1. Estendendo Python com C ou C++¶
É muito fácil adicionar novos módulos embutidos ao Python, se você souber programar em C. Você pode adicionar módulos de extensão para fazer duas coisas que não podem ser feitas diretamente no Python: eles podem implementar novos nos tipos de objetos embutidos e eles podem chamar funções da biblioteca C e chamadas do sistema.
Para dar suporte a extensões, a API do Python API (Application Programmers Interface) define um conjunto de funções, macros e variáveis que fornecem acesso à maior parte dos aspectos do sistema de tempo de execução do Python. A API do Python pode ser incorporada em um arquivo fonte em C com a inclusão do cabeçalho "Python.h"
.
A compilação de um módulo de extensão depende do uso pretendido e da configuração do sistema; detalhes serão dados nos próximos capítulos.
Nota
A interface de extensões em C é específica para o CPython, e módulos de extensão não funcionam em outras implementações do Python. Em muitos casos, é possível evitar a criação destas extensões em C e preservar a portabilidade para outras implementações. Por exemplo, se o seu caso de uso for o de fazer chamadas a funções em bibliotecas C ou chamadas de sistema, considere utilizar o módulo ctypes
ou a biblioteca cffi ao invés de escrever código C personalizado. Esses módulos permitem escrever código Python que pode interoperar com código C e que é mais portável entre implementações do Python do que escrever e compilar um módulo de extensão em C.
1.1. Um Exemplo Simples¶
Vamos criar um módulo de extensão chamado spam
(a comida favorita dos fãs de Monty Python…) e digamos que nosso objetivo seja criar uma interface em Python para a função da biblioteca C system()
[1]. Essa função toma uma string de caracteres terminada em nulo como argumento e retorna um número inteiro. Queremos que essa função seja chamável a partir do Python como abaixo:
>>> import spam
>>> status = spam.system("ls -l")
Comece criando um arquivo chamado spammodule.c
. (Historicamente, se um módulo for chamado spam
, o arquivo C contendo sua implementação é chamado spammodule.c
; se o nome do módulo for muito longo, como spammify
, o nome do arquivo pode ser só spammify.c
.)
As duas primeiras linhas do nosso arquivo podem ser:
#define PY_SSIZE_T_CLEAN
#include <Python.h>
o que carrega a API do Python (você pode adicionar um comentário descrevendo o propósito do módulo e uma nota de copyright, se desejar).
Nota
Uma vez que Python pode definir algumas definições de pré-processador que afetam os cabeçalhos padrão em alguns sistemas, você deve incluir Python.h
antes de quaisquer cabeçalhos padrão serem incluídos.
#define PY_SSIZE_T_CLEAN
was used to indicate that Py_ssize_t
should be
used in some APIs instead of int
.
It is not necessary since Python 3.13, but we keep it here for backward compatibility.
See Strings e buffers for a description of this macro.
All user-visible symbols defined by Python.h
have a prefix of Py
or
PY
, except those defined in standard header files.
Dica
For backward compatibility, Python.h
includes several standard header files.
C extensions should include the standard headers that they use,
and should not rely on these implicit includes.
If using the limited C API version 3.13 or newer, the implicit includes are:
<assert.h>
<intrin.h>
(on Windows)<inttypes.h>
<limits.h>
<math.h>
<stdarg.h>
<wchar.h>
<sys/types.h>
(if present)
If Py_LIMITED_API
is not defined, or is set to version 3.12 or older,
the headers below are also included:
<ctype.h>
<unistd.h>
(on POSIX)
If Py_LIMITED_API
is not defined, or is set to version 3.10 or older,
the headers below are also included:
<errno.h>
<stdio.h>
<stdlib.h>
<string.h>
A próxima coisa que adicionamos ao nosso arquivo de módulo é a função C que será chamada quando a expressão Python spam.system(string)
for avaliada (veremos em breve como ela acaba sendo chamada):
static PyObject *
spam_system(PyObject *self, PyObject *args)
{
const char *command;
int sts;
if (!PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = system(command);
return PyLong_FromLong(sts);
}
There is a straightforward translation from the argument list in Python (for
example, the single expression "ls -l"
) to the arguments passed to the C
function. The C function always has two arguments, conventionally named self
and args.
O argumento self aponta para o objeto do módulo para funções de nível de módulo; para um método, ele apontaria para a instância do objeto.
The args argument will be a pointer to a Python tuple object containing the
arguments. Each item of the tuple corresponds to an argument in the call’s
argument list. The arguments are Python objects — in order to do anything
with them in our C function we have to convert them to C values. The function
PyArg_ParseTuple()
in the Python API checks the argument types and
converts them to C values. It uses a template string to determine the required
types of the arguments as well as the types of the C variables into which to
store the converted values. More about this later.
PyArg_ParseTuple()
returns true (nonzero) if all arguments have the right
type and its components have been stored in the variables whose addresses are
passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function can
return NULL
immediately (as we saw in the example).
1.2. Intermezzo: erros e exceções¶
An important convention throughout the Python interpreter is the following: when
a function fails, it should set an exception condition and return an error value
(usually -1
or a NULL
pointer). Exception information is stored in
three members of the interpreter’s thread state. These are NULL
if
there is no exception. Otherwise they are the C equivalents of the members
of the Python tuple returned by sys.exc_info()
. These are the
exception type, exception instance, and a traceback object. It is important
to know about them to understand how errors are passed around.
A API Python define uma série de funções para definir vários tipos de exceções.
The most common one is PyErr_SetString()
. Its arguments are an exception
object and a C string. The exception object is usually a predefined object like
PyExc_ZeroDivisionError
. The C string indicates the cause of the error
and is converted to a Python string object and stored as the “associated value”
of the exception.
Another useful function is PyErr_SetFromErrno()
, which only takes an
exception argument and constructs the associated value by inspection of the
global variable errno
. The most general function is
PyErr_SetObject()
, which takes two object arguments, the exception and
its associated value. You don’t need to Py_INCREF()
the objects passed
to any of these functions.
You can test non-destructively whether an exception has been set with
PyErr_Occurred()
. This returns the current exception object, or NULL
if no exception has occurred. You normally don’t need to call
PyErr_Occurred()
to see whether an error occurred in a function call,
since you should be able to tell from the return value.
When a function f that calls another function g detects that the latter
fails, f should itself return an error value (usually NULL
or -1
). It
should not call one of the PyErr_*
functions — one has already
been called by g. f’s caller is then supposed to also return an error
indication to its caller, again without calling PyErr_*
, and so on
— the most detailed cause of the error was already reported by the function
that first detected it. Once the error reaches the Python interpreter’s main
loop, this aborts the currently executing Python code and tries to find an
exception handler specified by the Python programmer.
(There are situations where a module can actually give a more detailed error
message by calling another PyErr_*
function, and in such cases it is
fine to do so. As a general rule, however, this is not necessary, and can cause
information about the cause of the error to be lost: most operations can fail
for a variety of reasons.)
To ignore an exception set by a function call that failed, the exception
condition must be cleared explicitly by calling PyErr_Clear()
. The only
time C code should call PyErr_Clear()
is if it doesn’t want to pass the
error on to the interpreter but wants to handle it completely by itself
(possibly by trying something else, or pretending nothing went wrong).
Every failing malloc()
call must be turned into an exception — the
direct caller of malloc()
(or realloc()
) must call
PyErr_NoMemory()
and return a failure indicator itself. All the
object-creating functions (for example, PyLong_FromLong()
) already do
this, so this note is only relevant to those who call malloc()
directly.
Also note that, with the important exception of PyArg_ParseTuple()
and
friends, functions that return an integer status usually return a positive value
or zero for success and -1
for failure, like Unix system calls.
Finally, be careful to clean up garbage (by making Py_XDECREF()
or
Py_DECREF()
calls for objects you have already created) when you return
an error indicator!
The choice of which exception to raise is entirely yours. There are predeclared
C objects corresponding to all built-in Python exceptions, such as
PyExc_ZeroDivisionError
, which you can use directly. Of course, you
should choose exceptions wisely — don’t use PyExc_TypeError
to mean
that a file couldn’t be opened (that should probably be PyExc_OSError
).
If something’s wrong with the argument list, the PyArg_ParseTuple()
function usually raises PyExc_TypeError
. If you have an argument whose
value must be in a particular range or must satisfy other conditions,
PyExc_ValueError
is appropriate.
You can also define a new exception that is unique to your module. The simplest way to do this is to declare a static global object variable at the beginning of the file:
static PyObject *SpamError = NULL;
and initialize it by calling PyErr_NewException()
in the module’s
Py_mod_exec
function (spam_module_exec()
):
SpamError = PyErr_NewException("spam.error", NULL, NULL);
Since SpamError
is a global variable, it will be overwritten every time
the module is reinitialized, when the Py_mod_exec
function is called.
For now, let’s avoid the issue: we will block repeated initialization by raising an
ImportError
:
static PyObject *SpamError = NULL;
static int
spam_module_exec(PyObject *m)
{
if (SpamError != NULL) {
PyErr_SetString(PyExc_ImportError,
"cannot initialize spam module more than once");
return -1;
}
SpamError = PyErr_NewException("spam.error", NULL, NULL);
if (PyModule_AddObjectRef(m, "SpamError", SpamError) < 0) {
return -1;
}
return 0;
}
static PyModuleDef_Slot spam_module_slots[] = {
{Py_mod_exec, spam_module_exec},
{0, NULL}
};
static struct PyModuleDef spam_module = {
.m_base = PyModuleDef_HEAD_INIT,
.m_name = "spam",
.m_size = 0, // non-negative
.m_slots = spam_module_slots,
};
PyMODINIT_FUNC
PyInit_spam(void)
{
return PyModuleDef_Init(&spam_module);
}
Note that the Python name for the exception object is spam.error
. The
PyErr_NewException()
function may create a class with the base class
being Exception
(unless another class is passed in instead of NULL
),
described in Exceções embutidas.
Note also that the SpamError
variable retains a reference to the newly
created exception class; this is intentional! Since the exception could be
removed from the module by external code, an owned reference to the class is
needed to ensure that it will not be discarded, causing SpamError
to
become a dangling pointer. Should it become a dangling pointer, C code which
raises the exception could cause a core dump or other unintended side effects.
For now, the Py_DECREF()
call to remove this reference is missing.
Even when the Python interpreter shuts down, the global SpamError
variable will not be garbage-collected. It will “leak”.
We did, however, ensure that this will happen at most once per process.
We discuss the use of PyMODINIT_FUNC
as a function return type later in this
sample.
The spam.error
exception can be raised in your extension module using a
call to PyErr_SetString()
as shown below:
static PyObject *
spam_system(PyObject *self, PyObject *args)
{
const char *command;
int sts;
if (!PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = system(command);
if (sts < 0) {
PyErr_SetString(SpamError, "System command failed");
return NULL;
}
return PyLong_FromLong(sts);
}
1.3. De volta ao exemplo¶
Going back to our example function, you should now be able to understand this statement:
if (!PyArg_ParseTuple(args, "s", &command))
return NULL;
It returns NULL
(the error indicator for functions returning object pointers)
if an error is detected in the argument list, relying on the exception set by
PyArg_ParseTuple()
. Otherwise the string value of the argument has been
copied to the local variable command
. This is a pointer assignment and
you are not supposed to modify the string to which it points (so in Standard C,
the variable command
should properly be declared as const char
*command
).
The next statement is a call to the Unix function system()
, passing it
the string we just got from PyArg_ParseTuple()
:
sts = system(command);
Our spam.system()
function must return the value of sts
as a
Python object. This is done using the function PyLong_FromLong()
.
return PyLong_FromLong(sts);
Neste caso, ele retornará um objeto inteiro (sim, até mesmo inteiros são objetos no heap em Python!)
If you have a C function that returns no useful argument (a function returning
void), the corresponding Python function must return None
. You
need this idiom to do so (which is implemented by the Py_RETURN_NONE
macro):
Py_INCREF(Py_None);
return Py_None;
Py_None
is the C name for the special Python object None
. It is a
genuine Python object rather than a NULL
pointer, which means “error” in most
contexts, as we have seen.
1.4. A tabela de métodos e a função de inicialização do módulo¶
I promised to show how spam_system()
is called from Python programs.
First, we need to list its name and address in a “method table”:
static PyMethodDef spam_methods[] = {
...
{"system", spam_system, METH_VARARGS,
"Execute a shell command."},
...
{NULL, NULL, 0, NULL} /* Sentinel */
};
Note the third entry (METH_VARARGS
). This is a flag telling the interpreter
the calling convention to be used for the C function. It should normally always
be METH_VARARGS
or METH_VARARGS | METH_KEYWORDS
; a value of 0
means
that an obsolete variant of PyArg_ParseTuple()
is used.
When using only METH_VARARGS
, the function should expect the Python-level
parameters to be passed in as a tuple acceptable for parsing via
PyArg_ParseTuple()
; more information on this function is provided below.
The METH_KEYWORDS
bit may be set in the third field if keyword
arguments should be passed to the function. In this case, the C function should
accept a third PyObject *
parameter which will be a dictionary of keywords.
Use PyArg_ParseTupleAndKeywords()
to parse the arguments to such a
function.
A tabela de métodos deve ser referenciada na estrutura de definição do módulo:
static struct PyModuleDef spam_module = {
...
.m_methods = spam_methods,
...
};
This structure, in turn, must be passed to the interpreter in the module’s
initialization function. The initialization function must be named
PyInit_name()
, where name is the name of the module, and should be the
only non-static
item defined in the module file:
PyMODINIT_FUNC
PyInit_spam(void)
{
return PyModuleDef_Init(&spam_module);
}
Note that PyMODINIT_FUNC
declares the function as PyObject *
return type,
declares any special linkage declarations required by the platform, and for C++
declares the function as extern "C"
.
PyInit_spam()
is called when each interpreter imports its module
spam
for the first time. (See below for comments about embedding Python.)
A pointer to the module definition must be returned via PyModuleDef_Init()
,
so that the import machinery can create the module and store it in sys.modules
.
When embedding Python, the PyInit_spam()
function is not called
automatically unless there’s an entry in the PyImport_Inittab
table.
To add the module to the initialization table, use PyImport_AppendInittab()
,
optionally followed by an import of the module:
#define PY_SSIZE_T_CLEAN
#include <Python.h>
int
main(int argc, char *argv[])
{
PyStatus status;
PyConfig config;
PyConfig_InitPythonConfig(&config);
/* Add a built-in module, before Py_Initialize */
if (PyImport_AppendInittab("spam", PyInit_spam) == -1) {
fprintf(stderr, "Error: could not extend in-built modules table\n");
exit(1);
}
/* Pass argv[0] to the Python interpreter */
status = PyConfig_SetBytesString(&config, &config.program_name, argv[0]);
if (PyStatus_Exception(status)) {
goto exception;
}
/* Initialize the Python interpreter. Required.
If this step fails, it will be a fatal error. */
status = Py_InitializeFromConfig(&config);
if (PyStatus_Exception(status)) {
goto exception;
}
PyConfig_Clear(&config);
/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */
PyObject *pmodule = PyImport_ImportModule("spam");
if (!pmodule) {
PyErr_Print();
fprintf(stderr, "Error: could not import module 'spam'\n");
}
// ... use Python C API here ...
return 0;
exception:
PyConfig_Clear(&config);
Py_ExitStatusException(status);
}
Nota
If you declare a global variable or a local static one, the module may
experience unintended side-effects on re-initialisation, for example when
removing entries from sys.modules
or importing compiled modules into
multiple interpreters within a process
(or following a fork()
without an intervening exec()
).
If module state is not yet fully isolated,
authors should consider marking the module as having no support for subinterpreters
(via Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED
).
A more substantial example module is included in the Python source distribution
as Modules/xxlimited.c
. This file may be used as a template or simply
read as an example.
1.5. Compilação e vinculação¶
Há mais duas coisas a fazer antes de usar sua nova extensão: compilá-la e vinculá-la ao sistema Python. Se você usa carregamento dinâmico, os detalhes podem depender do estilo de carregamento dinâmico que seu sistema utiliza; consulte os capítulos sobre construção de módulos de extensão (capítulo Construindo extensões C e C++) e informações adicionais referentes apenas à construção no Windows (capítulo Construindo Extensões C e C++ no Windows) para obter mais informações sobre isso.
If you can’t use dynamic loading, or if you want to make your module a permanent
part of the Python interpreter, you will have to change the configuration setup
and rebuild the interpreter. Luckily, this is very simple on Unix: just place
your file (spammodule.c
for example) in the Modules/
directory
of an unpacked source distribution, add a line to the file
Modules/Setup.local
describing your file:
spam spammodule.o
and rebuild the interpreter by running make in the toplevel
directory. You can also run make in the Modules/
subdirectory, but then you must first rebuild Makefile
there by running
‘make Makefile’. (This is necessary each time you change the
Setup
file.)
If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well, for instance:
spam spammodule.o -lX11
1.6. Chamando funções Python de C¶
Até agora, nos concentramos em tornar funções C chamáveis a partir de Python. O inverso também é útil: chamar funções Python a partir de C. Isso é especialmente verdadeiro para bibliotecas que oferecem suporte às chamadas funções de “callback”. Se uma interface C utiliza callbacks, o Python equivalente frequentemente precisa fornecer um mecanismo de callback ao programador Python; a implementação exigirá a chamada das funções de callback Python a partir de um callback C. Outros usos também são imagináveis.
Felizmente, o interpretador Python é facilmente chamado recursivamente, e há uma interface padrão para chamar uma função Python. (Não vou me aprofundar em como chamar o analisador sintático do Python com uma string específica como entrada — se você estiver interessado, dê uma olhada na implementação da opção de linha de comando -c
em Modules/main.c
do código-fonte Python.)
Calling a Python function is easy. First, the Python program must somehow pass
you the Python function object. You should provide a function (or some other
interface) to do this. When this function is called, save a pointer to the
Python function object (be careful to Py_INCREF()
it!) in a global
variable — or wherever you see fit. For example, the following function might
be part of a module definition:
static PyObject *my_callback = NULL;
static PyObject *
my_set_callback(PyObject *dummy, PyObject *args)
{
PyObject *result = NULL;
PyObject *temp;
if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
if (!PyCallable_Check(temp)) {
PyErr_SetString(PyExc_TypeError, "parameter must be callable");
return NULL;
}
Py_XINCREF(temp); /* Add a reference to new callback */
Py_XDECREF(my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */
/* Boilerplate to return "None" */
Py_INCREF(Py_None);
result = Py_None;
}
return result;
}
This function must be registered with the interpreter using the
METH_VARARGS
flag; this is described in section A tabela de métodos e a função de inicialização do módulo. The
PyArg_ParseTuple()
function and its arguments are documented in section
Extraindo parâmetros em funções de extensão.
The macros Py_XINCREF()
and Py_XDECREF()
increment/decrement the
reference count of an object and are safe in the presence of NULL
pointers
(but note that temp will not be NULL
in this context). More info on them
in section Contagens de referências.
Later, when it is time to call the function, you call the C function
PyObject_CallObject()
. This function has two arguments, both pointers to
arbitrary Python objects: the Python function, and the argument list. The
argument list must always be a tuple object, whose length is the number of
arguments. To call the Python function with no arguments, pass in NULL
, or
an empty tuple; to call it with one argument, pass a singleton tuple.
Py_BuildValue()
returns a tuple when its format string consists of zero
or more format codes between parentheses. For example:
int arg;
PyObject *arglist;
PyObject *result;
...
arg = 123;
...
/* Time to call the callback */
arglist = Py_BuildValue("(i)", arg);
result = PyObject_CallObject(my_callback, arglist);
Py_DECREF(arglist);
PyObject_CallObject()
returns a Python object pointer: this is the return
value of the Python function. PyObject_CallObject()
is
“reference-count-neutral” with respect to its arguments. In the example a new
tuple was created to serve as the argument list, which is
Py_DECREF()
-ed immediately after the PyObject_CallObject()
call.
The return value of PyObject_CallObject()
is “new”: either it is a brand
new object, or it is an existing object whose reference count has been
incremented. So, unless you want to save it in a global variable, you should
somehow Py_DECREF()
the result, even (especially!) if you are not
interested in its value.
Before you do this, however, it is important to check that the return value
isn’t NULL
. If it is, the Python function terminated by raising an exception.
If the C code that called PyObject_CallObject()
is called from Python, it
should now return an error indication to its Python caller, so the interpreter
can print a stack trace, or the calling Python code can handle the exception.
If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear()
. For example:
if (result == NULL)
return NULL; /* Pass error back */
...use result...
Py_DECREF(result);
Depending on the desired interface to the Python callback function, you may also
have to provide an argument list to PyObject_CallObject()
. In some cases
the argument list is also provided by the Python program, through the same
interface that specified the callback function. It can then be saved and used
in the same manner as the function object. In other cases, you may have to
construct a new tuple to pass as the argument list. The simplest way to do this
is to call Py_BuildValue()
. For example, if you want to pass an integral
event code, you might use the following code:
PyObject *arglist;
...
arglist = Py_BuildValue("(l)", eventcode);
result = PyObject_CallObject(my_callback, arglist);
Py_DECREF(arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);
Note the placement of Py_DECREF(arglist)
immediately after the call, before
the error check! Also note that strictly speaking this code is not complete:
Py_BuildValue()
may run out of memory, and this should be checked.
You may also call a function with keyword arguments by using
PyObject_Call()
, which supports arguments and keyword arguments. As in
the above example, we use Py_BuildValue()
to construct the dictionary.
PyObject *dict;
...
dict = Py_BuildValue("{s:i}", "name", val);
result = PyObject_Call(my_callback, NULL, dict);
Py_DECREF(dict);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);
1.7. Extraindo parâmetros em funções de extensão¶
The PyArg_ParseTuple()
function is declared as follows:
int PyArg_ParseTuple(PyObject *arg, const char *format, ...);
O argumento arg deve ser um objeto tupla contendo uma lista de argumentos passada de Python para uma função C. O argumento format deve ser uma string de formato, cuja sintaxe é explicada em Análise de argumentos e construção de valores no Manual de Referência da API C/Python. Os argumentos restantes devem ser endereços de variáveis cujo tipo é determinado pela string de formato.
Note that while PyArg_ParseTuple()
checks that the Python arguments have
the required types, it cannot check the validity of the addresses of C variables
passed to the call: if you make mistakes there, your code will probably crash or
at least overwrite random bits in memory. So be careful!
Note que quaisquer referências a objeto Python que são fornecidas ao chamador são referências emprestadas; não decremente a contagem de referências delas!
Alguns exemplos de chamadas:
#define PY_SSIZE_T_CLEAN
#include <Python.h>
int ok;
int i, j;
long k, l;
const char *s;
Py_ssize_t size;
ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */
ok = PyArg_ParseTuple(args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */
ok = PyArg_ParseTuple(args, "lls", &k, &l, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */
ok = PyArg_ParseTuple(args, "(ii)s#", &i, &j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */
{
const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:
f('spam')
f('spam', 'w')
f('spam', 'wb', 100000) */
}
{
int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, "((ii)(ii))(ii)",
&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
f(((0, 0), (400, 300)), (10, 10)) */
}
{
Py_complex c;
ok = PyArg_ParseTuple(args, "D:myfunction", &c);
/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction(1+2j) */
}
1.8. Parâmetros nomeados para funções de extensão¶
The PyArg_ParseTupleAndKeywords()
function is declared as follows:
int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject *kwdict,
const char *format, char * const *kwlist, ...);
The arg and format parameters are identical to those of the
PyArg_ParseTuple()
function. The kwdict parameter is the dictionary of
keywords received as the third parameter from the Python runtime. The kwlist
parameter is a NULL
-terminated list of strings which identify the parameters;
the names are matched with the type information from format from left to
right. On success, PyArg_ParseTupleAndKeywords()
returns true, otherwise
it returns false and raises an appropriate exception.
Nota
Nested tuples cannot be parsed when using keyword arguments! Keyword parameters
passed in which are not present in the kwlist will cause TypeError
to
be raised.
Aqui está um módulo de exemplo que usa parâmetros nomeados, baseado em um exemplo de Geoff Philbrick (philbrick@hks.com):
#define PY_SSIZE_T_CLEAN
#include <Python.h>
static PyObject *
keywdarg_parrot(PyObject *self, PyObject *args, PyObject *keywds)
{
int voltage;
const char *state = "a stiff";
const char *action = "voom";
const char *type = "Norwegian Blue";
static char *kwlist[] = {"voltage", "state", "action", "type", NULL};
if (!PyArg_ParseTupleAndKeywords(args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;
printf("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf("-- Lovely plumage, the %s -- It's %s!\n", type, state);
Py_RETURN_NONE;
}
static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg_parrot() takes
* three.
*/
{"parrot", (PyCFunction)(void(*)(void))keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0, NULL} /* sentinel */
};
static struct PyModuleDef keywdarg_module = {
.m_base = PyModuleDef_HEAD_INIT,
.m_name = "keywdarg",
.m_size = 0,
.m_methods = keywdarg_methods,
};
PyMODINIT_FUNC
PyInit_keywdarg(void)
{
return PyModuleDef_Init(&keywdarg_module);
}
1.9. Construindo valores arbitrários¶
This function is the counterpart to PyArg_ParseTuple()
. It is declared
as follows:
PyObject *Py_BuildValue(const char *format, ...);
It recognizes a set of format units similar to the ones recognized by
PyArg_ParseTuple()
, but the arguments (which are input to the function,
not output) must not be pointers, just values. It returns a new Python object,
suitable for returning from a C function called from Python.
One difference with PyArg_ParseTuple()
: while the latter requires its
first argument to be a tuple (since Python argument lists are always represented
as tuples internally), Py_BuildValue()
does not always build a tuple. It
builds a tuple only if its format string contains two or more format units. If
the format string is empty, it returns None
; if it contains exactly one
format unit, it returns whatever object is described by that format unit. To
force it to return a tuple of size 0 or one, parenthesize the format string.
Examples (to the left the call, to the right the resulting Python value):
Py_BuildValue("") None
Py_BuildValue("i", 123) 123
Py_BuildValue("iii", 123, 456, 789) (123, 456, 789)
Py_BuildValue("s", "hello") 'hello'
Py_BuildValue("y", "hello") b'hello'
Py_BuildValue("ss", "hello", "world") ('hello', 'world')
Py_BuildValue("s#", "hello", 4) 'hell'
Py_BuildValue("y#", "hello", 4) b'hell'
Py_BuildValue("()") ()
Py_BuildValue("(i)", 123) (123,)
Py_BuildValue("(ii)", 123, 456) (123, 456)
Py_BuildValue("(i,i)", 123, 456) (123, 456)
Py_BuildValue("[i,i]", 123, 456) [123, 456]
Py_BuildValue("{s:i,s:i}",
"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_BuildValue("((ii)(ii)) (ii)",
1, 2, 3, 4, 5, 6) (((1, 2), (3, 4)), (5, 6))
1.10. Contagens de referências¶
In languages like C or C++, the programmer is responsible for dynamic allocation
and deallocation of memory on the heap. In C, this is done using the functions
malloc()
and free()
. In C++, the operators new
and
delete
are used with essentially the same meaning and we’ll restrict
the following discussion to the C case.
Every block of memory allocated with malloc()
should eventually be
returned to the pool of available memory by exactly one call to free()
.
It is important to call free()
at the right time. If a block’s address
is forgotten but free()
is not called for it, the memory it occupies
cannot be reused until the program terminates. This is called a memory
leak. On the other hand, if a program calls free()
for a block and then
continues to use the block, it creates a conflict with reuse of the block
through another malloc()
call. This is called using freed memory.
It has the same bad consequences as referencing uninitialized data — core
dumps, wrong results, mysterious crashes.
Causas comuns de vazamentos de memória são caminhos incomuns no código. Por exemplo, uma função pode alocar um bloco de memória, executar algum cálculo e, em seguida, liberar o bloco novamente. Agora, uma alteração nos requisitos da função pode adicionar um teste ao cálculo que detecta uma condição de erro e pode retornar prematuramente da função. É fácil esquecer de liberar o bloco de memória alocado ao executar essa saída prematura, especialmente quando ela é adicionada posteriormente ao código. Esses vazamentos, uma vez introduzidos, geralmente passam despercebidos por um longo tempo: a saída de erro é executada apenas em uma pequena fração de todas as chamadas, e a maioria das máquinas modernas tem bastante memória virtual, portanto, o vazamento só se torna aparente em um processo de longa duração que usa a função com vazamento com frequência. Portanto, é importante evitar que vazamentos aconteçam por meio de uma convenção ou estratégia de codificação que minimize esse tipo de erro.
Since Python makes heavy use of malloc()
and free()
, it needs a
strategy to avoid memory leaks as well as the use of freed memory. The chosen
method is called reference counting. The principle is simple: every
object contains a counter, which is incremented when a reference to the object
is stored somewhere, and which is decremented when a reference to it is deleted.
When the counter reaches zero, the last reference to the object has been deleted
and the object is freed.
An alternative strategy is called automatic garbage collection.
(Sometimes, reference counting is also referred to as a garbage collection
strategy, hence my use of “automatic” to distinguish the two.) The big
advantage of automatic garbage collection is that the user doesn’t need to call
free()
explicitly. (Another claimed advantage is an improvement in speed
or memory usage — this is no hard fact however.) The disadvantage is that for
C, there is no truly portable automatic garbage collector, while reference
counting can be implemented portably (as long as the functions malloc()
and free()
are available — which the C Standard guarantees). Maybe some
day a sufficiently portable automatic garbage collector will be available for C.
Until then, we’ll have to live with reference counts.
Embora o Python utilize a implementação tradicional de contagem de referências, ele também oferece um detector de ciclos que funciona para detectar ciclos de referência. Isso permite que as aplicações não se preocupem em criar referências circulares diretas ou indiretas; esses são os pontos fracos da coleta de lixo implementada usando apenas a contagem de referências. Ciclos de referência consistem em objetos que contêm referências (possivelmente indiretas) a si mesmos, de modo que cada objeto no ciclo tem uma contagem de referências diferente de zero. Implementações típicas de contagem de referências não são capazes de recuperar a memória pertencente a nenhum objeto em um ciclo de referência, ou referenciada a partir dos objetos no ciclo, mesmo que não haja mais referências ao próprio ciclo.
The cycle detector is able to detect garbage cycles and can reclaim them.
The gc
module exposes a way to run the detector (the
collect()
function), as well as configuration
interfaces and the ability to disable the detector at runtime.
1.10.1. Contagem de referências no Python¶
There are two macros, Py_INCREF(x)
and Py_DECREF(x)
, which handle the
incrementing and decrementing of the reference count. Py_DECREF()
also
frees the object when the count reaches zero. For flexibility, it doesn’t call
free()
directly — rather, it makes a call through a function pointer in
the object’s type object. For this purpose (and others), every object
also contains a pointer to its type object.
The big question now remains: when to use Py_INCREF(x)
and Py_DECREF(x)
?
Let’s first introduce some terms. Nobody “owns” an object; however, you can
own a reference to an object. An object’s reference count is now defined
as the number of owned references to it. The owner of a reference is
responsible for calling Py_DECREF()
when the reference is no longer
needed. Ownership of a reference can be transferred. There are three ways to
dispose of an owned reference: pass it on, store it, or call Py_DECREF()
.
Forgetting to dispose of an owned reference creates a memory leak.
It is also possible to borrow [2] a reference to an object. The
borrower of a reference should not call Py_DECREF()
. The borrower must
not hold on to the object longer than the owner from which it was borrowed.
Using a borrowed reference after the owner has disposed of it risks using freed
memory and should be avoided completely [3].
The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference on all possible paths through the code — in other words, with a borrowed reference you don’t run the risk of leaking when a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations where in seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has in fact disposed of it.
A borrowed reference can be changed into an owned reference by calling
Py_INCREF()
. This does not affect the status of the owner from which the
reference was borrowed — it creates a new owned reference, and gives full
owner responsibilities (the new owner must dispose of the reference properly, as
well as the previous owner).
1.10.2. Regras de propriedade¶
Sempre que uma referência de objeto é passada para dentro ou para fora de uma função, faz parte da especificação da interface da função se a propriedade é transferida com a referência ou não.
Most functions that return a reference to an object pass on ownership with the
reference. In particular, all functions whose function it is to create a new
object, such as PyLong_FromLong()
and Py_BuildValue()
, pass
ownership to the receiver. Even if the object is not actually new, you still
receive ownership of a new reference to that object. For instance,
PyLong_FromLong()
maintains a cache of popular values and can return a
reference to a cached item.
Many functions that extract objects from other objects also transfer ownership
with the reference, for instance PyObject_GetAttrString()
. The picture
is less clear, here, however, since a few common routines are exceptions:
PyTuple_GetItem()
, PyList_GetItem()
, PyDict_GetItem()
, and
PyDict_GetItemString()
all return references that you borrow from the
tuple, list or dictionary.
The function PyImport_AddModule()
also returns a borrowed reference, even
though it may actually create the object it returns: this is possible because an
owned reference to the object is stored in sys.modules
.
When you pass an object reference into another function, in general, the
function borrows the reference from you — if it needs to store it, it will use
Py_INCREF()
to become an independent owner. There are exactly two
important exceptions to this rule: PyTuple_SetItem()
and
PyList_SetItem()
. These functions take over ownership of the item passed
to them — even if they fail! (Note that PyDict_SetItem()
and friends
don’t take over ownership — they are “normal.”)
When a C function is called from Python, it borrows references to its arguments
from the caller. The caller owns a reference to the object, so the borrowed
reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned
reference by calling Py_INCREF()
.
A referência de objeto retornada de uma função C chamada do Python deve ser uma referência própria — a propriedade é transferida da função para seu chamador.
1.10.3. Gelo fino¶
There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all have to do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.
The first and most important case to know about is using Py_DECREF()
on
an unrelated object while borrowing a reference to a list item. For instance:
void
bug(PyObject *list)
{
PyObject *item = PyList_GetItem(list, 0);
PyList_SetItem(list, 1, PyLong_FromLong(0L));
PyObject_Print(item, stdout, 0); /* BUG! */
}
Esta função primeiro toma emprestada uma referência a list[0]
, depois substitui list[1]
pelo valor 0
e, por fim, imprime a referência emprestada. Parece inofensivo, certo? Mas não é!
Let’s follow the control flow into PyList_SetItem()
. The list owns
references to all its items, so when item 1 is replaced, it has to dispose of
the original item 1. Now let’s suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class defined a
__del__()
method. If this class instance has a reference count of 1,
disposing of it will call its __del__()
method. Internally,
PyList_SetItem()
calls Py_DECREF()
on the replaced item,
which invokes replaced item’s corresponding
tp_dealloc
function. During
deallocation, tp_dealloc
calls
tp_finalize
, which is mapped to the
__del__()
method for class instances (see PEP 442). This entire
sequence happens synchronously within the PyList_SetItem()
call.
Since it is written in Python, the __del__()
method can execute arbitrary
Python code. Could it perhaps do something to invalidate the reference to
item
in bug()
? You bet! Assuming that the list passed into
bug()
is accessible to the __del__()
method, it could execute a
statement to the effect of del list[0]
, and assuming this was the last
reference to that object, it would free the memory associated with it, thereby
invalidating item
.
A solução, depois de descobrir a origem do problema, é fácil: incrementar temporariamente a contagem de referências. A versão correta da função é:
void
no_bug(PyObject *list)
{
PyObject *item = PyList_GetItem(list, 0);
Py_INCREF(item);
PyList_SetItem(list, 1, PyLong_FromLong(0L));
PyObject_Print(item, stdout, 0);
Py_DECREF(item);
}
This is a true story. An older version of Python contained variants of this bug
and someone spent a considerable amount of time in a C debugger to figure out
why his __del__()
methods would fail…
The second case of problems with a borrowed reference is a variant involving
threads. Normally, multiple threads in the Python interpreter can’t get in each
other’s way, because there is a global lock
protecting Python’s entire object space.
However, it is possible to temporarily release this lock using the macro
Py_BEGIN_ALLOW_THREADS
, and to re-acquire it using
Py_END_ALLOW_THREADS
. This is common around blocking I/O calls, to
let other threads use the processor while waiting for the I/O to complete.
Obviously, the following function has the same problem as the previous one:
void
bug(PyObject *list)
{
PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
...some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print(item, stdout, 0); /* BUG! */
}
1.10.4. Ponteiros NULL¶
In general, functions that take object references as arguments do not expect you
to pass them NULL
pointers, and will dump core (or cause later core dumps) if
you do so. Functions that return object references generally return NULL
only
to indicate that an exception occurred. The reason for not testing for NULL
arguments is that functions often pass the objects they receive on to other
function — if each function were to test for NULL
, there would be a lot of
redundant tests and the code would run more slowly.
It is better to test for NULL
only at the “source:” when a pointer that may be
NULL
is received, for example, from malloc()
or from a function that
may raise an exception.
The macros Py_INCREF()
and Py_DECREF()
do not check for NULL
pointers — however, their variants Py_XINCREF()
and Py_XDECREF()
do.
The macros for checking for a particular object type (Pytype_Check()
) don’t
check for NULL
pointers — again, there is much code that calls several of
these in a row to test an object against various different expected types, and
this would generate redundant tests. There are no variants with NULL
checking.
The C function calling mechanism guarantees that the argument list passed to C
functions (args
in the examples) is never NULL
— in fact it guarantees
that it is always a tuple [4].
It is a severe error to ever let a NULL
pointer “escape” to the Python user.
1.11. Escrevendo extensões em C++¶
É possível escrever módulos de extensão em C++. Algumas restrições se aplicam. Se o programa principal (o interpretador Python) for compilado e vinculado pelo compilador C, objetos globais ou estáticos com construtores não poderão ser usados. Isso não é um problema se o programa principal for vinculado pelo compilador C++. Funções que serão chamadas pelo interpretador Python (em particular, funções de inicialização de módulos) devem ser declaradas usando extern "C"
. Não é necessário incluir os arquivos de cabeçalho Python entre extern "C" {...}
— eles já usam esta forma se o símbolo __cplusplus
estiver definido (todos os compiladores C++ recentes definem este símbolo).
1.12. Fornecendo uma API C para um módulo de extensão¶
Muitos módulos de extensão apenas fornecem novas funções e tipos para serem usados em Python, mas às vezes o código em um módulo de extensão pode ser útil para outros módulos de extensão. Por exemplo, um módulo de extensão poderia implementar um tipo “collection”, que funciona como listas sem ordem. Assim como o tipo de lista padrão do Python possui uma API C que permite que os módulos de extensão criem e manipulem listas, esse novo tipo de coleção deve ter um conjunto de funções em C para manipulação direta de outros módulos de extensão.
À primeira vista, isso parece fácil: basta escrever as funções (sem declará-las static
, é claro), fornecer um arquivo de cabeçalho apropriado e documentar a API C. E, de fato, isso funcionaria se todos os módulos de extensão estivessem sempre vinculados estaticamente ao interpretador Python. Quando os módulos são usados como bibliotecas compartilhadas, no entanto, os símbolos definidos em um módulo podem não ser visíveis para outro módulo. Os detalhes de visibilidade dependem do sistema operacional; alguns sistemas usam um espaço de nomes global para o interpretador Python e todos os módulos de extensão (Windows, por exemplo), enquanto outros exigem uma lista explícita de símbolos importados no momento da vinculação do módulo (AIX é um exemplo) ou oferecem uma escolha de estratégias diferentes (a maioria dos Unices). E mesmo que os símbolos sejam globalmente visíveis, o módulo cujas funções se deseja chamar pode não ter sido carregado ainda!
A portabilidade, portanto, exige que não se façam suposições sobre a visibilidade dos símbolos. Isso significa que todos os símbolos em módulos de extensão devem ser declarados static
, exceto a função de inicialização do módulo, a fim de evitar conflitos de nomes com outros módulos de extensão (conforme discutido na seção A tabela de métodos e a função de inicialização do módulo). E significa que os símbolos que deveriam ser acessíveis a partir de outros módulos de extensão devem ser exportados de uma maneira diferente.
Python provides a special mechanism to pass C-level information (pointers) from one extension module to another one: Capsules. A Capsule is a Python data type which stores a pointer (void*). Capsules can only be created and accessed via their C API, but they can be passed around like any other Python object. In particular, they can be assigned to a name in an extension module’s namespace. Other extension modules can then import this module, retrieve the value of this name, and then retrieve the pointer from the Capsule.
Existem muitas maneiras de usar Cápsulas para exportar a API C de um módulo de extensão. Cada função pode obter sua própria Cápsula, ou todos os ponteiros da API C podem ser armazenados em um array cujo endereço é publicado em uma Cápsula. E as diversas tarefas de armazenamento e recuperação dos ponteiros podem ser distribuídas de diferentes maneiras entre o módulo que fornece o código e os módulos clientes.
Whichever method you choose, it’s important to name your Capsules properly.
The function PyCapsule_New()
takes a name parameter
(const char*); you’re permitted to pass in a NULL
name, but
we strongly encourage you to specify a name. Properly named Capsules provide
a degree of runtime type-safety; there is no feasible way to tell one unnamed
Capsule from another.
Em particular, as Cápsulas usadas para expor APIs C devem receber um nome seguindo esta convenção:
modulename.attributename
The convenience function PyCapsule_Import()
makes it easy to
load a C API provided via a Capsule, but only if the Capsule’s name
matches this convention. This behavior gives C API users a high degree
of certainty that the Capsule they load contains the correct C API.
The following example demonstrates an approach that puts most of the burden on the writer of the exporting module, which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an array of void pointers which becomes the value of a Capsule. The header file corresponding to the module provides a macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call this macro before accessing the C API.
The exporting module is a modification of the spam
module from section
Um Exemplo Simples. The function spam.system()
does not call
the C library function system()
directly, but a function
PySpam_System()
, which would of course do something more complicated in
reality (such as adding “spam” to every command). This function
PySpam_System()
is also exported to other extension modules.
The function PySpam_System()
is a plain C function, declared
static
like everything else:
static int
PySpam_System(const char *command)
{
return system(command);
}
The function spam_system()
is modified in a trivial way:
static PyObject *
spam_system(PyObject *self, PyObject *args)
{
const char *command;
int sts;
if (!PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = PySpam_System(command);
return PyLong_FromLong(sts);
}
No início do módulo, logo após a linha
#include <Python.h>
mais duas linhas devem ser adicionadas:
#define SPAM_MODULE
#include "spammodule.h"
The #define
is used to tell the header file that it is being included in the
exporting module, not a client module. Finally, the module’s mod_exec
function must take care of initializing the C API pointer array:
static int
spam_module_exec(PyObject *m)
{
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;
/* Initialize the C API pointer array */
PySpam_API[PySpam_System_NUM] = (void *)PySpam_System;
/* Create a Capsule containing the API pointer array's address */
c_api_object = PyCapsule_New((void *)PySpam_API, "spam._C_API", NULL);
if (PyModule_Add(m, "_C_API", c_api_object) < 0) {
return -1;
}
return 0;
}
Note that PySpam_API
is declared static
; otherwise the pointer
array would disappear when PyInit_spam()
terminates!
A maior parte do trabalho está no arquivo de cabeçalho spammodule.h
, que se parece com isso:
#ifndef Py_SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef __cplusplus
extern "C" {
#endif
/* Header file for spammodule */
/* C API functions */
#define PySpam_System_NUM 0
#define PySpam_System_RETURN int
#define PySpam_System_PROTO (const char *command)
/* Total number of C API pointers */
#define PySpam_API_pointers 1
#ifdef SPAM_MODULE
/* This section is used when compiling spammodule.c */
static PySpam_System_RETURN PySpam_System PySpam_System_PROTO;
#else
/* This section is used in modules that use spammodule's API */
static void **PySpam_API;
#define PySpam_System \
(*(PySpam_System_RETURN (*)PySpam_System_PROTO) PySpam_API[PySpam_System_NUM])
/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception if there's an error.
*/
static int
import_spam(void)
{
PySpam_API = (void **)PyCapsule_Import("spam._C_API", 0);
return (PySpam_API != NULL) ? 0 : -1;
}
#endif
#ifdef __cplusplus
}
#endif
#endif /* !defined(Py_SPAMMODULE_H) */
All that a client module must do in order to have access to the function
PySpam_System()
is to call the function (or rather macro)
import_spam()
in its mod_exec
function:
static int
client_module_exec(PyObject *m)
{
if (import_spam() < 0) {
return -1;
}
/* additional initialization can happen here */
return 0;
}
The main disadvantage of this approach is that the file spammodule.h
is
rather complicated. However, the basic structure is the same for each function
that is exported, so it has to be learned only once.
Por fim, vale mencionar que as Cápsulas oferecem funcionalidades adicionais, especialmente úteis para alocação e desalocação de memória do ponteiro armazenado em uma Cápsula. Os detalhes são descritos no Manual de Referência da API Python/C, na seção Capsules e na implementação das Cápsulas (arquivos Include/pycapsule.h
e Objects/pycapsule.c
na distribuição do código-fonte Python).
Notas de rodapé