ast — Abstract Syntax Trees

Source code: Lib/ast.py


The ast module helps Python applications to process trees of the Python abstract syntax grammar. The abstract syntax itself might change with each Python release; this module helps to find out programmatically what the current grammar looks like.

An abstract syntax tree can be generated by passing ast.PyCF_ONLY_AST as a flag to the compile() built-in function, or using the parse() helper provided in this module. The result will be a tree of objects whose classes all inherit from ast.AST. An abstract syntax tree can be compiled into a Python code object using the built-in compile() function.

Abstract Grammar

The abstract grammar is currently defined as follows:

-- ASDL's 4 builtin types are:
-- identifier, int, string, constant

module Python
{
    mod = Module(stmt* body, type_ignore* type_ignores)
        | Interactive(stmt* body)
        | Expression(expr body)
        | FunctionType(expr* argtypes, expr returns)

    stmt = FunctionDef(identifier name, arguments args,
                       stmt* body, expr* decorator_list, expr? returns,
                       string? type_comment, type_param* type_params)
          | AsyncFunctionDef(identifier name, arguments args,
                             stmt* body, expr* decorator_list, expr? returns,
                             string? type_comment, type_param* type_params)

          | ClassDef(identifier name,
             expr* bases,
             keyword* keywords,
             stmt* body,
             expr* decorator_list,
             type_param* type_params)
          | Return(expr? value)

          | Delete(expr* targets)
          | Assign(expr* targets, expr value, string? type_comment)
          | TypeAlias(expr name, type_param* type_params, expr value)
          | AugAssign(expr target, operator op, expr value)
          -- 'simple' indicates that we annotate simple name without parens
          | AnnAssign(expr target, expr annotation, expr? value, int simple)

          -- use 'orelse' because else is a keyword in target languages
          | For(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment)
          | AsyncFor(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment)
          | While(expr test, stmt* body, stmt* orelse)
          | If(expr test, stmt* body, stmt* orelse)
          | With(withitem* items, stmt* body, string? type_comment)
          | AsyncWith(withitem* items, stmt* body, string? type_comment)

          | Match(expr subject, match_case* cases)

          | Raise(expr? exc, expr? cause)
          | Try(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody)
          | TryStar(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody)
          | Assert(expr test, expr? msg)

          | Import(alias* names)
          | ImportFrom(identifier? module, alias* names, int? level)

          | Global(identifier* names)
          | Nonlocal(identifier* names)
          | Expr(expr value)
          | Pass | Break | Continue

          -- col_offset is the byte offset in the utf8 string the parser uses
          attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)

          -- BoolOp() can use left & right?
    expr = BoolOp(boolop op, expr* values)
         | NamedExpr(expr target, expr value)
         | BinOp(expr left, operator op, expr right)
         | UnaryOp(unaryop op, expr operand)
         | Lambda(arguments args, expr body)
         | IfExp(expr test, expr body, expr orelse)
         | Dict(expr* keys, expr* values)
         | Set(expr* elts)
         | ListComp(expr elt, comprehension* generators)
         | SetComp(expr elt, comprehension* generators)
         | DictComp(expr key, expr value, comprehension* generators)
         | GeneratorExp(expr elt, comprehension* generators)
         -- the grammar constrains where yield expressions can occur
         | Await(expr value)
         | Yield(expr? value)
         | YieldFrom(expr value)
         -- need sequences for compare to distinguish between
         -- x < 4 < 3 and (x < 4) < 3
         | Compare(expr left, cmpop* ops, expr* comparators)
         | Call(expr func, expr* args, keyword* keywords)
         | FormattedValue(expr value, int conversion, expr? format_spec)
         | JoinedStr(expr* values)
         | Constant(constant value, string? kind)

         -- the following expression can appear in assignment context
         | Attribute(expr value, identifier attr, expr_context ctx)
         | Subscript(expr value, expr slice, expr_context ctx)
         | Starred(expr value, expr_context ctx)
         | Name(identifier id, expr_context ctx)
         | List(expr* elts, expr_context ctx)
         | Tuple(expr* elts, expr_context ctx)

         -- can appear only in Subscript
         | Slice(expr? lower, expr? upper, expr? step)

          -- col_offset is the byte offset in the utf8 string the parser uses
          attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)

    expr_context = Load | Store | Del

    boolop = And | Or

    operator = Add | Sub | Mult | MatMult | Div | Mod | Pow | LShift
                 | RShift | BitOr | BitXor | BitAnd | FloorDiv

    unaryop = Invert | Not | UAdd | USub

    cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn

    comprehension = (expr target, expr iter, expr* ifs, int is_async)

    excepthandler = ExceptHandler(expr? type, identifier? name, stmt* body)
                    attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)

    arguments = (arg* posonlyargs, arg* args, arg? vararg, arg* kwonlyargs,
                 expr* kw_defaults, arg? kwarg, expr* defaults)

    arg = (identifier arg, expr? annotation, string? type_comment)
           attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)

    -- keyword arguments supplied to call (NULL identifier for **kwargs)
    keyword = (identifier? arg, expr value)
               attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)

    -- import name with optional 'as' alias.
    alias = (identifier name, identifier? asname)
             attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)

    withitem = (expr context_expr, expr? optional_vars)

    match_case = (pattern pattern, expr? guard, stmt* body)

    pattern = MatchValue(expr value)
            | MatchSingleton(constant value)
            | MatchSequence(pattern* patterns)
            | MatchMapping(expr* keys, pattern* patterns, identifier? rest)
            | MatchClass(expr cls, pattern* patterns, identifier* kwd_attrs, pattern* kwd_patterns)

            | MatchStar(identifier? name)
            -- The optional "rest" MatchMapping parameter handles capturing extra mapping keys

            | MatchAs(pattern? pattern, identifier? name)
            | MatchOr(pattern* patterns)

             attributes (int lineno, int col_offset, int end_lineno, int end_col_offset)

    type_ignore = TypeIgnore(int lineno, string tag)

    type_param = TypeVar(identifier name, expr? bound, expr? default_value)
               | ParamSpec(identifier name, expr? default_value)
               | TypeVarTuple(identifier name, expr? default_value)
               attributes (int lineno, int col_offset, int end_lineno, int end_col_offset)
}

Node classes

class ast.AST

This is the base of all AST node classes. The actual node classes are derived from the Parser/Python.asdl file, which is reproduced above. They are defined in the _ast C module and re-exported in ast.

There is one class defined for each left-hand side symbol in the abstract grammar (for example, ast.stmt or ast.expr). In addition, there is one class defined for each constructor on the right-hand side; these classes inherit from the classes for the left-hand side trees. For example, ast.BinOp inherits from ast.expr. For production rules with alternatives (aka “sums”), the left-hand side class is abstract: only instances of specific constructor nodes are ever created.

_fields

Each concrete class has an attribute _fields which gives the names of all child nodes.

Each instance of a concrete class has one attribute for each child node, of the type as defined in the grammar. For example, ast.BinOp instances have an attribute left of type ast.expr.

If these attributes are marked as optional in the grammar (using a question mark), the value might be None. If the attributes can have zero-or-more values (marked with an asterisk), the values are represented as Python lists. All possible attributes must be present and have valid values when compiling an AST with compile().

_field_types

The _field_types attribute on each concrete class is a dictionary mapping field names (as also listed in _fields) to their types.

>>> ast.TypeVar._field_types
{'name': <class 'str'>, 'bound': ast.expr | None, 'default_value': ast.expr | None}

Added in version 3.13.

lineno
col_offset
end_lineno
end_col_offset

Instances of ast.expr and ast.stmt subclasses have lineno, col_offset, end_lineno, and end_col_offset attributes. The lineno and end_lineno are the first and last line numbers of source text span (1-indexed so the first line is line 1) and the col_offset and end_col_offset are the corresponding UTF-8 byte offsets of the first and last tokens that generated the node. The UTF-8 offset is recorded because the parser uses UTF-8 internally.

Note that the end positions are not required by the compiler and are therefore optional. The end offset is after the last symbol, for example one can get the source segment of a one-line expression node using source_line[node.col_offset : node.end_col_offset].

The constructor of a class ast.T parses its arguments as follows:

  • If there are positional arguments, there must be as many as there are items in T._fields; they will be assigned as attributes of these names.

  • If there are keyword arguments, they will set the attributes of the same names to the given values.

For example, to create and populate an ast.UnaryOp node, you could use

node = ast.UnaryOp(ast.USub(), ast.Constant(5, lineno=0, col_offset=0),
                   lineno=0, col_offset=0)

If a field that is optional in the grammar is omitted from the constructor, it defaults to None. If a list field is omitted, it defaults to the empty list. If a field of type ast.expr_context is omitted, it defaults to Load(). If any other field is omitted, a DeprecationWarning is raised and the AST node will not have this field. In Python 3.15, this condition will raise an error.

3.8 sürümünde değişti: Class ast.Constant is now used for all constants.

3.9 sürümünde değişti: Simple indices are represented by their value, extended slices are represented as tuples.

3.14 sürümünde değişti: The __repr__() output of AST nodes includes the values of the node fields.

3.8 sürümünden beri kullanım dışı: Old classes ast.Num, ast.Str, ast.Bytes, ast.NameConstant and ast.Ellipsis are still available, but they will be removed in future Python releases. In the meantime, instantiating them will return an instance of a different class.

3.9 sürümünden beri kullanım dışı: Old classes ast.Index and ast.ExtSlice are still available, but they will be removed in future Python releases. In the meantime, instantiating them will return an instance of a different class.

Deprecated since version 3.13, will be removed in version 3.15: Previous versions of Python allowed the creation of AST nodes that were missing required fields. Similarly, AST node constructors allowed arbitrary keyword arguments that were set as attributes of the AST node, even if they did not match any of the fields of the AST node. This behavior is deprecated and will be removed in Python 3.15.

Not

The descriptions of the specific node classes displayed here were initially adapted from the fantastic Green Tree Snakes project and all its contributors.

Root nodes

class ast.Module(body, type_ignores)

A Python module, as with file input. Node type generated by ast.parse() in the default "exec" mode.

body is a list of the module’s Statements.

type_ignores is a list of the module’s type ignore comments; see ast.parse() for more details.

>>> print(ast.dump(ast.parse('x = 1'), indent=4))
Module(
    body=[
        Assign(
            targets=[
                Name(id='x', ctx=Store())],
            value=Constant(value=1))])
class ast.Expression(body)

A single Python expression input. Node type generated by ast.parse() when mode is "eval".

body is a single node, one of the expression types.

>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4))
Expression(
    body=Constant(value=123))
class ast.Interactive(body)

A single interactive input, like in Etkileşimli Mod. Node type generated by ast.parse() when mode is "single".

body is a list of statement nodes.

>>> print(ast.dump(ast.parse('x = 1; y = 2', mode='single'), indent=4))
Interactive(
    body=[
        Assign(
            targets=[
                Name(id='x', ctx=Store())],
            value=Constant(value=1)),
        Assign(
            targets=[
                Name(id='y', ctx=Store())],
            value=Constant(value=2))])
class ast.FunctionType(argtypes, returns)

A representation of an old-style type comments for functions, as Python versions prior to 3.5 didn’t support PEP 484 annotations. Node type generated by ast.parse() when mode is "func_type".

Such type comments would look like this:

def sum_two_number(a, b):
    # type: (int, int) -> int
    return a + b

argtypes is a list of expression nodes.

returns is a single expression node.

>>> print(ast.dump(ast.parse('(int, str) -> List[int]', mode='func_type'), indent=4))
FunctionType(
    argtypes=[
        Name(id='int', ctx=Load()),
        Name(id='str', ctx=Load())],
    returns=Subscript(
        value=Name(id='List', ctx=Load()),
        slice=Name(id='int', ctx=Load()),
        ctx=Load()))

Added in version 3.8.

Literals

class ast.Constant(value)

A constant value. The value attribute of the Constant literal contains the Python object it represents. The values represented can be simple types such as a number, string or None, but also immutable container types (tuples and frozensets) if all of their elements are constant.

>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4))
Expression(
    body=Constant(value=123))
class ast.FormattedValue(value, conversion, format_spec)

Node representing a single formatting field in an f-string. If the string contains a single formatting field and nothing else the node can be isolated otherwise it appears in JoinedStr.

  • value is any expression node (such as a literal, a variable, or a function call).

  • conversion is an integer:

    • -1: no formatting

    • 115: !s string formatting

    • 114: !r repr formatting

    • 97: !a ascii formatting

  • format_spec is a JoinedStr node representing the formatting of the value, or None if no format was specified. Both conversion and format_spec can be set at the same time.

class ast.JoinedStr(values)

An f-string, comprising a series of FormattedValue and Constant nodes.

>>> print(ast.dump(ast.parse('f"sin({a}) is {sin(a):.3}"', mode='eval'), indent=4))
Expression(
    body=JoinedStr(
        values=[
            Constant(value='sin('),
            FormattedValue(
                value=Name(id='a', ctx=Load()),
                conversion=-1),
            Constant(value=') is '),
            FormattedValue(
                value=Call(
                    func=Name(id='sin', ctx=Load()),
                    args=[
                        Name(id='a', ctx=Load())]),
                conversion=-1,
                format_spec=JoinedStr(
                    values=[
                        Constant(value='.3')]))]))
class ast.List(elts, ctx)
class ast.Tuple(elts, ctx)

A list or tuple. elts holds a list of nodes representing the elements. ctx is Store if the container is an assignment target (i.e. (x,y)=something), and Load otherwise.

>>> print(ast.dump(ast.parse('[1, 2, 3]', mode='eval'), indent=4))
Expression(
    body=List(
        elts=[
            Constant(value=1),
            Constant(value=2),
            Constant(value=3)],
        ctx=Load()))
>>> print(ast.dump(ast.parse('(1, 2, 3)', mode='eval'), indent=4))
Expression(
    body=Tuple(
        elts=[
            Constant(value=1),
            Constant(value=2),
            Constant(value=3)],
        ctx=Load()))
class ast.Set(elts)

A set. elts holds a list of nodes representing the set’s elements.

>>> print(ast.dump(ast.parse('{1, 2, 3}', mode='eval'), indent=4))
Expression(
    body=Set(
        elts=[
            Constant(value=1),
            Constant(value=2),
            Constant(value=3)]))
class ast.Dict(keys, values)

A dictionary. keys and values hold lists of nodes representing the keys and the values respectively, in matching order (what would be returned when calling dictionary.keys() and dictionary.values()).

When doing dictionary unpacking using dictionary literals the expression to be expanded goes in the values list, with a None at the corresponding position in keys.

>>> print(ast.dump(ast.parse('{"a":1, **d}', mode='eval'), indent=4))
Expression(
    body=Dict(
        keys=[
            Constant(value='a'),
            None],
        values=[
            Constant(value=1),
            Name(id='d', ctx=Load())]))

Variables

class ast.Name(id, ctx)

A variable name. id holds the name as a string, and ctx is one of the following types.

class ast.Load
class ast.Store
class ast.Del

Variable references can be used to load the value of a variable, to assign a new value to it, or to delete it. Variable references are given a context to distinguish these cases.

>>> print(ast.dump(ast.parse('a'), indent=4))
Module(
    body=[
        Expr(
            value=Name(id='a', ctx=Load()))])

>>> print(ast.dump(ast.parse('a = 1'), indent=4))
Module(
    body=[
        Assign(
            targets=[
                Name(id='a', ctx=Store())],
            value=Constant(value=1))])

>>> print(ast.dump(ast.parse('del a'), indent=4))
Module(
    body=[
        Delete(
            targets=[
                Name(id='a', ctx=Del())])])
class ast.Starred(value, ctx)

A *var variable reference. value holds the variable, typically a Name node. This type must be used when building a Call node with *args.

>>> print(ast.dump(ast.parse('a, *b = it'), indent=4))
Module(
    body=[
        Assign(
            targets=[
                Tuple(
                    elts=[
                        Name(id='a', ctx=Store()),
                        Starred(
                            value=Name(id='b', ctx=Store()),
                            ctx=Store())],
                    ctx=Store())],
            value=Name(id='it', ctx=Load()))])

Expressions

class ast.Expr(value)

When an expression, such as a function call, appears as a statement by itself with its return value not used or stored, it is wrapped in this container. value holds one of the other nodes in this section, a Constant, a Name, a Lambda, a Yield or YieldFrom node.

>>> print(ast.dump(ast.parse('-a'), indent=4))
Module(
    body=[
        Expr(
            value=UnaryOp(
                op=USub(),
                operand=Name(id='a', ctx=Load())))])
class ast.UnaryOp(op, operand)

A unary operation. op is the operator, and operand any expression node.

class ast.UAdd
class ast.USub
class ast.Not
class ast.Invert

Unary operator tokens. Not is the not keyword, Invert is the ~ operator.

>>> print(ast.dump(ast.parse('not x', mode='eval'), indent=4))
Expression(
    body=UnaryOp(
        op=Not(),
        operand=Name(id='x', ctx=Load())))
class ast.BinOp(left, op, right)

A binary operation (like addition or division). op is the operator, and left and right are any expression nodes.

>>> print(ast.dump(ast.parse('x + y', mode='eval'), indent=4))
Expression(
    body=BinOp(
        left=Name(id='x', ctx=Load()),
        op=Add(),
        right=Name(id='y', ctx=Load())))
class ast.Add
class ast.Sub
class ast.Mult
class ast.Div
class ast.FloorDiv
class ast.Mod
class ast.Pow
class ast.LShift
class ast.RShift
class ast.BitOr
class ast.BitXor
class ast.BitAnd
class ast.MatMult

Binary operator tokens.

class ast.BoolOp(op, values)

A boolean operation, ‘or’ or ‘and’. op is Or or And. values are the values involved. Consecutive operations with the same operator, such as a or b or c, are collapsed into one node with several values.

This doesn’t include not, which is a UnaryOp.

>>> print(ast.dump(ast.parse('x or y', mode='eval'), indent=4))
Expression(
    body=BoolOp(
        op=Or(),
        values=[
            Name(id='x', ctx=Load()),
            Name(id='y', ctx=Load())]))
class ast.And
class ast.Or

Boolean operator tokens.

class ast.Compare(left, ops, comparators)

A comparison of two or more values. left is the first value in the comparison, ops the list of operators, and comparators the list of values after the first element in the comparison.

>>> print(ast.dump(ast.parse('1 <= a < 10', mode='eval'), indent=4))
Expression(
    body=Compare(
        left=Constant(value=1),
        ops=[
            LtE(),
            Lt()],
        comparators=[
            Name(id='a', ctx=Load()),
            Constant(value=10)]))
class ast.Eq
class ast.NotEq
class ast.Lt
class ast.LtE
class ast.Gt
class ast.GtE
class ast.Is
class ast.IsNot
class ast.In
class ast.NotIn

Comparison operator tokens.

class ast.Call(func, args, keywords)

A function call. func is the function, which will often be a Name or Attribute object. Of the arguments:

  • args holds a list of the arguments passed by position.

  • keywords holds a list of keyword objects representing arguments passed by keyword.

The args and keywords arguments are optional and default to empty lists.

>>> print(ast.dump(ast.parse('func(a, b=c, *d, **e)', mode='eval'), indent=4))
Expression(
    body=Call(
        func=Name(id='func', ctx=Load()),
        args=[
            Name(id='a', ctx=Load()),
            Starred(
                value=Name(id='d', ctx=Load()),
                ctx=Load())],
        keywords=[
            keyword(
                arg='b',
                value=Name(id='c', ctx=Load())),
            keyword(
                value=Name(id='e', ctx=Load()))]))
class ast.keyword(arg, value)

A keyword argument to a function call or class definition. arg is a raw string of the parameter name, value is a node to pass in.

class ast.IfExp(test, body, orelse)

An expression such as a if b else c. Each field holds a single node, so in the following example, all three are Name nodes.

>>> print(ast.dump(ast.parse('a if b else c', mode='eval'), indent=4))
Expression(
    body=IfExp(
        test=Name(id='b', ctx=Load()),
        body=Name(id='a', ctx=Load()),
        orelse=Name(id='c', ctx=Load())))
class ast.Attribute(value, attr, ctx)

Attribute access, e.g. d.keys. value is a node, typically a Name. attr is a bare string giving the name of the attribute, and ctx is Load, Store or Del according to how the attribute is acted on.

>>> print(ast.dump(ast.parse('snake.colour', mode='eval'), indent=4))
Expression(
    body=Attribute(
        value=Name(id='snake', ctx=Load()),
        attr='colour',
        ctx=Load()))
class ast.NamedExpr(target, value)

A named expression. This AST node is produced by the assignment expressions operator (also known as the walrus operator). As opposed to the Assign node in which the first argument can be multiple nodes, in this case both target and value must be single nodes.

>>> print(ast.dump(ast.parse('(x := 4)', mode='eval'), indent=4))
Expression(
    body=NamedExpr(
        target=Name(id='x', ctx=Store()),
        value=Constant(value=4)))

Added in version 3.8.

Subscripting

class ast.Subscript(value, slice, ctx)

A subscript, such as l[1]. value is the subscripted object (usually sequence or mapping). slice is an index, slice or key. It can be a Tuple and contain a Slice. ctx is Load, Store or Del according to the action performed with the subscript.

>>> print(ast.dump(ast.parse('l[1:2, 3]', mode='eval'), indent=4))
Expression(
    body=Subscript(
        value=Name(id='l', ctx=Load()),
        slice=Tuple(
            elts=[
                Slice(
                    lower=Constant(value=1),
                    upper=Constant(value=2)),
                Constant(value=3)],
            ctx=Load()),
        ctx=Load()))
class ast.Slice(lower, upper, step)

Regular slicing (on the form lower:upper or lower:upper:step). Can occur only inside the slice field of Subscript, either directly or as an element of Tuple.

>>> print(ast.dump(ast.parse('l[1:2]', mode='eval'), indent=4))
Expression(
    body=Subscript(
        value=Name(id='l', ctx=Load()),
        slice=Slice(
            lower=Constant(value=1),
            upper=Constant(value=2)),
        ctx=Load()))

Comprehensions

class ast.ListComp(elt, generators)
class ast.SetComp(elt, generators)
class ast.GeneratorExp(elt, generators)
class ast.DictComp(key, value, generators)

List and set comprehensions, generator expressions, and dictionary comprehensions. elt (or key and value) is a single node representing the part that will be evaluated for each item.

generators is a list of comprehension nodes.

>>> print(ast.dump(
...     ast.parse('[x for x in numbers]', mode='eval'),
...     indent=4,
... ))
Expression(
    body=ListComp(
        elt=Name(id='x', ctx=Load()),
        generators=[
            comprehension(
                target=Name(id='x', ctx=Store()),
                iter=Name(id='numbers', ctx=Load()),
                is_async=0)]))
>>> print(ast.dump(
...     ast.parse('{x: x**2 for x in numbers}', mode='eval'),
...     indent=4,
... ))
Expression(
    body=DictComp(
        key=Name(id='x', ctx=Load()),
        value=BinOp(
            left=Name(id='x', ctx=Load()),
            op=Pow(),
            right=Constant(value=2)),
        generators=[
            comprehension(
                target=Name(id='x', ctx=Store()),
                iter=Name(id='numbers', ctx=Load()),
                is_async=0)]))
>>> print(ast.dump(
...     ast.parse('{x for x in numbers}', mode='eval'),
...     indent=4,
... ))
Expression(
    body=SetComp(
        elt=Name(id='x', ctx=Load()),
        generators=[
            comprehension(
                target=Name(id='x', ctx=Store()),
                iter=Name(id='numbers', ctx=Load()),
                is_async=0)]))
class ast.comprehension(target, iter, ifs, is_async)

One for clause in a comprehension. target is the reference to use for each element - typically a Name or Tuple node. iter is the object to iterate over. ifs is a list of test expressions: each for clause can have multiple ifs.

is_async indicates a comprehension is asynchronous (using an async for instead of for). The value is an integer (0 or 1).

>>> print(ast.dump(ast.parse('[ord(c) for line in file for c in line]', mode='eval'),
...                indent=4)) # Multiple comprehensions in one.
Expression(
    body=ListComp(
        elt=Call(
            func=Name(id='ord', ctx=Load()),
            args=[
                Name(id='c', ctx=Load())]),
        generators=[
            comprehension(
                target=Name(id='line', ctx=Store()),
                iter=Name(id='file', ctx=Load()),
                is_async=0),
            comprehension(
                target=Name(id='c', ctx=Store()),
                iter=Name(id='line', ctx=Load()),
                is_async=0)]))

>>> print(ast.dump(ast.parse('(n**2 for n in it if n>5 if n<10)', mode='eval'),
...                indent=4)) # generator comprehension
Expression(
    body=GeneratorExp(
        elt=BinOp(
            left=Name(id='n', ctx=Load()),
            op=Pow(),
            right=Constant(value=2)),
        generators=[
            comprehension(
                target=Name(id='n', ctx=Store()),
                iter=Name(id='it', ctx=Load()),
                ifs=[
                    Compare(
                        left=Name(id='n', ctx=Load()),
                        ops=[
                            Gt()],
                        comparators=[
                            Constant(value=5)]),
                    Compare(
                        left=Name(id='n', ctx=Load()),
                        ops=[
                            Lt()],
                        comparators=[
                            Constant(value=10)])],
                is_async=0)]))

>>> print(ast.dump(ast.parse('[i async for i in soc]', mode='eval'),
...                indent=4)) # Async comprehension
Expression(
    body=ListComp(
        elt=Name(id='i', ctx=Load()),
        generators=[
            comprehension(
                target=Name(id='i', ctx=Store()),
                iter=Name(id='soc', ctx=Load()),
                is_async=1)]))

Statements

class ast.Assign(targets, value, type_comment)

An assignment. targets is a list of nodes, and value is a single node.

Multiple nodes in targets represents assigning the same value to each. Unpacking is represented by putting a Tuple or List within targets.

type_comment

type_comment is an optional string with the type annotation as a comment.

>>> print(ast.dump(ast.parse('a = b = 1'), indent=4)) # Multiple assignment
Module(
    body=[
        Assign(
            targets=[
                Name(id='a', ctx=Store()),
                Name(id='b', ctx=Store())],
            value=Constant(value=1))])

>>> print(ast.dump(ast.parse('a,b = c'), indent=4)) # Unpacking
Module(
    body=[
        Assign(
            targets=[
                Tuple(
                    elts=[
                        Name(id='a', ctx=Store()),
                        Name(id='b', ctx=Store())],
                    ctx=Store())],
            value=Name(id='c', ctx=Load()))])
class ast.AnnAssign(target, annotation, value, simple)

An assignment with a type annotation. target is a single node and can be a Name, an Attribute or a Subscript. annotation is the annotation, such as a Constant or Name node. value is a single optional node.

simple is always either 0 (indicating a “complex” target) or 1 (indicating a “simple” target). A “simple” target consists solely of a Name node that does not appear between parentheses; all other targets are considered complex. Only simple targets appear in the __annotations__ dictionary of modules and classes.

>>> print(ast.dump(ast.parse('c: int'), indent=4))
Module(
    body=[
        AnnAssign(
            target=Name(id='c', ctx=Store()),
            annotation=Name(id='int', ctx=Load()),
            simple=1)])

>>> print(ast.dump(ast.parse('(a): int = 1'), indent=4)) # Annotation with parenthesis
Module(
    body=[
        AnnAssign(
            target=Name(id='a', ctx=Store()),
            annotation=Name(id='int', ctx=Load()),
            value=Constant(value=1),
            simple=0)])

>>> print(ast.dump(ast.parse('a.b: int'), indent=4)) # Attribute annotation
Module(
    body=[
        AnnAssign(
            target=Attribute(
                value=Name(id='a', ctx=Load()),
                attr='b',
                ctx=Store()),
            annotation=Name(id='int', ctx=Load()),
            simple=0)])

>>> print(ast.dump(ast.parse('a[1]: int'), indent=4)) # Subscript annotation
Module(
    body=[
        AnnAssign(
            target=Subscript(
                value=Name(id='a', ctx=Load()),
                slice=Constant(value=1),
                ctx=Store()),
            annotation=Name(id='int', ctx=Load()),
            simple=0)])
class ast.AugAssign(target, op, value)

Augmented assignment, such as a += 1. In the following example, target is a Name node for x (with the Store context), op is Add, and value is a Constant with value for 1.

The target attribute cannot be of class Tuple or List, unlike the targets of Assign.

>>> print(ast.dump(ast.parse('x += 2'), indent=4))
Module(
    body=[
        AugAssign(
            target=Name(id='x', ctx=Store()),
            op=Add(),
            value=Constant(value=2))])
class ast.Raise(exc, cause)

A raise statement. exc is the exception object to be raised, normally a Call or Name, or None for a standalone raise. cause is the optional part for y in raise x from y.

>>> print(ast.dump(ast.parse('raise x from y'), indent=4))
Module(
    body=[
        Raise(
            exc=Name(id='x', ctx=Load()),
            cause=Name(id='y', ctx=Load()))])
class ast.Assert(test, msg)

An assertion. test holds the condition, such as a Compare node. msg holds the failure message.

>>> print(ast.dump(ast.parse('assert x,y'), indent=4))
Module(
    body=[
        Assert(
            test=Name(id='x', ctx=Load()),
            msg=Name(id='y', ctx=Load()))])
class ast.Delete(targets)

Represents a del statement. targets is a list of nodes, such as Name, Attribute or Subscript nodes.

>>> print(ast.dump(ast.parse('del x,y,z'), indent=4))
Module(
    body=[
        Delete(
            targets=[
                Name(id='x', ctx=Del()),
                Name(id='y', ctx=Del()),
                Name(id='z', ctx=Del())])])
class ast.Pass

A pass statement.

>>> print(ast.dump(ast.parse('pass'), indent=4))
Module(
    body=[
        Pass()])
class ast.TypeAlias(name, type_params, value)

A type alias created through the type statement. name is the name of the alias, type_params is a list of type parameters, and value is the value of the type alias.

>>> print(ast.dump(ast.parse('type Alias = int'), indent=4))
Module(
    body=[
        TypeAlias(
            name=Name(id='Alias', ctx=Store()),
            value=Name(id='int', ctx=Load()))])

Added in version 3.12.

Other statements which are only applicable inside functions or loops are described in other sections.

Imports

class ast.Import(names)

An import statement. names is a list of alias nodes.

>>> print(ast.dump(ast.parse('import x,y,z'), indent=4))
Module(
    body=[
        Import(
            names=[
                alias(name='x'),
                alias(name='y'),
                alias(name='z')])])
class ast.ImportFrom(module, names, level)

Represents from x import y. module is a raw string of the ‘from’ name, without any leading dots, or None for statements such as from . import foo. level is an integer holding the level of the relative import (0 means absolute import).

>>> print(ast.dump(ast.parse('from y import x,y,z'), indent=4))
Module(
    body=[
        ImportFrom(
            module='y',
            names=[
                alias(name='x'),
                alias(name='y'),
                alias(name='z')],
            level=0)])
class ast.alias(name, asname)

Both parameters are raw strings of the names. asname can be None if the regular name is to be used.

>>> print(ast.dump(ast.parse('from ..foo.bar import a as b, c'), indent=4))
Module(
    body=[
        ImportFrom(
            module='foo.bar',
            names=[
                alias(name='a', asname='b'),
                alias(name='c')],
            level=2)])

Control flow

Not

Optional clauses such as else are stored as an empty list if they’re not present.

class ast.If(test, body, orelse)

An if statement. test holds a single node, such as a Compare node. body and orelse each hold a list of nodes.

elif clauses don’t have a special representation in the AST, but rather appear as extra If nodes within the orelse section of the previous one.

>>> print(ast.dump(ast.parse("""
... if x:
...    ...
... elif y:
...    ...
... else:
...    ...
... """), indent=4))
Module(
    body=[
        If(
            test=Name(id='x', ctx=Load()),
            body=[
                Expr(
                    value=Constant(value=Ellipsis))],
            orelse=[
                If(
                    test=Name(id='y', ctx=Load()),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))],
                    orelse=[
                        Expr(
                            value=Constant(value=Ellipsis))])])])
class ast.For(target, iter, body, orelse, type_comment)

A for loop. target holds the variable(s) the loop assigns to, as a single Name, Tuple, List, Attribute or Subscript node. iter holds the item to be looped over, again as a single node. body and orelse contain lists of nodes to execute. Those in orelse are executed if the loop finishes normally, rather than via a break statement.

type_comment

type_comment is an optional string with the type annotation as a comment.

>>> print(ast.dump(ast.parse("""
... for x in y:
...     ...
... else:
...     ...
... """), indent=4))
Module(
    body=[
        For(
            target=Name(id='x', ctx=Store()),
            iter=Name(id='y', ctx=Load()),
            body=[
                Expr(
                    value=Constant(value=Ellipsis))],
            orelse=[
                Expr(
                    value=Constant(value=Ellipsis))])])
class ast.While(test, body, orelse)

A while loop. test holds the condition, such as a Compare node.

>> print(ast.dump(ast.parse("""
... while x:
...    ...
... else:
...    ...
... """), indent=4))
Module(
    body=[
        While(
            test=Name(id='x', ctx=Load()),
            body=[
                Expr(
                    value=Constant(value=Ellipsis))],
            orelse=[
                Expr(
                    value=Constant(value=Ellipsis))])])
class ast.Break
class ast.Continue

The break and continue statements.

>>> print(ast.dump(ast.parse("""\
... for a in b:
...     if a > 5:
...         break
...     else:
...         continue
...
... """), indent=4))
Module(
    body=[
        For(
            target=Name(id='a', ctx=Store()),
            iter=Name(id='b', ctx=Load()),
            body=[
                If(
                    test=Compare(
                        left=Name(id='a', ctx=Load()),
                        ops=[
                            Gt()],
                        comparators=[
                            Constant(value=5)]),
                    body=[
                        Break()],
                    orelse=[
                        Continue()])])])
class ast.Try(body, handlers, orelse, finalbody)

try blocks. All attributes are list of nodes to execute, except for handlers, which is a list of ExceptHandler nodes.

>>> print(ast.dump(ast.parse("""
... try:
...    ...
... except Exception:
...    ...
... except OtherException as e:
...    ...
... else:
...    ...
... finally:
...    ...
... """), indent=4))
Module(
    body=[
        Try(
            body=[
                Expr(
                    value=Constant(value=Ellipsis))],
            handlers=[
                ExceptHandler(
                    type=Name(id='Exception', ctx=Load()),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))]),
                ExceptHandler(
                    type=Name(id='OtherException', ctx=Load()),
                    name='e',
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))])],
            orelse=[
                Expr(
                    value=Constant(value=Ellipsis))],
            finalbody=[
                Expr(
                    value=Constant(value=Ellipsis))])])
class ast.TryStar(body, handlers, orelse, finalbody)

try blocks which are followed by except* clauses. The attributes are the same as for Try but the ExceptHandler nodes in handlers are interpreted as except* blocks rather then except.

>>> print(ast.dump(ast.parse("""
... try:
...    ...
... except* Exception:
...    ...
... """), indent=4))
Module(
    body=[
        TryStar(
            body=[
                Expr(
                    value=Constant(value=Ellipsis))],
            handlers=[
                ExceptHandler(
                    type=Name(id='Exception', ctx=Load()),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))])])])

Added in version 3.11.

class ast.ExceptHandler(type, name, body)

A single except clause. type is the exception type it will match, typically a Name node (or None for a catch-all except: clause). name is a raw string for the name to hold the exception, or None if the clause doesn’t have as foo. body is a list of nodes.

>>> print(ast.dump(ast.parse("""\
... try:
...     a + 1
... except TypeError:
...     pass
... """), indent=4))
Module(
    body=[
        Try(
            body=[
                Expr(
                    value=BinOp(
                        left=Name(id='a', ctx=Load()),
                        op=Add(),
                        right=Constant(value=1)))],
            handlers=[
                ExceptHandler(
                    type=Name(id='TypeError', ctx=Load()),
                    body=[
                        Pass()])])])
class ast.With(items, body, type_comment)

A with block. items is a list of withitem nodes representing the context managers, and body is the indented block inside the context.

type_comment

type_comment is an optional string with the type annotation as a comment.

class ast.withitem(context_expr, optional_vars)

A single context manager in a with block. context_expr is the context manager, often a Call node. optional_vars is a Name, Tuple or List for the as foo part, or None if that isn’t used.

>>> print(ast.dump(ast.parse("""\
... with a as b, c as d:
...    something(b, d)
... """), indent=4))
Module(
    body=[
        With(
            items=[
                withitem(
                    context_expr=Name(id='a', ctx=Load()),
                    optional_vars=Name(id='b', ctx=Store())),
                withitem(
                    context_expr=Name(id='c', ctx=Load()),
                    optional_vars=Name(id='d', ctx=Store()))],
            body=[
                Expr(
                    value=Call(
                        func=Name(id='something', ctx=Load()),
                        args=[
                            Name(id='b', ctx=Load()),
                            Name(id='d', ctx=Load())]))])])

Pattern matching

class ast.Match(subject, cases)

A match statement. subject holds the subject of the match (the object that is being matched against the cases) and cases contains an iterable of match_case nodes with the different cases.

Added in version 3.10.

class ast.match_case(pattern, guard, body)

A single case pattern in a match statement. pattern contains the match pattern that the subject will be matched against. Note that the AST nodes produced for patterns differ from those produced for expressions, even when they share the same syntax.

The guard attribute contains an expression that will be evaluated if the pattern matches the subject.

body contains a list of nodes to execute if the pattern matches and the result of evaluating the guard expression is true.

>>> print(ast.dump(ast.parse("""
... match x:
...     case [x] if x>0:
...         ...
...     case tuple():
...         ...
... """), indent=4))
Module(
    body=[
        Match(
            subject=Name(id='x', ctx=Load()),
            cases=[
                match_case(
                    pattern=MatchSequence(
                        patterns=[
                            MatchAs(name='x')]),
                    guard=Compare(
                        left=Name(id='x', ctx=Load()),
                        ops=[
                            Gt()],
                        comparators=[
                            Constant(value=0)]),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))]),
                match_case(
                    pattern=MatchClass(
                        cls=Name(id='tuple', ctx=Load())),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchValue(value)

A match literal or value pattern that compares by equality. value is an expression node. Permitted value nodes are restricted as described in the match statement documentation. This pattern succeeds if the match subject is equal to the evaluated value.

>>> print(ast.dump(ast.parse("""
... match x:
...     case "Relevant":
...         ...
... """), indent=4))
Module(
    body=[
        Match(
            subject=Name(id='x', ctx=Load()),
            cases=[
                match_case(
                    pattern=MatchValue(
                        value=Constant(value='Relevant')),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchSingleton(value)

A match literal pattern that compares by identity. value is the singleton to be compared against: None, True, or False. This pattern succeeds if the match subject is the given constant.

>>> print(ast.dump(ast.parse("""
... match x:
...     case None:
...         ...
... """), indent=4))
Module(
    body=[
        Match(
            subject=Name(id='x', ctx=Load()),
            cases=[
                match_case(
                    pattern=MatchSingleton(value=None),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchSequence(patterns)

A match sequence pattern. patterns contains the patterns to be matched against the subject elements if the subject is a sequence. Matches a variable length sequence if one of the subpatterns is a MatchStar node, otherwise matches a fixed length sequence.

>>> print(ast.dump(ast.parse("""
... match x:
...     case [1, 2]:
...         ...
... """), indent=4))
Module(
    body=[
        Match(
            subject=Name(id='x', ctx=Load()),
            cases=[
                match_case(
                    pattern=MatchSequence(
                        patterns=[
                            MatchValue(
                                value=Constant(value=1)),
                            MatchValue(
                                value=Constant(value=2))]),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchStar(name)

Matches the rest of the sequence in a variable length match sequence pattern. If name is not None, a list containing the remaining sequence elements is bound to that name if the overall sequence pattern is successful.

>>> print(ast.dump(ast.parse("""
... match x:
...     case [1, 2, *rest]:
...         ...
...     case [*_]:
...         ...
... """), indent=4))
Module(
    body=[
        Match(
            subject=Name(id='x', ctx=Load()),
            cases=[
                match_case(
                    pattern=MatchSequence(
                        patterns=[
                            MatchValue(
                                value=Constant(value=1)),
                            MatchValue(
                                value=Constant(value=2)),
                            MatchStar(name='rest')]),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))]),
                match_case(
                    pattern=MatchSequence(
                        patterns=[
                            MatchStar()]),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchMapping(keys, patterns, rest)

A match mapping pattern. keys is a sequence of expression nodes. patterns is a corresponding sequence of pattern nodes. rest is an optional name that can be specified to capture the remaining mapping elements. Permitted key expressions are restricted as described in the match statement documentation.

This pattern succeeds if the subject is a mapping, all evaluated key expressions are present in the mapping, and the value corresponding to each key matches the corresponding subpattern. If rest is not None, a dict containing the remaining mapping elements is bound to that name if the overall mapping pattern is successful.

>>> print(ast.dump(ast.parse("""
... match x:
...     case {1: _, 2: _}:
...         ...
...     case {**rest}:
...         ...
... """), indent=4))
Module(
    body=[
        Match(
            subject=Name(id='x', ctx=Load()),
            cases=[
                match_case(
                    pattern=MatchMapping(
                        keys=[
                            Constant(value=1),
                            Constant(value=2)],
                        patterns=[
                            MatchAs(),
                            MatchAs()]),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))]),
                match_case(
                    pattern=MatchMapping(rest='rest'),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchClass(cls, patterns, kwd_attrs, kwd_patterns)

A match class pattern. cls is an expression giving the nominal class to be matched. patterns is a sequence of pattern nodes to be matched against the class defined sequence of pattern matching attributes. kwd_attrs is a sequence of additional attributes to be matched (specified as keyword arguments in the class pattern), kwd_patterns are the corresponding patterns (specified as keyword values in the class pattern).

This pattern succeeds if the subject is an instance of the nominated class, all positional patterns match the corresponding class-defined attributes, and any specified keyword attributes match their corresponding pattern.

Note: classes may define a property that returns self in order to match a pattern node against the instance being matched. Several builtin types are also matched that way, as described in the match statement documentation.

>>> print(ast.dump(ast.parse("""
... match x:
...     case Point2D(0, 0):
...         ...
...     case Point3D(x=0, y=0, z=0):
...         ...
... """), indent=4))
Module(
    body=[
        Match(
            subject=Name(id='x', ctx=Load()),
            cases=[
                match_case(
                    pattern=MatchClass(
                        cls=Name(id='Point2D', ctx=Load()),
                        patterns=[
                            MatchValue(
                                value=Constant(value=0)),
                            MatchValue(
                                value=Constant(value=0))]),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))]),
                match_case(
                    pattern=MatchClass(
                        cls=Name(id='Point3D', ctx=Load()),
                        kwd_attrs=[
                            'x',
                            'y',
                            'z'],
                        kwd_patterns=[
                            MatchValue(
                                value=Constant(value=0)),
                            MatchValue(
                                value=Constant(value=0)),
                            MatchValue(
                                value=Constant(value=0))]),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchAs(pattern, name)

A match “as-pattern”, capture pattern or wildcard pattern. pattern contains the match pattern that the subject will be matched against. If the pattern is None, the node represents a capture pattern (i.e a bare name) and will always succeed.

The name attribute contains the name that will be bound if the pattern is successful. If name is None, pattern must also be None and the node represents the wildcard pattern.

>>> print(ast.dump(ast.parse("""
... match x:
...     case [x] as y:
...         ...
...     case _:
...         ...
... """), indent=4))
Module(
    body=[
        Match(
            subject=Name(id='x', ctx=Load()),
            cases=[
                match_case(
                    pattern=MatchAs(
                        pattern=MatchSequence(
                            patterns=[
                                MatchAs(name='x')]),
                        name='y'),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))]),
                match_case(
                    pattern=MatchAs(),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))])])])

Added in version 3.10.

class ast.MatchOr(patterns)

A match “or-pattern”. An or-pattern matches each of its subpatterns in turn to the subject, until one succeeds. The or-pattern is then deemed to succeed. If none of the subpatterns succeed the or-pattern fails. The patterns attribute contains a list of match pattern nodes that will be matched against the subject.

>>> print(ast.dump(ast.parse("""
... match x:
...     case [x] | (y):
...         ...
... """), indent=4))
Module(
    body=[
        Match(
            subject=Name(id='x', ctx=Load()),
            cases=[
                match_case(
                    pattern=MatchOr(
                        patterns=[
                            MatchSequence(
                                patterns=[
                                    MatchAs(name='x')]),
                            MatchAs(name='y')]),
                    body=[
                        Expr(
                            value=Constant(value=Ellipsis))])])])

Added in version 3.10.

Type parameters

Type parameters can exist on classes, functions, and type aliases.

class ast.TypeVar(name, bound, default_value)

A typing.TypeVar. name is the name of the type variable. bound is the bound or constraints, if any. If bound is a Tuple, it represents constraints; otherwise it represents the bound. default_value is the default value; if the TypeVar has no default, this attribute will be set to None.

>>> print(ast.dump(ast.parse("type Alias[T: int = bool] = list[T]"), indent=4))
Module(
    body=[
        TypeAlias(
            name=Name(id='Alias', ctx=Store()),
            type_params=[
                TypeVar(
                    name='T',
                    bound=Name(id='int', ctx=Load()),
                    default_value=Name(id='bool', ctx=Load()))],
            value=Subscript(
                value=Name(id='list', ctx=Load()),
                slice=Name(id='T', ctx=Load()),
                ctx=Load()))])

Added in version 3.12.

3.13 sürümünde değişti: Added the default_value parameter.

class ast.ParamSpec(name, default_value)

A typing.ParamSpec. name is the name of the parameter specification. default_value is the default value; if the ParamSpec has no default, this attribute will be set to None.

>>> print(ast.dump(ast.parse("type Alias[**P = [int, str]] = Callable[P, int]"), indent=4))
Module(
    body=[
        TypeAlias(
            name=Name(id='Alias', ctx=Store()),
            type_params=[
                ParamSpec(
                    name='P',
                    default_value=List(
                        elts=[
                            Name(id='int', ctx=Load()),
                            Name(id='str', ctx=Load())],
                        ctx=Load()))],
            value=Subscript(
                value=Name(id='Callable', ctx=Load()),
                slice=Tuple(
                    elts=[
                        Name(id='P', ctx=Load()),
                        Name(id='int', ctx=Load())],
                    ctx=Load()),
                ctx=Load()))])

Added in version 3.12.

3.13 sürümünde değişti: Added the default_value parameter.

class ast.TypeVarTuple(name, default_value)

A typing.TypeVarTuple. name is the name of the type variable tuple. default_value is the default value; if the TypeVarTuple has no default, this attribute will be set to None.

>>> print(ast.dump(ast.parse("type Alias[*Ts = ()] = tuple[*Ts]"), indent=4))
Module(
    body=[
        TypeAlias(
            name=Name(id='Alias', ctx=Store()),
            type_params=[
                TypeVarTuple(
                    name='Ts',
                    default_value=Tuple(ctx=Load()))],
            value=Subscript(
                value=Name(id='tuple', ctx=Load()),
                slice=Tuple(
                    elts=[
                        Starred(
                            value=Name(id='Ts', ctx=Load()),
                            ctx=Load())],
                    ctx=Load()),
                ctx=Load()))])

Added in version 3.12.

3.13 sürümünde değişti: Added the default_value parameter.

Function and class definitions

class ast.FunctionDef(name, args, body, decorator_list, returns, type_comment, type_params)

A function definition.

  • name is a raw string of the function name.

  • args is an arguments node.

  • body is the list of nodes inside the function.

  • decorator_list is the list of decorators to be applied, stored outermost first (i.e. the first in the list will be applied last).

  • returns is the return annotation.

  • type_params is a list of type parameters.

type_comment

type_comment is an optional string with the type annotation as a comment.

3.12 sürümünde değişti: Added type_params.

class ast.Lambda(args, body)

lambda is a minimal function definition that can be used inside an expression. Unlike FunctionDef, body holds a single node.

>>> print(ast.dump(ast.parse('lambda x,y: ...'), indent=4))
Module(
    body=[
        Expr(
            value=Lambda(
                args=arguments(
                    args=[
                        arg(arg='x'),
                        arg(arg='y')]),
                body=Constant(value=Ellipsis)))])
class ast.arguments(posonlyargs, args, vararg, kwonlyargs, kw_defaults, kwarg, defaults)

The arguments for a function.

  • posonlyargs, args and kwonlyargs are lists of arg nodes.

  • vararg and kwarg are single arg nodes, referring to the *args, **kwargs parameters.

  • kw_defaults is a list of default values for keyword-only arguments. If one is None, the corresponding argument is required.

  • defaults is a list of default values for arguments that can be passed positionally. If there are fewer defaults, they correspond to the last n arguments.

class ast.arg(arg, annotation, type_comment)

A single argument in a list. arg is a raw string of the argument name; annotation is its annotation, such as a Name node.

type_comment

type_comment is an optional string with the type annotation as a comment

>>> print(ast.dump(ast.parse("""\
... @decorator1
... @decorator2
... def f(a: 'annotation', b=1, c=2, *d, e, f=3, **g) -> 'return annotation':
...     pass
... """), indent=4))
Module(
    body=[
        FunctionDef(
            name='f',
            args=arguments(
                args=[
                    arg(
                        arg='a',
                        annotation=Constant(value='annotation')),
                    arg(arg='b'),
                    arg(arg='c')],
                vararg=arg(arg='d'),
                kwonlyargs=[
                    arg(arg='e'),
                    arg(arg='f')],
                kw_defaults=[
                    None,
                    Constant(value=3)],
                kwarg=arg(arg='g'),
                defaults=[
                    Constant(value=1),
                    Constant(value=2)]),
            body=[
                Pass()],
            decorator_list=[
                Name(id='decorator1', ctx=Load()),
                Name(id='decorator2', ctx=Load())],
            returns=Constant(value='return annotation'))])
class ast.Return(value)

A return statement.

>>> print(ast.dump(ast.parse('return 4'), indent=4))
Module(
    body=[
        Return(
            value=Constant(value=4))])
class ast.Yield(value)
class ast.YieldFrom(value)

A yield or yield from expression. Because these are expressions, they must be wrapped in an Expr node if the value sent back is not used.

>>> print(ast.dump(ast.parse('yield x'), indent=4))
Module(
    body=[
        Expr(
            value=Yield(
                value=Name(id='x', ctx=Load())))])

>>> print(ast.dump(ast.parse('yield from x'), indent=4))
Module(
    body=[
        Expr(
            value=YieldFrom(
                value=Name(id='x', ctx=Load())))])
class ast.Global(names)
class ast.Nonlocal(names)

global and nonlocal statements. names is a list of raw strings.

>>> print(ast.dump(ast.parse('global x,y,z'), indent=4))
Module(
    body=[
        Global(
            names=[
                'x',
                'y',
                'z'])])

>>> print(ast.dump(ast.parse('nonlocal x,y,z'), indent=4))
Module(
    body=[
        Nonlocal(
            names=[
                'x',
                'y',
                'z'])])
class ast.ClassDef(name, bases, keywords, body, decorator_list, type_params)

A class definition.

  • name is a raw string for the class name

  • bases is a list of nodes for explicitly specified base classes.

  • keywords is a list of keyword nodes, principally for ‘metaclass’. Other keywords will be passed to the metaclass, as per PEP 3115.

  • body is a list of nodes representing the code within the class definition.

  • decorator_list is a list of nodes, as in FunctionDef.

  • type_params is a list of type parameters.

>>> print(ast.dump(ast.parse("""\
... @decorator1
... @decorator2
... class Foo(base1, base2, metaclass=meta):
...     pass
... """), indent=4))
Module(
    body=[
        ClassDef(
            name='Foo',
            bases=[
                Name(id='base1', ctx=Load()),
                Name(id='base2', ctx=Load())],
            keywords=[
                keyword(
                    arg='metaclass',
                    value=Name(id='meta', ctx=Load()))],
            body=[
                Pass()],
            decorator_list=[
                Name(id='decorator1', ctx=Load()),
                Name(id='decorator2', ctx=Load())])])

3.12 sürümünde değişti: Added type_params.

Async and await

class ast.AsyncFunctionDef(name, args, body, decorator_list, returns, type_comment, type_params)

An async def function definition. Has the same fields as FunctionDef.

3.12 sürümünde değişti: Added type_params.

class ast.Await(value)

An await expression. value is what it waits for. Only valid in the body of an AsyncFunctionDef.

>>> print(ast.dump(ast.parse("""\
... async def f():
...     await other_func()
... """), indent=4))
Module(
    body=[
        AsyncFunctionDef(
            name='f',
            args=arguments(),
            body=[
                Expr(
                    value=Await(
                        value=Call(
                            func=Name(id='other_func', ctx=Load()))))])])
class ast.AsyncFor(target, iter, body, orelse, type_comment)
class ast.AsyncWith(items, body, type_comment)

async for loops and async with context managers. They have the same fields as For and With, respectively. Only valid in the body of an AsyncFunctionDef.

Not

When a string is parsed by ast.parse(), operator nodes (subclasses of ast.operator, ast.unaryop, ast.cmpop, ast.boolop and ast.expr_context) on the returned tree will be singletons. Changes to one will be reflected in all other occurrences of the same value (e.g. ast.Add).

ast Helpers

Apart from the node classes, the ast module defines these utility functions and classes for traversing abstract syntax trees:

ast.parse(source, filename='<unknown>', mode='exec', *, type_comments=False, feature_version=None, optimize=-1)

Parse the source into an AST node. Equivalent to compile(source, filename, mode, flags=FLAGS_VALUE, optimize=optimize), where FLAGS_VALUE is ast.PyCF_ONLY_AST if optimize <= 0 and ast.PyCF_OPTIMIZED_AST otherwise.

If type_comments=True is given, the parser is modified to check and return type comments as specified by PEP 484 and PEP 526. This is equivalent to adding ast.PyCF_TYPE_COMMENTS to the flags passed to compile(). This will report syntax errors for misplaced type comments. Without this flag, type comments will be ignored, and the type_comment field on selected AST nodes will always be None. In addition, the locations of # type: ignore comments will be returned as the type_ignores attribute of Module (otherwise it is always an empty list).

In addition, if mode is 'func_type', the input syntax is modified to correspond to PEP 484 “signature type comments”, e.g. (str, int) -> List[str].

Setting feature_version to a tuple (major, minor) will result in a “best-effort” attempt to parse using that Python version’s grammar. For example, setting feature_version=(3, 9) will attempt to disallow parsing of match statements. Currently major must equal to 3. The lowest supported version is (3, 7) (and this may increase in future Python versions); the highest is sys.version_info[0:2]. “Best-effort” attempt means there is no guarantee that the parse (or success of the parse) is the same as when run on the Python version corresponding to feature_version.

If source contains a null character (\0), ValueError is raised.

Uyarı

Note that successfully parsing source code into an AST object doesn’t guarantee that the source code provided is valid Python code that can be executed as the compilation step can raise further SyntaxError exceptions. For instance, the source return 42 generates a valid AST node for a return statement, but it cannot be compiled alone (it needs to be inside a function node).

In particular, ast.parse() won’t do any scoping checks, which the compilation step does.

Uyarı

It is possible to crash the Python interpreter with a sufficiently large/complex string due to stack depth limitations in Python’s AST compiler.

3.8 sürümünde değişti: Added type_comments, mode='func_type' and feature_version.

3.13 sürümünde değişti: The minimum supported version for feature_version is now (3, 7). The optimize argument was added.

ast.unparse(ast_obj)

Unparse an ast.AST object and generate a string with code that would produce an equivalent ast.AST object if parsed back with ast.parse().

Uyarı

The produced code string will not necessarily be equal to the original code that generated the ast.AST object (without any compiler optimizations, such as constant tuples/frozensets).

Uyarı

Trying to unparse a highly complex expression would result with RecursionError.

Added in version 3.9.

ast.literal_eval(node_or_string)

Evaluate an expression node or a string containing only a Python literal or container display. The string or node provided may only consist of the following Python literal structures: strings, bytes, numbers, tuples, lists, dicts, sets, booleans, None and Ellipsis.

This can be used for evaluating strings containing Python values without the need to parse the values oneself. It is not capable of evaluating arbitrarily complex expressions, for example involving operators or indexing.

This function had been documented as “safe” in the past without defining what that meant. That was misleading. This is specifically designed not to execute Python code, unlike the more general eval(). There is no namespace, no name lookups, or ability to call out. But it is not free from attack: A relatively small input can lead to memory exhaustion or to C stack exhaustion, crashing the process. There is also the possibility for excessive CPU consumption denial of service on some inputs. Calling it on untrusted data is thus not recommended.

Uyarı

It is possible to crash the Python interpreter due to stack depth limitations in Python’s AST compiler.

It can raise ValueError, TypeError, SyntaxError, MemoryError and RecursionError depending on the malformed input.

3.2 sürümünde değişti: Now allows bytes and set literals.

3.9 sürümünde değişti: Now supports creating empty sets with 'set()'.

3.10 sürümünde değişti: For string inputs, leading spaces and tabs are now stripped.

ast.get_docstring(node, clean=True)

Return the docstring of the given node (which must be a FunctionDef, AsyncFunctionDef, ClassDef, or Module node), or None if it has no docstring. If clean is true, clean up the docstring’s indentation with inspect.cleandoc().

3.5 sürümünde değişti: AsyncFunctionDef is now supported.

ast.get_source_segment(source, node, *, padded=False)

Get source code segment of the source that generated node. If some location information (lineno, end_lineno, col_offset, or end_col_offset) is missing, return None.

If padded is True, the first line of a multi-line statement will be padded with spaces to match its original position.

Added in version 3.8.

ast.fix_missing_locations(node)

When you compile a node tree with compile(), the compiler expects lineno and col_offset attributes for every node that supports them. This is rather tedious to fill in for generated nodes, so this helper adds these attributes recursively where not already set, by setting them to the values of the parent node. It works recursively starting at node.

ast.increment_lineno(node, n=1)

Increment the line number and end line number of each node in the tree starting at node by n. This is useful to “move code” to a different location in a file.

ast.copy_location(new_node, old_node)

Copy source location (lineno, col_offset, end_lineno, and end_col_offset) from old_node to new_node if possible, and return new_node.

ast.iter_fields(node)

Yield a tuple of (fieldname, value) for each field in node._fields that is present on node.

ast.iter_child_nodes(node)

Yield all direct child nodes of node, that is, all fields that are nodes and all items of fields that are lists of nodes.

ast.walk(node)

Recursively yield all descendant nodes in the tree starting at node (including node itself), in no specified order. This is useful if you only want to modify nodes in place and don’t care about the context.

class ast.NodeVisitor

A node visitor base class that walks the abstract syntax tree and calls a visitor function for every node found. This function may return a value which is forwarded by the visit() method.

This class is meant to be subclassed, with the subclass adding visitor methods.

visit(node)

Visit a node. The default implementation calls the method called self.visit_classname where classname is the name of the node class, or generic_visit() if that method doesn’t exist.

generic_visit(node)

This visitor calls visit() on all children of the node.

Note that child nodes of nodes that have a custom visitor method won’t be visited unless the visitor calls generic_visit() or visits them itself.

visit_Constant(node)

Handles all constant nodes.

Don’t use the NodeVisitor if you want to apply changes to nodes during traversal. For this a special visitor exists (NodeTransformer) that allows modifications.

3.8 sürümünden beri kullanım dışı: Methods visit_Num(), visit_Str(), visit_Bytes(), visit_NameConstant() and visit_Ellipsis() are deprecated now and will not be called in future Python versions. Add the visit_Constant() method to handle all constant nodes.

class ast.NodeTransformer

A NodeVisitor subclass that walks the abstract syntax tree and allows modification of nodes.

The NodeTransformer will walk the AST and use the return value of the visitor methods to replace or remove the old node. If the return value of the visitor method is None, the node will be removed from its location, otherwise it is replaced with the return value. The return value may be the original node in which case no replacement takes place.

Here is an example transformer that rewrites all occurrences of name lookups (foo) to data['foo']:

class RewriteName(NodeTransformer):

    def visit_Name(self, node):
        return Subscript(
            value=Name(id='data', ctx=Load()),
            slice=Constant(value=node.id),
            ctx=node.ctx
        )

Keep in mind that if the node you’re operating on has child nodes you must either transform the child nodes yourself or call the generic_visit() method for the node first.

For nodes that were part of a collection of statements (that applies to all statement nodes), the visitor may also return a list of nodes rather than just a single node.

If NodeTransformer introduces new nodes (that weren’t part of original tree) without giving them location information (such as lineno), fix_missing_locations() should be called with the new sub-tree to recalculate the location information:

tree = ast.parse('foo', mode='eval')
new_tree = fix_missing_locations(RewriteName().visit(tree))

Usually you use the transformer like this:

node = YourTransformer().visit(node)
ast.dump(node, annotate_fields=True, include_attributes=False, *, indent=None, show_empty=False)

Return a formatted dump of the tree in node. This is mainly useful for debugging purposes. If annotate_fields is true (by default), the returned string will show the names and the values for fields. If annotate_fields is false, the result string will be more compact by omitting unambiguous field names. Attributes such as line numbers and column offsets are not dumped by default. If this is wanted, include_attributes can be set to true.

If indent is a non-negative integer or string, then the tree will be pretty-printed with that indent level. An indent level of 0, negative, or "" will only insert newlines. None (the default) selects the single line representation. Using a positive integer indent indents that many spaces per level. If indent is a string (such as "\t"), that string is used to indent each level.

If show_empty is False (the default), empty lists and fields that are None will be omitted from the output.

3.9 sürümünde değişti: Added the indent option.

3.13 sürümünde değişti: Added the show_empty option.

>>> print(ast.dump(ast.parse("""\
... async def f():
...     await other_func()
... """), indent=4, show_empty=True))
Module(
    body=[
        AsyncFunctionDef(
            name='f',
            args=arguments(
                posonlyargs=[],
                args=[],
                kwonlyargs=[],
                kw_defaults=[],
                defaults=[]),
            body=[
                Expr(
                    value=Await(
                        value=Call(
                            func=Name(id='other_func', ctx=Load()),
                            args=[],
                            keywords=[])))],
            decorator_list=[],
            type_params=[])],
    type_ignores=[])

Compiler Flags

The following flags may be passed to compile() in order to change effects on the compilation of a program:

ast.PyCF_ALLOW_TOP_LEVEL_AWAIT

Enables support for top-level await, async for, async with and async comprehensions.

Added in version 3.8.

ast.PyCF_ONLY_AST

Generates and returns an abstract syntax tree instead of returning a compiled code object.

ast.PyCF_OPTIMIZED_AST

The returned AST is optimized according to the optimize argument in compile() or ast.parse().

Added in version 3.13.

ast.PyCF_TYPE_COMMENTS

Enables support for PEP 484 and PEP 526 style type comments (# type: <type>, # type: ignore <stuff>).

Added in version 3.8.

ast.compare(a, b, /, *, compare_attributes=False)

Recursively compares two ASTs.

compare_attributes affects whether AST attributes are considered in the comparison. If compare_attributes is False (default), then attributes are ignored. Otherwise they must all be equal. This option is useful to check whether the ASTs are structurally equal but differ in whitespace or similar details. Attributes include line numbers and column offsets.

Added in version 3.14.

Command-Line Usage

Added in version 3.9.

The ast module can be executed as a script from the command line. It is as simple as:

python -m ast [-m <mode>] [-a] [infile]

The following options are accepted:

-h, --help

Show the help message and exit.

-m <mode>
--mode <mode>

Specify what kind of code must be compiled, like the mode argument in parse().

--no-type-comments

Don’t parse type comments.

-a, --include-attributes

Include attributes such as line numbers and column offsets.

-i <indent>
--indent <indent>

Indentation of nodes in AST (number of spaces).

If infile is specified its contents are parsed to AST and dumped to stdout. Otherwise, the content is read from stdin.

Ayrıca bakınız

Green Tree Snakes, an external documentation resource, has good details on working with Python ASTs.

ASTTokens annotates Python ASTs with the positions of tokens and text in the source code that generated them. This is helpful for tools that make source code transformations.

leoAst.py unifies the token-based and parse-tree-based views of python programs by inserting two-way links between tokens and ast nodes.

LibCST parses code as a Concrete Syntax Tree that looks like an ast tree and keeps all formatting details. It’s useful for building automated refactoring (codemod) applications and linters.

Parso is a Python parser that supports error recovery and round-trip parsing for different Python versions (in multiple Python versions). Parso is also able to list multiple syntax errors in your Python file.