Enum¶
Uma Enum
é um conjunto de nomes simbólicos vinculados a valores únicos. São similares a variáveis globais, mas eles oferecem uma repr()
mais útil, agrupamento, segurança de tipo e alguns outros recursos.
Eles são mais úteis quando você tem uma variável que pode ter uma seleção limitada de valores. Por exemplo, os dias da semana:
>>> from enum import Enum
>>> class Weekday(Enum):
... MONDAY = 1
... TUESDAY = 2
... WEDNESDAY = 3
... THURSDAY = 4
... FRIDAY = 5
... SATURDAY = 6
... SUNDAY = 7
Ou talvez as cores primárias RGB:
>>> from enum import Enum
>>> class Color(Enum):
... RED = 1
... GREEN = 2
... BLUE = 3
Como você pode ver, criar um Enum
é tão simples quanto escrever uma classe que herda do próprio Enum
.
Nota
Caso de membros de Enums
Como os Enums são usados para representar constantes, e para ajudar a evitar problemas com nomes conflitando entre métodos/atributos de classes mixin e nomes enum, nós fortemente recomendamos o uso de nomes em UPPER_CASE(em caixa alta) para membros, e usaremos esse estilo em nossos exemplos.
Dependendo da natureza do enum, o valor de um membro pode ou não ser importante, mas de qualquer forma esse valor pode ser usado para obter o membro correspondente:
>>> Weekday(3)
<Weekday.WEDNESDAY: 3>
Como você pode ver, o repr()
de um membro mostra o nome do enum, o nome do membro e o valor. O str()
de um membro mostra apenas o nome do enum e o nome do membro:
>>> print(Weekday.THURSDAY)
Weekday.THURSDAY
O tipo de um membro de enumeração é o enum ao qual ele pertence:
>>> type(Weekday.MONDAY)
<enum 'Weekday'>
>>> isinstance(Weekday.FRIDAY, Weekday)
True
Os membros do Enum têm um atributo que contém apenas seu name
:
>>> print(Weekday.TUESDAY.name)
TUESDAY
Da mesma forma, eles têm um atributo para seu value
:
>>> Weekday.WEDNESDAY.value
3
Ao contrário de muitas linguagens que tratam enumerações apenas como pares de nome/valor, Enums do Python podem ter comportamento adicionado. Por exemplo, datetime.date
tem dois métodos para retornar o dia da semana: weekday()
e isoweekday()
. A diferença é que um deles conta de 0 a 6 e o outro de 1 a 7. Em vez de acompanhar isso nós mesmos, podemos adicionar um método ao enum de Weekday
para extrair o dia da instância de date
e retornar o membro enum correspondente:
@classmethod
def from_date(cls, date):
return cls(date.isoweekday())
O enum de Weekday
completa agora tem esta forma:
>>> class Weekday(Enum):
... MONDAY = 1
... TUESDAY = 2
... WEDNESDAY = 3
... THURSDAY = 4
... FRIDAY = 5
... SATURDAY = 6
... SUNDAY = 7
... #
... @classmethod
... def from_date(cls, date):
... return cls(date.isoweekday())
Agora podemos descobrir o que é hoje! Observar:
>>> from datetime import date
>>> Weekday.from_date(date.today())
<Weekday.TUESDAY: 2>
Claro, se você estiver lendo isso em algum outro dia, você verá esse dia.
Este enum Weekday
é ótimo se nossa variável precisar apenas de um dia, mas e se precisarmos de vários? Talvez estejamos escrevendo uma função para traçar tarefas durante uma semana e não queremos usar uma list
– poderíamos usar um tipo diferente de Enum
:
>>> from enum import Flag
>>> class Weekday(Flag):
... MONDAY = 1
... TUESDAY = 2
... WEDNESDAY = 4
... THURSDAY = 8
... FRIDAY = 16
... SATURDAY = 32
... SUNDAY = 64
Nós mudamos duas coisas: estamos herdando de Flag
, e os valores são todos potências de 2.
Assim como o enum Weekday
original acima, podemos ter uma seleção única:
>>> first_week_day = Weekday.MONDAY
>>> first_week_day
<Weekday.MONDAY: 1>
Porem Flag
também nos permite combinar vários membros em uma única variável:
>>> weekend = Weekday.SATURDAY | Weekday.SUNDAY
>>> weekend
<Weekday.SATURDAY|SUNDAY: 96>
Você pode até mesmo iterar sobre uma variável Flag
:
>>> for day in weekend:
... print(day)
Weekday.SATURDAY
Weekday.SUNDAY
Certo, vamos configurar algumas tarefas domésticas:
>>> chores_for_ethan = {
... 'feed the cat': Weekday.MONDAY | Weekday.WEDNESDAY | Weekday.FRIDAY,
... 'do the dishes': Weekday.TUESDAY | Weekday.THURSDAY,
... 'answer SO questions': Weekday.SATURDAY,
... }
E a função para mostrar as tarefas domésticas para um determinado dia:
>>> def show_chores(chores, day):
... for chore, days in chores.items():
... if day in days:
... print(chore)
...
>>> show_chores(chores_for_ethan, Weekday.SATURDAY)
answer SO questions
In cases where the actual values of the members do not matter, you can save
yourself some work and use auto()
for the values:
>>> from enum import auto
>>> class Weekday(Flag):
... MONDAY = auto()
... TUESDAY = auto()
... WEDNESDAY = auto()
... THURSDAY = auto()
... FRIDAY = auto()
... SATURDAY = auto()
... SUNDAY = auto()
... WEEKEND = SATURDAY | SUNDAY
Acesso programático aos membros da enumeração e seus atributos.¶
Em alguns momentos, é util ter acesso aos membros na enumeração de forma programática(ou seja, em situações em que Color.RED
não é adequado porque a cor exata não é conhecida no momento da escrita do programa).``Enum`` permite esse tipo de acesso:
>>> Color(1)
<Color.RED: 1>
>>> Color(3)
<Color.BLUE: 3>
Se você deseja ter acesso aos membros do enum pelo nome, use o acesso por itens:
>>> Color['RED']
<Color.RED: 1>
>>> Color['GREEN']
<Color.GREEN: 2>
Se você tem um membro do enum e precisa do seu name
ou value
:
>>> member = Color.RED
>>> member.name
'RED'
>>> member.value
1
Duplicar membros do enum e seus valores.¶
Ter dois membros de um enum com o mesmo nome é inválido:
>>> class Shape(Enum):
... SQUARE = 2
... SQUARE = 3
...
Traceback (most recent call last):
...
TypeError: 'SQUARE' already defined as 2
Porém, um membro do enum pode ter outros nomes associados a ele. Dado dois membros A
e B
com o mesmo valor (e A
definido primeiro), B
é um apelido para o membro A
. A pesquisa por valor de A
retorna o membro A
. A Pesquisa por nome de A
também retorna o membro A
. A pesquisa por nome de B
também retorna o membro A
:
>>> class Shape(Enum):
... SQUARE = 2
... DIAMOND = 1
... CIRCLE = 3
... ALIAS_FOR_SQUARE = 2
...
>>> Shape.SQUARE
<Shape.SQUARE: 2>
>>> Shape.ALIAS_FOR_SQUARE
<Shape.SQUARE: 2>
>>> Shape(2)
<Shape.SQUARE: 2>
Nota
Tentar criar um membro com o mesmo nome de um atributo já definido (outro membro, um método, etc.) ou tentar criar um atributo com o mesmo nome de um membro não é permitido.
Garantindo valores únicos de enumeração¶
Por padrão, enumerações permitem múltiplos nomes como apelidos para o mesmo valor. Quando esse comportamento não é desejado, você pode usar o decorador unique()
:
>>> from enum import Enum, unique
>>> @unique
... class Mistake(Enum):
... ONE = 1
... TWO = 2
... THREE = 3
... FOUR = 3
...
Traceback (most recent call last):
...
ValueError: duplicate values found in <enum 'Mistake'>: FOUR -> THREE
Usando valores automáticos¶
Se o exato valor não é importante, você pode usar auto
:
>>> from enum import Enum, auto
>>> class Color(Enum):
... RED = auto()
... BLUE = auto()
... GREEN = auto()
...
>>> [member.value for member in Color]
[1, 2, 3]
Os valores são escolhidos por _generate_next_value_()
, o qual pode ser substituído:
>>> class AutoName(Enum):
... @staticmethod
... def _generate_next_value_(name, start, count, last_values):
... return name
...
>>> class Ordinal(AutoName):
... NORTH = auto()
... SOUTH = auto()
... EAST = auto()
... WEST = auto()
...
>>> [member.value for member in Ordinal]
['NORTH', 'SOUTH', 'EAST', 'WEST']
Nota
O método _generate_next_value_()
deve ser definido antes de qualquer membro.
Iteração¶
Iterar sobre os membros de um enum não fornece os apelidos:
>>> list(Shape)
[<Shape.SQUARE: 2>, <Shape.DIAMOND: 1>, <Shape.CIRCLE: 3>]
>>> list(Weekday)
[<Weekday.MONDAY: 1>, <Weekday.TUESDAY: 2>, <Weekday.WEDNESDAY: 4>, <Weekday.THURSDAY: 8>, <Weekday.FRIDAY: 16>, <Weekday.SATURDAY: 32>, <Weekday.SUNDAY: 64>]
Note que os apelidos Shape.ALIAS_FOR_SQUARE
e Weekday.WEEKEND
não são mostrados.
O atributo especial __members__
é um mapeamento ordenado somente leitura de nomes para os membros. Isso inclui todos os nomes definidos na enumeração, incluindo os apelidos:
>>> for name, member in Shape.__members__.items():
... name, member
...
('SQUARE', <Shape.SQUARE: 2>)
('DIAMOND', <Shape.DIAMOND: 1>)
('CIRCLE', <Shape.CIRCLE: 3>)
('ALIAS_FOR_SQUARE', <Shape.SQUARE: 2>)
O atributo __members__
pode ser usado para um acesso programático detalhado aos membros da enumeração. Por exemplo, achar todos os apelidos:
>>> [name for name, member in Shape.__members__.items() if member.name != name]
['ALIAS_FOR_SQUARE']
Nota
Aliases for flags include values with multiple flags set, such as 3
,
and no flags set, i.e. 0
.
Comparações¶
Membros de uma enumeração são comparados por identidade:
>>> Color.RED is Color.RED
True
>>> Color.RED is Color.BLUE
False
>>> Color.RED is not Color.BLUE
True
Ordered comparisons between enumeration values are not supported. Enum members are not integers (but see IntEnum below):
>>> Color.RED < Color.BLUE
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'Color' and 'Color'
Equality comparisons are defined though:
>>> Color.BLUE == Color.RED
False
>>> Color.BLUE != Color.RED
True
>>> Color.BLUE == Color.BLUE
True
Comparisons against non-enumeration values will always compare not equal
(again, IntEnum
was explicitly designed to behave differently, see
below):
>>> Color.BLUE == 2
False
Aviso
É possivel recarregar módulos – se um módulo recarregado contém enums, eles serão recriados, e os novos membros não podem ser comparados de forma identifica/igual a membros originais.
Membros e atributos permitidos em enumerações¶
A maioria dos exemplos acima usa inteiros como valores para os enums. Usar inteiros é simples e prático (isso é disponibilizado como padrão pela API funcional), mas não é a única aplicação. Na grande maioria dos caso de uso, não importa o valor de fato que um enum possui. Mas se o valor é importante, enums podem ser valores arbitrários.
Enumeções são classes Python, e podem ter métodos e até mesmo métodos especiais como de usual. Se temos essa enumeração:
>>> class Mood(Enum):
... FUNKY = 1
... HAPPY = 3
...
... def describe(self):
... # self is the member here
... return self.name, self.value
...
... def __str__(self):
... return 'my custom str! {0}'.format(self.value)
...
... @classmethod
... def favorite_mood(cls):
... # cls here is the enumeration
... return cls.HAPPY
...
Então:
>>> Mood.favorite_mood()
<Mood.HAPPY: 3>
>>> Mood.HAPPY.describe()
('HAPPY', 3)
>>> str(Mood.FUNKY)
'my custom str! 1'
The rules for what is allowed are as follows: names that start and end with
a single underscore are reserved by enum and cannot be used; all other
attributes defined within an enumeration will become members of this
enumeration, with the exception of special methods (__str__()
,
__add__()
, etc.), descriptors (methods are also descriptors), and
variable names listed in _ignore_
.
Note: if your enumeration defines __new__()
and/or __init__()
,
any value(s) given to the enum member will be passed into those methods.
See Planet for an example.
Nota
The __new__()
method, if defined, is used during creation of the Enum
members; it is then replaced by Enum’s __new__()
which is used after
class creation for lookup of existing members. See Quando usar __new__() vs. __init__() for
more details.
Restricted Enum subclassing¶
A new Enum
class must have one base enum class, up to one concrete
data type, and as many object
-based mixin classes as needed. The
order of these base classes is:
class EnumName([mix-in, ...,] [data-type,] base-enum):
pass
Além disso, criar uma subclasse de uma enumeração é permitido apenas se a enumeção não define nenhum membro. Pontando isso é proibido:
>>> class MoreColor(Color):
... PINK = 17
...
Traceback (most recent call last):
...
TypeError: <enum 'MoreColor'> cannot extend <enum 'Color'>
Mas isso é permitido:
>>> class Foo(Enum):
... def some_behavior(self):
... pass
...
>>> class Bar(Foo):
... HAPPY = 1
... SAD = 2
...
Allowing subclassing of enums that define members would lead to a violation of some important invariants of types and instances. On the other hand, it makes sense to allow sharing some common behavior between a group of enumerations. (See OrderedEnum for an example.)
Suporte a dataclass¶
When inheriting from a dataclass
,
the __repr__()
omits the inherited class’ name. For example:
>>> from dataclasses import dataclass, field
>>> @dataclass
... class CreatureDataMixin:
... size: str
... legs: int
... tail: bool = field(repr=False, default=True)
...
>>> class Creature(CreatureDataMixin, Enum):
... BEETLE = 'small', 6
... DOG = 'medium', 4
...
>>> Creature.DOG
<Creature.DOG: size='medium', legs=4>
Use the dataclass()
argument repr=False
to use the standard repr()
.
Alterado na versão 3.12: Only the dataclass fields are shown in the value area, not the dataclass’ name.
Nota
Adding dataclass()
decorator to Enum
and its subclasses is not supported. It will not raise any errors,
but it will produce very strange results at runtime, such as members
being equal to each other:
>>> @dataclass # don't do this: it does not make any sense
... class Color(Enum):
... RED = 1
... BLUE = 2
...
>>> Color.RED is Color.BLUE
False
>>> Color.RED == Color.BLUE # problem is here: they should not be equal
True
Pickling¶
Enumerations can be pickled and unpickled:
>>> from test.test_enum import Fruit
>>> from pickle import dumps, loads
>>> Fruit.TOMATO is loads(dumps(Fruit.TOMATO))
True
The usual restrictions for pickling apply: picklable enums must be defined in the top level of a module, since unpickling requires them to be importable from that module.
Nota
With pickle protocol version 4 it is possible to easily pickle enums nested in other classes.
It is possible to modify how enum members are pickled/unpickled by defining
__reduce_ex__()
in the enumeration class. The default method is by-value,
but enums with complicated values may want to use by-name:
>>> import enum
>>> class MyEnum(enum.Enum):
... __reduce_ex__ = enum.pickle_by_enum_name
Nota
Using by-name for flags is not recommended, as unnamed aliases will not unpickle.
API funcional¶
A classe Enum
é chamável, fornecendo a API funcional a seguir:
>>> Animal = Enum('Animal', 'ANT BEE CAT DOG')
>>> Animal
<enum 'Animal'>
>>> Animal.ANT
<Animal.ANT: 1>
>>> list(Animal)
[<Animal.ANT: 1>, <Animal.BEE: 2>, <Animal.CAT: 3>, <Animal.DOG: 4>]
The semantics of this API resemble namedtuple
. The first
argument of the call to Enum
is the name of the enumeration.
The second argument is the source of enumeration member names. It can be a
whitespace-separated string of names, a sequence of names, a sequence of
2-tuples with key/value pairs, or a mapping (e.g. dictionary) of names to
values. The last two options enable assigning arbitrary values to
enumerations; the others auto-assign increasing integers starting with 1 (use
the start
parameter to specify a different starting value). A
new class derived from Enum
is returned. In other words, the above
assignment to Animal
is equivalent to:
>>> class Animal(Enum):
... ANT = 1
... BEE = 2
... CAT = 3
... DOG = 4
...
The reason for defaulting to 1
as the starting number and not 0
is
that 0
is False
in a boolean sense, but by default enum members all
evaluate to True
.
Pickling enums created with the functional API can be tricky as frame stack implementation details are used to try and figure out which module the enumeration is being created in (e.g. it will fail if you use a utility function in a separate module, and also may not work on IronPython or Jython). The solution is to specify the module name explicitly as follows:
>>> Animal = Enum('Animal', 'ANT BEE CAT DOG', module=__name__)
Aviso
If module
is not supplied, and Enum cannot determine what it is,
the new Enum members will not be unpicklable; to keep errors closer to
the source, pickling will be disabled.
The new pickle protocol 4 also, in some circumstances, relies on
__qualname__
being set to the location where pickle will be able
to find the class. For example, if the class was made available in class
SomeData in the global scope:
>>> Animal = Enum('Animal', 'ANT BEE CAT DOG', qualname='SomeData.Animal')
A assinatura completa é:
Enum(
value='NewEnumName',
names=<...>,
*,
module='...',
qualname='...',
type=<mixed-in class>,
start=1,
)
value: What the new enum class will record as its name.
names: The enum members. This can be a whitespace- or comma-separated string (values will start at 1 unless otherwise specified):
'RED GREEN BLUE' | 'RED,GREEN,BLUE' | 'RED, GREEN, BLUE'
or an iterator of names:
['RED', 'GREEN', 'BLUE']
or an iterator of (name, value) pairs:
[('CYAN', 4), ('MAGENTA', 5), ('YELLOW', 6)]
or a mapping:
{'CHARTREUSE': 7, 'SEA_GREEN': 11, 'ROSEMARY': 42}
module: name of module where new enum class can be found.
qualname: where in module new enum class can be found.
type: type to mix in to new enum class.
start: number to start counting at if only names are passed in.
Alterado na versão 3.5: The start parameter was added.
Derived Enumerations¶
IntEnum¶
The first variation of Enum
that is provided is also a subclass of
int
. Members of an IntEnum
can be compared to integers;
by extension, integer enumerations of different types can also be compared
to each other:
>>> from enum import IntEnum
>>> class Shape(IntEnum):
... CIRCLE = 1
... SQUARE = 2
...
>>> class Request(IntEnum):
... POST = 1
... GET = 2
...
>>> Shape == 1
False
>>> Shape.CIRCLE == 1
True
>>> Shape.CIRCLE == Request.POST
True
However, they still can’t be compared to standard Enum
enumerations:
>>> class Shape(IntEnum):
... CIRCLE = 1
... SQUARE = 2
...
>>> class Color(Enum):
... RED = 1
... GREEN = 2
...
>>> Shape.CIRCLE == Color.RED
False
IntEnum
values behave like integers in other ways you’d expect:
>>> int(Shape.CIRCLE)
1
>>> ['a', 'b', 'c'][Shape.CIRCLE]
'b'
>>> [i for i in range(Shape.SQUARE)]
[0, 1]
StrEnum¶
The second variation of Enum
that is provided is also a subclass of
str
. Members of a StrEnum
can be compared to strings;
by extension, string enumerations of different types can also be compared
to each other.
Adicionado na versão 3.11.
IntFlag¶
The next variation of Enum
provided, IntFlag
, is also based
on int
. The difference being IntFlag
members can be combined
using the bitwise operators (&, |, ^, ~) and the result is still an
IntFlag
member, if possible. Like IntEnum
, IntFlag
members are also integers and can be used wherever an int
is used.
Nota
Any operation on an IntFlag
member besides the bit-wise operations will
lose the IntFlag
membership.
Bit-wise operations that result in invalid IntFlag
values will lose the
IntFlag
membership. See FlagBoundary
for
details.
Adicionado na versão 3.6.
Alterado na versão 3.11.
Sample IntFlag
class:
>>> from enum import IntFlag
>>> class Perm(IntFlag):
... R = 4
... W = 2
... X = 1
...
>>> Perm.R | Perm.W
<Perm.R|W: 6>
>>> Perm.R + Perm.W
6
>>> RW = Perm.R | Perm.W
>>> Perm.R in RW
True
It is also possible to name the combinations:
>>> class Perm(IntFlag):
... R = 4
... W = 2
... X = 1
... RWX = 7
...
>>> Perm.RWX
<Perm.RWX: 7>
>>> ~Perm.RWX
<Perm: 0>
>>> Perm(7)
<Perm.RWX: 7>
Nota
Combinações nomeadas são consideradas apelidos. Apelidos não aparecem durante uma iteração, mas podem ser retornados por pesquisas por valor.
Alterado na versão 3.11.
Another important difference between IntFlag
and Enum
is that
if no flags are set (the value is 0), its boolean evaluation is False
:
>>> Perm.R & Perm.X
<Perm: 0>
>>> bool(Perm.R & Perm.X)
False
Because IntFlag
members are also subclasses of int
they can
be combined with them (but may lose IntFlag
membership:
>>> Perm.X | 4
<Perm.R|X: 5>
>>> Perm.X + 8
9
Nota
The negation operator, ~
, always returns an IntFlag
member with a
positive value:
>>> (~Perm.X).value == (Perm.R|Perm.W).value == 6
True
IntFlag
members can also be iterated over:
>>> list(RW)
[<Perm.R: 4>, <Perm.W: 2>]
Adicionado na versão 3.11.
Sinalizador¶
The last variation is Flag
. Like IntFlag
, Flag
members can be combined using the bitwise operators (&, |, ^, ~). Unlike
IntFlag
, they cannot be combined with, nor compared against, any
other Flag
enumeration, nor int
. While it is possible to
specify the values directly it is recommended to use auto
as the
value and let Flag
select an appropriate value.
Adicionado na versão 3.6.
Like IntFlag
, if a combination of Flag
members results in no
flags being set, the boolean evaluation is False
:
>>> from enum import Flag, auto
>>> class Color(Flag):
... RED = auto()
... BLUE = auto()
... GREEN = auto()
...
>>> Color.RED & Color.GREEN
<Color: 0>
>>> bool(Color.RED & Color.GREEN)
False
Individual flags should have values that are powers of two (1, 2, 4, 8, …), while combinations of flags will not:
>>> class Color(Flag):
... RED = auto()
... BLUE = auto()
... GREEN = auto()
... WHITE = RED | BLUE | GREEN
...
>>> Color.WHITE
<Color.WHITE: 7>
Giving a name to the “no flags set” condition does not change its boolean value:
>>> class Color(Flag):
... BLACK = 0
... RED = auto()
... BLUE = auto()
... GREEN = auto()
...
>>> Color.BLACK
<Color.BLACK: 0>
>>> bool(Color.BLACK)
False
Flag
members can also be iterated over:
>>> purple = Color.RED | Color.BLUE
>>> list(purple)
[<Color.RED: 1>, <Color.BLUE: 2>]
Adicionado na versão 3.11.
Nota
For the majority of new code, Enum
and Flag
are strongly
recommended, since IntEnum
and IntFlag
break some
semantic promises of an enumeration (by being comparable to integers, and
thus by transitivity to other unrelated enumerations). IntEnum
and IntFlag
should be used only in cases where Enum
and
Flag
will not do; for example, when integer constants are replaced
with enumerations, or for interoperability with other systems.
Outros¶
While IntEnum
is part of the enum
module, it would be very
simple to implement independently:
class IntEnum(int, ReprEnum): # or Enum instead of ReprEnum
pass
This demonstrates how similar derived enumerations can be defined; for example
a FloatEnum
that mixes in float
instead of int
.
Algumas regras:
When subclassing
Enum
, mix-in types must appear before theEnum
class itself in the sequence of bases, as in theIntEnum
example above.Mix-in types must be subclassable. For example,
bool
andrange
are not subclassable and will throw an error during Enum creation if used as the mix-in type.While
Enum
can have members of any type, once you mix in an additional type, all the members must have values of that type, e.g.int
above. This restriction does not apply to mix-ins which only add methods and don’t specify another type.When another data type is mixed in, the
value
attribute is not the same as the enum member itself, although it is equivalent and will compare equal.A
data type
is a mixin that defines__new__()
, or adataclass
%-style formatting:
%s
and%r
call theEnum
class’s__str__()
and__repr__()
respectively; other codes (such as%i
or%h
for IntEnum) treat the enum member as its mixed-in type.Formatted string literals,
str.format()
, andformat()
will use the enum’s__str__()
method.
Quando usar __new__()
vs. __init__()
¶
__new__()
must be used whenever you want to customize the actual value of
the Enum
member. Any other modifications may go in either
__new__()
or __init__()
, with __init__()
being preferred.
For example, if you want to pass several items to the constructor, but only want one of them to be the value:
>>> class Coordinate(bytes, Enum):
... """
... Coordinate with binary codes that can be indexed by the int code.
... """
... def __new__(cls, value, label, unit):
... obj = bytes.__new__(cls, [value])
... obj._value_ = value
... obj.label = label
... obj.unit = unit
... return obj
... PX = (0, 'P.X', 'km')
... PY = (1, 'P.Y', 'km')
... VX = (2, 'V.X', 'km/s')
... VY = (3, 'V.Y', 'km/s')
...
>>> print(Coordinate['PY'])
Coordinate.PY
>>> print(Coordinate(3))
Coordinate.VY
Aviso
Do not call super().__new__()
, as the lookup-only __new__
is the one
that is found; instead, use the data type directly.
Finer Points¶
Nomes __dunder__
suportados¶
__members__
is a read-only ordered mapping of member_name
:member
items. It is only available on the class.
__new__()
, if specified, must create and return the enum members; it is
also a very good idea to set the member’s _value_
appropriately. Once
all the members are created it is no longer used.
Nomes _sunder_
suportados¶
_name_
– name of the member_value_
– value of the member; can be set in__new__
_missing_()
– a lookup function used when a value is not found; may be overridden_ignore_
– a list of names, either as alist
or astr
, that will not be transformed into members, and will be removed from the final class_generate_next_value_()
– used to get an appropriate value for an enum member; may be overridden_add_alias_()
– adds a new name as an alias to an existing member._add_value_alias_()
– adds a new value as an alias to an existing member. See MultiValueEnum for an example.Nota
For standard
Enum
classes the next value chosen is the highest value seen incremented by one.For
Flag
classes the next value chosen will be the next highest power-of-two.Alterado na versão 3.13: Versões anteriores usariam o último valor visualizado em vez do maior valor.
Adicionado na versão 3.6: _missing_
, _order_
, _generate_next_value_
Adicionado na versão 3.7: _ignore_
Adicionado na versão 3.13: _add_alias_
, _add_value_alias_
To help keep Python 2 / Python 3 code in sync an _order_
attribute can
be provided. It will be checked against the actual order of the enumeration
and raise an error if the two do not match:
>>> class Color(Enum):
... _order_ = 'RED GREEN BLUE'
... RED = 1
... BLUE = 3
... GREEN = 2
...
Traceback (most recent call last):
...
TypeError: member order does not match _order_:
['RED', 'BLUE', 'GREEN']
['RED', 'GREEN', 'BLUE']
Nota
In Python 2 code the _order_
attribute is necessary as definition
order is lost before it can be recorded.
_Private__names¶
Private names are not converted to enum members, but remain normal attributes.
Alterado na versão 3.11.
Enum
member type¶
Enum members are instances of their enum class, and are normally accessed as
EnumClass.member
. In certain situations, such as writing custom enum
behavior, being able to access one member directly from another is useful,
and is supported; however, in order to avoid name clashes between member names
and attributes/methods from mixed-in classes, upper-case names are strongly
recommended.
Alterado na versão 3.5.
Creating members that are mixed with other data types¶
When subclassing other data types, such as int
or str
, with
an Enum
, all values after the =
are passed to that data type’s
constructor. For example:
>>> class MyEnum(IntEnum): # help(int) -> int(x, base=10) -> integer
... example = '11', 16 # so x='11' and base=16
...
>>> MyEnum.example.value # and hex(11) is...
17
Boolean value of Enum
classes and members¶
Enum classes that are mixed with non-Enum
types (such as
int
, str
, etc.) are evaluated according to the mixed-in
type’s rules; otherwise, all members evaluate as True
. To make your
own enum’s boolean evaluation depend on the member’s value add the following to
your class:
def __bool__(self):
return bool(self.value)
Enum
classes with methods¶
If you give your enum subclass extra methods, like the Planet
class below, those methods will show up in a dir()
of the member,
but not of the class:
>>> dir(Planet)
['EARTH', 'JUPITER', 'MARS', 'MERCURY', 'NEPTUNE', 'SATURN', 'URANUS', 'VENUS', '__class__', '__doc__', '__members__', '__module__']
>>> dir(Planet.EARTH)
['__class__', '__doc__', '__module__', 'mass', 'name', 'radius', 'surface_gravity', 'value']
Combining members of Flag
¶
Iterating over a combination of Flag
members will only return the members that
are comprised of a single bit:
>>> class Color(Flag):
... RED = auto()
... GREEN = auto()
... BLUE = auto()
... MAGENTA = RED | BLUE
... YELLOW = RED | GREEN
... CYAN = GREEN | BLUE
...
>>> Color(3) # named combination
<Color.YELLOW: 3>
>>> Color(7) # not named combination
<Color.RED|GREEN|BLUE: 7>
Flag
and IntFlag
minutia¶
Using the following snippet for our examples:
>>> class Color(IntFlag):
... BLACK = 0
... RED = 1
... GREEN = 2
... BLUE = 4
... PURPLE = RED | BLUE
... WHITE = RED | GREEN | BLUE
...
the following are true:
single-bit flags are canonical
multi-bit and zero-bit flags are aliases
only canonical flags are returned during iteration:
>>> list(Color.WHITE) [<Color.RED: 1>, <Color.GREEN: 2>, <Color.BLUE: 4>]
negating a flag or flag set returns a new flag/flag set with the corresponding positive integer value:
>>> Color.BLUE <Color.BLUE: 4> >>> ~Color.BLUE <Color.RED|GREEN: 3>
names of pseudo-flags are constructed from their members’ names:
>>> (Color.RED | Color.GREEN).name 'RED|GREEN' >>> class Perm(IntFlag): ... R = 4 ... W = 2 ... X = 1 ... >>> (Perm.R & Perm.W).name is None # effectively Perm(0) True
multi-bit flags, aka aliases, can be returned from operations:
>>> Color.RED | Color.BLUE <Color.PURPLE: 5> >>> Color(7) # or Color(-1) <Color.WHITE: 7> >>> Color(0) <Color.BLACK: 0>
membership / containment checking: zero-valued flags are always considered to be contained:
>>> Color.BLACK in Color.WHITE True
otherwise, only if all bits of one flag are in the other flag will True be returned:
>>> Color.PURPLE in Color.WHITE True >>> Color.GREEN in Color.PURPLE False
There is a new boundary mechanism that controls how out-of-range / invalid
bits are handled: STRICT
, CONFORM
, EJECT
, and KEEP
:
STRICT –> raises an exception when presented with invalid values
CONFORM –> discards any invalid bits
EJECT –> lose Flag status and become a normal int with the given value
KEEP –> keep the extra bits
keeps Flag status and extra bits
extra bits do not show up in iteration
extra bits do show up in repr() and str()
The default for Flag is STRICT
, the default for IntFlag
is EJECT
,
and the default for _convert_
is KEEP
(see ssl.Options
for an
example of when KEEP
is needed).
How are Enums and Flags different?¶
Enums have a custom metaclass that affects many aspects of both derived Enum
classes and their instances (members).
Enum Classes¶
The EnumType
metaclass is responsible for providing the
__contains__()
, __dir__()
, __iter__()
and other methods that
allow one to do things with an Enum
class that fail on a typical
class, such as list(Color)
or some_enum_var in Color
. EnumType
is
responsible for ensuring that various other methods on the final Enum
class are correct (such as __new__()
, __getnewargs__()
,
__str__()
and __repr__()
).
Flag Classes¶
Flags have an expanded view of aliasing: to be canonical, the value of a flag
needs to be a power-of-two value, and not a duplicate name. So, in addition to the
Enum
definition of alias, a flag with no value (a.k.a. 0
) or with more than one
power-of-two value (e.g. 3
) is considered an alias.
Enum Members (aka instances)¶
The most interesting thing about enum members is that they are singletons.
EnumType
creates them all while it is creating the enum class itself,
and then puts a custom __new__()
in place to ensure that no new ones are
ever instantiated by returning only the existing member instances.
Flag Members¶
Flag members can be iterated over just like the Flag
class, and only the
canonical members will be returned. For example:
>>> list(Color)
[<Color.RED: 1>, <Color.GREEN: 2>, <Color.BLUE: 4>]
(Note that BLACK
, PURPLE
, and WHITE
do not show up.)
Inverting a flag member returns the corresponding positive value, rather than a negative value — for example:
>>> ~Color.RED
<Color.GREEN|BLUE: 6>
Flag members have a length corresponding to the number of power-of-two values they contain. For example:
>>> len(Color.PURPLE)
2
Enum Cookbook¶
While Enum
, IntEnum
, StrEnum
, Flag
, and
IntFlag
are expected to cover the majority of use-cases, they cannot
cover them all. Here are recipes for some different types of enumerations
that can be used directly, or as examples for creating one’s own.
Omitting values¶
In many use-cases, one doesn’t care what the actual value of an enumeration is. There are several ways to define this type of simple enumeration:
use instances of
auto
for the valueuse instances of
object
as the valueuse a descriptive string as the value
use a tuple as the value and a custom
__new__()
to replace the tuple with anint
value
Using any of these methods signifies to the user that these values are not important, and also enables one to add, remove, or reorder members without having to renumber the remaining members.
Using auto
¶
Using auto
would look like:
>>> class Color(Enum):
... RED = auto()
... BLUE = auto()
... GREEN = auto()
...
>>> Color.GREEN
<Color.GREEN: 3>
Using object
¶
Using object
would look like:
>>> class Color(Enum):
... RED = object()
... GREEN = object()
... BLUE = object()
...
>>> Color.GREEN
<Color.GREEN: <object object at 0x...>>
This is also a good example of why you might want to write your own
__repr__()
:
>>> class Color(Enum):
... RED = object()
... GREEN = object()
... BLUE = object()
... def __repr__(self):
... return "<%s.%s>" % (self.__class__.__name__, self._name_)
...
>>> Color.GREEN
<Color.GREEN>
Using a descriptive string¶
Using a string as the value would look like:
>>> class Color(Enum):
... RED = 'stop'
... GREEN = 'go'
... BLUE = 'too fast!'
...
>>> Color.GREEN
<Color.GREEN: 'go'>
Usando um __new__()
personalizado¶
Using an auto-numbering __new__()
would look like:
>>> class AutoNumber(Enum):
... def __new__(cls):
... value = len(cls.__members__) + 1
... obj = object.__new__(cls)
... obj._value_ = value
... return obj
...
>>> class Color(AutoNumber):
... RED = ()
... GREEN = ()
... BLUE = ()
...
>>> Color.GREEN
<Color.GREEN: 2>
To make a more general purpose AutoNumber
, add *args
to the signature:
>>> class AutoNumber(Enum):
... def __new__(cls, *args): # this is the only change from above
... value = len(cls.__members__) + 1
... obj = object.__new__(cls)
... obj._value_ = value
... return obj
...
Then when you inherit from AutoNumber
you can write your own __init__
to handle any extra arguments:
>>> class Swatch(AutoNumber):
... def __init__(self, pantone='unknown'):
... self.pantone = pantone
... AUBURN = '3497'
... SEA_GREEN = '1246'
... BLEACHED_CORAL = () # New color, no Pantone code yet!
...
>>> Swatch.SEA_GREEN
<Swatch.SEA_GREEN: 2>
>>> Swatch.SEA_GREEN.pantone
'1246'
>>> Swatch.BLEACHED_CORAL.pantone
'unknown'
Nota
The __new__()
method, if defined, is used during creation of the Enum
members; it is then replaced by Enum’s __new__()
which is used after
class creation for lookup of existing members.
Aviso
Do not call super().__new__()
, as the lookup-only __new__
is the one
that is found; instead, use the data type directly – e.g.:
obj = int.__new__(cls, value)
OrderedEnum¶
An ordered enumeration that is not based on IntEnum
and so maintains
the normal Enum
invariants (such as not being comparable to other
enumerations):
>>> class OrderedEnum(Enum):
... def __ge__(self, other):
... if self.__class__ is other.__class__:
... return self.value >= other.value
... return NotImplemented
... def __gt__(self, other):
... if self.__class__ is other.__class__:
... return self.value > other.value
... return NotImplemented
... def __le__(self, other):
... if self.__class__ is other.__class__:
... return self.value <= other.value
... return NotImplemented
... def __lt__(self, other):
... if self.__class__ is other.__class__:
... return self.value < other.value
... return NotImplemented
...
>>> class Grade(OrderedEnum):
... A = 5
... B = 4
... C = 3
... D = 2
... F = 1
...
>>> Grade.C < Grade.A
True
DuplicateFreeEnum¶
Raises an error if a duplicate member value is found instead of creating an alias:
>>> class DuplicateFreeEnum(Enum):
... def __init__(self, *args):
... cls = self.__class__
... if any(self.value == e.value for e in cls):
... a = self.name
... e = cls(self.value).name
... raise ValueError(
... "aliases not allowed in DuplicateFreeEnum: %r --> %r"
... % (a, e))
...
>>> class Color(DuplicateFreeEnum):
... RED = 1
... GREEN = 2
... BLUE = 3
... GRENE = 2
...
Traceback (most recent call last):
...
ValueError: aliases not allowed in DuplicateFreeEnum: 'GRENE' --> 'GREEN'
Nota
This is a useful example for subclassing Enum to add or change other
behaviors as well as disallowing aliases. If the only desired change is
disallowing aliases, the unique()
decorator can be used instead.
MultiValueEnum¶
Supports having more than one value per member:
>>> class MultiValueEnum(Enum):
... def __new__(cls, value, *values):
... self = object.__new__(cls)
... self._value_ = value
... for v in values:
... self._add_value_alias_(v)
... return self
...
>>> class DType(MultiValueEnum):
... float32 = 'f', 8
... double64 = 'd', 9
...
>>> DType('f')
<DType.float32: 'f'>
>>> DType(9)
<DType.double64: 'd'>
Planet¶
If __new__()
or __init__()
is defined, the value of the enum member
will be passed to those methods:
>>> class Planet(Enum):
... MERCURY = (3.303e+23, 2.4397e6)
... VENUS = (4.869e+24, 6.0518e6)
... EARTH = (5.976e+24, 6.37814e6)
... MARS = (6.421e+23, 3.3972e6)
... JUPITER = (1.9e+27, 7.1492e7)
... SATURN = (5.688e+26, 6.0268e7)
... URANUS = (8.686e+25, 2.5559e7)
... NEPTUNE = (1.024e+26, 2.4746e7)
... def __init__(self, mass, radius):
... self.mass = mass # in kilograms
... self.radius = radius # in meters
... @property
... def surface_gravity(self):
... # universal gravitational constant (m3 kg-1 s-2)
... G = 6.67300E-11
... return G * self.mass / (self.radius * self.radius)
...
>>> Planet.EARTH.value
(5.976e+24, 6378140.0)
>>> Planet.EARTH.surface_gravity
9.802652743337129
TimePeriod¶
An example to show the _ignore_
attribute in use:
>>> from datetime import timedelta
>>> class Period(timedelta, Enum):
... "different lengths of time"
... _ignore_ = 'Period i'
... Period = vars()
... for i in range(367):
... Period['day_%d' % i] = i
...
>>> list(Period)[:2]
[<Period.day_0: datetime.timedelta(0)>, <Period.day_1: datetime.timedelta(days=1)>]
>>> list(Period)[-2:]
[<Period.day_365: datetime.timedelta(days=365)>, <Period.day_366: datetime.timedelta(days=366)>]
Subclassing EnumType¶
While most enum needs can be met by customizing Enum
subclasses,
either with class decorators or custom functions, EnumType
can be
subclassed to provide a different Enum experience.