The Python/C API
Yayim 3.12.9

Guido van Rossum and the Python development team

Nisan 08, 2025

Python Software Foundation
Email: docs@python.org

icindekiler

Introduction 3
.1 Codingstandards e e e e e e e e e 3
1.2 Include Files e 3
1.3 Useful macros o o e e e e e e e e 4
1.4 Objects, Types and Reference Counts it 7

1.4.1 Reference Counts i i e e e e e 7

LA2 TYPES . v o o e e e e e e e e e e e e e e e e 10
1.5 EXCeptions o i e e e e e e e e e e e 10
1.6 Embedding Python e 12
1.7 Debugging Builds 13
C API Stability 15
2.1 Unstable CAPL o e e e 15
2.2 Stable Application Binary Interface L Lo 15

22.1 Limited CAPL e 16

222 Stable ABL. 16

2.2.3 Limited API Scope and Performance 16

224 Limited API Caveats i i e e e e e 17
2.3 Platform Considerations it e e e e e e 17
2.4 Contents of Limited API e 17
The Very High Level Layer 41
Reference Counting 47
Exception Handling 51
5.1 Printingand clearing L L e e e e e e e e e e e e e 51
5.2 RaiSing eXCeptions o e e e e e e e e e e e e 52
5.3 Issuing warningsol e e e e e e e 55
54 Querying the error indicator e e e 55
55 SignalHandling e 59
5.6 ExXxception Classes v v v v v i i e e e e e e e e e e e e e e e e e e e 60
5.7 Exception ObJECts o v i e e e e e e e e e e e e e e e e 60
5.8 Unicode Exception Objects e 61
5.9 Recursion Control e e e e e e 62
5.10 Standard Exceptions e e e e e e 63
5.11 Standard Warning Categories v v v v v i i e e e e e e e e e e e e e e e e e 64
Utilities 65
6.1 Operating System Utilities o e 65
6.2 System Functions e e e e e e e e e e e 68

6.3 Process Control e e e e 70
6.4 Importing Modules e e e e e e e e e e e 70
6.5 Datamarshalling support L e e e e e e e e 74
6.6 Parsing arguments and building values 0oL oo 75
6.6.1 Parsing arguments e e e e e e e e e e e 75
6.6.2 Buildingvalues e 81
6.7 String conversion and formatting L L. oL L e e e 83
6.8 PyHash API e 85
6.9 Reflection. e 85
6.10 Codec registry and support functions oL Lo 86
6.10.1 Codeclookup API. e 86
6.10.2 Registry API for Unicode encoding error handlers 87
6.11 Supportfor Perf Maps o o e e e e e 88
Abstract Objects Layer 89
7.1 ObjectProtocol e e e e e e e e e e e e 89
7.2 Call Protocol e e 94
7.2.1 Thetp_call Protocol e e e 94
7.2.2 The Vectorcall Protocol e 94
7.23 ObjectCalling APT e 96
7.2.4 Call Support APT o e e 99
7.3 Number Protocol e e 99
7.4 Sequence Protocol e 102
7.5 Mapping Protocol e 104
7.6 Tterator Protocol L 105
7.7 Buffer Protocol e 106
7.7.1 Bufferstructure e e 106
7.77.2 Bufferrequest types i i e e e e e e e e e e e e e 108
7773 Complex arrays e e e e e e e e e e 110
7.7.4 Buffer-related functions Lo e 111
7.8 Old Buffer Protocol 112
Concrete Objects Layer 115
8.1 Fundamental Objects e 115
8.1.1 Type ObJects o v i i e e e e e e 115
8.1.2 TheNone Object o o i i i i ittt e e e e 121
8.2 Numeric ObJeCtS o vt i e e e e e e e e e e e e e 121
8.2.1 Integer Objects i i e e e e e e e 121
822 Boolean Objects L 125
8.2.3 Floating-Point Objects e 125
8.2.4 Complex Number Objects o i i e e e e e e 127
8.3 Sequence ObJECtS i it e e e e e e e e e e e 129
83.1 BytesObjects e e 129
832 Byte Array Objects 130
8.3.3 Unicode Objectsand Codecs oot ittt 131
834 Tuple ObJects o v e e e e e e e e e e e e e e 149
8.3.5 StructSequence Objectso e e e e e e e e e e e 150
8.3.6 ListObjects i i e e e e e e e e e e 152
8.4 Container Objects L e e 153
8.4.1 Dictionary Objects e e e e e 153
8.4.2 SetODbjects i e e e e 157
8.5 Function ObJects o v i e e e e e e e e e e e e e e e 158
8.5.1 Function Objects o . i e e e e e e e e e 158
8.5.2 Imstance Method Objects 161
853 Method Objects e 161
854 CellObjects v v v v e e e 161
8.5.5 Code ObJeCts . . . v v v i i e e e e e e e e e e e e e e e 162
8.5.6 Extrainformation 165

8.6 Other ODJECtS v v v i e 166
8.6.1 FileObjects e e e 166

8.6.2 Module Objects e e e e e e e e 167

8.6.3 Tterator Objects e 175

8.6.4 Descriptor Objects e e e e 175

8.6.5 Slice ObJects v i e e e e e 176

8.6.6 MemoryView Objects e e e e e e e e e e e e e 177

8.6.7 Weak Reference Objects o 0 i i e e 178

8.6.8 Capsules e e e e e 179

8.69 FrameObjects L 180
8.6.10 Generator ObJects v v vt e e e e e e e 182

8.6.11 Coroutine ObJects v v v it e e e e e e e e e e e e e e e 183
8.6.12 Context Variables Objects o o v it e e e e e e 183
8.6.13 DateTime Objects e e 185
8.6.14 Objects for Type Hinting o 188

9 Initialization, Finalization, and Threads 191
9.1 Before Python Initialization e 191
9.2 Global configuration variables L. oL 192
9.3 Initializing and finalizing the interpreter o o oo 195
9.4 Process-wide parameters v . v i e 196
9.5 Thread State and the Global Interpreter Lock 200
9.5.1 Releasing the GIL from extensioncode 200

9.5.2 Non-Pythoncreated threads, 201

9.5.3 Cautions about fork() e e 201

9.54 High-level APT e 202

955 Low-level APL e 204

0.6 Sub-interpreter SUPPOTt v v v v o e 207
9.6.1 APer-Interpreter GIL 209

9.6.2 Bugsandcaveats e 210

9.7 Asynchronous Notifications 210
9.8 Profilingand Tracing e e e e e e e e e e e e e 211
9.9 Advanced Debugger SUPPOTt e e e e e e e 212
9.10 Thread Local Storage Support e e 213
9.10.1 Thread Specific Storage (TSS) APT 213
9.10.2 Thread Local Storage (TLS) APT 214

10 Python Initialization Configuration 217
10.1 Example e e e e e e e 217
10.2 PyWideStringLLiSt oL e 218
10.3 PyStatus o e e e e e e e 218
10.4 PyPreConfig e e e 220
10.5 Preinitialize Python with PyPreConfig 221
10.6 PyConfig e e e e e e 222
10.7 Initialization with PyConfig 233
10.8 Isolated Configuration o i it e e e e 234
10.9 Python Configuration e e e e e 235
10.10 Python Path Configuration e e 235
10.11 Py_RunMain() o oo e e e 236
10.12 Py_GetArgcArgv() o o e e e 236
10.13 Multi-Phase Initialization Private Provisional APT 236
11 Memory Management 239
TLL OVEIVIEW . . . o vttt e e e e e e e e e e e e e 239
11.2 Allocator Domains o o v vt e e e e e e e e e 240
11.3 Raw Memory Interface e e e e e 240
11.4 Memory Interface o L e e e e e e 241
11.5 Objectallocators o i e e e e e e 242
11.6 Default Memory Allocators oo i e e 243

12

13

11.7 Customize Memory Allocators o o ittt e e e e
11.8 Debug hooks on the Python memory allocators
11.9 The pymalloc allocator o . o o e e e e e e e

11.9.1 Customize pymalloc Arena Allocator
11.10 tracemalloc C APL e
I1.11 Examples oo oo e e e e

Object Implementation Support

12.1 Allocating Objectsonthe Heap e

12.2 Common Object STIUCTUIES v v v v v i i e e e e e et e e e e e e e e e e
12.2.1 Base object types and MaCIOS v v v v v v v e e e e e e e e e e e e e
12.2.2 Implementing functions and methods
12.2.3 Accessing attributes of extension typeso

12.3 Type Object Structures v v v v it et e e e e e e e e e e e e
12.3.1 Quick Reference e e
12.3.2 PyTypeObject Definition e
12.3.3 PyObject SIots o v v e e e e e e e e e e e
12.3.4 PyVarObject SIots o e
12.3.5 PyTypeObject SIots o o o e e e e
123.6 Static Types o o v i e e e
12377 Heap TYPes . . . o o v i i e e e e e e e e e e e
12.3.8 Number Object Structures v v v i i e e e e e e e e e
12.3.9 Mapping Object Structures v v vttt e e e e e e
12.3.10 Sequence Object Structures L
12.3.11 Buffer Object Structures vttt e e e
12.3.12 Async Object Structures o o vt e e e e
12.3.13 Slot Type typedefs o o e e e e e e e
12.3.14 Examples o e e e e e e e e e e e

12.4 Supporting Cyclic Garbage Collection
12.4.1 Controlling the Garbage Collector State
12.4.2 Querying Garbage Collector State

API and ABI Versioning
Sozlitk

About this documentation
B.1 Contributors to the Python documentation

Tarihge ve Lisans

C.l1 Yazilimmtarihgesi o o e e e e e e e e e e e e e e e e

C.2 Pythona erigsmek veya bagka bir sekilde kullanmak i¢in sartlar ve kogullar
C.2.1 PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2
C.2.2 PYTHON 2.0 ICIN BEOPEN.COM LISANS SOZLESMESI
C2.3 PYTHON 1.6.1 ICIN CNRILISANS ANLASMASI
C2.4 0.9.0 ARASI 1.2 PYTHON ICIN CWI LISANS SOZLESMESI
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON DOCUMENTATION .

C.3 Tiizel Yazilimlar i¢in Lisanslar ve Onaylar o it iie o
C.3.1 Mersenne TWISIEI'T o v v v i i e e e e e e e e e e e e e e
C.3.2 Soketler e e e e
C.3.3 Asenkronsokethizmetleri. L
C34 CerezyOnetimi v v v v ittt e e e e e e e
C.3.5 Cahstirmaizleme L e e e e e e e e e e
C.3.6 UUencode ve UUdecode fonksiyonlart
C3.7 XML Uzaktan Yordam Cagrilart
C.3.8 test_epoll L e e e
C39 KQUeUESECIN v o it e e e e e e e
C3.10 SipHash24 e e e
C3.01 strtodvedtoa e e e e

249
249
250
250
252
255
258
259
263
264
265
265
284
285
285
287
287
288
289
290
291
294
296
297

299

301

C3.12
C3.13
C3.14
C3.15
C3.16
C3.17
C3.18
C.3.19
C.3.20

D Telif Hakki

Dizin

EXPAL . v o e 333
LbEfi . . e 333
ZHb e 334
cfuhash e e 334
libmpdec e 335
W3C CI4Ntestpaketi o o v i i e e e e e e e e e e e e e e e e 335
Audioop L e e e e e 336
ASYNCIO + v v v o e e e e e e e e e e e e e e e e e e 336

339

341

Vi

The Python/C API, Yayim 3.12.9

Bu kilavuz, genisletme modiilleri yazmak veya Python'u gommek isteyen C ve C++ programcilar tarafindan kul-
lanilan APT'yi belgelemektedir. Uzant1 yazmanin genel ilkelerini agiklayan ancak API islevlerini ayrintili olarak
belgelemeyen extending-index’in tamamlayicisidir.

icindekiler 1

The Python/C API, Yayim 3.12.9

2 icindekiler

BOLUM 1

Introduction

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter
at a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension
modules for specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to as embedding Python in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether youre embedding or extending Python; moreover, most
applications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to
become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards
If you’re writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7.

These guidelines apply regardless of the version of Python you are contributing to. Following these conventions is
not necessary for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#define PY_ SSIZE_T CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>, <limits.h>,
<assert.h>and <stdlib.h> (if available).

O Not

https://peps.python.org/pep-0007/

The Python/C API, Yayim 3.12.9

Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python . h before any standard headers are included.

It is recommended to always define PY_SSTZE_T_CLEAN before including Python.h. See Parsing arguments
and building values for a description of this macro.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be
used by extension writers. Structure member names do not have a reserved prefix.

O Not

User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes the
portability of the user code to future Python versions, which may define additional names beginning with one of
these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix are
defined by the corresponding parameters to Python’s configure script and version is '%$d.%d' % sys.
version_info[:2]. On Windows, the headers are installed in prefix/include, where prefix is the installa-
tion directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers
from exec_prefix.

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry
points to be extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.

PyMODINIT_FUNC

Declare an extension module PyInit initialization function. The function return type is PyoObject*. The
macro declares any special linkage declarations required by the platform, and for C++ declares the function as
extern "C".

The initialization function must be named PyInit_name, where name is the name of the module, and should
be the only non-static item defined in the module file. Example:

static struct PyModuleDef spam_module = {
PyModuleDef HEAD_INIT,
.m_name = "spam",

bi

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spam_module) ;

Py_ABS (X)

Return the absolute value of x.

4 Boliim 1. Introduction

The Python/C API, Yayim 3.12.9

Added in version 3.3.

Py_ALWAYS_INLINE
Ask the compiler to always inline a static inline function. The compiler can ignore it and decides to not inline
the function.

It can be used to inline performance critical static inline functions when building Python in debug mode with
function inlining disabled. For example, MSC disables function inlining when building in debug mode.

Marking blindly a static inline function with Py_ ALWAYS_INLINE can result in worse performances (due
to increased code size for example). The compiler is usually smarter than the developer for the cost/benefit
analysis.

If Python is built in debug mode (if the Py_DEBUG macro is defined), the Py _ALWAYS INLINE macro does
nothing.

It must be specified before the function return type. Usage:

[static inline Py_ALWAYS_INLINE int random(void) { return 4; }

Added in version 3.11.

Py CHARMASK (C)

Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to
an unsigned char.

Py_DEPRECATED (version)
Use this for deprecated declarations. The macro must be placed before the symbol name.

Example:

[Py_DEPRECATED (3.8) PyAPI_FUNC (int) Py_OldFunction (void) ;

3.8 siiriimiinde degisti: MSVC support was added.

Py_GETENV (S)
Like getenv(s), but returns NULL if -E was passed on the command line (see PyConfig.

use_environment).
Py_MAX(X,Yy)
Return the maximum value between x and y.

Added in version 3.3.
Py_MEMBER_SIZE (type, member)
Return the size of a structure (t ype) member in bytes.
Added in version 3.6.
Py_MIN (X, y)
Return the minimum value between x and y.

Added in version 3.3.

Py_NO_INLINE

Disable inlining on a function. For example, it reduces the C stack consumption: useful on LTO+PGO builds
which heavily inline code (see bpo-33720).

Usage:

Py_NO_INLINE static int random(void) { return 4; }

Added in version 3.11.

1.3. Useful macros 5

https://bugs.python.org/issue?@action=redirect&bpo=33720

The Python/C API, Yayim 3.12.9

Py_STRINGIFY (X)
Convert x to a C string. E.g. Py _STRINGIFY (123) returns "123".

Added in version 3.4.

Py UNREACHABLE ()

Use this when you have a code path that cannot be reached by design. For example, in the default: clause
in a switch statement for which all possible values are covered in case statements. Use this in places where
you might be tempted to put an assert (0) or abort () call.

In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable
code. For example, the macro is implemented with __ builtin_unreachable () on GCC in release mode.

A use for py_UNREACHABLE () is following a call a function that never returns but that is not declared
_Py_NO_RETURN.

If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used.
For example, under low memory condition or if a system call returns a value out of the expected range. In this
case, it’s better to report the error to the caller. If the error cannot be reported to caller, Py_FatalError ()
can be used.

Added in version 3.7.

Py_UNUSED (arg)

Use this for unused arguments in a function definition to silence compiler warnings. Example: int func (int
a, int Py_UNUSED (b)) { return a; }.

Added in version 3.4.

PyDoc_STRVAR (name, Str)

Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the
value will be empty.

Use PyDoc_STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
/) ooo
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
//

PyDoc_STR (Str)

Creates a docstring for the given input string or an empty string if docstrings are disabled.

Use PyDoc_ STR in specifying docstrings to support building Python without docstrings, as specified in PEP
7.

Example:

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR ("Returns the keys of the row.")},
{NULL, NULL}
i

6 Boliim 1. Introduction

https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/

The Python/C API, Yayim 3.12.9

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type Pyobject*. This type
is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated
the same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it
is only fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you
never declare an automatic or static variable of type PyObject, only pointer variables of type PyObject* can be
declared. The sole exception are the type objects; since these must never be deallocated, they are typically static
PyTypeObject objects.

All Python objects (even Python integers) have a rype and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of
the well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check (a)
is true if (and only if) the object pointed to by a is a Python list.

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size;
it counts how many different places there are that have a strong reference to an object. Such a place could be another
object, or a global (or static) C variable, or a local variable in some C function. When the last strong reference to an
object is released (i.e. its reference count becomes zero), the object is deallocated. If it contains references to other
objects, those references are released. Those other objects may be deallocated in turn, if there are no more references
to them, and so on. (There’s an obvious problem with objects that reference each other here; for now, the solution is
“don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py ITNCREF () to take a new
reference to an object (i.e. increment its reference count by one), and Py_DECREF () to release that reference (i.e.
decrement the reference count by one). The Py_DECREF () macro is considerably more complex than the incref one,
since it must check whether the reference count becomes zero and then cause the object’s deallocator to be called. The
deallocator is a function pointer contained in the object’s type structure. The type-specific deallocator takes care of
releasing references for other objects contained in the object if this is a compound object type, such as a list, as well as
performing any additional finalization that’s needed. There’s no chance that the reference count can overflow; at least
as many bits are used to hold the reference count as there are distinct memory locations in virtual memory (assuming
sizeof (Py_ssize_t) > = sizeof (void*)). Thus, the reference count increment is a simple operation.

It is not necessary to hold a strong reference (i.e. increment the reference count) for every local variable that contains
a pointer to an object. In theory, the object’s reference count goes up by one when the variable is made to point to
it and it goes down by one when the variable goes out of scope. However, these two cancel each other out, so at the
end the reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from
being deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the
object that lives at least as long as our variable, there is no need to take a new strong reference (i.e. increment the
reference count) temporarily. An important situation where this arises is in objects that are passed as arguments to C
functions in an extension module that are called from Python; the call mechanism guarantees to hold a reference to
every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without taking a new
reference. Some other operation might conceivably remove the object from the list, releasing that reference, and
possibly deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code which
could do this; there is a code path which allows control to flow back to the user from a Py_DECREF (), so almost any
operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber._,
PySequence_ or PyMapping_). These operations always create a new strong reference (i.e. increment the reference
count) of the object they return. This leaves the caller with the responsibility to call Py_DECREF () when they are
done with the result; this soon becomes second nature.

1.4. Objects, Types and Reference Counts 7

The Python/C API, Yayim 3.12.9

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a refe-
rence” means being responsible for calling Py DECREF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually releasing it by calling Py DECREF () or Py_XDECREF () when it’s no longer needed—or passing on this
responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing
needs to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals
a reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that
function assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were
designed to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for
example, the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for
the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New (3);
PyTuple_SetItem(t, 0, PyLong_FromLong(lL));
PyTuple_SetItem

3

t

t, 1, PyLong_FromLong(2L));
PyTuple_SetItem(t

(
(
(
(

, 2, PyUnicode_FromString("three"));

Here, PyLong FromLong () returns a new reference which is immediately stolen by PyTuple SetItem(). When
you want to keep using an object although the reference to it will be stolen, use pPy_INCREF () to grab another
reference before calling the reference-stealing function.

Incidentally, pPyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
pyTuple_SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_Buildvalue (), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject *tuple, *1list;

tuple = Py_BuildvValue (" (iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
references is much saner, since you don’t have to take a new reference just so you can give that reference away (“have
it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, nj;

n = PyObject_Length (target) ;
if (n < 0)
return -1;

(sonraki sayfaya devam)

8 Boliim 1. Introduction

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)
for (i = 0; 1 < n; i++) {
PyObject *index = PyLong_FromSsize_t (i);
if (!index)
return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
}

return O;

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references,
like PyObject_GetItem() and PySequence_GetItem (), always return a new reference (the caller becomes the
owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage (the type of the object passed as an argument to the function) doesn’t enter into it! Thus, if you
extract an item from a list using PyList_GetItem (), you don’t own the reference — but if you obtain the same
item from the same list using PySequence_GetItem () (which happens to take exactly the same arguments), you
do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
using PyList_GetItem (), and once using PySequence_GetItem().

long

sum_list (PyObject *1list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check (item)) continue; /* Skip non-integers */
value = PyLong_AsLong (item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}

return total;

long

sum_sequence (PyObject *sequence)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

(sonraki sayfaya devam)

1.4. Objects, Types and Reference Counts 9

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong (item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

type Py_ssize_t
Bir parcast Kararli ABI. A signed integral type such that sizeof (Py_ssize_t) == sizeof (size_t).
C99 doesn’t define such a thing directly (size_t is an unsigned integral type). See PEP 353 for details.
PY_SSIZE_T_MAX is the largest positive value of type Py _ssize t.

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled excep-
tions are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level
interpreter, where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator.
If not documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few
functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error
indicator or have an ambiguous return value, and require explicit testing for errors with PyErr Occurred (). These
exceptions are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred ()
can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, and NULL otherwise. There are a number of functions to set the exception state: PyErr SetString () is
the most common (though not the most general) function to set the exception state, and PyErr Clear () clears the
exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; howe-
ver, they are not the same: the Python objects represent the last exception being handled by a Python try ... except

10 Boliim 1. Introduction

https://peps.python.org/pep-0353/

The Python/C API, Yayim 3.12.9

statement, while the C level exception state only exists while an exception is being passed on between C functions
until it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info ()
and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code
is to call the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it should not set another exception — that would overwrite the exception
that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It
so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict [key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))

goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0OL) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;
(sonraki sayfaya devam)

1.5. Exceptions 11

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)
rv = 0; /* Success */
/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item) ;

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches () and PyErr Clear() to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X' in the name; Py_DECREF () would
crash when confronted with a NULL reference). It is important that the variables used to hold owned references are
initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to
success after the final call made is successful.

1.6 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, main__, and sys. It also initializes the module search path (sys.path).

Py_Initialize () doesnotsetthe “scriptargumentlist” (sys.argv). If this variable is needed by Python code that
will be executed later, setting PyConfig.argv and PyConfig.parse_argv must be set: see Python Initialization
Configuration.

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py _Initialize () calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory named 1ib/pythonX. Y relative to the parent directory
where the executable named python is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in
/usr/local/lib/pythonX. Y. (Infact, this particular path is also the “fallback” location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calling Py SetProgramName (file) before calling
Py Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front
of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath (), Py_GetPrefix(), Py_GetExecPrefix(),and Py _GetProgramFullPath () (all defined in
Modules/getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another
callto Py_Initialize ()) or the application is simply done with its use of Python and wants to free memory allo-
cated by Python. This can be accomplished by calling Py_FinalizeEx (). The function Py IsInitialized()
returns true if Python is currently in the initialized state. More information about these functions is given in a later
chapter. Notice that Py_FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory
allocated by extension modules currently cannot be released.

12 Boliim 1. Introduction

The Python/C API, Yayim 3.12.9

1.7 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
level profiling of the main interpreter loop. Only the most frequently used builds will be described in the remainder
of this section.

Py_DEBUG

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by a debug build of
Python. Py_DEBUG is enabled in the Unix build by adding --with-pydebug to the ./configure command. It
is also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the Unix
build, compiler optimization is disabled.

In addition to the reference count debugging described below, extra checks are performed, see Python Debug Build.

Defining Py_TRACE_REFS enables reference tracing (see the configure --with-trace-refs option). When
defined, a circular doubly linked list of active objects is maintained by adding two extra fields to every PyObject.
Total allocations are tracked as well. Upon exit, all existing references are printed. (In interactive mode this happens
after every statement run by the interpreter.)

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

1.7. Debugging Builds 13

The Python/C API, Yayim 3.12.9

14 Boliim 1. Introduction

BOLUM 2

C API Stability

Unless documented otherwise, Python’s C API is covered by the Backwards Compatibility Policy, PEP 387. Most
changes to it are source-compatible (typically by only adding new API). Changing existing API or removing API is
only done after a deprecation period or to fix serious issues.

CPython’s Application Binary Interface (ABI) is forward- and backwards-compatible across a minor release (if these
are compiled the same way; see Platform Considerations below). So, code compiled for Python 3.10.0 will work on
3.10.8 and vice versa, but will need to be compiled separately for 3.9.x and 3.11.x.

There are two tiers of C API with different stability expectations:

o Unstable API, may change in minor versions without a deprecation period. It is marked by the PyUnstable
prefix in names.

« Limited API, is compatible across several minor releases. When py 1.7M17ED_APT is defined, only this subset
is exposed from Python.h.

These are discussed in more detail below.

Names prefixed by an underscore, such as _Py_InternalState, are private API that can change without notice
even in patch releases. If you need to use this API, consider reaching out to CPython developers to discuss adding
public API for your use case.

2.1 Unstable C API

Any API named with the PyUnstable prefix exposes CPython implementation details, and may change in every
minor release (e.g. from 3.9 to 3.10) without any deprecation warnings. However, it will not change in a bugfix release
(e.g. from 3.10.0 to 3.10.1).

It is generally intended for specialized, low-level tools like debuggers.

Projects that use this API are expected to follow CPython development and spend extra effort adjusting to changes.

2.2 Stable Application Binary Interface

For simplicity, this document talks about extensions, but the Limited API and Stable ABI work the same way for all
uses of the API - for example, embedding Python.

15

https://peps.python.org/pep-0387/
https://discuss.python.org/c/core-dev/c-api/30

The Python/C API, Yayim 3.12.9

2.2.1 Limited C API

Python 3.2 introduced the Limited API, a subset of Python’s C API. Extensions that only use the Limited API can be
compiled once and be loaded on multiple versions of Python. Contents of the Limited API are listed below.

Py_LIMITED_API

Define this macro before including Python . h to opt in to only use the Limited API, and to select the Limited
API version.

Define Py_LIMITED_API to the value of Py VERSION HEX corresponding to the lowest Python version your
extension supports. The extension will be ABI-compatible with all Python 3 releases from the specified one
onward, and can use Limited API introduced up to that version.

Rather than using the PY_ VERSION_HEX macro directly, hardcode a minimum minor version (e.g.
0x030A0000 for Python 3.10) for stability when compiling with future Python versions.

You can also define Py_LIMITED_APTI to 3. This works the same as 0x03020000 (Python 3.2, the version
that introduced Limited API).

2.2.2 Stable ABI

To enable this, Python provides a Stable ABI: a set of symbols that will remain ABI-compatible across Python 3.x
versions.

O Not

The Stable ABI prevents ABI issues, like linker errors due to missing symbols or data corruption due to changes in
structure layouts or function signatures. However, other changes in Python can change the behavior of extensions.
See Python’s Backwards Compatibility Policy (PEP 387) for details.

The Stable ABI contains symbols exposed in the Limited API, but also other ones — for example, functions necessary
to support older versions of the Limited APIL.

On Windows, extensions that use the Stable ABI should be linked against python3. d11 rather than a version-specific
library such as python39.d11.

On some platforms, Python will look for and load shared library files named with the abi3 tag (e.g. mymodule.
abi3.so). It does not check if such extensions conform to a Stable ABI. The user (or their packaging tools) need to
ensure that, for example, extensions built with the 3.10+ Limited API are not installed for lower versions of Python.

All functions in the Stable ABI are present as functions in Python’s shared library, not solely as macros. This makes
them usable from languages that don’t use the C preprocessor.

2.2.3 Limited API Scope and Performance

The goal for the Limited API is to allow everything that is possible with the full C API, but possibly with a perfor-
mance penalty.

For example, while pyList_GetItem/() is available, its “unsafe” macro variant PyList_GET ITEM() is not. The
macro can be faster because it can rely on version-specific implementation details of the list object.

Without py_LIMITED_API defined, some C API functions are inlined or replaced by macros. Defining
Py LIMITED_API disables this inlining, allowing stability as Python’s data structures are improved, but possibly
reducing performance.

By leaving out the Py_LIMITED_API definition, it is possible to compile a Limited API extension with a version-
specific ABI. This can improve performance for that Python version, but will limit compatibility. Compiling with
py_LIMITED_API will then yield an extension that can be distributed where a version-specific one is not available
— for example, for prereleases of an upcoming Python version.

16 Bo6lim 2. C API Stability

https://peps.python.org/pep-0387/

The Python/C API, Yayim 3.12.9

2.2.4 Limited API Caveats

Note that compiling with Py_ LIMITED_APT is not a complete guarantee that code conforms to the Limited API or
the Stable ABI. py_LIMITED_API only covers definitions, but an API also includes other issues, such as expected
semantics.

One issue that Py_LIMITED_API does not guard against is calling a function with arguments that are invalid in a
lower Python version. For example, consider a function that starts accepting NULL for an argument. In Python 3.9,
NULL now selects a default behavior, but in Python 3.8, the argument will be used directly, causing a NULL dereference
and crash. A similar argument works for fields of structs.

Another issue is that some struct fields are currently not hidden when Py _LIMITED_APTI is defined, even though
they’re part of the Limited API.

For these reasons, we recommend testing an extension with all minor Python versions it supports, and preferably to
build with the lowest such version.

We also recommend reviewing documentation of all used API to check if it is explicitly part of the Limited API. Even
withpy LIMITED_API defined, a few private declarations are exposed for technical reasons (or even unintentionally,
as bugs).

Also note that the Limited API is not necessarily stable: compiling with Py_1L.IMITED_API with Python 3.8 means
that the extension will run with Python 3.12, but it will not necessarily compile with Python 3.12. In particular, parts
of the Limited API may be deprecated and removed, provided that the Stable ABI stays stable.

2.3 Platform Considerations

ABI stability depends not only on Python, but also on the compiler used, lower-level libraries and compiler options.
For the purposes of the Stable ABI, these details define a “platform”. They usually depend on the OS type and
processor architecture

It is the responsibility of each particular distributor of Python to ensure that all Python versions on a particular
platform are built in a way that does not break the Stable ABI. This is the case with Windows and macOS releases
from python.org and many third-party distributors.

2.4 Contents of Limited API

Currently, the Limited API includes the following items:

e PY VECTORCALL_ARGUMENTS_OFFSET

PyAIter_Check ()

PyArg_Parse()

PyArg_ParseTuple ()

PyArg ParseTupleAndKeywords ()

PyArg_UnpackTuple ()

PyArg_VaParse ()

PyArg_VaParseTupleAndKeywords ()

PyArg ValidateKeywordArguments ()

PyBaseObject_Type

PyBool_FromLong ()

PyBool_Type

PyBuffer_ FillContiguousStrides ()

2.3. Platform Considerations 17

The Python/C API, Yayim 3.12.9

PyBuffer FillInfo()
PyBuffer FromContiguous ()
PyBuffer_GetPointer ()
PyBuffer_IsContiguous ()
PyBuffer Release ()
PyBuffer SizeFromFormat ()
PyBuffer_ToContiguous ()
PyByteArraylIter_Type
PyByteArray_AsString/()
PyByteArray_Concat ()
PyByteArray_FromObject ()
PyByteArray_ FromStringAndSize ()
PyByteArray_Resize ()
PyByteArray_Size ()
PyByteArray_Type
PyBytesIter_ Type
PyBytes_AsString()
PyBytes_AsStringAndSize ()
PyBytes_Concat ()
PyBytes_ConcatAndDel ()
PyBytes_DecodeEscape ()
PyBytes_FromFormat ()
PyBytes_FromFormatV ()
PyBytes_FromObject ()
PyBytes_FromString ()
PyBytes_FromStringAndSize ()
PyBytes_Repr ()
PyBytes_Size ()
PyBytes_Type

PyCFunction
PyCFunctionWithKeywords
PyCFunction_Call ()
PyCFunction_GetFlags ()
PyCFunction_GetFunction ()
PyCFunction_GetSelf ()
PyCFunction_New ()
PyCFunction_NewEXx ()
PyCFunction_Type

PyCMethod_New ()

18

Boliim 2. C API Stability

The Python/C API, Yayim 3.12.9

e PyCallIter_ New/()

e PyCalllter_Type

e PyCallable_Check()

e PyCapsule_Destructor

e PyCapsule_GetContext ()

e PyCapsule_GetDestructor ()

e PyCapsule_GetName ()

e PyCapsule_GetPointer()

e PyCapsule_Import ()

e PyCapsule_IsValid()

e PyCapsule_New ()

e PyCapsule_SetContext ()

e PyCapsule_SetDestructor ()

e PyCapsule_SetName ()

e PyCapsule_SetPointer()

e PyCapsule_Type

e PyClassMethodDescr_Type

e PyCodec_BackslashReplaceErrors ()
e PyCodec_Decode ()

e PyCodec_Decoder ()

e PyCodec_Encode ()

e PyCodec_Encoder ()

e PyCodec_IgnoreErrors ()

e PyCodec_IncrementalDecoder ()
e PyCodec_IncrementalEncoder ()
e PyCodec_KnownEncoding ()

e PyCodec_LookupError ()

e PyCodec_NameReplaceErrors ()
e PyCodec_Register()

e PyCodec_RegisterError ()

e PyCodec_ReplaceErrors ()

e PyCodec_StreamReader ()

e PyCodec_StreamiWriter ()

e PyCodec_StrictErrors()

e PyCodec_Unregister ()

e PyCodec_XMLCharRefReplaceErrors ()
e PyComplex_FromDoubles ()

e PyComplex_ImagAsDouble ()

e PyComplex_RealAsDouble ()

2.4. Contents of Limited API 19

The Python/C API, Yayim 3.12.9

PyComplex_Type
PyDescr_NewClassMethod ()
PyDescr_NewGetSet ()
PyDescr_NewMember ()
PyDescr_NewMethod ()
PyDictItems_Type
PyDictIterItem_ Type
PyDictIterKey_Type
PyDictIterValue_Type
PyDictKeys_Type
PyDictProxy_New ()
PyDictProxy_Type
PyDictRevIterItem_Type
PyDictRevIterKey_Type
PyDictRevIterValue_Type
PyDictValues_Type
PyDict_Clear ()
PyDict_Contains ()
PyDict_Copy ()
PyDict_DelItem()
PyDict_DelItemString /()
PyDict_GetItem()
PyDict_GetItemString/()
PyDict_GetItemWithError ()
PyDict_Items ()
PyDict_Keys ()
PyDict_Merge ()
PyDict_MergeFromSeqgZ2 ()
PyDict_New/()
PyDict_Next ()
PyDict_SetItem()
PyDict_SetItemString/()
PyDict_Size()
PyDict_Type
PyDict_Update ()
PyDict_Values ()
PyEllipsis_Type
PyEnum_Type

PyErr_BadArgument ()

20

Boliim 2. C API Stability

The Python/C API, Yayim 3.12.9

e PyErr BadInternalCall ()

e PyErr CheckSignals ()

e PyErr Clear()

e PyErr Display ()

e PyErr DisplayException()

e PyErr ExceptionMatches ()

e PyErr Fetch()

e PyErr Format ()

e PyErr FormatV()

e PyErr GetExcInfo()

e PyErr GetHandledException ()

e PyErr GetRaisedException ()

e PyErr GivenExceptionMatches ()

e PyErr NewException ()

e PyErr NewExceptionWithDoc ()

e PyErr_ NoMemory ()

e PyErr NormalizeException/()

e PyErr Occurred/()

e PyErr Print ()

e PyErr PrintEx()

e PyErr ProgramText ()

e PyErr ResourceWarning()

e PyErr Restore()

e PyErr SetExcFromWindowsErr ()

e PyErr SetExcFromWindowsErrWithFilename ()
e PyErr SetExcFromWindowsErrWithFilenameObject ()
e PyErr SetExcFromWindowsErrWithFilenameObjects ()
e PyErr SetExcInfo()

e PyErr SetFromErrno()

e PyErr SetFromErrnoWithFilename ()

e PyErr SetFromErrnoWithFilenameObject ()
e PyErr SetFromErrnoWithFilenameObjects ()
e PyErr SetFromWindowsErr ()

e PyErr SetFromWindowsErrWithFilename ()

e PyErr SetHandledException ()

e PyErr SetImportError ()

e PyErr SetImportErrorSubclass ()

e PyErr SetInterrupt ()

e PyErr SetInterruptEx()

2.4. Contents of Limited API 21

The Python/C API, Yayim 3.12.9

e PyErr_ SetNone ()

e PyErr SetObject ()

e PyErr SetRaisedException ()
e PyErr SetString/()

e PyErr SyntaxLocation ()

e PyErr SyntaxLocationEx ()
e PyErr WarnEx ()

e PyErr WarnExplicit ()

e PyErr WarnFormat ()

e PyErr WriteUnraisable ()
e PyEval_AcquireLock ()

e PyEval_AcquireThread()

e PyEval_CallFunction ()

e PyEval_CallMethod()

e PyEval_CallObjectWithKeywords ()
e PyEval_EvalCode ()

e PyEval_ EvalCodeEx ()

e PyEval_ EvalFrame ()

e PyEval_FEvalFrameEx ()

e PyEval_GetBuiltins ()

e PyEval_ GetFrame ()

e PyEval_GetFuncDesc ()

e PyEval_GetFuncName ()

e PyEval_GetGlobals ()

e PyEval_ GetLocals ()

e PyEval_InitThreads ()

e PyEval_ReleaseLock ()

e PyEval ReleaseThread()

e PyEval_ RestoreThread()

e PyEval_SaveThread/()

e PyEval_ ThreadsInitialized()
e PyExc_ArithmeticError

e PyExc_AssertionError

e PyExc_AttributeError

e PyExc_BaseException

e PyExc_BaseExceptionGroup
e PyExc_BlockingIOError

e PyExc_BrokenPipeError

e PyExc_BufferError

22 Boliim 2. C API Stability

The Python/C API, Yayim 3.12.9

e PyExc_BytesWarning

e PyExc_ChildProcessError

e PyExc_ConnectionAbortedError
e PyExc_ConnectionError

e PyExc_ConnectionRefusedError
e PyExc_ConnectionResetError
e PyExc_DeprecationWarning

e PyExc_EOFError

e PyExc_EncodingWarning

e PyExc_EnvironmentError

e PyExc_Exception

e PyExc_FileExistsError

e PyExc_FileNotFoundError

e PyExc_FloatingPointError

e PyExc_FutureWarning

e PyExc_GeneratorExit

e PyExc_IOError

e PyExc_ImportError

e PyExc_ImportWarning

e PyExc_IndentationError

e PyExc_IndexError

e PyExc_InterruptedError

e PyExc_IsADirectoryError

e PyExc_KeyError

e PyExc_KeyboardInterrupt

e PyExc_LookupError

e PyExc_MemoryError

e PyExc_ModuleNotFoundError
e PyExc_NameError

e PyExc_NotADirectoryError

e PyExc_NotImplementedError
e PyExc_OSError

e PyExc_OverflowError

e PyExc_PendingDeprecationWarning
e PyExc_PermissionError

e PyExc_ProcessLookupError

e PyExc_RecursionError

e PyExc_ReferenceError

e PyExc_ResourceWarning

2.4. Contents of Limited API 23

The Python/C API, Yayim 3.12.9

PyExc_RuntimeError
PyExc_RuntimeWarning
PyExc_StopAsynclteration
PyExc_Stoplteration
PyExc_SyntaxError
PyExc_SyntaxWarning
PyExc_SystemError
PyExc_SystemExit
PyExc_TabError
PyExc_TimeoutError
PyExc_TypeError
PyExc_UnboundLocalError
PyExc_UnicodeDecodeError
PyExc_UnicodeEncodeError

PyExc_UnicodeError

PyExc_UnicodeTranslateError

PyExc_UnicodeWarning
PyExc_UserWarning
PyExc_ValueError
PyExc_Warning
PyExc_WindowsError
PyExc_ZeroDivisionError
PyExceptionClass_Name ()
PyException_GetArgs ()
PyException_GetCause ()
PyException_GetContext ()
PyException_GetTraceback ()
PyException_SetArgs ()
PyException_SetCause ()
PyException_SetContext ()
PyException_SetTraceback ()
PyFile FromFd()
PyFile_GetLine()
PyFile_WriteObject ()
PyFile WriteString/()
PyFilter_Type
PyFloat_AsDouble ()
PyFloat_FromDouble ()

PyFloat_FromString/()

24

Bo6lim 2. C API Stability

The Python/C API, Yayim 3.12.9

e PyFloat_GetInfo/()

e PyFloat_GetMax ()

e PyFloat_GetMin ()

e PyFloat_Type

e PyFrameObject

e PyFrame_GetCode ()

e PyFrame_GetLineNumber ()

e PyFrozenSet_New ()

e PyFrozenSet_Type

e PyGC_Collect ()

e PyGC_Disable()

e PyGC_Enable ()

e PyGC_IsEnabled()

e PyGILState_Ensure ()

e PyGILState GetThisThreadState ()
e PyGILState_Release()

e PyGILState_ STATE

e PyGetSetDef

e PyGetSetDescr_Type

e PyImport_AddModule ()

e PyImport_AddModuleObject ()

e PyImport_AppendInittab ()

e PyImport_ExecCodeModule ()

e PyImport_ExecCodeModuleEx ()

e PyImport_ExecCodeModuleObject ()
e PyImport_ExecCodeModuleWithPathnames ()
e PyImport_GetImporter ()

e PyImport_GetMagicNumber ()

e PyImport_GetMagicTag()

e PyImport_GetModule ()

e PyImport_GetModuleDict ()

e PyImport_Import ()

e PyImport_ImportFrozenModule ()

e PyImport_ImportFrozenModuleObject ()
e PyImport_ImportModule ()

e PyImport_ImportModuleLevel ()

e PyImport_ImportModuleLevelObject ()
e PyImport_ImportModuleNoBlock ()

e PyImport_ReloadModule ()

2.4. Contents of Limited API 25

The Python/C API, Yayim 3.12.9

PyIndex_Check ()
PyInterpreterState
PyInterpreterState_Clear ()
PyInterpreterState_Delete()
PyInterpreterState_Get ()
PyInterpreterState_GetDict ()
PyInterpreterState_GetID()
PyInterpreterState_New ()
PyIter_Check ()
PyIter_Next ()

PyIter_Send()
PyListIter_Type
PyListRevIter_Type
PyList_Append()
PyList_AsTuple ()
PyList_GetItem()
PyList_GetSlice()
PyList_Insert ()
PyList_New()
PyList_Reverse()
PyList_SetItem()
PyList_SetSlice ()
PyList_Size()

PyList_Sort ()

PyList_Type

PyLongObject
PyLongRangeIter_Type
PyLong_AsDouble ()
PyLong_AsLong ()
PyLong_AsLongAndOverflow ()
PyLong_AsLongLong ()
PyLong_AsLongLongAndOverflow()
PyLong AsSize_t ()
PyLong_AsSsize_t ()
PyLong_AsUnsignedLong ()
PyLong_AsUnsignedLongLong ()
PyLong_AsUnsignedLongLongMask ()
PyLong_AsUnsignedLongMask ()

PyLong_AsVoidPtr ()

26

Béliim 2. C API Stability

The Python/C API, Yayim 3.12.9

e PyLong FromDouble ()

e PyLong_ FromLong ()

e PyLong FromLongLong ()

e PyLong _FromSize_t ()

e PyLong_ FromSsize_t ()

e PyLong FromString ()

e PyLong_FromUnsignedLong ()
e PyLong_FromUnsignedLongLong ()
e PyLong_ FromVoidPtr ()

e PyLong _GetInfo/()

e PyLong Type

e PyMap_Type

e PyMapping_Check ()

e PyMapping_GetItemString ()
e PyMapping_HasKey ()

e PyMapping_HasKeyString/()
e PyMapping_Items ()

e PyMapping_Keys ()

e PyMapping_Length ()

e PyMapping_SetItemString ()
e PyMapping_Size ()

e PyMapping_Values ()

e PyMem Calloc ()

e PyMem Free()

e PyMem Malloc ()

e PyMem Realloc ()

e PyMemberDef

e PyMemberDescr_Type

e PyMember_GetOne ()

e PyMember_SetOne ()

e PyMemoryView_FromBuffer ()
e PyMemoryView_FromMemory ()
e PyMemoryView_FromObject ()
e PyMemoryView_GetContiguous ()
e PyMemoryView_Type

e PyMethodDef

e PyMethodDescr_Type

e PyModuleDef

e PyModuleDef_ Base

2.4. Contents of Limited API 27

The Python/C API, Yayim 3.12.9

e PyModuleDef_ Init ()

e PyModuleDef_ Type

e PyModule AddFunctions ()

e PyModule_ AddIntConstant ()

e PyModule_AddObject ()

e PyModule_ AddObjectRef ()

e PyModule_AddStringConstant ()
e PyModule AddType ()

e PyModule_Createl()

e PyModule_ ExecDef ()

e PyModule_ FromDefAndSpecZ2 ()

e PyModule_ GetDef ()

e PyModule_GetDict ()

e PyModule_GetFilename ()

e PyModule_GetFilenameObject ()
e PyModule_GetName ()

e PyModule_GetNameObject ()

e PyModule_GetState()

e PyModule_ New ()

e PyModule_NewObject ()

e PyModule_SetDocString()

e PyModule_ Type

e PyNumber_ Absolute ()

e PyNumber_Add ()

e PyNumber_And ()

e PyNumber_AsSsize_t ()

e PyNumber_Check ()

e PyNumber_Divmod ()

e PyNumber_Float ()

e PyNumber_FloorDivide ()

e PyNumber_InPlaceAdd()

e PyNumber_InPlaceAnd()

e PyNumber_InPlaceFloorDivide ()
e PyNumber_InPlaceLshift ()

e PyNumber_InPlaceMatrixMultiply ()
e PyNumber_InPlaceMultiply ()

e PyNumber_InPlaceOr ()

e PyNumber_InPlacePower ()

e PyNumber_InPlaceRemainder ()

28

Béliim 2. C API Stability

The Python/C API, Yayim 3.12.9

e PyNumber_InPlaceRshift ()
e PyNumber_InPlaceSubtract ()
e PyNumber_InPlaceTrueDivide ()
e PyNumber_InPlaceXor ()

e PyNumber_Index ()

e PyNumber_Invert ()

e PyNumber_Long ()

e PyNumber_ Lshift ()

e PyNumber_ MatrixMultiply ()
e PyNumber_ Multiply ()

e PyNumber_Negative ()

e PyNumber_ Or ()

e PyNumber_ Positive()

e PyNumber_Power ()

e PyNumber_Remainder ()

e PyNumber_Rshift ()

e PyNumber_Subtract ()

e PyNumber_ToBase ()

e PyNumber_ TrueDivide ()

e PyNumber_Xor ()

e PyOS_AfterFork ()

e PyOS_AfterFork_Child()

e PyOS_AfterFork_Parent ()
e PyOS_BeforeFork ()

e PyOS_CheckStack ()

e PyOS_FSPath ()

e PyOS_InputHook

e PyOS_InterruptOccurred()
e PyOS_double_to_string()
e PyOS_getsig()

e PyOS_mystricmp ()

e PyOS_mystrnicmp ()

e PyOS_setsig()

e PyOS_sighandler_t

e PyOS_snprintf ()

e PyOS_string_to_double ()
e PyOS_strtol()

e PyOS_strtoul ()

e PyOS_vsnprintf ()

2.4. Contents of Limited API 29

The Python/C API, Yayim 3.12.9

e PyObject

e PyObject.ob_refcnt

e PyObject.ob_type

e PyObject_ASCII()

e PyObject_AsCharBuffer ()

e PyObject_AsFileDescriptor()
e PyObject_AsReadBuffer()

e PyObject_AsWriteBuffer ()

e PyObject_Bytes ()

e PyObject_Call/()

e PyObject_CallFunction()

e PyObject_CallFunctionObjArgs ()
e PyObject_CallMethod()

e PyObject_CallMethodObjArgs ()
e PyObject_CallNoArgs ()

e PyObject_CallObject ()

e PyObject_Calloc/()

e PyObject_CheckBuffer()

e PyObject_CheckReadBuffer ()
e PyObject_ClearWeakRefs ()

e PyObject_CopyData ()

e PyObject_DelItem()

e PyObject_DelltemString/()

e PyObject_Dir ()

e PyObject_Format ()

e PyObject_Free()

e PyObject_GC_Del ()

e PyObject_GC_IsFinalized()
e PyObject_GC_IsTracked()

e PyObject_GC_Track ()

e PyObject_GC_UnTrack ()

e PyObject_GenericGetAttr ()
e PyObject_GenericGetDict ()
e PyObject_GenericSetAttr ()
e PyObject_GenericSetDict ()
e PyObject_GetAIter ()

e PyObject_GetAttr()

e PyObject_GetAttrString()

e PyObject_GetBuffer()

30 Béliim 2. C API Stability

The Python/C API, Yayim 3.12.9

e PyObject_GetItem()

e PyObject_GetIter()

e PyObject_GetTypeData ()

e PyObject_HasAttr ()

e PyObject_HasAttrString/()
e PyObject_Hash ()

e PyObject_HashNotImplemented()
e PyObject_Init()

e PyObject_InitVar()

e PyObject_IsInstance()

e PyObject_IsSubclass ()

e PyObject_IsTrue /()

e PyObject_Length ()

e PyObject_Malloc ()

e PyObject_Not ()

e PyObject_Realloc()

e PyObject_Repr()

e PyObject_RichCompare ()

e PyObject_RichCompareBool ()
e PyObject_SelfIter()

e PyObject_SetAttr()

e PyObject_SetAttrString()
e PyObject_SetItem()

e PyObject_Size()

e PyObject_Str()

e PyObject_Type ()

e PyObject_Vectorcall ()

e PyObject_VectorcallMethod()
e PyProperty_ Type

e PyRangelIter_Type

e PyRange_Type

e PyReversed_Type

e PySeqlter_New/()

e PySeqglter_Type

e PySequence_Check ()

e PySequence_Concat ()

e PySequence_Contains()

e PySequence_Count ()

e PySequence_DelItem()

2.4. Contents of Limited API 31

The Python/C API, Yayim 3.12.9

PySequence_DelSlice()
PySequence_Fast ()
PySequence_GetItem()
PySequence_GetSlice()
PySequence_In ()
PySequence_InPlaceConcat ()
PySequence_InPlaceRepeat ()
PySequence_Index ()
PySequence_Length ()
PySequence_List ()
PySequence_Repeat ()
PySequence_SetItem()
PySequence_SetSlice ()
PySequence_Size ()
PySequence_Tuple ()
PySetIter_ Type

PySet_Add ()

PySet_Clear ()
PySet_Contains ()
PySet_Discard/()
PySet_New ()

PySet_Pop ()

PySet_Size()

PySet_Type

PySlice AdjustIndices ()
PySlice GetIndices()
PySlice_GetIndicesEx ()
PySlice_New ()

PySlice_Type
PySlice_Unpack ()
PyState_AddModule ()
PyState_FindModule ()
PyState_RemoveModule ()
PyStructSequence_Desc
PyStructSequence_Field
PyStructSequence_GetItem()
PyStructSequence_New ()
PyStructSequence_NewType ()

PyStructSequence_SetItem()

32

Béliim 2. C API Stability

The Python/C API, Yayim 3.12.9

e PyStructSequence_UnnamedField
e PySuper_Type

e PySys_AddWarnOption ()

e PySys_AddWarnOptionUnicode ()
e PySys_AddXOption()

e PySys_FormatStderr ()

e PySys_FormatStdout ()

e PySys_GetObject ()

e PySys_GetXOptions()

e PySys_HasWarnOptions ()

e PySys_ResetWarnOptions ()

e PySys_SetArgv ()

e PySys_SetArgvEx ()

e PySys_SetObject ()

e PySys_SetPath()

e PySys_WriteStderr ()

e PySys_WriteStdout ()

e PyThreadState

e PyThreadState_Clear ()

e PyThreadState_Delete ()

e PyThreadState_Get ()

e PyThreadState_GetDict ()

e PyThreadState_GetFrame ()

e PyThreadState_GetID()

e PyThreadState_GetInterpreter()
e PyThreadState_New ()

e PyThreadState_SetAsyncExc ()
e PyThreadState_Swap ()

e PyThread_GetInfo ()

e PyThread ReInitTLS ()

e PyThread_acquire_lock ()

e PyThread_acquire_lock_timed()
e PyThread_allocate_lock()

e PyThread_ create_key()

e PyThread_delete_key ()

e PyThread _delete_key_value ()
e PyThread_exit_thread()

e PyThread_free_lock()

e PyThread _get_key_value ()

2.4. Contents of Limited API 33

The Python/C API, Yayim 3.12.9

PyThread_get_stacksize ()

PyThread_get_thread_ident ()

PyThread_get_thread_native_id()

PyThread_init_thread()
PyThread_release_lock ()
PyThread_set_key_value/()
PyThread_set_stacksize ()
PyThread_start_new_thread()
PyThread_tss_alloc()
PyThread_tss_create ()
PyThread_tss_delete ()
PyThread_tss_free()
PyThread_tss_get ()
PyThread_ tss_1is_created()
PyThread_tss_set ()
PyTraceBack_Here ()
PyTraceBack_Print ()
PyTraceBack_Type
PyTuplelter_Type
PyTuple_GetItem()
PyTuple_GetSlice ()
PyTuple_New ()
PyTuple_Pack ()
PyTuple_SetItem()
PyTuple_Size()
PyTuple_Type

PyTypeObject
PyType_ClearCache ()
PyType_FromMetaclass ()
PyType_FromModuleAndSpec ()
PyType_FromSpec ()
PyType_FromSpecWithBases ()
PyType_GenericAlloc ()
PyType_GenericNew ()
PyType_GetFlags ()
PyType_GetModule ()
PyType_GetModuleState ()
PyType_GetName ()

PyType_GetQualName ()

34

Boliim 2. C API Stability

The Python/C API, Yayim 3.12.9

PyType_GetSlot ()
PyType_GetTypeDataSize ()
PyType_IsSubtype ()
PyType_Modified()

PyType_Ready ()

PyType_Slot

PyType_Spec

PyType_Type
PyUnicodeDecodeError_Create()
PyUnicodeDecodeError_GetEncoding ()
PyUnicodeDecodeError_GetEnd()
PyUnicodeDecodeError_GetObject ()
PyUnicodeDecodeError_GetReason ()
PyUnicodeDecodeError_GetStart ()
PyUnicodeDecodeError_SetEnd()
PyUnicodeDecodeError_SetReason ()
PyUnicodeDecodeError_SetStart ()
PyUnicodeEncodeError_GetEncoding ()
PyUnicodeEncodeError_GetEnd ()
PyUnicodeEncodeError_GetObject ()
PyUnicodeEncodeError_GetReason ()
PyUnicodeEncodeError_GetStart ()
PyUnicodeEncodeError_SetEnd ()
PyUnicodeEncodeError_SetReason ()
PyUnicodeEncodeError_SetStart ()
PyUnicodelIter_Type
PyUnicodeTranslateError_GetEnd ()
PyUnicodeTranslateError_GetObject ()
PyUnicodeTranslateError_GetReason ()
PyUnicodeTranslateError_GetStart ()
PyUnicodeTranslateError_SetEnd()
PyUnicodeTranslateError_SetReason ()
PyUnicodeTranslateError_SetStart ()
PyUnicode_Append /()
PyUnicode_AppendAndDel ()
PyUnicode_AsASCIIString()
PyUnicode_AsCharmapString ()
PyUnicode_AsDecodedObject ()

PyUnicode_AsDecodedUnicode ()

2.4. Contents of Limited API

35

The Python/C API, Yayim 3.12.9

PyUnicode_AsEncodedObject ()
PyUnicode_AsEncodedString ()
PyUnicode_AsEncodedUnicode ()
PyUnicode_AsLatinlString()
PyUnicode_AsMBCSString ()
PyUnicode_AsRawUnicodeEscapeString ()
PyUnicode_AsUCS4 ()
PyUnicode_AsUCS4Copy ()
PyUnicode_AsUTF16String()
PyUnicode_AsUTF32String()
PyUnicode_AsUTF8AndSize ()
PyUnicode_AsUTF8String ()
PyUnicode_AsUnicodeEscapeString()
PyUnicode_AsWideChar ()
PyUnicode_AsWideCharString()
PyUnicode_BuildEncodingMap ()
PyUnicode_Compare ()
PyUnicode_CompareWithASCIIString ()
PyUnicode_Concat ()
PyUnicode_Contains ()
PyUnicode_Count ()
PyUnicode_Decode ()
PyUnicode_DecodeASCII ()
PyUnicode_DecodeCharmap ()
PyUnicode_DecodeCodePageStateful ()
PyUnicode_DecodeFSDefault ()
PyUnicode_DecodeFSDefaultAndSize ()
PyUnicode_DecodeLatinl ()
PyUnicode_DecodeLocale ()
PyUnicode_DecodeLocaleAndSize ()
PyUnicode_DecodeMBCS ()
PyUnicode_DecodeMBCSStateful ()
PyUnicode_DecodeRawUnicodeEscape ()
PyUnicode_DecodeUTF16 ()
PyUnicode_DecodeUTF1l6Stateful ()
PyUnicode_DecodeUTF32 ()
PyUnicode_DecodeUTF32Stateful ()
PyUnicode_DecodeUTF7 ()

PyUnicode_DecodeUTF7Stateful ()

36

Béliim 2. C API Stability

The Python/C API, Yayim 3.12.9

e PyUnicode_DecodeUTFS8 ()

e PyUnicode_DecodeUTF8Stateful ()
e PyUnicode_DecodeUnicodeEscape ()
e PyUnicode_EncodeCodePage ()

e PyUnicode_EncodeFSDefault ()

e PyUnicode_EncodeLocale ()

e PyUnicode_FSConverter ()

e PyUnicode_FSDecoder ()

e PyUnicode_Find()

e PyUnicode_FindChar ()

e PyUnicode_Format ()

e PyUnicode_FromEncodedObject ()
e PyUnicode_FromFormat ()

e PyUnicode_FromFormatV ()

e PyUnicode_FromObject ()

e PyUnicode_FromOrdinal ()

e PyUnicode_FromString()

e PyUnicode_FromStringAndSize ()
e PyUnicode_FromWideChar ()

e PyUnicode_GetDefaultEncoding()
e PyUnicode_GetLength ()

e PyUnicode_InternFromString ()
e PyUnicode_InternInPlace()

e PyUnicode_IsIdentifier()

e PyUnicode_Join ()

e PyUnicode_Partition()

e PyUnicode_RPartition()

e PyUnicode_RSplit /()

e PyUnicode_ReadChar ()

e PyUnicode_Replace()

e PyUnicode_Resize ()

e PyUnicode_RichCompare ()

e PyUnicode_Split ()

e PyUnicode_Splitlines()

e PyUnicode_Substring()

e PyUnicode_Tailmatch ()

e PyUnicode_Translate()

e PyUnicode_Type

e PyUnicode_WriteChar ()

2.4. Contents of Limited API 37

The Python/C API, Yayim 3.12.9

PyVarObject
PyVarObject.ob_base
PyVarObject.ob_size
PyVectorcall_Call ()
PyVectorcall NARGS ()
PyWeakReference
PyWeakref_GetObject ()
PyWeakref_ NewProxy ()
PyWeakref_ NewRef ()
PyWrapperDescr_Type
PyWrapper_New ()
PyZip_Type

Py _AddPendingCall ()
Py AtExit ()
Py_BEGIN_ALLOW_THREADS
Py _BLOCK_THREADS

Py _Buildvalue ()
Py_BytesMain ()

Py _CompileString()
Py_DecRef ()

Py _DecodeLocale ()
Py_END_ALLOW_THREADS
Py_EncodeLocale ()
Py_EndInterpreter()
Py _EnterRecursiveCall ()
Py Exit ()

Py_FatalError()

Py _FileSystemDefaultEncodeErrors

Py_FileSystemDefaultEncoding

Py Finalize()

Py FinalizeEx/()

Py _GenericAlias ()
Py _GenericAliasType
Py_GetBuildInfo ()
Py GetCompiler()
Py_GetCopyright ()
Py _GetExecPrefix()
Py_GetPath ()

Py _GetPlatform()

38

Boliim 2. C API Stability

The Python/C API, Yayim 3.12.9

e Py GetPrefix()

e Py GetProgramFullPath ()
e Py GetProgramName ()

e Py GetPythonHome ()

e Py _GetRecursionLimit ()
e Py GetVersion()

e Py HasFileSystemDefaultEncoding
e Py _IncRef ()

e Py Initialize()

e Py InitializeEx/()

s Py_Is()

e Py IsFalse()

e Py IsInitialized()

e Py IsNone ()

e Py IsTrue()

e Py LeaveRecursiveCall ()
e Py Main()

e Py _MakePendingCalls ()
e Py NewInterpreter()

e Py _NewRef ()

e Py _ReprEnter ()

e Py ReprLeave ()

e Py SetPath()

e Py SetProgramName ()

e Py SetPythonHome ()

e Py_SetRecursionLimit ()
e Py _UCS4

e Py UNBLOCK_THREADS

e Py_UTF8Mode

e Py _VaBuildValue ()

e Py Version

e Py XNewRef ()

e Py buffer

e Py _intptr_t

e Py ssize t

e Py uintptr_t

e allocfunc

e binaryfunc

e descrgetfunc

2.4. Contents of Limited API 39

The Python/C API, Yayim 3.12.9

descrsetfunc
destructor
getattrfunc
getattrofunc
getbufferproc
getiterfunc
getter
hashfunc
initproc
inquiry
iternextfunc
lenfunc
newfunc
objobjargproc

objobjproc

releasebufferproc

reprfunc
richcmpfunc
setattrfunc
setattrofunc
setter

ssizeargfunc

ssizeobjargproc
ssizessizeargfunc

ssizessizeobjargproc

symtable
ternaryfunc
traverseproc
unaryfunc
vectorcallfunc

visitproc

40

Boliim 2. C API Stability

BOLOM 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled
carefully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that
the Python runtime is using.

int Py_Main (int argc, wchar_t **argv)

Bir parcast Kararli ABI. The main program for the standard interpreter. This is made available for programs
which embed Python. The argc and argv parameters should be prepared exactly as those which are passed to
a C program’s main () function (converted to wchar_t according to the user’s locale). It is important to note
that the argument list may be modified (but the contents of the strings pointed to by the argument list are not).
The return value will be 0 if the interpreter exits normally (i.e., without an exception), 1 if the interpreter exits
due to an exception, or 2 if the parameter list does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
as long as PyConfig. inspect is zero.
int Py_BytesMain (int argc, char **argv)

Bir parcast Kararli ABI 3.8 siiriimiinden beri. Similar to Py_Main () but argv is an array of bytes strings.
Added in version 3.8.

int PyRun_AnyFile (FILE *fp, const char *filename)

This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.
int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)

This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

41

The Python/C API, Yayim 3.12.9

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value of PyRun_InteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys.getfilesystemencoding()). If filena-
me i NULL, this function uses "?2?22" as the filename. If closeit is true, the file is closed before
PyRun_SimpleFileExFlags () returns.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)

Executes the Python source code from command inthe __main__ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or -1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the
process, as long as PyConfig. inspect is zero.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)

This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)

Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from filesystem encoding and error
handler. If closeit is true, the file is closed before PyRun_SimpleFileExFlags () returns.

O Not

On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb")). Otherwise, Python
may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)

This is a simplified interface to PyRun_TnteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute a single statement from a file associated with an interactive device according to the flags
argument. The user will be prompted using sys.ps1 and sys.ps2. filename is decoded from the filesystem
encoding and error handler.

Returns 0 when the input was executed successfully, -1 if there was an exception, or an error code from the
errcode.h include file distributed as part of Python if there was a parse error. (Note that errcode . h is not
included by Python.h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)

This is a simplified interface to PyRun_TInteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding and error
handler. Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook)(void)

Bir parcast Kararli ABIL Can be set to point to a function with the prototype int func (void). The function
will be called when Python’s interpreter prompt is about to become idle and wait for user input from the

42 Boliim 3. The Very High Level Layer

The Python/C API, Yayim 3.12.9

terminal. The return value is ignored. Overriding this hook can be used to integrate the interpreter’s prompt
with other event loops, as done in the Modules/_tkinter.c in the Python source code.

3.12 siirtimiinde degisti: This function is only called from the main interpreter.

char *(*PyOS_ReadlineFunctionPointer)(FILE*, FILE*, const char*)

Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout, char
*prompt), overriding the default function used to read a single line of input at the interpreter’s prompt. The
function is expected to output the string prompt if it’s not NULL, and then read a line of input from the provided
standard input file, returning the resulting string. For example, The read1line module sets this hook to provide
line-editing and tab-completion features.

The result must be a string allocated by PyMem_ RawlMalloc () or PyMem_RawRealloc (), or NULL if an
error occurred.

3.4 siiriimiinde degisti: The result must be allocated by PyMem RawMalloc () or PyMem_RawRealloc (),
instead of being allocated by PyMem Malloc () or PyMem_Realloc ().

3.12 siirtimiinde degisti: This function is only called from the main interpreter.

PyObject *PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Dondiirdiigii deger: Yeni referans. This is a simplified interface to PyRun_StringFlags () below, leaving
flags set to NULL.
PyObject *PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompilerFlags
*flags)

Dondiirdiigii deger: Yeni referans. Execute Python source code from str in the context specified by the objects
globals and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any
object that implements the mapping protocol. The parameter start specifies the start token that should be used
to parse the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject *pyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Dondiirdiigii deger: Yeni referans. This is a simplified interface to PyRun_FileExFlags () below, leaving
closeit set to 0 and flags set to NULL.

PyObject *PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals, int

closeit)
Dondiirdiigii deger: Yeni referans. This is a simplified interface to PyRun_FileExFlags () below, leaving
flags set to NULL.

PyObject *PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *1locals,

PyCompilerFlags *flags)
Dondiirdiigii deger: Yeni referans. This is a simplified interface to PyRun_FileExFlags () below, leaving
closeit set to 0.
PyObject *PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
int closeit, PyCompilerFlags *flags)

Dondiirdiigii deger: Yeni referans. Similar to PyRun_StringFlags (), but the Python source code is read from
Jp instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem
encoding and error handler. If closeit is true, the file is closed before PyRun_FileExFlags () returns.

PyObject *Py_CompileString (const char *str, const char *filename, int start)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL This is a simplified interface to
Py _CompileStringFlags () below, leaving flags set to NULL.
PyObject *Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompilerFlags *flags)

Dondiirdiigii deger: Yeni referans. This is a simplified interface to Py_CompileStringExFlags () below,
with optimize set to - 1.

43

The Python/C API, Yayim 3.12.9

PyObject *Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompilerFlags *flags, int
optimize)

Dondiirdiigii deger: Yeni referans. Parse and compile the Python source code in str, returning the resulting code
object. The start token is given by start; this can be used to constrain the code which can be compiled and
should be Py_eval_input, Py _file_input,or Py_single_input. The filename specified by filename
is used to construct the code object and may appear in tracebacks or SyntaxError exception messages. This
returns NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization
level of the interpreter as given by —0 options. Explicit levels are 0 (no optimization; __debug___is true), 1
(asserts are removed, __debug___is false) or 2 (docstrings are removed too).

Added in version 3.4.

PyObject *Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompilerFlags *flags,
int optimize)
Dondiirdiigii deger: Yeni referans. Like Py _CompileStringObject (), but filename is a byte string decoded
from the filesystem encoding and error handler.

Added in version 3.2.

PyObject *PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)

Dondiirdiigii - deger: Yeni referans. Bir parcast Kararli ABIL This is a simplified interface to
PyEval_EvalCodeEx (), with just the code object, and global and local variables. The other arguments are
set to NULL.

PyObject *pyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args, int
argcount, PyObject *const *kws, int kwcount, PyObject *const *defs, int
defcount, PyObject *kwdefs, PyObject *closure)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Evaluate a precompiled code object, given a par-
ticular environment for its evaluation. This environment consists of a dictionary of global variables, a map-
ping object of local variables, arrays of arguments, keywords and defaults, a dictionary of default values for
keyword-only arguments and a closure tuple of cells.

PyObject *PyEval_EvalFrame (PyFrameObject *f)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Evaluate an execution frame. This is a simplified
interface to PyEval_ EvalFrameEx (), for backward compatibility.

PyObject *PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL This is the main, unvarnished function of Python
interpretation. The code object associated with the execution frame f is executed, interpreting bytecode and
executing calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes
an exception to immediately be thrown; this is used for the throw () methods of generator objects.

3.4 siiriimiinde degisti: This function now includes a debug assertion to help ensure that it does not silently

discard an active exception.
int PyEval_MergeCompilerFlags (PyCompilerFlags *cf)

This function changes the flags of the current evaluation frame, and returns true on success, false on failure.
int Py_eval_input

The start symbol from the Python grammar for isolated expressions; for use with Py_CompileString ().
int Py file_input

The start symbol from the Python grammar for sequences of statements as read from a file or other source;
for use with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single_input

The start symbol from the Python grammar for a single statement; for use with pPy_CompileString (). This
is the symbol used for the interactive interpreter loop.

44 Boliim 3. The Very High Level Layer

The Python/C API, Yayim 3.12.9

struct PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this
case, from __ future__ import can modify flags.

Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to 0, and any modification
dueto from __ future__ import is discarded.

int cf£_flags
Compiler flags.
int cf_feature_version
¢f_feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSION.
The field is ignored by default, it is used if and only if PyCF_ONLY_AST flag is setin cf_flags.
3.8 siiriimiinde degisti: Added cf_feature_version field.

int CO_FUTURE_DIVISION

This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP
238.

45

https://peps.python.org/pep-0238/
https://peps.python.org/pep-0238/

The Python/C API, Yayim 3.12.9

46 Boliim 3. The Very High Level Layer

BOLUM 4

Reference Counting

The functions and macros in this section are used for managing reference counts of Python objects.
Py_ssize_t Py_REFCNT (PyObject *0)
Get the reference count of the Python object o.

Note that the returned value may not actually reflect how many references to the object are actually held. For
example, some objects are “immortal” and have a very high refcount that does not reflect the actual number of
references. Consequently, do not rely on the returned value to be accurate, other than a value of 0 or 1.

Use the py_seET REFCNT () function to set an object reference count.
3.10 siiriimiinde degisti: Py_REFCNT () is changed to the inline static function.
3.11 siiriimiinde degisti: The parameter type is no longer const PyObject*.

void Py_SET_REFCNT (PyObject *0, Py_ssize_t refcnt)
Set the object o reference counter to refcnt.

Note that this function has no effect on immortal objects.
Added in version 3.9.
3.12 siiriimiinde degisti: Immortal objects are not modified.

void Py_ INCREF (PyObject *0)

Indicate taking a new strong reference to object o, indicating it is in use and should not be destroyed.

This function is usually used to convert a borrowed reference to a strong reference in-place. The Py_NewRef ()
function can be used to create a new strong reference.

When done using the object, release it by calling Py_DECREF ().
The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py XINCREF ().

Do not expect this function to actually modify o in any way. For at least some objects, this function has no
effect.

3.12 siiriimiinde degisti: Immortal objects are not modified.
void Py_XINCREF (PyObject *0)
Similar to Py TNCREF (), but the object o can be NULL, in which case this has no effect.

See also Py_xNewRef ().

47

https://peps.python.org/pep-0683/
https://peps.python.org/pep-0683/

The Python/C API, Yayim 3.12.9

PyObject *Py_NewRef (PyObject *0)
Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Create a new strong reference to an object: call Py INCREF ()
on o and return the object o.

When the strong reference is no longer needed, Py_DECREF () should be called on it to release the reference.
The object o must not be NULL; use Py_xNewRef () if 0 can be NULL.

For example:

Py_INCREF (ob7j) ;
self->attr = obj;

can be written as:

[self7>attr = Py_NewRef (0obj) ;

See also Py INCREF ().
Added in version 3.10.
PyObject *Py_XNewRef (PyObject *0)
Bir parcasi Kararlit ABI 3.10 siiriimiinden beri. Similar to Py_NewRef (), but the object o can be NULL.
If the object o is NULL, the function just returns NULL.
Added in version 3.10.

void Py_DECREF (PyObject *0)

Release a strong reference to object o, indicating the reference is no longer used.

Once the last strong reference is released (i.e. the object’s reference count reaches 0), the object’s type’s deal-
location function (which must not be NULL) is invoked.

This function is usually used to delete a strong reference before exiting its scope.
The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py_XDECREF ().

Do not expect this function to actually modify o in any way. For at least some objects, this function has no
effect.

A Uyan

The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance with a
__del () method is deallocated). While exceptions in such code are not propagated, the executed code
has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state before Py DECREF () is invoked. For example, code to delete an
object from a list should copy a reference to the deleted object in a temporary variable, update the list data
structure, and then call Py_DECREF () for the temporary variable.

3.12 siiriimiinde degisti: Immortal objects are not modified.

void Py_XDECREF (PyObject *0)

Similar to Py_DECREF (), but the object o can be NULL, in which case this has no effect. The same warning
from py_DECREF () applies here as well.

void Py_CLEAR (PyObject *0)
Release a strong reference for object o. The object may be NULL, in which case the macro has no effect; other-
wise the effect is the same as for Py_DECREF (), except that the argument is also set to NULL. The warning for
py_DECREF () does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before releasing the reference.

It is a good idea to use this macro whenever releasing a reference to an object that might be traversed during
garbage collection.

48 Bo6lim 4. Reference Counting

https://peps.python.org/pep-0683/

The Python/C API, Yayim 3.12.9

3.12 siirtimiinde degisti: The macro argument is now only evaluated once. If the argument has side effects,
these are no longer duplicated.

void Py_IncRef (PyObject *0)

Bir parcast Kararli ABI. Indicate taking a new strong reference to object o. A function version of
Py_XINCREF (). It can be used for runtime dynamic embedding of Python.

void Py_DecRef (PyObject *0)

Bir parcasi Kararli ABI. Release a strong reference to object o. A function version of Py _xDECREF (). It can
be used for runtime dynamic embedding of Python.

Py_SETREF (dst, src)
Macro safely releasing a strong reference to object dst and setting dst to src.

Asin case of Py CLEAR (), “the obvious” code can be deadly:

Py_DECREF (dst) ;
dst = src;

The safe way is:

[PyisETREF(dst, src) ; }

That arranges to set dst to src _before_ releasing the reference to the old value of dst, so that any code triggered
as a side-effect of dst getting torn down no longer believes dst points to a valid object.

Added in version 3.6.

3.12 siirtimiinde degisti: The macro arguments are now only evaluated once. If an argument has side effects,
these are no longer duplicated.

Py_XSETREF (dst, src)
Variant of Py SETREF macro that uses Py_xDECREF () instead of Py DECREF ().

Added in version 3.6.

3.12 stirtimiinde degisti: The macro arguments are now only evaluated once. If an argument has side effects,
these are no longer duplicated.

49

The Python/C API, Yayim 3.12.9

50 Boélim 4. Reference Counting

BOLUM D

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will set
it to indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if
they are supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* functions return 1 for
success and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for
example you can’t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); it should rot continue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

O Not

The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not yet
caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

5.1 Printing and clearing

void PyErr_Clear ()

Bir parcast Kararli ABIL Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)

Bir parcasi Kararli ABL Print a standard traceback to sys. stderr and clear the error indicator. Unless the
error is a SystemExit, in that case no traceback is printed and the Python process will exit with the error
code specified by the SystemExit instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

51

The Python/C API, Yayim 3.12.9

If set_sys_last_vars is nonzero, the variable sys.last_exc is set to the printed exception. For backwards
compatibility, the deprecated variables sys.last_type, sys.last_value and sys.last_traceback
are also set to the type, value and traceback of this exception, respectively.

3.12 suiriimiinde degisti: The setting of sys.last_exc was added.

void PyErr_Print ()
Bir parcast Kararli ABL Alias for PyErr_PrintEx (1).
void PyErr_WriteUnraisable (PyObject *obj)
Bir parcast Kararli ABL Call sys.unraisablehook () using the current exception and obj argument.
This utility function prints a warning message to sys.stderr when an exception has been set but it is im-

possible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs
inan __del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message. If obj is NULL, only the traceback
is printed.

An exception must be set when calling this function.
3.4 siiriimiinde degisti: Print a traceback. Print only traceback if obj is NULL.
3.8 stirtimiinde degisti: Use sys.unraisablehook ().

void PyErr_DisplayException (PyObject *exc)

Bir pargast Kararli ABI 3.12 siiriimiinden beri. Print the standard traceback display of exc to sys.stderr,
including chained exceptions and notes.

Added in version 3.12.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always

return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
Bir parcast Kararli ABL This is the most common way to set the error indicator. The first argument specifies
the exception type; it is normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not
create a new strong reference to it (e.g. with py_7NCREF ()). The second argument is an error message; it is
decoded from 'utf-8'.

void PyErr_SetObject (PyObject *type, PyObject *value)
Bir parcasi Kararli ABI. This function is similar to PyErr SetString () but lets you specify an arbitrary
Python object for the “value” of the exception.

PyObject *pyErr_Format (PyObject *exception, const char *format, ...)
Dondiirdiigii deger: Her zaman NULL. Bir parcasi Kararli ABI This function sets the error indicator and returns
NULL. exception should be a Python exception class. The format and subsequent parameters help format the
error message; they have the same meaning and values as in PyUnicode FromFormat (). formatisan ASCII-
encoded string.

PyObject *PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Dondiirdiigii deger: Her zaman NULL. Bir parcasi Kararli ABI 3.5 siiriimiinden beri. Same as
PyErr_Format (), but taking a va_1ist argument rather than a variable number of arguments.
Added in version 3.5.

void PyErr_SetNone (PyObject *type)
Bir parcast Kararli ABIL This is a shorthand for PyErr_SetObject (type, Py_None).

52 Bo6lim 5. Exception Handling

The Python/C API, Yayim 3.12.9

int PyErr_BadArgument ()

Bir parcasi Kararli ABL This is a shorthand for PyErr_SetString (PyExc_TypeError, message), Whe-
re message indicates that a built-in operation was invoked with an illegal argument. It is mostly for internal
use.

PyObject *PyErr_NoMemory ()
Dondiirdiigii - deger: Her zaman NULL. Bir parcasi Kararlh ABL This is a shorthand for
PyErr_SetNone (PyExc_MemoryError); it returns NULL so an object allocation function can write
return PyErr_NoMemory (); wWhen it runs out of memory.

PyObject *PyErr_SetFromErrno (PyObject *type)

Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararli ABIL. This is a convenience function to raise an
exception when a C library function has returned an error and set the C variable errno. It constructs a tuple
object whose first item is the integer errno value and whose second item is the corresponding error message
(gotten from strerror ()),and thencalls PyErr_SetObject (type, object).On Unix, whenthe errno
value is EINTR, indicating an interrupted system call, this calls PyErr CheckSignals (), and if that set the
error indicator, leaves it set to that. The function always returns NULL, so a wrapper function around a system
call can write return PyErr_ SetFromErrno (type); when the system call returns an error.

PyObject *PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararli ABIL Similar to PyErr_SetFromErrno (), with
the additional behavior that if filenameObject is not NULL, it is passed to the constructor of fype as a third
parameter. In the case of OSError exception, this is used to define the £ilename attribute of the exception
instance.

PyObject *PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)
Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararlh ABI 3.7 siiriimiinden beri. Similar to

PyErr_SetFromErrnoWithFilenameObject (), but takes a second filename object, for raising errors
when a function that takes two filenames fails.

Added in version 3.4.

PyObject *PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)

Dondiirdiigii - deger: Her zaman NULL. Bir parcasi Kararh ~ ABL Similar to
PyErr SetFromErrnoWithFilenameObject (), but the filename is given as a C string. filename
is decoded from the filesystem encoding and error handler.

PyObject *PyErr_SetFromWindowsErr (int ierr)

Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararli ABI on Windows 3.7 siiriimiinden beri. This is
a convenience function to raise OSError. If called with ierr of 0, the error code returned by a call to
GetLastError () is used instead. It calls the Win32 function FormatMessage () to retrieve the Windo-
ws description of error code given by ierr or GetLastError (), then it constructs a OSError object with
the winerror attribute set to the error code, the strerror attribute set to the corresponding error message
(gotten from FormatMessage ()), and then calls PyErr_SetObject (PyExc_OSError, object). This
function always returns NULL.

Availability: Windows.

PyObject *PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararlt ABI on Windows 3.7 siiriimiinden beri. Similar to
PyErr SetFromWindowsErr (), with an additional parameter specifying the exception type to be raised.

Availability: Windows.

PyObject *PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararli ABI on Windows 3.7 siiriimiinden beri. Similar to
PyErr_SetFromWindowsErr (), with the additional behavior that if filename is not NULL, it is decoded from
the filesystem encoding (os . fsdecode ()) and passed to the constructor of OSError as a third parameter to
be used to define the filename attribute of the exception instance.

Availability: Windows.

5.2. Raising exceptions 53

The Python/C API, Yayim 3.12.9

PyObject *PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyObject
*filename)

Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararlt ABI on Windows 3.7 siiriimiinden beri. Similar to
PyErr SetExcFromWindowsErr (), with the additional behavior that if filename is not NULL, it is passed to
the constructor of OSError as a third parameter to be used to define the £i1ename attribute of the exception
instance.

Availability: Windows.
PyObject *PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyObject
*filename, PyObject *filename2)
Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararlt ABI on Windows 3.7 siiriimiinden beri. Similar to
PyErr SetExcFromWindowsErrWithFilenameObject (), butaccepts a second filename object.
Availability: Windows.
Added in version 3.4.

PyObject *PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *filename)

Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararli ABI on Windows 3.7 siiriimiinden beri. Similar
to PyErr SetFromWindowsErriithFilename (), with an additional parameter specifying the exception
type to be raised.

Availability: Windows.

PyObject *PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)

Dondiirdiigii deger: Her zaman NULL. Bir parcasi Kararli ABI 3.7 siiriimiinden beri. This is a convenience
function to raise ImportError. msg will be set as the exception’s message string. name and path, both of
which can be NULL, will be set as the ImportError’s respective name and path attributes.

Added in version 3.3.
PyObject *PyErr_SetImportErrorSubclass (PyObject *exception, PyObject ¥*msg, PyObject *name, PyObject
*path)
Dondiirdiigii deger: Her zaman NULL. Bir parcasi Kararli ABI 3.6 siiriimiinden beri. Much like
PyErr SetImportError () but this function allows for specifying a subclass of ImportError to raise.
Added in version 3.6.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)

Set file, line, and offset information for the current exception. If the current exception is not a SyntaxError,
then it sets additional attributes, which make the exception printing subsystem think the exception is a
SyntaxError.

Added in version 3.4.

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Like PyErr SyntaxLocationObject (), but filename is a
byte string decoded from the filesystem encoding and error handler.
Added in version 3.2.

void PyErr_SyntaxLocation (const char *filename, int lineno)

Bir parcast Kararli ABL Like PyErr SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()

Bir parcasi Kararli ABL This is a shorthand for PyErr_SetString (PyExc_SystemError, message),
where message indicates that an internal operation (e.g. a Python/C API function) was invoked with an illegal
argument. It is mostly for internal use.

54 Bo6lim 5. Exception Handling

The Python/C API, Yayim 3.12.9

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified
that warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the
functions raise an exception because of a problem with the warning machinery. The return value is 0 if no exception
is raised, or -1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed,
nor what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for example, Py_DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)

Bir parcasi Kararl1 ABL Issue a warning message. The category argument is a warning category (see below)
or NULL; the message argument is a UTF-8 encoded string. stack_level is a positive number giving a number
of stack frames; the warning will be issued from the currently executing line of code in that stack frame. A
stack_level of 1 is the function calling PyErr warnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_RuntimeWarning. The standard Python war-
ning categories are available as global variables whose names are enumerated at Standard Warning Categories.

For information about warning control, see the documentation for the warnings module and the -w option in
the command line documentation. There is no C API for warning control.

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python function warnings.warn_explicit () ;see there for more information. The module and
registry arguments may be set to NULL to get the default effect described there.

Added in version 3.4.
int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const char
*module, PyObject *registry)
Bir parcasi Kararli ABL Similar to PyErr WarnExplicitObject () except that message and module are
UTF-8 encoded strings, and filename is decoded from the filesystem encoding and error handler.
int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)

Bir parcast Kararli ABI. Function similar to PyErr WarnEx (), but use PyUnicode FromFormat () to
format the warning message. format is an ASCII-encoded string.

Added in version 3.2.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)

Bir parcast Kararli ABI 3.6 siiriimiinden beri. Function similar to PyErr warnFormat (), but category is
ResourceWarning and it passes source to warnings.WarningMessage.

Added in version 3.6.

5.4 Querying the error indicator

PyObject *PyErr_Occurred ()

Dondiirdiigii deger: Odiing alinmis referans. Bir parcast Kararli ABL Test whether the error indicator is set.
If set, return the exception fype (the first argument to the last call to one of the PyErr_sSet* functions or to
pPyErr Restore ()). If not set, return NULL. You do not own a reference to the return value, so you do not
need to Py DECREF () it.

The caller must hold the GIL.

5.3. Issuing warnings 55

The Python/C API, Yayim 3.12.9

O Not

Do not compare the return value to a specific exception; use PyErr ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class,
in the case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Bir parcasi Kararli ABIL. Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred(), exc).
This should only be called when an exception is actually set; a memory access violation will occur if no ex-
ception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Bir parcas: Kararl1 ABIL. Return true if the given exception matches the exception type in exc. If exc is a class
object, this also returns true when given is an instance of a subclass. If exc is a tuple, all exception types in the
tuple (and recursively in subtuples) are searched for a match.

PyObject *PyErr_GetRaisedException (void)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.12 siiriimiinden beri. Return the exception currently
being raised, clearing the error indicator at the same time. Return NULL if the error indicator is not set.

This function is used by code that needs to catch exceptions, or code that needs to save and restore the error
indicator temporarily.

For example:

{
PyObject *exc = PyErr_GetRaisedException();

/* ... code that might produce other errors ... */

PyErr_SetRaisedException (exc);

> Ayrica bakimiz

PyErr GetHandledException (), to save the exception currently being handled.

Added in version 3.12.

void PyErr_SetRaisedException (PyObject *exc)

Bir parcast Kararli ABI 3.12 siiriimiinden beri. Set exc as the exception currently being raised, clearing the
existing exception if one is set.

A Uyan

This call steals a reference to exc, which must be a valid exception.

Added in version 3.12.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Bir parcasi Kararli ABL 3.12 siiriimiinden beri kullanim disi: Use PyErr GetRaisedException () instead.
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set,

set all three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved.
The value and traceback object may be NULL even when the type object is not.

56 Bo6lim 5. Exception Handling

The Python/C API, Yayim 3.12.9

O Not

This function is normally only used by legacy code that needs to catch exceptions or save and restore the
error indicator temporarily.

For example:

{
PyObject *type, *value, *traceback;
PyErr_Fetch (&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)

Bir parcasi Kararli ABL 3.12 siiriimiinden beri kullanim disi: Use PyErr SetRaisedException () instead.

Set the error indicator from the three objects, type, value, and traceback, clearing the existing exception if one
is set. If the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value
or traceback. The exception type should be a class. Do not pass an invalid exception type or value. (Violating
these rules will cause subtle problems later.) This call takes away a reference to each object: you must own
a reference to each object before the call and after the call you no longer own these references. (If you don’t
understand this, don’t use this function. I warned you.)

O Not

This function is normally only used by legacy code that needs to save and restore the error indicator tem-
porarily. Use PyErr Fetch () to save the current error indicator.

void PyErr_NormalizeException (PyObject **exc, PyObject **val, PyObject **tb)

Bir parcasi Kararli ABI. 3.12 siirtiimiinden beri kullanim dis1: Use PyErr GetRaisedException () instead,
to avoid any possible de-normalization.

Under certain circumstances, the values returned by PyErr Fetch () below can be “unnormalized”, meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is
implemented to improve performance.

O Not

This function does not implicitly set the _ traceback__ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);

PyObject *PyErr_GetHandledException (void)

Bir parcast Kararli ABI 3.11 siiriimiinden beri. Retrieve the active exception instance, as would be returned by
sys.exception (). This refers to an exception that was already caught, not to an exception that was freshly
raised. Returns a new reference to the exception or NULL. Does not modify the interpreter’s exception state.

5.4. Querying the error indicator 57

The Python/C API, Yayim 3.12.9

O Not

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr SetHandledException ()
to restore or clear the exception state.

Added in version 3.11.

void PyErr_SetHandledException (PyObject *exc)

Bir parcas: Kararli ABI 3.11 siiriimiinden beri. Set the active exception, as known from sys.exception ().
This refers to an exception that was already caught, not to an exception that was freshly raised. To clear the
exception state, pass NULL.

O Not

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr GetHandledException ()
to get the exception state.

Added in version 3.11.

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Retrieve the old-style representation of the exception info,
as known from sys.exc_info (). This refers to an exception that was already caught, not to an excep-
tion that was freshly raised. Returns new references for the three objects, any of which may be NULL.
Does not modify the exception info state. This function is kept for backwards compatibility. Prefer using
PyErr_GetHandledException().

O Not

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr SetExcInfo () to restore or
clear the exception state.

Added in version 3.3.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)

Bir parcast Kararlt ABI 3.7 siiriimiinden beri. Set the exception info, as known from sys.exc_info (). This
refers to an exception that was already caught, not to an exception that was freshly raised. This function steals
the references of the arguments. To clear the exception state, pass NULL for all three arguments. This function
is kept for backwards compatibility. Prefer using PyErr_ SetHandledException ().

O Not

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr GetExcInfo () to read the
exception state.

Added in version 3.3.

3.11 siirtimiinde degisti: The type and traceback arguments are no longer used and can be NULL. The
interpreter now derives them from the exception instance (the value argument). The function still steals re-
ferences of all three arguments.

58

Bo6lim 5. Exception Handling

The Python/C API, Yayim 3.12.9

5.5 Signal Handling

int PyErr_CheckSignals ()
Bir parcast Kararli ABL This function interacts with Python’s signal handling.

If the function is called from the main thread and under the main Python interpreter, it checks whether a signal
has been sent to the processes and if so, invokes the corresponding signal handler. If the signal module is
supported, this can invoke a signal handler written in Python.

The function attempts to handle all pending signals, and then returns 0. However, if a Python signal handler
raises an exception, the error indicator is set and the function returns -1 immediately (such that other pending
signals may not have been handled yet: they will be on the next PyErr CheckSignals () invocation).

If the function is called from a non-main thread, or under a non-main Python interpreter, it does nothing and
returns 0.

This function can be called by long-running C code that wants to be interruptible by user requests (such as by
pressing Ctrl-C).

O Not

The default Python signal handler for SIGINT raises the KeyboardInterrupt exception.

void PyErr_SetInterrupt ()

Bir parcasi Kararli ABIL Simulate the effect of a SIGINT signal arriving. This is equivalent to
PyErr_SetInterruptEx (SIGINT).

O Not

This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

int PyErr_SetInterruptEx (int signum)
Bir parcast Kararli ABI 3.10 siiriimiinden beri. Simulate the effect of a signal arriving. The next time
PyErr CheckSignals () is called, the Python signal handler for the given signal number will be called.

This function can be called by C code that sets up its own signal handling and wants Python signal handlers
to be invoked as expected when an interruption is requested (for example when the user presses Ctrl-C to
interrupt an operation).

If the given signal isn’t handled by Python (it was set to signal.SIG_DFL or signal.SIG_IGN), it will be
ignored.

If signum is outside of the allowed range of signal numbers, -1 is returned. Otherwise, 0 is returned. The error
indicator is never changed by this function.

O Not

This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

Added in version 3.10.

int PySignal_SetWakeupFd (int fd)

This utility function specifies a file descriptor to which the signal number is written as a single byte whenever
a signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_£d ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be
called from the main thread.

5.5. Signal Handling 59

The Python/C API, Yayim 3.12.9

3.5 stirtimiinde degisti: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject *PyErr_NewException (const char *name, PyObject *base, PyObject *dict)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL. This utility function creates and returns a new
exception class. The name argument must be the name of the new exception, a C string of the form module.
classname. The base and dict arguments are normally NULL. This creates a class object derived from
Exception (accessible in C as PyExc_Exception).

The __module__ attribute of the new class is set to the first part (up to the last dot) of the name argument,
and the class name is set to the last part (after the last dot). The base argument can be used to specify alternate
base classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a
dictionary of class variables and methods.

PyObject *PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyObject *dict)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Same as PyErr NewException (), except that
the new exception class can easily be given a docstring: If doc is non-NULL, it will be used as the docstring for
the exception class.

Added in version 3.2.

5.7 Exception Objects

PyObject *PyException_GetTraceback (PyObject *ex)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararl1 ABI. Return the traceback associated with the exception
as a new reference, as accessible from Python through the traceback___ attribute. If there is no traceback
associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Bir parcast Kararlit ABIL. Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject *PyException_GetContext (PyObject *ex)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return the context (another exception instance
during whose handling ex was raised) associated with the exception as a new reference, as accessible from
Python through the _context__ attribute. If there is no context associated, this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Bir parcast Kararli ABI. Set the context associated with the exception to ctx. Use NULL to clear it. There is no
type check to make sure that ctx is an exception instance. This steals a reference to ctx.

PyObject *PyException_GetCause (PyObject *ex)
Dondiirdiigii deger: Yeni referans. Bir parcasit Kararli ABL. Return the cause (either an exception instance, or
None, set by raise ... from ...) associated with the exception as a new reference, as accessible from
Python through the __cause___ attribute.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Bir parcasi Kararli ABL Set the cause associated with the exception to cause. Use NULL to clear it. There is no
type check to make sure that cause is either an exception instance or None. This steals a reference to cause.

The _ suppress_context__ attribute is implicitly set to True by this function.
PyObject *PyException_GetArgs (PyObject *ex)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3. 12 siiriimiinden beri. Return args of exception ex.
void PyException_SetArgs (PyObject *ex, PyObject *args)

Bir parcas: Kararl1 ABI 3.12 siiriimiinden beri. Set args of exception ex to args.

60 Bo6lim 5. Exception Handling

The Python/C API, Yayim 3.12.9

PyObject *PyUnstable_Exc_PrepReraiseStar (PyObject *orig, PyObject *excs)

Bu Kararsiz API. Bu, kiigiik (minor) stirimlerde uyari olmadan degigebilir.

Implement part of the interpreter’s implementation of except *. orig is the original exception that was caught,
and excs is the list of the exceptions that need to be raised. This list contains the unhandled part of orig, if any,
as well as the exceptions that were raised from the except * clauses (so they have a different traceback from
orig) and those that were reraised (and have the same traceback as orig). Return the ExceptionGroup that
needs to be reraised in the end, or None if there is nothing to reraise.

Added in version 3.12.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.
PyObject *PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *reason)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararlt ABIL Create a UnicodeDecodeError object with the
attributes encoding, object, length, start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject *PyUnicodeDecodeError_GetEncoding (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Return the encoding attribute of the given exception
object.

PyObject *PyUnicodeDecodeError_GetObject (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetObject (PyObject *exc)

PyObject *PyUnicodeTranslateError_ GetObject (PyObject *exc)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return the object attribute of the given exception
object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Bir parcast Kararli ABI Get the start attribute of the given exception object and place it into *start. start must
not be NULL. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Bir parcast Kararli ABIL Set the start attribute of the given exception object to start. Return 0 on success, —1
on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Bir parcasi Kararli ABL. Get the end attribute of the given exception object and place it into *end. end must
not be NULL. Return 0 on success, -1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)

int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)

5.8. Unicode Exception Objects 61

The Python/C API, Yayim 3.12.9

int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Bir parcast Kararli ABI. Set the end attribute of the given exception object to end. Return 0 on success, —1 on
failure.

PyObject *PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeTranslateError_GetReason (PyObject *exc)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Return the reason attribute of the given exception
object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)

int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)

int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)

Bir parcast Kararli ABL Set the reason attribute of the given exception object to reason. Return 0 on success,
—1 on failure.

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension
modules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion
depth automatically). They are also not needed for #p_call implementations because the call protocol takes care of
recursion handling.
int Py_EnterRecursiveCall (const char *where)
Bir parcast Kararli ABI 3.9 siiriimiinden beri. Marks a point where a recursive C-level call is about to be
performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using Py0S_CheckStack ().
If this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a UTF-8 encoded string such as " in instance check" to be concatenated to the
RecursionError message caused by the recursion depth limit.

3.9 stirtimiinde degisti: This function is now also available in the /imited API.

void Py_LeaveRecursiveCall (void)
Bir parcast Kararli ABI 3.9 siiriimiinden beri. Ends a Py_EnterRecursiveCall (). Must be called once for
each successful invocation of Py_EnterRecursiveCall ().

3.9 stirtimiinde degisti: This function is now also available in the limited API.

Properly implementing ¢t p_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().
int Py_ReprEnter (PyObject *object)

Bir parcast Kararl1 ABL Called at the beginning of the tp_repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_repr

implementation should return a string object indicating a cycle. As examples, dict objects return { . . . } and
list objectsreturn [...].

The function will return a negative integer if the recursion limit is reached. In that case the tp_repr imple-
mentation should typically return NULL.

Otherwise, the function returns zero and the tp_repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)
Bir parcasi Kararli ABL Ends a Py _ReprEnter (). Must be called once for each invocation of
Py_ReprEnter () that returns zero.

62 Bo6lim 5. Exception Handling

The Python/C API, Yayim 3.12.9

5.10 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type Pyobject*; they are all class objects. For completeness, here are all the

variables:

C Name Python Name Notes
PyExc_BaseException BaseException !
PyExc_Exception Exception SHREs 1
PyExc_ArithmeticError ArithmeticError SR 2 |
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError
PyExc_ChildProcessError ChildProcessError
PyExc_ConnectionAbortedErrc ConnectionAbortedError
PyExc_ConnectionError ConnectionError
PyExc_ConnectionRefusedErrc ConnectionRefusedError
PyExc_ConnectionResetError ConnectionResetError
PyExc_EOFError EOFError
PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError FileNotFoundError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError
PyExc_IsADirectoryError IsADirectoryError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError SRS
PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundError ModuleNotFoundError
PyExc_NameError NameError
PyExc_NotADirectoryError NotADirectoryError
PyExc_NotImplementedError NotImplementedError

Sayfa 64, 1

PyExc_OSError
PyExc_OverflowError
PyExc_PermissionError
PyExc_ProcessLookupError
PyExc_RecursionError
PyExc_ReferenceError
PyExc_RuntimeError
PyExc_StopAsynclIteration
PyExc_StopIlteration
PyExc_SyntaxError
PyExc_SystemError
PyExc_SystemExit
PyExc_TabError
PyExc_TimeoutError
PyExc_TypeError
PyExc_UnboundLocalError
PyExc_UnicodeDecodeError
PyExc_UnicodeEncodeError

OSError
OverflowError
PermissionError
ProcessLookupError
RecursionError
ReferenceError
RuntimeError
StopAsyncIteration
StopIteration
SyntaxError
SystemError
SystemExit
TabError
TimeoutError
TypeError
UnboundLocalError
UnicodeDecodeError
UnicodeEncodeError

sonraki sayfaya devam

5.10. Standard Exceptions

63

The Python/C API, Yayim 3.12.9

Tablo 1 - dnceki sayfadan devam
Python Name

C Name Notes

PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateError UnicodeTranslateError
PyExc_ValueError ValueError

PyExc_ZeroDivisionError ZeroDivisionError

Added in version 3.3: PyExc_BlockingIOError, PyExc_BrokenPipeError, PyExc_ChildProcessError,

PyExc_ConnectionError, PyExc_ConnectionAbortedError, PyExc_ConnectionRefusedError,

PyExc_ConnectionResetError, PyExc_FileExistsError, PyExc_FileNotFoundError,

PyExc_InterruptedError, PyExc_IsADirectoryError, PyExc_NotADirectoryError,

PyExc_PermissionError, PyExc_ProcessLookupError and PyExc_TimeoutError were introduced
following PEP 3151.

Added in version 3.5: PyExc_StopAsyncIteration and PyExc_RecursionError.
Added in version 3.6: PyExc_ModuleNotFoundError

These are compatibility aliases to PyExc_OSError:

C Name Notes

PyExc_EnvironmentError
PyExc_IOError

[’5]

PyExc_WindowsError

3.3 siirtimiinde degisti: These aliases used to be separate exception types.

Notes:

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the
Python exception name. These have the type PyoObject*; they are all class objects. For completeness, here are all
the variables:

C Name Python Name Notes
PyExc_Warning Warning g
PyExc_BytesWarning BytesWarning

PyExc_DeprecationWarning
PyExc_FutureWarning
PyExc_ImportWarning
PyExc_PendingDeprecationWarning

DeprecationWarning
FutureWarning
ImportWarning
PendingDeprecationWarning

PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

Added in version 3.2: PyExc_ResourceWarning.

Notes:

! This is a base class for other standard exceptions.
2 Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is defined.
3 This is a base class for other standard warning categories.

64 Bo6lim 5. Exception Handling

https://peps.python.org/pep-3151/

BOLUM O

Utilities

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

6.1 Operating System Utilities

PyObject *Py0S_FSPath (PyObject *path)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.6 siiriimiinden beri. Return the file system repre-
sentation for path. If the object is a st r or bytes object, then a new strong reference is returned. If the object
implements the os.PathLike interface, then _ fspath__ () is returned as long as it is a str or bytes
object. Otherwise TypeError is raised and NULL is returned.

Added in version 3.6.

int Py_FdIsInteractive (FILE *fp, const char *filename)

Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for
files for which isatty (fileno (fp)) is true. If the PyConfig. interactive is non-zero, this function

also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"' or
1o,

This function must not be called before Python is initialized.

void PyOS_BeforeFork ()

Bir parcast Kararlt ABI on platforms with fork() 3.7 siiriimiinden beri. Function to prepare some internal state
before a process fork. This should be called before calling fork () or any similar function that clones the
current process. Only available on systems where fork () is defined.

A Uyan

The C fork () call should only be made from the “main” thread (of the “main” interpreter). The same is
true for PyOS_BeforeFork ().

Added in version 3.7.

65

The Python/C API, Yayim 3.12.9

void PyOS_AfterFork_Parent ()

Bir pargasi Kararli ABI on platforms with fork() 3.7 siiriimiinden beri. Function to update some internal state
after a process fork. This should be called from the parent process after calling fork () or any similar function
that clones the current process, regardless of whether process cloning was successful. Only available on systems
where fork () is defined.

O Uyari

The C fork () call should only be made from the “main” thread (of the “main” interpreter). The same is
true for PyOS_AfterFork_Parent ().

Added in version 3.7.

void PyOS_AfterFork_Child ()

Bir parcas: Kararli ABI on platforms with fork() 3.7 siiriimiinden beri. Function to update internal interpreter
state after a process fork. This must be called from the child process after calling fork (), or any similar
function that clones the current process, if there is any chance the process will call back into the Python
interpreter. Only available on systems where fork () is defined.

A Uyan

The C fork () call should only be made from the “main” thread (of the “main” interpreter). The same is
true for PyOS_AfterFork_Child().

Added in version 3.7.

> Ayrica bakimiz

os.register_at_fork() allows registering custom Python functions to be called by
PyOS_BeforeFork (), PyOS_AfterFork_ Parent () and PyOS_AfterFork_Child().

void PyOS_AfterFork ()

Bir parcast Kararli ABI on platforms with fork(). Function to update some internal state after a process fork;
this should be called in the new process if the Python interpreter will continue to be used. If a new executable
is loaded into the new process, this function does not need to be called.

3.7 strtimiinden beri kullanim disi: This function is superseded by Py0s AfterFork Child().

int PyOS_CheckStack ()
Bir parcast Kararlt ABI on platforms with USE_STACKCHECK 3.7 siiriimiinden beri. Return true when the in-
terpreter runs out of stack space. This is a reliable check, but is only available when USE_STACKCHECK is defi-
ned (currently on certain versions of Windows using the Microsoft Visual C++ compiler). USE_STACKCHECK
will be defined automatically; you should never change the definition in your own code.

typedef void (¥*PyOS_sighandler_t)(int)
Bir parcas: Kararl1 ABL

PyOS_sighandler_t PyOS_getsig (int i)
Bir parcasi Kararli ABIL Return the current signal handler for signal i. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly!

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler t h)

Bir parcasi Kararli ABL Set the signal handler for signal i to be /; return the old signal handler. This is a thin
wrapper around either sigaction () or signal (). Do not call those functions directly!

66 Bolim 6. Utilities

The Python/C API, Yayim 3.12.9

wchar_t *Py_DecodeLocale (const char *arg, size_t *size)

Bir parcasi Kararlt ABI 3.7 siiriimiinden beri.

A Uyan

This function should not be called directly: wuse the Pyconfig API with the
PyConfig _SetBytesString () function which ensures that Python is preinitialized.

This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py_Prelnitialize () function.

Decode a byte string from the filesystem encoding and error handler. If the error handler is surrogateescape
error handler, undecodable bytes are decoded as characters in range U+DC80..U+DCFF; and if a byte sequ-
ence can be decoded as a surrogate character, the bytes are escaped using the surrogateescape error handler
instead of decoding them.

Return a pointer to a newly allocated wide character string, use PyMem_RawFree () to free the memory. If
size is not NULL, write the number of wide characters excluding the null character into *size

Return NULL on decoding error or memory allocation error. If size is not NULL, *size is setto (size_t)-1
on memory error or set to (size_t) -2 on decoding error.

The filesystem encoding and error handler are selected by PyConfig Read ():see filesystem_encoding
and filesystem errors members of PyConfig.

Decoding errors should never happen, unless there is a bug in the C library.

Use the Py_EncodeLocale () function to encode the character string back to a byte string.

> Ayrica bakimz

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize () func-
tions.

Added in version 3.5.
3.7 strtimiinde degisti: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

3.8 siirimiinde degisti: The function now uses the UTF-8 encoding on Windows if PyPreConfig.
legacy_windows_fs_encoding is Zero,
char *Py_EncodeLocale (const wchar_t *text, size_t *error_pos)

Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Encode a wide character string to the filesystem encoding
and error handler. If the error handler is surrogateescape error handler, surrogate characters in the range
U+DC80..U+DCFF are converted to bytes 0x80..0xFF.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error.

If error_pos is not NULL, *error_pos is set to (size_t)—1 on success, or set to the index of the invalid
character on encoding error.

The filesystem encoding and error handler are selected by PyConfig Read ():see filesystem_encoding
and filesystem errors members of PyConfig.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.

A Uyan

This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py_Prelnitialize () function.

6.1. Operating System Utilities 67

The Python/C API, Yayim 3.12.9

> Ayrica bakiniz

The PyUnicode_EncodeFSDefault () and PyUnicode_EncodeLocale () functions.

Added in version 3.5.
3.7 stirtimiinde degisti: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

3.8 siirimiinde degisti: The function now uses the UTF-8 encoding on Windows if PyPreConfig.
legacy_windows_fs_encoding is zero.

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with the
current interpreter thread’s sys module’s dict, which is contained in the internal thread state structure.
PyObject *PySys_GetObject (const char *name)
Dondiirdiigii deger: Odiing alinmus referans. Bir parcast Kararh ABL Return the object name from the sys
module or NULL if it does not exist, without setting an exception.
int PySys_SetObject (const char *name, PyObject *v)
Bir parcasi Kararli ABIL. Set name in the sys module to v unless v is NULL, in which case name is deleted from
the sys module. Returns 0 on success, —1 on error.
void PySys_ResetWarnOptions ()
Bir parcast Kararli ABIL. Reset sys.warnoptions to an empty list. This function may be called prior to
Py Initialize().
void PySys_AddWarnOption (const wchar_t *s)
Bir parcasi Kararli ABL This API is kept for backward compatibility: setting PyConfig.warnoptions sho-

uld be used instead, see Python Initialization Configuration.

Append s to sys .warnoptions. This function must be called prior to Py_Initialize () in order to affect
the warnings filter list.

3.11 siiriimiinden beri kullanim dag1.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Bir parcasi Kararli ABL This API is kept for backward compatibility: setting PyConfig.warnoptions sho-
uld be used instead, see Python Initialization Configuration.

Append unicode to sys .warnoptions.

Note: this function is not currently usable from outside the CPython implementation, as it must be called prior
to the implicit import of warnings in Py_Tnitialize () to be effective, but can’t be called until enough of
the runtime has been initialized to permit the creation of Unicode objects.

3.11 siiriimiinden beri kullanim digt.

void PySys_SetPath (const wchar_t *path)

Bir parcast Kararli ABL This API is kept for backward compatibility: setting PyConfig.
module_search_paths and PyConfig.module_ search_paths_set should be used instead, see
Python Initialization Configuration.

Set sys.path toalist object of paths found in path which should be a list of paths separated with the platform’s
search path delimiter (: on Unix, ; on Windows).

3.11 siiriimiinden beri kullanim dig1.

void PySys_WriteStdout (const char *format, ...)

Bir pargast Kararli ABI. Write the output string described by format to sys . stdout. No exceptions are raised,
even if truncation occurs (see below).

68 Bolim 6. Utilities

The Python/C API, Yayim 3.12.9

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should
be limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits
for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.
void PySys_WriteStderr (const char *format, ...)

Bir parcasi Kararlt ABL. As pySys_writeStdout (), but write to sys.stderr or stderr instead.
void PySys_FormatStdout (const char *format, ...)

Bir parcast Kararli ABIL Function similar to PySys_WriteStdout() but format the message using
PyUnicode_FromFormatV () and don’t truncate the message to an arbitrary length.

Added in version 3.2.

void PySys_FormatStderr (const char *format, ...)

Bir parcast Kararli ABL. As PySys_FormatStdout (), but write to sys . stderr or stderr instead.
Added in version 3.2.

void PySys_AddXOption (const wchar_t *s)
Bir parcasi Kararlt ABI 3.7 siiriimiinden beri. This API is kept for backward compatibility: setting PyConfig.
xoptions should be used instead, see Python Initialization Configuration.

Parse s as a set of -x options and add them to the current options mapping as returned by
PySys_GetXOptions (). This function may be called prior to Py_Tnitialize().

Added in version 3.2.
3.11 siirtimiinden beri kullanim digt.

PyObject *PySys_GetXOptions ()

Dondiirdiigii deger: Odiing alinmis referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return the current
dictionary of -X options, similarly to sys._xoptions. On error, NULL is returned and an exception is set.

Added in version 3.2.

int PySys_Audit (const char *event, const char *format, ...)
Raise an auditing event with any active hooks. Return zero for success and non-zero with an exception set on
failure.

If any hooks have been added, format and other arguments will be used to construct a tuple to pass. Apart from
N, the same format characters as used in Py_Buildvalue () are available. If the built value is not a tuple, it
will be added into a single-element tuple. (The N format option consumes a reference, but since there is no way
to know whether arguments to this function will be consumed, using it may cause reference leaks.)

Note that # format characters should always be treated as Py _ssize t, regardless of whether
PY_SSIZE_T_CLEAN was defined.

sys.audit () performs the same function from Python code.
Added in version 3.8.

3.8.2 siiriimiinde degisti: Require Py_ssize_t for # format characters. Previously, an unavoidable deprecation
warning was raised.

int PySys_AddAuditHook (Py_AuditHookFunction hook, void *userData)

Append the callable hook to the list of active auditing hooks. Return zero on success and non-zero on failure.
If the runtime has been initialized, also set an error on failure. Hooks added through this API are called for all
interpreters created by the runtime.

The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.

6.2. System Functions 69

The Python/C API, Yayim 3.12.9

This function is safe to call before Py Tnitialize (). When called after runtime initialization, existing audit
hooks are notified and may silently abort the operation by raising an error subclassed from Exception (other
errors will not be silenced).

The hook function is always called with the GIL held by the Python interpreter that raised the event.

See PEP 578 for a detailed description of auditing. Functions in the runtime and standard library that raise
events are listed in the audit events table. Details are in each function’s documentation.

If the interpreter is initialized, this function raises an auditing event sys .addaudithook with no arguments.
If any existing hooks raise an exception derived from Exception, the new hook will not be added and the
exception is cleared. As a result, callers cannot assume that their hook has been added unless they control all
existing hooks.
typedef int (*Py_AuditHookFunction)(const char *event, PyObject *args, void *userData)
The type of the hook function. event is the C string event argument passed to PySys_Audit (). args is
guaranteed to be a Py TupleObject. userData is the argument passed to PySys_ AddAuditHook().

Added in version 3.8.

6.3 Process Control

void Py_FatalError (const char *message)

Bir pargasi Kararli ABI. Print a fatal error message and kill the process. No cleanup is performed. This function
should only be invoked when a condition is detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be corrupted. On Unix, the standard C library
function abort () is called which will attempt to produce a core file.

The py_FatalError () function is replaced with a macro which logs automatically the name of the current
function, unless the Py_LIMITED_API macro is defined.

3.9 siiriimiinde degisti: Log the function name automatically.

void Py_Exit (int status)
Bir parcasi Kararli ABI. Exit the current process. This calls Py_FinalizeEx () and then calls the standard
C library function exit (status).If Py_FinalizeEx () indicates an error, the exit status is set to 120.

3.6 strtimiinde degisti: Errors from finalization no longer ignored.

int Py_AtExit (void (*func)())

Bir parcasi Kararli ABL Register a cleanup function to be called by Py _FinalizeEx (). The cleanup function
will be called with no arguments and should return no value. At most 32 cleanup functions can be registered.
When the registration is successful, Py_AtExit () returns 0; on failure, it returns —1. The cleanup functi-
on registered last is called first. Each cleanup function will be called at most once. Since Python’s internal
finalization will have completed before the cleanup function, no Python APIs should be called by func.

6.4 Importing Modules

PyObject *PyImport_ImportModule (const char *name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL This is a wrapper around Py Import_Import ()
which takes a const char* as an argument instead of a PyOb ject*.

PyObject *PyImport_ImportModuleNoBlock (const char *name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL This function is a deprecated alias of
PyImport_ImportModule ().

3.3 stirtimiinde degisti: This function used to fail immediately when the import lock was held by another thread.
In Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this function’s
special behaviour isn’t needed anymore.

70 Bolim 6. Utilities

https://peps.python.org/pep-0578/

The Python/C API, Yayim 3.12.9

PyObject *PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)

Dondiirdiigii deger: Yeni referans. Import a module. This is best described by referring to the built-in Python
function __import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for _ import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Import_ImportModule ().
PyObject *PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyObject *locals,
PyObject *fromlist, int level)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Import a module. This is
best described by referring to the built-in Python function __import__ (), as the standard __import__ ()
function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Added in version 3.3.
PyObject *PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist, int level)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararl ABL Similar to
PyImport_ImportModuleLevelObject (), but the name is a UTF-8 encoded string instead of a
Unicode object.

3.3 stirtimiinde degisti: Negative values for level are no longer accepted.

PyObject *PyImport_Import (PyObject *name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL This is a higher-level interface that calls the current
“import hook function” (with an explicit level of 0, meaning absolute import). It invokes the __import__ ()

function from the _ builtins__ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment.

This function always uses absolute imports.

PyObject *PyImport_ReloadModule (PyObject *m)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Reload a module. Return a new reference to the
reloaded module, or NULL with an exception set on failure (the module still exists in this case).

PyObject *PyImport_AddModuleObject (PyObject ¥name)

Dondiirdiigii deger: Odiing alinmms referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return the module
object corresponding to a module name. The name argument may be of the form package.module. First
check the modules dictionary if there’s one there, and if not, create a new one and insert it in the modules
dictionary. Return NULL with an exception set on failure.

O Not

This function does not load or import the module; if the module wasn’t already loaded, you will get an empty
module object. Use Py Import ImportModule () or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

Added in version 3.3.

PyObject *PyImport_AddModule (const char ¥*name)

Dondiirdiigii deger: Odiing almmis referans. Bir parcast Kararlhh ~ ABL Similar to
PyImport_AddModuleObject (), but the name is a UTF-8 encoded string instead of a Unicode
object.

6.4. Importing Modules 4

The Python/C API, Yayim 3.12.9

PyObject *PyImport_ExecCodeModule (const char *name, PyObject *co)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Given a module name (possibly of the form
package.module) and a code object read from a Python bytecode file or obtained from the built-in func-
tion compile (), load the module. Return a new reference to the module object, or NULL with an exception
set if an error occurred. name is removed from sys.modules in error cases, even if name was already in
sys.modules on entry to PyImport_ExecCodeModule (). Leaving incompletely initialized modules in
sys.modules is dangerous, as imports of such modules have no way to know that the module object is an
unknown (and probably damaged with respect to the module author’s intents) state.

The module’s __spec__ and __loader__ will be set, if not set already, with the appropriate values. The
spec’s loader will be set to the module’s __ loader_ (if set) and to an instance of SourceFileLoader
otherwise.

cached_

The module’s __file attribute will be set to the code object’s co_filename. If applicable,
will also be set.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created
will still not be created.

See also PyImport_ExecCodeModuleEx () and PyImport_ExecCodeModulelWithPathnames ().

3.12 siirtimiinde degisti: The setting of __cached__and _ loader__ is deprecated. See ModuleSpec for
alternatives.

PyObject *PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Like Py Import ExecCodeModule (), but the
__file__ attribute of the module object is set to pathname if it is non-NULL.

See also PyImport_ExecCodeModuleWithPathnames ().

PyObject *PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname, PyObject

*cpathname)

Dondiirdiigii - deger: Yeni referans. Bir parcasi Kararh ABI 3.7 siiriimiinden beri. Like
PyImport_ExecCodeModuleEx (), but the _ cached__ attribute of the module object is set to
cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.

Added in version 3.3.

3.12 siiriimiinde degisti: Setting __cached__ is deprecated. See ModulesSpec for alternatives.

PyObject *PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const char

*pathname, const char *cpathname)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Like Py Import_ExecCodeModuleObject (),
but name, pathname and cpathname are UTF-8 encoded strings. Attempts are also made to figure out what the
value for pathname should be from cpathname if the former is set to NULL.

Added in version 3.2.

3.3 siiriimiinde degisti: Uses imp. source_from_cache () in calculating the source path if only the bytecode
path is provided.

3.12 siiriimiinde degisti: No longer uses the removed imp module.

long PyImport_GetMagicNumber ()

Bir parcast Kararli ABIL. Return the magic number for Python bytecode files (a.k.a. .pyc file). The magic
number should be present in the first four bytes of the bytecode file, in little-endian byte order. Returns -1 on
error.

3.3 siiriimiinde degisti: Return value of -1 upon failure.

72

Bolim 6. Utilities

The Python/C API, Yayim 3.12.9

const char *PyImport_GetMagicTag ()

Bir parcas: Kararl1 ABIL Return the magic tag string for PEP 3147 format Python bytecode file names. Keep
in mind that the value at sys.implementation.cache_tag is authoritative and should be used instead of
this function.

Added in version 3.2.

PyObject *PyImport_GetModuleDict ()
Dindiirdiigii deger: Odiing alinnusg referans. Bir parcast Kararli ABIL Return the dictionary used for the module
administration (a.k.a. sys.modules). Note that this is a per-interpreter variable.

PyObject *PyImport_GetModule (PyObject *name)
Dondiirdiigii deger: Yeni referans. Bir parcasit Kararli ABI 3.8 siiriimiinden beri. Return the already imported

module with the given name. If the module has not been imported yet then returns NULL but does not set an
error. Returns NULL and sets an error if the lookup failed.

Added in version 3.7.

PyObject *PyImport_GetImporter (PyObject *path)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Return a finder object for a sys.path/pkg.
__path__ item path, possibly by fetching it from the sys.path_importer_cache dict. If it wasn’t yet
cached, traverse sys.path_hooks until a hook is found that can handle the path item. Return None if no
hook could; this tells our caller that the path based finder could not find a finder for this path item. Cache the
result in sys.path_importer_cache. Return a new reference to the finder object.

int PyImport_ImportFrozenModuleObject (PyObject *name)

Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Load a frozen module named name. Return 1 for success, 0 if the
module is not found, and -1 with an exception set if the initialization failed. To access the imported module
on a successful load, use Py Import_ImportModule (). (Note the misnomer — this function would reload
the module if it was already imported.)

Added in version 3.3.
3.4 siirimiinde degisti: The __file_ attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)
Bir parcast Kararlt ABIL. Similar to Py Import_ImportFrozenModuleObject (), but the name is a UTF-8
encoded string instead of a Unicode object.

struct _£frozen

This is the structure type definition for frozen module descriptors, as generated by the freeze utility (see
Tools/freeze/ in the Python source distribution). Its definition, found in Include/import.h, is:

e N

struct _frozen {
const char *name;
const unsigned char *code;
int size;
bool is_package;
i

L J

3.11 stirtimiinde degisti: The new is_package field indicates whether the module is a package or not. This
replaces setting the size field to a negative value.

const struct _ frozen *PyImport_FrozenModules

This pointer is initialized to point to an array of _ frozen records, terminated by one whose members are all
NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play tricks
with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject *(*initfunc)(void))
Bir parcast Kararli ABI. Add a single module to the existing table of built-in modules. This is a convenience
wrapper around Py Import_ExtendInittab (), returning -1 if the table could not be extended. The new
module can be imported by the name name, and uses the function initfunc as the initialization function called
on the first attempted import. This should be called before Py Tnitialize ().

6.4. Importing Modules 73

https://peps.python.org/pep-3147/

The Python/C API, Yayim 3.12.9

struct _inittab
Structure describing a single entry in the list of built-in modules. Programs which embed Python may use an
array of these structures in conjunction with Py Import_ExtendInittab () to provide additional built-in
modules. The structure consists of two members:
const char *name
The module name, as an ASCII encoded string.
PyObject *(*initfunc)(void)
Initialization function for a module built into the interpreter.
int PyImport_ExtendInittab (struct _inittab *newtab)

Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry
which contains NULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns 0 on success or -1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This must be called before Py Initialize ().

If Python is initialized multiple times, Py Import_AppendInittab () Or PyImport ExtendInittab ()
must be called before each Python initialization.

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version O is the historical version, version 1 shares in-
terned strings in the file, and upon unmarshalling. Version 2 uses a binary format for floating-point numbers.
Py MARSHAL_VERSION indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)

Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of
the size of the native 1ong type. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr_Occurred () to check for that.

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr Occurred () to check for that.

PyObject *PyMarshal_WriteObjectToString (PyObject *value, int version)

Dondiirdiigii deger: Yeni referans. Return a bytes object containing the marshalled representation of value.
version indicates the file format.

The following functions allow marshalled values to be read back in.

long PyMarshal_ReadLongFromFile (FILE *file)

Return a C 1ong from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of long.

On error, sets the appropriate exception (EOFError) and returns —1.

int PyMarshal_ ReadShortFromFile (FILE *file)

Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native size of short.

On error, sets the appropriate exception (EOFError) and returns —1.

74 Bolim 6. Utilities

The Python/C API, Yayim 3.12.9

PyObject *PyMarshal_ReadObjectFromFile (FILE *file)

Dondiirdiigii deger: Yeni referans. Return a Python object from the data stream in a FILE* opened for reading.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadLastObjectFromFile (FILE *file)

Dondiirdiigii deger: Yeni referans. Return a Python object from the data stream in a FILE* opened for reading.
Unlike PyMarshal_ReadObjectFromFile (), this function assumes that no further objects will be read
from the file, allowing it to aggressively load file data into memory so that the de-serialization can operate
from data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain
that you won't be reading anything else from the file.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)

Dondiirdiigii deger: Yeni referans. Return a Python object from the data stream in a byte buffer containing len
bytes pointed to by data.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.6 Parsing arguments and building values

These functions are useful when creating your own extension functions and methods. Additional information and
examples are available in extending-index.

The first three of these functions described, PyArg ParseTuple (), PyArg ParseTupleAndKeywords (), and
PyArg_Parse (), all use format strings which are used to tell the function about the expected arguments. The format
strings use the same syntax for each of these functions.

6.6.1 Parsing arguments

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
quoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format
unit; and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for
the returned unicode or bytes area.

Unless otherwise stated, buffers are not NUL-terminated.
There are three ways strings and buffers can be converted to C:

» Formats such as y* and s* fill a py_burrer structure. This locks the underlying buffer so that the caller
can subsequently use the buffer even inside a Py_BEGIN_ALLOW_THREADS block without the risk of mutable
data being resized or destroyed. As a result, you have to call PyBurrer Release () after you have finished
processing the data (or in any early abort case).

e The es, es#, et and et # formats allocate the result buffer. You have to call pyvem Free () after you have
finished processing the data (or in any early abort case).

 Other formats take a st r or a read-only bytes-like object, such as bytes, and provide a const char * pointer
to its buffer. In this case the buffer is “borrowed”: it is managed by the corresponding Python object, and shares
the lifetime of this object. You won’t have to release any memory yourself.

To ensure that the underlying buffer may be safely borrowed, the object’s PyBufferpProcs.
bf_releasebuffer field must be NULL. This disallows common mutable objects such as bytearray, but
also some read-only objects such as memoryview of bytes.

6.6. Parsing arguments and building values 75

The Python/C API, Yayim 3.12.9

Besides this bf_releasebuf fer requirement, there is no check to verify whether the input object is immu-
table (e.g. whether it would honor a request for a writable buffer, or whether another thread can mutate the
data).

O Not

For all # variants of formats (s#, y#, etc.), the macro PY_SSIzZE_T_CLEAN must be defined before including
Python.h. OnPython 3.9 and older, the type of the length argumentis Py _ssize_ tifthePY SSIZE_T_CLEAN
macro is defined, or int otherwise.

s (str) [const char *]
Convert a Unicode object to a C pointer to a character string. A pointer to an existing string is stored in the
character pointer variable whose address you pass. The C string is NUL-terminated. The Python string must
not contain embedded null code points; if it does, a ValueError exception is raised. Unicode objects are
converted to C strings using 'ut £-8"' encoding. If this conversion fails, a UnicodeError is raised.

O Not

This format does not accept byfes-like objects. If you want to accept filesystem paths and convert them to
C character strings, it is preferable to use the 0& format with PyUnicode FSConverter () as converter.

3.5 stirtimiinde degisti: Previously, TypeError was raised when embedded null code points were encountered
in the Python string.

s* (str or bytes-like object) [Py_buffer]
This format accepts Unicode objects as well as bytes-like objects. It fills a Py_buffer structure provided by
the caller. In this case the resulting C string may contain embedded NUL bytes. Unicode objects are converted
to C strings using 'ut £-8' encoding.

s# (str, read-only byfes-like object) [const char *, Py ssize_t]
Like s*, except that it provides a borrowed buffer. The result is stored into two C variables, the first one a
pointer to a C string, the second one its length. The string may contain embedded null bytes. Unicode objects
are converted to C strings using 'ut £-8' encoding.

z (str or None) [const char *]
Like s, but the Python object may also be None, in which case the C pointer is set to NULL.

z* (str, bytes-like object or None) [Py_buffer]
Like s*, but the Python object may also be None, in which case the buf member of the Py_burrfer structure
is set to NULL.

z# (str, read-only byfes-like object or None) [const char *, Py_ssize t]
Like s#, but the Python object may also be None, in which case the C pointer is set to NULL.

y (read-only byfes-like object) [const char *]
This format converts a bytes-like object to a C pointer to a borrowed character string; it does not accept Unicode
objects. The bytes buffer must not contain embedded null bytes; if it does, a ValueError exception is raised.

3.5 siiriimiinde degisti: Previously, TypeError was raised when embedded null bytes were encountered in the
bytes buffer.

y* (bytes-like object) [Py_buffer]
This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This is the recommended way to
accept binary data.

y# (read-only byfes-like object) [const char *, Py ssize_t]
This variant on s# doesn’t accept Unicode objects, only bytes-like objects.

S (bytes) [PyBytesObject *]
Requires that the Python object is a bytes object, without attempting any conversion. Raises TypeError if
the object is not a bytes object. The C variable may also be declared as PyObject*.

76 Bolim 6. Utilities

The Python/C API, Yayim 3.12.9

Y (bytearray) [PyByteArrayObject *]
Requires that the Python object is a byt earray object, without attempting any conversion. Raises TypeError
if the object is not a bytearray object. The C variable may also be declared as Pyobject*.

U (stx) [PyObject *]
Requires that the Python object is a Unicode object, without attempting any conversion. Raises TypeError
if the object is not a Unicode object. The C variable may also be declared as PyObject*.

w* (read-write byfes-like object) [Py_buffer]
This format accepts any object which implements the read-write buffer interface. It fills a Py burfer
structure provided by the caller. The buffer may contain embedded null bytes. The caller have to call
PyBuffer Release () when it is done with the buffer.

es (str) [const char *encoding, char **buffer]
This variant on s is used for encoding Unicode into a character buffer. It only works for encoded data without
embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8' encoding is used.
An exception is raised if the named encoding is not known to Python. The second argument must be a char**;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument.

pyArg ParseTuple () will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem_Free () to
free the allocated buffer after use.

et (str, bytes or bytearray) [const char *encoding, char **buffer]
Same as es except that byte string objects are passed through without recoding them. Instead, the implemen-
tation assumes that the byte string object uses the encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, Py_ssize t *buffer_length]
This variant on s# is used for encoding Unicode into a character buffer. Unlike the es format, this variant
allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and must be a const char* which points to the
name of an encoding as a NUL-terminated string, or NULL, in which case 'ut£-8' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char**;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text
will be encoded in the encoding specified by the first argument. The third argument must be a pointer to an
integer; the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
pyMem Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be
set.

In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (str, bytes or bytearray) [const char *encoding, char **buffer, Py_ssize_t *buffer_length]
Same as es# except that byte string objects are passed through without recoding them. Instead, the imple-
mentation assumes that the byte string object uses the encoding passed in as parameter.

3.12 stiriimiinde degisti: u, u#, 7z, and z# are removed because they used a legacy Py_UNICODE* representation.

6.6. Parsing arguments and building values 77

The Python/C API, Yayim 3.12.9

Numbers

These formats allow representing Python numbers or single characters as C numbers. Formats that require
int, float or complex can also use the corresponding special methods _ index_ (), _ float_ () or
__complex__ () to convert the Python object to the required type.

For signed integer formats, OverflowError is raised if the value is out of range for the C type. For unsigned integer
formats, no range checking is done — the most significant bits are silently truncated when the receiving field is too
small to receive the value.

b (int) [unsigned char]
Convert a nonnegative Python integer to an unsigned tiny integer, stored in a C unsigned char.

B (int) [unsigned char]
Convert a Python integer to a tiny integer without overflow checking, stored in a C unsigned char.

h (int) [short int]
Convert a Python integer to a C short int.

H (int) [unsigned short int]
Convert a Python integer to a C unsigned short int, without overflow checking.

i (int) [int]
Convert a Python integer to a plain C int.

I (int) [unsigned int]
Convert a Python integer to a C unsigned int, without overflow checking.

1 (int) [long int]
Convert a Python integer to a C long int.

k (int) [unsigned long]
Convert a Python integer to a C unsigned long without overflow checking.

L (int) [long long]
Convert a Python integer to a C long long.

K (int) [unsigned long long]
Convert a Python integer to a C unsigned long long without overflow checking.

n (int) [Py _ssize t]
Convert a Python integer toa C Py_ssize_t.

c (bytes or bytearray of length 1) [char]
Convert a Python byte, represented as a bytes or bytearray object of length 1, toa C char.

3.3 siirtimiinde degisti: Allow bytearray objects.

C (str of length 1) [int]
Convert a Python character, represented as a str object of length 1, to a C int.

£ (£loat) [float]
Convert a Python floating-point number to a C float.

d (float) [double]
Convert a Python floating-point number to a C double.

D (complex) [Py_complex]
Convert a Python complex number to a C Py_complex structure.

Other objects

O (object) [PyObject *]
Store a Python object (without any conversion) in a C object pointer. The C program thus receives the actu-
al object that was passed. A new strong reference to the object is not created (i.e. its reference count is not
increased). The pointer stored is not NULL.

78 Bolim 6. Utilities

The Python/C API, Yayim 3.12.9

o! (object) [typeobject, PyObject *]
Store a Python object in a C object pointer. This is similar to 0, but takes two C arguments: the first is the
address of a Python type object, the second is the address of the C variable (of type PyObject*) into which
the object pointer is stored. If the Python object does not have the required type, TypeError is raised.

o& (object) [converter, address]
Convert a Python object to a C variable through a converter function. This takes two arguments: the first is
a function, the second is the address of a C variable (of arbitrary type), converted to void*. The converter
function in turn is called as follows:

[status = converter (object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parsex* function. The returned status should be 1 for a successful conversion and 0 if the conversion
has failed. When the conversion fails, the converter function should raise an exception and leave the content
of address unmodified. If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if
the argument parsing eventually fails, giving the converter a chance to release any memory that it had already
allocated. In this second call, the object parameter will be NULL; address will have the same value as in the
original call.

Examples of converters: PyUnicode_FSConverter () and PyUnicode_FSDecoder ().
3.1 stirimiinde degisti: Py_ CLEANUP_SUPPORTED was added.

p (bool) [int]
Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C true/false
integer value. Sets the int to 1 if the expression was true and 0 if it was false. This accepts any valid Python
value. See truth for more information about how Python tests values for truth.

Added in version 3.3.

(items) (tuple) [matching-items]
The object must be a Python sequence whose length is the number of format units in items. The C arguments
must correspond to the individual format units in ifems. Format units for sequences may be nested.

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

|
Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding

to optional arguments should be initialized to their default value — when an optional argument is not specified,
pPyArg ParseTuple () does not touch the contents of the corresponding C variable(s).

PyArg_ParseTupleAndKeywords () only: Indicates that the remaining arguments in the Python argument
list are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must always
be specified before $ in the format string.

Added in version 3.3.

The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception that PyArg ParseTuple () raises).

The list of format units ends here; the string after the semicolon is used as the error message instead of the
default error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not release them
(i.e. do not decrement their reference count)!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.

6.6. Parsing arguments and building values 79

The Python/C API, Yayim 3.12.9

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse* functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse* functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

API Functions

int PyArg_ParseTuple (PyObject *args, const char *format, ...)

Bir parcast Kararli ABL Parse the parameters of a function that takes only positional parameters into local
variables. Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)

Bir pargas: Kararl1 ABI. Identical to PyArg ParseTuple (), except that it accepts a va_list rather than a
variable number of arguments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *keywords[], ...)
Bir parcasi Kararli ABI. Parse the parameters of a function that takes both positional and keyword parameters
into local variables. The keywords argument is a NULL-terminated array of keyword parameter names. Empty
names denote positional-only parameters. Returns true on success; on failure, it returns false and raises the
appropriate exception.

3.6 siirimiinde degisti: Added support for positional-only parameters.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *keywords|[],
va_list vargs)

Bir parcasi Kararli ABL Identical to PyArg ParseTupleAndKeywords (), except that it accepts a va_list
rather than a variable number of arguments.

int PyArg_ValidateKeywordArguments (PyObject*)
Bir parcast Kararli ABIL Ensure that the keys in the keywords argument dictionary are strings. This is only
needed if PyArg ParseTupleAndKeywords () is not used, since the latter already does this check.

Added in version 3.2.

int PyArg_Parse (PyObject *args, const char *format, ...)
Bir parcast Kararl1 ABI. Function used to deconstruct the argument lists of “old-style” functions — these are
functions which use the METH_OLDARGS parameter parsing method, which has been removed in Python 3.
This is not recommended for use in parameter parsing in new code, and most code in the standard interpreter
has been modified to no longer use this for that purpose. It does remain a convenient way to decompose other
tuples, however, and may continue to be used for that purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

Bir pargast Kararli ABIL. A simpler form of parameter retrieval which does not use a format string to specify
the types of the arguments. Functions which use this method to retrieve their parameters should be declared
as METH_VARARGS in function or method tables. The tuple containing the actual parameters should be passed
as args; it must actually be a tuple. The length of the tuple must be at least min and no more than max; min and
max may be equal. Additional arguments must be passed to the function, each of which should be a pointer to
a PyObject* variable; these will be filled in with the values from args; they will contain borrowed references.
The variables which correspond to optional parameters not given by args will not be filled in; these should be
initialized by the caller. This function returns true on success and false if args is not a tuple or contains the
wrong number of elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the _weakref helper module for
weak references:

-

static PyObject *
weakref ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

(sonraki sayfaya devam)

80 Bolim 6. Utilities

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref NewRef (object, callback);
}

return result;

The call to PyArg UnpackTuple() in this example is entirely equivalent to this call to
PyArg_ParseTuple():

[Py]—\rngarseTuple(args, "O|O:ref", &object, &callback)

6.6.2 Building values

PyObject *Py_BuildValue (const char *format, ...)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Create a new value based on a format string similar
to those accepted by the PyArg_Parse* family of functions and a sequence of values. Returns the value or
NULL in the case of an error; an exception will be raised if NULL is returned.

Py_BuildValue () does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# formats,
the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py_Buildvalue (). In other words, if your code invokes malloc () and passes the allocated memory to
Py_BuildValue (), your code is responsible for calling free () for that memory once Py _Buildvalue ()
returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to
be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
s#). This can be used to make long format strings a tad more readable.

s (str or None) [const char *]
Convert a null-terminated C string to a Python str object using 'utf£-8"' encoding. If the C string
pointer is NULL, None is used.

s# (str or None) [const char *, Py _ssize t]
Convert a C string and its length to a Python st r object using 'ut £-8' encoding. If the C string pointer
is NULL, the length is ignored and None is returned.

y (bytes) [const char *]
This converts a C string to a Python bytes object. If the C string pointer is NULL, None is returned.

y# (bytes) [const char *, Py _ssize t]
This converts a C string and its lengths to a Python object. If the C string pointer is NULL, None is
returned.

z (str or None) [const char *]
Same as s.

z# (str or None) [const char *, Py ssize_t]
Same as s#.

u (str) [const wchar_t *]
Convert a null-terminated wchar_t buffer of Unicode (UTF-16 or UCS-4) data to a Python Unicode
object. If the Unicode buffer pointer is NULL, None is returned.

6.6. Parsing arguments and building values 81

The Python/C API, Yayim 3.12.9

u# (str) [const wchar_t *, Py ssize t]

Convert a Unicode (UTF-16 or UCS-4) data buffer and its length to a Python Unicode object. If the

Unicode buffer pointer is NULL, the length is ignored and None is returned.

U (str or None) [const char *]
Same as s.

U# (str or None) [const char *, Py ssize t]
Same as s#.

i (int) [int]
Convert a plain C int to a Python integer object.

b (int) [char]
Convert a plain C char to a Python integer object.

h (int) [short int]
Convert a plain C short int to a Python integer object.

1 (int) [long int]
Convert a C 1long int to a Python integer object.

B (int) [unsigned char]
Convert a C unsigned char to a Python integer object.

H (int) [unsigned short int]
Convert a C unsigned short int toa Python integer object.

I (int) [unsigned int]
Convert a C unsigned int to a Python integer object.

k (int) [unsigned long]
Convert a C unsigned long to a Python integer object.

L (int) [long long]
Convert a C 1ong long to a Python integer object.

K (int) [unsigned long long]
Convert a C unsigned long long to a Python integer object.

n (int) [Py_ssize t]
Converta C pPy_ssize_t to a Python integer.

c (bytes of length 1) [char]

Convert a C int representing a byte to a Python bytes object of length 1.

C (str of length 1) [int]

Convert a C int representing a character to Python st r object of length 1.

d (float) [double]
Convert a C double to a Python floating-point number.

f (£loat) [float]
Convert a C £loat to a Python floating-point number.

D (complex) [Py_complex *]
Convert a C Py_complex structure to a Python complex number.

O (object) [PyObject *]

Pass a Python object untouched but create a new strong reference to it (i.e. its reference count is incre-
mented by one). If the object passed in is a NULL pointer, it is assumed that this was caused because the
call producing the argument found an error and set an exception. Therefore, Py Buildvalue () will
return NULL but won't raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *]
Same as 0.

82

Bolim 6. Utilities

The Python/C API, Yayim 3.12.9

N (object) [PyObject *]
Same as 0, except it doesn’t create a new strong reference. Useful when the object is created by a call to
an object constructor in the argument list.

o& (object) [converter, anything]
Convert anything to a Python object through a converter function. The function is called with anything
(which should be compatible with void*) as its argument and should return a “new” Python object, or
NULL if an error occurred.

(items) (tuple) [matching-items]
Convert a sequence of C values to a Python tuple with the same number of items.

[items] (1ist) [matching-items]
Convert a sequence of C values to a Python list with the same number of items.

{items} (dict) [matching-items]
Convert a sequence of C values to a Python dictionary. Each pair of consecutive C values adds one item
to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject *Py_VaBuildValue (const char *format, va_list vargs)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Identical to pPy_Buildvalue (), except that it
accepts a va_list rather than a variable number of arguments.

6.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprintf (char *str, size_t size, const char *format, ...)
Bir parcast Kararli ABL. Output not more than size bytes to str according to the format string format and the
extra arguments. See the Unix man page snprintf (3).

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)
Bir parcast Kararli ABI. Output not more than size bytes to str according to the format string format and the

variable argument list va. Unix man page vsnprintf (3).

Py0S_snprintf() and PyOS vsnprintf() wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure that st r [size-1] isalways '\ 0' upon return. They never write more than size bytes (including
the trailing '\ 0 ") into str. Both functions require that str != NULL, size > 0, format != NULL and size <
INT_MAX. Note that this means there is no equivalent to the C99 n = snprintf (NULL, 0, ...) which would
determine the necessary buffer size.

The return value (rv) for these functions should be interpreted as follows:

e« When 0 < = rv < size, the output conversion was successful and rv characters were written to str (exclu-
ding the trailing ' \0"' byte at str[rv]).

e When rv > = size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str[size-1]1is '\0"' in this case.

e« When rv < 0, “something bad happened.” str[size-1] is '\0' in this case too, but the rest of str is
undefined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

unsigned long PyOS_strtoul (const char *str, char **ptr, int base)

Bir parcast Kararli ABI. Convert the initial part of the string in str to an unsigned long value according
to the given base, which must be between 2 and 36 inclusive, or be the special value 0.

6.7. String conversion and formatting 83

https://manpages.debian.org/snprintf(3)
https://manpages.debian.org/vsnprintf(3)

The Python/C API, Yayim 3.12.9

Leading white space and case of characters are ignored. If base is zero it looks for a leading 0b, 0o or 0x to
tell which base. If these are absent it defaults to 10. Base must be 0 or between 2 and 36 (inclusive). If ptr is
non-NULL it will contain a pointer to the end of the scan.

If the converted value falls out of range of corresponding return type, range error occurs (errno is set to
ERANGE) and ULONG_MAX is returned. If no conversion can be performed, 0 is returned.

See also the Unix man page strtoul (3).

Added in version 3.2.

long PyOS_strtol (const char *str, char **ptr, int base)

Bir parcasi Kararli ABL. Convert the initial part of the string in str to an long value according to the given
base, which must be between 2 and 36 inclusive, or be the special value 0.

Same as Py0S_strtoul (), but return a 1ong value instead and LONG_MAX on overflows.
See also the Unix man page strtol (3).

Added in version 3.2.

double PyOS_string_to_double (const char *s, char **endptr, PyObject *overflow_exception)

Bir parcast Kararli ABIL. Convert a string s to a double, raising a Python exception on failure. The set of
accepted strings corresponds to the set of strings accepted by Python’s £1oat () constructor, except that s
must not have leading or trailing whitespace. The conversion is independent of the current locale.

If endptr is NULL, convert the whole string. Raise ValueError and return -1 . 0 if the string is not a valid
representation of a floating-point number.

If endptr is not NULL, convert as much of the string as possible and set *endpt r to point to the first unconverted
character. If no initial segment of the string is the valid representation of a floating-point number, set *endpt r
to point to the beginning of the string, raise ValueError, and return -1 . 0.

If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many
platforms) then if overflow_exception is NULL return Py HUGE_VAL (with an appropriate sign) and don’t
set any exception. Otherwise, overflow_exception must point to a Python exception object; raise that
exception and return -1 . 0. In both cases, set *endpt r to point to the first character after the converted value.

If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate
Python exception and return -1 . 0.

Added in version 3.1.

char *PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)

Bir parcas: Kararl1 ABI. Convert a double val to a string using supplied format_code, precision, and flags.

format_code must be one of 'e', 'E', '£', 'F', 'g', 'G' or 'r'. For 'r', the supplied precision must be
0 and is ignored. The ' r' format code specifies the standard repr () format.

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed
together:

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

e Py _DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
Py0S_snprintf () '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE,Py_DTST_INFINITE,
or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem Free ().

Added in version 3.1.

84

Bolim 6. Utilities

https://manpages.debian.org/strtoul(3)
https://manpages.debian.org/strtol(3)

The Python/C API, Yayim 3.12.9

int PyOS_stricmp (const char *s1, const char *s2)

Case insensitive comparison of strings. The function works almost identically to strcmp () except that it
ignores the case.

int PyOS_strnicmp (const char *s1, const char *s2, Py_ssize_t size)

Case insensitive comparison of strings. The function works almost identically to st rncmp () except that it
ignores the case.

6.8 PyHash API

See also the PyTypeObject. tp_hash member.

type Py_hash_t
Hash value type: signed integer.

Added in version 3.2.

type Py_uhash_t
Hash value type: unsigned integer.

Added in version 3.2.

type PyHash_FuncDef
Hash function definition used by PyHash_GetFuncDef ().

const char *name

Hash function name (UTF-8 encoded string).

const int hash_bits

Internal size of the hash value in bits.

const int seed_bits

Size of seed input in bits.
Added in version 3.4.

PyHash_FuncDef *PyHash_GetFuncDef£ (void)
Get the hash function definition.

> Ayrica bakimiz

PEP 456 “Secure and interchangeable hash algorithm”.

Added in version 3.4.

6.9 Reflection

PyObject *PyEval_GetBuiltins (void)
Dondiirdiigii deger: Odiin¢ alinmus referans. Bir parcas: Kararli ABL Return a dictionary of the builtins in the
current execution frame, or the interpreter of the thread state if no frame is currently executing.

PyObject *PyEval_GetLocals (void)
Dondiirdiigii deger: Odiing alimmus referans. Bir pargast Kararli ABI. Return a dictionary of the local variables
in the current execution frame, or NULL if no frame is currently executing.

PyObject *PyEval_GetGlobals (void)

Dindiirdiigii deger: Odiing alinmus referans. Bir parcast Kararli ABI. Return a dictionary of the global variables
in the current execution frame, or NULL if no frame is currently executing.

6.8. PyHash API 85

https://peps.python.org/pep-0456/

The Python/C API, Yayim 3.12.9

PyFrameObject *PyEval_GetFrame (void)
Dondiirdiigii deger: Odiing alnnug referans. Bir parcast Kararli ABL Return the current thread state’s frame,
which is NULL if no frame is currently executing.
See also PyThreadState_GetFrame ().

const char *PyEval_GetFuncName (PyObject *func)
Bir parcas: Kararli ABIL Return the name of func if it is a function, class or instance object, else the name of
Sfuncs type.

const char *PyEval_GetFuncDesc (PyObject *func)

Bir parcast Kararli ABL Return a description string, depending on the type of func. Return values include
“()” for functions and methods, “ constructor”, * instance”, and “ object”. Concatenated with the result of
PyEval_GetFuncName (), the result will be a description of func.

6.10 Codec registry and support functions

int PyCodec_Register (PyObject *search_function)
Bir parcast Kararli ABL Register a new codec search function.
As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first in
the list of search functions.

int PyCodec_Unregister (PyObject *search_function)

Bir parcasi Kararli ABI 3. 10 siiriimiinden beri. Unregister a codec search function and clear the registry’s cache.
If the search function is not registered, do nothing. Return O on success. Raise an exception and return -1 on
error.

Added in version 3.10.

int PyCodec_KnownEncoding (const char *encoding)
Bir parcasi Kararli ABI. Return 1 or 0 depending on whether there is a registered codec for the given encoding.
This function always succeeds.

PyObject *PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Generic codec based encoding API.
object is passed through the encoder function found for the given encoding using the error handling method
defined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

PyObject *PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Generic codec based decoding API.
object is passed through the decoder function found for the given encoding using the error handling method

defined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

6.10.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes
encodings looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set
and NULL returned.
PyObject *PyCodec_Encoder (const char *encoding)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Get an encoder function for the given encoding.

PyObject *PyCodec_Decoder (const char *encoding)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Get a decoder function for the given encoding.

86 Bolim 6. Utilities

The Python/C API, Yayim 3.12.9

PyObject *PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABL Get an IncrementalEncoder object for the given
encoding.

PyObject *PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABL Get an IncrementalDecoder object for the given
encoding.

PyObject *PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Geta St reamReader factory function for the given
encoding.

PyObject *PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Geta st reamWriter factory function for the given
encoding.

6.10.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError (const char *name, PyObject *error)

Bir parcast Kararli ABI. Register the error handling callback function error under the given name. This callback
function will be called by a codec when it encounters unencodable characters/undecodable bytes and name is
specified as the error parameter in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError Or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes
and their offset in the original string (see Unicode Exception Objects for functions to extract this information).
The callback must either raise the given exception, or return a two-item tuple containing the replacement for
the problematic sequence, and an integer giving the offset in the original string at which encoding/decoding
should be resumed.

Return 0 on success, —1 on error.

PyObject *PyCodec_LookupError (const char *name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Lookup the error handling callback function regis-
tered under name. As a special case NULL can be passed, in which case the error handling callback for “strict”
will be returned.

PyObject *PyCodec_StrictErrors (PyObject *exc)
Dondiirdiigii deger: Her zaman NULL. Bir parcast Kararli ABI. Raise exc as an exception.

PyObject *PyCodec_IgnoreErrors (PyObject *exc)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Ignore the unicode error, skipping the faulty input.

PyObject *PyCodec_ReplaceErrors (PyObject *exc)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Replace the unicode encode error with ? or U+FFFD.

PyObject *PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Replace the unicode encode error with XML cha-
racter references.

PyObject *PyCodec_BackslashReplaceErrors (PyObject *exc)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Replace the unicode encode error with backslash
escapes (\x, \u and \U).

PyObject *PyCodec_NameReplaceErrors (PyObject *exc)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Replace the unicode encode

error with \N{. . . } escapes.

Added in version 3.5.

6.10. Codec registry and support functions 87

The Python/C API, Yayim 3.12.9

6.11 Support for Perf Maps

On supported platforms (as of this writing, only Linux), the runtime can take advantage of perf map files to make
Python functions visible to an external profiling tool (such as perf). A running process may create a file in the /tmp
directory, which contains entries that can map a section of executable code to a name. This interface is described in
the documentation of the Linux Perf tool.

In Python, these helper APIs can be used by libraries and features that rely on generating machine code on the fly.

Note that holding the Global Interpreter Lock (GIL) is not required for these APIs.

int PyUnstable_PerfMapState_Init (void)

Bu Kararsiz API. Bu, kiigiik (minor) siiriimlerde uyari olmadan degisebilir.

Open the /tmp/perf-$pid.map file, unless it’s already opened, and create a lock to ensure thread-safe writes
to the file (provided the writes are done through pPyUnstable WritePerfMapEntry ()). Normally, there’s
no need to call this explicitly; just use PyUnstable WritePerfMapEntry () and it will initialize the state
on first call.

Returns 0 on success, —1 on failure to create/open the perf map file, or -2 on failure to create a lock. Check
errno for more information about the cause of a failure.

int PyUnstable_WritePerfMapEntry (const void *code_addr, unsigned int code_size, const char

*entry_name)

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyar1 olmadan degisebilir.

Write one single entry to the /tmp/perf-$pid.map file. This function is thread safe. Here is what an example
entry looks like:

address size name
7£3529fcf759 b py::bar:/run/t.py

Will call PyUnstable PerfMapState_Init () before writing the entry, if the perf map file is not already
opened. Returns 0 on success, or the same error codes as PyUnstable_PerfMapState_Init () on failure.

void PyUnstable_PerfMapState_Fini (void)

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyar1 olmadan degisebilir.

Close the perf map file opened by PyUnstable_pPerfMapState_Init (). This is called by the runtime
itself during interpreter shut-down. In general, there shouldn’t be a reason to explicitly call this, except to
handle specific scenarios such as forking.

88

Bolim 6. Utilities

https://perf.wiki.kernel.org/index.php/Main_Page
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/jit-interface.txt

BOLUM 7

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been
created by PyList_New (), but whose items have not been set to some non-NULL value yet.

7.1 Object Protocol

PyObject *Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type com-
bination.

Py_RETURN_NOTIMPLEMENTED
Properly handle returning Py_Not Implemented from within a C function (that is, create a new strong refe-
rence to Not Implemented and return it).

Py PRINT_RAW
Flag to be used with multiple functions that print the object (like PyoObject Print () and
pyFile_WriteoObject ()). If passed, these function would use the str () of the object instead of the
repr ().

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT RAW; if given, the str () of the object is written instead of
the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)

Bir parcasi Kararli ABL Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the
Python expression hasattr (o, attr_name). This function always succeeds.

O Not

Exceptions that occur when this calls __getattr_ () and__getattribute__ () methods are silently
ignored. For proper error handling, use PyObject_GetAttr () instead.

89

The Python/C API, Yayim 3.12.9

int PyObject_HasAttrString (PyObject *o, const char *attr_name)

Bir pargast Kararli ABIL This is the same as PyObject_HasAttr (), but attr_name is specified as a const
char* UTF-8 encoded bytes string, rather than a Pyobject*.

O Not

Exceptions that occur when this calls _ getattr_ () and _ getattribute_ () methods or
while creating the temporary str object are silently ignored. For proper error handling, use
PyObject_GetAttrString () instead.

PyObject *PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli1 ABI. Retrieve an attribute named attr_name from object

o. Returns the attribute value on success, or NULL on failure. This is the equivalent of the Python expression
o.attr_name.

PyObject *PyObject_GetAttrString (PyObject *0, const char *attr_name)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL This is the same as PyObject_GetAttr (), but
attr_name is specified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.

PyObject *PyObject_GenericGetAttr (PyObject *0, PyObject *name)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Generic attribute getter function that is meant to be
put into a type object’s tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s
MRO as well as an attribute in the object’s __dict__ (if present). As outlined in descriptors, data descriptors
take preference over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is
raised.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Bir parcast Kararli ABL Set the value of the attribute named atfr_name, for object o, to the value v. Raise

an exception and return -1 on failure; return 0 on success. This is the equivalent of the Python statement
o.attr_name = wv.

If vis NULL, the attribute is deleted. This behaviour is deprecated in favour of using PyObject_DelAttr (),
but there are currently no plans to remove it.

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)

Bir parcast Kararli ABI. This is the same as PyObject_SetAttr (), but attr_name is specified as a const
char* UTF-8 encoded bytes string, rather than a Pyobject*.

If v is NuLL, the attribute is deleted, but this feature is deprecated in favour of using
PyObject_DelAttrString().

The number of different attribute names passed to this function should be kept small, usually by
using a statically allocated string as attr_name. For attribute names that aren’t known at compile time,
prefer calling PyUnicode FromString() and PyObject_SetAttr () directly. For more details, see
PyUnicode_InternFromString (), which may be used internally to create a key object.

int PyObject_GenericSetAttr (PyObject *o, PyObject ¥name, PyObject *value)

Bir parcasi Kararli ABL. Generic attribute setter and deleter function that is meant to be put into a type object’s
tp_setattro slot. It looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found
it takes preference over setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set
or deleted in the object’s __dict__ (if present). On success, 0 is returned, otherwise an AttributeError
is raised and -1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object o. Returns -1 on failure. This is the equivalent of the Python
statement del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)

This is the same as PyObject_DelAttr (), but attr_name is specified as a const char* UTF-8 encoded
bytes string, rather than a PyObject*.

920 Boélim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.9

The number of different attribute names passed to this function should be kept small, usually by

using a statically allocated string as artr_name. For attribute names that aren’t known at compile time,

prefer calling PyUnicode FromString () and PyObject_DelAttr () directly. For more details, see

PyUnicode_InternFromString (), which may be used internally to create a key object for lookup.
PyObject *PyObject_GenericGetDict (PyObject *0, void *context)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI 3. 10 siiriimiinden beri. A generic implementation for

the getter of a ___dict__ descriptor. It creates the dictionary if necessary.

This function may also be called to get the _ dict__ of the object 0. Pass NULL for context when cal-
ling it. Since this function may need to allocate memory for the dictionary, it may be more efficient to call
PyObject_GetAttr () when accessing an attribute on the object.

On failure, returns NULL with an exception set.
Added in version 3.3.

int PyObject_GenericSetDict (PyObject *o, PyObject *value, void *context)

Bir parcasi Kararlt ABI 3.7 siiriimiinden beri. A generic implementation for the setter of a __dict__ desc-
riptor. This implementation does not allow the dictionary to be deleted.

Added in version 3.3.
PyObject **_PyObject_GetDictPtr (PyObject *obj)

Return a pointer to __dict__ of the object obj. If there is no __dict
exception.

, return NULL without setting an

This function may need to allocate memory for the dictionary, so it may be more efficient to call
PyObject_GetAttr () when accessing an attribute on the object.

PyObject *PyObject_RichCompare (PyObject *ol, PyObject ¥02, int opid)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Compare the values of ol and 02 using the operation
specified by opid, which must be one of pPy_1.T, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to
<, < =,==,!=,> or> =respectively. This is the equivalent of the Python expression o1 op o2, where op
is the operator corresponding to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *0l, PyObject *02, int opid)

Bir parcast Kararli ABL. Compare the values of ol and o2 using the operation specified by opid, like
PyObject_RichCompare (), but returns —1 on error, 0 if the result is false, 1 otherwise.

O Not

If ol and 02 are the same object, PyObject RichCompareBool () will always return 1 for Py_E0 and 0 for
Py_NE.

PyObject *PyObject_Format (PyObject *obj, PyObject *format_spec)
Bir parcasi Kararli ABIL. Format obj using format_spec. This is equivalent to the Python expression

format (obj, format_spec).

format_spec may be NULL. In this case the call is equivalent to format (obj). Returns the formatted string
on success, NULL on failure.

PyObject *PyObject_Repr (PyObject *0)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Compute a string representation of object o. Returns
the string representation on success, NULL on failure. This is the equivalent of the Python expression repr (o).
Called by the repr () built-in function.

3.4 siirtimiinde degisti: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

7.1. Object Protocol 91

The Python/C API, Yayim 3.12.9

PyObject *PyObject_ASCII (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir par¢asi Kararli ABL. As PyObject_Repr (), compute a string repre-
sentation of object o, but escape the non-ASCII characters in the string returned by PyObject_Repr () with
\x, \u or \U escapes. This generates a string similar to that returned by pPyObject_Repr () in Python 2.
Called by the ascii () built-in function.

PyObject *PyObiject_Str (PyObject *0)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Compute a string representation of object o. Returns
the string representation on success, NULL on failure. This is the equivalent of the Python expression str (o).
Called by the str () built-in function and, therefore, by the print () function.

3.4 stirtimiinde degisti: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject *pyObject_Bytes (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Compute a bytes representation of object 0. NULL is
returned on failure and a bytes object on success. This is equivalent to the Python expression bytes (o), when
o0 is not an integer. Unlike bytes (o), a TypeError is raised when o is an integer instead of a zero-initialized
bytes object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Bir parcasi Kararl1 ABIL. Return 1 if the class derived is identical to or derived from the class cls, otherwise
return 0. In case of an error, return —1.

If cis is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

If cls has a __subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in
cls.__mro_

Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by havinga _bases__ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Bir parcast Kararli ABL Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error,
returns —1 and sets an exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

If clshasa___instancecheck__ () method, it will be called to determine the subclass status as described in
PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.

An instance inst can override what is considered its class by havinga __class___ attribute.

An object cls can override if it is considered a class, and what its base classes are, by having a _ bases___
attribute (which must be a tuple of base classes).

Py_hash_t PyObject_Hash (PyObject *0)
Bir parcasi Kararli ABIL. Compute and return the hash value of an object 0. On failure, return -1. This is the
equivalent of the Python expression hash (o).

3.2 surtimiinde degisti: The return type is now Py_hash_t. This is a signed integer the same size as
Py _ssize_t.
Py_hash_t PyObject_HashNot Implemented (PyObject *0)

Bir parcasi Kararli ABI Seta TypeError indicating that t ype (o) is not hashable and return —1. This function
receives special treatment when stored in a t p_hash slot, allowing a type to explicitly indicate to the interpreter
that it is not hashable.

int PyObject_IsTrue (PyObject *0)

Bir parcas: Kararl1 ABL Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent
to the Python expression not not o. On failure, return -1.

92 Boélim 7. Abstract Objects Layer

https://peps.python.org/pep-3119/
https://peps.python.org/pep-3119/

The Python/C API, Yayim 3.12.9

int PyObject_Not (PyObject *0)
Bir parcasi Kararli ABL Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent
to the Python expression not o. On failure, return -1.

PyObject *PyObject_Type (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. When o is non-NULL, returns a type object corres-
ponding to the object type of object 0. On failure, raises SystemError and returns NULL. This is equivalent
to the Python expression type (o). This function creates a new strong reference to the return value. The-
re’s really no reason to use this function instead of the Py TvPE () function, which returns a pointer of type
PyTypeObject*, except when a new strong reference is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return non-zero if the object o is of type fype or a subtype of type, and 0 otherwise. Both parameters must be
non-NULL.

Py_ssize_t PyObject_Size (PyObject *0)

Py_ssize_t PyObject_Length (PyObject *0)
Bir parcasi Kararli ABIL. Return the length of object o. If the object o provides either the sequence and map-
ping protocols, the sequence length is returned. On error, -1 is returned. This is the equivalent to the Python
expression len (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t defaultvalue)

Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__ (), and finally return the default value. On error return -1. This is the equivalent to
the Python expression operator.length_hint (o, defaultvalue).

Added in version 3.4.

PyObject *PyObject_GetItem (PyObject *o, PyObject *key)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Return element of o corresponding to the object key
or NULL on failure. This is the equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Bir parcasi Kararlt ABL Map the object key to the value v. Raise an exception and return -1 on failure; return 0
on success. This is the equivalent of the Python statement o [key] = v. This function does not steal a reference
to v.

int PyObject_DelItem (PyObject *o, PyObject *key)
Bir parcast Kararli ABL. Remove the mapping for the object key from the object 0. Return -1 on failure. This
is equivalent to the Python statement del o[key].

int PyObject_DelItemString (PyObject *o, const char *key)
Bir parcast Kararli ABI. This is the same as PyOb ject_DelItem(),but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

PyObject *PyObject_Dir (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABL This is equivalent to the Python expression dir (o),
returning a (possibly empty) list of strings appropriate for the object argument, or NULL if there was an error.
If the argument is NULL, this is like the Python dir (), returning the names of the current locals; in this case,
if no execution frame is active then NULL is returned but PyErr_Occurred () will return false.

PyObject *PyObject_GetIter (PyObject *0)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. This is equivalent to the Python expression iter (o).
It returns a new iterator for the object argument, or the object itself if the object is already an iterator. Raises
TypeError and returns NULL if the object cannot be iterated.

PyObject *PyObject_SelfIter (PyObject *obj)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. This is equivalent to the Python __iter_ (self):
return self method. It is intended for iterator types, to be used in the Py TypeObject.tp_iter slot.

7.1. Object Protocol 93

The Python/C API, Yayim 3.12.9

PyObject *PyObject_GetAIter (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.10 siiriimiinden beri. This is the equivalent to the
Python expression aiter (o). Takes an AsyncIterable object and returns an AsyncIterator for it. This
is typically a new iterator but if the argument is an AsyncIterator, this returns itself. Raises TypeError
and returns NULL if the object cannot be iterated.

Added in version 3.10.
void *PyObject_GetTypeData (PyObject *o0, PyTypeObject *cls)
Bir parcast Kararli ABI 3.12 siiriimiinden beri. Get a pointer to subclass-specific data reserved for cis.

The object o must be an instance of cls, and cls must have been created using negative PyType Spec.
basicsize. Python does not check this.

On error, set an exception and return NULL.
Added in version 3.12.
Py_ssize_t PyType_GetTypeDataSize (PyTypeObject *cls)

Bir parcast Kararli ABI 3.12 siiriimiinden beri. Return the size of the instance memory space reserved for cIs,
i.e. the size of the memory PyObject_ GetTypeData () returns.

This may be larger than requested using -PyType_Spec.basicsize; it is safe to use this larger size (e.g.
with memset ()).

The type cls must have been created using negative Py Type Spec.basicsize. Python does not check this.
On error, set an exception and return a negative value.
Added in version 3.12.

void *PyObject_GetItemData (PyObject *0)
Get a pointer to per-item data for a class with Py_ TPFLAGS_TTEMS_AT_END.

On error, set an exception and return NULL. TypeError 1is raised if o does not have
Py_TPFLAGS_ITEMS_AT_END set.

Added in version 3.12.

7.2 Call Protocol

CPython supports two different calling protocols: #p_call and vectorcall.

7.2.1 The tp_call Protocol

Instances of classes that set tp_cal1 are callable. The signature of the slot is:

[PyObject *tp_call (PyObject *callable, PyObject *args, PyObject *kwargs); }

A call is made using a tuple for the positional arguments and a dict for the keyword arguments, similarly to
callable (*args, **kwargs) in Python code. args must be non-NULL (use an empty tuple if there are no
arguments) but kwargs may be NULL if there are no keyword arguments.

This convention is not only used by #p_call: tp_new and tp_init also pass arguments this way.

To call an object, use PyObject_Call () or another call API.

7.2.2 The Vectorcall Protocol
Added in version 3.9.
The vectorcall protocol was introduced in PEP 590 as an additional protocol for making calls more efficient.

As rule of thumb, CPython will prefer the vectorcall for internal calls if the callable supports it. However, this is not
a hard rule. Additionally, some third-party extensions use #p_call directly (rather than using PyObject_call ()).

94 Boélim 7. Abstract Objects Layer

https://peps.python.org/pep-0590/

The Python/C API, Yayim 3.12.9

Therefore, a class supporting vectorcall must also implement tp_call. Moreover, the callable must behave the
same regardless of which protocol is used. The recommended way to achieve this is by setting tp_call to
PyVectorcall_call (). This bears repeating:

A Uyar

A class supporting vectorcall must also implement tp_ca11 with the same semantics.

3.12 siiriimiinde degisti: The pPy_TPFLAGS HAVE_VECTORCALL flag is now removed from a class when the class’s
__call__ () method is reassigned. (This internally sets to_ca 11 only, and thus may make it behave differently than
the vectorcall function.) In earlier Python versions, vectorcall should only be used with immutable or static types.

A class should not implement vectorcall if that would be slower than #p_call. For example, if the callee needs to
convert the arguments to an args tuple and kwargs dict anyway, then there is no point in implementing vectorcall.

Classes can implement the vectorcall protocol by enabling the Py TPFLAGS HAVE_VECTORCALL flag and setting
tp_vectorcall_offset to the offset inside the object structure where a vectorcallfunc appears. This is a pointer
to a function with the following signature:

typedef PyObject *(*vectorcallfunc)(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Bir parcast Kararli ABI 3.12 siiriimiinden beri.
« callable is the object being called.

« args is a C array consisting of the positional arguments followed by the
values of the keyword arguments. This can be NULL if there are no arguments.

« nargsf is the number of positional arguments plus possibly the
PY _VECTORCALL_ARGUMENTS_OFFSET flag. To get the actual number of positional arguments from
nargsf, use PyVectorcall_NARGS ().

o kwnames is a tuple containing the names of the keyword arguments;
in other words, the keys of the kwargs dict. These names must be strings (instances of str or a subclass)
and they must be unique. If there are no keyword arguments, then kwnames can instead be NULL.

PY_ VECTORCALL_ARGUMENTS_OFFSET

Bir pargasi Kararli ABI 3.12 siiriimiinden beri. If this flag is set in a vectorcall nargsf argument, the callee is
allowed to temporarily change args[-1]. In other words, args points to argument 1 (not 0) in the allocated
vector. The callee must restore the value of args [-1] before returning.

For PyObject_VectorcallMethod (), this flag means instead that args [0] may be changed.

Whenever they can do so cheaply (without additional allocation), callers are encouraged to use
PY_VECTORCALIL_ARGUMENTS_OFFSET. Doing so will allow callables such as bound methods to make their
onward calls (which include a prepended self argument) very efficiently.

Added in version 3.8.

To call an object that implements vectorcall, use a call APl function as with any other callable.
PyObject_Vectorcall () will usually be most efficient.

O Not

In CPython 3.8, the vectorcall API and related functions were available provisionally under na-
mes with a leading underscore: _PyObject_ Vectorcall, _Py TPFLAGS_HAVE_VECTORCALL,
_PyObject_VectorcallMethod, _PyVectorcall_ Function, _PyObject_CallOneArg,
_PyObject_CallMethodNoArgs, _PyObject_CallMethodOneArg. Additionally,
PyObject_VectorcallDict was available as _PyObject_FastCallDict. The old names are still
defined as aliases of the new, non-underscored names.

7.2. Call Protocol 95

The Python/C API, Yayim 3.12.9

Recursion Control

When using tp_call, callees do not need to worry about recursion: CPython uses Py_EnterRecursiveCall () and
Py_LeaveRecursiveCall () for calls made using tp_call.

For efficiency, this is not the case for calls done using vectorcall: the callee should use Py_EnterRecursiveCall and
Py_LeaveRecursiveCall if needed.

Vectorcall Support API

Py_ssize_t PyVectorcall_NARGS (size_t nargsf)

Bir parcasi Kararli ABI 3.12 siirtimiinden beri. Given a vectorcall nargsf argument, return the actual number
of arguments. Currently equivalent to:

[(Py_ssize_t) (nargsf & ~PY_VECTORCALL_ARGUMENTS_OFFSET)

However, the function PyvVectorcall_NARGS should be used to allow for future extensions.

Added in version 3.8.

vectorcallfunc PyVectorcall_Function (PyObject *op)

If op does not support the vectorcall protocol (either because the type does not or because the specific instance
does not), return NULL. Otherwise, return the vectorcall function pointer stored in op. This function never
raises an exception.

This is mostly useful to check whether or not op supports vectorcall, which can be done by checking
PyVectorcall_ Function (op) != NULL.

Added in version 3.9.

PyObject *PyVectorcall_Call (PyObject *callable, PyObject *tuple, PyObject *dict)

Bir parcasi Kararli ABI 3.12 siiriimiinden beri. Call callable’s vectorcall func with positional and keyword
arguments given in a tuple and dict, respectively.

This is a specialized function, intended to be put in the tp_cal1 slot or be used in an implementation of
tp_call.ltdoes notcheck the Py TPrrAGS HAVE_vECTORCALLflag and it does not fall back to tp_call.

Added in version 3.8.

7.2.3 Object Calling API

Various functions are available for calling a Python object. Each converts its arguments to a convention supported by
the called object - either #p_call or vectorcall. In order to do as little conversion as possible, pick one that best fits
the format of data you have available.

The following table summarizes the available functions; please see individual documentation for details.

Function callable args kwargs
PyObject_cCall () PyObject * tuple dict/NULL
PyObject_CallNoArgs () PyObject * — =
PyObject_CallOneArg () PyObject * 1 object —
PyObject_CallObject () PyObject * tuple/NULL —
PyObject_CallFunction () PyObject * format —
PyObject_CallMethod () obj + char* format —
PyObject_CallFunctionObjArgs () PyObject * variadic —
PyObject_CallMethodObjArgs () obj + name variadic —
PyObject_CallMethodNoArgs () Obj + name — —
PyObject_CallMethodOneArqg () Obj + name 1 ObjeCt —
PyObject_Vectorcall () PyObject * vectorcall vectorcall
PyObject_VectorcallDict () PyObject * vectorcall dict/NULL
PyObject_VectorcallMethod () arg + name vectorcall vectorcall

96

Boélim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.9

PyObject *PyObject_Call (PyObject *callable, PyObject *args, PyObject ¥*kwargs)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABL Call a callable Python object callable, with argu-
ments given by the tuple args, and named arguments given by the dictionary kwargs.

args must not be NULL; use an empty tuple if no arguments are needed. If no named arguments are needed,
kwargs can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*fargs, **kwargs).

PyObject *PyObject_CallNoArgs (PyObject *callable)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Call a callable Python ob-
ject callable without any arguments. It is the most efficient way to call a callable Python object without any
argument.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.
PyObject *PyObject_CallOneArg (PyObject *callable, PyObject *arg)

Dondiirdiigii deger: Yeni referans. Call a callable Python object callable with exactly 1 positional argument arg
and no keyword arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.
PyObject *PyObject_CallObject (PyObject *callable, PyObject *args)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABL Call a callable Python object callable, with argu-
ments given by the tuple args. If no arguments are needed, then args can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args).

PyObject *PyObject_CallFunction (PyObject *callable, const char *format, ...)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Call a callable Python object callable, with a variable
number of C arguments. The C arguments are described using a Py_BuildvValue () style format string. The
format can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: callable (*args).

Note that if you only pass PyObject* args, PyObject_CallFunctionObjArgs () is a faster alternative.
3.4 surtimiinde degisti: The type of format was changed from char *.

PyObject *PyObject_CallMethod (PyObject *obj, const char *name, const char *format, ...)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Call the method named name of object obj with a
variable number of C arguments. The C arguments are described by a Py_Buildvalue () format string that
should produce a tuple.

The format can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: obj.name (argl, arg2, ...).

Note that if you only pass PyObject* args, PyObject_CallMethodObjArgs () is a faster alternative.
3.4 strtimiinde degisti: The types of name and format were changed from char *.

PyObject *PyObject_CallFunctionObjArgs (PyObject *callable, ...)

Dondiirdiigii deger: Yeni referans. Bir pargast Kararli ABI. Call a callable Python object callable, with a variable
number of PyObject* arguments. The arguments are provided as a variable number of parameters followed
by NULL.

7.2. Call Protocol 97

The Python/C API, Yayim 3.12.9

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (argl, arg2, ...).

PyObject *PyObject_CallMethodObjArgs (PyObject *obj, PyObject *name, ...)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL. Call a method of the Python object obj, where
the name of the method is given as a Python string object in name. It is called with a variable number of
PyObject* arguments. The arguments are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

PyObject *PyObject_CallMethodNoArgs (PyObject *obj, PyObject *name)

Call a method of the Python object obj without arguments, where the name of the method is given as a Python
string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.
PyObject *PyObject_CallMethodOneArg (PyObject *obj, PyObject *name, PyObject *arg)

Call a method of the Python object obj with a single positional argument arg, where the name of the method
is given as a Python string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.
PyObject *PyObject_Vectorcall (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Bir parcasi Kararli ABI 3.12 siiriimiinden beri. Call a callable Python object callable. The arguments are the
same as for vectorcall func. If callable supports vectorcall, this directly calls the vectorcall function stored
in callable.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.
PyObject *PyObject_VectorcallDict (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwdict)

Call callable with positional arguments passed exactly as in the vectorcall protocol, but with keyword arguments
passed as a dictionary kwdict. The args array contains only the positional arguments.

Regardless of which protocol is used internally, a conversion of arguments needs to be done. Therefore, this
function should only be used if the caller already has a dictionary ready to use for the keyword arguments, but
not a tuple for the positional arguments.

Added in version 3.9.

PyObject *PyObject_VectorcallMethod (PyObject *name, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Bir pargasi Kararlt ABI 3.12 siiriimiinden beri. Call a method using the vectorcall calling convention. The name
of the method is given as a Python string name. The object whose method is called is args/0], and the args
array starting at args/ 1] represents the arguments of the call. There must be at least one positional argument.
nargsf is the number of positional arguments including args[0], plus PY_VECTORCALI_ARGUMENTS_OFFSET
if the value of args[0] may temporarily be changed. Keyword arguments can be passed just like in
PyObject_Vectorcall ().

If the object has the Py TPFLAGS METHOD_ DESCRIPTOR feature, this will call the unbound method object
with the full args vector as arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.

Added in version 3.9.

98 Boélim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.9

7.2.4 Call Support API

int PyCallable_Check (PyObject *0)

Bir parcasi Kararl1 ABIL. Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise.
This function always succeeds.

7.3 Number Protocol

int PyNumber_Check (PyObject *0)
Bir pargasi Kararli ABI. Returns 1 if the object o provides numeric protocols, and false otherwise. This function
always succeeds.

3.8 siiriimiinde degisti: Returns 1 if o is an index integer.

PyObject *pyNumber_aAdd (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Returns the result of adding o/ and 02, or NULL on
failure. This is the equivalent of the Python expression o1 + o2.

PyObject *PyNumber_Subtract (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Returns the result of subtracting 02 from ol, or
NULL on failure. This is the equivalent of the Python expression o1 - o2.

PyObject *PyNumber_Multiply (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Returns the result of multiplying o/ and 02, or NULL
on failure. This is the equivalent of the Python expression o1 * o2.

PyObject *PyNumber_MatrixMultiply (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Returns the result of matrix
multiplication on o/ and 02, or NULL on failure. This is the equivalent of the Python expression o1 @ o2.
Added in version 3.5.

PyObject *PyNumber_FloorDivide (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Return the floor of o/ divided by 02, or NULL on
failure. This is the equivalent of the Python expression o1 // o2.

PyObject *PyNumber_TrueDivide (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcas: Kararli ABIL. Return a reasonable approximation for the mat-
hematical value of ol divided by 02, or NULL on failure. The return value is “approximate” because binary
floating-point numbers are approximate; it is not possible to represent all real numbers in base two. This func-
tion can return a floating-point value when passed two integers. This is the equivalent of the Python expression
ol / o2.

PyObject *PyNumber_Remainder (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Returns the remainder of dividing o/ by 02, or NULL
on failure. This is the equivalent of the Python expression o1 % o2.

PyObject *PyNumber_Divmod (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. See the built-in function divmod () . Returns NULL
on failure. This is the equivalent of the Python expression divmod (o1, 02).

PyObject *PyNumber_Power (PyObject *ol, PyObject *02, PyObject ¥03)
Dondiirdiigii deger: Yeni referans. Bir parcasit Kararli ABIL See the built-in function pow () . Returns NULL on
failure. This is the equivalent of the Python expression pow (01, 02, o3), where 03 is optional. If 03 is to
be ignored, pass Py_None in its place (passing NULL for 03 would cause an illegal memory access).

PyObject *PyNumber_Negative (PyObject *0)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararlt ABIL. Returns the negation of o on success, or NULL on
failure. This is the equivalent of the Python expression —o.

7.3. Number Protocol 99

The Python/C API, Yayim 3.12.9

PyObject *PyNumber_Positive (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Returns o on success, or NULL on failure. This is the
equivalent of the Python expression +o.

PyObject *PyNumber_Absolute (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Returns the absolute value of o, or NULL on failure.
This is the equivalent of the Python expression abs (o).

PyObject *pyNumber_Invert (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Returns the bitwise negation of o on success, or
NULL on failure. This is the equivalent of the Python expression ~o.

PyObject ¥PyNumber_Lshift (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Returns the result of left shifting o/ by 02 on success,
or NULL on failure. This is the equivalent of the Python expression o1 << o2.

PyObject *PyNumber_Rshift (PyObject *o0l, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Returns the result of right shifting o/ by 02 on
success, or NULL on failure. This is the equivalent of the Python expression o1 >> o2.

PyObject *PyNumber_And (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Returns the “bitwise and” of o/ and 02 on success
and NULL on failure. This is the equivalent of the Python expression o1 & o02.

PyObject ¥*pyNumber_Xor (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Returns the “bitwise exclusive or” of o/ by 02 on
success, or NULL on failure. This is the equivalent of the Python expression o1 ~ o02.

PyObject *pyNumber_Or (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Returns the “bitwise or” of ol and 02 on success,
or NULL on failure. This is the equivalent of the Python expression o1 | o2.

PyObject *PyNumber_InPlaceAdd (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir pargas: Kararli ABI. Returns the result of adding o/ and 02, or NULL on
failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1
+ = o2.

PyObject *PyNumber_InPlaceSubtract (PyObject *ol, PyObject ¥02)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Returns the result of subtracting 02 from o/, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol —= o2.

PyObject *PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Returns the result of multiplying o/ and 02, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol * = o2.

PyObject *PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Returns the result of matrix
multiplication on o/ and 02, or NULL on failure. The operation is done in-place when ol supports it. This is the
equivalent of the Python statement 01 @ = o2.

Added in version 3.5.

PyObject *PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Returns the mathematical floor of dividing o/ by
02, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement o1 //= o2.

100 Boélim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.9

PyObject *PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return a reasonable approximation for the mat-
hematical value of ol divided by 02, or NULL on failure. The return value is “approximate” because binary
floating-point numbers are approximate; it is not possible to represent all real numbers in base two. This functi-
on can return a floating-point value when passed two integers. The operation is done in-place when ol supports
it. This is the equivalent of the Python statement o1 /= o2.

PyObject *PyNumber_InPlaceRemainder (PyObject *ol, PyObject ¥02)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Returns the remainder of dividing o/ by 02, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement

)

ol & = o2.

PyObject *PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject ¥03)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL See the built-in function pow () . Returns NULL on
failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1
** = o2 wheno3is Py_None, or an in-place variant of pow (01, 02, o03) otherwise. If 03 is to be ignored,
pass Py_None in its place (passing NULL for 03 would cause an illegal memory access).

PyObject *PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Returns the result of left shifting o/ by 02 on success,
or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement ol << = o2.

PyObject *PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Returns the result of right shifting o/ by 02 on
success, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the
Python statement 01 >> = o2.

PyObject *PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Returns the “bitwise and” of o/ and 02 on success
and NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement ol & = o2.

PyObject *PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Returns the “bitwise exclusive or” of ol by 02 on
success, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the
Python statement 01 ~= o2.

PyObject *PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Returns the “bitwise or” of o/ and 02 on success,
or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement ol | = o2.

PyObject *PyNumber_Long (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Returns the o converted to an integer object on
success, or NULL on failure. This is the equivalent of the Python expression int (o).

PyObject *PyNumber_Float (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Returns the o converted to a float object on success,
or NULL on failure. This is the equivalent of the Python expression float (o).

PyObject *PyNumber_Index (PyObject *¥0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABL. Returns the o converted to a Python int on success

or NULL with a TypeError exception raised on failure.

3.10 stiriimiinde degisti: The result always has exact type int. Previously, the result could have been an instance
of a subclass of int.

PyObject *PyNumber_ToBase (PyObject *n, int base)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Returns the integer n converted to base base as a

7.3. Number Protocol 101

The Python/C API, Yayim 3.12.9

string. The base argument must be one of 2, 8, 10, or 16. For base 2, 8, or 16, the returned string is prefi-
xed with a base marker of '0b"', '0o"', or '0x"', respectively. If n is not a Python int, it is converted with
PyNumber_Tndex () first.

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
Bir parcast Kararli ABL Returns o converted to a Py_ssize_t value if o can be interpreted as an integer. If
the call fails, an exception is raised and -1 is returned.

If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError or
OverflowError). If exc is NULL, then the exception is cleared and the value is clipped to PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check (PyObject *0)

Bir parcast Kararli ABI 3.8 siiriimiinden beri. Returns 1 if o is an index integer (has the nb_index slot of the
tp_as_number structure filled in), and 0 otherwise. This function always succeeds.

7.4 Sequence Protocol

int PySequence_Check (PyObject *0)
Bir parcasit Kararli ABL Return 1 if the object provides the sequence protocol, and 0 otherwise. Note that it
returns 1 for Python classes witha __getitem () method, unless they are dict subclasses, since in general
it is impossible to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *0)
Bir parcasi Kararli ABI. Returns the number of objects in sequence o on success, and —1 on failure. This is
equivalent to the Python expression len (o).

PyObject *PySequence_Concat (PyObject *ol, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Return the concatenation of o/ and 02 on success,
and NULL on failure. This is the equivalent of the Python expression o1 + o2.

PyObject *PySequence_Repeat (PyObject *o, Py_ssize_t count)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return the result of repeating sequence object o
count times, or NULL on failure. This is the equivalent of the Python expression o * count.

PyObject *PySequence_InPlaceConcat (PyObject *0l, PyObject ¥02)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL Return the concatenation of o/ and 02 on success,
and NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
expression ol + = o2.

PyObject *PySequence_InPlaceRepeat (PyObject *¥0, Py_ssize_t count)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return the result of repeating sequence object o
count times, or NULL on failure. The operation is done in-place when o supports it. This is the equivalent of
the Python expression o * = count.

PyObject *PySequence_GetItem (PyObject *o, Py_ssize_t 1)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABIL Return the ith element of o, or NULL on failure. This
is the equivalent of the Python expression o [i].

PyObject *PySequence_GetSlice (PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararl1 ABL. Return the slice of sequence object o between i/
and i2, or NULL on failure. This is the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *Vv)
Bir parcast Kararli ABIL. Assign object v to the ith element of o. Raise an exception and return -1 on failure;

return 0 on success. This is the equivalent of the Python statement o [i] = v. This function does not steal a
reference to v.

If vis NULL, the element is deleted, but this feature is deprecated in favour of using PySequence_Delltem().

102 Boélim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.9

int PySequence_DelItem (PyObject *0, Py_ssize_t 1)
Bir parcast Kararli ABL Delete the ith element of object 0. Returns -1 on failure. This is the equivalent of the
Python statement del o[i].

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t 12, PyObject *v)
Bir parcasi Kararli ABIL. Assign the sequence object v to the slice in sequence object o from i/ to i2. This is
the equivalent of the Python statement o [11:12] = w.

int PySequence_DelSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
Bir parcast Kararli ABI Delete the slice in sequence object o from i/ to i2. Returns -1 on failure. This is the
equivalent of the Python statement del o[il:i2].

Py_ssize_t PySequence_Count (PyObject *0, PyObject *value)
Bir parcasi Kararli ABIL. Return the number of occurrences of value in o, that is, return the number of
keys for which o [key] == value. On failure, return —1. This is equivalent to the Python expression o.
count (value).

int PySequence_Contains (PyObject *o, PyObject *value)
Bir pargasi Kararlit ABIL Determine if o contains value. If an item in o is equal to value, return 1, otherwise
return 0. On error, return —1. This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index (PyObject *o, PyObject *value)
Bir parcast Kararli ABIL Return the first index i for which o[i] == value. On error, return -1. This is
equivalent to the Python expression o. index (value).

PyObject *PySequence_List (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Return a list object with the same contents as the
sequence or iterable o, or NULL on failure. The returned list is guaranteed to be new. This is equivalent to the
Python expression 1ist (o).

PyObject *PySequence_Tuple (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcas: Kararl1 ABI. Return a tuple object with the same contents as the
sequence or iterable o, or NULL on failure. If o is a tuple, a new reference will be returned, otherwise a tuple
will be constructed with the appropriate contents. This is equivalent to the Python expression tuple (o).

PyObject *PySequence_Fast (PyObject *0, const char *m)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return the sequence or iterable o as an object
usable by the other PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises
TypeError with m as the message text. Returns NULL on failure.

The pPySequence_Fast* functions are thus named because they assume o is a PyTupleObject or a
pyListObject and access the data fields of o directly.

As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that o was returned by PySequence_Fast () and that o is not NULL. The
size can also be retrieved by calling PySequence_Size () on o, but PySequence_Fast_GET_SIZE () 18
faster because it can assume o is a list or tuple.

PyObject *PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t1)
Dondiirdiigii deger: Odiing alinmugs referans. Return the ith element of o, assuming that o was returned by
PySequence_Fast (), 01s not NULL, and that i is within bounds.

PyObject **PySequence_Fast_ITEMS (PyObject *0)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence Fast () and
0 is not NULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change.

7.4. Sequence Protocol 103

The Python/C API, Yayim 3.12.9

PyObject *PySequence_ITEM (PyObject *o, Py_ssize_t 1)
Dondiirdiigii deger: Yeni referans. Return the ith element of o or NULL on failure. Faster form of
PySequence_GetItem () but without checking that PySequence Check () on o is true and without ad-
justment for negative indices.

7.5 Mapping Protocol

See also PyoObject_GetItem(), PyObject_SetItem() and PyObject_DelItem().

int PyMapping_Check (PyObject *0)
Bir parcasi Kararli ABL Return 1 if the object provides the mapping protocol or supports slicing, and 0 other-
wise. Note that it returns 1 for Python classes witha __getitem__ () method, since in general it is impossible
to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

Py_ssize_t PyMapping_Length (PyObject *0)
Bir pargasi Kararlit ABL Returns the number of keys in object o on success, and -1 on failure. This is equivalent
to the Python expression len (o).

PyObject *PyMapping_GetItemString (PyObject *0, const char *key)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL This is the same as PyObject_GetItem(), but
key is specified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
Bir parcast Kararli ABL This is the same as PyObject_SetItem(),but key is specified as a const char*
UTF-8 encoded bytes string, rather than a Pyobject*.

int PyMapping_DelItem (PyObject *o, PyObject *key)
This is an alias of PyObject_DelItem().

int PyMapping_DelItemString (PyObject *o, const char *key)

This is the same as PyObject_DelItem(), but key is specified as a const char* UTF-8 encoded bytes
string, rather than a Pyobject*.

int PyMapping_HasKey (PyObject *0, PyObject *key)
Bir parcast Kararlt ABI. Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to
the Python expression key in o. This function always succeeds.

O Not

Exceptions which occur when this calls __getitem_ () method are silently ignored. For proper error
handling, use PyObject_GetItem() instead.

int PyMapping_HasKeyString (PyObject *o, const char *key)
Bir parcast Kararli ABL This is the same as PyMapping HasKey (), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a Pyobject*.

O Not

Exceptions that occur when this calls__getitem__ () method or while creating the temporary st r object
are silently ignored. For proper error handling, use PyMapping GetItemString () instead.

PyObject *PyMapping_Keys (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL On success, return a list of the keys in object 0. On
failure, return NULL.

3.7 siiriimiinde degisti: Previously, the function returned a list or a tuple.

104 Boélim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.9

PyObject *PyMapping_Values (PyObject *0)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. On success, return a list of the values in object o.
On failure, return NULL.

3.7 siiriimiinde degisti: Previously, the function returned a list or a tuple.
PyObject *PyMapping_Items (PyObject *0)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL On success, return a list of the items in object o,
where each item is a tuple containing a key-value pair. On failure, return NULL.

3.7 siiriimiinde degisti: Previously, the function returned a list or a tuple.

7.6 lterator Protocol

There are two functions specifically for working with iterators.

int PyIter_Check (PyObject *0)
Bir parcast Kararli ABI 3.8 siiriimiinden beri. Return non-zero if the object o can be safely passed to
pPyIter Next (),and 0 otherwise. This function always succeeds.

int PyAIter_Check (PyObject *0)
Bir parcast Kararlt ABI 3.10 siiriimiinden beri. Return non-zero if the object o provides the AsyncIterator
protocol, and 0 otherwise. This function always succeeds.
Added in version 3.10.

PyObject *PyIter_Next (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return the next value from the iterator o. The
object must be an iterator according to PyIter Check () (it is up to the caller to check this). If there are
no remaining values, returns NULL with no exception set. If an error occurs while retrieving the item, returns
NULL and passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

while ((item = PyIter_Next (iterator))) {
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;

Py_DECREF (iterator);

if (PyErr_Occurred()) {
/* propagate error */
}
else {
/* continue doing useful work */

type PySendResult
The enum value used to represent different results of PyTter Send().

Added in version 3.10.

7.6. lterator Protocol 105

The Python/C API, Yayim 3.12.9

PySendResult PyIter_Send (PyObject *iter, PyObject *arg, PyObject **presult)
Bir parcast Kararli ABI 3.10 siiriimiinden beri. Sends the arg value into the iterator iter. Returns:
e PYGEN_RETURN if iterator returns. Return value is returned via presult.
e PYGEN_NEXT if iterator yields. Yielded value is returned via presult.
e PYGEN_ERROR if iterator has raised and exception. presult is set to NULL.

Added in version 3.10.

7.7 Buffer Protocol

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the
built-in bytes and bytearray, and some extension types like array.array. Third-party libraries may define
their own types for special purposes, such as image processing or numeric analysis.

While each of these types have their own semantics, they share the common characteristic of being backed by a
possibly large memory buffer. It is then desirable, in some situations, to access that buffer directly and without
intermediate copying.

Python provides such a facility at the C level in the form of the buffer protocol. This protocol has two sides:

« on the producer side, a type can export a “buffer interface” which allows objects of that type to expose infor-
mation about their underlying buffer. This interface is described in the section Buffer Object Structures;

« on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object
(for example a method parameter).

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms
are possible; for example, the elements exposed by an array.array can be multi-byte values.

An example consumer of the buffer interface is the write () method of file objects: any object that can export a
series of bytes through the buffer interface can be written to a file. While write () only needs read-only access to the
internal contents of the object passed to it, other methods such as readinto () need write access to the contents of
their argument. The buffer interface allows objects to selectively allow or reject exporting of read-write and read-only
buffers.

There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:
e call PyOobject_GetBufrfer () with the right parameters;
e call PyArg ParseTuple () (or one of its siblings) with one of the y*, w* or s* format codes.

In both cases, PyBuffer Release () must be called when the buffer isn’t needed anymore. Failure to do so could
lead to various issues such as resource leaks.

7.7.1 Buffer structure

Buffer structures (or simply “buffers”) are useful as a way to expose the binary data from another object to the
Python programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block
of memory, it is possible to expose any data to the Python programmer quite easily. The memory could be a large,
constant array in a C extension, it could be a raw block of memory for manipulation before passing to an operating
system library, or it could be used to pass around structured data in its native, in-memory format.

Contrary to most data types exposed by the Python interpreter, buffers are not Pyobject pointers but rather simple
C structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is
needed, a memoryview object can be created.

For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer().

type Py_buffer
Bir parcast Kararli ABI (tiim iiyeler dahil) 3.11 siiriimiinden beri.

106 Boélim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.9

void *buf

A pointer to the start of the logical structure described by the buffer fields. This can be any location
within the underlying physical memory block of the exporter. For example, with negative st rides the
value may point to the end of the memory block.

For contiguous arrays, the value points to the beginning of the memory block.
PyObject *ob3j
A new reference to the exporting object. The reference is owned by the consumer and automatically

released (i.e. reference count decremented) and set to NULL by PyBufrfer Release (). The field is the
equivalent of the return value of any standard C-API function.

As a special case, for temporary buffers that are wrapped by PyMemoryView FromBuffer () or
PyBuffer FillInfo () thisfield is NULL. In general, exporting objects MUST NOT use this scheme.
Py_ssize_t len

product (shape) * itemsize. For contiguous arrays, this is the length of the underlying memory
block. For non-contiguous arrays, it is the length that the logical structure would have if it were copied
to a contiguous representation.

Accessing ((char *)buf) [0] up to ((char *)buf) [len-1] isonly validif the buffer has been
obtained by a request that guarantees contiguity. In most cases such a request will be PyBUF_STMPLE or
PyBUF_WRITABLE.
int readonly
An indicator of whether the buffer is read-only. This field is controlled by the pyBUF_WRITABLE flag.
Py_ssize_t itemsize
Item size in bytes of a single element. Same as the value of struct.calcsize () called on non-NULL

format values.

Important exception: If a consumer requests a buffer without the pyBUF_FORMAT flag, format will be
set to NULL, but i temsi ze still has the value for the original format.

If shapeis present, the equality product (shape) * itemsize == lenstill holds and the consumer
can use itemsize to navigate the buffer.

If shape is NULL as a result of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer must
disregard itemsize and assume itemsize ==

char *format
A NULL terminated string in struct module style syntax describing the contents of a single item. If
this is NULL, "B" (unsigned bytes) is assumed.
This field is controlled by the PyBUF_FORMAT flag.

int ndim
The number of dimensions the memory represents as an n-dimensional array. If it is 0, buf points to a
single item representing a scalar. In this case, shape, strides and suboffsets MUST be NULL. The
maximum number of dimensions is given by PyBUF _MAX_NDIM.

Py_ssize_t *shape
Anarray of Py _ssize_ t of length ndim indicating the shape of the memory as an n-dimensional array.

Note that shape[0] * ... * shape[ndim-1] * itemsize MUST be equal to Ien.

Shape values are restricted to shape [n] > = 0. The case shape [n] == 0 requires special attention.
See complex arrays for further information.

The shape array is read-only for the consumer.
Py_ssize_t *strides

An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element in
each dimension.

7.7. Buffer Protocol 107

The Python/C API, Yayim 3.12.9

Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST
be able to handle the case strides[n] < = 0.See complex arrays for further information.

The strides array is read-only for the consumer.

Py_ssize_t *suboffsets
An array of Py_ssize_t of length ndim. If suboffsets[n] > = 0, the values stored along the nth
dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after de-
referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding in
a contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for
further information how to access elements of such an array.

The suboffsets array is read-only for the consumer.

void *internal

This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be
freed when the buffer is released. The consumer MUST NOT alter this value.

Constants:

PyBUF_MAX_NDIM

The maximum number of dimensions the memory represents. Exporters MUST respect this limit, consumers
of multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_NDIM dimensions. Currently set
to 64.

7.7.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyObject_GetBuffer (). Since
the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument to
specify the exact buffer type it can handle.

All Py_burrer fields are unambiguously defined by the request type.

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: obj, buf, len,
itemsize, ndim.

readonly, format

PyBUF_WRITABLE
Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers. For example, PyBUF_SIMPLE | PyBUF_WRITABLE can
be used to request a simple writable buffer.

PyBUF_FORMAT
Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field
MUST be NULL.

PyBUF_WRITABLE can be |'d to any of the flags in the next section. Since PyBUF_SIMPLE is defined as 0,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

pPyBUF_FORMAT must be ['d to any of the flags except PyBUF _SI1MPLE, because the latter already implies format B
(unsigned bytes). PyBUF_FORMAT cannot be used on its own.

108 Boélim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.9

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each
flag contains all bits of the flags below it.

Request | shape | strides | suboffsets |

yes yes if needed
PyBUF_INDIRECT

yes yes NULL
PyBUF_STRIDES

yes NULL | NULL
PyBUF_ND

NULL | NULL | NULL
PyBUF_SIMPLE

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information,
the buffer must be C-contiguous.

Request shape | strides | suboffsets | contig |
yes yes NULL C
PyBUF_C_CONTIGUOUS
yes yes NULL F
PyBUF_F_CONTIGUOUS
yes yes NULL CorF
PyBUF_ANY_CONTIGUOUS
PyBUF_ND yes NULL | NULL C

compound requests

All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.

In the following table U stands for undefined contiguity. The consumer would have to call
PyBuffer_IsContiguous () to determine contiguity.

7.7. Buffer Protocol 109

The Python/C API, Yayim 3.12.9

| Request | shape | strides | suboffsets | contig | readonly | format |

yes yes if needed U 0 yes
PyBUF_FULL

yes yes if needed U lor0 yes
PyBUF_FULL_RO

yes yes NULL U 0 yes
PyBUF_RECORDS

yes yes NULL U lor0 yes
PyBUF_RECORDS_RO

yes yes NULL U 0 NULL
PyBUF_STRIDED

yes yes NULL U lor0 NULL
PyBUF_STRIDED_RO

yes NULL | NULL C 0 NULL
PyBUF_CONTIG

yes NULL | NULL C lor0 NULL
PyBUF_CONTIG_RO

7.7.3 Complex arrays

NumPy-style: shape and strides
The logical structure of NumPy-style arrays is defined by i temsize, ndim, shape and strides.

If ndim == 0, the memory location pointed to by bur is interpreted as a scalar of size itemsize. In that case,
both shape and st rides are NULL.

If strides is NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must
access an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = * ((typeof (item) *)ptr);

As noted above, buf can point to any location within the actual memory block. An exporter can check the validity
of a buffer with this function:

def verify_ structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v $ itemsize for v in strides):
return False

(sonraki sayfaya devam)

110 Boélim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)
if ndim <= 0:
return ndim == 0 and not shape and not strides
if 0 in shape:
return True

imin = sum(strides[j]* (shape[j]l-1) for j in range (ndim)
if strides[j] <= 0)

imax = sum(strides[j]* (shape[j]-1) for j in range (ndim)
if strides[j] > 0)

return 0 <= offset+imin and offset+imax+itemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the
next element in a dimension. For example, the regular three-dimensional C-array char v[2][2] [3] can also be
viewed as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2]) [2] [3]. In suboffsets representation,
those two pointers can be embedded at the start of burf, pointing to two char x[2] [3] arrays that can be located
anywhere in memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when
there are both non-NULL strides and suboffsets:

void *get_item_ pointer (int ndim, woid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; 1 < ndim; i++) |

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = * ((char**)pointer) + suboffsets[i];

}

return (void*)pointer;

7.7.4 Buffer-related functions

int PyObject_CheckBuffer (PyObject *obj)
Bir parcasi Kararli ABI 3.11 siiriimiinden beri. Return 1 if obj supports the buffer interface otherwise 0. When
1 is returned, it doesn’t guarantee that PyObject_GetBuffer () will succeed. This function always succeeds.
int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)

Bir parcas: Kararli ABI 3.11 siiriimiinden beri. Send a request to exporter to fill in view as specified by flags.
If the exporter cannot provide a buffer of the exact type, it MUST raise BufferError, set view—>obj to
NULL and return —1.

On success, fill in view, set view—>ob7j to a new reference to exporter and return 0. In the case of chained
buffer providers that redirect requests to a single object, view—>obj MAY refer to this object instead of
exporter (See Buffer Object Structures).

Successful calls to PyObject_GetBuffer () must be paired with calls to PyBuffer Release (), similar
tomalloc () and free (). Thus, after the consumer is done with the buffer, PyBurfer Release () must
be called exactly once.

void PyBuffer_Release (Py_buffer *view)
Bir parcasi Kararli ABI 3.11 siiriimiinden beri. Release the buffer view and release the strong reference (i.e.

7.7. Buffer Protocol 111

The Python/C API, Yayim 3.12.9

decrement the reference count) to the view’s supporting object, view->obj. This function MUST be called
when the buffer is no longer being used, otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer ().

Py_ssize_t PyBuffer_SizeFromFormat (const char *format)
Bir parcast Kararli ABI 3.11 siiriimiinden beri. Return the implied i temsize from format. On error, raise
an exception and return -1.
Added in version 3.9.

int PyBuffer_IsContiguous (const Py_buffer *view, char order)
Bir parcasi Kararli ABI 3.11 siiriimiinden beri. Return 1 if the memory defined by the view is C-style (order is
'c ") or Fortran-style (order is 'F ") contiguous or either one (order is 'A"). Return 0 otherwise. This function
always succeeds.

void *PyBuffer_ GetPointer (const Py_buffer *view, const Py_ssize_t *indices)
Bir parcasi Kararli ABI 3.11 siiriimiinden beri. Get the memory area pointed to by the indices inside the given
view. indices must point to an array of view—->ndim indices.

int PyBuf fer_FromContiguous (const Py_buffer *view, const void *buf, Py_ssize_t len, char fort)
Bir par¢asi Kararl1 ABI 3.11 siiriimiinden beri. Copy contiguous len bytes from buf to view. fort can be 'C'
or 'F' (for C-style or Fortran-style ordering). 0 is returned on success, —1 on error.

int PyBuffer_ToCont iguous (void *buf, const Py_buffer *src, Py_ssize_t len, char order)

Bir parcast Kararli ABI 3.11 siiriimiinden beri. Copy len bytes from src to its contiguous representation in buf.
order canbe 'C' or 'F' or 'A" (for C-style or Fortran-style ordering or either one). 0 is returned on success,
-1 on error.

This function fails if len != src->len.

int PyObject_CopyData (PyObject *dest, PyObject *src)
Bir parcasi Kararli ABI 3.11 siiriimiinden beri. Copy data from src to dest buffer. Can convert between C-style
and or Fortran-style buffers.
0 is returned on success, —1 on error.
void PyBuffer_FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize, char
order)

Bir parcas: Kararli ABI 3.11 siiriimiinden beri. Fill the strides array with byte-strides of a contiguous (C-style
if order is 'C' or Fortran-style if order is 'F ') array of the given shape with the given number of bytes per
element.

int PyBuffer_FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly, int flags)
Bir parcasi Kararli ABI 3.11 siiriimiinden beri. Handle buffer requests for an exporter that wants to expose buf
of size len with writability set according to readonly. buf is interpreted as a sequence of unsigned bytes.

The flags argument indicates the request type. This function always fills in view as specified by flags, unless
buf has been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view—>o0b3j to a new reference to exporter and return 0. Otherwise, raise BufferError, set
view—>obj to NULL and return -1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must
be passed unmodified. Otherwise, exporter MUST be NULL.

7.8 Old Buffer Protocol

3.0 stirtimiinden beri kullanim disi.

These functions were part of the “old buffer protocol” API in Python 2. In Python 3, this protocol doesn’t exist
anymore but the functions are still exposed to ease porting 2.x code. They act as a compatibility wrapper around
the new buffer protocol, but they don’t give you control over the lifetime of the resources acquired when a buffer is
exported.

112 Boélim 7. Abstract Objects Layer

The Python/C API, Yayim 3.12.9

Therefore, it is recommended that you call Pyobject GetBuffer () (or the y* or w* format codes with the
pPyArg_ParseTuple () family of functions) to get a buffer view over an object, and PyBuffer Release () when
the buffer view can be released.

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)

Bir parcasi Kararli ABIL. Returns a pointer to a read-only memory location usable as character-based input.
The obj argument must support the single-segment character buffer interface. On success, returns 0, sets buffer
to the memory location and buffer_len to the buffer length. Returns -1 and sets a TypeError on error.

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)

Bir pargasi Kararli ABIL. Returns a pointer to a read-only memory location containing arbitrary data. The obj
argument must support the single-segment readable buffer interface. On success, returns 0, sets buffer to the
memory location and buffer_len to the buffer length. Returns -1 and sets a TypeError on error.

int PyObject_CheckReadBuffer (PyObject *0)
Bir parcasi Kararli ABIL. Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns
0. This function always succeeds.

Note that this function tries to get and release a buffer, and exceptions which occur while calling corresponding
functions will get suppressed. To get error reporting use PyObject_GetBuffer () instead.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)

Bir parcast Kararli ABI. Returns a pointer to a writable memory location. The obj argument must support
the single-segment, character buffer interface. On success, returns 0, sets buffer to the memory location and
buffer_len to the buffer length. Returns -1 and sets a TypeError on error.

7.8. Old Buffer Protocol 113

The Python/C API, Yayim 3.12.9

114 Boélim 7. Abstract Objects Layer

BOLUM 8

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you
must perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check (). The
chapter is structured like the “family tree” of Python object types.

A Uyan

While the functions described in this chapter carefully check the type of the objects which are passed in, many
of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can cause
memory access violations and immediate termination of the interpreter.

8.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

8.1.1 Type Objects

type PyTypeObject
Bir parcast Sinirli API (bir opak yapi olarak). The C structure of the objects used to describe built-in types.
PyTypeObject PyType_Type
Bir parcasi Kararli ABIL This is the type object for type objects; it is the same object as type in the Python
layer.
int PyType_Check (PyObject *0)
Return non-zero if the object o is a type object, including instances of types derived from the standard type
object. Return 0 in all other cases. This function always succeeds.
int PyType_CheckExact (PyObject *0)
Return non-zero if the object o is a type object, but not a subtype of the standard type object. Return 0 in all
other cases. This function always succeeds.
unsigned int PyType_ClearCache ()

Bir parcast Kararli ABL Clear the internal lookup cache. Return the current version tag.

115

The Python/C API, Yayim 3.12.9

unsigned long PyType_GetF1lags (PyTypeObject *type)

Bir parcast Kararlt ABIL. Return the tp_£1ags member of fype. This function is primarily meant for use with
Py LIMITED_API; the individual flag bits are guaranteed to be stable across Python releases, but access to
tp_flags itself is not part of the limited API.

Added in version 3.2.

3.4 stirimiinde degisti: The return type is now unsigned long rather than long.

PyObject *PyType_GetDict (PyTypeObject *type)

Return the type object’s internal namespace, which is otherwise only exposed via a read-only proxy (cls.
__dict_). This is a replacement for accessing tp_dict directly. The returned dictionary must be treated as
read-only.

This function is meant for specific embedding and language-binding cases, where direct access to the dict is
necessary and indirect access (e.g. via the proxy or PyObject_GetAttr ())isn't adequate.

Extension modules should continue to use tp_dict, directly or indirectly, when setting up their own types.

Added in version 3.12.

void PyType_Modified (PyTypeObject *type)

Bir parcasi Kararli ABI. Invalidate the internal lookup cache for the type and all of its subtypes. This function
must be called after any manual modification of the attributes or base classes of the type.

int PyType_AddWatcher (PyType_WatchCallback callback)

Register callback as a type watcher. Return a non-negative integer ID which must be passed to future calls to
PyType_Watch (). In case of error (e.g. no more watcher IDs available), return —1 and set an exception.

Added in version 3.12.

int PyType_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id (previously returned from Py Type Addwatcher ()). Return 0 on
success, —1 on error (e.g. if watcher_id was never registered.)

An extension should never call PyType_ClearWatcher with a watcher_id that was not returned to it by a
previous call to Py Type_AddwWatcher ().

Added in version 3.12.

int PyType_Watch (int watcher_id, PyObject *type)

Mark type as watched. The callback granted watcher_id by Py Type Addwatcher () will be called whenever
PyType_ Modified () reports a change to fype. (The callback may be called only once for a series of conse-
cutive modifications to fype, if _PyType_Lookup () is not called on type between the modifications; this is
an implementation detail and subject to change.)

An extension should never call PyType_Watch with a watcher_id that was not returned to it by a previous call
to PyType_AddWatcher ().

Added in version 3.12.

typedef int (*PyType_WatchCallback)(PyObject *type)

Type of a type-watcher callback function.

The callback must not modify type or cause Py Type_Modified () to be called on type or any type in its MRO;
violating this rule could cause infinite recursion.

Added in version 3.12.

int PyType_HasFeature (PyTypeObject *0, int feature)

Return non-zero if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC (PyTypeObject *0)

Return true if the type object includes support for the cycle detector; this tests the type flag
Py _TPFLAGS_HAVE_GC.

116

Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Bir parcasi Kararli ABL. Return true if a is a subtype of b.
This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on b.
Call pyobject_TIsSubclass () to do the same check that i ssubclass () would do.

PyObject *PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Generic handler for the tp_alloc slot of a type
object. Use Python’s default memory allocation mechanism to allocate a new instance and initialize all its
contents to NULL.

PyObject *PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Generic handler for the t p_new slot of a type object.
Create a new instance using the type’s tp_alloc slot.

int PyType_Ready (PyTypeObject *type)
Bir pargasi Kararli ABI. Finalize a type object. This should be called on all type objects to finish their initi-

alization. This function is responsible for adding inherited slots from a type’s base class. Return 0 on success,
or return -1 and sets an exception on error.

O Not

If some of the base classes implements the GC protocol and the provided type does not include the
Py_TPFLAGS_HAVE_GC in its flags, then the GC protocol will be automatically implemented from its
parents. On the contrary, if the type being created does include Py TPFLAGS HAVE GC in its flags then
it must implement the GC protocol itself by at least implementing the tp_t raverse handle.

PyObject *PyType_GetName (PyTypeObject *type)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.11 siiriimiinden beri. Return the type’s name. Equ-
ivalent to getting the type’s __name___ attribute.
Added in version 3.11.

PyObject *PyType_GetQualName (PyTypeObject *type)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.11 siiriimiinden beri. Return the type’s qualified
name. Equivalent to getting the type’s __qualname___ attribute.
Added in version 3.11.

void *PyType_GetSlot (PyTypeObject *type, int slot)
Bir parcasi Kararlt ABI 3.4 siiriimiinden beri. Return the function pointer stored in the given slot. If the result is

NULL, this indicates that either the slot is NULL, or that the function was called with invalid parameters. Callers
will typically cast the result pointer into the appropriate function type.

See PyType_Slot.slot for possible values of the slot argument.
Added in version 3.4.
3.10 siiriimiinde degisti: PyType_GetSlot () can now accept all types. Previously, it was limited to heap
types.
PyObject *PyType_GetModule (PyTypeObject *type)

Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Return the module object associated with the given type when
the type was created using Py Type_ FromModuleAndSpec ().

If no module is associated with the given type, sets TypeError and returns NULL.

This function is usually used to get the module in which a method is defined. Note that in such a method,
PyType_GetModule (Py_TYPE (self)) may not return the intended result. Py_TYPE (self) may be a
subclass of the intended class, and subclasses are not necessarily defined in the same module as their superclass.
See PyCMethod to get the class that defines the method. See Py Type GetModuleByDef () for cases when
PyCMethod cannot be used.

8.1. Fundamental Objects 117

The Python/C API, Yayim 3.12.9

Added in version 3.9.

void *PyType_GetModuleState (PyTypeObject *type)

Bir parcast Kararli ABI 3.10 siiriimiinden beri. Return the state of the module object associated with the given
type. This is a shortcut for calling PyModule GetState () on the result of PyType GetModule ().

If no module is associated with the given type, sets TypeError and returns NULL.
If the rype has an associated module but its state is NULL, returns NULL without setting an exception.

Added in version 3.9.

PyObject *PyType_GetModuleByDef (PyTypeObject *type, struct PyModuleDef *def)

Find the first superclass whose module was created from the given PyModuleDef def, and return that module.
If no module is found, raises a TypeError and returns NULL.

This function is intended to be used together with PyModule GetState () to get module state from slot
methods (such as tp_init or nb_add) and other places where a method’s defining class cannot be passed
using the PyCMethod calling convention.

Added in version 3.11.

int PyUnstable_Type_ AssignVersionTag (PyTypeObject *type)

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyar1 olmadan degisebilir.

Attempt to assign a version tag to the given type.

Returns 1 if the type already had a valid version tag or a new one was assigned, or O if a new tag could not be
assigned.

Added in version 3.12.

Creating Heap-Allocated Types

The following functions and structs are used to create heap types.

PyObject *PyType_FromMetaclass (PyTypeObject ¥metaclass, PyObject ¥module, PyType_Spec *spec, PyObject

*bases)

Bir parcasi Kararli ABI 3.12 siiriimiinden beri. Create and return a heap type from the spec (see
Py_TPFLAGS_HEAPTYPE).

The metaclass metaclass is used to construct the resulting type object. When metaclass is NULL, the metaclass
is derived from bases (or Py_tp_base[s] slots if bases is NULL, see below).

Metaclasses that override t p_new are not supported, except if tp_new is NULL. (For backwards compatibility,
other PyType_From* functions allow such metaclasses. They ignore tp_new, which may result in incomplete
initialization. This is deprecated and in Python 3.14+ such metaclasses will not be supported.)

The bases argument can be used to specify base classes; it can either be only one class or a tuple of classes. If
bases is NULL, the Py_tp_bases slot is used instead. If that also is NULL, the Py_tp_base slot is used instead. If
that also is NULL, the new type derives from object.

The module argument can be used to record the module in which the new class is defined. It must be a module
object or NULL. If not NULL, the module is associated with the new type and can later be retrieved with
PyType_GetModule (). The associated module is not inherited by subclasses; it must be specified for each
class individually.

This function calls Py Type Ready () on the new type.

Note that this function does not fully match the behavior of calling type () or using the class statement.
With user-provided base types or metaclasses, prefer calling type (or the metaclass) over PyType From*
functions. Specifically:

118

Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

e __new__ () isnot called on the new class (and it must be set to type._ _new_).
e __init__ () is not called on the new class.
e _init_subclass__ () is not called on any bases.
e _ set_name__ () is not called on new descriptors.
Added in version 3.12.

PyObject *PyType_FromModuleAndSpec (PyObject *module, PyType_Spec *spec, PyObject *bases)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.10 siiriimiinden beri. Equivalent to
PyType_FromMetaclass (NULL, module, spec, bases).

Added in version 3.9.

3.10 stirimiinde degisti: The function now accepts a single class as the bases argument and NULL as the tp_doc
slot.

3.12 siiriimiinde degisti: The function now finds and uses a metaclass corresponding to the provided base
classes. Previously, only t ype instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

PyObject *PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.3 siiriimiinden beri. Equivalent to
PyType_FromMetaclass (NULL, NULL, spec, bases).

Added in version 3.3.

3.12 siiriimiinde degisti: The function now finds and uses a metaclass corresponding to the provided base
classes. Previously, only type instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

PyObject *PyType_FromSpec (PyType_Spec *spec)
Dondiirdiigii deger: Yeni referans. Bir par¢asi Kararli ABIL. Equivalent to PyType_FromMetaclass (NULL,
NULL, spec, NULL).

3.12 siiriimiinde degisti: The function now finds and uses a metaclass corresponding to the base classes provided
in Py_tp_base[s] slots. Previously, only type instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

type PyType_Spec
Bir parcast Kararli ABI (tiim iiyeler dahil). Structure defining a type’s behavior.
const char *name
Name of the type, used to set Py TypeObject. tp_name.
int basicsize
If positive, specifies the size of the instance in bytes. It is used to set Py TypeObject . tp_basicsize.

If zero, specifies that tp_basicsize should be inherited.

If negative, the absolute value specifies how much space instances of the class need in addition to the
superclass. Use PyObject_Get TypeData () to get a pointer to subclass-specific memory reserved this
way. For negative basicsize, Python will insert padding when needed to meet t p_basicsize’s align-
ment requirements.

3.12 siiriimiinde degisti: Previously, this field could not be negative.

8.1. Fundamental Objects 119

The Python/C API, Yayim 3.12.9

int itemsize

Size of one element of a variable-size type, in bytes. Used to set Py TypeObject.tp_itemsize. See
tp_itemsize documentation for caveats.

If zero, tp_itemsize is inherited. Extending arbitrary variable-sized classes is dangerous, since some
types use a fixed offset for variable-sized memory, which can then overlap fixed-sized memory used by
a subclass. To help prevent mistakes, inheriting itemsize is only possible in the following situations:

o The base is not variable-sized (its tp_itemsize).

o The requested PyType_Spec.basicsize is positive, suggesting that the memory layout of the
base class is known.

o The requested PyType_ Spec.basicsize is zero, suggesting that the subclass does not access the
instance’s memory directly.

o With the Py _TPFLAGS 1TEMS AT END flag.

unsigned int flags

Type flags, used to set Py TypeObject.tp_flags.

If the py_TPFLAGS_HEAPTYPE flagis not set, Py Type FromSpeciithBases () sets it automatically.
PyType_Slot ¥*slots

Array of PyType_Slot structures. Terminated by the special slot value {0, NULL}.

Each slot ID should be specified at most once.

type PyType_Slot

Bir parcasi Kararli ABI (tiim iiyeler dahil). Structure defining optional functionality of a type, containing a slot
ID and a value pointer.

int slot
A slot ID.

Slot IDs are named like the field names of the structures PyTypeObject, PyNumberMethods,
PySequenceMethods, PyMappingMethods and PyAsyncMethods with an added py_ prefix. For
example, use:

e Py _tp_dealloctoset PyTypeObject.tp_dealloc
e Py_nb_add toset PyNumberMethods.nb_add
e Py_sqg_lengthtoset PySequenceMethods.sq_length
The following “offset” fields cannot be set using Py Type Slot:
e tp weaklistoffset (use Py_TPFLAGS_MANAGED WEAKREF instead if possible)
e tp_dictoffset (use Py _TPFLAGS_MANAGED_DICT instead if possible)
e tp_vectorcall offset (use"__vectorcalloffset__ " in PyMemberDef)

If it is not possible to switch to a MANAGED flag (for example, for vectorcall or to support Python older
than 3.12), specify the offset in Py_tp members. See PyMemberDef documentation for details.

The following fields cannot be set at all when creating a heap type:
e tp_vectorcall (use tp_new and/or tp_init)
o Internal fields: tp_dict, tp_mro, tp_cache, tp_subclasses, and tp_weaklist.

Setting Py_tp_bases or Py_tp_base may be problematic on some platforms. To avoid issues, use the
bases argument of PyType_FromSpecWithBases () instead.

3.9 siirtimiinde degisti: Slots in PyBufferProcs may be set in the unlimited API.

3.11 siiriimiinde degisti: bf_getbuffer and bf_releasebuffer are now available under the limited
API.

120 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

void *pfunc

The desired value of the slot. In most cases, this is a pointer to a function.

Slots other than Py_tp_doc may not be NULL.

8.1.2 The None Object

Note that the PyTypeobject for None is not directly exposed in the Python/C API. Since None is a singleton,
testing for object identity (using == in C) is sufficient. There is no PyNone_Check () function for the same reason.
PyObject *Py_None

The Python None object, denoting lack of value. This object has no methods and is immortal.

3.12 siiriimiinde degisti: Py_None is immortal.

Py_RETURN_NONE

Return Py_None from a function.

8.2 Numeric Objects

8.2.1 Integer Objects
All integers are implemented as “long” integer objects of arbitrary size.

On error, most PyLong_As* APIs return (return type)-1 which cannot be distinguished from a number. Use
PyErr_Occurred () to disambiguate.
type PyLongObject
Bir parcast Siirli API (bir opak yapt olarak). This subtype of Pyob ject represents a Python integer object.
PyTypeObject PyLong_Type
Bir parcasi Kararli ABIL This instance of Py TypeObject represents the Python integer type. This is the same
object as int in the Python layer.
int PyLong_Check (PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongob ject. This function always succe-
eds.
int PyLong_CheckExact (PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongobject. This function always
succeeds.
PyObject *PyLong_FromLong (long v)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Return a new PyLongObject object from v, or

NULL on failure.

The current implementation keeps an array of integer objects for all integers between -5 and 256. When you
create an int in that range you actually just get back a reference to the existing object.

PyObject *PyLong_FromUnsignedLong (unsigned long v)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Return a new PyLongObject object from a C
unsigned long, or NULL on failure.

PyObject *PyLong_FromSsize_t (Py_ssize_t V)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABI. Return a new PyLongObject object from a C
Py_ssize_t,or NULL on failure.

PyObject *PyLong_FromSize_t (size_t V)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return a new PyLongObject object from a C
size_t, or NULL on failure.

8.2. Numeric Objects 121

https://peps.python.org/pep-0683/

The Python/C API, Yayim 3.12.9

PyObject *PyLong_FromLongLong (long long v)

Dondiirdiigii deger: Yeni referans. Bir pargast Kararlit ABL. Return a new PyLongObject objectfroma C long
long, or NULL on failure.

PyObject *PyLong_FromUnsignedLongLong (unsigned long long v)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Return a new PyLongObject object from a C
unsigned long long, or NULL on failure.

PyObject *PyLong_FromDouble (double v)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL. Return a new PyLongObject object from the
integer part of v, or NULL on failure.

PyObject *PyLong_FromString (const char *str, char **pend, int base)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Return a new PyLongObject based on the string
value in str, which is interpreted according to the radix in base, or NULL on failure. If pend is non-NULL, *pend
will point to the end of str on success or to the first character that could not be processed on error. If base
is 0, str is interpreted using the integers definition; in this case, leading zeros in a non-zero decimal number
raises a ValueError. If base is not 0, it must be between 2 and 36, inclusive. Leading and trailing whitespace
and single underscores after a base specifier and between digits are ignored. If there are no digits or str is not
NULL-terminated following the digits and trailing whitespace, ValueError will be raised.

> Ayrica bakiniz

Python methods int.to_bytes () and int.from bytes () to convert a PyLongObject to/from an
array of bytes in base 256. You can call those from C using PyObject_CallMethod ().

PyObject *PyLong_FromUnicodeObject (PyObject *u, int base)

Dondiirdiigii deger: Yeni referans. Convert a sequence of Unicode digits in the string u to a Python integer
value.

Added in version 3.3.

PyObject *PyLong_FromVoidPtr (void *p)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Create a Python integer from the pointer p. The
pointer value can be retrieved from the resulting value using PyLong AsVoidPtr ().

long PyLong_AsLong (PyObject *obj)

Bir parcas: Kararli ABIL. Return a C 1ong representation of obj. If obj is not an instance of PyLongObject,
first call its __index__ () method (if present) to convert it to a PyLongObject.

Raise overflowError if the value of obj is out of range for a 1ong.
Returns -1 on error. Use PyErr_Occurred () to disambiguate.

3.8 siiriimiinde degisti: Use __index__ () if available.

3.10 siiriimiinde degisti: This function will no longer use __int__ ().

long PyLong_AS_LONG (PyObject *obj)

A soft deprecated alias. Exactly equivalent to the preferred PyLong_AsLong. In particular, it can fail
with OverflowError or another exception.

3.14 siiriimiinden beri kullanim dis1: The function is soft deprecated.

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)

Bir parcas: Kararli ABIL. Return a C 1ong representation of obj. If obj is not an instance of PyLongObject,
first call its __index__ () method (if present) to convert it to a PyLongObject.

If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or -1, respectively,
and return - 1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1 as
usual.

Returns -1 on error. Use PyErr_Occurred () to disambiguate.

122

Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

3.8 stirtimiinde degisti: Use __index__ () if available.
3.10 siirtimiinde degisti: This function will no longer use __int__ ().

long long PyLong_AsLongLong (PyObject *obj)

Bir parcast Kararli ABL Return a C long long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__ () method (if present) to convert itto a PyLongObject.

Raise overflowError if the value of obj is out of range for a 1ong long.
Returns -1 on error. Use PyErr Occurred () to disambiguate.

3.8 siirtimiinde degisti: Use __index__ () if available.

3.10 siiriimiinde degisti: This function will no longeruse __int__ ().

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)

Bir parcast Kararli ABIL. Return a C long long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__ () method (if present) to convert it to a PyLongObject.

If the value of obj is greater than LLONG_MAX or less than LLONG_MIN, set *overflow to 1 or -1, respectively,
and return - 1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1 as
usual.

Returns -1 on error. Use PyErr Occurred () to disambiguate.

Added in version 3.2.

3.8 siiriimiinde degisti: Use __index__ () if available.

3.10 siirtimiinde degisti: This function will no longer use __int__ ().
Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)

Bir parcasi Kararli ABI. Return a C Py_ssize t representation of pylong. pylong must be an instance of
PyLongObject.

Raise overflowError if the value of pylong is out of range fora Py_ssize t.
Returns -1 on error. Use PyErr_Occurred () to disambiguate.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)

Bir parcast Kararli ABIL Return a C unsigned long representation of pylong. pylong must be an instance of
PyLongObject.

Raise overflowError if the value of pylong is out of range for a unsigned long.
Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.

size_t PyLong_AsSize_t (PyObject *pylong)

Bir parcast Kararli ABL Return a C size_t representation of pylong. pylong must be an instance of
PyLongObject.

Raise overflowError if the value of pylong is out of range for a size_t.
Returns (size_t) -1 onerror. Use PyErr Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong (PyObject *pylong)

Bir parcast Kararli ABL Return a C unsigned long long representation of pylong. pylong must be an
instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long) -1 onerror. Use PyErr Occurred () to disambiguate.

3.1 strtimiinde degisti: A negative pylong now raises OverflowError, not TypeError.

8.2. Numeric Objects 123

The Python/C API, Yayim 3.12.9

unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)

Bir parcasi Kararli ABL Return a C unsigned long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__ () method (if present) to convert it to a PyLongObject.

If the value of obj is out of range for an unsigned long, return the reduction of that value modulo
ULONG_MAX + 1.

Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.
3.8 stirtimiinde degisti: Use __index__ () if available.

3.10 siirtimiinde degisti: This function will no longer use __int__ ().

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obj)

Bir parcast Kararli ABI. Return a C unsigned long long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__ () method (if present) to convertitto a PyLongObject.

If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
ULLONG_MAX + 1.

Returns (unsigned long long)-1 on error. Use PyErr Occurred () to disambiguate.
3.8 stiriimiinde degisti: Use __index__ () if available.

3.10 siiriimiinde degisti: This function will no longer use __int__ ().

double PyLong_AsDouble (PyObject *pylong)

Bir parcast Kararli ABL. Return a C double representation of pylong. pylong must be an instance of
PyLongObject.

Raise overflowError if the value of pylong is out of range for a double.

Returns -1.0 on error. Use PyErr Occurred () to disambiguate.

void *PyLong_AsVoidPtr (PyObject *pylong)

Bir parcast Kararl1 ABI. Convert a Python integer pylong to a C void pointer. If pylong cannot be converted,
an OverflowError will be raised. This is only assured to produce a usable void pointer for values created
with PyLong FromVoidPtr ().

Returns NULL on error. Use PyErr_Occurred () to disambiguate.

PyObject *PyLong_GetInfo (void)

Bir parcast Kararli ABI. On success, return a read only named tuple, that holds information about Python’s
internal representation of integers. See sys.int_info for description of individual fields.

On failure, return NULL with an exception set.

Added in version 3.1.

int PyUnstable_Long_IsCompact (const PyLongObject *op)

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyari1 olmadan degisebilir.

Return 1 if op is compact, 0 otherwise.

This function makes it possible for performance-critical code to implement a “fast path” for small integers. For
compact values use PyUnstable_Long_CompactValue (); for others fall back to a PyLong As* function
or calling int.to_bytes().

The speedup is expected to be negligible for most users.
Exactly what values are considered compact is an implementation detail and is subject to change.

Added in version 3.12.

124

Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

Py_ssize_t PyUnstable_Long_CompactValue (const PyLongObject *op)

Bu Kararsiz API. Bu, kiigiik (minor) stirimlerde uyari olmadan degigebilir.

If op is compact, as determined by PyUnstable ILong IsCompact (), return its value.
Otherwise, the return value is undefined.

Added in version 3.12.

8.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_Falseand Py_True.
As such, the normal creation and deletion functions don’t apply to booleans. The following macros are available,
however.

PyTypeObject PyBool_Type
Bir parcast Kararli ABI. This instance of Py TypeObject represents the Python boolean type; it is the same
object as bool in the Python layer.
int PyBool_Check (PyObject *0)
Return true if o is of type PyBool_Type. This function always succeeds.
PyObject *Py_False
The Python False object. This object has no methods and is immortal.
3.12 siiriimiinde degisti: Py_False is immortal.
PyObject *Py_True
The Python True object. This object has no methods and is immortal.
3.12 siiriimiinde degisti: Py_ True is immortal.
Py_RETURN_FALSE
Return Py_False from a function.
Py_RETURN_TRUE
Return Py_ True from a function.
PyObject *PyBool_FromLong (long v)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return Py_True or Py_False, depending on the
truth value of v.

8.2.3 Floating-Point Objects

type PyFloatObject
This subtype of PyoObject represents a Python floating-point object.

PyTypeObject PyFloat_Type
Bir pargasi Kararli ABI. This instance of PyTypeObject represents the Python floating-point type. This is
the same object as f1oat in the Python layer.

int PyFloat_Check (PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatObject. This function always
succeeds.

int PyFloat_CheckExact (PyObject *p)

Return true if its argument is a PyFloatObject, but not a subtype of PyFiloatObject. This function always
succeeds.

8.2. Numeric Objects 125

https://peps.python.org/pep-0683/
https://peps.python.org/pep-0683/

The Python/C API, Yayim 3.12.9

PyObject *PyFloat_FromString (PyObject *str)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Create a PyFloatObject object based on the
string value in str, or NULL on failure.

PyObject *PyFloat_FromDouble (double v)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL. Create a PyFloatObject object from v, or NULL
on failure.

double PyFloat_AsDouble (PyObject *pyfloat)

Bir parcasi Kararli ABI Return a C doub1e representation of the contents of pyfloat. If pyfloat is not a Python
floating-point object but hasa _ float__ () method, this method will first be called to convert pyfloat into
afloat. If _ float__ () is not defined then it falls back to __index__ (). This method returns —1 .0 upon
failure, so one should call PyErr Occurred () to check for errors.

3.8 stirtimiinde degisti: Use __index__ () if available.

double PyFloat_AS_DOUBLE (PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject *PyFloat_GetInfo (void)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABL Return a structseq instance which contains infor-
mation about the precision, minimum and maximum values of a float. It’s a thin wrapper around the header
file float.h.

double PyFloat_GetMax ()
Bir parcas: Kararl1 ABL Return the maximum representable finite float DBL,_MAX as C double.

double PyFloat_GetMin ()
Bir parcast Kararl1 ABI. Return the minimum normalized positive float DBL_MIN as C double.

Pack and Unpack functions

The pack and unpack functions provide an efficient platform-independent way to store floating-point values as byte
strings. The Pack routines produce a bytes string from a C double, and the Unpack routines produce a C double
from such a bytes string. The suffix (2, 4 or 8) specifies the number of bytes in the bytes string.

On platforms that appear to use IEEE 754 formats these functions work by copying bits. On other platforms, the
2-byte format is identical to the IEEE 754 binary16 half-precision format, the 4-byte format (32-bit) is identical to
the IEEE 754 binary32 single precision format, and the 8-byte format to the IEEE 754 binary64 double precision
format, although the packing of INFs and NaNs (if such things exist on the platform) isn’t handled correctly, and
attempting to unpack a bytes string containing an IEEE INF or NaN will raise an exception.

On non-IEEE platforms with more precision, or larger dynamic range, than IEEE 754 supports, not all values can be
packed; on non-IEEE platforms with less precision, or smaller dynamic range, not all values can be unpacked. What
happens in such cases is partly accidental (alas).

Added in version 3.11.

Pack functions

The pack routines write 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if you want the bytes string in
little-endian format (exponent last, at p+1, p+3, or p+6 p+7), zero if you want big-endian format (exponent first, at
p). The PY_BIG_ENDIAN constant can be used to use the native endian: it is equal to 1 on big endian processor, or
0 on little endian processor.

Return value: 0 if all is OK, -1 if error (and an exception is set, most likely OverflowError).
There are two problems on non-IEEE platforms:
o What this does is undefined if x is a NaN or infinity.

e —0.0 and +0. 0 produce the same bytes string.

126 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

int PyFloat_Pack2 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary16 half-precision format.

int PyFloat_Pack4 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary32 single precision format.

int PyFloat_Pack8 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary64 double precision format.

Unpack functions

The unpack routines read 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if the bytes string is in
little-endian format (exponent last, at p+1, p+3 or p+6 and p+7), zero if big-endian (exponent first, at p). The
PY_BIG_ENDIAN constant can be used to use the native endian: it is equal to 1 on big endian processor, or 0 on little
endian processor.

Return value: The unpacked double. On error, thisis -1.0 and PyErr _Occurred () is true (and an exception is set,
most likely OverflowError).

Note that on a non-IEEE platform this will refuse to unpack a bytes string that represents a NaN or infinity.

double PyFloat_Unpack2 (const unsigned char *p, int le)
Unpack the IEEE 754 binary16 half-precision format as a C double.

double PyFloat_Unpack4 (const unsigned char *p, int le)
Unpack the IEEE 754 binary32 single precision format as a C double.

double PyFloat_Unpack8 (const unsigned char *p, int le)
Unpack the IEEE 754 binary64 double precision format as a C double.

8.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex number
value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by value rather
than dereferencing them through pointers. This is consistent throughout the API.
type Py_complex

The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate.

double real

double imag

The structure is defined as:

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)

Return the sum of two complex numbers, using the C Py_comp1ex representation.
Py_complex _Py_c_diff£ (Py_complex left, Py_complex right)

Return the difference between two complex numbers, using the C Py_ compex representation.

8.2. Numeric Objects 127

The Python/C API, Yayim 3.12.9

Py_complex _Py_c_neg (Py_complex num)

Return the negation of the complex number num, using the C Py_complex representation.
Py_complex _Py_c_prod (Py_complex left, Py_complex right)

Return the product of two complex numbers, using the C Py complex representation.
Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)

Return the quotient of two complex numbers, using the C Py_complex representation.
If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)

Return the exponentiation of num by exp, using the C Py_complex representation.

If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

Complex Numbers as Python Objects

type PyComplexObject
This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex_Type
Bir pargasi Kararlit ABL This instance of PyTypeObject represents the Python complex number type. It is
the same object as complex in the Python layer.

int PyComplex_Check (PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject. This function always
succeeds.

int PyComplex_CheckExact (PyObject *p)
Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject. This function
always succeeds.

PyObject *PyComplex_FromCComplex (Py_complex v)
Dondiirdiigii deger: Yeni referans. Create a new Python complex number object from a C Py_complex value.
Return NULL with an exception set on error.

PyObject *PyComplex_FromDoubles (double real, double imag)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Return a new PyComplexObject object from real
and imag. Return NULL with an exception set on error.

double PyComplex_RealAsDouble (PyObject *op)
Bir parcasi Kararli ABI. Return the real part of op as a C double.
Upon failure, this method returns -1.0 with an exception set, so one should call PyErr Occurred() to
check for errors.

double PyComplex_ImagAsDouble (PyObject *op)
Bir parcast Kararli ABIL. Return the imaginary part of op as a C double.

Py_complex PyComplex_AsCComplex (PyObject *op)
Return the Py_complex value of the complex number op.

If op is not a Python complex number object but has a __complex__ () method, this method will first be
called to convert op to a Python complex number object. If __complex__ () is not defined then it falls back
to__float_ ().If __float__ () is not defined then it falls back to __index__ ().

Upon failure, this method returns Py_complex with real setto -1 .0 and with an exception set, so one should
call PyErr_Occurred () to check for errors.

3.8 siirtimiinde degisti: Use __index__ () if available.

128 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

8.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

8.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and called with a non-bytes parameter.

type PyBytesObject
This subtype of PyObject represents a Python bytes object.
PyTypeObject PyBytes_Type
Bir parcast Kararli ABL This instance of PyTypeObject represents the Python bytes type; it is the same
object as bytes in the Python layer.
int PyBytes_Check (PyObject *0)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type. This function always
succeeds.
int PyBytes_CheckExact (PyObject *0)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type. This function
always succeeds.
PyObject *PyBytes_FromString (const char *v)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return a new bytes object with a copy of the string
v as value on success, and NULL on failure. The parameter v must not be NULL; it will not be checked.
PyObject *PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)

Dondiirdiigii deger: Yeni referans. Bir parcas: Kararlt ABI. Return a new bytes object with a copy of the string
v as value and length len on success, and NULL on failure. If v is NULL, the contents of the bytes object are
uninitialized.

PyObject *PyBytes_FromFormat (const char *format, ...)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Take a C printf () -style format string and a
variable number of arguments, calculate the size of the resulting Python bytes object and return a bytes object
with the values formatted into it. The variable arguments must be C types and must correspond exactly to the
format characters in the format string. The following format characters are allowed:

| Format Characters | Type | Comment

%% n/a The literal % character.

$c int A single byte, represented as a C int.

5d int Equivalent to print £ ("%d" Dol

su unsigned int Equivalent to print £ ("su").!

51d long Equivalent to print £ ("%14d").!

$1u unsigned long | Equivalent to printf ("$1u").!

Szd pPy_ssize_t | Equivalentto printf ("$zd"). 1

szu size t Equivalent to printf ("$zu").'

i int Equivalent to print f ("%i") 1

$x int Equivalent to print £ ("%x").!

%s const char* A null-terminated C character array.

%P const void* The hex representation of a C pointer. Mostly equivalent to
printf ("%p") except that it is guaranteed to start with the
literal 0x regardless of what the platform’s print £ yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object,
and any extra arguments discarded.

! For integer specifiers (d, u, 1d, lu, zd, zu, i, x): the O-conversion flag has effect even when a precision is given.

8.3. Sequence Objects 129

The Python/C API, Yayim 3.12.9

PyObject *PyBytes_FromFormatV (const char *format, va_list vargs)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Identical to PyBytes FromFormat () except that
it takes exactly two arguments.

PyObject *PyBytes_FromObject (PyObject *0)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return the bytes representation of object o that
implements the buffer protocol.

Py_ssize_t PyBytes_Size (PyObject *0)
Bir parcast Kararli ABIL Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE (PyObject *0)

Similar to PyBytes_Size (), but without error checking.
char *PyBytes_AsString (PyObject *0)

Bir parcasi Kararli ABI. Return a pointer to the contents of 0. The pointer refers to the internal buffer of o,
which consists of 1len (o) + 1 bytes. The last byte in the buffer is always null, regardless of whether there
are any other null bytes. The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size).It mustnot be deallocated. If o is not a bytes object at all,
PyBytes_AsString () returns NULL and raises TypeError.

char *PyBytes_AS_STRING (PyObject *string)
Similar to PyBytes AsString (), but without error checking.
int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)
Bir parcast Kararli ABIL Return the null-terminated contents of the object obj through the output variables

buffer and length. Returns 0 on success.

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns -1 and
avValueError is raised.

The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not co-
unted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It must not be deallocated. If obj is not a bytes object
atall, PyBytes_AsStringAndSize () returns —1 and raises TypeError.

3.5 siiriimiinde degisti: Previously, TypeError was raised when embedded null bytes were encountered in the
bytes object.

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)

Bir parcast Kararli ABIL. Create a new bytes object in *byfes containing the contents of newpart appended to
bytes; the caller will own the new reference. The reference to the old value of byfes will be stolen. If the new
object cannot be created, the old reference to bytes will still be discarded and the value of *bytes will be set to
NULL; the appropriate exception will be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)
Bir parcasi Kararli ABI. Create a new bytes object in *bytes containing the contents of newpart appended to
bytes. This version releases the strong reference to newpart (i.e. decrements its reference count).

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)

A way to resize a bytes object even though it is “immutable”. Only use this to build up a brand new bytes object;
don’t use this if the bytes may already be known in other parts of the code. It is an error to call this function
if the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an lvalue
(it may be written into), and the new size desired. On success, *byfes holds the resized bytes object and 0 is
returned; the address in *bytes may differ from its input value. If the reallocation fails, the original bytes object
at *bytes is deallocated, *bytes is set to NULL, MemoryError is set, and -1 is returned.

8.3.2 Byte Array Objects

type PyByteArrayObject
This subtype of PyObject represents a Python bytearray object.

130 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

PyTypeObject PyByteArray_Type
Bir parcast Kararli ABL This instance of Py TypeObject represents the Python bytearray type; it is the same
object as bytearray in the Python layer.

Type check macros

int PyByteArray Check (PyObject *0)

Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type. This function
always succeeds.

int PyByteArray_CheckExact (PyObject *0)

Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type. This
function always succeeds.

Direct API functions

PyObject *PyByteArray FromObject (PyObject *0)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Return a new bytearray object from any object, o,
that implements the buffer protocol.

On failure, return NULL with an exception set.

PyObject *PyByteArray_FromStringAndSize (const char *string, Py_ssize_t len)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Create a new bytearray object from string and its
length, len.

On failure, return NULL with an exception set.

PyObject *PyByteArray_Concat (PyObject *a, PyObject *b)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Concat bytearrays a and b and return a new bytearray
with the result.

On failure, return NULL with an exception set.
Py_ssize_t PyByteArray_Size (PyObject *bytearray)

Bir parcas: Kararl1 ABL Return the size of byfearray after checking for a NULL pointer.
char *PyByteArray_ AsString (PyObject *bytearray)

Bir parcasi Kararl1 ABI. Return the contents of byfearray as a char array after checking for a NULL pointer.
The returned array always has an extra null byte appended.

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
Bir parcast Kararli ABIL. Resize the internal buffer of bytearray to len.

Macros
These macros trade safety for speed and they don’t check pointers.
char *PyByteArray_ AS_STRING (PyObject *bytearray)
Similar to PyByteArray AsString (), but without error checking.
Py_ssize_t PyByteArray_GET_SIZE (PyObject *bytearray)
Similar to PyByteArray Size (), but without error checking.

8.3.3 Unicode Objects and Codecs
Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in
order to allow handling the complete range of Unicode characters while staying memory efficient. There are special
cases for strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112
(which is the full Unicode range).

8.3. Sequence Objects 131

https://peps.python.org/pep-0393/

The Python/C API, Yayim 3.12.9

UTF-8 representation is created on demand and cached in the Unicode object.

O Not

The Py_UNICODE representation has been removed since Python 3.12 with deprecated APIs. See PEP 623 for
more information.

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:

type Py_UCSs4

type Py_UCS2

type Py_UCS1
Bir parcasi Kararli ABL These types are typedefs for unsigned integer types wide enough to contain characters
of 32 bits, 16 bits and 8 bits, respectively. When dealing with single Unicode characters, use Py UCS4.
Added in version 3.3.

type Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.
3.3 stirtimiinde degisti: In previous versions, this was a 16-bit type or a 32-bit type depending on whether you
selected a “narrow” or “wide” Unicode version of Python at build time.

type PyASCIIObject

type PyCompactUnicodeObject

type PyUnicodeObject

These subtypes of Pyobject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

Added in version 3.3.

PyTypeObject PyUnicode_Type
Bir parcasi Kararli ABL This instance of PyTypeObject represents the Python Unicode type. It is exposed
to Python code as str.

The following APIs are C macros and static inlined functions for fast checks and access to internal read-only data of
Unicode objects:

int PyUnicode_Check (PyObject *obj)

Return true if the object obj is a Unicode object or an instance of a Unicode subtype. This function always
succeeds.

int PyUnicode_CheckExact (PyObject *obj)

Return true if the object 0bj is a Unicode object, but not an instance of a subtype. This function always succeeds.
int PyUnicode_READY (PyObject *unicode)

Returns 0. This API is kept only for backward compatibility.

Added in version 3.3.

3.10 siiriimiinden beri kullanim dig1: This API does nothing since Python 3.12.
Py_ssize_t PyUnicode_GET_LENGTH (PyObject *unicode)

Return the length of the Unicode string, in code points. unicode has to be a Unicode object in the “canonical”
representation (not checked).

Added in version 3.3.

Py_UCSI *PyUnicode_1BYTE_DATA (PyObject *unicode)
Py_UCS?2 *PyUnicode_2BYTE_DATA (PyObject *unicode)

132 Boliim 8. Concrete Objects Layer

https://peps.python.org/pep-0623/

The Python/C API, Yayim 3.12.9

Py_UCS4 *PyUnicode_4BYTE_DATA (PyObject *unicode)

Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct cha-
racter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND () to select the right function.

Added in version 3.3.
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND
Return values of the PyUnicode KIND () macro.
Added in version 3.3.
3.12 siirtimiinde degisti: PyUnicode_WCHAR_KIND has been removed.
int PyUnicode_KIND (PyObject *unicode)

Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this
Unicode object uses to store its data. unicode has to be a Unicode object in the “canonical” representation (not
checked).

Added in version 3.3.

void *PyUnicode_DATA (PyObject *unicode)

Return a void pointer to the raw Unicode buffer. unicode has to be a Unicode object in the “canonical” repre-
sentation (not checked).

Added in version 3.3.

void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)

Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This function performs
no sanity checks, and is intended for usage in loops. The caller should cache the kind value and data pointer
as obtained from other calls. index is the index in the string (starts at 0) and value is the new code point value
which should be written to that location.

Added in version 3.3.

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)

Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks
or ready calls are performed.

Added in version 3.3.

Py_UCS4 pyUnicode_READ_CHAR (PyObject *unicode, Py_ssize_t index)

Read a character from a Unicode object unicode, which must be in the “canonical” representation. This is less
efficient than PyUnicode_READ () if you do multiple consecutive reads.

Added in version 3.3.

Py_UCS4 PyUnicode_MAX_CHAR_VALUE (PyObject *unicode)

Return the maximum code point that is suitable for creating another string based on unicode, which must be
in the “canonical” representation. This is always an approximation but more efficient than iterating over the
string.

Added in version 3.3.

int PyUnicode_IsIdentifier (PyObject *unicode)

Bir parcasi Kararli ABI. Return 1 if the string is a valid identifier according to the language definition, section
identifiers. Return 0 otherwise.

3.9 siiriimiinde degisti: The function does not call Py_FatalError () anymore if the string is not ready.

8.3. Sequence Objects 133

The Python/C API, Yayim 3.12.9

Unicode Character Properties
Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a whitespace character.

int Py_UNICODE_ISLOWER (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a lowercase character.

int Py_UNICODE_ISUPPER (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is an uppercase character.

int Py_UNICODE_ISTITLE (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a titlecase character.

int Py_UNICODE_ISLINEBREAK (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a linebreak character.

int Py_UNICODE_ISDECIMAL (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a decimal character.

int Py_UNICODE_ISDIGIT (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a digit character.

int Py_UNICODE_ISNUMERIC (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a numeric character.

int Py_UNICODE_ISALPHA (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is an alphabetic character.

int Py_UNICODE_ISALNUM (Py_UCS4 ch)

Return 1 or 0 depending on whether c is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a printable character, in the sense of str.isprintable ().
These APIs can be used for fast direct character conversions:

Py_UCS4 Py_UNICODE_TOLOWER (Py_UCS4 ch)
Return the character ch converted to lower case.

3.3 siiriimiinden beri kullanim dis1: This function uses simple case mappings.
Py_UCS4 Py_UNICODE_TOUPPER (Py_UCS4 ch)

Return the character ch converted to upper case.

3.3 stirtimiinden beri kullanim dist: This function uses simple case mappings.

Py_UCS4 py_UNICODE_TOTITLE (Py UCS4 ch)
Return the character ch converted to title case.

3.3 siiriimiinden beri kullanim dis1: This function uses simple case mappings.

int Py_UNICODE_TODECIMAL (Py_UCS4 ch)
Return the character ch converted to a decimal positive integer. Return -1 if this is not possible. This function
does not raise exceptions.

int Py_UNICODE_TODIGIT (Py_UCS4 ch)

Return the character ch converted to a single digit integer. Return -1 if this is not possible. This function does
not raise exceptions.

134 Boliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

double Py_UNICODE_TONUMERIC (Py_UCS4 ch)

Return the character ch converted to a double. Return -1 . 0 if this is not possible. This function does not raise
exceptions.

These APIs can be used to work with surrogates:
int Py UNICODE_IS_SURROGATE (Py_UCS4 ch)
Check if ch is a surrogate (0xD800 < = ch < = OxDFFF).
int Py_UNICODE_IS_HIGH_SURROGATE (Py_UCS4 ch)
Check if ch is a high surrogate (0xD800 < = ch < = 0xDBFF).
int Py_UNICODE_IS_LOW_SURROGATE (Py_ UCS4 ch)
Check if ch is a low surrogate (0xDC00 < = ch < = 0xDFFF).

Py_UCS4 Ppy_UNICODE_JOIN_SURROGATES (Py_UCS4 high, Py_UCS4 low)

Join two surrogate characters and return a single Py UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair. high must be in the range [0xD800; OxDBFF] and low must be in the
range [0xDCO00; OxDFFF].

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject *PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)

Dondiirdiigii deger: Yeni referans. Create a new Unicode object. maxchar should be the true maximum code
point to be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence
127, 255, 65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not
resizable.

On error, set an exception and return NULL.
Added in version 3.3.

PyObject *PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_f size)

Dondiirdiigii deger: Yeni referans. Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc., as returned by PyUnicode KIND ()). The buffer must point to an array
of size units of 1, 2 or 4 bytes per character, as given by the kind.

If necessary, the input buffer is copied and transformed into the canonical representation. For example, if the
buffer is a UCS4 string (PyUnicode_4BYTE_KIND) and it consists only of codepoints in the UCS1 range, it
will be transformed into UCS1 (PyUnicode_1BYTE_KIND).

Added in version 3.3.

PyObject *PyUnicode_FromStringAndSize (const char *str, Py ssize_f size)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Create a Unicode object from the char buffer str.
The bytes will be interpreted as being UTF-8 encoded. The buffer is copied into the new object. The return
value might be a shared object, i.e. modification of the data is not allowed.

This function raises SystemError when:
o size <0,
e stris NULL and size >0
3.12 stiriimiinde degisti: str == NULL with size > 0 is not allowed anymore.

PyObject *PyUnicode_FromString (const char *str)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Create a Unicode object from a UTF-8 encoded
null-terminated char buffer szr.

8.3. Sequence Objects 135

The Python/C API, Yayim 3.12.9

PyObject *PyUnicode_FromFormat (const char *format, ...)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Take a C printf () -style format string and a
variable number of arguments, calculate the size of the resulting Python Unicode string and return a string
with the values formatted into it. The variable arguments must be C types and must correspond exactly to the
format characters in the format ASCII-encoded string.

A conversion specifier contains two or more characters and has the following components, which must occur
in this order:

1. The '%' character, which marks the start of the specifier.
2. Conversion flags (optional), which affect the result of some conversion types.

3. Minimum field width (optional). If specified as an ' *' (asterisk), the actual width is given in the next
argument, which must be of type int, and the object to convert comes after the minimum field width
and optional precision.

4. Precision (optional), given asa ' . ' (dot) followed by the precision. If specified as ' *' (an asterisk), the
actual precision is given in the next argument, which must be of type int, and the value to convert comes
after the precision.

5. Length modifier (optional).
6. Conversion type.

The conversion flag characters are:

| Flag | Meaning \

0 The conversion will be zero padded for numeric values.
The converted value is left adjusted (overrides the 0 flag if both are given).

The length modifiers for following integer conversions (d, i, o, u, x, or X) specify the type of the argument
(int by default):

Modifier Types \

1 long or unsigned long
11 long longoOr unsigned long long
J intmax_t Oruintmax_t
z size_t Oor ssize_t
ptrdiff t

The length modifier 1 for following conversions s or v specify that the type of the argument is const
wchar_t*.

The conversion specifiers are:

136 Boliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

Con- Type Comment

version

Specifi-

er

% n/a The literal % character.

d, i Specified by the The decimal representation of a signed C integer.
length modifier

u Specified by the The decimal representation of an unsigned C integer.
length modifier

o Specified by the The octal representation of an unsigned C integer.
length modifier

X Specified by the The hexadecimal representation of an unsigned C integer (lowercase).
length modifier

X Specified by the The hexadecimal representation of an unsigned C integer (uppercase).
length modifier
int A single character.

const char* or A null-terminated C character array.
const wchar_t*
P const void* The hex representation of a C pointer. Mostly equivalent to
printf ("%p") except that it is guaranteed to start with the literal 0x
regardless of what the platform’s print £ yields.

A PyObject* The result of calling ascii ().
U PyObject* A Unicode object.
v PyObject*, A Unicode object (which may be NULL) and a null-terminated C cha-

const char* or racter array as a second parameter (which will be used, if the first pa-
const wchar_t* rameter is NULL).

S PyObject* The result of calling PyObject Str().
PyObject* The result of calling PyObject _Repr ().

O Not

The width formatter unit is number of characters rather than bytes. The precision formatter unit is number
of bytes or wchar_t items (if the length modifier 1 is used) for "$s" and "sv" (if the PyObject*
argument is NULL), and a number of characters for "$a", "su", "$s", "$R" and "%V" (if the PyObject *
argument is not NULL).

O Not

Unlike to C print £ () the 0 flag has effect even when a precision is given for integer conversions (d, i,
u, 0, X, Or X).

3.2 siirimiinde degisti: Support for "$11d" and "%$11u" added.
3.3 siiriimiinde degisti: Support for "$1i", "$11i" and "%zi" added.

3.4 siirimiinde degisti: Support width and precision formatter for "$s", "$A", "sU", "$V", "$S", "R"
added.

3.12 siiriimiinde degisti: Support for conversion specifiers o and x. Support for length modifiers j and t.
Length modifiers are now applied to all integer conversions. Length modifier 1 is now applied to conversion
specifiers s and v. Support for variable width and precision *. Support for flag -.

An unrecognized format character now sets a SystemError. In previous versions it caused all the rest of the
format string to be copied as-is to the result string, and any extra arguments discarded.

8.3. Sequence Objects 137

The Python/C API, Yayim 3.12.9

PyObject *PyUnicode_FromFormatV (const char *format, va_list vargs)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Identical to PyUnicode FromFormat () except
that it takes exactly two arguments.

PyObject *PyUnicode_FromObject (PyObject *obj)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Copy an instance of a Unicode subtype to a new
true Unicode object if necessary. If obj is already a true Unicode object (not a subtype), return a new strong
reference to the object.

Objects other than Unicode or its subtypes will cause a TypeError.

PyObject *PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararl1 ABI. Decode an encoded object obj to a Unicode object.

bytes, bytearray and other bytes-like objects are decoded according to the given encoding and using the
error handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in
Codecs for details).

All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

const char *PyUnicode_GetDefaultEncoding (void)

Bir parcast Kararli ABIL Return the name of the default string encoding, "utf-8". See sys.
getdefaultencoding().

The returned string does not need to be freed, and is valid until interpreter shutdown.

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return the length of the Unicode object, in code points.
On error, set an exception and return —1.

Added in version 3.3.

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t to_start, PyObject *from, Py_ssize_t
from_start, Py_ssize_t how_many)

Copy characters from one Unicode object into another. This function performs character conversion when
necessary and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise returns
the number of copied characters.

Added in version 3.3.

Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].
Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return —1 and raise an exception on error.
Added in version 3.3.

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)

Bir parcas: Kararli ABI 3.7 siiriimiinden beri. Write a character to a string. The string must have been created
through PyUnicode_New (). Since Unicode strings are supposed to be immutable, the string must not be
shared, or have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object
can be modified safely (i.e. that it its reference count is one).

Return 0 on success, -1 on error with an exception set.

Added in version 3.3.

138 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)

Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Read a character from a string. This function checks that unicode
is a Unicode object and the index is not out of bounds, in contrast to PyUnicode READ_CHAR (), which
performs no error checking.

Return character on success, —1 on error with an exception set.
Added in version 3.3.

PyObject *PyUnicode_Substring (PyObject *unicode, Py_ssize_t start, Py_ssize_t end)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return a substring of unicode,

from character index start (included) to character index end (excluded). Negative indices are not supported.
On error, set an exception and return NULL.

Added in version 3.3.

Py_UCS4 *PyUnicode_AsUCS4 (PyObject *unicode, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)

Bir parcast Kararli ABI 3.7 siiriimiinden beri. Copy the string unicode into a UCS4 buffer, including a null
character, if copy_null is set. Returns NULL and sets an exception on error (in particular, a SystemError if
buflen is smaller than the length of unicode). buffer is returned on success.

Added in version 3.3.

Py_UCS4 *PyUnicode_AsUCS4Copy (PyObject *unicode)

Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Copy the string unicode into a new UCS4 buffer that is allocated
using PyMem_Malloc (). If this fails, NULL is returned with a MemoryError set. The returned buffer always
has an extra null code point appended.

Added in version 3.3.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject *PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t length, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Decode a string from UTF-8 on
Android and VxWorks, or from the current locale encoding on other platforms. The supported error handlers
are "strict" and "surrogateescape" (PEP 383). The decoder uses "strict" error handler if errors is
NULL. str must end with a null character but cannot contain embedded null characters.

Use PyUnicode DecodeFSDefaultAndSize () to decode a string from the filesystem encoding and error
handler.

This function ignores the Python UTF-8 Mode.

> Ayrica bakimiz

The Py_DecodeLocale () function.

Added in version 3.3.

3.7 stirimiinde degisti: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py _DecodeLocale () was used for the surrogateescape,
and the current locale encoding was used for strict.

PyObject *PyUnicode_DecodeLocale (const char *str, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Similar to
PyUnicode_DecodeLocaleAndSize (), but compute the string length using strlen ().

Added in version 3.3.

8.3. Sequence Objects 139

https://peps.python.org/pep-0383/

The Python/C API, Yayim 3.12.9

PyObject *PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Encode a Unicode object to
UTF-8 on Android and VxWorks, or to the current locale encoding on other platforms. The supported error
handlers are "strict" and "surrogateescape" (PEP 383). The encoder uses "strict" error handler
if errors is NULL. Return a bytes object. unicode cannot contain embedded null characters.

Use PyUnicode_EncodeFSDefault () to encode a string to the filesystem encoding and error handler.

This function ignores the Python UTF-8 Mode.

> Ayrica bakimiz

The Py_EncodeLocale () function.

Added in version 3.3.

3.7 stiriimiinde degisti: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py _EncodeLocale () was used for the surrogateescape,
and the current locale encoding was used for strict.

File System Encoding

Functions encoding to and decoding from the filesystem encoding and error handler (PEP 383 and PEP 529).

To encode file names to bytes during argument parsing, the "0Os&" converter should be used, passing
PyUnicode_FSConverter () as the conversion function:
int PyUnicode_FSConverter (PyObject *obj, void *result)

Bir parcas: Kararli ABL. PyArg_Parse* converter: encode str objects — obtained directly or through the os.
PathLike interface - to bytes using PyUnicode_EncodeFSDefault ();bytes objects are output as-is.
result must be an address of a C variable of type PyObject* (or PyBytesObject*). On success, set the
variable to a new strong reference to a bytes object which must be released when it is no longer used and return
a non-zero value (py_crLeANUP_supPPORTED). Embedded null bytes are not allowed in the result. On failure,
return 0 with an exception set.

If obj is NULL, the function releases a strong reference stored in the variable referred by result and returns 1.
Added in version 3.1.
3.6 stirtimiinde degisti: Accepts a path-like object.
To decode file names to str during argument parsing, the "oO&" converter should be used, passing
PyUnicode_FSDecoder () as the conversion function:
int PyUnicode_FSDecoder (PyObject *obj, void *result)

Bir pargasi Kararlit ABL PyArg_Parse* converter: decode bytes objects — obtained either directly or indirectly
through the os.PathLike interface — to str using PyUnicode_DecodeFSDefaultAndSize (); str ob-
jects are output as-is. result must be an address of a C variable of type PyObject* (or PyUnicodeObject*).
On success, set the variable to a new strong reference to a Unicode object which must be released when it is
no longer used and return a non-zero value (Py_CLEANUP_SUPPORTED). Embedded null characters are not
allowed in the result. On failure, return 0 with an exception set.

If obj is NULL, release the strong reference to the object referred to by result and return 1.
Added in version 3.2.
3.6 stirtimiinde degisti: Accepts a path-like object.

PyObject *PyUnicode_DecodeFSDefaultAndSize (const char *str, Py_ssize_t size)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Decode a string from the filesystem encoding and
error handler.

If you need to decode a string from the current locale encoding, use PyUnicode_DecodeLocaleAndSize ().

140 Boéliim 8. Concrete Objects Layer

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0383/
https://peps.python.org/pep-0529/

The Python/C API, Yayim 3.12.9

> Ayrica bakiniz

The Py_DecodeLocale () function.

3.6 strtimiinde degisti: The filesystem error handler is now used.

PyObject *PyUnicode_DecodeFSDefault (const char *str)
Dondiirdiigii deger: Yeni referans. Bir pargast Kararli ABI. Decode a null-terminated string from the filesystem
encoding and error handler.
If the string length is known, use PyUnicode_DecodeFSDefaultAndSize ().

3.6 siiriimiinde degisti: The filesystem error handler is now used.

PyObject *PyUnicode_EncodeFSDefault (PyObject *unicode)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Encode a Unicode object to the filesystem encoding
and error handler, and return bytes. Note that the resulting bytes object can contain null bytes.

If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale ().

> Ayrica bakimiz

The Py_EncodeLocale () function.

Added in version 3.2.

3.6 siiriimiinde degisti: The filesystem error handler is now used.

wchar_t Support

wchar_t support for platforms which support it:

PyObject *PyUnicode_FromWideChar (const wchar_t *wstr, Py_ssize_t size)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Create a Unicode object from the wchar_t buffer
wstr of the given size. Passing -1 as the size indicates that the function must itself compute the length, using
wcslen (). Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *wstr, Py_ssize_t size)

Bir parcast Kararli ABIL Copy the Unicode object contents into the wchar_t buffer wstr. At most sizewchar_t
characters are copied (excluding a possibly trailing null termination character). Return the number of wchar_t
characters copied or -1 in case of an error.

When wstr is NULL, instead return the size that would be required to store all of unicode including a terminating
null.

Note that the resulting wchar_t * string may or may not be null-terminated. It is the responsibility of the caller
to make sure that the wchar_t * string is null-terminated in case this is required by the application. Also, note
that the wchar_t* string might contain null characters, which would cause the string to be truncated when
used with most C functions.

wchar_t *PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)
Bir pargasi Kararli ABI 3.7 siiriimiinden beri. Convert the Unicode object to a wide character string. The output
string always ends with a null character. If size is not NULL, write the number of wide characters (excluding
the trailing null termination character) into *size. Note that the resulting wchar_t string might contain null
characters, which would cause the string to be truncated when used with most C functions. If size is NULL and
the wchar_t* string contains null characters a ValueError is raised.

Returns a buffer allocated by PyMem_New (use PyMem_Free () to free it) on success. On error, returns NULL
and *size is undefined. Raises a MemoryError if memory allocation is failed.

Added in version 3.2.

8.3. Sequence Objects 141

The Python/C API, Yayim 3.12.9

3.7 surtimiinde degisti: Raises a ValueError if size is NULL and the wchar_t * string contains null characters.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via
the following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones
of the built-in str () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is UTF-8. The file system calls should
use PyUnicode_FSConverter () for encoding file names. This uses the filesystem encoding and error handler
internally.

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the
codec. Default error handling for all built-in codecs is “strict” (ValueError is raised).

The codecs all use a similar interface. Only deviations from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:

PyObject *PyUnicode_Decode (const char *str, Py_ssize_t size, const char *encoding, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Create a Unicode object by decoding size bytes of
the encoded string str. encoding and errors have the same meaning as the parameters of the same name in the
str () built-in function. The codec to be used is looked up using the Python codec registry. Return NULL if
an exception was raised by the codec.

PyObject *PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Encode a Unicode object and return the result as
Python bytes object. encoding and errors have the same meaning as the parameters of the same name in the
Unicode encode () method. The codec to be used is looked up using the Python codec registry. Return NULL
if an exception was raised by the codec.

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject *PyUnicode_DecodeUTF8 (const char *str, Py_ssize_t size, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Create a Unicode object by decoding size bytes of
the UTF-8 encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF8Stateful (const char *str, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL If consumed is NULL, behave like
PyUnicode_DecodeUTFS (). If consumed is not NULL, trailing incomplete UTF-8 byte sequences will not
be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded will
be stored in consumed.

PyObject *PyUnicode_AsUTF8String (PyObject *unicode)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Encode a Unicode object using UTF-8 and return
the result as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

const char *PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)

Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Return a pointer to the UTF-8 encoding of the Unicode object,
and store the size of the encoded representation (in bytes) in size. The size argument can be NULL; in this
case no size will be stored. The returned buffer always has an extra null byte appended (not included in size),
regardless of whether there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

142 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a
pointer to the same buffer. The caller is not responsible for deallocating the buffer. The buffer is deallocated
and pointers to it become invalid when the Unicode object is garbage collected.

Added in version 3.3.
3.7 strtimiinde degisti: The return type is now const char * rather of char *.
3.10 siirtimiinde degisti: This function is a part of the limited API.

const char *PyUnicode_AsUTF8 (PyObject *unicode)

As PyUnicode AsUTF8AndSize (), but does not store the size.

A Uyan

This function does not have any special behavior for null characters embedded within unicode. As a re-
sult, strings containing null characters will remain in the returned string, which some C functions might
interpret as the end of the string, leading to truncation. If truncation is an issue, it is recommended to use
PyUnicode_AsUTF8AndSize () instead.

Added in version 3.3.

3.7 strtimiinde degisti: The return type is now const char * rather of char *.

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject *PyUnicode_DecodeUTF32 (const char *str, Py_ssize_t size, const char *errors, int *byteorder)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Decode size bytes from a UTF-32 encoded buffer
string and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults
to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1
or 1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF32Stateful (const char *str, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL If consumed is NULL, behave like
PyUnicode_DecodeUTF32 (). If consumed is not NULL, PyUnicode_DecodeUTF32Stateful () will not
treat trailing incomplete UTF-32 byte sequences (such as a number of bytes not divisible by four) as an error.
Those bytes will not be decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject *PyUnicode_AsUTF32String (PyObject *unicode)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a Python byte string using the UTF-32
encoding in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return
NULL if an exception was raised by the codec.

8.3. Sequence Objects 143

https://en.wikipedia.org/wiki/Null_character

The Python/C API, Yayim 3.12.9

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject *PyUnicode_DecodeUTF16 (const char *str, Py_ssize_t size, const char *errors, int *byteorder)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Decode size bytes from a UTF-16 encoded buffer
string and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults
to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \ufffe
character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeUTF16Stateful (const char *str, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararh ABL If consumed is NULL, behave like
PyUnicode_DecodeUTF16 ().If consumed is not NULL, PyUnicode_DecodeUTF16Stateful () will not
treat trailing incomplete UTF-16 byte sequences (such as an odd number of bytes or a split surrogate pair) as
an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in
consumed.
PyObject *PyUnicode_AsUTF16String (PyObject *unicode)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a Python byte string using the UTF-16
encoding in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return
NULL if an exception was raised by the codec.

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject *PyUnicode_DecodeUTF7 (const char *str, Py_ssize_t size, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Create a Unicode object by decoding size bytes of
the UTF-7 encoded string str. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeUTF7Stateful (const char *str, Py_ssize_tf size, const char *errors, Py_ssize_t
*consumed)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararh ABL If consumed is NULL, behave like
PyUnicode_DecodeUTF7 (). If consumed is not NULL, trailing incomplete UTF-7 base-64 sections will not
be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded will
be stored in consumed.

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:

PyObject *PyUnicode_DecodeUnicodeEscape (const char *str, Py_ssize_t size, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Create a Unicode object by decoding size bytes of
the Unicode-Escape encoded string str. Return NULL if an exception was raised by the codec.

144 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

PyObject *PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Encode a Unicode object using Unicode-Escape

and return the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

Raw-Unicode-Escape Codecs

These are the “Raw Unicode Escape” codec APIs:

PyObject *PyUnicode_DecodeRawUnicodeEscape (const char *str, Py_ssize_t size, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Create a Unicode object by decoding size bytes of
the Raw-Unicode-Escape encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Encode a Unicode object using Raw-Unicode-

Escape and return the result as a bytes object. Error handling is “strict”. Return NULL if an exception was
raised by the codec.

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted
by the codecs during encoding.
PyObject *PyUnicode_DecodeLatinl (const char *str, Py_ssize_t size, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Create a Unicode object by decoding size bytes of
the Latin-1 encoded string str. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_AsLatinlString (PyObject *unicode)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Encode a Unicode object using Latin-1 and return

the result as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject *PyUnicode_DecodeASCII (const char *str, Py_ssize_t size, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Create a Unicode object by decoding size bytes of
the ASCII encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsASCIIString (PyObject *unicode)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararl1 ABL. Encode a Unicode object using ASCII and return

the result as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the
codec.

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mappings to encode and
decode characters. The mapping objects provided must support the __getitem_ () mapping interface; dictionaries
and sequences work well.

These are the mapping codec APIs:

PyObject *PyUnicode_DecodeCharmap (const char *str, Py_ssize_t length, PyObject *mapping, const char
*errors)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Create a Unicode object by decoding size bytes of
the encoded string str using the given mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the
range from 0 to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None.

8.3. Sequence Objects 145

The Python/C API, Yayim 3.12.9

Unmapped data bytes — ones which cause a LookupError, as well as ones which get mapped to None, 0xFFFE
or '\ufffe', are treated as undefined mappings and cause an error.
PyObject *PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Encode a Unicode object using the given mapping
object and return the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised
by the codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255
or None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are
treated as “undefined mapping” and cause an error.

The following codec API is special in that maps Unicode to Unicode.

PyObject *PyUnicode_Translate (PyObject *unicode, PyObject *table, const char *errors)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Translate a string by applying a character mapping
table to it and return the resulting Unicode object. Return NULL if an exception was raised by the codec.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide the _ getitem__ () interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding
is defined by the user settings on the machine running the codec.

PyObject *PyUnicode_DecodeMBCS (const char *str, Py_ssize_f size, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI on Windows 3.7 siiriimiinden beri. Create a Unicode
object by decoding size bytes of the MBCS encoded string str. Return NULL if an exception was raised by the
codec.

PyObject *PyUnicode_DecodeMBCSStateful (const char *str, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI on Windows 3.7 siiriimiinden be-
ri. If consumed is NULL, behave like PyUnicode DecodeMBCS (). If consumed is not NULL,
PyUnicode_DecodeMBCSStateful () will not decode trailing lead byte and the number of bytes
that have been decoded will be stored in consumed.

PyObject *PyUnicode_DecodeCodePageStateful (int code_page, const char *str, Py_ssize_t size, const char
*errors, Py_ssize_t *consumed)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI on Windows 3.7 siiriimiinden beri. Similar to
PyUnicode_DecodeMBCSStateful (), except uses the code page specified by code_page.
PyObject *PyUnicode_AsMBCSString (PyObject *unicode)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI on Windows 3.7 siiriimiinden beri. Encode a Unicode
object using MBCS and return the result as Python bytes object. Error handling is “strict”. Return NULL if an
exception was raised by the codec.

PyObject *PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI on Windows 3.7 siiriimiinden beri. Encode the Uni-
code object using the specified code page and return a Python bytes object. Return NULL if an exception was
raised by the codec. Use cp_ACP code page to get the MBCS encoder.

Added in version 3.3.

146 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or -1 if an exception occurs.

PyObject *PyUnicode_Concat (PyObject *left, PyObject *right)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Concat two strings giving a new Unicode string.
PyObject *PyUnicode_Split (PyObject *unicode, PyObject *sep, Py_ssize_t maxsplit)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Split a string giving a list of Unicode strings. If sep

is NULL, splitting will be done at all whitespace substrings. Otherwise, splits occur at the given separator. At
most maxsplit splits will be done. If negative, no limit is set. Separators are not included in the resulting list.

On error, return NULL with an exception set.
Equivalent to str.split ().

PyObject *PyUnicode_RSplit (PyObject *unicode, PyObject *sep, Py_ssize_t maxsplit)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Similar to PyUnicode_Split (), but splitting will
be done beginning at the end of the string.

On error, return NULL with an exception set.
Equivalent to str.rsplit ().

PyObject *PyUnicode_Splitlines (PyObject *unicode, int keepends)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Split a Unicode string at line breaks, returning a list
of Unicode strings. CRLF is considered to be one line break. If keepends is 0, the Line break characters are
not included in the resulting strings.

PyObject *PyUnicode_Partition (PyObject *unicode, PyObject *sep)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Split a Unicode string at the first occurrence of
sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the

separator. If the separator is not found, return a 3-tuple containing the string itself, followed by two empty
strings.

sep must not be empty.
On error, return NULL with an exception set.
Equivalent to str.partition ().
PyObject *PyUnicode_RPartition (PyObject *unicode, PyObject *sep)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Similar to PyUnicode_pPartition (), but split

a Unicode string at the last occurrence of sep. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

sep must not be empty.
On error, return NULL with an exception set.
Equivalent to str.rpartition().

PyObject *PyUnicode_dJoin (PyObject *separator, PyObject *seq)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL Join a sequence of strings using the given separator
and return the resulting Unicode string.
Py_ssize_t PyUnicode_Tailmatch (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int
direction)

Bir parcasi Kararli ABL Return 1 if substr matches unicode [start :end] at the given tail end (direction ==
-1 means to do a prefix match, direction == 1 a suffix match), 0 otherwise. Return -1 if an error occurred.

8.3. Sequence Objects 147

The Python/C API, Yayim 3.12.9

Py_ssize_t PyUnicode_Find (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Bir parcasi Kararli ABI Return the first position of substr in unicode [start : end] using the given direction
(direction == 1 means to do a forward search, direction == —1 a backward search). The return value is the index
of the first match; a value of -1 indicates that no match was found, and -2 indicates that an error occurred
and an exception has been set.

Py_ssize_t PyUnicode_FindChar (PyObject *unicode, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int
direction)

Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return the first position of the character ch in
unicode[start:end] using the given direction (direction == 1 means to do a forward search, direction
== -1 a backward search). The return value is the index of the first match; a value of -1 indicates that no
match was found, and -2 indicates that an error occurred and an exception has been set.

Added in version 3.3.
3.7 siiriimiinde degisti: start and end are now adjusted to behave like unicode [start:end].

Py_ssize_t PyUnicode_Count (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end)

Bir parcasi Kararli ABIL Return the number of non-overlapping occurrences of substr in
unicode [start:end]. Return -1 if an error occurred.

PyObject *PyUnicode_Replace (PyObject *unicode, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Replace at most maxcount occurrences of substr in
unicode with replstr and return the resulting Unicode object. maxcount == —1 means replace all occurrences.

int PyUnicode_Compare (PyObject *left, PyObject *right)

Bir pargasi Kararli ABL. Compare two strings and return -1, 0, 1 for less than, equal, and greater than, res-
pectively.
This function returns -1 upon failure, so one should call PyErr_Occurred () to check for errors.

int PyUnicode_CompareWithASCIIString (PyObject *unicode, const char *string)

Bir parcast Kararli ABI. Compare a Unicode object, unicode, with string and return -1, 0, 1 for less than,
equal, and greater than, respectively. It is best to pass only ASCII-encoded strings, but the function interprets
the input string as ISO-8859-1 if it contains non-ASCII characters.

This function does not raise exceptions.
PyObject *PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Rich compare two Unicode strings and return one
of the following:

e NULL in case an exception was raised

e Py Trueor Py_False for successful comparisons

e Py NotImplemented in case the type combination is unknown
Possible values for op are py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_LE.

PyObject *PyUnicode_Format (PyObject *format, PyObject *args)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. Return a new string object from format and args;
this is analogous to format % args.

int PyUnicode_Contains (PyObject *unicode, PyObject *substr)

Bir parcast Kararl1 ABIL. Check whether substr is contained in unicode and return true or false accordingly.
substr has to coerce to a one element Unicode string. -1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **p_unicode)

Bir pargasi Kararli ABL Intern the argument *p_unicode in place. The argument must be the address of a
pointer variable pointing to a Python Unicode string object. If there is an existing interned string that is the
same as *p_unicode, it sets *p_unicode to it (releasing the reference to the old string object and creating
a new strong reference to the interned string object), otherwise it leaves *p_unicode alone and interns it.

148 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

(Clarification: even though there is a lot of talk about references, think of this function as reference-neutral.
You must own the object you pass in; after the call you no longer own the passed-in reference, but you newly
own the result.)

This function never raises an exception. On error, it leaves its argument unchanged without interning it.

Instances of subclasses of st r may not be interned, that is, PyUnicode CheckExact (*p_unicode) must
be true. If it is not, then — as with any other error — the argument is left unchanged.

Note that interned strings are not “immortal”. You must keep a reference to the result to benefit from interning.

PyObject *PyUnicode_InternFromString (const char *str)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI. A combination of PyUnicode FromString ()
and PyUnicode_InternInPlace (), meant for statically allocated strings.

Return a new (“owned”) reference to either a new Unicode string object that has been interned, or an earlier
interned string object with the same value.

Python may keep a reference to the result, or prevent it from being garbage-collected promptly. For in-
terning an unbounded number of different strings, such as ones coming from user input, prefer calling
PyUnicode_FromString () and PyUnicode_ InterninPlace () directly.

8.3.4 Tuple Objects

type PyTupleObject
This subtype of PyObject represents a Python tuple object.
PyTypeObject PyTuple_Type
Bir parcast Kararli ABIL This instance of PyTypeObject represents the Python tuple type; it is the same
object as tuple in the Python layer.
int PyTuple_Check (PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type. This function always succeeds.
int PyTuple_CheckExact (PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type. This function always
succeeds.
PyObject *PyTuple_New (Py_ssize_t len)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Return a new tuple object of size len, or NULL with
an exception set on failure.
PyObject *PyTuple_Pack (Py_ssize_tn, ...)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a new tuple object of size n, or NULL with
an exception set on failure. The tuple values are initialized to the subsequent n C arguments pointing to Python
objects. PyTuple_Pack (2, a, b) isequivalentto Py_Buildvalue (" (00)", a, b).
Py_ssize_t PyTuple_Size (PyObject *p)
Bir parcast Kararli ABI. Take a pointer to a tuple object, and return the size of that tuple. On error, return -1
and with an exception set.
Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Like pyTuple_Size (), but without error checking.
PyObject *PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Dondiirdiigii deger: Odiing alimmus referans. Bir parcast Kararli ABL Return the object at position pos in the

tuple pointed to by p. If pos is negative or out of bounds, return NULL and set an IndexError exception.

The returned reference is borrowed from the tuple p (that is: it is only valid as long as you hold a reference to
D). To get a strong reference, use Py_NewRef (PyTuple_GetItem(...)) Of PySequence_GetItem().

8.3. Sequence Objects 149

The Python/C API, Yayim 3.12.9

PyObject *PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Déndiirdiigii deger: Odiing alinms referans. Like PyTuple GetTtem (), but does no checking of its argu-
ments.

PyObject *PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlt ABIL Return the slice of the tuple pointed to by p between
low and high, or NULL with an exception set on failure.

This is the equivalent of the Python expression p[low:high]. Indexing from the end of the tuple is not
supported.
int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)

Bir parcast Kararli ABI. Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on
success. If pos is out of bounds, return -1 and set an IndexError exception.

O Not

This function “steals” a reference to o and discards a reference to an item already in the tuple at the affected
position.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *0)

Like PyTuple_SetItem(), but does no error checking, and should only be used to fill in brand new tuples.

O Not

This function “steals” a reference to o, and, unlike PyTuple SetItem(), does not discard a reference to
any item that is being replaced; any reference in the tuple at position pos will be leaked.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple
may already be known to some other part of the code. The tuple will always grow or shrink at the end. Think
of this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client
code should never assume that the resulting value of *p will be the same as before calling this function. If the
object referenced by *p is replaced, the original *p is destroyed. On failure, returns -1 and sets *p to NULL,
and raises MemoryError Or SystemError.

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.

PyTypeObject *PyStructSequence_NewType (PyStructSequence_Desc *desc)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Create a new struct sequence type from the data in
desc, described below. Instances of the resulting type can be created with Py St ructSequence_New ().

Return NULL with an exception set on failure.
void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type fype from desc in place.
int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)
Like PyStructSequence_InitType (), butreturns 0 on success and —1 with an exception set on failure.
Added in version 3.4.

type PyStructSequence_Desc

Bir parcast Kararli ABI (tiim iiyeler dahil). Contains the meta information of a struct sequence type to create.

150 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

const char *name

Fully qualified name of the type; null-terminated UTF-8 encoded. The name must contain the module
name.

const char *doc

Pointer to docstring for the type or NULL to omit.
PyStructSequence_Field *£ields

Pointer to NULL-terminated array with field names of the new type.
int n_in_sequence

Number of fields visible to the Python side (if used as tuple).

type PyStructSequence_Field

Bir parcast Kararli ABI (tiim iiyeler dahil). Describes a field of a struct sequence. As a struct sequen-
ce is modeled as a tuple, all fields are typed as PyObject*. The index in the fields array of the
pyStructSequence_Desc determines which field of the struct sequence is described.

const char *name

Name for the field or NULL to end the list of named fields, setto Py St ruct Sequence_UnnamedField
to leave unnamed.

const char *doc

Field docstring or NULL to omit.

const char *const PyStructSequence_UnnamedField

Bir parcast Kararli ABI 3.11 siiriimiinden beri. Special value for a field name to leave it unnamed.
3.9 stirtimiinde degisti: The type was changed from char *.

PyObject *PyStructSequence_New (PyTypeObject *type)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Creates an instance of fype, which must have been
created with PyStruct Sequence NewType ().

Return NULL with an exception set on failure.

PyObject *PyStructSequence_GetItem (PyObject *p, Py_ssize_t pos)

Dondiirdiigii deger: Odiing alimmus referans. Bir parcast Kararli ABI Return the object at position pos in the
struct sequence pointed to by p. No bounds checking is performed.

PyObject *PyStructSequence_GET_ITEM (PyObject *p, Py_ssize_t pos)
Dindiirdiigii deger: Odiing alinmus referans. Macro equivalent of Py St ruct Sequence _Get Ttem/().
void PyStructSequence_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)

Bir parcast Kararli ABI. Sets the field at index pos of the struct sequence p to value o. Like
PyTuple SET _ITEM(), this should only be used to fill in brand new instances.

O Not

This function “steals” a reference to o.

void PyStructSequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *0)

Similar to PyStructSequence_SetItem(), butimplemented as a static inlined function.

O Not

This function “steals” a reference to o.

8.3. Sequence Objects 151

The Python/C API, Yayim 3.12.9

8.3.6 List Objects

type PyListObject
This subtype of PyObject represents a Python list object.
PyTypeObject PyList_Type

Bir parcasi Kararli ABI. This instance of PyTypeoObject represents the Python list type. This is the same
object as 1ist in the Python layer.

int PyList_Check (PyObject *p)

Return true if p is a list object or an instance of a subtype of the list type. This function always succeeds.
int PyList_CheckExact (PyObject *p)

Return true if p is a list object, but not an instance of a subtype of the list type. This function always succeeds.
PyObject *PyList_New (Py_ssize_t len)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL. Return a new list of length len on success, or NULL
on failure.

O Not

If len is greater than zero, the returned list object’s items are set to NULL. Thus you cannot use abstract API
functions such as PySequence_SetItem () or expose the object to Python code before setting all items
to a real object with PyList_SetItem().

Py _ssize_t PyList_Size (PyObject *list)
Bir parcasi Kararli ABIL Return the length of the list object in list; this is equivalent to len (1ist) on a list
object.

Py_ssize_t PyList_GET_SIZE (PyObject *list)
Similar to PyList_Size (), but without error checking.

PyObject *PyList_GetItem (PyObject *list, Py_ssize_t index)

Dondiirdiigii deger: Odiing alinmus referans. Bir parcast Kararlit ABL Return the object at position index in the
list pointed to by list. The position must be non-negative; indexing from the end of the list is not supported. If
index is out of bounds (<0 or > =len(list)), return NULL and set an IndexError exception.

PyObject *PyList_GET_ITEM (PyObject *list, Py_ssize_t 1)
Dondiirdiigii deger: Odiing alinmusg referans. Similar to PyList_Get Item (), but without error checking.
int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)

Bir pargasi Kararlt ABL Set the item at index index in list to ifem. Return 0 on success. If index is out of bounds,
return -1 and set an IndexError exception.

O Not

This function “steals” a reference to item and discards a reference to an item already in the list at the affected
position.

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *0)

Macro form of PyList_SetItem () without error checking. This is normally only used to fill in new lists
where there is no previous content.

O Not

This macro “steals” a reference to item, and, unlike PyList_SetItem (), does not discard a reference to
any item that is being replaced; any reference in /ist at position i will be leaked.

152 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
Bir parcasi Kararlit ABIL. Insert the item ifem into list /ist in front of index index. Return 0 if successful; return
-1 and set an exception if unsuccessful. Analogous to list.insert (index, item).

int PyList_Append (PyObject *list, PyObject *item)
Bir parcast Kararli ABL. Append the object item at the end of list lisz. Return 0 if successful; return -1 and set
an exception if unsuccessful. Analogous to 1ist .append (item).

PyObject *PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL. Return a list of the objects in /list conta-
ining the objects between low and high. Return NULL and set an exception if unsuccessful. Analogous to
list[low:high]. Indexing from the end of the list is not supported.

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Bir parcasi Kararli ABL Set the slice of list between low and high to the contents of itemlist. Analogous to
list[low:high] = itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice
deletion). Return 0 on success, -1 on failure. Indexing from the end of the list is not supported.

int PyList_Sort (PyObject *list)
Bir parcast Kararli ABIL. Sort the items of /ist in place. Return 0 on success, -1 on failure. This is equivalent
to list.sort ().

int PyList_Reverse (PyObject *list)
Bir parcast Kararli ABIL. Reverse the items of list in place. Return 0 on success, —1 on failure. This is the
equivalent of 1ist.reverse().

PyObject *PyList_AsTuple (PyObject *list)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL. Return a new tuple object containing the contents
of list; equivalent to tuple (1ist).

8.4 Container Objects

8.4.1 Dictionary Objects

type PyDictObject
This subtype of PyoObject represents a Python dictionary object.
PyTypeObject PyDict_Type
Bir parcasi Kararl1 ABIL This instance of PyTypeObject represents the Python dictionary type. This is the
same object as dict in the Python layer.
int PyDict_Check (PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type. This function always succeeds.
int PyDict_CheckExact (PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type. This function always succeeds.
PyObject *PyDict_New ()
Dondiirdiigii deger: Yeni referans. Bir parcast Kararlit ABL Return a new empty dictionary, or NULL on failure.
PyObject *PyDictProxy_New (PyObject *mapping)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Return a types.MappingProxyType object for
a mapping which enforces read-only behavior. This is normally used to create a view to prevent modification
of the dictionary for non-dynamic class types.
void PyDict_Clear (PyObject *p)
Bir parcasi Kararli ABI. Empty an existing dictionary of all key-value pairs.

8.4. Container Objects 153

The Python/C API, Yayim 3.12.9

int PyDict_Contains (PyObject *p, PyObject *key)
Bir parcast Kararli ABL. Determine if dictionary p contains key. If an item in p is matches key, return 1,
otherwise return 0. On error, return —1. This is equivalent to the Python expression key in p.

PyObject *PyDict_Copy (PyObject *p)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Return a new dictionary that contains the same
key-value pairs as p.

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
Bir parcasi Kararli ABL Insert val into the dictionary p with a key of key. key must be hashable; if it isn't,
TypeError will be raised. Return 0 on success or -1 on failure. This function does not steal a reference to
val.

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
Bir parcasi Kararli ABIL. This is the same as PyDict_SetItem(), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

int PyDict_DelItem (PyObject *p, PyObject *key)
Bir parcast Kararli ABI. Remove the entry in dictionary p with key key. key must be hashable; if it isn’t,
TypeError is raised. If key is not in the dictionary, KeyError is raised. Return 0 on success or —1 on failure.

int PyDict_DelItemString (PyObject *p, const char *key)
Bir parcasi Kararli ABI. This is the same as PyDict_DelItem(), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyoOb ject*.

PyObject *PyDict_GetItem (PyObject *p, PyObject *key)
Dindiirdiigii deger: Odiing alinmus referans. Bir parcast Kararli ABL. Return the object from dictionary p which
has a key key. Return NULL if the key key is not present, but without setting an exception.

O Not

Exceptions that occur while this calls __hash__ () and __eq__ () methods are silently ignored. Prefer
the PyDict_GetItemwithError () function instead.

3.10 stirtimiinde degisti: Calling this API without GIL held had been allowed for historical reason. It is no
longer allowed.

PyObject *PyDict_GetItemWithError (PyObject *p, PyObject *key)
Dondiirdiigii deger: Odiing alinms referans. Bir parcast Kararli ABIL. Variant of PyDict_GetItem () thatdoes
not suppress exceptions. Return NULL with an exception set if an exception occurred. Return NULL without
an exception set if the key wasn’t present.

PyObject *PyDict_GetItemString (PyObject *p, const char *key)

Dondiirdiigii deger: Odiing alinmug referans. Bir parcast Kararli ABL This is the same as PyDict_GetItem(),
but key is specified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.

O Not

Exceptions that occur while this calls __hash__ () and __eq__ () methods or while creating the tem-
porary str object are silently ignored. Prefer using the pPyDict GetItemwithError () function with
your own PyUnicode FromString () key instead.

PyObject *PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *defaultobj)
Déndiirdiigii deger: Odiing alinms referans. This is the same as the Python-level dict .setdefault (). If
present, it returns the value corresponding to key from the dictionary p. If the key is not in the dict, it is
inserted with value defaultobj and defaultobj is returned. This function evaluates the hash function of key only
once, instead of evaluating it independently for the lookup and the insertion.

Added in version 3.4.

154 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

PyObject *PyDict_Items (PyObject *p)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a Py1istObject containing all the items
from the dictionary.

PyObject *PyDict_Keys (PyObject *p)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a PyListObject containing all the keys
from the dictionary.

PyObject *PyDict_Values (PyObject *p)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Return a PyListObject containing all the values
from the dictionary p.

Py_ssize_t PyDict_Size (PyObject *p)
Bir parcas: Kararl1 ABL Return the number of items in the dictionary. This is equivalent to len (p) on a
dictionary.

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Bir parcasi Kararli ABL Iterate over all key-value pairs in the dictionary p. The Py _ssize_ t referred to by
ppos must be initialized to 0 prior to the first call to this function to start the iteration; the function returns true
for each pair in the dictionary, and false once all pairs have been reported. The parameters pkey and pvalue
should either point to PyObject* variables that will be filled in with each key and value, respectively, or may
be NULL. Any references returned through them are borrowed. ppos should not be altered during iteration. Its

value represents offsets within the internal dictionary structure, and since the structure is sparse, the offsets are
not consecutive.

For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
/* do something interesting with the values... */

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

r

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) {
return -1;
}
PyObject *o = PyLong_FromLong (i + 1);
if (o == NULL)
return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (0) ;
return -1;
}
Py_DECREF (o) ;

int PyDict_Merge (PyObject *a, PyObject *b, int override)
Bir parcast Kararli ABL Iterate over mapping object b adding key-value pairs to dictionary a. b may be a
dictionary, or any object supporting PyMapping Keys () and PyObject_GetItem (). If override is true,

8.4. Container Objects 155

The Python/C API, Yayim 3.12.9

existing pairs in a will be replaced if a matching key is found in b, otherwise pairs will only be added if there
is not a matching key in a. Return 0 on success or -1 if an exception was raised.

int PyDict_Update (PyObject *a, PyObject *b)
Bir parcasi Kararli ABI This is the same as PyDict_Merge (a, b, 1) inC,andissimilarto a.update (b)

in Python except that PyDict_Update () doesn’t fall back to the iterating over a sequence of key value pairs
if the second argument has no “keys” attribute. Return 0 on success or -1 if an exception was raised.

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)

Bir parcast Kararli1 ABI. Update or merge into dictionary a, from the key-value pairs in seq2. seq2 must be an
iterable object producing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the
last wins if override is true, else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent
Python (except for the return value):

def PyDict_MergeFromSeqg2 (a, seqg2, override):
for key, value in seqg2:
if override or key not in a:
alkey] = wvalue

int PyDict_AddWatcher (PyDict WatchCallback callback)

Register callback as a dictionary watcher. Return a non-negative integer id which must be passed to future calls
to PyDict_Watch (). In case of error (e.g. no more watcher IDs available), return -1 and set an exception.

Added in version 3.12.

int PyDict_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id previously returned from PyDict_Addwatcher (). Return 0 on suc-
cess, —1 on error (e.g. if the given watcher_id was never registered.)

Added in version 3.12.

int PyDict_Watch (int watcher_id, PyObject *dict)
Mark dictionary dict as watched. The callback granted watcher_id by PyDict_Addwatcher () will be called
when dict is modified or deallocated. Return 0 on success or —1 on error.
Added in version 3.12.

int PyDict_Unwatch (int watcher_id, PyObject *dict)

Mark dictionary dict as no longer watched. The callback granted watcher_id by PyDict_Addwatcher () will
no longer be called when dict is modified or deallocated. The dict must previously have been watched by this
watcher. Return 0 on success or —1 on error.

Added in version 3.12.

type PyDict_WatchEvent

Enumeration of possible dictionary watcher events: PyDict_ EVENT_ADDED, PyDict_ EVENT_MODIFIED,
PyDict_ EVENT_DELETED, PyDict_EVENT_CLONED, PyDict_ EVENT_CLEARED, or
PyDict_EVENT_DEALLOCATED.

Added in version 3.12.

typedef int (*PyDict_WatchCallback)(PyDict WatchEvent event, PyObject *dict, PyObject *key, PyObject
*new_value)

Type of a dict watcher callback function.

If event is PyDict_ EVENT_CLEARED Or PyDict_ EVENT_DEALLOCATED, both key and new_value will be
NULL. If event is PyDict_EVENT_ADDED or PyDict_EVENT_MODIFIED, new_value will be the new value
for key. If event is PyDict _EVENT_DELETED, key is being deleted from the dictionary and new_value will be
NULL.

PyDict_EVENT_CLONED occurs when dict was previously empty and another dict is merged into it. To ma-
intain efficiency of this operation, per-key PyDict_EVENT_ADDED events are not issued in this case; instead
asingle PyDict_EVENT_CLONED is issued, and key will be the source dictionary.

156 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

The callback may inspect but must not modify dict; doing so could have unpredictable effects, including infinite
recursion. Do not trigger Python code execution in the callback, as it could modify the dict as a side effect.

If event is PyDict_EVENT_DEALLOCATED, taking a new reference in the callback to the about-to-be-destroyed
dictionary will resurrect it and prevent it from being freed at this time. When the resurrected object is destroyed
later, any watcher callbacks active at that time will be called again.

Callbacks occur before the notified modification to dict takes place, so the prior state of dict can be inspected.

If the callback sets an exception, it must return —1; this exception will be printed as an unraisable exception
using PyErr WriteUnraisable (). Otherwise it should return 0.

There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.

Added in version 3.12.

8.4.2 Set Objects

This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using either the abstract object protocol (including PyObject CallMethod(),
PyObject_RichCompareBool (), PyObject_Hash(), PyObject_Repr(), PyObject_IsTrue(),
PyObject_Print (),and PyObject_GetIter ())or the abstract number protocol (including PyNumber And (),
PyNumber_Subtract (), PyNumber_Or (), PyNumber_Xor (), PyNumber_InPlaceAnd(),
PyNumber_InPlaceSubtract (), PyNumber_InPlaceOr (), and PyNumber_InPlaceXor ())

type PySetObject

This subtype of Pyobject is used to hold the internal data for both set and frozenset objects. It is like a
PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of
this structure should be considered public and all are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type

Bir parcast Kararli1 ABIL This is an instance of PyTypeOb ject representing the Python set type.
PyTypeObject PyFrozenSet_Type

Bir parcas: Kararl1 ABL This is an instance of PyTypeOb ject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.

int PySet_Check (PyObject *p)
Return true if p is a set object or an instance of a subtype. This function always succeeds.
int PyFrozenSet_Check (PyObject *p)
Return true if p is a frozenset object or an instance of a subtype. This function always succeeds.
int PyAnySet_Check (PyObject *p)
Returntrueif pis a set object, a frozenset object, or an instance of a subtype. This function always succeeds.
int PySet_CheckExact (PyObject *p)
Return true if p is a set object but not an instance of a subtype. This function always succeeds.
Added in version 3.10.
int PyAnySet_CheckExact (PyObject *p)

Return true if p is a set object or a frozenset object but not an instance of a subtype. This function always
succeeds.

int PyFrozenSet_CheckExact (PyObject *p)

Return true if p is a frozenset object but not an instance of a subtype. This function always succeeds.

8.4. Container Objects 157

The Python/C API, Yayim 3.12.9

PyObject *PySet_New (PyObject *iterable)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Return a new set containing objects returned by
the iterable. The iterable may be NULL to create a new empty set. Return the new set on success or NULL on
failure. Raise TypeError if iterable is not actually iterable. The constructor is also useful for copying a set
(c =set (s)).

PyObject *PyFrozenSet_New (PyObject *iterable)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Return a new frozenset containing objects retur-
ned by the iterable. The iterable may be NULL to create a new empty frozenset. Return the new set on success
or NULL on failure. Raise TypeError if iterable is not actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

Py_ssize_t PySet_Size (PyObject *anyset)
Bir parcast Kararli ABIL. Return the length of a set or frozenset object. Equivalent to len (anyset).
Raises a SystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
Macro form of pPySet_Size () without error checking.

int PySet_Contains (PyObject *anyset, PyObject *key)
Bir parcasi Kararli ABIL. Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Python
__contains__ () method, this function does not automatically convert unhashable sets into temporary fro-
zensets. Raise a TypeError if the key is unhashable. Raise SystemError if anysetisnota set, frozenset,
or an instance of a subtype.

int PySet_Add (PyObject *set, PyObject *key)
Bir parcasit Kararli ABI. Add key to a set instance. Also works with frozenset instances (like
PyTuple_SetItem() it can be used to fill in the values of brand new frozensets before they are exposed
to other code). Return 0 on success or -1 on failure. Raise a TypeError if the key is unhashable. Raise

a MemoryError if there is no room to grow. Raise a SystemError if sef is not an instance of set or its
subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its

subtypes.

int PySet_Discard (PyObject *set, PyObject *key)
Bir parcast Kararli ABI Return 1 if found and removed, 0 if not found (no action taken), and -1 if an error is
encountered. Does not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike
the Python discard () method, this function does not automatically convert unhashable sets into temporary
frozensets. Raise SystemError if sef is not an instance of set or its subtype.

PyObject *PySet_Pop (PyObject *set)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Return a new reference to an arbitrary object in the
set, and removes the object from the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a
SystemError if sef is not an instance of set or its subtype.

int PySet_Clear (PyObject *set)

Bir parcast Kararli ABL. Empty an existing set of all elements. Return 0 on success. Return -1 and raise
SystemError if sef is not an instance of set or its subtype.

8.5 Function Objects

8.5.1 Function Objects

There are a few functions specific to Python functions.

type PyFunctionObject
The C structure used for functions.

158 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

PyTypeObject PyFunction_Type
This is an instance of Py TypeObject and represents the Python function type. It is exposed to Python prog-
rammers as types.FunctionType.

int PyFunction_Check (PyObject *0)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL. This
function always succeeds.

PyObject *PyFunction_New (PyObject *code, PyObject *globals)
Dondiirdiigii deger: Yeni referans. Return a new function object associated with the code object code. globals
must be a dictionary with the global variables accessible to the function.

The function’s docstring and name are retrieved from the code object. __module__is retrieved from globals.
The argument defaults, annotations and closure are set to NULL. __qualname__ is set to the same value as
the code object’s co_qualname field.

PyObject *PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)

Dondiirdiigii deger: Yeni referans. As PyFunction_New (), but also allows setting the function object’s
__gualname___ attribute. qualname should be a unicode object or NULL; if NULL, the __qualname___ attri-
bute is set to the same value as the code object’s co_qualname field.

Added in version 3.3.
PyObject *PyFunction_GetCode (PyObject *op)
Dindiirdiigii deger: Odiing alinmus referans. Return the code object associated with the function object op.
PyObject *PyFunction_GetGlobals (PyObject *op)
Dindiirdiigii deger: Odiing alinmus referans. Return the globals dictionary associated with the function object
op.
PyObject *PyFunction_GetModule (PyObject *op)

Dondiirdiigii deger: Odiing alinms referans. Return a borrowed reference to the __module__ attribute of the
function object op. It can be NULL.

This is normally a st ring containing the module name, but can be set to any other object by Python code.

PyObject *PyFunction_GetDefaults (PyObject *op)

Dondiirdiigii deger: Odiing alinnusg referans. Return the argument default values of the function object op. This
can be a tuple of arguments or NULL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)

Set the argument default values for the function object op. defaults must be Py_None or a tuple.
Raises SystemError and returns —1 on failure.
void PyFunction_SetVectorcall (PyFunctionObject *func, vectorcallfunc vectorcall)
Set the vectorcall field of a given function object func.
Warning: extensions using this API must preserve the behavior of the unaltered (default) vectorcall function!
Added in version 3.12.
PyObject *PyFunction_GetClosure (PyObject *op)

Dondiirdiigii deger: Odiing alinmus referans. Return the closure associated with the function object op. This can
be NULL or a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.

Raises SystemError and returns -1 on failure.

PyObject *PyFunction_GetAnnotations (PyObject *op)

Dondiirdiigii deger: Odiing alinmus referans. Return the annotations of the function object op. This can be a
mutable dictionary or NULL.

8.5. Function Objects 159

The Python/C API, Yayim 3.12.9

int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)

Set the annotations for the function object op. annotations must be a dictionary or Py_None.

Raises SystemError and returns -1 on failure.

int PyFunction_AddWatcher (PyFunction_WatchCallback callback)

Register callback as a function watcher for the current interpreter. Return an ID which may be passed to
PyFunction_ClearWatcher (). In case of error (e.g. no more watcher IDs available), return -1 and set an
exception.

Added in version 3.12.

int PyFunction_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id previously returned from pPyFunction_Addwatcher () for the cur-
rent interpreter. Return 0 on success, or -1 and set an exception on error (e.g. if the given watcher_id was
never registered.)

Added in version 3.12.

type PyFunction_WatchEvent

Enumeration of possible function watcher events:
e PyFunction_EVENT_CREATE
e PyFunction_EVENT_DESTROY
e PyFunction EVENT_MODIFY_CODE
e PyFunction EVENT_MODIFY DEFAULTS
e PyFunction EVENT_MODIFY_KWDEFAULTS

Added in version 3.12.

typedef int (*PyFunction_WatchCallback)(PyFunction_WatchEvent event, PyFunctionObject *func, PyObject
*new_value)

Type of a function watcher callback function.

If event is PyFunction_EVENT_CREATE or PyFunction_EVENT_DESTROY then new_value will be NULL.
Otherwise, new_value will hold a borrowed reference to the new value that is about to be stored in func for the
attribute that is being modified.

The callback may inspect but must not modify func; doing so could have unpredictable effects, including
infinite recursion.

If event is PyFunction EVENT_CREATE, then the callback is invoked after func has been fully initialized.
Otherwise, the callback is invoked before the modification to func takes place, so the prior state of func can be
inspected. The runtime is permitted to optimize away the creation of function objects when possible. In such
cases no event will be emitted. Although this creates the possibility of an observable difference of runtime
behavior depending on optimization decisions, it does not change the semantics of the Python code being
executed.

If event is PyFunction EVENT_DESTROY, Taking a reference in the callback to the about-to-be-destroyed
function will resurrect it, preventing it from being freed at this time. When the resurrected object is destroyed
later, any watcher callbacks active at that time will be called again.

If the callback sets an exception, it must return -1; this exception will be printed as an unraisable exception
using PyErr WriteUnraisable (). Otherwise it should return 0.

There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.

Added in version 3.12.

160

Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

8.5.2 Instance Method Objects

An instance method is a wrapper for a PyCFunct ion and the new way to bind a PyCFunction to a class object. It
replaces the former call PyMethod_New (func, NULL, class).
PyTypeObject PyInstanceMethod_Type
This instance of PyTypeObject represents the Python instance method type. It is not exposed to Python
programs.
int PyInstanceMethod_Check (PyObject *0)
Return true if o is an instance method object (has type Py TnstanceMet hod_Type). The parameter must not
be NULL. This function always succeeds.
PyObject *PyInstanceMethod_New (PyObject *func)
Dondiirdiigii deger: Yeni referans. Return a new instance method object, with func being any callable object.
func is the function that will be called when the instance method is called.
PyObject *PyInstanceMethod_Function (PyObject *im)
Dondiirdiigii deger: Odiinc alinmis referans. Return the function object associated with the instance method im.

PyObject *PyInstanceMethod_GET_FUNCTION (PyObject *im)
Dindiirdiigii deger: Odiing alinms referans. Macro version of Py TnstanceMet hod_Function () which avo-
ids error checking.

8.5.3 Method Objects

Methods are bound function objects. Methods are always bound to an instance of a user-defined class. Unbound
methods (methods bound to a class object) are no longer available.
PyTypeObject PyMethod_Type
This instance of PyTypeObject represents the Python method type. This is exposed to Python programs as
types.MethodType.
int PyMethod_Check (PyObject *0)
Return true if o is a method object (has type PyMethod Type). The parameter must not be NULL. This
function always succeeds.
PyObject *PyMethod_New (PyObject *func, PyObject *self)
Dondiirdiigii deger: Yeni referans. Return a new method object, with func being any callable object and self the
instance the method should be bound. func is the function that will be called when the method is called. self
must not be NULL.
PyObject *PyMethod_Function (PyObject *meth)
Dondiirdiigii deger: Odiing alinmus referans. Return the function object associated with the method meth.
PyObject *PyMethod_GET_FUNCTION (PyObject *meth)
Dindiirdiigii deger: Odiing alinmug referans. Macro version of PyMethod_Function () which avoids error
checking.
PyObject *PyMethod_Self (PyObject *meth)
Dondiirdiigii deger: Odiing alinmis referans. Return the instance associated with the method meth.
PyObject *PyMethod_GET_SELF (PyObject *meth)

Dondiirdiigii deger: Odiing alinmug referans. Macro version of PyMethod_Self () which avoids error chec-
king.

8.5.4 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the
cells from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used
instead of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code;
these are not automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.

8.5. Function Objects 161

The Python/C API, Yayim 3.12.9

type PyCellObject
The C structure used for cell objects.
PyTypeObject PyCell_Type
The type object corresponding to cell objects.
int PyCell_Check (PyObject *ob)
Return true if ob is a cell object; ob must not be NULL. This function always succeeds.
PyObject *PyCell_New (PyObject *ob)
Dondiirdiigii deger: Yeni referans. Create and return a new cell object containing the value ob. The parameter
may be NULL.
PyObject *PyCell_Get (PyObject *cell)

Dondiirdiigii deger: Yeni referans. Return the contents of the cell cell, which can be NULL. If cell is not a cell
object, returns NULL with an exception set.

PyObject *PyCell_GET (PyObject *cell)

Dondiirdiigii deger: Odiing alinmus referans. Return the contents of the cell cell, but without checking that cell
is non-NULL and a cell object.

int PyCell_Set (PyObject *cell, PyObject *value)

Set the contents of the cell object cell to value. This releases the reference to any current content of the cell.
value may be NULL. cell must be non-NULL.

On success, return 0. If cell is not a cell object, set an exception and return —1.
void PyCell_SET (PyObject *cell, PyObject *value)

Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for
safety; cell must be non-NULL and must be a cell object.

8.5.5 Code Objects

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable code
that hasn’t yet been bound into a function.
type PyCodeObject
The C structure of the objects used to describe code objects. The fields of this type are subject to change at
any time.
PyTypeObject PyCode_Type
This is an instance of Py TypeObject representing the Python code object.
int PyCode_Check (PyObject *co)
Return true if co is a code object. This function always succeeds.
Py_ssize_t PyCode_GetNumFree (PyCodeObject *co)
Return the number of free variables in a code object.
int PyCode_GetFirstFree (PyCodeObject *co)
Return the position of the first free variable in a code object.
PyCodeObject *PyUnstable_Code_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject *names, PyObject
*varnames, PyObject *freevars, PyObject *cellvars, PyObject *filename,

PyObject *name, PyObject *qualname, int firstlineno, PyObject
*linetable, PyObject *exceptiontable)

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyari olmadan degisebilir.

162 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

Return a new code object. If you need a dummy code object to create a frame, use PyCode_NewEmpty ()
instead.

Since the definition of the bytecode changes often, calling PyUnstable_Code_New () directly can bind you
to a precise Python version.

The many arguments of this function are inter-dependent in complex ways, meaning that subtle changes to
values are likely to result in incorrect execution or VM crashes. Use this function only with extreme care.

3.11 siiriimiinde degisti: Added qualname and exceptiontable parameters.

3.12 stirtimiinde degisti: Renamed from PyCode_New as part of Unstable C API. The old name is deprecated,
but will remain available until the signature changes again.

PyCodeObject *PyUnstable_Code_NewWithPosOnlyArgs (int argcount, int posonlyargcount, int
kwonlyargcount, int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject
*names, PyObject *varnames, PyObject *freevars,
PyObject *cellvars, PyObject *filename, PyObject
*name, PyObject *qualname, int firstlineno,
PyObject *linetable, PyObject *exceptiontable)

e

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyari olmadan degisebilir.

Similar to PyUnstable Code_New (), but with an extra “posonlyargcount” for positional-only arguments.
The same caveats that apply to PyUnstable_Code_New also apply to this function.

Added in version 3.8: as PyCode_NewWithPosOnlyArgs
3.11 siiriimiinde degisti: Added qualname and exceptiontable parameters.

3.12 siiriimiinde degisti: Renamed to PyUnstable_Code_NewWithPosOnlyArgs. The old name is depre-
cated, but will remain available until the signature changes again.

PyCodeObject *PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)

Dondiirdiigii deger: Yeni referans. Return a new empty code object with the specified filename, function name,
and first line number. The resulting code object will raise an Exception if executed.

int PyCode_Addr2Line (PyCodeObject *co, int byte_offset)

Return the line number of the instruction that occurs on or before byte_of fset and ends after it. If you just
need the line number of a frame, use PyFrame_GetLineNumber () instead.

For efficiently iterating over the line numbers in a code object, use the API described in PEP 626.

int PyCode_Addr2Location (PyObject *co, int byte_offset, int *start_line, int *start_column, int *end_line, int
*end_column)

Sets the passed int pointers to the source code line and column numbers for the instruction at byte_offset.
Sets the value to 0 when information is not available for any particular element.

Returns 1 if the function succeeds and O otherwise.
Added in version 3.11.
PyObject *PyCode_GetCode (PyCodeObject *co)

Equivalent to the Python code getattr (co, 'co_code').Returnsastrongreferencetoa PyBytesObject
representing the bytecode in a code object. On error, NULL is returned and an exception is raised.

This PyBytesObject may be created on-demand by the interpreter and does not necessarily represent the
bytecode actually executed by CPython. The primary use case for this function is debuggers and profilers.

Added in version 3.11.

8.5. Function Objects 163

https://peps.python.org/pep-0626/#out-of-process-debuggers-and-profilers

The Python/C API, Yayim 3.12.9

PyObject *PyCode_GetVarnames (PyCodeObject *co)

Equivalent to the Python code getattr(co, 'co_varnames'). Returns a new reference to a
PyTupleObject containing the names of the local variables. On error, NULL is returned and an exception is
raised.

Added in version 3.11.

PyObject *PyCode_GetCellvars (PyCodeObject *co)

Equivalent to the Python code getattr(co, 'co_cellvars'). Returns a new reference to a
PyTupleObject containing the names of the local variables that are referenced by nested functions. On
error, NULL is returned and an exception is raised.

Added in version 3.11.

PyObject *PyCode_GetFreevars (PyCodeObject *co)

Equivalent to the Python code getattr(co, 'co_freevars'). Returns a new reference to a
PyTupleObject containing the names of the free variables. On error, NULL is returned and an exception
is raised.

Added in version 3.11.

int PyCode_AddWatcher (PyCode_WatchCallback callback)

Register callback as a code object watcher for the current interpreter. Return an ID which may be passed
to PyCode_ClearWatcher (). In case of error (e.g. no more watcher IDs available), return -1 and set an
exception.

Added in version 3.12.

int PyCode_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id previously returned from PyCode_Addwatcher () for the current
interpreter. Return 0 on success, or —1 and set an exception on error (e.g. if the given watcher_id was never
registered.)

Added in version 3.12.

type PyCodeEvent
Enumeration of possible code object watcher events: - PY_CODE_EVENT_CREATE -
PY_CODE_EVENT_DESTROY
Added in version 3.12.

typedef int (*PyCode_WatchCallback)(PyCodeEvent event, PyCodeObject *co)

Type of a code object watcher callback function.

If event is PY_CODE_EVENT_CREATE, then the callback is invoked after co has been fully initialized. Other-
wise, the callback is invoked before the destruction of co takes place, so the prior state of co can be inspected.

If event is PY_CODE_EVENT_DESTROY, taking a reference in the callback to the about-to-be-destroyed code
object will resurrect it and prevent it from being freed at this time. When the resurrected object is destroyed
later, any watcher callbacks active at that time will be called again.

Users of this API should not rely on internal runtime implementation details. Such details may include, but are
not limited to, the exact order and timing of creation and destruction of code objects. While changes in these
details may result in differences observable by watchers (including whether a callback is invoked or not), it
does not change the semantics of the Python code being executed.

If the callback sets an exception, it must return —1; this exception will be printed as an unraisable exception
using PyErr_WriteUnraisable (). Otherwise it should return 0.

There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.

Added in version 3.12.

164 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

8.5.6 Extra information

To support low-level extensions to frame evaluation, such as external just-in-time compilers, it is possible to attach
arbitrary extra data to code objects.

These functions are part of the unstable C API tier: this functionality is a CPython implementation detail, and the
API may change without deprecation warnings.

Py_ssize_t PyUnstable_Eval_RequestCodeExtraIndex (freefunc free)

e

Bu Kararsiz API. Bu, kiigiik (minor) stirimlerde uyari olmadan degisebilir.

Return a new an opaque index value used to adding data to code objects.

You generally call this function once (per interpreter) and use the result with PyCode_GetExtra and
PyCode_SetExtra to manipulate data on individual code objects.

If free is not NULL: when a code object is deallocated, free will be called on non-NULL data stored under the
new index. Use Py_DecRef () when storing PyObject.

Added in version 3.6: as _PyEval_RequestCodeExtralndex

3.12 stiriimiinde degisti: Renamed to PyUnstable Eval RequestCodeExtralIndex. The old private name
is deprecated, but will be available until the API changes.

int PyUnstable_Code_GetExtra (PyObject *code, Py_ssize_t index, void **extra)

Bu Kararsiz API. Bu, kiigiik (minor) siirimlerde uyari olmadan degigebilir.

Set extra to the extra data stored under the given index. Return O on success. Set an exception and return -1 on
failure.

If no data was set under the index, set extra to NULL and return O without setting an exception.
Added in version 3.6: as _PyCode_GetExtra

3.12 stiriimiinde degisti: Renamed to PyUnstable_Code_GetExtra. The old private name is deprecated,
but will be available until the API changes.

int PyUnstable_Code_SetExtra (PyObject *code, Py_ssize_t index, void *extra)

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyar1 olmadan degisebilir.

Set the extra data stored under the given index to extra. Return 0 on success. Set an exception and return -1 on
failure.

Added in version 3.6: as _PyCode_SetExtra

3.12 stiriimiinde degisti: Renamed to PyUnstable_Code_SetExtra. The old private name is deprecated,
but will be available until the API changes.

8.5. Function Objects 165

The Python/C API, Yayim 3.12.9

8.6 Other Objects
8.6.1 File Objects

These APIs are a minimal emulation of the Python 2 C API for built-in file objects, which used to rely on the
buffered I/O (FILE*) support from the C standard library. In Python 3, files and streams use the new io module,
which defines several layers over the low-level unbuffered I/O of the operating system. The functions described below
are convenience C wrappers over these new APIs, and meant mostly for internal error reporting in the interpreter;
third-party code is advised to access the io APIs instead.

PyObject *PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char *encoding, const

char *errors, const char *newline, int closefd)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararlt ABL. Create a Python file object from the file descriptor of
an already opened file fd. The arguments name, encoding, errors and newline can be NULL to use the defaults;
buffering can be -1 to use the default. name is ignored and kept for backward compatibility. Return NULL
on failure. For a more comprehensive description of the arguments, please refer to the io.open () function
documentation.

A Uyan

Since Python streams have their own buffering layer, mixing them with OS-level file descriptors can pro-
duce various issues (such as unexpected ordering of data).

3.2 stirtimiinde degisti: Ignore name attribute.

int PyObject_AsFileDescriptor (PyObject *p)

Bir pargasi Kararli ABIL Return the file descriptor associated with p as an int. If the object is an integer, its
value is returned. If not, the object’s £ileno () method is called if it exists; the method must return an integer,
which is returned as the file descriptor value. Sets an exception and returns —1 on failure.

PyObject *PyFile_GetLine (PyObject *p, int n)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Equivalent to p.readline ([n]), this function
reads one line from the object p. p may be a file object or any object with a readline () method. If n is 0,
exactly one line is read, regardless of the length of the line. If » is greater than 0, no more than n bytes will be
read from the file; a partial line can be returned. In both cases, an empty string is returned if the end of the
file is reached immediately. If 7 is less than 0, however, one line is read regardless of length, but EOFError
is raised if the end of the file is reached immediately.

int PyFile_SetOpenCodeHook (Py_OpenCodeHookFunction handler)

Overrides the normal behavior of io.open_code () to pass its parameter through the provided handler.
The handler is a function of type:

typedef PyObject *(*Py_OpenCodeHookFunction)(PyObject*, void*)

Equivalent of PyObject *(*) (PyObject *path, void *userData), where path is guaranteed
to be PyUnicodeObject.

The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.

As this hook is intentionally used during import, avoid importing new modules during its execution unless they
are known to be frozen or available in sys.modules.

Once a hook has been set, it cannot be removed or replaced, and later calls to PyFile SetOpenCodeHook ()
will fail. On failure, the function returns -1 and sets an exception if the interpreter has been initialized.

This function is safe to call before Py_Initialize().
Raises an auditing event setopencodehook with no arguments.

Added in version 3.8.

166

Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)
Bir parcasi Kararli ABI. Write object obj to file object p. The only supported flag for flagsis Py_PRINT RAI;

if given, the str () of the object is written instead of the repr (). Return 0 on success or —1 on failure; the
appropriate exception will be set.

int PyFile_WriteString (const char *s, PyObject *p)

Bir parcasi Kararli ABIL. Write string s to file object p. Return 0 on success or —1 on failure; the appropriate
exception will be set.

8.6.2 Module Objects

PyTypeObject PyModule_Type

Bir parcast Kararli ABL This instance of Py Type0Object represents the Python module type. This is exposed
to Python programs as types.ModuleType.

int PyModule_Check (PyObject *p)

Return true if p is a module object, or a subtype of a module object. This function always succeeds.
int PyModule_CheckExact (PyObject *p)

Return true if p is a module object, but not a subtype of PyModule_Type. This function always succeeds.
PyObject *PyModule_NewObject (PyObject *name)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararlt ABI 3.7 siiriimiinden beri. Return a new module object

withmodule._ _name__ setto name. The module’s __name_ ,_ doc_ ,_ package_ _and _ loader_
attributes are filled in (all but __name__ are set to None). The caller is responsible for settinga _ file
attribute.

Return NULL with an exception set on error.
Added in version 3.3.
3.4 siirimiinde degisti: _ package__and _ loader__ are now set to None.

PyObject *PyModule_New (const char *name)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Similar to PyModule NewObject (), but the name
is a UTF-8 encoded string instead of a Unicode object.

PyObject *PyModule_GetDict (PyObject *module)

Dindiirdiigii deger: Odiing alinmg referans. Bir pargast Kararli ABL. Return the dictionary object that imple-
ments module’s namespace; this object is the same as the __dict__ attribute of the module object. If module
is not a module object (or a subtype of a module object), SystemError is raised and NULL is returned.

It is recommended extensions use other PyModule_* and PyObject_* functions rather than directly mani-
pulate a module’s __dict__.

PyObject *PyModule_GetNameObject (PyObject *module)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return module’s __name___
value. If the module does not provide one, or if it is not a string, SystemError is raised and NULL is returned.

Added in version 3.3.

const char *PyModule_GetName (PyObject *module)

Bir pargasi Kararli ABI. Similar to PyModule GetNameObject () butreturn the name encoded to 'ut£-8".

void *PyModule_GetState (PyObject *module)

Bir parcast Kararli ABIL Return the “state” of the module, that is, a pointer to the block of memory allocated
at module creation time, or NULL. See PyModuleDef.m_size.

PyModuleDef *PyModule_GetDef£ (PyObject *module)

Bir parcast Kararli1 ABI. Return a pointer to the PyModuleDe £ struct from which the module was created, or
NULL if the module wasn’t created from a definition.

8.6. Other Objects 167

The Python/C API, Yayim 3.12.9

PyObject *PyModule_GetFilenameObject (PyObject *module)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararlit ABIL Return the name of the file from which module was
loaded using module’s __file__ attribute. If this is not defined, or if it is not a string, raise SystemError
and return NULL; otherwise return a reference to a Unicode object.

Added in version 3.2.

const char *PyModule_GetFilename (PyObject *module)
Bir parcast Kararli ABI. Similar to PyModule GetFilenameObject () but return the filename encoded to
‘utf-8’.

3.2 stirimiinden beri kullanim dig1: PyModule GetFilename () raises UnicodeEncodeError on unenco-
dable filenames, use PyModule GetFilenameObject () instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization functi-
on), or compiled-in modules (where the initialization function is added using Py Import_AppendInittab ()). See
building or extending-with-embedding for details.

The initialization function can either pass a module definition instance to PyModule Create (), and return the
resulting module object, or request “multi-phase initialization” by returning the definition struct itself.

type PyModuleDef

Bir parcasi Kararli ABI (tiim iiyeler dahil). The module definition struct, which holds all information needed
to create a module object. There is usually only one statically initialized variable of this type for each module.

PyModuleDef Base m_base
Always initialize this member to PyModuleDef HEAD_INIT.

const char *m_name

Name for the new module.
const char *m_doc

Docstring for the module; usually a docstring variable created with PyDoc_STRVAR is used.
Py_ssize_t m_size

Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState (), rather than in static globals. This makes modules safe for use in mul-
tiple sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m _free function has been called, if present.

Setting m_size to -1 means that the module does not support sub-interpreters, because it has global
state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m_s1i ze is required for multi-phase initialization.

See PEP 3121 for more details.

PyMethodDef *m_methods

A pointer to a table of module-level functions, described by PyMet hodDe £ values. Can be NULL if no
functions are present.

PyModuleDef _Slot *m_slots

An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When using
single-phase initialization, m_slots must be NULL.

3.5 siirtimiinde degisti: Prior to version 3.5, this member was always set to NULL, and was defined as:

inquiry m_reload

168 Boéliim 8. Concrete Objects Layer

https://peps.python.org/pep-3121/

The Python/C API, Yayim 3.12.9

fraverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).

More precisely, this function is not called if m_size is greater than O and the module state (as returned
by PyModule GetState ())is NULL.

3.9 siirtimiinde degisti: No longer called before the module state is allocated.
inquiry m_clear
A clear function to call during GC clearing of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).
More precisely, this function is not called if m_size is greater than O and the module state (as returned
by PyModule GetState ())is NULL.

Like PyTypeObject. tp_clear, this function is not always called before a module is deallocated. For
example, when reference counting is enough to determine that an object is no longer used, the cyclic
garbage collector is not involved and m_ free is called directly.

3.9 siirtimiinde degisti: No longer called before the module state is allocated.
Jfreefunc m_£free
A function to call during deallocation of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).
More precisely, this function is not called if m_size is greater than O and the module state (as returned
by PyModule GetState ())is NULL.

3.9 siirtimiinde degisti: No longer called before the module state is allocated.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as “single-
phase initialization”, and uses one of the following two module creation functions:

PyObject *PyModule_Create (PyModuleDef *def)
Dondiirdiigii deger: Yeni referans. Create a new module object, given the definition in def. This behaves like
PyModule_Create?2 () with module_api_version set to PYTHON_API_VERSION.

PyObject *PyModule_Create2 (PyModuleDef *def, int module_api_version)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Create a new module object, given the definition in
def, assuming the API version module_api_version. If that version does not match the version of the running
interpreter, a Runt imeWarning is emitted.

Return NULL with an exception set on error.

O Not

Most uses of this function should be using PyModule Create () instead; only use this if you are sure you
need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using
functions like PyModule AddObjectRef ().

8.6. Other Objects 169

The Python/C API, Yayim 3.12.9

Multi-phase initialization

An alternate way to specify extensions is to request “multi-phase initialization”. Extension modules created this way
behave more like Python modules: the initialization is split between the creation phase, when the module object is
created, and the execution phase, when it is populated. The distinction is similar tothe __new__ () and __init__ ()
methods of classes.

Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry
is removed and the module is re-imported, a new module object is created, and the old module is subject to normal
garbage collection - as with Python modules. By default, multiple modules created from the same definition should
be independent: changes to one should not affect the others. This means that all state should be specific to the module
object (using e.g. using PyModule_GetState ()), or its contents (such as the module’s __dict__ or individual
classes created with Py Type FromSpec ()).

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple
modules are independent is typically enough to achieve this.

To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDef ins-
tance with non-empty m_sIots. Before it is returned, the PyModuleDef instance must be initialized with the fol-
lowing function:

PyObject *PyModuleDef_Init (PyModuleDef *def)

Dindiirdiigii deger: Odiing alinms referans. Bir parcast Kararh ABI 3.5 siiriimiinden beri. Ensures a module
definition is a properly initialized Python object that correctly reports its type and reference count.

Returns def cast to PyObject*, or NULL if an error occurred.
Added in version 3.5.
The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:
type PyModuleDef_Slot
int slot
A slot ID, chosen from the available values explained below.

void *value

Value of the slot, whose meaning depends on the slot ID.
Added in version 3.5.
The m_slots array must be terminated by a slot with id 0.
The available slot types are:

Py_mod_create
Specifies a function that is called to create the module object itself. The value pointer of this slot must point
to a function of the signature:

PyObject *create_module (PyObject *spec, PyModuleDef *def)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should
return a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using
pyModule_New (). The name is taken from spec, not the definition, to allow extension modules to dynami-
cally adjust to their place in the module hierarchy and be imported under different names through symlinks,
all while sharing a single module definition.

There is no requirement for the returned object to be an instance of PyModule Type. Any type can be used,
as long as it supports setting and getting import-related attributes. However, only PyModule_Type instances

170 Boéliim 8. Concrete Objects Layer

https://peps.python.org/pep-0451/

The Python/C API, Yayim 3.12.9

may be returned if the PyModuleDef has non-NULL m_traverse,m_clear, m_free;nNONn-zerom_size;or
slots other than Py_mod_create.

Py_mod_exec

Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python
module: typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module (PyObject *module)

If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

Py_mod_multiple_interpreters
Specifies one of the following values:
Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED

The module does not support being imported in subinterpreters.

Py_MOD_MULTIPLE_INTERPRETERS_SUPPORTED

The module supports being imported in subinterpreters, but only when they share the main interpreter’s
GIL. (See isolating-extensions-howto.)

Py_MOD_PER_INTERPRETER_GII, SUPPORTED

The module supports being imported in subinterpreters, even when they have their own GIL. (See
isolating-extensions-howto.)

This slot determines whether or not importing this module in a subinterpreter will fail.
Multiple Py_mod_multiple_interpreters slots may not be specified in one module definition.

If Py mod_multiple interpreters 1is not specified, the import machinery defaults to
Py_MOD_MULTIPLE_INTERPRETERS_SUPPORTED.

Added in version 3.12.

See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used di-
rectly, for example when creating module objects dynamically. Note that both PyModule_ FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.

PyObject *PyModule_FromDefAndSpec (PyModuleDef *def, PyObject *spec)

Dondiirdiigii deger: Yeni referans. Create a new module object, given the definition in def and the
ModuleSpec spec. This behaves like PyModule FromDefAndSpec2 () with module_api_version set to
PYTHON_API_VERSION.

Added in version 3.5.

PyObject *PyModule_FromDefAndSpec2 (PyModuleDef *def, PyObject *spec, int module_api_version)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Create a new module object,
given the definition in def and the ModuleSpec spec, assuming the API version module_api_version. If that
version does not match the version of the running interpreter, a Runt imeWarning is emitted.

Return NULL with an exception set on error.

O Not

Most uses of this function should be using PyModule FromDefAndSpec () instead; only use this if you
are sure you need it.

Added in version 3.5.

8.6. Other Objects 171

https://peps.python.org/pep-0489/

The Python/C API, Yayim 3.12.9

int PyModule_ExecDef (PyObject *module, PyModuleDef *def)

Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Process any execution slots (Py_mod_exec) given in def.

Added in version 3.5.

int PyModule_SetDocString (PyObject *module, const char *docstring)

Bir parcast Kararli ABI 3.7 siiriimiinden beri. Set the docstring for module to docstring. This function
is called automatically when creating a module from PyModuleDef, using either PyModule_Create or
PyModule_FromDefAndSpec

Added in version 3.5.

int PyModule_AddFunctions (PyObject *module, PyMethodDef *functions)

Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Add the functions from the NULL terminated functions array to
module. Refer to the PyMet hodDe £ documentation for details on individual entries (due to the lack of a shared
module namespace, module level “functions” implemented in C typically receive the module as their first para-
meter, making them similar to instance methods on Python classes). This function is called automatically when
creating a module from PyModuleDef£, using either PyModule_ Create or PyModule_ FromDefAndSpec.

Added in version 3.5.

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution

slot (if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObjectRef (PyObject *module, const char *name, PyObject *value)

Bir pargast Kararli ABI 3.10 siiriimiinden beri. Add an object to module as name. This is a convenience function
which can be used from the module’s initialization function.

On success, return 0. On error, raise an exception and return -1.

Example usage:

static int
add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong (value);
if (obj == NULL) {
return -1;
}
int res = PyModule_AddObjectRef (module, "spam", obj);
Py_DECREF (obj) ;
return res;

To be convenient, the function accepts NULL value with an exception set. In this case, return -1 and just leave
the raised exception unchanged.

The example can also be written without checking explicitly if obj is NULL:

L

static int
add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong (value);
int res = PyModule_AddObjectRef (module, "spam", obj);
Py_XDECREF (obj) ;
return res;

}

Note that Py_XDECREF () should be used instead of Py_DECREF () in this case, since obj can be NULL.

172

Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

The number of different name strings passed to this function should be kept small, usually by
only using statically allocated strings as name. For names that aren’t known at compile time, pre-
fer calling PyUnicode FromString() and PyObject_SetAttr () directly. For more details, see
PyUnicode_InternFromString (), which may be used internally to create a key object.

Added in version 3.10.

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)

Bir parcast Kararli ABL Similar to PyModule AddObjectRef (), but steals a reference to value on success
(if it returns 0).

The new PyModule AddobjectRef () function is recommended, since it is easy to introduce reference leaks
by misusing the PyModule Addobject () function.

p
O Not

Unlike other functions that steal references, PyModule_ AddObject () only releases the reference to value
on success.

This means that its return value must be checked, and calling code must Py_DECREF () value manually on
error.

Example usage:

static int
add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong (value);
if (obj == NULL) {
return -1;
}
if (PyModule_AddObject (module, "spam", obj) < 0) {
Py_DECREF (obj) ;
return -1;
}
// PyModule_ AddObject () stole a reference to obj:
// Py_DECREF (obj) 1is not needed here
return 0;

}

. J

The example can also be written without checking explicitly if obj is NULL:

p
static int

add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong(value);
if (PyModule_AddObject (module, "spam", obj) < 0) {
Py_XDECREF (obj) ;
return -1;
}
// PyModule_ AddObject () stole a reference to obj:
// Py_DECREF (obj) 1is not needed here
return 0O;

}

. J

Note that Py_xDECREF () should be used instead of Py_DECREF () in this case, since obj can be NULL.

int PyModule_AddIntConstant (PyObject ¥module, const char *name, long value)

Bir pargasi Kararli ABL. Add an integer constant to module as name. This convenience function can be used
from the module’s initialization function. Return -1 with an exception set on error, 0 on success.

8.6. Other Objects 173

The Python/C API, Yayim 3.12.9

This is a convenience function that calls PyL.ong FromLong () and PyModule AddObjectRef ();see their
documentation for details.
int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)

Bir parcasi Kararli ABI. Add a string constant to module as name. This convenience function can be used from
the module’s initialization function. The string value must be NULL-terminated. Return -1 with an exception
set on error, 0 on Success.

This is a convenience function that «calls PyUnicode_InternFromString/() and
PyModule_ AddObjectRef (); see their documentation for details.

PyModule_AddIntMacro (module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of AF_INET
to module. Return —1 with an exception set on error, 0 on success.

PyModule_AddStringMacro (module, macro)
Add a string constant to module.

int PyModule_AddType (PyObject *module, PyTypeObject *type)
Bir parcast Kararli ABI 3.10 siiriimiinden beri. Add a type object to module. The type object is finalized

by calling internally Py Type Ready (). The name of the type object is taken from the last component of
tp_name after dot. Return —1 with an exception set on error, 0 on success.

Added in version 3.9.

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter.
This allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can
be created from a single definition.
PyObject *PyState_FindModule (PyModuleDef *def)

Dindiirdiigii deger: Odiing alimmus referans. Bir parcast Kararli ABI. Returns the module object that was created
from def for the current interpreter. This method requires that the module object has been attached to the
interpreter state with PyState AddModule () beforehand. In case the corresponding module object is not
found or has not been attached to the interpreter state yet, it returns NULL.

int PyState_AddModule (PyObject *module, PyModuleDef *def)

Bir parcast Kararlt ABI 3.3 siiriimiinden beri. Attaches the module object passed to the function to the interp-
reter state. This allows the module object to be accessible via PyState_FindModule ().

Only effective on modules created using single-phase initialization.

Python calls PyState_ AddModule automatically after importing a module, so it is unnecessary (but harm-
less) to call it from module initialization code. An explicit call is needed only if the module’s own init code
subsequently calls PyState_FindModule. The function is mainly intended for implementing alternative im-
port mechanisms (either by calling it directly, or by referring to its implementation for details of the required
state updates).

The caller must hold the GIL.
Return -1 with an exception set on error, 0 on success.
Added in version 3.3.

int PyState_RemoveModule (PyModuleDef *def)

Bir parcasi Kararl ABI 3.3 siiriimiinden beri. Removes the module object created from def from the interpreter
state. Return -1 with an exception set on error, 0 on success.

The caller must hold the GIL.
Added in version 3.3.

174 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

8.6.3 lterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__ () method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.
PyTypeObject PySeqIter_Type
Bir parcasi Kararli ABI. Type object for iterator objects returned by Py SegIter New () and the one-argument
form of the iter () built-in function for built-in sequence types.
int PySeqIter_Check (PyObject *op)
Return true if the type of op is PySeqgIter Type. This function always succeeds.
PyObject *PySeqIter_New (PyObject *seq)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Return an iterator that works with a general sequence
object, seq. The iteration ends when the sequence raises IndexError for the subscripting operation.

PyTypeObject PyCallIter_Type

Bir parcasi Kararli ABI. Type object for iterator objects returned by PyCalllter New() and the two-
argument form of the iter () built-in function.

int PyCallIter_Check (PyObject *op)
Return true if the type of op is PyCcalilter Type. This function always succeeds.
PyObject *PyCallIter_New (PyObject *callable, PyObject *sentinel)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a new iterator. The first parameter, callable,
can be any Python callable object that can be called with no parameters; each call to it should return the next
item in the iteration. When callable returns a value equal to sentinel, the iteration will be terminated.

8.6.4 Descriptor Objects
“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.
PyTypeObject PyProperty_Type
Bir parcast Kararli ABL. The type object for the built-in descriptor types.
PyObject *PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL
PyObject *PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL
PyObject *PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL
PyObject *PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Dondiirdiigii deger: Yeni referans.
PyObject *PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL

int PyDescr_IsData (PyObject *descr)
Return non-zero if the descriptor objects descr describes a data attribute, or 0 if it describes a method. descr
must be a descriptor object; there is no error checking.

PyObject *pyWrapper_New (PyObject*, PyObject™)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL

8.6. Other Objects 175

The Python/C API, Yayim 3.12.9

8.6.5 Slice Objects

PyTypeObject PySlice_Type
Bir parcas: Kararli ABL The type object for slice objects. This is the same as s1ice in the Python layer.
int PySlice_Check (PyObject *ob)
Return true if ob is a slice object; ob must not be NULL. This function always succeeds.
PyObject *PySlice_New (PyObject *start, PyObject *stop, PyObject *step)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABIL Return a new slice object with the given values. The

start, stop, and step parameters are used as the values of the slice object attributes of the same names. Any of
the values may be NULL, in which case the None will be used for the corresponding attribute.

Return NULL with an exception set if the new object could not be allocated.

int PySlice_GetIndices (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t
*step)

Bir parcasi Kararli ABI. Retrieve the start, stop and step indices from the slice object slice, assuming a sequence
of length length. Treats indices greater than length as errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed
to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function.
3.2 siirimiinde degisti: The parameter type for the slice parameter was PyS1iceObject* before.

int PySlice_GetIndicesEx (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t
*step, Py_ssize_t *slicelength)

Bir parcast Kararli ABI. Usable replacement for PyS1ice GetIndices (). Retrieve the start, stop, and step
indices from the slice object slice assuming a sequence of length length, and store the length of the slice in
slicelength. Out of bounds indices are clipped in a manner consistent with the handling of normal slices.

Return 0 on success and -1 on error with an exception set.

O Not

This function is considered not safe for resizable sequences. Its invocation should be replaced by a combi-
nation of PySlice Unpack () and PySlice AdjustIndices () where

if (PySlice_GetIndicesEx(slice, length, &start, &stop, &step, &slicelength)
—< 0) |
// return error

}

is replaced by

if (PySlice_Unpack(slice, &start, &stop, &step) < 0) {
// return error

}
slicelength = PySlice_AdjustIndices (length, &start, &stop, step);

3.2 stirtimiinde degisti: The parameter type for the slice parameter was PyS1iceObject * before.

3.6.1 surimiinde degisti: If Py_LIMITED_APT is not set or set to the value between 0x03050400 and
0x03060000 (not including) or 0x03060100 or higher PySlice_GetIndicesEx () is implemented as a
macro using PySlice_Unpack () and PySlice_AdjustIndices (). Arguments start, stop and step are
evaluated more than once.

3.6.1 siirtimiinden beri kullanim digi: If Py_LIMITED_APT is set to the value less than 0x03050400 or bet-
ween 0x03060000 and 0x03060100 (not including) PySlice_GetIndicesEx () is a deprecated function.

176 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

int PySlice_Unpack (PyObject *slice, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
Bir parcast Kararli ABI 3.7 siiriimiinden beri. Extract the start, stop and step data members from a slice object
as C integers. Silently reduce values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_ MAX, silently boost the
start and stop values less than PY_SSTIZE_T_MIN to PY_SSIZE_T_MIN, and silently boost the step values less
than -PY_SSIZE_T MAX to -PY_SSIZE_T_MAX.

Return -1 with an exception set on error, 0 on success.
Added in version 3.6.1.

Py_ssize_t PySlice_AdjustIndices (Py_ssize_t length, Py ssize_t *start, Py_ssize_t *stop, Py_ssize_t step)
Bir pargasi Kararli ABI 3.7 siiriimiinden beri. Adjust start/end slice indices assuming a sequence of the specified
length. Out of bounds indices are clipped in a manner consistent with the handling of normal slices.
Return the length of the slice. Always successful. Doesn’t call Python code.

Added in version 3.6.1.

Ellipsis Object

PyTypeObject PyEllipsis_Type
Bir parcast Kararli ABI. The type of Python E11ipsis object. Same as t ypes .E11ipsisType in the Python
layer.

PyObject *Py_Ellipsis
The Python E11ipsis object. This object has no methods. Like Py_None, it is an immortal. singleton object.

3.12 siirtimiinde degisti: Py_E11ipsis is immortal.

8.6.6 MemoryView objects

A memoryview object exposes the C level buffer interface as a Python object which can then be passed around like
any other object.
PyObject *PyMemoryView_FromObject (PyObject *obj)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Create a memoryview object from an object that
provides the buffer interface. If obj supports writable buffer exports, the memoryview object will be read/write,
otherwise it may be either read-only or read/write at the discretion of the exporter.
PyBUF_READ
Flag to request a readonly buffer.
PyBUF_WRITE
Flag to request a writable buffer.

PyObject *PyMemoryView_FromMemory (char *mem, Py_ssize_t size, int flags)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.7 siiriimiinden beri. Create a memoryview object
using mem as the underlying buffer. flags can be one of PyBUF_READ or PyBUF_WRITE.
Added in version 3.3.

PyObject *PyMemoryView_FromBuffer (const Py_buffer *view)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.11 siiriimiinden beri. Create a memoryview object
wrapping the given buffer structure view. For simple byte buffers, PyMemoryView FromMemory () is the
preferred function.

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL. Create a memoryview object to a contiguous chunk
of memory (in either ‘C’ or ‘Fortran order) from an object that defines the buffer interface. If memory is conti-
guous, the memoryview object points to the original memory. Otherwise, a copy is made and the memoryview
points to a new bytes object.

buffertype can be one of PyBUF_READ or PyBUF_WRITE.

8.6. Other Objects 177

https://peps.python.org/pep-0683/

The Python/C API, Yayim 3.12.9

int PyMemoryView_Check (PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview. This function always succeeds.

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
Return a pointer to the memoryview’s private copy of the exporter’s buffer. mview must be a memoryview
instance; this macro doesn’t check its type, you must do it yourself or you will risk crashes.

PyObject *PyMemoryView_GET_BASE (PyObject *mview)

Return either a pointer to the exporting object that the memoryview is based on or NULL if the memoryview has
been created by one of the functions PyMemoryView FromMemory () Of PyMemoryView_FromBuffer ().
mview must be a memoryview instance.

8.6.7 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement
weak references. The first is a simple reference object, and the second acts as a proxy for the original object as much
as it can.
int PyWeakref_Check (PyObject *0b)

Return true if ob is either a reference or proxy object. This function always succeeds.

int PyWeakref_CheckRef (PyObject *ob)
Return true if ob is a reference object. This function always succeeds.

int PyWeakref_CheckProxy (PyObject *ob)
Return true if ob is a proxy object. This function always succeeds.

PyObject *PyWeakref_NewRef£ (PyObject *ob, PyObject *callback)
Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABL Return a weak reference object for the object ob.
This will always return a new reference, but is not guaranteed to create a new object; an existing reference object
may be returned. The second parameter, callback, can be a callable object that receives notification when ob is
garbage collected; it should accept a single parameter, which will be the weak reference object itself. callback
may also be None or NULL. If 0b is not a weakly referenceable object, or if callback is not callable, None, or
NULL, this will return NULL and raise TypeError.

PyObject *PyWeakref_NewProxy (PyObject *ob, PyObject *callback)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABIL Return a weak reference proxy object for the object
ob. This will always return a new reference, but is not guaranteed to create a new object; an existing proxy
object may be returned. The second parameter, callback, can be a callable object that receives notification
when ob is garbage collected; it should accept a single parameter, which will be the weak reference object
itself. callback may also be None or NULL. If ob is not a weakly referenceable object, or if callback is not
callable, None, or NULL, this will return NULL and raise TypeError.

PyObject *PyWeakref_GetObject (PyObject *ref)

Dondiirdiigii deger: Odiing alinms referans. Bir parcasi Kararli ABL Return the referenced object from a weak
reference, ref. If the referent is no longer live, returns Py_None.

O Not

This function returns a borrowed reference to the referenced object. This means that you should always call
Py_INCREF () on the object except when it cannot be destroyed before the last usage of the borrowed
reference.

PyObject *PyWeakref_ GET_OBJECT (PyObject *ref)

Dondiirdiigii deger: Odiing alinmus referans. Similar to Pylieakref_GetObject (), but does no error chec-
king.

178 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

void PyObject_ClearWeakRefs (PyObject *object)

Bir parcast Kararli ABL This function is called by the tp_dealloc handler to clear weak references.

This iterates through the weak references for object and calls callbacks for those references which have one. It
returns when all callbacks have been attempted.

8.6.8 Capsules
Refer to using-capsules for more information on using these objects.
Added in version 3.1.

type PyCapsule

This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to
access C APIs defined in dynamically loaded modules.

type PyCapsule_Destructor
Bir parcas: Kararl1 ABL The type of a destructor callback for a capsule. Defined as:

[typedef void (*PyCapsule_Destructor) (PyObject *);

See Pycapsule_New () for the semantics of PyCapsule_Destructor callbacks.

int PyCapsule_CheckExact (PyObject *p)
Return true if its argument is a PyCapsule. This function always succeeds.

PyObject *PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)
Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABI. Create a PyCapsule encapsulating the pointer. The
pointer argument may not be NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule Import ().

void *PyCapsule_GetPointer (PyObject *capsule, const char *name)
Bir pargasi Kararli ABI. Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.
The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule
is NULL, the name passed in must also be NULL. Python uses the C function strcmp () to compare capsule
names.

PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Bir parcasi Kararli ABL Return the current destructor stored in the capsule. On failure, set an exception and

return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr _Occurred () to disambiguate.

void *PyCapsule_GetContext (PyObject *capsule)
Bir pargasi Kararli ABL. Return the current context stored in the capsule. On failure, set an exception and return
NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() Oor PyErr_Occurred () to disambiguate.

8.6. Other Objects 179

The Python/C API, Yayim 3.12.9

const char *PyCapsule_GetName (PyObject *capsule)

Bir parcast Kararli ABL Return the current name stored in the capsule. On failure, set an exception and return
NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr Occurred () to disambiguate.

void *PyCapsule_Import (const char *name, int no_block)

Bir parcas: Kararli ABIL Import a pointer to a C object from a capsule attribute in a module. The name para-
meter should specify the full name to the attribute, as inmodule. attribute. The name stored in the capsule
must match this string exactly.

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.
3.3 stiriimiinde degisti: no_block has no effect anymore.

int PyCapsule_IsValid (PyObject *capsule, const char *name)

Bir parcasi Kararli ABI. Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL,
passes PyCapsule_CheckExact (), has a non-NULL pointer stored in it, and its internal name matches the
name parameter. (See PyCapsule_GetPointer () for information on how capsule names are compared.)

In other words, if PyCapsule Isvalid () returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get) are guaranteed to succeed.

Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext (PyObject *capsule, void *context)

Bir parcast Kararli ABL Set the context pointer inside capsule to context.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
Bir parcast Kararli ABL Set the destructor inside capsule to destructor.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName (PyObject *capsule, const char *name)

Bir parcasi Kararli ABI. Set the name inside capsule to name. If non-NULL, the name must outlive the capsule.
If the previous name stored in the capsule was not NULL, no attempt is made to free it.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Bir parcast Kararli ABIL Set the void pointer inside capsule to pointer. The pointer may not be NULL.

Return 0 on success. Return nonzero and set an exception on failure.

8.6.9 Frame Objects

type PyFrameObject
Bir parcast Siirli AP (bir opak yapt olarak). The C structure of the objects used to describe frame objects.
There are no public members in this structure.

3.11 siirimiinde degisti: The members of this structure were removed from the public C API. Refer to the
What’s New entry for details.

The PyEval_GetFrame () and PyThreadState_GetFrame () functions can be used to get a frame object.
See also Reflection.

PyTypeObject PyFrame_Type
The type of frame objects. It is the same object as t ypes .FrameType in the Python layer.

3.11 siiriimiinde degisti: Previously, this type was only available after including <frameobject .h>.

180 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

int PyFrame_Check (PyObject *obj)
Return non-zero if obj is a frame object.

3.11 siiriimiinde degisti: Previously, this function was only available after including <frameobject .h>.

PyFrameObject *PyFrame_GetBack (PyFrameObject *frame)

Get the frame next outer frame.
Return a strong reference, or NULL if frame has no outer frame.
Added in version 3.9.
PyObject *PyFrame_GetBuiltins (PyFrameObject *frame)
Get the frame’s £_builtins attribute.
Return a strong reference. The result cannot be NULL.
Added in version 3.11.

PyCodeObject *PyFrame_GetCode (PyFrameObject *frame)
Bir parcast Kararli ABI 3.10 siiriimiinden beri. Get the frame code.

Return a strong reference.
The result (frame code) cannot be NULL.
Added in version 3.9.

PyObject *PyFrame_GetGenerator (PyFrameObject *frame)

Get the generator, coroutine, or async generator that owns this frame, or NULL if this frame is not owned by a
generator. Does not raise an exception, even if the return value is NULL.

Return a strong reference, or NULL.
Added in version 3.11.
PyObject *PyFrame_GetGlobals (PyFrameObject *frame)
Get the frame’s f_globals attribute.
Return a strong reference. The result cannot be NULL.

Added in version 3.11.

int PyFrame_GetLasti (PyFrameObject *frame)
Get the frame’s £_lasti attribute.

Returns -1 if frame.f_ lasti is None.
Added in version 3.11.

PyObject *PyFrame_GetVar (PyFrameObject *frame, PyObject *name)

Get the variable name of frame.
o Return a strong reference to the variable value on success.
o Raise NameError and return NULL if the variable does not exist.
« Raise an exception and return NULL on error.

name type must be a str.

Added in version 3.12.

PyObject *PyFrame_GetVarString (PyFrameObject *frame, const char *name)

Similar to PyFrame_GetVar (), but the variable name is a C string encoded in UTF-8.

Added in version 3.12.

8.6. Other Objects 181

The Python/C API, Yayim 3.12.9

PyObject *PyFrame_GetLocals (PyFrameObject *frame)
Get the frame’s f_locals attribute (dict).

Return a strong reference.
Added in version 3.11.

int PyFrame_GetLineNumber (PyFrameObject *frame)
Bir parcast Kararli ABI 3.10 siiriimiinden beri. Return the line number that frame is currently executing.

Internal Frames
Unless using PEP 523, you will not need this.

struct _PyInterpreterFrame

The interpreter’s internal frame representation.
Added in version 3.11.

PyObject *PyUnstable_InterpreterFrame_GetCode (struct _PylnterpreterFrame *frame) ;

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyar1 olmadan degisebilir.

Return a strong reference to the code object for the frame.

Added in version 3.12.

int PyUnstable_InterpreterFrame_GetLasti (struct _PylnterpreterFrame *frame) ;

Bu Kararsiz API. Bu, kiigiik (minor) siirimlerde uyari olmadan degisebilir.

Return the byte offset into the last executed instruction.
Added in version 3.12.

int PyUnstable_InterpreterFrame_GetLine (struct _PylnterpreterFrame *frame) ;

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyar1 olmadan degisebilir.

Return the currently executing line number, or -1 if there is no line number.

Added in version 3.12.

8.6.10 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over
a function that yields values, rather than explicitly calling PyGen_New () or PyGen_NewlithQualName ().

type PyGenObject

The C structure used for generator objects.
PyTypeObject PyGen_Type

The type object corresponding to generator objects.

182 Boéliim 8. Concrete Objects Layer

https://peps.python.org/pep-0523/

The Python/C API, Yayim 3.12.9

int PyGen_Check (PyObject *ob)

Return true if ob is a generator object; ob must not be NULL. This function always succeeds.

int PyGen_CheckExact (PyObject *ob)

Return true if ob’s type is PyGen_ Type; ob must not be NULL. This function always succeeds.

PyObject *PyGen_New (PyFrameObject *frame)

Dondiirdiigii deger: Yeni referans. Create and return a new generator object based on the frame object. A
reference to frame is stolen by this function. The argument must not be NULL.

PyObject *PyGen_NewWithQualName (PyFrameObject *frame, PyObject ¥name, PyObject *qualname)

Dondiirdiigii deger: Yeni referans. Create and return a new generator object based on the frame object, with
__name__and _ qualname__ set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.11 Coroutine Objects
Added in version 3.5.
Coroutine objects are what functions declared with an async keyword return.

type PyCoroObject

The C structure used for coroutine objects.

PyTypeObject PyCoro_Type

The type object corresponding to coroutine objects.

int PyCoro_CheckExact (PyObject *0b)

Return true if ob’s type is PyCoro_Type; ob must not be NULL. This function always succeeds.

PyObject *PyCoro_New (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Dondiirdiigii deger: Yeni referans. Create and return a new coroutine object based on the frame object, with

_ name__and _ _gqualname__ set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.12 Context Variables Objects
Added in version 3.7.

3.7.1 stiriimiinde degisti:

O Not

In Python 3.7.1 the signatures of all context variables C APIs were changed to use PyObject pointers instead
of PyContext, PyContextVar, and PyContext Token, €.g.:

// in 3.7.0:
PyContext *PyContext_New (void) ;

// in 3.7.1+:
PyObject *PyContext_New (wvoid) ;

See bpo-34762 for more details.

This section details the public C API for the contextvars module.

type PyContext
The C structure used to represent a contextvars.Context object.

type PyContextVar

The C structure used to represent a contextvars.ContextVar object.

8.6. Other Objects 183

https://bugs.python.org/issue?@action=redirect&bpo=34762

The Python/C API, Yayim 3.12.9

type PyContextToken

The C structure used to represent a contextvars.Token object.
PyTypeObject PyContext_Type

The type object representing the context type.
PyTypeObject PyContextVar_Type

The type object representing the context variable type.
PyTypeObject PyContextToken_Type

The type object representing the context variable token type.
Type-check macros:

int PyContext_CheckExact (PyObject *0)
Return true if o is of type PyContext_Type. o must not be NULL. This function always succeeds.

int PyContextVar_CheckExact (PyObject *0)
Return true if o is of type PyContextVar_Type. o must not be NULL. This function always succeeds.

int PyContextToken_CheckExact (PyObject *0)

Return true if o is of type PyContext Token_Type. o must not be NULL. This function always succeeds.
Context object management functions:
PyObject *PyContext_New (void)

Dondiirdiigii deger: Yeni referans. Create a new empty context object. Returns NULL if an error has occurred.
PyObject *PyContext_Copy (PyObject *ctx)

Dondiirdiigii deger: Yeni referans. Create a shallow copy of the passed ctx context object. Returns NULL if an
error has occurred.

PyObject *PyContext_CopyCurrent (void)

Dondiirdiigii deger: Yeni referans. Create a shallow copy of the current thread context. Returns NULL if an error
has occurred.

int PyContext_Enter (PyObject *ctx)
Set ctx as the current context for the current thread. Returns 0 on success, and -1 on error.
int PyContext_Exit (PyObject *ctx)

Deactivate the ctx context and restore the previous context as the current context for the current thread. Returns
0 on success, and —1 on error.

Context variable functions:

PyObject *PyContextVar_New (const char *name, PyObject *def)

Dondiirdiigii deger: Yeni referans. Create a new ContextVar object. The name parameter is used for intros-
pection and debug purposes. The def parameter specifies a default value for the context variable, or NULL for
no default. If an error has occurred, this function returns NULL.

int PyContextVar_Get (PyObject *var, PyObject *default_value, PyObject **value)

Get the value of a context variable. Returns -1 if an error has occurred during lookup, and 0 if no error
occurred, whether or not a value was found.

If the context variable was found, value will be a pointer to it. If the context variable was not found, value will
point to:

o default_value, if not NULL;
o the default value of var, if not NULL;
e NULL

Except for NULL, the function returns a new reference.

184 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

PyObject *PyContextVar_Set (PyObject *var, PyObject *value)
Dondiirdiigii deger: Yeni referans. Set the value of var to value in the current context. Returns a new token
object for this change, or NULL if an error has occurred.

int PyContextVar_Reset (PyObject *var, PyObject *token)

Reset the state of the var context variable to that it was in before PyContextvar_ Set () that returned the
token was called. This function returns 0 on success and -1 on error.

8.6.13 DateTime Objects

Various date and time objects are supplied by the datet ime module. Before using any of these functions, the header
file datetime.h must be included in your source (note that this is not included by Python.h), and the macro
PyDateTime_IMPORT must be invoked, usually as part of the module initialisation function. The macro puts a
pointer to a C structure into a static variable, PyDateTimeAPT, that is used by the following macros.

type PyDateTime_Date

This subtype of PyObject represents a Python date object.

type PyDateTime_DateTime
This subtype of PyObject represents a Python datetime object.

type PyDateTime_Time
This subtype of PyObject represents a Python time object.

type PyDateTime_Delta
This subtype of PyObject represents the difference between two datetime values.

PyTypeObject PyDateTime_DateType
This instance of PyTypeObject represents the Python date type; it is the same object as datetime.date
in the Python layer.

PyTypeObject PyDateTime_DateTimeType
This instance of PyTypeObject represents the Python datetime type; it is the same object as datetime.
datetime in the Python layer.

PyTypeObject PyDateTime_TimeType
This instance of Py TypeObject represents the Python time type; it is the same object as datetime.time
in the Python layer.

PyTypeObject PyDateTime_DeltaType

This instance of Py TypeObject represents Python type for the difference between two datetime values; it is
the same object as datetime.timedelta in the Python layer.

PyTypeObject PyDateTime_TZInfoType

This instance of Py TypeOb ject represents the Python time zone info type; it is the same object as datet ime.
tzinfo in the Python layer.

Macro for access to the UTC singleton:

PyObject *PyDateTime_TimeZone_UTC
Returns the time zone singleton representing UTC, the same object as datetime.timezone.utc.
Added in version 3.7.

Type-check macros:

int PyDate_Check (PyObject *ob)

Return true if ob is of type PyDateTime DateType or a subtype of PyDateTime_DateType. ob must not
be NULL. This function always succeeds.

int PyDate_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL. This function always succeeds.

8.6. Other Objects 185

The Python/C API, Yayim 3.12.9

int PyDateTime_Check (PyObject *ob)

Return true if ob is of type PyDateTime DateTimeType or a subtype of PyDateTime DateTimeType.
ob must not be NULL. This function always succeeds.

int PyDateTime_CheckExact (PyObject *ob)
Return true if 0b is of type PyDateTime DateTimeType. ob must not be NULL. This function always suc-
ceeds.
int PyTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob must not
be NULL. This function always succeeds.
int PyTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL. This function always succeeds.
int PyDelta_Check (PyObject *0b)
Return true if ob is of type PyDateTime_DeltaType or a subtype of PyDateTime_DeltaType. ob must
not be NULL. This function always succeeds.
int PyDelta_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL. This function always succeeds.
int PyTZInfo_Check (PyObject *0b)
Return true if 0bis of type PyDateTime TZInfoType or asubtype of PyDateTime TZInfoType.obmust
not be NULL. This function always succeeds.
int PyTZInfo_CheckExact (PyObject *ob)
Return true if 0b is of type PyDateTime TZInfoType.obmustnot be NULL. This function always succeeds.

Macros to create objects:

PyObject *PyDate_FromDate (int year, int month, int day)
Dondiirdiigii deger: Yeni referans. Return a datetime . date object with the specified year, month and day.
PyObject *PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second, int
usecond)
Dondiirdiigii deger: Yeni referans. Return a datet ime . datet ime object with the specified year, month, day,
hour, minute, second and microsecond.
PyObject *PyDateTime_FromDateAndTimeAndFold (int year, int month, int day, int hour, int minute, int
second, int usecond, int fold)
Dondiirdiigii deger: Yeni referans. Return a datetime.datet ime object with the specified year, month, day,
hour, minute, second, microsecond and fold.

Added in version 3.6.

PyObject *PyTime_FromTime (int hour, int minute, int second, int usecond)
Dondiirdiigii deger: Yeni referans. Return a datetime.time object with the specified hour, minute, second
and microsecond.

PyObject *PyTime_FromTimeAndFold (int hour, int minute, int second, int usecond, int fold)
Dondiirdiigii deger: Yeni referans. Return a datetime. time object with the specified hour, minute, second,
microsecond and fold.
Added in version 3.6.

PyObject *PyDelta_FromDSU (int days, int seconds, int useconds)

Dondiirdiigii deger: Yeni referans. Return a datetime.timedelta object representing the given number of
days, seconds and microseconds. Normalization is performed so that the resulting number of microseconds
and seconds lie in the ranges documented for datetime.timedelta objects.

186 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

PyObject *PyTimeZone_FromOffset (PyObject *offset)
Dondiirdiigii deger: Yeni referans. Return a datetime.timezone object with an unnamed fixed offset rep-
resented by the offset argument.

Added in version 3.7.

PyObject *PyTimeZone_FromOf£fsetAndName (PyObject *offset, PyObject *name)

Dondiirdiigii deger: Yeni referans. Return a datetime.timezone object with a fixed offset represented by
the offset argument and with tzname name.

Added in version 3.7.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime Date, including
subclasses (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR (PyDateTime_Date *0)
Return the year, as a positive int.

int PyDateTime_GET_MONTH (PyDateTime_Date *0)
Return the month, as an int from 1 through 12.
int PyDateTime_GET_DAY (PyDateTime_Date *0)

Return the day, as an int from 1 through 31.

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime DateTime,
including subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_HOUR (PyDateTime_DateTime *0)
Return the hour, as an int from 0 through 23.

int PyDateTime_DATE_GET_ MINUTE (PyDateTime_DateTime *0)
Return the minute, as an int from O through 59.

int PyDateTime_DATE_GET_SECOND (PyDateTime_DateTime *0)
Return the second, as an int from 0 through 59.

int PyDateTime_DATE_GET_ MICROSECOND (PyDateTime_DateTime *0)
Return the microsecond, as an int from 0 through 999999.

int PyDateTime_DATE_GET_FOLD (PyDateTime_DateTime *0)
Return the fold, as an int from O through 1.
Added in version 3.6.

PyObject *PyDateTime_DATE_GET_TZINFO (PyDateTime_DateTime *0)
Return the tzinfo (which may be None).

Added in version 3.10.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime Time, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_ HOUR (PyDateTime_Time *0)
Return the hour, as an int from O through 23.

int PyDateTime_TIME_GET MINUTE (PyDateTime_Time *0)
Return the minute, as an int from O through 59.

int PyDateTime_TIME_GET_SECOND (PyDateTime_Time *0)
Return the second, as an int from 0 through 59.

int PyDateTime_TIME_GET MICROSECOND (PyDateTime_Time *0)

Return the microsecond, as an int from 0 through 999999.

8.6. Other Objects 187

The Python/C API, Yayim 3.12.9

int PyDateTime_TIME_GET_FOLD (PyDateTime_Time *0)
Return the fold, as an int from O through 1.

Added in version 3.6.

PyObject *PyDateTime_TIME_GET_TZINFO (PyDateTime_Time *0)

Return the tzinfo (which may be None).
Added in version 3.10.

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta, inclu-
ding subclasses. The argument must not be NULL, and the type is not checked:
int PyDateTime_DELTA_GET DAYS (PyDateTime_Delta *0)

Return the number of days, as an int from -999999999 to 999999999.

Added in version 3.3.

int PyDateTime_DELTA_GET_SECONDS (PyDateTime_Delta *0)

Return the number of seconds, as an int from 0 through 86399.
Added in version 3.3.

int PyDateTime_DELTA_GET_MICROSECONDS (PyDateTime_Delta *0)
Return the number of microseconds, as an int from 0 through 999999.
Added in version 3.3.
Macros for the convenience of modules implementing the DB API:
PyObject *PyDateTime_FromTimestamp (PyObject *args)
Dondiirdiigii deger: Yeni referans. Create and return a new datetime.datetime object given an argument
tuple suitable for passing to datetime.datetime. fromtimestamp ().
PyObject *PyDate_FromTimestamp (PyObject *args)

Dondiirdiigii deger: Yeni referans. Create and return a new datetime.date object given an argument tuple
suitable for passing to datetime.date.fromtimestamp ().

8.6.14 Objects for Type Hinting

Various built-in types for type hinting are provided. Currently, two types exist — GenericAlias and Union. Only

GenericAlias is exposed to C.

PyObject *Py_GenericAlias (PyObject *origin, PyObject *args)
Bir parcast Kararli ABI 3.9 siiriimiinden beri. Create a GenericAlias object. Equivalent to calling the Python
class types.GenericAlias. The origin and args arguments set the GenericAlias’s _ origin__ and
__args___ attributes respectively. origin should be a Py TypeObject*, and args can be a PyTupleObject*
or any PyObject*. If args passed is not a tuple, a 1-tuple is automatically constructed and __args__ is set
to (args,). Minimal checking is done for the arguments, so the function will succeed even if origin is not a
type. The GenericAlias’s __parameters_ attribute is constructed lazily from _ args__. On failure, an
exception is raised and NULL is returned.

Here’s an example of how to make an extension type generic:

-

static PyMethodDef my_obj_methods[] = {
// Other methods.

{"__class_getitem ", Py_GenericAlias, METH_O|METH_CLASS, "See PEP 585"}

188 Boéliim 8. Concrete Objects Layer

The Python/C API, Yayim 3.12.9

> Ayrica bakiniz

The data model method _ class_getitem__ ().

Added in version 3.9.
PyTypeObject Py_GenericAliasType

Bir parcasi Kararli ABI 3.9 siiriimiinden beri. The C type of the object returned by Py_GenericAlias ().
Equivalent to types.GenericAlias in Python.

Added in version 3.9.

8.6. Other Objects 189

The Python/C API, Yayim 3.12.9

190 Boliim 8. Concrete Objects Layer

BOLOM 9

Initialization, Finalization, and Threads

See also Python Initialization Configuration.

9.1 Before Python Initialization
In an application embedding Python, the Py_Tnitialize () function must be called before using any other Pyt-
hon/C API functions; with the exception of a few functions and the global configuration variables.
The following functions can be safely called before Python is initialized:
« Configuration functions:
— PyImport_AppendInittab ()
- PyImport_ExtendInittab()
— PyInitFrozenExtensions ()
— PyMem_SetAllocator ()
— PyMem_SetupDebugHooks ()
— PyObject_SetArenaAllocator ()
— Py_SetPath()
— Py_SetProgramName ()
— Py_SetPythonHome ()
— Py_SetStandardStreamEncoding ()
— PySys_AddWarnOption ()
— PySys_AddXOption ()
— PySys_ResetWarnOptions ()
« Informative functions:

— Py _IsInitialized()

PyMem_GetAllocator ()

— PyObject_GetArenaAllocator ()

Py _GetBuildInfo ()

191

The Python/C API, Yayim 3.12.9

Py _GetCompiler ()
— Py_GetCopyright ()
— Py _GetPlatform()

- Py _GetVersion ()

« Utilities:

— Py_DecodeLocale ()
Memory allocators:

— PyMem_RawMalloc ()

— PyMem_RawRealloc ()

— PyMem_RawCalloc ()

PyMem_RawFree ()

O Not
The following functions should not be called before Py Tnitialize(): Py EncodeLocale (),
Py_GetPath(), Py _GetPrefix (), Py GetExecPrefix(), Py _GetProgramFullPath(),

Py_GetPythonHome (), Py_GetProgramName () and PyEval_InitThreads ().

9.2 Global configuration variables

Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.

When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, -b
sets Py_ByteslWarningFlagto 1 and —bb sets Py_BytesWarningFlag to 2.

int Py_BytesWarningFlag

This API is kept for backward compatibility: setting PyConfig.bytes_warning should be used instead,
see Python Initialization Configuration.

Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if greater
or equal to 2.

Set by the —b option.

3.12 siirtimiinden beri kullanim dig1.

int Py_DebugFlag

This API is kept for backward compatibility: setting PyConfig. parser_debug should be used instead, see
Python Initialization Configuration.

Turn on parser debugging output (for expert only, depending on compilation options).
Set by the —d option and the PYTHONDEBUG environment variable.

3.12 siirtimiinden beri kullanim dig1.

int Py_DontWriteBytecodeFlag

This API is kept for backward compatibility: setting PyConfig.write_bytecode should be used instead,
see Python Initialization Configuration.

If set to non-zero, Python won't try to write . pyc files on the import of source modules.
Set by the —B option and the PYTHONDONTWRITEBYTECODE environment variable.

3.12 siirtimiinden beri kullanim dig1.

192

Boélium 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.9

int Py_FrozenFlag

This API is kept for backward compatibility: setting PyConfig.pathconfig warnings should be used
instead, see Python Initialization Configuration.

Suppress error messages when calculating the module search path in Py_GetPath ().
Private flag used by _freeze_module and frozenmain programs.
3.12 siiriimiinden beri kullanim digt.

int Py_HashRandomizationFlag

This API is kept for backward compatibility: setting PyConfig.hash_seed and PyConfig.
use_hash_seed should be used instead, see Python Initialization Configuration.

Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.
If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.
3.12 siiriimiinden beri kullanim digt.

int Py_IgnoreEnvironmentFlag

This API is kept for backward compatibility: setting PyConfig.use_environment should be used instead,
see Python Initialization Configuration.

Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.
Set by the -E and -1 options.
3.12 siiriimiinden beri kullanim dig1.

int Py_InspectFlag

This API is kept for backward compatibility: setting PyConfig. inspect should be used instead, see Python
Initialization Configuration.

When a script is passed as first argument or the —c option is used, enter interactive mode after executing the
script or the command, even when sys . stdin does not appear to be a terminal.

Set by the —1i option and the PYTHONINSPECT environment variable.
3.12 siirtimiinden beri kullanim digt.

int Py_InteractiveFlag

This API is kept for backward compatibility: setting PyConfig. interactive should be used instead, see
Python Initialization Configuration.

Set by the -1 option.
3.12 siiriimiinden beri kullanim dig1.

int Py_IsolatedFlag

This API is kept for backward compatibility: setting PyConfig. i solated should be used instead, see Python
Initialization Configuration.

Run Python in isolated mode. In isolated mode sys .path contains neither the script’s directory nor the user’s
site-packages directory.

Set by the —I option.
Added in version 3.4.
3.12 siiriimiinden beri kullanim digt.

int Py_LegacyWindowsFSEncodingFlag
This API is kept for backward compatibility: setting PyPreConfig. legacy_windows_fs_encoding sho-
uld be used instead, see Python Initialization Configuration.

If the flag is non-zero, use the mbcs encoding with replace error handler, instead of the UTF-8 encoding
with surrogatepass error handler, for the filesystem encoding and error handler.

9.2. Global configuration variables 193

The Python/C API, Yayim 3.12.9

Set to 1 if the PYTHONLEGACYWINDOWSFSENCODING environment variable is set to a non-empty string.
See PEP 529 for more details.
Availability: Windows.

3.12 siiriimiinden beri kullanim dig1.

int Py_LegacyWindowsStdioFlag

This API is kept for backward compatibility: setting PyConfig. legacy windows_stdio should be used
instead, see Python Initialization Configuration.

If the flag is non-zero, use io.FileIO instead of io._WindowsConsoleIO for sys standard streams.
Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.

See PEP 528 for more details.

Availability: Windows.

3.12 siiriimiinden beri kullanim dig1.

int Py_NoSiteFlag

This API is kept for backward compatibility: setting PyConfig.site_import should be used instead, see
Python Initialization Configuration.

Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main () if you want them to
be triggered).

Set by the —s option.

3.12 siiriimiinden beri kullanim dig1.

int Py_NoUserSiteDirectory

This API is kept for backward compatibility: setting PyConfig.user_site_directory should be used
instead, see Python Initialization Configuration.

Don’t add the user site-packages directory to sys.path.
Set by the —s and -1 options, and the PYTHONNOUSERSITE environment variable.

3.12 siiriimiinden beri kullanim dig1.

int Py_OptimizeFlag

This API is kept for backward compatibility: setting PyConfig.optimization_level should be used ins-
tead, see Python Initialization Configuration.

Set by the —0 option and the PYTHONOPTIMIZE environment variable.

3.12 siiriimiinden beri kullanim digt.

int Py_QuietFlag

This API is kept for backward compatibility: setting PyConfig. quiet should be used instead, see Python
Initialization Configuration.

Don'’t display the copyright and version messages even in interactive mode.
Set by the —q option.
Added in version 3.2.

3.12 siirtimiinden beri kullanim digt.

int Py_UnbufferedStdioFlag

This API is kept for backward compatibility: setting PyConfig.buffered_stdio should be used instead,
see Python Initialization Configuration.

Force the stdout and stderr streams to be unbuffered.

Set by the —u option and the PYTHONUNBUFFERED environment variable.

194

Boélium 9. Initialization, Finalization, and Threads

https://peps.python.org/pep-0529/
https://peps.python.org/pep-0528/

The Python/C API, Yayim 3.12.9

3.12 siiriimiinden beri kullanim digt.

int Py_VerboseFlag
This API is kept for backward compatibility: setting PyConfig. verbose should be used instead, see Python
Initialization Configuration.

Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit.

Set by the —v option and the PYTHONVERBOSE environment variable.

3.12 siiriimiinden beri kullanim dig1.

9.3 Initializing and finalizing the interpreter

void Py_Initialize()

Bir parcasi Kararli ABL Initialize the Python interpreter. In an application embedding Python, this should be
called before using any other Python/C API functions; see Before Python Initialization for the few exceptions.

This initializes the table of loaded modules (sys .modules), and creates the fundamental modules builtins,
__main__ and sys. It also initializes the module search path (sys.path). It does not set sys.argv;
use PySys_SetArgvEx () for that. This is a no-op when called for a second time (without calling
Py FinalizeEx () first). There is no return value; it is a fatal error if the initialization fails.

Usethe Py TnitializeFromConfig () function to customize the Python Initialization Configuration.

O Not

On Windows, changes the console mode from O_TEXT to 0_BINARY, which will also affect non-Python
uses of the console using the C Runtime.

void Py_InitializeEx (int initsigs)

Bir parcasi Kararli ABI This function works like Py_Tnitialize () if initsigs is 1. If initsigs is 0, it skips
initialization registration of signal handlers, which might be useful when Python is embedded.

Usethe Py_TnitializeFromConfig () function to customize the Python Initialization Configuration.

intPy IsInitialized/()

Bir parcast Kararli ABL Return true (nonzero) when the Python interpreter has been initialized, false (zero) if
not. After Py _FinalizeEx () is called, this returns false until Py _Tnitialize () is called again.

int Py_FinalizeEx ()

Bir pargasi Kararli ABI 3.6 siiriimiinden beri. Undo all initializations made by Py _Tnitialize () and sub-
sequent use of Python/C API functions, and destroy all sub-interpreters (see Py_NewInterpreter () be-
low) that were created and not yet destroyed since the last call to Py_Tnitialize (). Ideally, this frees all
memory allocated by the Python interpreter. This is a no-op when called for a second time (without calling
Py_Initialize () again first).

Since this is the reverse of Py_Initialize (), itshould be called in the same thread with the same interpreter
active. That means the main thread and the main interpreter. This should never be called while Py RunMain ()
is running.

Normally the return value is 0. If there were errors during finalization (flushing buffered data), -1 is returned.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the
DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated
by Python before exiting from the application.

9.3. Initializing and finalizing the interpreter 195

The Python/C API, Yayim 3.12.9

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may
cause destructors (__del__ () methods) to fail when they depend on other objects (even functions) or modules.
Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated
by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular
references between objects is not freed. Some memory allocated by extension modules may not be freed. Some
extensions may not work properly if their initialization routine is called more than once; this can happen if an
application calls Py_Tnitialize () and Py_FinalizeEx () more than once.

Raises an auditing event cpython._ PySys_ClearAuditHooks with no arguments.

Added in version 3.6.

void Py_Finalize ()

Bir parcasi Kararli ABIL. This is a backwards-compatible version of pPy_FinalizeEx () that disregards the
return value.

9.4 Process-wide parameters

int Py_SetStandardStreamEncoding (const char *encoding, const char *errors)

This API is kept for backward compatibility: setting PyConfig.stdio_encoding and PyConfig.
stdio_errors should be used instead, see Python Initialization Configuration.

This function should be called before Py_Tnitialize (),if itis called at all. It specifies which encoding and
error handling to use with standard IO, with the same meanings as in str.encode ().

It overrides PYTHONIOENCODING values, and allows embedding code to control IO encoding when the envi-
ronment variable does not work.

encoding and/or errors may be NULL to use PYTHONIOENCODING and/or default values (depending on other
settings).

Note that sys.stderr always uses the “backslashreplace” error handler, regardless of this (or any other)
setting.

If Py _FinalizeEx () is called, this function will need to be called again in order to affect subsequent calls
to Py_Initialize().

Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).
Added in version 3.4.

3.11 siiriimiinden beri kullanim dig1.

void Py_SetProgramName (const wchar_t *name)

Bir parcast Kararli ABL This API is kept for backward compatibility: setting PyConfig.program name
should be used instead, see Python Initialization Configuration.

This function should be called before Py Tnitialize () is called for the first time, if it is called at all. It
tells the interpreter the value of the argv [0] argument to the main () function of the program (converted to
wide characters). This is used by Py_GetPath () and some other functions below to find the Python run-time
libraries relative to the interpreter executable. The default value is 'python'. The argument should point to a
zero-terminated wide character string in static storage whose contents will not change for the duration of the
program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_t * string.

3.11 siiriimiinden beri kullanim dig1.

wchar_t *Py_GetProgramName ()

Bir parcast Kararli ABL Return the program name set with Py SetProgramName (), or the default. The
returned string points into static storage; the caller should not modify its value.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.

3.10 siiriimiinde degisti: It now returns NULL if called before Py_Initialize ().

196

Boliim 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.9

wchar_t *Py_GetPrefix ()

Bir parcasi Kararli ABIL Return the prefix for installed platform-independent files. This is derived through a
number of complicated rules from the program name set with Py_SetProgramName () and some environ-
ment variables; for example, if the program name is ' /usr/local/bin/python’, the prefix is ' /usr/
local'. The returned string points into static storage; the caller should not modify its value. This corresponds
to the prefix variable in the top-level Makefile and the ——prefix argument to the configure script at
build time. The value is available to Python code as sys.prefix. It is only useful on Unix. See also the next
function.

This function should not be called before Py_Tnitialize (), otherwise it returns NULL.
3.10 siiriimiinde degisti: It now returns NULL if called before Py_Tnitialize ().

wchar_t *Py_GetExecPrefix ()

Bir parcas: Kararli ABI. Return the exec-prefix for installed platform-dependent files. This is derived through
a number of complicated rules from the program name set with Py_SetProgramName () and some envi-
ronment variables; for example, if the program name is ' /usr/local/bin/python’, the exec-prefix is
'/usr/local'. The returned string points into static storage; the caller should not modify its value. This
corresponds to the exec_prefix variable in the top-level Makefile and the ——exec—-prefix argument to
the configure script at build time. The value is available to Python code as sys.exec_prefix. Itis only
useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files may
be installed in the /usr/local/plat subtree while platform independent may be installed in /usr/local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Non-Unix operating systems are a different
story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaning-
less, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

This function should not be called before Py Initialize (), otherwise it returns NULL.
3.10 stiriimiinde degisti: It now returns NULL if called before Py _Initialize().

wchar_t *Py_GetProgramFullPath ()

Bir pargasi Kararli ABL Return the full program name of the Python executable; this is computed as a side-
effect of deriving the default module search path from the program name (set by Py SetProgramName ()
above). The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as sys.executable.

This function should not be called before Py Initialize (), otherwise it returns NULL.
3.10 siiriimiinde degisti: It now returns NULL if called before Py Tnitialize ().

wchar_t *Py_GetPath ()

Bir parcast Kararli ABL Return the default module search path; this is computed from the program name
(set by Py_SetpProgramName () above) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter character is
' : ' on Unix and macOS, '; ' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys . path is initialized with this value on interpreter startup; it can be (and usually
is) modified later to change the search path for loading modules.

This function should not be called before Py_Tnitialize (), otherwise it returns NULL.

3.10 siiriimiinde degisti: It now returns NULL if called before Py_Tnitialize().

9.4. Process-wide parameters 197

The Python/C API, Yayim 3.12.9

void Py_SetPath (const wchar_t*)

Bir parcasi Kararlt ABI 3.7 siiriimiinden beri. This API is kept for backward compatibility: setting PyConfig.
modulefsearchﬁpathsandPbenfig.modulefsearchﬁpathsfsetShouhibeusedinﬁewLSeefwﬂum
Initialization Configuration.

Set the default module search path. If this function is called before Py _Tnitialize (),then Py GetPath ()
won't attempt to compute a default search path but uses the one provided instead. This is useful if Python
is embedded by an application that has full knowledge of the location of all modules. The path components
should be separated by the platform dependent delimiter character, which is ' : ' on Unix and macOS, '; ' on
Windows.

This also causes sys.executable to be set to the program full path (see Py _GetProgramFullPath())
and for sys.prefix and sys.exec_prefix to be empty. It is up to the caller to modify these if required
after calling Py_Tnitialize().

Use Py_DecodeLocale () to decode a bytes string to get a wchar_* string.

The path argument is copied internally, so the caller may free it after the call completes.

3.8 stiriimiinde degisti: The program full path is now used for sys . executable, instead of the program name.
3.11 siiriimiinden beri kullanim digt.

const char *Py_GetVersion ()

Bir parcasi Kararl1 ABI. Return the version of this Python interpreter. This is a string that looks something like

["3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]1"

The first word (up to the first space character) is the current Python version; the first characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as sys.version.

See also the Py_Version constant.

const char *Py_GetPlatform ()

Bir parcast Kararli ABI. Return the platform identifier for the current platform. On Unix, this is formed from
the “official” name of the operating system, converted to lower case, followed by the major revision number;
e.g., for Solaris 2.x, which is also known as SunOS 5.x, the value is ' sunos5'. On macOS, itis 'darwin’.
On Windows, itis 'win'. The returned string points into static storage; the caller should not modify its value.
The value is available to Python code as sys.platform.

const char *Py_GetCopyright ()

Bir parcast Kararl1 ABL Return the official copyright string for the current Python version, for example
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.copyright.
const char *Py_GetCompiler ()

Bir parcast Kararli ABIL. Return an indication of the compiler used to build the current Python version, in
square brackets, for example:

["[GCC 2:T02o2] "]

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.
const char *Py_GetBuildInfo ()

Bir parcasi Kararli ABI. Return information about the sequence number and build date and time of the current
Python interpreter instance, for example

["#67, Aug 1 1997, 22:34:28" }

198 Boélium 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.9

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

void PySys_SetArgvEx (int argc, wchar_t **argv, int updatepath)
Bir parcast Kararli ABIL. This API is kept for backward compatibility: setting PyConfig.argv, PyConfig.
parse_argvand PyConfig.safe_path should be used instead, see Python Initialization Configuration.

Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main ()
function with the difference that the first entry should refer to the script file to be executed rather than
the executable hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv
can be an empty string. If this function fails to initialize sys.argv, a fatal condition is signalled using
Py_FatalError().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys.
path according to the following algorithm:

« If the name of an existing script is passed in argv [0], the absolute path of the directory where the script
is located is prepended to sys.path.

o Otherwise (that is, if argc is 0 or argv [0] doesn’t point to an existing file name), an empty string is
prepended to sys.path, which is the same as prepending the current working directory (".").

Use Py_DecodeLocale () to decode a bytes string to get a wchar_t * string.

See also PyConfig.orig _argvand PyConfig.argv members of the Python Initialization Configuration.

O Not

It is recommended that applications embedding the Python interpreter for purposes other than executing a
single script pass 0 as updatepath, and update sys .path themselves if desired. See CVE 2008-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sys . path element
after having called PySys_SetArgv (), for example using:

[PyRun_SimpleString("import sys; sys.path.pop(0)\n"); }

Added in version 3.1.3.
3.11 siirtimiinden beri kullanim digt.

void PySys_SetArgv (int argc, wchar_t **argv)

Bir parcast Kararli ABL This API is kept for backward compatibility: setting PyConfig.argv and
PyConfig.parse_argv should be used instead, see Python Initialization Configuration.

This function works like PySys_SetArgvEx () with updatepath set to 1 unless the python interpreter was
started with the -I.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_t * string.

See also PyConfig.orig_argvand PyConfig.argv members of the Python Initialization Configuration.
3.4 siiriimiinde degisti: The updatepath value depends on -I.

3.11 siiriimiinden beri kullanim digt.

void Py_SetPythonHome (const wchar_t *home)

Bir parcasi Kararli ABIL This API is kept for backward compatibility: setting PyConfig. home should be used
instead, see Python Initialization Configuration.

Set the default “home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for
the meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the contents of this
storage.

9.4. Process-wide parameters 199

https://www.cve.org/CVERecord?id=CVE-2008-5983

The Python/C API, Yayim 3.12.9

Use Py_DecodeLocale () to decode a bytes string to get a wchar_t * string.
3.11 siiriimiinden beri kullanim dig1.

wchar_t *Py_GetPythonHome ()

Bir parcast Kararli ABI Return the default “home”, that is, the value set by a previous call to
Py_SetPythonHome (), or the value of the PYTHONHOME environment variable if it is set.

This function should not be called before Py Initialize (), otherwise it returns NULL.

3.10 siirtimiinde degisti: It now returns NULL if called before Py_Tnitialize().

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the G/L may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see
sys.setswitchinterval ()). The lock is also released around potentially blocking I/O operations like reading or
writing a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
pPyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_Get ().

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py _BEGIN_ALLOW_THREADS
Do some blocking I/O operation
Py_END_ALLOW_THREADS

The Py BEGIN ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.

The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
Do some blocking I/O operation
PyEval_RestoreThread (_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the
lock is released (since another thread could immediately acquire the lock and store its own thread state in the global
variable). Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing
the thread state pointer.

200 Boélium 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.9

© Not

Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or cryptog-
raphic functions operating over memory buffers. For example, the standard z1ib and hash1ib modules release
the GIL when compressing or hashing data.

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is
automatically associated to them and the code showed above is therefore correct. However, when threads are created
from C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there
a thread state structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the afo-
rementioned third-party library), you must first register these threads with the interpreter by creating a thread state
data structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using the
Python/C API. When you are done, you should reset the thread state pointer, release the GIL, and finally free the
thread state data structure.

The PyGILState Ensure () and PyGILState_Release () functions do all of the above automatically. The ty-
pical idiom for calling into Python from a C thread is:

PyGILState STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction () ;
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* functions assume there is only one global interpreter (created automatically by
Py_Initialize ()).Python supports the creation of additional interpreters (using Py_NewInterpreter ()), but
mixing multiple interpreters and the PyGILState_* API is unsupported.

9.5.3 Cautions about fork()

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems
with fork (), after a process forks only the thread that issued the fork will exist. This has a concrete impact both on
how locks must be handled and on all stored state in CPython’s runtime.

The fact that only the “current” thread remains means any locks held by other threads will never be released. Python
solves this for os. fork () by acquiring the locks it uses internally before the fork, and releasing them afterwards.
In addition, it resets any lock-objects in the child. When extending or embedding Python, there is no way to inform
Python of additional (non-Python) locks that need to be acquired before or reset after a fork. OS facilities such
as pthread_atfork () would need to be used to accomplish the same thing. Additionally, when extending or
embedding Python, calling fork () directly rather than through os. fork () (and returning to or calling into Python)
may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after the fork.
PyOS_AfterFork_Child () tries to reset the necessary locks, but is not always able to.

The fact that all other threads go away also means that CPython’s runtime state there must be cleaned up properly,
which os . fork () does. This means finalizing all other Py Threadstat e objects belonging to the current interpreter
and all other PyTnterpreterState objects. Due to this and the special nature of the “main” interpreter, fork ()

should only be called in that interpreter’s “main” thread, where the CPython global runtime was originally initialized.
The only exception is if exec () will be called immediately after.

9.5. Thread State and the Global Interpreter Lock 201

The Python/C API, Yayim 3.12.9

9.5.4 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the
Python interpreter:

type PyInterpreterState

Bir parcasi Sinithi AP (bir opak yapt olarak). This data structure represents the state shared by a number of
cooperating threads. Threads belonging to the same interpreter share their module administration and a few
other internal items. There are no public members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

type PyThreadState

Bir parcast Sinithi AP (bir opak yapt olarak). This data structure represents the state of a single thread. The
only public data member is:

PylnterpreterState *interp

This thread’s interpreter state.

void PyEval_InitThreads ()

Bir parcast Kararli ABI. Deprecated function which does nothing.
In Python 3.6 and older, this function created the GIL if it didn’t exist.
3.9 siirimiinde degisti: The function now does nothing.

3.7 siirtiimiinde degisti: This function is now called by Py_Initialize (), so youdon't have to call it yourself
anymore.

3.2 stirtimiinde degisti: This function cannot be called before py_Tnitialize () anymore.

3.9 siirtimiinden beri kullanim dis1.

int PyEval_ThreadsInitialized ()

Bir parcasi Kararli ABI. Returns a non-zero value if PyEval_ InitThreads () has been called. This function
can be called without holding the GIL, and therefore can be used to avoid calls to the locking API when running
single-threaded.

3.7 strtimiinde degisti: The GIL is now initialized by Py_Tnitialize ().

3.9 siirtimiinden beri kullanim dis1.

PyThreadState *PyEval_SaveThread ()

Bir parcasi Kararli ABI. Release the global interpreter lock (if it has been created) and reset the thread state to
NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it.

void PyEval_RestoreThread (PyThreadState *tstate)

Bir parcasi Kararli ABIL. Acquire the global interpreter lock (if it has been created) and set the thread state
to tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it,
otherwise deadlock ensues.

O Not

Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_TIsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted
termination.

202

Boliim 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.9

PyThreadState *PyThreadState_Get ()

Bir pargasi Kararli ABL. Return the current thread state. The global interpreter lock must be held. When the
current thread state is NULL, this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState *PyThreadState_Swap (PyThreadState *tstate)

Bir parcasi Kararli ABI. Swap the current thread state with the thread state given by the argument zstate, which
may be NULL. The global interpreter lock must be held and is not released.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState STATE PyGILState_Ensure ()

Bir parcasi Kararli ABIL. Ensure that the current thread is ready to call the Python C API regardless of the
current state of Python, or of the global interpreter lock. This may be called as many times as desired by
a thread as long as each call is matched with a call to PyGILState Release (). In general, other thread-
related APIs may be used between PyGILState Ensure () and PyGILState Release () calls as long
as the thread state is restored to its previous state before the Release(). For example, normal usage of the
Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque “handle” to the thread state when PyGILState Ensure () was called, and
must be passed to PyGILState Release () to ensure Python is left in the same state. Even though recursive
calls are allowed, these handles cannot be shared - each unique call to PyGILState Ensure () mustsave the
handle for its call to PyGILState Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code.
Failure is a fatal error.

O Not

Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted
termination.

void PyGILState_Release (PyGILState_ STATE)

Bir parcast Kararli ABIL Release any resources previously acquired. After this call, Python’s state will be
the same as it was prior to the corresponding PyGILState Ensure () call (but generally this state will be
unknown to the caller, hence the use of the GILState API).

Every call to PyGILState_Ensure () must be matched by a call to PyGTLState Release () on the same
thread.
PyThreadState *PyGILState_GetThisThreadState ()

Bir parcast Kararli ABIL. Get the current thread state for this thread. May return NULL if no GILState API
has been used on the current thread. Note that the main thread always has such a thread-state, even if no
auto-thread-state call has been made on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check ()

Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return
1. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory
allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or
otherwise behave differently.

Added in version 3.4.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOW_THREADS

Bir parcast Kararh ABL This macro expands to { PyThreadState *_save; _save =

9.5. Thread State and the Global Interpreter Lock 203

The Python/C API, Yayim 3.12.9

PyEval_SaveThread();. Note that it contains an opening brace; it must be matched with a follo-
wing Py END_ALLOW_THREADS macro. See above for further discussion of this macro.
Py_END_ALLOW_THREADS
Bir pargasi Kararli ABI. This macro expands to PyEval_ RestoreThread (_save); }.Note thatitcontains
a closing brace; it must be matched with an earlier Py_BEGIN_ALLOW_THREADS macro. See above for further
discussion of this macro.
Py_BLOCK_THREADS
Bir parcasi Kararli ABIL. This macro expands to PyEval_RestoreThread (_save);: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace.
Py_UNBLOCK_THREADS

Bir parcasi Kararli ABL. This macro expands to _save = PyEval_SaveThread();: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

9.5.5 Low-level API

All of the following functions must be called after Py_Initialize ().
3.7 siirimiinde degisti: Py_Tnitialize () now initializes the GIL.

PyInterpreterState *PyInterpreterState_New ()
Bir parcasi Kararli ABI. Create a new interpreter state object. The global interpreter lock need not be held, but
may be held if it is necessary to serialize calls to this function.
Raises an auditing event cpython.PyInterpreterState_New with no arguments.

void PyInterpreterState_Clear (PylnterpreterState *interp)
Bir parcast Kararli ABI. Reset all information in an interpreter state object. The global interpreter lock must
be held.
Raises an auditing event cpython.PyInterpreterState_Clear with no arguments.

void PyInterpreterState_Delete (PylnterpreterState *interp)
Bir parcast Kararlit ABI. Destroy an interpreter state object. The global interpreter lock need not be held. The
interpreter state must have been reset with a previous call to Py InterpreterState_Clear ().

PyThreadState *PyThreadState_New (PylnterpreterState *interp)
Bir parcast Kararlt ABI. Create a new thread state object belonging to the given interpreter object. The global
interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Bir parcasi Kararli ABI. Reset all information in a thread state object. The global interpreter lock must be held.
3.9 siiriimiinde degisti: This function now calls the PyThreadState.on_delete callback. Previously, that
happened in PyThreadState_Delete ().

void PyThreadState_Delete (PyThreadState *tstate)
Bir parcasi Kararli ABI. Destroy a thread state object. The global interpreter lock need not be held. The thread
state must have been reset with a previous call to PyThreadState _Clear ().

void PyThreadState_DeleteCurrent (void)

Destroy the current thread state and release the global interpreter lock. Like PyThreadState_Delete (),
the global interpreter lock must be held. The thread state must have been reset with a previous call to
PyThreadState_Clear().

PyFrameObject *PyThreadState_GetFrame (PyThreadState *tstate)
Bir parcast Kararli ABI 3.10 siiriimiinden beri. Get the current frame of the Python thread state state.

Return a strong reference. Return NULL if no frame is currently executing.
See also PyEval_GetFrame ().

tstate must not be NULL.

204 Boélium 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.9

Added in version 3.9.

uint64_t PyThreadState_Get ID (PyThreadState *tstate)

Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Get the unique thread state identifier of the Python thread state
tstate.

tstate must not be NULL.
Added in version 3.9.

PyInterpreterState *PyThreadState_GetInterpreter (PyThreadState *tstate)
Bir parcas: Kararli ABI 3.10 siiriimiinden beri. Get the interpreter of the Python thread state fstate.

tstate must not be NULL.
Added in version 3.9.

void PyThreadState_EnterTracing (PyThreadState *tstate)
Suspend tracing and profiling in the Python thread state fstate.

Resume them using the Py ThreadState LeaveTracing () function.
Added in version 3.11.

void PyThreadState_LeaveTracing (PyThreadState *tstate)

Resume tracing and profiling in the Python thread state f#stare suspended by the
PyThreadState EnterTracing () function.

See also PyEval_SetTrace () and PyEval_SetProfile() functions.
Added in version 3.11.

PyInterpreterState *PyInterpreterState_Get (void)
Bir parcast Kararli ABI 3.9 siiriimiinden beri. Get the current interpreter.

Issue a fatal error if there no current Python thread state or no current interpreter. It cannot return NULL.
The caller must hold the GIL.
Added in version 3.9.

int64_t PyInterpreterState_GetID (PylnterpreterState *interp)

Bir parcasi Kararlt ABI 3.7 siiriimiinden beri. Return the interpreter’s unique ID. If there was any error in doing
so then -1 is returned and an error is set.

The caller must hold the GIL.
Added in version 3.7.
PyObject *PyInterpreterState_GetDict (PylnterpreterState *interp)
Bir parcasi Kararlt ABI 3.8 siiriimiinden beri. Return a dictionary in which interpreter-specific data may be sto-

red. If this function returns NULL then no exception has been raised and the caller should assume no interpreter-
specific dict is available.

This is not a replacement for PyModule GetState (), which extensions should use to store interpreter-
specific state information.

Added in version 3.8.

typedef PyObject *(*_PyFrameEvalFunction)(PyThreadState *tstate, _PylnterpreterFrame *frame, int
throwflag)

Type of a frame evaluation function.

The throwflag parameter is used by the throw () method of generators: if non-zero, handle the current ex-
ception.

3.9 siirimiinde degisti: The function now takes a tstate parameter.

3.11 siirtimiinde degisti: The frame parameter changed from PyFrameObject* to
_PyInterpreterFrame*.

9.5. Thread State and the Global Interpreter Lock 205

The Python/C API, Yayim 3.12.9

_PyFrameEvalFunction _PyInterpreterState_GetEvalFrameFunc (PylnterpreterState *interp)

Get the frame evaluation function.
See the PEP 523 “Adding a frame evaluation API to CPython”.
Added in version 3.9.

void _PyInterpreterState_SetEvalFrameFunc (PylnterpreterState *interp, _PyFrameEvalFunction

eval frame)

Set the frame evaluation function.
See the PEP 523 “Adding a frame evaluation API to CPython”.
Added in version 3.9.

PyObject *PyThreadState_GetDict ()

Dindiirdiigii deger: Odiing alinmis referans. Bir parcast Kararli ABIL Return a dictionary in which extensions
can store thread-specific state information. Each extension should use a unique key to use to store state in the
dictionary. It is okay to call this function when no current thread state is available. If this function returns NULL,
no exception has been raised and the caller should assume no current thread state is available.

int PyThreadState_SetAsyncExc (unsigned long id, PyObject *exc)

Bir parcasi Kararli ABL. Asynchronously raise an exception in a thread. The id argument is the thread id of
the target thread; exc is the exception object to be raised. This function does not steal any references to exc.
To prevent naive misuse, you must write your own C extension to call this. Must be called with the GIL held.
Returns the number of thread states modified; this is normally one, but will be zero if the thread id isn’t found.
If exc is NULL, the pending exception (if any) for the thread is cleared. This raises no exceptions.

3.7 strtimiinde degisti: The type of the id parameter changed from long to unsigned long.

void PyEval_AcquireThread (PyThreadState *tstate)

Bir pargasi Kararlit ABL. Acquire the global interpreter lock and set the current thread state to tstate, which must
not be NULL. The lock must have been created earlier. If this thread already has the lock, deadlock ensues.

O Not

Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted
termination.

3.8 surimiinde degisti: Updated to be consistent with PyEval RestoreThread(),
Py_END_ALLOW_THREADS (), and PyGILState_Ensure(), and terminate the current thread if cal-
led while the interpreter is finalizing.

PyEval_ RestoreThread () is a higher-level function which is always available (even when threads have not
been initialized).

void PyEval_ReleaseThread (PyThreadState *tstate)

Bir parcasi Kararli ABIL Reset the current thread state to NULL and release the global interpreter lock. The lock
must have been created earlier and must be held by the current thread. The tstate argument, which must not be
NULL, is only used to check that it represents the current thread state — if it isn’t, a fatal error is reported.

pPyEval_SaveThread () is a higher-level function which is always available (even when threads have not
been initialized).

void PyEval_AcquireLock ()

Bir pargasi Kararli ABI. Acquire the global interpreter lock. The lock must have been created earlier. If this
thread already has the lock, a deadlock ensues.

3.2 siirtimiinden beri kullanim digi: This function does not update the current thread state. Please use
PyEval_RestoreThread() or PyEval_AcquireThread () instead.

206

Boliim 9. Initialization, Finalization, and Threads

https://peps.python.org/pep-0523/
https://peps.python.org/pep-0523/

The Python/C API, Yayim 3.12.9

O Not

Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted
termination.

3.8 sturumiinde degisti: Updated to be consistent with PyEval RestoreThread(),
Py _END_ALLOW_THREADS (), and PyGILState_FEnsure(), and terminate the current thread if cal-
led while the interpreter is finalizing.

void PyEval_ReleaseLock ()
Bir parcas: Kararl1 ABIL. Release the global interpreter lock. The lock must have been created earlier.

3.2 siirimiinden beri kullanim digi: This function does not update the current thread state. Please use
PyEval_SaveThread () Oor PyEval_ReleaseThread () instead.

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do
that.

The “main” interpreter is the first one created when the runtime initializes. It is usually the only Python interpreter in
a process. Unlike sub-interpreters, the main interpreter has unique process-global responsibilities like signal handling.
It is also responsible for execution during runtime initialization and is usually the active interpreter during runtime
finalization. The PyInterpreterState_Main () function returns a pointer to its state.

You can switch between sub-interpreters using the PyThreadState_Swap () function. You can create and destroy
them using the following functions:
type PyInterpreterConfig
Structure containing most parameters to configure a sub-interpreter. Its values are used only in
Py _NewInterpreterFromConfig () and never modified by the runtime.
Added in version 3.12.

Structure fields:

int use_main_obmalloc
If this is 0 then the sub-interpreter will use its own “object” allocator state. Otherwise it will use (share)
the main interpreter’s.

If this is 0 then check multi_interp_extensions must be 1 (non-zero). If thisis 1 then gi 1 must
not be PyInterpreterConfig OWN_GIL.

int allow_fork
If this is 0 then the runtime will not support forking the process in any thread where the sub-interpreter
is currently active. Otherwise fork is unrestricted.

Note that the subprocess module still works when fork is disallowed.

int allow_exec
If this is 0 then the runtime will not support replacing the current process via exec (e.g. os.execv ())
in any thread where the sub-interpreter is currently active. Otherwise exec is unrestricted.

Note that the subprocess module still works when exec is disallowed.

int allow_threads

If this is 0 then the sub-interpreter’s threading module won’t create threads. Otherwise threads are
allowed.

9.6. Sub-interpreter support 207

The Python/C API, Yayim 3.12.9

int allow_daemon_threads
If this is 0 then the sub-interpreter’s t hreading module won’t create daemon threads. Otherwise daemon
threads are allowed (as long as a11ow_threads is non-zero).

int check_multi_interp_extensions

If this is 0 then all extension modules may be imported, including legacy (single-phase init) modules,
in any thread where the sub-interpreter is currently active. Otherwise only multi-phase init extension
modules (see PEP 489) may be imported. (Also see Py_mod _multiple_interpreters.)

This must be 1 (non-zero) if use_main_obmallocis 0.
int gil
This determines the operation of the GIL for the sub-interpreter. It may be one of the following:

PyInterpreterConfig_ DEFAULT_GIL
Use the default selection (PyTnterpreterConfig SHARED_GTL).

PyInterpreterConfig_SHARED_GIL
Use (share) the main interpreter’s GIL.

PyInterpreterConfig OWN_GIL
Use the sub-interpreter’s own GIL.

If this is PyInterpreterConfig OWN_GIL then PyInterpreterConfig.use_main_obmalloc
must be 0.

PyStatus Py_NewInterpreterFromConfig (PyThreadState **tstate_p, const PylnterpreterConfig *config)

Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python
code. In particular, the new interpreter has separate, independent versions of all imported modules, including
the fundamental modules builtins, __main__ and sys. The table of loaded modules (sys.modules) and
the module search path (sys.path) are also separate. The new environment has no sys.argv variable. It
has new standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr (however these refer
to the same underlying file descriptors).

The given config controls the options with which the interpreter is initialized.

Upon success, tstate_p will be set to the first thread state created in the new sub-interpreter. This thread state
is made in the current thread state. Note that no actual thread is created; see the discussion of thread states
below. If creation of the new interpreter is unsuccessful, fstate_p is set to NULL; no exception is set since the
exception state is stored in the current thread state and there may not be a current thread state.

Like all other Python/C API functions, the global interpreter lock must be held before calling this function
and is still held when it returns. Likewise a current thread state must be set on entry. On success, the returned
thread state will be set as current. If the sub-interpreter is created with its own GIL then the GIL of the calling
interpreter will be released. When the function returns, the new interpreter’s GIL will be held by the current
thread and the previously interpreter’s GIL will remain released here.

Added in version 3.12.

Sub-interpreters are most effective when isolated from each other, with certain functionality restricted:

PyInterpreterConfig config = {
.use_main_obmalloc = O,
.allow_fork = 0,
.allow_exec = 0,
.allow_threads = 1,
.allow_daemon_threads = 0O,
.check_multi_interp_ extensions = 1,
.gil = PyInterpreterConfig OWN_GIL,

i

PyThreadState *tstate = NULL;

PyStatus status = Py _NewInterpreterFromConfig(&tstate, &config);

(sonraki sayfaya devam)

208 Boélium 9. Initialization, Finalization, and Threads

https://peps.python.org/pep-0489/

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

if (PyStatus_Exception(status)) {
Py_ExitStatusException (status);

Note that the config is used only briefly and does not get modified. During initialization the config’s values are
converted into various Py InterpreterState values. A read-only copy of the config may be stored internally
onthe PyInterpreterState.

Extension modules are shared between (sub-)interpreters as follows:

» For modules using multi-phase initialization, e.g. PyModule FromDefAndSpec (), a separate module
object is created and initialized for each interpreter. Only C-level static and global variables are shared
between these module objects.

» For modules using single-phase initialization, e.g. PyModule Create (), the first time a particular ex-
tension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled
away. When the same extension is imported by another (sub-)interpreter, a new module is initialized and
filled with the contents of this copy; the extension’s init function is not called. Objects in the module’s
dictionary thus end up shared across (sub-)interpreters, which might cause unwanted behavior (see Bugs
and caveats below).

Note that this is different from what happens when an extension is imported after the interpreter has
been completely re-initialized by calling Py _FinalizeEx () and Py_Initialize ();in that case, the
extension’s initmodule function is called again. As with multi-phase initialization, this means that only
C-level static and global variables are shared between these modules.

PyThreadState *Py_NewInterpreter (void)

Bir parcast Kararli ABIL Create a new sub-interpreter. This is essentially just a wrapper around
Py _NewInterpreterFromConfig () with a config that preserves the existing behavior. The result is an
unisolated sub-interpreter that shares the main interpreter’s GIL, allows fork/exec, allows daemon threads, and
allows single-phase init modules.

void Py_EndInterpreter (PyThreadState *tstate)

Bir parcas: Kararli ABIL Destroy the (sub-)interpreter represented by the given thread state. The given thread
state must be the current thread state. See the discussion of thread states below. When the call returns, the cur-
rent thread state is NULL. All thread states associated with this interpreter are destroyed. The global interpreter
lock used by the target interpreter must be held before calling this function. No GIL is held when it returns.

Py _FinalizeEx () will destroy all sub-interpreters that haven’t been explicitly destroyed at that point.

9.6.1 A Per-Interpreter GIL

Using Py_NewInterpreterFromConfig () youcan create a sub-interpreter that is completely isolated from other
interpreters, including having its own GIL. The most important benefit of this isolation is that such an interpreter
can execute Python code without being blocked by other interpreters or blocking any others. Thus a single Python
process can truly take advantage of multiple CPU cores when running Python code. The isolation also encourages a
different approach to concurrency than that of just using threads. (See PEP 554.)

Using an isolated interpreter requires vigilance in preserving that isolation. That especially means not sharing any
objects or mutable state without guarantees about thread-safety. Even objects that are otherwise immutable (e.g.
None, (1, 5))can’t normally be shared because of the refcount. One simple but less-efficient approach around this
is to use a global lock around all use of some state (or object). Alternately, effectively immutable objects (like integers
or strings) can be made safe in spite of their refcounts by making them “immortal”. In fact, this has been done for
the builtin singletons, small integers, and a number of other builtin objects.

If you preserve isolation then you will have access to proper multi-core computing without the complications that
come with free-threading. Failure to preserve isolation will expose you to the full consequences of free-threading,
including races and hard-to-debug crashes.

Aside from that, one of the main challenges of using multiple isolated interpreters is how to communicate between
them safely (not break isolation) and efficiently. The runtime and stdlib do not provide any standard approach to

9.6. Sub-interpreter support 209

https://peps.python.org/pep-0554/

The Python/C API, Yayim 3.12.9

this yet. A future stdlib module would help mitigate the effort of preserving isolation and expose effective tools for
communicating (and sharing) data between interpreters.

Added in version 3.12.

9.6.2 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t
perfect — for example, using low-level file operations like os . close () they can (accidentally or maliciously) affect
each other’s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when using single-phase initialization or (static) global variables. It is possible
to insert objects created in one sub-interpreter into a namespace of another (sub-)interpreter; this should be avoided
if possible.

Special care should be taken to avoid sharing user-defined functions, methods, instances or classes between sub-
interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dictionary of
loaded modules. It is equally important to avoid sharing objects from which the above are reachable.

Also note that combining this functionality with PyGILState_* APIs is delicate, because these APIs assume a bi-
jection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters.
It is highly recommended that you don’t switch sub-interpreters between a pair of matching PyGILState Ensure ()
and PyGILState_Release () calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using sub-interpreters.

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take
the form of a function pointer and a void pointer argument.
int Py_AddPendingCall (int (*func)(void*), void *arg)

Bir parcasi Kararli ABIL Schedule a function to be called from the main interpreter thread. On success, 0 is
returned and func is queued for being called in the main thread. On failure, -1 is returned without setting any
exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument
arg. It will be called asynchronously with respect to normally running Python code, but with both these con-
ditions met:

« on a byfecode boundary;
o with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return 0 on success, or —1 on failure with an exception set. func won’t be interrupted to perform
another asynchronous notification recursively, but it can still be interrupted to switch threads if the global
interpreter lock is released.

This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

To call this function in a subinterpreter, the caller must hold the GIL. Otherwise, the function func can be
scheduled to be called from the wrong interpreter.

A Uyan

This is a low-level function, only useful for very special cases. There is no guarantee that func will be
called as quick as possible. If the main thread is busy executing a system call, func won’t be called before
the system call returns. This function is generally not suitable for calling Python code from arbitrary C
threads. Instead, use the PyGILState API.

Added in version 3.1.

210 Boélium 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.9

3.9 siiriimiinde degisti: If this function is called in a subinterpreter, the function func is now scheduled to be
called from the subinterpreter, rather than being called from the main interpreter. Each subinterpreter now has
its own list of scheduled calls.

9.8 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These
are used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable
objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface
allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as
had been reported to the Python-level trace functions in previous versions.

typedef int (¥*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval SetProfile() and PyEval_ SetTrace ().
The first parameter is the object passed to the registration function as obj, frame is the frame ob-
ject to which the event pertains, what is one of the constants PyTrace CALL, PyTrace EXCEPTION,

PyTrace_ LINE, PyTrace_RETURN, PyTrace_ C_CALL,PyTrace_C_EXCEPTION,PyTrace_C_RETURN,
or PyTrace_OPCODE, and arg depends on the value of what:

Value of what Meaning of arg

PyTrace_CALL Always Py None.

PyTrace_ EXCEPTION Exception information as returned by sys.exc_info ().

PyTrace LINE Always Py_None.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.

PyTrace_C_EXCEPTION Function object being called.

PyTrace_C_RETURN Function object being called.

PyTrace_OPCODE Always Py_None.

int PyTrace_CALL
The value of the what parameter to a Py_t race func function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION

The value of the what parameter toa Py_t race func function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception
becomes set within the frame being executed. The effect of this is that as exception propagation causes the
Python stack to unwind, the callback is called upon return to each frame as the exception propagates. Only
trace functions receives these events; they are not needed by the profiler.

int PyTrace_LINE

The value passed as the what parameter to a Py_tracefunc function (but not a profiling function) when a
line-number event is being reported. It may be disabled for a frame by setting £_trace_lines to 0 on that
frame.

int PyTrace_RETURN

The value for the what parameter to Py _t racefunc functions when a call is about to return.

int PyTrace_C_CALL

The value for the what parameter to Py_t racefunc functions when a C function is about to be called.

int PyTrace_C_EXCEPTION

The value for the what parameter to Py_t racefunc functions when a C function has raised an exception.

9.8. Profiling and Tracing 211

The Python/C API, Yayim 3.12.9

int PyTrace_C_RETURN

The value for the what parameter to Py_t racefunc functions when a C function has returned.

int PyTrace_OPCODE

The value for the what parameter to Pyt racefunc functions (but not profiling functions) when a new op-
code is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to / on the frame.

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)

Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may
be any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except Py Trace LINE PyTrace OPCODE and PyTrace EXCEPTION.

See also the sys.setprofile () function.
The caller must hold the GIL.

void PyEval_SetProfileAllThreads (Py_tracefunc func, PyObject *obj)

Like pyEval_SetProfile () but sets the profile function in all running threads belonging to the current
interpreter instead of the setting it only on the current thread.

The caller must hold the GIL.

As PyEval_SetProfile (), this function ignores any exceptions raised while setting the profile functions in
all threads.

Added in version 3.12.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)

Set the tracing function to func. This is similar to PyEval SetpProfile (), except the tracing function does
receive line-number events and per-opcode events, but does not receive any event related to C function objects
being called. Any trace function registered using PyEval SetTrace () will not receive Py Trace C_CALL,
PyTrace_C_EXCEPTION Or PyTrace_C_RETURN as a value for the what parameter.

See also the sys.settrace () function.
The caller must hold the GIL.

void PyEval_SetTraceAllThreads (Py_fracefunc func, PyObject *obj)

Like pPyEval SetTrace () but sets the tracing function in all running threads belonging to the current in-
terpreter instead of the setting it only on the current thread.

The caller must hold the GIL.

As PyEval_SetTrace (), this function ignores any exceptions raised while setting the trace functions in all
threads.

Added in version 3.12.

9.9 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylnterpreterState *PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.

PylnterpreterState *PyInterpreterState_Main ()
Return the main interpreter state object.
PylnterpreterState *PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after inferp from the list of all such objects.

212 Boélium 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.9

PyThreadState *PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter
interp.

PyThreadState *PyThreadState_Next (PyThreadState *tstate)

Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState object.

9.10 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native
TLS implementation to support the Python-level thread local storage API (threading.local). The CPython C
level APIs are similar to those offered by pthreads and Windows: use a thread key and functions to associate a void*
value per thread.

The GIL does not need to be held when calling these functions; they supply their own locking.

Note that Python.h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

O Not

None of these API functions handle memory management on behalf of the void* values. You need to allocate
and deallocate them yourself. If the void* values happen to be Pyobject*, these functions don’t do refcount
operations on them either.

9.10.1 Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses
anew type Py_tss_t instead of int to represent thread keys.

Added in version 3.7.

> Ayrica bakimiz

“A New C-API for Thread-Local Storage in CPython” (PEP 539)

type Py_tss_t
This data structure represents the state of a thread key, the definition of which may depend on the underlying
TLS implementation, and it has an internal field representing the key’s initialization state. There are no public
members in this structure.

When Py_LIMITED_API is not defined, static allocation of this type by Py _tss_NEEDS INIT is allowed.

Py_tss_NEEDS_INIT

This macro expands to the initializer for Py _tss_t variables. Note that this macro won’t be defined with
Py_LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py tss_t, required in extension modules built with Py_LIMITED_API, where static
allocation of this type is not possible due to its implementation being opaque at build time.
Py_tss_t *PyThread_tss_alloc ()

Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return a value which is the same state as a value initialized with
Py_tss_NEEDS_INIT, or NULL in the case of dynamic allocation failure.

9.10. Thread Local Storage Support 213

https://peps.python.org/pep-0539/

The Python/C API, Yayim 3.12.9

void PyThread_tss_free (Py_fss_t *key)

Bir parcasi Kararlt ABI 3.7 siiriimiinden beri. Free the given key allocated by Py Thread tss_alloc (), after
first calling PyThread tss_delete () to ensure any associated thread locals have been unassigned. This is
a no-op if the key argument is NULL.

O Not

A freed key becomes a dangling pointer. You should reset the key to NULL.

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread tss_set ()
and PyThread tss_get () are undefined if the given Py tss t has not been initialized by
PyThread_tss_create().
int PyThread_tss_is_created (Py_fss_t *key)
Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return a non-zero value if the given Py_tss_t has been initi-
alized by PyThread_tss_create().
int PyThread_tss_create (Py_fss_t *key)
Bir parcasi Kararl1 ABI 3.7 siiriimiinden beri. Return a zero value on successful initialization of a TSS key. The
behavior is undefined if the value pointed to by the key argument is not initialized by Py_tss_NEEDS_ INIT.
This function can be called repeatedly on the same key - calling it on an already initialized key is a no-op and
immediately returns success.
void PyThread_tss_delete (Py_fss_t *key)
Bir parcast Kararli ABI 3.7 siiriimiinden beri. Destroy a TSS key to forget the values associated with the
key across all threads, and change the key’s initialization state to uninitialized. A destroyed key is able to be
initialized again by PyThread tss_create (). This function can be called repeatedly on the same key —
calling it on an already destroyed key is a no-op.
int PyThread_tss_set (Py_fss_t *key, void *value)
Bir parcast Kararli ABI 3.7 siiriimiinden beri. Return a zero value to indicate successfully associating a void*
value with a TSS key in the current thread. Each thread has a distinct mapping of the key to a void* value.
void *PyThread_tss_get (Py_tss_t *key)

Bir parcasi Kararli ABI 3.7 siiriimiinden beri. Return the void* value associated with a TSS key in the current
thread. This returns NULL if no value is associated with the key in the current thread.

9.10.2 Thread Local Storage (TLS) API
3.7 stirtimiinden beri kullanim dis1: This API is superseded by Thread Specific Storage (TSS) API.

O Not

This version of the API does not support platforms where the native TLS key is defined in a way that cannot be
safely cast to int. On such platforms, PyThread create_key () will return immediately with a failure status,
and the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.

int PyThread_create_key ()
Bir parcast Kararli ABL

void PyThread_delete_key (int key)
Bir parcast Kararli ABL

214 Boélium 9. Initialization, Finalization, and Threads

The Python/C API, Yayim 3.12.9

int PyThread_set_key_value (int key, void *value)
Bir parcast Kararli ABL

void *PyThread_get_key_value (int key)
Bir parcast Kararli ABL

void PyThread_delete_key_value (int key)
Bir parcast Kararli ABL

void PyThread_ReInitTLS ()
Bir parcast Kararli ABL

9.10. Thread Local Storage Support 215

The Python/C API, Yayim 3.12.9

216 Boliim 9. Initialization, Finalization, and Threads

goLom 10

Python Initialization Configuration

Added in version 3.8.

Python can be initialized with Py_TnitializeFromConfig () andthe PyConfig structure. It can be preinitialized
with Py_Prelnitialize () and the PyPreConfig structure.

There are two kinds of configuration:

o The Python Configuration can be used to build a customized Python which behaves as the regular Python. For
example, environment variables and command line arguments are used to configure Python.

« The Isolated Configuration can be used to embed Python into an application. It isolates Python from the system.
For example, environment variables are ignored, the LC_CTYPE locale is left unchanged and no signal handler
is registered.

The Py_RunMain () function can be used to write a customized Python program.

See also Initialization, Finalization, and Threads.

¢ Ayrica bakimz

PEP 587 “Python Initialization Configuration”.

10.1 Example

Example of customized Python always running in isolated mode:

int main(int argc, char **argv)
{
PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&confiqg);
config.isolated = 1;

/* Decode command line arguments.
Implicitly preinitialize Python (in isolated mode). */
status = PyConfig_SetBytesArgv (&config, argc, argv);

(sonraki sayfaya devam)

217

https://peps.python.org/pep-0587/

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

if (PyStatus_Exception (status)) {
goto exception;

status = Py_InitializeFromConfig(&config);
if (PyStatus_Exception (status)) {
goto exception;
}
PyConfig_Clear (&configqg);

return Py_RunMain () ;

exception:

PyConfig_Clear (&configqg) ;

if (PyStatus_IsExit (status)) {
return status.exitcode;

}

/* Display the error message and exit the process with
non-zero exit code */

Py_ExitStatusException (status);

10.2 PyWideStringList

type PyWideStringList

List of wchar_t* strings.
If length is non-zero, items must be non-NULL and all strings must be non-NULL.
Methods:

PyStatus PyWideStringList_Append (PyWideStringList *1ist, const wchar_t *item)
Append item to list.

Python must be preinitialized to call this function.

PyStatus PyWideStringList_Insert (PyWideStringList *list, Py_ssize_t index, const wchar_t *item)
Insert item into list at index.
If index is greater than or equal to list length, append item to list.
index must be greater than or equal to 0.
Python must be preinitialized to call this function.
Structure fields:
Py_ssize_t length
List length.

wchar_t **items

List items.

10.3 PyStatus

type PyStatus

Structure to store an initialization function status: success, error or exit.

For an error, it can store the C function name which created the error.

218

B6lim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.9

Structure fields:

int exitcode

Exit code. Argument passed to exit ().

const char *err_msg

Error message.

const char *func

Name of the function which created an error, can be NULL.

Functions to create a status:

PyStatus PyStatus_0k (void)
Success.

PyStatus PyStatus_Error (const char *err_msg)

Initialization error with a message.
err_msg must not be NULL.

PyStatus PyStatus_NoMemory (void)

Memory allocation failure (out of memory).

PyStatus PyStatus_Exit (int exitcode)
Exit Python with the specified exit code.

Functions to handle a status:

int PyStatus_Exception (PyStatus status)

Is the status an error or an exit? If true, the exception must be handled; by -calling

Py_ExitStatusException () for example.

int PyStatus_IsError (PyStatus status)
Is the result an error?

int PyStatus_IsExit (PyStatus status)
Is the result an exit?

void Py_ExitStatusException (PyStatus status)

Call exit (exitcode) if status is an exit. Print the error message and exit with a non-zero exit code if
status is an error. Must only be called if PyStatus_Exception (status) is non-zero.

O Not

Internally, Python uses macros which set PyStatus. func, whereas functions to create a status set func to

NULL.

Example:

PyStatus alloc(void **ptr, size_t size)
{
*ptr = PyMem RawMalloc (size);
if (*ptr == NULL) {
return PyStatus_NoMemory () ;

}
return PyStatus_Ok () ;

int main (int argc, char **argv)

{

(sonraki sayfaya devam)

10.3. PyStatus

219

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

void *ptr;
PyStatus status = alloc (&ptr, 16);
if (PyStatus_Exception (status)) {

Py_ExitStatusException (status);
}
PyMem_Free (ptr);
return 0O;

10.4 PyPreConfig

type PyPreConfig

Structure used to preinitialize Python.
Function to initialize a preconfiguration:

void PyPreConfig_InitPythonConfig (PyPreConfig *preconfig)
Initialize the preconfiguration with Python Configuration.

void PyPreConfig_InitIsolatedConfig (PyPreConfig *preconfig)
Initialize the preconfiguration with Isolated Configuration.

Structure fields:

int allocator

Name of the Python memory allocators:
e PYMEM_ALLOCATOR_NOT_SET (0): don’t change memory allocators (use defaults).
e PYMEM_ALLOCATOR_DEFAULT (1): default memory allocators.
e PYMEM ALLOCATOR_DEBUG (2): default memory allocators with debug hooks.
e PYMEM ALLOCATOR_MALLOC (3):use malloc () of the C library.
e PYMEM_ALLOCATOR_MALLOC_DEBUG (4): force usage of malloc () with debug hooks.
e PYMEM_ALLOCATOR_PYMALLOC (5): Python pymalloc memory allocator.
e PYMEM ALLOCATOR_PYMALLOC_DEBUG (6): Python pymalloc memory allocator with debug hooks.

PYMEM ALLOCATOR_PYMALLOC and PYMEM_ALLOCATOR_PYMALLOC_DEBUG are not supported if Pyt-
hon is configured using --without-pymalloc.

See Memory Management.
Default: PYMEM_ALLOCATOR_NOT_SET.

int configure_locale

Set the LC_CTYPE locale to the user preferred locale.

If equals to 0, set coerce_c_localeand coerce_c_locale_warn members to 0.
See the locale encoding.

Default: 1 in Python config, 0 in isolated config.

int coerce_c_locale

If equals to 2, coerce the C locale.
If equals to 1, read the LC_CTYPE locale to decide if it should be coerced.
See the locale encoding.

Default: -1 in Python config, 0 in isolated config.

220 B6lim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.9

int coerce_c_locale_warn

If non-zero, emit a warning if the C locale is coerced.
Default: -1 in Python config, 0 in isolated config.

int dev_mode

Python Development Mode: see PyConfig.dev_mode.
Default: -1 in Python mode, 0 in isolated mode.

int isolated

Isolated mode: see PyConfig.isolated.
Default: 0 in Python mode, 1 in isolated mode.

int legacy_windows_fs_encoding

If non-zero:
e Set PyPreConfig.utf8_modeto 0,
e Set PyConfig.filesystem_encoding to "mbcs",
e Set PyConfig.filesystem errorsto "replace".
Initialized from the PYTHONLEGACYWINDOWSFSENCODING environment variable value.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.
Default: 0.

int parse_argv
If non-zero, Py _PrelnitializeFromArgs () and Py_PrelnitializeFromBytesArgs () parse
their argv argument the same way the regular Python parses command line arguments: see Command
Line Arguments.

Default: 1 in Python config, 0 in isolated config.

int use_environment

Use environment variables? See PyConfig.use_environment.
Default: 1 in Python config and 0 in isolated config.

int ut £8_mode
If non-zero, enable the Python UTF-8 Mode.

Set to 0 or 1 by the -x ut£8 command line option and the PYTHONUTF 8 environment variable.
Also set to 1 if the LC_CTYPE locale is C or POSIX.

Default: -1 in Python config and 0 in isolated config.

10.5 Preinitialize Python with PyPreConfig

The preinitialization of Python:

« Set the Python memory allocators (PyPreConfig.allocator)

« Configure the LC_CTYPE locale (locale encoding)

« Set the Python UTF-8 Mode (PyPreConfig.utf8_mode)
The current preconfiguration (PyPreConfig type) is stored in _PyRuntime.preconfig.
Functions to preinitialize Python:

PyStatus Py_PreInitialize (const PyPreConfig *preconfig)

Preinitialize Python from preconfig preconfiguration.

preconfig must not be NULL.

10.5. Preinitialize Python with PyPreConfig 221

The Python/C API, Yayim 3.12.9

PyStatus Py_PreInitializeFromBytesArgs (const PyPreConfig *preconfig, int argc, char *const *argv)

Preinitialize Python from preconfig preconfiguration.
Parse argv command line arguments (bytes strings) if parse_argv of preconfig is non-zero.
preconfig must not be NULL.

PyStatus Py_PreInitializeFromArgs (const PyPreConfig *preconfig, int argc, wchar_t *const *argv)

Preinitialize Python from preconfig preconfiguration.
Parse argv command line arguments (wide strings) if parse_argv of preconfig is non-zero.
preconfig must not be NULL.

The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception() and
Py ExitStatusException().

For Python Configuration (PyPreConfig InitPythonConfig()), if Python is initialized with command line
arguments, the command line arguments must also be passed to preinitialize Python, since they have an effect on the
pre-configuration like encodings. For example, the -x ut £8 command line option enables the Python UTF-8 Mode.

PyMem_SetAllocator () can be called after Py _Prelnitialize() and before
Py _InitializeFromConfig() to install a custom memory allocator. It can be called before
Py_Prelnitialize () if PyPreConfig.allocator is setto PYMEM_ALLOCATOR_NOT_SET.

Python memory allocation functions like PyMem RawMalloc () mustnot be used before the Python preinitialization,
whereas calling directly malloc () and free () is always safe. Py _DecodeLocale () must not be called before the
Python preinitialization.

Example using the preinitialization to enable the Python UTF-8 Mode:

PyStatus status;
PyPreConfig preconfig;
PyPreConfig InitPythonConfig (&preconfigqg);

preconfig.utf8_mode = 1;

status = Py_PrelInitialize (&preconfig);

if (PyStatus_Exception(status)) {
Py_ExitStatusException (status);

/* at this point, Python speaks UTF-8 */

Py_Initialize();

/* ... use Python API here ... */
Py_Finalize();

10.6 PyConfig

type PyConfig
Structure containing most parameters to configure Python.

When done, the Pyconfig Clear () function must be used to release the configuration memory.
Structure methods:

void PyConfig_InitPythonConfig (PyConfig *config)

Initialize configuration with the Python Configuration.

void PyConfig_InitIsolatedConfig (PyConfig *config)

Initialize configuration with the Isolated Configuration.

222 B6lim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.9

PyStatus PyConfig_SetString (PyConfig *config, wchar_t *const *config_str, const wchar_t *str)

Copy the wide character string st into *config_str.
Preinitialize Python if needed.

PyStatus PyConfig_SetBytesString (PyConfig *config, wchar_t *const *config_str, const char *str)
Decode str using Py_DecodelLocale () and set the result into *config_str.

Preinitialize Python if needed.

PyStatus PyConfig_SetArgv (PyConfig *config, int arge, wchar_t *const *argv)

Set command line arguments (argv member of config) from the argy list of wide character strings.
Preinitialize Python if needed.

PyStatus PyConfig_SetBytesArgv (PyConfig *config, int arge, char *const *argv)

Set command line arguments (argv member of config) from the argv list of bytes strings. Decode bytes
using Py_DecodeLocale ().

Preinitialize Python if needed.

PyStatus PyConfig_SetWideStringList (PyConfig *config, PyWideStringList *list, Py_ssize_t length,
wchar_t **items)

Set the list of wide strings list to length and items.
Preinitialize Python if needed.

PyStatus PyConfig_Read (PyConfig *config)
Read all Python configuration.

Fields which are already initialized are left unchanged.

Fields for path configuration are no longer calculated or modified when calling this function, as of Python
3.11.

The pPyConfig Read() function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are stripped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.

Preinitialize Python if needed.

3.10 siiriimiinde degisti: The PyConfig.argv arguments are now only parsed once, PyConfig.
parse_argv is set to 2 after arguments are parsed, and arguments are only parsed if PyConfig.
parse_argv equals 1.

3.11 siirtimiinde degisti: PyConfig Read () no longer calculates all paths, and so fields listed under
Python Path Configuration may no longer be updated until Py_TnitializeFromConfig () is called.

void PyConfig_Clear (PyConfig *config)

Release configuration memory.

Most pyConfig methods preinitialize Python if needed. In that case, the Python preinitialization configuration
(pyPreconfig)inbased onthe PyConfig. If configuration fields which are in common with PyPreConfig
are tuned, they must be set before calling a PyConfig method:

e PyConfig.dev_mode

e PyConfig.isolated

e PyConfig.parse_argv

e PyConfig.use_environment

Moreover, if PyConfig SetArgv () or PyConfig SetBytesArqgv () is used, this method must be cal-
led before other methods, since the preinitialization configuration depends on command line arguments (if
parse_argv i$ NON-Zero).

The caller of these methods is responsible to handle exceptions (error or exit) using PyStatus_Exception ()
and Py_ExitStatusException ().

10.6. PyConfig 223

The Python/C API, Yayim 3.12.9

Structure fields:
PyWideStringList argv
Command line arguments: sys.argv.

Set parse_argv to 1 to parse argv the same way the regular Python parses Python command line
arguments and then to strip Python arguments from argv.

If argv is empty, an empty string is added to ensure that sys . argv always exists and is never empty.
Default: NULL.
See also the orig_argv member.

int safe_path

If equals to zero, Py_RunMain () prepends a potentially unsafe path to sys.path at startup:
e If argv/0jisequal to L"-m" (python -m module), prepend the current working directory.

o If running a script (python script.py), prepend the script’s directory. If it’s a symbolic link,
resolve symbolic links.

e Otherwise (python -c code and python), prepend an empty string, which means the current
working directory.

Set to 1 by the -P command line option and the PYTHONSAFEPATH environment variable.
Default: 0 in Python config, 1 in isolated config.
Added in version 3.11.

wchar_t *base_exec_prefix

sys.base_exec_prefix.
Default: NULL.
Part of the Python Path Configuration output.

wchar_t *base_executable

Python base executable: sys._base_executable.

Set by the _ PYVENV_LAUNCHER___ environment variable.
Set from PyConfig.executable if NULL.

Default: NULL.

Part of the Python Path Configuration output.

wchar_t *base_prefix

sys.base_prefix.
Default: NULL.
Part of the Python Path Configuration output.

int buffered_stdio

If equals to 0 and configure c_stdio is non-zero, disable buffering on the C streams stdout and
stderr.

Set to 0 by the —u command line option and the PYTHONUNBUFFERED environment variable.
stdin is always opened in buffered mode.

Default: 1.

224 B6lim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.9

int bytes_warning

If equals to 1, issue a warning when comparing bytes or bytearray with str, or comparing bytes
with int.

If equal or greater to 2, raise a BytesWarning exception in these cases.
Incremented by the -b command line option.
Default: 0.

int warn_default_encoding

If non-zero, emit a EncodingWarning warning when io.Text IOWrapper uses its default encoding.
See i0-encoding-warning for details.

Default: 0.
Added in version 3.10.

int code_debug_ranges

If equals to 0, disables the inclusion of the end line and column mappings in code objects. Also disables
traceback printing carets to specific error locations.

Set to 0 by the PYTHONNODEBUGRANGES environment variable and by the -X no_debug_ranges com-
mand line option.

Default: 1.
Added in version 3.11.

wchar_t *check_hash_pycs_mode

Control the validation behavior of hash-based .pyc files: value of the -—check-hash-based-pycs
command line option.

Valid values:
» L"always": Hash the source file for invalidation regardless of value of the ‘check_source’ flag.
e L"never": Assume that hash-based pycs always are valid.
e L"default": The ‘check_source’ flag in hash-based pycs determines invalidation.

Default: L"default™".

See also PEP 552 “Deterministic pycs”.

int configure_c_stdio

If non-zero, configure C standard streams:

« On Windows, set the binary mode (0_BINARY) on stdin, stdout and stderr.

o If buffered_stdio equals zero, disable buffering of stdin, stdout and stderr streams.

o If interactiveisnon-zero, enable stream buffering on stdin and stdout (only stdout on Windows).
Default: 1 in Python config, 0 in isolated config.

int dev_mode

If non-zero, enable the Python Development Mode.
Set to 1 by the -x dev option and the PYTHONDEVMODE environment variable.
Default: -1 in Python mode, 0 in isolated mode.

int dump_refs

Dump Python references?
If non-zero, dump all objects which are still alive at exit.

Set to 1 by the PYTHONDUMPREF'S environment variable.

10.6. PyConfig 225

https://peps.python.org/pep-0552/

The Python/C API, Yayim 3.12.9

Need a special build of Python with the Py TRACE_REFS macro defined: see the configure
—-—with-trace-refs option.

Default: 0.

wchar_t *exec_prefix

The site-specific directory prefix where the platform-dependent Python files are installed: sys.
exec_prefix.

Default: NULL.
Part of the Python Path Configuration output.

wchar_t *executable

The absolute path of the executable binary for the Python interpreter: sys.executable.
Default: NULL.
Part of the Python Path Configuration output.

int faulthandler
Enable faulthandler?

If non-zero, call faulthandler.enable () at startup.
Setto 1 by -X faulthandler and the PYTHONFAULTHANDLER environment variable.
Default: -1 in Python mode, 0 in isolated mode.

wchar_t *filesystem_encoding

Filesystem encoding: sys.getfilesystemencoding ().
On macOS, Android and VxWorks: use "ut £-8" by default.

On Windows: use "utf-8" by default, or "mbcs" if legacy windows_fs_encoding of
PyPreConfig is non-zero.

Default encoding on other platforms:
e "utf-8"if PyPreConfig.utf£8 mode is non-zero.

e "ascii" if Python detects that n1_langinfo (CODESET) announces the ASCII encoding, whe-
reas the mbstowcs () function decodes from a different encoding (usually Latinl).

e "utf-8"if n1_langinfo (CODESET) returns an empty string.
o Otherwise, use the locale encoding: n1_langinfo (CODESET) result.

At Python startup, the encoding name is normalized to the Python codec name. For example, "ANST_X3.
4-1968" is replaced with "ascii".

See also the filesystem errors member.

wchar_t *filesystem_errors

Filesystem error handler: sys.getfilesystemencodeerrors ().

On Windows: use "surrogatepass" by default, or "replace" if legacy windows_fs_encoding
of PyPreConfig isS non-zero.

On other platforms: use "surrogateescape" by default.
Supported error handlers:

e "strict"

e "surrogateescape"

e "surrogatepass" (only supported with the UTF-8 encoding)

See also the filesystem_encoding member.

226

B6lim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.9

unsigned long hash_seed
int use_hash_seed
Randomized hash function seed.
If use_hash_seed s zero, a seed is chosen randomly at Python startup, and hash_seed is ignored.
Set by the PYTHONHASHSEED environment variable.
Default use_hash_seed value: -1 in Python mode, 0 in isolated mode.

wchar_t *home

Python home directory.
If Py _SetPythonHome () has been called, use its argument if it is not NULL.
Set by the PYTHONHOME environment variable.
Default: NULL.
Part of the Python Path Configuration input.
int import_time
If non-zero, profile import time.
Set the 1 by the -x importtime option and the PYTHONPROF ILEIMPORTTIME environment variable.
Default: 0.
int inspect
Enter interactive mode after executing a script or a command.

If greater than 0, enable inspect: when a script is passed as first argument or the -c option is used, enter
interactive mode after executing the script or the command, even when sys. stdin does not appear to
be a terminal.

Incremented by the —i command line option. Set to 1 if the PYTHONINSPECT environment variable is
non-empty.

Default: 0.

int install_signal_handlers
Install Python signal handlers?
Default: 1 in Python mode, 0 in isolated mode.
int interactive
If greater than 0, enable the interactive mode (REPL).
Incremented by the —i command line option.
Default: 0.
int int_max_str_digits
Configures the integer string conversion length limitation. An initial value of -1 means the value
will be taken from the command line or environment or otherwise default to 4300 (sys.int_info.
default_max_str_digits). A value of 0 disables the limitation. Values greater than zero but less

than 640 (sys.int_info.str_digits_check_threshold) are unsupported and will produce an
error.

Configured by the -X int_max_str_digits command line flag or the PYTHONINTMAXSTRDIGITS
environment variable.

Default: -1 in Python mode. 4300 (sys.int_info.default_max_str_digits) in isolated mode.

Added in version 3.12.

10.6. PyConfig 227

The Python/C API, Yayim 3.12.9

int isolated

If greater than 0, enable isolated mode:

o Set safe_path to 1: don’t prepend a potentially unsafe path to sys.path at Python startup, such
as the current directory, the script’s directory or an empty string.

e Set use_environment to 0:ignore PYTHON environment variables.
e Set user site_directory to 0:don’t add the user site directory to sys.path.

o Python REPL doesn’t import readline nor enable default readline configuration on interactive
prompts.

Set to 1 by the -I command line option.
Default: 0 in Python mode, 1 in isolated mode.
See also the Isolated Configuration and PyPreConfig.isolated.

int legacy_windows_stdio

If non-zero, use io.FileIO instead of io._WindowsConsoleIO for sys.stdin, sys.stdout and
sys.stderr.

Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.
Default: 0.

See also the PEP 528 (Change Windows console encoding to UTF-8).

intmalloc_stats

If non-zero, dump statistics on Python pymalloc memory allocator at exit.

Set to 1 by the PYTHONMALLOCSTATS environment variable.

The option is ignored if Python is configured using the --without-pymalloc option.
Default: 0.

wchar_t *platlibdir
Platform library directory name: sys.platlibdir.

Set by the PYTHONPLATLIBDIR environment variable.

Default: value of the PLATLIBDIR macro which is set by the configure --with-platlibdir
option (default: "1ib", or "DLLs" on Windows).

Part of the Python Path Configuration input.
Added in version 3.9.

3.11 siirtimiinde degisti: This macro is now used on Windows to locate the standard library extension
modules, typically under DLLs. However, for compatibility, note that this value is ignored for any non-
standard layouts, including in-tree builds and virtual environments.

wchar_t *pythonpath_env
Module search paths (sys.path) as a string separated by DELIM (os.pathsep).

Set by the PYTHONPATH environment variable.
Default: NULL.
Part of the Python Path Configuration input.

PyWideStringList module_search_paths

228 B6lim 10. Python Initialization Configuration

https://peps.python.org/pep-0528/

The Python/C API, Yayim 3.12.9

int module_search_paths_set

Module search paths: sys.path.

If module search paths_set is equal to 0, Py InitializeFromConfig() will replace
module_search_paths and sets module_search_paths_set to 1.

Default: empty list (module_search_paths) and 0 (module_search_paths_set).
Part of the Python Path Configuration output.

int optimization_level

Compilation optimization level:

« 0: Peephole optimizer, set __debug__ to True.

e 1:Level 0, remove assertions, set __debug__ to False.

o 2: Level 1, strip docstrings.
Incremented by the -0 command line option. Set to the PYTHONOPTIMIZE environment variable value.
Default: 0.

PyWideStringList orig_argv
The list of the original command line arguments passed to the Python executable: sys.orig_argv.

If orig_argv listis empty and argv is not a list only containing an empty string, PyConfig_Read ()
copies argv into orig_argv before modifying argv (if parse_argv is non-zero).

See also the argv member and the Py_GetArgcArgv () function.
Default: empty list.
Added in version 3.10.
int parse_argv
Parse command line arguments?

If equals to 1, parse argv the same way the regular Python parses command line arguments, and strip
Python arguments from argv.

The PyConfig Read() function only parses PyConfig.argv arguments once: PyConfig.
parse_argv 1S set to 2 after arguments are parsed. Since Python arguments are stripped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.

Default: 1 in Python mode, 0 in isolated mode.

3.10 surtimiinde degisti: The PyConfig.argv arguments are now only parsed if PyConfig.
parse_argv equals to 1.

int parser_debug

Parser debug mode. If greater than 0, turn on parser debugging output (for expert only, depending on
compilation options).

Incremented by the —d command line option. Set to the PYTHONDEBUG environment variable value.
Need a debug build of Python (the Py_DEBUG macro must be defined).
Default: 0.

int pathconfig warnings

If non-zero, calculation of path configuration is allowed to log warnings into stderr. If equals to 0,
suppress these warnings.

Default: 1 in Python mode, 0 in isolated mode.
Part of the Python Path Configuration input.

3.11 siiriimiinde degisti: Now also applies on Windows.

10.6. PyConfig 229

The Python/C API, Yayim 3.12.9

wchar_t *prefix

The site-specific directory prefix where the platform independent Python files are installed: sys.
prefix.

Default: NULL.
Part of the Python Path Configuration output.

wchar_t *program_name

Program name used to initialize executable and in early error messages during Python initialization.
o If Py_SetProgramName () has been called, use its argument.
¢« On macOS, use PYTHONEXECUTABLE environment variable if set.

o If the WITH_NEXT_FRAMEWORK macro is defined, use _ PYVENV_LAUNCHER___ environment va-
riable if set.

e Use argv[0] of argv if available and non-empty.

o Otherwise, use L"python" on Windows, or L."python3" on other platforms.
Default: NULL.
Part of the Python Path Configuration input.

wchar_t *pycache_prefix

Directory where cached . pyc files are written: sys.pycache_prefix.

Set by the -X pycache_prefix =PATH command line option and the PYTHONPYCACHEPREFIX en-
vironment variable.

If NULL, sys.pycache_prefix is set to None.
Default: NULL.
int quiet

Quiet mode. If greater than 0, don’t display the copyright and version at Python startup in interactive
mode.

Incremented by the —g command line option.
Default: 0.

wchar_t *run_command

Value of the —c command line option.
Used by Py_RunMain ().
Default: NULL.

wchar_t *run_filename

Filename passed on the command line: trailing command line argument without —c or -m. It is used by
the Py_RunMain () function.

For example, it is set to script .py by the python3 script.py argcommand line.
See also the PyConfig.skip_source_first_1ine option.
Default: NULL.

wchar_t *run_module

Value of the -m command line option.
Used by Py_RunMain ().

Default: NULL.

230 B6lim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.9

int show_ref_count

Show total reference count at exit (excluding immortal objects)?

Setto 1 by -x showrefcount command line option.

Need a debug build of Python (the Py_REF_DEBUG macro must be defined).
Default: 0.

int site_import

Import the site module at startup?

If equal to zero, disable the import of the module site and the site-dependent manipulations of sys.path
that it entails.

Also disable these manipulations if the site module is explicitly imported later (call site.main () if
you want them to be triggered).

Set to 0 by the —s command line option.
sys.flags.no_site is set to the inverted value of site_ import.
Default: 1.

int skip_source_first_line

If non-zero, skip the first line of the PyConfig. run_f£ilename source.
It allows the usage of non-Unix forms of # ! cmd. This is intended for a DOS specific hack only.
Set to 1 by the -x command line option.
Default: 0.
wchar_t *stdio_encoding

wchar_t *stdio_errors

Encoding and encoding errors of sys.stdin, sys.stdout and sys.stderr (but sys.stderr al-
ways uses "backslashreplace" error handler).

If Py _SetStandardStreamEncoding () has been called, use its error and errors arguments if they
are not NULL.

Use the PYTHONIOENCODING environment variable if it is non-empty.
Default encoding:

e "UTF-8" if PyPreConfig.ut f8_mode is hon-zero.

o Otherwise, use the locale encoding.
Default error handler:

¢ On Windows: use "surrogateescape”.

e "surrogateescape" if PyPreConfig.utf8 mode is non-zero, or if the LC_CTYPE locale is
“C” or “POSIX”.

e "strict" otherwise.

int tracemalloc

Enable tracemalloc?
If non-zero, call tracemalloc.start () at startup.

Set by -x tracemalloc =N command line option and by the PYTHONTRACEMALLOC environment
variable.

Default: -1 in Python mode, 0 in isolated mode.

10.6. PyConfig 231

The Python/C API, Yayim 3.12.9

int perf_profiling
Enable compatibility mode with the perf profiler?

If non-zero, initialize the perf trampoline. See perf_profiling for more information.

Set by -x perf command line option and by the PYTHONPERFSUPPORT environment variable.
Default: -1.

Added in version 3.12.

int use_environment

Use environment variables?

If equals to zero, ignore the environment variables.
Set to 0 by the —E environment variable.

Default: 1 in Python config and 0 in isolated config.

int user_site_directory

If non-zero, add the user site directory to sys.path.

Set to 0 by the -s and —I command line options.

Set to 0 by the PYTHONNOUSERSITE environment variable.
Default: 1 in Python mode, 0 in isolated mode.

int verbose

Verbose mode. If greater than 0, print a message each time a module is imported, showing the place
(filename or built-in module) from which it is loaded.

If greater than or equal to 2, print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit.

Incremented by the —v command line option.
Set by the PYTHONVERBOSE environment variable value.
Default: 0.

PyWideStringList warnoptions
Options of the warnings module to build warnings filters, lowest to highest priority: sys.

warnoptions.

The warnings module adds sys.warnoptions in the reverse order: the last PyConfig.
warnoptions item becomes the first item of warnings.filters which is checked first (highest
priority).

The —w command line options adds its value to warnopt ions, it can be used multiple times.

The PYTHONWARNINGS environment variable can also be used to add warning options. Multiple options
can be specified, separated by commas (,).

Default: empty list.

int write_bytecode

If equal to 0, Python won't try to write . pyc files on the import of source modules.
Set to 0 by the —-B command line option and the PYTHONDONTWRITEBYTECODE environment variable.
sys.dont_write_bytecode is initialized to the inverted value of write bytecode.
Default: 1.
PyWideStringList xoptions
Values of the -x command line options: sys._xoptions.

Default: empty list.

232 B6lim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.9

If parse_argv is non-zero, argv arguments are parsed the same way the regular Python parses command line
arguments, and Python arguments are stripped from argv.

The xoptions options are parsed to set other options: see the —x command line option.

3.9 siirtimiinde degisti: The show_alloc_count field has been removed.

10.7 Initialization with PyConfig

Function to initialize Python:

PyStatus Py_InitializeFromConfig (const PyConfig *config)

Initialize Python from config configuration.

The caller is responsible to handle exceptions (error or exit) using PyStatus Exception() and
Py ExitStatusException().

If PyImport_FrozenModules (), PyImport_AppendInittab () or PyImport_ExtendInittab () areused,
they must be set or called after Python preinitialization and before the Python initialization. If Python is initialized
Inuhqﬂeﬁnkﬁ,PyImportiAppendInittab()OrPyImporthxtendInittab()HnmtbecaﬂedbeﬂﬂeeaChPyb
hon initialization.

The current configuration (PyConfig type) is stored in PyInterpreterState.config.

Example setting the program name:

void init_python (void)
{
PyStatus status;

PyConfig config;
PyConfig_ InitPythonConfig(&confiqg);

/* Set the program name. Implicitly preinitialize Python. */
status = PyConfig_ SetString(&config, &config.program_ name,
L"/path/to/my_program") ;
if (PyStatus_Exception(status)) A
goto exception;

status = Py_InitializeFromConfig(&confiqg);
if (PyStatus_Exception(status)) A
goto exception;
}
PyConfig_Clear (&configqg);
return;

exception:
PyConfig_Clear (&config);
Py_ExitStatusException(status);

More complete example modifying the default configuration, read the configuration, and then override some para-
meters. Note that since 3.11, many parameters are not calculated until initialization, and so values cannot be read
from the configuration structure. Any values set before initialize is called will be left unchanged by initialization:

PyStatus init_python (const char *program_name)

{
PyStatus status;

(sonraki sayfaya devam)

10.7. Initialization with PyConfig 233

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

PyConfig config;
PyConfig_InitPythonConfig(&config);

/* Set the program name before reading the configuration
(decode byte string from the locale encoding).

Implicitly preinitialize Python. */
status = PyConfig_SetBytesString(&config, &config.program_name,
program_name) ;
if (PyStatus_Exception(status)) A
goto done;

/* Read all configuration at once */

status = PyConfig_Read (&confiqg);

if (PyStatus_Exception(status)) A
goto done;

/* Specify sys.path explicitly */
/* If you want to modify the default set of paths, finish
initialization first and then use PySys_GetObject ("path") */
config.module_search_paths_set = 1;
status = PyWideStringList_Append (&config.module_search_paths,
L"/path/to/stdlib") ;
if (PyStatus_Exception(status)) A
goto done;
}
status = PyWideStringList_Append (&config.module_search_paths,
L"/path/to/more/modules") ;
if (PyStatus_Exception(status)) A
goto done;

/* Override executable computed by PyConfig Read() */
status = PyConfig_SetString(&config, &config.executable,
L"/path/to/my_executable") ;
if (PyStatus_Exception(status)) {
goto done;

status = Py_InitializeFromConfig(&config);

done:

PyConfig_Clear (&configqg);
return status;

10.8 Isolated Configuration

PyPreConfig InitIsolatedConfig() and PyConfig TnitIsolatedConfig () functions create a configu-
ration to isolate Python from the system. For example, to embed Python into an application.

This configuration ignores global configuration variables, environment variables, command line arguments
(PyConfig.argv is not parsed) and user site directory. The C standard streams (ex: stdout) and the LC_CTYPE
locale are left unchanged. Signal handlers are not installed.

234 B6lim 10. Python Initialization Configuration

The Python/C API, Yayim 3.12.9

Configuration files are still used with this configuration to determine paths that are unspecified. Ensure Pyconfig.
home is specified to avoid computing the default path configuration.

10.9 Python Configuration
PyPreConfig InitPythonConfig () and PyConfig InitPythonConfig () functions create a configuration
to build a customized Python which behaves as the regular Python.

Environments variables and command line arguments are used to configure Python, whereas global configuration
variables are ignored.

This function enables C locale coercion (PEP 538) and Python UTF-8 Mode (PEP 540) depending on the
LC_CTYPE locale, PYTHONUTF 8 and PYTHONCOERCECLOCALE environment variables.

10.10 Python Path Configuration

PyConfig contains multiple fields for the path configuration:
« Path configuration inputs:

— PyConfig.home
— PyConfig.platlibdir
- PyConfig.pathconfig _warnings
- PyConfig.program name
— PyConfig.pythonpath_env
- current working directory: to get absolute paths
- PATH environment variable to get the program full path (from PyConfig.program name)
- __PYVENV_LAUNCHER___ environment variable

- (Windows only) Application paths in the registry under “SoftwarePythonPythonCoreX.YPythonPath” of
HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE (where X.Y is the Python version).

« Path configuration output fields:
— PyConfig.base_exec_prefix
— PyConfig.base_executable
— PyConfig.base_prefix
— PyConfig.exec_prefix
— PyConfig.executable
— PyConfig.module_search_paths_set, PyConfig.module_search_paths
- PyConfig.prefix

If at least one “output field” is not set, Python calculates the path configuration to fill unset fi-
elds. If module search paths_set 1is equal to 0, module_search paths is overridden and
module_search_paths_set issetto 1.

It is possible to completely ignore the function calculating the default path configuration by setting explicitly all path
configuration output fields listed above. A string is considered as set even if it is non-empty. module_search_paths
is considered as set if module_search_paths_set is set to 1. In this case, module_search_paths will be used
without modification.

Set pathconfig_warningsto 0 to suppress warnings when calculating the path configuration (Unix only, Windows
does not log any warning).

If base_prefixorbase_exec_prefixfieldsare notset, they inherit their value from prefixand exec_prefix
respectively.

10.9. Python Configuration 235

https://peps.python.org/pep-0538/
https://peps.python.org/pep-0540/

The Python/C API, Yayim 3.12.9

Py_RunMain () and Py_Main () modify sys.path:

o If run_filename is set and is a directory which contains a __main__.py script, prepend run_filename
to sys.path.

o If isolatediszero:

- If run_module is set, prepend the current directory to sys.path. Do nothing if the current directory
cannot be read.

- If run_rfilename is set, prepend the directory of the filename to sys.path.
- Otherwise, prepend an empty string to sys.path.

If site_import is non-zero, sys.path can be modified by the site module. If user site directory is
non-zero and the user’s site-package directory exists, the site module appends the user’s site-package directory to
sys.path.

The following configuration files are used by the path configuration:
e pyvenv.cfg
e ._pth file (ex: python._pth)
e pybuilddir.txt (Unix only)
If a ._pth file is present:
e Set isolatedto 1.
e Set use _environment to 0.
e Set site_import to 0.
e Set safe_pathto 1.

The _ PYVENV_LAUNCHER___ environment variable is used to set PyConfig.base_executable

10.11 Py_RunMain()

int Py_RunMain (void)

Execute the command (PyConfig. run_command), the script (PyConfig. run_filename) or the module
(PyConfig.run_module) specified on the command line or in the configuration.

By default and when if -1 option is used, run the REPL.
Finally, finalizes Python and returns an exit status that can be passed to the exit () function.

See Python Configuration for an example of customized Python always running in isolated mode using
Py_RunMain ().

10.12 Py_GetArgcArgv()

void Py_GetArgcArgv (int *argc, wchar_t ***argv)
Get the original command line arguments, before Python modified them.

See also PyConfig.orig_argv member.

10.13 Multi-Phase Initialization Private Provisional API

This section is a private provisional API introducing multi-phase initialization, the core feature of PEP 432:
» “Core” initialization phase, “bare minimum Python™:
— Builtin types;

- Builtin exceptions;

236 B6lim 10. Python Initialization Configuration

https://peps.python.org/pep-0432/

The Python/C API, Yayim 3.12.9

— Builtin and frozen modules;

- The sys module is only partially initialized (ex: sys.path doesn’t exist yet).
» “Main” initialization phase, Python is fully initialized:

— Install and configure importlib;

- Apply the Path Configuration;

— Install signal handlers;

Finish sys module initialization (ex: create sys.stdout and sys.path);

Enable optional features like faulthandler and tracemalloc;

Import the site module;
- etc.
Private provisional API:

e PyConfig._init_main:ifsetto 0, Py _TnitializeFromConfig () stops atthe “Core” initialization pha-
se.
PyStatus _Py_InitializeMain (void)
Move to the “Main” initialization phase, finish the Python initialization.
No module is imported during the “Core” phase and the import1ib module is not configured: the Path Configuration

is only applied during the “Main” phase. It may allow to customize Python in Python to override or tune the Path
Configuration, maybe install a custom sys.meta_path importer or an import hook, etc.

It may become possible to calculate the Path Configuration in Python, after the Core phase and before the Main
phase, which is one of the PEP 432 motivation.

The “Core” phase is not properly defined: what should be and what should not be available at this phase is not specified
yet. The API is marked as private and provisional: the API can be modified or even be removed anytime until a proper
public API is designed.

Example running Python code between “Core” and “Main” initialization phases:

void init_python (void)
{
PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);

config._init_main = 0;
/* ... customize 'config' configuration ... */
status = Py_InitializeFromConfig(&confiqg);

PyConfig_Clear (&configqg);
if (PyStatus_Exception(status)) A
Py_ExitStatusException (status);

/* Use sys.stderr because sys.stdout is only created
by _Py InitializeMain() */
int res = PyRun_SimpleString(
"import sys; "
"print ('Run Python code before _Py_InitializeMain', "
"file =sys.stderr)");
if (res < 0) |
exit (1);

(sonraki sayfaya devam)

10.13. Multi-Phase Initialization Private Provisional API 237

https://peps.python.org/pep-0432/

The Python/C API, Yayim 3.12.9

(onceki sayfadan devam)

/* ... put more configuration code here ... */

status = _Py_InitializeMain();
if (PyStatus_Exception (status)) {
Py_ExitStatusException (status);

238 B6lim 10. Python Initialization Configuration

BoLOM 11

Memory Management

11.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The ma-
nagement of this private heap is ensured internally by the Python memory manager. The Python memory manager
has different components which deal with various dynamic storage management aspects, like sharing, segmentation,
preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all
Python-related data by interacting with the memory manager of the operating system. On top of the raw memory
allocator, several object-specific allocators operate on the same heap and implement distinct memory management
policies adapted to the peculiarities of every object type. For example, integer objects are managed differently within
the heap than strings, tuples or dictionaries because integers imply different storage requirements and speed/space
tradeoffs. The Python memory manager thus delegates some of the work to the object-specific allocators, but ensures
that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that
the user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap.
The allocation of heap space for Python objects and other internal buffers is performed on demand by the Python
memory manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions
exported by the C library: malloc (), calloc (), realloc () and free (). This will result in mixed calls bet-
ween the C allocator and the Python memory manager with fatal consequences, because they implement different
algorithms and operate on different heaps. However, one may safely allocate and release memory blocks with the C
library allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
...Do some I/O operation involving buf...
res = PyBytes_FromString (buf) ;
free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the bytes object returned as a result.

239

The Python/C API, Yayim 3.12.9

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the
latter is under control of the Python memory manager. For example, this is required when the interpreter is ex-
tended with new object types written in C. Another reason for using the Python heap is the desire to inform the
Python memory manager about the memory needs of the extension module. Even when the requested memory is
used exclusively for internal, highly specific purposes, delegating all memory requests to the Python memory mana-
ger causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently, under
certain circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage collec-
tion, memory compaction or other preventive procedures. Note that by using the C library allocator as shown in the
previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

> Ayrica bakiniz

The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.

The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator
every time a new pymalloc object arena is created, and on shutdown.

11.2 Allocator Domains

All allocating functions belong to one of three different “domains” (see also PyMemAllocatorDomain). These
domains represent different allocation strategies and are optimized for different purposes. The specific details on how
every domain allocates memory or what internal functions each domain calls is considered an implementation detail,
but for debugging purposes a simplified table can be found at iere. There is no hard requirement to use the memory
returned by the allocation functions belonging to a given domain for only the purposes hinted by that domain (although
this is the recommended practice). For example, one could use the memory returned by PyMem_ RawMalloc () for
allocating Python objects or the memory returned by Pyobject_Malloc () for allocating memory for buffers.

The three allocation domains are:

» Raw domain: intended for allocating memory for general-purpose memory buffers where the allocation must
go to the system allocator or where the allocator can operate without the G/L. The memory is requested directly
to the system.

o “Mem” domain: intended for allocating memory for Python buffers and general-purpose memory buffers where
the allocation must be performed with the G/L held. The memory is taken from the Python private heap.

» Object domain: intended for allocating memory belonging to Python objects. The memory is taken from the
Python private heap.

When freeing memory previously allocated by the allocating functions belonging to a given domain,the matching
specific deallocating functions must be used. For example, PyMem_Free () must be used to free memory allocated
using PyMem_Malloc ().

11.3 Raw Memory Interface
The following function sets are wrappers to the system allocator. These functions are thread-safe, the GIL does not
need to be held.

The default raw memory allocator uses the following functions: malloc (), calloc (), realloc () and free();
callmalloc (1) (or calloc (1, 1)) when requesting zero bytes.

Added in version 3.4.

void *PyMem_RawMalloc (size_t n)

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc (1) had been
called instead. The memory will not have been initialized in any way.

240 Bo6liim 11. Memory Management

The Python/C API, Yayim 3.12.9

void *PyMem_RawCalloc (size_t nelem, size_t elsize)

Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc (1, 1) had been called instead.

Added in version 3.5.

void *PyMem_RawRealloc (void *p, size_t n)

Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the
old and the new sizes.

If p is NULL, the call is equivalent to PyMem_RawMalloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem RawMalloc (),
PyMem RawRealloc () Or PyMem RawCalloc ().

If the request fails, PyMem RawRealloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_RawFree (void *p)

Frees the memory block pointed to by p, which must have been returned by a previous call
to PyMem RawMalloc (), PyMem_ RawRealloc() Or PyMem RawCalloc (). Otherwise, or if
PyMem_RawFree (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

11.4 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

The default memory allocator uses the pymalloc memory allocator.

A Uyan

The GIL must be held when using these functions.

3.6 siiriimiinde degisti: The default allocator is now pymalloc instead of system malloc ().

void *PyMem_Malloc (size_t n)
Bir parcasi Kararli ABI. Allocates n bytes and returns a pointer of type void* to the allocated memory, or
NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem Malloc (1) had been called
instead. The memory will not have been initialized in any way.
void *PyMem_Calloc (size_t nelem, size_t elsize)

Bir parcast Kararli ABI 3.7 siiriimiinden beri. Allocates nelem elements each whose size in bytes is elsize and
returns a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized
to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc (1, 1) had been called instead.

Added in version 3.5.

void *PyMem_Realloc (void *p, size_t n)

Bir parcasi Kararli ABI Resizes the memory block pointed to by p to n bytes. The contents will be unchanged
to the minimum of the old and the new sizes.

11.4. Memory Interface 241

The Python/C API, Yayim 3.12.9

If pis NULL, the call is equivalent to PyMem_Malloc (n);else if n is equal to zero, the memory block is resized
but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem_Malloc (), PyMem_Realloc () Or
PyMem Calloc().

If the request fails, PyMem Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free (void *p)

Bir parcasi Kararli ABI. Frees the memory block pointed to by p, which must have been returned by a previous
callto PyMem Malloc (), PyMem Realloc () or PyMem Calloc ().Otherwise, orif PyMem_Free (p) has
been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

PyMem_New (TYPE, n)

Same as PyMem Malloc (), but allocates (n * sizeof (TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

PyMem_Resize (p, TYPE, n)

Same as PyMem_Realloc (), but the memory block is resized to (n * sizeof (TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.

This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory
when handling errors.

void PyMem_Del (void *p)

SmneaSPyMemfFree(L

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving
the C API functions listed above. However, note that their use does not preserve binary compatibility across Python
versions and is therefore deprecated in extension modules.

PyMem_MALLOC (size)

PyMem_NEW (type, size)
PyMem_REALLOC (ptr, size)
PyMem_RESIZE (ptr, type, size)
PyMem_FREE (ptr)

PyMem_DEL (ptr)

11.5 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

O Not

There is no guarantee that the memory returned by these allocators can be successfully cast to a Python object
when intercepting the allocating functions in this domain by the methods described in the Customize Memory
Allocators section.

The default object allocator uses the pymalloc memory allocator.

242

Bo6liim 11. Memory Management

The Python/C API, Yayim 3.12.9

A Uyan

The GIL must be held when using these functions.

void *PyObject_Malloc (size_t n)
Bir parcasi Kararli ABI. Allocates n bytes and returns a pointer of type void* to the allocated memory, or
NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc (1) had been
called instead. The memory will not have been initialized in any way.
void *PyObject_Calloc (size_t nelem, size_t elsize)

Bir parcast Kararli ABI 3.7 siiriimiinden beri. Allocates nelem elements each whose size in bytes is elsize and
returns a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized
to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc (1, 1) had been called instead.

Added in version 3.5.

void *PyObject_Realloc (void *p, size_t n)

Bir parcasi Kararli ABI. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged
to the minimum of the old and the new sizes.

If p is NULL, the call is equivalent to PyObject_Malloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc () Or PyObject_Calloc().

If the request fails, PyObject_Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyObject_Free (void *p)

Bir parcasi Kararli ABIL Frees the memory block pointed to by p, which must have been returned by a pre-
vious call to PyObject_Malloc (), PyObject_Realloc () or PyObject_Calloc (). Otherwise, or if
PyObject_Free (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

11.6 Default Memory Allocators

Default memory allocators:

Configuration Name Py- PyMem_Malloc PyOb-
Mem_RawMalloc ject_Malloc
Release build "pymalloc" malloc pymalloc pymalloc
Debug build "pymalloc_debug malloc + debug pymalloc + de- pymalloc + de-
bug bug

Release build, without py- "malloc" malloc malloc malloc
malloc
Debug build, without py- "malloc_debug" malloc + debug malloc +debug malloc + debug
malloc

Legend:

« Name: value for PYTHONMALLOC environment variable.

11.6. Default Memory Allocators

243

The Python/C API, Yayim 3.12.9

e malloc: system allocators from the standard C library, C functions: malloc (), calloc (), realloc () and
free ().

e pymalloc: pymalloc memory allocator.
o “+ debug’: with debug hooks on the Python memory allocators.

« “Debug build”: Python build in debug mode.

11.7 Customize Memory Allocators

Added in version 3.4.

type PyMemAllocatorEx
Structure used to describe a memory block allocator. The structure has the following fields:

Field Meaning

void *ctx user context passed as first argument
void* malloc (void *ctx, size_t size) allocate a memory block

void* calloc (void *ctx, size_t nelem, size_t allocate a memory block initialized with
elsize) ZEeros

void* realloc(void *ctx, void *ptr, size_t allocate or resize a memory block
new_size)

void free (void *ctx, void *ptr) free a memory block

3.5 siiriimiinde degisti: The PyMemAllocator structure was renamed to PyMemAllocatorEx and a new
calloc field was added.

type PyMemAllocatorDomain

Enum used to identify an allocator domain. Domains:

PYMEM DOMAIN_RAW

Functions:
e PyMem RawMalloc ()
e PyMem RawRealloc ()
e PyMem RawCalloc ()
e PyMem RawFree ()

PYMEM DOMAIN_MEM

Functions:
e PyMem Malloc(),
e PyMem Realloc ()
e PyMem Calloc ()
e PyMem Free()

PYMEM_DOMAIN_OBJ

Functions:
e PyObject_Malloc ()
e PyObject_Realloc()
e PyObject_Calloc()

e PyObject_Free()

244 Bo6liim 11. Memory Management

The Python/C API, Yayim 3.12.9

void PyMem_GetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)

Get the memory block allocator of the specified domain.

void PyMem_SetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)

Set the memory block allocator of the specified domain.
The new allocator must return a distinct non-NULL pointer when requesting zero bytes.

For the pyMEM DOMAIN_ RAW domain, the allocator must be thread-safe: the GIL is not held when the allocator
is called.

For the remaining domains, the allocator must also be thread-safe: the allocator may be called in different
interpreters that do not share a GIL.

If the new allocator is not a hook (does not call the previous allocator), the PyMem SetupDebugHooks ()
function must be called to reinstall the debug hooks on top on the new allocator.

See also PyPreConfig.allocator and Preinitialize Python with PyPreConfig.

A\ Uyan
PyMem_SetAllocator () does have the following contract:

o It can be called after Py PreInitialize () and before Py InitializeFromConfig () toins-
tall a custom memory allocator. There are no restrictions over the installed allocator other than the
ones imposed by the domain (for instance, the Raw Domain allows the allocator to be called without
the GIL held). See rhe section on allocator domains for more information.

« If called after Python has finish initializing (after Py_InitializeFromConfig () hasbeen called)
the allocator must wrap the existing allocator. Substituting the current allocator for some other
arbitrary one is not supported.

3.12 siiriimiinde degisti: All allocators must be thread-safe.

void PyMem_SetupDebugHooks (void)
Setup debug hooks in the Python memory allocators to detect memory errors.

11.8 Debug hooks on the Python memory allocators
When Python is built in debug mode, the PyMem SetupDebugHooks () function is called at the Python preinitiali-
zation to setup debug hooks on Python memory allocators to detect memory errors.

The PYTHONMALLOC environment variable can be used to install debug hooks on a Python compiled in release mode
(ex: PYTHONMALLOC =debug).

The PyMem SetupDebugHooks () function can be wused to set debug hooks after calling
PyMem_SetAllocator().

These debug hooks fill dynamically allocated memory blocks with special, recognizable bit patterns. Newly
allocated memory is filled with the byte 0xCD (PYMEM_CLEANBYTE), freed memory is filled with the by-
te 0xDD (PYMEM _DEADBYTE). Memory blocks are surrounded by “forbidden bytes” filled with the byte 0xFD
(PYMEM_FORBIDDENBYTE). Strings of these bytes are unlikely to be valid addresses, floats, or ASCII strings.

Runtime checks:

» Detect API violations. For example, detect if PyObject_Free () is called on a memory block allocated by
PyMem Malloc().

« Detect write before the start of the buffer (buffer underflow).
o Detect write after the end of the buffer (buffer overflow).

o Check that the GIL is held when allocator functions of PYMEM _DOMATN_OBJ (eX: PyObject_Malloc ())and
PYMEM_DOMAIN_MEM (ex: PyMem Malloc ()) domains are called.

11.8. Debug hooks on the Python memory allocators 245

The Python/C API, Yayim 3.12.9

On error, the debug hooks use the t racemalloc module to get the traceback where a memory block was allocated.
The traceback is only displayed if t racemalloc is tracing Python memory allocations and the memory block was
traced.

LetS=sizeof (size_t).2*S bytes are added at each end of each block of N bytes requested. The memory layout
is like so, where p represents the address returned by a malloc-like or realloc-like function (p[1 : 5] means the slice
of bytes from * (p+1i) inclusive up to * (p+3) exclusive; note that the treatment of negative indices differs from a
Python slice):

p[-2*S:-S]
Number of bytes originally asked for. This is a size_t, big-endian (easier to read in a memory dump).

pl-s]
APIT identifier (ASCII character):

e 'r' for PYMEM DOMAIN_RAW.
e 'm' for PYMEM DOMAIN_MEM.
e 'o' for PYMEM DOMAIN_OBJ.

p[-S+1:0]
Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads.

p[O:N]
The requested memory, filled with copies of PYMEM_CLEANBYTE, used to catch reference to uninitialized
memory. When a realloc-like function is called requesting a larger memory block, the new excess bytes are
also filled with PYMEM_CLEANBYTE. When a free-like function is called, these are overwritten with PY-
MEM_DEADBYTE, to catch reference to freed memory. When a realloc- like function is called requesting a
smaller memory block, the excess old bytes are also filled with PYMEM_DEADBYTE.

pPI[N:N+S]
Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads.

PIN+S:N+2*S]
Only used if the PYMEM_DEBUG_SERIALNO macro is defined (not defined by default).

A serial number, incremented by 1 on each call to a malloc-like or realloc-like function. Big-endian size_t.
If “bad memory” is detected later, the serial number gives an excellent way to set a breakpoint on the next run,
to capture the instant at which this block was passed out. The static function bumpserialno() in obmalloc.c is
the only place the serial number is incremented, and exists so you can set such a breakpoint easily.

A realloc-like or free-like function first checks that the PYMEM_FORBIDDENBYTE bytes at each end are intact.
If they’ve been altered, diagnostic output is written to stderr, and the program is aborted via Py_FatalError(). The
other main failure mode is provoking a memory error when a program reads up one of the special bit patterns and
tries to use it as an address. If you get in a debugger then and look at the object, you're likely to see that it’s entirely
filled with PYMEM_DEADBYTE (meaning freed memory is getting used) or PYMEM_CLEANBYTE (meaning
uninitialized memory is getting used).

3.6 siiriimiinde degisti: The PyMem SetupDebugHooks () function now also works on Python compiled in re-
lease mode. On error, the debug hooks now use tracemalloc to get the traceback where a memory block
was allocated. The debug hooks now also check if the GIL is held when functions of PyMEM DOMATN_OBJ and
PYMEM_DOMAIN_MEM domains are called.

3.8 siiriimiinde degisti: Byte patterns 0xCB (PYMEM_CLEANBYTE), 0xDB (PYMEM DEADBYTE) and O0xFB
(PYMEM_FORBIDDENBYTE) have been replaced with 0xCD, 0xDD and 0xFD to use the same values than Windo-
ws CRT debugmalloc () and free ().

11.9 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called “arenas” with a fixed size of either 256 KiB on 32-bit platforms or 1 MiB on 64-bit
platforms. It falls back to PyMem RawMalloc () and PyMem_ RawRealloc () for allocations larger than 512 bytes.

246 Bo6liim 11. Memory Management

The Python/C API, Yayim 3.12.9

pymalloc is the default allocator of the PYMEM _DOMATN_MEM (eX: PyMem Malloc ()) and PYMEM_DOMATN_OBJ
(ex: PyObject_Malloc ()) domains.

The arena allocator uses the following functions:
e VirtualAlloc () and VirtualFree () on Windows,
e mmap () and munmap () if available,
e malloc () and free () otherwise.

This allocator is disabled if Python is configured with the ——without-pymalloc option. It can also be disabled at
runtime using the PYTHONMALLOC environment variable (ex: PYTHONMALLOC =malloc).

11.9.1 Customize pymalloc Arena Allocator
Added in version 3.4.

type PyObjectArenaAllocator
Structure used to describe an arena allocator. The structure has three fields:

Field Meaning
void *ctx user context passed as first argument
void* alloc (void *ctx, size_t size) allocate an arena of size bytes

void free(void *ctx, void *ptr, size_t size) free an arena

void PyObject_GetArenaAllocator (PyObjectArenaAllocator *allocator)

Get the arena allocator.

void PyObject_SetArenaAllocator (PyObjectArenaAllocator *allocator)

Set the arena allocator.

11.10 tracemalloc C API

Added in version 3.7.

int PyTraceMalloc_Track (unsigned int domain, uintptr_t ptr, size_t size)

Track an allocated memory block in the t racemalloc module.

Return 0 on success, return -1 on error (failed to allocate memory to store the trace). Return -2 if tracemalloc
is disabled.

If memory block is already tracked, update the existing trace.

int PyTraceMalloc_Untrack (unsigned int domain, uintptr_t ptr)
Untrack an allocated memory block in the t racemalloc module. Do nothing if the block was not tracked.

Return -2 if tracemalloc is disabled, otherwise return 0.

11.11 Examples

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python heap by
using the first function set:

PyObject *res;
char *buf = (char *) PyMem Malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
(sonraki sayfaya devam)

11.10. tracemalloc C API 247

The Python/C API, Yayim 3.12.9

/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString (buf) ;

PyMem_Free (buf); /* allocated with PyMem Malloc */
return res;

(6nceki sayfadan devam)

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New (char, BUFSIZ); /* for I/0 */

if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString (buf) ;
PyMem_Del (buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed,
it is required to use the same memory API family for a given memory block, so that the risk of mixing different
allocators is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as
fatal because it mixes two different allocators operating on different heaps.

char *bufl = PyMem New (char, BUFSIZ);
char *buf2 = (char *) malloc (BUFSIZ);
char *buf3 = (char *) PyMem Malloc (BUFSIZ);

PyMem_Del (buf3) ; /* Wrong —— should be PyMem_Free ()

free (buf2); /* Right ——- allocated via malloc ()
free (bufl); /* Fatal —- should be PyMem_Del ()

*/
*/
*/

J

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released with PyObject_New, PyObject_NewVar and PyObject_Del ().

These will be explained in the next chapter on defining and implementing new object types in C.

248

Bo6liim 11. Memory Management

BOLOM 12

Object Implementation Support

This chapter describes the functions, types, and macros used when defining new object types.

12.1 Allocating Objects on the Heap

PyObject *_PyObject_New (PyTypeObject *type)

Dondiirdiigii deger: Yeni referans.

PyVarObject *_PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)

Dondiirdiigii deger: Yeni referans.

PyObject *PyObiject_Init (PyObject *op, PyTypeObject *type)

Dondiirdiigii deger: Odiing alimnmus referans. Bir pargast Kararli ABL Initialize a newly allocated object op with
its type and initial reference. Returns the initialized object. Other fields of the object are not affected.

PyVarObject *PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)

Dondiirdiigii deger: Odiing alinmus referans. Bir par¢asi Kararl ABL This does everything PyObject_Tnit ()
does, and also initializes the length information for a variable-size object.

PyObject_New (TYPE, typeobj)

Allocate a new Python object using the C structure type TYPE and the Python type object typeobj
(PyTypeObject*). Fields not defined by the Python object header are not initialized. The caller will own
the only reference to the object (i.e. its reference count will be one). The size of the memory allocation is
determined from the tp_basicsize field of the type object.

Note that this function is unsuitable if rypeobj has Py TPrLAGS HAVE_GC set. For such objects, use
PyObject_GC_New () instead.

PyObject_NewVar (TYPE, typeobj, size)

Allocate a new Python object using the C structure type TYPE and the Python type object typeobj
(PyTypeObject*). Fields not defined by the Python object header are not initialized. The allocated me-
mory allows for the TYPE structure plus size (Py_ssize_t) fields of the size given by the tp_itemsize
field of typeobj. This is useful for implementing objects like tuples, which are able to determine their size at
construction time. Embedding the array of fields into the same allocation decreases the number of allocations,
improving the memory management efficiency.

Note that this function is unsuitable if fypeobj has Py TPrLAGS HAVE_ GC set. For such objects, use
PyObject_GC_NewVar () instead.

249

The Python/C API, Yayim 3.12.9

void PyObject_Del (void *op)

Releases memory allocated to an object using PyOb ject_New or PyObject_NewVar. This is normally called
from the tp_dealloc handler specified in the object’s type. The fields of the object should not be accessed
after this call as the memory is no longer a valid Python object.

PyObject _Py_NoneStruct

Object which is visible in Python as None. This should only be accessed using the Py_None macro, which
evaluates to a pointer to this object.

¢ Ayrica bakimz

PyModule Create ()
To allocate and create extension modules.

12.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

12.2.1 Base object types and macros

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and Pyvarobject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects. Additional macros
can be found under reference counting.

type PyObject
Bir parcasi Stirlt APL (Sadece bazi iiyeler kararli ABI'n bir parcasidir.) All object types are extensions of this
type. This is a type which contains the information Python needs to treat a pointer to an object as an object. In
a normal “release” build, it contains only the object’s reference count and a pointer to the corresponding type
object. Nothing is actually declared to be a PyObject, but every pointer to a Python object can be cast to a
PyObject*. Access to the members must be done by using the macros Py_REFCNT and Py_ TYPE.

type PyVarObject

Bir parcast Siirli APL (Sadece bazi iiyeler kararli ABI'in bir parcasidir.) This is an extension of PyObject
that adds the ob_si ze field. This is only used for objects that have some notion of length. This type does not
often appear in the Python/C API. Access to the members must be done by using the macros Py_REFCNT,
Py _TYPE,and Py_SIZE.

PyObject_HEAD

This is a macro used when declaring new types which represent objects without a varying length. The PyOb-
ject_HEAD macro expands to:

[PyObject ob_base;

See documentation of PyObject above.
PyObject_VAR_HEAD

This is a macro used when declaring new types which represent objects with a length that varies from instance
to instance. The PyObject_VAR_HEAD macro expands to:

[PyVarObject ob_base;

See documentation of Pyvarobject above.

PyTypeObject PyBaseObject_Type
Bir parcast Kararli ABL The base class of all other objects, the same as object in Python.

250 Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

int Py_Is (PyObject *x, PyObject *y)

Bir parcast Kararlt ABI 3.10 siiriimiinden beri. Test if the x object is the y object, the same as x is y in
Python.

Added in version 3.10.

int Py_ZIsNone (PyObject *X)

Bir parcasi Kararli ABI 3. 10 siiriimiinden beri. Test if an object is the None singleton, the same as x is None
in Python.

Added in version 3.10.
int Py_IsTrue (PyObject *X)

Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Test if an object is the True singleton, the same as x is True
in Python.

Added in version 3.10.

int Py_IsFalse (PyObject *X)

Bir parcast Kararli ABI 3.10 siiriimiinden beri. Test if an object is the False singleton, the same as x is
False in Python.

Added in version 3.10.
PyTypeObject *Py_TYPE (PyObject *0)
Get the type of the Python object o.
Return a borrowed reference.
Use the py_sET_TvPE () function to set an object type.

3.11 siirtimiinde degisti: Py TvPE () is changed to an inline static function. The parameter type is no longer
const PyObject*.

int Py_IS_TYPE (PyObject *o, PyTypeObject *type)
Return non-zero if the object o type is type. Return zero otherwise. Equivalent to: Py_TYPE (o) == type.
Added in version 3.9.
void Py_SET_TYPE (PyObject *0, PyTypeObject *type)
Set the object o type to type.
Added in version 3.9.
Py_ssize_t Py_SIZE (PyVarObject *0)
Get the size of the Python object o.
Use the py_sSeET s1zEe () function to set an object size.

3.11 siiriimiinde degisti: Py_S12E () is changed to an inline static function. The parameter type is no longer
const PyVarObject*.

void Py_SET_SIZE (PyVarObject *o, Py_ssize_t size)
Set the object o size to size.
Added in version 3.9.

PyObject_HEAD_INIT (type)

This is a macro which expands to initialization values for a new Pyobject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT (type, size)

This is a macro which expands to initialization values for a new Pyvarobject type, including the ob_size
field. This macro expands to:

12.2. Common Object Structures 251

The Python/C API, Yayim 3.12.9

_PyObject_EXTRA_INIT
1, type, size,

12.2.2 Implementing functions and methods

type PyCFunction

Bir parcasi Kararli ABI. Type of the functions used to implement most Python callables in C. Functions of
this type take two PyObject* parameters and return one such value. If the return value is NULL, an exception
shall have been set. If not NULL, the return value is interpreted as the return value of the function as exposed
in Python. The function must return a new reference.

The function signature is:

PyObject *PyCFunction (PyObject *self,
PyObject *args);

type PyCFunctionWithKeywords

Bir parcast Kararli ABL. Type of the functions used to implement Python callables in C with signature
METH_VARARGS | METH_KEYWORDS. The function signature is:

PyObject *PyCFunctionWithKeywords (PyObject *self,
PyObject *args,
PyObject *kwargs);

type _PyCFunctionFast

Type of the functions used to implement Python callables in C with signature METH_FASTCALL. The function
signature is:

PyObject *_PyCFunctionFast (PyObject *self,
PyObject *const *args,
Py_ssize_t nargs);

type _PyCFunctionFastWithKeywords

Type of the functions used to implement Python callables in C with signature METH FASTCALL |
METH_KEYWORDS. The function signature is:

PyObject *_PyCFunctionFastWithKeywords (PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) ;

type PyCMethod

Type of the functions used to implement Python callables in C with signature METH_METHOD |
METH_FASTCALL | METH_KEYWORDS. The function signature is:

PyObject *PyCMethod (PyObject *self,
PyTypeObject *defining_ class,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames)

Added in version 3.9.

type PyMethodDef

Bir parcast Kararli ABI (tiim iiyeler dahil). Structure used to describe a method of an extension type. This
structure has four fields:

252 Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

const char *m1_name
Name of the method.

PyCFunction m1_meth

Pointer to the C implementation.

intml_flags

Flags bits indicating how the call should be constructed.

const char *ml_doc

Points to the contents of the docstring.

The m1_meth is a C function pointer. The functions may be of different types, but they always return PyoOb ject*.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
pyCFunction defines the first parameter as PyObject*, it is common that the method implementation uses the
specific C type of the self object.

The m1_f1ags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.

There are these calling conventions:

METH_VARARGS

This is the typical calling convention, where the methods have the type PyCFunct ion. The function expects
two PyObject* values. The first one is the self object for methods; for module functions, it is the module
object. The second parameter (often called args) is a tuple object representing all arguments. This parameter
is typically processed using PyArg ParseTuple () Of PyArg UnpackTuple ().

METH_KEYWORDS

Can only be used in certain combinations with other flags: METH _VARARGS | METH_KEYWORDS,
METH_FASTCALL | METH_KEYWORDS and METH_METHOD | METH_FASTCALL | METH_KEYWORDS.

METH VARARGS | METH_KEYWORDS
Methods with these flags must be of type PyCFunctionwithKeywords. The function expects three parame-
ters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or possibly NULL if there are
no keyword arguments. The parameters are typically processed using PyArg ParseTupleAndKeywords ().

METH_FASTCALL
Fast calling convention supporting only positional arguments. The methods have the type

_PyCFunctionFast. The first parameter is self, the second parameter is a C array of PyoObject*
values indicating the arguments and the third parameter is the number of arguments (the length of the array).

Added in version 3.7.
3.10 siiriimiinde degisti: METH_FASTCALL is now part of the stable ABI.

METH FASTCALL | METH_KEYWORDS
Extension of WMETH FASTCALL supporting also keyword arguments, with methods of type
_PyCFunctionFastlithKeywords. Keyword arguments are passed the same way as in the vecror-
call protocol: there is an additional fourth PyObject* parameter which is a tuple representing the names of
the keyword arguments (which are guaranteed to be strings) or possibly NULL if there are no keywords. The
values of the keyword arguments are stored in the args array, after the positional arguments.

Added in version 3.7.

METH_METHOD

Can only be used in the combination with other flags: METH _METHOD | METH FASTCALL |
METH_KEYWORDS.

METH METHOD | METH FASTCALL | METH KEYWORDS
Extension of METH_FASTCALL | METH_KEYWORDS supporting the defining class, that is, the class that
contains the method in question. The defining class might be a superclass of Py_TYPE (self).

The method needs to be of type PyCMethod, the same as for METH_FASTCALL | METH_KEYWORDS with
defining_class argument added after self.

12.2. Common Object Structures 253

The Python/C API, Yayim 3.12.9

Added in version 3.9.

METH_NOARGS

Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunct ion. The first parameter is typically named self and
will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

The function must have 2 parameters. Since the second parameter is unused, Py UNUSED can be used to
prevent a compiler warning.
METH_O

Methods with a single object argument can be listed with the mMe7H O flag, instead of invoking
PyArg ParseTuple () with a "o" argument. They have the type PyCFunction, with the self parameter,
and a PyObject* parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is
used to create class methods, similar to what is created when using the classmethod () built-in function.
METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to
create static methods, similar to what is created when using the staticmethod () built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST

The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains
slot, for example, would generate a wrapped method named ___contains__ () and preclude the loading of
a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in
place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are
optimized more than wrapper object calls.
PyObject *PyCMethod_New (PyMethodDef *ml, PyObject *self, PyObject *module, PyTypeObject *cls)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.9 siiriimiinden beri. Turn ml into a Python callable
object. The caller must ensure that m! outlives the callable. Typically, ml is defined as a static variable.

The self parameter will be passed as the self argument to the C function in m1->ml_meth when invoked. self
can be NULL.

The callable object’s __module_ attribute can be set from the given module argument. module should be a
Python string, which will be used as name of the module the function is defined in. If unavailable, it can be
set to None or NULL.

> Ayrica bakimz

function._ module_

The cls parameter will be passed as the defining_class argument to the C function. Must be set if ¥ETH METHOD
issetonml->ml_flags.

Added in version 3.9.

PyObject *PyCFunction_NewEx (PyMethodDef *ml, PyObject *self, PyObject *module)

Dondiirdiigii deger: Yeni referans. Bir parcasi Kararli ABL. Equivalent to PyCMethod_New (ml, self,
module, NULL).

254 Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

PyObject *PyCFunction_New (PyMethodDef *ml, PyObject *self)

Dondiirdiigii deger: Yeni referans. Bir parcast Kararli ABI 3.4 siiriimiinden beri. Equivalent to
PyCMethod_New (ml, self, NULL, NULL).

12.2.3 Accessing attributes of extension types

type PyMemberDef

Bir parcasi Kararli ABI (tiim iiyeler dahil). Structure which describes an attribute of a type which corresponds to
a C struct member. When defining a class, put a NULL-terminated array of these structures inthe tp_members
slot.

Its fields are, in order:
const char *name
Name of the member. A NULL value marks the end of a PyMemberDef [] array.
The string should be static, no copy is made of it.
int type
The type of the member in the C struct. See Member types for the possible values.
Py_ssize_ t offset
The offset in bytes that the member is located on the type’s object struct.
int £lags
Zero or more of the Member flags, combined using bitwise OR.
const char *doc

The docstring, or NULL. The string should be static, no copy is made of it. Typically, it is defined using
PyDoc_STR.

By default (when £1ags is 0), members allow both read and write access. Use the Py READONLY flag for read-
only access. Certain types, like Py_T STRING, imply Py_READONLY. Only Py_T OBJECT EX (and legacy
T_OBJECT) members can be deleted.

For heap-allocated types (created using Py Type_ FromSpec () or similar), PyMemberDe f may contain a de-
finition for the special member "__vectorcalloffset_ ", corresponding to tp_vectorcall offset
in type objects. These must be defined with Py_T_PYSSIZET and Py_READONLY, for example:

static PyMemberDef spam_type_members[] = {
{"__vectorcalloffset_ ", Py_T PYSSIZET,
offsetof (Spam_object, vectorcall), Py_READONLY},
{NULL} /* Sentinel */

bi

(You may need to #include <stddef.h> for offsetof ().)

The legacy offsets tp dictoffset and tp weaklistoffset can be defined similarly using
" dictoffset_ " and "__weaklistoffset__ " members, but extensions are strongly encouraged to
use Py_TPFLAGS_MANAGED_DICT and Py_TPFLAGS_MANAGED_WEAKREF instead.

3.12 siirtimiinde degisti: PyMemberDef is always available. Previously, it required including
"structmember.h".

PyObject *PyMember_GetOne (const char *obj_addr, struct PyMemberDef *m)
Bir parcasi Kararli ABIL Get an attribute belonging to the object at address obj_addr. The attribute is described
by PyMemberDef m. Returns NULL on error.

3.12 siirimiinde degisti: PyMember_GetOne is always available. Previously, it required including
"structmember.h".

12.2. Common Object Structures 255

The Python/C API, Yayim 3.12.9

int PyMember_SetOne (char *obj_addr, struct PyMemberDef *m, PyObject *0)

Bir parcast Kararlt ABI. Set an attribute belonging to the object at address obj_addr to object o. The attribute
to set is described by PyMemberDe £ m. Returns 0 if successful and a negative value on failure.

3.12 siiriimiinde degisti: PyMember_SetOne is always available. Previously, it required including
"structmember.h".

Member flags
The following flags can be used with PyMemberDef. flags:
Py_READONLY
Not writable.
Py_AUDIT_READ
Emit an object.__getattr__ audit event before reading.

Py RELATIVE_OFFSET

Indicates that the orfrset of this PyMemberDef entry indicates an offset from the subclass-specific data,
rather than from PyObject.

Can only be used as part of Py_tp_members slot when creating a class using negative basicsize. It is
mandatory in that case.

This flag is only used in PyType Slot. When setting tp_members during class creation, Python clears it
and sets PyMemberDef.of fset to the offset from the PyObject struct.

3.10 siiriimiinde degisti: The RESTRICTED, READ_RESTRICTED and WRITE_RESTRICTED macros available
with #include "structmember.h" are deprecated. READ_RESTRICTED and RESTRICTED are equivalent to
Py _AUDIT_READ; WRITE_RESTRICTED does nothing.

3.12 stirtimiinde degisti: The READONLY macro was renamed to Py_READONLY. The PY_AUDIT_READ macro was
renamed with the py_ prefix. The new names are now always available. Previously, these required #include
"structmember.h". The header is still available and it provides the old names.

Member types

PyMemberDef . type can be one of the following macros corresponding to various C types. When the member is
accessed in Python, it will be converted to the equivalent Python type. When it is set from Python, it will be converted
back to the C type. If that is not possible, an exception such as TypeError or ValueError is raised.

Unless marked (D), attributes defined this way cannot be deleted using e.g. del or delattr ().

256 Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

Macro name C type Python type

char int
Py T BYTE

short int
Py T_SHORT

int int
Py T_INT

long int
Py _T_LONG

long long int
Py T_LONGLONG

unsigned char int
Py T_UBYTE

unsigned int int
Py_T UINT

unsigned short int
Py_T_ USHORT

unsigned long int
Py_T ULONG

unsigned long long int
Py_T_ ULONGLONG

Py _ssize_ t int
Py T PYSSIZET

float float
Py_T FLOAT

double float
Py_T DOUBLE

char (written as O or 1) bool
Py_T BOOL

const char* (*) str (RO)
Py T STRING

const char[] (*) str (RO)
Py T STRING_INPLACE

char (0-127) str (*%)
Py T CHAR

PyObject* object (D)

Py T_OBJECT_EX

(*): Zero-terminated, UTF8-encoded C string. With py_T_STRING the C representation is a pointer;

with Py_T_STRING_INPLACE the string is stored directly in the structure.

12.2. Common Object Structures

257

The Python/C API, Yayim 3.12.9

(**): String of length 1. Only ASCII is accepted.
(RO): Implies Py_READONLY.

(D): Can be deleted, in which case the pointer is set to NULL. Reading a NULL pointer raises
AttributeError.

Added in version 3.12: In previous versions, the macros were only available with #include "structmember.h"
and were named without the py_ prefix (e.g. as T_INT). The header is still available and contains the old names,
along with the following deprecated types:
T_OBJECT
Like Ppy_T_OBJECT_EX, but NULL is converted to None. This results in surprising behavior in Python: deleting
the attribute effectively sets it to None.
T_NONE
Always None. Must be used with Py READONLY.

Defining Getters and Setters

type PyGetSetDef
Bir parcast Kararli ABI (tiim iiyeler dahil). Structure to define property-like access for a type. See also desc-
ription of the Py TypeObject . tp_getset slot.
const char *name
attribute name
gelter get
C function to get the attribute.
selter set
Optional C function to set or delete the attribute. If NULL, the attribute is read-only.
const char *doc

optional docstring

void *closure
Optional user data pointer, providing additional data for getter and setter.
typedef PyObject *(*getter)(PyObject*, void*)
Bir parcast Kararli ABIL. The get function takes one PyObject* parameter (the instance) and a user data
pointer (the associated closure):
It should return a new reference on success or NULL with a set exception on failure.
typedef int (*setter)(PyObject*, PyObject*, void*)
Bir parcasi Kararli ABI. set functions take two PyOb ject* parameters (the instance and the value to be set)

and a user data pointer (the associated closure):

In case the attribute should be deleted the second parameter is NULL. Should return 0 on success or —1 with a
set exception on failure.

12.3 Type Object Structures

Perhaps one of the most important structures of the Python object system is the structure that defines a new type:
the Py TypeObject structure. Type objects can be handled using any of the PyObject_* or PyType_ * functions,
but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects
behave, so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object
stores a large number of values, mostly C function pointers, each of which implements a small part of the type’s
functionality. The fields of the type object are examined in detail in this section. The fields will be described in the
order in which they occur in the structure.

258 Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

In addition to the following quick reference, the Examples section provides at-a-glance insight into the meaning and

use of PyTypeObject.

12.3.1 Quick Reference

“tp slots”

PyTypeObject Slot>f 260. | Type special methods/attrs In-
foSayfa 260, 2
CTDI
<R> tp_name const char * __name___ X X
tp_basicsize Py _ssize_t X X X
tp_itemsize Py _ssize_t X X
tp_dealloc destructor X X X
tp_vectorcall_offset Py ssize_t X X
(tp_getattr) getattrrfunc __getattribute__, __getattr__ G
(tp_setattr) setattrfunc _ setattr__, _ delattr__ G
tp_as_async PyAsyncMethods * sub-slots %
tp_repr reprfunc _repr__ X X X
tp_as_number PyNumberMethods * sub-slots %
tp_as_sequence PySequenceMethods * sub-slots %
tp_as_mapping PyMappingMethods * sub-slots %
tp_hash hashfunc __hash__ X G
tp_call ternaryfunc _call__ X X
tp_str reprfunc _str X X
tp_getattro getattrofunc __getattribute__, __getattr__ X X G
tp_setattro setattrofunc _ setattr__, _ delattr__ X X G
tp_as_buffer PyBufferProcs * %
tp_flags unsigned long X X ?
tp_doc const char * __doc__ X X
tp_traverse traverseproc X G
tp_clear inquiry X G
tp_richcompare richcmpfunc e, le , eq , ne , X G
gt,_ ge
(tp_weaklistoffset) Py_ssize_t X ?
tp_iter getiterfunc _iter__ X
tp_iternext iternextfunc _ next__ X
tp_methods PyMethodDef [] X X
tp_members PyMemberDef [] X
tp_getset PyGetSetDef [] X X
tp_base PyTypeObject * _ _base_ X
tp_dict PyObject * _dict__ ?
tp_descr_get descrget func _ get X
tp_descr_set descrsetfunc __set_, delete X
(tp_dictoffset) Py _ssize_t X ?
tp_init initproc __init__ X X X
tp_alloc allocfunc X ? 7
tp_new newfunc __new___ X X ?7?
tp_free freefunc X X77?
tp_is_gc inquiry X X
<tp_bases> PyObject * __bases__ ~
<tp_mro> PyObject * __mro__ ~
[tp_cache] PyObject *
[tp_subclasses] void * __subclasses___
[tp_weaklist] PyObject *
(tp_del) destructor

sonraki sayfaya devam

12.3. Type Object Structures

259

The Python/C API, Yayim 3.12.9

Tablo 1 - dnceki sayfadan devam

PyTypeObiject Slot!

[tp_version_tag]
tp_finalize
tp_vectorcall
[tp_watched]

Type special methods/attrs In-
fo’
CTDI
unsigned int
destructor _del X
vectorcallfunc

unsigned char

sub-slots
Slot Type special methods
am_await unaryfunc __await__
am_aiter unaryfunc __aiter__
am_anext unaryfunc __anext___
am_send sendfunc
nb_add binaryfunc _add___ radd__
nb_inplace_add binaryfunc __dadd__
nb_subtract binaryfunc _sub___ rsub__
nb_inplace_subtract binaryfunc __isub__
nb_multiply binaryfunc ~mul rmul
nb_inplace_multiply binaryfunc __imul__
nb_remainder binaryfunc ~mod____rmod__
nb_inplace_remainder binaryfunc __imod__
nb_divmod binaryfunc _ divmod__ __ rdiv-

mod__

nb_power ternaryfunc __pOW__ _ TpOwW__
nb_inplace_power ternaryfunc 7ipOW7
nb_negative unaryfunc __neg__
nb_positive unaryfunc __pos__
nb_absolute unaryfunc __abs__
nb_bool inquiry __bool__
nb_invert unaryfunc __invert__
nb_1lshift binaryfunc __Ishift_ _ rlshift_
nb_inplace_lshift binaryfunc __ilshift

sonraki sayfaya devam

1 0): A slot name in parentheses indicates it is (effectively) deprecated.
<>: Names in angle brackets should be initially set to NULL and treated as read-only.
[]: Names in square brackets are for internal use only.
<R> (as a prefix) means the field is required (must be non-NULL).

2 Columns:

“0”:set on PyBaseObject_Type

“T”:seton PyType_Type

“D”: default (if slot is set to NULL)

X - PyType_Ready sets this value if it is NULL
~ — PyType_Ready always sets this value (it should be NULL)
? - PyType_Ready may set this value depending on other slots

Also see the inheritance column

“I”: inheritance

>

o

V@

("T") .

- type slot is inherited via *PyType_Ready* if defined with a *NULL* value

— the slots of the sub-struct are inherited individually

— inherited, but only in combination with other slots; see the slot's description
— it's complicated; see the slot's description

Note that some slots are effectively inherited through the normal attribute lookup chain.

260

Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

Tablo 2 - dnceki sayfadan devam

Slot Type special methods

nb_rshift binaryfunc __rshift__ _Irs-
hift__

nb_inplace_rshift binaryfunc __irshift

nb_and binaryfunc _and___ rand__

nb_inplace_and binaryfunc __jand__

nb_xor binaryfunc __XOr__ _ rXor__

nb_inplace_xor binaryfunc __ixor__

nb_or binaryfunc _or__ _ ror__

nb_inplace_or binaryfunc __dor__

nb_int unaryfunc _int__

nb_reserved void *

nb_float unaryfunc _ float__

nb_floor_divide binaryfunc _ floordiv__

nb_inplace_floor_divide binaryfunc __ifloordiv___

nb_true_divide binaryfunc _ truediv__

nb_inplace_true_divide binaryfunc _itruediv_

nb_index unaryfunc __index

nb_matrix _multiply binaryfunc _ matmul__ __ rmat-
mul__

nb_inplace_matrix_multiply binaryfunc __imatmul

mp_length lenfunc _len__

mp_subscript binaryfunc __getitem__

mp_ass_subscript objobjargproc _ setitem__, _ deli-
tem__

sq_length lenfunc _len__

sq_concat binaryfunc _add__

sq_repeat ssizeargfunc _ mul__

sq_item ssizeargfunc __getitem__

sq_ass_item ssizeobjargproc _ setitem__ __deli-
tem___

sq_contains objobjproc __contains__

sq_inplace_concat binaryfunc _ dadd__

sq_inplace_repeat ssizeargfunc __imul__

bf_getbuffer getbufferproc ()

bf_releasebuffer releasebufferproc/()

12.3. Type Object Structures 261

The Python/C API, Yayim 3.12.9

slot typedefs

typedef Parameter Types Return Type
allocfunc PyObject *
PyTypeObject *
Py ssize_t
destructor PyObject * void
freefunc void * void
traverseproc int
PyObject *
visitproc
void *
newfunc PyObject *
PyTypeObject *
PyObject *
PyObject *
initproc int
PyObject *
PyObject *
PyObject *
reprfunc PyObject * PyObject *
getattrfunc PyObject *
PyObject *
const char *
setattrfunc int
PyObject *
const char *
PyObject *
getattrofunc PyObject *
PyObject *
PyObject *
setattrofunc int
PyObject *
PyObject *
PyObject *
descrget func PyObject *
PyObject *
PyObject *
PyObject *
descrset func int
PyObject *
PyOhject *
262 PyObject * Boliim 12. Object Implementation Support
hashfunc PyObject * Py_hash_t
richcmpfunc PyObject *

The Python/C API, Yayim 3.12.9

See Slot Type typedefs below for more detail.

12.3.2 PyTypeObject Definition

The structure definition for PyTypeObject can be found in Include/cpython/object .h. For convenience of
reference, this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

Py_ssize_t tp_vectorcall offset;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */
/* Assigned meaning in release 2.0 */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */

richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

(sonraki sayfaya devam)

12.3. Type Object Structures 263

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

// Strong reference on a heap type, borrowed reference on a static type
struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;
vectorcallfunc tp_vectorcall;

/* bitset of which type-watchers care about this type */
unsigned char tp_watched;

} PyTypeObject;

12.3.3 PyObject Slots

The type object structure extends the Pyvarobject structure. The ob_size field is used for dynamic types (cre-
ated by type_new (), usually called from a class statement). Note that Py Type_ Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_si ze field.

Py_ssize_t PyObject .ob_refent

Bir parcasi Kararli ABL This is the type object’s reference count, initialized to 1 by the PyObject _HEAD_INIT
macro. Note that for statically allocated type objects, the type’s instances (objects whose ob_ t ype points back
to the type) do not count as references. But for dynamically allocated type objects, the instances do count as
references.

Inheritance:

This field is not inherited by subtypes.

PyTypeObject *PyObject .ob_type

Bir parcast Kararli ABL This is the type’s type, in other words its metatype. It is initialized by the argument to
the PyObject HEAD_INIT macro, and its value should normally be sPyType_Type. However, for dynami-
cally loadable extension modules that must be usable on Windows (at least), the compiler complains that this
is not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT macro and

264

Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

to initialize this field explicitly at the start of the module’s initialization function, before doing anything else.
This is typically done like this:

[Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. Py Type Ready () checks if ob_type is
NULL, and if so, initializes it to the ob_t ype field of the base class. Py Type_Ready () will not change this
field if it is non-zero.

Inheritance:
This field is inherited by subtypes.
PyObject *PyObject ._ob_next
PyObject *PyObject._ob_prev
These fields are only present when the macro Py TRACE_REFS is defined (see the configure

--with-trace-refs option).

Their initialization to NULL is taken care of by the PyObject_ HEAD_INIT macro. For statically allocated
objects, these fields always remain NULL. For dynamically allocated objects, these two fields are used to link
the object into a doubly linked list of all live objects on the heap.

This could be used for various debugging purposes; currently the only uses are the sys.getobjects ()
function and to print the objects that are still alive at the end of a run when the environment variable
PYTHONDUMPREFS is set.

Inheritance:

These fields are not inherited by subtypes.

12.3.4 PyVarObject Slots

Py_ssize t PyVarObject .ob_size
Bir parcasi Kararli ABI. For statically allocated type objects, this should be initialized to zero. For dynamically
allocated type objects, this field has a special internal meaning.
This field should be accessed using the Py S12E () and Py _SET SIZE () macros.

Inheritance:

This field is not inherited by subtypes.

12.3.5 PyTypeObiject Slots

Each slot has a section describing inheritance. If PyType Ready () may set a value when the field is set to NULL
then there will also be a “Default” section. (Note that many fields set on PyBaseObject_Type and PyType_Type
effectively act as defaults.)

const char *PyTypeObject .tp_name

Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type named T defined in module M in subpackage 0 in package
p should have the tp_name initializer "P.Q.M.T".

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored
in the type dict as the value for key ' __module_ '.

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot
is made accessible as the __module__ attribute, and everything after the last dot is made accessible as the
__name___ attribute.

12.3. Type Object Structures 265

The Python/C API, Yayim 3.12.9

If no dot is present, the entire tp_name field is made accessible as the _ name__ attribute, and the
__module___ attribute is undefined (unless explicitly set in the dictionary, as explained above). This me-
ans your type will be impossible to pickle. Additionally, it will not be listed in module documentations created
with pydoc.

This field must not be NULL. It is the only required field in PyTypeObject () (other than potentially
tp_itemsize).

Inheritance:
This field is not inherited by subtypes.

Py _ssize_t PyTypeObject.tp_basicsize
Py_ssize t PyTypeObject .tp_itemsize
These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types
with variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instan-
ces, all instances have the same size, given in tp_basicsize. (Exceptions to this rule can be made using
PyUnstable_Object_GC_NewWithExtraData().)

For a type with variable-length instances, the instances must have an ob_si ze field, and the instance size is
tp_basicsize plus N times tp_itemsize, where N is the “length” of the object.

Functions like Pyobject _NewvVar () will take the value of N as an argument, and store in the instance’s
ob_sizefield. Note that the ob_ s ze field may later be used for other purposes. For example, int instances
use the bits of ob_size in an implementation-defined way; the underlying storage and its size should be
acessed using PyLong_Export ().

O Not

The ob_size field should be accessed using the Py S1ZE () and Py SET SIZE () macros.

Also, the presence of an ob_size field in the instance layout doesn’t mean that the instance structure is
variable-length. For example, the 1ist type has fixed-length instances, yet those instances have a ob_size
field. (As with int, avoid reading lists’ ob_size directly. Call PyList_Size () instead.)

The tp_basicsize includes size needed for data of the type’s tp_base, plus any extra data needed by each
instance.

The correct way to set tp_basicsize isto use the sizeof operator on the struct used to declare the instance
layout. This struct must include the struct used to declare the base type. In other words, tp_basicsize must
be greater than or equal to the base’s tp_basicsize.

Since every type is a subtype of object, this struct must include PyObject or PyVarobject (depen-
ding on whether ob_size should be included). These are usually defined by the macro pPyObject HEAD
or PyObject_VAR_HEAD, respectively.

The basic size does not include the GC header size, as that header is not part of PyObject_HEAD.

For cases where struct used to declare the base type is unknown, see PyType Spec.basicsize and
PyType_FromMetaclass ().

Notes about alignment:

e tp_basicsize mustbe a multiple of _Alignof (PyObject). When using sizeof ona struct that
includes PyObject_HEAD, as recommended, the compiler ensures this. When not using a C st ruct, or
when using compiler extensions like __attribute__ ((packed)), itis up to you.

« If the variable items require a particular alignment, tp_basicsize and tp_itemsize must each be a
multiple of that alignment. For example, if a type’s variable part stores a double, it is your responsibility
that both fields are a multiple of _Alignof (double).

Inheritance:

266 Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

These fields are inherited separately by subtypes. (That is, if the field is set to zero, Py Type Ready () will
copy the value from the base type, indicating that the instances do not need additional storage.)

If the base type has a non-zero tp_ itemsize, it is generally not safe to set tp_itemsize to a different
non-zero value in a subtype (though this depends on the implementation of the base type).

destructor PyTypeObject .tp_dealloc

A pointer to the instance destructor function. This function must be defined unless the type guarantees that
its instances will never be deallocated (as is the case for the singletons None and E11ipsis). The function
signature is:

[void tp_dealloc (PyObject *self);

The destructor function is called by the py_DECREF () and Py_XDECREF () macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor
function should free all references which the instance owns, free all memory buffers owned by the instance
(using the freeing function corresponding to the allocation function used to allocate the buffer), and call the
type’s tp_ free function. If the type is not subtypable (doesn’t have the Py TPFLAGS BASETYPE flag bit set),
it is permissible to call the object deallocator directly instead of via tp_free. The object deallocator should
be the one used to allocate the instance; this is normally PyObject_Del () if the instance was allocated
using PyObject_New Or PyObject_NewVar, or PyObject_GC_Del () if the instance was allocated using
PyObject_GC_New Or PyObject_GC_NewVar.

If the type supports garbage collection (has the Py TPFLAGS HAVE_GC flag bit set), the destructor should call
PyObject_GC_UnTrack () before clearing any member fields.

static void foo_dealloc (foo_object *self) {
PyObject_GC_UnTrack (self);
Py_CLEAR (self->ref);
Py_TYPE (self) ->tp_free ((PyObject *)self);

Finally, if the type is heap allocated (Py_TPFLAGS HEAPTYPE), the deallocator should release the owned
reference to its type object (via Py_DECREF ()) after calling the type deallocator. In order to avoid dangling
pointers, the recommended way to achieve this is:

static void foo_dealloc (foo_object *self) {
PyTypeObject *tp = Py_TYPE (self);
// free references and buffers here
tp->tp_free(self);
Py_DECREF (tp) ;

A Uyan

In a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread
which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by
a garbage collection on any thread). This is not a problem for Python API calls, since the thread on which
tp_dealloc is called will own the Global Interpreter Lock (GIL). However, if the object being destroyed
in turn destroys objects from some other C or C++ library, care should be taken to ensure that destroying
those objects on the thread which called tp_dealloc will not violate any assumptions of the library.

Inheritance:
This field is inherited by subtypes.

Py_ssize_t PyTypeObject .tp_vectorcall_ offset

An optional offset to a per-instance function that implements calling the object using the vectorcall protocol, a
more efficient alternative of the simpler tp_call.

12.3. Type Object Structures 267

The Python/C API, Yayim 3.12.9

This field is only used if the flag Py TPFLAGS HAVE_VECTORCALLis set. If so, this must be a positive integer
containing the offset in the instance of a vectorcall func pointer.

The vectorcallfunc pointer may be NULL, in which case the instance behaves as if
Py_TPFLAGS_HAVE_VECTORCALL was not set: calling the instance falls back to tp_call.

Any class that sets Py_ TPFLAGS_HAVE_VECTORCALL must also set tp_call and make sure its behaviour is
consistent with the vectorcallfunc function. This can be done by setting tp_call to PyVectorcall_Call ().

3.8 siirtimiinde degisti: Before version 3.8, this slot was named tp_print. In Python 2.x, it was used for
printing to a file. In Python 3.0 to 3.7, it was unused.

3.12 suirtimiinde degisti: Before version 3.12, it was not recommended for mutable heap types to implement
the vectorcall protocol. When a user sets __call__ in Python code, only #p_call is updated, likely making it
inconsistent with the vectorcall function. Since 3.12, setting __call__ will disable vectorcall optimization by
clearing the Py TPFLAGS_HAVE_VECTORCALL flag.

Inheritance:

This field is always inherited. However, the Py TPFLAGS HAVE VECTORCALL flag is not always inherited. If
it’s not set, then the subclass won’t use vectorcall, except when PyvVectorcall_call () is explicitly called.

getattrfunc PyTypeObject .tp_getattr

An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name.

Inheritance:
Group: tp_getattr, tp_getattro

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

setattrfunc PyTypeObject .tp_setattr

An optional pointer to the function for setting and deleting attributes.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name.

Inheritance:
Group: tp_setattr, tp_setattro

This field is inherited by subtypes together with tp_setattro: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

PyAsyncMethods *PyTypeObject .tp_as_async

Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and
asynchronous iterator protocols at the C-level. See Async Object Structures for details.

Added in version 3.5: Formerly known as tp_compare and tp_reserved.
Inheritance:

The tp_as_async field is not inherited, but the contained fields are inherited individually.

reprfunc PyTypeObject .tp_repr

An optional pointer to a function that implements the built-in function repr ().

The signature is the same as for PyObject_Repr ():

[PyObject *tp_repr (PyObject *self);

J

The function must return a string or a Unicode object. Ideally, this function should return a string that, when
passed to eval (), given a suitable environment, returns an object with the same value. If this is not feasible,

268

Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

it should return a string starting with ' <' and ending with '>' from which both the type and the value of the
object can be deduced.

Inheritance:
This field is inherited by subtypes.
Default:

When this field is not set, a string of the form <%s object at %p> is returned, where %s is replaced by the
type name, and %p by the object’s memory address.

PyNumberMethods *PyTypeObject .tp_as_number

Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documented in Number Object Structures.

Inheritance:
The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods *PyTypeObject .tp_as_sequence

Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documented in Sequence Object Structures.

Inheritance:
The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods *Py TypeObject .tp_as_mapping

Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented in Mapping Object Structures.

Inheritance:
The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc Py TypeObject .tp_hash

An optional pointer to a function that implements the built-in function hash ().

The signature is the same as for PyOb ject_Hash ():

[nyhashft tp_hash (PyObject *);

)

The value -1 should not be returned as a normal return value; when an error occurs during the computation
of the hash value, the function should set an exception and return -1.

When this field is not set (and tp_richcompare is not set), an attempt to take the hash of the object raises
TypeError. This is the same as setting it to PyObject_HashNot Implemented ().

This field can be set explicitly to PyObject HashNotImplemented () to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash__ = None at the Python level,
causing isinstance (o, collections.Hashable) to correctly return False. Note that the converse is
also true - setting __hash__ = None on a class at the Python level will result in the tp_hash slot being set
to PyObject_HashNotImplemented().

Inheritance:
Group: tp_hash, tp_richcompare

This field is inherited by subtypes together with tp_ richcompare: a subtype inherits both of
tp_richcompare and tp_hash, when the subtype’s tp_richcompare and tp_hash are both NULL.
ternaryfunc PyTypeObject .tp_call

An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Ccall ():

[PyObject *tp_call (PyObject *self, PyObject *args, PyObject *kwargs);

12.3. Type Object Structures 269

The Python/C API, Yayim 3.12.9

Inheritance:
This field is inherited by subtypes.

reprfunc PyTypeObject .tp_str

An optional pointer to a function that implements the built-in operation st r () . (Note that str is a type now,
and str () calls the constructor for that type. This constructor calls Pyobject_Str () to do the actual work,
and Pyobject_Str () will call this handler.)

The signature is the same as for PyObject_Str():

[PyObject *tp_str (PyObject *self); }

The function must return a string or a Unicode object. It should be a “friendly” string representation of the
object, as this is the representation that will be used, among other things, by the print () function.

Inheritance:

This field is inherited by subtypes.

Default:

When this field is not set, Pyobject_Repr () is called to return a string representation.

getattrofunc PyTypeObject .tp_getattro
An optional pointer to the get-attribute function.

The signature is the same as for PyObject_GetAttr():

[PyObject *tp_getattro (PyObject *self, PyObject *attr); }

It is usually convenient to set this field to PyObject_GenericGetAttr (), which implements the normal
way of looking for object attributes.

Inheritance:
Group: tp_getattr, tp_getattro

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

Default:
PyBaseObject_Type USes PyObject_GenericGetAttr ().

setattrofunc Py TypeObject .tp_setattro
An optional pointer to the function for setting and deleting attributes.

The signature is the same as for PyObject_SetAttr():

[int tp_setattro (PyObject *self, PyObject *attr, PyObject *value); }

In addition, setting value to NULL to delete an attribute must be supported. It is usually convenient to set this
field to PyObject_GenericSetAttr (), which implements the normal way of setting object attributes.

Inheritance:
Group: tp_setattr, tp_setattro

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

Default:

PyBaseObject_Type USes PyObject_GenericSetAttr().

270 Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

PyBufferProcs *PyTypeObject .tp_as_buffer

Pointer to an additional structure that contains fields relevant only to objects which implement the buffer
interface. These fields are documented in Buffer Object Structures.

Inheritance:
The tp_as_bufrer field is not inherited, but the contained fields are inherited individually.

unsigned long Py TypeObject.tp_£flags

This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; ot-
hers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as _number, tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not al-
ways present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be
considered to have a zero or NULL value instead.

Inheritance:

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The py_TPrrAGS HAVE_GC flag bit is inherited together with the
tp_traverse and tp_clear fields, i.e. if the Py TPFLAGS HAVE GC flag bit is clear in the subtype and
the tp_traverseand tp_clear fields in the subtype exist and have NULL values. .. XXX are most flag bits
really inherited individually?

Default:
PyBaseObject_Type uses Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE.
Bit Masks:

The following bit masks are currently defined; these can be ORed together using the | operator to form the
value of the tp_flags field. The macro Py Type_ HasFeature () takes a type and a flags value, #p and f,
and checks whether tp->tp_flags & f is non-zero.

Py_TPFLAGS_HEAPTYPE

This bit is set when the type object itself is allocated on the heap, for example, types created dynamically
using PyType FromSpec (). In this case, the ob_type field of its instances is considered a reference
to the type, and the type object is INCREFed when a new instance is created, and DECREFed when
an instance is destroyed (this does not apply to instances of subtypes; only the type referenced by the
instance’s ob_type gets INCREFed or DECREFed). Heap types should also support garbage collection
as they can form a reference cycle with their own module object.

Inheritance:
27?

Py TPFLAGS_BASETYPE

This bit is set when the type can be used as the base type of another type. If this bit is clear, the type
cannot be subtyped (similar to a “final” class in Java).

Inheritance:
77
Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by Py Type Ready ().
Inheritance:
777
Py_TPFLAGS_READYING
This bit is set while Py Type_Ready () is in the process of initializing the type object.

Inheritance:

12.3. Type Object Structures 271

The Python/C API, Yayim 3.12.9

7

Py_TPFLAGS_HAVE_GC

This bit is set when the object supports garbage collection. If this bit is set, instances must be created
using PyObject_GC_New and destroyed using PyObject_GC_Del (). More information in section
Supporting Cyclic Garbage Collection. This bit also implies that the GC-related fields tp_t raverse and
tp_clear are present in the type object.

Inheritance:
Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear

The py_TPFLAGS HAVE_GC flagbitis inherited together with the tp_traverseand tp_clear fields,
ie.if the Py_TPF1AGS HAVE_GC flag bit is clear in the subtype and the tp _traverseand tp_clear
fields in the subtype exist and have NULL values.

Py_TPFLAGS_DEFAULT

This is a bitmask of all the bits that pertain to the existence of certain fields in the type object and its exten-
sion structures. Currently, it includes the following bits: Py_TPFLAGS_HAVE_STACKLESS_EXTENSION.

Inheritance:

m

Py_TPFLAGS_METHOD_DESCRIPTOR

This bit indicates that objects behave like unbound methods.
If this flag is set for type (meth), then:

e meth.__get__ (obj, cls) (*args, **kwds) (with obj not None) must be equivalent to
meth (obj, *args, **kwds).

e meth. get_ (None, cls) (*args, **kwds) must be equivalent to meth (*args,
**kwds).

This flag enables an optimization for typical method calls like obj .meth () : it avoids creating a tempo-
rary “bound method” object for obj.meth.

Added in version 3.8.
Inheritance:

This flag is never inherited by types without the Py TPF1.AGS_IMMUTABLETYPE flag set. For extension
types, it is inherited whenever tp_descr_get is inherited.

Py TPFLAGS_MANAGED_DICT

This bit indicates that instances of the class have a ~object.__dict__ attribute, and that the space for the
dictionary is managed by the VM.

If this flag is set, Py TPFLAGS HAVE_GC should also be set.
Added in version 3.12.
Inheritance:

This flag is inherited unless the tp_dictorfset field is set in a superclass.

Py_TPFLAGS_MANAGED_WEAKREF

This bit indicates that instances of the class should be weakly referenceable.
Added in version 3.12.
Inheritance:

This flag is inherited unless the tp_weaklistorfset field is set in a superclass.

272

Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

Py_TPFLAGS_ITEMS_AT_ END

Only usable with variable-size types, i.e. ones with non-zero tp_itemsize.

Indicates that the variable-sized portion of an instance of this type is at the end of the instance’s memory
area, at an offset of Py_TYPE (obj) ->tp_basicsize (which may be different in each subclass).

When setting this flag, be sure that all superclasses either use this memory layout, or are not variable-
sized. Python does not check this.

Added in version 3.12.
Inheritance:
This flag is inherited.

Py_TPFLAGS_LONG_SUBCLASS
Py_TPFLAGS_LIST SUBCLASS
Py_TPFLAGS_TUPLE_SUBCLASS
Py_TPFLAGS_BYTES_SUBCLASS
Py_TPFLAGS_UNICODE_SUBCLASS
Py_TPFLAGS_DICT_ SUBCLASS
Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS

These flags are used by functions such as PyLong_Check () to quickly determine if a type is a subclass
of a built-in type; such specific checks are faster than a generic check, like PyObject_IsInstance().
Custom types that inherit from built-ins should have their tp_f1ags set appropriately, or the code that
interacts with such types will behave differently depending on what kind of check is used.

Py_TPFLAGS_HAVE_FINALIZE
This bit is set when the tp_finalize slotis present in the type structure.

Added in version 3.4.

3.8 stirimiinden beri kullamim disi: This flag isn’t necessary anymore, as the interpreter assumes the
tp_finalize slotis always present in the type structure.

Py_TPFLAGS_HAVE_VECTORCALL

This bit is set when the class implements the vectorcall protocol. See tp_vectorcall offset for
details.

Inheritance:
This bit is inherited if tp_cal1 is also inherited.
Added in version 3.9.

3.12 siiriimiinde degisti: This flag is now removed from a class when the class’s __call__ () method is
reassigned.

This flag can now be inherited by mutable classes.

Py_TPFLAGS_IMMUTABLETYPE
This bit is set for type objects that are immutable: type attributes cannot be set nor deleted.

PyType_Ready () automatically applies this flag to static types.
Inheritance:

This flag is not inherited.

Added in version 3.10.

12.3. Type Object Structures 273

The Python/C API, Yayim 3.12.9

Py_TPFLAGS_DISALLOW_INSTANTIATION

Disallow creating instances of the type: set tp_new to NULL and don’t create the _ new__ key in the
type dictionary.

The flag must be set before creating the type, not after. For example, it must be set before
PyType_Ready () is called on the type.

The flag is set automatically on static typesif tp_baseis NULL or sPyBaseObject_Typeand tp_new
is NULL.

Inheritance:

This flag is not inherited. However, subclasses will not be instantiable unless they provide a non-NULL
tp_new (which is only possible via the C API).

O Not

To disallow instantiating a class directly but allow instantiating its subclasses (e.g. for an abstract base
class), do not use this flag. Instead, make tp_new only succeed for subclasses.

Added in version 3.10.

Py TPFLAGS_MAPPING

This bit indicates that instances of the class may match mapping patterns when used as the subject of a
match block. It is automatically set when registering or subclassing collections.abc.Mapping, and
unset when registering collections.abc.Sequence.

O Not

Py TPFLAGS_MAPPINGand Py TPFLAGS_SEQUENCE are mutually exclusive;itis an error to enable
both flags simultaneously.

Inheritance:

This flag is inherited by types that do not already set Py_TPFLAGS SEQUENCE.

¢ Ayrica bakimz

PEP 634 - Structural Pattern Matching: Specification

Added in version 3.10.

Py TPFLAGS_SEQUENCE

This bit indicates that instances of the class may match sequence patterns when used as the subject of
amatch block. It is automatically set when registering or subclassing collections.abc.Sequence,
and unset when registering collections.abc.Mapping.

O Not

Py TPFLAGS_MAPPINGand Py TPFLAGS_SEQUENCE are mutually exclusive;itis an error to enable
both flags simultaneously.

Inheritance:

This flag is inherited by types that do not already set Py_ TPFLAGS_MAPPING.

274 Boéliim 12. Object Implementation Support

https://peps.python.org/pep-0634/

The Python/C API, Yayim 3.12.9

> Ayrica bakimiz

PEP 634 - Structural Pattern Matching: Specification

Added in version 3.10.

Py_TPFLAGS_VALID_VERSION_TAG

Internal. Do not set or unset this flag. To indicate that a class has changed call Py Type_Modified ()

A Uyan

This flag is present in header files, but is an internal feature and should not be used. It will be removed
in a future version of CPython

const char *PyTypeObject .tp_doc

An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as
the _ doc__ attribute on the type and instances of the type.

Inheritance:
This field is not inherited by subtypes.

traverseproc PyTypeObject .tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the
pPy_TPFLAGS_HAVE_GC flag bit is set. The signature is:

[int tp_traverse (PyObject *self, visitproc visit, wvoid *argqg);

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementation
of a tp_traverse function simply calls Py_v7S17() on each of the instance’s members that are Python
objects that the instance owns. For example, this is function 1ocal_traverse () fromthe _thread extension
module:

p
static int

local_traverse (localobject *self, visitproc visit, wvoid *argq)
{

Py _VISIT (self->args);

Py _VISIT (self-—>kw);

Py_VISIT (self->dict);

return 0;

Note that py_v1s17T () is called only on those members that can participate in reference cycles. Although
there is also a self->key member, it can only be NULL or a Python string and therefore cannot be part of a
reference cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want
to visit it anyway just so the gc module’s get_referents () function will include it.

A Uyan

When implementing tp_traverse, only the members that the instance owns (by having strong references
to them) must be visited. For instance, if an object supports weak references via the tp_weak1ist slot,
the pointer supporting the linked list (what #p_weaklist points to) must not be visited as the instance does
not directly own the weak references to itself (the weakreference list is there to support the weak reference

12.3. Type Object Structures 275

https://peps.python.org/pep-0634/

The Python/C API, Yayim 3.12.9

machinery, but the instance has no strong reference to the elements inside it, as they are allowed to be
removed even if the instance is still alive).

Note that py_vISIT () requires the visit and arg parameters to local_traverse () to have these specific
names; don’t name them just anything.

Instances of heap-allocated types hold a reference to their type. Their traversal function must therefore either
visit Py_ TYPE (self), or delegate this responsibility by calling tp_t raverse of another heap-allocated type
(such as a heap-allocated superclass). If they do not, the type object may not be garbage-collected.

3.9 siiriimiinde degisti: Heap-allocated types are expected to visit Py_TYPE (self) in tp_traverse. In
earlier versions of Python, due to bug 40217, doing this may lead to crashes in subclasses.

Inheritance:
(houp:nyTPFLAGS?HAVE?GC,tpﬁtraverse,tchlear

This field is inherited by subtypes together with tp_clear and the Py_TPFLAGS HAVE_GC flag bit: the flag
bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

inquiry PyTypeObject .tp_clear

An optional pointer to a clear function for the garbage collector. This is only used if the
py_TPFLAGS_HAVE_GC flag bit is set. The signature is:

[int tp_clear (PyObject *); }

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_clear functions in the system must combine to break all reference cycles.
This is subtle, and if in any doubt supply a tp_ c1ear function. For example, the tuple type does not implement
a tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_clear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp _clear.

Implementations of tp_clear should drop the instance’s references to those of its members that may be
Python objects, and set its pointers to those members to NULL, as in the following example:

static int

local_clear (localobject *self)

{
Py_CLEAR (self-—>key);
Py_CLEAR (self->args);
Py_CLEAR (self->kw);
Py_CLEAR(self->dict);
return O;

(
(
(
(

The py_CLEAR () macro should be used, because clearing references is delicate: the reference to the contained
object must not be released (via Py_DECREF ()) until after the pointer to the contained object is set to NULL.
This is because releasing the reference may cause the contained object to become trash, triggering a chain of
reclamation activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks,
associated with the contained object). If it’s possible for such code to reference self again, it’s important that
the pointer to the contained object be NULL at that time, so that self knows the contained object can no longer
be used. The Py_CLEAR () macro performs the operations in a safe order.

Note that tp_clear is not always called before an instance is deallocated. For example, when reference
counting is enough to determine that an object is no longer used, the cyclic garbage collector is not involved
and tp_deallocis called directly.

Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained
objects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’s tp_dealloc function to invoke
tp_clear.

276

Boéliim 12. Object Implementation Support

https://bugs.python.org/issue40217

The Python/C API, Yayim 3.12.9

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

Inheritance:
(houp:PyiTPFLAGsfHAVEfGC,tpﬁtraverse,tpgclear

This field is inherited by subtypes together with tp_traverse and the Py TPFLAGS HAVE GC flag bit: the
flag bit, tp_traverse,and tp_clear are all inherited from the base type if they are all zero in the subtype.

richcmpfunc PyTypeObject .tp_richcompare

An optional pointer to the rich comparison function, whose signature is:

[PyObject *tp_richcompare (PyObject *self, PyObject *other, int op);

The first parameter is guaranteed to be an instance of the type that is defined by Py TypeObject.

The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_Not Implemented, if another error occurred it must return NULL and set an
exception condition.

The following constants are defined to be used as the third argument for tp richcompare and for
PyObject_RichCompare ():

Constant Comparison

<
Py LT

< =
Py_LE
Py EQ

!7
Py_NE

>
Py GT

> =
Py _GE

The following macro is defined to ease writing rich comparison functions:

Py_RETURN_RICHCOMPARE (VAL_A, VAL_B, op)

Return Py_True or Py_False from the function, depending on the result of a comparison. VAL_A and
VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats). The
third argument specifies the requested operation, as for PyObject_RichCompare ().

The returned value is a new strong reference.
On error, sets an exception and returns NULL from the function.
Added in version 3.7.

Inheritance:

Group: tp_hash, tp_richcompare

This field is inherited by subtypes together with tp_hash: a subtype inherits tp_richcompareand tp_hash
when the subtype’s tp_richcompare and tp_hash are both NULL.

12.3. Type Object Structures 277

The Python/C API, Yayim 3.12.9

Default:

PyBaseObject_Type provides a tp_richcompare implementation, which may be inherited. However, if
only tp_hash is defined, not even the inherited function is used and instances of the type will not be able to
participate in any comparisons.

Py _ssize_t PyTypeObject.tp_weaklistoffset

While this field is still supported, Py T7PFLAGS MANAGED_ wEAKREF should be used instead, if at all possible.

If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used
by PyObject_ClearWeakRefs () and the PyWeakref_ * functions. The instance structure needs to include
a field of type PyObject* which is initialized to NULL.

Do not confuse this field with tp_weak11ist; that is the list head for weak references to the type object itself.
It is an error to set both the Py TPFLAGS MANAGED _WEAKREF bit and tp_weaklistoffset.
Inheritance:

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found
via tp_weaklistoffset, this should not be a problem.

Default:

If the Py TPFLAGS MANAGED_ WEAKREF bit is set in the tp_flags field, then tp weaklistoffset will
be set to a negative value, to indicate that it is unsafe to use this field.

getiterfunc PyTypeObject .tp_iter

An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iferable (although sequences may be iterable without this function).

This function has the same signature as PyObject_GetIter ():

[PyObject *tp_iter (PyObject *self);

Inheritance:

This field is inherited by subtypes.

iternextfunc PyTypeObject .tp_iternext

An optional pointer to a function that returns the next item in an iterator. The signature is:

[PyObject *tp_iternext (PyObject *self);

J

When the iterator is exhausted, it must return NULL; a StopIteration exception may or may not be set.
When another error occurs, it must return NULL too. Its presence signals that the instances of this type are
iterators.

Iterator types should also define the tp_iter function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signature as PyTter Next ().
Inheritance:

This field is inherited by subtypes.

struct PyMethodDef *PyTypeObject .tp_methods

An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a method
descriptor.

Inheritance:

278

Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef *PyTypeObject .tp_members

An optional pointer to a static NULL-terminated array of PyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a member
descriptor.

Inheritance:
This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef *PyTypeObject .tp_getset

An optional pointer to a static NULL-terminated array of PyGet SetDef structures, declaring computed attri-
butes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.

Inheritance:
This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).
PyTypeObject ¥PyTypeObject .tp_base

An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

O Not

Slot initialization is subject to the rules of initializing globals. C99 requires the initializers to be “address
constants”. Function designators like Py Type GenericNew (), with implicit conversion to a pointer, are
valid C99 address constants.

However, the unary ‘&’ operator applied to a non-static variable like PyBaseOb ject_ Type is not required
to produce an address constant. Compilers may support this (gcc does), MSVC does not. Both compilers
are strictly standard conforming in this particular behavior.

Consequently, tp_base should be set in the extension module’s init function.

Inheritance:

This field is not inherited by subtypes (obviously).

Default:

This field defaults to sPyBaseObject_Type (Which to Python programmers is known as the type object).
PyObject ¥*pPyTypeObject .tp_dict

The type’s dictionary is stored here by Py Type_ Ready ().

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once Py Type Ready () has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations
(like __add__ ()). Once initialization for the type has finished, this field should be treated as read-only.

Some types may not store their dictionary in this slot. Use PyType_GetDict () to retrieve the dictionary for
an arbitrary type.

3.12 siiriimiinde degisti: Internals detail: For static builtin types, this is always NULL. Instead, the dict for such
types is stored on PyInterpreterState. Use PyType GetDict () to get the dict for an arbitrary type.

Inheritance:

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

12.3. Type Object Structures 279

The Python/C API, Yayim 3.12.9

Default:

If this field is NULL, Py Type_Ready () will assign a new dictionary to it.

A Uyan

It is not safe to use PyDict_SetItem() on or otherwise modify tp_dict with the dictionary C-APIL

descrgetfunc PyTypeObject .tp_descr_get

An optional pointer to a “descriptor get” function.

The function signature is:

[Pyobject * tp_descr_get (PyObject *self, PyObject *obj, PyObject *type);

Inheritance:
This field is inherited by subtypes.

descrsetfunc PyTypeObject .tp_descr_set

An optional pointer to a function for setting and deleting a descriptor’s value.

The function signature is:

[int tp_descr_set (PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value.
Inheritance:
This field is inherited by subtypes.

Py _ssize_t PyTypeObject .tp_dictoffset
While this field is still supported, Py TPFr.AGS MANAGED_DICT should be used instead, if at all possible.

If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by

PyObject_GenericGetAttr ().
Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.

The value specifies the offset of the dictionary from the start of the instance structure.

The tp dictoffset should be regarded as write-only. To get the pointer to the dictionary call
PyObject_GenericGetDict (). Calling PyObject_GenericGetDict () may need to allocate memory
for the dictionary, so it is may be more efficient to call Pyobject_GetAttr () when accessing an attribute

on the object.
It is an error to set both the Py TPFLAGS_MANAGED_DICT bitand tp_dictoffset.

Inheritance:

This field is inherited by subtypes. A subtype should not override this offset; doing so could be unsa-
fe, if C code tries to access the dictionary at the previous offset. To properly support inheritance, use

Py_TPFLAGS_MANAGED_DICT.
Default:

This slot has no default. For static types, if the field is NULL then no __dict__ gets created for instances.

If the Py TPFLAGS MANAGED_DICT bitis setinthe tp_dict field, then tp_dictoffset will be setto -1,

to indicate that it is unsafe to use this field.

280 Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

initproc PyTypeObject .tp_init
An optional pointer to an instance initialization function.

This function corresponds tothe __init__ () method of classes. Like __init__ (), itis possible to create an
instance without calling __init__ (), and it is possible to reinitialize an instance by callingits __init__ ()
method again.

The function signature is:

[int tp_init (PyObject *self, PyObject *args, PyObject *kwds); }

The self argument is the instance to be initialized; the args and kwds arguments represent positional and key-
word arguments of the callto __init_ ().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after
the type’s t p_new function has returned an instance of the type. If the tp_new function returns an instance of
some other type that is not a subtype of the original type, no tp_init function is called; if tp_new returns
an instance of a subtype of the original type, the subtype’s tp_init is called.

Returns 0 on success, —1 and sets an exception on error.
Inheritance:

This field is inherited by subtypes.

Default:

For static types this field does not have a default.

allocfunc PyTypeObject .tp_alloc
An optional pointer to an instance allocation function.

The function signature is:

[PyObject *tp_alloc (PyTypeObiject *self, Py_ssize_t nitems); J

Inheritance:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement).
Default:

For dynamic subtypes, this field is always set to Py Type_GenericAlloc (), to force a standard heap alloca-
tion strategy.

For static subtypes, PyBaseObject_Typeuses PyType_ GenericAlloc (). Thatis the recommended value
for all statically defined types.

newfunc PyTypeObject .tp_new

An optional pointer to an instance creation function.

The function signature is:

[PyObject *tp_new (PyTypeObject *subtype, PyObject *args, PyObject *kwds); }

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).

The tp_new function should call subtype—>tp_alloc (subtype, nitems) to allocate space for the ob-
ject, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be
ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for immutable
types, all initialization should take place in tp_new, while for mutable types, most initialization should be
deferred to tp_init.

Setthe Py TPFLAGS DISALLOW_INSTANTIATION flag to disallow creating instances of the type in Python.

Inheritance:

12.3. Type Object Structures 281

The Python/C API, Yayim 3.12.9

This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type.

Default:

For static types this field has no default. This means if the slot is defined as NULL, the type cannot be called to
create new instances; presumably there is some other way to create instances, like a factory function.

freefunc PyTypeObject.tp_£free
An optional pointer to an instance deallocation function. Its signature is:

[Void tp_free(void *self); }

An initializer that is compatible with this signature is PyObject_Free ().

Inheritance:

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement)
Default:

In dynamic subtypes, this field is set to a deallocator suitable to match Py Type Genericalloc () and the
value of the Py TPFLAGS _HAVE_GC flag bit.

For static subtypes, PyBaseObject_Type uses PyObject_Del ().

inquiry PyTypeObject .tp_is_ge
An optional pointer to a function called by the garbage collector.
The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’s type’s tp_flags field, and check the py_TPrrAGS HAVE_GC flag bit. But some types
have a mixture of statically and dynamically allocated instances, and the statically allocated instances are not

collectible. Such types should define this function; it should return 1 for a collectible instance, and 0 for a
non-collectible instance. The signature is:

[int tp_is_gc (PyObject *self); }

(The only example of this are types themselves. The metatype, Py Type_ Type, defines this function to distin-
guish between statically and dynamically allocated types.)

Inheritance:

This field is inherited by subtypes.

Default:

This slot has no default. If this field is NULL, Py TPFLAGS HAVE_GC is used as the functional equivalent.

PyObject *PyTypeObject .tp_bases
Tuple of base types.

This field should be set to NULL and treated as read-only. Python will fill it in when the type is initialized.

For dynamically created classes, the Py_tp_bases slot can be used instead of the bases argument of
PyType_FromSpecWithBases (). The argument form is preferred.

A Uyan

Multiple inheritance does not work well for statically defined types. If you set tp_bases to a tuple, Python
will not raise an error, but some slots will only be inherited from the first base.

Inheritance:

This field is not inherited.

282 Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

PyObject *PyTypeObject .tp_mro

Tuple containing the expanded set of base types, starting with the type itself and ending with object, in
Method Resolution Order.

This field should be set to NULL and treated as read-only. Python will fill it in when the type is initialized.
Inheritance:
This field is not inherited; it is calculated fresh by Py Type Ready ().

PyObject ¥*PyTypeObject .tp_cache
Unused. Internal use only.

Inheritance:
This field is not inherited.

void *PyTypeObject .tp_subclasses
A collection of subclasses. Internal use only. May be an invalid pointer.

To get a list of subclasses, call the Python method __subclasses__ ().

3.12 siirtimiinde degisti: For some types, this field does not hold a valid Pyobject*. The type was changed
to void* to indicate this.

Inheritance:
This field is not inherited.
PyObject *pyTypeObject .tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

3.12 siiriimiinde degisti: Internals detail: For the static builtin types this is always NULL, even if weakrefs are
added. Instead, the weakrefs for each are stored on PyInterpreterState. Use the public C-API or the
internal _PyObject_GET_WEAKREFS_LISTPTR () macro to avoid the distinction.

Inheritance:
This field is not inherited.

destructor PyTypeObject .tp_del
This field is deprecated. Use tp_finalize instead.

unsigned int Py TypeObject.tp_version_tag

Used to index into the method cache. Internal use only.
Inheritance:
This field is not inherited.

destructor PyTypeObject .tp_finalize

An optional pointer to an instance finalization function. Its signature is:

[void tp_finalize (PyObject *self); J

If tp_rfinalize is set, the interpreter calls it once when finalizing an instance. It is called either from the
garbage collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated.
Either way, it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the
object in a sane state.

tp_finalize should not mutate the current exception status; therefore, a recommended way to write a non-
trivial finalizer is:

static void
local _finalize (PyObject *self)
{
PyObject *error_type, *error_value, *error_traceback;

(sonraki sayfaya devam)

12.3. Type Object Structures 283

The Python/C API, Yayim 3.12.9

/* Save the current exception,
PyErr_Fetch (&error_type,
/* */

/* Restore the saved exception.

PyErr_Restore (error_type,

}

L

&error_value,

error_value,

(6nceki sayfadan devam)

=y
&error_traceback);

if any.

*/

error_traceback);

Inheritance:
This field is inherited by subtypes.
Added in version 3.4.

3.8 siiriimiinde degisti: Before version 3.8 it was necessary to set the Py TPFLAGS_HAVE_FINALIZE flags
bit in order for this field to be used. This is no longer required.

> Ayrica bakimiz

“Safe object finalization” (PEP 442)

vectorcallfunc PyTypeObject .tp_vectorcall

Vectorcall function to use for calls of this type object. In other words, it is used to implement vectorcall

for type.__call . If tp_vectorcall is NULL, the default call implementation using _ new___

_ init__ () is used.
Inheritance:

This field is never inherited.

() and

Added in version 3.9: (the field exists since 3.8 but it’s only used since 3.9)

unsigned char Py TypeObject .tp_watched
Internal. Do not use.

Added in version 3.12.

12.3.6 Static Types

Traditionally, types defined in C code are static, that is, a static Py TypeObject structure is defined directly in code

and initialized using Py Type Ready ().

This results in types that are limited relative to types defined in Python:

« Static types are limited to one base, i.e. they cannot use multiple inheritance.

« Static type objects (but not necessarily their instances) are immutable. It is not possible to add or modify the

type object’s attributes from Python.

« Static type objects are shared across sub-interpreters, so they should not include any subinterpreter-specific

state.

Also, since PyTypeOb ject is only part of the Limited API as an opaque struct, any extension modules using static
types must be compiled for a specific Python minor version.

284

Boéliim 12. Object Implementation Support

https://peps.python.org/pep-0442/

The Python/C API, Yayim 3.12.9

12.3.7 Heap Types

An alternative to static types is heap-allocated types, or heap types for short, which correspond closely to classes
created by Python’s c1ass statement. Heap types have the Py TPrFLAGS HEAPTYPE flag set.

This is done by filling a PyType Spec structure and calling PyType FromSpec(),
PyType_FromSpecWithBases (), PyType_FromModuleAndSpec (), Or PyType_FromMetaclass ().

12.3.8 Number Object Structures

type PyNumberMethods

This structure holds pointers to the functions which an object uses to implement the number protocol. Each
function is used by the function of similar name documented in the Number Protocol section.

Here is the structure definition:

typedef struct {

binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc

nb_add;
nb_subtract;
nb_multiply;
nb_remainder;
nb_divmod;

ternaryfunc nb_power;

unaryfunc nb_negative;

unaryfunc nb_positive;

unaryfunc nb_absolute;

inquiry nb_.

bool;

unaryfunc nb_invert;

binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc

nb_1lshift;
nb_rshift;
nb_and;
nb_xor;
nb_or;

unaryfunc nb_int;

void *nb_reserved;

unaryfunc nb_float;

binaryfunc
binaryfunc
binaryfunc
binaryfunc

nb_inplace_add;
nb_inplace_subtract;
nb_inplace_multiply;
nb_inplace_remainder;

ternaryfunc nb_inplace_power;

binaryfunc
binaryfunc
binaryfunc
binaryfunc
binaryfunc

binaryfunc
binaryfunc
binaryfunc
binaryfunc

nb_inplace_lshift;
nb_inplace_rshift;
nb_inplace_and;
nb_inplace_xor;
nb_inplace_or;

nb_floor_divide;
nb_true_divide;
nb_inplace_floor_divide;
nb_inplace_true_divide;

unaryfunc nb_index;

binaryfunc

nb_matrix_multiply;

binaryfunc nb_inplace_matrix_multiply;
} PyNumberMethods;

L

12.3. Type Object Structures 285

The Python/C API, Yayim 3.12.9

p
O Not

Binary and ternary functions must check the type of all their operands, and implement the necessary con-
versions (at least one of the operands is an instance of the defined type). If the operation is not defined
for the given operands, binary and ternary functions must return Py_Not Implemented, if another error

occurred they must return NULL and set an exception.

O Not

Python 3.0.1.
.

The nb_reserved field should always be NULL. It was previously called nb_1ong, and was renamed in

binaryfunc PyNumberMet hods .nb_add

binaryfunc PyNumberMethods.nb_subtract
binaryfunc PyNumberMethods.nb_multiply
binaryfunc PyNumberMethods.nb_remainder
binaryfunc PyNumberMethods.nb_divmod

ternaryfunc PyNumberMethods .nb_power

unaryfunc PyNumberMet hods.nb_negative

unaryfunc PyNumberMethods .nb_positive

unaryfunc PyNumberMethods.nb_absolute

inquiry PyNumberMethods.nb_bool

unaryfunc PyNumberMethods.nb_invert

binaryfunc PyNumberMethods.nb_lshift

binaryfunc PyNumberMet hods.nb_rshift

binaryfunc PyNumberMethods.nb_and

binaryfunc PyNumberMethods .nb_xor

binaryfunc PyNumberMethods.nb_or

unaryfunc PyNumberMethods.nb_int

void *PyNumberMethods.nb_reserved

unaryfunc PyNumberMet hods.nb_£float

binaryfunc PyNumberMet hods.nb_inplace_add
binaryfunc PyNumberMet hods .nb_inplace_subtract
binaryfunc PyNumberMethods.nb_inplace_multiply
binaryfunc PyNumberMet hods.nb_inplace_remainder
ternaryfunc PyNumberMethods .nb_inplace_power

binaryfunc PyNumberMethods.nb_inplace_lshift

286 Bolim 12

. Object Implementation Support

The Python/C API, Yayim 3.12.9

binaryfunc PyNumberMethods.nb_inplace_rshift
binaryfunc PyNumberMethods.nb_inplace_and

binaryfunc PyNumberMet hods .nb_inplace_xor

binaryfunc PyNumberMethods.nb_inplace_or

binaryfunc PyNumberMethods.nb_floor_divide
binaryfunc PyNumberMethods.nb_true_divide

binaryfunc PyNumberMethods.nb_inplace_£floor_divide
binaryfunc PyNumberMethods .nb_inplace_true_divide
unaryfunc PyNumberMethods .nb_index

binaryfunc PyNumberMethods.nb_matrix_multiply

binaryfunc PyNumberMet hods.nb_inplace_matrix_multiply

12.3.9 Mapping Object Structures

type PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has
three members:

lenfunc PyMappingMethods.mp_length
This function is used by PyMapping Size () and PyObject_Size (), and has the same signature. This slot
may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods .mp_subscript
This function is used by PyObject_GetItem() and PySequence_GetSlice (),and has the same signature
as PyObject_GetItem (). This slot must be filled for the PyMapping Check () function to return 1, it can
be NULL otherwise.

objobjargproc PyMappingMethods.mp_ass_subscript

This function is used by PyObject_SetItem(), PyObject_Delltem(),PySequence_SetSlice () and
PySequence_DelSlice (). It has the same signature as PyObject_SetItem (), but v can also be set to
NULL to delete an item. If this slot is NULL, the object does not support item assignment and deletion.

12.3.10 Sequence Object Structures

type PySequenceMethods

This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence Size () and PyObject_Size (), and has the same signature. It is
also used for handling negative indices via the sq_itemand the sg_ass_itemslots.

binaryfunc PySequenceMethods.sq_concat
This function is used by PySequence_Concat () and has the same signature. It is also used by the + operator,
after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat

This function is used by Py Sequence_Repeat () and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the nb_multiply slot.

12.3. Type Object Structures 287

The Python/C API, Yayim 3.12.9

ssizeargfunc PySequenceMethods.sq item

This function is used by PySequence GetItem() and has the same signature. It is also used by
PyObject_GetItem(), after trying the subscription via the mp_subscript slot. This slot must be filled
for the PySequence_Check () function to return 1, it can be NULL otherwise.

Negative indexes are handled as follows: if the sq_Iength slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sg_item. If sq_length is NULL, the index is passed as
is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence SetItem() and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem (), after trying the item assignment and deletion via the
mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment and
deletion.

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains () and has the same signature. This slot may be left
to NULL, in this case PySequence_Contains () simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq _inplace_concat

This function is used by PySequence_InPlaceConcat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceConcat () will
fall back to PySequence_Concat (). Itis also used by the augmented assignment + =, after trying numeric
in-place addition via the nb_inplace add slot.

ssizeargfunc PySequenceMethods.sq_inplace_repeat

This function is used by PySequence_TnPlaceRepeat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceRepeat () will
fall back to PySequence_Repeat (). Itis also used by the augmented assignment * =, after trying numeric
in-place multiplication via the nb_inplace _multiply slot.

12.3.11 Buffer Object Structures

type PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an
exporter object can expose its internal data to consumer objects.

getbufferproc PyBufferProcs.bf_getbuffer
The signature of this function is:

[int (PyObject *exporter, Py_buffer *view, int flags); }

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of
this function MUST take these steps:

(1) Check if the request can be met. If not, raise Buf ferError, set view—>obj to NULL and return - 1.
(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view—>ob3 to exporter and increment view—>obj.
(5) Return 0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

« Re-export: Each member of the tree acts as the exporting object and sets view—>obj to a new reference
to itself.

» Redirect: The buffer request is redirected to the root object of the tree. Here, view—>obj will be a new
reference to the root object.

288 Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to
specific requests are in section Buffer request types.

All memory pointed to in the Py_ buffer structure belongs to the exporter and must remain valid until there are
no consumers left. format, shape, strides, suboffsets and internal are read-only for the consumer.

PyBuffer FillInfo () provides an easy way of exposing a simple bytes buffer while dealing correctly with
all request types.

PyObject_GetBuffer () is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs.bf_releasebuffer

The signature of this function is:

[void (PyObject *exporter, Py_buffer *view); }

Handle a request to release the resources of the buffer. If no resources need to be released, PyBurferProcs.

bf_releasebuffer may be NULL. Otherwise, a standard implementation of this function will take these
optional steps:

(1) Decrement an internal counter for the number of exports.
(2) If the counter is 0, free all memory associated with view.

The exporter MUST use the i nternal field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.

This function MUST NOT decrement view—>ob3, since that is done automatically in PyBuffer Release ()
(this scheme is useful for breaking reference cycles).

PyBuffer Release () is the interface for the consumer that wraps this function.

12.3.12 Async Object Structures
Added in version 3.5.

type PyAsyncMethods

This structure holds pointers to the functions required to implement awaitable and asynchronous iterator ob-
jects.

Here is the structure definition:

-

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;
sendfunc am_send;

} PyAsyncMethods;

unaryfunc PyAsyncMethods.am_await

The signature of this function is:

[PyObject *am_await (PyObject *self); }

The returned object must be an iferator, i.e. PyIter Check () must return 1 for it.

This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter

The signature of this function is:

[PyObject *am_aiter (PyObject *self); }

12.3. Type Object Structures 289

The Python/C API, Yayim 3.12.9

Must return an asynchronous iterator object. See __anext__ () for details.
This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods.am_anext

The signature of this function is:

[PyObject *am_anext (PyObject *self);

Must return an awaitable object. See __anext__ () for details. This slot may be set to NULL.

sendfunc PyAsyncMethods.am_send

The signature of this function is:

[PySendResult am_send (PyObject *self, PyObject *arg, PyObject **result);

See pyTter Send () for details. This slot may be set to NULL.

Added in version 3.10.

12.3.13 Slot Type typedefs

typedef PyObject *(*allocfunc)(PyTypeObject *cls, Py_ssize_t nitems)
Bir parcast Kararli ABIL The purpose of this function is to separate memory allocation from memory initiali-
zation. It should return a pointer to a block of memory of adequate length for the instance, suitably aligned,
and initialized to zeros, but with ob_refcnt set to 1 and ob_type set to the type argument. If the type’s
tp_itemsize is non-zero, the object’s ob_size field should be initialized to nitems and the length of the
allocated memory block should be tp_basicsize + nitems*tp_itemsize, rounded up to a multiple of
sizeof (void*) ; otherwise, nitems is not used and the length of the block should be tp_basicsize.

This function should not do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.

typedef void (*destructor)(PyObject*)
Bir parcas: Kararli ABL
typedef void (*£reefunc)(void*)
See tp_free.
typedef PyObject *(*newfunc)(PyTypeObject*, PyObject*, PyObject*)
Bir parcast Kararl1 ABL. See tp_new.
typedef int (*initproce)(PyObject*, PyObject*, PyObject*)
Bir parcas: Kararl1 ABL See tp_init.
typedef PyObject *(*reprfunc)(PyObject*)
Bir parcas: Kararli ABL See tp_repr.
typedef PyObject *(*getattrfunc)(PyObject *self, char *attr)
Bir parcas: Kararl1 ABL Return the value of the named attribute for the object.
typedef int (*setattrfunc)(PyObject *self, char *attr, PyObject *value)

Bir parcast Kararli ABI. Set the value of the named attribute for the object. The value argument is set to NULL
to delete the attribute.

typedef PyObject *(*getattrofunc)(PyObject *self, PyObject *attr)
Bir parcas: Kararl1 ABL Return the value of the named attribute for the object.

See tp_getattro.

290 Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

typedef int (¥*setattrofunc)(PyObject *self, PyObject *attr, PyObject *value)
Bir parcast Kararli ABL Set the value of the named attribute for the object. The value argument is set to NULL
to delete the attribute.

See tp_setattro.
typedef PyObject *(*descrget £unc)(PyObject*, PyObject*, PyObject*)
Bir parcast Kararl1 ABL. See tp_descr_get.
typedef int (*descrset func)(PyObject*, PyObject*, PyObject*)
Bir parcast Kararl1 ABL. See tp_descr_set.
typedef Py_hash_t (*hashfunc)(PyObject*)
Bir parcas: Kararl1 ABL See tp_hash.
typedef PyObject *(*richempfunc)(PyObject*, PyObject*, int)
Bir parcast Kararlit ABL See tp_richcompare.
typedef PyObject *(*getiterfunc)(PyObject*)
Bir parcast Kararli ABL See tp_iter.
typedef PyObject *(*iternext func)(PyObject*)
Bir parcast Kararli ABL See tp_iternext.
typedef Py_ssize_t (*1lenfunc)(PyObject*)
Bir parcast Kararli ABL
typedef int (*getbufferproc)(PyObject*, Py_buffer*, int)
Bir parcast Kararli ABI 3.12 siiriimiinden beri.
typedef void (*releasebufferproc)(PyObject*, Py_buffer*)
Bir parcast Kararli ABI 3.12 siiriimiinden beri.
typedef PyObject *(*unary£unc)(PyObject*)
Bir parcas: Kararli ABL
typedef PyObject *(*binaryfunc)(PyObject*, PyObject*)
Bir parcas: Kararli ABL
typedef PySendResult (*sendfunc)(PyObject*, PyObject*, PyObject**)
See am_send.
typedef PyObject *(*ternaryfunc)(PyObject*, PyObject*, PyObject™*)
Bir parcas: Kararl1 ABL
typedef PyObject *(*ssizeargfunc)(PyObject*, Py_ssize_t)
Bir parcas: Kararl1 ABL
typedef int (¥*ssizeobjargproc)(PyObject*, Py_ssize_t, PyObject*)
Bir parcas: Kararl1 ABL
typedef int (¥*objobjproc)(PyObject*, PyObject*)
Bir parcast Kararli ABL
typedef int (¥*objobjargproc)(PyObject*, PyObject*, PyObject™*)
Bir parcast Kararli ABL

12.3.14 Examples

The following are simple examples of Python type definitions. They include common usage you may encounter.
Some demonstrate tricky corner cases. For more examples, practical info, and a tutorial, see defining-new-types and
new-types-topics.

A basic static type:

12.3. Type Object Structures 291

The Python/C API, Yayim 3.12.9

typedef struct {
PyObject_HEAD
const char *data;
} MyObject;

static PyTypeObject MyObject_Type
PyVarObject_ HEAD_INIT (NULL, O0)
.tp_name = "mymod.MyObject",
.tp_basicsize =

= {

sizeof (MyObject),

.tp_doc = PyDoc_STR("My objects"),
.tp_new = myobj_new,

.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,

bi

You may also find older code (especially in the CPython code base) with a more verbose initializer:

static PyTypeObject MyObject_Type
PyVarObject_ HEAD_INIT (NULL, 0)
"mymod.MyObject",
sizeof (MyObject),

~

destructor)myobij_dealloc,

~ 0~

~

R~

eprfunc)myobj_repr,

~

N~ S SN SN N N~ O~

O O O O O O O O O O ~ 0O O O O ~ O
~

~

PyDoc_STR("My objects"),

N N NS SN N SN NS NS NSNS ONS OSSN

O O O O O O O O O O O o o o o o

~

myobj_new,

bi

= {

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*/

tp_basicsize */

tp_name

tp_itemsize */
tp_dealloc */
tp_vectorcall_ offset
tp_getattr */
tp_setattr */
tp_as_async */

*/

tp_repr */
tp_as_number */
7
tp_as_mapping */
tp_hash */

tp _call */

tp_str */
tp_getattro */

tp_as_sequence

tp_setattro */
tp_as_buffer */
tp_flags */
tp_doc */
tp_traverse */
tp_clear */
tp_richcompare */
tp _weaklistoffset */
tp_iter */

4

=y

=y

4

tp_iternext
tp_methods
tp_members
tp_getset

tp _base */
*/
tp_descr_get

tp_dict

=y

7
74

tp_descr_set
tp_dictoffset
4
tp_alloc */
tp_new */

tp_init

292

Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

A type that supports weakrefs, instance dicts, and hashing:

typedef struct {
PyObject_HEAD
const char *data;
} MyObject;

static PyTypeObject MyObject_Type = {

PyVarObject_HEAD_INIT (NULL, O0)

.tp_name = "mymod.MyObject",

.tp_basicsize = sizeof (MyObject),

.tp_doc = PyDoc_STR("My objects"),

.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE |
Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_MANAGED_DICT |
Py_TPFLAGS_MANAGED_WEAKREF,

.tp_new = myobj_new,

.tp_traverse = (traverseproc)myobj_traverse,
.tp_clear = (inquiry)myobj_clear,

.tp_alloc = PyType_GenericNew,

.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,

.tp_hash = (hashfunc)myobj_hash,

.tp_richcompare = PyBaseObject_Type.tp_richcompare,
bi

A str subclass that cannot be subclassed and cannot be called to create instances (e.g. uses a separate factory func)
using Py TPFLAGS_DISALLOW_INSTANTIATION flag:

typedef struct {
PyUnicodeObject raw;
char *extra;

} MyStr;

static PyTypeObject MyStr_Type = {
PyVarObject_HEAD_INIT (NULL, O0)
.tp_name = "mymod.MyStr",
.tp_basicsize = sizeof (MyStr),
.tp_base = NULL, // set to &PyUnicode_Type in module init
.tp_doc = PyDoc_STR("my custom str"),
.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_DISALLOW_INSTANTIATION,
.tp_repr = (reprfunc)myobj_repr,

bi

The simplest static type with fixed-length instances:

typedef struct {
PyObject_HEAD
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_ HEAD_INIT (NULL, O0)
.tp_name = "mymod.MyObject",

bi

The simplest static type with variable-length instances:

typedef struct {
PyObject_VAR_HEAD

(sonraki sayfaya devam)

12.3. Type Object Structures 293

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

const char *datall];
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_ HEAD_INIT (NULL, O)

.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof (MyObject) - sizeof (char *),
.tp_itemsize = sizeof (char *),

bi

12.4 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are “containers” for other objects which may also be containers. Types which do not store references to
other objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any
explicit support for garbage collection.

To create a container type, the tp_flags field of the type object must include the Py TPFLAGS HAVE GC and
provide an implementation of the tp_t raverse handler. If instances of the type are mutable, a tp_clear imple-
mentation must also be provided.

Py TPFLAGS_HAVE_GC
Objects with a type with this flag set must conform with the rules documented here. For convenience these
objects will be referred to as container objects.

Constructors for container types must conform to two rules:
1. The memory for the object must be allocated using PyObject_GC_New or PyObject_GC_NewVar.

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject_GC_Track ().

Similarly, the deallocator for the object must conform to a similar pair of rules:
1. Before fields which refer to other containers are invalidated, PyObject_GC_UnTrack () must be called.

2. The object’s memory must be deallocated using PyObject_GC _Del ().

A\ Uyan

If a type adds the Py_TPFLAGS_HAVE_GC, then it must implement at least a tp_ t raverse handler or
explicitly use one from its subclass or subclasses.

When calling PyType Ready() or some of the APIs that indirectly call it like
PyType_FromSpecWithBases () Oor PyType_FromSpec () the interpreter will automatically populate
the tp_flags, tp_traverseand tp_clear fields if the type inherits from a class that implements the
garbage collector protocol and the child class does not include the Py TPFLAGS HAVE GC flag.

PyObject_GC_New (TYPE, typeobj)
Analogous to PyOb ject_New but for container objects with the Py TPFrAGS HAVE_GC flag set.

PyObject_GC_NewVar (TYPE, typeobj, size)
Analogous to PyOb ject_NewVar but for container objects with the Py TPFLAGS_HAVE_GC flag set.

PyObject *PyUnstable_Object_GC_NewWithExtraData (PyTypeObject *type, size_t extra_size)

294 Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyari1 olmadan degisebilir.

Analogous to PyObject _GC_New but allocates extra_size bytes at the end of the object (at offset
tp_basicsize). The allocated memory is initialized to zeros, except for the Pyt hon object header.

The extra data will be deallocated with the object, but otherwise it is not managed by Python.

A Uyan

The function is marked as unstable because the final mechanism for reserving extra data after an instance is
not yet decided. For allocating a variable number of fields, prefer using Pyvarobject and tp_itemsize
instead.

Added in version 3.12.

PyObject_GC_Resize (TYPE, op, newsize)
Resize an object allocated by Pyobject_NewVar. Returns the resized object of type TYPE* (refers to any C
type) or NULL on failure.

op must be of type Pyvarobject* and must not be tracked by the collector yet. newsize must be of type
Py ssize_t.

void PyObject_GC_Track (PyObject *op)
Bir parcast Kararli ABI. Adds the object op to the set of container objects tracked by the collector. The collector
can run at unexpected times so objects must be valid while being tracked. This should be called once all the
fields followed by the tp_t raverse handler become valid, usually near the end of the constructor.

int PyObject_IS_GC (PyObject *obj)
Returns non-zero if the object implements the garbage collector protocol, otherwise returns 0.

The object cannot be tracked by the garbage collector if this function returns 0.

int PyObject_GC_IsTracked (PyObject *op)

Bir parcasi Kararli ABI 3.9 siiriimiinden beri. Returns 1 if the object type of op implements the GC protocol
and op is being currently tracked by the garbage collector and O otherwise.

This is analogous to the Python function gc.is_tracked().
Added in version 3.9.
int PyObject_GC_IsFinalized (PyObject *op)
Bir parcast Kararli ABI 3.9 siiriimiinden beri. Returns 1 if the object type of op implements the GC protocol
and op has been already finalized by the garbage collector and O otherwise.
This is analogous to the Python function gc.is_finalized ().

Added in version 3.9.

void PyObject_GC_Del (void *op)

Bir parcast Kararli ABIL Releases memory allocated to an object using PyObject_GC_New oOr
PyObject_GC_NewVar.

void PyObject_GC_UnTrack (void *op)

Bir parcast Kararli ABL. Remove the object op from the set of container objects tracked by the collector. Note
that Pyobject_GC_Track () can be called again on this object to add it back to the set of tracked objects.
The deallocator (tp_dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

12.4. Supporting Cyclic Garbage Collection 295

The Python/C API, Yayim 3.12.9

3.8 stirimiinde degisti: The _PyObject_ GC_TRACK () and _PyObject_GC_UNTRACK () macros have been remo-
ved from the public C API.

The tp_traverse handler accepts a function parameter of this type:

typedef int (¥*visitproc)(PyObject *object, void *arg)
Bir parcasi Kararli ABI Type of the visitor function passed to the tp_ t raverse handler. The function should
be called with an object to traverse as object and the third parameter to the tp_t raverse handler as arg. The
Python core uses several visitor functions to implement cyclic garbage detection; it’s not expected that users
will need to write their own visitor functions.

The tp_traverse handler must have the following type:

typedef int (*traverseproc)(PyObject *self, visitproc visit, void *arg)

Bir parcast Kararli ABI. Traversal function for a container object. Implementations must call the visit function
for each object directly contained by self, with the parameters to visit being the contained object and the arg
value passed to the handler. The visit function must not be called with a NULL object argument. If visit returns
a non-zero value that value should be returned immediately.

To simplify writing tp_traverse handlers, a Py_vISIT() macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:
void Py_VISIT (PyObject *0)
If 0 is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return
it. Using this macro, tp_traverse handlers look like:

p
static int

my_traverse (Noddy *self, visitproc visit, woid *arg)
{

Py_VISIT (self->foo0);

Py_VISIT (self->bar);

return 0;

}

.

The tp_clear handler must be of the inguiry type, or NULL if the object is immutable.

typedef int (¥*inquiry)(PyObject *self)
Bir parcasi Kararli ABIL. Drop references that may have created reference cycles. Immutable objects do not
have to define this method since they can never directly create reference cycles. Note that the object must still

be valid after calling this method (don’t just call y_DECREF () on a reference). The collector will call this
method if it detects that this object is involved in a reference cycle.

12.4.1 Controlling the Garbage Collector State
The C-API provides the following functions for controlling garbage collection runs.

Py_ssize_t PyGC_Collect (void)
Bir parcas: Kararl1 ABI. Perform a full garbage collection, if the garbage collector is enabled. (Note that gc.
collect () runs it unconditionally.)

Returns the number of collected + unreachable objects which cannot be collected. If the garbage collector
is disabled or already collecting, returns 0 immediately. Errors during garbage collection are passed to sys.
unraisablehook. This function does not raise exceptions.

int PyGC_Enable (void)
Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Enable the garbage collector: similar to gc . enable () . Returns
the previous state, O for disabled and 1 for enabled.
Added in version 3.10.

int PyGC_Disable (void)

Bir parcast Kararli ABI 3.10 siiriimiinden beri. Disable the garbage collector: similar to gc.disable (). Re-
turns the previous state, O for disabled and 1 for enabled.

296 Boéliim 12. Object Implementation Support

The Python/C API, Yayim 3.12.9

Added in version 3.10.

int PyGC_IsEnabled (void)

Bir parcasi Kararli ABI 3.10 siiriimiinden beri. Query the state of the garbage collector: similar to gc.
isenabled (). Returns the current state, O for disabled and 1 for enabled.

Added in version 3.10.

12.4.2 Querying Garbage Collector State
The C-API provides the following interface for querying information about the garbage collector.

void PyUnstable_GC_VisitObjects (gevisitobjects_t callback, void *arg)

e

Bu Kararsiz API. Bu, kiiciik (minor) siiriimlerde uyari olmadan degisebilir.

Run supplied callback on all live GC-capable objects. arg is passed through to all invocations of callback.

A Uyan
If new objects are (de)allocated by the callback it is undefined if they will be visited.

Garbage collection is disabled during operation. Explicitly running a collection in the callback may lead to
undefined behaviour e.g. visiting the same objects multiple times or not at all.

Added in version 3.12.

typedef int (*gevisitobjects_t)(PyObject *object, void *arg)

Type of the visitor function to be passed to PyUnstable_GC_VisitObjects (). arg is the same as the arg
passed to PyUnstable GC_VisitObjects. Return 0 to continue iteration, return 1 to stop iteration. Other
return values are reserved for now so behavior on returning anything else is undefined.

Added in version 3.12.

12.4. Supporting Cyclic Garbage Collection 297

The Python/C API, Yayim 3.12.9

298 Boéliim 12. Object Implementation Support

BoLOM 13

APl and ABI Versioning

CPython exposes its version number in the following macros. Note that these correspond to the version code is built
with, not necessarily the version used at run time.

See C API Stability for a discussion of API and ABI stability across versions.

PY_MAJOR_VERSION
The 3in3.4.1a2.

PY_MINOR_VERSION
The 4in3.4.1a2.

PY_MICRO_VERSION
The 1in3.4.1a2.

PY RELEASE_LEVEL

The a in 3.4.1a2. This can be 0xA for alpha, 0xB for beta, 0xC for release candidate or 0xF for final.

PY _RELEASE_SERIAL
The 2 in 3.4 .1a2. Zero for final releases.

PY_VERSION_HEX
The Python version number encoded in a single integer.

The underlying version information can be found by treating it as a 32 bit number in the following manner:

Bytes Bits (big endian order) Meaning Value for 3.4.1a2
1 1-8 PY_MAJOR_VERSION 0x03
2 9-16 PY_MINOR_VERSION 0x04
3 17-24 PY_MICRO_VERSION 0x01
4 25-28 PY_RELEASE_LEVEL OxA
29-32 PY_RELEASE_SERIAL 0x2

Thus 3.4 .1a2 is hexversion 0x030401a2 and 3.10.0 is hexversion 0x030a00£0.
Use this for numeric comparisons, e.g. #1f PY_VERSION_HEX > =

This version is also available via the symbol Py _Version.

299

The Python/C API, Yayim 3.12.9

const unsigned long Py_Version

Bir pargasi Kararli ABI 3.11 siiriimiinden beri. The Python runtime version number encoded in a single constant
integer, with the same format as the Pvy_vERSTON_HEX macro. This contains the Python version used at run
time.

Added in version 3.11.

All the given macros are defined in Include/patchlevel.h.

300 Bélim 13. API and ABI Versioning

https://github.com/python/cpython/tree/3.12/Include/patchlevel.h

ek A

So6zIuk

>>>

2to3

Etkilesimli kabugun varsayilan Python istemi. Genellikle yorumlayicida etkilesimli olarak yiiriitiilebilen kod
ornekleri igin gorliir.

Sunlara bagvurabilir:

« Girintili bir kod blogu i¢in kod girerken, eslesen bir ¢ift sol ve sag simirlayict (parantez, koseli paran-
tez, kagh ayrag¢ veya iiclii tirnak) icindeyken veya bir dekorator belirttikten sonra etkilesimli kabugun
varsayilan Python istemi.

e Elipsis yerlesik sabiti.

Kaynagi ayristirarak ve ayristirma agacinda gezinerek tespit edilebilecek uyumsuzluklarin ¢cogunu isleyerek
Python 2.x kodunu Python 3.x koduna doniistiirmeye caligan bir arag.

2t03, standart kiitiiphanede 1ib2to3'; bagimsiz bir giris noktasi su sekilde
sa§lanir:file: Tools/scripts/2to3. Bakiiz 2to3-reference.

soyut temel simif

Soyut temel siniflar duck-typing ‘i, hasattr () gibi diger teknikler beceriksiz veya tamamen yanlig oldugunda
arayiizleri tanimlamanin bir yolunu saglayarak tamamlar (6rnegin sihirli yontemlerle). ABC’ler, bir siniftan
miras almayan ancak yine de isinstance () ve issubclass () tarafindan taninan siniflar olan sanal alt
smniflar1 tanitir; abe modiil belgelerine bakin. Python comes with many built-in ABCs for data structures (in
the collections.abc module), numbers (in the numbers module), streams (in the io module), import
finders and loaders (in the import1lib.abc module). abc modiilii ile kendi ABC’lerinizi olusturabilirsiniz.

dipnot

Bir degiskenle, bir sinif niteligiyle veya bir fonksiyon parametresiyle veya bir doniis degeriyle iligkilendirilen,
gelenek olarak rype hint bi¢iminde kullanilan bir etiket.

Yerel degiskenlerin agiklamalarina ¢alisma zamaninda erisilemez, ancak global degiskenlerin, sinif nitelikleri-
nin ve iglevlerin agiklamalari, sirastyla modiillerin, siniflarin ve iglevlerin __annotations__ zel 6zelliginde
saklanir.

Bu islevi aciklayan variable annotation, function annotation, PEP 484 ve PEP 526’ bakin. Ek a¢iklamalarla
calismaya iligkin en iyi uygulamalar icin ayrica bkz. annotations-howto.

argiiman

Fonksiyon cagrilirken bir function ‘a (veya method) gegirilen bir deger. Iki tiir argiiman vardur:

301

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python/C API, Yayim 3.12.9

o keyword argument: bir islev ¢cagrisinda bir tanimlayicinin (6r. ad =) Oniine gecen veya bir sozliikte * *
ile baglayan bir deger olarak gegirilen bir argiiman. Ornegin, 3 ve 5, asagidaki complex () : cagrilarinda
anahtar kelimenin argiimanleridir:

complex (**{'real': 3, 'imag': 5})

complex (real=3, imag=5) J

« positional argument: anahtar kelime argiimani olmayan bir argiiman. Konumsal argiimanler, bir argii-
man listesinin baginda goriinebilir ve/veya * ile baglayan bir iterable 6gesinin 6geleri olarak iletilebilir.
Ornegin, 3 ve 5, asagidaki ¢agrilarda konumsal argiimanlerdir:

complex (3, 5)
complex (* (3, 5))

Argiimanler, bir fonksiyon govdesindeki adlandirilmis yerel degiskenlere atanir. Bu atamay1 yoneten kurallar
icin calls bolumiine bakin. Sozdizimsel olarak, bir argiimani temsil etmek i¢in herhangi bir ifade kullanilabilir;
degerlendirilen deger yerel degigkene atanir.

Ayrica parameter sozlugl girisine, the difference between arguments and parameters hakkindaki SSS sorusuna
ve PEP 362 ‘ye bakin.

asenkron baglam yoneticisi
An object which controls the environment seen in an async with statement by defining__aenter__ () and
__aexit__ () methods. Introduced by PEP 492.

asenkron jenerator
asynchronous generator iterator dondiiren bir iglev. Bir async for dongiisiinde kullanilabilen bir dizi deger
tiretmek icin yield ifadeleri icermesi diginda async def ile tanimlanmig bir esyordam islevine benziyor.

Genellikle bir asenkron iireteg iglevine atifta bulunur, ancak bazi baglamlarda bir asynchronous generator ite-
rator ‘e karsilik gelebilir. Amaclanan anlamin net olmadig1 durumlarda, tam terimlerin kullanilmast belirsizligi
onler.

Bir asenkron iiretici fonksiyonu, await ifadelerinin yani sira async for ve async with ifadeleri icerebilir.

asenkron jenerator yineleyici
Bir asynchronous generator islevi tarafindan olusturulan bir nesne.

This is an asynchronous iterator which when called using the __anext__ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the execution state (including local variables and
pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

eszamansiz yinelenebilir
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__ () method. Introduced by PEP 492.

asenkron yineleyici
An object that implements the __aiter () and __anext__ () methods. __anext__ () must return an
awaitable object. async for resolves the awaitables returned by an asynchronous iterator's __anext__ ()
method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

nitelik
Noktal ifadeler kullanilarak adiyla bagvurulan bir nesneyle iliskili deger. Ornegin, o nesnesinin a 6zniteligi
varsa, bu nesneye o.a olarak bagvurulur.

Bir nesneye, eger nesne izin veriyorsa, ornegin setattr () kullanarak, adi identifiers tarafindan tanimlandig1
gibi tanimlayic1 olmayan bir 6znitelik vermek miimkiindiir. Boyle bir 6znitelige noktali bir ifade kullanilarak
erisilemez ve bunun yerine getattr () ile alinmasi gerekir.

beklenebilir
An object that can be used in an await expression. Can be a coroutine or an object with an __await__ ()
method. See also PEP 492.

302 Ek A. Sézlik

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

The Python/C API, Yayim 3.12.9

BDFL
Benevolent Dictator For Life, nami1 diger Guido van Rossum, Python’un yaraticisi.

ikili dosya
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
("rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO and
gzip.GzipFile.

Ayrica str nesnelerini okuyabilen ve yazabilen bir dosya nesnesi i¢in fext file ‘a bakin.

odiin¢ alinan referans
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

borrowed reference tizerinde Py_INCREF () ¢agirmak, nesnenin 6diin¢ almanin son kullanimindan 6nce yok
edilemedigi durumlar diginda, onu yerinde bir strong reference ‘a donuistiirmek igin tavsiye edilir. referans.
Py_NewRef () iglevi, yeni bir strong reference olugturmak igin kullanilabilir.

bayt benzeri nesne
Buffer Protocol ‘i destekleyen ve bir C-contiguous arabellegini diga aktarabilen bir nesne. Bu, tiim bytes,
bytearray Ve array .array nesnelerinin yani sira bircok yaygin memoryview nesnesini igerir. Bayt benzeri
nesneler, ikili verilerle calisan ¢esitli islemler i¢in kullanilabilir; bunlara sikigtirma, ikili dosyaya kaydetme ve
bir soket {izerinden gonderme dahildir.

Baz1 iglemler, degisken olmasi icin ikili verilere ihtiya¢ duyar. Belgeler genellikle bunlara “okuma-yazma
bayt benzeri nesneler” olarak atifta bulunur. Ornek degistirilebilir arabellek nesneleri bytearray ve bir
bytearray memoryview icerir. Diger islemler, ikili verilerin degismez nesnelerde (“salt okunur bayt benzeri
nesneler”) depolanmasini gerektirir; bunlarin 6rnekleri arasinda bytes ve bir byt es nesnesinin memoryview
bulunur.

bayt kodu
Python kaynak kodu, bir Python programinin CPython yorumlayicisindaki dahili temsili olan bayt kodunda
derlenir. Bayt kodu ayrica . pyc dosyalarinda 6nbellege alinir, boylece ayn: dosyanin ikinci kez galigtiriimasi
daha hizli olur (kaynaktan bayt koduna yeniden derleme 6nlenebilir). Bu “ara dilin”, her bir bayt koduna karsilik
gelen makine kodunu yiiriiten bir sanal makine tizerinde ¢aligtig1 sdylenir. Bayt kodlarinin farkli Python sanal
makineleri arasinda ¢aligmasi veya Python stirtimleri arasinda kararli olmasi beklenmedigini unutmayin.

Bayt kodu talimatlarinin bir listesi bytecodes dokiimaninda bulunabilir.

cagirilabilir
Bir cagrilabilir, muhtemelen bir dizi argimanla (bkz. argument) ve asagidaki sozdizimiyle ¢agrilabilen bir
nesnedir:
[callable(argumentl, argument2, argumentN) }
Bir fonksiyon ve uzantisi olarak bir merot bir cagrilabilirdir. __call () yontemini uygulayan bir sinif rnegi
de bir ¢agrilabilirdir.

geri cagirmak
Gelecekte bir noktada yiiriitiilecek bir argiiman olarak iletilen bir alt program iglevi.

simf
Kullanici tanimli nesneler olusturmak icin bir sablon. Siif tanimlar1 normalde siifin 6rnekleri iizerinde ¢a-
lisan yontem tanimlarini igerir.

sif degiskeni
Bir sinifta tanimlanmig ve yalnizca sinif diizeyinde (yani sinifin bir 6rneginde degil) degistirilmesi amaglanan
bir degisken.

karmasik say1
Tiim sayilarin bir reel kistm ve bir sanal kisim toplami olarak ifade edildigi bilinen gercek say1 sisteminin
bir uzantisi. Hayali sayilar, hayali birimin gercek katlaridir (-1 ‘in karekokii), genellikle matematikte i veya
miithendislikte § ile yazilir. Python, bu son gosterimle yazilan karmagik sayilar icin yerlesik destege sahip-
tir; hayali kisim bir j son ekiyle yazilir, 6rnegin 3+17. math modiiliiniin karmagik es degerlerine erigsmek

303

https://gvanrossum.github.io/

The Python/C API, Yayim 3.12.9

icin cmath kullanin. Karmagik sayilarin kullanimi oldukga gelismis bir matematiksel 6zelliktir. Onlara olan
ihtiyacin farkinda degilseniz, onlar1 giivenle gérmezden gelebileceginiz neredeyse kesindir.

baglam yoneticisi
An object which controls the environment seen in a with statement by defining _ enter_ () and
__exit__ () methods. See PEP 343.

baglam degiskeni
Baglamina bagl olarak farkli degerler alabilen bir degisken. Bu, her yiirtitme is par¢aciginin bir degisken i¢in
farkli bir degere sahip olabilecegi Thread-Local Storage’a benzer. Bununla birlikte, baglam degiskenleriyle,
bir yiiriitme ig par¢aciginda birkag¢ baglam olabilir ve baglam degiskenlerinin ana kullanimi, eszamanli zaman
uyumsuz gorevlerde degiskenleri izlemektir. Bakiniz contextvars.

bitisik
Bir arabellek, C-bitisik veya Fortran bitisik ise tam olarak bitisik olarak kabul edilir. Sifir boyutlu arabellekler
C ve Fortran bitigiktir. Tek boyutlu dizilerde, 68eler sifirdan baglayarak artan dizinler sirasina gore bellekte
yan yana yerlestirilmelidir. Cok boyutlu C-bitisik dizilerde, 6geleri bellek adresi sirasina gore ziyaret ederken
son dizin en hizli sekilde degisir. Ancak, Fortran bitisik dizilerinde, ilk dizin en hizli sekilde degisir.

esyordam
Esyordamlar, altyordamlarin daha genellestirilmis bir bicimidir. Alt programlara bir noktada girilir ve bagka
bir noktada ¢ikilir. Egyordamlar bircok farkli noktada girilebilir, ¢ikilabilir ve devam ettirilebilir. async def
ifadesi ile uygulanabilirler. Ayrica bakiniz PEP 492.

esyordam islevi
Bir coroutine nesnesi dondiiren bir iglev. Bir egyordam islevi async def ifadesiyle tanimlanabilir ve await,
async for ve async with anahtar kelimelerini igerebilir. Bunlar PEP 492 tarafindan tanitildi.

CPython
Python programlama dilinin python.org iizerinde dagitildig1 sekliyle kuralli uygulamasi. “CPython” terimi,
gerektiginde bu uygulamayi Jython veya IronPython gibi digerlerinden ayirmak i¢in kullanilir.

dekorator
Genellikle @wrapper sozdizimi kullanilarak bir iglev doniisiimii olarak uygulanan, bagka bir iglevi dondiiren
bir iglev. Dekoratorler icin yaygin 6rnekler sunlardir: classmethod () ve staticmethod ().

Dekorator sozdizimi yalnizca sozdizimsel sekerdir, asagidaki iki iglev tanim1 anlamsal olarak es degerdir:

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arqg):

Ayni1 kavram siniflar i¢in de mevcuttur, ancak orada daha az kullanilir. Dekoratorler hakkinda daha fazla bilgi
icin function definitions ve class definitions belgelerine bakin.

tanimlayici
Any object which defines the methods __get__ (), __set_ (),or __delete__ (). When a class attribute
is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get, set or
delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the respective
descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python because
they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.

Tamimlayicilarin yontemleri hakkinda daha fazla bilgi icin, bkz. descriptors veya Descriptor How To Guide.

sozliik
An associative array, where arbitrary keys are mapped to values. The keys can be any object with__hash__ ()
and __eq () methods. Called a hash in Perl.

304 Ek A. Sézlik

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

The Python/C API, Yayim 3.12.9

sozliik anlama
Ogelerin tiimiinii veya bir kismimi yinelenebilir bir sekilde islemenin ve sonuglar1 igeren bir sozliik dondiirme-
nin kompakt bir yolu. results = {n: n ** 2 for range(10)},n ** 2 degerine eslenmis n anahta-
rin1 igeren bir sozlik olusturur. Bkz. comprehensions.

sozliik goriiniimii
dict.keys (), dict.values () ve dict.items () ‘den dondiiriilen nesnelere sozliikk gortiniimleri denir.
Sozliigtin girisleri tizerinde dinamik bir goriiniim saglarlar; bu, sozliik degistiginde goriiniimiin bu degisiklikleri
yansittig1 anlamina gelir. Sozliik goriiniimiinii tam liste olmaya zorlamak i¢in 1ist (dictview) kullanim.
Bakiniz dict-views.

belge dizisi
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

ordek yazma
Dogru arayiize sahip olup olmadigini belirlemek igin bir nesnenin tiirtine bakmayan bir programlama stili;
bunun yerine, yontem veya nitelik basitce cagrilir veya kullanilir (“Ordek gibi goriiniiyorsa ve 6rdek gibi vak-
liyorsa, drdek olmalidir.”) Iyi tasarlanmig kod, belirli tiirlerden ziyade arayiizleri vurgulayarak, polimorfik
ikameye izin vererek esnekligini artirir. Ordek yazma, type () veya isinstance () kullanan testleri 6n-
ler. (Ancak, ordek yazmanin abstract base class ile tamamlanabilecegini unutmayin.) Bunun yerine, genellikle
hasattr () testleri veya EAFP programlamasini kullanir.

EAFP
Af dilemek izin almaktan daha kolaydir. Bu yaygin Python kodlama stili, gecerli anahtarlarin veya niteliklerin
varligini varsayar ve varsayimin yanlig ¢itkmasi durumunda istisnalart yakalar. Bu temiz ve hizli stil, bir¢ok t ry
ve except ifadesinin varligi ile karakterize edilir. Teknik, C gibi diger bircok dilde ortak olan LBYL stiliyle
celigir.

ifade (deger dondiiriir)
Bir degere gore degerlendirilebilecek bir sozdizimi pargasi. Bagka bir deyisle, bir ifade, tiimii bir deger don-
diiren sabit degerler, adlar, 6znitelik erigimi, iglecler veya iglev ¢agrilart gibi ifade 6gelerinin bir toplamudir.
Diger bircok dilin aksine, tiim dil yapilari ifade degildir. Ayrica while gibi kullanilamayan ifadeler de vardir.
Atamalar da deger dondiirmeyen ifadelerdir (statement).

uzatma modiilii
Cekirdekle ve kullanic1 koduyla etkilesim kurmak icin Python’un C APTI’sini kullanan, C veya C++ ile yazilmig
bir modiil.

f-string
Oneki '£' veya 'F' olan dize degismezleri genellikle “f-strings” olarak adlandirilir; bu, formatted string
literals ‘in kisaltmasidir. Ayrica bkz. PEP 498.

dosya nesnesi
An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying resource.
Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type
of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

Aslinda ti¢ dosya nesnesi kategorisi vardir: ham binary files, arabellege alinmis binary files ve text files. Ara-
yiizleri i o modiiliinde tanimlanmustir. Bir dosya nesnesi yaratmanin kuralli yolu open () iglevini kullanmaktir.

dosya benzeri nesne
dosya nesnesi ile esanlamlidir.

dosya sistemi kodlamasi ve hata isleyicisi
Python tarafindan igletim sistemindeki baytlarin kodunu ¢6zmek ve Unicode’u isletim sistemine kodlamak i¢in
kullanilan kodlama ve hata igleyici.

Dosya sistemi kodlamasi, 128’in altindaki tiim baytlarin kodunu bagariyla ¢c6zmeyi garanti etmelidir. Dosya
sistemi kodlamasi bu garantiyi saglayamazsa, API iglevleri UnicodeError degerini yiikseltebilir.

305

https://peps.python.org/pep-0498/

The Python/C API, Yayim 3.12.9

sys.getfilesystemencoding () Ve sys.getfilesystemencodeerrors () islevleri, dosya sistemi
kodlamasini ve hata igleyicisini almak i¢in kullanilabilir.

filesystem encoding and error handler Python baglangicinda pyConfig Read () igleviyle yapilandirilir: bkz.
filesystem encodingve filesystem_errors lyeleri PyConfig

Ayrica bkz. locale encoding.

bulucu
Ice aktarilmakta olan bir modiil icin oader 1 bulmaya ¢alisan bir nesne.

There are two types of finder: meta path finders for use with sys .meta_path, and path entry finders for use
with sys.path_hooks.

See finders-and-loaders and import1ib for much more detail.

kat boliimii
En yakin tam say1ya yuvarlayan matematiksel bolme. Kat bolme operatorii // seklindedir. Ornegin, 11 // 4
ifadesi, gercek yiizer bolme tarafindan dondiiriilen 2 . 75 degerinin aksine 2 olarak degerlendirilir. (-11) //
4 “in -3 olduguna dikkat edin, ¢iinkii bu -2 . 75 yuvarlatilmis asagr. Bakiniz PEP 238.

fonksiyon
Bir arayana bir deger dondiiren bir dizi ifade. Ayrica, govdenin yiiriitiilmesinde kullanilabilen sifir veya daha
fazla argiiman iletilebilir. Ayrica parameter, method ve function boliimiine bakin.

fonksiyon acgiklamasi
Bir islev parametresinin veya doniis degerinin ek aciklamasi.

Islev ek aciklamalar1 genellikle rype hints igin kullantlir: 6rnegin, bu fonksiyonun iki int argiiman almasi ve
ayrica bir int doniis degerine sahip olmas: beklenir

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Islev aciklama sozdizimi function béliimiinde aciklanmaktadir.

Bu islevi agiklayan variable annotation ve PEP 484 ‘e bakim. Ek aciklamalarla ¢aligsmaya iligkin en iyi uygu-
lamalar i¢in ayrica annotations-howto konusuna bakin.

future
Bir future ifadesi, from __ future__ import <feature>, derleyiciyi, Python'un gelecekteki bir siirii-
miinde standart hale gelecek olan s6zdizimini veya semantigi kullanarak mevcut modiilii derlemeye yonlen-
dirir. __future__ modill, feature'in olasi degerlerini belgeler. Bu modiilui ige aktararak ve degiskenlerini
degerlendirerek, dile ilk kez yeni bir 6zelligin ne zaman eklendigini ve ne zaman varsayilan olacagini (ya da
yaptigin1) gorebilirsiniz:

>>> import _ future
>>> _ future__ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

¢op toplama
Artik kullanilmadiginda bellegi bosaltma islemi. Python, referans sayimi ve referans dongiilerini algilayip ki-
rabilen bir dongtisel ¢op toplayici araciliiyla ¢op toplama gercgeklestirir. Cop toplayict gc modiilii kullanilarak
kontrol edilebilir.

jenerator
Bir generator iterator dondiiren bir iglev. Bir for dongiisiinde kullanilabilen bir dizi deger tiretmek i¢in yield
ifadeleri icermesi veya next () igleviyle birer birer alinabilmesi disinda normal bir igleve benziyor.

Genellikle bir tiretici iglevine atifta bulunur, ancak bazi baglamlarda bir jenerator yineleyicisine atifta buluna-
bilir. Amaclanan anlamin net olmadig1 durumlarda, tam terimlerin kullanilmasi belirsizligi onler.

jenerator yineleyici
Bir generator iglevi tarafindan olusturulan bir nesne.

306 Ek A. Sézlik

https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

The Python/C API, Yayim 3.12.9

Each yield temporarily suspends processing, remembering the execution state (including local variables and
pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to func-
tions which start fresh on every invocation).

jenerator ifadesi
Yineleyici dondiiren bir ifade. Bir dongii degiskenini, aralig1 ve istege bagli bir i f yan tiimcesini tanimlayan
bir for yan tiimcesinin takip ettigi normal bir ifadeye benziyor. Birlestirilmis ifade, bir ¢evreleyen icin degerler
tiretir:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

genel islev
Farkl tiirler i¢in ayn1 islemi uygulayan birden ¢ok islevden olusan bir iglev. Bir ¢agr1 sirasinda hangi uygula-
manin kullanilmasi gerektigi, gonderme algoritmasi tarafindan belirlenir.

Ayrica single dispatch sozliik girdisine, functools.singledispatch () dekoratoriine ve PEP 443 ‘e bakin.

genel tip
Parametrelendirilebilen bir rype; tipik olarak bir konteyner sinif1, 6rnegin 1ist veya dict. fype hint ve anno-
tation igin kullanilir.

Daha fazla ayrint1 i¢in generic allias types, PEP 483, PEP 484, PEP 585 ve t yping modiiliine bakin.

GIL
Bakiniz global interpreter lock.

genel terciiman Kkilidi
CPython yorumlayicisi tarafindan ayni anda yalnizca bir ig parg¢aciginin Python byfecode ‘u yiiriitmesini sagla-
mak i¢in kullanilan mekanizma. Bu, nesne modelini (dict gibi kritik yerlesik tiirler dahil) eszamanl erisime
karg1 ortiik olarak giivenli hale getirerek CPython uygulamasini basitlestirir. Tiim yorumlayiciy: kilitlemek,
cok iglemcili makinelerin sagladig paralellifin cogu pahasina, yorumlayicinin ¢ok is parcaciklt olmasim ko-
laylastirir.

Bununla birlikte, standart veya tigtincii taraf bazi genigletme modiilleri, sikigtirma veya karma gibi hesaplama
acisindan yogun gorevler yaparken GIL'yi serbest birakacak sekilde tasarlanmustir. Ayrica, GIL, G/C yaparken
her zaman serbest birakilir.

“Serbest i parcacikli” bir yorumlayici (paylasilan verileri cok daha ince bir ayrint1 diizeyinde kilitleyen) olug-
turma cabalari, ortak tek iglemcili durumda performans diistiigii icin basarili olmamistir. Bu performans soru-
nunun iistesinden gelinmesinin uygulamay1 ¢cok daha karmagik hale getirecegine ve dolayisiyla bakimini daha
maliyetli hale getirecegine inanilmaktadir.

karma tabanlh pyc
Gecerliligini belirlemek i¢in ilgili kaynak dosyanin son degistirilme zamani yerine karma degerini kullanan bir
bayt kodu 6nbellek dosyasi. Bakiniz pyc-invalidation.

yikanabilir
An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__ ()
method), and can be compared to other objects (it needs an __eq_ () method). Hashable objects which

compare equal must have the same hash value.

Hashability, bir nesneyi bir sozliik anahtar1 ve bir set iiyesi olarak kullanilabilir hale getirir, ¢tinkii bu veri
yapilar1 hash degerini dahili olarak kullanir.

Python’un degismez yerlesik nesnelerinin ¢ogu, yikanabilir; degistirilebilir kaplar (listeler veya sozliikler gibi)
degildir; degismez kaplar (ttipler ve donmus kiimeler gibi) yalnizca 6gelerinin yikanabilir olmasi durumunda
yikanabilirdir. Kullanict tanimli siniflarin 6rnekleri olan nesneler varsayilan olarak hash edilebilirdir. Hepsi
esit olmayani kargilastirir (kendileriyle haric) ve hash degerleri id () ‘lerinden tiiretilir.

BOSTA
Python i¢in Entegre Gelistirme Ortamu. idle, Python’un standart dagitimiyla birlikte gelen temel bir diizenleyici
ve yorumlayici ortamidir.

307

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python/C API, Yayim 3.12.9

immortal
Immortal objects are a CPython implementation detail introduced in PEP 683.

If an object is immortal, its reference count is never modified, and therefore it is never deallocated while the
interpreter is running. For example, True and None are immortal in CPython.

degismez
Sabit degeri olan bir nesne. Degismez nesneler arasinda sayilar, dizeler ve demetler bulunur. Boyle bir nesne
degistirilemez. Farkli bir degerin saklanmasi gerekiyorsa yeni bir nesne olusturulmalidir. Ornegin bir sozliikte
anahtar olarak, sabit bir karma degerinin gerekli oldugu yerlerde 6nemli bir rol oynarlar.

ice aktarim yolu
Ice aktarilacak modiiller igin path based finder tarafindan aranan konumlarin (veya path entries) listesi. ice
aktarma sirasinda, bu konum listesi genellikle sys .path adresinden gelir, ancak alt paketler i¢in iist paketin
__path__ ozelliginden de gelebilir.

ice aktarma
Bir modiildeki Python kodunun bagka bir modiildeki Python koduna sunulmasi siireci.

ice aktarici
Bir modiilii hem bulan hem de yiikleyen bir nesne; hem bir finder hem de loader nesnesi.

etkilesimli
Python’un etkilesimli bir yorumlayicisi vardir; bu, yorumlayici isteminde ifadeler ve ifadeler girebileceginiz,
bunlar1 hemen ¢alistirabileceginiz ve sonuglarini gorebileceginiz anlamina gelir. Herhangi bir argiiman olma-
dan python ‘u baglatmaniz yeterlidir (muhtemelen bilgisayarinizin ana meniisiinden secerek). Yeni fikirleri
test etmenin veya modiilleri ve paketleri incelemenin cok giiclii bir yoludur (help (x) ‘i unutmayin).

yorumlanmis
Python, derlenmis bir dilin aksine yorumlanmig bir dildir, ancak bayt kodu derleyicisinin varligi nedeniyle
ayrim bulanik olabilir. Bu, kaynak dosyalarin daha sonra calistirilacak bir yiiriitiilebilir dosya olusturmadan
dogrudan calistirilabilecegi anlamina gelir. Yorumlanan diller genellikle derlenmis dillerden daha kisa bir
gelistirme/hata ayiklama dongiisiine sahiptir, ancak programlar1 genellikle daha yavas ¢alisir. Ayrica bkz. in-
teractive.

terciiman kapatma
Kapatilmasi istendiginde, Python yorumlayicisi, modiiller ve gesitli kritik i¢ yapilar gibi tahsis edilen tiim
kaynaklar1 kademeli olarak serbest biraktig1 6zel bir agamaya girer. Ayrica garbage collector igin birkac ¢agri
yapar. Bu, kullanic1 taniml yikicilarda veya zayif referans geri aramalarinda kodun yiiriitiilmesini tetikleye-
bilir. Kapatma agamasinda yiiriitillen kod, dayandig1 kaynaklar artik calismayabileceginden cesitli istisnalarla
kargilasabilir (yaygin 6rnekler kiitiiphane modiilleri veya uyar1 makineleridir).

Yorumlayicinin kapatilmasinin ana nedeni,
olmasidir.

main__ modiiliniin veya caligtirilan betigin ylirtitmeyi bitirmig

yinelenebilir
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define withan __iter_ () methodorwitha__getitem__ () method that implements sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter () or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

yineleyici
An object representing a stream of data. Repeated calls to the iterator's _ next () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
toits __next__ () method just raise StopIteration again. Iterators are required to have an __iter_ ()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places
where other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A

308 Ek A. Sézlik

https://peps.python.org/pep-0683/

The Python/C API, Yayim 3.12.9

container object (such as a 1ist) produces a fresh new iterator each time you pass it to the iter () function
or use itin a for loop. Attempting this with an iterator will just return the same exhausted iterator object used
in the previous iteration pass, making it appear like an empty container.

Daha fazla bilgi typeiter iginde bulunabilir.

CPython uygulama ayrintisi1: CPython does not consistently apply the requirement that an iterator define
__dter_ ().

anahtar islev
Anabhtar iglevi veya harmanlama iglevi, siralama veya siralama i¢in kullanilan bir degeri dondiiren bir ¢agrilabi-
lir. Ornegin, locale.strxfrm (), yerel ayara dzgii siralama kurallarimin farkinda olan bir siralama anahtari
tiretmek icin kullanilir.

Python’daki bir dizi arag, 6gelerin nasil siralandigini veya gruplandirildigini kontrol etmek i¢in temel iglevleri
kabul eder. Bunlar min (), max (), sorted(), list.sort (), heapg.merge (), heapg.nsmallest (),
heapg.nlargest () ve itertools.groupby ().

Bir tus fonksiyonu olusturmanin birka¢ yolu vardir. Ornegin. str.lower () yontemi, biiyiik/kiigiik har-
fe duyarli olmayan siralamalar i¢in bir anahtar fonksiyonu islevi gorebilir. Alternatif olarak, lambda r:
(r[0], r[2]) gibi bir lambda ifadesinden bir anahtar islevi olusturulabilir. Ayrica, attrgetter (),
itemgetter () ve methodcaller () fonksiyonlar: {i¢ anahtar fonksiyon kurucularidir. Anahtar iglevlerin
nasil olugturulacagi ve kullanilacagina iligkin ornekler icin Sorting HOW TO bolimiine bakin.

anahtar kelime argiimani
Bakiniz argument.

lambda
Islev cagrildiginda degerlendirilen tek bir expression ‘dan olusan anonim bir satir ici islev. Bir lambda islevi
olugturmak i¢in s6zdizimi lambda [parametreler]: ifade seklindedir

LBYL
Ziplamadan 6nce Bak. Bu kodlama stili, arama veya arama yapmadan 6nce 6n kosullar1 acikga test eder. Bu
stil, FAFP yaklagimiyla celisir ve bir¢ok if ifadesinin varligi ile karakterize edilir.

Cok is parcacikli bir ortamda, LBYL yaklagimi “bakan” ve “sicrayan” arasinda bir yaris kosulu getirme riskini
tagtyabilir. Ornegin, if key in mapping: return mapping[key] kodu, testten sonra, ancak aramadan
once bagka bir ig parcacig1 eslemeden key kaldirirsa bagarisiz olabilir. Bu sorun, kilitlerle veya EAFP yaklasimi
kullanilarak ¢oziilebilir.

lexical analyzer
Formal name for the tokenizer; see token.

liste
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

liste anlama
Bir dizideki 6gelerin tiimiinti veya bir kismint islemenin ve sonuglari igeren bir liste dondiirmenin kompakt
bir yolu. sonu¢g = ['{:#04x}'.format (x) for range(256) if x % 2 == 0], dizinde ¢ift onalti-
lik sayilar (0x..) iceren bir diziler listesi olugturur. O ile 255 arasindadir. i £ yan tiimcesi istege baghdir. Atla-
nirsa, “aralik(256)” icindeki tiim 6geler islenir.

yiikleyici
An object that loads a module. It must define the exec_module () and create_module () methods to
implement the Loader interface. A loader is typically returned by a finder. See also:

o finders-and-loaders
e importlib.abc.Loader
« PEP 302

yerel kodlama
Unix'te, LC_CTYPE yerel ayarimin kodlamasidir. locale.setlocale(locale.LC_CTYPE,
new_locale) ile ayarlanabilir.

309

https://peps.python.org/pep-0302/

The Python/C API, Yayim 3.12.9

Windows’ta bu, ANSI kod sayfasidir (6r. "cp1252™).

Android ve VxWorks'te Python, yerel kodlama olarak "ut £-8" kullanr.
locale.getencoding () can be used to get the locale encoding.
Ayrica filesystem encoding and error handler ‘ne bakin.

sihirli yontem
special method i¢in gayri resmi bir esanlaml.

haritalama
Keyfi anahtar aramalarini destekleyen ve Mapping veya Mut ableMapping collections-abstract-base-classes
icinde belirtilen yontemleri uygulayan bir kapsayici nesnesi. Ornekler arasinda dict, collections.
defaultdict, collections.OrderedDict Ve collections.Counter sayilabilir.

meta yol bulucu
Bir finder, sys.meta_path aramastyla dondiiriiliir. Meta yol bulucular, yol girisi bulucular: ile iligkilidir,
ancak onlardan farklidir.

Meta yol bulucularm uyguladig1 yontemler i¢in importlib.abc.MetaPathFinder bolimiine bakin.

metasinif
Bir simifin sinift. Simif tanimlari, bir sinif adi, bir smif sozliigii ve temel siniflarim bir listesini olusturur. Meta-
sintf, bu ti¢ argiimani almaktan ve sinift olugturmaktan sorumludur. Cogu nesne yonelimli programlama dili,
varsayilan bir uygulama saglar. Python’u 6zel yapan sey, 6zel metasiniflar olusturmanin miimkiin olmasidir.
Cogu kullanici1 bu araca hi¢bir zaman ihtiya¢ duymaz, ancak ihtiya¢ duyuldugunda, metasmiflar giiglii ve zarif
coziimler saglayabilir. Nitelik erisimini giinlige kaydetmek, is parcacig1 giivenligi eklemek, nesne olusturmay1
izlemek, tekilleri uygulamak ve diger bir¢ok gorev icin kullanilmiglardir.

Daha fazla bilgi metaclasses iginde bulunabilir.

metot
Bir siif govdesi icinde tanimlanan bir iglev. Bu sinifin bir 6rneginin 6zniteligi olarak ¢agrilirsa, yontem drnek
nesnesini ilk argument (genellikle self olarak adlandirilir) olarak alir. Bkz. function ve nested scope.

metot kalite siralamasi
Method Resolution Order is the order in which base classes are searched for a member during lookup. See
python_2.3_mro for details of the algorithm used by the Python interpreter since the 2.3 release.

modiil
Python kodunun kurulug birimi olarak hizmet eden bir nesne. Modiiller, rastgele Python nesneleri iceren bir
ad alanina sahiptir. Modiiller, importing islemiyle Python’a yiiklenir.

Ayrica bakiniz package.

modiil ozelligi
Bir modiilii yiiklemek i¢in kullanilan ice aktarmayla ilgili bilgileri iceren bir ad alani. Bir importlib.
machinery.ModuleSpec Ornegi.

See also module-specs.

MRO
Bakiniz metot ¢oziim sirast.

degistirilebilir
Degistirilebilir (mutable) nesneler degerlerini degistirebilir ancak idlerini koruyabilirler. Ayrica bkz. im-
mutable.

adlandirilmis demet
“named tuple” terimi, demetten miras alan ve dizinlenebilir 6gelerine de adlandirilmis nitelikler kullanilarak
erisilebilen herhangi bir tiir veya sinif icin gegerlidir. Ttir veya sinifin bagka tzellikleri de olabilir.

Cesitli yerlesik tiirler, time.localtime () ve os.stat () tarafindan dondiiriilen degerler de dahil olmak
tizere, tanimlama gruplari olarak adlandirilir. Bagka bir 6rnek sys.float_info:

310 Ek A. Sézlik

The Python/C API, Yayim 3.12.9

r>>> sys.float_info[1l] # indexed access]
1024

>>> sys.float_info.max_exp # named field access

1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be cre-
ated from a regular class definition that inherits from tuple and that defines named fields. Such a class can
be written by hand, or it can be created by inheriting typing.NamedTuple, or with the factory function
collections.namedtuple (). The latter techniques also add some extra methods that may not be found in
hand-written or built-in named tuples.

ad alam
Degiskenin saklandig1 yer. Ad alanlar1 sozliikler olarak uygulanir. Nesnelerde (yontemlerde) yerel, genel ve
yerlesik ad alanlarinin yani sira i¢ ice ad alanlar1 vardir. Ad alanlari, adlandirma ¢akigmalarimi 6nleyerek mo-
diilerligi destekler. Ornegin, builtins.open ve os.open () iglevleri ad alanlariyla ayirt edilir. Ad alan-
lar1, hangi modiiliin bir islevi uyguladigini agikea belirterek okunabilirlige ve siirdiiriilebilirlige de yardim-
c1 olur. Ornegin, random.seed () veya itertools.islice () yazmak, bu islevlerin sirastyla random ve
itertools modiilleri tarafindan uygulandigini agikca gosterir.

ad alam paketi
A package which serves only as a container for subpackages. Namespace packages may have no physical rep-
resentation, and specifically are not like a regular package because they have no __init__ .py file.

Namespace packages allow several individually installable packages to have a common parent package. Othe-
rwise, it is recommended to use a regular package.

For more information, see PEP 420 and reference-namespace-package.
Ayrica bkz. module.

i¢ ice kapsam
Kapsamli bir tanimdaki bir degiskene atifta bulunma yetenegi. Ornegin, bagka bir fonksiyonun iginde tanim-
lanan bir fonksiyon, dig fonksiyondaki degiskenlere atifta bulunabilir. I¢ ice kapsamlarin varsayilan olarak
yalnizca bagvuru i¢in ¢alistigini ve atama icin ¢alismadigini unutmayin. Yerel degiskenler en icteki kapsamda
hem okur hem de yazar. Benzer sekilde, global degiskenler global ad alanin1 okur ve yazar. nonlocal, dig
kapsamlara yazmaya izin verir.

yeni stil simf
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only
new-style classes could use Python’s newer, versatile features like _ slots_ , descriptors, properties,
__getattribute__ (), class methods, and static methods.

obje
Durum (6znitelikler veya deger) ve tanimlanmis davranig (yontemler) iceren herhangi bir veri. Ayrica herhangi
bir yeni tarz sinifin nihai temel sinifi.

paket
Alt modiiller veya yinelemeli olarak alt paketler icerebilen bir Python module. Teknik olarak bir paket,
__path__ Ozniteligine sahip bir Python modiiliidiir.

Ayrica bkz. regular package ve namespace package.

parametre
Bir function (veya yontem) taniminda, islevin kabul edebilecegi bir argument (veya baz1 durumlarda, argii-
manlar) belirten adlandirilmig bir varlik. Bes ¢esit parametre vardir:

o positional-or-keyword: pozisyonel veya bir keyword argiimani olarak iletilebilen bir argiiman belirtir. Bu,
varsayilan parametre tiirtidiir, 6rnegin asagidakilerde foo ve bar:

[def func (foo, bar=None): ... }

311

https://peps.python.org/pep-0420/

The Python/C API, Yayim 3.12.9

e positional-only: yalnizca konuma gore saglanabilen bir argiiman belirtir. Yalnizca konumsal parametreler,
onlardan sonra fonksiyon taniminin parametre listesine bir / karakteri eklenerek tanimlanabilir, 6rnegin
asagidakilerde posonlyl ve posonly2:

[def func (posonlyl, posonly2, /, positional_or_keyword): ... }

o keyword-only: sadece anahtar kelime ile saglanabilen bir argiiman belirtir. Yalnizca anahtar kelime
(keyword-only) parametreleri, onlardan onceki fonksiyon taniminin parametre listesine tek bir degis-
ken konumlu parametre veya ¢iplak * dahil edilerek tanimlanabilir, 6rnegin asagidakilerde kw_onlyl ve
kw_only2:

[def func (arg, *, kw_onlyl, kw_only2): ... }

o var-positional: keyfi bir pozisyonel argiiman dizisinin saglanabilecegini belirtir (diger parametreler tara-
findan zaten kabul edilmis herhangi bir konumsal argiimana ek olarak). Boyle bir parametre, parametre
admin basina * eklenerek tanimlanabilir, 6rnegin asagidakilerde args:

[def func (*args, **kwargs): ... }

« var-keyword: keyfi olarak bir¢ok anahtar kelime argiimaninin saglanabilecegini belirtir (diger parametre-
ler tarafindan zaten kabul edilen herhangi bir anahtar kelime argiimanina ek olarak). Boyle bir parametre,
parametre adinin bagina * *, 6rnegin yukaridaki ornekte kwargs eklenerek tanimlanabilir.

Parametreler, hem istege bagl hem de gerekli argiimanleri ve ayrica bazi istege bagh bagimsiz degiskenler icin
varsayilan degerleri belirtebilir.

Ayrica bkz. argiiman, argiimanlar ve parametreler arasindaki fark, inspect .Parameter, function ve PEP
362.

yol girisi
path based finder ige aktarma modiillerini bulmak i¢in bagvurdugu import path tizerindeki tek bir konum.

yol girisi bulucu
Bir finder sys .path_hooks (yani bir yol giris kancasi) tizerinde bir ¢agrilabilir tarafindan dondiiriiliir ve path
entry verilen modiillerin nasil bulunacagini bilir.

Yol girisi bulucularimin uyguladigi yontemler igin importlib.abc.PathEntryFinder boliimiine bakin.

yol giris kancasi
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules on
a specific path entry.

yol tabanh bulucu
Modiiller i¢in bir import path arayan varsayilan meta yol buluculardan biri.

yol benzeri nesne
Bir dosya sistemi yolunu temsil eden bir nesne. Yol benzeri bir nesne, bir yolu temsil eden bir str veya
bytes nesnesi veya os.PathLike protokoliinii uygulayan bir nesnedir. os .PathLike protokoliinii destek-
leyen bir nesne, os. £spath () isglevi ¢agrilarak bir str veya bytes dosya sistemi yoluna doniistiiriilebilir;
os.fsdecode () Ve os.fsencode (), bunun yerine sirastyla st r veya bytes sonucunu garanti etmek igin
kullanilabilir. PEP 519 tarafindan tanitild.

PEP
Python Gelistirme Onerisi. PEP, Python topluluguna bilgi saglayan veya Python veya siirecleri ya da ortami
icin yeni bir ozelligi aciklayan bir tasarim belgesidir. PEP’ler, onerilen 6zellikler i¢in 6zlii bir teknik sartname
ve bir gerekce saglamalidir.

PEP’lerin, 6nemli yeni ozellikler 6nermek, bir sorun hakkinda topluluk girdisi toplamak ve Python’a giren
tasarim kararlarin belgelemek icin birincil mekanizmalar olmas1 amaglanmugtir. PEP yazari, topluluk icinde
fikir birligi olusturmaktan ve muhalif goriisleri belgelemekten sorumludur.

Bakiniz PEP 1.

312 Ek A. Sézlik

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/

The Python/C API, Yayim 3.12.9

Kisim

PEP 420 icinde tanimlandig1 gibi, bir ad alan1 paketine katkida bulunan tek bir dizindeki (muhtemelen bir zip
dosyasinda depolanan) bir dizi dosya.

konumsal argiiman

gecici

gecici

Bakiniz argument.

API

Gegici bir API, standart kitapligin geriye doniik uyumluluk garantilerinden kasitl olarak hari¢ tutulan bir
APTdir. Bu tiir arayiizlerde biiytik degisiklikler beklenmese de, gecici olarak isaretlendikleri siirece, ¢ekirdek
gelistiriciler tarafindan gerekli goriildiigii takdirde geriye doniik uyumsuz degisiklikler (arayiiztin kaldirilma-
sina kadar ve buna kadar) meydana gelebilir. Bu tiir degisiklikler karsiliksiz yapilmayacaktir - bunlar yalnizca
APTI'nin eklenmesinden 6nce gozden kacan ciddi temel kusurlar ortaya cikarsa gerceklesecektir.

Gecici APT’ler icin bile, geriye doniik uyumsuz degisiklikler “son care ¢oziimii” olarak goriiliir - tanimlanan
herhangi bir soruna geriye doniik uyumlu bir ¢6ziim bulmak i¢in her tiirlii girisimde bulunulacaktir.

Bu siireg, standart kitapligin, uzun siireler boyunca sorunlu tasarim hatalarmna kilitlenmeden zaman i¢inde
gelismeye devam etmesini saglar. Daha fazla ayrint1 i¢in bkz. PEP 411.

paket
Bakiniz provisional API.

Python 3000

Python 3.x sitiriim satirinin takma adi (uzun zaman 6nce stirtim 3’tin piyasaya siiriilmesi uzak bir gelecekte
oldugu zaman ortaya cikti.) Bu ayn1 zamanda “Py3k” olarak da kisaltilir.

Pythonic

Diger dillerde ortak kavramlari kullanarak kod uygulamak yerine Python dilinin en yaygin deyimlerini yakin-
dan takip eden bir fikir veya kod parcasi. Ornegin, Python’da yaygin bir deyim, bir for ifadesi kullanarak
yinelenebilir bir 6genin tiim 6geleri tizerinde dongii olugturmaktir. Diger bircok dilde bu tiir bir yap1 yoktur,
bu nedenle Python’a agina olmayan kisiler bazen bunun yerine sayisal bir saya¢ kullanir:

print (food[i])

{for i in range(len(food)) :

Temizleyicinin aksine, Pythonic yontemi:

|

for piece in food:
print (piece)

nitelikli isim

PEP 3155 i¢inde tanimlandig gibi, bir modiiliin genel kapsamindan o modiilde tanimlanan bir sinifa, isleve
veya yonteme giden “yolu” gosteren noktali ad. Ust diizey islevler ve simflar igin nitelikli ad, nesnenin adiyla
aynidir:

>>> class C:

class D:
def meth (self):
pass
>>> C.__ _qualname_
] C]
>>> C.D.__qualname___
'C.D'
>>> C.D.meth.__qualname
'C.D.meth'

Modiillere atifta bulunmak i¢in kullanildiginda, tam nitelenmis ad, herhangi bir iist paket de dahil olmak iizere,
modiile giden tiim noktali yol anlamina gelir, 6rn. email .mime.text:

313

https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/
https://peps.python.org/pep-3155/

The Python/C API, Yayim 3.12.9

>>> import email.mime.text
>>> email.mime.text._name
'email.mime.text'

referans sayisi
The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Some objects are “immortal” and have reference counts that are never modified, and therefore the objects are
never deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPython implementation. Programmers can call the sys.getrefcount () function to return the reference
count for a particular object.

siirekli paketleme
__init__ .py dosyasi iceren bir dizin gibi geleneksel bir package.
Ayrica bkz. ad alani paketi.
__slots__
Ornek oznitelikleri icin 6nceden yer bildirerek ve drnek sozliiklerini ortadan kaldirarak bellekten tasarruf

saglayan bir sinif icindeki bildirim. Popiiler olmasina ragmen, teknigin dogru olmast biraz zor ve en iyi, bellek
acisindan kritik bir uygulamada ¢ok sayida 6rnegin bulundugu nadir durumlar i¢in ayrilmistir.

dizi
An iterable which supports efficient element access using integer indices via the __getitem__ () special
method and defines a __1en_ () method that returns the length of the sequence. Some built-in sequence
types are 1ist, str, tuple, and bytes. Note that dict also supports __getitem_ () and _ len_ (),
but is considered a mapping rather than a sequence because the lookups use arbitrary hashable keys rather
than integers.
The collections.abc.Sequence abstract base class defines a much richer interface that goes beyond just
__getitem__()and__len__ (), adding count (), index (),___contains__ (),and __reversed_ ().
Types that implement this expanded interface can be registered explicitly using register (). For more do-
cumentation on sequence methods generally, see Common Sequence Operations.

anlamak
Ogelerin tiimiinii veya bir kismini yinelenebilir bir sekilde islemenin ve sonuglarla birlikte bir kiime dondiir-
menin kompakt bir yolu. results = {c for c in 'abracadabra' if c not in 'abc'}, {'r',
'd" } dizelerini olusturur. Bakiniz comprehensions.

tek sevk
Uygulamanin tek bir argiiman tiiriine gore se¢ildigi bir generic function géonderimi bi¢imi.

parcalamak
Genellikle bir sequence ‘nin bir boliimiinii igeren bir nesne. Bir dilim, 6rnegin variable name[1:3:5]
‘de oldugu gibi, birkag tane verildiginde, sayilar arasinda iki nokta iist iiste koyarak, [] alt simge gosterimi
kullanilarak olugturulur. Koseli ayrag (alt simge) gosterimi, dahili olarak s1ice nesnelerini kullanir.

soft deprecated
A soft deprecated API should not be used in new code, but it is safe for already existing code to use it. The
API remains documented and tested, but will not be enhanced further.
Soft deprecation, unlike normal deprecation, does not plan on removing the API and will not emit warnings.
See PEP 387: Soft Deprecation.

ozel metod

Toplama gibi bir tiir iizerinde belirli bir iglemi ytirtitmek i¢in Python tarafindan ortiik olarak cagrilan bir
yontem. Bu tiir yontemlerin ¢ift alt cizgi ile baslayan ve biten adlar1 vardir. Ozel yontemler specialnames
icinde belgelenmigtir.

ifade (deger dondiirmez)
Bir ifade, bir paketin pargasidir (kod “blogu”). Bir ifade, bir expression veya if, while veya for gibi bir
anahtar kelimeye sahip birkag¢ yapidan biridir.

314 Ek A. Sézlik

https://peps.python.org/pep-0387/#soft-deprecation

The Python/C API, Yayim 3.12.9

static

giiclii

type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also
type hints and the t yping module.

referans

In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py_ 7NCREF () when the reference is created and released
with Py_DECREF () when the reference is deleted.

py_NewRef () fonksiyonu, bir nesneye giiclii bir bagvuru olusturmak ic¢in kullanilabilir. Genellikle
py_DECREF () fonksiyonu, bir referansin sizmasini 6nlemek icin giiclii referans kapsamindan ¢ikmadan 6nce
giiclii referansta ¢agrilmalidir.

Ayrica bkz. ddiing alinan referans.

yaz1 ¢oziimleme

Python’da bir dize, bir Unicode kod noktalar1 dizisidir (U+0000-U+10FFFF araliginda). Bir dizeyi depolamak
veya aktarmak icin, bir bayt dizisi olarak seri hale getirilmesi gerekir.

Bir dizeyi bir bayt dizisi halinde seri hale getirmek “kodlama (encoding)” olarak bilinir ve dizeyi bayt dizisinden
yeniden olusturmak “kod ¢ozme (decoding)” olarak bilinir.

Toplu olarak “metin kodlamalar1” olarak adlandirilan ¢esitli farkli metin serilestirme kodekleri vardir.

yazi1 dosyasi

token

A file object st r nesnelerini okuyabilir ve yazabilir. Cogu zaman, bir metin dosyasi aslinda bir bayt yonelimli
veri akigina erisir ve otomatik olarak rext encoding isler. Metin dosyalarina 6rnek olarak metin modunda agilan
dosyalar ('r' veya 'w'), sys.stdin, sys.stdout ve io.StringIO Ornekleri verilebilir.

Ayrica ikili dosyalar: okuyabilen ve yazabilen bir dosya nesnesi i¢in bayt benzeri nesnelere bakin.

A small unit of source code, generated by the lexical analyzer (also called the fokenizer). Names, numbers,
strings, operators, newlines and similar are represented by tokens.

The tokenize module exposes Python’s lexical analyzer. The token module contains information on the
various types of tokens.

ii¢ tirnakh dize

Uc tirnak isareti () veya kesme isareti () ile sinirlanan bir dize. Tek tirnakli dizelerde bulunmayan herhangi bir
islevsellik saglamasalar da, birka¢ nedenden dolay1 faydalidirlar. bir dizeye ¢ikigsiz tek ve cift tirnak eklemeniz
gerekir ve bunlar, devam karakterini kullanmadan birden cok satira yayilabilir, bu da onlar1 6zellikle belge
dizileri yazarken kullanisl hale getirir.

tip
The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class___ attribute or can be retrieved with type (ob7j).

tip takma adi

Bir tanimlayiciya tiir atanarak olusturulan, bir tiir i¢in es anlamli.

Tiir takma adlari, #iir ipuclarin basitlestirmek igin kullamghdir. Ornegin:

-

L

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplel[int, int, int]]:
pass

bu sekilde daha okunakli hale getirilebilir:

-

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

Bu iglevi aciklayan t yping ve PEP 484 boliimlerine bakin.

315

https://peps.python.org/pep-0484/

The Python/C API, Yayim 3.12.9

tiir ipucu
Bir degisken, bir sinif niteligi veya bir islev parametresi veya doniis degeri i¢in beklenen tiirii belirten bir ek
actklama.

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can
also aid IDEs with code completion and refactoring.

Genel degigkenlerin, sinif ozniteliklerinin ve iglevlerin tiir ipuclarina, yerel degiskenlere degil, typing.
get_type_hints () kullanilarak erisilebilir.

Bu iglevi aciklayan typing ve PEP 484 boliimlerine bakin.

evrensel yeni satirlar
Asagidakilerin tiimiintin bir satirin bitisi olarak kabul edildigi metin akislarin1 yorumlamanin bir yolu: Unix
satir sonu kurali \n', Windows kurali ' \r\n"', ve eski Macintosh kural1 '\ r'. Ek bir kullanim i¢cin PEP 278
ve PEP 3116 ve ayrica bytes.splitlines () bakin.

degisken aciklama
Bir degiskenin veya bir sinif 6zniteliginin ek aciklamasi.

Bir degiskene veya sinif niteligine agiklama eklerken atama istege baghdir:

class C:
field: 'annotation'
Degisken agiklamalar1 genellikle ziir ipuclar: i¢in kullanilir: 6rnegin, bu degigskenin int degerlerini almasi
beklenir:
[count: int = 0 }

Degisken aciklama s6zdizimi annassign boliimiinde aciklanmustir.

Bu islevi aciklayan; function annotation, PEP 484 ve PEP 526 boliimlerine bakin. Ek aciklamalarla ¢calismaya
iligkin en iyi uygulamalar icin ayrica bkz. annotations-howto.

sanal ortam
Python kullanicilarinin ve uygulamalarinin, ayni sistem {izerinde calisan diger Python uygulamalarinin dav-
ranigina miidahale etmeden Python dagitim paketlerini kurmasina ve yiikseltmesine olanak tantyan, isbirligi
icinde yalitilmis bir ¢calisma zamani ortama.

Ayrica bakimiz venv.

sanal makine
Tamamen yazilimla tanimlanmig bir bilgisayar. Python'un sanal makinesi, bayt kodu derleyicisi tarafindan
yayinlanan bytecode ‘u ¢aligtirir.

Python’un Zen’i
Dili anlamaya ve kullanmaya yardimc1 olan Python tasarim ilkeleri ve felsefelerinin listesi. Liste, etkilesimli
komut isteminde “import this” yazarak bulunabilir.

316 Ek A. Sézlik

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

ex B

About this documentation

Python’s documentation is generated from reStructuredText sources using Sphinx, a documentation generator origi-
nally created for Python and now maintained as an independent project.

Dokiimantasyonun ve arag zincirinin gelistirilmesi, tipk1 Python’un kendisi gibi tamamen goniillui bir cabadir. Katkida
bulunmak istiyorsaniz, nasil yapacaginiza iligkin bilgi i¢in liitfen reporting-bugs sayfasina goz atin. Yeni goniilliilere
her zaman aci181z!

Destekleri i¢in tesekkiirler:
o Fred L. Drake, Jr., the creator of the original Python documentation toolset and author of much of the content;
» Docutils projesi, reStructuredText ve Docutils paketini olusturduklar i¢in;

 Fredrik Lundh, Sphinx’in pek cok iyi fikir edindigi Alternatif Python Referans: projesi i¢in.

B.1 Contributors to the Python documentation

Bircok kisi Python diline, Python standart kiitiiphanesine ve Python dokiimantasyonuna katkida bulunmustur. Kat-
kida bulunanlarin kismi bir listesi i¢cin Python kaynak dagitiminda Misc/ACKS dosyasina bakin.

Python toplulugunun girdileri ve katkilar1 sayesinde boyle harika bir dokiimantasyona sahibiz — Tesekkiirler!

317

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.12/Misc/ACKS

The Python/C API, Yayim 3.12.9

318 Ek B. About this documentation

ek G

Tarihge ve Lisans

C.1 Yazilimin tarihcesi

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
/Iwww.cwi.nl) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/lwww.cnri.reston.va.us) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations, which became Zope Corpo-
ration. In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-profit
organization created specifically to own Python-related Intellectual Property. Zope Corporation was a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Yayin Sundan tiredi: Yil Sahibi GPL-compatible? (1)
0.9.0dan 1.2’ye n/a 1991-1995 CWI evet
1.3‘dan 1.5.2’ye 1.2 1995-1999 CNRI evet
1.6 1.5.2 2000 CNRI hayr
2.0 1.6 2000 BeOpen.com hayir
1.6.1 1.6 2001 CNRI yes (2)
2.1 2.0+1.6.1 2001 PSF hayir
2.0.1 2.0+1.6.1 2001 PSF evet
2.1.1 2.1+2.0.1 2001 PSF evet
2.1.2 2.1.1 2002 PSF evet
2.1.3 2.1.2 2002 PSF evet
2.2 ve lizeri 2.1.1 2001-Giinimtiz PSF evet
O Not

(1) GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible

319

https://www.cwi.nl
https://www.cwi.nl
https://www.cnri.reston.va.us
https://www.cnri.reston.va.us
https://www.python.org/psf/
https://opensource.org

The Python/C API, Yayim 3.12.9

licenses make it possible to combine Python with other software that is released under the GPL; the others
don’t.

(2) According to Richard Stallman, 1.6.1 is not GPL-compatible, because its license has a choice of law clause.
According to CNRI, however, Stallman’s lawyer has told CNRTI’s lawyer that 1.6.1 is “not incompatible”
with the GPL.

Bu yayinlar1 miimkiin kilmak i¢in Guido'nun yonetimi altinda ¢alisan bircok goniilliiye tesekkiirler.

C.2 Python’a erismek veya baska bir sekilde kullanmak icin sartlar
ve kosullar

Python software and documentation are licensed under the Python Software Foundation License Version 2.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Version 2 and the Zero-Clause BSD license.

Python’a dahil edilen bazi1 yazilimlar farkl lisanslar altindadir. Lisanslar, bu lisansa giren kodla listelenir. Bu lisans-
larin eksik listesi i¢in bkz. Tiizel Yazilimlar icin Lisanslar ve Onaylar.

C.2.1 PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and
the Individual or Organization ("Licensee") accessing and otherwise using this
software ("Python") in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All Rights
Reserved" are retained in Python alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to.
—Python.

4. PSF is making Python available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF PYTHON WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship
(sonraki sayfaya devam)

320 Ek C. Tarihce ve Lisans

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

of agency, partnership, or joint venture between PSF and Licensee. This License
Agreement does not grant permission to use PSF trademarks or trade name in a
trademark sense to endorse or promote products or services of Licensee, or any
third party.

By copying, installing or otherwise using Python, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 PYTHON 2.0 iCiN BEOPEN.COM LiSANS SOZLESMESI
BEOPEN PYTHON ACIK KAYNAK LISANS SOZLESMESi SURUM 1

i

This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

BeOpen is making the Software available to Licensee on an "AS IS" basis.

BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

This License Agreement will automatically terminate upon a material breach of

its terms and conditions.

This License Agreement shall be governed by and interpreted in all respects

by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2. Python’a erismek veya baska bir sekilde kullanmak icin sartlar ve kosullar 321

The Python/C API, Yayim 3.12.9

C.2.3 PYTHON 1.6.1 iCIN CNRI LISANS ANLASMASI

.

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013".

In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

(sonraki sayfaya devam)

322 Ek C. Tarihce ve Lisans

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)
8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 0.9.0 ARASI 1.2 PYTHON iCiN CWI LiSANS SOZLESMESI

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON DOCUMENTA-
TION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 Tuzel Yazilimlar icin Lisanslar ve Onaylar

Bu boliim, Python dagitimina dahil edilmis tictincii taraf yazilimlar i¢in tamamlanmamig ancak biiyiiyen bir lisans
ve onay listesidir.

C.3.1 Mersenne Twister’i

random modiiliintin altyapsini olugturan _random C uzantisi, http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html adresinden indirilen kodu temel alir. Orijinal koddan kelimesi kelimesine yorumlar aga-
Sidadir:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
(sonraki sayfaya devam)

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 323

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Soketler

socket modiilii, https://www.wide.ad.jp/ adresindeki WIDE Projesinden ayr1 kaynak dosyalarinda kodlanan
getaddrinfo () ve getnameinfo () fonksiyonlarimi kullanir.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

(sonraki sayfaya devam)

324 Ek C. Tarihce ve Lisans

https://www.wide.ad.jp/

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asenkron soket hizmetleri

The test .support.asynchat and test.support .asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cerez yonetimi

http.cookies modiilii agagidaki uyary igerir:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
(sonraki sayfaya devam)

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 325

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Calistirma izleme

trace modiilil asagidaki uyariy1 igerir:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode ve UUdecode fonksiyonlari

uu modiilii agagidaki uyarry1 icerir:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE

(sonraki sayfaya devam)

326 Ek C. Tarihce ve Lisans

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Uzaktan Yordam Cagrilari

xmlrpc.client modiilii agagidaki uyariy: icerir:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

test.test_epoll modiilii agsagidaki uyary1 icerir:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

(sonraki sayfaya devam)

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 327

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 kqueue secin

select modiilii, kqueue arayiizii icin asagidaki uyariy1 icerir:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

Python/pyhash.c dosyasi, Dan Bernstein'in SipHash24 algoritmasinin Marek Majkowski uygulamasini igerir.
Burada agagidaki not yer alir:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
(sonraki sayfaya devam)

328 Ek C. Tarihce ve Lisans

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1ittle2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod ve dtoa

C double’larinin dizelere ve dizelerden doniistiiriilmesi i¢in dtoa ve strtod C fonksiyonlarini saglayan Python/dtoa.
c dosyast, su anda https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c ‘den erigilebilen
David M. Gay tarafindan ayni adli dosyadan tiiretilmigtir. 16 Mart 2009’da alinan orijinal dosya asagidaki telif hakki
ve lisans bildirimini igerir:

/**
*

* The author of this software is David M. Gay.
*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

*************************~k***********~k*************************/

C.3.12 OpenSSL

The modules hashlib, posix, ss1, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
(sonraki sayfaya devam)

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 329

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,

(sonraki sayfaya devam)

330 Ek C. Tarihce ve Lisans

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution (s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or

(sonraki sayfaya devam)

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 331

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

332 Ek C. Tarihce ve Lisans

The Python/C API, Yayim 3.12.9

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
——with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINEFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

ctypes modiiliintin altyapsini olugturan _ctypes C uzantisi, -—with-system-1ibffi olarak yapilandirilmadigi
stirece libffi kaynaklarinin dahil edildigi bir kopya kullanilarak olusturulur:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 333

The Python/C API, Yayim 3.12.9

C.3.15 zlib

z1ib uzantisi, sistemde bulunan zlib stirtimii derleme i¢in kullanilamayacak kadar eskiyse, zlib kaynaklarinin dahil
edildigi bir kopya kullanilarak olusturulur:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

tracemalloc tarafindan kullanilan hash tablosunun uygulanmasi cfuhash projesine dayanmaktadir:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

(sonraki sayfaya devam)

334 Ek C. Tarihce ve Lisans

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal C extension underlying the decimal module is built using an included copy of the libmpdec library
unless the build is configured —-with-system—-libmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test paketi

test paketindeki C14N 2.0 test paketi (Lib/test/xmltestdata/c14n-20/), https://www.w3.org/TR/
xml-c14n2-testcases/ adresindeki W3C web sitesinden alinmigtir ve 3 maddeli BSD lisansi altinda dagitilmakta-
dur:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
(sonraki sayfaya devam)

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 335

https://www.w3.org/TR/xml-c14n2-testcases/
https://www.w3.org/TR/xml-c14n2-testcases/

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)
* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project. https://sourceforge.net/projects/sox/files/
sox/12.17.7/sox-12.17.7 tar.gz

This source code is a product of Sun Microsystems, Inc. and is provided for unrestricted use. Users may
copy or modify this source code without charge.

SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLU-
DING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTI-
CE.

Sun source code is provided with no support and without any obligation on the part of Sun Microsystems,
Inc. to assist in its use, correction, modification or enhancement.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRIN-
GEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE OR
ANY PART THEREOF.

In no event will Sun Microsystems, Inc. be liable for any lost revenue or profits or other special, indirect
and consequential damages, even if Sun has been advised of the possibility of such damages.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, California 94043

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

(sonraki sayfaya devam)

336 Ek C. Tarihce ve Lisans

https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://github.com/MagicStack/uvloop/tree/v0.16.0

The Python/C API, Yayim 3.12.9

(6nceki sayfadan devam)
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Tiizel Yazihmlar icin Lisanslar ve Onaylar 337

The Python/C API, Yayim 3.12.9

338 Ek C. Tarihce ve Lisans

ex D

Telif Hakki

Python ve bu dokiimantasyon:

Telif Hakki © 2001-2023 Python Software Foundation. Tiim haklar1 saklidir.

Telif Hakki © 2000 BeOpen.com. Tiim haklar1 saklidir.

Telif Hakk1 © 1995-2000 Ulusal Arastirma Girigimleri Kurumu. Tiim haklart saklidir.
Telif Hakki © 1991-1995 Stichting Mathematisch Centrum. Tiim haklar1 saklidur.

Biitiin lisans ve izin bilgileri i¢in Tarih¢e ve Lisans ‘a goz atin.

339

The Python/C API, Yayim 3.12.9

340 Ek D. Telif Hakki

Dizin

Alfabetik olmayan

..., 301
2to3, 301
>>>, 301
__all__ (package variable), 70
__dict__ (module attribute), 167
__doc__ (module attribute), 167
_ _file_ (module attribute), 167, 168
_ future__, 306
__import__

built-in function, 71
__loader__ (module attribute), 167
__main___

module, 12, 195, 208, 209
__name___ (module attribute), 167
__package__ (module attribute), 167
__PYVENV_LAUNCHER__, 224,230
__slots_ ,314
_frozen (C struct), 73
_inittab (C struct), 74
_inittab.initfunc (C member), 74
_inittab.name (C member), 74
_Py_c_diff (C function), 127
_Py_c_neg (C function), 127
_Py_c_pow (C function), 128
_Py_c_prod (C function), 128
_Py_c_quot (C function), 128
_Py_c_sum (C function), 127
_Py_InitializeMain (C function), 237
_Py_NoneStruct (C var), 250
_PyBytes_Resize (C function), 130
_PyCFunctionFast (Ctype), 252
_PyCFunctionFastWithKeywords (C type), 252
_PyCode_GetExtra (C function), 165
_PyCode_sSetExtra (C function), 165
_PyEval_RequestCodeExtraIndex (C function),

165

_PyFrameEvalFunction (C type), 205
_PyInterpreterFrame (C struct), 182

_PyInterpreterState_GetEvalFrameFunc (C
function), 206
_PyInterpreterState_SetEvalFrameFunc (C

function), 206

_PyObject_GetDictPtr (C function), 91
_PyObject_New (C function), 249
_PyObject_NewVar (C function), 249
_PyTuple_Resize (C function), 150
_thread

module, 202

A

abort (C function), 70
abs

built-in function, 100
ad alanz, 311
ad alani paketi, 311
adlandirilmis demet, 310
allocfunc (C type), 290
anahtar islev, 309
anahtar kelime argiimani, 309
anlamak, 314
argiiman, 301
argv (in module sys), 199
ascii

built-in function, 92
asenkron baglam ydneticisi, 302
asenkron Jjeneratdr, 302
asenkron jeneratdr yineleyici, 302
asenkron yineleyici, 302

B

baglam degiskeni, 304
baglam yéneticisi, 304
bayt benzeri nesne, 303
bayt kodu, 303
BDFL, 303
beklenebilir, 302
belge dizisi, 305
binaryfunc (Ctype), 291
bitisik, 304
BOSTA, 307
buffer interface
(see buffer protocol), 106
buffer object
(see buffer protocol), 106
buffer protocol, 106
built-in function

341

The Python/C API, Yayim 3.12.9

__import__, 71
abs, 100
ascii, 92
bytes, 92
classmethod, 254
compile, 72
divmod, 99
float, 101
hash, 92, 269

int, 101

len, 93, 102, 104, 152, 155, 158

pow, 99, 101
repr, 91, 268
staticmethod, 254
tuple, 103, 153
type, 93

builtins
module, 12, 195, 208, 209

bulucu, 306

bytearray
object, 130

bytes
built-in function, 92
object, 129

C

calloc (C function), 239
Capsule

object, 179
C-contiguous, 109, 304
classmethod

built-in function, 254
cleanup functions, 70
close (in module os), 209
CO_FUTURE_DIVISION (C var), 45
code object, 162

Common Vulnerabilities and Exposures

CVE 2008-5983, 199
compile

built-in function, 72
complex number

object, 127
contiguous, 109
copyright (in module sys), 198
CPython, 304

G

ga@lrllabilir,303
cOp toplama,306

D

degisken acgiklama, 316
degismez, 308
degistirilebilir, 310
dekoratdr, 304
descrgetfunc (Ctype), 291
descrsetfunc (Ctype), 291
destructor (C type), 290

dictionary

object, 153
dipnot, 301
divmod

built-in function, 99
dizi, 314
dosya benzeri nesne, 305
dosya nesnesi, 305

dosya sistemi kodlamasi ve hata

isleyicisi, 305

E

EAFP, 305

EOFError (built-in exception), 166
esyordam, 304

esyordam islevi, 304
eszamansiz yinelenebilir, 302
etkilesimli, 308

evrensel yeni satirlar, 316
exc_info (in module sys), 11
executable (in module sys), 197
exit (C function), 70

F?

f-string, 305
file

object, 166
float

built-in function, 101
floating-point

object, 125
fonksiyon, 306
fonksiyon aciklamasi, 306
Fortran contiguous, 109, 304
free (C function), 239
freefunc (C type), 290
freeze utility, 73
frozenset

object, 157
function

object, 158

G

gcvisitobjects_t (Ctype), 297
gecici API, 313

gecici paket, 313

genel islev, 307

genel terciiman kilidi, 307
genel tip, 307

geri cagirmak, 303
getattrfunc (Ctype), 290
getattrofunc (C type), 290
getbufferproc (Ctype), 291
getiterfunc (Ctype), 291
getter (C type), 258

GIL, 307

global interpreter lock, 200
gliclii referans, 315

342

The Python/C API, Yayim 3.12.9

F+

haritalama, 310
hash

built-in function, 92,269

hashfunc (C type), 291
|
i¢ ice kapsam, 311
ice aktarica, 308
ice aktarim yolu, 308
ice aktarma, 308
ifade (deger dondiirmez), 314
ifade (deger dondiiriir), 305
ikili dosya, 303
immortal, 308
incr_item(), 11, 12
initproc (C type), 290
inquiry (C type), 296
instancemethod

object, 161
int

built-in function, 101
integer

object, 121
interpreter lock, 200
iternextfunc (C type), 291

J

jeneratdr, 306
jeneratdr ifadesi, 307
jeneratdr yineleyici, 306

K

karma tabanli pyc, 307
karmasik sayi, 303
kat bdlimi, 306

KeyboardInterrupt (built-in exception), 59

kisim, 313
konumsal argiiman, 313

L

lambda, 309
LBYL, 309
len

built-in function, 93, 102, 104, 152, 155,

158

lenfunc (Ctype), 291
lexical analyzer, 309
list

object, 152
liste, 309
liste anlama, 309
lock, interpreter, 200
long integer

object, 121
LONG_MAX (C macro), 122

M
magic

metot, 310
main (), 196, 199
malloc (C function), 239
mapping

object, 153
memoryview

object, 177
meta yol bulucu, 310
metasinif, 310
METH_CLASS (C macro), 254
METH_COEXIST (C macro), 254
METH_FASTCALL (C macro), 253
METH_KEYWORDS (C macro), 253
METH_METHOD (C macro), 253
METH_NOARGS (C macro), 254
METH_O (C macro), 254
METH_STATIC (C macro), 254
METH_VARARGS (C macro), 253
method

object, 161

MethodType (in module types), 159, 161

metot, 310
magic, 310
special, 314

metot kalite siralamaszi, 310

module
__main__, 12, 195, 208, 209
_thread, 202
builtins, 12, 195, 208, 209
object, 167

search path, 12, 195, 197, 198

signal, 59
sys, 12, 195, 208, 209
modules (in module sys), 70, 195

ModuleType (in module types), 167

modiil, 310
modiil &zelligi, 310
MRO, 310

N

newfunc (C type), 290
nitelik, 302
nitelikli isim, 313

None
object, 121
numeric
object, 121
@)
obje, 311
object
bytearray, 130
bytes, 129
Capsule, 179
code, 162

complex number, 127

Dizin

343

The Python/C API, Yayim 3.12.9

dictionary, 153
file, 166
floating-point, 125
frozenset, 157
function, 158
instancemethod, 161
integer, 121
list, 152
long integer, 121
mapping, 153
memoryview, 177
method, 161
module, 167
None, 121
numeric, 121
sequence, 129
set, 157
tuple, 149
type, 7, 115
objobjargproc (C type), 291
objobjproc (C type), 291
ortam dediskeni
___PYVENV_LAUNCHER__, 224, 230
PATH, 12
PYTHONCOERCECLOCALE, 235
PYTHONDEBUG, 192, 229
PYTHONDEVMODE, 225
PYTHONDONTWRITEBYTECODE, 192, 232
PYTHONDUMPREFS, 225, 265
PYTHONEXECUTABLE, 230
PYTHONFAULTHANDLER, 226
PYTHONHASHSEED, 193, 227
PYTHONHOME, 12, 193, 199, 200, 227
PYTHONINSPECT, 193, 227
PYTHONINTMAXSTRDIGITS, 227
PYTHONIOENCODING, 196, 231

PYTHONLEGACYWINDOWSFSENCODING, 194, 221
PYTHONLEGACYWINDOWSSTDIO, 194, 228

PYTHONMALLOC, 240, 243, 245, 247
PYTHONMALLOCSTATS, 228, 240
PYTHONNODEBUGRANGES, 225
PYTHONNOUSERSITE, 194, 232
PYTHONOPTIMIZE, 194, 229
PYTHONPATH, 12, 193, 228
PYTHONPERFSUPPORT, 232
PYTHONPLATLIBDIR, 228
PYTHONPROFILEIMPORTTIME, 227
PYTHONPYCACHEPREFIX, 230
PYTHONSAFEPATH, 224
PYTHONTRACEMALLOC, 231
PYTHONUNBUFFERED, 194, 224
PYTHONUTFS, 221, 235
PYTHONVERBOSE, 195, 232
PYTHONWARNINGS, 232
overflowError (built-in exception), 122, 123

5

6diing alinan referans, 303

drdek yazma, 305
6zel metod, 314

P

package variable

all ,70
paket, 311
parametre,311
parcalamak, 314
PATH, 12
path

module search, 12, 195, 197, 198
path (in module sys), 12, 195, 197, 198
PEP, 312
plat form (in module sys), 198
pow

built-in function, 99, 101
py_AaBS (C macro), 4
Py_AddPendingCall (C function), 210
Py_ALWAYS_INLINE (C macro), 5
Py_AtExit (C function), 70
Py_AUDIT_READ (C macro), 256
Py_AuditHookFunction (C type), 70

Py_BEGIN_ALLOW_THREADS (C macro), 200, 203

Py_BLOCK_THREADS (C macro), 204
Py_buffer (C type), 106
Py_buffer.buf (C member), 106
Py_buffer.format (C member), 107
Py_buffer.internal (C member), 108
Py_buffer.itemsize (C member), 107
Py_buffer.len (C member), 107
Py_buffer.ndim (C member), 107
Py_buffer.obj (C member), 107
Py_buffer.readonly (C member), 107
Py_buffer.shape (C member), 107
Py_buffer.strides (C member), 107
Py_buffer.suboffsets (C member), 108
Py_Buildvalue (C function), 81
Py_BytesMain (C function), 41
Py_BytesWarningFlag (C var), 192
Py_CHARMASK (C macro), 5
Py_CLEANUP_SUPPORTED (C macro), 79
Py_CLEAR (C function), 48

Py CompileString (C function), 43, 44

Py_CompileStringExFlags (C function), 44

Py_CompileStringFlags (C function), 43
Py_CompileStringObject (C function), 43
Py_complex (C type), 127
Py_complex.imag (C member), 127
Py_complex.real (C member), 127
Py_DEBUG (C macro), 13

Py_DebugFlag (C var), 192
Py_DecodeLocale (C function), 66
Py_DECREF (C function), 7, 48

Py_DecRef (C function), 49
Py_DEPRECATED (C macro), 5
Py_DontWriteBytecodeFlag (C var), 192
Py_Ellipsis (Cvar), 177

344

Dizin

The Python/C API, Yayim 3.12.9

Py_EncodeLocale (C function), 67
Py_END_ALLOW_THREADS (C macro), 200, 204
Py _EndInterpreter (C function), 209

Py _EnterRecursiveCall (C function), 62
pPy_EQ (C macro), 277

Py_eval_input (C var), 44

py_Exit (C function), 70

Py _ExitStatusException (C function), 219
Py_False (Cvar), 125

Py_FatalError (C function), 70
Py_FatalError(), 199
Py_FdIsInteractive (C function), 65
Py_file_input (C var), 44

Py Finalize (C function), 196

Py FinalizeEx (C function), 70, 195, 209
Py_FrozenFlag (Cvar), 192

Py_GE (C macro), 277

Py_GenericAlias (C function), 188
Py_GenericAliasType (C var), 189

Py _GetArgcArgv (C function), 236
Py_GetBuildInfo (C function), 198
Py_GetCompiler (C function), 198
Py_GetCopyright (C function), 198
Py_GETENV (C macro), 5

Py GetExecPrefix (C function), 12, 197
Py_GetPath (C function), 12, 197
Py_GetPath (), 196, 198

Py_GetPlatform (C function), 198
Py_GetPrefix (C function), 12, 196

Py _GetProgramFullPath (C function), 12, 197
Py_GetProgramName (C function), 196
Py_GetPythonHome (C function), 200
Py_GetVersion (C function), 198

Py_GT (C macro), 277

Py_hash_t (C type), 85
Py_HashRandomizationFlag (C var), 193
Py_IgnoreEnvironmentFlag (C var), 193
Py_INCREF (C function), 7, 47

Py_IncRef (C function), 49

Py_Initialize (C function), 12, 195, 209
Py_Initialize(), 196

Py_InitializeEx (C function), 195
Py_TInitializeFromConfig (C function), 233
Py_InspectFlag (Cvar), 193
Py_InteractiveFlag (Cvar), 193

py_Is (C function), 250

Py Is_TYPE (C function), 251

Py_IsFalse (C function), 251
Py_TIsInitialized (C function), 12, 195
Py_TIsNone (C function), 251
Py_IsolatedFlag (Cvar), 193

Py _IsTrue (C function), 251

py_LE (C macro), 277
Py_LeaveRecursiveCall (C function), 62
Py_LegacyWindowsFSEncodingFlag (C var), 193
Py_LegacyWindowsStdioFlag (C var), 194
Py_LIMITED_API (C macro), 16

py_LT (C macro), 277

Py_Main (C function), 41

PY_MAJOR_VERSION (C macro), 299

py_MaX (C macro), 5

Py_MEMBER_SIZE (C macro), 5

PY_MICRO_VERSION (C macro), 299

Py_MIN (C macro), 5

PY_MINOR_VERSTION (C macro), 299

Py_mod_create (C macro), 170

Py_mod_exec (C macro), 171

Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED
(C macro), 171

Py_MOD_MULTIPLE_INTERPRETERS_SUPPORTED (C
macro), 171

Py_mod_multiple_interpreters (C macro), 171

Py_MOD_PER_INTERPRETER_GIIL_SUPPORTED (C
macro), 171

py_NE (C macro), 277

Py_NewInterpreter (C function), 209

Py NewInterpreterFromConfig (C function), 208

Py _NewRef (C function), 47

Py_NO_INLINE (C macro), 5

Py_None (Cvar), 121

Py_NoSiteFlag (C var), 194

Py_NotImplemented (C var), 89

Py_NoUserSiteDirectory (Cvar), 194

Py_OpenCodeHookFunction (C type), 166

Py_OptimizeFlag (C var), 194

Py_PrelInitialize (C function), 221

Py_PrelInitializeFromArgs (C function), 222

Py PrelnitializeFromBytesArgs (C function),
221

Py_PRINT_RAW (C macro), 89, 167

Py_QuietFlag (Cvar), 194

Py_READONLY (C macro), 256

Py_REFCNT (C function), 47

Py_RELATIVE_OFFSET (C macro), 256

PY_RELEASE_LEVEL (C macro), 299

PY_RELEASE_SERIAL (C macro), 299

Py_ReprEnter (C function), 62

Py_ReprLeave (C function), 62

Py_RETURN_FALSE (C macro), 125

Py_RETURN_NONE (C macro), 121

Py_RETURN_NOTIMPLEMENTED (C macro), 89

Py_RETURN_RICHCOMPARE (C macro), 277

Py_RETURN_TRUE (C macro), 125

Py_RunMain (C function), 236

Py SET_REFCNT (C function), 47

Py_SET_SIzE (C function), 251

Py_SET_TYPE (C function), 251

Py_setPath (C function), 197

Py_SetPath (), 197

Py_SetProgramName (C function), 12, 196

Py_SetProgramName (), 195197

Py_SetPythonHome (C function), 199

Py_SETREF (C macro), 49

Py_SetStandardStreamEncoding (C function), 196

Py SIZE (C function), 251

Py_single_input (C var), 44

Dizin

345

The Python/C API, Yayim 3.12.9

PY_SS1ZE_T_MAX (C macro), 123

Py_ssize_t (Ctype), 10

Py_STRINGIFY (C macro), 5

Py_T_BOOL (C macro), 257

Py_T_BYTE (C macro), 257

Py_T_CHAR (C macro), 257

Py_T_DOUBLE (C macro), 257

Py_T_FLOAT (C macro), 257

Py_T_INT (C macro), 257

Py_T_LONG (C macro), 257

Py_T_LONGLONG (C macro), 257

Py_T_OBJECT_EX (C macro), 257

Py_T_PYSSIZET (C macro), 257

Py_T_SHORT (C macro), 257

Py_T_STRING (C macro), 257

Py_T_STRING_INPLACE (C macro), 257

Py_T_UBYTE (C macro), 257

Py_T_UINT (C macro), 257

Py_T_ULONG (C macro), 257

Py_T_ULONGLONG (C macro), 257

Py_T_USHORT (C macro), 257

Py_TPFLAGS_BASE_EXC_SUBCLASS (C macro), 273

Py_TPFLAGS_BASETYPE (C macro), 271

Py_TPFLAGS_BYTES_SUBCLASS (C macro), 273

Py_TPFLAGS_DEFAULT (C macro), 272

Py_TPFLAGS_DICT_SUBCLASS (C macro), 273

Py_TPFLAGS_DISALLOW_INSTANTIATION (Cmacro),
273

Py_TPFLAGS_HAVE_FINALIZE (C macro), 273

Py_TPFLAGS_HAVE_GC (C macro), 272

Py_TPFLAGS_HAVE_VECTORCALL (C macro), 273

Py_TPFLAGS_HEAPTYPE (C macro), 271

Py_TPFLAGS_IMMUTABLETYPE (C macro), 273

Py_TPFLAGS_ITEMS_AT_END (C macro), 272

Py_TPFLAGS_LIST_SUBCLASS (C macro), 273

Py_TPFLAGS_LONG_SUBCLASS (C macro), 273

Py_TPFLAGS_MANAGED_DICT (C macro), 272

Py_TPFLAGS_MANAGED_WEAKREF (C macro), 272

Py_TPFLAGS_MAPPING (C macro), 274

Py_TPFLAGS_METHOD_DESCRIPTOR (C macro), 272

Py_TPFLAGS_READY (C macro), 271

Py_TPFLAGS_READYING (C macro), 271

Py_TPFLAGS_SEQUENCE (C macro), 274

Py_TPFLAGS_TUPLE_SUBCLASS (C macro), 273

Py_TPFLAGS_TYPE_SUBCLASS (C macro), 273

Py_TPFLAGS_UNICODE_SUBCLASS (C macro), 273

Py_TPFLAGS_VALID_VERSION_TAG (C macro), 275

Py_tracefunc (Ctype), 211

Py_True (Cvar), 125

Py_tss_NEEDS_INIT (C macro), 213

pPy_tss_t (Ctype), 213

py_TYPE (C function), 251

Py_ucs1 (C type), 132

pPy_ucs2 (C type), 132

pPy_ucs4 (C type), 132

Py_uhash_t (C type), 85

Py_UNBLOCK_THREADS (C macro), 204

Py_UnbufferedStdioFlag (Cvar), 194

Py_UNICODE (C type), 132
Py_UNICODE_IS_HIGH_SURROGATE (C function), 135
Py _UNICODE_IS_LOW_SURROGATE (C function), 135
Py UNICODE_IS_SURROGATE (C function), 135
Py_UNICODE_ISALNUM (C function), 134
Py_UNICODE_ISALPHA (C function), 134
Py_UNICODE_ISDECIMAL (C function), 134
Py_UNICODE_ISDIGIT (C function), 134
Py UNICODE_ISLINEBREAK (C function), 134
Py_UNICODE_ISLOWER (C function), 134
Py_UNICODE_ISNUMERIC (C function), 134
Py_UNICODE_ISPRINTABLE (C function), 134
Py_UNICODE_ISSPACE (C function), 134
Py UNICODE_ISTITLE (C function), 134
Py UNICODE_ISUPPER (C function), 134
Py_UNICODE_JOIN_SURROGATES (C function), 135
Py_UNICODE_TODECIMAL (C function), 134
Py_UNICODE_TODIGIT (C function), 134
Py_UNICODE_TOLOWER (C function), 134
Py UNICODE_TONUMERIC (C function), 134
Py_UNICODE_TOTITLE (C function), 134
Py_UNICODE_TOUPPER (C function), 134
Py_UNREACHABLE (C macro), 6
Py_UNUSED (C macro), 6
Py VaBuildvalue (C function), 83
PY_VECTORCALL_ARGUMENTS_OFFSET (C macro), 95
Py_VerboseFlag (Cvar), 195
PY_VERSION_HEX (C macro), 299
Py_Version (C var), 299
Py VISIT (C function), 296
Py XDECREF (C function), 12, 48
Py_XINCREF (C function), 47
Py_xNewRef (C function), 48
Py_XSETREF (C macro), 49
PyAIter_Check (C function), 105
PyAnySet_Check (C function), 157
PyAnySet_CheckExact (C function), 157
PyArg_Parse (C function), 80
PyArg_ParseTuple (C function), 80
PyArg_ParseTupleAndKeywords (C function), 80
PyArg_UnpackTuple (C function), 80
PyArg_ValidateKeywordArguments (C function),
80
PyArg_VaParse (C function), 80
PyArg_VaParseTupleAndKeywords (C function), 80
PyASCIIObject (Ctype), 132
PyAsyncMethods (C type), 289
PyAsyncMethods.am_aiter (C member), 289
PyAsyncMethods.am_anext (C member), 290
PyAsyncMethods.am_await (C member), 289
PyAsyncMethods.am_send (C member), 290
PyBaseObject_Type (C var), 250
PyBool_Check (C function), 125
PyBool_FromLong (C function), 125
PyBool_Type (Cvar), 125
PyBUF_ANY_CONTIGUOUS (C macro), 109
PyBUF_C_CONTIGUOUS (C macro), 109
PyBUF_CONTIG (C macro), 110

346

Dizin

The Python/C API, Yayim 3.12.9

PyBUF_CONTIG_RO (C macro), 110
PyBUF_F_CONTIGUOUS (C macro), 109
PyBUF_FORMAT (C macro), 108
PyBUF_FULL (C macro), 110
PyBUF_FULL_RO (C macro), 110
PyBUF_INDIRECT (C macro), 109
PyBUF_MAX_NDIM (C macro), 108
PyBUF_ND (C macro), 109
PyBUF_READ (C macro), 177
PyBUF_RECORDS (C macro), 110
PyBUF_RECORDS_RO (C macro), 110
PyBUF_SIMPLE (C macro), 109
PyBUF_STRIDED (C macro), 110
PyBUF_STRIDED_RO (C macro), 110
PyBUF_STRIDES (C macro), 109
PyBUF_WRITABLE (C macro), 108
PyBUF_WRITE (C macro), 177
PyBuffer_FillContiguousStrides (C function),
112
PyBuffer FillInfo (C function), 112
PyBuffer_FromContiguous (C function), 112
PyBuffer_GetPointer (C function), 112
PyBuffer_IsContiguous (C function), 112
PyBuffer_Release (C function), 111
PyBuffer_ SizeFromFormat (C function), 112
PyBuffer_ToContiguous (C function), 112
PyBufferProcs (C type), 106, 288
PyBufferProcs.bf_getbuffer (C member), 288
PyBufferProcs.bf_releasebuffer (C member),
289
PyByteArray AS_ STRING (C function), 131
PyByteArray_AsString (C function), 131
PyByteArray_Check (C function), 131
PyByteArray_CheckExact (C function), 131
PyByteArray_Concat (C function), 131
PyByteArray FromObject (C function), 131
PyByteArray_FromStringAndSize (C function),
131
PyByteArray_ GET_SIZE (C function), 131
PyByteArray_ Resize (C function), 131
PyByteArray_ Size (C function), 131
PyByteArray_Type (C var), 130
PyByteArrayObject (C type), 130
PyBytes_AS_STRING (C function), 130
PyBytes_AsString (C function), 130
PyBytes_AsStringAndSize (C function), 130
PyBytes_Check (C function), 129
PyBytes_CheckExact (C function), 129
PyBytes_Concat (C function), 130
PyBytes_ConcatAndDel (C function), 130
PyBytes_FromFormat (C function), 129
PyBytes_FromFormatV (C function), 129
PyBytes_FromObject (C function), 130
PyBytes_FromString (C function), 129
PyBytes_FromStringAndSize (C function), 129
PyBytes_GET_SIZE (C function), 130
PyBytes_Size (C function), 130
PyBytes_Type (Cvar), 129

PyBytesObject (C type), 129
PyCallable_Check (C function), 99
PyCallIter_Check (C function), 175
PyCallIter_ New (C function), 175
PyCallIter_Type (Cvar), 175
PyCapsule (C type), 179
PyCapsule_CheckExact (C function), 179
PyCapsule_Destructor (C type), 179
PyCapsule_GetContext (C function), 179
PyCapsule_GetDestructor (C function), 179
PyCapsule_GetName (C function), 179
PyCapsule_GetPointer (C function), 179
PyCapsule_Import (C function), 180
PyCapsule_IsValid (C function), 180
PyCapsule_New (C function), 179
PyCapsule_SetContext (C function), 180
PyCapsule_SetDestructor (C function), 180
PyCapsule_sSetName (C function), 180
PyCapsule_SetPointer (C function), 180
PyCell Check (C function), 162
PyCell_ GET (C function), 162
PyCell_Get (C function), 162
PyCell_New (C function), 162
PyCell_ sEtT (C function), 162
pPyCell_ Set (C function), 162
PyCell_Type (Cvar), 162
PyCellObject (Ctype), 161
PyCFunction (Ctype), 252
PyCFunction_New (C function), 254
PyCFunction_NewEx (C function), 254
PyCFunctionWithKeywords (C type), 252
PyCMethod (C type), 252
PyCMethod_New (C function), 254
PyCode_Addr2Line (C function), 163
PyCode_Addr2Location (C function), 163
PyCode_AddWatcher (C function), 164
PyCode_Check (C function), 162
PyCode_ClearWatcher (C function), 164
PyCode_GetCellvars (C function), 164
PyCode_GetCode (C function), 163
PyCode_GetFirstFree (C function), 162
PyCode_GetFreevars (C function), 164
PyCode_GetNumFree (C function), 162
PyCode_GetVarnames (C function), 163
PyCode_New (C function), 163
PyCode_NewEmpty (C function), 163
PyCode_NewWithPosOnlyArgs (C function), 163
PyCode_Type (Cvar), 162
PyCode_WatchCallback (C type), 164
PyCodec_BackslashReplaceErrors (C function),
87
PyCodec_Decode (C function), 86
PyCodec_Decoder (C function), 86
PyCodec_Encode (C function), 86
PyCodec_Encoder (C function), 86
PyCodec_IgnoreErrors (C function), 87
PyCodec_IncrementalDecoder (C function), 87
PyCodec_IncrementalEncoder (C function), 86

Dizin

347

The Python/C API, Yayim 3.12.9

PyCodec_KnownEncoding (C function), 86
PyCodec_LookupError (C function), 87
PyCodec_NameReplaceErrors (C function), 87
PyCodec_Register (C function), 86
PyCodec_RegisterError (C function), 87
PyCodec_ReplaceErrors (C function), 87
PyCodec_StreamReader (C function), 87
PyCodec_StreamWriter (C function), 87
PyCodec_StrictErrors (C function), 87
PyCodec_Unregister (C function), 86
PyCodec_XMLCharRefReplaceErrors (C function),
87
PyCodeEvent (C type), 164
PyCodeObject (C type), 162
PyCompactUnicodeObject (C type), 132
PyCompilerFlags (C struct), 44
PyCompilerFlags.cf_feature_version (C mem-
ber), 45
PyCompilerFlags.cf_flags (C member), 45
PyComplex_AsCComplex (C function), 128
PyComplex_Check (C function), 128
PyComplex_CheckExact (C function), 128
PyComplex_FromCComplex (C function), 128
PyComplex_FromDoubles (C function), 128
PyComplex_ImagAsDouble (C function), 128
PyComplex_RealAsDouble (C function), 128
PyComplex_Type (Cvar), 128
PyComplexObject (C type), 128
PyConfig (C type), 222
PyConfig_ Clear (C function), 223
PyConfig InitIsolatedConfig (C function), 222
PyConfig_InitPythonConfig (C function), 222
PyConfig_Read (C function), 223
PyConfig_SetArgv (C function), 223
PyConfig_SetBytesArgv (C function), 223
PyConfig_SetBytesString (C function), 223
PyConfig_SetString (C function), 222
PyConfig_SetWideStringList (C function), 223

PyConfig.argv (C member), 224
PyConfig.base_exec_prefix (C member), 224
PyConfig.base_executable (C member), 224

PyConfig.base_prefix (C member), 224
.buffered_stdio (C member), 224
bytes_warning (C member), 224

(C member),

PyConfig
PyConfig.
PyConfig.check_hash_pycs_mode
225
code_debug_ranges (C member), 225
configure_c_stdio (C member), 225
dev_mode (C member), 225
dump_refs (C member), 225
exec_prefix (C member), 226
executable (C member), 226
faulthandler (C member), 226
filesystem_encoding (C member), 226
filesystem_errors (C member), 226
hash_seed (C member), 226
home (C member), 227
import_time (C member), 227

PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.

PyConfig.inspect (C member), 227
PyConfig.install_signal_handlers
ber), 227
PyConfig.int_max_str_digits (C member), 227
PyConfig.interactive (C member), 227
PyConfig.isolated (C member), 227
PyConfig.legacy_windows_stdio
228
PyConfig.malloc_stats (C member), 228
PyConfig.module_search_paths (C member), 228
PyConfig.module_search_paths_set (C mem-
ber), 228
PyConfig.optimization_level (C member), 229
PyConfig.orig_argv (C member), 229
PyConfig.parse_argv (C member), 229
PyConfig.parser_debug (C member), 229
PyConfig.pathconfig_warnings (C member), 229
PyConfig.perf_profiling (C member), 231
PyConfig.platlibdir (C member), 228
PyConfig.prefix (C member), 229
PyConfig.program_name (C member), 230
PyConfig.pycache_prefix (C member), 230
PyConfig.pythonpath_env (C member), 228
PyConfig.quiet (C member), 230
PyConfig.run_command (C member), 230
PyConfig.run_filename (C member), 230
PyConfig.run_module (C member), 230
PyConfig.safe_path (C member), 224
PyConfig.show_ref_count (C member), 230
PyConfig.site_import (C member), 231
PyConfig.skip_source_first_line (C member),
231
PyConfig.stdio_encoding (C member), 231
PyConfig.stdio_errors (C member), 231
PyConfig.tracemalloc (C member), 231
PyConfig.use_environment (C member), 232
PyConfig.use_hash_seed (C member), 227
PyConfig.user_site_directory (C member), 232
PyConfig.verbose (C member), 232
PyConfig.warn_default_encoding (C member),
225
PyConfig.warnoptions (C member), 232
PyConfig.write_bytecode (C member), 232
PyConfig.xoptions (C member), 232
PyContext (C type), 183
PyContext_CheckExact (C function), 184
PyContext_Copy (C function), 184
PyContext_CopyCurrent (C function), 184
PyContext_Enter (C function), 184
PyContext_Exit (C function), 184
PyContext_New (C function), 184
PyContext_Type (Cvar), 184
PyContextToken (C type), 183
PyContextToken_CheckExact (C function), 184
PyContextToken_Type (C var), 184
PyContextVar (C type), 183
PyContextVar_CheckExact (C function), 184
PyContextVar_Get (C function), 184

(C mem-

(C member),

348

Dizin

The Python/C API, Yayim 3.12.9

PyContextVar_New (C function), 184
PyContextVar_Reset (C function), 185
PyContextVar_Set (C function), 184
PyContextVar_Type (C var), 184
PyCoro_CheckExact (C function), 183
PyCoro_New (C function), 183
PyCoro_Type (Cvar), 183
PyCoroObject (C type), 183
PyDate_Check (C function), 185
PyDate_CheckExact (C function), 185
PyDate_FromDate (C function), 186
PyDate_FromTimestamp (C function), 188
PyDateTime_Check (C function), 185
PyDateTime_CheckExact (C function), 186
PyDateTime_Date (C type), 185
PyDateTime_DATE_GET_FOLD (C function), 187
PyDateTime_DATE_GET_HOUR (C function), 187
PyDateTime_DATE_GET_MICROSECOND (C function),
187
PyDateTime DATE_GET_MINUTE (C function), 187
PyDateTime_DATE_GET_SECOND (C function), 187
PyDateTime_DATE_GET_TZINFO (C function), 187
PyDateTime_DateTime (C type), 185
PyDateTime_DateTimeType (C var), 185
PyDateTime_DateType (C var), 185
PyDateTime_Delta (C type), 185
PyDateTime_DELTA_GET_DAYS (C function), 188
PyDateTime_DELTA_GET_MICROSECONDS (C functi-
on), 188
PyDateTime DELTA_GET_SECONDS (C function), 188
PyDateTime_DeltaType (C var), 185
PyDateTime_FromDateAndTime (C function), 186
PyDateTime_FromDateAndTimeAndFold (C functi-
on), 186
PyDateTime_ FromTimestamp (C function), 188
PyDateTime_ GET_DAY (C function), 187
PyDateTime_GET_MONTH (C function), 187
PyDateTime_GET_YEAR (C function), 187
PyDateTime_TIME_GET_FOLD (C function), 187
PyDateTime_ TIME_GET_HOUR (C function), 187
PyDateTime TIME_GET_MICROSECOND (C function),
187
PyDateTime_TIME_GET_MINUTE (C function), 187
PyDateTime_TIME_GET_SECOND (C function), 187
PyDateTime_TIME_GET_TZINFO (C function), 188
PyDateTime_Time (C type), 185
PyDateTime_TimeType (C var), 185
PyDateTime_TimeZone_UTC (C var), 185
PyDateTime_TZInfoType (C var), 185
PyDelta_Check (C function), 186
PyDelta_CheckExact (C function), 186
PyDelta_ FromDSU (C function), 186
PyDescr_IsData (C function), 175
PyDescr_NewClassMethod (C function), 175
PyDescr_NewGetSet (C function), 175
PyDescr_NewMember (C function), 175
PyDescr_NewMethod (C function), 175
PyDescr_NewWrapper (C function), 175

PyDict_AddwWatcher (C function), 156
PyDict_Check (C function), 153
PyDict_CheckExact (C function), 153
PyDict_Clear (C function), 153
PyDict_ClearWatcher (C function), 156
PyDict_Contains (C function), 153
PyDict_Copy (C function), 154
PyDict_DelItem (C function), 154
PyDict_DelItemString (C function), 154
PyDict_GetItem (C function), 154
PyDict_GetItemString (C function), 154
PyDict_GetItemWithError (C function), 154
PyDict_Items (C function), 155
PyDict_Keys (C function), 155
PyDict_Merge (C function), 155
PyDict_MergeFromSeq2 (C function), 156
PyDict_New (C function), 153

PyDict_Next (C function), 155
PyDict_SetDefault (C function), 154
PyDict_SetItem (C function), 154
PyDict_SetItemString (C function), 154
PyDict_Size (C function), 155

PyDict_Type (Cvar), 153

PyDict_Unwatch (C function), 156
PyDict_Update (C function), 156
PyDict_vValues (C function), 155
PyDict_Watch (C function), 156
PyDict_WatchCallback (C type), 156
PyDict_WatchEvent (C type), 156
PyDictObject (Ctype), 153
PyDictProxy_ New (C function), 153
PyDoc_STR (C macro), 6

PyDoc_STRVAR (C macro), 6
PyEllipsis_Type (Cvar), 177
PyErr_BadArgument (C function), 52
PyErr_BadInternalCall (C function), 54
PyErr_CheckSignals (C function), 59
PyErr_Clear (C function), 10, 12, 51
PyErr_DisplayException (C function), 52
PyErr_ExceptionMatches (C function), 12, 56
pyErr_Fetch (C function), 56

PyErr_Format (C function), 52
PyErr_FormatV (C function), 52
PyErr_GetExcInfo (C function), 58
PyErr_GetHandledException (C function), 57
PyErr_GetRaisedException (C function), 56
PyErr_GivenExceptionMatches (C function), 56
PyErr_NewException (C function), 60
PyErr_NewExceptionWithDoc (C function), 60
PyErr_NoMemory (C function), 53
PyErr_NormalizeException (C function), 57
PyErr_Occurred (C function), 10, 55
PyErr_Print (C function), 52
PyErr_PrintEx (C function), 51
PyErr_ResourceWarning (C function), 55
PyErr_Restore (C function), 57
PyErr_SetExcFromWindowsErr (C function), 53

Dizin

349

The Python/C API, Yayim 3.12.9

PyErr_SetExcFromWindowsErrWithFilename (C
function), 54

PyEval_SetProfileAllThreads (C function), 212
PyEval_sSetTrace (C function), 212

PyErr_SetExcFromWindowsErrWithFilenameObjecByEval_ SetTraceAllThreads (C function), 212

(C function), 53

PyEval ThreadsInitialized (C function), 202

PyErr_SetExcFromWindowsErrWithFilenameObjeckgExc_ArithmeticError (Cvar), 63

(C function), 54
PyErr_SetExcInfo (C function), 58
PyErr_SetFromErrno (C function), 53

PyErr_SetFromErrnoWithFilename (C function),
53

PyErr_SetFromErrnoWithFilenameObject c
function), 53

PyErr_SetFromErrnoWithFilenameObjects (C
function), 53

PyErr_SetFromWindowsErr (C function), 53

PyErr_SetFromWindowsErrWithFilename c

function), 53
PyErr_SetHandledException (C function), 58
PyErr_SetImportError (C function), 54
PyErr_SetImportErrorSubclass (C function), 54
PyErr_SetInterrupt (C function), 59
PyErr_SetInterruptEx (C function), 59
PyErr_SetNone (C function), 52
PyErr_SetObject (C function), 52
PyErr_SetRaisedException (C function), 56
PyErr_SetString (C function), 10, 52
PyErr_SyntaxLocation (C function), 54
PyErr_SyntaxLocationEx (C function), 54
PyErr_SyntaxLocationObject (C function), 54
PyErr_WarnEx (C function), 55
PyErr WarnExplicit (C function), 55
PyErr_WarnExplicitObject (C function), 55
PyErr_WarnFormat (C function), 55
PyErr_WriteUnraisable (C function), 52
PyEval_AcquireLock (C function), 206
PyEval AcquireThread (C function), 206
PyEval_AcquireThread(), 202
PyEval_EvalCode (C function), 44
PyEval_EvalCodeEx (C function), 44
PyEval_EvalFrame (C function), 44
PyEval EvalFrameEx (C function), 44
PyEval_GetBuiltins (C function), 85
PyEval_GetFrame (C function), 85
PyEval_GetFuncDesc (C function), 86
PyEval_GetFuncName (C function), 86
PyEval_ GetGlobals (C function), 85
PyEval GetLocals (C function), 85
PyEval_InitThreads (C function), 202
PyEval_InitThreads (), 195
PyEval_MergeCompilerFlags (C function), 44
PyEval_ ReleaseLock (C function), 207
PyEval ReleaseThread (C function), 206
PyEval_ReleaseThread(), 202
PyEval_RestoreThread (C function), 200, 202
PyEval_RestoreThread (), 202
PyEval_SaveThread (C function), 200, 202
PyEval_SaveThread (), 202
PyEval_SetProfile (C function), 212

PyExc_AssertionError (C var), 63
PyExc_AttributeError (C var), 63
PyExc_BaseException (C var), 63
PyExc_BlockingIOError (C var), 63
PyExc_BrokenPipeError (C var), 63
PyExc_BufferError (C var), 63
PyExc_BytesWarning (C var), 64
PyExc_ChildProcessError (C var), 63
PyExc_ConnectionAbortedError (C var), 63
PyExc_ConnectionError (Cvar), 63
PyExc_ConnectionRefusedError (Cvar), 63
PyExc_ConnectionResetError (Cvar), 63
PyExc_DeprecationWarning (C var), 64
PyExc_EnvironmentError (C var), 64
PyExc_EOFError (C var), 63
PyExc_Exception (C var), 63
PyExc_FileExistsError (Cvar), 63
PyExc_FileNotFoundError (C var), 63
PyExc_FloatingPointError (Cvar), 63
PyExc_FutureWarning (C var), 64
PyExc_GeneratorExit (Cvar), 63
PyExc_ImportError (C var), 63
PyExc_ImportWarning (C var), 64
PyExc_IndentationError (Cvar), 63
PyExc_IndexError (C var), 63
PyExc_InterruptedError (C var), 63
PyExc_IOError (C var), 64
PyExc_IsADirectoryError (Cvar), 63
PyExc_KeyboardInterrupt (C var), 63
PyExc_KeyError (C var), 63
PyExc_LookupError (C var), 63
PyExc_MemoryError (C var), 63
PyExc_ModuleNotFoundError (C var), 63
PyExc_NameError (C var), 63
PyExc_NotADirectoryError (C var), 63
PyExc_NotImplementedError (C var), 63
PyExc_OSError (C var), 63
PyExc_OverflowError (C var), 63
PyExc_PendingDeprecationWarning (C var), 64
PyExc_PermissionError (C var), 63
PyExc_ProcessLookupError (C var), 63
PyExc_RecursionError (C var), 63
PyExc_ReferenceError (C var), 63
PyExc_ResourceWarning (C var), 64
PyExc_RuntimeError (C var), 63
PyExc_RuntimeWarning (C var), 64
PyExc_StopAsyncIteration (C var), 63
PyExc_StopIteration (Cvar), 63
PyExc_SyntaxError (C var), 63
PyExc_SyntaxWarning (C var), 64
PyExc_SystemError (C var), 63
PyExc_SystemExit (C var), 63
PyExc_TabError (C var), 63

350

Dizin

The Python/C API, Yayim 3.12.9

PyExc_TimeoutError (C var), 63
PyExc_TypeError (C var), 63
PyExc_UnboundLocalError (C var), 63
PyExc_UnicodeDecodeError (C var), 63
PyExc_UnicodeEncodeError (C var), 63
PyExc_UnicodeError (C var), 63
PyExc_UnicodeTranslateError (C var), 63
PyExc_UnicodeWarning (C var), 64
PyExc_UserWarning (C var), 64
PyExc_ValueError (C var), 63
PyExc_Warning (C var), 64
PyExc_WindowsError (C var), 64
PyExc_ZeroDivisionError (C var), 63
PyException_GetArgs (C function), 60
PyException_GetCause (C function), 60
PyException_GetContext (C function), 60
PyException_GetTraceback (C function), 60
PyException_SetArgs (C function), 60
PyException_SetCause (C function), 60
PyException_SetContext (C function), 60
PyException_SetTraceback (C function), 60
PyFile_FromFd (C function), 166
PyFile_GetLine (C function), 166
PyFile_ SetOpenCodeHook (C function), 166
PyFile WriteObject (C function), 166
PyFile_WriteString (C function), 167
PyFloat_AS_DOUBLE (C function), 126
PyFloat_AsDouble (C function), 126
PyFloat_Check (C function), 125
PyFloat_CheckExact (C function), 125
PyFloat_FromDouble (C function), 126
PyFloat_FromString (C function), 125
PyFloat_GetInfo (C function), 126
PyFloat_GetMax (C function), 126
PyFloat_GetMin (C function), 126
PyFloat_Pack2 (C function), 126
PyFloat_Pack4 (C function), 127
PyFloat_Pack8 (C function), 127
PyFloat_Type (Cvar), 125
PyFloat_Unpack2 (C function), 127
PyFloat_Unpack4 (C function), 127
PyFloat_Unpack8 (C function), 127
PyFloatObject (C type), 125
PyFrame_Check (C function), 180
PyFrame_GetBack (C function), 181
PyFrame_GetBuiltins (C function), 181
PyFrame_GetCode (C function), 181
PyFrame_GetGenerator (C function), 181
PyFrame_GetGlobals (C function), 181
PyFrame_GetLasti (C function), 181
PyFrame_GetLineNumber (C function), 182
PyFrame_GetLocals (C function), 181
PyFrame_GetVar (C function), 181
PyFrame_GetVarString (C function), 181
PyFrame_Type (C var), 180
PyFrameObject (C type), 180
PyFrozenSet_Check (C function), 157
PyFrozenSet_CheckExact (C function), 157

PyFrozenSet_New (C function), 158
PyFrozenSet_Type (C var), 157
PyFunction_AddWatcher (C function), 160
PyFunction_Check (C function), 159
PyFunction_ClearWatcher (C function), 160
PyFunction_GetAnnotations (C function), 159
PyFunction_GetClosure (C function), 159
PyFunction_GetCode (C function), 159
PyFunction_GetDefaults (C function), 159
PyFunction_GetGlobals (C function), 159
PyFunction_GetModule (C function), 159
PyFunction_New (C function), 159
PyFunction_NewWithQualName (C function), 159
PyFunction_SetAnnotations (C function), 159
PyFunction_SetClosure (C function), 159
PyFunction_SetDefaults (C function), 159
PyFunction_SetVectorcall (C function), 159
PyFunction_Type (C var), 158
PyFunction_WatchCallback (C type), 160
PyFunction_WatchEvent (C type), 160
PyFunctionObject (C type), 158
PyGC_Collect (C function), 296
PyGC_Disable (C function), 296
PyGC_Enable (C function), 296
PyGC_IsEnabled (C function), 297
PyGen_Check (C function), 182
PyGen_CheckExact (C function), 183
PyGen_New (C function), 183
PyGen_NewWithQualName (C function), 183
PyGen_Type (Cvar), 182
PyGenObject (Ctype), 182
PyGetSetDef (C type), 258
PyGetSetDef.closure (C member), 258
PyGetSetDef.doc (C member), 258
PyGetSetDef.get (C member), 258
PyGetSetDef.name (C member), 258
PyGetSetDef.set (C member), 258
PyGILState_Check (C function), 203
PyGILState_Ensure (C function), 203
PyGILState_GetThisThreadState (C function),
203
PyGILState_Release (C function), 203
PyHash_FuncDef (C type), 85
PyHash_FuncDef.hash_bits (C member), 85
PyHash_FuncDef .name (C member), 85
PyHash_FuncDef.seed_bits (C member), 85
PyHash_GetFuncDef (C function), 85
PyImport_AddModule (C function), 71
PyImport_AddModuleObject (C function), 71
PyImport_AppendInittab (C function), 73
PyImport_ExecCodeModule (C function), 71
PyImport_ExecCodeModuleEx (C function), 72
PyImport_ExecCodeModuleObject (C function), 72
PyImport_ExecCodeModuleWithPathnames c
function), 72
PyImport_ExtendInittab (C function), 74
PyImport_FrozenModules (C var), 73
PyImport_GetImporter (C function), 73

Dizin

351

The Python/C API, Yayim 3.12.9

PyImport_GetMagicNumber (C function), 72
PyImport_GetMagicTag (C function), 72
PyImport_GetModule (C function), 73
PyImport_GetModuleDict (C function), 73
PyImport_Import (C function), 71
PyImport_ImportFrozenModule (C function), 73
PyImport_ImportFrozenModuleObject (C functi-
on), 73
PyImport_ImportModule (C function), 70
PyImport_ImportModuleEx (C function), 70
PyImport_ImportModuleLevel (C function), 71
PyImport_ImportModuleLevelObject (C functi-
on), 71
PyImport_ImportModuleNoBlock (C function), 70
PyImport_ReloadModule (C function), 71
PyIndex_Check (C function), 102
PyInstanceMethod_Check (C function), 161
PyInstanceMethod_Function (C function), 161
PyInstanceMethod GET_FUNCTION (C function),
161
PyInstanceMethod_New (C function), 161
PyInstanceMethod_Type (Cvar), 161
PyInterpreterConfig (C type), 207
PyInterpreterConfig DEFAULT_GIL (C macro),
208
PyInterpreterConfig_ OWN_GIL (C macro), 208
PyInterpreterConfig SHARED_GIL (C macro),
208
PyInterpreterConfig.allow_daemon_threads
(C member), 207
PyInterpreterConfig.allow_exec (C member),
207
PyInterpreterConfig.allow_fork (C member),
207
PyInterpreterConfig.allow_threads (C mem-
ber), 207

PyList_Check (C function), 152
PyList_CheckExact (C function), 152
PyList_GET_ITEM (C function), 152
PyList_GET_SIZE (C function), 152
PyList_GetItem (C function), 9, 152
PyList_GetSlice (C function), 153
PyList_Insert (C function), 153
PyList_New (C function), 152
PyList_Reverse (C function), 153
PyList_SET_ITEM (C function), 152
PyList_SetItem (C function), 8, 152
PyList_SetSlice (C function), 153
PyList_sSize (C function), 152
PyList_Sort (C function), 153
PyList_Type (Cvar), 152
PyListObject (C type), 152
PyLong_AS_LONG (C function), 122
PyLong_AsDouble (C function), 124
PyLong_AsLong (C function), 122
PyLong_AsLongAndOverflow (C function), 122
PyLong_AsLongLong (C function), 123
PyLong_AsLongLongAndOverflow (C function), 123
PyLong_AsSize_t (C function), 123
PyLong_AsSsize_t (C function), 123
PyLong_AsUnsignedLong (C function), 123
PyLong_AsUnsignedLongLong (C function), 123
PyLong_AsUnsignedLongLongMask (C function),
124
PyLong_AsUnsignedLongMask (C function), 123
PyLong_AsVoidPtr (C function), 124
PyLong_Check (C function), 121
PyLong_CheckExact (C function), 121
PyLong_FromDouble (C function), 122
PyLong_FromLong (C function), 121
PyLong_FromLongLong (C function), 121
PyLong_FromSize_t (C function), 121

PyInterpreterConfig.check_multi_interp_extebghong_FromSsize_t (C function), 121

(C member), 208
PyInterpreterConfig.qgil (C member), 208
PyInterpreterConfig.use_main_obmalloc

member), 207
PyInterpreterState (C type), 202
PyInterpreterState_Clear (C function), 204
PyInterpreterState_Delete (C function), 204
PyInterpreterState_Get (C function), 205
PyInterpreterState_GetDict (C function), 205
PyInterpreterState_GetID (C function), 205
PyInterpreterState_Head (C function), 212
PyInterpreterState_Main (C function), 212
PyInterpreterState_New (C function), 204
PyInterpreterState_Next (C function), 212
(C function),

(e

PyInterpreterState_ThreadHead
212

PyIter_Check (C function), 105

pPyIter_Next (C function), 105

pPyIter_Send (C function), 105

PyList_Append (C function), 153

PyList_AsTuple (C function), 153

PyLong_FromString (C function), 122
PyLong_FromUnicodeObject (C function), 122
PyLong_FromUnsignedLong (C function), 121
PyLong_FromUnsignedLongLong (C function), 122
PyLong_FromVoidPtr (C function), 122
PyLong_GetInfo (C function), 124
PyLong_Type (Cvar), 121

PyLongObject (C type), 121
PyMapping_Check (C function), 104
PyMapping DelItem (C function), 104
PyMapping_DelItemString (C function), 104
PyMapping_GetItemString (C function), 104
PyMapping_HasKey (C function), 104
PyMapping_HasKeyString (C function), 104
PyMapping_Items (C function), 105
PyMapping_Keys (C function), 104
PyMapping_Length (C function), 104
PyMapping_SetItemString (C function), 104
PyMapping_Size (C function), 104
PyMapping_ Values (C function), 104
PyMappingMethods (C type), 287

352

Dizin

The Python/C API, Yayim 3.12.9

PyMappingMethods.mp_ass_subscript (C mem-
ber), 287

PyMappingMethods .mp_length (C member), 287

PyMappingMethods.mp_subscript (C member),
287

PyMarshal_ReadLastObjectFromFile (C functi-
on), 75

PyMarshal ReadLongFromFile (C function), 74

PyMarshal ReadObjectFromFile (C function), 74

PyMarshal_ReadObjectFromString (C function),
75

PyMarshal_ReadShortFromFile (C function), 74

PyMarshal_WriteLongToFile (C function), 74

PyMarshal WriteObjectToFile (C function), 74

PyMarshal WriteObjectToString (C function), 74

PyMem_Calloc (C function), 241

pyMem_Del (C function), 242

PYMEM_DOMAIN_MEM (C macro), 244

PYMEM_DOMAIN_OBJ (C macro), 244

PYMEM_DOMAIN_RAW (C macro), 244

PyMem_Free (C function), 242

PyMem_GetAllocator (C function), 244

PyMem_Malloc (C function), 241

PyMem_New (C macro), 242

PyMem_RawCalloc (C function), 240

PyMem_RawFree (C function), 241

PyMem_RawMalloc (C function), 240

PyMem_RawRealloc (C function), 241

PyMem_Realloc (C function), 241

PyMem_Resize (C macro), 242

PyMem_SetAllocator (C function), 245

PyMem_SetupDebugHooks (C function), 245

PyMemAllocatorDomain (C type), 244

PyMemAllocatorEx (C type), 244

PyMember_GetOne (C function), 255

PyMember_SetOne (C function), 255

PyMemberDef (C type), 255

PyMemberDef .doc (C member), 255

PyMemberDef . flags (C member), 255

PyMemberDef .name (C member), 255

PyMemberDef.offset (C member), 255

PyMemberDef . type (C member), 255

PyMemoryView_Check (C function), 177

PyMemoryView_FromBuffer (C function), 177

PyMemoryView_FromMemory (C function), 177

PyMemoryView_FromObject (C function), 177

PyMemoryView_ GET_BASE (C function), 178

PyMemoryView_GET_BUFFER (C function), 178

PyMemoryView_GetContiguous (C function), 177

PyMethod_Check (C function), 161

PyMethod_Function (C function), 161

PyMethod_GET_FUNCTION (C function), 161

PyMethod_GET_SELF (C function), 161

PyMethod_New (C function), 161

PyMethod_Self (C function), 161

PyMethod_Type (C var), 161

PyMethodDef (C type), 252

PyMethodDef .ml_doc (C member), 253

PyMethodDef.ml_flags (C member), 253
PyMethodDef .ml_meth (C member), 253
PyMethodDef .ml_name (C member), 252
PyMODINIT_FUNC (C macro), 4
PyModule_AddFunctions (C function), 172
PyModule_AddIntConstant (C function), 173
PyModule_AddIntMacro (C macro), 174
PyModule_AddoObject (C function), 173
PyModule_ AddObjectRef (C function), 172
PyModule_AddStringConstant (C function), 174
PyModule_AddStringMacro (C macro), 174
PyModule_AddType (C function), 174
PyModule_Check (C function), 167

PyModule_ CheckExact (C function), 167
PyModule_Create (C function), 169
PyModule_Create?2 (C function), 169
PyModule_ExecDef (C function), 171
PyModule_FromDefAndSpec (C function), 171
PyModule_FromDefAndSpec?2 (C function), 171
PyModule_GetDef (C function), 167
PyModule_GetDict (C function), 167
PyModule_GetFilename (C function), 168
PyModule_GetFilenameObject (C function), 167
PyModule_GetName (C function), 167
PyModule_ GetNameObject (C function), 167
PyModule_GetState (C function), 167
PyModule_New (C function), 167
PyModule_NewObject (C function), 167
PyModule_SetDocString (C function), 172
PyModule_Type (C var), 167

PyModuleDef (C type), 168
PyModuleDef_Init (C function), 170
PyModuleDef_Slot (C type), 170
PyModuleDef_Slot.slot (C member), 170
PyModuleDef_Slot.value (C member), 170
PyModuleDef .m_base (C member), 168
PyModuleDef.m_clear (C member), 169
PyModuleDef .m_doc (C member), 168
PyModuleDef.m_free (C member), 169
PyModuleDef .m_methods (C member), 168
PyModuleDef .m_name (C member), 168
PyModuleDef.m_size (C member), 168
PyModuleDef.m_slots (C member), 168
PyModuleDef.m_slots.m_reload (C member), 168
PyModuleDef.m_traverse (C member), 168
PyNumber_Absolute (C function), 100
PyNumber_Add (C function), 99
PyNumber_And (C function), 100
PyNumber_AsSsize_t (C function), 102
PyNumber_Check (C function), 99
PyNumber_Divmod (C function), 99
PyNumber_Float (C function), 101
PyNumber_FloorDivide (C function), 99
PyNumber_Index (C function), 101
PyNumber_InPlaceAdd (C function), 100
PyNumber_InPlaceAnd (C function), 101
PyNumber_InPlaceFloorDivide (C function), 100
PyNumber_InPlaceLshift (C function), 101

Dizin

353

The Python/C API, Yayim 3.12.9

PyNumber_InPlaceMatrixMultiply (C function),
100
PyNumber_InPlaceMultiply (C function), 100
PyNumber_InPlaceOr (C function), 101
PyNumber_InPlacePower (C function), 101
PyNumber_InPlaceRemainder (C function), 101
PyNumber_InPlaceRshift (C function), 101
PyNumber_InPlaceSubtract (C function), 100
PyNumber_InPlaceTrueDivide (C function), 100
PyNumber_InPlaceXor (C function), 101
PyNumber_Invert (C function), 100
PyNumber_Long (C function), 101
PyNumber_Lshift (C function), 100
PyNumber MatrixMultiply (C function), 99
PyNumber_ Multiply (C function), 99
PyNumber_Negative (C function), 99
PyNumber_Or (C function), 100
PyNumber_Positive (C function), 99
PyNumber_Power (C function), 99
PyNumber_ Remainder (C function), 99
PyNumber_Rshift (C function), 100
PyNumber_Subtract (C function), 99
PyNumber_ToBase (C function), 101
PyNumber_TrueDivide (C function), 99
PyNumber_Xor (C function), 100
PyNumberMethods (C type), 285

PyNumberMethods.

nb_inplace_true_divide (C

member), 287

PyNumberMethods.

287

PyNumberMethods.
PyNumberMethods.
PyNumberMethods.

PyNumberMethods
ber), 287

PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
.nb_remainder (C member), 286

PyNumberMethods

PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
PyNumberMethods.

287

PyNumberMethods.

nb_inplace_xor (C member),

nb_int (C member), 286
nb_invert (C member), 286
nb_1shift (C member), 286

.nb_matrix_multiply (C mem-

nb_multiply (C member), 286
nb_negative (C member), 286
nb_or (C member), 286
nb_positive (C member), 286
nb_power (C member), 286

nb_reserved (C member), 286
nb_rshift (C member), 286
nb_subtract (C member), 286
nb_true_divide (C member),

nb_xor (C member), 286

PyObject (C type), 250
PyObject_AsCharBuffer (C function), 113
PyObject_ASCII (C function), 91
PyObject_AsFileDescriptor (C function), 166
PyObject_AsReadBuffer (C function), 113

PyNumberMethods.
PyNumberMethods.
.nb_and (C member), 286

PyNumberMethods

PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
.nb_floor_divide (C member),

PyNumberMethods
287

PyNumberMethods.
.nb_inplace_add (C member),

PyNumberMethods
286

PyNumberMethods.

287

PyNumberMethods.

nb_absolute (C member), 286
nb_add (C member), 286

nb_bool (C member), 286

nb_divmod (C member), 286
nb_float (C member), 286

nb_index (C member), 287

nb_inplace_and (C member),

nb_inplace_floor_divide

(C member), 287

PyNumberMethods.

ber), 286

PyNumberMethods.nb_inplace_matrix_multiply

nb_inplace_lshift (C mem-

(C member), 287

PyNumberMethods.nb_inplace_multiply (o
member), 286
PyNumberMethods.nb_inplace_or (C member),
287
PyNumberMethods.nb_inplace_power (C mem-
ber), 286
PyNumberMethods.nb_inplace_remainder (o

member), 286

PyNumberMethods.

ber), 286

PyNumberMethods.

nb_inplace_rshift (C mem-

(e

nb_inplace_subtract

member), 286

PyObject_AsWriteBuffer (C function), 113
PyObject_Bytes (C function), 92
PyObject_Call (C function), 96
PyObject_CallFunction (C function), 97
PyObject_CallFunctionObjargs (C function), 97
PyObject_CallMethod (C function), 97
PyObject_CallMethodNoArgs (C function), 98
PyObject_CallMethodObjArgs (C function), 98
PyObject_CallMethodOneArg (C function), 98
PyObject_CallNoaArgs (C function), 97
PyObject_CallObject (C function), 97
PyObject_Calloc (C function), 243
PyObject_CallOneArg (C function), 97
PyObject_CheckBuffer (C function), 111
PyObject_CheckReadBuffer (C function), 113
PyObject_ClearWeakRefs (C function), 178
PyObject_CopyData (C function), 112
PyObject_Del (C function), 249
PyObject_DelAttr (C function), 90
PyObject_DelAttrString (C function), 90
PyObject_DelItem (C function), 93
PyObject_DelItemString (C function), 93
PyObject_Dir (C function), 93
PyObject_Format (C function), 91
PyObject_Free (C function), 243
PyObject_GC_Del (C function), 295
PyObject_GC_IsFinalized (C function), 295
PyObject_GC_IsTracked (C function), 295
PyObject_GC_New (C macro), 294
PyObject_GC_NewVar (C macro), 294
PyObject_GC_Resize (C macro), 295
PyObject_GC_Track (C function), 295

354

Dizin

The Python/C API, Yayim 3.12.9

PyObject_GC_UnTrack (C function), 295
PyObject_GenericGetAttr (C function), 90
PyObject_GenericGetDict (C function), 91
PyObject_GenericSetAttr (C function), 90
PyObject_GenericSetDict (C function), 91
PyObject_GetAlter (C function), 93
PyObject_GetArenaAllocator (C function), 247
PyObject_GetAttr (C function), 90
PyObject_GetAttrString (C function), 90
PyObject_GetBuffer (C function), 111
PyObject_GetItem (C function), 93
PyObject_GetItemData (C function), 94
PyObject_GetIter (C function), 93
PyObject_GetTypeData (C function), 94
PyObject_HasAttr (C function), 89
PyObject_HasAttrString (C function), 89
PyObject_Hash (C function), 92
PyObject_HashNotImplemented (C function), 92
PyObiject_HEAD (C macro), 250
PyObject_HEAD_INIT (C macro), 251
PyObject_Init (C function), 249
PyObject_InitVar (C function), 249
PyObiject_IS_GC (C function), 295
PyObject_IsInstance (C function), 92
PyObject_IsSubclass (C function), 92
PyObject_IsTrue (C function), 92
PyObject_Length (C function), 93
PyObject_LengthHint (C function), 93
PyObject_Malloc (C function), 243
PyObiject_New (C macro), 249
PyObject_NewVar (C macro), 249
PyObject_Not (C function), 92
PyObject._ob_next (C member), 265
PyObject._ob_prev (C member), 265
PyObject_Print (C function), 89
PyObject_Realloc (C function), 243
PyObject_Repr (C function), 91
PyObject_RichCompare (C function), 91
PyObject_RichCompareBool (C function), 91
PyObject_Selflter (C function), 93
PyObject_SetArenaAllocator (C function), 247
PyObject_SetaAttr (C function), 90
PyObject_SetAttrString (C function), 90
PyObject_SetItem (C function), 93
PyObject_Size (C function), 93
PyObject_Str (C function), 92
PyObject_Type (C function), 93
PyObject_TypeCheck (C function), 93
PyObject_VAR_HEAD (C macro), 250
PyObject_vVectorcall (C function), 98
PyObject_VectorcallDict (C function), 98
PyObject_VectorcallMethod (C function), 98
PyObjectArenaAllocator (C type), 247
PyObject .ob_refcnt (C member), 264
PyObiject .ob_type (C member), 264
PyOS_AfterFork (C function), 66
PyOS_AfterFork_Child (C function), 66
PyOS_AfterFork_Parent (C function), 65

PyOS_BeforeFork (C function), 65
PyOS_ChecksStack (C function), 66
PyOS_double_to_string (C function), 84
pyOs_Fspath (C function), 65
PyO0S_getsig (C function), 66
PyOS_InputHook (Cvar), 42
PyOS_ReadlineFunctionPointer (C var), 43
PyOS_setsig (C function), 66
PyOS_sighandler_t (Ctype), 66
PyO0S_snprintf (C function), 83
PyOS_stricmp (C function), 84
PyOS_string_to_double (C function), 84
PyOS_strnicmp (C function), 85
PyOS_strtol (C function), 84
PyOs_strtoul (C function), 83
PyOS_vsnprintf (C function), 83
PyPreConfig (C type), 220
PyPreConfig_InitIsolatedConfig (C function),
220
PyPreConfig_InitPythonConfig (C function), 220
PyPreConfig.allocator (C member), 220
PyPreConfig.coerce_c_locale (C member), 220
PyPreConfig.coerce_c_locale_warn (C mem-
ber), 220
PyPreConfig.configure_locale (C member), 220
PyPreConfig.dev_mode (C member), 221
PyPreConfig.isolated (C member), 221
PyPreConfig.legacy_windows_fs_encoding (C
member), 221
PyPreConfig.parse_argv (C member), 221
PyPreConfig.use_environment (C member), 221
PyPreConfig.utf8_mode (C member), 221
PyProperty_Type (Cvar), 175
PyRun_AnyFile (C function), 41
PyRun_AnyFileEx (C function), 41
PyRun_AnyFileExFlags (C function), 41
PyRun_AnyFileFlags (C function), 41
PyRun_File (C function), 43
PyRun_FileEx (C function), 43
PyRun_FileExFlags (C function), 43
PyRun_FileFlags (C function), 43
PyRun_InteractiveLoop (C function), 42
PyRun_InteractiveLoopFlags (C function), 42
PyRun_InteractiveOne (C function), 42
PyRun_InteractiveOneFlags (C function), 42
PyRun_SimpleFile (C function), 42
PyRun_SimpleFileEx (C function), 42
PyRun_SimpleFileExFlags (C function), 42
PyRun_SimpleString (C function), 42
PyRun_SimpleStringFlags (C function), 42
PyRun_String (C function), 43
PyRun_StringFlags (C function), 43
PySendResult (C type), 105
PySeqlter_Check (C function), 175
PySeqlter_New (C function), 175
PySeqlter_Type (Cvar), 175
PySequence_Check (C function), 102
PySequence_Concat (C function), 102

Dizin

355

The Python/C API, Yayim 3.12.9

PySequence_Contains (C function), 103
PySequence_Count (C function), 103
PySequence_DelItem (C function), 103
PySequence_DelSlice (C function), 103
PySequence_Fast (C function), 103
PySequence_Fast_GET_ITEM (C function), 103
PySequence_Fast_GET_SIZE (C function), 103
PySequence_Fast_ITEMS (C function), 103
PySequence_GetItem (C function), 9, 102
PySequence_GetSlice (C function), 102
PySequence_Index (C function), 103
PySequence_InPlaceConcat (C function), 102
PySequence_InPlaceRepeat (C function), 102
PySequence_ITEM (C function), 103
PySequence_Length (C function), 102
PySequence_List (C function), 103
PySequence_Repeat (C function), 102
PySequence_SetItem (C function), 102
PySequence_SetSlice (C function), 103
PySequence_Size (C function), 102
PySequence_Tuple (C function), 103
PySequenceMethods (C type), 287
PySequenceMethods.sq_ass_item (C member),
288
PySequenceMethods.sq_concat (C member), 287
PySequenceMethods.sq_contains (C member),

288

PySequenceMethods.sq_inplace_concat (o
member), 288
PySequenceMethods.sq_inplace_repeat (o

member), 288
PySequenceMethods.sqg_item (C member), 287
PySequenceMethods.sq_length (C member), 287
PySequenceMethods.sq_repeat (C member), 287
pPySet_Add (C function), 158
PySet_Check (C function), 157
PySet_CheckExact (C function), 157
PySet_Clear (C function), 158
PySet_Contains (C function), 158
PySet_Discard (C function), 158
PySet_GET_SIZE (C function), 158
PySet_New (C function), 157
pPySet_pPop (C function), 158
PySet_Size (C function), 158
PySet_Type (Cvar), 157
PySetObject (Ctype), 157
PySignal_ SetWakeupFd (C function), 59
PySlice_AdjustIndices (C function), 177
PySlice_Check (C function), 176
PySlice_GetIndices (C function), 176
PySlice_GetIndicesEx (C function), 176
PySlice_New (C function), 176
PySlice_Type (Cvar), 176
PySlice_Unpack (C function), 176
PyState_AddModule (C function), 174
PyState_FindModule (C function), 174
PyState_ RemoveModule (C function), 174
pyStatus (C type), 218

PyStatus_Error (C function), 219
PyStatus_Exception (C function), 219
PyStatus_Exit (C function), 219
PyStatus_IsError (C function), 219
PyStatus_IsExit (C function), 219
PyStatus_NoMemory (C function), 219
PyStatus_0k (C function), 219
PyStatus.err_msqg (C member), 219
PyStatus.exitcode (C member), 219
PyStatus. func (C member), 219
PyStructSequence_Desc (Ctype), 150
PyStructSequence_Desc.doc (C member), 151
PyStructSequence_Desc.fields (C member), 151
PyStructSequence_Desc.n_in_sequence (o
member), 151

PyStructSequence_Desc.name (C member), 150
PyStructSequence_Field (C type), 151
PyStructSequence_Field.doc (C member), 151
PyStructSequence_Field.name (C member), 151
PyStructSequence_GET_ITEM (C function), 151
PyStructSequence_GetItem (C function), 151
PyStructSequence_InitType (C function), 150
PyStructSequence_InitType?2 (C function), 150
PyStructSequence_New (C function), 151
PyStructSequence_NewType (C function), 150
PyStructSequence_SET_ITEM (C function), 151
PyStructSequence_SetItem (C function), 151
PyStructSequence_UnnamedField (C var), 151
PySys_AddAuditHook (C function), 69
PySys_AddWarnOption (C function), 68
PySys_AddWarnOptionUnicode (C function), 68
PySys_AddXOption (C function), 69
PySys_Audit (C function), 69
PySys_FormatStderr (C function), 69
PySys_FormatStdout (C function), 69
PySys_GetObject (C function), 68
PySys_GetXOptions (C function), 69
PySys_ResetWarnOptions (C function), 68
PySys_SetArgv (C function), 195, 199
PySys_SetArgvEx (C function), 195, 199
PySys_SetObject (C function), 68
PySys_SetPath (C function), 68
PySys_WriteStderr (C function), 69
PySys_WriteStdout (C function), 68
Python 3000, 313
Python Gelistirme Onerileri

PEP 1,312

PEP 7,3,6

PEP 238,45, 306

PEP 278, 316

PEP 302, 309

PEP 343,304

PEP 353, 10

PEP 362,302,312

PEP 383, 139, 140

PEP 387, 15,16

PEP 393, 131

PEP 411,313

356

Dizin

The Python/C API, Yayim 3.12.9

PEP 420,311,313
PEP 432,236,237
PEP 442,284
PEP 443,307

PEP 451, 170
PEP 456, 85

PEP 483, 307

PEP 484, 301, 306, 307, 315, 316
PEP 489, 171,208
PEP 492, 302, 304
PEP 498, 305

PEP 519,312
PEP 523, 182, 206
PEP 525, 302
PEP 526, 301, 316
PEP 528, 194, 228
PEP 529, 140, 194
PEP 538,235

PEP 539,213

PEP 540, 235

PEP 552,225

PEP 554,209
PEP 578,70

PEP 585, 307
PEP 587,217
PEP 590, 94

PEP 623,132

PYTHONPERFSUPPORT, 232
PYTHONPLATLIBDIR, 228
PYTHONPROFILEIMPORITIME, 227
PYTHONPYCACHEPREFIX, 230
PYTHONSAFEPATH, 224
PYTHONTRACEMALLOC, 231

Python'un Zen'i, 316
PYTHONUNBUFFERED, 194, 224
PYTHONUTFS, 221, 235
PYTHONVERBOSE, 195, 232
PYTHONWARNINGS, 232
PyThread_create_key (C function), 214
PyThread_delete_key (C function), 214
PyThread_delete_key_value (C function), 215
PyThread_get_key value (C function), 215
PyThread_ReInitTLS (C function), 215
PyThread_set_key_value (C function), 214
PyThread_tss_alloc (C function), 213
PyThread_tss_create (C function), 214
PyThread_tss_delete (C function), 214
PyThread_tss_free (C function), 213
PyThread_tss_get (C function), 214
PyThread_tss_is_created (C function), 214
PyThread_tss_set (C function), 214
PyThreadState (C type), 200, 202
PyThreadState_Clear (C function), 204
PyThreadState_Delete (C function), 204

PEP 0626#out-of-process—-debuggers—and-pPyThrersState_DeleteCurrent (C function), 204

163

PEP 634,274,275

PEP 0683,47,48, 308

PEP 3116,316

PEP 3119,92

PEP 3121, 168

PEP 3147,73

PEP 3151, 64

PEP 3155, 313
PYTHONCOERCECLOCALE, 235
PYTHONDEBUG, 192, 229
PYTHONDEVMODE, 225
PYTHONDONTWRITEBYTECODE, 192, 232
PYTHONDUMPREFS, 225, 265
PYTHONEXECUTABLE, 230
PYTHONFAULTHANDLER, 226
PYTHONHASHSEED, 193, 227
PYTHONHOME, 12, 193, 199, 200, 227
PYTHONINSPECT, 193, 227
PYTHONINTMAXSTRDIGITS, 227
PYTHONIOENCODING, 196, 231
Pythonic, 313

PYTHONLEGACYWINDOWSFSENCODING, 194, 221
PYTHONLEGACYWINDOWSSTDIO, 194, 228

PYTHONMALLOC, 240, 243, 245, 247
PYTHONMALLOCSTATS, 228, 240
PYTHONNODEBUGRANGES, 225
PYTHONNOUSERSITE, 194, 232
PYTHONOPTIMIZE, 194, 229
PYTHONPATH, 12, 193, 228

PyThreadState_EnterTracing (C function), 205
PyThreadState_Get (C function), 202
PyThreadState_GetDict (C function), 206
PyThreadState_GetFrame (C function), 204
PyThreadState_GetID (C function), 205
PyThreadState_GetInterpreter (C function), 205
PyThreadState_LeaveTracing (C function), 205
PyThreadState_ New (C function), 204
PyThreadState_Next (C function), 213
PyThreadState_SetAsyncExc (C function), 206
PyThreadState_Swap (C function), 203
PyThreadState.interp (C member), 202
PyTime_Check (C function), 186
PyTime_CheckExact (C function), 186
PyTime_FromTime (C function), 186
PyTime_FromTimeAndFold (C function), 186
PyTimeZone_FromOffset (C function), 186
PyTimeZone_FromOffsetAndName (C function), 187
PyTrace_C_CALL (Cvar), 211
PyTrace_C_EXCEPTION (Cvar), 211
PyTrace_C_RETURN (C var), 211

PyTrace_CALL (Cvar), 211
PyTrace_EXCEPTION (Cvar), 211

PyTrace_LINE (Cvar), 211

PyTrace_OPCODE (C var), 212
PyTrace_RETURN (Cvar), 211
PyTraceMalloc_Track (C function), 247
PyTraceMalloc_Untrack (C function), 247
PyTuple_Check (C function), 149
PyTuple_CheckExact (C function), 149

Dizin

357

The Python/C API, Yayim 3.12.9

PyTuple_GET_ITEM (C function), 149
PyTuple_GET_SIZE (C function), 149
PyTuple_GetItem (C function), 149
PyTuple_GetSlice (C function), 150
PyTuple_New (C function), 149
PyTuple_Pack (C function), 149
PyTuple_SET_ITEM (C function), 150
PyTuple_SetItem (C function), 8, 150
PyTuple_Size (C function), 149
PyTuple_Type (C var), 149
PyTupleObject (C type), 149
PyType_AddWatcher (C function), 116
PyType_Check (C function), 115
PyType_CheckExact (C function), 115
PyType_ClearCache (C function), 115
PyType_ClearWatcher (C function), 116
PyType_FromMetaclass (C function), 118
PyType_FromModuleAndSpec (C function), 119
PyType_FromSpec (C function), 119
PyType FromSpecWithBases (C function), 119
PyType_GenericAlloc (C function), 117
PyType_GenericNew (C function), 117
PyType_GetDict (C function), 116
PyType_GetFlags (C function), 115
PyType_GetModule (C function), 117
PyType_GetModuleByDef (C function), 118
PyType_GetModuleState (C function), 118
PyType_GetName (C function), 117
PyType_GetQualName (C function), 117
PyType_GetSlot (C function), 117
PyType_ GetTypeDataSize (C function), 94
PyType_HasFeature (C function), 116
PyType_IS_GC (C function), 116
PyType_IsSubtype (C function), 116
PyType_Modified (C function), 116
PyType_Ready (C function), 117
PyType_Slot (Ctype), 120
PyType_Slot.pfunc (C member), 120
PyType_Slot.slot (C member), 120
PyType_Spec (Ctype), 119

PyType_Spec.
PyType_Spec.
PyType_Spec.
PyType_Spec.
PyType_Spec.

basicsize (C member), 119
flags (C member), 120
itemsize (C member), 119
name (C member), 119
slots (C member), 120

PyType_Type (C var), 115
PyType Watch (C function), 116
PyType_WatchCallback (Ctype), 116

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.

(Ctype), 115

tp_alloc (C member), 281
tp_as_async (C member), 268
tp_as_buffer (C member), 270
tp_as_mapping (C member), 269
.tp_as_number (C member), 269
tp_as_sequence (C member), 269
tp_base (C member), 279
tp_bases (C member), 282
tp_basicsize (C member), 266

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.

.tp_cache (C member), 283

tp_call (C member), 269
tp_clear (C member), 276
tp_dealloc (C member), 267
tp_del (C member), 283
tp_descr_get (C member), 280

PyTypeObiject.tp_descr_set (C member), 280
PyTypeObject.tp_dict (C member), 279
PyTypeObject.tp_dictoffset (C member), 280
PyTypeObiject.tp_doc (C member), 275
PyTypeObject.tp_finalize (C member), 283
PyTypeObiject.tp_flags (C member), 271

PyTypeObject.
PyTypeObject.
.tp_getattro (C member), 270

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_iternext (C member), 278

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_richcompare (C member), 277

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.

tp_free (C member), 282
tp_getattr (C member), 268

tp_getset (C member), 279
tp_hash (C member), 269
tp_init (C member), 280
tp_is_gc (C member), 282
tp_itemsize (C member), 266
tp_iter (C member), 278

tp_members (C member), 279
tp_methods (C member), 278
tp_mro (C member), 282
tp_name (C member), 265
tp_new (C member), 281
tp_repr (C member), 268

tp_setattr (C member), 268
tp_setattro (C member), 270
tp_str (C member), 270
tp_subclasses (C member), 283
tp_traverse (C member), 275

PyTypeObject.tp_vectorcall (C member), 284
PyTypeObiject.tp_vectorcall_offset (C mem-
ber), 267

PyTypeObject.
PyTypeObject.
.tp_weaklist (C member), 283

PyTypeObject

PyTypeObject.

tp_version_tag (C member), 283
tp_watched (C member), 284

tp_weaklistoffset (C member),

278
PyTZInfo_Check (C function), 186
PyTZInfo_CheckExact (C function), 186
PyUnicode_1BYTE_DATA (C function), 132
PyUnicode_1BYTE_KIND (C macro), 133
PyUnicode_ 2BYTE_DATA (C function), 132
PyUnicode_2BYTE_KIND (C macro), 133
PyUnicode_4BYTE_DATA (C function), 132
PyUnicode_4BYTE_KIND (C macro), 133
PyUnicode_AsASCIIString (C function), 145
PyUnicode_AsCharmapString (C function), 146
PyUnicode_AsEncodedString (C function), 142
PyUnicode_AsLatinlString (C function), 145
PyUnicode_AsMBCSString (C function), 146
PyUnicode_AsRawUnicodeEscapeString (C func-

tion), 145
PyUnicode_aAsUCS4 (C function), 139

358

Dizin

The Python/C API, Yayim 3.12.9

PyUnicode_AsUCS4Copy (C function), 139
PyUnicode_AsUnicodeEscapeString (C function),
144
PyUnicode_AsUTFS (C function), 143
PyUnicode_AsUTF8AndSize (C function), 142
PyUnicode_AsUTF8String (C function), 142
PyUnicode_AsUTF16String (C function), 144
PyUnicode_AsUTF32String (C function), 143
PyUnicode_AsWideChar (C function), 141
PyUnicode_AsWideCharString (C function), 141
PyUnicode_Check (C function), 132
PyUnicode_CheckExact (C function), 132
PyUnicode_Compare (C function), 148
PyUnicode_ CompareWithASCIIString (C functi-
on), 148
PyUnicode_Concat (C function), 147
PyUnicode_Contains (C function), 148
PyUnicode_CopyCharacters (C function), 138
PyUnicode_Count (C function), 148
PyUnicode_DATA (C function), 133
PyUnicode_Decode (C function), 142
PyUnicode_DecodeASCIT (C function), 145
PyUnicode_DecodeCharmap (C function), 145
PyUnicode_DecodeCodePageStateful (C functi-
on), 146
PyUnicode_DecodeFSDefault (C function), 141
PyUnicode_DecodeFSDefaultAndSize (C functi-
on), 140
PyUnicode_DecodeLatinl (C function), 145
PyUnicode_DecodeLocale (C function), 139
PyUnicode_DecodeLocaleAndSize (C function),
139
PyUnicode_DecodeMBCS (C function), 146
PyUnicode_DecodeMBCSStateful (C function), 146
PyUnicode_DecodeRawUnicodeEscape (C functi-
on), 145
PyUnicode_DecodeUnicodeEscape (C function),
144
PyUnicode_DecodeUTF7 (C function), 144
PyUnicode_DecodeUTF7Stateful (C function), 144
PyUnicode_DecodeUTFS8 (C function), 142
PyUnicode_DecodeUTF8Stateful (C function), 142
PyUnicode_DecodeUTF16 (C function), 144
PyUnicode_DecodeUTF16Stateful (C function),
144
PyUnicode_DecodeUTF32 (C function), 143
PyUnicode_DecodeUTF32Stateful (C function),
143
PyUnicode_EncodeCodePage (C function), 146
PyUnicode_EncodeFSDefault (C function), 141
PyUnicode_EncodeLocale (C function), 139
PyUnicode_Fill (C function), 138
PyUnicode_Find (C function), 147
PyUnicode_FindChar (C function), 148
PyUnicode_Format (C function), 148
PyUnicode_FromEncodedObject (C function), 138
PyUnicode_FromFormat (C function), 135
PyUnicode_FromFormatV (C function), 137

PyUnicode_FromKindAndData (C function), 135
PyUnicode_FromObject (C function), 138
PyUnicode_FromString (C function), 135
PyUnicode_FromStringAndSize (C function), 135
PyUnicode_FromWideChar (C function), 141
PyUnicode_FSConverter (C function), 140
PyUnicode_FSDecoder (C function), 140
PyUnicode_GET_LENGTH (C function), 132
PyUnicode_GetDefaultEncoding (C function), 138
PyUnicode_GetLength (C function), 138
PyUnicode_InternFromString (C function), 149
PyUnicode_InternInPlace (C function), 148
PyUnicode_IsIdentifier (C function), 133
PyUnicode_Join (C function), 147
PyUnicode_ KIND (C function), 133
PyUnicode_MAX_CHAR_VALUE (C function), 133
PyUnicode_New (C function), 135
PyUnicode_Partition (C function), 147
PyUnicode_READ (C function), 133
PyUnicode_ READ_CHAR (C function), 133
PyUnicode_ReadChar (C function), 138
PyUnicode_READY (C function), 132
PyUnicode_Replace (C function), 148
PyUnicode_RichCompare (C function), 148
PyUnicode_RPartition (C function), 147
PyUnicode_RSplit (C function), 147
PyUnicode_Split (C function), 147
PyUnicode_Splitlines (C function), 147
PyUnicode_Substring (C function), 139
PyUnicode_Tailmatch (C function), 147
PyUnicode_Translate (C function), 146
PyUnicode_Type (C var), 132
PyUnicode_WRITE (C function), 133
PyUnicode_WriteChar (C function), 138
PyUnicodeDecodeError_Create (C function), 61
PyUnicodeDecodeError_GetEncoding (C functi-
on), 61
PyUnicodeDecodeError_GetEnd (C function), 61
PyUnicodeDecodeError_GetObject (C function),
61
PyUnicodeDecodeError_GetReason (C function),
62
PyUnicodeDecodeError_GetStart (C function), 61
PyUnicodeDecodeError_SetEnd (C function), 61
PyUnicodeDecodeError_SetReason (C function),
62
PyUnicodeDecodeError_SetStart (C function), 61
PyUnicodeEncodeError_GetEncoding (C functi-
on), 61
PyUnicodeEncodeError_GetEnd (C function), 61
PyUnicodeEncodeError_GetObject (C function),
61
PyUnicodeEncodeError_GetReason (C function),
62
PyUnicodeEncodeError_GetStart (C function), 61
PyUnicodeEncodeError_SetEnd (C function), 61
PyUnicodeEncodeError_SetReason (C function),
62

Dizin

359

The Python/C API, Yayim 3.12.9

PyUnicodeEncodeError_SetStart (C function), 61
PyUnicodeObject (C type), 132
PyUnicodeTranslateError_GetEnd (C function),

61
PyUnicodeTranslateError_GetObject (C functi-
on), 61
PyUnicodeTranslateError_GetReason (C functi-
on), 62
PyUnicodeTranslateError_GetStart (C functi-
on), 61
PyUnicodeTranslateError_SetEnd (C function),
61
PyUnicodeTranslateError_SetReason (C functi-
on), 62
PyUnicodeTranslateError_SetStart (C functi-
on), 61

PyUnstable, 15

PyUnstable_Code_GetExtra (C function), 165

PyUnstable_Code_New (C function), 162

PyUnstable Code_NewWithPosOnlyArgs (C func-
tion), 163

PyUnstable_Code_SetExtra (C function), 165

PyUnstable_Eval_RequestCodeExtralndex
function), 165

PyUnstable Exc_PrepReraiseStar (C function),
60

PyUnstable_GC_VisitObjects (C function), 297

(«©

PyUnstable_InterpreterFrame_GetCode (o
function), 182

PyUnstable_InterpreterFrame_GetLasti (o
function), 182

PyUnstable_InterpreterFrame_GetLine c

function), 182
PyUnstable_Long_CompactValue (C function), 124
PyUnstable_Long_IsCompact (C function), 124
PyUnstable_Object_GC_NewWithExtraData

function), 294
PyUnstable_PerfMapState_Fini (C function), 88
PyUnstable_PerfMapState_Init (C function), 88
PyUnstable_Type_AssignVersionTag (C functi-

on), 118
PyUnstable_WritePerfMapEntry (C function), 88
PyVarObject (C type), 250
PyVarObject_HEAD_INIT (C macro), 251
PyVarObject .ob_size (C member), 265
PyVectorcall cCall (C function), 96
PyVectorcall Function (C function), 96
PyVectorcall_NARGS (C function), 96
PyWeakref_Check (C function), 178
PyWeakref_CheckProxy (C function), 178
PyWeakref_ CheckRef (C function), 178
PyWeakref GET_OBJECT (C function), 178
PyWeakref_GetObject (C function), 178
PyWeakref_NewProxy (C function), 178
PyWeakref_NewRef (C function), 178
PyWideStringList (Ctype), 218
PyWideStringList_Append (C function), 218
PyWideStringList_Insert (C function), 218

(e

PyWideStringList.items (C member), 218
PyWideStringList.length (C member), 218
pPyWrapper_New (C function), 175

R

READ_RESTRICTED (C macro), 256
READONLY (C macro), 256
realloc (C function), 239
referans sayisi, 314
releasebufferproc (C type), 291
repr

built-in function, 91, 268
reprfunc (C type), 290
RESTRICTED (C macro), 256
richcmpfunc (C type), 291

S

sanal makine, 316
sanal ortam, 316
sdterr
stdin stdout, 196
search
path, module, 12, 195, 197, 198
sendfunc (C type), 291

sequence
object, 129
set
object, 157

set_all(),9
setattrfunc (C type), 290
setattrofunc (C type), 290
setswitchinterval (in module sys), 200
setter (Ctype), 258
SIGINT (C macro), 59
sinif, 303
sinif degiskeni, 303
S1zE_MaX (C macro), 123
signal

module, 59
sihirli ydéntem, 310
soft deprecated, 314
soyut temel sinif, 301
sozliik, 304
s6zliikk anlama, 305
s6z1liik gériiniimii, 305
special

metot, 314
ssizeargfunc (C type), 291
ssizeobjargproc (C type), 291
static type checker, 315
staticmethod

built-in function, 254
stderr (in module sys), 208, 209
stdin

stdout sdterr, 196
stdin (in module sys), 208, 209
stdout

sdterr, stdin, 196

360

Dizin

The Python/C API, Yayim 3.12.9

stdout (in module sys), 208, 209
strerror (C function), 53
string

PyObject_Str (C function), 92
structmember.h, 258
sum_list (), 9

sum_sequence (), 10, 11
siirekli paketleme, 314
sys

module, 12, 195, 208, 209
SystemError (built-in exception), 167, 168

T

T_BOOL (C macro), 258
T_BYTE (C macro), 258
T_CHAR (C macro), 258
T_DOUBLE (C macro), 258
T_FLOAT (C macro), 258
T_INT (C macro), 258
T_LONG (C macro), 258
T_LONGLONG (C macro), 258
T_NONE (C macro), 258
T_OBJECT (C macro), 258
T_OBJECT_EX (C macro), 258
T_PYSSIZET (C macro), 258
T_SHORT (C macro), 258
T_STRING (C macro), 258
T_STRING_INPLACE (C macro), 258
T_UBYTE (C macro), 258
T_UINT (C macro), 258
T_ULONG (C macro), 258
T_ULONGULONG (C macro), 258
T_USHORT (C macro), 258
tanimlayici, 304
tek sevk, 314
tercliman kapatma, 308
ternaryfunc (C type), 291
tip, 315
tip takma adi, 315
token, 315
traverseproc (C type), 296
tuple
built-in function, 103, 153
object, 149
tiir ipucu, 316
type
built-in function, 93
object, 7, 115

U

ULONG_MAX (C macro), 123
unaryfunc (C type), 291
USE_STACKCHECK (C macro), 66
uzatma modiilii, 305

0

iic tirnakli dize, 315

\Y

vectorcallfunc (C type), 95
version (in module sys), 198, 199
visitproc (Ctype), 296

W

WRITE_RESTRICTED (C macro), 256

Y

yazi c¢Oziimleme, 315
yazi dosyasi, 315

yeni stil sainaif, 311
yerel kodlama, 309
yikanabilir, 307
yinelenebilir, 308
yineleyici, 308

yol benzeri nesne, 312
yol giris kancaszi, 312
yol girisi, 312

yol girisi bulucu, 312
yol tabanli bulucu, 312
yorumlanmis, 308
yiikleyici, 309

Dizin

361

	Introduction
	Coding standards
	Include Files
	Useful macros
	Objects, Types and Reference Counts
	Reference Counts
	Reference Count Details

	Types

	Exceptions
	Embedding Python
	Debugging Builds

	C API Stability
	Unstable C API
	Stable Application Binary Interface
	Limited C API
	Stable ABI
	Limited API Scope and Performance
	Limited API Caveats

	Platform Considerations
	Contents of Limited API

	The Very High Level Layer
	Reference Counting
	Exception Handling
	Printing and clearing
	Raising exceptions
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Exception Objects
	Unicode Exception Objects
	Recursion Control
	Standard Exceptions
	Standard Warning Categories

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	Parsing arguments
	Strings and buffers
	Numbers
	Other objects
	API Functions

	Building values

	String conversion and formatting
	PyHash API
	Reflection
	Codec registry and support functions
	Codec lookup API
	Registry API for Unicode encoding error handlers

	Support for Perf Maps

	Abstract Objects Layer
	Object Protocol
	Call Protocol
	The tp_call Protocol
	The Vectorcall Protocol
	Recursion Control
	Vectorcall Support API

	Object Calling API
	Call Support API

	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol
	Buffer structure
	Buffer request types
	request-independent fields
	readonly, format
	shape, strides, suboffsets
	contiguity requests
	compound requests

	Complex arrays
	NumPy-style: shape and strides
	PIL-style: shape, strides and suboffsets

	Buffer-related functions

	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Type Objects
	Creating Heap-Allocated Types

	The None Object

	Numeric Objects
	Integer Objects
	Boolean Objects
	Floating-Point Objects
	Pack and Unpack functions
	Pack functions
	Unpack functions

	Complex Number Objects
	Complex Numbers as C Structures
	Complex Numbers as Python Objects

	Sequence Objects
	Bytes Objects
	Byte Array Objects
	Type check macros
	Direct API functions
	Macros

	Unicode Objects and Codecs
	Unicode Objects
	Unicode Type
	Unicode Character Properties
	Creating and accessing Unicode strings
	Locale Encoding
	File System Encoding
	wchar_t Support

	Built-in Codecs
	Generic Codecs
	UTF-8 Codecs
	UTF-32 Codecs
	UTF-16 Codecs
	UTF-7 Codecs
	Unicode-Escape Codecs
	Raw-Unicode-Escape Codecs
	Latin-1 Codecs
	ASCII Codecs
	Character Map Codecs
	MBCS codecs for Windows
	Methods & Slots

	Methods and Slot Functions

	Tuple Objects
	Struct Sequence Objects
	List Objects

	Container Objects
	Dictionary Objects
	Set Objects

	Function Objects
	Function Objects
	Instance Method Objects
	Method Objects
	Cell Objects
	Code Objects
	Extra information

	Other Objects
	File Objects
	Module Objects
	Initializing C modules
	Single-phase initialization
	Multi-phase initialization
	Low-level module creation functions
	Support functions

	Module lookup

	Iterator Objects
	Descriptor Objects
	Slice Objects
	Ellipsis Object

	MemoryView objects
	Weak Reference Objects
	Capsules
	Frame Objects
	Internal Frames

	Generator Objects
	Coroutine Objects
	Context Variables Objects
	DateTime Objects
	Objects for Type Hinting

	Initialization, Finalization, and Threads
	Before Python Initialization
	Global configuration variables
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Releasing the GIL from extension code
	Non-Python created threads
	Cautions about fork()
	High-level API
	Low-level API

	Sub-interpreter support
	A Per-Interpreter GIL
	Bugs and caveats

	Asynchronous Notifications
	Profiling and Tracing
	Advanced Debugger Support
	Thread Local Storage Support
	Thread Specific Storage (TSS) API
	Dynamic Allocation
	Methods

	Thread Local Storage (TLS) API

	Python Initialization Configuration
	Example
	PyWideStringList
	PyStatus
	PyPreConfig
	Preinitialize Python with PyPreConfig
	PyConfig
	Initialization with PyConfig
	Isolated Configuration
	Python Configuration
	Python Path Configuration
	Py_RunMain()
	Py_GetArgcArgv()
	Multi-Phase Initialization Private Provisional API

	Memory Management
	Overview
	Allocator Domains
	Raw Memory Interface
	Memory Interface
	Object allocators
	Default Memory Allocators
	Customize Memory Allocators
	Debug hooks on the Python memory allocators
	The pymalloc allocator
	Customize pymalloc Arena Allocator

	tracemalloc C API
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Base object types and macros
	Implementing functions and methods
	Accessing attributes of extension types
	Member flags
	Member types
	Defining Getters and Setters

	Type Object Structures
	Quick Reference
	“tp slots”
	sub-slots
	slot typedefs

	PyTypeObject Definition
	PyObject Slots
	PyVarObject Slots
	PyTypeObject Slots
	Static Types
	Heap Types
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	Slot Type typedefs
	Examples

	Supporting Cyclic Garbage Collection
	Controlling the Garbage Collector State
	Querying Garbage Collector State

	API and ABI Versioning
	Sözlük
	About this documentation
	Contributors to the Python documentation

	Tarihçe ve Lisans
	Yazılımın tarihçesi
	Python’a erişmek veya başka bir şekilde kullanmak için şartlar ve koşullar
	PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2
	PYTHON 2.0 İÇİN BEOPEN.COM LİSANS SÖZLEŞMESİ
	PYTHON 1.6.1 İÇİN CNRI LİSANS ANLAŞMASI
	0.9.0 ARASI 1.2 PYTHON İÇİN CWI LİSANS SÖZLEŞMESİ
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON DOCUMENTATION

	Tüzel Yazılımlar için Lisanslar ve Onaylar
	Mersenne Twister’ı
	Soketler
	Asenkron soket hizmetleri
	Çerez yönetimi
	Çalıştırma izleme
	UUencode ve UUdecode fonksiyonları
	XML Uzaktan Yordam Çağrıları
	test_epoll
	kqueue seçin
	SipHash24
	strtod ve dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test paketi
	Audioop
	asyncio

	Telif Hakkı
	Dizin

