Portando Módulos de Extensão para o Python 3¶
- autor
Benjamin Peterson
Resumo
Although changing the C-API was not one of Python 3’s objectives,
the many Python-level changes made leaving Python 2’s API intact
impossible. In fact, some changes such as int()
and
long()
unification are more obvious on the C level. This
document endeavors to document incompatibilities and how they can
be worked around.
Conditional compilation¶
The easiest way to compile only some code for Python 3 is to check
if PY_MAJOR_VERSION
is greater than or equal to 3.
#if PY_MAJOR_VERSION >= 3
#define IS_PY3K
#endif
API functions that are not present can be aliased to their equivalents within conditional blocks.
Changes to Object APIs¶
Python 3 merged together some types with similar functions while cleanly separating others.
str/unicode Unification¶
Python 3’s str()
type is equivalent to Python 2’s unicode()
; the C
functions are called PyUnicode_*
for both. The old 8-bit string type has become
bytes()
, with C functions called PyBytes_*
. Python 2.6 and later provide a compatibility header,
bytesobject.h
, mapping PyBytes
names to PyString
ones. For best
compatibility with Python 3, PyUnicode
should be used for textual data and
PyBytes
for binary data. It’s also important to remember that
PyBytes
and PyUnicode
in Python 3 are not interchangeable like
PyString
and PyUnicode
are in Python 2. The following example
shows best practices with regards to PyUnicode
, PyString
,
and PyBytes
.
#include "stdlib.h"
#include "Python.h"
#include "bytesobject.h"
/* text example */
static PyObject *
say_hello(PyObject *self, PyObject *args) {
PyObject *name, *result;
if (!PyArg_ParseTuple(args, "U:say_hello", &name))
return NULL;
result = PyUnicode_FromFormat("Hello, %S!", name);
return result;
}
/* just a forward */
static char * do_encode(PyObject *);
/* bytes example */
static PyObject *
encode_object(PyObject *self, PyObject *args) {
char *encoded;
PyObject *result, *myobj;
if (!PyArg_ParseTuple(args, "O:encode_object", &myobj))
return NULL;
encoded = do_encode(myobj);
if (encoded == NULL)
return NULL;
result = PyBytes_FromString(encoded);
free(encoded);
return result;
}
long/int Unification¶
Python 3 has only one integer type, int()
. But it actually
corresponds to Python 2’s long()
type—the int()
type
used in Python 2 was removed. In the C-API, PyInt_*
functions
are replaced by their PyLong_*
equivalents.
Module initialization and state¶
Python 3 has a revamped extension module initialization system. (See PEP 3121.) Instead of storing module state in globals, they should be stored in an interpreter specific structure. Creating modules that act correctly in both Python 2 and Python 3 is tricky. The following simple example demonstrates how.
#include "Python.h"
struct module_state {
PyObject *error;
};
#if PY_MAJOR_VERSION >= 3
#define GETSTATE(m) ((struct module_state*)PyModule_GetState(m))
#else
#define GETSTATE(m) (&_state)
static struct module_state _state;
#endif
static PyObject *
error_out(PyObject *m) {
struct module_state *st = GETSTATE(m);
PyErr_SetString(st->error, "something bad happened");
return NULL;
}
static PyMethodDef myextension_methods[] = {
{"error_out", (PyCFunction)error_out, METH_NOARGS, NULL},
{NULL, NULL}
};
#if PY_MAJOR_VERSION >= 3
static int myextension_traverse(PyObject *m, visitproc visit, void *arg) {
Py_VISIT(GETSTATE(m)->error);
return 0;
}
static int myextension_clear(PyObject *m) {
Py_CLEAR(GETSTATE(m)->error);
return 0;
}
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"myextension",
NULL,
sizeof(struct module_state),
myextension_methods,
NULL,
myextension_traverse,
myextension_clear,
NULL
};
#define INITERROR return NULL
PyMODINIT_FUNC
PyInit_myextension(void)
#else
#define INITERROR return
void
initmyextension(void)
#endif
{
#if PY_MAJOR_VERSION >= 3
PyObject *module = PyModule_Create(&moduledef);
#else
PyObject *module = Py_InitModule("myextension", myextension_methods);
#endif
if (module == NULL)
INITERROR;
struct module_state *st = GETSTATE(module);
st->error = PyErr_NewException("myextension.Error", NULL, NULL);
if (st->error == NULL) {
Py_DECREF(module);
INITERROR;
}
#if PY_MAJOR_VERSION >= 3
return module;
#endif
}
CObject replaced with Capsule¶
The Capsule
object was introduced in Python 3.1 and 2.7 to replace
CObject
. CObjects were useful,
but the CObject
API was problematic: it didn’t permit distinguishing
between valid CObjects, which allowed mismatched CObjects to crash the
interpreter, and some of its APIs relied on undefined behavior in C.
(For further reading on the rationale behind Capsules, please see bpo-5630.)
If you’re currently using CObjects, and you want to migrate to 3.1 or newer,
you’ll need to switch to Capsules.
CObject
was deprecated in 3.1 and 2.7 and completely removed in
Python 3.2. If you only support 2.7, or 3.1 and above, you
can simply switch to Capsule
. If you need to support Python 3.0,
or versions of Python earlier than 2.7,
you’ll have to support both CObjects and Capsules.
(Note that Python 3.0 is no longer supported, and it is not recommended
for production use.)
The following example header file capsulethunk.h
may
solve the problem for you. Simply write your code against the
Capsule
API and include this header file after
Python.h
. Your code will automatically use Capsules
in versions of Python with Capsules, and switch to CObjects
when Capsules are unavailable.
capsulethunk.h
simulates Capsules using CObjects. However,
CObject
provides no place to store the capsule’s “name”. As a
result the simulated Capsule
objects created by capsulethunk.h
behave slightly differently from real Capsules. Specifically:
The name parameter passed in to
PyCapsule_New()
is ignored.The name parameter passed in to
PyCapsule_IsValid()
andPyCapsule_GetPointer()
is ignored, and no error checking of the name is performed.
PyCapsule_GetName()
always returns NULL.
PyCapsule_SetName()
always raises an exception and returns failure. (Since there’s no way to store a name in a CObject, noisy failure ofPyCapsule_SetName()
was deemed preferable to silent failure here. If this is inconvenient, feel free to modify your local copy as you see fit.)
You can find capsulethunk.h
in the Python source distribution
as Doc/includes/capsulethunk.h. We also include it here for
your convenience:
#ifndef __CAPSULETHUNK_H
#define __CAPSULETHUNK_H
#if ( (PY_VERSION_HEX < 0x02070000) \
|| ((PY_VERSION_HEX >= 0x03000000) \
&& (PY_VERSION_HEX < 0x03010000)) )
#define __PyCapsule_GetField(capsule, field, default_value) \
( PyCapsule_CheckExact(capsule) \
? (((PyCObject *)capsule)->field) \
: (default_value) \
) \
#define __PyCapsule_SetField(capsule, field, value) \
( PyCapsule_CheckExact(capsule) \
? (((PyCObject *)capsule)->field = value), 1 \
: 0 \
) \
#define PyCapsule_Type PyCObject_Type
#define PyCapsule_CheckExact(capsule) (PyCObject_Check(capsule))
#define PyCapsule_IsValid(capsule, name) (PyCObject_Check(capsule))
#define PyCapsule_New(pointer, name, destructor) \
(PyCObject_FromVoidPtr(pointer, destructor))
#define PyCapsule_GetPointer(capsule, name) \
(PyCObject_AsVoidPtr(capsule))
/* Don't call PyCObject_SetPointer here, it fails if there's a destructor */
#define PyCapsule_SetPointer(capsule, pointer) \
__PyCapsule_SetField(capsule, cobject, pointer)
#define PyCapsule_GetDestructor(capsule) \
__PyCapsule_GetField(capsule, destructor)
#define PyCapsule_SetDestructor(capsule, dtor) \
__PyCapsule_SetField(capsule, destructor, dtor)
/*
* Sorry, there's simply no place
* to store a Capsule "name" in a CObject.
*/
#define PyCapsule_GetName(capsule) NULL
static int
PyCapsule_SetName(PyObject *capsule, const char *unused)
{
unused = unused;
PyErr_SetString(PyExc_NotImplementedError,
"can't use PyCapsule_SetName with CObjects");
return 1;
}
#define PyCapsule_GetContext(capsule) \
__PyCapsule_GetField(capsule, descr)
#define PyCapsule_SetContext(capsule, context) \
__PyCapsule_SetField(capsule, descr, context)
static void *
PyCapsule_Import(const char *name, int no_block)
{
PyObject *object = NULL;
void *return_value = NULL;
char *trace;
size_t name_length = (strlen(name) + 1) * sizeof(char);
char *name_dup = (char *)PyMem_MALLOC(name_length);
if (!name_dup) {
return NULL;
}
memcpy(name_dup, name, name_length);
trace = name_dup;
while (trace) {
char *dot = strchr(trace, '.');
if (dot) {
*dot++ = '\0';
}
if (object == NULL) {
if (no_block) {
object = PyImport_ImportModuleNoBlock(trace);
} else {
object = PyImport_ImportModule(trace);
if (!object) {
PyErr_Format(PyExc_ImportError,
"PyCapsule_Import could not "
"import module \"%s\"", trace);
}
}
} else {
PyObject *object2 = PyObject_GetAttrString(object, trace);
Py_DECREF(object);
object = object2;
}
if (!object) {
goto EXIT;
}
trace = dot;
}
if (PyCObject_Check(object)) {
PyCObject *cobject = (PyCObject *)object;
return_value = cobject->cobject;
} else {
PyErr_Format(PyExc_AttributeError,
"PyCapsule_Import \"%s\" is not valid",
name);
}
EXIT:
Py_XDECREF(object);
if (name_dup) {
PyMem_FREE(name_dup);
}
return return_value;
}
#endif /* #if PY_VERSION_HEX < 0x02070000 */
#endif /* __CAPSULETHUNK_H */
Outras opções¶
If you are writing a new extension module, you might consider Cython. It translates a Python-like language to C. The extension modules it creates are compatible with Python 3 and Python 2.