Unicode

Release 3.9.21

Guido van Rossum
and the Python development team

dezembro 09, 2024

Python Software Foundation
Email: docs@python.org

Sumario

1 Introdugio ao Unicode 2
L1 Definigdes o v o v e e e e e e e e e e e e e e e e e e e 2
1.2 CodificagBes i e e e 3
1.3 Referéncias e e e e e e 4

2 Suporte a Unicode no Python 4
2.1 OTipoString o o v o e e e e e e e e e e e e e 4
2.2 Convertendopara Bytes L L e e e e 5
2.3 Unicode Literals in Python Source Code, 6
2.4 Propriedades Unicode o i e e e e e e e e e e e e 6
2.5 Comparando Strings« e e e e e e e e e e 7
2.6 Expressdes Regulares Unicode L o 8
2.7 Refer€ncias e e e e e e 8

3 Reading and Writing Unicode Data 9
3.1 Nomesdearquivos Unicode oo i e e e e e 10
3.2 Tips for Writing Unicode-aware Programs oo 10
33 Refer€ncias e e e 11

4 Reconhecimentos 12

indice 13

Versao 1.12

Este documento fala sobre o suporte do Python para a especificacdo Unicode de representacdo de dados textuais e
explica diversos problemas que as pessoas costumam encontrar quando tentam trabalhar com Unicode.

1 Introducao ao Unicode

1.1 Definicoes

Os programas de hoje precisam lidar com uma grande variedade de caracteres. Aplicagdes sdo frequentemente
internacionalizadas para mostrar mensagens e gerar saidas em uma variedade de idiomas seleciondveis por usudrios;
0 mesmo programa precisar apresentar mensagens de erro em inglés, francés, japonés, hebraico ou russo. Contetido
da web pode ser escrito em qualquer um desses idiomas e ainda incluir uma variedade de emojis. O tipo string do
Python usa o padrido Unicode para representacdo de caracteres, o que permite aos programas em Python funcionar
com todos estes diferentes caracteres.

Unicode (https://www.unicode.org/) € a especificacdo que visa listar cada caractere utilizado pelos idiomas humanos
e dar a cada caractere um cédigo Unico. As especificagdes Unicode sdo continuamente revisadas e atualizadas para
adicionar novos idiomas e simbolos.

A character is the smallest possible component of a text. ‘A’, ‘B’, ‘C’, etc., are all different characters. So are ‘B’ and
‘. Characters vary depending on the language or context you're talking about. For example, there’s a character for
“Roman Numeral One”, ‘T, that’s separate from the uppercase letter ‘I’. They’ll usually look the same, but these are
two different characters that have different meanings.

The Unicode standard describes how characters are represented by code points. A code point value is an integer
in the range 0 to Ox10FFFF (about 1.1 million values, the actual number assigned is less than that). In the standard
and in this document, a code point is written using the notation U+2 65E to mean the character with value 0x265e
(9,822 in decimal).

O padrao Unicode contém vdrias tabelas listando caracteres e seus pontos de c6digo:

0061 'a'; LATIN SMALL LETTER A
0062 'b'; LATIN SMALL LETTER B
0063 'c'; LATIN SMALL LETTER C
007B "{'; LEFT CURLY BRACKET
2167 "WI'; ROMAN NUMERAL EIGHT
2168 '"X'; ROMAN NUMERAL NINE
265E 'a'; BLACK CHESS KNIGHT
265F "a4'; BLACK CHESS PAWN
1F600 '"@'; GRINNING FACE

1F609 '@'; WINKING FACE

Strictly, these definitions imply that it’s meaningless to say ‘this is character U+265E’. U+265E is a code point,
which represents some particular character; in this case, it represents the character BLACK CHESS KNIGHT’, ‘&’
In informal contexts, this distinction between code points and characters will sometimes be forgotten.

Um caractere é representado na tela ou no papel como um conjunto de elementos graficos que é chamado de glifo.
O glifo para o A maiusculo, por exemplo, sdo dois tracos diagonais e um traco horizontal, embora os detalhes exatos
dependem da fonte utilizada. Na maior parte do cédigo Python ndo é preciso se preocupar com glifos; descobrir
qual o glifo correto a ser mostrado é normalmente parte do trabalho da ferramenta GUI ou do responsével pela
renderizacao de fontes no terminal.

https://www.unicode.org/
https://www.unicode.org/versions/latest/#Summary

1.2 Codificacoes

To summarize the previous section: a Unicode string is a sequence of code points, which are numbers from 0 through
O0x10FFFF (1,114,111 decimal). This sequence of code points needs to be represented in memory as a set of code
units, and code units are then mapped to 8-bit bytes. The rules for translating a Unicode string into a sequence of
bytes are called a character encoding, or just an encoding.

The first encoding you might think of is using 32-bit integers as the code unit, and then using the CPU’s representation
of 32-bit integers. In this representation, the string “Python” might look like this:

P vy t h o n
0x50 00 00 00 79 00 00O 0O 74 00 00 00 68 00 00 00 6f 00 00 00 6e 00 00 00
o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23

Esta representacdo ¢ direta, mas usa-la gera uma série de problemas.
1. Ela ndo € portatil; diferentes processadores ordenam os bytes de forma diferente.

2. Ela gera desperdicio de espaco. Na maior parte dos textos, a maioria dos pontos de c6digo sdo menores que
127 ou menores que 255, entdo muito do espaco € ocupado por bytes 0x00 . A string acima necessita 24 bytes
comparado com os 6 bytes necessarios em uma representagio ASCII. O aumento de uso da memoéria RAM
normalmente nio importa tanto (computadores desktop possuem gigabytes de RAM e strings normalmente
ndo sdo tdo grandes), mas expandir o uso de disco ou de banda por um fator de 4 € inaceitdvel.

3. Elando é compativel com as fun¢des de C existentes, como strlen (), entdo uma série de novas funcoes de
string serdo necessarias.

Therefore this encoding isn’t used very much, and people instead choose other encodings that are more efficient and
convenient, such as UTF-8.

UTF-8 is one of the most commonly used encodings, and Python often defaults to using it. UTF stands for “Unicode
Transformation Format”, and the ‘8’ means that 8-bit values are used in the encoding. (There are also UTF-16 and
UTF-32 encodings, but they are less frequently used than UTF-8.) UTF-8 uses the following rules:

1. If the code point is < 128, it’s represented by the corresponding byte value.

2. If the code point is >= 128, it’s turned into a sequence of two, three, or four bytes, where each byte of the
sequence is between 128 and 255.

UTF-8 tem muitas propriedades convenientes:
1. Ela pode lidar com qualquer ponto de cédigo Unicode.

2. A Unicode string is turned into a sequence of bytes that contains embedded zero bytes only where they re-
present the null character (U+0000). This means that UTF-8 strings can be processed by C functions such
as strcpy () and sent through protocols that can’t handle zero bytes for anything other than end-of-string
markers.

3. Uma string de texto ASCII € também um texto UTF-8 vilido.
4. UTF-8 is fairly compact; the majority of commonly used characters can be represented with one or two bytes.

5. If bytes are corrupted or lost, it’s possible to determine the start of the next UTF-8-encoded code point and
resynchronize. It’s also unlikely that random 8-bit data will look like valid UTF-8.

6. UTF-8 is a byte oriented encoding. The encoding specifies that each character is represented by a specific
sequence of one or more bytes. This avoids the byte-ordering issues that can occur with integer and word
oriented encodings, like UTF-16 and UTF-32, where the sequence of bytes varies depending on the hardware
on which the string was encoded.

1.3 Referéncias

The Unicode Consortium site has character charts, a glossary, and PDF versions of the Unicode specification. Be
prepared for some difficult reading. A chronology of the origin and development of Unicode is also available on the
site.

On the Computerphile Youtube channel, Tom Scott briefly discusses the history of Unicode and UTF-8 (9 minutes
36 seconds).

To help understand the standard, Jukka Korpela has written an introductory guide to reading the Unicode character
tables.

Another good introductory article was written by Joel Spolsky. If this introduction didn’t make things clear to you,
you should try reading this alternate article before continuing.

Wikipedia entries are often helpful; see the entries for “character encoding” and UTF-8, for example.

2 Suporte a Unicode no Python

Now that you've learned the rudiments of Unicode, we can look at Python’s Unicode features.

2.1 O Tipo String

Since Python 3.0, the language’s st r type contains Unicode characters, meaning any string created using "unicode
rocks!", 'unicode rocks!"', or the triple-quoted string syntax is stored as Unicode.

The default encoding for Python source code is UTF-8, so you can simply include a Unicode character in a string
literal:

try:
with open('/tmp/input.txt', 'r') as f:

except OSError:
'File not found' error message.
print ("Fichier non trouvé")

Side note: Python 3 also supports using Unicode characters in identifiers:

répertoire = "/tmp/records.log"
with open (répertoire, "w") as f:
f.write("test\n")

If you can’t enter a particular character in your editor or want to keep the source code ASCII-only for some reason,
you can also use escape sequences in string literals. (Depending on your system, you may see the actual capital-delta
glyph instead of a u escape.)

>>> "\N{GREEK CAPITAL LETTER DELTA}" # Using the character name
'\u0394"

>>> "\u0394" # Using a 16-bit hex value
'"\u0394"
>>> "\U00000394" # Using a 32-bit hex value
'\u0394"

In addition, one can create a string using the decode () method of bytes. This method takes an encoding argu-
ment, such as UTF -8, and optionally an errors argument.

The errors argument specifies the response when the input string can’t be converted according to the encoding’s
rules. Legal values for this argument are ' strict' (raise a UnicodeDecodeError exception), 'replace’
(use U+FFFD, REPLACEMENT CHARACTER), 'ignore' (justleave the character out of the Unicode result), or
'backslashreplace' (inserts a \ xNN escape sequence). The following examples show the differences:

https://www.unicode.org
https://www.unicode.org/history/
https://www.youtube.com/watch?v=MijmeoH9LT4
http://jkorpela.fi/unicode/guide.html
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://en.wikipedia.org/wiki/Character_encoding
https://en.wikipedia.org/wiki/UTF-8

>>> b'\x80abc'.decode ("utf-8", "strict")
Traceback (most recent call last):

UnicodeDecodeError: 'utf-8' codec can't decode byte 0x80 in position O0:
invalid start byte
>>> b'\x80abc'.decode ("utf-8", "replace")

"\ufffdabc'

>>> b'\x80abc'.decode ("utf-8", "backslashreplace")
"\\x80abc"

>>> b'\x80abc'.decode ("utf-8", "ignore")

'abc!

Encodings are specified as strings containing the encoding’s name. Python comes with roughly 100 different enco-
dings; see the Python Library Reference at standard-encodings for a list. Some encodings have multiple names; for
example, 'latin-1"', "iso_8859_1"' and '8859 are all synonyms for the same encoding.

One-character Unicode strings can also be created with the chr () built-in function, which takes integers and returns
a Unicode string of length 1 that contains the corresponding code point. The reverse operation is the built-in ord ()
function that takes a one-character Unicode string and returns the code point value:

>>> chr (57344)
"\ue000"

>>> ord ('\ue000"'")
57344

2.2 Convertendo para Bytes

The opposite method of bytes.decode () is str.encode (), which returns a bytes representation of the
Unicode string, encoded in the requested encoding.

The errors parameter is the same as the parameter of the decode () method but supports a few more possible
handlers. As well as 'strict', '"ignore', and 'replace’' (which in this case inserts a question mark ins-
tead of the unencodable character), there is also ' xmlcharrefreplace' (inserts an XML character reference),
backslashreplace (inserts a \uNNNN escape sequence) and namereplace (inserts a \N{ . . . } escape se-
quence).

The following example shows the different results:

>>> u = chr(40960) + 'abcd' + chr(1972)
>>> u.encode ('utf-8")
b'\xea\x80\x80abcd\xde\xb4'

>>> u.encode ('ascii')

Traceback (most recent call last):

UnicodeEncodeError: 'ascii' codec can't encode character '\ua000' in
position 0: ordinal not in range(128)

>>> u.encode('ascii', 'ignore')

b'abcd'

>>> u.encode('ascii', 'replace')

b'?abcd?"’

>>> u.encode('ascii', 'xmlcharrefreplace')

b'ꀀ abcd޴ "

>>> u.encode('ascii', 'backslashreplace')

b'\\ua000abcd\\u07b4"

>>> u.encode('ascii', 'namereplace')

b'"\\N{YI SYLLABLE IT}abcd\\uO7b4'

The low-level routines for registering and accessing the available encodings are found in the codecs module. Im-
plementing new encodings also requires understanding the codecs module. However, the encoding and decoding
functions returned by this module are usually more low-level than is comfortable, and writing new encodings is a
specialized task, so the module won’t be covered in this HOWTO.

2.3 Unicode Literals in Python Source Code

In Python source code, specific Unicode code points can be written using the \ u escape sequence, which is followed
by four hex digits giving the code point. The \ U escape sequence is similar, but expects eight hex digits, not four:

>>> s = "al\xac\ul234\u20ac\U00008000"
Annn two-digit hex escape
ANANAA four—-digit Unicode escape

AAAAAAAAAA

S

eight-digit Unicode escape
>>> [ord(c) for c in s]
[97, 172, 4660, 8364, 32768]

Using escape sequences for code points greater than 127 is fine in small doses, but becomes an annoyance if you’re
using many accented characters, as you would in a program with messages in French or some other accent-using
language. You can also assemble strings using the chr () built-in function, but this is even more tedious.

Ideally, you'd want to be able to write literals in your language’s natural encoding. You could then edit Python source
code with your favorite editor which would display the accented characters naturally, and have the right characters
used at runtime.

Python supports writing source code in UTF-8 by default, but you can use almost any encoding if you declare the
encoding being used. This is done by including a special comment as either the first or second line of the source file:

#!/usr/bin/env python
—-*- coding: latin-1 —*-

u = 'abcdé'
print (ord(ul[-11))

The syntax is inspired by Emacs’s notation for specifying variables local to a file. Emacs supports many different
variables, but Python only supports ‘coding’. The —* - symbols indicate to Emacs that the comment is special; they
have no significance to Python but are a convention. Python looks for coding: name or coding=name in the
comment.

If you don’t include such a comment, the default encoding used will be UTF-8 as already mentioned. See also PEP
263 for more information.

2.4 Propriedades Unicode

The Unicode specification includes a database of information about code points. For each defined code point, the
information includes the character’s name, its category, the numeric value if applicable (for characters representing
numeric concepts such as the Roman numerals, fractions such as one-third and four-fifths, etc.). There are also
display-related properties, such as how to use the code point in bidirectional text.

O programa a seguir exibe alguma informacéo sobre diversos caracteres e imprime o valor numérico de um caractere
em particular:

import unicodedata
u = chr(233) + chr(0x0bf2) + chr(3972) + chr(6000) + chr(13231)
for i, ¢ in enumerate(u):

print (i, ' ' % ord(c), unicodedata.category(c), end=" ")

print (unicodedata.name (c))

Get numeric value of second character
print (unicodedata.numeric (ull]))

Quando executado, isso imprime:

https://www.python.org/dev/peps/pep-0263
https://www.python.org/dev/peps/pep-0263

0 00e9 L1 LATIN SMALL LETTER E WITH ACUTE
1 Obf2 No TAMIL NUMBER ONE THOUSAND

2 0f84 Mn TIBETAN MARK HALANTA

3 1770 Lo TAGBANWA LETTER SA

4 33af So SQUARE RAD OVER S SQUARED

1

The category codes are abbreviations describing the nature of the character. These are grouped into categories such
as “Letter”, “Number”, “Punctuation”, or “Symbol”, which in turn are broken up into subcategories. To take the
codes from the above output, 'L1' means ‘Letter, lowercase’, 'No' means “Number, other”, 'Mn' is “Mark,
nonspacing”, and 'So' is “Symbol, other”. See the General Category Values section of the Unicode Character
Database documentation for a list of category codes.

2.5 Comparando Strings

Unicode adds some complication to comparing strings, because the same set of characters can be represented by
different sequences of code points. For example, a letter like ‘€’ can be represented as a single code point U+00EA,
or as U+0065 U+0302, which is the code point for ‘¢’ followed by a code point for ‘COMBINING CIRCUMFLEX
ACCENT". These will produce the same output when printed, but one is a string of length 1 and the other is of length
2.

One tool for a case-insensitive comparison is the casefold () string method that converts a string to a case-
-insensitive form following an algorithm described by the Unicode Standard. This algorithm has special handling for
characters such as the German letter ‘3’ (code point U+00DF), which becomes the pair of lowercase letters ‘ss’.

>>> street = 'GlirzenichstraBe'
>>> street.casefold()
'glirzenichstrasse'

A second tool is the unicodedata module’s normalize () function that converts strings to one of several
normal forms, where letters followed by a combining character are replaced with single characters. normalize ()

can be used to perform string comparisons that won’t falsely report inequality if two strings use combining characters
differently:

import unicodedata

def compare_strs(sl, s2):
def NFD(s) :
return unicodedata.normalize ('NFD', s)

return NFD(sl) == NFD(s2)
single_char = 'é&'
multiple_chars = '\N{LATIN SMALL LETTER E}\N{COMBINING CIRCUMFLEX ACCENT}'

print ('length of first string=', len(single_char))
print ('length of second string=', len(multiple_chars))
print (compare_strs(single_char, multiple_chars))

When run, this outputs:

$ python3 compare-strs.py
length of first string= 1
length of second string= 2
True

The first argument to the normalize () function is a string giving the desired normalization form, which can be
one of ‘NFC’, ‘NFKC’, ‘NFD’, and ‘NFKD’.

The Unicode Standard also specifies how to do caseless comparisons:

https://www.unicode.org/reports/tr44/#General_Category_Values
https://www.unicode.org/reports/tr44/#General_Category_Values

import unicodedata

def compare_caseless(sl, s2):
def NFD(s) :
return unicodedata.normalize ('NFD', s)

return NFD (NFD(sl) .casefold()) == NFD(NFD(s2) .casefold())
Example usage

single_char = 'é&'

multiple_chars "\N{LATIN CAPITAL LETTER E}\N{COMBINING CIRCUMFLEX ACCENT}'

print (compare_caseless (single_char, multiple_chars))

This will print True. (Why is NED () invoked twice? Because there are a few characters that make casefold ()
return a non-normalized string, so the result needs to be normalized again. See section 3.13 of the Unicode Standard
for a discussion and an example.)

2.6 Expressoes Regulares Unicode

The regular expressions supported by the re module can be provided either as bytes or strings. Some of the special
character sequences such as \ d and \ w have different meanings depending on whether the pattern is supplied as bytes
or a string. For example, \ d will match the characters [0-9] in bytes but in strings will match any character that’s
in the 'Nd' category.

The string in this example has the number 57 written in both Thai and Arabic numerals:

import re
p = re.compile(r'\d+")

s = "Over \u0e55\u0e57 57 flavours"
m = p.search(s)
print (repr (m.group()))

When executed, \d+ will match the Thai numerals and print them out. If you supply the re .ASCII flag to
compile (), \d+ will match the substring “57” instead.

Similarly, \w matches a wide variety of Unicode characters but only [a-zA-Z0-9_] inbytes or if re .ASCIT is
supplied, and \ s will match either Unicode whitespace characters or [\t\n\r\f\v].

2.7 Referéncias

Some good alternative discussions of Python’s Unicode support are:
 Processing Text Files in Python 3, by Nick Coghlan.
o Pragmatic Unicode, a PyCon 2012 presentation by Ned Batchelder.
The str type is described in the Python library reference at textseq.
The documentation for the unicodedata module.
The documentation for the codecs module.

Marc-André Lemburg gave a presentation titled “Python and Unicode” (PDF slides) at EuroPython 2002. The slides
are an excellent overview of the design of Python 2’s Unicode features (where the Unicode string type is called
unicode and literals start with u).

http://python-notes.curiousefficiency.org/en/latest/python3/text_file_processing.html
https://nedbatchelder.com/text/unipain.html
https://downloads.egenix.com/python/Unicode-EPC2002-Talk.pdf

3 Reading and Writing Unicode Data

Once you've written some code that works with Unicode data, the next problem is input/output. How do you get
Unicode strings into your program, and how do you convert Unicode into a form suitable for storage or transmission?

It’s possible that you may not need to do anything depending on your input sources and output destinations; you should
check whether the libraries used in your application support Unicode natively. XML parsers often return Unicode
data, for example. Many relational databases also support Unicode-valued columns and can return Unicode values
from an SQL query.

Unicode data is usually converted to a particular encoding before it gets written to disk or sent over a socket. It’s
possible to do all the work yourself: open a file, read an 8-bit bytes object from it, and convert the bytes with
bytes.decode (encoding). However, the manual approach is not recommended.

One problem is the multi-byte nature of encodings; one Unicode character can be represented by several bytes. If
you want to read the file in arbitrary-sized chunks (say, 1024 or 4096 bytes), you need to write error-handling code
to catch the case where only part of the bytes encoding a single Unicode character are read at the end of a chunk.
One solution would be to read the entire file into memory and then perform the decoding, but that prevents you from
working with files that are extremely large; if you need to read a 2 GiB file, you need 2 GiB of RAM. (More, really,
since for at least a moment you’d need to have both the encoded string and its Unicode version in memory.)

The solution would be to use the low-level decoding interface to catch the case of partial coding sequences. The work
of implementing this has already been done for you: the built-in open () function can return a file-like object that
assumes the file’s contents are in a specified encoding and accepts Unicode parameters for methods such as read ()
and write (). This works through open () ’s encoding and errors parameters which are interpreted just like those
in str.encode () and bytes.decode ().

Reading Unicode from a file is therefore simple:

with open('unicode.txt', encoding='utf-8') as f:
for line in f:
print (repr(line))

It’s also possible to open files in update mode, allowing both reading and writing:

with open('test', encoding='utf-8', mode='w+') as f:
f.write ('\u4500 blah blah blah\n'")
f.seek (0)
print (repr (f.readline() [:1]))

The Unicode character U+FEFF is used as a byte-order mark (BOM), and is often written as the first character of a
file in order to assist with autodetection of the file’s byte ordering. Some encodings, such as UTF-16, expect a BOM
to be present at the start of a file; when such an encoding is used, the BOM will be automatically written as the first
character and will be silently dropped when the file is read. There are variants of these encodings, such as ‘utf-16-1¢’
and ‘utf-16-be’ for little-endian and big-endian encodings, that specify one particular byte ordering and don’t skip the
BOM.

In some areas, it is also convention to use a “BOM?” at the start of UTF-8 encoded files; the name is misleading since
UTF-8 is not byte-order dependent. The mark simply announces that the file is encoded in UTF-8. For reading such
files, use the ‘utf-8-sig’ codec to automatically skip the mark if present.

3.1 Nomes de arquivos Unicode

Most of the operating systems in common use today support filenames that contain arbitrary Unicode characters.
Usually this is implemented by converting the Unicode string into some encoding that varies depending on the system.
Today Python is converging on using UTF-8: Python on MacOS has used UTF-8 for several versions, and Python 3.6
switched to using UTF-8 on Windows as well. On Unix systems, there will only be a filesystem encoding if you’ve
set the LANG or LC_CTYPE environment variables; if you haven’t, the default encoding is again UTF-8.

The sys.getfilesystemencoding () function returns the encoding to use on your current system, in case
you want to do the encoding manually, but there’s not much reason to bother. When opening a file for reading or
writing, you can usually just provide the Unicode string as the filename, and it will be automatically converted to the
right encoding for you:

filename = 'filename\u4500abc’
with open(filename, 'w') as f:
f.write('blah\n")

Functions in the os module such as os . stat () will also accept Unicode filenames.

The os.listdir () function returns filenames, which raises an issue: should it return the Unicode version of
filenames, or should it return bytes containing the encoded versions? os.listdir () can do both, depending on
whether you provided the directory path as bytes or a Unicode string. If you pass a Unicode string as the path,
filenames will be decoded using the filesystem’s encoding and a list of Unicode strings will be returned, while passing
a byte path will return the filenames as bytes. For example, assuming the default filesystem encoding is UTF-8,
running the following program:

fn = 'filename\ud4500abc'
f = open(fn, 'w')
f.close()

import os
print (os.listdir(b'."))
print (os.listdir('."'))

will produce the following output:

$ python listdir-test.py
[b'filename\xe4\x94\x80abc', ...]
['filename\ud4500abc', ...]

The first list contains UTF-8-encoded filenames, and the second list contains the Unicode versions.

Note that on most occasions, you should can just stick with using Unicode with these APIs. The bytes APIs should
only be used on systems where undecodable file names can be present; that’s pretty much only Unix systems now.

3.2 Tips for Writing Unicode-aware Programs

This section provides some suggestions on writing software that deals with Unicode.
A dica mais importante é:

Software should only work with Unicode strings internally, decoding the input data as soon as possible
and encoding the output only at the end.

If you attempt to write processing functions that accept both Unicode and byte strings, you will find your program
vulnerable to bugs wherever you combine the two different kinds of strings. There is no automatic encoding or
decoding: if youdoe.g. str + bytes,a TypeError will be raised.

When using data coming from a web browser or some other untrusted source, a common technique is to check for
illegal characters in a string before using the string in a generated command line or storing it in a database. If you’re
doing this, be careful to check the decoded string, not the encoded bytes data; some encodings may have interesting
properties, such as not being bijective or not being fully ASCII-compatible. This is especially true if the input data

10

also specifies the encoding, since the attacker can then choose a clever way to hide malicious text in the encoded
bytestream.

Converting Between File Encodings
The StreamRecoder class can transparently convert between encodings, taking a stream that returns data in
encoding #1 and behaving like a stream returning data in encoding #2.

For example, if you have an input file f that’s in Latin-1, you can wrap it with a St reamRecoder to return bytes
encoded in UTF-8:

new_f = codecs.StreamRecoder (f,
en/decoder: used by read() to encode its results and
by write() to decode its input.
codecs.getencoder ('utf-8'), codecs.getdecoder ('utf-8"),

reader/writer: used to read and write to the stream.
codecs.getreader ('latin-1"), codecs.getwriter('latin-1"))

Files in an Unknown Encoding

What can you do if you need to make a change to a file, but don’t know the file’s encoding? If you know the
encoding is ASCII-compatible and only want to examine or modify the ASCII parts, you can open the file with the
surrogateescape error handler:

with open (fname, 'r', encoding="ascii", errors="surrogateescape") as f:
data = f.read()

make changes to the string 'data'
with open (fname + '.new', 'w',

encoding="ascii", errors="surrogateescape") as f:
f.write(data)

The surrogateescape error handler will decode any non-ASCII bytes as code points in a special range
running from U+DC80 to U+DCFF. These code points will then turn back into the same bytes when the
surrogateescape error handler is used to encode the data and write it back out.

3.3 Referéncias

One section of Mastering Python 3 Input/Output, a PyCon 2010 talk by David Beazley, discusses text processing and
binary data handling.

The PDF slides for Marc-André Lemburg’s presentation “Writing Unicode-aware Applications in Python” discuss
questions of character encodings as well as how to internationalize and localize an application. These slides cover
Python 2.x only.

The Guts of Unicode in Python is a PyCon 2013 talk by Benjamin Peterson that discusses the internal Unicode
representation in Python 3.3.

11

http://pyvideo.org/video/289/pycon-2010--mastering-python-3-i-o
https://downloads.egenix.com/python/LSM2005-Developing-Unicode-aware-applications-in-Python.pdf
http://pyvideo.org/video/1768/the-guts-of-unicode-in-python

4 Reconhecimentos

The initial draft of this document was written by Andrew Kuchling. It has since been revised further by Alexander
Belopolsky, Georg Brandl, Andrew Kuchling, and Ezio Melotti.

Thanks to the following people who have noted errors or offered suggestions on this article: Eric Araujo, Nicholas
Bastin, Nick Coghlan, Marius Gedminas, Kent Johnson, Ken Krugler, Marc-André Lemburg, Martin von Lowis,
Terry J. Reedy, Serhiy Storchaka, Eryk Sun, Chad Whitacre, Graham Wideman.

12

indice
F)

Propostas Estendidas Python
PEP 263,6

13

	Introdução ao Unicode
	Definições
	Codificações
	Referências

	Suporte a Unicode no Python
	O Tipo String
	Convertendo para Bytes
	Unicode Literals in Python Source Code
	Propriedades Unicode
	Comparando Strings
	Expressões Regulares Unicode
	Referências

	Reading and Writing Unicode Data
	Nomes de arquivos Unicode
	Tips for Writing Unicode-aware Programs
	Referências

	Reconhecimentos
	Índice

