
The Python Language Reference
Yayım 3.11.13

Guido van Rossum and the Python development team

Temmuz 08, 2025

Python Software Foundation
Email: docs@python.org

İçindekiler

1 Introduction 3
1.1 Alternate Implementations . 3
1.2 Notation . 4

2 Lexical analysis 5
2.1 Line structure . 5

2.1.1 Logical lines . 5
2.1.2 Physical lines . 5
2.1.3 Comments . 6
2.1.4 Encoding declarations . 6
2.1.5 Explicit line joining . 6
2.1.6 Implicit line joining . 6
2.1.7 Blank lines . 7
2.1.8 Indentation . 7
2.1.9 Whitespace between tokens . 8

2.2 Other tokens . 8
2.3 Identifiers and keywords . 8

2.3.1 Keywords . 9
2.3.2 Soft Keywords . 9
2.3.3 Reserved classes of identifiers . 10

2.4 Literals . 10
2.4.1 String and Bytes literals . 10
2.4.2 String literal concatenation . 13
2.4.3 f-strings . 13
2.4.4 Numeric literals . 15
2.4.5 Integer literals . 15
2.4.6 Floating point literals . 16
2.4.7 Imaginary literals . 16

2.5 Operators . 17
2.6 Delimiters . 17

3 Data model 19
3.1 Objects, values and types . 19
3.2 The standard type hierarchy . 20

3.2.1 None . 20
3.2.2 NotImplemented . 20
3.2.3 Ellipsis . 21

i

3.2.4 numbers.Number . 21
3.2.5 Sequences . 22
3.2.6 Set types . 23
3.2.7 Mappings . 23
3.2.8 Callable types . 24
3.2.9 Modules . 28
3.2.10 Custom classes . 29
3.2.11 Class instances . 29
3.2.12 I/O objects (also known as file objects) . 30
3.2.13 Internal types . 30

3.3 Special method names . 36
3.3.1 Basic customization . 36
3.3.2 Customizing attribute access . 40
3.3.3 Customizing class creation . 44
3.3.4 Customizing instance and subclass checks . 47
3.3.5 Emulating generic types . 48
3.3.6 Emulating callable objects . 50
3.3.7 Emulating container types . 50
3.3.8 Emulating numeric types . 52
3.3.9 With Statement Context Managers . 54
3.3.10 Customizing positional arguments in class pattern matching 55
3.3.11 Special method lookup . 55

3.4 Coroutines . 56
3.4.1 Awaitable Objects . 56
3.4.2 Coroutine Objects . 57
3.4.3 Asynchronous Iterators . 57
3.4.4 Asynchronous Context Managers . 58

4 Execution model 59
4.1 Structure of a program . 59
4.2 Naming and binding . 59

4.2.1 Binding of names . 59
4.2.2 Resolution of names . 60
4.2.3 Builtins and restricted execution . 61
4.2.4 Interaction with dynamic features . 61

4.3 Exceptions . 61

5 The import system 63
5.1 importlib . 64
5.2 Packages . 64

5.2.1 Regular packages . 64
5.2.2 Namespace packages . 65

5.3 Searching . 65
5.3.1 The module cache . 65
5.3.2 Finders and loaders . 66
5.3.3 Import hooks . 66
5.3.4 The meta path . 66

5.4 Loading . 67
5.4.1 Loaders . 68
5.4.2 Submodules . 69
5.4.3 Module spec . 69
5.4.4 Import-related module attributes . 70
5.4.5 module.__path__ . 71
5.4.6 Module reprs . 71

ii

5.4.7 Cached bytecode invalidation . 71
5.5 The Path Based Finder . 72

5.5.1 Path entry finders . 72
5.5.2 Path entry finder protocol . 73

5.6 Replacing the standard import system . 74
5.7 Package Relative Imports . 74
5.8 Special considerations for __main__ . 75

5.8.1 __main__.__spec__ . 75
5.9 References . 75

6 Expressions 77
6.1 Arithmetic conversions . 77
6.2 Atoms . 78

6.2.1 Identifiers (Names) . 78
6.2.2 Literals . 78
6.2.3 Parenthesized forms . 79
6.2.4 Displays for lists, sets and dictionaries . 79
6.2.5 List displays . 80
6.2.6 Set displays . 80
6.2.7 Dictionary displays . 80
6.2.8 Generator expressions . 81
6.2.9 Yield expressions . 81

6.3 Primaries . 86
6.3.1 Attribute references . 86
6.3.2 Subscriptions . 86
6.3.3 Slicings . 87
6.3.4 Calls . 87

6.4 Await expression . 89
6.5 The power operator . 89
6.6 Unary arithmetic and bitwise operations . 90
6.7 Binary arithmetic operations . 90
6.8 Shifting operations . 91
6.9 Binary bitwise operations . 92
6.10 Comparisons . 92

6.10.1 Value comparisons . 92
6.10.2 Membership test operations . 95
6.10.3 Identity comparisons . 95

6.11 Boolean operations . 95
6.12 Assignment expressions . 96
6.13 Conditional expressions . 96
6.14 Lambdas . 96
6.15 Expression lists . 97
6.16 Evaluation order . 97
6.17 Operator precedence . 97

7 Simple statements 99
7.1 Expression statements . 99
7.2 Assignment statements . 100

7.2.1 Augmented assignment statements . 102
7.2.2 Annotated assignment statements . 102

7.3 The assert statement . 103
7.4 The pass statement . 103
7.5 The del statement . 104
7.6 The return statement . 104

iii

7.7 The yield statement . 104
7.8 The raise statement . 105
7.9 The break statement . 106
7.10 The continue statement . 107
7.11 The import statement . 107

7.11.1 Future statements . 108
7.12 The global statement . 109
7.13 The nonlocal statement . 110

8 Compound statements 111
8.1 The if statement . 112
8.2 The while statement . 112
8.3 The for statement . 112
8.4 The try statement . 113

8.4.1 except clause . 114
8.4.2 except* clause . 115
8.4.3 else clause . 116
8.4.4 finally clause . 116

8.5 The with statement . 116
8.6 The match statement . 118

8.6.1 Overview . 119
8.6.2 Guards . 120
8.6.3 Irrefutable Case Blocks . 120
8.6.4 Patterns . 120

8.7 Function definitions . 127
8.8 Class definitions . 129
8.9 Coroutines . 130

8.9.1 Coroutine function definition . 130
8.9.2 The async for statement . 130
8.9.3 The async with statement . 131

9 Top-level components 133
9.1 Complete Python programs . 133
9.2 File input . 134
9.3 Interactive input . 134
9.4 Expression input . 134

10 Full Grammar specification 135

A Sözlük 151

B Dokümanlar hakkında 167
B.1 Python Dokümantasyonuna Katkıda Bulunanlar . 167

C Tarihçe ve Lisans 169
C.1 Yazılımın tarihçesi . 169
C.2 Python’a erişmek veya başka bir şekilde kullanmak için şartlar ve koşullar 170

C.2.1 PYTHON İÇİN PSF LİSANS ANLAŞMASI 3.11.13 . 170
C.2.2 PYTHON 2.0 İÇİN BEOPEN.COM LİSANS SÖZLEŞMESİ 171
C.2.3 PYTHON 1.6.1 İÇİN CNRI LİSANS ANLAŞMASI . 172
C.2.4 0.9.0 ARASI 1.2 PYTHON İÇİN CWI LİSANS SÖZLEŞMESİ 173
C.2.5 PYTHON 3.11.13 BELGELERİNDEKİ KOD İÇİN SIFIR MADDE BSD LİSANSI 174

C.3 Tüzel Yazılımlar için Lisanslar ve Onaylar . 174
C.3.1 Mersenne Twister’ı . 174
C.3.2 Soketler . 175

iv

C.3.3 Asenkron soket hizmetleri . 175
C.3.4 Çerez yönetimi . 176
C.3.5 Çalıştırma izleme . 176
C.3.6 UUencode ve UUdecode fonksiyonları . 177
C.3.7 XML Uzaktan Yordam Çağrıları . 178
C.3.8 test_epoll . 178
C.3.9 kqueue seçin . 179
C.3.10 SipHash24 . 179
C.3.11 strtod ve dtoa . 180
C.3.12 OpenSSL . 180
C.3.13 expat . 183
C.3.14 libffi . 184
C.3.15 zlib . 184
C.3.16 cfuhash . 185
C.3.17 libmpdec . 186
C.3.18 W3C C14N test paketi . 186
C.3.19 Audioop . 187
C.3.20 asyncio . 187

D Telif Hakkı 189

Dizin 191

v

vi

The Python Language Reference, Yayım 3.11.13

This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to be exact and
complete. The semantics of non-essential built-in object types and of the built-in functions and modules are described in
library-index. For an informal introduction to the language, see tutorial-index. For C or C++ programmers, two additional
manuals exist: extending-index describes the high-level picture of how to write a Python extension module, and the c-
api-index describes the interfaces available to C/C++ programmers in detail.

İçindekiler 1

The Python Language Reference, Yayım 3.11.13

2 İçindekiler

BÖLÜM1

Introduction

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but will
leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python from this
document alone, you might have to guess things and in fact you would probably end up implementing quite a different
language. On the other hand, if you are using Python and wonder what the precise rules about a particular area of the
language are, you should definitely be able to find them here. If you would like to see a more formal definition of the
language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, CPython is the one
Python implementation in widespread use (although alternate implementations continue to gain support), and its parti-
cular quirks are sometimes worth being mentioned, especially where the implementation imposes additional limitations.
Therefore, you’ll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are documented in library-
index. A few built-in modules are mentioned when they interact in a significant way with the language definition.

1.1 Alternate Implementations

Though there is one Python implementation which is by far the most popular, there are some alternate implementations
which are of particular interest to different audiences.

Known implementations include:

CPython
This is the original and most-maintained implementation of Python, written in C. New language features generally
appear here first.

Jython
Python implemented in Java. This implementation can be used as a scripting language for Java applications, or can

3

The Python Language Reference, Yayım 3.11.13

be used to create applications using the Java class libraries. It is also often used to create tests for Java libraries.
More information can be found at the Jython website.

Python for .NET
This implementation actually uses the CPython implementation, but is a managed .NET application and makes
.NET libraries available. It was created by Brian Lloyd. For more information, see the Python for .NET home
page.

IronPython
An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that generates IL,
and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the original creator of
Jython. For more information, see the IronPython website.

PyPy
An implementation of Python written completely in Python. It supports several advanced features not found in
other implementations like stackless support and a Just in Time compiler. One of the goals of the project is to
encourage experimentation with the language itself by making it easier to modify the interpreter (since it is written
in Python). Additional information is available on the PyPy project’s home page.

Each of these implementations varies in some way from the language as documented in this manual, or introduces specific
information beyond what’s covered in the standard Python documentation. Please refer to the implementation-specific
documentation to determine what else you need to know about the specific implementation you’re using.

1.2 Notation

The descriptions of lexical analysis and syntax use a modified Backus–Naur form (BNF) grammar notation. This uses
the following style of definition:

name ::= lc_letter (lc_letter | "_")*
lc_letter ::= "a"..."z"

The first line says that a name is an lc_letter followed by a sequence of zero or more lc_letters and underscores.
An lc_letter in turn is any of the single characters 'a' through 'z'. (This rule is actually adhered to for the names
defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and ::=. A vertical bar (|) is used to separate
alternatives; it is the least binding operator in this notation. A star (*) means zero or more repetitions of the preceding
item; likewise, a plus (+) means one or more repetitions, and a phrase enclosed in square brackets ([]) means zero
or one occurrences (in other words, the enclosed phrase is optional). The * and + operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively with
each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by three
dots mean a choice of any single character in the given (inclusive) range of ASCII characters. A phrase between angular
brackets (<...>) gives an informal description of the symbol defined; e.g., this could be used to describe the notion of
‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and syntactic
definitions: a lexical definition operates on the individual characters of the input source, while a syntax definition operates
on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter (“Lexical Analysis”) are
lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Bölüm 1. Introduction

https://www.jython.org/
https://pythonnet.github.io/
https://pythonnet.github.io/
https://ironpython.net/
https://www.pypy.org/
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

BÖLÜM2

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of tokens, generated by the lexical analyzer. This
chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding declaration
and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError is raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries ex-
cept where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line is
constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any of the
standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form
using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return)
character. All of these forms can be used equally, regardless of platform. The end of input also serves as an implicit
terminator for the final physical line.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

5

https://peps.python.org/pep-3120/

The Python Language Reference, Yayım 3.11.13

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored by
the syntax.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding[=:]\s*([-\
w.]+), this comment is processed as an encoding declaration; the first group of this expression names the encoding of
the source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first line must
also be a comment-only line. The recommended forms of an encoding expression are

-*- coding: <encoding-name> -*-

which is recognized also by GNU Emacs, and

vim:fileencoding =<encoding-name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. If the implicit or explicit encoding of a file is UTF-8,
an initial UTF-8 byte-order mark (b’xefxbbxbf’) is ignored rather than being a syntax error.

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding is
used for all lexical analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date

return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does not
continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines using
a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

6 Bölüm 2. Lexical analysis

The Python Language Reference, Yayım 3.11.13

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank conti-
nuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued lines
can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE token is
generated). During interactive input of statements, handling of a blank line may differ depending on the implementation
of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e. one containing not
even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of spaces
preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over multiple
physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use a
mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms may
explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may reset
the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical line,
the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is pushed
on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring on the stack;
all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT token is generated.
At the end of the file, a DEDENT token is generated for each number remaining on the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of l

if len(l) <= 1:
return [l]

r = []
for i in range(len(l)):

s = l[:i] + l[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)

return r

The following example shows various indentation errors:

2.1. Line structure 7

The Python Language Reference, Yayım 3.11.13

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented

s = l[:i] + l[i+1:]
p = perm(l[:i] + l[i+1:]) # error: unexpected indent
for x in p:

r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be used
interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could otherwise
be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals, ope-
rators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but serve to
delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token, when read
from left to right.

2.3 Identifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes as
defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the up-
percase and lowercase letters A through Z, the underscore _ and, except for the first character, the digits 0 through
9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier ::= xid_start xid_continue*
id_start ::= <all characters in general categories Lu, Ll, Lt, Lm, Lo, Nl, the underscore, and characters with the Other_ID_Start property>
id_continue ::= <all characters in id_start, plus characters in the categories Mn, Mc, Nd, Pc and others with the Other_ID_Continue property>
xid_start ::= <all characters in id_start whose NFKC normalization is in "id_start xid_continue*">
xid_continue ::= <all characters in id_continue whose NFKC normalization is in "id_continue*">

The Unicode category codes mentioned above stand for:

• Lu - uppercase letters

• Ll - lowercase letters

8 Bölüm 2. Lexical analysis

https://peps.python.org/pep-3131/
https://peps.python.org/pep-3131/

The Python Language Reference, Yayım 3.11.13

• Lt - titlecase letters

• Lm - modifier letters

• Lo - other letters

• Nl - letter numbers

• Mn - nonspacing marks

• Mc - spacing combining marks

• Nd - decimal numbers

• Pc - connector punctuations

• Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility

• Other_ID_Continue - likewise

All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 14.0.0 can be found at https://www.unicode.
org/Public/14.0.0/ucd/DerivedCoreProperties.txt

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary iden-
tifiers. They must be spelled exactly as written here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try
as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Soft Keywords

3.10 sürümünde geldi.

Some identifiers are only reserved under specific contexts. These are known as soft keywords. The identifiers match,
case and _ can syntactically act as keywords in contexts related to the pattern matching statement, but this distinction
is done at the parser level, not when tokenizing.

As soft keywords, their use with pattern matching is possible while still preserving compatibility with existing code that
uses match, case and _ as identifier names.

2.3. Identifiers and keywords 9

https://www.unicode.org/Public/14.0.0/ucd/PropList.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, Yayım 3.11.13

2.3.3 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns of
leading and trailing underscore characters:

_*
Not imported by from module import *.

_
In a case pattern within a match statement, _ is a soft keyword that denotes a wildcard.

Separately, the interactive interpreter makes the result of the last evaluation available in the variable _. (It is stored
in the builtins module, alongside built-in functions like print.)

Elsewhere, _ is a regular identifier. It is often used to name “special” items, but it is not special to Python itself.

Not: The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

It is also commonly used for unused variables.

__*__
System-defined names, informally known as “dunder” names. These names are defined by the interpreter and its
implementation (including the standard library). Current system names are discussed in the Special method names
section and elsewhere. More will likely be defined in future versions of Python. Any use of __*__ names, in any
context, that does not follow explicitly documented use, is subject to breakage without warning.

__*
Class-private names. Names in this category, when used within the context of a class definition, are re-written to
use a mangled form to help avoid name clashes between “private” attributes of base and derived classes. See section
Identifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral ::= [stringprefix](shortstring | longstring)
stringprefix ::= "r" | "u" | "R" | "U" | "f" | "F"

| "fr" | "Fr" | "fR" | "FR" | "rf" | "rF" | "Rf" | "RF"
shortstring ::= "'" shortstringitem* "'" | '"' shortstringitem* '"'
longstring ::= "'''" longstringitem* "'''" | '"""' longstringitem* '"""'
shortstringitem ::= shortstringchar | stringescapeseq
longstringitem ::= longstringchar | stringescapeseq
shortstringchar ::= <any source character except "\" or newline or the quote>
longstringchar ::= <any source character except "\">
stringescapeseq ::= "\" <any source character>

10 Bölüm 2. Lexical analysis

The Python Language Reference, Yayım 3.11.13

bytesliteral ::= bytesprefix(shortbytes | longbytes)
bytesprefix ::= "b" | "B" | "br" | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb" | "RB"
shortbytes ::= "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes ::= "'''" longbytesitem* "'''" | '"""' longbytesitem* '"""'
shortbytesitem ::= shortbyteschar | bytesescapeseq
longbytesitem ::= longbyteschar | bytesescapeseq
shortbyteschar ::= <any ASCII character except "\" or newline or the quote>
longbyteschar ::= <any ASCII character except "\">
bytesescapeseq ::= "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix or bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can also
be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted strings).
The backslash (\) character is used to escape characters that otherwise have a special meaning, such as newline, backslash
itself, or the quote character.

Bytes literals are always prefixed with 'b' or 'B'; they produce an instance of the bytes type instead of the str type.
They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with escapes.

Both string and bytes literals may optionally be prefixed with a letter 'r' or 'R'; such strings are called raw strings
and treat backslashes as literal characters. As a result, in string literals, '\U' and '\u' escapes in raw strings are not
treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s the 'ur' syntax is not
supported.

3.3 sürümünde geldi: The 'rb' prefix of raw bytes literals has been added as a synonym of 'br'.

Support for the unicode legacy literal (u'value') was reintroduced to simplify the maintenance of dual Python 2.x and
3.x codebases. See PEP 414 for more information.

A string literal with 'f' or 'F' in its prefix is a formatted string literal; see f-strings. The 'f' may be combined with
'r', but not with 'b' or 'u', therefore raw formatted strings are possible, but formatted bytes literals are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped quotes
in a row terminate the literal. (A “quote” is the character used to open the literal, i.e. either ' or ".)

Escape sequences

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to rules
similar to those used by Standard C. The recognized escape sequences are:

2.4. Literals 11

https://peps.python.org/pep-0414/

The Python Language Reference, Yayım 3.11.13

Escape Sequence Meaning Notes

\<newline> Backslash and newline ignored (1)
\\ Backslash (\)
\' Single quote (')
\" Double quote (")
\a ASCII Bell (BEL)
\b ASCII Backspace (BS)
\f ASCII Formfeed (FF)
\n ASCII Linefeed (LF)
\r ASCII Carriage Return (CR)
\t ASCII Horizontal Tab (TAB)
\v ASCII Vertical Tab (VT)
\ooo Character with octal value ooo (2,4)
\xhh Character with hex value hh (3,4)

Escape sequences only recognized in string literals are:

Escape Sequence Meaning Notes

\N{name} Character named name in the Unicode database (5)
\uxxxx Character with 16-bit hex value xxxx (6)
\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx (7)

Notes:

(1) A backslash can be added at the end of a line to ignore the newline:

>>> 'This string will not include \
... backslashes or newline characters.'
'This string will not include backslashes or newline characters.'

The same result can be achieved using triple-quoted strings, or parentheses and string literal concatenation.

(2) As in Standard C, up to three octal digits are accepted.

3.11 sürümünde değişti: Octal escapes with value larger than 0o377 produce a DeprecationWarning. In a
future Python version they will be a SyntaxWarning and eventually a SyntaxError.

(3) Unlike in Standard C, exactly two hex digits are required.

(4) In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

(5) 3.3 sürümünde değişti: Support for name aliases1 has been added.

(6) Exactly four hex digits are required.

(7) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in the
result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences only recognized in string literals fall into the
category of unrecognized escapes for bytes literals.

3.6 sürümünde değişti: Unrecognized escape sequences produce a DeprecationWarning. In a future Python version
they will be a SyntaxWarning and eventually a SyntaxError.

1 https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

12 Bölüm 2. Lexical analysis

https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

The Python Language Reference, Yayım 3.11.13

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example, r"\""
is a valid string literal consisting of two characters: a backslash and a double quote; r"\" is not a valid string literal (even
a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a single backslash
(since the backslash would escape the following quote character). Note also that a single backslash followed by a newline
is interpreted as those two characters as part of the literal, not as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings conve-
niently across long lines, or even to add comments to parts of strings, for example:

re.compile("[A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’ operator must be used
to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles for each
component (even mixing raw strings and triple quoted strings), and formatted string literals may be concatenated with
plain string literals.

2.4.3 f-strings

3.6 sürümünde geldi.

A formatted string literal or f-string is a string literal that is prefixed with 'f' or 'F'. These strings may contain rep-
lacement fields, which are expressions delimited by curly braces {}. While other string literals always have a constant
value, formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string). After
decoding, the grammar for the contents of the string is:

f_string ::= (literal_char | "{{" | "}}" | replacement_field)*
replacement_field ::= "{" f_expression [" ="] ["!" conversion] [":" format_spec] "}"
f_expression ::= (conditional_expression | "*" or_expr)

("," conditional_expression | "," "*" or_expr)* [","]
| yield_expression

conversion ::= "s" | "r" | "a"
format_spec ::= (literal_char | replacement_field)*
literal_char ::= <any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces '{{' or '}}' are
replaced with the corresponding single curly brace. A single opening curly bracket '{'marks a replacement field, which
starts with a Python expression. To display both the expression text and its value after evaluation, (useful in debugging),
an equal sign '=' may be added after the expression. A conversion field, introduced by an exclamation point '!' may
follow. A format specifier may also be appended, introduced by a colon ':'. A replacement field ends with a closing
curly bracket '}'.

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with a few
exceptions. An empty expression is not allowed, and both lambda and assignment expressions := must be surrounded
by explicit parentheses. Replacement expressions can contain line breaks (e.g. in triple-quoted strings), but they cannot

2.4. Literals 13

The Python Language Reference, Yayım 3.11.13

contain comments. Each expression is evaluated in the context where the formatted string literal appears, in order from
left to right.

3.7 sürümünde değişti: Prior to Python 3.7, an await expression and comprehensions containing an async for clause
were illegal in the expressions in formatted string literals due to a problem with the implementation.

When the equal sign '=' is provided, the output will have the expression text, the '=' and the evaluated value. Spaces
after the opening brace '{', within the expression and after the '=' are all retained in the output. By default, the '='
causes the repr() of the expression to be provided, unless there is a format specified. When a format is specified it
defaults to the str() of the expression unless a conversion '!r' is declared.

3.8 sürümünde geldi: The equal sign '='.

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion '!s' calls
str() on the result, '!r' calls repr(), and '!a' calls ascii().

The result is then formatted using the format() protocol. The format specifier is passed to the __format__()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own conversion
fields and format specifiers, but may not include more deeply nested replacement fields. The format specifier mini-
language is the same as that used by the str.format() method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

>>> name = "Fred"
>>> f"He said his name is {name!r}."
"He said his name is 'Fred'."
>>> f"He said his name is {repr(name)}." # repr() is equivalent to !r
"He said his name is 'Fred'."
>>> width = 10
>>> precision = 4
>>> value = decimal.Decimal("12.34567")
>>> f"result: {value:{width}.{precision}}" # nested fields
'result: 12.35'
>>> today = datetime(year=2017, month=1, day=27)
>>> f"{today:%B %d, %Y}" # using date format specifier
'January 27, 2017'
>>> f"{today=:%B %d, %Y}" # using date format specifier and debugging
'today =January 27, 2017'
>>> number = 1024
>>> f"{number:#0x}" # using integer format specifier
'0x400'
>>> foo = "bar"
>>> f"{ foo = }" # preserves whitespace
" foo = 'bar'"
>>> line = "The mill's closed"
>>> f"{line = }"
'line = "The mill\'s closed"'
>>> f"{line = :20}"
"line = The mill's closed "
>>> f"{line = !r:20}"
'line = "The mill\'s closed" '

A consequence of sharing the same syntax as regular string literals is that characters in the replacement fields must not
conflict with the quoting used in the outer formatted string literal:

14 Bölüm 2. Lexical analysis

The Python Language Reference, Yayım 3.11.13

f"abc {a["x"]} def" # error: outer string literal ended prematurely
f"abc {a['x']} def" # workaround: use different quoting

Backslashes are not allowed in format expressions and will raise an error:

f"newline: {ord('\n')}" # raises SyntaxError

To include a value in which a backslash escape is required, create a temporary variable.

>>> newline = ord('\n')
>>> f"newline: {newline}"
'newline: 10'

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

>>> def foo():
... f"Not a docstring"
...
>>> foo.__doc__ is None
True

See also PEP 498 for the proposal that added formatted string literals, and str.format(), which uses a related format
string mechanism.

2.4.4 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no complex
literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary operator
‘-’ and the literal 1.

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer ::= decinteger | bininteger | octinteger | hexinteger
decinteger ::= nonzerodigit (["_"] digit)* | "0"+ (["_"] "0")*
bininteger ::= "0" ("b" | "B") (["_"] bindigit)+
octinteger ::= "0" ("o" | "O") (["_"] octdigit)+
hexinteger ::= "0" ("x" | "X") (["_"] hexdigit)+
nonzerodigit ::= "1"..."9"
digit ::= "0"..."9"
bindigit ::= "0" | "1"
octdigit ::= "0"..."7"
hexdigit ::= digit | "a"..."f" | "A"..."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for enhanced
readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

2.4. Literals 15

https://peps.python.org/pep-0498/

The Python Language Reference, Yayım 3.11.13

Some examples of integer literals:

7 2147483647 0o177 0b100110111
3 79228162514264337593543950336 0o377 0xdeadbeef

100_000_000_000 0b_1110_0101

3.6 sürümünde değişti: Underscores are now allowed for grouping purposes in literals.

2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber ::= pointfloat | exponentfloat
pointfloat ::= [digitpart] fraction | digitpart "."
exponentfloat ::= (digitpart | pointfloat) exponent
digitpart ::= digit (["_"] digit)*
fraction ::= "." digitpart
exponent ::= ("e" | "E") ["+" | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077e010 is legal, and
denotes the same number as 77e10. The allowed range of floating point literals is implementation-dependent. As in
integer literals, underscores are supported for digit grouping.

Some examples of floating point literals:

3.14 10. .001 1e100 3.14e-10 0e0 3.14_15_93

3.6 sürümünde değişti: Underscores are now allowed for grouping purposes in literals.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber ::= (floatnumber | digitpart) ("j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.g., (3+4j). Some examples of imaginary literals:

3.14j 10.j 10j .001j 1e100j 3.14e-10j 3.14_15_93j

16 Bölüm 2. Lexical analysis

The Python Language Reference, Yayım 3.11.13

2.5 Operators

The following tokens are operators:

+ - * ** / // % @
<< >> & | ^ ~ :=
< > <= >= == !=

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() [] { }
, : . ; @ = ->
+ = -= * = /= //= %= @ =
&= | = ^= >>= <<= ** =

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning as
an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters, but also
perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to the
lexical analyzer:

' " # \

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

$? `

2.5. Operators 17

The Python Language Reference, Yayım 3.11.13

18 Bölüm 2. Lexical analysis

BÖLÜM3

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations between
objects. (In a sense, and in conformance to VonNeumann’s model of a “stored program computer”, code is also represented
by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may
think of it as the object’s address in memory. The is operator compares the identity of two objects; the id() function
returns an integer representing its identity.

CPython uygulama ayrıntısı: For CPython, id(x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., “does it have a length?”) and also defines the
possible values for objects of that type. The type() function returns an object’s type (which is an object itself). Like its
identity, an object’s type is also unchangeable.1

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains a
reference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same as
having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance, numbers,
strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An imp-
lementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation quality
how garbage collection is implemented, as long as no objects are collected that are still reachable.

CPython uygulama ayrıntısı: CPython currently uses a reference-counting scheme with (optional) delayed detection
of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to
collect garbage containing circular references. See the documentation of the gc module for information on controlling
the collection of cyclic garbage. Other implementations act differently and CPython may change. Do not depend on
immediate finalization of objects when they become unreachable (so you should always close files explicitly).

1 It is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can lead to
some very strange behaviour if it is handled incorrectly.

19

The Python Language Reference, Yayım 3.11.13

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally be
collectable. Also note that catching an exception with a try…except statement may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these resources
are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen, such objects also
provide an explicit way to release the external resource, usually a close()method. Programs are strongly recommended
to explicitly close such objects. The try…finally statement and the with statement provide convenient ways to do
this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples, lists and
dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a container, we
imply the values, not the identities of the contained objects; however, when we talk about the mutability of a container,
only the identities of the immediately contained objects are implied. So, if an immutable container (like a tuple) contains
a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense: for
immutable types, operations that compute new values may actually return a reference to any existing object with the same
type and value, while for mutable objects this is not allowed. E.g., after a = 1; b = 1, a and bmay or may not refer
to the same object with the value one, depending on the implementation, but after c = []; d = [], c and d are
guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object
to both c and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages, depending
on the implementation) can define additional types. Future versions of Python may add types to the type hierarchy (e.g.,
rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be provided via the standard
library instead.

Some of the type descriptions below contain a paragraph listing ‘special attributes.’ These are attributes that provide access
to the implementation and are not intended for general use. Their definition may change in the future.

3.2.1 None

This type has a single value. There is a single object with this value. This object is accessed through the built-in name
None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions that don’t explicitly
return anything. Its truth value is false.

3.2.2 NotImplemented

This type has a single value. There is a single object with this value. This object is accessed through the built-in name
NotImplemented. Numeric methods and rich comparison methods should return this value if they do not implement
the operation for the operands provided. (The interpreter will then try the reflected operation, or some other fallback,
depending on the operator.) It should not be evaluated in a boolean context.

See implementing-the-arithmetic-operations for more details.

3.9 sürümünde değişti: Evaluating NotImplemented in a boolean context is deprecated. While it currently evaluates
as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of Python.

20 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

3.2.3 Ellipsis

This type has a single value. There is a single object with this value. This object is accessed through the literal ... or the
built-in name Ellipsis. Its truth value is true.

3.2.4 numbers.Number

These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in functions.
Numeric objects are immutable; once created their value never changes. Python numbers are of course strongly related
to mathematical numbers, but subject to the limitations of numerical representation in computers.

The string representations of the numeric classes, computed by __repr__() and __str__(), have the following
properties:

• They are valid numeric literals which, when passed to their class constructor, produce an object having the value
of the original numeric.

• The representation is in base 10, when possible.

• Leading zeros, possibly excepting a single zero before a decimal point, are not shown.

• Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.

• A sign is shown only when the number is negative.

Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral

These represent elements from the mathematical set of integers (positive and negative).

Not: The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers.

There are two types of integers:

Integers (int)
These represent numbers in an unlimited range, subject to available (virtual) memory only. For the purpose of shift
and mask operations, a binary representation is assumed, and negative numbers are represented in a variant of 2’s
complement which gives the illusion of an infinite string of sign bits extending to the left.

Booleans (bool)
These represent the truth values False and True. The two objects representing the values False and True are
the only Boolean objects. The Boolean type is a subtype of the integer type, and Boolean values behave like the
values 0 and 1, respectively, in almost all contexts, the exception being that when converted to a string, the strings
"False" or "True" are returned, respectively.

3.2. The standard type hierarchy 21

The Python Language Reference, Yayım 3.11.13

numbers.Real (float)

These represent machine-level double precision floating point numbers. You are at the mercy of the underlying machine
architecture (and C or Java implementation) for the accepted range and handling of overflow. Python does not support
single-precision floating point numbers; the savings in processor and memory usage that are usually the reason for using
these are dwarfed by the overhead of using objects in Python, so there is no reason to complicate the language with two
kinds of floating point numbers.

numbers.Complex (complex)

These represent complex numbers as a pair of machine-level double precision floating point numbers. The same caveats
apply as for floating point numbers. The real and imaginary parts of a complex number z can be retrieved through the
read-only attributes z.real and z.imag.

3.2.5 Sequences

These represent finite ordered sets indexed by non-negative numbers. The built-in function len() returns the number
of items of a sequence. When the length of a sequence is n, the index set contains the numbers 0, 1, …, n-1. Item i of
sequence a is selected by a[i]. Some sequences, including built-in sequences, interpret negative subscripts by adding
the sequence length. For example, a[-2] equals a[n-2], the second to last item of sequence a with length n.

Sequences also support slicing: a[i:j] selects all items with index k such that i < = k < j. When used as an expression,
a slice is a sequence of the same type. The comment above about negative indexes also applies to negative slice positions.

Some sequences also support “extended slicing” with a third “step” parameter: a[i:j:k] selects all items of a with
index x where x = i + n*k, n > = 0 and i < = x < j.

Sequences are distinguished according to their mutability:

Immutable sequences

An object of an immutable sequence type cannot change once it is created. (If the object contains references to other
objects, these other objects may be mutable and may be changed; however, the collection of objects directly referenced
by an immutable object cannot change.)

The following types are immutable sequences:

Strings
A string is a sequence of values that represent Unicode code points. All the code points in the range U+0000
- U+10FFFF can be represented in a string. Python doesn’t have a char type; instead, every code point in the
string is represented as a string object with length 1. The built-in function ord() converts a code point from its
string form to an integer in the range 0 - 10FFFF; chr() converts an integer in the range 0 - 10FFFF to
the corresponding length 1 string object. str.encode() can be used to convert a str to bytes using the
given text encoding, and bytes.decode() can be used to achieve the opposite.

Tuples
The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by comma-separated
lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affixing a comma to an expression (an
expression by itself does not create a tuple, since parentheses must be usable for grouping of expressions). An
empty tuple can be formed by an empty pair of parentheses.

Bytes
A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range 0 < = x <
256. Bytes literals (like b'abc') and the built-in bytes() constructor can be used to create bytes objects. Also,
bytes objects can be decoded to strings via the decode() method.

22 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

Mutable sequences

Mutable sequences can be changed after they are created. The subscription and slicing notations can be used as the target
of assignment and del (delete) statements.

Not: The collections and array module provide additional examples of mutable sequence types.

There are currently two intrinsic mutable sequence types:

Lists
The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of expressions
in square brackets. (Note that there are no special cases needed to form lists of length 0 or 1.)

Byte Arrays
A bytearray object is a mutable array. They are created by the built-in bytearray() constructor. Aside from
being mutable (and hence unhashable), byte arrays otherwise provide the same interface and functionality as im-
mutable bytes objects.

3.2.6 Set types

These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any subscript.
However, they can be iterated over, and the built-in function len() returns the number of items in a set. Common uses
for sets are fast membership testing, removing duplicates from a sequence, and computing mathematical operations such
as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the normal rules
for numeric comparison: if two numbers compare equal (e.g., 1 and 1.0), only one of them can be contained in a set.

There are currently two intrinsic set types:

Sets
These represent a mutable set. They are created by the built-in set() constructor and can be modified afterwards
by several methods, such as add().

Frozen sets
These represent an immutable set. They are created by the built-in frozenset() constructor. As a frozenset is
immutable and hashable, it can be used again as an element of another set, or as a dictionary key.

3.2.7 Mappings

These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a[k] selects the item indexed
by k from the mapping a; this can be used in expressions and as the target of assignments or del statements. The built-in
function len() returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

3.2. The standard type hierarchy 23

The Python Language Reference, Yayım 3.11.13

Dictionaries

These represent finite sets of objects indexed by nearly arbitrary values. The only types of values not acceptable as keys
are values containing lists or dictionaries or other mutable types that are compared by value rather than by object identity,
the reason being that the efficient implementation of dictionaries requires a key’s hash value to remain constant. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1.0) then
they can be used interchangeably to index the same dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were added sequentially
over the dictionary. Replacing an existing key does not change the order, however removing a key and re-inserting it will
add it to the end instead of keeping its old place.

Dictionaries are mutable; they can be created by the {...} notation (see section Dictionary displays).

The extension modules dbm.ndbm and dbm.gnu provide additional examples of mapping types, as does the
collections module.

3.7 sürümünde değişti: Dictionaries did not preserve insertion order in versions of Python before 3.6. In CPython 3.6,
insertion order was preserved, but it was considered an implementation detail at that time rather than a language guarantee.

3.2.8 Callable types

These are the types to which the function call operation (see section Calls) can be applied:

User-defined functions

A user-defined function object is created by a function definition (see section Function definitions). It should be called
with an argument list containing the same number of items as the function’s formal parameter list.

Special read-only attributes

Attribute Meaning

function.__globals__
A reference to thedictionary that holds the function’s
global variables – the global namespace of the module in
which the function was defined.

function.__closure__
None or a tuple of cells that contain bindings for the
function’s free variables.
A cell object has the attribute cell_contents. This
can be used to get the value of the cell, as well as set the
value.

24 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

Special writable attributes

Most of these attributes check the type of the assigned value:

Attribute Meaning

function.__doc__
The function’s documentation string, or None if unava-
ilable. Not inherited by subclasses.

function.__name__
The function’s name. See also: __name__
attributes.

function.__qualname__
The function’s qualified name. See also:
__qualname__ attributes.
3.3 sürümünde geldi.

function.__module__
The name of the module the function was defined in, or
None if unavailable.

function.__defaults__
A tuple containing default parameter values for those
parameters that have defaults, or None if no parameters
have a default value.

function.__code__
The code object representing the compiled function body.

function.__dict__
The namespace supporting arbitrary function attributes.
See also: __dict__ attributes.

function.__annotations__
A dictionary containing annotations of parameters.
The keys of the dictionary are the parameter names, and
'return' for the return annotation, if provided. See
also: annotations-howto.

function.__kwdefaults__
A dictionary containing defaults for keyword-only
parameters.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach metadata
to functions. Regular attribute dot-notation is used to get and set such attributes.

CPython uygulama ayrıntısı:CPython’s current implementation only supports function attributes on user-defined func-
tions. Function attributes on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object (accessible via the __code__
attribute).

3.2. The standard type hierarchy 25

The Python Language Reference, Yayım 3.11.13

Instance methods

An instance method object combines a class, a class instance and any callable object (normally a user-defined function).

Special read-only attributes:

method.__self__
Refers to the class instance object to which the method is
bound

method.__func__
Refers to the original function object

method.__doc__
The method’s documentation (same as method.
__func__.__doc__). A string if the original
function had a docstring, else None.

method.__name__
The name of the method (same as method.
__func__.__name__)

method.__module__
The name of the module the method was defined in, or
None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of that class),
if that attribute is a user-defined function object or a classmethod object.

When an instance method object is created by retrieving a user-defined function object from a class via one of its instances,
its__self__ attribute is the instance, and themethod object is said to be bound. The newmethod’s__func__ attribute
is the original function object.

When an instancemethod object is created by retrieving a classmethod object from a class or instance, its __self__
attribute is the class itself, and its __func__ attribute is the function object underlying the class method.

When an instance method object is called, the underlying function (__func__) is called, inserting the class instance
(__self__) in front of the argument list. For instance, when C is a class which contains a definition for a function f(),
and x is an instance of C, calling x.f(1) is equivalent to calling C.f(x, 1).

When an instance method object is derived from a classmethod object, the “class instance” stored in __self__
will actually be the class itself, so that calling either x.f(1) or C.f(1) is equivalent to calling f(C,1) where f is
the underlying function.

Note that the transformation from function object to instance method object happens each time the attribute is retrieved
from the instance. In some cases, a fruitful optimization is to assign the attribute to a local variable and call that local
variable. Also notice that this transformation only happens for user-defined functions; other callable objects (and all non-
callable objects) are retrieved without transformation. It is also important to note that user-defined functions which are
attributes of a class instance are not converted to bound methods; this only happens when the function is an attribute of
the class.

26 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

Generator functions

A function or method which uses the yield statement (see section The yield statement) is called a generator function.
Such a function, when called, always returns an iterator object which can be used to execute the body of the function:
calling the iterator’s iterator.__next__() method will cause the function to execute until it provides a value
using the yield statement. When the function executes a return statement or falls off the end, a StopIteration
exception is raised and the iterator will have reached the end of the set of values to be returned.

Coroutine functions

A function or method which is defined using async def is called a coroutine function. Such a function, when called,
returns a coroutine object. It may contain await expressions, as well as async with and async for statements.
See also the Coroutine Objects section.

Asynchronous generator functions

A function or method which is defined using async def and which uses the yield statement is called a asynchronous
generator function. Such a function, when called, returns an asynchronous iterator object which can be used in an async
for statement to execute the body of the function.

Calling the asynchronous iterator’s aiterator.__anext__method will return an awaitablewhich when awaited will
execute until it provides a value using the yield expression. When the function executes an empty return statement
or falls off the end, a StopAsyncIteration exception is raised and the asynchronous iterator will have reached the
end of the set of values to be yielded.

Built-in functions

A built-in function object is a wrapper around a C function. Examples of built-in functions are len() and math.sin()
(math is a standard built-in module). The number and type of the arguments are determined by the C function. Special
read-only attributes:

• __doc__ is the function’s documentation string, or None if unavailable. See function.__doc__.

• __name__ is the function’s name. See function.__name__.

• __self__ is set to None (but see the next item).

• __module__ is the name of the module the function was defined in or None if unavailable. See function.
__module__.

Built-in methods

This is really a different disguise of a built-in function, this time containing an object passed to the C function as an
implicit extra argument. An example of a built-in method is alist.append(), assuming alist is a list object. In this
case, the special read-only attribute __self__ is set to the object denoted by alist. (The attribute has the same semantics
as it does with other instance methods.)

3.2. The standard type hierarchy 27

The Python Language Reference, Yayım 3.11.13

Classes

Classes are callable. These objects normally act as factories for new instances of themselves, but variations are possible
for class types that override __new__(). The arguments of the call are passed to __new__() and, in the typical case,
to __init__() to initialize the new instance.

Class Instances

Instances of arbitrary classes can be made callable by defining a __call__() method in their class.

3.2.9 Modules

Modules are a basic organizational unit of Python code, and are created by the import system as invoked either by the
import statement, or by calling functions such as importlib.import_module() and built-in __import__().
A module object has a namespace implemented by a dictionary object (this is the dictionary referenced by the
__globals__ attribute of functions defined in the module). Attribute references are translated to lookups in this
dictionary, e.g., m.x is equivalent to m.__dict__["x"]. A module object does not contain the code object used to
initialize the module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.__dict__["x"]
= 1.

Predefined (writable) attributes:

__name__
The module’s name.

__doc__
The module’s documentation string, or None if unavailable.

__file__
The pathname of the file from which the module was loaded, if it was loaded from a file. The
__file__ attribute may be missing for certain types of modules, such as C modules that are sta-
tically linked into the interpreter. For extension modules loaded dynamically from a shared library, it’s
the pathname of the shared library file.

__annotations__
A dictionary containing variable annotations collected during module body execution. For best prac-
tices on working with __annotations__, please see annotations-howto.

Special read-only attribute: __dict__ is the module’s namespace as a dictionary object.

CPython uygulama ayrıntısı: Because of the way CPython clears module dictionaries, the module dictionary will be
cleared when the module falls out of scope even if the dictionary still has live references. To avoid this, copy the dictionary
or keep the module around while using its dictionary directly.

28 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

3.2.10 Custom classes

Custom class types are typically created by class definitions (see section Class definitions). A class has a namespace
implemented by a dictionary object. Class attribute references are translated to lookups in this dictionary, e.g., C.x
is translated to C.__dict__["x"] (although there are a number of hooks which allow for other means of locating
attributes). When the attribute name is not found there, the attribute search continues in the base classes. This search
of the base classes uses the C3 method resolution order which behaves correctly even in the presence of ‘diamond’
inheritance structures where there are multiple inheritance paths leading back to a common ancestor. Additional details
on the C3 MRO used by Python can be found in the documentation accompanying the 2.3 release at https://www.python.
org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into an instance
method object whose __self__ attribute is C. When it would yield a staticmethod object, it is transformed into
the object wrapped by the static method object. See section Implementing Descriptors for another way in which attributes
retrieved from a class may differ from those actually contained in its __dict__.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.

A class object can be called (see above) to yield a class instance (see below).

Special attributes:

__name__
The class name.

__module__
The name of the module in which the class was defined.

__dict__
The dictionary containing the class’s namespace.

__bases__
A tuple containing the base classes, in the order of their occurrence in the base class list.

__doc__
The class’s documentation string, or None if undefined.

__annotations__
A dictionary containing variable annotations collected during class body execution. For best practices
on working with __annotations__, please see annotations-howto.

3.2.11 Class instances

A class instance is created by calling a class object (see above). A class instance has a namespace implemented as a
dictionary which is the first place in which attribute references are searched. When an attribute is not found there, and
the instance’s class has an attribute by that name, the search continues with the class attributes. If a class attribute is found
that is a user-defined function object, it is transformed into an instance method object whose __self__ attribute is
the instance. Static method and class method objects are also transformed; see above under “Classes”. See section Imp-
lementing Descriptors for another way in which attributes of a class retrieved via its instances may differ from the objects
actually stored in the class’s __dict__. If no class attribute is found, and the object’s class has a __getattr__()
method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has a
__setattr__() or __delattr__() method, this is called instead of updating the instance dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special names. See
section Special method names.

3.2. The standard type hierarchy 29

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Yayım 3.11.13

Special attributes: __dict__ is the attribute dictionary; __class__ is the instance’s class.

3.2.12 I/O objects (also known as file objects)

A file object represents an open file. Various shortcuts are available to create file objects: the open() built-in functi-
on, and also os.popen(), os.fdopen(), and the makefile() method of socket objects (and perhaps by other
functions or methods provided by extension modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to the interp-
reter’s standard input, output and error streams; they are all open in text mode and therefore follow the interface defined
by the io.TextIOBase abstract class.

3.2.13 Internal types

A few types used internally by the interpreter are exposed to the user. Their definitions may change with future versions
of the interpreter, but they are mentioned here for completeness.

Code objects

Code objects represent byte-compiled executable Python code, or bytecode. The difference between a code object and a
function object is that the function object contains an explicit reference to the function’s globals (the module in which it
was defined), while a code object contains no context; also the default argument values are stored in the function object,
not in the code object (because they represent values calculated at run-time). Unlike function objects, code objects are
immutable and contain no references (directly or indirectly) to mutable objects.

30 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

Special read-only attributes

codeobject.co_name
The function name

codeobject.co_qualname
The fully qualified function name
3.11 sürümünde geldi.

codeobject.co_argcount
The total number of positional parameters (including
positional-only parameters and parameters with default
values) that the function has

codeobject.co_posonlyargcount
The number of positional-only parameters (including ar-
guments with default values) that the function has

codeobject.co_kwonlyargcount
The number of keyword-only parameters (including argu-
ments with default values) that the function has

codeobject.co_nlocals
The number of local variables used by the function (inc-
luding parameters)

codeobject.co_varnames
A tuple containing the names of the local variables in
the function (starting with the parameter names)

codeobject.co_cellvars
A tuple containing the names of local variables that are
referenced by nested functions inside the function

codeobject.co_freevars
A tuple containing the names of free variables in the
function

codeobject.co_code
A string representing the sequence of bytecode instructi-
ons in the function

codeobject.co_consts
A tuple containing the literals used by the bytecode in
the function

codeobject.co_names
A tuple containing the names used by the bytecode in
the function

codeobject.co_filename
The name of the file from which the code was compiled

codeobject.co_firstlineno
The line number of the first line of the function

codeobject.co_lnotab
A string encoding the mapping from bytecode offsets to
line numbers. For details, see the source code of the in-
terpreter.

codeobject.co_stacksize
The required stack size of the code object

codeobject.co_flags
An integer encoding a number of flags for the interp-
reter.

3.2. The standard type hierarchy 31

The Python Language Reference, Yayım 3.11.13

The following flag bits are defined for co_flags: bit 0x04 is set if the function uses the *arguments syntax to
accept an arbitrary number of positional arguments; bit 0x08 is set if the function uses the **keywords syntax to
accept arbitrary keyword arguments; bit 0x20 is set if the function is a generator. See inspect-module-co-flags for details
on the semantics of each flags that might be present.

Future feature declarations (from __future__ import division) also use bits in co_flags to indicate
whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if the function was compi-
led with future division enabled; bits 0x10 and 0x1000 were used in earlier versions of Python.

Other bits in co_flags are reserved for internal use.

If a code object represents a function, the first item in co_consts is the documentation string of the function, or None
if undefined.

Methods on code objects

codeobject.co_positions()

Returns an iterable over the source code positions of each bytecode instruction in the code object.

The iterator returns tuples containing the (start_line, end_line, start_column,
end_column). The i-th tuple corresponds to the position of the source code that compiled to the i-th
code unit. Column information is 0-indexed utf-8 byte offsets on the given source line.

This positional information can be missing. A non-exhaustive lists of cases where this may happen:

• Running the interpreter with -X no_debug_ranges.

• Loading a pyc file compiled while using -X no_debug_ranges.

• Position tuples corresponding to artificial instructions.

• Line and column numbers that can’t be represented due to implementation specific limitations.

When this occurs, some or all of the tuple elements can be None.

3.11 sürümünde geldi.

Not: This feature requires storing column positions in code objects which may result in a small increase of
disk usage of compiled Python files or interpreter memory usage. To avoid storing the extra information and/or
deactivate printing the extra traceback information, the -X no_debug_ranges command line flag or the
PYTHONNODEBUGRANGES environment variable can be used.

codeobject.co_lines()

Returns an iterator that yields information about successive ranges of bytecodes. Each item yielded is a (start,
end, lineno) tuple:

• start (an int) represents the offset (inclusive) of the start of the bytecode range

• end (an int) represents the offset (exclusive) of the end of the bytecode range

• lineno is an int representing the line number of the bytecode range, or None if the bytecodes in the given
range have no line number

The items yielded will have the following properties:

• The first range yielded will have a start of 0.

• The (start, end) ranges will be non-decreasing and consecutive. That is, for any pair of tuples, the
start of the second will be equal to the end of the first.

32 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

• No range will be backwards: end > = start for all triples.

• The last tuple yielded will have end equal to the size of the bytecode.

Zero-width ranges, where start == end, are allowed. Zero-width ranges are used for lines that are present in
the source code, but have been eliminated by the bytecode compiler.

3.10 sürümünde geldi.

Ayrıca bakınız:

PEP 626 - Precise line numbers for debugging and other tools.
The PEP that introduced the co_lines() method.

codeobject.replace(**kwargs)

Return a copy of the code object with new values for the specified fields.

3.8 sürümünde geldi.

Frame objects

Frame objects represent execution frames. They may occur in traceback objects, and are also passed to registered trace
functions.

Special read-only attributes

frame.f_back
Points to the previous stack frame (towards the caller), or
None if this is the bottom stack frame

frame.f_code
The code object being executed in this frame. Acces-
sing this attribute raises an auditing event object.
__getattr__ with arguments obj and "f_code".

frame.f_locals
The dictionary used by the frame to look up local variab-
les

frame.f_globals
The dictionary used by the frame to look up global vari-
ables

frame.f_builtins
The dictionary used by the frame to look up built-in (int-
rinsic) names

frame.f_lasti
The “precise instruction” of the frame object (this is an
index into the bytecode string of the code object)

3.2. The standard type hierarchy 33

https://peps.python.org/pep-0626/

The Python Language Reference, Yayım 3.11.13

Special writable attributes

frame.f_trace
If not None, this is a function called for various events
during code execution (this is used by debuggers). Nor-
mally an event is triggered for each new source line (see
f_trace_lines).

frame.f_trace_lines
Set this attribute to False to disable triggering a tracing
event for each source line.

frame.f_trace_opcodes
Set this attribute to True to allow per-opcode events to
be requested. Note that this may lead to undefined interp-
reter behaviour if exceptions raised by the trace function
escape to the function being traced.

frame.f_lineno
The current line number of the frame – writing to this
from within a trace function jumps to the given line (only
for the bottom-most frame). A debugger can implement
a Jump command (aka Set Next Statement) by writing to
this attribute.

Frame object methods

Frame objects support one method:

frame.clear()

This method clears all references to local variables held by the frame. Also, if the frame belonged to a generator,
the generator is finalized. This helps break reference cycles involving frame objects (for example when catching an
exception and storing its traceback for later use).

RuntimeError is raised if the frame is currently executing.

3.4 sürümünde geldi.

Traceback objects

Traceback objects represent the stack trace of an exception. A traceback object is implicitly created when an exception
occurs, and may also be explicitly created by calling types.TracebackType.

3.7 sürümünde değişti: Traceback objects can now be explicitly instantiated from Python code.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack, at each unwound
level a traceback object is inserted in front of the current traceback. When an exception handler is entered, the stack trace
is made available to the program. (See section The try statement.) It is accessible as the third item of the tuple returned
by sys.exc_info(), and as the __traceback__ attribute of the caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error stream;
if the interpreter is interactive, it is also made available to the user as sys.last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the tb_next attributes should
be linked to form a full stack trace.

Special read-only attributes:

34 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

traceback.tb_frame
Points to the execution frame of the current level.
Accessing this attribute raises an auditing event
object.__getattr__ with arguments obj and
"tb_frame".

traceback.tb_lineno
Gives the line number where the exception occurred

traceback.tb_lasti
Indicates the “precise instruction”.

The line number and last instruction in the traceback may differ from the line number of its frame object if the exception
occurred in a try statement with no matching except clause or with a finally clause.

traceback.tb_next

The special writable attribute tb_next is the next level in the stack trace (towards the frame where the exception
occurred), or None if there is no next level.

3.7 sürümünde değişti: This attribute is now writable

Slice objects

Slice objects are used to represent slices for __getitem__()methods. They are also created by the built-in slice()
function.

Special read-only attributes: start is the lower bound; stop is the upper bound; step is the step value; each is None
if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices(self, length)
This method takes a single integer argument length and computes information about the slice that the slice object
would describe if applied to a sequence of length items. It returns a tuple of three integers; respectively these are
the start and stop indices and the step or stride length of the slice. Missing or out-of-bounds indices are handled in
a manner consistent with regular slices.

Static method objects

Static method objects provide a way of defeating the transformation of function objects to method objects described
above. A static method object is a wrapper around any other object, usually a user-defined method object. When a static
method object is retrieved from a class or a class instance, the object actually returned is the wrapped object, which is
not subject to any further transformation. Static method objects are also callable. Static method objects are created by the
built-in staticmethod() constructor.

3.2. The standard type hierarchy 35

The Python Language Reference, Yayım 3.11.13

Class method objects

A class method object, like a static method object, is a wrapper around another object that alters the way in which that
object is retrieved from classes and class instances. The behaviour of class method objects upon such retrieval is described
above, under “instance methods” . Class method objects are created by the built-in classmethod() constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subsc-
ripting and slicing) by defining methods with special names. This is Python’s approach to operator overloading, allo-
wing classes to define their own behavior with respect to language operators. For instance, if a class defines a met-
hod named __getitem__(), and x is an instance of this class, then x[i] is roughly equivalent to type(x).
__getitem__(x, i). Except where mentioned, attempts to execute an operation raise an exception when no app-
ropriate method is defined (typically AttributeError or TypeError).

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class sets
__iter__() to None, the class is not iterable, so calling iter() on its instances will raise a TypeError (without
falling back to __getitem__()).2

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented to the
degree that it makes sense for the object being modelled. For example, some sequences may work well with retrieval of
individual elements, but extracting a slice may not make sense. (One example of this is the NodeList interface in the
W3C’s Document Object Model.)

3.3.1 Basic customization

object.__new__(cls[, ...])
Called to create a new instance of class cls. __new__() is a static method (special-cased so you need not declare
it as such) that takes the class of which an instance was requested as its first argument. The remaining arguments
are those passed to the object constructor expression (the call to the class). The return value of __new__() should
be the new object instance (usually an instance of cls).

Typical implementations create a new instance of the class by invoking the superclass’s __new__() method
using super().__new__(cls[, ...]) with appropriate arguments and then modifying the newly created
instance as necessary before returning it.

If __new__() is invoked during object construction and it returns an instance of cls, then the new instance’s
__init__() method will be invoked like __init__(self[, ...]), where self is the new instance and
the remaining arguments are the same as were passed to the object constructor.

If __new__() does not return an instance of cls, then the new instance’s __init__() method will not be
invoked.

__new__() is intendedmainly to allow subclasses of immutable types (like int, str, or tuple) to customize instance
creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init__(self[, ...])
Called after the instance has been created (by __new__()), but before it is returned to the caller. The arguments
are those passed to the class constructor expression. If a base class has an __init__() method, the derived
class’s __init__() method, if any, must explicitly call it to ensure proper initialization of the base class part of
the instance; for example: super().__init__([args...]).

2 The __hash__(), __iter__(), __reversed__(), and __contains__()methods have special handling for this; others will still raise
a TypeError, but may do so by relying on the behavior that None is not callable.

36 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

Because __new__() and __init__() work together in constructing objects (__new__() to create it, and
__init__() to customize it), no non-None value may be returned by __init__(); doing so will cause a
TypeError to be raised at runtime.

object.__del__(self)
Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor. If a
base class has a __del__() method, the derived class’s __del__() method, if any, must explicitly call it to
ensure proper deletion of the base class part of the instance.

It is possible (though not recommended!) for the __del__() method to postpone destruction of the instan-
ce by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether
__del__() is called a second time when a resurrected object is about to be destroyed; the current CPython
implementation only calls it once.

It is not guaranteed that __del__() methods are called for objects that still exist when the interpreter exits.

Not: del x doesn’t directly call x.__del__() — the former decrements the reference count for x by one,
and the latter is only called when x’s reference count reaches zero.

CPython uygulama ayrıntısı: It is possible for a reference cycle to prevent the reference count of an object from
going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage collector. A common
cause of reference cycles is when an exception has been caught in a local variable. The frame’s locals then reference
the exception, which references its own traceback, which references the locals of all frames caught in the traceback.

Ayrıca bakınız:

Documentation for the gc module.

Uyarı: Due to the precarious circumstances under which __del__() methods are invoked, exceptions that
occur during their execution are ignored, and a warning is printed to sys.stderr instead. In particular:

• __del__() can be invoked when arbitrary code is being executed, including from any arbitrary thread.
If __del__() needs to take a lock or invoke any other blocking resource, it may deadlock as the
resource may already be taken by the code that gets interrupted to execute __del__().

• __del__() can be executed during interpreter shutdown. As a consequence, the global variables it
needs to access (including other modules) may already have been deleted or set to None. Python gu-
arantees that globals whose name begins with a single underscore are deleted from their module before
other globals are deleted; if no other references to such globals exist, this may help in assuring that
imported modules are still available at the time when the __del__() method is called.

object.__repr__(self)
Called by the repr() built-in function to compute the “official” string representation of an object. If at all possib-
le, this should look like a valid Python expression that could be used to recreate an object with the same value (given
an appropriate environment). If this is not possible, a string of the form <...some useful description.
..> should be returned. The return value must be a string object. If a class defines __repr__() but not
__str__(), then __repr__() is also used when an “informal” string representation of instances of that class
is required.

This is typically used for debugging, so it is important that the representation is information-rich and unambiguous.

object.__str__(self)
Called by str(object) and the built-in functions format() and print() to compute the “informal” or
nicely printable string representation of an object. The return value must be a string object.

3.3. Special method names 37

The Python Language Reference, Yayım 3.11.13

This method differs from object.__repr__() in that there is no expectation that __str__() return a valid
Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object.__repr__().

object.__bytes__(self)
Called by bytes to compute a byte-string representation of an object. This should return a bytes object.

object.__format__(self, format_spec)
Called by the format() built-in function, and by extension, evaluation of formatted string literals and the str.
format() method, to produce a “formatted” string representation of an object. The format_spec argument is a
string that contains a description of the formatting options desired. The interpretation of the format_spec argument
is up to the type implementing __format__(), however most classes will either delegate formatting to one of
the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.

The return value must be a string object.

3.4 sürümünde değişti: The __format__ method of object itself raises a TypeError if passed any non-empty
string.

3.7 sürümünde değişti: object.__format__(x, '') is now equivalent to str(x) rather than
format(str(x), '').

object.__lt__(self, other)
object.__le__(self, other)
object.__eq__(self, other)
object.__ne__(self, other)
object.__gt__(self, other)
object.__ge__(self, other)

These are the so-called “rich comparison” methods. The correspondence between operator symbols and method
names is as follows: x<y calls x.__lt__(y), x< =y calls x.__le__(y), x ==y calls x.__eq__(y),
x!=y calls x.__ne__(y), x>y calls x.__gt__(y), and x> =y calls x.__ge__(y).

A rich comparison methodmay return the singleton NotImplemented if it does not implement the operation for
a given pair of arguments. By convention, False and True are returned for a successful comparison. However,
these methods can return any value, so if the comparison operator is used in a Boolean context (e.g., in the condition
of an if statement), Python will call bool() on the value to determine if the result is true or false.

By default, object implements __eq__() by using is, returning NotImplemented in the case of a fal-
se comparison: True if x is y else NotImplemented. For __ne__(), by default it delegates to
__eq__() and inverts the result unless it is NotImplemented. There are no other implied relationships among
the comparison operators or default implementations; for example, the truth of (x<y or x ==y) does not
imply x< =y. To automatically generate ordering operations from a single root operation, see functools.
total_ordering().

See the paragraph on __hash__() for some important notes on creating hashable objects which support custom
comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support the
operation but the right argument does); rather,__lt__() and__gt__() are each other’s reflection,__le__()
and __ge__() are each other’s reflection, and __eq__() and __ne__() are their own reflection. If the
operands are of different types, and the right operand’s type is a direct or indirect subclass of the left operand’s
type, the reflectedmethod of the right operand has priority, otherwise the left operand’s method has priority. Virtual
subclassing is not considered.

When no appropriate method returns any value other than NotImplemented, the == and != operators will fall
back to is and is not, respectively.

38 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

object.__hash__(self)
Called by built-in function hash() and for operations on members of hashed collections including set,
frozenset, and dict. The __hash__() method should return an integer. The only required property is
that objects which compare equal have the same hash value; it is advised to mix together the hash values of the
components of the object that also play a part in comparison of objects by packing them into a tuple and hashing
the tuple. Example:

def __hash__(self):
return hash((self.name, self.nick, self.color))

Not: hash() truncates the value returned from an object’s custom __hash__() method to the size of a
Py_ssize_t. This is typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s __hash__()
must interoperate on builds of different bit sizes, be sure to check the width on all supported builds. An easy way
to do this is with python -c "import sys; print(sys.hash_info.width)".

If a class does not define an __eq__() method it should not define a __hash__() operation either; if it
defines __eq__() but not __hash__(), its instances will not be usable as items in hashable collections. If a
class defines mutable objects and implements an __eq__() method, it should not implement __hash__(),
since the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s hash
value changes, it will be in the wrong hash bucket).

User-defined classes have __eq__() and __hash__() methods by default; with them, all objects compare
unequal (except with themselves) and x.__hash__() returns an appropriate value such that x == y implies
both that x is y and hash(x) == hash(y).

A class that overrides __eq__() and does not define __hash__() will have its __hash__() implicitly set
to None. When the __hash__() method of a class is None, instances of the class will raise an appropriate
TypeError when a program attempts to retrieve their hash value, and will also be correctly identified as unhas-
hable when checking isinstance(obj, collections.abc.Hashable).

If a class that overrides __eq__() needs to retain the implementation of __hash__() from a parent class, the
interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__.

If a class that does not override __eq__() wishes to suppress hash support, it should include __hash__ =
None in the class definition. A class which defines its own __hash__() that explicitly raises a TypeError
would be incorrectly identified as hashable by an isinstance(obj, collections.abc.Hashable)
call.

Not: By default, the __hash__() values of str and bytes objects are “salted” with an unpredictable random value.
Although they remain constant within an individual Python process, they are not predictable between repeated
invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully chosen inputs that exploit the
worst case performance of a dict insertion, O(n2) complexity. See http://ocert.org/advisories/ocert-2011-003.html
for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this ordering (and
it typically varies between 32-bit and 64-bit builds).

See also PYTHONHASHSEED.

3.3 sürümünde değişti: Hash randomization is enabled by default.

object.__bool__(self)
Called to implement truth value testing and the built-in operation bool(); should return False or True. When

3.3. Special method names 39

http://ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, Yayım 3.11.13

this method is not defined, __len__() is called, if it is defined, and the object is considered true if its result is
nonzero. If a class defines neither __len__() nor __bool__(), all its instances are considered true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion of
x.name) for class instances.

object.__getattr__(self, name)
Called when the default attribute access fails with an AttributeError (either __getattribute__()
raises an AttributeError because name is not an instance attribute or an attribute in the class tree for self;
or __get__() of a name property raises AttributeError). This method should either return the (computed)
attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, __getattr__() is not called. (This is an
intentional asymmetry between __getattr__() and __setattr__().) This is done both for efficiency
reasons and because otherwise __getattr__() would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance attribute
dictionary (but instead inserting them in another object). See the __getattribute__() method below for a
way to actually get total control over attribute access.

object.__getattribute__(self, name)
Called unconditionally to implement attribute accesses for instances of the class. If the class also defi-
nes __getattr__(), the latter will not be called unless __getattribute__() either calls it expli-
citly or raises an AttributeError. This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation should
always call the base class method with the same name to access any attributes it needs, for example, object.
__getattribute__(self, name).

Not: This method may still be bypassed when looking up special methods as the result of implicit invocation via
language syntax or built-in functions. See Special method lookup.

For certain sensitive attribute accesses, raises an auditing event object.__getattr__ with arguments obj
and name.

object.__setattr__(self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store the
value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If __setattr__() wants to assign to an instance attribute, it should call the base class method with the same
name, for example, object.__setattr__(self, name, value).

For certain sensitive attribute assignments, raises an auditing event object.__setattr__ with arguments
obj, name, value.

object.__delattr__(self, name)
Like __setattr__() but for attribute deletion instead of assignment. This should only be implemented if del
obj.name is meaningful for the object.

For certain sensitive attribute deletions, raises an auditing event object.__delattr__ with arguments obj
and name.

40 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

object.__dir__(self)
Called when dir() is called on the object. An iterable must be returned. dir() converts the returned iterable
to a list and sorts it.

Customizing module attribute access

Special names __getattr__ and __dir__ can be also used to customize access to module attributes. The
__getattr__ function at the module level should accept one argument which is the name of an attribute and re-
turn the computed value or raise an AttributeError. If an attribute is not found on a module object through the
normal lookup, i.e. object.__getattribute__(), then __getattr__ is searched in the module __dict__
before raising an AttributeError. If found, it is called with the attribute name and the result is returned.

The __dir__ function should accept no arguments, and return an iterable of strings that represents the names accessible
on module. If present, this function overrides the standard dir() search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the
__class__ attribute of a module object to a subclass of types.ModuleType. For example:

import sys
from types import ModuleType

class VerboseModule(ModuleType):
def __repr__(self):

return f'Verbose {self.__name__}'

def __setattr__(self, attr, value):
print(f'Setting {attr}...')
super().__setattr__(attr, value)

sys.modules[__name__].__class__ = VerboseModule

Not: Defining module __getattr__ and setting module __class__ only affect lookups made using the attribute
access syntax – directly accessing the module globals (whether by code within the module, or via a reference to the
module’s globals dictionary) is unaffected.

3.5 sürümünde değişti: __class__ module attribute is now writable.

3.7 sürümünde geldi: __getattr__ and __dir__ module attributes.

Ayrıca bakınız:

PEP 562 - Module __getattr__ and __dir__
Describes the __getattr__ and __dir__ functions on modules.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for one
of its parents). In the examples below, “the attribute” refers to the attribute whose name is the key of the property in the
owner class’ __dict__.

object.__get__(self, instance, owner =None)
Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance attribute
access). The optional owner argument is the owner class, while instance is the instance that the attribute was accessed
through, or None when the attribute is accessed through the owner.

3.3. Special method names 41

https://peps.python.org/pep-0562/

The Python Language Reference, Yayım 3.11.13

This method should return the computed attribute value or raise an AttributeError exception.

PEP 252 specifies that __get__() is callable with one or two arguments. Python’s own built-in descriptors
support this specification; however, it is likely that some third-party tools have descriptors that require both ar-
guments. Python’s own __getattribute__() implementation always passes in both arguments whether they
are required or not.

object.__set__(self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.

Note, adding __set__() or __delete__() changes the kind of descriptor to a “data descriptor”. See Invoking
Descriptors for more details.

object.__delete__(self, instance)
Called to delete the attribute on an instance instance of the owner class.

Instances of descriptors may also have the __objclass__ attribute present:

object.__objclass__

The attribute __objclass__ is interpreted by the inspect module as specifying the class where this object
was defined (setting this appropriately can assist in runtime introspection of dynamic class attributes). For callables,
it may indicate that an instance of the given type (or a subclass) is expected or required as the first positional
argument (for example, CPython sets this attribute for unbound methods that are implemented in C).

Invoking Descriptors

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden
by methods in the descriptor protocol: __get__(), __set__(), and __delete__(). If any of those methods are
defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance, a.x
has a lookup chain starting with a.__dict__['x'], then type(a).__dict__['x'], and continuing through
the base classes of type(a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on which
descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a.x. How the arguments are assembled depends on a:

Direct Call
The simplest and least common call is when user code directly invokes a descriptor method: x.__get__(a).

Instance Binding
If binding to an object instance, a.x is transformed into the call: type(a).__dict__['x'].__get__(a,
type(a)).

Class Binding
If binding to a class, A.x is transformed into the call: A.__dict__['x'].__get__(None, A).

Super Binding
A dotted lookup such as super(A, a).x searches a.__class__.__mro__ for a base class B following A
and then returns B.__dict__['x'].__get__(a, A). If not a descriptor, x is returned unchanged.

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined. A
descriptor can define any combination of __get__(), __set__() and __delete__(). If it does not define
__get__(), then accessing the attribute will return the descriptor object itself unless there is a value in the object’s
instance dictionary. If the descriptor defines __set__() and/or __delete__(), it is a data descriptor; if it defi-
nes neither, it is a non-data descriptor. Normally, data descriptors define both __get__() and __set__(), while

42 Bölüm 3. Data model

https://peps.python.org/pep-0252/

The Python Language Reference, Yayım 3.11.13

non-data descriptors have just the __get__() method. Data descriptors with __get__() and __set__() (and/or
__delete__()) defined always override a redefinition in an instance dictionary. In contrast, non-data descriptors can
be overridden by instances.

Python methods (including those decorated with @staticmethod and @classmethod) are implemented as non-
data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to acquire
behaviors that differ from other instances of the same class.

The property() function is implemented as a data descriptor. Accordingly, instances cannot override the behavior of
a property.

__slots__

__slots__ allow us to explicitly declare data members (like properties) and deny the creation of __dict__ and __we-
akref__ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using __dict__ can be significant. Attribute lookup speed can be significantly improved as well.

object.__slots__

This class variable can be assigned a string, iterable, or sequence of strings with variable names used by instan-
ces. __slots__ reserves space for the declared variables and prevents the automatic creation of __dict__ and
__weakref__ for each instance.

Notes on using __slots__:

• When inheriting from a class without __slots__, the __dict__ and __weakref__ attribute of the instances will
always be accessible.

• Without a __dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition.
Attempts to assign to an unlisted variable name raisesAttributeError. If dynamic assignment of new variables
is desired, then add '__dict__' to the sequence of strings in the __slots__ declaration.

• Without a __weakref__ variable for each instance, classes defining __slots__ do not support weak references
to its instances. If weak reference support is needed, then add '__weakref__' to the sequence of strings in the
__slots__ declaration.

• __slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class attri-
butes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class attribute
would overwrite the descriptor assignment.

• The action of a __slots__ declaration is not limited to the class where it is defined. __slots__ declared in parents
are available in child classes. However, child subclasses will get a __dict__ and __weakref__ unless they also
define __slots__ (which should only contain names of any additional slots).

• If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is inaccessible
(except by retrieving its descriptor directly from the base class). This renders themeaning of the program undefined.
In the future, a check may be added to prevent this.

• TypeErrorwill be raised if nonempty __slots__ are defined for a class derived from a "variable-length"
built-in type such as int, bytes, and tuple.

• Any non-string iterable may be assigned to __slots__.

• If a dictionary is used to assign __slots__, the dictionary keys will be used as the slot names. The values of
the dictionary can be used to provide per-attribute docstrings that will be recognised by inspect.getdoc()
and displayed in the output of help().

• __class__ assignment works only if both classes have the same __slots__.

3.3. Special method names 43

The Python Language Reference, Yayım 3.11.13

• Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have attri-
butes created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

• If an iterator is used for __slots__ then a descriptor is created for each of the iterator’s values. However, the __slots__
attribute will be an empty iterator.

3.3.3 Customizing class creation

Whenever a class inherits from another class, __init_subclass__() is called on the parent class. This way, it is
possible to write classes which change the behavior of subclasses. This is closely related to class decorators, but where class
decorators only affect the specific class they’re applied to, __init_subclass__ solely applies to future subclasses
of the class defining the method.

classmethod object.__init_subclass__(cls)
This method is called whenever the containing class is subclassed. cls is then the new subclass. If defined as a
normal instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent class’s __init_subclass__.
For compatibility with other classes using __init_subclass__, one should take out the needed keyword
arguments and pass the others over to the base class, as in:

class Philosopher:
def __init_subclass__(cls, /, default_name, **kwargs):

super().__init_subclass__(**kwargs)
cls.default_name = default_name

class AustralianPhilosopher(Philosopher, default_name="Bruce"):
pass

The default implementation object.__init_subclass__ does nothing, but raises an error if it is called
with any arguments.

Not: The metaclass hint metaclass is consumed by the rest of the type machinery, and is never passed to
__init_subclass__ implementations. The actual metaclass (rather than the explicit hint) can be accessed as
type(cls).

3.6 sürümünde geldi.

When a class is created, type.__new__() scans the class variables and makes callbacks to those with a
__set_name__() hook.

object.__set_name__(self, owner, name)
Automatically called at the time the owning class owner is created. The object has been assigned to name in that
class:

class A:
x = C() # Automatically calls: x.__set_name__(A, 'x')

If the class variable is assigned after the class is created, __set_name__() will not be called automatically. If
needed, __set_name__() can be called directly:

class A:
pass

c = C()

(sonraki sayfaya devam)

44 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

A.x = c # The hook is not called
c.__set_name__(A, 'x') # Manually invoke the hook

See Creating the class object for more details.

3.6 sürümünde geldi.

Metaclasses

By default, classes are constructed using type(). The class body is executed in a new namespace and the class name is
bound locally to the result of type(name, bases, namespace).

The class creation process can be customized by passing the metaclass keyword argument in the class definition line,
or by inheriting from an existing class that included such an argument. In the following example, both MyClass and
MySubclass are instances of Meta:

class Meta(type):
pass

class MyClass(metaclass=Meta):
pass

class MySubclass(MyClass):
pass

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations
described below.

When a class definition is executed, the following steps occur:

• MRO entries are resolved;

• the appropriate metaclass is determined;

• the class namespace is prepared;

• the class body is executed;

• the class object is created.

Resolving MRO entries

object.__mro_entries__(self, bases)
If a base that appears in a class definition is not an instance of type, then an __mro_entries__()method is
searched on the base. If an __mro_entries__() method is found, the base is substituted with the result of a
call to __mro_entries__() when creating the class. The method is called with the original bases tuple passed
to the bases parameter, and must return a tuple of classes that will be used instead of the base. The returned tuple
may be empty: in these cases, the original base is ignored.

Ayrıca bakınız:

types.resolve_bases()
Dynamically resolve bases that are not instances of type.

PEP 560
Core support for typing module and generic types.

3.3. Special method names 45

https://peps.python.org/pep-0560/

The Python Language Reference, Yayım 3.11.13

Determining the appropriate metaclass

The appropriate metaclass for a class definition is determined as follows:

• if no bases and no explicit metaclass are given, then type() is used;

• if an explicit metaclass is given and it is not an instance of type(), then it is used directly as the metaclass;

• if an instance of type() is given as the explicit metaclass, or bases are defined, then the most derived metaclass
is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type(cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these can-
didate metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail with
TypeError.

Preparing the class namespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass
has a __prepare__ attribute, it is called as namespace = metaclass.__prepare__(name, bases,
**kwds) (where the additional keyword arguments, if any, come from the class definition). The __prepare__ met-
hod should be implemented as aclassmethod. The namespace returned by__prepare__ is passed in to__new__,
but when the final class object is created the namespace is copied into a new dict.

If the metaclass has no __prepare__ attribute, then the class namespace is initialised as an empty ordered mapping.

Ayrıca bakınız:

PEP 3115 - Metaclasses in Python 3000
Introduced the __prepare__ namespace hook

Executing the class body

The class body is executed (approximately) as exec(body, globals(), namespace). The key difference from
a normal call to exec() is that lexical scoping allows the class body (including any methods) to reference names from
the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see names
defined at the class scope. Class variables must be accessed through the first parameter of instance or class methods, or
through the implicit lexically scoped __class__ reference described in the next section.

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass(name, bases, namespace, **kwds) (the additional keywords passed here are the same as tho-
se passed to __prepare__).

This class object is the one that will be referenced by the zero-argument form of super(). __class__ is an implicit
closure reference created by the compiler if any methods in a class body refer to either __class__ or super. This
allows the zero argument form of super() to correctly identify the class being defined based on lexical scoping, while
the class or instance that was used to make the current call is identified based on the first argument passed to the method.

CPython uygulama ayrıntısı: In CPython 3.6 and later, the __class__ cell is passed to the metaclass as a
__classcell__ entry in the class namespace. If present, this must be propagated up to the type.__new__ call in
order for the class to be initialised correctly. Failing to do so will result in a RuntimeError in Python 3.8.

46 Bölüm 3. Data model

https://peps.python.org/pep-3115/

The Python Language Reference, Yayım 3.11.13

When using the default metaclass type, or any metaclass that ultimately calls type.__new__, the following additional
customization steps are invoked after creating the class object:

1) The type.__new__ method collects all of the attributes in the class namespace that define a
__set_name__() method;

2) Those __set_name__ methods are called with the class being defined and the assigned name of that particular
attribute;

3) The __init_subclass__() hook is called on the immediate parent of the new class in its method resolution
order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the resulting
object is bound in the local namespace as the defined class.

When a new class is created by type.__new__, the object provided as the namespace parameter is copied to a new
ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which becomes the
__dict__ attribute of the class object.

Ayrıca bakınız:

PEP 3135 - New super
Describes the implicit __class__ closure reference

Uses for metaclasses

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging, inter-
face checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource loc-
king/synchronization.

3.3.4 Customizing instance and subclass checks

The following methods are used to override the default behavior of the isinstance() and issubclass() built-in
functions.

In particular, the metaclass abc.ABCMeta implements these methods in order to allow the addition of Abstract Base
Classes (ABCs) as “virtual base classes” to any class or type (including built-in types), including other ABCs.

class.__instancecheck__(self, instance)
Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to implement
isinstance(instance, class).

class.__subclasscheck__(self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to implement
issubclass(subclass, class).

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods in
the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case the
instance is itself a class.

Ayrıca bakınız:

PEP 3119 - Introducing Abstract Base Classes
Includes the specification for customizing isinstance() and issubclass() behavior through
__instancecheck__() and __subclasscheck__(), with motivation for this functionality in the con-
text of adding Abstract Base Classes (see the abc module) to the language.

3.3. Special method names 47

https://peps.python.org/pep-3135/
https://peps.python.org/pep-3119/

The Python Language Reference, Yayım 3.11.13

3.3.5 Emulating generic types

When using type annotations, it is often useful to parameterize a generic type using Python’s square-brackets notation. For
example, the annotation list[int] might be used to signify a list in which all the elements are of type int.

Ayrıca bakınız:

PEP 484 - Type Hints
Introducing Python’s framework for type annotations

Generic Alias Types
Documentation for objects representing parameterized generic classes

Generics, user-defined generics and typing.Generic
Documentation on how to implement generic classes that can be parameterized at runtime and understood by static
type-checkers.

A class can generally only be parameterized if it defines the special class method __class_getitem__().

classmethod object.__class_getitem__(cls, key)
Return an object representing the specialization of a generic class by type arguments found in key.

When defined on a class, __class_getitem__() is automatically a class method. As such, there is no need
for it to be decorated with @classmethod when it is defined.

The purpose of __class_getitem__

The purpose of __class_getitem__() is to allow runtime parameterization of standard-library generic classes in
order to more easily apply type hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers, users
should either inherit from a standard library class that already implements __class_getitem__(), or inherit from
typing.Generic, which has its own implementation of __class_getitem__().

Custom implementations of __class_getitem__() on classes defined outside of the standard library may not be
understood by third-party type-checkers such as mypy. Using __class_getitem__() on any class for purposes
other than type hinting is discouraged.

__class_getitem__ versus __getitem__

Usually, the subscription of an object using square brackets will call the __getitem__() instance method defined on
the object’s class. However, if the object being subscribed is itself a class, the class method __class_getitem__()
may be called instead. __class_getitem__() should return a GenericAlias object if it is properly defined.

Presented with the expression obj[x], the Python interpreter follows something like the following process to decide
whether __getitem__() or __class_getitem__() should be called:

from inspect import isclass

def subscribe(obj, x):
"""Return the result of the expression 'obj[x]'"""

class_of_obj = type(obj)

If the class of obj defines __getitem__,
call class_of_obj.__getitem__(obj, x)
if hasattr(class_of_obj, '__getitem__'):

(sonraki sayfaya devam)

48 Bölüm 3. Data model

https://peps.python.org/pep-0484/

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

return class_of_obj.__getitem__(obj, x)

Else, if obj is a class and defines __class_getitem__,
call obj.__class_getitem__(x)
elif isclass(obj) and hasattr(obj, '__class_getitem__'):

return obj.__class_getitem__(x)

Else, raise an exception
else:

raise TypeError(
f"'{class_of_obj.__name__}' object is not subscriptable"

)

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’s metaclass, and
most classes have the type class as their metaclass. type does not define __getitem__(), meaning that expressions
such as list[int], dict[str, float] and tuple[str, bytes] all result in __class_getitem__()
being called:

>>> # list has class "type" as its metaclass, like most classes:
>>> type(list)
<class 'type'>
>>> type(dict) == type(list) == type(tuple) == type(str) == type(bytes)
True
>>> # "list[int]" calls "list.__class_getitem__(int)"
>>> list[int]
list[int]
>>> # list.__class_getitem__ returns a GenericAlias object:
>>> type(list[int])
<class 'types.GenericAlias'>

However, if a class has a custom metaclass that defines __getitem__(), subscribing the class may result in different
behaviour. An example of this can be found in the enum module:

>>> from enum import Enum
>>> class Menu(Enum):
... """A breakfast menu"""
... SPAM = 'spam'
... BACON = 'bacon'
...
>>> # Enum classes have a custom metaclass:
>>> type(Menu)
<class 'enum.EnumMeta'>
>>> # EnumMeta defines __getitem__,
>>> # so __class_getitem__ is not called,
>>> # and the result is not a GenericAlias object:
>>> Menu['SPAM']
<Menu.SPAM: 'spam'>
>>> type(Menu['SPAM'])
<enum 'Menu'>

Ayrıca bakınız:

PEP 560 - Core Support for typing module and generic types
Introducing__class_getitem__(), and outlining when a subscription results in__class_getitem__()
being called instead of __getitem__()

3.3. Special method names 49

https://peps.python.org/pep-0560/

The Python Language Reference, Yayım 3.11.13

3.3.6 Emulating callable objects

object.__call__(self[, args...])
Called when the instance is “called” as a function; if this method is defined, x(arg1, arg2, ...) roughly
translates to type(x).__call__(x, arg1, ...).

3.3.7 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as lists
or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of methods is
used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable keys should
be the integers k for which 0 < = k < N where N is the length of the sequence, or slice objects, which define a
range of items. It is also recommended that mappings provide the methods keys(), values(), items(), get(),
clear(), setdefault(), pop(), popitem(), copy(), and update() behaving similar to those for Pyt-
hon’s standard dictionary objects. The collections.abcmodule provides a MutableMapping abstract base
class to help create those methods from a base set of __getitem__(), __setitem__(), __delitem__(), and
keys(). Mutable sequences should provide methods append(), count(), index(), extend(), insert(),
pop(), remove(), reverse() and sort(), like Python standard list objects. Finally, sequence types sho-
uld implement addition (meaning concatenation) and multiplication (meaning repetition) by defining the methods
__add__(), __radd__(), __iadd__(), __mul__(), __rmul__() and __imul__() described below; they
should not define other numerical operators. It is recommended that both mappings and sequences implement the
__contains__() method to allow efficient use of the in operator; for mappings, in should search the mapping’s
keys; for sequences, it should search through the values. It is further recommended that both mappings and sequences
implement the __iter__() method to allow efficient iteration through the container; for mappings, __iter__()
should iterate through the object’s keys; for sequences, it should iterate through the values.

object.__len__(self)
Called to implement the built-in function len(). Should return the length of the object, an integer > = 0. Also,
an object that doesn’t define a __bool__() method and whose __len__() method returns zero is considered
to be false in a Boolean context.

CPython uygulama ayrıntısı: In CPython, the length is required to be at most sys.maxsize. If the length
is larger than sys.maxsize some features (such as len()) may raise OverflowError. To prevent raising
OverflowError by truth value testing, an object must define a __bool__() method.

object.__length_hint__(self)
Called to implement operator.length_hint(). Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer > = 0. The return value may also be
NotImplemented, which is treated the same as if the __length_hint__ method didn’t exist at all. This
method is purely an optimization and is never required for correctness.

3.4 sürümünde geldi.

Not: Slicing is done exclusively with the following three methods. A call like

a[1:2] = b

is translated to

a[slice(1, 2, None)] = b

and so forth. Missing slice items are always filled in with None.

50 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

object.__getitem__(self, key)
Called to implement evaluation of self[key]. For sequence types, the accepted keys should be integers. Op-
tionally, they may support slice objects as well. Negative index support is also optional. If key is of an inapp-
ropriate type, TypeError may be raised; if key is a value outside the set of indexes for the sequence (after any
special interpretation of negative values), IndexError should be raised. For mapping types, if key is missing
(not in the container), KeyError should be raised.

Not: for loops expect that an IndexError will be raised for illegal indexes to allow proper detection of the
end of the sequence.

Not: When subscripting a class, the special class method __class_getitem__() may be called instead of
__getitem__(). See __class_getitem__ versus __getitem__ for more details.

object.__setitem__(self, key, value)
Called to implement assignment to self[key]. Same note as for __getitem__(). This should only be imp-
lemented for mappings if the objects support changes to the values for keys, or if new keys can be added, or for
sequences if elements can be replaced. The same exceptions should be raised for improper key values as for the
__getitem__() method.

object.__delitem__(self, key)
Called to implement deletion of self[key]. Same note as for __getitem__(). This should only be imple-
mented for mappings if the objects support removal of keys, or for sequences if elements can be removed from the
sequence. The same exceptions should be raised for improper key values as for the __getitem__() method.

object.__missing__(self, key)
Called by dict.__getitem__() to implement self[key] for dict subclasses when key is not in the dicti-
onary.

object.__iter__(self)
This method is called when an iterator is required for a container. This method should return a new iterator object
that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the container.

object.__reversed__(self)
Called (if present) by the reversed() built-in to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.

If the __reversed__()method is not provided, the reversed() built-in will fall back to using the sequence
protocol (__len__() and __getitem__()). Objects that support the sequence protocol should only provi-
de __reversed__() if they can provide an implementation that is more efficient than the one provided by
reversed().

Themembership test operators (in andnot in) are normally implemented as an iteration through a container. However,
container objects can supply the following special method with a more efficient implementation, which also does not
require the object be iterable.

object.__contains__(self, item)
Called to implement membership test operators. Should return true if item is in self, false otherwise. For mapping
objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don’t define __contains__(), the membership test first tries iteration via __iter__(),
then the old sequence iteration protocol via __getitem__(), see this section in the language reference.

3.3. Special method names 51

The Python Language Reference, Yayım 3.11.13

3.3.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should be
left undefined.

object.__add__(self, other)
object.__sub__(self, other)
object.__mul__(self, other)
object.__matmul__(self, other)
object.__truediv__(self, other)
object.__floordiv__(self, other)
object.__mod__(self, other)
object.__divmod__(self, other)

object.__pow__(self, other[, modulo])
object.__lshift__(self, other)
object.__rshift__(self, other)
object.__and__(self, other)
object.__xor__(self, other)
object.__or__(self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod(), pow(),
**, <<, >>, &, ^, |). For instance, to evaluate the expression x + y, where x is an instance of a class that has
an __add__() method, type(x).__add__(x, y) is called. The __divmod__() method should be the
equivalent to using __floordiv__() and __mod__(); it should not be related to __truediv__(). Note
that __pow__() should be defined to accept an optional third argument if the ternary version of the built-in
pow() function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return
NotImplemented.

object.__radd__(self, other)
object.__rsub__(self, other)
object.__rmul__(self, other)
object.__rmatmul__(self, other)
object.__rtruediv__(self, other)
object.__rfloordiv__(self, other)
object.__rmod__(self, other)
object.__rdivmod__(self, other)

object.__rpow__(self, other[, modulo])
object.__rlshift__(self, other)
object.__rrshift__(self, other)
object.__rand__(self, other)
object.__rxor__(self, other)
object.__ror__(self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod(), pow(),
**, <<, >>, &, ^, |) with reflected (swapped) operands. These functions are only called if the left operand does not

52 Bölüm 3. Data model

The Python Language Reference, Yayım 3.11.13

support the corresponding operation3 and the operands are of different types.4 For instance, to evaluate the exp-
ression x - y, where y is an instance of a class that has an __rsub__()method, type(y).__rsub__(y,
x) is called if type(x).__sub__(x, y) returns NotImplemented.

Note that ternary pow() will not try calling __rpow__() (the coercion rules would become too complicated).

Not: If the right operand’s type is a subclass of the left operand’s type and that subclass provides a different
implementation of the reflected method for the operation, this method will be called before the left operand’s
non-reflected method. This behavior allows subclasses to override their ancestors’ operations.

object.__iadd__(self, other)
object.__isub__(self, other)
object.__imul__(self, other)
object.__imatmul__(self, other)
object.__itruediv__(self, other)
object.__ifloordiv__(self, other)
object.__imod__(self, other)

object.__ipow__(self, other[, modulo])
object.__ilshift__(self, other)
object.__irshift__(self, other)
object.__iand__(self, other)
object.__ixor__(self, other)
object.__ior__(self, other)

These methods are called to implement the augmented arithmetic assignments (+ =, -=, * =, @ =, /=, //=,
% =, ** =, << =, >> =, & =, ^=, | =). These methods should attempt to do the operation in-place (modifying
self) and return the result (which could be, but does not have to be, self). If a specificmethod is not defined, or if that
method returns NotImplemented, the augmented assignment falls back to the normal methods. For instance,
if x is an instance of a class with an __iadd__() method, x + = y is equivalent to x = x.__iadd__(y)
. If __iadd__() does not exist, or if x.__iadd__(y) returns NotImplemented, x.__add__(y) and
y.__radd__(x) are considered, as with the evaluation of x + y. In certain situations, augmented assignment
can result in unexpected errors (see faq-augmented-assignment-tuple-error), but this behavior is in fact part of the
data model.

object.__neg__(self)
object.__pos__(self)
object.__abs__(self)

object.__invert__(self)

Called to implement the unary arithmetic operations (-, +, abs() and ~).

object.__complex__(self)
object.__int__(self)

object.__float__(self)
Called to implement the built-in functions complex(), int() and float(). Should return a value of the
appropriate type.

3 “Does not support” here means that the class has no such method, or the method returns NotImplemented. Do not set the method to None if
you want to force fallback to the right operand’s reflected method—that will instead have the opposite effect of explicitly blocking such fallback.

4 For operands of the same type, it is assumed that if the non-reflected method – such as __add__() – fails then the overall operation is not
supported, which is why the reflected method is not called.

3.3. Special method names 53

The Python Language Reference, Yayım 3.11.13

object.__index__(self)
Called to implement operator.index(), and whenever Python needs to losslessly convert the numeric object
to an integer object (such as in slicing, or in the built-in bin(), hex() and oct() functions). Presence of this
method indicates that the numeric object is an integer type. Must return an integer.

If __int__(), __float__() and __complex__() are not defined then corresponding built-in functions
int(), float() and complex() fall back to __index__().

object.__round__(self[, ndigits])
object.__trunc__(self)
object.__floor__(self)
object.__ceil__(self)

Called to implement the built-in function round() and math functions trunc(), floor() and ceil().
Unless ndigits is passed to __round__() all these methods should return the value of the object truncated to an
Integral (typically an int).

The built-in functionint() falls back to__trunc__() if neither__int__() nor__index__() is defined.

3.11 sürümünde değişti: The delegation of int() to __trunc__() is deprecated.

3.3.9 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a with statement. The
context manager handles the entry into, and the exit from, the desired runtime context for the execution of the block of
code. Context managers are normally invoked using the with statement (described in section The with statement), but
can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking reso-
urces, closing opened files, etc.

For more information on context managers, see typecontextmanager.

object.__enter__(self)
Enter the runtime context related to this object. The with statement will bind this method’s return value to the
target(s) specified in the as clause of the statement, if any.

object.__exit__(self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The parameters describe the exception that caused the context to be
exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being propagated),
it should return a true value. Otherwise, the exception will be processed normally upon exit from this method.

Note that __exit__() methods should not reraise the passed-in exception; this is the caller’s responsibility.

Ayrıca bakınız:

PEP 343 - The “with” statement
The specification, background, and examples for the Python with statement.

54 Bölüm 3. Data model

https://peps.python.org/pep-0343/

The Python Language Reference, Yayım 3.11.13

3.3.10 Customizing positional arguments in class pattern matching

When using a class name in a pattern, positional arguments in the pattern are not allowed by default, i.e. case
MyClass(x, y) is typically invalid without special support in MyClass. To be able to use that kind of pattern,
the class needs to define a __match_args__ attribute.

object.__match_args__

This class variable can be assigned a tuple of strings. When this class is used in a class pattern with positional
arguments, each positional argument will be converted into a keyword argument, using the corresponding value in
__match_args__ as the keyword. The absence of this attribute is equivalent to setting it to ().

For example, if MyClass.__match_args__ is ("left", "center", "right") that means that case
MyClass(x, y) is equivalent to case MyClass(left =x, center =y). Note that the number of argu-
ments in the pattern must be smaller than or equal to the number of elements in __match_args__; if it is larger, the
pattern match attempt will raise a TypeError.

3.10 sürümünde geldi.

Ayrıca bakınız:

PEP 634 - Structural Pattern Matching
The specification for the Python match statement.

3.3.11 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an object’s
type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an exception:

>>> class C:
... pass
...
>>> c = C()
>>> c.__len__ = lambda: 5
>>> len(c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods such as __hash__() and __repr__()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the conventional
lookup process, they would fail when invoked on the type object itself:

>>> 1 .__hash__() == hash(1)
True
>>> int.__hash__() == hash(int)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash__' of 'int' object needs an argument

Incorrectly attempting to invoke an unboundmethod of a class in this way is sometimes referred to as ‘metaclass confusion’,
and is avoided by bypassing the instance when looking up special methods:

>>> type(1).__hash__(1) == hash(1)
True
>>> type(int).__hash__(int) == hash(int)
True

3.3. Special method names 55

https://peps.python.org/pep-0634/

The Python Language Reference, Yayım 3.11.13

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the __getattribute__() method even of the object’s metaclass:

>>> class Meta(type):
... def __getattribute__(*args):
... print("Metaclass getattribute invoked")
... return type.__getattribute__(*args)
...
>>> class C(object, metaclass=Meta):
... def __len__(self):
... return 10
... def __getattribute__(*args):
... print("Class getattribute invoked")
... return object.__getattribute__(*args)
...
>>> c = C()
>>> c.__len__() # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__(c) # Explicit lookup via type
Metaclass getattribute invoked
10
>>> len(c) # Implicit lookup
10

Bypassing the __getattribute__() machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be set
on the class object itself in order to be consistently invoked by the interpreter).

3.4 Coroutines

3.4.1 Awaitable Objects

An awaitable object generally implements an __await__() method. Coroutine objects returned from async def
functions are awaitable.

Not: The generator iterator objects returned from generators decorated with types.coroutine() are also awaitable,
but they do not implement __await__().

object.__await__(self)

Must return an iterator. Should be used to implement awaitable objects. For instance, asyncio.Future imp-
lements this method to be compatible with the await expression.

Not: The language doesn’t place any restriction on the type or value of the objects yielded by the iterator returned by
__await__, as this is specific to the implementation of the asynchronous execution framework (e.g. asyncio)
that will be managing the awaitable object.

3.5 sürümünde geldi.

Ayrıca bakınız:

PEP 492 for additional information about awaitable objects.

56 Bölüm 3. Data model

https://peps.python.org/pep-0492/

The Python Language Reference, Yayım 3.11.13

3.4.2 Coroutine Objects

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling __await__() and iterating
over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration, and the
exception’s value attribute holds the return value. If the coroutine raises an exception, it is propagated by the iterator.
Coroutines should not directly raise unhandled StopIteration exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator met-
hods). However, unlike generators, coroutines do not directly support iteration.

3.5.2 sürümünde değişti: It is a RuntimeError to await on a coroutine more than once.

coroutine.send(value)
Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator returned
by __await__(). If value is not None, this method delegates to the send()method of the iterator that caused
the coroutine to suspend. The result (return value, StopIteration, or other exception) is the same as when
iterating over the __await__() return value, described above.

coroutine.throw(value)

coroutine.throw(type[, value[, traceback]])
Raises the specified exception in the coroutine. This method delegates to the throw() method of the iterator
that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspension
point. The result (return value, StopIteration, or other exception) is the same as when iterating over the
__await__() return value, described above. If the exception is not caught in the coroutine, it propagates back
to the caller.

coroutine.close()

Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the
close() method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up. Finally, the co-
routine is marked as having finished executing, even if it was never started.

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4.3 Asynchronous Iterators

An asynchronous iterator can call asynchronous code in its __anext__ method.

Asynchronous iterators can be used in an async for statement.

object.__aiter__(self)

Must return an asynchronous iterator object.

object.__anext__(self)
Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration error
when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline(self):

...

def __aiter__(self):
return self

(sonraki sayfaya devam)

3.4. Coroutines 57

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

async def __anext__(self):
val = await self.readline()
if val == b'':

raise StopAsyncIteration
return val

3.5 sürümünde geldi.

3.7 sürümünde değişti: Prior to Python 3.7, __aiter__() could return an awaitable that would resolve to an asynch-
ronous iterator.

Starting with Python 3.7, __aiter__()must return an asynchronous iterator object. Returning anything else will result
in a TypeError error.

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter__ and
__aexit__ methods.

Asynchronous context managers can be used in an async with statement.

object.__aenter__(self)
Semantically similar to __enter__(), the only difference being that it must return an awaitable.

object.__aexit__(self, exc_type, exc_value, traceback)
Semantically similar to __exit__(), the only difference being that it must return an awaitable.

An example of an asynchronous context manager class:

class AsyncContextManager:
async def __aenter__(self):

await log('entering context')

async def __aexit__(self, exc_type, exc, tb):
await log('exiting context')

3.5 sürümünde geldi.

58 Bölüm 3. Data model

BÖLÜM4

Execution model

4.1 Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is executed as a unit.
The following are blocks: a module, a function body, and a class definition. Each command typed interactively is a block.
A script file (a file given as standard input to the interpreter or specified as a command line argument to the interpreter)
is a code block. A script command (a command specified on the interpreter command line with the -c option) is a code
block. A module run as a top level script (as module __main__) from the command line using a -m argument is also a
code block. The string argument passed to the built-in functions eval() and exec() is a code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for debugging)
and determines where and how execution continues after the code block’s execution has completed.

4.2 Naming and binding

4.2.1 Binding of names

Names refer to objects. Names are introduced by name binding operations.

The following constructs bind names:

• formal parameters to functions,

• class definitions,

• function definitions,

• assignment expressions,

• targets that are identifiers if occurring in an assignment:

– for loop header,

– after as in a with statement, except clause, except* clause, or in the as-pattern in structural pattern
matching,

59

The Python Language Reference, Yayım 3.11.13

– in a capture pattern in structural pattern matching

• import statements.

The import statement of the form from ... import * binds all names defined in the imported module, except
those beginning with an underscore. This form may only be used at the module level.

A target occurring in a del statement is also considered bound for this purpose (though the actual semantics are to unbind
the name).

Each assignment or import statement occurs within a block defined by a class or function definition or at the module level
(the top-level code block).

If a name is bound in a block, it is a local variable of that block, unless declared as nonlocal or global. If a name
is bound at the module level, it is a global variable. (The variables of the module code block are local and global.) If a
variable is used in a code block but not defined there, it is a free variable.

Each occurrence of a name in the program text refers to the binding of that name established by the following name
resolution rules.

4.2.2 Resolution of names

A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that
block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining one,
unless a contained block introduces a different binding for the name.

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes visible
to a code block is called the block’s environment.

When a name is not found at all, a NameError exception is raised. If the current scope is a function scope, and
the name refers to a local variable that has not yet been bound to a value at the point where the name is used, an
UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as
references to the current block. This can lead to errors when a name is used within a block before it is bound. This rule is
subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block. The local
variables of a code block can be determined by scanning the entire text of the block for name binding operations. See the
FAQ entry on UnboundLocalError for examples.

If the global statement occurs within a block, all uses of the names specified in the statement refer to the bindings of
those names in the top-level namespace. Names are resolved in the top-level namespace by searching the global namespace,
i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace of the module
builtins. The global namespace is searched first. If the names are not found there, the builtins namespace is searched.
The global statement must precede all uses of the listed names.

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing scope
for a free variable contains a global statement, the free variable is treated as a global.

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing
function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function
scope.

The namespace for a module is automatically created the first time a module is imported. The main module for a script
is always called __main__.

Class definition blocks and arguments to exec() and eval() are special in the context of name resolution. A class
definition is an executable statement that may use and define names. These references follow the normal rules for name
resolution with an exception that unbound local variables are looked up in the global namespace. The namespace of the
class definition becomes the attribute dictionary of the class. The scope of names defined in a class block is limited to the

60 Bölüm 4. Execution model

The Python Language Reference, Yayım 3.11.13

class block; it does not extend to the code blocks of methods – this includes comprehensions and generator expressions
since they are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + i for i in range(10))

4.2.3 Builtins and restricted execution

CPython uygulama ayrıntısı: Users should not touch __builtins__; it is strictly an implementation detail. Users
wanting to override values in the builtins namespace should import the builtins module and modify its attributes
appropriately.

The builtins namespace associated with the execution of a code block is actually found by looking up the name
__builtins__ in its global namespace; this should be a dictionary or a module (in the latter case the module’s dicti-
onary is used). By default, when in the __main__module, __builtins__ is the built-in module builtins; when
in any other module, __builtins__ is an alias for the dictionary of the builtins module itself.

4.2.4 Interaction with dynamic features

Name resolution of free variables occurs at runtime, not at compile time. This means that the following code will print
42:

i = 10
def f():

print(i)
i = 42
f()

The eval() and exec() functions do not have access to the full environment for resolving names. Names may be
resolved in the local and global namespaces of the caller. Free variables are not resolved in the nearest enclosing names-
pace, but in the global namespace.1 The exec() and eval() functions have optional arguments to override the global
and local namespace. If only one namespace is specified, it is used for both.

4.3 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or
other exceptional conditions. An exception is raised at the point where the error is detected; it may be handled by the
surrounding code block or by any code block that directly or indirectly invoked the code block where the error occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python program
can also explicitly raise an exception with the raise statement. Exception handlers are specified with the try …
except statement. The finally clause of such a statement can be used to specify cleanup code which does not
handle the exception, but is executed whether an exception occurred or not in the preceding code.

Python uses the “termination” model of error handling: an exception handler can find out what happened and continue
execution at an outer level, but it cannot repair the cause of the error and retry the failing operation (except by re-entering
the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its interactive
main loop. In either case, it prints a stack traceback, except when the exception is SystemExit.

1 This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.

4.3. Exceptions 61

The Python Language Reference, Yayım 3.11.13

Exceptions are identified by class instances. The except clause is selected depending on the class of the instance: it
must reference the class of the instance or a non-virtual base class thereof. The instance can be received by the handler
and can carry additional information about the exceptional condition.

Not: Exception messages are not part of the Python API. Their contents may change from one version of Python to the
next without warning and should not be relied on by code which will run under multiple versions of the interpreter.

See also the description of the try statement in section The try statement and raise statement in section The raise
statement.

62 Bölüm 4. Execution model

BÖLÜM5

The import system

Python code in one module gains access to the code in another module by the process of importing it. The import
statement is the most common way of invoking the import machinery, but it is not the only way. Functions such as
importlib.import_module() and built-in __import__() can also be used to invoke the import machinery.

The import statement combines two operations; it searches for the namedmodule, then it binds the results of that search
to a name in the local scope. The search operation of the import statement is defined as a call to the __import__()
function, with the appropriate arguments. The return value of __import__() is used to perform the name binding
operation of the import statement. See the import statement for the exact details of that name binding operation.

A direct call to __import__() performs only the module search and, if found, the module creation operation. While
certain side-effects may occur, such as the importing of parent packages, and the updating of various caches (including
sys.modules), only the import statement performs a name binding operation.

When an import statement is executed, the standard builtin __import__() function is called. Other mechanisms
for invoking the import system (such as importlib.import_module()) may choose to bypass __import__()
and use their own solutions to implement import semantics.

When a module is first imported, Python searches for the module and if found, it creates a module object1, initializing it.
If the named module cannot be found, a ModuleNotFoundError is raised. Python implements various strategies to
search for the named module when the import machinery is invoked. These strategies can be modified and extended by
using various hooks described in the sections below.

3.3 sürümünde değişti: The import system has been updated to fully implement the second phase of PEP 302. There is
no longer any implicit import machinery - the full import system is exposed through sys.meta_path. In addition,
native namespace package support has been implemented (see PEP 420).

1 See types.ModuleType.

63

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/

The Python Language Reference, Yayım 3.11.13

5.1 importlib

The importlib module provides a rich API for interacting with the import system. For example importlib.
import_module() provides a recommended, simpler API than built-in __import__() for invoking the import
machinery. Refer to the importlib library documentation for additional detail.

5.2 Packages

Python has only one type of module object, and all modules are of this type, regardless of whether the module is imple-
mented in Python, C, or something else. To help organize modules and provide a naming hierarchy, Python has a concept
of packages.

You can think of packages as the directories on a file system and modules as files within directories, but don’t take this
analogy too literally since packages and modules need not originate from the file system. For the purposes of this docu-
mentation, we’ll use this convenient analogy of directories and files. Like file system directories, packages are organized
hierarchically, and packages may themselves contain subpackages, as well as regular modules.

It’s important to keep in mind that all packages are modules, but not all modules are packages. Or put another way,
packages are just a special kind of module. Specifically, any module that contains a __path__ attribute is considered
a package.

All modules have a name. Subpackage names are separated from their parent package name by a dot, akin to Python’s
standard attribute access syntax. Thus you might have a package called email, which in turn has a subpackage called
email.mime and a module within that subpackage called email.mime.text.

5.2.1 Regular packages

Python defines two types of packages, regular packages and namespace packages. Regular packages are traditional pac-
kages as they existed in Python 3.2 and earlier. A regular package is typically implemented as a directory containing
an __init__.py file. When a regular package is imported, this __init__.py file is implicitly executed, and the
objects it defines are bound to names in the package’s namespace. The __init__.py file can contain the same Python
code that any other module can contain, and Python will add some additional attributes to the module when it is imported.

For example, the following file system layout defines a top level parent package with three subpackages:

parent/
__init__.py
one/

__init__.py
two/

__init__.py
three/

__init__.py

Importing parent.one will implicitly execute parent/__init__.py and parent/one/__init__.py.
Subsequent imports of parent.two or parent.three will execute parent/two/__init__.py and
parent/three/__init__.py respectively.

64 Bölüm 5. The import system

The Python Language Reference, Yayım 3.11.13

5.2.2 Namespace packages

A namespace package is a composite of various portions, where each portion contributes a subpackage to the parent
package. Portions may reside in different locations on the file system. Portions may also be found in zip files, on the
network, or anywhere else that Python searches during import. Namespace packages may or may not correspond directly
to objects on the file system; they may be virtual modules that have no concrete representation.

Namespace packages do not use an ordinary list for their __path__ attribute. They instead use a custom iterable type
which will automatically perform a new search for package portions on the next import attempt within that package if the
path of their parent package (or sys.path for a top level package) changes.

With namespace packages, there is no parent/__init__.py file. In fact, there may be multiple parent directories
found during import search, where each one is provided by a different portion. Thus parent/onemay not be physically
located next to parent/two. In this case, Python will create a namespace package for the top-level parent package
whenever it or one of its subpackages is imported.

See also PEP 420 for the namespace package specification.

5.3 Searching

To begin the search, Python needs the fully qualified name of the module (or package, but for the purposes of this
discussion, the difference is immaterial) being imported. This name may come from various arguments to the import
statement, or from the parameters to the importlib.import_module() or __import__() functions.

This name will be used in various phases of the import search, and it may be the dotted path to a submodule, e.g. foo.
bar.baz. In this case, Python first tries to import foo, then foo.bar, and finally foo.bar.baz. If any of the
intermediate imports fail, a ModuleNotFoundError is raised.

5.3.1 The module cache

The first place checked during import search is sys.modules. This mapping serves as a cache of all modules that
have been previously imported, including the intermediate paths. So if foo.bar.baz was previously imported, sys.
modules will contain entries for foo, foo.bar, and foo.bar.baz. Each key will have as its value the correspon-
ding module object.

During import, the module name is looked up in sys.modules and if present, the associated value is the module
satisfying the import, and the process completes. However, if the value is None, then a ModuleNotFoundError is
raised. If the module name is missing, Python will continue searching for the module.

sys.modules is writable. Deleting a key may not destroy the associated module (as other modules may hold refe-
rences to it), but it will invalidate the cache entry for the named module, causing Python to search anew for the named
module upon its next import. The key can also be assigned to None, forcing the next import of the module to result in a
ModuleNotFoundError.

Beware though, as if you keep a reference to the module object, invalidate its cache entry in sys.modules, and then
re-import the named module, the two module objects will not be the same. By contrast, importlib.reload() will
reuse the same module object, and simply reinitialise the module contents by rerunning the module’s code.

5.3. Searching 65

https://peps.python.org/pep-0420/

The Python Language Reference, Yayım 3.11.13

5.3.2 Finders and loaders

If the named module is not found in sys.modules, then Python’s import protocol is invoked to find and load the
module. This protocol consists of two conceptual objects, finders and loaders. A finder’s job is to determine whether it
can find the named module using whatever strategy it knows about. Objects that implement both of these interfaces are
referred to as importers - they return themselves when they find that they can load the requested module.

Python includes a number of default finders and importers. The first one knows how to locate built-in modules, and the
second knows how to locate frozen modules. A third default finder searches an import path for modules. The import path is
a list of locations that may name file system paths or zip files. It can also be extended to search for any locatable resource,
such as those identified by URLs.

The import machinery is extensible, so new finders can be added to extend the range and scope of module searching.

Finders do not actually load modules. If they can find the named module, they return a module spec, an encapsulation of
the module’s import-related information, which the import machinery then uses when loading the module.

The following sections describe the protocol for finders and loaders in more detail, including how you can create and
register new ones to extend the import machinery.

3.4 sürümünde değişti: In previous versions of Python, finders returned loaders directly, whereas now they return module
specs which contain loaders. Loaders are still used during import but have fewer responsibilities.

5.3.3 Import hooks

The import machinery is designed to be extensible; the primary mechanism for this are the import hooks. There are two
types of import hooks: meta hooks and import path hooks.

Meta hooks are called at the start of import processing, before any other import processing has occurred, other than
sys.modules cache look up. This allows meta hooks to override sys.path processing, frozen modules, or even
built-in modules. Meta hooks are registered by adding new finder objects to sys.meta_path, as described below.

Import path hooks are called as part of sys.path (or package.__path__) processing, at the point where their
associated path item is encountered. Import path hooks are registered by adding new callables to sys.path_hooks
as described below.

5.3.4 The meta path

When the named module is not found in sys.modules, Python next searches sys.meta_path, which contains a
list of meta path finder objects. These finders are queried in order to see if they know how to handle the named module.
Meta path finders must implement a method called find_spec() which takes three arguments: a name, an import
path, and (optionally) a target module. The meta path finder can use any strategy it wants to determine whether it can
handle the named module or not.

If the meta path finder knows how to handle the named module, it returns a spec object. If it cannot handle the named
module, it returns None. If sys.meta_path processing reaches the end of its list without returning a spec, then a
ModuleNotFoundError is raised. Any other exceptions raised are simply propagated up, aborting the import process.

The find_spec() method of meta path finders is called with two or three arguments. The first is the fully qualified
name of the module being imported, for example foo.bar.baz. The second argument is the path entries to use for
the module search. For top-level modules, the second argument is None, but for submodules or subpackages, the second
argument is the value of the parent package’s __path__ attribute. If the appropriate __path__ attribute cannot be
accessed, a ModuleNotFoundError is raised. The third argument is an existing module object that will be the target
of loading later. The import system passes in a target module only during reload.

66 Bölüm 5. The import system

The Python Language Reference, Yayım 3.11.13

The meta path may be traversed multiple times for a single import request. For example, assuming none of the modu-
les involved has already been cached, importing foo.bar.baz will first perform a top level import, calling mpf.
find_spec("foo", None, None) on each meta path finder (mpf). After foo has been imported, foo.
bar will be imported by traversing the meta path a second time, calling mpf.find_spec("foo.bar", foo.
__path__, None). Once foo.bar has been imported, the final traversal will call mpf.find_spec("foo.
bar.baz", foo.bar.__path__, None).

Some meta path finders only support top level imports. These importers will always return None when anything other
than None is passed as the second argument.

Python’s default sys.meta_path has three meta path finders, one that knows how to import built-in modules, one
that knows how to import frozen modules, and one that knows how to import modules from an import path (i.e. the path
based finder).

3.4 sürümünde değişti: The find_spec() method of meta path finders replaced find_module(), which is now
deprecated. While it will continue to work without change, the import machinery will try it only if the finder does not
implement find_spec().

3.10 sürümünde değişti: Use of find_module() by the import system now raises ImportWarning.

5.4 Loading

If and when a module spec is found, the import machinery will use it (and the loader it contains) when loading the module.
Here is an approximation of what happens during the loading portion of import:

module = None
if spec.loader is not None and hasattr(spec.loader, 'create_module'):

It is assumed 'exec_module' will also be defined on the loader.
module = spec.loader.create_module(spec)

if module is None:
module = ModuleType(spec.name)

The import-related module attributes get set here:
_init_module_attrs(spec, module)

if spec.loader is None:
unsupported
raise ImportError

if spec.origin is None and spec.submodule_search_locations is not None:
namespace package
sys.modules[spec.name] = module

elif not hasattr(spec.loader, 'exec_module'):
module = spec.loader.load_module(spec.name)
Set __loader__ and __package__ if missing.

else:
sys.modules[spec.name] = module
try:

spec.loader.exec_module(module)
except BaseException:

try:
del sys.modules[spec.name]

except KeyError:
pass

raise
return sys.modules[spec.name]

Note the following details:

5.4. Loading 67

The Python Language Reference, Yayım 3.11.13

• If there is an existing module object with the given name in sys.modules, import will have already returned it.

• The module will exist in sys.modules before the loader executes the module code. This is crucial because the
module codemay (directly or indirectly) import itself; adding it tosys.modules beforehand prevents unbounded
recursion in the worst case and multiple loading in the best.

• If loading fails, the failing module – and only the failing module – gets removed from sys.modules. Anymodule
already in the sys.modules cache, and any module that was successfully loaded as a side-effect, must remain
in the cache. This contrasts with reloading where even the failing module is left in sys.modules.

• After the module is created but before execution, the import machinery sets the import-related module attributes
(“_init_module_attrs” in the pseudo-code example above), as summarized in a later section.

• Module execution is the key moment of loading in which the module’s namespace gets populated. Execution is
entirely delegated to the loader, which gets to decide what gets populated and how.

• The module created during loading and passed to exec_module() may not be the one returned at the end of import2.

3.4 sürümünde değişti: The import system has taken over the boilerplate responsibilities of loaders. These were previously
performed by the importlib.abc.Loader.load_module() method.

5.4.1 Loaders

Module loaders provide the critical function of loading: module execution. The import machinery calls the importlib.
abc.Loader.exec_module() method with a single argument, the module object to execute. Any value returned
from exec_module() is ignored.

Loaders must satisfy the following requirements:

• If the module is a Python module (as opposed to a built-in module or a dynamically loaded extension), the loader
should execute the module’s code in the module’s global name space (module.__dict__).

• If the loader cannot execute the module, it should raise an ImportError, although any other exception raised
during exec_module() will be propagated.

In many cases, the finder and loader can be the same object; in such cases the find_spec()method would just return
a spec with the loader set to self.

Module loaders may opt in to creating the module object during loading by implementing a create_module()
method. It takes one argument, the module spec, and returns the new module object to use during loading.
create_module() does not need to set any attributes on the module object. If the method returns None, the import
machinery will create the new module itself.

3.4 sürümünde geldi: The create_module() method of loaders.

3.4 sürümünde değişti: The load_module() method was replaced by exec_module() and the import machinery
assumed all the boilerplate responsibilities of loading.

For compatibility with existing loaders, the import machinery will use the load_module() method of loaders if it
exists and the loader does not also implement exec_module(). However, load_module() has been deprecated
and loaders should implement exec_module() instead.

The load_module() method must implement all the boilerplate loading functionality described above in addition to
executing the module. All the same constraints apply, with some additional clarification:

• If there is an existing module object with the given name in sys.modules, the loader must use that existing
module. (Otherwise, importlib.reload() will not work correctly.) If the named module does not exist in
sys.modules, the loader must create a new module object and add it to sys.modules.

2 The importlib implementation avoids using the return value directly. Instead, it gets the module object by looking the module name up in sys.
modules. The indirect effect of this is that an imported module may replace itself in sys.modules. This is implementation-specific behavior that
is not guaranteed to work in other Python implementations.

68 Bölüm 5. The import system

The Python Language Reference, Yayım 3.11.13

• The module must exist in sys.modules before the loader executes the module code, to prevent unbounded
recursion or multiple loading.

• If loading fails, the loader must remove any modules it has inserted into sys.modules, but it must remove only
the failing module(s), and only if the loader itself has loaded the module(s) explicitly.

3.5 sürümünde değişti: A DeprecationWarning is raised when exec_module() is defined but
create_module() is not.

3.6 sürümünde değişti: An ImportError is raised when exec_module() is defined but create_module() is
not.

3.10 sürümünde değişti: Use of load_module() will raise ImportWarning.

5.4.2 Submodules

When a submodule is loaded using any mechanism (e.g. importlibAPIs, the import or import-from statements,
or built-in __import__()) a binding is placed in the parent module’s namespace to the submodule object. For example,
if package spam has a submodule foo, after importing spam.foo, spam will have an attribute foo which is bound
to the submodule. Let’s say you have the following directory structure:

spam/
__init__.py
foo.py

and spam/__init__.py has the following line in it:

from .foo import Foo

then executing the following puts name bindings for foo and Foo in the spam module:

>>> import spam
>>> spam.foo
<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> spam.Foo
<class 'spam.foo.Foo'>

Given Python’s familiar name binding rules this might seem surprising, but it’s actually a fundamental feature of the import
system. The invariant holding is that if you have sys.modules['spam'] and sys.modules['spam.foo'] (as
you would after the above import), the latter must appear as the foo attribute of the former.

5.4.3 Module spec

The import machinery uses a variety of information about each module during import, especially before loading. Most of
the information is common to all modules. The purpose of amodule’s spec is to encapsulate this import-related information
on a per-module basis.

Using a spec during import allows state to be transferred between import system components, e.g. between the finder that
creates the module spec and the loader that executes it. Most importantly, it allows the import machinery to perform the
boilerplate operations of loading, whereas without a module spec the loader had that responsibility.

The module’s spec is exposed as the __spec__ attribute on a module object. See ModuleSpec for details on the
contents of the module spec.

3.4 sürümünde geldi.

5.4. Loading 69

The Python Language Reference, Yayım 3.11.13

5.4.4 Import-related module attributes

The import machinery fills in these attributes on each module object during loading, based on the module’s spec, before
the loader executes the module.

__name__

The __name__ attribute must be set to the fully qualified name of the module. This name is used to uniquely
identify the module in the import system.

__loader__

The __loader__ attribute must be set to the loader object that the import machinery used when loading the
module. This is mostly for introspection, but can be used for additional loader-specific functionality, for example
getting data associated with a loader.

__package__

The module’s __package__ attribute must be set. Its value must be a string, but it can be the same value as its
__name__. When the module is a package, its __package__ value should be set to its __name__. When the
module is not a package,__package__ should be set to the empty string for top-level modules, or for submodules,
to the parent package’s name. See PEP 366 for further details.

This attribute is used instead of __name__ to calculate explicit relative imports for main modules, as defined in
PEP 366. It is expected to have the same value as __spec__.parent.

3.6 sürümünde değişti: The value of __package__ is expected to be the same as __spec__.parent.

__spec__

The __spec__ attribute must be set to the module spec that was used when importing the module. Setting
__spec__ appropriately applies equally to modules initialized during interpreter startup. The one exception is
__main__, where __spec__ is set to None in some cases.

When __package__ is not defined, __spec__.parent is used as a fallback.

3.4 sürümünde geldi.

3.6 sürümünde değişti: __spec__.parent is used as a fallback when __package__ is not defined.

__path__

If the module is a package (either regular or namespace), the module object’s __path__ attribute must be set.
The value must be iterable, but may be empty if __path__ has no further significance. If __path__ is not
empty, it must produce strings when iterated over. More details on the semantics of __path__ are given below.

Non-package modules should not have a __path__ attribute.

__file__

__cached__

__file__ is optional (if set, value must be a string). It indicates the pathname of the file from which the mo-
dule was loaded (if loaded from a file), or the pathname of the shared library file for extension modules loaded
dynamically from a shared library. It might be missing for certain types of modules, such as C modules that are
statically linked into the interpreter, and the import system may opt to leave it unset if it has no semantic meaning
(e.g. a module loaded from a database).

If __file__ is set then the __cached__ attribute might also be set, which is the path to any compiled version
of the code (e.g. byte-compiled file). The file does not need to exist to set this attribute; the path can simply point
to where the compiled file would exist (see PEP 3147).

Note that __cached__ may be set even if __file__ is not set. However, that scenario is quite atypical. Ul-
timately, the loader is what makes use of the module spec provided by the finder (from which __file__ and
__cached__ are derived). So if a loader can load from a cached module but otherwise does not load from a file,
that atypical scenario may be appropriate.

70 Bölüm 5. The import system

https://peps.python.org/pep-0366/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-3147/

The Python Language Reference, Yayım 3.11.13

5.4.5 module.__path__

By definition, if a module has a __path__ attribute, it is a package.

A package’s __path__ attribute is used during imports of its subpackages. Within the import machinery, it functions
much the same assys.path, i.e. providing a list of locations to search formodules during import. However,__path__
is typically much more constrained than sys.path.

__path__must be an iterable of strings, but it may be empty. The same rules used for sys.path also apply to a pac-
kage’s __path__, and sys.path_hooks (described below) are consulted when traversing a package’s __path__.

A package’s __init__.py file may set or alter the package’s __path__ attribute, and this was typically the way
namespace packages were implemented prior to PEP 420. With the adoption of PEP 420, namespace packages no longer
need to supply __init__.py files containing only __path__manipulation code; the import machinery automatically
sets __path__ correctly for the namespace package.

5.4.6 Module reprs

By default, all modules have a usable repr, however depending on the attributes set above, and in the module’s spec, you
can more explicitly control the repr of module objects.

If the module has a spec (__spec__), the import machinery will try to generate a repr from it. If that fails or there is no
spec, the import system will craft a default repr using whatever information is available on the module. It will try to use
the module.__name__, module.__file__, and module.__loader__ as input into the repr, with defaults
for whatever information is missing.

Here are the exact rules used:

• If the module has a __spec__ attribute, the information in the spec is used to generate the repr. The “name”,
“loader”, “origin”, and “has_location” attributes are consulted.

• If the module has a __file__ attribute, this is used as part of the module’s repr.

• If the module has no __file__ but does have a __loader__ that is not None, then the loader’s repr is used
as part of the module’s repr.

• Otherwise, just use the module’s __name__ in the repr.

3.4 sürümünde değişti: Use of loader.module_repr() has been deprecated and the module spec is now used by
the import machinery to generate a module repr.

For backward compatibility with Python 3.3, the module repr will be generated by calling the loader’s module_repr()
method, if defined, before trying either approach described above. However, the method is deprecated.

3.10 sürümünde değişti: Calling module_repr() now occurs after trying to use a module’s __spec__ attribute but
before falling back on __file__. Use of module_repr() is slated to stop in Python 3.12.

5.4.7 Cached bytecode invalidation

Before Python loads cached bytecode from a .pyc file, it checks whether the cache is up-to-date with the source .py
file. By default, Python does this by storing the source’s last-modified timestamp and size in the cache file when writing
it. At runtime, the import system then validates the cache file by checking the stored metadata in the cache file against
the source’s metadata.

Python also supports “hash-based” cache files, which store a hash of the source file’s contents rather than its metadata.
There are two variants of hash-based .pyc files: checked and unchecked. For checked hash-based .pyc files, Python
validates the cache file by hashing the source file and comparing the resulting hash with the hash in the cache file. If a
checked hash-based cache file is found to be invalid, Python regenerates it and writes a new checked hash-based cache

5.4. Loading 71

https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/

The Python Language Reference, Yayım 3.11.13

file. For unchecked hash-based .pyc files, Python simply assumes the cache file is valid if it exists. Hash-based .pyc
files validation behavior may be overridden with the --check-hash-based-pycs flag.

3.7 sürümünde değişti: Added hash-based .pyc files. Previously, Python only supported timestamp-based invalidation
of bytecode caches.

5.5 The Path Based Finder

As mentioned previously, Python comes with several default meta path finders. One of these, called the path based finder
(PathFinder), searches an import path, which contains a list of path entries. Each path entry names a location to search
for modules.

The path based finder itself doesn’t know how to import anything. Instead, it traverses the individual path entries, asso-
ciating each of them with a path entry finder that knows how to handle that particular kind of path.

The default set of path entry finders implement all the semantics for finding modules on the file system, handling special
file types such as Python source code (.py files), Python byte code (.pyc files) and shared libraries (e.g. .so files).
When supported by the zipimport module in the standard library, the default path entry finders also handle loading
all of these file types (other than shared libraries) from zipfiles.

Path entries need not be limited to file system locations. They can refer to URLs, database queries, or any other location
that can be specified as a string.

The path based finder provides additional hooks and protocols so that you can extend and customize the types of searchable
path entries. For example, if you wanted to support path entries as network URLs, you could write a hook that implements
HTTP semantics to find modules on the web. This hook (a callable) would return a path entry finder supporting the
protocol described below, which was then used to get a loader for the module from the web.

A word of warning: this section and the previous both use the term finder, distinguishing between them by using the terms
meta path finder and path entry finder. These two types of finders are very similar, support similar protocols, and function
in similar ways during the import process, but it’s important to keep in mind that they are subtly different. In particular,
meta path finders operate at the beginning of the import process, as keyed off the sys.meta_path traversal.

By contrast, path entry finders are in a sense an implementation detail of the path based finder, and in fact, if the path
based finder were to be removed from sys.meta_path, none of the path entry finder semantics would be invoked.

5.5.1 Path entry finders

The path based finder is responsible for finding and loading Python modules and packages whose location is specified
with a string path entry. Most path entries name locations in the file system, but they need not be limited to this.

As a meta path finder, the path based finder implements the find_spec() protocol previously described, however it
exposes additional hooks that can be used to customize how modules are found and loaded from the import path.

Three variables are used by the path based finder, sys.path, sys.path_hooks and sys.
path_importer_cache. The __path__ attributes on package objects are also used. These provide additional
ways that the import machinery can be customized.

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries in
sys.path can name directories on the file system, zip files, and potentially other “locations” (see the site module)
that should be searched for modules, such as URLs, or database queries. Only strings should be present on sys.path;
all other data types are ignored.

The path based finder is a meta path finder, so the import machinery begins the import path search by calling the path
based finder’s find_spec() method as described previously. When the path argument to find_spec() is given,

72 Bölüm 5. The import system

The Python Language Reference, Yayım 3.11.13

it will be a list of string paths to traverse - typically a package’s __path__ attribute for an import within that package.
If the path argument is None, this indicates a top level import and sys.path is used.

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate path entry
finder (PathEntryFinder) for the path entry. Because this can be an expensive operation (e.g. there may be stat()
call overheads for this search), the path based finder maintains a cache mapping path entries to path entry finders. This
cache is maintained in sys.path_importer_cache (despite the name, this cache actually stores finder objects
rather than being limited to importer objects). In this way, the expensive search for a particular path entry location’s path
entry finder need only be done once. User code is free to remove cache entries from sys.path_importer_cache
forcing the path based finder to perform the path entry search again3.

If the path entry is not present in the cache, the path based finder iterates over every callable in sys.path_hooks.
Each of the path entry hooks in this list is called with a single argument, the path entry to be searched. This callable may
either return a path entry finder that can handle the path entry, or it may raise ImportError. An ImportError is
used by the path based finder to signal that the hook cannot find a path entry finder for that path entry. The exception is
ignored and import path iteration continues. The hook should expect either a string or bytes object; the encoding of bytes
objects is up to the hook (e.g. it may be a file system encoding, UTF-8, or something else), and if the hook cannot decode
the argument, it should raise ImportError.

If sys.path_hooks iteration ends with no path entry finder being returned, then the path based finder’s
find_spec() method will store None in sys.path_importer_cache (to indicate that there is no finder for
this path entry) and return None, indicating that this meta path finder could not find the module.

If a path entry finder is returned by one of the path entry hook callables on sys.path_hooks, then the following
protocol is used to ask the finder for a module spec, which is then used when loading the module.

The current working directory – denoted by an empty string – is handled slightly differently from other entries on sys.
path. First, if the current working directory is found to not exist, no value is stored insys.path_importer_cache.
Second, the value for the current working directory is looked up fresh for each module lookup. Third, the path used
for sys.path_importer_cache and returned by importlib.machinery.PathFinder.find_spec()
will be the actual current working directory and not the empty string.

5.5.2 Path entry finder protocol

In order to support imports of modules and initialized packages and also to contribute portions to namespace packages,
path entry finders must implement the find_spec() method.

find_spec() takes two arguments: the fully qualified name of the module being imported, and the (optional) target
module. find_spec() returns a fully populated spec for the module. This spec will always have “loader” set (with one
exception).

To indicate to the import machinery that the spec represents a namespace portion, the path entry finder sets “submodu-
le_search_locations” to a list containing the portion.

3.4 sürümünde değişti: find_spec() replaced find_loader() and find_module(), both of which are now
deprecated, but will be used if find_spec() is not defined.

Older path entry finders may implement one of these two deprecated methods instead of find_spec(). The methods
are still respected for the sake of backward compatibility. However, if find_spec() is implemented on the path entry
finder, the legacy methods are ignored.

find_loader() takes one argument, the fully qualified name of the module being imported. find_loader()
returns a 2-tuple where the first item is the loader and the second item is a namespace portion.

For backwards compatibility with other implementations of the import protocol, many path entry finders also sup-
port the same, traditional find_module() method that meta path finders support. However path entry finder

3 In legacy code, it is possible to find instances of imp.NullImporter in the sys.path_importer_cache. It is recommended that code
be changed to use None instead. See portingpythoncode for more details.

5.5. The Path Based Finder 73

The Python Language Reference, Yayım 3.11.13

find_module() methods are never called with a path argument (they are expected to record the appropriate path
information from the initial call to the path hook).

The find_module()method on path entry finders is deprecated, as it does not allow the path entry finder to contribute
portions to namespace packages. If both find_loader() and find_module() exist on a path entry finder, the
import system will always call find_loader() in preference to find_module().

3.10 sürümünde değişti: Calls to find_module() and find_loader() by the import system will raise
ImportWarning.

5.6 Replacing the standard import system

Themost reliablemechanism for replacing the entire import system is to delete the default contents ofsys.meta_path,
replacing them entirely with a custom meta path hook.

If it is acceptable to only alter the behaviour of import statements without affecting other APIs that access the import
system, then replacing the builtin __import__() function may be sufficient. This technique may also be employed at
the module level to only alter the behaviour of import statements within that module.

To selectively prevent the import of some modules from a hook early on the meta path (rather than disabling the standard
import system entirely), it is sufficient to raise ModuleNotFoundError directly from find_spec() instead of
returning None. The latter indicates that the meta path search should continue, while raising an exception terminates it
immediately.

5.7 Package Relative Imports

Relative imports use leading dots. A single leading dot indicates a relative import, starting with the current package. Two
or more leading dots indicate a relative import to the parent(s) of the current package, one level per dot after the first.
For example, given the following package layout:

package/
__init__.py
subpackage1/

__init__.py
moduleX.py
moduleY.py

subpackage2/
__init__.py
moduleZ.py

moduleA.py

In eithersubpackage1/moduleX.py orsubpackage1/__init__.py, the following are valid relative imports:

from .moduleY import spam
from .moduleY import spam as ham
from . import moduleY
from ..subpackage1 import moduleY
from ..subpackage2.moduleZ import eggs
from ..moduleA import foo

Absolute imports may use either the import <> or from <> import <> syntax, but relative imports may only
use the second form; the reason for this is that:

74 Bölüm 5. The import system

The Python Language Reference, Yayım 3.11.13

import XXX.YYY.ZZZ

should expose XXX.YYY.ZZZ as a usable expression, but .moduleY is not a valid expression.

5.8 Special considerations for __main__

The __main__module is a special case relative to Python’s import system. As noted elsewhere, the __main__module
is directly initialized at interpreter startup, much like sys and builtins. However, unlike those two, it doesn’t strictly
qualify as a built-in module. This is because the manner in which __main__ is initialized depends on the flags and other
options with which the interpreter is invoked.

5.8.1 __main__.__spec__

Depending on how __main__ is initialized, __main__.__spec__ gets set appropriately or to None.

When Python is started with the -m option, __spec__ is set to themodule spec of the correspondingmodule or package.
__spec__ is also populated when the __main__ module is loaded as part of executing a directory, zipfile or other
sys.path entry.

In the remaining cases __main__.__spec__ is set to None, as the code used to populate the __main__ does not
correspond directly with an importable module:

• interactive prompt

• -c option

• running from stdin

• running directly from a source or bytecode file

Note that __main__.__spec__ is always None in the last case, even if the file could technically be imported directly
as a module instead. Use the -m switch if valid module metadata is desired in __main__.

Note also that even when __main__ corresponds with an importable module and __main__.__spec__ is set ac-
cordingly, they’re still considered distinct modules. This is due to the fact that blocks guarded by if __name__ ==
"__main__": checks only execute when the module is used to populate the __main__ namespace, and not during
normal import.

5.9 References

The import machinery has evolved considerably since Python’s early days. The original specification for packages is still
available to read, although some details have changed since the writing of that document.

The original specification for sys.meta_path was PEP 302, with subsequent extension in PEP 420.

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the find_loader() protocol as
an alternative to find_module().

PEP 366 describes the addition of the __package__ attribute for explicit relative imports in main modules.

PEP 328 introduced absolute and explicit relative imports and initially proposed __name__ for semantics PEP 366
would eventually specify for __package__.

PEP 338 defines executing modules as scripts.

5.8. Special considerations for __main__ 75

https://www.python.org/doc/essays/packages/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0328/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0338/

The Python Language Reference, Yayım 3.11.13

PEP 451 adds the encapsulation of per-module import state in spec objects. It also off-loads most of the boilerplate
responsibilities of loaders back onto the import machinery. These changes allow the deprecation of several APIs in the
import system and also addition of new methods to finders and loaders.

76 Bölüm 5. The import system

https://peps.python.org/pep-0451/

BÖLÜM6

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name ::= othername

and no semantics are given, the semantics of this form of name are the same as for othername.

6.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a common
type”, this means that the operator implementation for built-in types works as follows:

• If either argument is a complex number, the other is converted to complex;

• otherwise, if either argument is a floating point number, the other is converted to floating point;

• otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the ‘%’ operator). Extensions must
define their own conversion behavior.

77

The Python Language Reference, Yayım 3.11.13

6.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom ::= identifier | literal | enclosure
enclosure ::= parenth_form | list_display | dict_display | set_display

| generator_expression | yield_atom

6.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and sectionNaming
and binding for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raises a NameError exception.

Private namemangling:When an identifier that textually occurs in a class definition begins with two ormore underscore
characters and does not end in two or more underscores, it is considered a private name of that class. Private names are
transformed to a longer form before code is generated for them. The transformation inserts the class name, with leading
underscores removed and a single underscore inserted, in front of the name. For example, the identifier__spam occurring
in a class named Hamwill be transformed to _Ham__spam. This transformation is independent of the syntactical context
in which the identifier is used. If the transformed name is extremely long (longer than 255 characters), implementation
defined truncation may happen. If the class name consists only of underscores, no transformation is done.

6.2.2 Literals

Python supports string and bytes literals and various numeric literals:

literal ::= stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number)
with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals. See
section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence) may
obtain the same object or a different object with the same value.

78 Bölüm 6. Expressions

The Python Language Reference, Yayım 3.11.13

6.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form ::= "(" [starred_expression] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it yields
a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals apply
(i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma. The exception is the empty tuple, for
which parentheses are required — allowing unparenthesized “nothing” in expressions would cause ambiguities and allow
common typos to pass uncaught.

6.2.4 Displays for lists, sets and dictionaries

For constructing a list, a set or a dictionary Python provides special syntax called “displays”, each of them in two flavors:

• either the container contents are listed explicitly, or

• they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension ::= assignment_expression comp_for
comp_for ::= ["async"] "for" target_list "in" or_test [comp_iter]
comp_iter ::= comp_for | comp_if
comp_if ::= "if" or_test [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or if
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time the
innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate
implicitly nested scope. This ensures that names assigned to in the target list don’t “leak” into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an
argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause
cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For
example: [x*y for x in range(10) for y in range(x, x+10)].

To ensure the comprehension always results in a container of the appropriate type,yield andyield from expressions
are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous
iterator. A comprehension in an async def function may consist of either a for or async for clause following
the leading expression, may contain additional for or async for clauses, and may also use await expressions. If
a comprehension contains either async for clauses or await expressions or other asynchronous comprehensions it
is called an asynchronous comprehension. An asynchronous comprehension may suspend the execution of the coroutine
function in which it appears. See also PEP 530.

3.6 sürümünde geldi: Asynchronous comprehensions were introduced.

6.2. Atoms 79

https://peps.python.org/pep-0530/

The Python Language Reference, Yayım 3.11.13

3.8 sürümünde değişti: yield and yield from prohibited in the implicitly nested scope.

3.11 sürümünde değişti: Asynchronous comprehensions are now allowed inside comprehensions in asynchronous functi-
ons. Outer comprehensions implicitly become asynchronous.

6.2.5 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display ::= "[" [starred_list | comprehension] "]"

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension.
When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into the
list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting from the
comprehension.

6.2.6 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating keys
and values:

set_display ::= "{" (starred_list | comprehension) "}"

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and
added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting from the
comprehension.

An empty set cannot be constructed with {}; this literal constructs an empty dictionary.

6.2.7 Dictionary displays

A dictionary display is a possibly empty series of dict items (key/value pairs) enclosed in curly braces:

dict_display ::= "{" [dict_item_list | dict_comprehension] "}"
dict_item_list ::= dict_item ("," dict_item)* [","]
dict_item ::= expression ":" expression | "**" or_expr
dict_comprehension ::= expression ":" expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of dict items is given, they are evaluated from left to right to define the entries of the
dictionary: each key object is used as a key into the dictionary to store the corresponding value. This means that you can
specify the same key multiple times in the dict item list, and the final dictionary’s value for that key will be the last one
given.

A double asterisk ** denotes dictionary unpacking. Its operand must be a mapping. Each mapping item is added to the
new dictionary. Later values replace values already set by earlier dict items and earlier dictionary unpackings.

3.5 sürümünde geldi: Unpacking into dictionary displays, originally proposed by PEP 448.

80 Bölüm 6. Expressions

https://peps.python.org/pep-0448/

The Python Language Reference, Yayım 3.11.13

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon followed
by the usual “for” and “if” clauses. When the comprehension is run, the resulting key and value elements are inserted in
the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section The standard type hierarchy. (To summarize, the
key type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected; the
last value (textually rightmost in the display) stored for a given key value prevails.

3.8 sürümünde değişti: Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was not well-
defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before the value, as
proposed by PEP 572.

6.2.8 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression ::= "(" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is
enclosed in parentheses instead of brackets or curly braces.

Variables used in the generator expression are evaluated lazily when the __next__() method is called for the gene-
rator object (in the same fashion as normal generators). However, the iterable expression in the leftmost for clause is
immediately evaluated, so that an error produced by it will be emitted at the point where the generator expression is
defined, rather than at the point where the first value is retrieved. Subsequent for clauses and any filter condition in
the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained from the
leftmost iterable. For example: (x*y for x in range(10) for y in range(x, x+10)).

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expression itself,yield andyield from expressions
are prohibited in the implicitly defined generator.

If a generator expression contains eitherasync for clauses orawait expressions it is called an asynchronous generator
expression. An asynchronous generator expression returns a new asynchronous generator object, which is an asynchronous
iterator (see Asynchronous Iterators).

3.6 sürümünde geldi: Asynchronous generator expressions were introduced.

3.7 sürümünde değişti: Prior to Python 3.7, asynchronous generator expressions could only appear in async def co-
routines. Starting with 3.7, any function can use asynchronous generator expressions.

3.8 sürümünde değişti: yield and yield from prohibited in the implicitly nested scope.

6.2.9 Yield expressions

yield_atom ::= "(" yield_expression ")"
yield_from ::= "yield" "from" expression
yield_expression ::= "yield" expression_list | yield_from

The yield expression is used when defining a generator function or an asynchronous generator function and thus can only
be used in the body of a function definition. Using a yield expression in a function’s body causes that function to be a
generator function, and using it in an async def function’s body causes that coroutine function to be an asynchronous
generator function. For example:

6.2. Atoms 81

https://peps.python.org/pep-0572/

The Python Language Reference, Yayım 3.11.13

def gen(): # defines a generator function
yield 123

async def agen(): # defines an asynchronous generator function
yield 123

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly defined
scopes used to implement comprehensions and generator expressions.

3.8 sürümünde değişti: Yield expressions prohibited in the implicitly nested scopes used to implement comprehensions
and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section
Asynchronous generator functions.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution
of the generator function. The execution starts when one of the generator’s methods is called. At that time, the execution
proceeds to the first yield expression, where it is suspended again, returning the value of expression_list to the
generator’s caller, or None if expression_list is omitted. By suspended, we mean that all local state is retained,
including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state of any
exception handling. When the execution is resumed by calling one of the generator’s methods, the function can proceed
exactly as if the yield expression were just another external call. The value of the yield expression after resuming depends
on the method which resumed the execution. If __next__() is used (typically via either a for or the next() builtin)
then the result is None. Otherwise, if send() is used, then the result will be the value passed in to that method.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry
point and their execution can be suspended. The only difference is that a generator function cannot control where the
execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a try construct. If the generator is not resumed before it is finalized (by
reaching a zero reference count or by being garbage collected), the generator-iterator’s close() method will be called,
allowing any pending finally clauses to execute.

When yield from <expr> is used, the supplied expression must be an iterable. The values produced by iterating
that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send() and
any exceptions passed in with throw() are passed to the underlying iterator if it has the appropriate methods. If this is
not the case, then send() will raise AttributeError or TypeError, while throw() will just raise the passed
in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes the
value of the yield expression. It can be either set explicitly when raising StopIteration, or automatically when the
subiterator is a generator (by returning a value from the subgenerator).

3.3 sürümünde değişti: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an assignment
statement.

Ayrıca bakınız:

PEP 255 - Simple Generators
The proposal for adding generators and the yield statement to Python.

PEP 342 - Coroutines via Enhanced Generators
The proposal to enhance the API and syntax of generators, making them usable as simple coroutines.

PEP 380 - Syntax for Delegating to a Subgenerator
The proposal to introduce the yield_from syntax, making delegation to subgenerators easy.

PEP 525 - Asynchronous Generators
The proposal that expanded on PEP 492 by adding generator capabilities to coroutine functions.

82 Bölüm 6. Expressions

https://peps.python.org/pep-0255/
https://peps.python.org/pep-0342/
https://peps.python.org/pep-0380/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/

The Python Language Reference, Yayım 3.11.13

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator
function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError
exception.

generator.__next__()

Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator
function is resumed with a __next__() method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value of the
expression_list is returned to __next__()’s caller. If the generator exits without yielding another value,
a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next() function.

generator.send(value)
Resumes the execution and “sends” a value into the generator function. The value argument becomes the result
of the current yield expression. The send() method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send() is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive the
value.

generator.throw(value)

generator.throw(type[, value[, traceback]])
Raises an exception at the point where the generator was paused, and returns the next value yielded by the gene-
rator function. If the generator exits without yielding another value, a StopIteration exception is raised. If
the generator function does not catch the passed-in exception, or raises a different exception, then that exception
propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

For backwards compatibility, however, the second signature is supported, following a convention from older ver-
sions of Python. The type argument should be an exception class, and value should be an exception instance. If
the value is not provided, the type constructor is called to get an instance. If traceback is provided, it is set on the
exception, otherwise any existing __traceback__ attribute stored in value may be cleared.

generator.close()

Raises a GeneratorExit at the point where the generator function was paused. If the generator function then
exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close returns to its
caller. If the generator yields a value, a RuntimeError is raised. If the generator raises any other exception, it is
propagated to the caller. close() does nothing if the generator has already exited due to an exception or normal
exit.

Examples

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo(value=None):
... print("Execution starts when 'next()' is called for the first time.")
... try:
... while True:
... try:
... value = (yield value)
... except Exception as e:

(sonraki sayfaya devam)

6.2. Atoms 83

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

... value = e

... finally:

... print("Don't forget to clean up when 'close()' is called.")

...
>>> generator = echo(1)
>>> print(next(generator))
Execution starts when 'next()' is called for the first time.
1
>>> print(next(generator))
None
>>> print(generator.send(2))
2
>>> generator.throw(TypeError, "spam")
TypeError('spam',)
>>> generator.close()
Don't forget to clean up when 'close()' is called.

For examples using yield from, see pep-380 in “What’s New in Python.”

Asynchronous generator functions

The presence of a yield expression in a function or method defined using async def further defines the function as
an asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous ge-
nerator object. That object then controls the execution of the generator function. An asynchronous generator object is
typically used in an async for statement in a coroutine function analogously to how a generator object would be used
in a for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this
object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again,
returning the value of expression_list to the awaiting coroutine. As with a generator, suspension means that all
local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation
stack, and the state of any exception handling. When the execution is resumed by awaiting on the next object returned
by the asynchronous generator’s methods, the function can proceed exactly as if the yield expression were just another
external call. The value of the yield expression after resuming depends on the method which resumed the execution. If
__anext__() is used then the result is None. Otherwise, if asend() is used, then the result will be the value passed
in to that method.

If an asynchronous generator happens to exit early by break, the caller task being cancelled, or other exceptions, the
generator’s async cleanup code will run and possibly raise exceptions or access context variables in an unexpected context–
perhaps after the lifetime of tasks it depends, or during the event loop shutdown when the async-generator garbage
collection hook is called. To prevent this, the caller must explicitly close the async generator by calling aclose()
method to finalize the generator and ultimately detach it from the event loop.

In an asynchronous generator function, yield expressions are allowed anywhere in a try construct. However, if an asynch-
ronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected),
then a yield expression within a try construct could result in a failure to execute pending finally clauses. In this
case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call the asynchronous
generator-iterator’s aclose() method and run the resulting coroutine object, thus allowing any pending finally
clauses to execute.

To take care of finalization upon event loop termination, an event loop should define a finalizer function which takes
an asynchronous generator-iterator and presumably calls aclose() and executes the coroutine. This finalizer may be
registered by calling sys.set_asyncgen_hooks(). When first iterated over, an asynchronous generator-iterator

84 Bölüm 6. Expressions

The Python Language Reference, Yayım 3.11.13

will store the registered finalizer to be called upon finalization. For a reference example of a finalizer method see the
implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py.

The expression yield from <expr> is a syntax error when used in an asynchronous generator function.

Asynchronous generator-iterator methods

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution of
a generator function.

coroutine agen.__anext__()

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last exe-
cuted yield expression. When an asynchronous generator function is resumed with an __anext__() method,
the current yield expression always evaluates to None in the returned awaitable, which when run will continue
to the next yield expression. The value of the expression_list of the yield expression is the value of the
StopIteration exception raised by the completing coroutine. If the asynchronous generator exits without
yielding another value, the awaitable instead raises a StopAsyncIteration exception, signalling that the
asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

coroutine agen.asend(value)
Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the send()
method for a generator, this “sends” a value into the asynchronous generator function, and the value argument beco-
mes the result of the current yield expression. The awaitable returned by the asend()method will return the next
value yielded by the generator as the value of the raised StopIteration, or raises StopAsyncIteration
if the asynchronous generator exits without yielding another value. When asend() is called to start the asynch-
ronous generator, it must be called with None as the argument, because there is no yield expression that could
receive the value.

coroutine agen.athrow(value)

coroutine agen.athrow(type[, value[, traceback]])
Returns an awaitable that raises an exception of type type at the point where the asynchronous generator was
paused, and returns the next value yielded by the generator function as the value of the raised StopIteration
exception. If the asynchronous generator exits without yielding another value, a StopAsyncIteration ex-
ception is raised by the awaitable. If the generator function does not catch the passed-in exception, or raises a
different exception, then when the awaitable is run that exception propagates to the caller of the awaitable.

coroutine agen.aclose()

Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator functi-
on at the point where it was paused. If the asynchronous generator function then exits gracefully, is already
closed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will raise a
StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous generator
will raise a StopAsyncIteration exception. If the asynchronous generator yields a value, a RuntimeError
is raised by the awaitable. If the asynchronous generator raises any other exception, it is propagated to the caller
of the awaitable. If the asynchronous generator has already exited due to an exception or normal exit, then further
calls to aclose() will return an awaitable that does nothing.

6.2. Atoms 85

https://github.com/python/cpython/tree/3.11/Lib/asyncio/base_events.py

The Python Language Reference, Yayım 3.11.13

6.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary ::= atom | attributeref | subscription | slicing | call

6.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref ::= primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This object
is then asked to produce the attribute whose name is the identifier. The type and value produced is determined by the
object. Multiple evaluations of the same attribute reference may yield different objects.

This production can be customized by overriding the __getattribute__() method or the __getattr__()
method. The __getattribute__() method is called first and either returns a value or raises AttributeError
if the attribute is not available.

If an AttributeError is raised and the object has a __getattr__()method, that method is called as a fallback.

6.3.2 Subscriptions

The subscription of an instance of a container class will generally select an element from the container. The subscription
of a generic class will generally return a GenericAlias object.

subscription ::= primary "[" expression_list "]"

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through defining
one or both of __getitem__() and __class_getitem__(). When the primary is subscripted, the evaluated
result of the expression list will be passed to one of these methods. For more details on when __class_getitem__
is called instead of __getitem__, see __class_getitem__ versus __getitem__.

If the expression list contains at least one comma, it will evaluate to a tuple containing the items of the expression list.
Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via __getitem__():

1. Mappings. If the primary is amapping, the expression list must evaluate to an object whose value is one of the keys
of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An example of
a builtin mapping class is the dict class.

2. Sequences. If the primary is a sequence, the expression list must evaluate to an int or a slice (as discussed in
the following section). Examples of builtin sequence classes include the str, list and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all provide
a __getitem__() method that interprets negative indices by adding the length of the sequence to the index so that,
for example, x[-1] selects the last item of x. The resulting value must be a nonnegative integer less than the number
of items in the sequence, and the subscription selects the item whose index is that value (counting from zero). Since

86 Bölüm 6. Expressions

The Python Language Reference, Yayım 3.11.13

the support for negative indices and slicing occurs in the object’s __getitem__() method, subclasses overriding this
method will need to explicitly add that support.

A string is a special kind of sequence whose items are characters. A character is not a separate data type but a string
of exactly one character.

6.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions or
as targets in assignment or del statements. The syntax for a slicing:

slicing ::= primary "[" slice_list "]"
slice_list ::= slice_item ("," slice_item)* [","]
slice_item ::= expression | proper_slice
proper_slice ::= [lower_bound] ":" [upper_bound] [":" [stride]]
lower_bound ::= expression
upper_bound ::= expression
stride ::= expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any
subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining
that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if the
slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same __getitem__()method as normal
subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the
key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The
conversion of a slice item that is an expression is that expression. The conversion of a proper slice is a slice object (see
section The standard type hierarchy) whose start, stop and step attributes are the values of the expressions given
as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

6.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call ::= primary "(" [argument_list [","] | comprehension] ")"
argument_list ::= positional_arguments ["," starred_and_keywords]

["," keywords_arguments]
| starred_and_keywords ["," keywords_arguments]
| keywords_arguments

positional_arguments ::= positional_item ("," positional_item)*
positional_item ::= assignment_expression | "*" expression
starred_and_keywords ::= ("*" expression | keyword_item)

("," "*" expression | "," keyword_item)*
keywords_arguments ::= (keyword_item | "**" expression)

("," keyword_item | "," "**" expression)*
keyword_item ::= identifier " =" expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and all objects having a __call__() method are callable). All argument

6.3. Primaries 87

The Python Language Reference, Yayım 3.11.13

expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of formal
parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled slots
is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next, for
each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as the
first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError exception is
raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None, it fills the slot). When all
arguments have been processed, the slots that are still unfilled are filled with the corresponding default value from the
function definition. (Default values are calculated, once, when the function is defined; thus, a mutable object such as a list
or dictionary used as default value will be shared by all calls that don’t specify an argument value for the corresponding
slot; this should usually be avoided.) If there are any unfilled slots for which no default value is specified, a TypeError
exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

CPython uygulama ayrıntısı: An implementation may provide built-in functions whose positional parameters do not
have names, even if they are ‘named’ for the purpose of documentation, and which therefore cannot be supplied by
keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple() to parse their
arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised, unless
a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a tuple
containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless a
formal parameter using the syntax **identifier is present; in this case, that formal parameter receives a dictionary
containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding values),
or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements from
these iterables are treated as if they were additional positional arguments. For the call f(x1, x2, *y, x3, x4),
if y evaluates to a sequence y1, …, yM, this is equivalent to a call with M+4 positional arguments x1, x2, y1, …, yM, x3,
x4.

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it is
processed before the keyword arguments (and any **expression arguments – see below). So:

>>> def f(a, b):
... print(a, b)
...
>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: f() got multiple values for keyword argument 'a'
>>> f(1, *(2,))
1 2

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice this
confusion does not often arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping, the contents of
which are treated as additional keyword arguments. If a parameter matching a key has already been given a value (by an
explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned to
the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a Python
identifier (e.g. "max-temp °F" is acceptable, although it will not match any formal parameter that could be declared).

88 Bölüm 6. Expressions

The Python Language Reference, Yayım 3.11.13

If there is no match to a formal parameter the key-value pair is collected by the ** parameter, if there is one, or if there
is not, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots
or as keyword argument names.

3.5 sürümünde değişti: Function calls accept any number of * and ** unpackings, positional arguments may follow
iterable unpackings (*), and keyword arguments may follow dictionary unpackings (**). Originally proposed by PEP
448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends on
the type of the callable object.

If it is—

a user-defined function:
The code block for the function is executed, passing it the argument list. The first thing the code block will do is
bind the formal parameters to the arguments; this is described in section Function definitions. When the code block
executes a return statement, this specifies the return value of the function call.

a built-in function or method:
The result is up to the interpreter; see built-in-funcs for the descriptions of built-in functions and methods.

a class object:
A new instance of that class is returned.

a class instance method:
The corresponding user-defined function is called, with an argument list that is one longer than the argument list
of the call: the instance becomes the first argument.

a class instance:
The class must define a __call__() method; the effect is then the same as if that method was called.

6.4 Await expression

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await_expr ::= "await" primary

3.5 sürümünde geldi.

6.5 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its
right. The syntax is:

power ::= (await_expr | primary) ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this
does not constrain the evaluation order for the operands): -1**2 results in -1.

6.4. Await expression 89

https://peps.python.org/pep-0448/
https://peps.python.org/pep-0448/

The Python Language Reference, Yayım 3.11.13

The power operator has the same semantics as the built-in pow() function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common type,
and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case, all
arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**-2 returns
0.01.

Raising 0.0 to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional power
results in a complex number. (In earlier versions it raised a ValueError.)

This operation can be customized using the special __pow__() method.

6.6 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr ::= power | "-" u_expr | "+" u_expr | "~" u_expr

The unary - (minus) operator yields the negation of its numeric argument; the operation can be overridden with the
__neg__() special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the
__pos__() special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is defined
as -(x+1). It only applies to integral numbers or to custom objects that override the __invert__() special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators and
one for additive operators:

m_expr ::= u_expr | m_expr "*" u_expr | m_expr "@" m_expr |
m_expr "//" u_expr | m_expr "/" u_expr |
m_expr "%" u_expr

a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or one
argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to a common
type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition factor yields
an empty sequence.

This operation can be customized using the special __mul__() and __rmul__() methods.

The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.

3.5 sürümünde geldi.

90 Bölüm 6. Expressions

The Python Language Reference, Yayım 3.11.13

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments are
first converted to a common type. Division of integers yields a float, while floor division of integers results in an inte-
ger; the result is that of mathematical division with the ‘floor’ function applied to the result. Division by zero raises the
ZeroDivisionError exception.

This operation can be customized using the special __truediv__() and __floordiv__() methods.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric argu-
ments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception. The
arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + 0.34.) The
modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value of the result
is strictly smaller than the absolute value of the second operand1.

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y). Flo-
or division and modulo are also connected with the built-in function divmod(): divmod(x, y) == (x//y,
x%y).2.

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string objects to perform
old-style string formatting (also known as interpolation). The syntax for string formatting is described in the Python
Library Reference, section old-string-formatting.

The modulo operation can be customized using the special __mod__() method.

The floor division operator, the modulo operator, and the divmod() function are not defined for complex numbers.
Instead, convert to a floating point number using the abs() function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be
sequences of the same type. In the former case, the numbers are converted to a common type and then added together.
In the latter case, the sequences are concatenated.

This operation can be customized using the special __add__() and __radd__() methods.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a
common type.

This operation can be customized using the special __sub__() method.

6.8 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr ::= a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits given
by the second argument.

This operation can be customized using the special __lshift__() and __rshift__() methods.

A right shift by n bits is defined as floor division by pow(2,n). A left shift by n bits is defined as multiplication with
pow(2,n).

1 While abs(x%y) < abs(y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming a
platform on which a Python float is an IEEE 754 double-precision number, in order that -1e-100 % 1e100 have the same sign as 1e100, the
computed result is -1e-100 + 1e100, which is numerically exactly equal to 1e100. The function math.fmod() returns a result whose sign
matches the sign of the first argument instead, and so returns -1e-100 in this case. Which approach is more appropriate depends on the application.

2 If x is very close to an exact integer multiple of y, it’s possible for x//y to be one larger than (x-x%y)//y due to rounding. In such cases,
Python returns the latter result, in order to preserve that divmod(x,y)[0] * y + x % y be very close to x.

6.8. Shifting operations 91

The Python Language Reference, Yayım 3.11.13

6.9 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr ::= shift_expr | and_expr "&" shift_expr
xor_expr ::= and_expr | xor_expr "^" and_expr
or_expr ::= xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom object
overriding __and__() or __rand__() special methods.

The ^ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must be
a custom object overriding __xor__() or __rxor__() special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a
custom object overriding __or__() or __ror__() special methods.

6.10 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic, shif-
ting or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conventional in
mathematics:

comparison ::= or_expr (comp_operator or_expr)*
comp_operator ::= "<" | ">" | " ==" | "> =" | "< =" | "!="

| "is" ["not"] | ["not"] "in"

Comparisons yield boolean values: True or False. Custom rich comparison methods may return non-boolean values.
In this case Python will call bool() on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y < = z is equivalent to x < y and y < = z, except that y
is evaluated only once (but in both cases z is not evaluated at all when x < y is found to be false).

Formally, if a, b, c, …, y, z are expressions and op1, op2, …, opN are comparison operators, then a op1 b op2 c
... y opN z is equivalent to a op1 b and b op2 c and ... y opN z, except that each expression is
evaluated at most once.

Note that a op1 b op2 c doesn’t imply any kind of comparison between a and c, so that, e.g., x < y > z is
perfectly legal (though perhaps not pretty).

6.10.1 Value comparisons

The operators <, >, ==, > =, < =, and != compare the values of two objects. The objects do not need to have the same
type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an object
is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value. Also, there
is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of all its data
attributes. Comparison operators implement a particular notion of what the value of an object is. One can think of them
as defining the value of an object indirectly, by means of their comparison implementation.

92 Bölüm 6. Expressions

The Python Language Reference, Yayım 3.11.13

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior from
object. Types can customize their comparison behavior by implementing rich comparison methods like __lt__(),
described in Basic customization.

The default behavior for equality comparison (== and !=) is based on the identity of the objects. Hence, equality compa-
rison of instances with the same identity results in equality, and equality comparison of instances with different identities
results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive (i.e. x is y
implies x == y).

A default order comparison (<, >, < =, and > =) is not provided; an attempt raises TypeError. A motivation for this
default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be in
contrast to what types will need that have a sensible definition of object value and value-based equality. Such types will
need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

• Numbers of built-in numeric types (typesnumeric) and of the standard library types fractions.Fraction
and decimal.Decimal can be compared within and across their types, with the restriction that complex num-
bers do not support order comparison. Within the limits of the types involved, they compare mathematically (al-
gorithmically) correct without loss of precision.

The not-a-number values float('NaN') and decimal.Decimal('NaN') are special. Any ordered com-
parison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number values
are not equal to themselves. For example, if x = float('NaN'), 3 < x, x < 3 and x == x are all false,
while x != x is true. This behavior is compliant with IEEE 754.

• None and NotImplemented are singletons. PEP 8 advises that comparisons for singletons should always be
done with is or is not, never the equality operators.

• Binary sequences (instances of bytes or bytearray) can be compared within and across their types. They
compare lexicographically using the numeric values of their elements.

• Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result of the
built-in function ord()) of their characters.3

Strings and binary sequences cannot be directly compared.

• Sequences (instances of tuple, list, or range) can be compared only within each of their types, with the
restriction that ranges do not support order comparison. Equality comparison across these types results in inequality,
and ordering comparison across these types raises TypeError.

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers typi-
cally assume identical objects are equal to themselves. That lets them bypass equality tests for identical objects to
improve performance and to maintain their internal invariants.

Lexicographical comparison between built-in collections works as follows:

– For two collections to compare equal, they must be of the same type, have the same length, and each pair of
corresponding elements must compare equal (for example, [1,2] == (1,2) is false because the type is
not the same).

3 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. “LATIN CAPITAL LETTERA”).While most
abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in addition be represented using
a sequence of more than one code point. For example, the abstract character “LATIN CAPITAL LETTER CWITH CEDILLA” can be represented as
a single precomposed character at code position U+00C7, or as a sequence of a base character at code position U+0043 (LATIN CAPITAL LETTER
C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).
The comparison operators on strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example, "\u00C7"

== "\u0043\u0327" isFalse, even though both strings represent the same abstract character “LATINCAPITALLETTERCWITHCEDILLA”.
To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize().

6.10. Comparisons 93

https://peps.python.org/pep-0008/

The Python Language Reference, Yayım 3.11.13

– Collections that support order comparison are ordered the same as their first unequal elements (for example,
[1,2,x] < = [1,2,y] has the same value as x < = y). If a corresponding element does not exist,
the shorter collection is ordered first (for example, [1,2] < [1,2,3] is true).

• Mappings (instances of dict) compare equal if and only if they have equal (key, value) pairs. Equality
comparison of the keys and values enforces reflexivity.

Order comparisons (<, >, < =, and > =) raise TypeError.

• Sets (instances of set or frozenset) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total
orderings (for example, the two sets {1,2} and {2,3} are not equal, nor subsets of one another, nor supersets
of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering (for
example, min(), max(), and sorted() produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

• Most other built-in types have no comparison methods implemented, so they inherit the default comparison beha-
vior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:

• Equality comparison should be reflexive. In other words, identical objects should compare equal:

x is y implies x == y

• Comparison should be symmetric. In other words, the following expressions should have the same result:

x == y and y == x

x != y and y != x

x < y and y > x

x < = y and y > = x

• Comparison should be transitive. The following (non-exhaustive) examples illustrate that:

x > y and y > z implies x > z

x < y and y < = z implies x < z

• Inverse comparison should result in the boolean negation. In other words, the following expressions should have
the same result:

x == y and not x != y

x < y and not x > = y (for total ordering)

x > y and not x < = y (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings). See
also the total_ordering() decorator.

• The hash() result should be consistent with equality. Objects that are equal should either have the same hash
value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following these
rules.

94 Bölüm 6. Expressions

The Python Language Reference, Yayım 3.11.13

6.10.2 Membership test operations

The operators in and not in test for membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well as
dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set, frozenset,
dict, or collections.deque, the expression x in y is equivalent to any(x is e or x == e for e in y).

For the string and bytes types, x in y is True if and only if x is a substring of y. An equivalent test is y.find(x)
!= -1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return True.

For user-defined classes which define the __contains__() method, x in y returns True if y.
__contains__(x) returns a true value, and False otherwise.

For user-defined classes which do not define __contains__() but do define __iter__(), x in y is True if
some value z, for which the expression x is z or x == z is true, is produced while iterating over y. If an exception
is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem__(), x in y is True if and only if
there is a non-negative integer index i such that x is y[i] or x == y[i], and no lower integer index raises the
IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not in is defined to have the inverse truth value of in.

6.10.3 Identity comparisons

The operators is and is not test for an object’s identity: x is y is true if and only if x and y are the same object.
An Object’s identity is determined using the id() function. x is not y yields the inverse truth value.4

6.11 Boolean operations

or_test ::= and_test | or_test "or" and_test
and_test ::= not_test | and_test "and" not_test
not_test ::= comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values
are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings,
tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects can customize
their truth value by providing a __bool__() method.

The operator not yields True if its argument is false, False otherwise.

The expression x and y first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

The expression x or y first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty,
the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a boolean value
regardless of the type of its argument (for example, not 'foo' produces False rather than ''.)

4 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain uses
of the is operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

6.11. Boolean operations 95

The Python Language Reference, Yayım 3.11.13

6.12 Assignment expressions

assignment_expression ::= [identifier ":="] expression

An assignment expression (sometimes also called a “named expression” or “walrus”) assigns an expression to an
identifier, while also returning the value of the expression.

One common use case is when handling matched regular expressions:

if matching := pattern.search(data):
do_something(matching)

Or, when processing a file stream in chunks:

while chunk := file.read(9000):
process(chunk)

Assignment expressions must be surrounded by parentheses when used as expression statements and when used as sub-
expressions in slicing, conditional, lambda, keyword-argument, and comprehension-if expressions and inassert,with,
and assignment statements. In all other places where they can be used, parentheses are not required, including in if
and while statements.

3.8 sürümünde geldi: See PEP 572 for more details about assignment expressions.

6.13 Conditional expressions

conditional_expression ::= or_test ["if" or_test "else" expression]
expression ::= conditional_expression | lambda_expr

Conditional expressions (sometimes called a “ternary operator”) have the lowest priority of all Python operations.

The expression x if C else y first evaluates the condition, C rather than x. If C is true, x is evaluated and its value
is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14 Lambdas

lambda_expr ::= "lambda" [parameter_list] ":" expression

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression lambda
parameters: expression yields a function object. The unnamed object behaves like a function object defined
with:

def <lambda>(parameters):
return expression

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expressions
cannot contain statements or annotations.

96 Bölüm 6. Expressions

https://peps.python.org/pep-0572/
https://peps.python.org/pep-0308/

The Python Language Reference, Yayım 3.11.13

6.15 Expression lists

expression_list ::= expression ("," expression)* [","]
starred_list ::= starred_item ("," starred_item)* [","]
starred_expression ::= expression | (starred_item ",")* [starred_item]
starred_item ::= assignment_expression | "*" or_expr

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length of the
tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking. Its operand must be an iterable. The iterable is expanded into a sequence of
items, which are included in the new tuple, list, or set, at the site of the unpacking.

3.5 sürümünde geldi: Iterable unpacking in expression lists, originally proposed by PEP 448.

A trailing comma is required only to create a one-item tuple, such as 1,; it is optional in all other cases. A single expression
without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create an empty tuple,
use an empty pair of parentheses: ().)

6.16 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated
before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

expr1, expr2, expr3, expr4
(expr1, expr2, expr3, expr4)
{expr1: expr2, expr3: expr4}
expr1 + expr2 * (expr3 - expr4)
expr1(expr2, expr3, *expr4, **expr5)
expr3, expr4 = expr1, expr2

6.17 Operator precedence

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest
precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for exponentiation and conditional expressions,
which group from right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right chaining
feature as described in the Comparisons section.

6.15. Expression lists 97

https://peps.python.org/pep-0448/

The Python Language Reference, Yayım 3.11.13

Operator Description

(expressions...),
[expressions...], {key: value...},
{expressions...}

Binding or parenthesized expression, list display,
dictionary display, set display

x[index], x[index:index], x(arguments...), x.
attribute

Subscription, slicing, call, attribute reference

await x Await expression
** Exponentiation5

+x, -x, ~x Positive, negative, bitwise NOT
*, @, /, //, % Multiplication, matrix multiplication, division,

floor division, remainder6

+, - Addition and subtraction
<<, >> Shifts
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
in, not in, is, is not, <, < =, >, > =, !=, == Comparisons, including membership tests and

identity tests
not x Boolean NOT
and Boolean AND
or Boolean OR
if – else Conditional expression
lambda Lambda expression
:= Assignment expression

5 The power operator ** binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**-1 is 0.5.
6 The % operator is also used for string formatting; the same precedence applies.

98 Bölüm 6. Expressions

BÖLÜM7

Simple statements

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line separated
by semicolons. The syntax for simple statements is:

simple_stmt ::= expression_stmt
| assert_stmt
| assignment_stmt
| augmented_assignment_stmt
| annotated_assignment_stmt
| pass_stmt
| del_stmt
| return_stmt
| yield_stmt
| raise_stmt
| break_stmt
| continue_stmt
| import_stmt
| future_stmt
| global_stmt
| nonlocal_stmt

7.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure
(a function that returns no meaningful result; in Python, procedures return the value None). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt ::= starred_expression

99

The Python Language Reference, Yayım 3.11.13

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr() function and the
resulting string is written to standard output on a line by itself (except if the result is None, so that procedure calls do
not cause any output.)

7.2 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt ::= (target_list " =")+ (starred_expression | yield_expression)
target_list ::= target ("," target)* [","]
target ::= identifier

| "(" [target_list] ")"
| "[" [target_list] "]"
| attributeref
| subscription
| slicing
| "*" target

(See section Primaries for the syntax definitions for attributeref, subscription, and slicing.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated
list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an
attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about
its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the
exceptions raised are given with the definition of the object types (see section The standard type hierarchy).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as
follows.

• If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to that
target.

• Else:

– If the target list contains one target prefixed with an asterisk, called a “starred” target: The object must be
an iterable with at least as many items as there are targets in the target list, minus one. The first items of the
iterable are assigned, from left to right, to the targets before the starred target. The final items of the iterable
are assigned to the targets after the starred target. A list of the remaining items in the iterable is then assigned
to the starred target (the list can be empty).

– Else: The object must be an iterable with the same number of items as there are targets in the target list, and
the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.

• If the target is an identifier (name):

– If the name does not occur in a global or nonlocal statement in the current code block: the name is
bound to the object in the current local namespace.

– Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by
nonlocal, respectively.

100 Bölüm 7. Simple statements

The Python Language Reference, Yayım 3.11.13

The name is rebound if it was already bound. This may cause the reference count for the object previously bound
to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

• If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object
with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the
assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not
necessarily AttributeError).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator,
the right-hand side expression, a.x can access either an instance attribute or (if no instance attribute exists) a class
attribute. The left-hand side target a.x is always set as an instance attribute, creating it if necessary. Thus, the two
occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression refers to a class
attribute, the left-hand side creates a new instance attribute as the target of the assignment:

class Cls:
x = 3 # class variable

inst = Cls()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with property().

• If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mu-
table sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is
evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the
sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length,
and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range,
IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value
pair (if no key with the same value existed).

For user-defined objects, the __setitem__() method is called with appropriate arguments.

• If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper
bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds
should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds
are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace
the slice with the items of the assigned sequence. The length of the slice may be different from the length of the
assigned sequence, thus changing the length of the target sequence, if the target sequence allows it.

CPython uygulama ayrıntısı: In the current implementation, the syntax for targets is taken to be the same as for exp-
ressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are ‘si-
multaneous’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables
occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2]:

x = [0, 1]
i = 0
i, x[i] = 1, 2 # i is updated, then x[i] is updated
print(x)

Ayrıca bakınız:

7.2. Assignment statements 101

The Python Language Reference, Yayım 3.11.13

PEP 3132 - Extended Iterable Unpacking
The specification for the *target feature.

7.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt ::= augtarget augop (expression_list | yield_expression)
augtarget ::= identifier | attributeref | subscription | slicing
augop ::= "+ =" | "-=" | "* =" | "@ =" | "/=" | "//=" | "% =" | "** ="

| ">> =" | "<< =" | "& =" | "^=" | "| ="

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns
the result to the original target. The target is only evaluated once.

An augmented assignment expression likex + = 1 can be rewritten asx = x + 1 to achieve a similar, but not exactly
equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed
in-place, meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side. For
example, a[i] + = f(x) first looks-up a[i], then it evaluates f(x) and performs the addition, and lastly, it writes
the result back to a[i].

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible
in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular as-
signments.

7.2.2 Annotated assignment statements

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional
assignment statement:

annotated_assignment_stmt ::= augtarget ":" expression
[" =" (starred_expression | yield_expression)]

The difference from normal Assignment statements is that only a single target is allowed.

For simple names as assignment targets, if in class or module scope, the annotations are evaluated and stored in a special
class or module attribute __annotations__ that is a dictionary mapping from variable names (mangled if private) to
evaluated annotations. This attribute is writable and is automatically created at the start of class or module body execution,
if annotations are found statically.

For expressions as assignment targets, the annotations are evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and
stored in function scopes.

102 Bölüm 7. Simple statements

https://peps.python.org/pep-3132/

The Python Language Reference, Yayım 3.11.13

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations
(where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the target
except for the last __setitem__() or __setattr__() call.

Ayrıca bakınız:

PEP 526 - Syntax for Variable Annotations
The proposal that added syntax for annotating the types of variables (including class variables and instance vari-
ables), instead of expressing them through comments.

PEP 484 - Type hints
The proposal that added the typingmodule to provide a standard syntax for type annotations that can be used in
static analysis tools and IDEs.

3.8 sürümünde değişti: Now annotated assignments allow the same expressions in the right hand side as regular assign-
ments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt ::= "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if __debug__:
if not expression: raise AssertionError

The extended form, assert expression1, expression2, is equivalent to

if __debug__:
if not expression1: raise AssertionError(expression2)

These equivalences assume that __debug__ and AssertionError refer to the built-in variables with those names.
In the current implementation, the built-in variable __debug__ is True under normal circumstances, False when
optimization is requested (command line option -O). The current code generator emits no code for an assert statement
when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression
that failed in the error message; it will be displayed as part of the stack trace.

Assignments to __debug__ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4 The pass statement

pass_stmt ::= "pass"

pass is a null operation—when it is executed, nothing happens. It is useful as a placeholder when a statement is required
syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

7.3. The assert statement 103

https://peps.python.org/pep-0526/
https://peps.python.org/pep-0484/

The Python Language Reference, Yayım 3.11.13

7.5 The del statement

del_stmt ::= "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the
name occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be
raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is
in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object).

3.2 sürümünde değişti: Previously it was illegal to delete a name from the local namespace if it occurs as a free variable
in a nested block.

7.6 The return statement

return_stmt ::= "return" [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.

If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a try statement with a finally clause, that finally clause is executed before
really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration
to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the
StopIteration.value attribute.

In an asynchronous generator function, an emptyreturn statement indicates that the asynchronous generator is done and
will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in an asynchronous
generator function.

7.7 The yield statement

yield_stmt ::= yield_expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the parent-
heses that would otherwise be required in the equivalent yield expression statement. For example, the yield statements

yield <expr>
yield from <expr>

are equivalent to the yield expression statements

104 Bölüm 7. Simple statements

The Python Language Reference, Yayım 3.11.13

(yield <expr>)
(yield from <expr>)

Yield expressions and statements are only used when defining a generator function, and are only used in the body of the
generator function. Using yield in a function definition is sufficient to cause that definition to create a generator function
instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8 The raise statement

raise_stmt ::= "raise" [expression ["from" expression]]

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as the
active exception. If there isn’t currently an active exception, a RuntimeError exception is raised indicating that this is
an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance of
BaseException. If it is a class, the exception instance will be obtained when needed by instantiating the class with
no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the
__traceback__ attribute. You can create an exception and set your own traceback in one step using the
with_traceback() exception method (which returns the same exception instance, with its traceback set to its ar-
gument), like so:

raise Exception("foo occurred").with_traceback(tracebackobj)

The from clause is used for exception chaining: if given, the second expression must be another exception class or
instance. If the second expression is an exception instance, it will be attached to the raised exception as the __cause__
attribute (which is writable). If the expression is an exception class, the class will be instantiated and the resulting exception
instance will be attached to the raised exception as the __cause__ attribute. If the raised exception is not handled, both
exceptions will be printed:

>>> try:
... print(1 / 0)
... except Exception as exc:
... raise RuntimeError("Something bad happened") from exc
...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
print(1 / 0)

~~^~~
ZeroDivisionError: division by zero

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
raise RuntimeError("Something bad happened") from exc

RuntimeError: Something bad happened

7.8. The raise statement 105

The Python Language Reference, Yayım 3.11.13

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled. An
exception may be handled when an except or finally clause, or a with statement, is used. The previous exception
is then attached as the new exception’s __context__ attribute:

>>> try:
... print(1 / 0)
... except:
... raise RuntimeError("Something bad happened")
...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
print(1 / 0)

~~^~~
ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
raise RuntimeError("Something bad happened")

RuntimeError: Something bad happened

Exception chaining can be explicitly suppressed by specifying None in the from clause:

>>> try:
... print(1 / 0)
... except:
... raise RuntimeError("Something bad happened") from None
...
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

Additional information on exceptions can be found in section Exceptions, and information about handling exceptions is in
section The try statement.

3.3 sürümünde değişti: None is now permitted as Y in raise X from Y.

Added the __suppress_context__ attribute to suppress automatic display of the exception context.

3.11 sürümünde değişti: If the traceback of the active exception is modified in an except clause, a subsequent raise
statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with the traceback
it had when it was caught.

7.9 The break statement

break_stmt ::= "break"

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition
within that loop.

It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.

If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed before
really leaving the loop.

106 Bölüm 7. Simple statements

The Python Language Reference, Yayım 3.11.13

7.10 The continue statement

continue_stmt ::= "continue"

continuemay only occur syntactically nested in a for or while loop, but not nested in a function or class definition
within that loop. It continues with the next cycle of the nearest enclosing loop.

When continue passes control out of a try statement with a finally clause, that finally clause is executed
before really starting the next loop cycle.

7.11 The import statement

import_stmt ::= "import" module ["as" identifier] ("," module ["as" identifier])*
| "from" relative_module "import" identifier ["as" identifier]
("," identifier ["as" identifier])*
| "from" relative_module "import" "(" identifier ["as" identifier]
("," identifier ["as" identifier])* [","] ")"
| "from" relative_module "import" "*"

module ::= (identifier ".")* identifier
relative_module ::= "."* module | "."+

The basic import statement (no from clause) is executed in two steps:

1. find a module, loading and initializing it if necessary

2. define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for each
clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import
system, which also describes the various types of packages and modules that can be imported, as well as all the hooks that
can be used to customize the import system. Note that failures in this step may indicate either that the module could not
be located, or that an error occurred while initializing the module, which includes execution of the module’s code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three ways:

• If the module name is followed by as, then the name following as is bound directly to the imported module.

• If no other name is specified, and the module being imported is a top level module, the module’s name is bound in
the local namespace as a reference to the imported module

• If the module being imported is not a top level module, then the name of the top level package that contains the
module is bound in the local namespace as a reference to the top level package. The imported module must be
accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:

1. find the module specified in the from clause, loading and initializing it if necessary;

2. for each of the identifiers specified in the import clauses:

1. check if the imported module has an attribute by that name

2. if not, attempt to import a submodule with that name and then check the imported module again for that
attribute

3. if the attribute is not found, ImportError is raised.

7.10. The continue statement 107

The Python Language Reference, Yayım 3.11.13

4. otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if it is
present, otherwise using the attribute name

Examples:

import foo # foo imported and bound locally
import foo.bar.baz # foo, foo.bar, and foo.bar.baz imported, foo bound locally
import foo.bar.baz as fbb # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz␣
↪→bound as fbb
from foo.bar import baz # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz␣
↪→bound as baz
from foo import attr # foo imported and foo.attr bound as attr

If the list of identifiers is replaced by a star ('*'), all public names defined in themodule are bound in the local namespace
for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named
__all__; if defined, it must be a sequence of strings which are names defined or imported by that module. The names
given in __all__ are all considered public and are required to exist. If __all__ is not defined, the set of public names
includes all names found in the module’s namespace which do not begin with an underscore character ('_'). __all__
should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such
as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting to
use it in class or function definitions will raise a SyntaxError.

When specifying what module to import you do not have to specify the absolute name of the module. When a module or
package is contained within another package it is possible to make a relative import within the same top package without
having to mention the package name. By using leading dots in the specified module or package after from you can
specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means
the current package where the module making the import exists. Two dots means up one package level. Three dots is
up two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end up
importingpkg.mod. If you executefrom ..subpkg2 import mod fromwithinpkg.subpkg1 you will import
pkg.subpkg2.mod. The specification for relative imports is contained in the Package Relative Imports section.

importlib.import_module() is provided to support applications that determine dynamically the modules to be
loaded.

Raises an auditing event import with arguments module, filename, sys.path, sys.meta_path, sys.
path_hooks.

7.11.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to
the language. It allows use of the new features on a per-module basis before the release in which the feature becomes
standard.

future_stmt ::= "from" "__future__" "import" feature ["as" identifier]
("," feature ["as" identifier])*
| "from" "__future__" "import" "(" feature ["as" identifier]
("," feature ["as" identifier])* [","] ")"

feature ::= identifier

108 Bölüm 7. Simple statements

The Python Language Reference, Yayım 3.11.13

A future statement must appear near the top of the module. The only lines that can appear before a future statement are:

• the module docstring (if any),

• comments,

• blank lines, and

• other future statements.

The only feature that requires using the future statement is annotations (see PEP 563).

All historical features enabled by the future statement are still recognized by Python 3. The list inclu-
des absolute_import, division, generators, generator_stop, unicode_literals,
print_function, nested_scopes and with_statement. They are all redundant because they are
always enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are
often implemented by generating different code. It may even be the case that a new feature introduces new incompatible
syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions
cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a
future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

import __future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec() and compile() that occur in a module M containing a future
statement will, by default, use the new syntax or semantics associated with the future statement. This can be controlled
by optional arguments to compile()— see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an
interpreter is started with the -i option, is passed a script name to execute, and the script includes a future statement, it
will be in effect in the interactive session started after the script is executed.

Ayrıca bakınız:

PEP 236 - Back to the __future__
The original proposal for the __future__ mechanism.

7.12 The global statement

global_stmt ::= "global" identifier ("," identifier)*

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers
are to be interpreted as globals. It would be impossible to assign to a global variable without global, although free
variables may refer to globals without being declared global.

Names listed in aglobal statementmust not be used in the same code block textually preceding thatglobal statement.

7.12. The global statement 109

https://peps.python.org/pep-0563/
https://peps.python.org/pep-0236/

The Python Language Reference, Yayım 3.11.13

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements or
except clauses, or in a for target list, class definition, function definition, import statement, or variable annota-
tion.

CPython uygulama ayrıntısı: The current implementation does not enforce some of these restrictions, but programs
should not abuse this freedom, as future implementationsmay enforce them or silently change themeaning of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the global
statement. In particular, aglobal statement contained in a string or code object supplied to the built-inexec() function
does not affect the code block containing the function call, and code contained in such a string is unaffected by global
statements in the code containing the function call. The same applies to the eval() and compile() functions.

7.13 The nonlocal statement

nonlocal_stmt ::= "nonlocal" identifier ("," identifier)*

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest enclosing
scope excluding globals. This is important because the default behavior for binding is to search the local namespace first.
The statement allows encapsulated code to rebind variables outside of the local scope besides the global (module) scope.

Names listed in a nonlocal statement, unlike those listed in a global statement, must refer to pre-existing bindings
in an enclosing scope (the scope in which a new binding should be created cannot be determined unambiguously).

Names listed in a nonlocal statement must not collide with pre-existing bindings in the local scope.

Ayrıca bakınız:

PEP 3104 - Access to Names in Outer Scopes
The specification for the nonlocal statement.

110 Bölüm 7. Simple statements

https://peps.python.org/pep-3104/

BÖLÜM8

Compound statements

Compound statements contain (groups of) other statements; they affect or control the execution of those other statements
in some way. In general, compound statements span multiple lines, although in simple incarnations a whole compound
statement may be contained in one line.

The if, while and for statements implement traditional control flow constructs. try specifies exception handlers
and/or cleanup code for a group of statements, while the with statement allows the execution of initialization and fina-
lization code around a block of code. Function and class definitions are also syntactically compound statements.

A compound statement consists of one or more ‘clauses.’ A clause consists of a header and a ‘suite.’ The clause headers
of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely
identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one or
more semicolon-separated simple statements on the same line as the header, following the header’s colon, or it can be one
or more indented statements on subsequent lines. Only the latter form of a suite can contain nested compound statements;
the following is illegal, mostly because it wouldn’t be clear to which if clause a following else clause would belong:

if test1: if test2: print(x)

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or
none of the print() calls are executed:

if x < y < z: print(x); print(y); print(z)

Summarizing:

compound_stmt ::= if_stmt
| while_stmt
| for_stmt
| try_stmt
| with_stmt
| match_stmt
| funcdef
| classdef

111

The Python Language Reference, Yayım 3.11.13

| async_with_stmt
| async_for_stmt
| async_funcdef

suite ::= stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement ::= stmt_list NEWLINE | compound_stmt
stmt_list ::= simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the ‘dangling else’
problem is solved in Python by requiring nested if statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

8.1 The if statement

The if statement is used for conditional execution:

if_stmt ::= "if" assignment_expression ":" suite
("elif" assignment_expression ":" suite)*
["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operations for the definition of true and false); then that suite is executed (and no other part of the if statement
is executed or evaluated). If all expressions are false, the suite of the else clause, if present, is executed.

8.2 The while statement

The while statement is used for repeated execution as long as an expression is true:

while_stmt ::= "while" assignment_expression ":" suite
["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be the
first time it is tested) the suite of the else clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

8.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for_stmt ::= "for" target_list "in" starred_list ":" suite
["else" ":" suite]

112 Bölüm 8. Compound statements

The Python Language Reference, Yayım 3.11.13

The starred_list expression is evaluated once; it should yield an iterable object. An iterator is created for that
iterable. The first item provided by the iterator is then assigned to the target list using the standard rules for assignments
(see Assignment statements), and the suite is executed. This repeats for each item provided by the iterator. When the
iterator is exhausted, the suite in the else clause, if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the else clause if there is no next item.

The for-loop makes assignments to the variables in the target list. This overwrites all previous assignments to those
variables including those made in the suite of the for-loop:

for i in range(10):
print(i)
i = 5 # this will not affect the for-loop

because i will be overwritten with the next
index in the range

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have been
assigned to at all by the loop. Hint: the built-in type range() represents immutable arithmetic sequences of integers.
For instance, iterating range(3) successively yields 0, 1, and then 2.

3.11 sürümünde değişti: Starred elements are now allowed in the expression list.

8.4 The try statement

The try statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt ::= try1_stmt | try2_stmt | try3_stmt
try1_stmt ::= "try" ":" suite

("except" [expression ["as" identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]

try2_stmt ::= "try" ":" suite
("except" "*" expression ["as" identifier] ":" suite)+
["else" ":" suite]
["finally" ":" suite]

try3_stmt ::= "try" ":" suite
"finally" ":" suite

Additional information on exceptions can be found in section Exceptions, and information on using the raise statement
to generate exceptions may be found in section The raise statement.

8.4. The try statement 113

The Python Language Reference, Yayım 3.11.13

8.4.1 except clause

Theexcept clause(s) specify one ormore exception handlers.When no exception occurs in thetry clause, no exception
handler is executed. When an exception occurs in the try suite, a search for an exception handler is started. This search
inspects the except clauses in turn until one is found that matches the exception. An expression-less except clause, if
present, must be last; it matches any exception. For an except clause with an expression, that expression is evaluated,
and the clause matches the exception if the resulting object is “compatible” with the exception. An object is compatible
with an exception if the object is the class or a non-virtual base class of the exception object, or a tuple containing an
item that is the class or a non-virtual base class of the exception object.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code and
on the invocation stack.1

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a handler
is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated as if the
entire try statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified after the as keyword in that
except clause, if present, and the except clause’s suite is executed. All except clauses must have an executable
block. When the end of this block is reached, execution continues normally after the entire try statement. (This means
that if two nested handlers exist for the same exception, and the exception occurs in the try clause of the inner handler,
the outer handler will not handle the exception.)

When an exception has been assigned using as target, it is cleared at the end of the except clause. This is as if

except E as N:
foo

was translated to

except E as N:
try:

foo
finally:

del N

This means the exceptionmust be assigned to a different name to be able to refer to it after the except clause. Exceptions
are cleared because with the traceback attached to them, they form a reference cycle with the stack frame, keeping all
locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, the exception is stored in the sys module, where it can be accessed
from within the body of the except clause by calling sys.exception(). When leaving an exception handler, the
exception stored in the sys module is reset to its previous value:

>>> print(sys.exception())
None
>>> try:
... raise TypeError
... except:
... print(repr(sys.exception()))
... try:
... raise ValueError
... except:
... print(repr(sys.exception()))
... print(repr(sys.exception()))

(sonraki sayfaya devam)

1 The exception is propagated to the invocation stack unless there is afinally clause which happens to raise another exception. That new exception
causes the old one to be lost.

114 Bölüm 8. Compound statements

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

...
TypeError()
ValueError()
TypeError()
>>> print(sys.exception())
None

8.4.2 except* clause

The except* clause(s) are used for handling ExceptionGroups. The exception type for matching is interpreted as
in the case of except, but in the case of exception groups we can have partial matches when the type matches some of
the exceptions in the group. This means that multiple except* clauses can execute, each handling part of the exception
group. Each clause executes at most once and handles an exception group of all matching exceptions. Each exception in
the group is handled by at most one except* clause, the first that matches it.

>>> try:
... raise ExceptionGroup("eg",
... [ValueError(1), TypeError(2), OSError(3), OSError(4)])
... except* TypeError as e:
... print(f'caught {type(e)} with nested {e.exceptions}')
... except* OSError as e:
... print(f'caught {type(e)} with nested {e.exceptions}')
...
caught <class 'ExceptionGroup'> with nested (TypeError(2),)
caught <class 'ExceptionGroup'> with nested (OSError(3), OSError(4))

+ Exception Group Traceback (most recent call last):
| File "<stdin>", line 2, in <module>
| ExceptionGroup: eg
+-+---------------- 1 ----------------
| ValueError: 1
+------------------------------------

Any remaining exceptions that were not handled by any except* clause are re-raised at the end, combined into an
exception group along with all exceptions that were raised from within except* clauses.

From version 3.11.4, when the entire ExceptionGroup is handled and only one exception is raised from an except*
clause, this exception is no longer wrapped to form a new ExceptionGroup.

If the raised exception is not an exception group and its type matches one of the except* clauses, it is caught and
wrapped by an exception group with an empty message string.

>>> try:
... raise BlockingIOError
... except* BlockingIOError as e:
... print(repr(e))
...
ExceptionGroup('', (BlockingIOError()))

An except* clause must have a matching type, and this type cannot be a subclass of BaseExceptionGroup. It is
not possible to mix except and except* in the same try. break, continue and return cannot appear in an
except* clause.

8.4. The try statement 115

The Python Language Reference, Yayım 3.11.13

8.4.3 else clause

The optional else clause is executed if the control flow leaves the try suite, no exception was raised, and no return,
continue, or break statement was executed. Exceptions in the else clause are not handled by the preceding
except clauses.

8.4.4 finally clause

If finally is present, it specifies a ‘cleanup’ handler. The try clause is executed, including any except and else
clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved. The finally
clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If the finally clause
raises another exception, the saved exception is set as the context of the new exception. If the finally clause executes
a return, break or continue statement, the saved exception is discarded:

>>> def f():
... try:
... 1/0
... finally:
... return 42
...
>>> f()
42

The exception information is not available to the program during execution of the finally clause.

When a return, break or continue statement is executed in the try suite of a try…finally statement, the
finally clause is also executed ‘on the way out.’

The return value of a function is determined by the last return statement executed. Since the finally clause always
executes, a return statement executed in the finally clause will always be the last one executed:

>>> def foo():
... try:
... return 'try'
... finally:
... return 'finally'
...
>>> foo()
'finally'

3.8 sürümünde değişti: Prior to Python 3.8, a continue statement was illegal in the finally clause due to a problem
with the implementation.

8.5 The with statement

The with statement is used to wrap the execution of a block with methods defined by a context manager (see section
With Statement Context Managers). This allows common try…except…finally usage patterns to be encapsulated
for convenient reuse.

with_stmt ::= "with" ("(" with_stmt_contents ","? ")" | with_stmt_contents) ":" suite
with_stmt_contents ::= with_item ("," with_item)*
with_item ::= expression ["as" target]

116 Bölüm 8. Compound statements

The Python Language Reference, Yayım 3.11.13

The execution of the with statement with one “item” proceeds as follows:

1. The context expression (the expression given in the with_item) is evaluated to obtain a context manager.

2. The context manager’s __enter__() is loaded for later use.

3. The context manager’s __exit__() is loaded for later use.

4. The context manager’s __enter__() method is invoked.

5. If a target was included in the with statement, the return value from __enter__() is assigned to it.

Not: The with statement guarantees that if the __enter__() method returns without an error, then
__exit__() will always be called. Thus, if an error occurs during the assignment to the target list, it will be
treated the same as an error occurring within the suite would be. See step 7 below.

6. The suite is executed.

7. The context manager’s __exit__() method is invoked. If an exception caused the suite to be exited, its type,
value, and traceback are passed as arguments to __exit__(). Otherwise, three None arguments are supplied.

If the suite was exited due to an exception, and the return value from the __exit__() method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with the
statement following the with statement.

If the suite was exited for any reason other than an exception, the return value from __exit__() is ignored, and
execution proceeds at the normal location for the kind of exit that was taken.

The following code:

with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)
enter = type(manager).__enter__
exit = type(manager).__exit__
value = enter(manager)
hit_except = False

try:
TARGET = value
SUITE

except:
hit_except = True
if not exit(manager, *sys.exc_info()):

raise
finally:

if not hit_except:
exit(manager, None, None, None)

With more than one item, the context managers are processed as if multiple with statements were nested:

with A() as a, B() as b:
SUITE

is semantically equivalent to:

8.5. The with statement 117

The Python Language Reference, Yayım 3.11.13

with A() as a:
with B() as b:

SUITE

You can also write multi-item context managers in multiple lines if the items are surrounded by parentheses. For example:

with (
A() as a,
B() as b,

):
SUITE

3.1 sürümünde değişti: Support for multiple context expressions.

3.10 sürümünde değişti: Support for using grouping parentheses to break the statement in multiple lines.

Ayrıca bakınız:

PEP 343 - The “with” statement
The specification, background, and examples for the Python with statement.

8.6 The match statement

3.10 sürümünde geldi.

The match statement is used for pattern matching. Syntax:

match_stmt ::= 'match' subject_expr ":" NEWLINE INDENT case_block+ DEDENT
subject_expr ::= star_named_expression "," star_named_expressions?

| named_expression
case_block ::= 'case' patterns [guard] ":" block

Not: This section uses single quotes to denote soft keywords.

Pattern matching takes a pattern as input (following case) and a subject value (following match). The pattern (which
may contain subpatterns) is matched against the subject value. The outcomes are:

• A match success or failure (also termed a pattern success or failure).

• Possible binding of matched values to a name. The prerequisites for this are further discussed below.

The match and case keywords are soft keywords.

Ayrıca bakınız:

• PEP 634 – Structural Pattern Matching: Specification

• PEP 636 – Structural Pattern Matching: Tutorial

118 Bölüm 8. Compound statements

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, Yayım 3.11.13

8.6.1 Overview

Here’s an overview of the logical flow of a match statement:

1. The subject expression subject_expr is evaluated and a resulting subject value obtained. If the subject exp-
ression contains a comma, a tuple is constructed using the standard rules.

2. Each pattern in a case_block is attempted to match with the subject value. The specific rules for success or
failure are described below. Thematch attempt can also bind some or all of the standalone names within the pattern.
The precise pattern binding rules vary per pattern type and are specified below. Name bindings made during a
successful pattern match outlive the executed block and can be used after the match statement.

Not: During failed pattern matches, some subpatterns may succeed. Do not rely on bindings being made for a
failed match. Conversely, do not rely on variables remaining unchanged after a failed match. The exact behavior is
dependent on implementation andmay vary. This is an intentional decisionmade to allow different implementations
to add optimizations.

3. If the pattern succeeds, the corresponding guard (if present) is evaluated. In this case all name bindings are gu-
aranteed to have happened.

• If the guard evaluates as true or is missing, the block inside case_block is executed.

• Otherwise, the next case_block is attempted as described above.

• If there are no further case blocks, the match statement is completed.

Not: Users should generally never rely on a pattern being evaluated. Depending on implementation, the interpreter may
cache values or use other optimizations which skip repeated evaluations.

A sample match statement:

>>> flag = False
>>> match (100, 200):
... case (100, 300): # Mismatch: 200 != 300
... print('Case 1')
... case (100, 200) if flag: # Successful match, but guard fails
... print('Case 2')
... case (100, y): # Matches and binds y to 200
... print(f'Case 3, y: {y}')
... case _: # Pattern not attempted
... print('Case 4, I match anything!')
...
Case 3, y: 200

In this case, if flag is a guard. Read more about that in the next section.

8.6. The match statement 119

The Python Language Reference, Yayım 3.11.13

8.6.2 Guards

guard ::= "if" named_expression

A guard (which is part of the case) must succeed for code inside the case block to execute. It takes the form: if
followed by an expression.

The logical flow of a case block with a guard follows:

1. Check that the pattern in the case block succeeded. If the pattern failed, the guard is not evaluated and the next
case block is checked.

2. If the pattern succeeded, evaluate the guard.

• If the guard condition evaluates as true, the case block is selected.

• If the guard condition evaluates as false, the case block is not selected.

• If the guard raises an exception during evaluation, the exception bubbles up.

Guards are allowed to have side effects as they are expressions. Guard evaluation must proceed from the first to the last
case block, one at a time, skipping case blocks whose pattern(s) don’t all succeed. (I.e., guard evaluation must happen in
order.) Guard evaluation must stop once a case block is selected.

8.6.3 Irrefutable Case Blocks

An irrefutable case block is a match-all case block. A match statement may have at most one irrefutable case block, and
it must be last.

A case block is considered irrefutable if it has no guard and its pattern is irrefutable. A pattern is considered irrefutable
if we can prove from its syntax alone that it will always succeed. Only the following patterns are irrefutable:

• AS Patterns whose left-hand side is irrefutable

• OR Patterns containing at least one irrefutable pattern

• Capture Patterns

• Wildcard Patterns

• parenthesized irrefutable patterns

8.6.4 Patterns

Not: This section uses grammar notations beyond standard EBNF:

• the notation SEP.RULE+ is shorthand for RULE (SEP RULE)*

• the notation !RULE is shorthand for a negative lookahead assertion

The top-level syntax for patterns is:

patterns ::= open_sequence_pattern | pattern
pattern ::= as_pattern | or_pattern
closed_pattern ::= | literal_pattern

| capture_pattern

120 Bölüm 8. Compound statements

The Python Language Reference, Yayım 3.11.13

| wildcard_pattern
| value_pattern
| group_pattern
| sequence_pattern
| mapping_pattern
| class_pattern

The descriptions below will include a description “in simple terms” of what a pattern does for illustration purposes (credits
to Raymond Hettinger for a document that inspired most of the descriptions). Note that these descriptions are purely for
illustration purposes andmay not reflect the underlying implementation. Furthermore, they do not cover all valid forms.

OR Patterns

An OR pattern is two or more patterns separated by vertical bars |. Syntax:

or_pattern ::= "|".closed_pattern+

Only the final subpattern may be irrefutable, and each subpattern must bind the same set of names to avoid ambiguity.

An OR pattern matches each of its subpatterns in turn to the subject value, until one succeeds. The OR pattern is then
considered successful. Otherwise, if none of the subpatterns succeed, the OR pattern fails.

In simple terms, P1 | P2 | ... will try to match P1, if it fails it will try to match P2, succeeding immediately if
any succeeds, failing otherwise.

AS Patterns

An AS pattern matches an OR pattern on the left of the as keyword against a subject. Syntax:

as_pattern ::= or_pattern "as" capture_pattern

If the OR pattern fails, the AS pattern fails. Otherwise, the AS pattern binds the subject to the name on the right of the
as keyword and succeeds. capture_pattern cannot be a _.

In simple terms P as NAME will match with P, and on success it will set NAME = <subject>.

Literal Patterns

A literal pattern corresponds to most literals in Python. Syntax:

literal_pattern ::= signed_number
| signed_number "+" NUMBER
| signed_number "-" NUMBER
| strings
| "None"
| "True"
| "False"
| signed_number: NUMBER | "-" NUMBER

8.6. The match statement 121

The Python Language Reference, Yayım 3.11.13

The rule strings and the token NUMBER are defined in the standard Python grammar. Triple-quoted strings are
supported. Raw strings and byte strings are supported. f-strings are not supported.

The forms signed_number '+' NUMBER and signed_number '-' NUMBER are for expressing complex
numbers; they require a real number on the left and an imaginary number on the right. E.g. 3 + 4j.

In simple terms, LITERAL will succeed only if <subject> == LITERAL. For the singletons None, True and
False, the is operator is used.

Capture Patterns

A capture pattern binds the subject value to a name. Syntax:

capture_pattern ::= !'_' NAME

A single underscore _ is not a capture pattern (this is what !'_' expresses). It is instead treated as a
wildcard_pattern.

In a given pattern, a given name can only be bound once. E.g. case x, x: ... is invalid while case [x] | x:
... is allowed.

Capture patterns always succeed. The binding follows scoping rules established by the assignment expression operator in
PEP 572; the name becomes a local variable in the closest containing function scope unless there’s an applicable global
or nonlocal statement.

In simple terms NAME will always succeed and it will set NAME = <subject>.

Wildcard Patterns

A wildcard pattern always succeeds (matches anything) and binds no name. Syntax:

wildcard_pattern ::= '_'

_ is a soft keyword within any pattern, but only within patterns. It is an identifier, as usual, even within match subject
expressions, guards, and case blocks.

In simple terms, _ will always succeed.

Value Patterns

A value pattern represents a named value in Python. Syntax:

value_pattern ::= attr
attr ::= name_or_attr "." NAME
name_or_attr ::= attr | NAME

The dotted name in the pattern is looked up using standard Python name resolution rules. The pattern succeeds if the
value found compares equal to the subject value (using the == equality operator).

In simple terms NAME1.NAME2 will succeed only if <subject> == NAME1.NAME2

122 Bölüm 8. Compound statements

https://peps.python.org/pep-0572/

The Python Language Reference, Yayım 3.11.13

Not: If the same value occurs multiple times in the same match statement, the interpreter may cache the first value found
and reuse it rather than repeat the same lookup. This cache is strictly tied to a given execution of a given match statement.

Group Patterns

A group pattern allows users to add parentheses around patterns to emphasize the intended grouping. Otherwise, it has
no additional syntax. Syntax:

group_pattern ::= "(" pattern ")"

In simple terms (P) has the same effect as P.

Sequence Patterns

A sequence pattern contains several subpatterns to be matched against sequence elements. The syntax is similar to the
unpacking of a list or tuple.

sequence_pattern ::= "[" [maybe_sequence_pattern] "]"
| "(" [open_sequence_pattern] ")"

open_sequence_pattern ::= maybe_star_pattern "," [maybe_sequence_pattern]
maybe_sequence_pattern ::= ",".maybe_star_pattern+ ","?
maybe_star_pattern ::= star_pattern | pattern
star_pattern ::= "*" (capture_pattern | wildcard_pattern)

There is no difference if parentheses or square brackets are used for sequence patterns (i.e. (...) vs [...]).

Not: A single pattern enclosed in parentheses without a trailing comma (e.g. (3 | 4)) is a group pattern. While a
single pattern enclosed in square brackets (e.g. [3 | 4]) is still a sequence pattern.

At most one star subpattern may be in a sequence pattern. The star subpattern may occur in any position. If no star
subpattern is present, the sequence pattern is a fixed-length sequence pattern; otherwise it is a variable-length sequence
pattern.

The following is the logical flow for matching a sequence pattern against a subject value:

1. If the subject value is not a sequence2, the sequence pattern fails.

2 In pattern matching, a sequence is defined as one of the following:
• a class that inherits from collections.abc.Sequence
• a Python class that has been registered as collections.abc.Sequence
• a builtin class that has its (CPython) Py_TPFLAGS_SEQUENCE bit set
• a class that inherits from any of the above

The following standard library classes are sequences:
• array.array
• collections.deque
• list
• memoryview
• range
• tuple

Not: Subject values of type str, bytes, and bytearray do not match sequence patterns.

8.6. The match statement 123

The Python Language Reference, Yayım 3.11.13

2. If the subject value is an instance of str, bytes or bytearray the sequence pattern fails.

3. The subsequent steps depend on whether the sequence pattern is fixed or variable-length.

If the sequence pattern is fixed-length:

1. If the length of the subject sequence is not equal to the number of subpatterns, the sequence pattern fails

2. Subpatterns in the sequence pattern are matched to their corresponding items in the subject sequence from left
to right.Matching stops as soon as a subpattern fails. If all subpatterns succeed inmatching their corresponding
item, the sequence pattern succeeds.

Otherwise, if the sequence pattern is variable-length:

1. If the length of the subject sequence is less than the number of non-star subpatterns, the sequence pattern
fails.

2. The leading non-star subpatterns are matched to their corresponding items as for fixed-length sequences.

3. If the previous step succeeds, the star subpattern matches a list formed of the remaining subject items, exc-
luding the remaining items corresponding to non-star subpatterns following the star subpattern.

4. Remaining non-star subpatterns are matched to their corresponding subject items, as for a fixed-length se-
quence.

Not: The length of the subject sequence is obtained via len() (i.e. via the __len__() protocol). This length
may be cached by the interpreter in a similar manner as value patterns.

In simple terms [P1, P2, P3,… , P<N>] matches only if all the following happens:

• check <subject> is a sequence

• len(subject) == <N>

• P1 matches <subject>[0] (note that this match can also bind names)

• P2 matches <subject>[1] (note that this match can also bind names)

• … and so on for the corresponding pattern/element.

Mapping Patterns

A mapping pattern contains one or more key-value patterns. The syntax is similar to the construction of a dictionary.
Syntax:

mapping_pattern ::= "{" [items_pattern] "}"
items_pattern ::= ",".key_value_pattern+ ","?
key_value_pattern ::= (literal_pattern | value_pattern) ":" pattern

| double_star_pattern
double_star_pattern ::= "**" capture_pattern

At most one double star pattern may be in a mapping pattern. The double star pattern must be the last subpattern in the
mapping pattern.

Duplicate keys in mapping patterns are disallowed. Duplicate literal keys will raise a SyntaxError. Two keys that
otherwise have the same value will raise a ValueError at runtime.

The following is the logical flow for matching a mapping pattern against a subject value:

124 Bölüm 8. Compound statements

The Python Language Reference, Yayım 3.11.13

1. If the subject value is not a mapping3,the mapping pattern fails.

2. If every key given in the mapping pattern is present in the subject mapping, and the pattern for each key matches
the corresponding item of the subject mapping, the mapping pattern succeeds.

3. If duplicate keys are detected in the mapping pattern, the pattern is considered invalid. A SyntaxError is raised
for duplicate literal values; or a ValueError for named keys of the same value.

Not: Key-value pairs are matched using the two-argument form of the mapping subject’s get() method. Matc-
hed key-value pairs must already be present in the mapping, and not created on-the-fly via __missing__() or
__getitem__().

In simple terms {KEY1: P1, KEY2: P2, ... } matches only if all the following happens:

• check <subject> is a mapping

• KEY1 in <subject>

• P1 matches <subject>[KEY1]

• … and so on for the corresponding KEY/pattern pair.

Class Patterns

A class pattern represents a class and its positional and keyword arguments (if any). Syntax:

class_pattern ::= name_or_attr "(" [pattern_arguments ","?] ")"
pattern_arguments ::= positional_patterns ["," keyword_patterns]

| keyword_patterns
positional_patterns ::= ",".pattern+
keyword_patterns ::= ",".keyword_pattern+
keyword_pattern ::= NAME " =" pattern

The same keyword should not be repeated in class patterns.

The following is the logical flow for matching a class pattern against a subject value:

1. If name_or_attr is not an instance of the builtin type , raise TypeError.

2. If the subject value is not an instance of name_or_attr (tested via isinstance()), the class pattern fails.

3. If no pattern arguments are present, the pattern succeeds. Otherwise, the subsequent steps depend on whether
keyword or positional argument patterns are present.

For a number of built-in types (specified below), a single positional subpattern is accepted which will match the
entire subject; for these types keyword patterns also work as for other types.

If only keyword patterns are present, they are processed as follows, one by one:

I. The keyword is looked up as an attribute on the subject.

• If this raises an exception other than AttributeError, the exception bubbles up.

3 In pattern matching, a mapping is defined as one of the following:
• a class that inherits from collections.abc.Mapping
• a Python class that has been registered as collections.abc.Mapping
• a builtin class that has its (CPython) Py_TPFLAGS_MAPPING bit set
• a class that inherits from any of the above

The standard library classes dict and types.MappingProxyType are mappings.

8.6. The match statement 125

The Python Language Reference, Yayım 3.11.13

• If this raises AttributeError, the class pattern has failed.

• Else, the subpattern associated with the keyword pattern is matched against the subject’s attribute value. If
this fails, the class pattern fails; if this succeeds, the match proceeds to the next keyword.

II. If all keyword patterns succeed, the class pattern succeeds.

If any positional patterns are present, they are converted to keyword patterns using the __match_args__ attri-
bute on the class name_or_attr before matching:

I. The equivalent of getattr(cls, "__match_args__", ()) is called.

• If this raises an exception, the exception bubbles up.

• If the returned value is not a tuple, the conversion fails and TypeError is raised.

• If there are more positional patterns than len(cls.__match_args__), TypeError is ra-
ised.

• Otherwise, positional pattern i is converted to a keyword pattern using __match_args__[i]
as the keyword. __match_args__[i] must be a string; if not TypeError is raised.

• If there are duplicate keywords, TypeError is raised.

Ayrıca bakınız:

Customizing positional arguments in class pattern matching

II. Once all positional patterns have been converted to keyword patterns,
the match proceeds as if there were only keyword patterns.

For the following built-in types the handling of positional subpatterns is different:

• bool

• bytearray

• bytes

• dict

• float

• frozenset

• int

• list

• set

• str

• tuple

These classes accept a single positional argument, and the pattern there is matched against the whole object rather
than an attribute. For example int(0|1) matches the value 0, but not the value 0.0.

In simple terms CLS(P1, attr =P2) matches only if the following happens:

• isinstance(<subject>, CLS)

• convert P1 to a keyword pattern using CLS.__match_args__

• For each keyword argument attr =P2:

– hasattr(<subject>, "attr")

– P2 matches <subject>.attr

126 Bölüm 8. Compound statements

The Python Language Reference, Yayım 3.11.13

• … and so on for the corresponding keyword argument/pattern pair.

Ayrıca bakınız:

• PEP 634 – Structural Pattern Matching: Specification

• PEP 636 – Structural Pattern Matching: Tutorial

8.7 Function definitions

A function definition defines a user-defined function object (see section The standard type hierarchy):

funcdef ::= [decorators] "def" funcname "(" [parameter_list] ")"
["->" expression] ":" suite

decorators ::= decorator+
decorator ::= "@" assignment_expression NEWLINE
parameter_list ::= defparameter ("," defparameter)* "," "/" ["," [parameter_list_no_posonly]]

| parameter_list_no_posonly
parameter_list_no_posonly ::= defparameter ("," defparameter)* ["," [parameter_list_starargs]]

| parameter_list_starargs
parameter_list_starargs ::= "*" [parameter] ("," defparameter)* ["," ["**" parameter [","]]]

| "**" parameter [","]
parameter ::= identifier [":" expression]
defparameter ::= parameter [" =" expression]
funcname ::= identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace to
a function object (a wrapper around the executable code for the function). This function object contains a reference to
the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called.4

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated when
the function is defined, in the scope that contains the function definition. The result must be a callable, which is invoked
with the function object as the only argument. The returned value is bound to the function name instead of the function
object. Multiple decorators are applied in nested fashion. For example, the following code

@f1(arg)
@f2
def func(): pass

is roughly equivalent to

def func(): pass
func = f1(arg)(f2(func))

except that the original function is not temporarily bound to the name func.

3.9 sürümünde değişti: Functions may be decorated with any valid assignment_expression. Previously, the gram-
mar was much more restrictive; see PEP 614 for details.

When one or more parameters have the form parameter = expression, the function is said to have “default parameter
values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in which case the

4 A string literal appearing as the first statement in the function body is transformed into the function’s __doc__ attribute and therefore the
function’s docstring.

8.7. Function definitions 127

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/
https://peps.python.org/pep-0614/

The Python Language Reference, Yayım 3.11.13

parameter’s default value is substituted. If a parameter has a default value, all following parameters up until the “*” must
also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This means
that the expression is evaluated once, when the function is defined, and that the same “pre-computed” value is used for
each call. This is especially important to understand when a default parameter value is a mutable object, such as a list
or a dictionary: if the function modifies the object (e.g. by appending an item to a list), the default parameter value is in
effect modified. This is generally not what was intended. A way around this is to use None as the default, and explicitly
test for it in the body of the function, e.g.:

def whats_on_the_telly(penguin=None):
if penguin is None:

penguin = []
penguin.append("property of the zoo")
return penguin

Function call semantics are described inmore detail in sectionCalls. A function call always assigns values to all parameters
mentioned in the parameter list, either from positional arguments, from keyword arguments, or from default values. If the
form “*identifier” is present, it is initialized to a tuple receiving any excess positional parameters, defaulting to the
empty tuple. If the form “**identifier” is present, it is initialized to a new ordered mapping receiving any excess
keyword arguments, defaulting to a new empty mapping of the same type. Parameters after “*” or “*identifier”
are keyword-only parameters and may only be passed by keyword arguments. Parameters before “/” are positional-only
parameters and may only be passed by positional arguments.

3.8 sürümünde değişti: The / function parameter syntax may be used to indicate positional-only parameters. See PEP
570 for details.

Parameters may have an annotation of the form “: expression” following the parameter name. Any parameter may
have an annotation, even those of the form *identifier or **identifier. Functions may have “return” anno-
tation of the form “-> expression” after the parameter list. These annotations can be any valid Python expression.
The presence of annotations does not change the semantics of a function. The annotation values are available as valu-
es of a dictionary keyed by the parameters’ names in the __annotations__ attribute of the function object. If the
annotations import from __future__ is used, annotations are preserved as strings at runtime which enables post-
poned evaluation. Otherwise, they are evaluated when the function definition is executed. In this case annotations may
be evaluated in a different order than they appear in the source code.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions.
This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a shorthand for
a simplified function definition; a function defined in a “def” statement can be passed around or assigned to another
name just like a function defined by a lambda expression. The “def” form is actually more powerful since it allows the
execution of multiple statements and annotations.

Programmer’s note: Functions are first-class objects. A “def” statement executed inside a function definition defines
a local function that can be returned or passed around. Free variables used in the nested function can access the local
variables of the function containing the def. See section Naming and binding for details.

Ayrıca bakınız:

PEP 3107 - Function Annotations
The original specification for function annotations.

PEP 484 - Type Hints
Definition of a standard meaning for annotations: type hints.

PEP 526 - Syntax for Variable Annotations
Ability to type hint variable declarations, including class variables and instance variables.

PEP 563 - Postponed Evaluation of Annotations
Support for forward references within annotations by preserving annotations in a string form at runtime instead of
eager evaluation.

128 Bölüm 8. Compound statements

https://peps.python.org/pep-0570/
https://peps.python.org/pep-0570/
https://peps.python.org/pep-3107/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0563/

The Python Language Reference, Yayım 3.11.13

PEP 318 - Decorators for Functions and Methods
Function and method decorators were introduced. Class decorators were introduced in PEP 3129.

8.8 Class definitions

A class definition defines a class object (see section The standard type hierarchy):

classdef ::= [decorators] "class" classname [inheritance] ":" suite
inheritance ::= "(" [argument_list] ")"
classname ::= identifier

A class definition is an executable statement. The inheritance list usually gives a list of base classes (see Metaclasses for
more advanced uses), so each item in the list should evaluate to a class object which allows subclassing. Classes without
an inheritance list inherit, by default, from the base class object; hence,

class Foo:
pass

is equivalent to

class Foo(object):
pass

The class’s suite is then executed in a new execution frame (see Naming and binding), using a newly created local na-
mespace and the original global namespace. (Usually, the suite contains mostly function definitions.) When the class’s
suite finishes execution, its execution frame is discarded but its local namespace is saved.5 A class object is then created
using the inheritance list for the base classes and the saved local namespace for the attribute dictionary. The class name
is bound to this class object in the original local namespace.

The order in which attributes are defined in the class body is preserved in the new class’s __dict__. Note that this is
reliable only right after the class is created and only for classes that were defined using the definition syntax.

Class creation can be customized heavily using metaclasses.

Classes can also be decorated: just like when decorating functions,

@f1(arg)
@f2
class Foo: pass

is roughly equivalent to

class Foo: pass
Foo = f1(arg)(f2(Foo))

The evaluation rules for the decorator expressions are the same as for function decorators. The result is then bound to the
class name.

3.9 sürümünde değişti: Classesmay be decorated with any validassignment_expression. Previously, the grammar
was much more restrictive; see PEP 614 for details.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances. Instance
attributes can be set in a method with self.name = value. Both class and instance attributes are accessible through

5 A string literal appearing as the first statement in the class body is transformed into the namespace’s __doc__ item and therefore the class’s
docstring.

8.8. Class definitions 129

https://peps.python.org/pep-0318/
https://peps.python.org/pep-3129/
https://peps.python.org/pep-0614/

The Python Language Reference, Yayım 3.11.13

the notation “self.name”, and an instance attribute hides a class attribute with the same name when accessed in this
way. Class attributes can be used as defaults for instance attributes, but using mutable values there can lead to unexpected
results. Descriptors can be used to create instance variables with different implementation details.

Ayrıca bakınız:

PEP 3115 - Metaclasses in Python 3000
The proposal that changed the declaration of metaclasses to the current syntax, and the semantics for how classes
with metaclasses are constructed.

PEP 3129 - Class Decorators
The proposal that added class decorators. Function and method decorators were introduced in PEP 318.

8.9 Coroutines

3.5 sürümünde geldi.

8.9.1 Coroutine function definition

async_funcdef ::= [decorators] "async" "def" funcname "(" [parameter_list] ")"
["->" expression] ":" suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). await expressions,
async for and async with can only be used in the body of a coroutine function.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await or async
keywords.

It is a SyntaxError to use a yield from expression inside the body of a coroutine function.

An example of a coroutine function:

async def func(param1, param2):
do_stuff()
await some_coroutine()

3.7 sürümünde değişti: await and async are now keywords; previously they were only treated as such inside the body
of a coroutine function.

8.9.2 The async for statement

async_for_stmt ::= "async" for_stmt

An asynchronous iterable provides an __aiter__method that directly returns an asynchronous iterator, which can call
asynchronous code in its __anext__ method.

The async for statement allows convenient iteration over asynchronous iterables.

The following code:

async for TARGET in ITER:
SUITE

else:
SUITE2

130 Bölüm 8. Compound statements

https://peps.python.org/pep-3115/
https://peps.python.org/pep-3129/
https://peps.python.org/pep-0318/

The Python Language Reference, Yayım 3.11.13

Is semantically equivalent to:

iter = (ITER)
iter = type(iter).__aiter__(iter)
running = True

while running:
try:

TARGET = await type(iter).__anext__(iter)
except StopAsyncIteration:

running = False
else:

SUITE
else:

SUITE2

See also __aiter__() and __anext__() for details.

It is a SyntaxError to use an async for statement outside the body of a coroutine function.

8.9.3 The async with statement

async_with_stmt ::= "async" with_stmt

An asynchronous context manager is a context manager that is able to suspend execution in its enter and exit methods.

The following code:

async with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)
aenter = type(manager).__aenter__
aexit = type(manager).__aexit__
value = await aenter(manager)
hit_except = False

try:
TARGET = value
SUITE

except:
hit_except = True
if not await aexit(manager, *sys.exc_info()):

raise
finally:

if not hit_except:
await aexit(manager, None, None, None)

See also __aenter__() and __aexit__() for details.

It is a SyntaxError to use an async with statement outside the body of a coroutine function.

Ayrıca bakınız:

PEP 492 - Coroutines with async and await syntax
The proposal that made coroutines a proper standalone concept in Python, and added supporting syntax.

8.9. Coroutines 131

https://peps.python.org/pep-0492/

The Python Language Reference, Yayım 3.11.13

132 Bölüm 8. Compound statements

BÖLÜM9

Top-level components

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or as
program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in these
cases.

9.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion of
a complete Python program. A complete Python program is executed in a minimally initialized environment: all built-in
and standard modules are available, but none have been initialized, except for sys (various system services), builtins
(built-in functions, exceptions and None) and __main__. The latter is used to provide the local and global namespace
for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a complete program but
reads and executes one statement (possibly compound) at a time. The initial environment is identical to that of a complete
program; each statement is executed in the namespace of __main__.

A complete program can be passed to the interpreter in three forms: with the -c string command line option, as a file
passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the interpreter
enters interactive mode; otherwise, it executes the file as a complete program.

133

The Python Language Reference, Yayım 3.11.13

9.2 File input

All input read from non-interactive files has the same form:

file_input ::= (NEWLINE | statement)*

This syntax is used in the following situations:

• when parsing a complete Python program (from a file or from a string);

• when parsing a module;

• when parsing a string passed to the exec() function;

9.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input ::= [stmt_list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed to help
the parser detect the end of the input.

9.4 Expression input

eval() is used for expression input. It ignores leading whitespace. The string argument to eval() must have the
following form:

eval_input ::= expression_list NEWLINE*

134 Bölüm 9. Top-level components

BÖLÜM10

Full Grammar specification

This is the full Python grammar, derived directly from the grammar used to generate the CPython parser (see Gram-
mar/python.gram). The version here omits details related to code generation and error recovery.

The notation is a mixture of EBNF and PEG. In particular, & followed by a symbol, token or parenthesized group indicates
a positive lookahead (i.e., is required to match but not consumed), while ! indicates a negative lookahead (i.e., is required
not to match). We use the | separator to mean PEG’s “ordered choice” (written as / in traditional PEG grammars). See
PEP 617 for more details on the grammar’s syntax.

PEG grammar for Python

========================= START OF THE GRAMMAR =========================

General grammatical elements and rules:
#
* Strings with double quotes (") denote SOFT KEYWORDS
* Strings with single quotes (') denote KEYWORDS
* Upper case names (NAME) denote tokens in the Grammar/Tokens file
* Rule names starting with "invalid_" are used for specialized syntax errors
- These rules are NOT used in the first pass of the parser.
- Only if the first pass fails to parse, a second pass including the invalid
rules will be executed.
- If the parser fails in the second phase with a generic syntax error, the
location of the generic failure of the first pass will be used (this avoids
reporting incorrect locations due to the invalid rules).
- The order of the alternatives involving invalid rules matter
(like any rule in PEG).
#
Grammar Syntax (see PEP 617 for more information):
#
rule_name: expression
Optionally, a type can be included right after the rule name, which
specifies the return type of the C or Python function corresponding to the

(sonraki sayfaya devam)

135

https://github.com/python/cpython/tree/3.11/Grammar/python.gram
https://github.com/python/cpython/tree/3.11/Grammar/python.gram
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://peps.python.org/pep-0617/

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

rule:
rule_name[return_type]: expression
If the return type is omitted, then a void * is returned in C and an Any in
Python.
e1 e2
Match e1, then match e2.
e1 | e2
Match e1 or e2.
The first alternative can also appear on the line after the rule name for
formatting purposes. In that case, a | must be used before the first
alternative, like so:
rule_name[return_type]:
| first_alt
| second_alt
(e)
Match e (allows also to use other operators in the group like '(e)*')
[e] or e?
Optionally match e.
e*
Match zero or more occurrences of e.
e+
Match one or more occurrences of e.
s.e+
Match one or more occurrences of e, separated by s. The generated parse tree
does not include the separator. This is otherwise identical to (e (s e)*).
&e
Succeed if e can be parsed, without consuming any input.
!e
Fail if e can be parsed, without consuming any input.
~
Commit to the current alternative, even if it fails to parse.
#

STARTING RULES
==============

file: [statements] ENDMARKER
interactive: statement_newline
eval: expressions NEWLINE* ENDMARKER
func_type: '(' [type_expressions] ')' '->' expression NEWLINE* ENDMARKER
fstring: star_expressions

GENERAL STATEMENTS
==================

statements: statement+

statement: compound_stmt | simple_stmts

statement_newline:
| compound_stmt NEWLINE
| simple_stmts
| NEWLINE
| ENDMARKER

simple_stmts:
| simple_stmt !';' NEWLINE # Not needed, there for speedup

(sonraki sayfaya devam)

136 Bölüm 10. Full Grammar specification

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

| ';'.simple_stmt+ [';'] NEWLINE

NOTE: assignment MUST precede expression, else parsing a simple assignment
will throw a SyntaxError.
simple_stmt:

| assignment
| star_expressions
| return_stmt
| import_stmt
| raise_stmt
| 'pass'
| del_stmt
| yield_stmt
| assert_stmt
| 'break'
| 'continue'
| global_stmt
| nonlocal_stmt

compound_stmt:
| function_def
| if_stmt
| class_def
| with_stmt
| for_stmt
| try_stmt
| while_stmt
| match_stmt

SIMPLE STATEMENTS
=================

NOTE: annotated_rhs may start with 'yield'; yield_expr must start with 'yield'
assignment:

| NAME ':' expression ['=' annotated_rhs]
| ('(' single_target ')'

| single_subscript_attribute_target) ':' expression ['=' annotated_rhs]
| (star_targets '=')+ (yield_expr | star_expressions) !'=' [TYPE_COMMENT]
| single_target augassign ~ (yield_expr | star_expressions)

annotated_rhs: yield_expr | star_expressions

augassign:
| '+ ='
| '-='
| '* ='
| '@ ='
| '/='
| '%='
| '&='
| '| ='
| '^='
| '<<='
| '>>='
| '** ='
| '//='

(sonraki sayfaya devam)

137

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

return_stmt:
| 'return' [star_expressions]

raise_stmt:
| 'raise' expression ['from' expression]
| 'raise'

global_stmt: 'global' ','.NAME+

nonlocal_stmt: 'nonlocal' ','.NAME+

del_stmt:
| 'del' del_targets &(';' | NEWLINE)

yield_stmt: yield_expr

assert_stmt: 'assert' expression [',' expression]

import_stmt: import_name | import_from

Import statements

import_name: 'import' dotted_as_names
note below: the ('.' | '...') is necessary because '...' is tokenized as ELLIPSIS
import_from:

| 'from' ('.' | '...')* dotted_name 'import' import_from_targets
| 'from' ('.' | '...')+ 'import' import_from_targets

import_from_targets:
| '(' import_from_as_names [','] ')'
| import_from_as_names !','
| '*'

import_from_as_names:
| ','.import_from_as_name+

import_from_as_name:
| NAME ['as' NAME]

dotted_as_names:
| ','.dotted_as_name+

dotted_as_name:
| dotted_name ['as' NAME]

dotted_name:
| dotted_name '.' NAME
| NAME

COMPOUND STATEMENTS
===================

Common elements

block:
| NEWLINE INDENT statements DEDENT
| simple_stmts

decorators: ('@' named_expression NEWLINE)+

Class definitions
(sonraki sayfaya devam)

138 Bölüm 10. Full Grammar specification

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

class_def:
| decorators class_def_raw
| class_def_raw

class_def_raw:
| 'class' NAME ['(' [arguments] ')'] ':' block

Function definitions

function_def:
| decorators function_def_raw
| function_def_raw

function_def_raw:
| 'def' NAME '(' [params] ')' ['->' expression] ':' [func_type_comment] block
| ASYNC 'def' NAME '(' [params] ')' ['->' expression] ':' [func_type_comment]␣

↪→block

Function parameters

params:
| parameters

parameters:
| slash_no_default param_no_default* param_with_default* [star_etc]
| slash_with_default param_with_default* [star_etc]
| param_no_default+ param_with_default* [star_etc]
| param_with_default+ [star_etc]
| star_etc

Some duplication here because we can't write (',' | &')'),
which is because we don't support empty alternatives (yet).

slash_no_default:
| param_no_default+ '/' ','
| param_no_default+ '/' &')'

slash_with_default:
| param_no_default* param_with_default+ '/' ','
| param_no_default* param_with_default+ '/' &')'

star_etc:
| '*' param_no_default param_maybe_default* [kwds]
| '*' param_no_default_star_annotation param_maybe_default* [kwds]
| '*' ',' param_maybe_default+ [kwds]
| kwds

kwds:
| '**' param_no_default

One parameter. This *includes* a following comma and type comment.
#
There are three styles:
- No default

(sonraki sayfaya devam)

139

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

- With default
- Maybe with default
#
There are two alternative forms of each, to deal with type comments:
- Ends in a comma followed by an optional type comment
- No comma, optional type comment, must be followed by close paren
The latter form is for a final parameter without trailing comma.
#

param_no_default:
| param ',' TYPE_COMMENT?
| param TYPE_COMMENT? &')'

param_no_default_star_annotation:
| param_star_annotation ',' TYPE_COMMENT?
| param_star_annotation TYPE_COMMENT? &')'

param_with_default:
| param default ',' TYPE_COMMENT?
| param default TYPE_COMMENT? &')'

param_maybe_default:
| param default? ',' TYPE_COMMENT?
| param default? TYPE_COMMENT? &')'

param: NAME annotation?
param_star_annotation: NAME star_annotation
annotation: ':' expression
star_annotation: ':' star_expression
default: '=' expression | invalid_default

If statement

if_stmt:
| 'if' named_expression ':' block elif_stmt
| 'if' named_expression ':' block [else_block]

elif_stmt:
| 'elif' named_expression ':' block elif_stmt
| 'elif' named_expression ':' block [else_block]

else_block:
| 'else' ':' block

While statement

while_stmt:
| 'while' named_expression ':' block [else_block]

For statement

for_stmt:
| 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_block]
| ASYNC 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_

↪→block]

With statement

with_stmt:
(sonraki sayfaya devam)

140 Bölüm 10. Full Grammar specification

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

| 'with' '(' ','.with_item+ ','? ')' ':' block
| 'with' ','.with_item+ ':' [TYPE_COMMENT] block
| ASYNC 'with' '(' ','.with_item+ ','? ')' ':' block
| ASYNC 'with' ','.with_item+ ':' [TYPE_COMMENT] block

with_item:
| expression 'as' star_target &(',' | ')' | ':')
| expression

Try statement

try_stmt:
| 'try' ':' block finally_block
| 'try' ':' block except_block+ [else_block] [finally_block]
| 'try' ':' block except_star_block+ [else_block] [finally_block]

Except statement

except_block:
| 'except' expression ['as' NAME] ':' block
| 'except' ':' block

except_star_block:
| 'except' '*' expression ['as' NAME] ':' block

finally_block:
| 'finally' ':' block

Match statement

match_stmt:
| "match" subject_expr ':' NEWLINE INDENT case_block+ DEDENT

subject_expr:
| star_named_expression ',' star_named_expressions?
| named_expression

case_block:
| "case" patterns guard? ':' block

guard: 'if' named_expression

patterns:
| open_sequence_pattern
| pattern

pattern:
| as_pattern
| or_pattern

as_pattern:
| or_pattern 'as' pattern_capture_target

or_pattern:
| '|'.closed_pattern+

(sonraki sayfaya devam)

141

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

closed_pattern:
| literal_pattern
| capture_pattern
| wildcard_pattern
| value_pattern
| group_pattern
| sequence_pattern
| mapping_pattern
| class_pattern

Literal patterns are used for equality and identity constraints
literal_pattern:

| signed_number !('+' | '-')
| complex_number
| strings
| 'None'
| 'True'
| 'False'

Literal expressions are used to restrict permitted mapping pattern keys
literal_expr:

| signed_number !('+' | '-')
| complex_number
| strings
| 'None'
| 'True'
| 'False'

complex_number:
| signed_real_number '+' imaginary_number
| signed_real_number '-' imaginary_number

signed_number:
| NUMBER
| '-' NUMBER

signed_real_number:
| real_number
| '-' real_number

real_number:
| NUMBER

imaginary_number:
| NUMBER

capture_pattern:
| pattern_capture_target

pattern_capture_target:
| !"_" NAME !('.' | '(' | '=')

wildcard_pattern:
| "_"

value_pattern:
(sonraki sayfaya devam)

142 Bölüm 10. Full Grammar specification

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

| attr !('.' | '(' | '=')

attr:
| name_or_attr '.' NAME

name_or_attr:
| attr
| NAME

group_pattern:
| '(' pattern ')'

sequence_pattern:
| '[' maybe_sequence_pattern? ']'
| '(' open_sequence_pattern? ')'

open_sequence_pattern:
| maybe_star_pattern ',' maybe_sequence_pattern?

maybe_sequence_pattern:
| ','.maybe_star_pattern+ ','?

maybe_star_pattern:
| star_pattern
| pattern

star_pattern:
| '*' pattern_capture_target
| '*' wildcard_pattern

mapping_pattern:
| '{' '}'
| '{' double_star_pattern ','? '}'
| '{' items_pattern ',' double_star_pattern ','? '}'
| '{' items_pattern ','? '}'

items_pattern:
| ','.key_value_pattern+

key_value_pattern:
| (literal_expr | attr) ':' pattern

double_star_pattern:
| '**' pattern_capture_target

class_pattern:
| name_or_attr '(' ')'
| name_or_attr '(' positional_patterns ','? ')'
| name_or_attr '(' keyword_patterns ','? ')'
| name_or_attr '(' positional_patterns ',' keyword_patterns ','? ')'

positional_patterns:
| ','.pattern+

keyword_patterns:
| ','.keyword_pattern+

(sonraki sayfaya devam)

143

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

keyword_pattern:
| NAME '=' pattern

EXPRESSIONS

expressions:
| expression (',' expression)+ [',']
| expression ','
| expression

expression:
| disjunction 'if' disjunction 'else' expression
| disjunction
| lambdef

yield_expr:
| 'yield' 'from' expression
| 'yield' [star_expressions]

star_expressions:
| star_expression (',' star_expression)+ [',']
| star_expression ','
| star_expression

star_expression:
| '*' bitwise_or
| expression

star_named_expressions: ','.star_named_expression+ [',']

star_named_expression:
| '*' bitwise_or
| named_expression

assignment_expression:
| NAME ':=' ~ expression

named_expression:
| assignment_expression
| expression !':='

disjunction:
| conjunction ('or' conjunction)+
| conjunction

conjunction:
| inversion ('and' inversion)+
| inversion

inversion:
| 'not' inversion
| comparison

Comparison operators

(sonraki sayfaya devam)

144 Bölüm 10. Full Grammar specification

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

comparison:
| bitwise_or compare_op_bitwise_or_pair+
| bitwise_or

compare_op_bitwise_or_pair:
| eq_bitwise_or
| noteq_bitwise_or
| lte_bitwise_or
| lt_bitwise_or
| gte_bitwise_or
| gt_bitwise_or
| notin_bitwise_or
| in_bitwise_or
| isnot_bitwise_or
| is_bitwise_or

eq_bitwise_or: '==' bitwise_or
noteq_bitwise_or:

| ('!=') bitwise_or
lte_bitwise_or: '<=' bitwise_or
lt_bitwise_or: '<' bitwise_or
gte_bitwise_or: '>=' bitwise_or
gt_bitwise_or: '>' bitwise_or
notin_bitwise_or: 'not' 'in' bitwise_or
in_bitwise_or: 'in' bitwise_or
isnot_bitwise_or: 'is' 'not' bitwise_or
is_bitwise_or: 'is' bitwise_or

Bitwise operators

bitwise_or:
| bitwise_or '|' bitwise_xor
| bitwise_xor

bitwise_xor:
| bitwise_xor '^' bitwise_and
| bitwise_and

bitwise_and:
| bitwise_and '&' shift_expr
| shift_expr

shift_expr:
| shift_expr '<<' sum
| shift_expr '>>' sum
| sum

Arithmetic operators

sum:
| sum '+' term
| sum '-' term
| term

term:
(sonraki sayfaya devam)

145

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

| term '*' factor
| term '/' factor
| term '//' factor
| term '%' factor
| term '@' factor
| factor

factor:
| '+' factor
| '-' factor
| '~' factor
| power

power:
| await_primary '**' factor
| await_primary

Primary elements

Primary elements are things like "obj.something.something", "obj[something]",
↪→"obj(something)", "obj" ...

await_primary:
| AWAIT primary
| primary

primary:
| primary '.' NAME
| primary genexp
| primary '(' [arguments] ')'
| primary '[' slices ']'
| atom

slices:
| slice !','
| ','.(slice | starred_expression)+ [',']

slice:
| [expression] ':' [expression] [':' [expression]]
| named_expression

atom:
| NAME
| 'True'
| 'False'
| 'None'
| strings
| NUMBER
| (tuple | group | genexp)
| (list | listcomp)
| (dict | set | dictcomp | setcomp)
| '...'

group:
| '(' (yield_expr | named_expression) ')'

(sonraki sayfaya devam)

146 Bölüm 10. Full Grammar specification

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

Lambda functions

lambdef:
| 'lambda' [lambda_params] ':' expression

lambda_params:
| lambda_parameters

lambda_parameters etc. duplicates parameters but without annotations
or type comments, and if there's no comma after a parameter, we expect
a colon, not a close parenthesis. (For more, see parameters above.)
#
lambda_parameters:

| lambda_slash_no_default lambda_param_no_default* lambda_param_with_default*␣
↪→[lambda_star_etc]

| lambda_slash_with_default lambda_param_with_default* [lambda_star_etc]
| lambda_param_no_default+ lambda_param_with_default* [lambda_star_etc]
| lambda_param_with_default+ [lambda_star_etc]
| lambda_star_etc

lambda_slash_no_default:
| lambda_param_no_default+ '/' ','
| lambda_param_no_default+ '/' &':'

lambda_slash_with_default:
| lambda_param_no_default* lambda_param_with_default+ '/' ','
| lambda_param_no_default* lambda_param_with_default+ '/' &':'

lambda_star_etc:
| '*' lambda_param_no_default lambda_param_maybe_default* [lambda_kwds]
| '*' ',' lambda_param_maybe_default+ [lambda_kwds]
| lambda_kwds

lambda_kwds:
| '**' lambda_param_no_default

lambda_param_no_default:
| lambda_param ','
| lambda_param &':'

lambda_param_with_default:
| lambda_param default ','
| lambda_param default &':'

lambda_param_maybe_default:
| lambda_param default? ','
| lambda_param default? &':'

lambda_param: NAME

LITERALS
========

strings: STRING+

list:
| '[' [star_named_expressions] ']'

tuple:
(sonraki sayfaya devam)

147

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

| '(' [star_named_expression ',' [star_named_expressions]] ')'

set: '{' star_named_expressions '}'

Dicts

dict:
| '{' [double_starred_kvpairs] '}'

double_starred_kvpairs: ','.double_starred_kvpair+ [',']

double_starred_kvpair:
| '**' bitwise_or
| kvpair

kvpair: expression ':' expression

Comprehensions & Generators

for_if_clauses:
| for_if_clause+

for_if_clause:
| ASYNC 'for' star_targets 'in' ~ disjunction ('if' disjunction)*
| 'for' star_targets 'in' ~ disjunction ('if' disjunction)*

listcomp:
| '[' named_expression for_if_clauses ']'

setcomp:
| '{' named_expression for_if_clauses '}'

genexp:
| '(' (assignment_expression | expression !':=') for_if_clauses ')'

dictcomp:
| '{' kvpair for_if_clauses '}'

FUNCTION CALL ARGUMENTS
=======================

arguments:
| args [','] &')'

args:
| ','.(starred_expression | (assignment_expression | expression !':=') !'=')+ [',

↪→' kwargs]
| kwargs

kwargs:
| ','.kwarg_or_starred+ ',' ','.kwarg_or_double_starred+
| ','.kwarg_or_starred+
| ','.kwarg_or_double_starred+

starred_expression:
(sonraki sayfaya devam)

148 Bölüm 10. Full Grammar specification

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

| '*' expression
| '*'

kwarg_or_starred:
| NAME '=' expression
| starred_expression

kwarg_or_double_starred:
| NAME '=' expression
| '**' expression

ASSIGNMENT TARGETS
==================

Generic targets

NOTE: star_targets may contain *bitwise_or, targets may not.
star_targets:

| star_target !','
| star_target (',' star_target)* [',']

star_targets_list_seq: ','.star_target+ [',']

star_targets_tuple_seq:
| star_target (',' star_target)+ [',']
| star_target ','

star_target:
| '*' (!'*' star_target)
| target_with_star_atom

target_with_star_atom:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
| star_atom

star_atom:
| NAME
| '(' target_with_star_atom ')'
| '(' [star_targets_tuple_seq] ')'
| '[' [star_targets_list_seq] ']'

single_target:
| single_subscript_attribute_target
| NAME
| '(' single_target ')'

single_subscript_attribute_target:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead

t_primary:
| t_primary '.' NAME &t_lookahead
| t_primary '[' slices ']' &t_lookahead
| t_primary genexp &t_lookahead
| t_primary '(' [arguments] ')' &t_lookahead

(sonraki sayfaya devam)

149

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

| atom &t_lookahead

t_lookahead: '(' | '[' | '.'

Targets for del statements

del_targets: ','.del_target+ [',']

del_target:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
| del_t_atom

del_t_atom:
| NAME
| '(' del_target ')'
| '(' [del_targets] ')'
| '[' [del_targets] ']'

TYPING ELEMENTS

type_expressions allow */** but ignore them
type_expressions:

| ','.expression+ ',' '*' expression ',' '**' expression
| ','.expression+ ',' '*' expression
| ','.expression+ ',' '**' expression
| '*' expression ',' '**' expression
| '*' expression
| '**' expression
| ','.expression+

func_type_comment:
| NEWLINE TYPE_COMMENT &(NEWLINE INDENT) # Must be followed by indented block
| TYPE_COMMENT

========================= END OF THE GRAMMAR ===========================

========================= START OF INVALID RULES =======================

150 Bölüm 10. Full Grammar specification

EKA

Sözlük

>>>
Etkileşimli kabuğun varsayılan Python istemi. Genellikle yorumlayıcıda etkileşimli olarak yürütülebilen kod ör-
nekleri için görülür.

...
Şunlara başvurabilir:

• Girintili bir kod bloğu için kod girerken, eşleşen bir çift sol ve sağ sınırlayıcı (parantez, köşeli parantez, kaşlı
ayraç veya üçlü tırnak) içindeyken veya bir dekoratör belirttikten sonra etkileşimli kabuğun varsayılan Python
istemi.

• Elipsis yerleşik sabiti.

2to3
Kaynağı ayrıştırarak ve ayrıştırma ağacında gezinerek tespit edilebilecek uyumsuzlukların çoğunu işleyerek Python
2.x kodunu Python 3.x koduna dönüştürmeye çalışan bir araç.

2to3, standart kütüphanede lib2to3'; bağımsız bir giriş noktası şu şekilde
sağlanır:file:`Tools/scripts/2to3. Bakınız 2to3-reference.

soyut temel sınıf
Soyut temel sınıflar duck-typing ‘i, hasattr() gibi diğer teknikler beceriksiz veya tamamen yanlış olduğun-
da arayüzleri tanımlamanın bir yolunu sağlayarak tamamlar (örneğin sihirli yöntemlerle). ABC’ler, bir sınıftan
miras almayan ancak yine de isinstance() ve issubclass() tarafından tanınan sınıflar olan sanal alt
sınıfları tanıtır; abc modül belgelerine bakın. Python comes with many built-in ABCs for data structures (in the
collections.abc module), numbers (in the numbers module), streams (in the io module), import finders
and loaders (in the importlib.abc module). abc modülü ile kendi ABC’lerinizi oluşturabilirsiniz.

dipnot
Bir değişkenle, bir sınıf niteliğiyle veya bir fonksiyon parametresiyle veya bir dönüş değeriyle ilişkilendirilen, ge-
lenek olarak type hint biçiminde kullanılan bir etiket.

Yerel değişkenlerin açıklamalarına çalışma zamanında erişilemez, ancak global değişkenlerin, sınıf niteliklerinin ve
işlevlerin açıklamaları, sırasıyla modüllerin, sınıfların ve işlevlerin __annotations__ özel özelliğinde saklanır.

Bu işlevi açıklayan variable annotation, function annotation, PEP 484 ve PEP 526’e bakın. Ek açıklamalarla
çalışmaya ilişkin en iyi uygulamalar için ayrıca bkz. annotations-howto.

151

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python Language Reference, Yayım 3.11.13

argüman
Fonksiyon çağrılırken bir function ‘a (veya method) geçirilen bir değer. İki tür argüman vardır:

• keyword argument: bir işlev çağrısında bir tanımlayıcının (ör. ad =) önüne geçen veya bir sözlükte ** ile
başlayan bir değer olarak geçirilen bir argüman. Örneğin, 3 ve 5, aşağıdaki complex(): çağrılarında anah-
tar kelimenin argümanleridir:

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: anahtar kelime argümanı olmayan bir argüman. Konumsal argümanler, bir argüman
listesinin başında görünebilir ve/veya * ile başlayan bir iterable öğesinin öğeleri olarak iletilebilir. Örneğin, 3
ve 5, aşağıdaki çağrılarda konumsal argümanlerdir:

complex(3, 5)
complex(*(3, 5))

Argümanler, bir fonksiyon gövdesindeki adlandırılmış yerel değişkenlere atanır. Bu atamayı yöneten kurallar için
Calls bölümüne bakın. Sözdizimsel olarak, bir argümanı temsil etmek için herhangi bir ifade kullanılabilir; değer-
lendirilen değer yerel değişkene atanır.

Ayrıca parameter sözlüğü girişine, the difference between arguments and parameters hakkındaki SSS sorusuna ve
PEP 362 ‘ye bakın.

asenkron bağlam yöneticisi
An object which controls the environment seen in an async with statement by defining __aenter__() and
__aexit__() methods. Introduced by PEP 492.

asenkron jeneratör
asynchronous generator iterator döndüren bir işlev. Bir async for döngüsünde kullanılabilen bir dizi değer
üretmek için yield ifadeleri içermesi dışında async def ile tanımlanmış bir eşyordam işlevine benziyor.

Genellikle bir asenkron üreteç işlevine atıfta bulunur, ancak bazı bağlamlarda bir asynchronous generator iterator
‘e karşılık gelebilir. Amaçlanan anlamın net olmadığı durumlarda, tam terimlerin kullanılması belirsizliği önler.

Bir asenkron üretici fonksiyonu, await ifadelerinin yanı sıra async for ve async with ifadeleri içerebilir.

asenkron jeneratör yineleyici
Bir asynchronous generator işlevi tarafından oluşturulan bir nesne.

This is an asynchronous iterator which when called using the __anext__() method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

eşzamansız yinelenebilir
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__() method. Introduced by PEP 492.

asenkron yineleyici
An object that implements the __aiter__() and __anext__() methods. __anext__() must return an
awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s __anext__()
method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

nitelik
Noktalı ifadeler kullanılarak adıyla başvurulan bir nesneyle ilişkili değer. Örneğin, o nesnesinin a özniteliği varsa,
bu nesneye o.a olarak başvurulur.

152 Ek A. Sözlük

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

The Python Language Reference, Yayım 3.11.13

Bir nesneye, eğer nesne izin veriyorsa, örneğin setattr() kullanarak, adı Identifiers and keywords tarafından
tanımlandığı gibi tanımlayıcı olmayan bir öznitelik vermek mümkündür. Böyle bir özniteliğe noktalı bir ifade
kullanılarak erişilemez ve bunun yerine getattr() ile alınması gerekir.

beklenebilir
An object that can be used in an await expression. Can be a coroutine or an object with an __await__()
method. See also PEP 492.

BDFL
Benevolent Dictator For Life, namı diğer Guido van Rossum, Python’un yaratıcısı.

ikili dosya
A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO
and gzip.GzipFile.

Ayrıca str nesnelerini okuyabilen ve yazabilen bir dosya nesnesi için text file ‘a bakın.

ödünç alınan referans
In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection can
remove the last strong reference to the object and so destroy it.

borrowed reference üzerinde Py_INCREF() çağırmak, nesnenin ödünç alınanın son kullanımından önce yok
edilemediği durumlar dışında, onu yerinde bir strong reference ‘a dönüştürmek için tavsiye edilir. referans.
Py_NewRef() işlevi, yeni bir strong reference oluşturmak için kullanılabilir.

bayt benzeri nesne
bufferobjects ‘i destekleyen ve bir C-contiguous arabelleğini dışa aktarabilen bir nesne. Bu, tüm bytes,
bytearray ve array.array nesnelerinin yanı sıra birçok yaygın memoryview nesnesini içerir. Bayt ben-
zeri nesneler, ikili verilerle çalışan çeşitli işlemler için kullanılabilir; bunlara sıkıştırma, ikili dosyaya kaydetme ve
bir soket üzerinden gönderme dahildir.

Bazı işlemler, değişken olması için ikili verilere ihtiyaç duyar. Belgeler genellikle bunlara “okuma-yazma bayt ben-
zeri nesneler” olarak atıfta bulunur. Örnek değiştirilebilir arabellek nesneleri bytearray ve bir bytearray
memoryview içerir. Diğer işlemler, ikili verilerin değişmez nesnelerde (“salt okunur bayt benzeri nesneler”)
depolanmasını gerektirir; bunların örnekleri arasında bytes ve bir bytes nesnesinin memoryview bulunur.

bayt kodu
Python kaynak kodu, bir Python programının CPython yorumlayıcısındaki dahili temsili olan bayt kodunda der-
lenir. Bayt kodu ayrıca .pyc dosyalarında önbelleğe alınır, böylece aynı dosyanın ikinci kez çalıştırılması daha
hızlı olur (kaynaktan bayt koduna yeniden derleme önlenebilir). Bu “ara dilin”, her bir bayt koduna karşılık gelen
makine kodunu yürüten bir sanal makine üzerinde çalıştığı söylenir. Bayt kodlarının farklı Python sanal makineleri
arasında çalışması veya Python sürümleri arasında kararlı olması beklenmediğini unutmayın.

Bayt kodu talimatlarının bir listesi bytecodes dokümanında bulunabilir.

çağırılabilir
Bir çağrılabilir, muhtemelen bir dizi argümanla (bkz. argument) ve aşağıdaki sözdizimiyle çağrılabilen bir nesnedir:

callable(argument1, argument2, argumentN)

Bir fonksiyon ve uzantısı olarak bir metot bir çağrılabilirdir. __call__() yöntemini uygulayan bir sınıf örneği
de bir çağrılabilirdir.

geri çağırmak
Gelecekte bir noktada yürütülecek bir argüman olarak iletilen bir alt program işlevi.

sınıf
Kullanıcı tanımlı nesneler oluşturmak için bir şablon. Sınıf tanımları normalde sınıfın örnekleri üzerinde çalışan
yöntem tanımlarını içerir.

153

https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

The Python Language Reference, Yayım 3.11.13

sınıf değişkeni
Bir sınıfta tanımlanmış ve yalnızca sınıf düzeyinde (yani sınıfın bir örneğinde değil) değiştirilmesi amaçlanan bir
değişken.

karmaşık sayı
Tüm sayıların bir reel kısım ve bir sanal kısım toplamı olarak ifade edildiği bilinen gerçek sayı sisteminin bir uzan-
tısı. Hayali sayılar, hayali birimin gerçek katlarıdır (-1 ‘in karekökü), genellikle matematikte i veya mühendislikte
j ile yazılır. Python, bu son gösterimle yazılan karmaşık sayılar için yerleşik desteğe sahiptir; hayali kısım bir j son
ekiyle yazılır, örneğin 3+1j. math modülünün karmaşık eş değerlerine erişmek için cmath kullanın. Karmaşık
sayıların kullanımı oldukça gelişmiş bir matematiksel özelliktir. Onlara olan ihtiyacın farkında değilseniz, onları
güvenle görmezden gelebileceğiniz neredeyse kesindir.

bağlam yöneticisi
An object which controls the environment seen in a with statement by defining __enter__() and
__exit__() methods. See PEP 343.

bağlam değişkeni
Bağlamına bağlı olarak farklı değerler alabilen bir değişken. Bu, her yürütme iş parçacığının bir değişken için farklı
bir değere sahip olabileceği Thread-Local Storage’a benzer. Bununla birlikte, bağlam değişkenleriyle, bir yürütme iş
parçacığında birkaç bağlam olabilir ve bağlam değişkenlerinin ana kullanımı, eşzamanlı zaman uyumsuz görevlerde
değişkenleri izlemektir. Bakınız contextvars.

bitişik
Bir arabellek, C-bitişik veya Fortran bitişik ise tam olarak bitişik olarak kabul edilir. Sıfır boyutlu arabellekler C
ve Fortran bitişiktir. Tek boyutlu dizilerde, öğeler sıfırdan başlayarak artan dizinler sırasına göre bellekte yan yana
yerleştirilmelidir. Çok boyutlu C-bitişik dizilerde, öğeleri bellek adresi sırasına göre ziyaret ederken son dizin en
hızlı şekilde değişir. Ancak, Fortran bitişik dizilerinde, ilk dizin en hızlı şekilde değişir.

eşyordam
Eşyordamlar, altyordamların daha genelleştirilmiş bir biçimidir. Alt programlara bir noktada girilir ve başka bir
noktada çıkılır. Eşyordamlar birçok farklı noktada girilebilir, çıkılabilir ve devam ettirilebilir. async def ifadesi
ile uygulanabilirler. Ayrıca bakınız PEP 492.

eşyordam işlevi
Bir coroutine nesnesi döndüren bir işlev. Bir eşyordam işlevi async def ifadesiyle tanımlanabilir ve await,
async for ve async with anahtar kelimelerini içerebilir. Bunlar PEP 492 tarafından tanıtıldı.

CPython
Python programlama dilinin python.org üzerinde dağıtıldığı şekliyle kurallı uygulaması. “CPython” terimi, gerek-
tiğinde bu uygulamayı Jython veya IronPython gibi diğerlerinden ayırmak için kullanılır.

dekoratör
Genellikle @wrapper sözdizimi kullanılarak bir işlev dönüşümü olarak uygulanan, başka bir işlevi döndüren bir
işlev. Dekoratörler için yaygın örnekler şunlardır: classmethod() ve staticmethod().

Dekoratör sözdizimi yalnızca sözdizimsel şekerdir, aşağıdaki iki işlev tanımı anlamsal olarak eş değerdir:

def f(arg):
...

f = staticmethod(f)

@staticmethod
def f(arg):

...

Aynı kavram sınıflar için de mevcuttur, ancak orada daha az kullanılır. Dekoratörler hakkında daha fazla bilgi için
function definitions ve class definitions belgelerine bakın.

tanımlayıcı
Any object which defines themethods__get__(),__set__(), or__delete__().When a class attribute is

154 Ek A. Sözlük

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

The Python Language Reference, Yayım 3.11.13

a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get, set or delete
an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the respective descriptor
method gets called. Understanding descriptors is a key to a deep understanding of Python because they are the basis
for many features including functions, methods, properties, class methods, static methods, and reference to super
classes.

Tanımlayıcıların yöntemleri hakkında daha fazla bilgi için, bkz. Implementing Descriptors veya Descriptor How To
Guide.

sözlük
An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__()
and __eq__() methods. Called a hash in Perl.

sözlük anlama
Öğelerin tümünü veya bir kısmını yinelenebilir bir şekilde işlemenin ve sonuçları içeren bir sözlük döndürmenin
kompakt bir yolu. results = {n: n ** 2 for range(10)}, n ** 2 değerine eşlenmiş n anahtarını
içeren bir sözlük oluşturur. Bkz. Displays for lists, sets and dictionaries.

sözlük görünümü
dict.keys(), dict.values() ve dict.items() ‘den döndürülen nesnelere sözlük görünümleri denir.
Sözlüğün girişleri üzerinde dinamik bir görünüm sağlarlar; bu, sözlük değiştiğinde görünümün bu değişiklikle-
ri yansıttığı anlamına gelir. Sözlük görünümünü tam liste olmaya zorlamak için list(dictview) kullanın.
Bakınız dict-views.

belge dizisi
A string literal which appears as the first expression in a class, function or module. While ignored when the suite
is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class, function
or module. Since it is available via introspection, it is the canonical place for documentation of the object.

ördek yazma
Doğru arayüze sahip olup olmadığını belirlemek için bir nesnenin türüne bakmayan bir programlama stili; bunun
yerine, yöntem veya nitelik basitçe çağrılır veya kullanılır (“Ördek gibi görünüyorsa ve ördek gibi vaklıyorsa, ördek
olmalıdır.”) İyi tasarlanmış kod, belirli türlerden ziyade arayüzleri vurgulayarak, polimorfik ikameye izin vererek
esnekliğini artırır. Ördek yazma, type() veya isinstance() kullanan testleri önler. (Ancak, ördek yazmanın
abstract base class ile tamamlanabileceğini unutmayın.) Bunun yerine, genellikle hasattr() testleri veya EAFP
programlamasını kullanır.

EAFP
Af dilemek izin almaktan daha kolaydır. Bu yaygın Python kodlama stili, geçerli anahtarların veya niteliklerin
varlığını varsayar ve varsayımın yanlış çıkması durumunda istisnaları yakalar. Bu temiz ve hızlı stil, birçok try ve
except ifadesinin varlığı ile karakterize edilir. Teknik, C gibi diğer birçok dilde ortak olan LBYL stiliyle çelişir.

ifade (değer döndürür)
Bir değere göre değerlendirilebilecek bir sözdizimi parçası. Başka bir deyişle, bir ifade, tümü bir değer döndüren
sabit değerler, adlar, öznitelik erişimi, işleçler veya işlev çağrıları gibi ifade öğelerinin bir toplamıdır. Diğer birçok
dilin aksine, tüm dil yapıları ifade değildir. Ayrıca while gibi kullanılamayan ifadeler de vardır. Atamalar da
değer döndürmeyen ifadelerdir (statement).

uzatma modülü
Çekirdekle ve kullanıcı koduyla etkileşim kurmak için Python’un C API’sini kullanan, C veya C++ ile yazılmış bir
modül.

f-string
Ön eki 'f' veya 'F' olan dize değişmezleri genellikle “f-strings” olarak adlandırılır; bu, formatted string literals
‘ın kısaltmasıdır. Ayrıca bkz. PEP 498.

dosya nesnesi
An object exposing a file-oriented API (with methods such as read() or write()) to an underlying resource.
Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of

155

https://peps.python.org/pep-0498/

The Python Language Reference, Yayım 3.11.13

storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.). File
objects are also called file-like objects or streams.

Aslında üç dosya nesnesi kategorisi vardır: ham binary files, arabelleğe alınmış binary files ve text files. Arayüzleri
io modülünde tanımlanmıştır. Bir dosya nesnesi yaratmanın kurallı yolu open() işlevini kullanmaktır.

dosya benzeri nesne
dosya nesnesi ile eşanlamlıdır.

dosya sistemi kodlaması ve hata işleyicisi
Python tarafından işletim sistemindeki baytların kodunu çözmek ve Unicode’u işletim sistemine kodlamak için
kullanılan kodlama ve hata işleyici.

Dosya sistemi kodlaması, 128’in altındaki tüm baytların kodunu başarıyla çözmeyi garanti etmelidir. Dosya sistemi
kodlaması bu garantiyi sağlayamazsa, API işlevleri UnicodeError değerini yükseltebilir.

sys.getfilesystemencoding() ve sys.getfilesystemencodeerrors() işlevleri, dosya siste-
mi kodlamasını ve hata işleyicisini almak için kullanılabilir.

filesystem encoding and error handler Python başlangıcında PyConfig_Read() işleviyle yapılandırılır: bkz.
filesystem_encoding ve filesystem_errors üyeleri PyConfig.

Ayrıca bkz. locale encoding.

bulucu
İçe aktarılmakta olan bir modül için loader ‘ı bulmaya çalışan bir nesne.

Python 3.3’ten beri, iki çeşit bulucu vardır: sys.meta_path ile kullanılmak üzeremeta yol bulucular, ve sys.
path_hooks ile kullanılmak üzere yol girişi bulucular.

Daha fazla ayrıntı için PEP 302, PEP 420 ve PEP 451 bakın.

kat bölümü
En yakın tam sayıya yuvarlayan matematiksel bölme. Kat bölme operatörü // şeklindedir. Örneğin, 11 // 4
ifadesi, gerçek yüzer bölme tarafından döndürülen 2.75 değerinin aksine 2 olarak değerlendirilir. (-11) // 4
‘ün -3 olduğuna dikkat edin, çünkü bu -2.75 yuvarlatılmış aşağı. Bakınız PEP 238.

fonksiyon
Bir arayana bir değer döndüren bir dizi ifade. Ayrıca, gövdenin yürütülmesinde kullanılabilen sıfır veya daha fazla
argüman iletilebilir. Ayrıca parameter, method ve Function definitions bölümüne bakın.

fonksiyon açıklaması
Bir işlev parametresinin veya dönüş değerinin ek açıklaması.

İşlev ek açıklamaları genellikle type hints için kullanılır: örneğin, bu fonksiyonun iki int argüman alması ve ayrıca
bir int dönüş değerine sahip olması beklenir

def sum_two_numbers(a: int, b: int) -> int:
return a + b

İşlev açıklama sözdizimi Function definitions bölümünde açıklanmaktadır.

Bu işlevi açıklayan variable annotation ve PEP 484 ‘e bakın. Ek açıklamalarla çalışmaya ilişkin en iyi uygulamalar
için ayrıca annotations-howto konusuna bakın.

__future__
Bir future ifadesi, from __future__ import <feature>, derleyiciyi, Python’un gelecekteki bir sürü-
münde standart hale gelecek olan sözdizimini veya semantiği kullanarak mevcut modülü derlemeye yönlendirir.
__future__ modülü, feature’ın olası değerlerini belgeler. Bu modülü içe aktararak ve değişkenlerini değerlen-
direrek, dile ilk kez yeni bir özelliğin ne zaman eklendiğini ve ne zaman varsayılan olacağını (ya da yaptığını)
görebilirsiniz:

156 Ek A. Sözlük

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

The Python Language Reference, Yayım 3.11.13

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

çöp toplama
Artık kullanılmadığında belleği boşaltma işlemi. Python, referans sayımı ve referans döngülerini algılayıp kırabilen
bir döngüsel çöp toplayıcı aracılığıyla çöp toplama gerçekleştirir. Çöp toplayıcı gc modülü kullanılarak kontrol
edilebilir.

jeneratör
Bir generator iterator döndüren bir işlev. Bir for döngüsünde kullanılabilen bir dizi değer üretmek için yield
ifadeleri içermesi veya next() işleviyle birer birer alınabilmesi dışında normal bir işleve benziyor.

Genellikle bir üretici işlevine atıfta bulunur, ancak bazı bağlamlarda bir jeneratör yineleyicisine atıfta bulunabilir.
Amaçlanan anlamın net olmadığı durumlarda, tam terimlerin kullanılması belirsizliği önler.

jeneratör yineleyici
Bir generator işlevi tarafından oluşturulan bir nesne.

Her yield, konum yürütme durumunu hatırlayarak (yerel değişkenler ve bekleyen try ifadeleri dahil) işlemeyi
geçici olarak askıya alır. jeneratör yineleyici devam ettiğinde, kaldığı yerden devam eder (her çağrıda yeniden
başlayan işlevlerin aksine).

jeneratör ifadesi
Yineleyici döndüren bir ifade. Bir döngü değişkenini, aralığı ve isteğe bağlı bir if yan tümcesini tanımlayan bir
for yan tümcesinin takip ettiği normal bir ifadeye benziyor. Birleştirilmiş ifade, bir çevreleyen için değerler üretir:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

genel işlev
Farklı türler için aynı işlemi uygulayan birden çok işlevden oluşan bir işlev. Bir çağrı sırasında hangi uygulamanın
kullanılması gerektiği, gönderme algoritması tarafından belirlenir.

Ayrıca single dispatch sözlük girdisine, functools.singledispatch() dekoratörüne ve PEP 443 ‘e bakın.

genel tip
Parametrelendirilebilen bir type; tipik olarak bir konteyner sınıfı, örneğin list veya dict. type hint ve annotation
için kullanılır.

Daha fazla ayrıntı için generic allias types, PEP 483, PEP 484, PEP 585 ve typing modülüne bakın.

GIL
Bakınız global interpreter lock.

genel tercüman kilidi
CPython yorumlayıcısı tarafından aynı anda yalnızca bir iş parçacığının Python bytecode ‘u yürütmesini sağlamak
için kullanılan mekanizma. Bu, nesne modelini (dict gibi kritik yerleşik türler dahil) eşzamanlı erişime karşı
örtük olarak güvenli hale getirerek CPython uygulamasını basitleştirir. Tüm yorumlayıcıyı kilitlemek, çok işlemcili
makinelerin sağladığı paralelliğin çoğu pahasına, yorumlayıcının çok iş parçacıklı olmasını kolaylaştırır.

Bununla birlikte, standart veya üçüncü taraf bazı genişletme modülleri, sıkıştırma veya karma gibi hesaplama açı-
sından yoğun görevler yaparken GIL’yi serbest bırakacak şekilde tasarlanmıştır. Ayrıca, GIL, G/Ç yaparken her
zaman serbest bırakılır.

“Serbest iş parçacıklı” bir yorumlayıcı (paylaşılan verileri çok daha ince bir ayrıntı düzeyinde kilitleyen) oluştur-
ma çabaları, ortak tek işlemcili durumda performans düştüğü için başarılı olmamıştır. Bu performans sorununun
üstesinden gelinmesinin uygulamayı çok daha karmaşık hale getireceğine ve dolayısıyla bakımını daha maliyetli
hale getireceğine inanılmaktadır.

157

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python Language Reference, Yayım 3.11.13

karma tabanlı pyc
Geçerliliğini belirlemek için ilgili kaynak dosyanın son değiştirilme zamanı yerine karma değerini kullanan bir bayt
kodu önbellek dosyası. Bakınız Cached bytecode invalidation.

yıkanabilir
An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__()method). Hashable objects which compare
equal must have the same hash value.

Hashability, bir nesneyi bir sözlük anahtarı ve bir set üyesi olarak kullanılabilir hale getirir, çünkü bu veri yapıları
hash değerini dahili olarak kullanır.

Python’un değişmez yerleşik nesnelerinin çoğu, yıkanabilir; değiştirilebilir kaplar (listeler veya sözlükler gibi) de-
ğildir; değişmez kaplar (tüpler ve donmuş kümeler gibi) yalnızca öğelerinin yıkanabilir olması durumunda yıkana-
bilirdir. Kullanıcı tanımlı sınıfların örnekleri olan nesneler varsayılan olarak hash edilebilirdir. Hepsi eşit olmayanı
karşılaştırır (kendileriyle hariç) ve hash değerleri id() ‘lerinden türetilir.

BOŞTA
Python için Entegre Geliştirme Ortamı. idle, Python’un standart dağıtımıyla birlikte gelen temel bir düzenleyici ve
yorumlayıcı ortamıdır.

değişmez
Sabit değeri olan bir nesne. Değişmez nesneler arasında sayılar, dizeler ve demetler bulunur. Böyle bir nesne değiş-
tirilemez. Farklı bir değerin saklanması gerekiyorsa yeni bir nesne oluşturulmalıdır. Örneğin bir sözlükte anahtar
olarak, sabit bir karma değerinin gerekli olduğu yerlerde önemli bir rol oynarlar.

içe aktarım yolu
İçe aktarılacak modüller için path based finder tarafından aranan konumların (veya path entries) listesi. İçe aktarma
sırasında, bu konum listesi genellikle sys.path adresinden gelir, ancak alt paketler için üst paketin __path__
özelliğinden de gelebilir.

içe aktarma
Bir modüldeki Python kodunun başka bir modüldeki Python koduna sunulması süreci.

içe aktarıcı
Bir modülü hem bulan hem de yükleyen bir nesne; hem bir finder hem de loader nesnesi.

etkileşimli
Python’un etkileşimli bir yorumlayıcısı vardır; bu, yorumlayıcı isteminde ifadeler ve ifadeler girebileceğiniz, bunları
hemen çalıştırabileceğiniz ve sonuçlarını görebileceğiniz anlamına gelir. Herhangi bir argüman olmadan python
‘u başlatmanız yeterlidir (muhtemelen bilgisayarınızın ana menüsünden seçerek). Yeni fikirleri test etmenin veya
modülleri ve paketleri incelemenin çok güçlü bir yoludur (help(x) ‘i unutmayın).

yorumlanmış
Python, derlenmiş bir dilin aksine yorumlanmış bir dildir, ancak bayt kodu derleyicisinin varlığı nedeniyle ayrım
bulanık olabilir. Bu, kaynak dosyaların daha sonra çalıştırılacak bir yürütülebilir dosya oluşturmadan doğrudan
çalıştırılabileceği anlamına gelir. Yorumlanan diller genellikle derlenmiş dillerden daha kısa bir geliştirme/hata
ayıklama döngüsüne sahiptir, ancak programları genellikle daha yavaş çalışır. Ayrıca bkz. interactive.

tercüman kapatma
Kapatılması istendiğinde, Python yorumlayıcısı, modüller ve çeşitli kritik iç yapılar gibi tahsis edilen tüm kaynakları
kademeli olarak serbest bıraktığı özel bir aşamaya girer. Ayrıca garbage collector için birkaç çağrı yapar. Bu,
kullanıcı tanımlı yıkıcılarda veya zayıf referans geri aramalarında kodun yürütülmesini tetikleyebilir. Kapatma
aşamasında yürütülen kod, dayandığı kaynaklar artık çalışmayabileceğinden çeşitli istisnalarla karşılaşabilir (yaygın
örnekler kütüphane modülleri veya uyarı makineleridir).

Yorumlayıcının kapatılmasının ana nedeni, __main__ modülünün veya çalıştırılan betiğin yürütmeyi bitirmiş
olmasıdır.

158 Ek A. Sözlük

The Python Language Reference, Yayım 3.11.13

yinelenebilir
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define with an __iter__() method or with a __getitem__() method that implements sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), …).
When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generator.

yineleyici
An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing it
to the built-in function next()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
to its __next__()method just raise StopIteration again. Iterators are required to have an __iter__()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a list) produces a fresh new iterator each time you pass it to the iter() function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

Daha fazla bilgi typeiter içinde bulunabilir.

CPython uygulama ayrıntısı: CPython does not consistently apply the requirement that an iterator define
__iter__().

anahtar işlev
Anahtar işlevi veya harmanlama işlevi, sıralama veya sıralama için kullanılan bir değeri döndüren bir çağrılabi-
lir. Örneğin, locale.strxfrm(), yerel ayara özgü sıralama kurallarının farkında olan bir sıralama anahtarı
üretmek için kullanılır.

Python’daki bir dizi araç, öğelerin nasıl sıralandığını veya gruplandırıldığını kontrol etmek için temel işlevleri ka-
bul eder. Bunlar min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(),
heapq.nlargest() ve itertools.groupby().

Bir tuş fonksiyonu oluşturmanın birkaç yolu vardır. Örneğin. str.lower() yöntemi, büyük/küçük har-
fe duyarlı olmayan sıralamalar için bir anahtar fonksiyonu işlevi görebilir. Alternatif olarak, lambda r:
(r[0], r[2]) gibi bir lambda ifadesinden bir anahtar işlevi oluşturulabilir. Ayrıca, attrgetter(),
itemgetter() ve methodcaller() fonksiyonları üç anahtar fonksiyon kurucularıdır. Anahtar işlevlerin
nasıl oluşturulacağı ve kullanılacağına ilişkin örnekler için Sorting HOW TO bölümüne bakın.

anahtar kelime argümanı
Bakınız argument.

lambda
İşlev çağrıldığında değerlendirilen tek bir expression ‘dan oluşan anonim bir satır içi işlev. Bir lambda işlevi oluş-
turmak için sözdizimi lambda [parametreler]: ifade şeklindedir

LBYL
Zıplamadan önce Bak. Bu kodlama stili, arama veya arama yapmadan önce ön koşulları açıkça test eder. Bu stil,
EAFP yaklaşımıyla çelişir ve birçok if ifadesinin varlığı ile karakterize edilir.

Çok iş parçacıklı bir ortamda, LBYL yaklaşımı “bakan” ve “sıçrayan” arasında bir yarış koşulu getirme riskini ta-
şıyabilir. Örneğin, if key in mapping: return mapping[key] kodu, testten sonra, ancak aramadan
önce başka bir iş parçacığı eşlemeden key kaldırırsa başarısız olabilir. Bu sorun, kilitlerle veya EAFP yaklaşımı
kullanılarak çözülebilir.

159

The Python Language Reference, Yayım 3.11.13

liste
A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since
access to elements is O(1).

liste anlama
Bir dizideki öğelerin tümünü veya bir kısmını işlemenin ve sonuçları içeren bir liste döndürmenin kompakt bir yo-
lu. sonuç = ['{:#04x}'.format(x) for range(256) if x % 2 == 0], dizinde çift onaltılık
sayılar (0x..) içeren bir diziler listesi oluşturur. 0 ile 255 arasındadır. if yan tümcesi isteğe bağlıdır. Atlanırsa,
“aralık(256)” içindeki tüm öğeler işlenir.

yükleyici
Modül yükleyen bir nesne.load_module() adında bir yöntem tanımlamalıdır. Bir yükleyici genellikle bir finder
ile döndürülür. Ayrıntılar içinPEP 302 ve bir soyut temel sınıf içinimportlib.abc.Loader bölümüne bakın.

yerel kodlama
Unix’te, LC_CTYPE yerel ayarının kodlamasıdır. locale.setlocale(locale.LC_CTYPE,
new_locale) ile ayarlanabilir.

Windows’ta bu, ANSI kod sayfasıdır (ör. "cp1252").

Android ve VxWorks’te Python, yerel kodlama olarak "utf-8" kullanır.

locale.getencoding() can be used to get the locale encoding.

Ayrıca filesystem encoding and error handler ‘ne bakın.

sihirli yöntem
special method için gayri resmi bir eşanlamlı.

haritalama
Keyfi anahtar aramalarını destekleyen ve Mapping veya MutableMapping collections-abstract-base-classes
içinde belirtilen yöntemleri uygulayan bir kapsayıcı nesnesi. Örnekler arasında dict, collections.
defaultdict, collections.OrderedDict ve collections.Counter sayılabilir.

meta yol bulucu
Bir finder, sys.meta_path aramasıyla döndürülür. Meta yol bulucular, yol girişi bulucuları ile ilişkilidir, ancak
onlardan farklıdır.

Meta yol bulucuların uyguladığı yöntemler için importlib.abc.MetaPathFinder bölümüne bakın.

metasınıf
Bir sınıfın sınıfı. Sınıf tanımları, bir sınıf adı, bir sınıf sözlüğü ve temel sınıfların bir listesini oluşturur. Metasınıf,
bu üç argümanı almaktan ve sınıfı oluşturmaktan sorumludur. Çoğu nesne yönelimli programlama dili, varsayılan
bir uygulama sağlar. Python’u özel yapan şey, özel metasınıflar oluşturmanın mümkün olmasıdır. Çoğu kullanıcı
bu araca hiçbir zaman ihtiyaç duymaz, ancak ihtiyaç duyulduğunda, metasınıflar güçlü ve zarif çözümler sağla-
yabilir. Nitelik erişimini günlüğe kaydetmek, iş parçacığı güvenliği eklemek, nesne oluşturmayı izlemek, tekilleri
uygulamak ve diğer birçok görev için kullanılmışlardır.

Daha fazla bilgi Metaclasses içinde bulunabilir.

metot
Bir sınıf gövdesi içinde tanımlanan bir işlev. Bu sınıfın bir örneğinin özniteliği olarak çağrılırsa, yöntem örnek
nesnesini ilk argument (genellikle self olarak adlandırılır) olarak alır. Bkz. function ve nested scope.

metot kalite sıralaması
Metot Çözüm Sırası, arama sırasında bir üye için temel sınıfların arandığı sıradır. 2.3 sürümünden bu yana Python
yorumlayıcısı tarafından kullanılan algoritmanın ayrıntıları için bkz. The Python 2.3 Method Resolution Order.

modül
Python kodunun kuruluş birimi olarak hizmet eden bir nesne. Modüller, rastgele Python nesneleri içeren bir ad
alanına sahiptir. Modüller, importing işlemiyle Python’a yüklenir.

160 Ek A. Sözlük

https://peps.python.org/pep-0302/
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Yayım 3.11.13

Ayrıca bakınız package.

modül özelliği
Bir modülü yüklemek için kullanılan içe aktarmayla ilgili bilgileri içeren bir ad alanı. Bir importlib.
machinery.ModuleSpec örneği.

MRO
Bakınız metot çözüm sırası.

değiştirilebilir
Değiştirilebilir (mutable) nesneler değerlerini değiştirebilir ancak idlerini koruyabilirler. Ayrıca bkz. immu-
table.

adlandırılmış demet
“named tuple” terimi, demetten miras alan ve dizinlenebilir öğelerine de adlandırılmış nitelikler kullanılarak eri-
şilebilen herhangi bir tür veya sınıf için geçerlidir. Tür veya sınıfın başka özellikleri de olabilir.

Çeşitli yerleşik türler, time.localtime() ve os.stat() tarafından döndürülen değerler de dahil olmak
üzere, tanımlama grupları olarak adlandırılır. Başka bir örnek sys.float_info:

>>> sys.float_info[1] # indexed access
1024
>>> sys.float_info.max_exp # named field access
1024
>>> isinstance(sys.float_info, tuple) # kind of tuple
True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand, or it can be created by inheritingtyping.NamedTuple, or with the factory functioncollections.
namedtuple(). The latter techniques also add some extra methods that may not be found in hand-written or
built-in named tuples.

ad alanı
Değişkenin saklandığı yer. Ad alanları sözlükler olarak uygulanır. Nesnelerde (yöntemlerde) yerel, genel ve yerle-
şik ad alanlarının yanı sıra iç içe ad alanları vardır. Ad alanları, adlandırma çakışmalarını önleyerek modülerliği
destekler. Örneğin, builtins.open ve os.open() işlevleri ad alanlarıyla ayırt edilir. Ad alanları, hangi
modülün bir işlevi uyguladığını açıkça belirterek okunabilirliğe ve sürdürülebilirliğe de yardımcı olur. Örneğin,
random.seed() veya itertools.islice() yazmak, bu işlevlerin sırasıyla random ve itertools
modülleri tarafından uygulandığını açıkça gösterir.

ad alanı paketi
A PEP 420 package, yalnızca alt paketler için bir kap olarak hizmet eder. Ad alanı paketlerinin hiçbir fiziksel
temsili olmayabilir ve __init__.py dosyası olmadığından özellikle regular package gibi değildirler.

Ayrıca bkz. module.

iç içe kapsam
Kapsamlı bir tanımdaki bir değişkene atıfta bulunma yeteneği. Örneğin, başka bir fonksiyonun içinde tanımlanan
bir fonksiyon, dış fonksiyondaki değişkenlere atıfta bulunabilir. İç içe kapsamların varsayılan olarak yalnızca baş-
vuru için çalıştığını ve atama için çalışmadığını unutmayın. Yerel değişkenler en içteki kapsamda hem okur hem
de yazar. Benzer şekilde, global değişkenler global ad alanını okur ve yazar. nonlocal, dış kapsamlara yazmaya
izin verir.

yeni stil sınıf
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only new-style classes
could use Python’s newer, versatile features like __slots__, descriptors, properties, __getattribute__(),
class methods, and static methods.

161

https://peps.python.org/pep-0420/

The Python Language Reference, Yayım 3.11.13

obje
Durum (öznitelikler veya değer) ve tanımlanmış davranış (yöntemler) içeren herhangi bir veri. Ayrıca herhangi bir
yeni tarz sınıfın nihai temel sınıfı.

paket
Alt modüller veya yinelemeli olarak alt paketler içerebilen bir Pythonmodule. Teknik olarak bir paket, __path__
özniteliğine sahip bir Python modülüdür.

Ayrıca bkz. regular package ve namespace package.

parametre
Bir function (veya yöntem) tanımında, işlevin kabul edebileceği bir argument (veya bazı durumlarda, argümanlar)
belirten adlandırılmış bir varlık. Beş çeşit parametre vardır:

• positional-or-keyword: pozisyonel veya bir keyword argümanı olarak iletilebilen bir argüman belirtir. Bu, var-
sayılan parametre türüdür, örneğin aşağıdakilerde foo ve bar:

def func(foo, bar=None): ...

• positional-only: yalnızca konuma göre sağlanabilen bir argüman belirtir. Yalnızca konumsal parametreler,
onlardan sonra fonksiyon tanımının parametre listesine bir / karakteri eklenerek tanımlanabilir, örneğin aşa-
ğıdakilerde posonly1 ve posonly2:

def func(posonly1, posonly2, /, positional_or_keyword): ...

• keyword-only: sadece anahtar kelime ile sağlanabilen bir argüman belirtir. Yalnızca anahtar kelime (keyword-
only) parametreleri, onlardan önceki fonksiyon tanımının parametre listesine tek bir değişken konumlu pa-
rametre veya çıplak * dahil edilerek tanımlanabilir, örneğin aşağıdakilerde kw_only1 ve kw_only2:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: keyfi bir pozisyonel argüman dizisinin sağlanabileceğini belirtir (diğer parametreler tarafından
zaten kabul edilmiş herhangi bir konumsal argümana ek olarak). Böyle bir parametre, parametre adının başına
* eklenerek tanımlanabilir, örneğin aşağıdakilerde args:

def func(*args, **kwargs): ...

• var-keyword: keyfi olarak birçok anahtar kelime argümanının sağlanabileceğini belirtir (diğer parametre-
ler tarafından zaten kabul edilen herhangi bir anahtar kelime argümanına ek olarak). Böyle bir parametre,
parametre adının başına **, örneğin yukarıdaki örnekte kwargs eklenerek tanımlanabilir.

Parametreler, hem isteğe bağlı hem de gerekli argümanleri ve ayrıca bazı isteğe bağlı bağımsız değişkenler için
varsayılan değerleri belirtebilir.

Ayrıca bkz. argüman, argümanlar ve parametreler arasındaki fark, inspect.Parameter, Function definitions
ve PEP 362.

yol girişi
path based finder içe aktarma modüllerini bulmak için başvurduğu import path üzerindeki tek bir konum.

yol girişi bulucu
Bir finder sys.path_hooks (yani bir yol giriş kancası) üzerinde bir çağrılabilir tarafından döndürülür ve path
entry verilen modüllerin nasıl bulunacağını bilir.

Yol girişi bulucularının uyguladığı yöntemler için importlib.abc.PathEntryFinder bölümüne bakın.

yol giriş kancası
A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules on a
specific path entry.

162 Ek A. Sözlük

https://peps.python.org/pep-0362/

The Python Language Reference, Yayım 3.11.13

yol tabanlı bulucu
Modüller için bir import path arayan varsayılan meta yol buluculardan biri.

yol benzeri nesne
Bir dosya sistemi yolunu temsil eden bir nesne. Yol benzeri bir nesne, bir yolu temsil eden bir str veya bytes
nesnesi veya os.PathLike protokolünü uygulayan bir nesnedir. os.PathLike protokolünü destekleyen
bir nesne, os.fspath() işlevi çağrılarak bir str veya bytes dosya sistemi yoluna dönüştürülebilir; os.
fsdecode() ve os.fsencode(), bunun yerine sırasıyla str veya bytes sonucunu garanti etmek için kul-
lanılabilir. PEP 519 tarafından tanıtıldı.

PEP
Python Geliştirme Önerisi. PEP, Python topluluğuna bilgi sağlayan veya Python veya süreçleri ya da ortamı için
yeni bir özelliği açıklayan bir tasarım belgesidir. PEP’ler, önerilen özellikler için özlü bir teknik şartname ve bir
gerekçe sağlamalıdır.

PEP’lerin, önemli yeni özellikler önermek, bir sorun hakkında topluluk girdisi toplamak ve Python’a giren tasarım
kararlarını belgelemek için birincil mekanizmalar olması amaçlanmıştır. PEP yazarı, topluluk içinde fikir birliği
oluşturmaktan ve muhalif görüşleri belgelemekten sorumludur.

Bakınız PEP 1.

kısım
PEP 420 içinde tanımlandığı gibi, bir ad alanı paketine katkıda bulunan tek bir dizindeki (muhtemelen bir zip
dosyasında depolanan) bir dizi dosya.

konumsal argüman
Bakınız argument.

geçici API
Geçici bir API, standart kitaplığın geriye dönük uyumluluk garantilerinden kasıtlı olarak hariç tutulan bir API’dir.
Bu tür arayüzlerde büyük değişiklikler beklenmese de, geçici olarak işaretlendikleri sürece, çekirdek geliştiriciler
tarafından gerekli görüldüğü takdirde geriye dönük uyumsuz değişiklikler (arayüzün kaldırılmasına kadar ve buna
kadar) meydana gelebilir. Bu tür değişiklikler karşılıksız yapılmayacaktır - bunlar yalnızca API’nin eklenmesinden
önce gözden kaçan ciddi temel kusurlar ortaya çıkarsa gerçekleşecektir.

Geçici API’ler için bile, geriye dönük uyumsuz değişiklikler “son çare çözümü” olarak görülür - tanımlanan her-
hangi bir soruna geriye dönük uyumlu bir çözüm bulmak için her türlü girişimde bulunulacaktır.

Bu süreç, standart kitaplığın, uzun süreler boyunca sorunlu tasarım hatalarına kilitlenmeden zaman içinde gelişmeye
devam etmesini sağlar. Daha fazla ayrıntı için bkz. PEP 411.

geçici paket
Bakınız provisional API.

Python 3000
Python 3.x sürüm satırının takma adı (uzun zaman önce sürüm 3’ün piyasaya sürülmesi uzak bir gelecekte olduğu
zaman ortaya çıktı.) Bu aynı zamanda “Py3k” olarak da kısaltılır.

Pythonic
Diğer dillerde ortak kavramları kullanarak kod uygulamak yerine Python dilinin en yaygın deyimlerini yakından
takip eden bir fikir veya kod parçası. Örneğin, Python’da yaygın bir deyim, bir for ifadesi kullanarak yinelenebilir
bir öğenin tüm öğeleri üzerinde döngü oluşturmaktır. Diğer birçok dilde bu tür bir yapı yoktur, bu nedenle Python’a
aşina olmayan kişiler bazen bunun yerine sayısal bir sayaç kullanır:

for i in range(len(food)):
print(food[i])

Temizleyicinin aksine, Pythonic yöntemi:

163

https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

The Python Language Reference, Yayım 3.11.13

for piece in food:
print(piece)

nitelikli isim
PEP 3155 içinde tanımlandığı gibi, bir modülün genel kapsamından o modülde tanımlanan bir sınıfa, işleve veya
yönteme giden “yolu” gösteren noktalı ad. Üst düzey işlevler ve sınıflar için nitelikli ad, nesnenin adıyla aynıdır:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

Modüllere atıfta bulunmak için kullanıldığında, tam nitelenmiş ad, herhangi bir üst paket de dahil olmak üzere,
modüle giden tüm noktalı yol anlamına gelir, örn. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

referans sayısı
Bir nesneye yapılan başvuruların sayısı. Bir nesnenin referans sayısı sıfıra düştüğünde, yeniden konumlandırılır.
Referans sayımı genellikle Python kodu tarafından görülmez, ancak CPython uygulamasının önemli bir öğesidir.
Programcılar, belirli bir nesne için başvuru sayısını döndürmek için sys.getrefcount() işlevini çağırabilir.

sürekli paketleme
__init__.py dosyası içeren bir dizin gibi geleneksel bir package.

Ayrıca bkz. ad alanı paketi.

__slots__
Örnek öznitelikleri için önceden yer bildirerek ve örnek sözlüklerini ortadan kaldırarak bellekten tasarruf sağlayan
bir sınıf içindeki bildirim. Popüler olmasına rağmen, tekniğin doğru olması biraz zor ve en iyi, bellek açısından
kritik bir uygulamada çok sayıda örneğin bulunduğu nadir durumlar için ayrılmıştır.

dizi
An iterablewhich supports efficient element access using integer indices via the __getitem__() special method
and defines a __len__()method that returns the length of the sequence. Some built-in sequence types are list,
str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(), but is considered
a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__() and __len__(), adding count(), index(), __contains__(), and
__reversed__(). Types that implement this expanded interface can be registered explicitly using
register(). For more documentation on sequence methods generally, see Common Sequence Operations.

anlamak
Öğelerin tümünü veya bir kısmını yinelenebilir bir şekilde işlemenin ve sonuçlarla birlikte bir küme döndürme-
nin kompakt bir yolu. results = {c for c in 'abracadabra' if c not in 'abc'}, {'r',
'd'} dizelerini oluşturur. Bakınız Displays for lists, sets and dictionaries.

tek sevk
Uygulamanın tek bir argüman türüne göre seçildiği bir generic function gönderimi biçimi.

164 Ek A. Sözlük

https://peps.python.org/pep-3155/

The Python Language Reference, Yayım 3.11.13

parçalamak
Genellikle bir sequence ‘nin bir bölümünü içeren bir nesne. Bir dilim, örneğin variable_name[1:3:5] ‘de
olduğu gibi, birkaç tane verildiğinde, sayılar arasında iki nokta üst üste koyarak, [] alt simge gösterimi kullanılarak
oluşturulur. Köşeli ayraç (alt simge) gösterimi, dahili olarak slice nesnelerini kullanır.

özel metod
Toplama gibi bir tür üzerinde belirli bir işlemi yürütmek için Python tarafından örtük olarak çağrılan bir yöntem.
Bu tür yöntemlerin çift alt çizgi ile başlayan ve biten adları vardır. Özel yöntemler Special method names içinde
belgelenmiştir.

ifade (değer döndürmez)
Bir ifade, bir paketin parçasıdır (kod “bloğu”). Bir ifade, bir expression veya if, while veya for gibi bir anahtar
kelimeye sahip birkaç yapıdan biridir.

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also type
hints and the typing module.

güçlü referans
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the refe-
rence. The strong reference is taken by calling Py_INCREF() when the reference is created and released with
Py_DECREF() when the reference is deleted.

Py_NewRef() fonksiyonu, bir nesneye güçlü bir başvuru oluşturmak için kullanılabilir. Genellikle
Py_DECREF() fonksiyonu, bir referansın sızmasını önlemek için güçlü referans kapsamından çıkmadan önce
güçlü referansta çağrılmalıdır.

Ayrıca bkz. ödünç alınan referans.

yazı çözümleme
Python’da bir dize, bir Unicode kod noktaları dizisidir (U+0000–U+10FFFF aralığında). Bir dizeyi depolamak
veya aktarmak için, bir bayt dizisi olarak seri hale getirilmesi gerekir.

Bir dizeyi bir bayt dizisi halinde seri hale getirmek “kodlama (encoding)” olarak bilinir ve dizeyi bayt dizisinden
yeniden oluşturmak “kod çözme (decoding)” olarak bilinir.

Toplu olarak “metin kodlamaları” olarak adlandırılan çeşitli farklı metin serileştirme kodekleri vardır.

yazı dosyası
A file object str nesnelerini okuyabilir ve yazabilir. Çoğu zaman, bir metin dosyası aslında bir bayt yönelimli veri
akışına erişir ve otomatik olarak text encoding işler. Metin dosyalarına örnek olarak metin modunda açılan dosyalar
('r' veya 'w'), sys.stdin, sys.stdout ve io.StringIO örnekleri verilebilir.

Ayrıca ikili dosyaları okuyabilen ve yazabilen bir dosya nesnesi için bayt benzeri nesnelere bakın.

üç tırnaklı dize
Üç tırnak işareti (”) veya kesme işareti (’) ile sınırlanan bir dize. Tek tırnaklı dizelerde bulunmayan herhangi bir
işlevsellik sağlamasalar da, birkaç nedenden dolayı faydalıdırlar. bir dizeye çıkışsız tek ve çift tırnak eklemeniz
gerekir ve bunlar, devam karakterini kullanmadan birden çok satıra yayılabilir, bu da onları özellikle belge dizileri
yazarken kullanışlı hale getirir.

tip
Bir Python nesnesinin türü, onun ne tür bir nesne olduğunu belirler; her nesnenin bir türü vardır. Bir nesnenin tipine
__class__ niteliği ile erişilebilir veya type(obj) ile alınabilir.

tip takma adı
Bir tanımlayıcıya tür atanarak oluşturulan, bir tür için eş anlamlı.

Tür takma adları, tür ipuçlarını basitleştirmek için kullanışlıdır. Örneğin:

165

The Python Language Reference, Yayım 3.11.13

def remove_gray_shades(
colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:

pass

bu şekilde daha okunaklı hale getirilebilir:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:
pass

Bu işlevi açıklayan typing ve PEP 484 bölümlerine bakın.

tür ipucu
Bir değişken, bir sınıf niteliği veya bir işlev parametresi veya dönüş değeri için beklenen türü belirten bir ek açık-
lama.

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can also aid
IDEs with code completion and refactoring.

Genel değişkenlerin, sınıf özniteliklerinin ve işlevlerin tür ipuçlarına, yerel değişkenlere değil, typing.
get_type_hints() kullanılarak erişilebilir.

Bu işlevi açıklayan typing ve PEP 484 bölümlerine bakın.

evrensel yeni satırlar
Aşağıdakilerin tümünün bir satırın bitişi olarak kabul edildiği metin akışlarını yorumlamanın bir yolu: Unix satır
sonu kuralı \n', Windows kuralı '\r\n', ve eski Macintosh kuralı '\r'. Ek bir kullanım için PEP 278 ve
PEP 3116 ve ayrıca bytes.splitlines() bakın.

değişken açıklama
Bir değişkenin veya bir sınıf özniteliğinin ek açıklaması.

Bir değişkene veya sınıf niteliğine açıklama eklerken atama isteğe bağlıdır:

class C:
field: 'annotation'

Değişken açıklamaları genellikle tür ipuçları için kullanılır: örneğin, bu değişkenin int değerlerini alması beklenir:

count: int = 0

Değişken açıklama sözdizimi Annotated assignment statements bölümünde açıklanmıştır.

Bu işlevi açıklayan; function annotation, PEP 484 ve PEP 526 bölümlerine bakın. Ek açıklamalarla çalışmaya
ilişkin en iyi uygulamalar için ayrıca bkz. annotations-howto.

sanal ortam
Python kullanıcılarının ve uygulamalarının, aynı sistem üzerinde çalışan diğer Python uygulamalarının davranışına
müdahale etmeden Python dağıtım paketlerini kurmasına ve yükseltmesine olanak tanıyan, işbirliği içinde yalıtılmış
bir çalışma zamanı ortamı.

Ayrıca bakınız venv.

sanal makine
Tamamen yazılımla tanımlanmış bir bilgisayar. Python’un sanal makinesi, bayt kodu derleyicisi tarafından yayın-
lanan bytecode ‘u çalıştırır.

Python’un Zen’i
Dili anlamaya ve kullanmaya yardımcı olan Python tasarım ilkeleri ve felsefelerinin listesi. Liste, etkileşimli komut
isteminde “import this” yazarak bulunabilir.

166 Ek A. Sözlük

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

EKB

Dokümanlar hakkında

Bu dokümanlar, Python dokümanları için özel olarak yazılmış bir doküman işlemcisi olan Sphinx tarafından reStructu-
redText kaynaklarından oluşturulur.

Dokümantasyonun ve araç zincirinin geliştirilmesi, tıpkı Python’un kendisi gibi tamamen gönüllü bir çabadır. Katkıda
bulunmak istiyorsanız, nasıl yapacağınıza ilişkin bilgi için lütfen reporting-bugs sayfasına göz atın. Yeni gönüllülere her
zaman açığız!

Destekleri için teşekkürler:

• Fred L. Drake, Jr., orijinal Python dokümantasyon araç setinin yaratıcısı ve içeriğin çoğunun yazarı;

• reStructuredText ve Docutils paketini oluşturmak için ‘Docutils <https://docutils.sourceforge.io/>’_ projesi;

• Fredrik Lundh, Sphinx’in pek çok iyi fikir edindiği Alternatif Python Referansı projesi için.

B.1 Python Dokümantasyonuna Katkıda Bulunanlar

Birçok kişi Python diline, Python standart kütüphanesine ve Python belgelerine katkıda bulunmuştur. Katkıda bulunan-
ların kısmi listesi için Python kaynak dağıtımında Misc/ACKS adresine bakın.

Python topluluğunun girdileri ve katkılarıyla Python böyle harika bir dokümantasyona sahip – Teşekkürler!

167

https://www.sphinx-doc.org/
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.11/Misc/ACKS

The Python Language Reference, Yayım 3.11.13

168 Ek B. Dokümanlar hakkında

EKC

Tarihçe ve Lisans

C.1 Yazılımın tarihçesi

Python, 1990’ların başında Guido van Rossum tarafından Hollanda’da Stichting Mathematisch Centrum’da (CWI, bkz.
https://www.cwi.nl/) ABC adlı bir dilin devamı olarak oluşturuldu. Guido, diğerlerinin oldukça katkısı olmasına rağmen,
Python’un ana yazarı olmaya devam ediyor.

1995’te Guido, yazılımın çeşitli sürümlerini yayınladığı Virginia, Reston’daki Ulusal Araştırma Girişimleri Kurumu’nda
(CNRI, bkz. https://www.cnri.reston.va.us/) Python üzerindeki çalışmalarına devam etti.

Mayıs 2000’de, Guido ve Python çekirdek geliştirme ekibi, BeOpen PythonLabs ekibini oluşturmak için BeOpen.com’a
taşındı. Aynı yılın Ekim ayında PythonLabs ekibi Digital Creations’a (şimdi Zope Corporation; bkz. https://www.zope.
org/) taşındı. 2001 yılında, Python Yazılım Vakfı (PSF, bkz. https://www.python.org/psf/) kuruldu, özellikle Python ile
ilgili Fikri Mülkiyete sahip olmak için oluşturulmuş kar amacı gütmeyen bir organizasyon. Zope Corporation, PSF’nin
sponsor üyesidir.

Tüm Python sürümleri Açık Kaynaklıdır (Açık Kaynak Tanımı için bkz. https://opensource.org/). Tarihsel olarak, tümü
olmasa da çoğu Python sürümleri de GPL uyumluydu; aşağıdaki tablo çeşitli yayınları özetlemektedir.

Yayın Şundan türedi: Yıl Sahibi GPL uyumlu mu?

0.9.0’dan 1.2’ye n/a 1991-1995 CWI evet
1.3 ‘dan 1.5.2’ye 1.2 1995-1999 CNRI evet
1.6 1.5.2 2000 CNRI hayır
2.0 1.6 2000 BeOpen.com hayır
1.6.1 1.6 2001 CNRI hayır
2.1 2.0+1.6.1 2001 PSF hayır
2.0.1 2.0+1.6.1 2001 PSF evet
2.1.1 2.1+2.0.1 2001 PSF evet
2.1.2 2.1.1 2002 PSF evet
2.1.3 2.1.2 2002 PSF evet
2.2 ve üzeri 2.1.1 2001-Günümüz PSF evet

169

https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference, Yayım 3.11.13

Not: GPL uyumlu olması, Python’u GPL kapsamında dağıttığımız anlamına gelmez. Tüm Python lisansları, GPL’den
farklı olarak, değişikliklerinizi açık kaynak yapmadan değiştirilmiş bir sürümü dağıtmanıza izin verir. GPL uyumlu li-
sanslar, Python’u GPL kapsamında yayınlanan diğer yazılımlarla birleştirmeyi mümkün kılar; diğerleri yapmaz.

Bu yayınları mümkün kılmak için Guido’nun yönetimi altında çalışan birçok gönüllüye teşekkürler.

C.2 Python’a erişmek veya başka bir şekilde kullanmak için şartlar ve
koşullar

Python yazılımı ve belgeleri PSF Lisans Anlaşması kapsamında lisanslanmıştır.

Python 3.8.6’dan başlayarak, belgelerdeki örnekler, tarifler ve diğer kodlar, PSF Lisans Sözleşmesi ve Zero-Clause BSD
license kapsamında çift lisanslıdır.

Python’a dahil edilen bazı yazılımlar farklı lisanslar altındadır. Lisanslar, bu lisansa giren kodla listelenir. Bu lisansların
eksik listesi için bkz. Tüzel Yazılımlar için Lisanslar ve Onaylar.

C.2.1 PYTHON İÇİN PSF LİSANS ANLAŞMASI 3.11.13

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

3.11.13 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.11.13 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.11.13 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.11.13 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
3.11.13.

4. PSF is making Python 3.11.13 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR

170 Ek C. Tarihçe ve Lisans

The Python Language Reference, Yayım 3.11.13

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣
↪→THE

USE OF PYTHON 3.11.13 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.11.13
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.11.13, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 3.11.13, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 PYTHON 2.0 İÇİN BEOPEN.COM LİSANS SÖZLEŞMESİ

BEOPEN PYTHON AÇIK KAYNAK LİSANS SÖZLEŞMESİ SÜRÜM 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

(sonraki sayfaya devam)

C.2. Python’a erişmek veya başka bir şekilde kullanmak için şartlar ve koşullar 171

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 PYTHON 1.6.1 İÇİN CNRI LİSANS ANLAŞMASI

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

(sonraki sayfaya devam)

172 Ek C. Tarihçe ve Lisans

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 0.9.0 ARASI 1.2 PYTHON İÇİN CWI LİSANS SÖZLEŞMESİ

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2. Python’a erişmek veya başka bir şekilde kullanmak için şartlar ve koşullar 173

The Python Language Reference, Yayım 3.11.13

C.2.5 PYTHON 3.11.13 BELGELERİNDEKİ KOD İÇİN SIFIR MADDE BSD LİSANSI

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 Tüzel Yazılımlar için Lisanslar ve Onaylar

Bu bölüm, Python dağıtımına dahil edilmiş üçüncü taraf yazılımlar için tamamlanmamış ancak büyüyen bir lisans ve
onay listesidir.

C.3.1 Mersenne Twister’ı

_random modülü, http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html adresinden indiri-
len kodu temel alır. Orijinal koddan kelimesi kelimesine yorumlar aşağıdadır:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

(sonraki sayfaya devam)

174 Ek C. Tarihçe ve Lisans

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Soketler

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asenkron soket hizmetleri

asynchat ve asyncore modülleri aşağıdaki uyarıyı içerir:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby

(sonraki sayfaya devam)

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 175

https://www.wide.ad.jp/

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Çerez yönetimi

http.cookies modülü aşağıdaki uyarıyı içerir:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Çalıştırma izleme

trace modülü aşağıdaki uyarıyı içerir:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.

(sonraki sayfaya devam)

176 Ek C. Tarihçe ve Lisans

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode ve UUdecode fonksiyonları

uu modülü aşağıdaki uyarıyı içerir:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 177

The Python Language Reference, Yayım 3.11.13

C.3.7 XML Uzaktan Yordam Çağrıları

xmlrpc.client modülü aşağıdaki uyarıyı içerir:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

178 Ek C. Tarihçe ve Lisans

The Python Language Reference, Yayım 3.11.13

C.3.9 kqueue seçin

select modülü, kqueue arayüzü için aşağıdaki uyarıyı içerir:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

Python/pyhash.c dosyası, Dan Bernstein’ın SipHash24 algoritmasının Marek Majkowski uygulamasını içerir. Bu-
rada aşağıdaki not yer alır:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 179

The Python Language Reference, Yayım 3.11.13

C.3.11 strtod ve dtoa

C double’larının dizelere ve dizelerden dönüştürülmesi için dtoa ve strtod C fonksiyonlarını sağlayan Python/dtoa.c
dosyası, şu anda https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c ‘den erişilebilen David
M. Gay tarafından aynı adlı dosyadan türetilmiştir. 16 Mart 2009’da alınan orijinal dosya aşağıdaki telif hakkı ve lisans
bildirimini içerir:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived from
that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004

https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

(sonraki sayfaya devam)

180 Ek C. Tarihçe ve Lisans

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their

(sonraki sayfaya devam)

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 181

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

(sonraki sayfaya devam)

182 Ek C. Tarihçe ve Lisans

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to

(sonraki sayfaya devam)

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 183

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

_ctypes uzantısı, yapı --with-system-libffi olarak yapılandırılmadığı sürece libffi kaynaklarının dahil edil-
diği bir kopya kullanılarak oluşturulur:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

zlib uzantısı, sistemde bulunan zlib sürümü derleme için kullanılamayacak kadar eskiyse, zlib kaynaklarının dahil
edildiği bir kopya kullanılarak oluşturulur:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it

(sonraki sayfaya devam)

184 Ek C. Tarihçe ve Lisans

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

tracemalloc tarafından kullanılan hash tablosunun uygulanması cfuhash projesine dayanmaktadır:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 185

The Python Language Reference, Yayım 3.11.13

C.3.17 libmpdec

_decimal modülü, yapı --with-system-libmpdec şeklinde yapılandırılmadığı sürece libmpdec kitaplığının
dahil edildiği bir kopya kullanılarak oluşturulur:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test paketi

test paketindeki C14N 2.0 test paketi (Lib/test/xmltestdata/c14n-20/), https://www.w3.org/TR/
xml-c14n2-testcases/ adresindeki W3C web sitesinden alınmıştır ve 3 maddeli BSD lisansı altında dağıtılmaktadır:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

(sonraki sayfaya devam)

186 Ek C. Tarihçe ve Lisans

https://www.w3.org/TR/xml-c14n2-testcases/
https://www.w3.org/TR/xml-c14n2-testcases/

The Python Language Reference, Yayım 3.11.13

(önceki sayfadan devam)

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project. https://sourceforge.net/projects/sox/files/sox/
12.17.7/sox-12.17.7.tar.gz

This source code is a product of SunMicrosystems, Inc. and is provided for unrestricted use. Users may copy
or modify this source code without charge.

SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
THEWARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PUR-
POSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.

Sun source code is provided with no support and without any obligation on the part of Sun Microsystems,
Inc. to assist in its use, correction, modification or enhancement.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGE-
MENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE OR ANY
PART THEREOF.

In no event will Sun Microsystems, Inc. be liable for any lost revenue or profits or other special, indirect and
consequential damages, even if Sun has been advised of the possibility of such damages.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, California 94043

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Tüzel Yazılımlar için Lisanslar ve Onaylar 187

https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://github.com/MagicStack/uvloop/tree/v0.16.0

The Python Language Reference, Yayım 3.11.13

188 Ek C. Tarihçe ve Lisans

EKD

Telif Hakkı

Python ve bu dokümantasyon:

Telif Hakkı © 2001-2023 Python Software Foundation. Tüm hakları saklıdır.

Telif Hakkı © 2000 BeOpen.com. Tüm hakları saklıdır.

Telif Hakkı © 1995-2000 Ulusal Araştırma Girişimleri Kurumu. Tüm hakları saklıdır.

Telif Hakkı © 1991-1995 Stichting Mathematisch Centrum. Tüm hakları saklıdır.

Bütün lisans ve izin bilgileri için Tarihçe ve Lisans ‘a göz atın.

189

The Python Language Reference, Yayım 3.11.13

190 Ek D. Telif Hakkı

Dizin

Alfabetik olmayan
..., 151

ellipsis literal, 21
'''

string literal, 11
. (dot)

attribute reference, 86
in numeric literal, 16

! (exclamation)
in formatted string literal, 13

- (minus)
binary operator, 91
unary operator, 90

' (single quote)
string literal, 10

! patterns, 120
" (double quote)

string literal, 10
"""

string literal, 11
(hash)

comment, 6
source encoding declaration, 6

% (percent)
operator, 91

% =
augmented assignment, 102

& (ampersand)
operator, 92

& =
augmented assignment, 102

() (parentheses)
call, 87
class definition, 129
function definition, 127
generator expression, 81
in assignment target list, 100
tuple display, 79

* (asterisk)

function definition, 128
import statement, 108
in assignment target list, 100
in expression lists, 97
in function calls, 88
operator, 90

**
function definition, 128
in dictionary displays, 80
in function calls, 88
operator, 89

** =
augmented assignment, 102

* =
augmented assignment, 102

+ (plus)
binary operator, 91
unary operator, 90

+ =
augmented assignment, 102

, (comma), 79
argument list, 87
expression list, 80, 97, 103, 129
identifier list, 109, 110
import statement, 107
in dictionary displays, 80
in target list, 100
parameter list, 127
slicing, 87
with statement, 116

/ (slash)
function definition, 128
operator, 90

//
operator, 90

// =
augmented assignment, 102

/ =
augmented assignment, 102

0b

191

The Python Language Reference, Yayım 3.11.13

integer literal, 15
0o

integer literal, 15
0x

integer literal, 15
2to3, 151
: (colon)

annotated variable, 102
compound statement, 112, 113, 116, 118, 127,

129
function annotations, 128
in dictionary expressions, 80
in formatted string literal, 13
lambda expression, 96
slicing, 87

:= (colon equals), 95
; (semicolon), 111
< (less)

operator, 92
<<

operator, 91
<< =

augmented assignment, 102
< =

operator, 92
!=

operator, 92
-=

augmented assignment, 102
= (equals)

assignment statement, 100
class definition, 45
for help in debugging using string

literals, 13
function definition, 127
in function calls, 87

==
operator, 92

->
function annotations, 128

> (greater)
operator, 92

> =
operator, 92

>>
operator, 91

>> =
augmented assignment, 102

>>>, 151
@ (at)

class definition, 129
function definition, 127
operator, 90

[] (square brackets)

in assignment target list, 100
list expression, 80
subscription, 86

\ (backslash)
escape sequence, 11

\\
escape sequence, 11

\a
escape sequence, 11

\b
escape sequence, 11

\f
escape sequence, 11

\N
escape sequence, 11

\n
escape sequence, 11

\r
escape sequence, 11

\t
escape sequence, 11

\U
escape sequence, 11

\u
escape sequence, 11

\v
escape sequence, 11

\x
escape sequence, 11

^ (caret)
operator, 92

^=
augmented assignment, 102

_ (underscore)
in numeric literal, 15, 16

_, identifiers, 9
__, identifiers, 9
__abs__() (object yöntemi), 53
__add__() (object yöntemi), 52
__aenter__() (object yöntemi), 58
__aexit__() (object yöntemi), 58
__aiter__() (object yöntemi), 57
__all__ (optional module attribute), 108
__and__() (object yöntemi), 52
__anext__() (agen yöntemi), 85
__anext__() (object yöntemi), 57
__annotations__ (class attribute), 29
__annotations__ (function attribute), 25
__annotations__ (function özniteliği), 25
__annotations__ (module attribute), 28
__await__() (object yöntemi), 56
__bases__ (class attribute), 29
__bool__() (object method), 50
__bool__() (object yöntemi), 39

192 Dizin

The Python Language Reference, Yayım 3.11.13

__bytes__() (object yöntemi), 38
__cached__, 70
__call__() (object method), 89
__call__() (object yöntemi), 50
__cause__ (exception attribute), 105
__ceil__() (object yöntemi), 54
__class__ (instance attribute), 29
__class__ (method cell), 46
__class__ (module attribute), 41
__class_getitem__() (object sınıf yöntemi), 48
__classcell__ (class namespace entry), 46
__closure__ (function attribute), 24
__closure__ (function özniteliği), 24
__code__ (function attribute), 25
__code__ (function özniteliği), 25
__complex__() (object yöntemi), 53
__contains__() (object yöntemi), 51
__context__ (exception attribute), 105
__debug__, 103
__defaults__ (function attribute), 25
__defaults__ (function özniteliği), 25
__del__() (object yöntemi), 37
__delattr__() (object yöntemi), 40
__delete__() (object yöntemi), 42
__delitem__() (object yöntemi), 51
__dict__ (class attribute), 29
__dict__ (function attribute), 25
__dict__ (function özniteliği), 25
__dict__ (instance attribute), 29
__dict__ (module attribute), 28
__dir__ (module attribute), 41
__dir__() (object yöntemi), 40
__divmod__() (object yöntemi), 52
__doc__ (class attribute), 29
__doc__ (function attribute), 25
__doc__ (function özniteliği), 25
__doc__ (method attribute), 26
__doc__ (method özniteliği), 26
__doc__ (module attribute), 28
__enter__() (object yöntemi), 54
__eq__() (object yöntemi), 38
__exit__() (object yöntemi), 54
__file__, 70
__file__ (module attribute), 28
__float__() (object yöntemi), 53
__floor__() (object yöntemi), 54
__floordiv__() (object yöntemi), 52
__format__() (object yöntemi), 38
__func__ (method attribute), 26
__func__ (method özniteliği), 26
__future__, 156

future statement, 108
__ge__() (object yöntemi), 38
__get__() (object yöntemi), 41

__getattr__ (module attribute), 41
__getattr__() (object yöntemi), 40
__getattribute__() (object yöntemi), 40
__getitem__() (mapping object method), 36
__getitem__() (object yöntemi), 50
__globals__ (function attribute), 24
__globals__ (function özniteliği), 24
__gt__() (object yöntemi), 38
__hash__() (object yöntemi), 39
__iadd__() (object yöntemi), 53
__iand__() (object yöntemi), 53
__ifloordiv__() (object yöntemi), 53
__ilshift__() (object yöntemi), 53
__imatmul__() (object yöntemi), 53
__imod__() (object yöntemi), 53
__imul__() (object yöntemi), 53
__index__() (object yöntemi), 53
__init__() (object yöntemi), 36
__init_subclass__() (object sınıf yöntemi), 44
__instancecheck__() (class yöntemi), 47
__int__() (object yöntemi), 53
__invert__() (object yöntemi), 53
__ior__() (object yöntemi), 53
__ipow__() (object yöntemi), 53
__irshift__() (object yöntemi), 53
__isub__() (object yöntemi), 53
__iter__() (object yöntemi), 51
__itruediv__() (object yöntemi), 53
__ixor__() (object yöntemi), 53
__kwdefaults__ (function attribute), 25
__kwdefaults__ (function özniteliği), 25
__le__() (object yöntemi), 38
__len__() (mapping object method), 39
__len__() (object yöntemi), 50
__length_hint__() (object yöntemi), 50
__loader__, 70
__lshift__() (object yöntemi), 52
__lt__() (object yöntemi), 38
__main__

module, 60, 133
__matmul__() (object yöntemi), 52
__missing__() (object yöntemi), 51
__mod__() (object yöntemi), 52
__module__ (class attribute), 29
__module__ (function attribute), 25
__module__ (function özniteliği), 25
__module__ (method attribute), 26
__module__ (method özniteliği), 26
__mro_entries__() (object yöntemi), 45
__mul__() (object yöntemi), 52
__name__, 70
__name__ (class attribute), 29
__name__ (function attribute), 25
__name__ (function özniteliği), 25

Dizin 193

The Python Language Reference, Yayım 3.11.13

__name__ (method attribute), 26
__name__ (method özniteliği), 26
__name__ (module attribute), 28
__ne__() (object yöntemi), 38
__neg__() (object yöntemi), 53
__new__() (object yöntemi), 36
__next__() (generator yöntemi), 83
__objclass__ (object özniteliği), 42
__or__() (object yöntemi), 52
__package__, 70
__path__, 70
__pos__() (object yöntemi), 53
__pow__() (object yöntemi), 52
__prepare__ (metaclass method), 46
__qualname__ (function özniteliği), 25
__radd__() (object yöntemi), 52
__rand__() (object yöntemi), 52
__rdivmod__() (object yöntemi), 52
__repr__() (object yöntemi), 37
__reversed__() (object yöntemi), 51
__rfloordiv__() (object yöntemi), 52
__rlshift__() (object yöntemi), 52
__rmatmul__() (object yöntemi), 52
__rmod__() (object yöntemi), 52
__rmul__() (object yöntemi), 52
__ror__() (object yöntemi), 52
__round__() (object yöntemi), 54
__rpow__() (object yöntemi), 52
__rrshift__() (object yöntemi), 52
__rshift__() (object yöntemi), 52
__rsub__() (object yöntemi), 52
__rtruediv__() (object yöntemi), 52
__rxor__() (object yöntemi), 52
__self__ (method attribute), 26
__self__ (method özniteliği), 26
__set__() (object yöntemi), 42
__set_name__() (object yöntemi), 44
__setattr__() (object yöntemi), 40
__setitem__() (object yöntemi), 51
__slots__, 164
__spec__, 70
__str__() (object yöntemi), 37
__sub__() (object yöntemi), 52
__subclasscheck__() (class yöntemi), 47
__traceback__ (exception attribute), 105
__truediv__() (object yöntemi), 52
__trunc__() (object yöntemi), 54
__xor__() (object yöntemi), 52
{} (curly brackets)

dictionary expression, 80
in formatted string literal, 13
set expression, 80

| (vertical bar)
operator, 92

|=
augmented assignment, 102

~ (tilde)
operator, 90

A
abs

built-in function, 53
aclose() (agen yöntemi), 85
ad alanı, 161
ad alanı paketi, 161
addition, 91
adlandırılmış demet, 161
anahtar işlev, 159
anahtar kelime argümanı, 159
and

bitwise, 92
operator, 95

anlamak, 164
annotated

assignment, 102
annotations

function, 128
anonymous

function, 96
argument

call semantics, 87
function, 24
function definition, 127

argüman, 152
arithmetic

conversion, 77
operation, binary, 90
operation, unary, 90

array
module, 23

as
except clause, 114
import statement, 107
keyword, 107, 113, 116, 118
match statement, 118
with statement, 116

AS pattern, OR pattern, capture
pattern, wildcard pattern, 120

ASCII, 4, 10
asend() (agen yöntemi), 85
asenkron bağlam yöneticisi, 152
asenkron jeneratör, 152
asenkron jeneratör yineleyici, 152
asenkron yineleyici, 152
assert

statement, 103
AssertionError

exception, 103

194 Dizin

The Python Language Reference, Yayım 3.11.13

assertions
debugging, 103

assignment
annotated, 102
attribute, 100, 101
augmented, 102
class attribute, 29
class instance attribute, 29
slicing, 101
statement, 23, 100
subscription, 101
target list, 100

assignment expression, 95
async

keyword, 130
async def

statement, 130
async for

in comprehensions, 79
statement, 130

async with
statement, 131

asynchronous generator
asynchronous iterator, 27
function, 27

asynchronous-generator
object, 85

athrow() (agen yöntemi), 85
atom, 78
attribute, 20

assignment, 100, 101
assignment, class, 29
assignment, class instance, 29
class, 29
class instance, 29
deletion, 104
generic special, 20
reference, 86
special, 20

AttributeError
exception, 86

augmented
assignment, 102

await
in comprehensions, 79
keyword, 89, 130

B
b'

bytes literal, 11
b"

bytes literal, 11
backslash character, 6
bağlam değişkeni, 154

bağlam yöneticisi, 154
bayt benzeri nesne, 153
bayt kodu, 153
BDFL, 153
beklenebilir, 153
belge dizisi, 155
binary

arithmetic operation, 90
bitwise operation, 92

binary literal, 15
binding

global name, 109
name, 59, 100, 107, 127, 129

bitişik, 154
bitwise

and, 92
operation, binary, 92
operation, unary, 90
or, 92
xor, 92

blank line, 7
block, 59

code, 59
BNF, 4, 77
Boolean

object, 21
operation, 95

BOŞTA, 158
break

statement, 106, 112, 113, 115, 116
built-in

method, 27
built-in function

abs, 53
bytes, 38
call, 89
chr, 22
compile, 110
complex, 53
divmod, 52
eval, 110, 134
exec, 110
float, 53
hash, 39
id, 19
int, 53
len, 22, 23, 50
object, 27, 89
open, 30
ord, 22
pow, 52, 53
print, 38
range, 113
repr, 100

Dizin 195

The Python Language Reference, Yayım 3.11.13

round, 54
slice, 35
type, 19, 45

built-in method
call, 89
object, 27, 89

builtins
module, 133

bulucu, 156
byte, 22
bytearray, 23
bytecode, 30
bytes, 22

built-in function, 38
bytes literal, 10

C
C, 11

language, 20, 22, 27, 92
call, 87

built-in function, 89
built-in method, 89
class instance, 89
class object, 29, 89
function, 24, 89
instance, 50, 89
method, 89
procedure, 100
user-defined function, 89

callable
object, 24, 87

case
keyword, 118
match, 118

case block, 120
C-contiguous, 154
chaining

comparisons, 92
exception, 105

character, 22, 87
chr

built-in function, 22
class

attribute, 29
attribute assignment, 29
body, 46
constructor, 36
definition, 104, 129
instance, 29
name, 129
object, 29, 89, 129
statement, 129

class instance
attribute, 29

attribute assignment, 29
call, 89
object, 29, 89

class object
call, 29, 89

clause, 111
clear() (frame yöntemi), 34
close() (coroutine yöntemi), 57
close() (generator yöntemi), 83
co_argcount (code object attribute), 30
co_argcount (codeobject özniteliği), 31
co_cellvars (code object attribute), 30
co_cellvars (codeobject özniteliği), 31
co_code (code object attribute), 30
co_code (codeobject özniteliği), 31
co_consts (code object attribute), 30
co_consts (codeobject özniteliği), 31
co_filename (code object attribute), 30
co_filename (codeobject özniteliği), 31
co_firstlineno (code object attribute), 30
co_firstlineno (codeobject özniteliği), 31
co_flags (code object attribute), 30
co_flags (codeobject özniteliği), 31
co_freevars (code object attribute), 30
co_freevars (codeobject özniteliği), 31
co_kwonlyargcount (code object attribute), 30
co_kwonlyargcount (codeobject özniteliği), 31
co_lines() (codeobject yöntemi), 32
co_lnotab (code object attribute), 30
co_lnotab (codeobject özniteliği), 31
co_name (code object attribute), 30
co_name (codeobject özniteliği), 31
co_names (code object attribute), 30
co_names (codeobject özniteliği), 31
co_nlocals (code object attribute), 30
co_nlocals (codeobject özniteliği), 31
co_positions() (codeobject yöntemi), 32
co_posonlyargcount (code object attribute), 30
co_posonlyargcount (codeobject özniteliği), 31
co_qualname (code object attribute), 30
co_qualname (codeobject özniteliği), 31
co_stacksize (code object attribute), 30
co_stacksize (codeobject özniteliği), 31
co_varnames (code object attribute), 30
co_varnames (codeobject özniteliği), 31
code

block, 59
code object, 30
collections

module, 23
comma, 79

trailing, 97
command line, 133
comment, 6

196 Dizin

The Python Language Reference, Yayım 3.11.13

comparison, 92
comparisons, 38

chaining, 92
compile

built-in function, 110
complex

built-in function, 53
number, 22
object, 22

complex literal, 15
compound

statement, 111
comprehensions, 79

dictionary, 80
list, 80
set, 80

Conditional
expression, 95

conditional
expression, 96

constant, 10
constructor

class, 36
container, 20, 29
context manager, 54
continue

statement, 107, 112, 113, 115, 116
conversion

arithmetic, 77
string, 38, 100

coroutine, 56, 82
function, 27

CPython, 154

Ç
çağırılabilir, 153
çöp toplama, 157

D
dangling

else, 112
data, 19

type, 20
type, immutable, 78

dbm.gnu
module, 24

dbm.ndbm
module, 24

debugging
assertions, 103

decimal literal, 15
DEDENT token, 7, 112
def

statement, 127

default
parameter value, 127

definition
class, 104, 129
function, 104, 127

değişken açıklama, 166
değişmez, 158
değiştirilebilir, 161
dekoratör, 154
del

statement, 37, 104
deletion

attribute, 104
target, 104
target list, 104

delimiters, 17
destructor, 37, 101
dictionary

comprehensions, 80
display, 80
object, 24, 29, 39, 80, 86, 101

dipnot, 151
display

dictionary, 80
list, 80
set, 80

division, 90
divmod

built-in function, 52
dizi, 164
docstring, 129
documentation string, 32
dosya benzeri nesne, 156
dosya nesnesi, 155
dosya sistemi kodlaması ve hata

işleyicisi, 156

E
e

in numeric literal, 16
EAFP, 155
elif

keyword, 112
Ellipsis

object, 21
else

conditional expression, 96
dangling, 112
keyword, 106, 112, 113, 115

empty
list, 80
tuple, 22, 79

encoding declarations (source file), 6
environment, 60

Dizin 197

The Python Language Reference, Yayım 3.11.13

error handling, 61
errors, 61
escape sequence, 11
eşyordam, 154
eşyordam işlevi, 154
eşzamansız yinelenebilir, 152
etkileşimli, 158
eval

built-in function, 110, 134
evaluation

order, 97
evrensel yeni satırlar, 166
exc_info (in module sys), 34
except

keyword, 113
except_star

keyword, 115
exception, 61, 105

AssertionError, 103
AttributeError, 86
chaining, 105
GeneratorExit, 83, 85
handler, 34
ImportError, 107
NameError, 78
raising, 105
StopAsyncIteration, 85
StopIteration, 83, 104
TypeError, 90
ValueError, 91
ZeroDivisionError, 90

exception handler, 61
exclusive

or, 92
exec

built-in function, 110
execution

frame, 59, 129
restricted, 61
stack, 34

execution model, 59
expression, 77

Conditional, 95
conditional, 96
generator, 81
lambda, 96, 128
list, 97, 99
statement, 99
yield, 81

extension
module, 20

F
f'

formatted string literal, 11
f"

formatted string literal, 11
f-string, 155
f_back (frame attribute), 33
f_back (frame özniteliği), 33
f_builtins (frame attribute), 33
f_builtins (frame özniteliği), 33
f_code (frame attribute), 33
f_code (frame özniteliği), 33
f_globals (frame attribute), 33
f_globals (frame özniteliği), 33
f_lasti (frame attribute), 33
f_lasti (frame özniteliği), 33
f_lineno (frame attribute), 33
f_lineno (frame özniteliği), 34
f_locals (frame attribute), 33
f_locals (frame özniteliği), 33
f_trace (frame attribute), 33
f_trace (frame özniteliği), 34
f_trace_lines (frame attribute), 33
f_trace_lines (frame özniteliği), 34
f_trace_opcodes (frame attribute), 33
f_trace_opcodes (frame özniteliği), 34
False, 21
finalizer, 37
finally

keyword, 104, 106, 107, 113, 116
find_spec

finder, 66
finder, 66

find_spec, 66
float

built-in function, 53
floating point

number, 22
object, 22

floating point literal, 15
fonksiyon, 156
fonksiyon açıklaması, 156
for

in comprehensions, 79
statement, 106, 107, 112

form
lambda, 96

format() (built-in function)
__str__() (object method), 37

formatted string literal, 13
Fortran contiguous, 154
frame

execution, 59, 129
object, 33

free
variable, 60

198 Dizin

The Python Language Reference, Yayım 3.11.13

from
import statement, 59, 107
keyword, 81, 107
yield from expression, 82

frozenset
object, 23

fstring, 13
f-string, 13
function

annotations, 128
anonymous, 96
argument, 24
call, 24, 89
call, user-defined, 89
definition, 104, 127
generator, 81, 104
name, 127
object, 24, 27, 89, 127
user-defined, 24

future
statement, 108

G
garbage collection, 19
geçici API, 163
geçici paket, 163
genel işlev, 157
genel tercüman kilidi, 157
genel tip, 157
generator

expression, 81
function, 27, 81, 104
iterator, 27, 104
object, 32, 81, 82

GeneratorExit
exception, 83, 85

generic
special attribute, 20

geri çağırmak, 153
GIL, 157
global

name binding, 109
namespace, 24
statement, 104, 109

grammar, 4
grouping, 7
guard, 120
güçlü referans, 165

H
handle an exception, 61
handler

exception, 34
haritalama, 160

hash
built-in function, 39

hash character, 6
hashable, 81
hexadecimal literal, 15
hierarchy

type, 20
hooks

import, 66
meta, 66
path, 66

I
ImportError

exception, 107
INDENT token, 7

İ
iç içe kapsam, 161
içe aktarıcı, 158
içe aktarım yolu, 158
içe aktarma, 158
id

built-in function, 19
identifier, 8, 78
identity

test, 95
identity of an object, 19
if

conditional expression, 96
in comprehensions, 79
keyword, 118
statement, 112

ifade (değer döndürmez), 165
ifade (değer döndürür), 155
ikili dosya, 153
imaginary literal, 15
immutable

data type, 78
object, 22, 78, 81

immutable object, 19
immutable sequence

object, 22
immutable types

subclassing, 36
import

hooks, 66
statement, 28, 107

import hooks, 66
import machinery, 63
in

keyword, 112
operator, 95

inclusive

Dizin 199

The Python Language Reference, Yayım 3.11.13

or, 92
indentation, 7
index operation, 22
indices() (slice yöntemi), 35
inheritance, 129
input, 134
instance

call, 50, 89
class, 29
object, 29, 89

int
built-in function, 53

integer, 22
object, 21
representation, 21

integer literal, 15
interactive mode, 133
internal type, 30
interpolated string literal, 13
interpreter, 133
inversion, 90
invocation, 24
io

module, 30
irrefutable case block, 120
is

operator, 95
is not

operator, 95
item

sequence, 86
string, 87

item selection, 22
iterable

unpacking, 97

J
j

in numeric literal, 16
Java

language, 22
jeneratör, 157
jeneratör ifadesi, 157
jeneratör yineleyici, 157

K
karma tabanlı pyc, 158
karmaşık sayı, 154
kat bölümü, 156
key, 80
key/value pair, 80
keyword, 9

as, 107, 113, 116, 118
async, 130

await, 89, 130
case, 118
elif, 112
else, 106, 112, 113, 115
except, 113
except_star, 115
finally, 104, 106, 107, 113, 116
from, 81, 107
if, 118
in, 112
yield, 81

kısım, 163
konumsal argüman, 163

L
lambda, 159

expression, 96, 128
form, 96

language
C, 20, 22, 27, 92
Java, 22

last_traceback (in module sys), 34
LBYL, 159
leading whitespace, 7
len

built-in function, 22, 23, 50
lexical analysis, 5
lexical definitions, 4
line continuation, 6
line joining, 5, 6
line structure, 5
list

assignment, target, 100
comprehensions, 80
deletion target, 104
display, 80
empty, 80
expression, 97, 99
object, 23, 80, 86, 87, 101
target, 100, 112

liste, 160
liste anlama, 160
literal, 10, 78
loader, 66
logical line, 5
loop

statement, 106, 107, 112
loop control

target, 106

M
magic

metot, 160
makefile() (socket method), 30

200 Dizin

The Python Language Reference, Yayım 3.11.13

mangling
name, 78

mapping
object, 23, 29, 86, 101

match
case, 118
statement, 118

matrix multiplication, 90
membership

test, 95
meta

hooks, 66
meta hooks, 66
meta yol bulucu, 160
metaclass, 45
metaclass hint, 46
metasınıf, 160
method

built-in, 27
call, 89
object, 26, 27, 89
user-defined, 26

metot, 160
magic, 160
special, 165

metot kalite sıralaması, 160
minus, 90
module

__main__, 60, 133
array, 23
builtins, 133
collections, 23
dbm.gnu, 24
dbm.ndbm, 24
extension, 20
importing, 107
io, 30
namespace, 28
object, 28, 86
sys, 114, 133

module spec, 66
modulo, 91
modül, 160
modül özelliği, 161
MRO, 161
multiplication, 90
mutable

object, 23, 100, 101
mutable object, 19
mutable sequence

object, 23

N
name, 8, 59, 78

binding, 59, 100, 107, 127, 129
binding, global, 109
class, 129
function, 127
mangling, 78
rebinding, 100
unbinding, 104

named expression, 95
NameError

exception, 78
NameError (built-in exception), 60
names

private, 78
namespace, 59

global, 24
module, 28
package, 65

negation, 90
NEWLINE token, 5, 112
nitelik, 152
nitelikli isim, 164
None

object, 20, 100
nonlocal

statement, 110
not

operator, 95
not in

operator, 95
notation, 4
NotImplemented

object, 20
null

operation, 103
number, 15

complex, 22
floating point, 22

numeric
object, 21, 29

numeric literal, 15

O
obje, 162
object, 19

asynchronous-generator, 85
Boolean, 21
built-in function, 27, 89
built-in method, 27, 89
callable, 24, 87
class, 29, 89, 129
class instance, 29, 89
code, 30
complex, 22
dictionary, 24, 29, 39, 80, 86, 101

Dizin 201

The Python Language Reference, Yayım 3.11.13

Ellipsis, 21
floating point, 22
frame, 33
frozenset, 23
function, 24, 27, 89, 127
generator, 32, 81, 82
immutable, 22, 78, 81
immutable sequence, 22
instance, 29, 89
integer, 21
list, 23, 80, 86, 87, 101
mapping, 23, 29, 86, 101
method, 26, 27, 89
module, 28, 86
mutable, 23, 100, 101
mutable sequence, 23
None, 20, 100
NotImplemented, 20
numeric, 21, 29
sequence, 22, 29, 86, 87, 95, 101, 112
set, 23, 80
set type, 23
slice, 50
string, 86, 87
traceback, 34, 105, 114
tuple, 22, 86, 87, 97
user-defined function, 24, 89, 127
user-defined method, 26

object.__match_args__ (yerleşik değişken), 55
object.__slots__ (yerleşik değişken), 43
octal literal, 15
open

built-in function, 30
operation

binary arithmetic, 90
binary bitwise, 92
Boolean, 95
null, 103
power, 89
shifting, 91
unary arithmetic, 90
unary bitwise, 90

operator
- (minus), 90, 91
% (percent), 91
& (ampersand), 92
* (asterisk), 90
**, 89
+ (plus), 90, 91
/ (slash), 90
//, 90
< (less), 92
<<, 91
< =, 92

!=, 92
==, 92
> (greater), 92
> =, 92
>>, 91
@ (at), 90
^ (caret), 92
| (vertical bar), 92
~ (tilde), 90
and, 95
in, 95
is, 95
is not, 95
not, 95
not in, 95
or, 95
overloading, 36
precedence, 97
ternary, 96

operators, 17
or

bitwise, 92
exclusive, 92
inclusive, 92
operator, 95

ord
built-in function, 22

order
evaluation, 97

ortam değişkeni
PYTHONHASHSEED, 39
PYTHONNODEBUGRANGES, 32
PYTHONPATH, 72

output, 100
standard, 100

overloading
operator, 36

Ö
ödünç alınan referans, 153
ördek yazma, 155
özel metod, 165

P
package, 64

namespace, 65
portion, 65
regular, 64

paket, 162
parameter

call semantics, 87
function definition, 127
value, default, 127

parametre, 162

202 Dizin

The Python Language Reference, Yayım 3.11.13

parçalamak, 165
parenthesized form, 79
parser, 5
pass

statement, 103
path

hooks, 66
path based finder, 72
path hooks, 66
pattern matching, 118
PEP, 163
physical line, 5, 6, 11
plus, 90
popen() (in module os), 30
portion

package, 65
pow

built-in function, 52, 53
power

operation, 89
precedence

operator, 97
primary, 86
print

built-in function, 38
print() (built-in function)

__str__() (object method), 37
private

names, 78
procedure

call, 100
program, 133
Python 3000, 163
Python Geliştirme Önerileri

PEP 1, 163
PEP 8, 93
PEP 236, 109
PEP 238, 156
PEP 252, 42
PEP 255, 82
PEP 278, 166
PEP 302, 63, 75, 156, 160
PEP 308, 96
PEP 318, 129, 130
PEP 328, 75
PEP 338, 75
PEP 342, 82
PEP 343, 54, 118, 154
PEP 362, 152, 162
PEP 366, 70, 75
PEP 380, 82
PEP 411, 163
PEP 414, 11
PEP 420, 63, 65, 71, 75, 156, 161, 163

PEP 443, 157
PEP 448, 80, 89, 97
PEP 451, 76, 156
PEP 483, 157
PEP 484, 48, 103, 128, 151, 156, 157, 166
PEP 492, 56, 82, 131, 152154
PEP 498, 15, 155
PEP 519, 163
PEP 525, 82, 152
PEP 526, 103, 128, 151, 166
PEP 530, 79
PEP 560, 45, 49
PEP 562, 41
PEP 563, 109, 128
PEP 570, 128
PEP 572, 81, 96, 122
PEP 585, 157
PEP 614, 127, 129
PEP 617, 135
PEP 626, 33
PEP 634, 55, 118, 127
PEP 636, 118, 127
PEP 3104, 110
PEP 3107, 128
PEP 3115, 46, 130
PEP 3116, 166
PEP 3119, 47
PEP 3120, 5
PEP 3129, 129, 130
PEP 3131, 8
PEP 3132, 102
PEP 3135, 47
PEP 3147, 70
PEP 3155, 164

PYTHONHASHSEED, 39
Pythonic, 163
PYTHONNODEBUGRANGES, 32
PYTHONPATH, 72
Python'un Zen'i, 166

R
r'

raw string literal, 11
r"

raw string literal, 11
raise

statement, 105
raise an exception, 61
raising

exception, 105
range

built-in function, 113
raw string, 11
rebinding

Dizin 203

The Python Language Reference, Yayım 3.11.13

name, 100
referans sayısı, 164
reference

attribute, 86
reference counting, 19
regular

package, 64
relative

import, 108
replace() (codeobject yöntemi), 33
repr

built-in function, 100
repr() (built-in function)

__repr__() (object method), 37
representation

integer, 21
reserved word, 9
restricted

execution, 61
return

statement, 104, 115, 116
round

built-in function, 54

S
sanal makine, 166
sanal ortam, 166
scope, 59, 60
send() (coroutine yöntemi), 57
send() (generator yöntemi), 83
sequence

item, 86
object, 22, 29, 86, 87, 95, 101, 112

set
comprehensions, 80
display, 80
object, 23, 80

set type
object, 23

shifting
operation, 91

sınıf, 153
sınıf değişkeni, 154
sihirli yöntem, 160
simple

statement, 99
singleton

tuple, 22
slice, 87

built-in function, 35
object, 50

slicing, 22, 23, 87
assignment, 101

soft keyword, 9

source character set, 6
soyut temel sınıf, 151
sözlük, 155
sözlük anlama, 155
sözlük görünümü, 155
space, 7
special

attribute, 20
attribute, generic, 20
metot, 165

stack
execution, 34
trace, 34

standard
output, 100

Standard C, 11
standard input, 133
start (slice object attribute), 35, 87
statement

assert, 103
assignment, 23, 100
assignment, annotated, 102
assignment, augmented, 102
async def, 130
async for, 130
async with, 131
break, 106, 112, 113, 115, 116
class, 129
compound, 111
continue, 107, 112, 113, 115, 116
def, 127
del, 37, 104
expression, 99
for, 106, 107, 112
future, 108
global, 104, 109
if, 112
import, 28, 107
loop, 106, 107, 112
match, 118
nonlocal, 110
pass, 103
raise, 105
return, 104, 115, 116
simple, 99
try, 34, 113
while, 106, 107, 112
with, 54, 116
yield, 104

statement grouping, 7
static type checker, 165
stderr (in module sys), 30
stdin (in module sys), 30
stdio, 30

204 Dizin

The Python Language Reference, Yayım 3.11.13

stdout (in module sys), 30
step (slice object attribute), 35, 87
stop (slice object attribute), 35, 87
StopAsyncIteration

exception, 85
StopIteration

exception, 83, 104
string

__format__() (object method), 38
__str__() (object method), 37
conversion, 38, 100
formatted literal, 13
immutable sequences, 22
interpolated literal, 13
item, 87
object, 86, 87

string literal, 10
subclassing

immutable types, 36
subscription, 22, 23, 86

assignment, 101
subtraction, 91
suite, 111
sürekli paketleme, 164
syntax, 4
sys

module, 114, 133
sys.exc_info, 34
sys.exception, 34
sys.last_traceback, 34
sys.meta_path, 66
sys.modules, 65
sys.path, 72
sys.path_hooks, 72
sys.path_importer_cache, 72
sys.stderr, 30
sys.stdin, 30
sys.stdout, 30
SystemExit (built-in exception), 61

T
tab, 7
tanımlayıcı, 154
target, 100

deletion, 104
list, 100, 112
list assignment, 100
list, deletion, 104
loop control, 106

tb_frame (traceback attribute), 34
tb_frame (traceback özniteliği), 35
tb_lasti (traceback attribute), 34
tb_lasti (traceback özniteliği), 35
tb_lineno (traceback attribute), 34

tb_lineno (traceback özniteliği), 35
tb_next (traceback attribute), 35
tb_next (traceback özniteliği), 35
tek sevk, 164
tercüman kapatma, 158
termination model, 61
ternary

operator, 96
test

identity, 95
membership, 95

throw() (coroutine yöntemi), 57
throw() (generator yöntemi), 83
tip, 165
tip takma adı, 165
token, 5
trace

stack, 34
traceback

object, 34, 105, 114
trailing

comma, 97
triple-quoted string, 11
True, 21
try

statement, 34, 113
tuple

empty, 22, 79
object, 22, 86, 87, 97
singleton, 22

tür ipucu, 166
type, 20

built-in function, 19, 45
data, 20
hierarchy, 20
immutable data, 78

type of an object, 19
TypeError

exception, 90
types, internal, 30

U
u'

string literal, 10
u"

string literal, 10
unary

arithmetic operation, 90
bitwise operation, 90

unbinding
name, 104

UnboundLocalError, 60
UNIX, 133
Unicode, 22

Dizin 205

The Python Language Reference, Yayım 3.11.13

Unicode Consortium, 11
unpacking

dictionary, 80
in function calls, 88
iterable, 97

unreachable object, 19
unrecognized escape sequence, 12
user-defined

function, 24
function call, 89
method, 26

user-defined function
object, 24, 89, 127

user-defined method
object, 26

uzatma modülü, 155

Ü
üç tırnaklı dize, 165

V
value, 80

default parameter, 127
value of an object, 19
ValueError

exception, 91
values

writing, 100
variable

free, 60

W
walrus operator, 95
while

statement, 106, 107, 112
Windows, 133
with

statement, 54, 116
writing

values, 100

X
xor

bitwise, 92

Y
yazı çözümleme, 165
yazı dosyası, 165
yeni stil sınıf, 161
yerel kodlama, 160
yıkanabilir, 158
yield

examples, 83

expression, 81
keyword, 81
statement, 104

yinelenebilir, 159
yineleyici, 159
yol benzeri nesne, 163
yol giriş kancası, 162
yol girişi, 162
yol girişi bulucu, 162
yol tabanlı bulucu, 163
yorumlanmış, 158
yükleyici, 160

Z
ZeroDivisionError

exception, 90

206 Dizin

	Introduction
	Alternate Implementations
	Notation

	Lexical analysis
	Line structure
	Logical lines
	Physical lines
	Comments
	Encoding declarations
	Explicit line joining
	Implicit line joining
	Blank lines
	Indentation
	Whitespace between tokens

	Other tokens
	Identifiers and keywords
	Keywords
	Soft Keywords
	Reserved classes of identifiers

	Literals
	String and Bytes literals
	Escape sequences

	String literal concatenation
	f-strings
	Numeric literals
	Integer literals
	Floating point literals
	Imaginary literals

	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	None
	NotImplemented
	Ellipsis
	numbers.Number
	numbers.Integral
	numbers.Real (float)
	numbers.Complex (complex)

	Sequences
	Immutable sequences
	Mutable sequences

	Set types
	Mappings
	Dictionaries

	Callable types
	User-defined functions
	Special read-only attributes
	Special writable attributes

	Instance methods
	Generator functions
	Coroutine functions
	Asynchronous generator functions
	Built-in functions
	Built-in methods
	Classes
	Class Instances

	Modules
	Custom classes
	Class instances
	I/O objects (also known as file objects)
	Internal types
	Code objects
	Special read-only attributes
	Methods on code objects

	Frame objects
	Special read-only attributes
	Special writable attributes
	Frame object methods

	Traceback objects
	Slice objects
	Static method objects
	Class method objects

	Special method names
	Basic customization
	Customizing attribute access
	Customizing module attribute access
	Implementing Descriptors
	Invoking Descriptors
	__slots__

	Customizing class creation
	Metaclasses
	Resolving MRO entries
	Determining the appropriate metaclass
	Preparing the class namespace
	Executing the class body
	Creating the class object
	Uses for metaclasses

	Customizing instance and subclass checks
	Emulating generic types
	The purpose of __class_getitem__
	__class_getitem__ versus __getitem__

	Emulating callable objects
	Emulating container types
	Emulating numeric types
	With Statement Context Managers
	Customizing positional arguments in class pattern matching
	Special method lookup

	Coroutines
	Awaitable Objects
	Coroutine Objects
	Asynchronous Iterators
	Asynchronous Context Managers

	Execution model
	Structure of a program
	Naming and binding
	Binding of names
	Resolution of names
	Builtins and restricted execution
	Interaction with dynamic features

	Exceptions

	The import system
	importlib
	Packages
	Regular packages
	Namespace packages

	Searching
	The module cache
	Finders and loaders
	Import hooks
	The meta path

	Loading
	Loaders
	Submodules
	Module spec
	Import-related module attributes
	module.__path__
	Module reprs
	Cached bytecode invalidation

	The Path Based Finder
	Path entry finders
	Path entry finder protocol

	Replacing the standard import system
	Package Relative Imports
	Special considerations for __main__
	__main__.__spec__

	References

	Expressions
	Arithmetic conversions
	Atoms
	Identifiers (Names)
	Literals
	Parenthesized forms
	Displays for lists, sets and dictionaries
	List displays
	Set displays
	Dictionary displays
	Generator expressions
	Yield expressions
	Generator-iterator methods
	Examples
	Asynchronous generator functions
	Asynchronous generator-iterator methods

	Primaries
	Attribute references
	Subscriptions
	Slicings
	Calls

	Await expression
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Value comparisons
	Membership test operations
	Identity comparisons

	Boolean operations
	Assignment expressions
	Conditional expressions
	Lambdas
	Expression lists
	Evaluation order
	Operator precedence

	Simple statements
	Expression statements
	Assignment statements
	Augmented assignment statements
	Annotated assignment statements

	The assert statement
	The pass statement
	The del statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	Future statements

	The global statement
	The nonlocal statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	except clause
	except* clause
	else clause
	finally clause

	The with statement
	The match statement
	Overview
	Guards
	Irrefutable Case Blocks
	Patterns
	OR Patterns
	AS Patterns
	Literal Patterns
	Capture Patterns
	Wildcard Patterns
	Value Patterns
	Group Patterns
	Sequence Patterns
	Mapping Patterns
	Class Patterns

	Function definitions
	Class definitions
	Coroutines
	Coroutine function definition
	The async for statement
	The async with statement

	Top-level components
	Complete Python programs
	File input
	Interactive input
	Expression input

	Full Grammar specification
	Sözlük
	Dokümanlar hakkında
	Python Dokümantasyonuna Katkıda Bulunanlar

	Tarihçe ve Lisans
	Yazılımın tarihçesi
	Python’a erişmek veya başka bir şekilde kullanmak için şartlar ve koşullar
	PYTHON İÇİN PSF LİSANS ANLAŞMASI 3.11.13
	PYTHON 2.0 İÇİN BEOPEN.COM LİSANS SÖZLEŞMESİ
	PYTHON 1.6.1 İÇİN CNRI LİSANS ANLAŞMASI
	0.9.0 ARASI 1.2 PYTHON İÇİN CWI LİSANS SÖZLEŞMESİ
	PYTHON 3.11.13 BELGELERİNDEKİ KOD İÇİN SIFIR MADDE BSD LİSANSI

	Tüzel Yazılımlar için Lisanslar ve Onaylar
	Mersenne Twister’ı
	Soketler
	Asenkron soket hizmetleri
	Çerez yönetimi
	Çalıştırma izleme
	UUencode ve UUdecode fonksiyonları
	XML Uzaktan Yordam Çağrıları
	test_epoll
	kqueue seçin
	SipHash24
	strtod ve dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test paketi
	Audioop
	asyncio

	Telif Hakkı
	Dizin

