6.2. re — Operações com expressões regulares

Código Fonte: Lib/re.py


Este módulo fornece operações de correspondência de expressões regulares semelhantes às encontradas em Perl. O nome do módulo vem da abreviação do termo em inglês regular expressions, RE.

Ambos os padrões e strings a serem pesquisados podem ser strings Unicode (str) assim como strings de 8 bits (bytes). No entanto, strings Unicode e strings de 8 bits não podem ser misturadas: ou seja, você não pode combinar uma string Unicode com um padrão de bytes ou vice-versa; da mesma forma, ao solicitar uma substituição, a string de substituição deve ser do mesmo tipo que o padrão e a string de pesquisa.

Regular expressions use the backslash character ('\') to indicate special forms or to allow special characters to be used without invoking their special meaning. This collides with Python’s usage of the same character for the same purpose in string literals; for example, to match a literal backslash, one might have to write '\\\\' as the pattern string, because the regular expression must be \\, and each backslash must be expressed as \\ inside a regular Python string literal.

A solução é usar a notação de string bruta do Python para padrões de expressão regular; as contrabarras não são tratadas de nenhuma maneira especial em uma string literal com o prefixo 'r'. Portanto, r"\n" é uma string de dois caracteres contendo '\' e 'n', enquanto "\n" é uma string de um caractere contendo um nova linha. Normalmente, os padrões serão expressos em código Python usando esta notação de string bruta.

É importante notar que a maioria das operações de expressão regular estão disponíveis como funções e métodos de nível de módulo em expressões regulares compiladas. As funções são atalhos que não exigem que você compile um objeto regex primeiro, mas perdem alguns parâmetros de ajuste fino.

Ver também

O módulo regex de terceiros, que possui uma API compatível com o módulo da biblioteca padrão re, mas oferece funcionalidades adicionais e um suporte mais completo a Unicode.

6.2.1. Sintaxe de expressão regular

Uma expressão regular (ou ER) especifica um conjunto de strings que corresponde a ela; as funções neste módulo permitem que você verifique se uma determinada string corresponde a uma determinada expressão regular (ou se uma determinada expressão regular corresponde a uma determinada string, o que resulta na mesma coisa).

As expressões regulares podem ser concatenadas para formar novas expressões regulares; se A e B forem expressões regulares, então AB também será uma expressão regular. Em geral, se uma string p corresponder a A e outra string q corresponder a B, a string pq corresponderá a AB. Isso é válido, a menos que A ou B contenham operações de baixa precedência; condições de contorno entre A e B; ou ter referências de grupo numeradas. Assim, expressões complexas podem ser facilmente construídas a partir de expressões primitivas mais simples, como as descritas aqui. Para obter detalhes sobre a teoria e implementação de expressões regulares, consulte o livro de Friedl [Frie09], ou quase qualquer livro sobre construção de compiladores.

Segue uma breve explicação do formato das expressões regulares. Para mais informações e uma apresentação mais suave, consulte o Expressões Regulares HOWTO.

As expressões regulares podem conter caracteres especiais e comuns. A maioria dos caracteres comuns, como 'A', 'a' ou '0', são as expressões regulares mais simples; eles simplesmente se combinam. Você pode concatenar caracteres comuns, de forma que último corresponda à string 'último'. (No restante desta seção, escreveremos ERs neste estilo especial, geralmente sem aspas, e strings para serem correspondidas 'entre aspas simples'.)

Alguns caracteres, como '|' ou '(', são especiais. Os caracteres especiais representam classes de caracteres comuns ou afetam como as expressões regulares em torno deles são interpretadas.

Qualificadores de repetição (*, +, ?, {m,n} etc) não podem ser aninhados diretamente. Isso evita ambiguidade com o sufixo modificador não guloso ?, E com outros modificadores em outras implementações. Para aplicar uma segunda repetição a uma repetição interna, podem ser usados parênteses. Por exemplo, a expressão (?:a{6})* corresponde a qualquer múltiplo de seis caracteres 'a'.

Os caracteres especiais são:

.

(Ponto.) No modo padrão, corresponde a qualquer caractere, exceto uma nova linha. Se o sinalizador DOTALL foi especificado, ele corresponde a qualquer caractere, incluindo uma nova linha.

^

(Sinal de circunflexo.) Corresponde ao início da string, e no modo MULTILINE também corresponde imediatamente após cada nova linha.

$

Corresponde ao final da string ou logo antes da nova linha no final da string, e no modo MULTILINE também corresponde antes de uma nova linha. foo corresponde a ‘foo’ e ‘foobar’, enquanto a expressão regular foo$ corresponde apenas a ‘foo’. Mais interessante, pesquisar por foo.$ em 'foo1\nfoo2\n' corresponde a ‘foo2’ normalmente, mas ‘foo1’ no modo MULTILINE; procurando por um único $ em 'foo\n' encontrará duas correspondências (vazias): uma logo antes da nova linha e uma no final da string.

*

Faz com que a ER resultante corresponda a 0 ou mais repetições da ER anterior, tantas repetições quantas forem possíveis. ab* corresponderá a ‘a’, ‘ab’ ou ‘a’ seguido por qualquer número de ‘b’s.

+

Faz com que a ER resultante corresponda a 1 ou mais repetições da ER anterior. ab+ irá corresponder a ‘a’ seguido por qualquer número diferente de zero de ‘b’s; não corresponderá apenas a ‘a’.

?

Faz com que a ER resultante corresponda a 0 ou 1 repetição da ER anterior. ab? irá corresponder a ‘a’ ou ‘ab’.

*?, +?, ??

Os qualificadores '*', '+' e '?' são todos gananciosos; eles correspondem ao máximo de texto possível. Às vezes, esse comportamento não é desejado; se a ER <.*> for correspondida com '<a> b <c>', ele irá corresponder a toda a string, e não apenas '<a>'. Adicionar ? após o qualificador faz com que ele execute a correspondência da maneira não gananciosa ou minimalista; tão poucos caracteres quanto possível serão correspondidos. Usando a <.*?> irá corresponder apenas '<a>'.

{m}

Especifica que exatamente m cópias da ER anterior devem ser correspondidas; menos correspondências fazem com que toda a ER não seja correspondida. Por exemplo, a{6} irá corresponder exatamente a seis caracteres 'a', mas não a cinco.

{m,n}

Faz com que a ER resultante corresponda de m a n repetições da ER precedente, tentando corresponder ao máximo de repetições possível. Por exemplo, a{3,5} irá corresponder de 3 a 5 caracteres 'a'. A omissão de m especifica um limite inferior de zero e a omissão de n especifica um limite superior infinito. Como exemplo, a{4,}b irá corresponder a 'aaaab' ou mil caracteres 'a' seguidos por um 'b', mas não 'aaab'. A vírgula não pode ser omitida ou o modificador será confundido com a forma descrita anteriormente.

{m,n}?

Faz com que a ER resultante corresponda de m a n repetições da ER precedente, tentando corresponder o mínimo de poucas repetições possível. Esta é a versão não gananciosa do qualificador anterior. Por exemplo, na string de 6 caracteres 'aaaaaa', a{3,5} irá corresponder a 5 caracteres 'a', enquanto a{3,5}? corresponderá apenas a 3 caracteres.

\

Ou escapa caracteres especiais (permitindo que você corresponde a caracteres como '*', '?' e assim por diante), ou sinaliza uma sequência especial; sequências especiais são discutidas abaixo.

Se você não estiver usando uma string raw para expressar o padrão, lembre-se de que o Python também usa a contrabarra como uma sequência de escape em literais de string; se a sequência de escape não for reconhecida pelo analisador sintático do Python, a contrabarra e o caractere subsequente serão incluídos na string resultante. No entanto, se o Python reconhecer a sequência resultante, a contrabarra deve ser repetida duas vezes. Isso é complicado e difícil de entender, portanto, é altamente recomendável que você use strings raw para todas as expressões, exceto as mais simples.

[]

Usado para indicar um conjunto de caracteres. Em um conjunto:

  • Caracteres podem ser listados individualmente, por exemplo, [amk] vai corresponder a 'a', 'm' ou 'k'.

  • Intervalos de caracteres podem ser indicados fornecendo dois caracteres e separando-os por '-', por exemplo [a-z] irá corresponder a qualquer letra ASCII minúscula, [0-5][0-9] irá corresponder a todos os números de dois dígitos de 00 a 59, e [0-9A-Fa-f] irá corresponder a qualquer dígito hexadecimal. Se - for escapado (por exemplo, [a\-z]) ou se for colocado como o primeiro ou último caractere (por exemplo, [-a] ou [a-]), ele corresponderá a um literal '-'.

  • Os caracteres especiais perdem seu significado especial dentro dos conjuntos. Por exemplo, [(+*)] corresponderá a qualquer um dos caracteres literais '(', '+', '*' ou ')'.

  • Classes de caracteres como \w ou \S (definidas abaixo) também são aceitas dentro de um conjunto, embora os caracteres que correspondem dependam do modo ASCII ou LOCALE está em vigor.

  • Os caracteres que não estão dentro de um intervalo podem ser correspondidos complementando o conjunto. Se o primeiro caractere do conjunto for '^', todos os caracteres que não estiverem no conjunto serão correspondidos. Por exemplo, [^5] irá corresponder a qualquer caractere exceto '5', e [^^] irá corresponder a qualquer caractere exceto '^'. ^ não tem nenhum significado especial se não for o primeiro caractere do conjunto.

  • Para corresponder a um ']' literal dentro de um conjunto, preceda-o com uma contrabarra ou coloque-o no início do conjunto. Por exemplo, [()[\]{}] e []()[{}] ambos corresponderão a um parêntese.

|

A|B, onde A e B podem ser ERs arbitrários, cria uma expressão regular que corresponderá a A ou B. Um número arbitrário de ERs pode ser separado por '|' desta forma. Isso também pode ser usado dentro de grupos (veja abaixo). Conforme a string alvo é escaneada, ERs separados por '|' são tentados da esquerda para a direita. Quando um padrão corresponde completamente, essa ramificação é aceita. Isso significa que, assim que A corresponder, B não será testado posteriormente, mesmo que produza uma correspondência geral mais longa. Em outras palavras, o operador '|' nunca é ganancioso. Para corresponder a um '|' literal, use \|, ou coloque-o dentro de uma classe de caractere, como em [|].

(...)

Corresponde a qualquer expressão regular que esteja entre parênteses e indica o início e o fim de um grupo; o conteúdo de um grupo pode ser recuperado após uma correspondência ter sido realizada e pode ser correspondido posteriormente na string com a sequência especial \number, descrita abaixo. Para corresponder aos literais '(' ou ')', use \( ou \), ou coloque-os dentro de uma classe de caracteres: [(], [)].

(?...)

Esta é uma notação de extensão (um '?' seguindo um '(' não é significativo de outra forma). O primeiro caractere após o '?' determina qual o significado e sintaxe posterior do é. As extensões normalmente não criam um novo grupo; (?P<name>...) é a única exceção a esta regra. A seguir estão as extensões atualmente suportadas.

(?aiLmsux)

(Uma ou mais letras do conjunto 'a', 'i', 'L', 'm', 's', 'u', 'x'.) O grupo corresponde à string vazia; as letras definem os sinalizadores correspondentes: re.A (correspondência somente ASCII), re.I (não diferenciar maiúsculas e minúsculas), re.L (dependente do local), re.M (multi-linha), re.S (ponto corresponde a todos), re.U (correspondência Unicode) e re.X (detalhado), para toda a expressão regular. (Os sinalizadores são descritos em Conteúdo do Módulo.) Isso é útil se você deseja incluir os sinalizadores como parte da expressão regular, em vez de passar um argumento flag para função re.compile(). Os sinalizadores devem ser usados primeiro na string de expressão.

(?:...)

Uma versão sem captura de parênteses regulares. Corresponde a qualquer expressão regular que esteja entre parênteses, mas a substring correspondida pelo grupo não pode ser recuperada após realizar uma correspondência ou referenciada posteriormente no padrão.

(?imsx-imsx:...)

(Zero or more letters from the set 'i', 'm', 's', 'x', optionally followed by '-' followed by one or more letters from the same set.) The letters set or removes the corresponding flags: re.I (ignore case), re.M (multi-line), re.S (dot matches all), and re.X (verbose), for the part of the expression. (The flags are described in Conteúdo do Módulo.)

Novo na versão 3.6.

(?P<name>...)

Semelhante aos parênteses regulares, mas a substring correspondida pelo grupo é acessível por meio do nome de grupo simbólico name. Os nomes de grupo devem ser identificadores Python válidos e cada nome de grupo deve ser definido apenas uma vez em uma expressão regular. Um grupo simbólico também é um grupo numerado, como se o grupo não tivesse um nome.

Grupos nomeados podem ser referenciados em três contextos. Se o padrão for (?P<quote>['"]).*?(?P=quote) (ou seja, corresponder a uma string entre aspas simples ou duplas):

Contexto de referência ao grupo “quote”

Formas de referenciá-lo

no mesmo padrão

  • (?P=quote) (como mostrado)

  • \1

ao processar a correspondência do objeto m

  • m.group('quote')

  • m.end('quote') (etc.)

em uma string passada para o argumento repl de re.sub()

  • \g<quote>

  • \g<1>

  • \1

(?P=name)

Uma referência anterior a um grupo nomeado; corresponde a qualquer texto que corresponda ao grupo anterior denominado name.

(?#...)

Um comentário; o conteúdo dos parênteses é simplesmente ignorado.

(?=...)

Corresponde se ... corresponder a próxima, mas não consome nada da string. Isso é chamado de asserção lookahead. Por exemplo, Isaac (?=Asimov) corresponderá a 'Isaac ' apenas se for seguido por 'Asimov'.

(?!...)

Corresponde se ... não corresponder a próxima. Isso é uma asserção lookahead negativa. Por exemplo, Isaac (?!Asimov) corresponderá a 'Isaac ' apenas se não for seguido por 'Asimov'.

(?<=...)

Corresponde se a posição atual na string for precedida por uma correspondência para ... que termina na posição atual. Isso é chamado de asserção retrovisora positiva. (?<=abc)def irá encontrar uma correspondência em 'abcdef', uma vez que o retrovisor vai voltar 3 caracteres e verificar se o padrão contido corresponde. O padrão contido deve corresponder apenas a strings de algum comprimento fixo, o que significa que abc ou a|b são permitidos, mas a* e a{3,4} não são. Observe que os padrões que começam com asserções retrovisoras positivas não corresponderão ao início da string que está sendo pesquisada; você provavelmente desejará usar a função search() em vez da função match():

>>> import re
>>> m = re.search('(?<=abc)def', 'abcdef')
>>> m.group(0)
'def'

Este exemplo procura por uma palavra logo após um hífen:

>>> m = re.search(r'(?<=-)\w+', 'spam-egg')
>>> m.group(0)
'egg'

Alterado na versão 3.5: Adicionado suporte para referências de grupo de comprimento fixo.

(?<!...)

Corresponde se a posição atual na string não for precedida por uma correspondência para .... Isso é chamado de asserção retrovisora negativa. Semelhante às asserções retrovisoras positivas, o padrão contido deve corresponder apenas a strings de algum comprimento fixo. Os padrões que começam com asserções retroativas negativas podem corresponder ao início da string que está sendo pesquisada.

(?(id/name)yes-pattern|no-pattern)

Tentará corresponder com padrão-sim se o grupo com determinado id ou nome existir, e com padrão-não se não existir. padrão-não é opcional e pode ser omitido. Por exemplo, (<)?(\w+@\w+(?:\.\w+)+)(?(1)>|$) é um padrão ruim de correspondência de e-mail, que corresponderá com '<usuario@host.com>' bem como 'usuario@host.com', mas não com '<usuario@host.com>' nem 'usuario@host.com>'.

As sequências especiais consistem em '\' e um caractere da lista abaixo. Se o caractere comum não for um dígito ASCII ou uma letra ASCII, a ER resultante corresponderá ao segundo caractere. Por exemplo, \$ corresponde ao caractere '$'.

\number

Corresponde ao conteúdo do grupo de mesmo número. Os grupos são numerados a partir de 1. Por exemplo, (.+) \1 corresponde a 'de de' ou '55 55', mas não 'dede' (note o espaço após o grupo). Esta sequência especial só pode ser usada para corresponder a um dos primeiros 99 grupos. Se o primeiro dígito de número for 0, ou número tiver 3 dígitos octais de comprimento, ele não será interpretado como uma correspondência de grupo, mas como o caractere com número de valor octal. Dentro de '[' e ']' de uma classe de caracteres, todos os escapes numéricos são tratados como caracteres.

\A

Corresponde apenas ao início da string.

\b

Corresponde à string vazia, mas apenas no início ou no final de uma palavra. Uma palavra é definida como uma sequência de caracteres de palavras. Observe que, formalmente, \b é definido como a fronteira entre um caractere \w e um \W (ou vice-versa), ou entre \w e o início/fim da string. Isso significa que r'\bfoo\b' corresponde a 'foo', 'foo.', '(foo)', 'bar foo baz', mas não a 'foobar' ou 'foo3'.

Por padrão, os alfanuméricos Unicode são aqueles usados nos padrões Unicode, mas isso pode ser alterado usando o sinalizador ASCII. Os limites das palavras são determinados pela localidade atual se o sinalizador LOCALE for usado. Dentro de um intervalo de caracteres, \b representa o caractere de backspace, para compatibilidade com os literais de string do Python.

\B

Corresponde à string vazia, mas apenas quando não estiver no início ou no final de uma palavra. Isso significa que r'py\B' corresponde a 'python', 'py3', 'py2', mas não 'py', 'py.', or 'py!'. \B é exatamente o oposto de \b, então caracteres de palavras em padrões Unicode são alfanuméricos Unicode ou o sublinhado, embora isso possa ser alterado usando o sinalizador ASCII. Os limites das palavras são determinados pela localidade atual se o sinalizador LOCALE for usado.

\d
Para padrões (str) Unicode:

Matches any Unicode decimal digit (that is, any character in Unicode character category [Nd]). This includes [0-9], and also many other digit characters. If the ASCII flag is used only [0-9] is matched (but the flag affects the entire regular expression, so in such cases using an explicit [0-9] may be a better choice).

Para padrões de 8 bits (isto é, bytes):

Corresponde a qualquer dígito decimal; isso é equivalente a [0-9].

\D

Matches any character which is not a decimal digit. This is the opposite of \d. If the ASCII flag is used this becomes the equivalent of [^0-9] (but the flag affects the entire regular expression, so in such cases using an explicit [^0-9] may be a better choice).

\s
Para padrões (str) Unicode:

Matches Unicode whitespace characters (which includes [ \t\n\r\f\v], and also many other characters, for example the non-breaking spaces mandated by typography rules in many languages). If the ASCII flag is used, only [ \t\n\r\f\v] is matched (but the flag affects the entire regular expression, so in such cases using an explicit [ \t\n\r\f\v] may be a better choice).

Para padrões de 8 bits (isto é, bytes):

Corresponde a caracteres considerados espaços em branco no conjunto de caracteres ASCII; isso é equivalente a [ \t\n\r\f\v].

\S

Matches any character which is not a whitespace character. This is the opposite of \s. If the ASCII flag is used this becomes the equivalent of [^ \t\n\r\f\v] (but the flag affects the entire regular expression, so in such cases using an explicit [^ \t\n\r\f\v] may be a better choice).

\w
Para padrões (str) Unicode:

Matches Unicode word characters; this includes most characters that can be part of a word in any language, as well as numbers and the underscore. If the ASCII flag is used, only [a-zA-Z0-9_] is matched (but the flag affects the entire regular expression, so in such cases using an explicit [a-zA-Z0-9_] may be a better choice).

Para padrões de 8 bits (isto é, bytes):

Corresponde a caracteres considerados alfanuméricos no conjunto de caracteres ASCII; isso é equivalente a [a-zA-Z0-9_]. Se o sinalizador LOCALE for usado, corresponde aos caracteres considerados alfanuméricos na localidade atual e o sublinhado.

\W

Matches any character which is not a word character. This is the opposite of \w. If the ASCII flag is used this becomes the equivalent of [^a-zA-Z0-9_] (but the flag affects the entire regular expression, so in such cases using an explicit [^a-zA-Z0-9_] may be a better choice). If the LOCALE flag is used, matches characters considered alphanumeric in the current locale and the underscore.

\Z

Corresponde apenas ao final da string.

A maioria dos escapes padrão suportados por literais de string Python também são aceitos pelo analisador sintático de expressão regular:

\a      \b      \f      \n
\r      \t      \u      \U
\v      \x      \\

(Observe que \b é usado para representar limites de palavras e significa fazer “backspace” apenas dentro das classes de caracteres.)

'\u' and '\U' escape sequences are only recognized in Unicode patterns. In bytes patterns they are errors.

Os escapes octais são incluídos em um formulário limitado. Se o primeiro dígito for 0, ou se houver três dígitos octais, é considerado um escape octal. Caso contrário, é uma referência de grupo. Quanto aos literais de string, os escapes octais têm sempre no máximo três dígitos.

Alterado na versão 3.3: As sequências de escape '\u' e '\U' foram adicionadas.

Alterado na versão 3.6: Escapes desconhecidos consistindo em '\' e uma letra ASCII agora são erros.

6.2.2. Conteúdo do Módulo

O módulo define várias funções, constantes e uma exceção. Algumas das funções são versões simplificadas dos métodos completos para expressões regulares compiladas. A maioria dos aplicativos não triviais sempre usa a forma compilada.

Alterado na versão 3.6: Constantes de sinalizadores são agora instâncias de RegexFlag, que é uma subclasse de enum.IntFlag.

re.compile(pattern, flags=0)

Compile a regular expression pattern into a regular expression object, which can be used for matching using its match(), search() and other methods, described below.

O comportamento da expressão pode ser modificado especificando um valor flags. Os valores podem ser qualquer uma das seguintes variáveis, correspondidas usando OU bit a bit (o operador |).

A sequência

prog = re.compile(pattern)
result = prog.match(string)

é equivalente a:

result = re.match(pattern, string)

mas usar re.compile() e salvar o objeto de expressão regular resultante para reutilização é mais eficiente quando a expressão será usada várias vezes em um único programa.

Nota

As versões compiladas dos padrões mais recentes passados para re.compile() e as funções de correspondência em nível de módulo são armazenadas em cache, de modo que programas que usam apenas algumas expressões regulares por vez não precisam se preocupar em compilar expressões regulares.

re.A
re.ASCII

Faz com que \w, \W, \b, \B, \d, \D, \s e \S executem a correspondência somente ASCII em vez da correspondência Unicode completa. Isso é significativo apenas para padrões Unicode e é ignorado para padrões de bytes. Corresponde ao sinalizador em linha (?a).

Observe que, para compatibilidade com versões anteriores, o sinalizador re.U ainda existe (bem como seu sinônimo re.UNICODE e sua contraparte incorporada (?u)), mas estes são redundantes em Python 3, pois as correspondências são Unicode por padrão para strings (e a correspondência Unicode não é permitida para bytes).

re.DEBUG

Exibe informações de depuração sobre a expressão compilada. Nenhum sinalizador em linha correspondente.

re.I
re.IGNORECASE

Executa uma correspondência que não diferencia maiúsculas de minúsculas; expressões como [A-Z] também corresponderão a letras minúsculas. A correspondência Unicode completa (como Ü correspondendo a ü) também funciona, a menos que o sinalizador re.ASCII seja usado para desabilitar correspondências não ASCII. A localidade atual não muda o efeito deste sinalizador a menos que o sinalizador re.LOCALE também seja usado. Corresponde ao sinalizador em linha (?i).

Note that when the Unicode patterns [a-z] or [A-Z] are used in combination with the IGNORECASE flag, they will match the 52 ASCII letters and 4 additional non-ASCII letters: ‘İ’ (U+0130, Latin capital letter I with dot above), ‘ı’ (U+0131, Latin small letter dotless i), ‘ſ’ (U+017F, Latin small letter long s) and ‘K’ (U+212A, Kelvin sign). If the ASCII flag is used, only letters ‘a’ to ‘z’ and ‘A’ to ‘Z’ are matched (but the flag affects the entire regular expression, so in such cases using an explicit (?-i:[a-zA-Z]) may be a better choice).

re.L
re.LOCALE

Faz \w, \W, \b, \B e a correspondência sem diferença entre maiúsculas e minúsculas dependente do local atual. Este sinalizador pode ser usado apenas com padrões de bytes. O uso desse sinalizador é desencorajado porque o mecanismo de localidade não é confiável, ele só lida com uma “cultura” por vez e só funciona com localidades de 8 bits. A correspondência Unicode já está habilitada por padrão no Python 3 para padrões Unicode (str) e é capaz de lidar com diferentes localidades/idiomas. Corresponde ao sinalizador em linha (?L).

Alterado na versão 3.6: re.LOCALE pode ser usado apenas com padrões de bytes e não é compatível com re.ASCII.

re.M
re.MULTILINE

Quando especificado, o caractere padrão '^' corresponde ao início da string e ao início de cada linha (imediatamente após cada nova linha); e o caractere padrão '$' corresponde ao final da string e ao final de cada linha (imediatamente antes de cada nova linha). Por padrão, '^' corresponde apenas no início da string, e '$' apenas no final da string e imediatamente antes da nova linha (se houver) no final da string. Corresponde ao sinalizador em linha (?m).

re.S
re.DOTALL

Faz o caractere especial '.' corresponder a qualquer caractere, incluindo uma nova linha; sem este sinalizador, '.' irá corresponder a qualquer coisa exceto uma nova linha. Corresponde ao sinalizador em linha (?s).

re.X
re.VERBOSE

Este sinalizador permite que você escreva expressões regulares que parecem mais agradáveis e são mais legíveis, permitindo que você separe visualmente seções lógicas do padrão e adicione comentários. O espaço em branco dentro do padrão é ignorado, exceto quando em uma classe de caractere, ou quando precedido por uma contrabarra sem escape, ou dentro de tokens como *?, (?: ou (?P<...>. Quando uma linha contém um # que não está em uma classe de caractere e não é precedido por uma contrabarra sem escape, todos os caracteres da extremidade esquerda, como # até o final da linha são ignorados.

Isso significa que os dois seguintes objetos de expressão regular que correspondem a um número decimal são funcionalmente iguais:

a = re.compile(r"""\d +  # the integral part
                   \.    # the decimal point
                   \d *  # some fractional digits""", re.X)
b = re.compile(r"\d+\.\d*")

Corresponde ao sinalizador em linha (?x).

re.search(pattern, string, flags=0)

Percorre a string procurando o primeiro local onde o padrão pattern de expressão regular produz uma correspondência e retorna um objeto de correspondência encontrado. Retorne None se nenhuma posição na string corresponder ao padrão; observe que isso é diferente de encontrar uma correspondência de comprimento zero em algum ponto da string.

re.match(pattern, string, flags=0)

Se zero ou mais caracteres no início da string corresponderem ao padrão pattern da expressão regular, retorna um objeto de correspondência encontrado. Retorna None se a string não corresponder ao padrão; observe que isso é diferente de uma correspondência de comprimento zero.

Observe que mesmo no modo MULTILINE, re.match() irá corresponder apenas no início da string e não no início de cada linha.

Se você quiser localizar uma correspondência em qualquer lugar em string, use search() (veja também search() vs. match()).

re.fullmatch(pattern, string, flags=0)

Se toda a string corresponder ao padrão pattern da expressão regular, retorna um objeto de correspondência encontrado. Retorna None se a string não corresponder ao padrão; observe que isso é diferente de uma correspondência de comprimento zero.

Novo na versão 3.4.

re.split(pattern, string, maxsplit=0, flags=0)

Divide a string pelas ocorrências do padrão pattern. Se parênteses de captura forem usados em pattern, o texto de todos os grupos no padrão também será retornado como parte da lista resultante. Se maxsplit for diferente de zero, no máximo maxsplit divisões ocorrerão e o restante da string será retornado como o elemento final da lista.

>>> re.split(r'\W+', 'Words, words, words.')
['Words', 'words', 'words', '']
>>> re.split(r'(\W+)', 'Words, words, words.')
['Words', ', ', 'words', ', ', 'words', '.', '']
>>> re.split(r'\W+', 'Words, words, words.', 1)
['Words', 'words, words.']
>>> re.split('[a-f]+', '0a3B9', flags=re.IGNORECASE)
['0', '3', '9']

Se houver grupos de captura no separador e ele corresponder ao início da string, o resultado começará com uma string vazia. O mesmo vale para o final da string:

>>> re.split(r'(\W+)', '...words, words...')
['', '...', 'words', ', ', 'words', '...', '']

Dessa forma, os componentes do separador são sempre encontrados nos mesmos índices relativos na lista de resultados.

Nota

split() doesn’t currently split a string on an empty pattern match. For example:

>>> re.split('x*', 'axbc')
['a', 'bc']

Even though 'x*' also matches 0 ‘x’ before ‘a’, between ‘b’ and ‘c’, and after ‘c’, currently these matches are ignored. The correct behavior (i.e. splitting on empty matches too and returning ['', 'a', 'b', 'c', '']) will be implemented in future versions of Python, but since this is a backward incompatible change, a FutureWarning will be raised in the meanwhile.

Patterns that can only match empty strings currently never split the string. Since this doesn’t match the expected behavior, a ValueError will be raised starting from Python 3.5:

>>> re.split("^$", "foo\n\nbar\n", flags=re.M)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  ...
ValueError: split() requires a non-empty pattern match.

Alterado na versão 3.1: Adicionado o argumento de sinalizadores opcionais.

Alterado na versão 3.5: Splitting on a pattern that could match an empty string now raises a warning. Patterns that can only match empty strings are now rejected.

re.findall(pattern, string, flags=0)

Retorna todas as correspondências não sobrepostas de padrão pattern na string, como uma lista de strings. A string é verificada da esquerda para a direita e as correspondências são retornadas na ordem encontrada. Se um ou mais grupos estiverem presentes no padrão, retorna uma lista de grupos; esta será uma lista de tuplas se o padrão tiver mais de um grupo. Correspondências vazias são incluídas no resultado.

Nota

Due to the limitation of the current implementation the character following an empty match is not included in a next match, so findall(r'^|\w+', 'two words') returns ['', 'wo', 'words'] (note missed “t”). This is changed in Python 3.7.

re.finditer(pattern, string, flags=0)

Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string. The string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the result. See also the note about findall().

re.sub(pattern, repl, string, count=0, flags=0)

Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if it is a string, any backslash escapes in it are processed. That is, \n is converted to a single newline character, \r is converted to a carriage return, and so forth. Unknown escapes such as \& are left alone. Backreferences, such as \6, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(r'def\s+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\):',
...        r'static PyObject*\npy_\1(void)\n{',
...        'def myfunc():')
'static PyObject*\npy_myfunc(void)\n{'

Se repl for uma função, ela será chamada para cada ocorrência não sobreposta do padrão pattern. A função recebe um único argumento objeto de correspondência e retorna a string de substituição. Por exemplo:

>>> def dashrepl(matchobj):
...     if matchobj.group(0) == '-': return ' '
...     else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro----gram-files')
'pro--gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

O padrão pode ser uma string ou um objeto de padrão.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are replaced only when not adjacent to a previous match, so sub('x*', '-', 'abc') returns '-a-b-c-'.

Em argumentos repl do tipo string, além dos escapes de caractere e retrovisores descritos acima, \g<nome> usará a substring correspondida pelo grupo denominado nome, conforme definido pela sintaxe (?P<nome>...). \g<número> usa o número do grupo correspondente; \g<2> é portanto equivalente a \2, mas não é ambíguo em uma substituição como \g<2>0. \20 seria interpretado como uma referência ao grupo 20, não uma referência ao grupo 2 seguida pelo caractere literal '0'. O retrovisor \g6 substitui em toda a substring correspondida pela ER.

Alterado na versão 3.1: Adicionado o argumento de sinalizadores opcionais.

Alterado na versão 3.5: Grupos sem correspondência são substituídos por uma string vazia.

Alterado na versão 3.6: Escapes desconhecidos no padrão pattern consistindo em '\' e uma letra ASCII agora são erros.

Deprecated since version 3.5, will be removed in version 3.7: Unknown escapes in repl consisting of '\' and an ASCII letter now raise a deprecation warning and will be forbidden in Python 3.7.

re.subn(pattern, repl, string, count=0, flags=0)

Executa a mesma operação como sub(), mas retorna uma tupla (new_string, number_of_subs_made).

Alterado na versão 3.1: Adicionado o argumento de sinalizadores opcionais.

Alterado na versão 3.5: Grupos sem correspondência são substituídos por uma string vazia.

re.escape(pattern)

Escape all the characters in pattern except ASCII letters, numbers and '_'. This is useful if you want to match an arbitrary literal string that may have regular expression metacharacters in it. For example:

>>> print(re.escape('python.exe'))
python\.exe

>>> legal_chars = string.ascii_lowercase + string.digits + "!#$%&'*+-.^_`|~:"
>>> print('[%s]+' % re.escape(legal_chars))
[abcdefghijklmnopqrstuvwxyz0123456789\!\#\$\%\&\'\*\+\-\.\^_\`\|\~\:]+

>>> operators = ['+', '-', '*', '/', '**']
>>> print('|'.join(map(re.escape, sorted(operators, reverse=True))))
\/|\-|\+|\*\*|\*

This functions must not be used for the replacement string in sub() and subn(), only backslashes should be escaped. For example:

>>> digits_re = r'\d+'
>>> sample = '/usr/sbin/sendmail - 0 errors, 12 warnings'
>>> print(re.sub(digits_re, digits_re.replace('\\', r'\\'), sample))
/usr/sbin/sendmail - \d+ errors, \d+ warnings

Alterado na versão 3.3: O caractere '_' não é mais escapada.

re.purge()

Limpa o cache de expressão regular.

exception re.error(msg, pattern=None, pos=None)

Exceção levantada quando uma string passada para uma das funções aqui não é uma expressão regular válida (por exemplo, ela pode conter parênteses não correspondentes) ou quando algum outro erro ocorre durante a compilação ou correspondência. Nunca é um erro se uma string não contém correspondência para um padrão. A instância de erro possui os seguintes atributos adicionais:

msg

A mensagem de erro não formatada.

pattern

O padrão da expressão regular.

pos

O índice no padrão pattern no qual a compilação falhou (pode ser None).

lineno

A linha correspondente a pos (pode ser None).

colno

A coluna correspondente a pos (pode ser None).

Alterado na versão 3.5: Adicionados os atributos adicionais.

6.2.3. Objetos expressão regular

Objetos expressão regular compilados oferecem suporte aos seguintes métodos e atributos:

regex.search(string[, pos[, endpos]])

Percorre a string procurando o primeiro local onde esta expressão regular produz uma correspondência e retorna um objeto correspondência encontrado. Retorna None se nenhuma posição na string corresponder ao padrão; observe que isso é diferente de encontrar uma correspondência de comprimento zero em algum ponto da string.

O segundo parâmetro opcional pos fornece um índice na string onde a pesquisa deve começar; o padrão é 0. Isso não é totalmente equivalente a fatiar a string; o caractere padrão '^' corresponde no início real da string e nas posições logo após uma nova linha, mas não necessariamente no índice onde a pesquisa deve começar.

O parâmetro opcional endpos limita o quão longe a string será pesquisada; será como se a string tivesse endpos caracteres, então apenas os caracteres de pos a endpos - 1 serão procurados por uma correspondência. Se endpos for menor que pos, nenhuma correspondência será encontrada; caso contrário, se rx é um objeto de expressão regular compilado, rx.search(string, 0, 50) é equivalente a rx.search(string[:50], 0).

>>> pattern = re.compile("d")
>>> pattern.search("dog")     # Match at index 0
<_sre.SRE_Match object; span=(0, 1), match='d'>
>>> pattern.search("dog", 1)  # No match; search doesn't include the "d"
regex.match(string[, pos[, endpos]])

Se zero ou mais caracteres no start da string corresponderem a esta expressão regular, retorna um objeto correspondência encontrado. Retorna None se a string não corresponder ao padrão; observe que isso é diferente de uma correspondência de comprimento zero.

The optional pos and endpos parameters have the same meaning as for the search() method.

>>> pattern = re.compile("o")
>>> pattern.match("dog")      # No match as "o" is not at the start of "dog".
>>> pattern.match("dog", 1)   # Match as "o" is the 2nd character of "dog".
<_sre.SRE_Match object; span=(1, 2), match='o'>

If you want to locate a match anywhere in string, use search() instead (see also search() vs. match()).

regex.fullmatch(string[, pos[, endpos]])

Se toda a string corresponder a esta expressão regular, retorna um objeto correspondência encontrado. Retorna None se a string não corresponder ao padrão; observe que isso é diferente de uma correspondência de comprimento zero.

The optional pos and endpos parameters have the same meaning as for the search() method.

>>> pattern = re.compile("o[gh]")
>>> pattern.fullmatch("dog")      # No match as "o" is not at the start of "dog".
>>> pattern.fullmatch("ogre")     # No match as not the full string matches.
>>> pattern.fullmatch("doggie", 1, 3)   # Matches within given limits.
<_sre.SRE_Match object; span=(1, 3), match='og'>

Novo na versão 3.4.

regex.split(string, maxsplit=0)

Idêntico à função split(), usando o padrão compilado.

regex.findall(string[, pos[, endpos]])

Semelhante à função findall(), usando o padrão compilado, mas também aceita os parâmetros pos e endpos opcionais que limitam a região de pesquisa como para search().

regex.finditer(string[, pos[, endpos]])

Semelhante à função finditer(), usando o padrão compilado, mas também aceita os parâmetros pos e endpos opcionais que limitam a região de pesquisa como para search().

regex.sub(repl, string, count=0)

Idêntico à função sub(), usando o padrão compilado.

regex.subn(repl, string, count=0)

Idêntico à função subn(), usando o padrão compilado.

regex.flags

Os sinalizadores de correspondência de regex. Esta é uma combinação dos sinalizadores fornecidos para compile(), qualquer sinalizador em linha (?...) no padrão e sinalizadores implícitos como UNICODE se o padrão for uma string Unicode.

regex.groups

O número de grupos de captura no padrão.

regex.groupindex

Um dicionário que mapeia qualquer nome de grupo simbólico definido por (?P<id>) para números de grupo. O dicionário estará vazio se nenhum grupo simbólico for usado no padrão.

regex.pattern

The pattern string from which the RE object was compiled.

6.2.4. Objetos correspondência

Match objects always have a boolean value of True. Since match() and search() return None when there is no match, you can test whether there was a match with a simple if statement:

match = re.search(pattern, string)
if match:
    process(match)

Os objetos correspondência oferecem suporte aos seguintes métodos e atributos:

match.expand(template)

Return the string obtained by doing backslash substitution on the template string template, as done by the sub() method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences (\1, \2) and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding group.

Alterado na versão 3.5: Grupos sem correspondência são substituídos por uma string vazia.

match.group([group1, ...])

Retorna um ou mais subgrupos da correspondência. Se houver um único argumento, o resultado será uma única string; se houver vários argumentos, o resultado é uma tupla com um item por argumento. Sem argumentos, group1 padroniza para zero (toda a correspondência é retornada). Se um argumento groupN for zero, o valor de retorno correspondente será toda a string correspondente; se estiver no intervalo inclusivo [1..99], é a string que corresponde ao grupo entre parênteses correspondente. Se um número de grupo for negativo ou maior do que o número de grupos definidos no padrão, uma exceção IndexError é levantada. Se um grupo estiver contido em uma parte do padrão que não correspondeu, o resultado correspondente será None. Se um grupo estiver contido em uma parte do padrão que correspondeu várias vezes, a última correspondência será retornada.

>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group(0)       # The entire match
'Isaac Newton'
>>> m.group(1)       # The first parenthesized subgroup.
'Isaac'
>>> m.group(2)       # The second parenthesized subgroup.
'Newton'
>>> m.group(1, 2)    # Multiple arguments give us a tuple.
('Isaac', 'Newton')

Se a expressão regular usa a sintaxe (?P<name>...), os argumentos groupN também podem ser strings que identificam grupos por seus nomes de grupo. Se um argumento string não for usado como um nome de grupo no padrão, uma exceção IndexError é levantada.

Um exemplo moderadamente complicado:

>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group('first_name')
'Malcolm'
>>> m.group('last_name')
'Reynolds'

Grupos nomeados também podem ser referidos por seu índice:

>>> m.group(1)
'Malcolm'
>>> m.group(2)
'Reynolds'

Se um grupo corresponder várias vezes, apenas a última correspondência estará acessível:

>>> m = re.match(r"(..)+", "a1b2c3")  # Matches 3 times.
>>> m.group(1)                        # Returns only the last match.
'c3'
match.__getitem__(g)

Isso é idêntico a m.group(g). Isso permite acesso mais fácil a um grupo individual de uma correspondência:

>>> m = re.match(r"(\w+) (\w+)", "Isaac Newton, physicist")
>>> m[0]       # The entire match
'Isaac Newton'
>>> m[1]       # The first parenthesized subgroup.
'Isaac'
>>> m[2]       # The second parenthesized subgroup.
'Newton'

Novo na versão 3.6.

match.groups(default=None)

Retorna uma tupla contendo todos os subgrupos da correspondência, de 1 até quantos grupos estiverem no padrão. O argumento default é usado para grupos que não participaram da correspondência; o padrão é None.

Por exemplo:

>>> m = re.match(r"(\d+)\.(\d+)", "24.1632")
>>> m.groups()
('24', '1632')

Se colocarmos a casa decimal e tudo depois dela opcional, nem todos os grupos podem participar da correspondência. Esses grupos serão padronizados como None, a menos que o argumento default seja fornecido:

>>> m = re.match(r"(\d+)\.?(\d+)?", "24")
>>> m.groups()      # Second group defaults to None.
('24', None)
>>> m.groups('0')   # Now, the second group defaults to '0'.
('24', '0')
match.groupdict(default=None)

Retorna um dicionário contendo todos os subgrupos named da correspondência, tendo como chave o nome do subgrupo. O argumento default usado para grupos que não participaram da partida; o padrão é None. Por exemplo:

>>> m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict()
{'first_name': 'Malcolm', 'last_name': 'Reynolds'}
match.start([group])
match.end([group])

Retorna os índices de início e fim da substring correspondidos pelo grupo group; group tem como padrão zero (o que significa que toda a substring é correspondida). Retorna -1 se group existe, mas não contribuiu para a correspondência. Para um objeto correspondência m e um grupo g que contribuiu para a correspondência, a substring correspondida pelo grupo g (equivalente a m.group(g)) é

m.string[m.start(g):m.end(g)]

Observe que m.start(group) será igual a m.end(group) se group correspondeu a uma string nula. Por exemplo, após m = re.search('b(c?)', 'cba'), m.start(0) é 1, m.end(0) é 2, m.start(1) e m.end(1) são 2, e m.start(2) levanta uma exceção IndexError.

Um exemplo que removerá remove_this dos endereços de e-mail:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start()] + email[m.end():]
'tony@tiger.net'
match.span([group])

Para uma correspondência m, retorna a tupla de dois (m.start(group), m.end(group)). Observe que se group não contribuiu para a correspondência, isso é (-1, -1). group tem como padrão zero, a correspondência inteira.

match.pos

The value of pos which was passed to the search() or match() method of a regex object. This is the index into the string at which the RE engine started looking for a match.

match.endpos

The value of endpos which was passed to the search() or match() method of a regex object. This is the index into the string beyond which the RE engine will not go.

match.lastindex

O índice em número inteiro do último grupo de captura correspondido, ou None se nenhum grupo foi correspondido. Por exemplo, as expressões (a)b, ((a)(b)) e ((ab)) terão lastindex == 1 se aplicadas à string 'ab', enquanto a expressão (a)(b) terá lastindex == 2, se aplicada à mesma string.

match.lastgroup

O nome do último grupo de captura correspondido, ou None se o grupo não tinha um nome, ou se nenhum grupo foi correspondido.

match.re

The regular expression object whose match() or search() method produced this match instance.

match.string

The string passed to match() or search().

6.2.5. Exemplos de expressão regular

6.2.5.1. Verificando por um par

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch(match):
    if match is None:
        return None
    return '<Match: %r, groups=%r>' % (match.group(), match.groups())

Suponha que você esteja escrevendo um programa de pôquer onde a mão de um jogador é representada como uma string de 5 caracteres com cada caractere representando uma carta, “a” para ás, “k” para rei, “q” para dama, “j” para valete, “t” para 10 e “2” a “9” representando a carta com esse valor.

Para ver se uma determinada string é uma mão válida, pode-se fazer o seguinte:

>>> valid = re.compile(r"^[a2-9tjqk]{5}$")
>>> displaymatch(valid.match("akt5q"))  # Valid.
"<Match: 'akt5q', groups=()>"
>>> displaymatch(valid.match("akt5e"))  # Invalid.
>>> displaymatch(valid.match("akt"))    # Invalid.
>>> displaymatch(valid.match("727ak"))  # Valid.
"<Match: '727ak', groups=()>"

Essa última mão, "727ak", continha um par, ou duas cartas com o mesmo valor. Para combinar isso com uma expressão regular, pode-se usar retrovisores como:

>>> pair = re.compile(r".*(.).*\1")
>>> displaymatch(pair.match("717ak"))     # Pair of 7s.
"<Match: '717', groups=('7',)>"
>>> displaymatch(pair.match("718ak"))     # No pairs.
>>> displaymatch(pair.match("354aa"))     # Pair of aces.
"<Match: '354aa', groups=('a',)>"

To find out what card the pair consists of, one could use the group() method of the match object in the following manner:

>>> pair.match("717ak").group(1)
'7'

# Error because re.match() returns None, which doesn't have a group() method:
>>> pair.match("718ak").group(1)
Traceback (most recent call last):
  File "<pyshell#23>", line 1, in <module>
    re.match(r".*(.).*\1", "718ak").group(1)
AttributeError: 'NoneType' object has no attribute 'group'

>>> pair.match("354aa").group(1)
'a'

6.2.5.2. Simulando scanf()

Python atualmente não possui um equivalente a scanf(). Expressões regulares são geralmente mais poderosas, embora também mais detalhadas, do que strings de formato scanf(). A tabela abaixo oferece alguns mapeamentos mais ou menos equivalentes entre os tokens de formato scanf() e expressões regulares.

Token scanf()

Expressão regular

%c

.

%5c

.{5}

%d

[-+]?\d+

%e, %E, %f, %g

[-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?

%i

[-+]?(0[xX][\dA-Fa-f]+|0[0-7]*|\d+)

%o

[-+]?[0-7]+

%s

\S+

%u

\d+

%x, %X

[-+]?(0[xX])?[\dA-Fa-f]+

Para extrair um nome de arquivo e números de uma string como

/usr/sbin/sendmail - 0 errors, 4 warnings

você usaria um formato de scanf() como

%s - %d errors, %d warnings

A expressão regular equivalente seria

(\S+) - (\d+) errors, (\d+) warnings

6.2.5.3. search() vs. match()

Python oferece duas operações primitivas diferentes baseadas em expressões regulares: re.match() verifica se há uma correspondência apenas no início da string, enquanto re.search() verifica se há uma correspondência em qualquer lugar da string (isto é o que o Perl faz por padrão).

Por exemplo:

>>> re.match("c", "abcdef")    # No match
>>> re.search("c", "abcdef")   # Match
<_sre.SRE_Match object; span=(2, 3), match='c'>

Expressões regulares começando com '^' podem ser usadas com search() para restringir a correspondência no início da string:

>>> re.match("c", "abcdef")    # No match
>>> re.search("^c", "abcdef")  # No match
>>> re.search("^a", "abcdef")  # Match
<_sre.SRE_Match object; span=(0, 1), match='a'>

Observe, entretanto, que no modo MULTILINE match() apenas corresponde ao início da string, enquanto que usar search() com uma expressão regular começando com '^' irá corresponder em no início de cada linha.

>>> re.match('X', 'A\nB\nX', re.MULTILINE)  # No match
>>> re.search('^X', 'A\nB\nX', re.MULTILINE)  # Match
<_sre.SRE_Match object; span=(4, 5), match='X'>

6.2.5.4. Criando uma lista telefônica

split() divide uma string em uma lista delimitada pelo padrão passado. O método é inestimável para converter dados textuais em estruturas de dados que podem ser facilmente lidas e modificadas pelo Python, conforme demonstrado no exemplo a seguir que cria uma lista telefônica.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street
...
... Ronald Heathmore: 892.345.3428 436 Finley Avenue
... Frank Burger: 925.541.7625 662 South Dogwood Way
...
...
... Heather Albrecht: 548.326.4584 919 Park Place"""

As entradas são separadas por uma ou mais novas linhas. Agora, convertemos a string em uma lista com cada linha não vazia tendo sua própria entrada:

>>> entries = re.split("\n+", text)
>>> entries
['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

Finalmente, divida cada entrada em uma lista com nome, sobrenome, número de telefone e endereço. Usamos o parâmetro maxsplit de split() porque o endereço contém espaços, nosso padrão de divisão:

>>> [re.split(":? ", entry, 3) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584', '919 Park Place']]

O padrão :? corresponde ao caractere de dois pontos após o sobrenome, de modo que não ocorre na lista de resultados. Com um maxsplit de 4, podemos separar o número da casa do nome da rua:

>>> [re.split(":? ", entry, 4) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

6.2.5.5. Manipulação de texto

sub() substitui cada ocorrência de um padrão por uma string ou o resultado de uma função. Este exemplo demonstra o uso de sub() com uma função para manipular o texto ou aleatorizar a ordem de todos os caracteres em cada palavra de uma frase, exceto o primeiro e o último caracteres:

>>> def repl(m):
...     inner_word = list(m.group(2))
...     random.shuffle(inner_word)
...     return m.group(1) + "".join(inner_word) + m.group(3)
>>> text = "Professor Abdolmalek, please report your absences promptly."
>>> re.sub(r"(\w)(\w+)(\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub(r"(\w)(\w+)(\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

6.2.5.6. Encontrando todos os advérbios

findall() corresponde a todas as ocorrências de um padrão, não apenas a primeira como search() faz. Por exemplo, se um escritor deseja encontrar todos os advérbios em algum texto, ele pode usar findall() da seguinte maneira:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall(r"\w+ly", text)
['carefully', 'quickly']

6.2.5.7. Encontrando todos os advérbios e suas posições

Se se deseja obter mais informações sobre todas as correspondências de um padrão do que o texto correspondido, finditer() é útil, pois fornece objetos correspondência em vez de strings. Continuando com o exemplo anterior, se um escritor quisesse encontrar todos os advérbios e suas posições em algum texto, ele usaria finditer() da seguinte maneira:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer(r"\w+ly", text):
...     print('%02d-%02d: %s' % (m.start(), m.end(), m.group(0)))
07-16: carefully
40-47: quickly

6.2.5.8. Notação de string bruta

A notação de string bruta (r"texto") mantém as expressões regulares sãs. Sem ele, cada contrabarra ('\') em uma expressão regular teria que ser prefixada com outra para escapar dela. Por exemplo, as duas linhas de código a seguir são funcionalmente idênticas:

>>> re.match(r"\W(.)\1\W", " ff ")
<_sre.SRE_Match object; span=(0, 4), match=' ff '>
>>> re.match("\\W(.)\\1\\W", " ff ")
<_sre.SRE_Match object; span=(0, 4), match=' ff '>

Quando se deseja corresponder a uma contrabarra literal, ela deve ser escapada na expressão regular. Com a notação de string bruta, isso significa r"\\". Sem a notação de string bruta, deve-se usar "\\\\", tornando as seguintes linhas de código funcionalmente idênticas:

>>> re.match(r"\\", r"\\")
<_sre.SRE_Match object; span=(0, 1), match='\\'>
>>> re.match("\\\\", r"\\")
<_sre.SRE_Match object; span=(0, 1), match='\\'>

6.2.5.9. Escrevendo um tokenizador

Um tokenizador, tokenizer ou scanner analisa uma string para categorizar grupos de caracteres. Este é um primeiro passo útil para escrever um compilador ou interpretador.

As categorias de texto são especificadas com expressões regulares. A técnica é combiná-las em uma única expressão regular mestre e fazer um loop em correspondências sucessivas:

import collections
import re

Token = collections.namedtuple('Token', ['type', 'value', 'line', 'column'])

def tokenize(code):
    keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
    token_specification = [
        ('NUMBER',   r'\d+(\.\d*)?'),  # Integer or decimal number
        ('ASSIGN',   r':='),           # Assignment operator
        ('END',      r';'),            # Statement terminator
        ('ID',       r'[A-Za-z]+'),    # Identifiers
        ('OP',       r'[+\-*/]'),      # Arithmetic operators
        ('NEWLINE',  r'\n'),           # Line endings
        ('SKIP',     r'[ \t]+'),       # Skip over spaces and tabs
        ('MISMATCH', r'.'),            # Any other character
    ]
    tok_regex = '|'.join('(?P<%s>%s)' % pair for pair in token_specification)
    line_num = 1
    line_start = 0
    for mo in re.finditer(tok_regex, code):
        kind = mo.lastgroup
        value = mo.group()
        column = mo.start() - line_start
        if kind == 'NUMBER':
            value = float(value) if '.' in value else int(value)
        elif kind == 'ID' and value in keywords:
            kind = value
        elif kind == 'NEWLINE':
            line_start = mo.end()
            line_num += 1
            continue
        elif kind == 'SKIP':
            continue
        elif kind == 'MISMATCH':
            raise RuntimeError(f'{value!r} unexpected on line {line_num}')
        yield Token(kind, value, line_num, column)

statements = '''
    IF quantity THEN
        total := total + price * quantity;
        tax := price * 0.05;
    ENDIF;
'''

for token in tokenize(statements):
    print(token)

O tokenizador produz a seguinte saída:

Token(type='IF', value='IF', line=2, column=4)
Token(type='ID', value='quantity', line=2, column=7)
Token(type='THEN', value='THEN', line=2, column=16)
Token(type='ID', value='total', line=3, column=8)
Token(type='ASSIGN', value=':=', line=3, column=14)
Token(type='ID', value='total', line=3, column=17)
Token(type='OP', value='+', line=3, column=23)
Token(type='ID', value='price', line=3, column=25)
Token(type='OP', value='*', line=3, column=31)
Token(type='ID', value='quantity', line=3, column=33)
Token(type='END', value=';', line=3, column=41)
Token(type='ID', value='tax', line=4, column=8)
Token(type='ASSIGN', value=':=', line=4, column=12)
Token(type='ID', value='price', line=4, column=15)
Token(type='OP', value='*', line=4, column=21)
Token(type='NUMBER', value=0.05, line=4, column=23)
Token(type='END', value=';', line=4, column=27)
Token(type='ENDIF', value='ENDIF', line=5, column=4)
Token(type='END', value=';', line=5, column=9)
Frie09

Friedl, Jeffrey. Mastering Regular Expressions. 3ª ed., O’Reilly Media, 2009. A terceira edição do livro não mais cobre Python, mas a primeira edição cobriu a escrita de bons padrões de expressão regular em grandes detalhes.