' bitwise_or
gt_bitwise_or: '>' bitwise_or
notin_bitwise_or: 'not' 'in' bitwise_or
in_bitwise_or: 'in' bitwise_or
isnot_bitwise_or: 'is' 'not' bitwise_or
is_bitwise_or: 'is' bitwise_or

bitwise_or:
| bitwise_or '|' bitwise_xor
| bitwise_xor

bitwise_xor:

(continues on next page)

114 Bölüm 10. Full Grammar specification

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

| bitwise_xor '^' bitwise_and
| bitwise_and

bitwise_and:
| bitwise_and '&' shift_expr
| shift_expr

shift_expr:
| shift_expr '<<' sum
| shift_expr '>>' sum
| sum

sum:
| sum '+' term
| sum '-' term
| term

term:
| term '*' factor
| term '/' factor
| term '//' factor
| term '%' factor
| term '@' factor
| factor

factor:
| '+' factor
| '-' factor
| '~' factor
| power

power:
| await_primary '**' factor
| await_primary

await_primary:
| AWAIT primary
| primary

primary:
| primary '.' NAME
| primary genexp
| primary '(' [arguments] ')'
| primary '[' slices ']'
| atom

slices:
| slice !','
| ','.slice+ [',']

slice:
| [expression] ':' [expression] [':' [expression]]
| expression

atom:
| NAME
| 'True'
| 'False'
| 'None'
| '__peg_parser__'
| strings
| NUMBER
| (tuple | group | genexp)
| (list | listcomp)
| (dict | set | dictcomp | setcomp)
| '...'

strings: STRING+
list:

| '[' [star_named_expressions] ']'

(continues on next page)

115

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

listcomp:
| '[' named_expression ~ for_if_clauses ']'

tuple:
| '(' [star_named_expression ',' [star_named_expressions]] ')'

group:
| '(' (yield_expr | named_expression) ')'

genexp:
| '(' named_expression ~ for_if_clauses ')'

set: '{' star_named_expressions '}'
setcomp:

| '{' named_expression ~ for_if_clauses '}'
dict:

| '{' [double_starred_kvpairs] '}'
dictcomp:

| '{' kvpair for_if_clauses '}'
double_starred_kvpairs: ','.double_starred_kvpair+ [',']
double_starred_kvpair:

| '**' bitwise_or
| kvpair

kvpair: expression ':' expression
for_if_clauses:

| for_if_clause+
for_if_clause:

| ASYNC 'for' star_targets 'in' ~ disjunction ('if' disjunction)*
| 'for' star_targets 'in' ~ disjunction ('if' disjunction)*

yield_expr:
| 'yield' 'from' expression
| 'yield' [star_expressions]

arguments:
| args [','] &')'

args:
| ','.(starred_expression | named_expression !'=')+ [',' kwargs]
| kwargs

kwargs:
| ','.kwarg_or_starred+ ',' ','.kwarg_or_double_starred+
| ','.kwarg_or_starred+
| ','.kwarg_or_double_starred+

starred_expression:
| '*' expression

kwarg_or_starred:
| NAME '=' expression
| starred_expression

kwarg_or_double_starred:
| NAME '=' expression
| '**' expression

NOTE: star_targets may contain *bitwise_or, targets may not.
star_targets:

| star_target !','
| star_target (',' star_target)* [',']

star_targets_list_seq: ','.star_target+ [',']
star_targets_tuple_seq:

| star_target (',' star_target)+ [',']
| star_target ','

star_target:
| '*' (!'*' star_target)
| target_with_star_atom

target_with_star_atom:
| t_primary '.' NAME !t_lookahead

(continues on next page)

116 Bölüm 10. Full Grammar specification

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

| t_primary '[' slices ']' !t_lookahead
| star_atom

star_atom:
| NAME
| '(' target_with_star_atom ')'
| '(' [star_targets_tuple_seq] ')'
| '[' [star_targets_list_seq] ']'

single_target:
| single_subscript_attribute_target
| NAME
| '(' single_target ')'

single_subscript_attribute_target:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead

del_targets: ','.del_target+ [',']
del_target:

| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
| del_t_atom

del_t_atom:
| NAME
| '(' del_target ')'
| '(' [del_targets] ')'
| '[' [del_targets] ']'

t_primary:
| t_primary '.' NAME &t_lookahead
| t_primary '[' slices ']' &t_lookahead
| t_primary genexp &t_lookahead
| t_primary '(' [arguments] ')' &t_lookahead
| atom &t_lookahead

t_lookahead: '(' | '[' | '.'

117

The Python Language Reference, Sürüm 3.9.20

118 Bölüm 10. Full Grammar specification

EKA

Sözlük

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed inte-
ractively in the interpreter.

... Şunlara başvurabilir:

• Girintili bir kod bloğu için kod girerken, eşleşen bir çift sol ve sağ sınırlayıcı (parantez, köşeli paran-
tez, kaşlı ayraç veya üçlü tırnak) içindeyken veya bir dekoratör belirttikten sonra etkileşimli kabuğun
varsayılan Python istemi.

• Elipsis yerleşik sabiti.

2to3 Kaynağı ayrıştırarak ve ayrıştırma ağacında gezinerek tespit edilebilecek uyumsuzlukların çoğunu işleyerek
Python 2.x kodunu Python 3.x koduna dönüştürmeye çalışan bir araç.

2to3, standart kitaplıkta lib2to3'; bağımsız bir giriş noktası şu şekilde
sağlanır:file:`Tools/scripts/2to3. Bakınız 2to3-reference.

soyut temel sınıf Soyut temel sınıflar duck-typing ‘i, hasattr() gibi diğer teknikler beceriksiz veya tama-
men yanlış olduğunda arayüzleri tanımlamanın bir yolunu sağlayarak tamamlar (örneğin sihirli yöntemlerle).
ABC’ler, bir sınıftan miras almayan ancak yine de isinstance() ve issubclass() tarafından tanınan
sınıflar olan sanal alt sınıfları tanıtır; abcmodül belgelerine bakın. Python comes with many built-in ABCs for
data structures (in the collections.abcmodule), numbers (in the numbersmodule), streams (in the io
module), import finders and loaders (in the importlib.abc module). abc modülü ile kendi ABC’lerinizi
oluşturabilirsiniz.

dipnot A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.

Yerel değişkenlerin açıklamalarına çalışma zamanında erişilemez, ancak global değişkenlerin, sınıf nitelikle-
rinin ve işlevlerin açıklamaları, sırasıyla modüllerin, sınıfların ve işlevlerin __annotations__ özel özelli-
ğinde saklanır.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

argüman A value passed to a function (or method) when calling the function. There are two kinds of argument:

• keyword argument: bir işlev çağrısında bir tanımlayıcının (ör. ad =) önüne geçen veya bir sözlükte ** ile
başlayan bir değer olarak geçirilen bir argüman. Örneğin, 3 ve 5, aşağıdaki complex(): çağrılarında
anahtar kelimenin argümanleridir:

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

119

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python Language Reference, Sürüm 3.9.20

• positional argument: anahtar kelime argümanı olmayan bir argüman. Konumsal argümanler, bir argü-
man listesinin başında görünebilir ve/veya * ile başlayan bir iterable öğesinin öğeleri olarak iletilebilir.
Örneğin, 3 ve 5, aşağıdaki çağrılarda konumsal argümanlerdir:

complex(3, 5)
complex(*(3, 5))

argümanler, bir işlev gövdesindeki adlandırılmış yerel değişkenlere atanır. Bu atamayı yöneten kurallar için
Calls bölümüne bakın. Sözdizimsel olarak, bir argümanı temsil etmek için herhangi bir ifade kullanılabilir;
değerlendirilen değer yerel değişkene atanır.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asenkron bağlam yöneticisi async with ifadesinde görülen ortamı __aenter__() ve __aexit__() yön-
temlerini tanımlayarak kontrol eden bir nesne. PEP 492 de anlatıldı.

asenkron jeneratör asynchronous generator iterator döndüren bir işlev. Bir async for döngüsünde kullanılabi-
len bir dizi değer üretmek için yield ifadeleri içermesi dışında async def ile tanımlanmış bir eşyordam
işlevine benziyor.

Genellikle bir asenkron üreteç işlevine atıfta bulunur, ancak bazı bağlamlarda bir asynchronous generator ite-
rator ‘e karşılık gelebilir. Amaçlanan anlamın net olmadığı durumlarda, tam terimlerin kullanılması belirsizliği
önler.

Bir asenkron üretici fonksiyonu, await ifadelerinin yanı sıra async for ve async with ifadeleri içe-
rebilir.

asenkron jeneratör yineleyici Bir asynchronous generator işlevi tarafından oluşturulan bir nesne.

Bu, __anext__() yöntemi kullanılarak çağrıldığında, bir sonraki yield ifadesine kadar asynchronous
generator işlevinin gövdesini yürütecek, beklenebilir bir nesne döndüren bir asynchronous iterator.

Her yield, konum yürütme durumunu hatırlayarak (yerel değişkenler ve bekleyen try ifadeleri dahil) işle-
meyi geçici olarak askıya alır. asynchronous generator iterator, __anext__() tarafından döndürülen başka
birbeklenebilir ile etkili bir şekilde devam ettiğinde, kaldığı yerden devam eder. Bkz. PEP 492 ve PEP 525.

eşzamansız yinelenebilir Bir async for ifadesinde kullanılabilen bir nesne. __aiter__() yönteminden bir
asynchronous iterator döndürmelidir. PEP 492 ‘de tanıtıldı.

asenkron yineleyici An object that implements the __aiter__() and __anext__() methods. __anext__
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__() method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

nitelik A value associated with an object which is referenced by name using dotted expressions. For example, if an
object o has an attribute a it would be referenced as o.a.

beklenebilir await ifadesinde kullanılabilen bir nesne. Bir coroutine veya __await__() yöntemine sahip bir
nesne olabilir. Ayrıca bakınız PEP 492.

BDFL Benevolent Dictator For Life, namı diğer Guido van Rossum, Python’un yaratıcısı.

ikili dosya Bir dosya nesnesi bayt benzeri nesneler okuyabilir ve yazabilir. İkili dosya örnekleri, ikili modda açı-
lan dosyalardır ('rb', 'wb' veya 'rb+'), sys.stdin.buffer, sys.stdout.buffer ve io.
BytesIO ve gzip.GzipFile örnekleri.

Ayrıca str nesnelerini okuyabilen ve yazabilen bir dosya nesnesi için text file ‘a bakın.

bayt benzeri nesne bufferobjects ‘i destekleyen ve bir C-contiguous arabelleğini dışa aktarabilen bir nesne. Bu, tüm
bytes,bytearray vearray.array nesnelerinin yanı sıra birçok yaygınmemoryview nesnesini içerir.
Bayt benzeri nesneler, ikili verilerle çalışan çeşitli işlemler için kullanılabilir; bunlara sıkıştırma, ikili dosyaya
kaydetme ve bir soket üzerinden gönderme dahildir.

Bazı işlemler, değişken olması için ikili verilere ihtiyaç duyar. Belgeler genellikle bunlara “okuma-yazma
bayt benzeri nesneler” olarak atıfta bulunur. Örnek değiştirilebilir arabellek nesneleri bytearray ve bir
bytearray memoryview içerir. Diğer işlemler, ikili verilerin değişmez nesnelerde (“salt okunur bayt

120 Ek A. Sözlük

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

The Python Language Reference, Sürüm 3.9.20

benzeri nesneler”) depolanmasını gerektirir; bunların örnekleri arasında bytes ve bir bytes nesnesinin
memoryview bulunur.

bayt kodu Python kaynak kodu, bir Python programının CPython yorumlayıcısındaki dahili temsili olan bayt ko-
dunda derlenir. Bayt kodu ayrıca .pyc dosyalarında önbelleğe alınır, böylece aynı dosyanın ikinci kez ça-
lıştırılması daha hızlı olur (kaynaktan bayt koduna yeniden derleme önlenebilir). Bu “ara dilin”, her bir bayt
koduna karşılık gelen makine kodunu yürüten bir sanal makine üzerinde çalıştığı söylenir. Bayt kodlarının
farklı Python sanal makineleri arasında çalışması veya Python sürümleri arasında kararlı olması beklenmedi-
ğini unutmayın.

Bayt kodu talimatlarının bir listesi bytecodes dokümanında bulunabilir.

geri çağırmak Gelecekte bir noktada yürütülecek bir argüman olarak iletilen bir alt program işlevi.

sınıf Kullanıcı tanımlı nesneler oluşturmak için bir şablon. Sınıf tanımları normalde sınıfın örnekleri üzerinde çalışan
yöntem tanımlarını içerir.

sınıf değişkeni Bir sınıfta tanımlanmış ve yalnızca sınıf düzeyinde (yani sınıfın bir örneğinde değil) değiştirilmesi
amaçlanan bir değişken.

zorlama Aynı türden iki argüman içeren bir işlem sırasında bir tür örneğinin diğerine örtük olarak dönüştürülmesi.
Örneğin, int(3.15), kayan noktalı sayıyı 3 tamsayısına dönüştürür, ancak 3+4.5 ‘te her argüman farklı
türdedir (bir int, bir kayan nokta), ve her ikisi de eklenmeden önce aynı türe dönüştürülmelidir, aksi takdirde
bir TypeError yükseltir. Zorlama olmadan, uyumlu türlerin bile tüm argümanlarının programcı tarafından
aynı değere normalleştirilmesi gerekir, örneğin: 3+4,5 yerine float(3)+4,5.

karmaşık sayı Tüm sayıların bir reel kısım ve bir sanal kısım toplamı olarak ifade edildiği bilinen gerçek sayı sis-
teminin bir uzantısı. Hayali sayılar, hayali birimin gerçek katlarıdır (-1 ‘in karekökü), genellikle matematikte
i veya mühendislikte j ile yazılır. Python, bu son gösterimle yazılan karmaşık sayılar için yerleşik desteğe sa-
hiptir; hayali kısım bir j son ekiyle yazılır, örneğin 3+1j. math modülünün karmaşık eşdeğerlerine erişmek
için cmath kullanın. Karmaşık sayıların kullanımı oldukça gelişmiş bir matematiksel özelliktir. Onlara olan
ihtiyacın farkında değilseniz, onları güvenle görmezden gelebileceğiniz neredeyse kesindir.

bağlam yöneticisi with ifadesinde görülen ortamı __enter__() ve __exit__() yöntemlerini tanımlayarak
kontrol eden bir nesne. Bakınız PEP 343.

bağlam değişkeni Bağlamına bağlı olarak farklı değerler alabilen bir değişken. Bu, her yürütme iş parçacığının
bir değişken için farklı bir değere sahip olabileceği Thread-Local Storage’a benzer. Bununla birlikte, bağlam
değişkenleriyle, bir yürütme iş parçacığında birkaç bağlam olabilir ve bağlam değişkenlerinin ana kullanımı,
eşzamanlı zaman uyumsuz görevlerde değişkenleri izlemektir. Bakınız contextvars.

bitişik Bir arabellek, C-bitişik veya Fortran bitişik ise tam olarak bitişik olarak kabul edilir. Sıfır boyutlu arabellekler
C ve Fortran bitişiktir. Tek boyutlu dizilerde, öğeler sıfırdan başlayarak artan dizinler sırasına göre bellekte
yan yana yerleştirilmelidir. Çok boyutlu C-bitişik dizilerde, öğeleri bellek adresi sırasına göre ziyaret ederken
son dizin en hızlı şekilde değişir. Ancak, Fortran bitişik dizilerinde, ilk dizin en hızlı şekilde değişir.

eşyordam Eşyordamlar, altyordamların daha genelleştirilmiş bir biçimidir. Alt programlara bir noktada girilir ve
başka bir noktada çıkılır. Eşyordamlar birçok farklı noktada girilebilir, çıkılabilir ve devam ettirilebilir. async
def ifadesi ile uygulanabilirler. Ayrıca bakınız PEP 492.

eşyordam işlevi Bir coroutine nesnesi döndüren bir işlev. Bir eşyordam işlevi async def ifadesiyle tanımlana-
bilir ve await, async for ve async with anahtar kelimelerini içerebilir. Bunlar PEP 492 tarafından
tanıtıldı.

CPython Python programlama dilinin python.org üzerinde dağıtıldığı şekliyle kurallı uygulaması. “CPython” terimi,
gerektiğinde bu uygulamayı Jython veya IronPython gibi diğerlerinden ayırmak için kullanılır.

dekoratör Genellikle @wrapper sözdizimi kullanılarak bir işlev dönüşümü olarak uygulanan, başka bir işlevi dön-
düren bir işlev. Dekoratörler için yaygın örnekler şunlardır: classmethod() ve staticmethod().

Dekoratör sözdizimi yalnızca sözdizimsel şekerdir, aşağıdaki iki işlev tanımı anlamsal olarak eşdeğerdir:

def f(arg):
...

f = staticmethod(f)

(continues on next page)

121

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

@staticmethod
def f(arg):

...

Aynı kavram sınıflar için de mevcuttur, ancak orada daha az kullanılır. Dekoratörler hakkında daha fazla bilgi
için function definitions ve class definitions belgelerine bakın.

tanımlayıcı __get__(), __set__() veya __delete__() yöntemlerini tanımlayan herhangi bir nesne. Bir
sınıf özniteliği bir tanımlayıcı olduğunda, öznitelik araması üzerine özel bağlama davranışı tetiklenir. Normal-
de, bir özniteliği almak, ayarlamak veya silmek için a.b kullanmak, a için sınıf sözlüğünde b adlı nesneyi arar,
ancak b bir tanımlayıcı ise, ilgili tanımlayıcı yöntemi çağrılır. Tanımlayıcıları anlamak, Python’u derinleme-
sine anlamanın anahtarıdır çünkü bunlar, işlevler, yöntemler, özellikler, sınıf yöntemleri, statik yöntemler ve
süper sınıflara başvuru gibi birçok özelliğin temelidir.

Tanımlayıcıların yöntemleri hakkında daha fazla bilgi için, bkz. Implementing Descriptors veya Descriptor How
To Guide.

sözlük Rasgele anahtarların değerlerle eşlendiği ilişkisel bir dizi. Anahtarlar, __hash__() ve __eq__() yön-
temleriyle herhangi bir nesne olabilir. Perl’de karma denir.

sözlük anlama Öğelerin tümünü veya bir kısmını yinelenebilir bir şekilde işlemenin ve sonuçları içeren bir söz-
lük döndürmenin kompakt bir yolu. results = {n: n ** 2 for range(10)}, n ** 2 değerine
eşlenmiş n anahtarını içeren bir sözlük oluşturur. Bkz. Displays for lists, sets and dictionaries.

sözlük görünümü dict.keys(), dict.values() ve dict.items() ‘den döndürülen nesnelere sözlük
görünümleri denir. Sözlüğün girişleri üzerinde dinamik bir görünüm sağlarlar; bu, sözlük değiştiğinde gö-
rünümün bu değişiklikleri yansıttığı anlamına gelir. Sözlük görünümünü tam liste olmaya zorlamak için
list(dictview) kullanın. Bakınız dict-views.

belge dizisi Bir sınıf, işlev veya modülde ilk ifade olarak görünen bir dize değişmezi. Paket yürütüldüğünde yoksa-
yılırken, derleyici tarafından tanınır ve çevreleyen sınıfın, işlevin veya modülün __doc__ özniteliğine yer-
leştirilir. İç gözlem yoluyla erişilebilir olduğundan, nesnenin belgelenmesi için kurallı yerdir.

duck-typing Doğru arayüze sahip olup olmadığını belirlemek için bir nesnenin türüne bakmayan bir programlama
stili; bunun yerine, yöntem veya nitelik basitçe çağrılır veya kullanılır (“Ördek gibi görünüyorsa ve ördek gibi
vaklıyorsa, ördek olmalıdır.”) İyi tasarlanmış kod, belirli türlerden ziyade arayüzleri vurgulayarak, polimorfik
ikameye izin vererek esnekliğini artırır. Ördek yazma, type() veya isinstance() kullanan testleri önler.
(Ancak, ördek yazmanın abstract base class ile tamamlanabileceğini unutmayın.) Bunun yerine, genellikle
hasattr() testleri veya EAFP programlamasını kullanır.

EAFP Af dilemek izin almaktan daha kolaydır. Bu yaygın Python kodlama stili, geçerli anahtarların veya niteliklerin
varlığını varsayar ve varsayımın yanlış çıkması durumunda istisnaları yakalar. Bu temiz ve hızlı stil, birçok try
ve except ifadesinin varlığı ile karakterize edilir. Teknik, C gibi diğer birçok dilde ortak olan LBYL stiliyle
çelişir.

ifade (değer döndürür) Bir değere göre değerlendirilebilecek bir sözdizimi parçası. Başka bir deyişle, bir ifade,
tümü bir değer döndüren sabit değerler, adlar, öznitelik erişimi, işleçler veya işlev çağrıları gibi ifade öğelerinin
bir toplamıdır. Diğer birçok dilin aksine, tüm dil yapıları ifade değildir. Ayrıca while gibi kullanılamayan
ifadeler de vardır. Atamalar da değer döndürmeyen ifadelerdir (statement).

uzatma modülü Çekirdekle ve kullanıcı koduyla etkileşim kurmak için Python’un C API’sini kullanan, C veya C++
ile yazılmış bir modül.

f-string Ön eki 'f' veya 'F' olan dize değişmezleri genellikle “f-strings” olarak adlandırılır; bu, formatted string
literals ‘ın kısaltmasıdır. Ayrıca bkz. PEP 498.

dosya nesnesi Dosya yönelimli bir API’yi (read() veya write() gibi yöntemlerle) temel alınan bir kaynağa
gösteren bir nesne. Oluşturulma şekline bağlı olarak, bir dosya nesnesi gerçek bir disk üzerindeki dosyaya
veya başka bir tür depolama veya iletişim aygıtına (örneğin standart giriş/çıkış, bellek içi arabellekler, yuvalar,
borular vb.) erişime aracılık edebilir. . Dosya nesneleri ayrıca file-like objects veya streams olarak da adlandırılır.

Aslında üç dosya nesnesi kategorisi vardır: ham binary files, arabelleğe alınmış binary files ve text files. Arayüz-
leri io modülünde tanımlanmıştır. Bir dosya nesnesi yaratmanın kurallı yolu open() işlevini kullanmaktır.

122 Ek A. Sözlük

https://www.python.org/dev/peps/pep-0498

The Python Language Reference, Sürüm 3.9.20

dosya benzeri nesne dosya nesnesi ile eşanlamlıdır.

bulucu İçe aktarılmakta olan bir modül için loader ‘ı bulmaya çalışan bir nesne.

Python 3.3’ten beri, iki çeşit bulucu vardır: sys.meta_path ile kullanılmak üzere meta yol bulucular, ve
sys.path_hooks ile kullanılmak üzere yol girişi bulucular.

Daha fazla ayrıntı için PEP 302, PEP 420 ve PEP 451 bakın.

kat bölümü En yakın tam sayıya yuvarlayan matematiksel bölme. Kat bölme operatörü // şeklindedir. Örneğin,
11 // 4 ifadesi, gerçek yüzer bölme tarafından döndürülen 2.75 değerinin aksine 2 olarak değerlendirilir.
(-11) // 4 ‘ün -3 olduğuna dikkat edin, çünkü bu -2.75 yuvarlatılmış aşağı. Bakınız PEP 238.

fonksiyon Bir arayana bir değer döndüren bir dizi ifade. Ayrıca, gövdenin yürütülmesinde kullanılabilen sıfır veya
daha fazla argüman iletilebilir. Ayrıca parameter, method ve Function definitions bölümüne bakın.

fonksiyon açıklaması Bir işlev parametresinin veya dönüş değerinin ek açıklaması.

İşlev ek açıklamaları genellikle type hints için kullanılır: örneğin, bu fonksiyonun iki int argüman alması ve
ayrıca bir int dönüş değerine sahip olması beklenir

def sum_two_numbers(a: int, b: int) -> int:
return a + b

İşlev açıklama sözdizimi Function definitions bölümünde açıklanmaktadır.

See variable annotation and PEP 484, which describe this functionality.

__future__ Bir future ifadesi, from __future__ import <feature>, derleyiciyi, Python’un gelecekteki
bir sürümünde standart hale gelecek olan sözdizimini veya semantiği kullanarak mevcut modülü derlemeye
yönlendirir. __future__ modülü, feature’ın olası değerlerini belgeler. Bu modülü içe aktararak ve değiş-
kenlerini değerlendirerek, dile ilk kez yeni bir özelliğin ne zaman eklendiğini ve ne zaman varsayılan olacağını
(ya da yaptığını) görebilirsiniz:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

çöp toplama Artık kullanılmadığında belleği boşaltma işlemi. Python, referans sayımı ve referans döngülerini al-
gılayıp kırabilen bir döngüsel çöp toplayıcı aracılığıyla çöp toplama gerçekleştirir. Çöp toplayıcı gc modülü
kullanılarak kontrol edilebilir.

jeneratör Bir generator iterator döndüren bir işlev. Bir for döngüsünde kullanılabilen bir dizi değer üretmek için
yield ifadeleri içermesi veya next() işleviyle birer birer alınabilmesi dışında normal bir işleve benziyor.

Genellikle bir üretici işlevine atıfta bulunur, ancak bazı bağlamlarda bir jeneratör yineleyicisine atıfta buluna-
bilir. Amaçlanan anlamın net olmadığı durumlarda, tam terimlerin kullanılması belirsizliği önler.

jeneratör yineleyici Bir generator işlevi tarafından oluşturulan bir nesne.

Heryield, konum yürütme durumunu hatırlayarak (yerel değişkenler ve bekleyen try ifadeleri dahil) işlemeyi
geçici olarak askıya alır. jeneratör yineleyici devam ettiğinde, kaldığı yerden devam eder (her çağrıda yeniden
başlayan işlevlerin aksine).

jeneratör ifadesi Yineleyici döndüren bir ifade. Bir döngü değişkenini, aralığı ve isteğe bağlı bir if yan tümcesini
tanımlayan bir for yan tümcesinin takip ettiği normal bir ifadeye benziyor. Birleştirilmiş ifade, bir çevreleyen
için değerler üretir:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

genel işlev Farklı türler için aynı işlemi uygulayan birden çok işlevden oluşan bir işlev. Bir çağrı sırasında hangi
uygulamanın kullanılması gerektiği, gönderme algoritması tarafından belirlenir.

Ayrıca single dispatch sözlük girdisine, functools.singledispatch() dekoratörüne ve PEP 443 ‘e
bakın.

123

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0443

The Python Language Reference, Sürüm 3.9.20

genel tip Parametrelendirilebilen bir type; tipik olarak bir konteyner sınıfı, örneğin list veya dict. type hint ve
annotation için kullanılır.

Daha fazla ayrıntı için generic allias types, PEP 483, PEP 484, PEP 585 ve typing modülüne bakın.

GIL Bakınız global interpreter lock.

genel tercüman kilidi CPython yorumlayıcısı tarafından aynı anda yalnızca bir iş parçacığının Python bytecode ‘u
yürütmesini sağlamak için kullanılan mekanizma. Bu, nesne modelini (dict gibi kritik yerleşik türler da-
hil) eşzamanlı erişime karşı örtük olarak güvenli hale getirerek CPython uygulamasını basitleştirir. Tüm yo-
rumlayıcıyı kilitlemek, çok işlemcili makinelerin sağladığı paralelliğin çoğu pahasına, yorumlayıcının çok iş
parçacıklı olmasını kolaylaştırır.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.

“Serbest iş parçacıklı” bir yorumlayıcı (paylaşılan verileri çok daha ince bir ayrıntı düzeyinde kilitleyen) oluş-
turma çabaları, ortak tek işlemcili durumda performans düştüğü için başarılı olmamıştır. Bu performans soru-
nunun üstesinden gelinmesinin uygulamayı çok daha karmaşık hale getireceğine ve dolayısıyla bakımını daha
maliyetli hale getireceğine inanılmaktadır.

karma tabanlı pyc Geçerliliğini belirlemek için ilgili kaynak dosyanın son değiştirilme zamanı yerine karma değe-
rini kullanan bir bayt kodu önbellek dosyası. Bakınız Cached bytecode invalidation.

yıkanabilir Bir nesne, ömrü boyunca asla değişmeyen bir karma değere sahipse (bir __hash__() yöntemine
ihtiyaç duyar) ve diğer nesnelerle karşılaştırılabilirse (bir __eq__() yöntemine ihtiyaç duyar) hashable olur.
. Eşit karşılaştıran Hashable nesneleri aynı karma değerine sahip olmalıdır.

Hashability, bir nesneyi bir sözlük anahtarı ve bir set üyesi olarak kullanılabilir hale getirir, çünkü bu veri
yapıları hash değerini dahili olarak kullanır.

Python’un değişmez yerleşik nesnelerinin çoğu, yıkanabilir; değiştirilebilir kaplar (listeler veya sözlükler gibi)
değildir; değişmez kaplar (tüpler ve donmuş kümeler gibi) yalnızca öğelerinin yıkanabilir olması durumunda
yıkanabilirdir. Kullanıcı tanımlı sınıfların örnekleri olan nesneler varsayılan olarak hash edilebilirdir. Hepsi
eşit olmayanı karşılaştırır (kendileriyle hariç) ve hash değerleri id() ‘lerinden türetilir.

BOŞTA An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python.

değişmez Sabit değeri olan bir nesne. Değişmez nesneler arasında sayılar, dizeler ve demetler bulunur. Böyle bir
nesne değiştirilemez. Farklı bir değerin saklanması gerekiyorsa yeni bir nesne oluşturulmalıdır. Örneğin bir
sözlükte anahtar olarak, sabit bir karma değerinin gerekli olduğu yerlerde önemli bir rol oynarlar.

içe aktarım yolu İçe aktarılacak modüller için path based finder tarafından aranan konumların (veya path entries)
listesi. İçe aktarma sırasında, bu konum listesi genellikle sys.path adresinden gelir, ancak alt paketler için
üst paketin __path__ özelliğinden de gelebilir.

içe aktarma Bir modüldeki Python kodunun başka bir modüldeki Python koduna sunulması süreci.

içe aktarıcı Bir modülü hem bulan hem de yükleyen bir nesne; hem bir finder hem de loader nesnesi.

etkileşimli Python’un etkileşimli bir yorumlayıcısı vardır; bu, yorumlayıcı isteminde ifadeler ve ifadeler girebilece-
ğiniz, bunları hemen çalıştırabileceğiniz ve sonuçlarını görebileceğiniz anlamına gelir. Herhangi bir argüman
olmadan python ‘u başlatmanız yeterlidir (muhtemelen bilgisayarınızın ana menüsünden seçerek). Yeni fi-
kirleri test etmenin veya modülleri ve paketleri incelemenin çok güçlü bir yoludur (help(x) ‘i unutmayın).

yorumlanmış Python, derlenmiş bir dilin aksine yorumlanmış bir dildir, ancak bayt kodu derleyicisinin varlığı
nedeniyle ayrım bulanık olabilir. Bu, kaynak dosyaların daha sonra çalıştırılacak bir yürütülebilir dosya oluş-
turmadan doğrudan çalıştırılabileceği anlamına gelir. Yorumlanan diller genellikle derlenmiş dillerden daha
kısa bir geliştirme/hata ayıklama döngüsüne sahiptir, ancak programları genellikle daha yavaş çalışır. Ayrıca
bkz. interactive.

tercüman kapatma Kapatılması istendiğinde, Python yorumlayıcısı, modüller ve çeşitli kritik iç yapılar gibi tahsis
edilen tüm kaynakları kademeli olarak serbest bıraktığı özel bir aşamaya girer. Ayrıca garbage collector için

124 Ek A. Sözlük

https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

The Python Language Reference, Sürüm 3.9.20

birkaç çağrı yapar. Bu, kullanıcı tanımlı yıkıcılarda veya zayıf referans geri aramalarında kodun yürütülmesi-
ni tetikleyebilir. Kapatma aşamasında yürütülen kod, dayandığı kaynaklar artık çalışmayabileceğinden çeşitli
istisnalarla karşılaşabilir (yaygın örnekler kitaplık modülleri veya uyarı makineleridir).

Yorumlayıcının kapatılmasının ana nedeni,__main__modülünün veya çalıştırılan betiğin yürütmeyi bitirmiş
olmasıdır.

yinelenebilir Üyelerini teker teker döndürebilen bir nesne. Yineleme örnekleri, tüm dizi türlerini (list, str, and
tuple gibi) ve dict, dosya objeleri gibi bazı dizi olmayan türleri ve bir __iter__() yöntemiyle veya dizi
semantiğini uygulayan bir __getitem__() yöntemiyle tanımladığınız tüm sınıfların nesnelerini içerir.

Yinelenebilirler bir for döngüsünde ve bir dizinin gerekli olduğu diğer birçok yerde kullanılabilir (zip(),
map(), …). Yerleşik iter() işlevine argüman olarak yinelenebilir bir nesne iletildiğinde, nesne için bir
yineleyici döndürür. Bu yineleyici, değerler kümesi üzerinden bir geçiş için iyidir. Yinelenebilirleri kullanırken,
genellikle iter() çağırmanız veya yineleyici nesnelerle kendiniz ilgilenmeniz gerekmez. for ifadesi bunu
sizin için otomatik olarak yapar ve yineleyiciyi döngü süresince tutmak için geçici bir adsız değişken oluşturur.
Ayrıca bkz. iterator, sequence ve generator.

yineleyici Bir veri akışını temsil eden bir nesne. Yineleyicinin __next__() yöntemine (veya yerleşik next() iş-
levine iletilmesi) yinelenen çağrılar, akıştaki ardışık öğeleri döndürür. Daha fazla veri bulunmadığında, bunun
yerine bir StopIteration istisnası oluşturulur. Bu noktada, yineleyici nesnesi tükenir ve __next__()
yöntemine yapılan diğer çağrılar yalnızca StopIteration öğesini yeniden yükseltir. Yineleyicilerin, yi-
neleyici nesnesinin kendisini döndüren bir __iter__() yöntemine sahip olmaları gerekir, böylece her yi-
neleyici de yinelenebilir ve diğer yinelenebilirlerin kabul edildiği çoğu yerde kullanılabilir. Dikkate değer bir
istisna, birden çok yineleme geçişini deneyen koddur. Bir kapsayıcı nesnesi (örneğin bir list), onu iter()
işlevine her ilettiğinizde veya onu bir for döngüsünde kullandığınızda yeni bir yineleyici üretir. Bunu bir
yineleyiciyle denemek, önceki yineleme geçişinde kullanılan aynı tükenmiş yineleyici nesnesini döndürerek
boş bir kap gibi görünmesini sağlar.

Daha fazla bilgi typeiter içinde bulunabilir.

anahtar işlev Anahtar işlevi veya harmanlama işlevi, sıralama veya sıralama için kullanılan bir değeri döndüren bir
çağrılabilir. Örneğin,locale.strxfrm(), yerel ayara özgü sıralama kurallarının farkında olan bir sıralama
anahtarı üretmek için kullanılır.

Python’daki bir dizi araç, öğelerin nasıl sıralandığını veya gruplandırıldığını kontrol etmek için temel iş-
levleri kabul eder. Bunlar min(), max(), sorted(), list.sort(), heapq.merge(), heapq.
nsmallest(), heapq.nlargest() ve itertools.groupby().

Bir tuş işlevi oluşturmanın birkaç yolu vardır. Örneğin. str.lower() yöntemi, büyük/küçük harfe duyarlı
olmayan sıralamalar için bir anahtar işlev işlevi görebilir. Alternatif olarak, lambda r: (r[0], r[2])
gibi bir lambda ifadesinden bir anahtar işlevi oluşturulabilir. Ayrıca, operator modülü üç temel işlev
kurucusu sağlar: attrgetter(), itemgetter() ve methodcaller(). Anahtar işlevlerin nasıl oluş-
turulacağı ve kullanılacağına ilişkin örnekler için Sorting HOW TO bölümüne bakın.

anahtar kelime argümanı Bakınız argument.

lambda İşlev çağrıldığında değerlendirilen tek bir expression ‘dan oluşan anonim bir satır içi işlev. Bir lambda işlevi
oluşturmak için sözdizimi lambda [parametreler]: ifade şeklindedir

LBYL Zıplamadan önce Bak. Bu kodlama stili, arama veya arama yapmadan önce ön koşulları açıkça test eder. Bu
stil, EAFP yaklaşımıyla çelişir ve birçok if ifadesinin varlığı ile karakterize edilir.

Çok iş parçacıklı bir ortamda, LBYL yaklaşımı “bakan” ve “sıçrayan” arasında bir yarış koşulu getirme riskini
taşıyabilir. Örneğin, if key in mapping: return mapping[key] kodu, testten sonra, ancak ara-
madan önce başka bir iş parçacığı eşlemeden key kaldırırsa başarısız olabilir. Bu sorun, kilitlerle veya EAFP
yaklaşımı kullanılarak çözülebilir.

liste Yerleşik bir Python dizi. Adına rağmen, öğelere erişim O(1) olduğundan, diğer dillerdeki bir diziye, bağlantılı
bir listeden daha yakındır.

liste anlama Bir dizideki öğelerin tümünü veya bir kısmını işlemenin ve sonuçları içeren bir liste döndürmenin kom-
pakt bir yolu. sonuç = ['{:#04x}'.format(x) for range(256) if x % 2 == 0], dizin-
de çift onaltılık sayılar (0x..) içeren bir diziler listesi oluşturur. 0 ile 255 arasındadır. if yan tümcesi isteğe
bağlıdır. Atlanırsa, “aralık(256)” içindeki tüm öğeler işlenir.

125

The Python Language Reference, Sürüm 3.9.20

yükleyici Modül yükleyen bir nesne. load_module() adında bir yöntem tanımlamalıdır. Bir yükleyici genellikle
bir finder ile döndürülür. Ayrıntılar için PEP 302 ve bir soyut temel sınıf için importlib.abc.Loader
bölümüne bakın.

sihirli yöntem special method için gayri resmi bir eşanlamlı.

haritalama Keyfi anahtar aramalarını destekleyen ve Mapping veya MutableMapping collections-abstract-
base-classes içinde belirtilen yöntemleri uygulayan bir kapsayıcı nesnesi temel sınıflar. Örnekler ara-
sında dict, collections.defaultdict, collections.OrderedDict ve collections.
Counter sayılabilir.

meta yol bulucu Bir finder, sys.meta_path aramasıyla döndürülür. Meta yol bulucular, yol girişi bulucuları ile
ilişkilidir, ancak onlardan farklıdır.

Meta yol bulucuların uyguladığı yöntemler için importlib.abc.MetaPathFinder bölümüne bakın.

metasınıf Bir sınıfın sınıfı. Sınıf tanımları, bir sınıf adı, bir sınıf sözlüğü ve temel sınıfların bir listesini oluşturur.
Metasınıf, bu üç argümanı almaktan ve sınıfı oluşturmaktan sorumludur. Çoğu nesne yönelimli programlama
dili, varsayılan bir uygulama sağlar. Python’u özel yapan şey, özelmetasınıflar oluşturmanınmümkün olmasıdır.
Çoğu kullanıcı bu araca hiçbir zaman ihtiyaç duymaz, ancak ihtiyaç duyulduğunda, metasınıflar güçlü ve zarif
çözümler sağlayabilir. Nitelik erişimini günlüğe kaydetmek, iş parçacığı güvenliği eklemek, nesne oluşturmayı
izlemek, tekilleri uygulamak ve diğer birçok görev için kullanılmışlardır.

Daha fazla bilgi Metaclasses içinde bulunabilir.

metot Bir sınıf gövdesi içinde tanımlanan bir işlev. Bu sınıfın bir örneğinin özniteliği olarak çağrılırsa, yöntem örnek
nesnesini ilk argument (genellikle self olarak adlandırılır) olarak alır. Bkz. function ve nested scope.

metot kalite sıralaması Metot Çözüm Sırası, arama sırasında bir üye için temel sınıfların arandığı sıradır. 2.3 sü-
rümünden bu yana Python yorumlayıcısı tarafından kullanılan algoritmanın ayrıntıları için bkz. The Python
2.3 Method Resolution Order

modül Python kodunun kuruluş birimi olarak hizmet eden bir nesne. Modüller, rastgele Python nesneleri içeren bir
ad alanına sahiptir. Modüller, importing işlemiyle Python’a yüklenir.

Ayrıca bakınız package.

modül özelliği Bir modülü yüklemek için kullanılan içe aktarmayla ilgili bilgileri içeren bir ad alanı. Bir
importlib.machinery.ModuleSpec örneği.

MRO Bakınız metot çözüm sırası.

değiştirilebilir Değiştirilebilir (mutable) nesneler değerlerini değiştirebilir ancak idlerini koruyabilirler. Ayrıca
bkz. immutable.

adlandırılmış demet “named tuple” terimi, demetten miras alan ve dizinlenebilir öğelerine de adlandırılmış nite-
likler kullanılarak erişilebilen herhangi bir tür veya sınıf için geçerlidir. Tür veya sınıfın başka özellikleri de
olabilir.

Çeşitli yerleşik türler,time.localtime() veos.stat() tarafından döndürülen değerler de dahil olmak
üzere, tanımlama grupları olarak adlandırılır. Başka bir örnek sys.float_info:

>>> sys.float_info[1] # indexed access
1024
>>> sys.float_info.max_exp # named field access
1024
>>> isinstance(sys.float_info, tuple) # kind of tuple
True

Bazı adlandırılmış demetler yerleşik türlerdir (yukarıdaki örnekler gibi). Alternatif olarak, tuple öğesinden
miras alan ve adlandırılmış alanları tanımlayan normal bir sınıf tanımından adlandırılmış bir tanımlama grubu
oluşturulabilir. Böyle bir sınıf elle yazılabilir veya fabrika işlevi collections.namedtuple() ile oluş-
turulabilir. İkinci teknik ayrıca elle yazılmış veya yerleşik adlandırılmış demetlerde bulunmayan bazı ekstra
yöntemler ekler.

ad alanı Değişkenin saklandığı yer. Ad alanları sözlükler olarak uygulanır. Nesnelerde (yöntemlerde) yerel, genel
ve yerleşik ad alanlarının yanı sıra iç içe ad alanları vardır. Ad alanları, adlandırma çakışmalarını önleyerek

126 Ek A. Sözlük

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Sürüm 3.9.20

modülerliği destekler. Örneğin, builtins.open ve os.open() işlevleri ad alanlarıyla ayırt edilir. Ad
alanları, hangi modülün bir işlevi uyguladığını açıkça belirterek okunabilirliğe ve sürdürülebilirliğe de yardımcı
olur. Örneğin, random.seed() veya itertools.islice() yazmak, bu işlevlerin sırasıyla random
ve itertools modülleri tarafından uygulandığını açıkça gösterir.

ad alanı paketi A PEP 420 package, yalnızca alt paketler için bir kap olarak hizmet eder. Ad alanı paketlerinin
hiçbir fiziksel temsili olmayabilir ve __init__.py dosyası olmadığından özellikle regular package gibi
değildirler.

Ayrıca bkz. module.

iç içe kapsam Kapsamlı bir tanımdaki bir değişkene atıfta bulunma yeteneği. Örneğin, başka bir fonksiyonun içinde
tanımlanan bir fonksiyon, dış fonksiyondaki değişkenlere atıfta bulunabilir. İç içe kapsamların varsayılan olarak
yalnızca başvuru için çalıştığını ve atama için çalışmadığını unutmayın. Yerel değişkenler en içteki kapsamda
hem okur hem de yazar. Benzer şekilde, global değişkenler global ad alanını okur ve yazar. nonlocal, dış
kapsamlara yazmaya izin verir.

yeni stil sınıf Artık tüm sınıf nesneleri için kullanılan sınıfların lezzetinin eski adı. Önceki Python sürümlerinde,
yalnızca yeni stil sınıfları Python’un __slots__, tanımlayıcılar, özellikler, __getattribute__(), sınıf
yöntemleri ve statik yöntemler gibi daha yeni, çok yönlü özelliklerini kullanabilirdi.

obje Durum (öznitelikler veya değer) ve tanımlanmış davranış (yöntemler) içeren herhangi bir veri. Ayrıca herhangi
bir yeni tarz sınıfın nihai temel sınıfı.

paket A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with an __path__ attribute.

Ayrıca bkz. regular package ve namespace package.

parametre Bir function (veya yöntem) tanımında, işlevin kabul edebileceği bir argument (veya bazı durumlarda,
argümanlar) belirten adlandırılmış bir varlık. Beş çeşit parametre vardır:

• positional-or-keyword: pozisyonel veya bir keyword argümanı olarak iletilebilen bir argüman belirtir. Bu,
varsayılan parametre türüdür, örneğin aşağıdakilerde foo ve bar:

def func(foo, bar=None): ...

• positional-only: yalnızca konuma göre sağlanabilen bir argüman belirtir. Yalnızca konumsal parametreler,
onlardan sonra fonksiyon tanımının parametre listesine bir / karakteri eklenerek tanımlanabilir, örneğin
aşağıdakilerde posonly1 ve posonly2:

def func(posonly1, posonly2, /, positional_or_keyword): ...

• keyword-only: sadece anahtar kelime ile sağlanabilen bir argüman belirtir. Yalnızca anahtar kelime
(keyword-only) parametreleri, onlardan önceki fonksiyon tanımının parametre listesine tek bir değiş-
ken konumlu parametre veya çıplak * dahil edilerek tanımlanabilir, örneğin aşağıdakilerde kw_only1 ve
kw_only2:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: keyfi bir pozisyonel argüman dizisinin sağlanabileceğini belirtir (diğer parametreler tara-
fından zaten kabul edilmiş herhangi bir konumsal argümana ek olarak). Böyle bir parametre, parametre
adının başına * eklenerek tanımlanabilir, örneğin aşağıdakilerde args:

def func(*args, **kwargs): ...

• var-keyword: keyfi olarak birçok anahtar kelime argümanının sağlanabileceğini belirtir (diğer parametre-
ler tarafından zaten kabul edilen herhangi bir anahtar kelime argümanına ek olarak). Böyle bir parametre,
parametre adının başına **, örneğin yukarıdaki örnekte kwargs eklenerek tanımlanabilir.

Parametreler, hem isteğe bağlı hem de gerekli argümanleri ve ayrıca bazı isteğe bağlı bağımsız değişkenler için
varsayılan değerleri belirtebilir.

Ayrıca bkz. argüman, argümanlar ve parametreler arasındaki fark, inspect.Parameter, Function defi-
nitions ve PEP 362.

127

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0362

The Python Language Reference, Sürüm 3.9.20

yol girişi path based finder içe aktarma modüllerini bulmak için başvurduğu import path üzerindeki tek bir konum.

yol girişi bulucu Bir finder sys.path_hooks (yani bir yol giriş kancası) üzerinde bir çağrılabilir tarafından
döndürülür ve path entry verilen modüllerin nasıl bulunacağını bilir.

Yol girişi bulucularının uyguladığı yöntemler için importlib.abc.PathEntryFinder bölümüne ba-
kın.

yol giriş kancası sys.path_hook listesinde, belirli bir yol girişindekimodülleri nasıl bulacağını biliyorsa, bir yol
girişi bulucu döndüren bir çağrılabilir.

yol tabanlı bulucu Modüller için bir import path arayan varsayılan meta yol buluculardan biri.

yol benzeri nesne Bir dosya sistemi yolunu temsil eden bir nesne. Yol benzeri bir nesne, bir yolu temsil eden bir
str veya bytes nesnesi veya os.PathLike protokolünü uygulayan bir nesnedir. os.PathLike pro-
tokolünü destekleyen bir nesne, os.fspath() işlevi çağrılarak bir str veya bytes dosya sistemi yoluna
dönüştürülebilir; os.fsdecode() ve os.fsencode(), bunun yerine sırasıyla str veya bytes sonu-
cunu garanti etmek için kullanılabilir. PEP 519 tarafından tanıtıldı.

PEP Python Geliştirme Önerisi. PEP, Python topluluğuna bilgi sağlayan veya Python veya süreçleri ya da ortamı
için yeni bir özelliği açıklayan bir tasarım belgesidir. PEP’ler, önerilen özellikler için özlü bir teknik şartname
ve bir gerekçe sağlamalıdır.

PEP’lerin, önemli yeni özellikler önermek, bir sorun hakkında topluluk girdisi toplamak ve Python’a giren
tasarım kararlarını belgelemek için birincil mekanizmalar olması amaçlanmıştır. PEP yazarı, topluluk içinde
fikir birliği oluşturmaktan ve muhalif görüşleri belgelemekten sorumludur.

Bakınız PEP 1.

kısım PEP 420 içinde tanımlandığı gibi, bir ad alanı paketine katkıda bulunan tek bir dizindeki (muhtemelen bir
zip dosyasında depolanan) bir dizi dosya.

konumsal argüman Bakınız argument.

geçici API Geçici bir API, standart kitaplığın geriye dönük uyumluluk garantilerinden kasıtlı olarak hariç tutulan bir
API’dir. Bu tür arayüzlerde büyük değişiklikler beklenmese de, geçici olarak işaretlendikleri sürece, çekirdek
geliştiriciler tarafından gerekli görüldüğü takdirde geriye dönük uyumsuz değişiklikler (arayüzün kaldırılma-
sına kadar ve buna kadar) meydana gelebilir. Bu tür değişiklikler karşılıksız yapılmayacaktır - bunlar yalnızca
API’nin eklenmesinden önce gözden kaçan ciddi temel kusurlar ortaya çıkarsa gerçekleşecektir.

Geçici API’ler için bile, geriye dönük uyumsuz değişiklikler “son çare çözümü” olarak görülür - tanımlanan
herhangi bir soruna geriye dönük uyumlu bir çözüm bulmak için her türlü girişimde bulunulacaktır.

Bu süreç, standart kitaplığın, uzun süreler boyunca sorunlu tasarım hatalarına kilitlenmeden zaman içinde
gelişmeye devam etmesini sağlar. Daha fazla ayrıntı için bkz. PEP 411.

geçici paket Bakınız provisional API.

Python 3000 Python 3.x sürüm satırının takma adı (uzun zaman önce sürüm 3’ün piyasaya sürülmesi uzak bir ge-
lecekte olduğu zaman ortaya çıktı.) Bu aynı zamanda “Py3k” olarak da kısaltılır.

Pythonic Diğer dillerde ortak kavramları kullanarak kod uygulamak yerine Python dilinin en yaygın deyimlerini
yakından takip eden bir fikir veya kod parçası. Örneğin, Python’da yaygın bir deyim, bir for ifadesi kullanarak
yinelenebilir bir öğenin tüm öğeleri üzerinde döngü oluşturmaktır. Diğer birçok dilde bu tür bir yapı yoktur,
bu nedenle Python’a aşina olmayan kişiler bazen bunun yerine sayısal bir sayaç kullanır:

for i in range(len(food)):
print(food[i])

Temizleyicinin aksine, Pythonic yöntemi:

for piece in food:
print(piece)

nitelikli isim PEP 3155 içinde tanımlandığı gibi, bir modülün genel kapsamından o modülde tanımlanan bir sınıfa,
işleve veya yönteme giden “yolu” gösteren noktalı ad. Üst düzey işlevler ve sınıflar için nitelikli ad, nesnenin
adıyla aynıdır:

128 Ek A. Sözlük

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

The Python Language Reference, Sürüm 3.9.20

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

Modüllere atıfta bulunmak için kullanıldığında, tam nitelenmiş ad, herhangi bir üst paket de dahil olmak üzere,
modüle giden tüm noktalı yol anlamına gelir, örn. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

referans sayısı Bir nesneye yapılan başvuruların sayısı. Bir nesnenin referans sayısı sıfıra düştüğünde, yerinden
çıkarılır. Referans sayımı genellikle Python kodunda görülmez, ancak CPython uygulamasının önemli bir öğe-
sidir. sys modülü, programcıların belirli bir nesne için referans sayısını döndürmek üzere çağırabilecekleri
bir getrefcount() işlevini tanımlar.

sürekli paketleme __init__.py dosyası içeren bir dizin gibi geleneksel bir package.

Ayrıca bkz. ad alanı paketi.

__slots__ Örnek öznitelikleri için önceden yer bildirerek ve örnek sözlüklerini ortadan kaldırarak bellekten tasarruf
sağlayan bir sınıf içindeki bildirim. Popüler olmasına rağmen, tekniğin doğru olması biraz zor ve en iyi, bellek
açısından kritik bir uygulamada çok sayıda örneğin bulunduğu nadir durumlar için ayrılmıştır.

dizi __getitem__() özel yöntemi aracılığıyla tamsayı dizinlerini kullanarak verimli öğe erişimini destekleyen
ve dizinin uzunluğunu döndüren bir __len__() yöntemini tanımlayan bir iterable. Bazı yerleşik dizi türleri
şunlardır: list, str, tuple ve bytes. dict ayrıca __getitem__() ve __len__() ‘i de destekle-
diğine dikkat edin, ancak aramalar tamsayılar yerine rastgele immutable anahtarları kullandığından bir diziden
ziyade bir eşleme olarak kabul edilir.

collections.abc.Sequence soyut temel sınıfı;, count(), index(), __contains__(), ve
__reversed__() ekleyerek sadece __getitem__() ve __len__() ‘in ötesine geçen çok daha zengin
bir arayüzü tanımlar. Bu genişletilmiş arabirimi uygulayan türler, register() kullanılarak açıkça kayde-
dilebilir.

anlamak Öğelerin tümünü veya bir kısmını yinelenebilir bir şekilde işlemenin ve sonuçlarla birlikte bir kü-
me döndürmenin kompakt bir yolu. results = {c for c in 'abracadabra' if c not in
'abc'}, {'r', 'd'} dizelerini oluşturur. Bakınız Displays for lists, sets and dictionaries.

tek sevk Uygulamanın tek bir argüman türüne göre seçildiği bir generic function gönderimi biçimi.

parçalamak Genellikle bir sequence ‘nin bir bölümünü içeren bir nesne. Bir dilim, örneğin
variable_name[1:3:5] ‘de olduğu gibi, birkaç tane verildiğinde, sayılar arasında iki nokta üst
üste koyarak, [] alt simge gösterimi kullanılarak oluşturulur. Köşeli ayraç (alt simge) gösterimi, dahili olarak
slice nesnelerini kullanır.

özel metod Toplama gibi bir tür üzerinde belirli bir işlemi yürütmek için Python tarafından örtük olarak çağrılan
bir yöntem. Bu tür yöntemlerin çift alt çizgi ile başlayan ve biten adları vardır. Özel yöntemler Special method
names içinde belgelenmiştir.

ifade (değer döndürmez) Bir ifade, bir paketin parçasıdır (kod “bloğu”). Bir ifade, bir expression veya if, while
veya for gibi bir anahtar kelimeye sahip birkaç yapıdan biridir.

yazı çözümleme Python’da bir dize, bir Unicode kod noktaları dizisidir (U+0000–U+10FFFF aralığında). Bir di-
zeyi depolamak veya aktarmak için, bir bayt dizisi olarak seri hale getirilmesi gerekir.

129

The Python Language Reference, Sürüm 3.9.20

Bir dizeyi bir bayt dizisi halinde seri hale getirmek “kodlama (encoding)” olarak bilinir ve dizeyi bayt dizisinden
yeniden oluşturmak “kod çözme (decoding)” olarak bilinir.

Toplu olarak “metin kodlamaları” olarak adlandırılan çeşitli farklı metin serileştirme kodekleri vardır.

yazı dosyası A file object str nesnelerini okuyabilir ve yazabilir. Çoğu zaman, bir metin dosyası aslında bir bayt yö-
nelimli veri akışına erişir ve otomatik olarak text encoding işler. Metin dosyalarına örnek olarakmetin modunda
açılan dosyalar ('r' veya 'w'), sys.stdin, sys.stdout ve io.StringIO örnekleri verilebilir.

Ayrıca ikili dosyaları okuyabilen ve yazabilen bir dosya nesnesi için bayt benzeri nesnelere bakın.

üç tırnaklı dize Üç tırnak işareti (”) veya kesme işareti (’) ile sınırlanan bir dize. Tek tırnaklı dizelerde bulunmayan
herhangi bir işlevsellik sağlamasalar da, birkaç nedenden dolayı faydalıdırlar. bir dizeye çıkışsız tek ve çift
tırnak eklemeniz gerekir ve bunlar, devam karakterini kullanmadan birden çok satıra yayılabilir, bu da onları
özellikle belge dizileri yazarken kullanışlı hale getirir.

tip Bir Python nesnesinin türü, onun ne tür bir nesne olduğunu belirler; her nesnenin bir türü vardır. Bir nesnenin
tipine __class__ niteliği ile erişilebilir veya type(obj) ile alınabilir.

tip takma adı Bir tanımlayıcıya tür atanarak oluşturulan, bir tür için eş anlamlı.

Tür takma adları, tür ipuçlarını basitleştirmek için kullanışlıdır. Örneğin:

def remove_gray_shades(
colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:

pass

bu şekilde daha okunaklı hale getirilebilir:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:
pass

Bu işlevi açıklayan typing ve PEP 484 bölümlerine bakın.

tür ipucu Bir değişken, bir sınıf niteliği veya bir işlev parametresi veya dönüş değeri için beklenen türü belirten bir
ek açıklama.

Tür ipuçları isteğe bağlıdır ve Python tarafından uygulanmaz, ancak bunlar statik tip analiz araçları için fay-
dalıdır ve kod tamamlama ve yeniden düzenleme ile IDE’lere yardımcı olur.

Genel değişkenlerin, sınıf özniteliklerinin ve işlevlerin tür ipuçlarına, yerel değişkenlere değil, typing.
get_type_hints() kullanılarak erişilebilir.

Bu işlevi açıklayan typing ve PEP 484 bölümlerine bakın.

evrensel yeni satırlar Aşağıdakilerin tümünün bir satırın bitişi olarak kabul edildiği metin akışlarını yorumlama-
nın bir yolu: Unix satır sonu kuralı \n', Windows kuralı `\r\n', ve eski Macintosh kuralı '\r'. Ek bir
kullanım için PEP 278 ve PEP 3116 ve ayrıca bytes.splitlines() bakın.

değişken açıklama Bir değişkenin veya bir sınıf özniteliğinin ek açıklaması.

Bir değişkene veya sınıf niteliğine açıklama eklerken atama isteğe bağlıdır:

class C:
field: 'annotation'

Değişken açıklamaları genellikle tür ipuçları için kullanılır: örneğin, bu değişkenin int değerlerini alması
beklenir:

count: int = 0

Değişken açıklama sözdizimi Annotated assignment statements bölümünde açıklanmıştır.

See function annotation, PEP 484 and PEP 526, which describe this functionality.

130 Ek A. Sözlük

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python Language Reference, Sürüm 3.9.20

sanal ortam Python kullanıcılarının ve uygulamalarının, aynı sistem üzerinde çalışan diğer Python uygulamalarının
davranışınamüdahale etmeden Python dağıtım paketlerini kurmasına ve yükseltmesine olanak tanıyan, işbirliği
içinde yalıtılmış bir çalışma zamanı ortamı.

Ayrıca bakınız venv.

sanal makine Tamamen yazılımla tanımlanmış bir bilgisayar. Python’un sanal makinesi, bayt kodu derleyicisi ta-
rafından yayınlanan bytecode ‘u çalıştırır.

Python’un Zen’i Dili anlamaya ve kullanmaya yardımcı olan Python tasarım ilkeleri ve felsefelerinin listesi. Liste,
etkileşimli komut isteminde “import this” yazarak bulunabilir.

131

The Python Language Reference, Sürüm 3.9.20

132 Ek A. Sözlük

EKB

Dokümanlar hakkında

Bu dokümanlar, Python dokümanları için özel olarak yazılmış bir doküman işlemcisi olan Sphinx tarafından reSt-
ructuredText kaynaklarından oluşturulur.

Dokümantasyonun ve araç zincirinin geliştirilmesi, tıpkı Python’un kendisi gibi tamamen gönüllü bir çabadır. Katkıda
bulunmak istiyorsanız, nasıl yapacağınıza ilişkin bilgi için lütfen reporting-bugs sayfasına göz atın. Yeni gönüllülere
her zaman açığız!

Destekleri için teşekkürler:

• Fred L. Drake, Jr., orijinal Python dokümantasyon araç setinin yaratıcısı ve içeriğin çoğunun yazarı;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Python Dokümantasyonuna Katkıda Bulunanlar

Birçok kişi Python diline, Python standart kütüphanesine ve Python belgelerine katkıda bulunmuştur. Katkıda bulu-
nanların kısmi listesi için Python kaynak dağıtımında Misc/ACKS adresine bakın.

Python topluluğunun girdileri ve katkılarıyla Python böyle harika bir dokümantasyona sahip – Teşekkürler!

133

http://sphinx-doc.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/
https://github.com/python/cpython/tree/3.9/Misc/ACKS

The Python Language Reference, Sürüm 3.9.20

134 Ek B. Dokümanlar hakkında

EKC

Tarihçe ve Lisans

C.1 Yazılımın tarihçesi

Python, 1990’ların başında Guido van Rossum tarafından Hollanda’da Stichting Mathematisch Centrum’da (CWI,
bkz. https://www.cwi.nl/) ABC adlı bir dilin devamı olarak oluşturuldu. Guido, diğerlerinin oldukça katkısı olmasına
rağmen, Python’un ana yazarı olmaya devam ediyor.

1995’te Guido, yazılımın çeşitli sürümlerini yayınladığı Virginia, Reston’daki Ulusal Araştırma Girişimleri Kuru-
mu’nda (CNRI, bkz. https://www.cnri.reston.va.us/) Python üzerindeki çalışmalarına devam etti.

Mayıs 2000’de, Guido ve Python çekirdek geliştirme ekibi, BeOpen PythonLabs ekibini oluşturmak için Be-
Open.com’a taşındı. Aynı yılın Ekim ayında PythonLabs ekibi Digital Creations’a (şimdi Zope Corporation; bkz.
https://www.zope.org/) taşındı. 2001 yılında, Python Yazılım Vakfı (PSF, bkz. https://www.python.org/psf/) kurul-
du, özellikle Python ile ilgili Fikri Mülkiyete sahip olmak için oluşturulmuş kar amacı gütmeyen bir organizasyon.
Zope Corporation, PSF’nin sponsor üyesidir.

Tüm Python sürümleri Açık Kaynaklıdır (Açık Kaynak Tanımı için bkz. https://opensource.org/). Tarihsel olarak,
tümü olmasa da çoğu Python sürümleri de GPL uyumluydu; aşağıdaki tablo çeşitli yayınları özetlemektedir.

Yayın Şundan türedi: Yıl Sahibi GPL uyumlu mu?
0.9.0’dan 1.2’ye n/a 1991-1995 CWI evet
1.3 ‘dan 1.5.2’ye 1.2 1995-1999 CNRI evet
1.6 1.5.2 2000 CNRI hayır
2.0 1.6 2000 BeOpen.com hayır
1.6.1 1.6 2001 CNRI hayır
2.1 2.0+1.6.1 2001 PSF hayır
2.0.1 2.0+1.6.1 2001 PSF evet
2.1.1 2.1+2.0.1 2001 PSF evet
2.1.2 2.1.1 2002 PSF evet
2.1.3 2.1.2 2002 PSF evet
2.2 ve üzeri 2.1.1 2001-Günümüz PSF evet

Not: GPL uyumlu olması, Python’u GPL kapsamında dağıttığımız anlamına gelmez. Tüm Python lisansları, GPL’den
farklı olarak, değişikliklerinizi açık kaynak yapmadan değiştirilmiş bir sürümü dağıtmanıza izin verir. GPL uyumlu
lisanslar, Python’u GPL kapsamında yayınlanan diğer yazılımlarla birleştirmeyi mümkün kılar; diğerleri yapmaz.

135

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference, Sürüm 3.9.20

Bu yayınları mümkün kılmak için Guido’nun yönetimi altında çalışan birçok gönüllüye teşekkürler.

C.2 Python’a erişmek veya başka bir şekilde kullanmak için şartlar
ve koşullar

Python yazılımı ve belgeleri PSF Lisans Anlaşması kapsamında lisanslanmıştır.

Python 3.8.6’dan başlayarak, belgelerdeki örnekler, tarifler ve diğer kodlar, PSF Lisans Sözleşmesi ve Zero-Clause
BSD license kapsamında çift lisanslıdır.

Python’a dahil edilen bazı yazılımlar farklı lisanslar altındadır. Lisanslar, bu lisansa giren kodla listelenir. Bu lisans-
ların eksik listesi için bkz. Tüzel Yazılımlar için Lisanslar ve Onaylar.

C.2.1 PYTHON İÇİN PSF LİSANS ANLAŞMASI 3.9.20

1. This LICENSE AGREEMENT is between the Python Software Foundation␣
↪→("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise␣
↪→using Python

3.9.20 software in source or binary form and its associated␣
↪→documentation.

2. Subject to the terms and conditions of this License Agreement, PSF␣
↪→hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to␣
↪→reproduce,

analyze, test, perform and/or display publicly, prepare derivative␣
↪→works,

distribute, and otherwise use Python 3.9.20 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's␣

↪→notice of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.9.20 alone or in any derivative␣

↪→version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.9.20 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made␣

↪→to Python
3.9.20.

4. PSF is making Python 3.9.20 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY␣

↪→OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY␣

↪→REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR␣

↪→THAT THE
USE OF PYTHON 3.9.20 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.9.20

136 Ek C. Tarihçe ve Lisans

The Python Language Reference, Sürüm 3.9.20

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A␣
↪→RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.9.20, OR ANY␣
↪→DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material␣
↪→breach of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. ␣
↪→This License

Agreement does not grant permission to use PSF trademarks or trade name␣
↪→in a

trademark sense to endorse or promote products or services of Licensee,␣
↪→or any

third party.

8. By copying, installing or otherwise using Python 3.9.20, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 PYTHON 2.0 İÇİN BEOPEN.COM LİSANS SÖZLEŞMESİ

BEOPEN PYTHON AÇIK KAYNAK LİSANS SÖZLEŞMESİ SÜRÜM 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any

(continues on next page)

C.2. Python’a erişmek veya başka bir şekilde kullanmak için şartlar ve koşullar 137

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 PYTHON 1.6.1 İÇİN CNRI LİSANS ANLAŞMASI

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,

(continues on next page)

138 Ek C. Tarihçe ve Lisans

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 0.9.0 ARASI 1.2 PYTHON İÇİN CWI LİSANS SÖZLEŞMESİ

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 PYTHON 3.9.20 BELGELERİNDEKİ KOD İÇİN SIFIR MADDE BSD LİSANSI

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 Tüzel Yazılımlar için Lisanslar ve Onaylar

Bu bölüm, Python dağıtımına dahil edilmiş üçüncü taraf yazılımlar için tamamlanmamış ancak büyüyen bir lisans
ve onay listesidir.

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 139

The Python Language Reference, Sürüm 3.9.20

C.3.1 Mersenne Twister’ı

_random modülü, http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html adresinden in-
dirilen kodu temel alır. Orijinal koddan kelimesi kelimesine yorumlar aşağıdadır:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Soketler

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

(continues on next page)

140 Ek C. Tarihçe ve Lisans

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.wide.ad.jp/

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asenkron soket hizmetleri

asynchat ve asyncore modülleri aşağıdaki uyarıyı içerir:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Çerez yönetimi

http.cookies modülü aşağıdaki uyarıyı içerir:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written

(continues on next page)

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 141

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Çalıştırma izleme

trace modülü aşağıdaki uyarıyı içerir:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode ve UUdecode fonksiyonları

uu modülü aşağıdaki uyarıyı içerir:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

(continues on next page)

142 Ek C. Tarihçe ve Lisans

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Uzaktan Yordam Çağrıları

xmlrpc.client modülü aşağıdaki uyarıyı içerir:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

test_epoll modülü aşağıdaki uyarıyı içerir:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
(continues on next page)

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 143

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 kqueue seçin

select modülü, kqueue arayüzü için aşağıdaki uyarıyı içerir:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

Python/pyhash.c dosyası, Dan Bernstein’ın SipHash24 algoritmasının Marek Majkowski uygulamasını içerir.
Burada aşağıdaki not yer alır:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(continues on next page)

144 Ek C. Tarihçe ve Lisans

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod ve dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name byDavidM.Gay, currently available from http://www.netlib.org/fp/.
The original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.12 OpenSSL

hashlib, posix, ssl, crypt modülleri, işletim sistemi tarafından sağlanmışsa ek performans için OpenSSL
kütüphanesini kullanır. Ek olarak, Python için Windows ve macOS yükleyicileri, OpenSSL kütüphanelerinin bir
kopyasını içerebilir, bu nedenle buraya OpenSSL lisansının bir kopyasını ekliyoruz:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/* ==
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:

(continues on next page)

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 145

http://www.netlib.org/fp/

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,

(continues on next page)

146 Ek C. Tarihçe ve Lisans

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

C.3.13 expat

pyexpat uzantısı, derleme --with-system-expat şeklinde yapılandırılmadığı sürece, expat kaynaklarının
dahil edildiği bir kopya kullanılarak oluşturulur:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,

(continues on next page)

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 147

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

_ctypes uzantısı, yapı --with-system-libffi olarak yapılandırılmadığı sürece libffi kaynaklarının dahil
edildiği bir kopya kullanılarak oluşturulur:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

zlib uzantısı, sistemde bulunan zlib sürümü derleme için kullanılamayacak kadar eskiyse, zlib kaynaklarının dahil
edildiği bir kopya kullanılarak oluşturulur:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

(continues on next page)

148 Ek C. Tarihçe ve Lisans

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

tracemalloc tarafından kullanılan hash tablosunun uygulanması cfuhash projesine dayanmaktadır:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 149

The Python Language Reference, Sürüm 3.9.20

C.3.17 libmpdec

_decimal modülü, yapı --with-system-libmpdec şeklinde yapılandırılmadığı sürece libmpdec kitaplığı-
nın dahil edildiği bir kopya kullanılarak oluşturulur:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test paketi

test paketindeki C14N 2.0 test paketi (Lib/test/xmltestdata/c14n-20/), https://www.w3.org/TR/
xml-c14n2-testcases/ adresindeki W3C web sitesinden alınmıştır ve 3 maddeli BSD lisansı altında dağıtılmakta-
dır:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

(continues on next page)

150 Ek C. Tarihçe ve Lisans

https://www.w3.org/TR/xml-c14n2-testcases/
https://www.w3.org/TR/xml-c14n2-testcases/

The Python Language Reference, Sürüm 3.9.20

(önceki sayfadan devam)

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 151

The Python Language Reference, Sürüm 3.9.20

152 Ek C. Tarihçe ve Lisans

EKD

Telif Hakkı

Python ve bu dokümantasyon:

Telif Hakkı © 2001-2023 Python Software Foundation. Tüm hakları saklıdır.

Telif Hakkı © 2000 BeOpen.com. Tüm hakları saklıdır.

Telif Hakkı © 1995-2000 Ulusal Araştırma Girişimleri Kurumu. Tüm hakları saklıdır.

Telif Hakkı © 1991-1995 Stichting Mathematisch Centrum. Tüm hakları saklıdır.

Bütün lisans ve izin bilgileri için Tarihçe ve Lisans ‘a göz atın.

153

The Python Language Reference, Sürüm 3.9.20

154 Ek D. Telif Hakkı

Dizin

Non-alphabetical
..., 119

ellipsis literal, 18
'''

string literal, 10
. (dot)

attribute reference, 73
in numeric literal, 14

! (exclamation)
in formatted string literal, 12

- (minus)
binary operator, 78
unary operator, 76

' (single quote)
string literal, 9

" (double quote)
string literal, 9

"""
string literal, 10

(hash)
comment, 6
source encoding declaration, 6

% (percent)
işleç, 77

% =
augmented assignment, 88

& (ampersand)
işleç, 78

& =
augmented assignment, 88

() (parentheses)
call, 74
class definition, 104
function definition, 102
generator expression, 68
in assignment target list, 86
tuple display, 66

* (asterisk)
function definition, 103
import statement, 93
in assignment target list, 86
in expression lists, 83
in function calls, 75

işleç, 77
**

function definition, 103
in dictionary displays, 68
in function calls, 75
işleç, 76

** =
augmented assignment, 88

* =
augmented assignment, 88

+ (plus)
binary operator, 77
unary operator, 76

+ =
augmented assignment, 88

, (comma), 66
argument list, 74
expression list, 67, 68, 83, 89, 104
identifier list, 95
import statement, 92
in dictionary displays, 68
in target list, 86
parameter list, 102
slicing, 74
with statement, 101

/ (slash)
function definition, 103
işleç, 77

//
işleç, 77

// =
augmented assignment, 88

/ =
augmented assignment, 88

0b
integer literal, 14

0o
integer literal, 14

0x
integer literal, 14

2to3, 119
: (colon)

annotated variable, 88
compound statement, 98, 99, 101, 102, 104

155

The Python Language Reference, Sürüm 3.9.20

function annotations, 103
in dictionary expressions, 68
in formatted string literal, 12
lambda expression, 82
slicing, 74

; (semicolon), 97
< (less)

işleç, 78
<<

işleç, 78
<< =

augmented assignment, 88
< =

işleç, 78
!=

işleç, 78
-=

augmented assignment, 88
= (equals)

assignment statement, 86
class definition, 34
for help in debugging using

string literals, 12
function definition, 103
in function calls, 74

==
işleç, 78

->
function annotations, 103

> (greater)
işleç, 78

> =
işleç, 78

>>
işleç, 78

>> =
augmented assignment, 88

>>>, 119
@ (at)

class definition, 104
function definition, 102
işleç, 77

[] (square brackets)
in assignment target list, 86
list expression, 67
subscription, 73

\ (backslash)
escape sequence, 10

\\
escape sequence, 10

\a
escape sequence, 10

\b
escape sequence, 10

\f
escape sequence, 10

\N
escape sequence, 10

\n
escape sequence, 10

\r
escape sequence, 10

\t
escape sequence, 10

\U
escape sequence, 10

\u
escape sequence, 10

\v
escape sequence, 10

\x
escape sequence, 10

^ (caret)
işleç, 78

^=
augmented assignment, 88

_ (underscore)
in numeric literal, 14

_, identifiers, 9
__, identifiers, 9
__abs__() (object metodu), 42
__add__() (object metodu), 41
__aenter__() (object metodu), 46
__aexit__() (object metodu), 46
__aiter__() (object metodu), 45
__all__ (optional module attribute), 93
__and__() (object metodu), 41
__anext__() (agen metodu), 72
__anext__() (object metodu), 45
__annotations__ (class attribute), 23
__annotations__ (function attribute), 21
__annotations__ (module attribute), 23
__await__() (object metodu), 44
__bases__ (class attribute), 23
__bool__() (object method), 39
__bool__() (object metodu), 29
__bytes__() (object metodu), 27
__cached__, 58
__call__() (object method), 76
__call__() (object metodu), 39
__cause__ (exception attribute), 91
__ceil__() (object metodu), 42
__class__ (instance attribute), 23
__class__ (method cell), 36
__class__ (module attribute), 30
__class_getitem__() (object sınıf metodu), 37
__classcell__ (class namespace entry), 36
__closure__ (function attribute), 21
__code__ (function attribute), 21
__complex__() (object metodu), 42
__contains__() (object metodu), 40
__context__ (exception attribute), 91
__debug__, 89
__defaults__ (function attribute), 21
__del__() (object metodu), 27
__delattr__() (object metodu), 30

156 Dizin

The Python Language Reference, Sürüm 3.9.20

__delete__() (object metodu), 31
__delitem__() (object metodu), 40
__dict__ (class attribute), 23
__dict__ (function attribute), 21
__dict__ (instance attribute), 23
__dict__ (module attribute), 23
__dir__ (module attribute), 30
__dir__() (object metodu), 30
__divmod__() (object metodu), 41
__doc__ (class attribute), 23
__doc__ (function attribute), 21
__doc__ (method attribute), 21
__doc__ (module attribute), 23
__enter__() (object metodu), 43
__eq__() (object metodu), 28
__exit__() (object metodu), 43
__file__, 58
__file__ (module attribute), 23
__float__() (object metodu), 42
__floor__() (object metodu), 42
__floordiv__() (object metodu), 41
__format__() (object metodu), 27
__func__ (method attribute), 21
__future__, 123

future statement, 94
__ge__() (object metodu), 28
__get__() (object metodu), 31
__getattr__ (module attribute), 30
__getattr__() (object metodu), 29
__getattribute__() (object metodu), 30
__getitem__() (mapping object method), 26
__getitem__() (object metodu), 39
__globals__ (function attribute), 21
__gt__() (object metodu), 28
__hash__() (object metodu), 28
__iadd__() (object metodu), 42
__iand__() (object metodu), 42
__ifloordiv__() (object metodu), 42
__ilshift__() (object metodu), 42
__imatmul__() (object metodu), 42
__imod__() (object metodu), 42
__imul__() (object metodu), 42
__index__() (object metodu), 42
__init__() (object metodu), 26
__init_subclass__() (object sınıf metodu), 34
__instancecheck__() (class metodu), 36
__int__() (object metodu), 42
__invert__() (object metodu), 42
__ior__() (object metodu), 42
__ipow__() (object metodu), 42
__irshift__() (object metodu), 42
__isub__() (object metodu), 42
__iter__() (object metodu), 40
__itruediv__() (object metodu), 42
__ixor__() (object metodu), 42
__kwdefaults__ (function attribute), 21
__le__() (object metodu), 28
__len__() (mapping object method), 29

__len__() (object metodu), 39
__length_hint__() (object metodu), 39
__loader__, 57
__lshift__() (object metodu), 41
__lt__() (object metodu), 28
__main__

modülü, 48, 107
__matmul__() (object metodu), 41
__missing__() (object metodu), 40
__mod__() (object metodu), 41
__module__ (class attribute), 23
__module__ (function attribute), 21
__module__ (method attribute), 21
__mul__() (object metodu), 41
__name__, 57
__name__ (class attribute), 23
__name__ (function attribute), 21
__name__ (method attribute), 21
__name__ (module attribute), 23
__ne__() (object metodu), 28
__neg__() (object metodu), 42
__new__() (object metodu), 26
__next__() (generator metodu), 70
__or__() (object metodu), 41
__package__, 57
__path__, 58
__pos__() (object metodu), 42
__pow__() (object metodu), 41
__prepare__ (metaclass method), 35
__radd__() (object metodu), 41
__rand__() (object metodu), 41
__rdivmod__() (object metodu), 41
__repr__() (object metodu), 27
__reversed__() (object metodu), 40
__rfloordiv__() (object metodu), 41
__rlshift__() (object metodu), 41
__rmatmul__() (object metodu), 41
__rmod__() (object metodu), 41
__rmul__() (object metodu), 41
__ror__() (object metodu), 41
__round__() (object metodu), 42
__rpow__() (object metodu), 41
__rrshift__() (object metodu), 41
__rshift__() (object metodu), 41
__rsub__() (object metodu), 41
__rtruediv__() (object metodu), 41
__rxor__() (object metodu), 41
__self__ (method attribute), 21
__set__() (object metodu), 31
__set_name__() (object metodu), 31
__setattr__() (object metodu), 30
__setitem__() (object metodu), 40
__slots__, 129
__spec__, 58
__str__() (object metodu), 27
__sub__() (object metodu), 41
__subclasscheck__() (class metodu), 36
__traceback__ (exception attribute), 91

Dizin 157

The Python Language Reference, Sürüm 3.9.20

__truediv__() (object metodu), 41
__trunc__() (object metodu), 42
__xor__() (object metodu), 41
{} (curly brackets)

dictionary expression, 68
in formatted string literal, 12
set expression, 68

| (vertical bar)
işleç, 78

|=
augmented assignment, 88

~ (tilde)
işleç, 76

A
abs

gömülü fonksiyon, 42
aclose() (agen metodu), 72
ad alanı, 126
ad alanı paketi, 127
addition, 77
adlandırılmış demet, 126
anahtar işlev, 125
anahtar kelime argümanı, 125
anahtar sözcük

as, 92, 99, 101
async, 105
await, 76, 105
elif, 98
else, 92, 98100
except, 99
finally, 90, 92, 99, 100
from, 69, 92
in, 98
yield, 69

and
bitwise, 78
işleç, 81

anlamak, 129
annotated

assignment, 88
annotations

function, 103
anonymous

function, 82
argument

call semantics, 74
function, 20
function definition, 103

argüman, 119
arithmetic

conversion, 65
operation, binary, 77
operation, unary, 76

array
modülü, 20

as
anahtar sözcük, 92, 99, 101

except clause, 99
import statement, 93
with statement, 101

ASCII, 4, 9
asend() (agen metodu), 72
asenkron bağlam yöneticisi, 120
asenkron jeneratör, 120
asenkron jeneratör yineleyici, 120
asenkron yineleyici, 120
assert

deyim, 89
AssertionError

istisnası, 89
assertions

debugging, 89
assignment

annotated, 88
attribute, 86
augmented, 88
class attribute, 23
class instance attribute, 23
slicing, 87
statement, 20, 86
subscription, 87
target list, 86

async
anahtar sözcük, 105

async def
deyim, 105

async for
deyim, 105
in comprehensions, 67

async with
deyim, 106

asynchronous generator
asynchronous iterator, 22
function, 22

asynchronous-generator
nesne, 72

athrow() (agen metodu), 72
atom, 65
attribute, 18

assignment, 86
assignment, class, 23
assignment, class instance, 23
class, 23
class instance, 23
deletion, 89
generic special, 18
reference, 73
special, 18

AttributeError
istisnası, 73

augmented
assignment, 88

await
anahtar sözcük, 76, 105
in comprehensions, 67

158 Dizin

The Python Language Reference, Sürüm 3.9.20

B
b'

bytes literal, 10
b"

bytes literal, 10
backslash character, 6
bağlam değişkeni, 121
bağlam yöneticisi, 121
bayt benzeri nesne, 120
bayt kodu, 121
BDFL, 120
beklenebilir, 120
belge dizisi, 122
binary

arithmetic operation, 77
bitwise operation, 78

binary literal, 14
binding

global name, 95
name, 47, 86, 92, 93, 102, 104

bitişik, 121
bitwise

and, 78
operation, binary, 78
operation, unary, 76
or, 78
xor, 78

blank line, 7
block, 47

code, 47
BNF, 4, 65
Boolean

nesne, 19
operation, 81

BOŞTA, 124
break

deyim, 92, 98, 100
built-in

method, 22
built-in function

call, 76
nesne, 22, 76

built-in method
call, 76
nesne, 22, 76

builtins
modülü, 107

bulucu, 123
byte, 20
bytearray, 20
bytecode, 24
bytes, 20

gömülü fonksiyon, 27
bytes literal, 9

C
C, 10

language, 18, 19, 22, 78

call, 74
built-in function, 76
built-in method, 76
class instance, 76
class object, 23, 76
function, 20, 75, 76
instance, 39, 76
method, 76
procedure, 85
user-defined function, 75

callable
nesne, 20, 74

C-contiguous, 121
chaining

comparisons, 79
exception, 91

character, 19, 73
chr

gömülü fonksiyon, 19
class

attribute, 23
attribute assignment, 23
body, 35
constructor, 26
definition, 90, 104
deyim, 104
instance, 23
name, 104
nesne, 23, 76, 104

class instance
attribute, 23
attribute assignment, 23
call, 76
nesne, 23, 76

class object
call, 23, 76

clause, 97
clear() (frame metodu), 25
close() (coroutine metodu), 45
close() (generator metodu), 71
co_argcount (code object attribute), 24
co_cellvars (code object attribute), 24
co_code (code object attribute), 24
co_consts (code object attribute), 24
co_filename (code object attribute), 24
co_firstlineno (code object attribute), 24
co_flags (code object attribute), 24
co_freevars (code object attribute), 24
co_kwonlyargcount (code object attribute), 24
co_lnotab (code object attribute), 24
co_name (code object attribute), 24
co_names (code object attribute), 24
co_nlocals (code object attribute), 24
co_posonlyargcount (code object attribute), 24
co_stacksize (code object attribute), 24
co_varnames (code object attribute), 24
code

block, 47

Dizin 159

The Python Language Reference, Sürüm 3.9.20

code object, 24
comma, 66

trailing, 83
command line, 107
comment, 6
comparison, 78
comparisons, 28

chaining, 79
compile

gömülü fonksiyon, 95
complex

gömülü fonksiyon, 42
nesne, 19
number, 19

complex literal, 14
compound

statement, 97
comprehensions, 67

dictionary, 68
list, 67
set, 68

Conditional
expression, 81

conditional
expression, 82

constant, 9
constructor

class, 26
container, 18, 23
context manager, 43
continue

deyim, 92, 98, 100
conversion

arithmetic, 65
string, 27, 85

coroutine, 44, 69
function, 22

CPython, 121

Ç
çevre değişkeni

PYTHONHASHSEED, 29
çöp toplama, 123

D
dangling

else, 98
data, 17

type, 18
type, immutable, 66

datum, 68
dbm.gnu

modülü, 20
dbm.ndbm

modülü, 20
debugging

assertions, 89
decimal literal, 14

DEDENT token, 7, 98
def

deyim, 102
default

parameter value, 103
definition

class, 90, 104
function, 90, 102

değişken açıklama, 130
değişmez, 124
değiştirilebilir, 126
dekoratör, 121
del

deyim, 27, 89
deletion

attribute, 89
target, 89
target list, 89

delimiters, 15
destructor, 27, 86
deyim

assert, 89
async def, 105
async for, 105
async with, 106
break, 92, 98, 100
class, 104
continue, 92, 98, 100
def, 102
del, 27, 89
for, 92, 98
global, 89, 95
if, 98
import, 22, 92
nonlocal, 95
pass, 89
raise, 91
return, 90, 100
try, 25, 99
while, 92, 98
with, 43, 101
yield, 90

dictionary
comprehensions, 68
display, 68
nesne, 20, 23, 28, 68, 73, 87

dipnot, 119
display

dictionary, 68
list, 67
set, 68

division, 77
divmod

gömülü fonksiyon, 41
dizi, 129
docstring, 104
documentation string, 24
dosya benzeri nesne, 123

160 Dizin

The Python Language Reference, Sürüm 3.9.20

dosya nesnesi, 122
duck-typing, 122

E
e

in numeric literal, 14
EAFP, 122
elif

anahtar sözcük, 98
Ellipsis

nesne, 18
else

anahtar sözcük, 92, 98100
conditional expression, 82
dangling, 98

empty
list, 67
tuple, 19, 66

encoding declarations (source file), 6
environment, 48
error handling, 49
errors, 49
escape sequence, 10
eşyordam, 121
eşyordam işlevi, 121
eşzamansız yinelenebilir, 120
etkileşimli, 124
eval

gömülü fonksiyon, 95, 108
evaluation

order, 83
evrensel yeni satırlar, 130
exc_info (in module sys), 25
except

anahtar sözcük, 99
exception, 49, 91

chaining, 91
handler, 25
raising, 91

exception handler, 49
exclusive

or, 78
exec

gömülü fonksiyon, 95
execution

frame, 47, 104
restricted, 48
stack, 25

execution model, 47
expression, 65

Conditional, 81
conditional, 82
generator, 68
lambda, 82, 103
list, 83, 85
statement, 85
yield, 69

extension

module, 18

F
f'

formatted string literal, 10
f"

formatted string literal, 10
f-string, 122
f_back (frame attribute), 24
f_builtins (frame attribute), 24
f_code (frame attribute), 24
f_globals (frame attribute), 24
f_lasti (frame attribute), 24
f_lineno (frame attribute), 24
f_locals (frame attribute), 24
f_trace (frame attribute), 24
f_trace_lines (frame attribute), 24
f_trace_opcodes (frame attribute), 24
False, 19
finalizer, 27
finally

anahtar sözcük, 90, 92, 99, 100
find_spec

finder, 54
finder, 54

find_spec, 54
float

gömülü fonksiyon, 42
floating point

nesne, 19
number, 19

floating point literal, 14
fonksiyon, 123
fonksiyon açıklaması, 123
for

deyim, 92, 98
in comprehensions, 67

form
lambda, 82

format() (built-in function)
__str__() (object method), 27

formatted string literal, 12
Fortran contiguous, 121
frame

execution, 47, 104
nesne, 24

free
variable, 47

from
anahtar sözcük, 69, 92
import statement, 47, 93
yield from expression, 70

frozenset
nesne, 20

fstring, 12
f-string, 12
function

annotations, 103

Dizin 161

The Python Language Reference, Sürüm 3.9.20

anonymous, 82
argument, 20
call, 20, 75, 76
call, user-defined, 75
definition, 90, 102
generator, 69, 90
name, 102
nesne, 21, 22, 75, 76, 102
user-defined, 21

future
statement, 94

G
garbage collection, 17
geçici API, 128
geçici paket, 128
genel işlev, 123
genel tercüman kilidi, 124
genel tip, 124
generator, 123

expression, 68
function, 22, 69, 90
iterator, 22, 90
nesne, 24, 68, 70

generator expression, 123
GeneratorExit

istisnası, 71, 72
generic

special attribute, 18
geri çağırmak, 121
GIL, 124
global

deyim, 89, 95
name binding, 95
namespace, 21

gömülü fonksiyon
abs, 42
bytes, 27
chr, 19
compile, 95
complex, 42
divmod, 41
eval, 95, 108
exec, 95
float, 42
hash, 28
id, 17
int, 42
len, 19, 20, 39
open, 24
ord, 19
pow, 41
print, 27
range, 99
repr, 85
round, 42
slice, 25
type, 17, 34

grammar, 4
grouping, 7

H
handle an exception, 49
handler

exception, 25
haritalama, 126
hash

gömülü fonksiyon, 28
hash character, 6
hashable, 68
hexadecimal literal, 14
hierarchy

type, 18
hooks

import, 54
meta, 54
path, 54

I
ImportError

istisnası, 92
INDENT token, 7

İ
iç içe kapsam, 127
içe aktarıcı, 124
içe aktarım yolu, 124
içe aktarma, 124
id

gömülü fonksiyon, 17
identifier, 8, 66
identity

test, 81
identity of an object, 17
if

conditional expression, 82
deyim, 98
in comprehensions, 67

ifade (değer döndürmez), 129
ifade (değer döndürür), 122
ikili dosya, 120
imaginary literal, 14
immutable

data type, 66
nesne, 19
object, 66, 68

immutable object, 17
immutable sequence

nesne, 19
immutable types

subclassing, 26
import

deyim, 22, 92
hooks, 54

import hooks, 54
import machinery, 51

162 Dizin

The Python Language Reference, Sürüm 3.9.20

in
anahtar sözcük, 98
işleç, 81

inclusive
or, 78

indentation, 7
index operation, 19
indices() (slice metodu), 25
inheritance, 104
input, 108
instance

call, 39, 76
class, 23
nesne, 23, 76

int
gömülü fonksiyon, 42

integer, 19
nesne, 19
representation, 19

integer literal, 14
interactive mode, 107
internal type, 24
interpolated string literal, 12
interpreter, 107
inversion, 76
invocation, 20
io

modülü, 24
is

işleç, 81
is not

işleç, 81
istisnası

AssertionError, 89
AttributeError, 73
GeneratorExit, 71, 72
ImportError, 92
NameError, 66
StopAsyncIteration, 72
StopIteration, 70, 90
TypeError, 77
ValueError, 78
ZeroDivisionError, 77

işleç
% (percent), 77
& (ampersand), 78
* (asterisk), 77
**, 76
/ (slash), 77
//, 77
< (less), 78
<<, 78
< =, 78
!=, 78
==, 78
> (greater), 78
> =, 78
>>, 78

@ (at), 77
^ (caret), 78
| (vertical bar), 78
~ (tilde), 76
and, 81
in, 81
is, 81
is not, 81
not, 81
not in, 81
or, 81

item
sequence, 73
string, 73

item selection, 19
iterable

unpacking, 83

J
j

in numeric literal, 15
Java

language, 19
jeneratör, 123
jeneratör ifadesi, 123
jeneratör yineleyici, 123

K
karma tabanlı pyc, 124
karmaşık sayı, 121
kat bölümü, 123
key, 68
key/datum pair, 68
keyword, 9
kısım, 128
konumsal argüman, 128

L
lambda, 125

expression, 82, 103
form, 82

language
C, 18, 19, 22, 78
Java, 19

last_traceback (in module sys), 25
LBYL, 125
leading whitespace, 7
len

gömülü fonksiyon, 19, 20, 39
lexical analysis, 5
lexical definitions, 4
line continuation, 6
line joining, 5, 6
line structure, 5
list

assignment, target, 86
comprehensions, 67
deletion target, 89

Dizin 163

The Python Language Reference, Sürüm 3.9.20

display, 67
empty, 67
expression, 83, 85
nesne, 20, 67, 73, 74, 87
target, 86, 98

liste, 125
liste anlama, 125
literal, 9, 66
loader, 54
logical line, 5
loop

over mutable sequence, 99
statement, 92, 98

loop control
target, 92

M
magic

method, 126
makefile() (socket method), 24
mangling

name, 66
mapping

nesne, 20, 23, 73, 87
matrix multiplication, 77
membership

test, 81
meta

hooks, 54
meta hooks, 54
meta yol bulucu, 126
metaclass, 34
metaclass hint, 35
metasınıf, 126
method

built-in, 22
call, 76
magic, 126
nesne, 21, 22, 76
special, 129
user-defined, 21

metot, 126
metot kalite sıralaması, 126
minus, 76
module

extension, 18
importing, 92
namespace, 23
nesne, 22, 73

module spec, 54
modulo, 77
modül, 126
modül özelliği, 126
modülü

__main__, 48, 107
array, 20
builtins, 107
dbm.gnu, 20

dbm.ndbm, 20
io, 24
sys, 100, 107

MRO, 126
multiplication, 77
mutable

nesne, 20, 86, 87
mutable object, 17
mutable sequence

loop over, 99
nesne, 20

N
name, 8, 47, 66

binding, 47, 86, 92, 93, 102, 104
binding, global, 95
class, 104
function, 102
mangling, 66
rebinding, 86
unbinding, 89

NameError
istisnası, 66

NameError (built-in exception), 48
names

private, 66
namespace, 47

global, 21
module, 23
package, 53

negation, 76
nesne

asynchronous-generator, 72
Boolean, 19
built-in function, 22, 76
built-in method, 22, 76
callable, 20, 74
class, 23, 76, 104
class instance, 23, 76
complex, 19
dictionary, 20, 23, 28, 68, 73, 87
Ellipsis, 18
floating point, 19
frame, 24
frozenset, 20
function, 21, 22, 75, 76, 102
generator, 24, 68, 70
immutable, 19
immutable sequence, 19
instance, 23, 76
integer, 19
list, 20, 67, 73, 74, 87
mapping, 20, 23, 73, 87
method, 21, 22, 76
module, 22, 73
mutable, 20, 86, 87
mutable sequence, 20
None, 18, 85

164 Dizin

The Python Language Reference, Sürüm 3.9.20

NotImplemented, 18
numeric, 18, 23
sequence, 19, 23, 73, 74, 81, 87, 98
set, 20, 68
set type, 20
slice, 39
string, 73, 74
traceback, 25, 91, 100
tuple, 19, 73, 74, 83
user-defined function, 21, 75, 102
user-defined method, 21

NEWLINE token, 5, 98
nitelik, 120
nitelikli isim, 128
None

nesne, 18, 85
nonlocal

deyim, 95
not

işleç, 81
not in

işleç, 81
notation, 4
NotImplemented

nesne, 18
null

operation, 89
number, 14

complex, 19
floating point, 19

numeric
nesne, 18, 23

numeric literal, 14

O
obje, 127
object, 17

code, 24
immutable, 66, 68

object.__slots__ (gömülü değişken), 33
octal literal, 14
open

gömülü fonksiyon, 24
operation

binary arithmetic, 77
binary bitwise, 78
Boolean, 81
null, 89
power, 76
shifting, 78
unary arithmetic, 76
unary bitwise, 76

operator
- (minus), 76, 78
+ (plus), 76, 77
overloading, 26
precedence, 83
ternary, 82

operators, 15
or

bitwise, 78
exclusive, 78
inclusive, 78
işleç, 81

ord
gömülü fonksiyon, 19

order
evaluation, 83

output, 85
standard, 85

overloading
operator, 26

Ö
özel metod, 129

P
package, 52

namespace, 53
portion, 53
regular, 52

paket, 127
parameter

call semantics, 74
function definition, 102
value, default, 103

parametre, 127
parçalamak, 129
parenthesized form, 66
parser, 5
pass

deyim, 89
path

hooks, 54
path based finder, 59
path hooks, 54
PEP, 128
physical line, 5, 6, 10
plus, 76
popen() (in module os), 24
portion

package, 53
pow

gömülü fonksiyon, 41
power

operation, 76
precedence

operator, 83
primary, 73
print

gömülü fonksiyon, 27
print() (built-in function)

__str__() (object method), 27
private

names, 66
procedure

Dizin 165

The Python Language Reference, Sürüm 3.9.20

call, 85
program, 107
Python 3000, 128
PYTHONHASHSEED, 29
Python'ı İyileştirme Önerileri

PEP 1, 128
PEP 8, 79
PEP 236, 95
PEP 238, 123
PEP 252, 31
PEP 255, 70
PEP 278, 130
PEP 302, 51, 63, 123, 126
PEP 308, 82
PEP 318, 105
PEP 328, 63
PEP 338, 63
PEP 342, 70
PEP 343, 43, 102, 121
PEP 362, 120, 127
PEP 366, 57, 58, 63
PEP 380, 70
PEP 395, 63
PEP 411, 128
PEP 414, 10
PEP 420, 51, 53, 58, 63, 123, 127, 128
PEP 443, 123
PEP 448, 68, 75, 83
PEP 451, 63, 123
PEP 483, 124
PEP 484, 37, 89, 103, 119, 123, 124, 130
PEP 492, 44, 70, 106, 120, 121
PEP 498, 14, 122
PEP 519, 128
PEP 525, 70, 120
PEP 526, 88, 104, 119, 130
PEP 530, 67
PEP 560, 35, 38
PEP 562, 31
PEP 563, 94, 104
PEP 570, 103
PEP 572, 68, 82
PEP 585, 124
PEP 614, 103, 104
PEP 3104, 95
PEP 3107, 103
PEP 3115, 35, 105
PEP 3116, 130
PEP 3119, 37
PEP 3120, 5
PEP 3129, 105
PEP 3131, 8
PEP 3132, 87
PEP 3135, 36
PEP 3147, 58
PEP 3155, 128

Pythonic, 128
PYTHONPATH, 60

Python'un Zen'i, 131

R
r'

raw string literal, 10
r"

raw string literal, 10
raise

deyim, 91
raise an exception, 49
raising

exception, 91
range

gömülü fonksiyon, 99
raw string, 10
rebinding

name, 86
referans sayısı, 129
reference

attribute, 73
reference counting, 17
regular

package, 52
relative

import, 93
repr

gömülü fonksiyon, 85
repr() (built-in function)

__repr__() (object method), 27
representation

integer, 19
reserved word, 9
restricted

execution, 48
return

deyim, 90, 100
round

gömülü fonksiyon, 42

S
sanal makine, 131
sanal ortam, 131
scope, 47, 48
send() (coroutine metodu), 45
send() (generator metodu), 70
sequence

item, 73
nesne, 19, 23, 73, 74, 81, 87, 98

set
comprehensions, 68
display, 68
nesne, 20, 68

set type
nesne, 20

shifting
operation, 78

sınıf, 121
sınıf değişkeni, 121

166 Dizin

The Python Language Reference, Sürüm 3.9.20

sihirli yöntem, 126
simple

statement, 85
singleton

tuple, 19
slice, 74

gömülü fonksiyon, 25
nesne, 39

slicing, 19, 20, 74
assignment, 87

source character set, 6
soyut temel sınıf, 119
sözlük, 122
sözlük anlama, 122
sözlük görünümü, 122
space, 7
special

attribute, 18
attribute, generic, 18
method, 129

stack
execution, 25
trace, 25

standard
output, 85

Standard C, 10
standard input, 107
start (slice object attribute), 25, 74
statement

assignment, 20, 86
assignment, annotated, 88
assignment, augmented, 88
compound, 97
expression, 85
future, 94
loop, 92, 98
simple, 85

statement grouping, 7
stderr (in module sys), 24
stdin (in module sys), 24
stdio, 24
stdout (in module sys), 24
step (slice object attribute), 25, 74
stop (slice object attribute), 25, 74
StopAsyncIteration

istisnası, 72
StopIteration

istisnası, 70, 90
string

__format__() (object method), 27
__str__() (object method), 27
conversion, 27, 85
formatted literal, 12
immutable sequences, 19
interpolated literal, 12
item, 73
nesne, 73, 74

string literal, 9

subclassing
immutable types, 26

subscription, 19, 20, 73
assignment, 87

subtraction, 78
suite, 97
sürekli paketleme, 129
syntax, 4
sys

modülü, 100, 107
sys.exc_info, 25
sys.last_traceback, 25
sys.meta_path, 54
sys.modules, 53
sys.path, 60
sys.path_hooks, 60
sys.path_importer_cache, 60
sys.stderr, 24
sys.stdin, 24
sys.stdout, 24
SystemExit (built-in exception), 49

T
tab, 7
tanımlayıcı, 122
target, 86

deletion, 89
list, 86, 98
list assignment, 86
list, deletion, 89
loop control, 92

tb_frame (traceback attribute), 25
tb_lasti (traceback attribute), 25
tb_lineno (traceback attribute), 25
tb_next (traceback attribute), 25
tek sevk, 129
tercüman kapatma, 124
termination model, 49
ternary

operator, 82
test

identity, 81
membership, 81

throw() (coroutine metodu), 45
throw() (generator metodu), 70
tip, 130
tip takma adı, 130
token, 5
trace

stack, 25
traceback

nesne, 25, 91, 100
trailing

comma, 83
triple-quoted string, 10
True, 19
try

deyim, 25, 99

Dizin 167

The Python Language Reference, Sürüm 3.9.20

tuple
empty, 19, 66
nesne, 19, 73, 74, 83
singleton, 19

tür ipucu, 130
type, 18

data, 18
gömülü fonksiyon, 17, 34
hierarchy, 18
immutable data, 66

type of an object, 17
TypeError

istisnası, 77
types, internal, 24

U
u'

string literal, 9
u"

string literal, 9
unary

arithmetic operation, 76
bitwise operation, 76

unbinding
name, 89

UnboundLocalError, 48
UNIX, 107
Unicode, 19
Unicode Consortium, 10
unpacking

dictionary, 68
in function calls, 75
iterable, 83

unreachable object, 17
unrecognized escape sequence, 11
user-defined

function, 21
function call, 75
method, 21

user-defined function
nesne, 21, 75, 102

user-defined method
nesne, 21

uzatma modülü, 122

Ü
üç tırnaklı dize, 130

V
value

default parameter, 103
value of an object, 17
ValueError

istisnası, 78
values

writing, 85
variable

free, 47

W
while

deyim, 92, 98
Windows, 107
with

deyim, 43, 101
writing

values, 85

X
xor

bitwise, 78

Y
yazı çözümleme, 129
yazı dosyası, 130
yeni stil sınıf, 127
yıkanabilir, 124
yield

anahtar sözcük, 69
deyim, 90
examples, 71
expression, 69

yinelenebilir, 125
yineleyici, 125
yol benzeri nesne, 128
yol giriş kancası, 128
yol girişi, 128
yol girişi bulucu, 128
yol tabanlı bulucu, 128
yorumlanmış, 124
yükleyici, 126

Z
ZeroDivisionError

istisnası, 77
zorlama, 121

168 Dizin

	Introduction
	Alternate Implementations
	Notation

	Lexical analysis
	Line structure
	Logical lines
	Physical lines
	Comments
	Encoding declarations
	Explicit line joining
	Implicit line joining
	Blank lines
	Indentation
	Whitespace between tokens

	Other tokens
	Identifiers and keywords
	Keywords
	Reserved classes of identifiers

	Literals
	String and Bytes literals
	String literal concatenation
	Formatted string literals
	Numeric literals
	Integer literals
	Floating point literals
	Imaginary literals

	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	Special method names
	Basic customization
	Customizing attribute access
	Customizing class creation
	Customizing instance and subclass checks
	Emulating generic types
	Emulating callable objects
	Emulating container types
	Emulating numeric types
	With Statement Context Managers
	Special method lookup

	Coroutines
	Awaitable Objects
	Coroutine Objects
	Asynchronous Iterators
	Asynchronous Context Managers

	Execution model
	Structure of a program
	Naming and binding
	Binding of names
	Resolution of names
	Builtins and restricted execution
	Interaction with dynamic features

	Exceptions

	The import system
	importlib
	Packages
	Regular packages
	Namespace packages

	Searching
	The module cache
	Finders and loaders
	Import hooks
	The meta path

	Loading
	Loaders
	Submodules
	Module spec
	Import-related module attributes
	module.__path__
	Module reprs
	Cached bytecode invalidation

	The Path Based Finder
	Path entry finders
	Path entry finder protocol

	Replacing the standard import system
	Package Relative Imports
	Special considerations for __main__
	__main__.__spec__

	Open issues
	References

	Expressions
	Arithmetic conversions
	Atoms
	Identifiers (Names)
	Literals
	Parenthesized forms
	Displays for lists, sets and dictionaries
	List displays
	Set displays
	Dictionary displays
	Generator expressions
	Yield expressions

	Primaries
	Attribute references
	Subscriptions
	Slicings
	Calls

	Await expression
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Value comparisons
	Membership test operations
	Identity comparisons

	Boolean operations
	Assignment expressions
	Conditional expressions
	Lambdas
	Expression lists
	Evaluation order
	Operator precedence

	Simple statements
	Expression statements
	Assignment statements
	Augmented assignment statements
	Annotated assignment statements

	The assert statement
	The pass statement
	The del statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	Future statements

	The global statement
	The nonlocal statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	The with statement
	Function definitions
	Class definitions
	Coroutines
	Coroutine function definition
	The async for statement
	The async with statement

	Top-level components
	Complete Python programs
	File input
	Interactive input
	Expression input

	Full Grammar specification
	Sözlük
	Dokümanlar hakkında
	Python Dokümantasyonuna Katkıda Bulunanlar

	Tarihçe ve Lisans
	Yazılımın tarihçesi
	Python’a erişmek veya başka bir şekilde kullanmak için şartlar ve koşullar
	PYTHON İÇİN PSF LİSANS ANLAŞMASI 3.9.20
	PYTHON 2.0 İÇİN BEOPEN.COM LİSANS SÖZLEŞMESİ
	PYTHON 1.6.1 İÇİN CNRI LİSANS ANLAŞMASI
	0.9.0 ARASI 1.2 PYTHON İÇİN CWI LİSANS SÖZLEŞMESİ
	PYTHON 3.9.20 BELGELERİNDEKİ KOD İÇİN SIFIR MADDE BSD LİSANSI

	Tüzel Yazılımlar için Lisanslar ve Onaylar
	Mersenne Twister’ı
	Soketler
	Asenkron soket hizmetleri
	Çerez yönetimi
	Çalıştırma izleme
	UUencode ve UUdecode fonksiyonları
	XML Uzaktan Yordam Çağrıları
	test_epoll
	kqueue seçin
	SipHash24
	strtod ve dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test paketi

	Telif Hakkı
	Dizin

