Inicialização, finalização e threads¶
Consulte também Configuração de Inicialização do Python.
Antes da inicialização do Python¶
Em uma aplicação que incorpora Python, a função Py_Initialize()
deve ser chamada antes de usar qualquer outra função da API Python/C; com exceção de algumas funções e as variáveis globais de configuração.
As seguintes funções podem ser seguramente chamadas antes da inicialização do Python.
Funções de configuração
Funções informativas:
Utilitários:
Alocadores de memória:
Nota
As seguintes funções não devem ser chamadas antes Py_Initialize()
: Py_EncodeLocale()
, Py_GetPath()
, Py_GetPrefix()
, Py_GetExecPrefix()
, Py_GetProgramFullPath()
, Py_GetPythonHome()
, Py_GetProgramName()
e PyEval_InitThreads()
.
Variáveis de configuração global¶
Python tem variáveis para a configuração global a fim de controlar diferentes características e opções. Por padrão, estes sinalizadores são controlados por opções de linha de comando.
Quando um sinalizador é definido por uma opção, o valor do sinalizador é o número de vezes que a opção foi definida. Por exemplo,``-b`` define Py_BytesWarningFlag
para 1 e -bb
define Py_BytesWarningFlag
para 2.
-
int Py_BytesWarningFlag¶
Emite um aviso ao comparar
bytes
oubytearray
comstr
oubytes
comint
. Emite um erro se for maior ou igual a2
.Definida pela opção
-b
.
-
int Py_DebugFlag¶
Ativa a saída de depuração do analisador sintático (somente para especialistas, dependendo das opções de compilação).
Definida pela a opção
-d
e a variável de ambientePYTHONDEBUG
.
-
int Py_DontWriteBytecodeFlag¶
Se definida como diferente de zero, o Python não tentará escrever arquivos
.pyc
na importação de módulos fonte.Definida pela opção
-B
e pela variável de ambientePYTHONDONTWRITEBYTECODE
.
-
int Py_FrozenFlag¶
Suprime mensagens de erro ao calcular o caminho de pesquisa do módulo em
Py_GetPath()
.Sinalizador privado usado pelos programas
_freeze_module
efrozenmain
.
-
int Py_HashRandomizationFlag¶
Definida como
1
se a variável de ambientePYTHONHASHSEED
estiver definida como uma string não vazia.Se o sinalizador for diferente de zero, lê a variável de ambiente
PYTHONHASHSEED
para inicializar a semente de hash secreta.
-
int Py_IgnoreEnvironmentFlag¶
Ignora todas as variáveis de ambiente
PYTHON*
, por exemploPYTHONPATH
ePYTHONHOME
, que podem estar definidas.
-
int Py_InspectFlag¶
Quando um script é passado como primeiro argumento ou a opção
-c
é usada, entre no modo interativo após executar o script ou o comando, mesmo quandosys.stdin
não parece ser um terminal.Definida pela opção
-i
e pela variável de ambientePYTHONINSPECT
.
-
int Py_IsolatedFlag¶
Executa o Python no modo isolado. No modo isolado,
sys.path
não contém nem o diretório do script nem o diretório de pacotes de sites do usuário.Definida pela opção
-I
.Novo na versão 3.4.
-
int Py_LegacyWindowsFSEncodingFlag¶
Se o sinalizador for diferente de zero, use a codificação
mbcs
com o tratador de errosreplace
, em vez da codificação UTF-8 com o tratador de errossurrogatepass
, para a codificação do sistema de arquivos e tratador de erros e codificação do sistema de arquivos.Definida como
1
se a variável de ambientePYTHONLEGACYWINDOWSFSENCODING
estiver definida como uma string não vazia.Veja PEP 529 para mais detalhes.
Disponibilidade: Windows.
-
int Py_LegacyWindowsStdioFlag¶
Se o sinalizador for diferente de zero, usa
io.FileIO
em vez deio._WindowsConsoleIO
para fluxos padrãosys
.Definida como
1
se a variável de ambientePYTHONLEGACYWINDOWSSTDIO
estiver definida como uma string não vazia.Veja a PEP 528 para mais detalhes.
Disponibilidade: Windows.
-
int Py_NoSiteFlag¶
Desabilita a importação do módulo
site
e as manipulações dependentes do site desys.path
que isso acarreta. Também desabilita essas manipulações sesite
for explicitamente importado mais tarde (chamesite.main()
se você quiser que eles sejam acionados).Definida pela opção
-S
.
-
int Py_NoUserSiteDirectory¶
Não adiciona o
diretório site-packages de usuário
asys.path
.Definida pelas opções
-s
e-I
, e pela variável de ambientePYTHONNOUSERSITE
.
-
int Py_OptimizeFlag¶
Definida pela opção
-O
e pela variável de ambientePYTHONOPTIMIZE
.
-
int Py_QuietFlag¶
Não exibe as mensagens de direitos autorais e de versão nem mesmo no modo interativo.
Definida pela opção
-q
.Novo na versão 3.2.
-
int Py_UnbufferedStdioFlag¶
Força os fluxos stdout e stderr a não serem armazenados em buffer.
Definida pela opção
-u
e pela variável de ambientePYTHONUNBUFFERED
.
-
int Py_VerboseFlag¶
Exibe uma mensagem cada vez que um módulo é inicializado, mostrando o local (nome do arquivo ou módulo embutido) de onde ele é carregado. Se maior ou igual a
2
, exibe uma mensagem para cada arquivo que é verificado durante a busca por um módulo. Também fornece informações sobre a limpeza do módulo na saída.Definida pela a opção
-v
e a variável de ambientePYTHONVERBOSE
.
Inicializando e encerrando o interpretador¶
-
void Py_Initialize()¶
- Parte da ABI Estável.
Inicializa o interpretador Python. Em uma aplicação que incorpora o Python, isto deve ser chamado antes do uso de qualquer outra função do Python/C API; veja Antes da Inicialização do Python para algumas exceções.
This initializes the table of loaded modules (
sys.modules
), and creates the fundamental modulesbuiltins
,__main__
andsys
. It also initializes the module search path (sys.path
). It does not setsys.argv
; usePySys_SetArgvEx()
for that. This is a no-op when called for a second time (without callingPy_FinalizeEx()
first). There is no return value; it is a fatal error if the initialization fails.Nota
No Windows, altera o modo do console de
O_TEXT
paraO_BINARY
, o que também afetará usos não Python do console usando o Runtime C.
-
void Py_InitializeEx(int initsigs)¶
- Parte da ABI Estável.
This function works like
Py_Initialize()
if initsigs is1
. If initsigs is0
, it skips initialization registration of signal handlers, which might be useful when Python is embedded.
-
int Py_IsInitialized()¶
- Parte da ABI Estável.
Retorna true (diferente de zero) quando o interpretador Python foi inicializado, false (zero) se não. Após
Py_FinalizeEx()
ser chamado, isso retorna false até quePy_Initialize()
seja chamado novamente.
-
int Py_FinalizeEx()¶
- Parte da ABI Estável desde a versão 3.6.
Undo all initializations made by
Py_Initialize()
and subsequent use of Python/C API functions, and destroy all sub-interpreters (seePy_NewInterpreter()
below) that were created and not yet destroyed since the last call toPy_Initialize()
. Ideally, this frees all memory allocated by the Python interpreter. This is a no-op when called for a second time (without callingPy_Initialize()
again first). Normally the return value is0
. If there were errors during finalization (flushing buffered data),-1
is returned.This function is provided for a number of reasons. An embedding application might want to restart Python without having to restart the application itself. An application that has loaded the Python interpreter from a dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before exiting from the application.
Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause destructors (
__del__()
methods) to fail when they depend on other objects (even functions) or modules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions may not work properly if their initialization routine is called more than once; this can happen if an application callsPy_Initialize()
andPy_FinalizeEx()
more than once.Levanta um evento de auditoria
cpython._PySys_ClearAuditHooks
sem argumentos.Novo na versão 3.6.
-
void Py_Finalize()¶
- Parte da ABI Estável.
This is a backwards-compatible version of
Py_FinalizeEx()
that disregards the return value.
Process-wide parameters¶
-
int Py_SetStandardStreamEncoding(const char *encoding, const char *errors)¶
This API is kept for backward compatibility: setting
PyConfig.stdio_encoding
andPyConfig.stdio_errors
should be used instead, see Python Initialization Configuration.This function should be called before
Py_Initialize()
, if it is called at all. It specifies which encoding and error handling to use with standard IO, with the same meanings as instr.encode()
.It overrides
PYTHONIOENCODING
values, and allows embedding code to control IO encoding when the environment variable does not work.encoding and/or errors may be
NULL
to usePYTHONIOENCODING
and/or default values (depending on other settings).Note that
sys.stderr
always uses the “backslashreplace” error handler, regardless of this (or any other) setting.If
Py_FinalizeEx()
is called, this function will need to be called again in order to affect subsequent calls toPy_Initialize()
.Returns
0
if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).Novo na versão 3.4.
Obsoleto desde a versão 3.11.
-
void Py_SetProgramName(const wchar_t *name)¶
- Parte da ABI Estável.
This API is kept for backward compatibility: setting
PyConfig.program_name
should be used instead, see Python Initialization Configuration.Esta função deve ser chamada antes de
Py_Initialize()
ser chamada pela primeira vez, caso seja solicitada. Ela diz ao interpretador o valor do argumentoargv[0]
para a funçãomain()
do programa (convertido em caracteres amplos). Isto é utilizado porPy_GetPath()
e algumas outras funções abaixo para encontrar as bibliotecas de tempo de execução relativas ao executável do interpretador. O valor padrão é'python'
. O argumento deve apontar para um caractere string amplo terminado em zero no armazenamento estático, cujo conteúdo não mudará durante a execução do programa. Nenhum código no interpretador Python mudará o conteúdo deste armazenamento.Use
Py_DecodeLocale()
to decode a bytes string to get a wchar_* string.Obsoleto desde a versão 3.11.
-
wchar_t *Py_GetProgramName()¶
- Parte da ABI Estável.
Return the program name set with
Py_SetProgramName()
, or the default. The returned string points into static storage; the caller should not modify its value.This function should not be called before
Py_Initialize()
, otherwise it returnsNULL
.Alterado na versão 3.10: It now returns
NULL
if called beforePy_Initialize()
.
-
wchar_t *Py_GetPrefix()¶
- Parte da ABI Estável.
Return the prefix for installed platform-independent files. This is derived through a number of complicated rules from the program name set with
Py_SetProgramName()
and some environment variables; for example, if the program name is'/usr/local/bin/python'
, the prefix is'/usr/local'
. The returned string points into static storage; the caller should not modify its value. This corresponds to the prefix variable in the top-levelMakefile
and the--prefix
argument to the configure script at build time. The value is available to Python code assys.prefix
. It is only useful on Unix. See also the next function.This function should not be called before
Py_Initialize()
, otherwise it returnsNULL
.Alterado na versão 3.10: It now returns
NULL
if called beforePy_Initialize()
.
-
wchar_t *Py_GetExecPrefix()¶
- Parte da ABI Estável.
Return the exec-prefix for installed platform-dependent files. This is derived through a number of complicated rules from the program name set with
Py_SetProgramName()
and some environment variables; for example, if the program name is'/usr/local/bin/python'
, the exec-prefix is'/usr/local'
. The returned string points into static storage; the caller should not modify its value. This corresponds to the exec_prefix variable in the top-levelMakefile
and the--exec-prefix
argument to the configure script at build time. The value is available to Python code assys.exec_prefix
. It is only useful on Unix.Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed in the
/usr/local/plat
subtree while platform independent may be installed in/usr/local
.Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are another platform, and Intel machines running Linux are yet another platform. Different major revisions of the same operating system generally also form different platforms. Non-Unix operating systems are a different story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from the Python version by which they were compiled!).
System administrators will know how to configure the mount or automount programs to share
/usr/local
between platforms while having/usr/local/plat
be a different filesystem for each platform.This function should not be called before
Py_Initialize()
, otherwise it returnsNULL
.Alterado na versão 3.10: It now returns
NULL
if called beforePy_Initialize()
.
-
wchar_t *Py_GetProgramFullPath()¶
- Parte da ABI Estável.
Return the full program name of the Python executable; this is computed as a side-effect of deriving the default module search path from the program name (set by
Py_SetProgramName()
above). The returned string points into static storage; the caller should not modify its value. The value is available to Python code assys.executable
.This function should not be called before
Py_Initialize()
, otherwise it returnsNULL
.Alterado na versão 3.10: It now returns
NULL
if called beforePy_Initialize()
.
-
wchar_t *Py_GetPath()¶
- Parte da ABI Estável.
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName()
above) and some environment variables. The returned string consists of a series of directory names separated by a platform dependent delimiter character. The delimiter character is':'
on Unix and macOS,';'
on Windows. The returned string points into static storage; the caller should not modify its value. The listsys.path
is initialized with this value on interpreter startup; it can be (and usually is) modified later to change the search path for loading modules.This function should not be called before
Py_Initialize()
, otherwise it returnsNULL
.Alterado na versão 3.10: It now returns
NULL
if called beforePy_Initialize()
.
-
void Py_SetPath(const wchar_t*)¶
- Parte da ABI Estável desde a versão 3.7.
This API is kept for backward compatibility: setting
PyConfig.module_search_paths
andPyConfig.module_search_paths_set
should be used instead, see Python Initialization Configuration.Set the default module search path. If this function is called before
Py_Initialize()
, thenPy_GetPath()
won’t attempt to compute a default search path but uses the one provided instead. This is useful if Python is embedded by an application that has full knowledge of the location of all modules. The path components should be separated by the platform dependent delimiter character, which is':'
on Unix and macOS,';'
on Windows.This also causes
sys.executable
to be set to the program full path (seePy_GetProgramFullPath()
) and forsys.prefix
andsys.exec_prefix
to be empty. It is up to the caller to modify these if required after callingPy_Initialize()
.Use
Py_DecodeLocale()
to decode a bytes string to get a wchar_* string.O argumento caminho é copiado internamente, então o chamador pode liberá-lo depois da finalização da chamada.
Alterado na versão 3.8: O caminho completo do programa agora é utilizado para
sys.executable
, em vez do nome do programa.Obsoleto desde a versão 3.11.
-
const char *Py_GetVersion()¶
- Parte da ABI Estável.
Retorna a verão deste interpretador Python. Esta é uma string que se parece com
"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"
The first word (up to the first space character) is the current Python version; the first characters are the major and minor version separated by a period. The returned string points into static storage; the caller should not modify its value. The value is available to Python code as
sys.version
.See also the
Py_Version
constant.
-
const char *Py_GetPlatform()¶
- Parte da ABI Estável.
Return the platform identifier for the current platform. On Unix, this is formed from the “official” name of the operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is also known as SunOS 5.x, the value is
'sunos5'
. On macOS, it is'darwin'
. On Windows, it is'win'
. The returned string points into static storage; the caller should not modify its value. The value is available to Python code assys.platform
.
-
const char *Py_GetCopyright()¶
- Parte da ABI Estável.
Retorna a string oficial de direitos autoriais para a versão atual do Python, por exemplo
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'
The returned string points into static storage; the caller should not modify its value. The value is available to Python code as
sys.copyright
.
-
const char *Py_GetCompiler()¶
- Parte da ABI Estável.
Retorna uma indicação do compilador usado para construir a atual versão do Python, em colchetes, por exemplo:
"[GCC 2.7.2.2]"
The returned string points into static storage; the caller should not modify its value. The value is available to Python code as part of the variable
sys.version
.
-
const char *Py_GetBuildInfo()¶
- Parte da ABI Estável.
Retorna informação sobre o número de sequência e a data e hora da construção da instância atual do interpretador Python, por exemplo
"#67, Aug 1 1997, 22:34:28"
The returned string points into static storage; the caller should not modify its value. The value is available to Python code as part of the variable
sys.version
.
-
void PySys_SetArgvEx(int argc, wchar_t **argv, int updatepath)¶
- Parte da ABI Estável.
This API is kept for backward compatibility: setting
PyConfig.argv
,PyConfig.parse_argv
andPyConfig.safe_path
should be used instead, see Python Initialization Configuration.Set
sys.argv
based on argc and argv. These parameters are similar to those passed to the program’smain()
function with the difference that the first entry should refer to the script file to be executed rather than the executable hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty string. If this function fails to initializesys.argv
, a fatal condition is signalled usingPy_FatalError()
.Se updatepath é zero, isto é tudo o que a função faz. Se updatepath não é zero, a função também modifica
sys.path
de acordo com o seguinte algoritmo:If the name of an existing script is passed in
argv[0]
, the absolute path of the directory where the script is located is prepended tosys.path
.Otherwise (that is, if argc is
0
orargv[0]
doesn’t point to an existing file name), an empty string is prepended tosys.path
, which is the same as prepending the current working directory ("."
).
Use
Py_DecodeLocale()
to decode a bytes string to get a wchar_* string.See also
PyConfig.orig_argv
andPyConfig.argv
members of the Python Initialization Configuration.Nota
It is recommended that applications embedding the Python interpreter for purposes other than executing a single script pass
0
as updatepath, and updatesys.path
themselves if desired. See CVE-2008-5983.On versions before 3.1.3, you can achieve the same effect by manually popping the first
sys.path
element after having calledPySys_SetArgv()
, for example using:PyRun_SimpleString("import sys; sys.path.pop(0)\n");
Novo na versão 3.1.3.
Obsoleto desde a versão 3.11.
-
void PySys_SetArgv(int argc, wchar_t **argv)¶
- Parte da ABI Estável.
This API is kept for backward compatibility: setting
PyConfig.argv
andPyConfig.parse_argv
should be used instead, see Python Initialization Configuration.This function works like
PySys_SetArgvEx()
with updatepath set to1
unless the python interpreter was started with the-I
.Use
Py_DecodeLocale()
to decode a bytes string to get a wchar_* string.See also
PyConfig.orig_argv
andPyConfig.argv
members of the Python Initialization Configuration.Alterado na versão 3.4: The updatepath value depends on
-I
.Obsoleto desde a versão 3.11.
-
void Py_SetPythonHome(const wchar_t *home)¶
- Parte da ABI Estável.
This API is kept for backward compatibility: setting
PyConfig.home
should be used instead, see Python Initialization Configuration.Set the default “home” directory, that is, the location of the standard Python libraries. See
PYTHONHOME
for the meaning of the argument string.The argument should point to a zero-terminated character string in static storage whose contents will not change for the duration of the program’s execution. No code in the Python interpreter will change the contents of this storage.
Use
Py_DecodeLocale()
to decode a bytes string to get a wchar_* string.Obsoleto desde a versão 3.11.
-
wchar_t *Py_GetPythonHome()¶
- Parte da ABI Estável.
Return the default “home”, that is, the value set by a previous call to
Py_SetPythonHome()
, or the value of thePYTHONHOME
environment variable if it is set.This function should not be called before
Py_Initialize()
, otherwise it returnsNULL
.Alterado na versão 3.10: It now returns
NULL
if called beforePy_Initialize()
.
Thread State and the Global Interpreter Lock¶
The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example, when two threads simultaneously increment the reference count of the same object, the reference count could end up being incremented only once instead of twice.
Therefore, the rule exists that only the thread that has acquired the
GIL may operate on Python objects or call Python/C API functions.
In order to emulate concurrency of execution, the interpreter regularly
tries to switch threads (see sys.setswitchinterval()
). The lock is also
released around potentially blocking I/O operations like reading or writing
a file, so that other Python threads can run in the meantime.
The Python interpreter keeps some thread-specific bookkeeping information
inside a data structure called PyThreadState
. There’s also one
global variable pointing to the current PyThreadState
: it can
be retrieved using PyThreadState_Get()
.
Releasing the GIL from extension code¶
A maioria dos códigos de extensão que manipulam a GIL tem a seguinte estrutura:
Save the thread state in a local variable.
Release the global interpreter lock.
... Do some blocking I/O operation ...
Reacquire the global interpreter lock.
Restore the thread state from the local variable.
This is so common that a pair of macros exists to simplify it:
Py_BEGIN_ALLOW_THREADS
... Do some blocking I/O operation ...
Py_END_ALLOW_THREADS
A macro Py_BEGIN_ALLOW_THREADS
abre um novo bloco e declara uma variável local oculta; a macro Py_END_ALLOW_THREADS
fecha o bloco.
The block above expands to the following code:
PyThreadState *_save;
_save = PyEval_SaveThread();
... Do some blocking I/O operation ...
PyEval_RestoreThread(_save);
Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is released (since another thread could immediately acquire the lock and store its own thread state in the global variable). Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.
Nota
Calling system I/O functions is the most common use case for releasing
the GIL, but it can also be useful before calling long-running computations
which don’t need access to Python objects, such as compression or
cryptographic functions operating over memory buffers. For example, the
standard zlib
and hashlib
modules release the GIL when
compressing or hashing data.
Non-Python created threads¶
When threads are created using the dedicated Python APIs (such as the
threading
module), a thread state is automatically associated to them
and the code showed above is therefore correct. However, when threads are
created from C (for example by a third-party library with its own thread
management), they don’t hold the GIL, nor is there a thread state structure
for them.
If you need to call Python code from these threads (often this will be part of a callback API provided by the aforementioned third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.
The PyGILState_Ensure()
and PyGILState_Release()
functions do
all of the above automatically. The typical idiom for calling into Python
from a C thread is:
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */
/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);
Note that the PyGILState_*
functions assume there is only one global
interpreter (created automatically by Py_Initialize()
). Python
supports the creation of additional interpreters (using
Py_NewInterpreter()
), but mixing multiple interpreters and the
PyGILState_*
API is unsupported.
Cuidados com o uso de fork()¶
Another important thing to note about threads is their behaviour in the face
of the C fork()
call. On most systems with fork()
, after a
process forks only the thread that issued the fork will exist. This has a
concrete impact both on how locks must be handled and on all stored state
in CPython’s runtime.
The fact that only the “current” thread remains
means any locks held by other threads will never be released. Python solves
this for os.fork()
by acquiring the locks it uses internally before
the fork, and releasing them afterwards. In addition, it resets any
Lock Objects in the child. When extending or embedding Python, there
is no way to inform Python of additional (non-Python) locks that need to be
acquired before or reset after a fork. OS facilities such as
pthread_atfork()
would need to be used to accomplish the same thing.
Additionally, when extending or embedding Python, calling fork()
directly rather than through os.fork()
(and returning to or calling
into Python) may result in a deadlock by one of Python’s internal locks
being held by a thread that is defunct after the fork.
PyOS_AfterFork_Child()
tries to reset the necessary locks, but is not
always able to.
The fact that all other threads go away also means that CPython’s
runtime state there must be cleaned up properly, which os.fork()
does. This means finalizing all other PyThreadState
objects
belonging to the current interpreter and all other
PyInterpreterState
objects. Due to this and the special
nature of the “main” interpreter,
fork()
should only be called in that interpreter’s “main”
thread, where the CPython global runtime was originally initialized.
The only exception is if exec()
will be called immediately
after.
High-level API¶
Estes são os tipos e as funções mais comumente usados na escrita de um código de extensão em C, ou ao incorporar o interpretador Python:
-
type PyInterpreterState¶
- Parte da API Limitada (como uma estrutura opaca).
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the same interpreter share their module administration and a few other internal items. There are no public members in this structure.
Threads belonging to different interpreters initially share nothing, except process state like available memory, open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter they belong.
-
type PyThreadState¶
- Parte da API Limitada (como uma estrutura opaca).
This data structure represents the state of a single thread. The only public data member is:
-
PyInterpreterState *interp¶
This thread’s interpreter state.
-
PyInterpreterState *interp¶
-
void PyEval_InitThreads()¶
- Parte da ABI Estável.
Função descontinuada que não faz nada.
In Python 3.6 and older, this function created the GIL if it didn’t exist.
Alterado na versão 3.9: The function now does nothing.
Alterado na versão 3.7: Esta função agora é chamada por
Py_Initialize()
, então não há mais necessidade de você chamá-la.Alterado na versão 3.2: Esta função não pode mais ser chamada antes de
Py_Initialize()
.Obsoleto desde a versão 3.9.
-
int PyEval_ThreadsInitialized()¶
- Parte da ABI Estável.
Returns a non-zero value if
PyEval_InitThreads()
has been called. This function can be called without holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded.Alterado na versão 3.7: The GIL is now initialized by
Py_Initialize()
.Obsoleto desde a versão 3.9.
-
PyThreadState *PyEval_SaveThread()¶
- Parte da ABI Estável.
Release the global interpreter lock (if it has been created) and reset the thread state to
NULL
, returning the previous thread state (which is notNULL
). If the lock has been created, the current thread must have acquired it.
-
void PyEval_RestoreThread(PyThreadState *tstate)¶
- Parte da ABI Estável.
Acquire the global interpreter lock (if it has been created) and set the thread state to tstate, which must not be
NULL
. If the lock has been created, the current thread must not have acquired it, otherwise deadlock ensues.Nota
Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread was not created by Python. You can use
_Py_IsFinalizing()
orsys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.
-
PyThreadState *PyThreadState_Get()¶
- Parte da ABI Estável.
Return the current thread state. The global interpreter lock must be held. When the current thread state is
NULL
, this issues a fatal error (so that the caller needn’t check forNULL
).
-
PyThreadState *PyThreadState_Swap(PyThreadState *tstate)¶
- Parte da ABI Estável.
Swap the current thread state with the thread state given by the argument tstate, which may be
NULL
. The global interpreter lock must be held and is not released.
The following functions use thread-local storage, and are not compatible with sub-interpreters:
-
PyGILState_STATE PyGILState_Ensure()¶
- Parte da ABI Estável.
Certifique-se de que a thread atual esteja pronta para chamar a API Python C, independentemente do estado atual do Python ou da trava global do interpretador (GIL). Isso pode ser chamado quantas vezes desejar por uma thread, desde que cada chamada corresponda a uma chamada para
PyGILState_Release()
. Em geral, outras APIs relacionadas a threads podem ser usadas entre chamadasPyGILState_Ensure()
ePyGILState_Release()
desde que o estado da thread seja restaurado ao seu estado anterior antes de Release(). Por exemplo, o uso normal das macrosPy_BEGIN_ALLOW_THREADS
ePy_END_ALLOW_THREADS
é aceitável.The return value is an opaque “handle” to the thread state when
PyGILState_Ensure()
was called, and must be passed toPyGILState_Release()
to ensure Python is left in the same state. Even though recursive calls are allowed, these handles cannot be shared - each unique call toPyGILState_Ensure()
must save the handle for its call toPyGILState_Release()
.When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure is a fatal error.
Nota
Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread was not created by Python. You can use
_Py_IsFinalizing()
orsys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.
-
void PyGILState_Release(PyGILState_STATE)¶
- Parte da ABI Estável.
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the corresponding
PyGILState_Ensure()
call (but generally this state will be unknown to the caller, hence the use of the GILState API).Every call to
PyGILState_Ensure()
must be matched by a call toPyGILState_Release()
on the same thread.
-
PyThreadState *PyGILState_GetThisThreadState()¶
- Parte da ABI Estável.
Get the current thread state for this thread. May return
NULL
if no GILState API has been used on the current thread. Note that the main thread always has such a thread-state, even if no auto-thread-state call has been made on the main thread. This is mainly a helper/diagnostic function.
-
int PyGILState_Check()¶
Return
1
if the current thread is holding the GIL and0
otherwise. This function can be called from any thread at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return1
. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or otherwise behave differently.Novo na versão 3.4.
The following macros are normally used without a trailing semicolon; look for example usage in the Python source distribution.
-
Py_BEGIN_ALLOW_THREADS¶
- Parte da ABI Estável.
Esta macro se expande para
{ PyThreadState *_save; _save = PyEval_SaveThread();
. Observe que ele contém uma chave de abertura; ele deve ser combinado com a seguinte macroPy_END_ALLOW_THREADS
. Veja acima para uma discussão mais aprofundada desta macro.
-
Py_END_ALLOW_THREADS¶
- Parte da ABI Estável.
Esta macro se expande para
PyEval_RestoreThread(_save); }
. Observe que ele contém uma chave de fechamento; ele deve ser combinado com uma macroPy_BEGIN_ALLOW_THREADS
anterior. Veja acima para uma discussão mais aprofundada desta macro.
-
Py_BLOCK_THREADS¶
- Parte da ABI Estável.
Esta macro se expande para
PyEval_RestoreThread(_save);
: é equivalente aPy_END_ALLOW_THREADS
sem a chave de fechamento.
-
Py_UNBLOCK_THREADS¶
- Parte da ABI Estável.
Esta macro se expande para
_save = PyEval_SaveThread();
: é equivalente aPy_BEGIN_ALLOW_THREADS
sem a chave de abertura e declaração de variável.
Low-level API¶
All of the following functions must be called after Py_Initialize()
.
Alterado na versão 3.7: Py_Initialize()
now initializes the GIL.
-
PyInterpreterState *PyInterpreterState_New()¶
- Parte da ABI Estável.
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.
Levanta um evento de auditoria
cpython.PyInterpreterState_New
sem argumentos.
-
void PyInterpreterState_Clear(PyInterpreterState *interp)¶
- Parte da ABI Estável.
Reset all information in an interpreter state object. The global interpreter lock must be held.
Levanta um evento de auditoria
cpython.PyInterpreterState_Clear
sem argumentos.
-
void PyInterpreterState_Delete(PyInterpreterState *interp)¶
- Parte da ABI Estável.
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must have been reset with a previous call to
PyInterpreterState_Clear()
.
-
PyThreadState *PyThreadState_New(PyInterpreterState *interp)¶
- Parte da ABI Estável.
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.
-
void PyThreadState_Clear(PyThreadState *tstate)¶
- Parte da ABI Estável.
Reset all information in a thread state object. The global interpreter lock must be held.
Alterado na versão 3.9: This function now calls the
PyThreadState.on_delete
callback. Previously, that happened inPyThreadState_Delete()
.
-
void PyThreadState_Delete(PyThreadState *tstate)¶
- Parte da ABI Estável.
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been reset with a previous call to
PyThreadState_Clear()
.
-
void PyThreadState_DeleteCurrent(void)¶
Destroy the current thread state and release the global interpreter lock. Like
PyThreadState_Delete()
, the global interpreter lock need not be held. The thread state must have been reset with a previous call toPyThreadState_Clear()
.
-
PyFrameObject *PyThreadState_GetFrame(PyThreadState *tstate)¶
- Parte da ABI Estável desde a versão 3.10.
Get the current frame of the Python thread state tstate.
Return a strong reference. Return
NULL
if no frame is currently executing.See also
PyEval_GetFrame()
.tstate must not be
NULL
.Novo na versão 3.9.
-
uint64_t PyThreadState_GetID(PyThreadState *tstate)¶
- Parte da ABI Estável desde a versão 3.10.
Get the unique thread state identifier of the Python thread state tstate.
tstate must not be
NULL
.Novo na versão 3.9.
-
PyInterpreterState *PyThreadState_GetInterpreter(PyThreadState *tstate)¶
- Parte da ABI Estável desde a versão 3.10.
Get the interpreter of the Python thread state tstate.
tstate must not be
NULL
.Novo na versão 3.9.
-
void PyThreadState_EnterTracing(PyThreadState *tstate)¶
Suspend tracing and profiling in the Python thread state tstate.
Resume them using the
PyThreadState_LeaveTracing()
function.Novo na versão 3.11.
-
void PyThreadState_LeaveTracing(PyThreadState *tstate)¶
Resume tracing and profiling in the Python thread state tstate suspended by the
PyThreadState_EnterTracing()
function.See also
PyEval_SetTrace()
andPyEval_SetProfile()
functions.Novo na versão 3.11.
-
PyInterpreterState *PyInterpreterState_Get(void)¶
- Parte da ABI Estável desde a versão 3.9.
Get the current interpreter.
Issue a fatal error if there no current Python thread state or no current interpreter. It cannot return NULL.
The caller must hold the GIL.
Novo na versão 3.9.
-
int64_t PyInterpreterState_GetID(PyInterpreterState *interp)¶
- Parte da ABI Estável desde a versão 3.7.
Return the interpreter’s unique ID. If there was any error in doing so then
-1
is returned and an error is set.The caller must hold the GIL.
Novo na versão 3.7.
-
PyObject *PyInterpreterState_GetDict(PyInterpreterState *interp)¶
- Parte da ABI Estável desde a versão 3.8.
Return a dictionary in which interpreter-specific data may be stored. If this function returns
NULL
then no exception has been raised and the caller should assume no interpreter-specific dict is available.This is not a replacement for
PyModule_GetState()
, which extensions should use to store interpreter-specific state information.Novo na versão 3.8.
-
typedef PyObject *(*_PyFrameEvalFunction)(PyThreadState *tstate, _PyInterpreterFrame *frame, int throwflag)¶
Type of a frame evaluation function.
The throwflag parameter is used by the
throw()
method of generators: if non-zero, handle the current exception.Alterado na versão 3.9: The function now takes a tstate parameter.
Alterado na versão 3.11: The frame parameter changed from
PyFrameObject*
to_PyInterpreterFrame*
.
-
_PyFrameEvalFunction _PyInterpreterState_GetEvalFrameFunc(PyInterpreterState *interp)¶
Get the frame evaluation function.
See the PEP 523 “Adding a frame evaluation API to CPython”.
Novo na versão 3.9.
-
void _PyInterpreterState_SetEvalFrameFunc(PyInterpreterState *interp, _PyFrameEvalFunction eval_frame)¶
Set the frame evaluation function.
See the PEP 523 “Adding a frame evaluation API to CPython”.
Novo na versão 3.9.
-
PyObject *PyThreadState_GetDict()¶
- Retorna valor: Referência emprestada. Parte da ABI Estável.
Return a dictionary in which extensions can store thread-specific state information. Each extension should use a unique key to use to store state in the dictionary. It is okay to call this function when no current thread state is available. If this function returns
NULL
, no exception has been raised and the caller should assume no current thread state is available.
-
int PyThreadState_SetAsyncExc(unsigned long id, PyObject *exc)¶
- Parte da ABI Estável.
Asynchronously raise an exception in a thread. The id argument is the thread id of the target thread; exc is the exception object to be raised. This function does not steal any references to exc. To prevent naive misuse, you must write your own C extension to call this. Must be called with the GIL held. Returns the number of thread states modified; this is normally one, but will be zero if the thread id isn’t found. If exc is
NULL
, the pending exception (if any) for the thread is cleared. This raises no exceptions.Alterado na versão 3.7: The type of the id parameter changed from long to unsigned long.
-
void PyEval_AcquireThread(PyThreadState *tstate)¶
- Parte da ABI Estável.
Acquire the global interpreter lock and set the current thread state to tstate, which must not be
NULL
. The lock must have been created earlier. If this thread already has the lock, deadlock ensues.Nota
Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread was not created by Python. You can use
_Py_IsFinalizing()
orsys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.Alterado na versão 3.8: Updated to be consistent with
PyEval_RestoreThread()
,Py_END_ALLOW_THREADS()
, andPyGILState_Ensure()
, and terminate the current thread if called while the interpreter is finalizing.PyEval_RestoreThread()
is a higher-level function which is always available (even when threads have not been initialized).
-
void PyEval_ReleaseThread(PyThreadState *tstate)¶
- Parte da ABI Estável.
Reset the current thread state to
NULL
and release the global interpreter lock. The lock must have been created earlier and must be held by the current thread. The tstate argument, which must not beNULL
, is only used to check that it represents the current thread state — if it isn’t, a fatal error is reported.PyEval_SaveThread()
is a higher-level function which is always available (even when threads have not been initialized).
-
void PyEval_AcquireLock()¶
- Parte da ABI Estável.
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock, a deadlock ensues.
Obsoleto desde a versão 3.2: This function does not update the current thread state. Please use
PyEval_RestoreThread()
orPyEval_AcquireThread()
instead.Nota
Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the thread was not created by Python. You can use
_Py_IsFinalizing()
orsys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.Alterado na versão 3.8: Updated to be consistent with
PyEval_RestoreThread()
,Py_END_ALLOW_THREADS()
, andPyGILState_Ensure()
, and terminate the current thread if called while the interpreter is finalizing.
-
void PyEval_ReleaseLock()¶
- Parte da ABI Estável.
Release the global interpreter lock. The lock must have been created earlier.
Obsoleto desde a versão 3.2: This function does not update the current thread state. Please use
PyEval_SaveThread()
orPyEval_ReleaseThread()
instead.
Sub-interpreter support¶
While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.
The “main” interpreter is the first one created when the runtime initializes.
It is usually the only Python interpreter in a process. Unlike sub-interpreters,
the main interpreter has unique process-global responsibilities like signal
handling. It is also responsible for execution during runtime initialization and
is usually the active interpreter during runtime finalization. The
PyInterpreterState_Main()
function returns a pointer to its state.
You can switch between sub-interpreters using the PyThreadState_Swap()
function. You can create and destroy them using the following functions:
-
PyThreadState *Py_NewInterpreter()¶
- Parte da ABI Estável.
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code. In particular, the new interpreter has separate, independent versions of all imported modules, including the fundamental modules
builtins
,__main__
andsys
. The table of loaded modules (sys.modules
) and the module search path (sys.path
) are also separate. The new environment has nosys.argv
variable. It has new standard I/O stream file objectssys.stdin
,sys.stdout
andsys.stderr
(however these refer to the same underlying file descriptors).The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation of the new interpreter is unsuccessful,
NULL
is returned; no exception is set since the exception state is stored in the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the global interpreter lock must be held before calling this function and is still held when it returns; however, unlike most other Python/C API functions, there needn’t be a current thread state on entry.)Extension modules are shared between (sub-)interpreters as follows:
For modules using multi-phase initialization, e.g.
PyModule_FromDefAndSpec()
, a separate module object is created and initialized for each interpreter. Only C-level static and global variables are shared between these module objects.For modules using single-phase initialization, e.g.
PyModule_Create()
, the first time a particular extension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When the same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents of this copy; the extension’sinit
function is not called. Objects in the module’s dictionary thus end up shared across (sub-)interpreters, which might cause unwanted behavior (see Bugs and caveats below).Note that this is different from what happens when an extension is imported after the interpreter has been completely re-initialized by calling
Py_FinalizeEx()
andPy_Initialize()
; in that case, the extension’sinitmodule
function is called again. As with multi-phase initialization, this means that only C-level static and global variables are shared between these modules.
-
void Py_EndInterpreter(PyThreadState *tstate)¶
- Parte da ABI Estável.
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current thread state. See the discussion of thread states below. When the call returns, the current thread state is
NULL
. All thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before calling this function and is still held when it returns.)Py_FinalizeEx()
will destroy all sub-interpreters that haven’t been explicitly destroyed at that point.
Bugs and caveats¶
Because sub-interpreters (and the main interpreter) are part of the same
process, the insulation between them isn’t perfect — for example, using
low-level file operations like os.close()
they can
(accidentally or maliciously) affect each other’s open files. Because of the
way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when using single-phase initialization
or (static) global variables.
It is possible to insert objects created in one sub-interpreter into
a namespace of another (sub-)interpreter; this should be avoided if possible.
Special care should be taken to avoid sharing user-defined functions, methods, instances or classes between sub-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dictionary of loaded modules. It is equally important to avoid sharing objects from which the above are reachable.
Also note that combining this functionality with PyGILState_*
APIs
is delicate, because these APIs assume a bijection between Python thread states
and OS-level threads, an assumption broken by the presence of sub-interpreters.
It is highly recommended that you don’t switch sub-interpreters between a pair
of matching PyGILState_Ensure()
and PyGILState_Release()
calls.
Furthermore, extensions (such as ctypes
) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using
sub-interpreters.
Notificações assíncronas¶
A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the form of a function pointer and a void pointer argument.
-
int Py_AddPendingCall(int (*func)(void*), void *arg)¶
- Parte da ABI Estável.
Schedule a function to be called from the main interpreter thread. On success,
0
is returned and func is queued for being called in the main thread. On failure,-1
is returned without setting any exception.When successfully queued, func will be eventually called from the main interpreter thread with the argument arg. It will be called asynchronously with respect to normally running Python code, but with both these conditions met:
on a bytecode boundary;
with the main thread holding the global interpreter lock (func can therefore use the full C API).
func must return
0
on success, or-1
on failure with an exception set. func won’t be interrupted to perform another asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock is released.This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.
To call this function in a subinterpreter, the caller must hold the GIL. Otherwise, the function func can be scheduled to be called from the wrong interpreter.
Aviso
This is a low-level function, only useful for very special cases. There is no guarantee that func will be called as quick as possible. If the main thread is busy executing a system call, func won’t be called before the system call returns. This function is generally not suitable for calling Python code from arbitrary C threads. Instead, use the PyGILState API.
Novo na versão 3.1.
Alterado na versão 3.9: If this function is called in a subinterpreter, the function func is now scheduled to be called from the subinterpreter, rather than being called from the main interpreter. Each subinterpreter now has its own list of scheduled calls.
Profiling and Tracing¶
The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are used for profiling, debugging, and coverage analysis tools.
This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported to the Python-level trace functions in previous versions.
-
typedef int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)¶
The type of the trace function registered using
PyEval_SetProfile()
andPyEval_SetTrace()
. The first parameter is the object passed to the registration function as obj, frame is the frame object to which the event pertains, what is one of the constantsPyTrace_CALL
,PyTrace_EXCEPTION
,PyTrace_LINE
,PyTrace_RETURN
,PyTrace_C_CALL
,PyTrace_C_EXCEPTION
,PyTrace_C_RETURN
, orPyTrace_OPCODE
, and arg depends on the value of what:Value of what
Meaning of arg
Always
Py_None
.Exception information as returned by
sys.exc_info()
.Always
Py_None
.Value being returned to the caller, or
NULL
if caused by an exception.Function object being called.
Function object being called.
Function object being called.
Always
Py_None
.
-
int PyTrace_CALL¶
The value of the what parameter to a
Py_tracefunc
function when a new call to a function or method is being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not reported as there is no control transfer to the Python bytecode in the corresponding frame.
-
int PyTrace_EXCEPTION¶
The value of the what parameter to a
Py_tracefunc
function when an exception has been raised. The callback function is called with this value for what when after any bytecode is processed after which the exception becomes set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives these events; they are not needed by the profiler.
-
int PyTrace_LINE¶
The value passed as the what parameter to a
Py_tracefunc
function (but not a profiling function) when a line-number event is being reported. It may be disabled for a frame by settingf_trace_lines
to 0 on that frame.
-
int PyTrace_RETURN¶
The value for the what parameter to
Py_tracefunc
functions when a call is about to return.
-
int PyTrace_C_CALL¶
The value for the what parameter to
Py_tracefunc
functions when a C function is about to be called.
-
int PyTrace_C_EXCEPTION¶
The value for the what parameter to
Py_tracefunc
functions when a C function has raised an exception.
-
int PyTrace_C_RETURN¶
The value for the what parameter to
Py_tracefunc
functions when a C function has returned.
-
int PyTrace_OPCODE¶
The value for the what parameter to
Py_tracefunc
functions (but not profiling functions) when a new opcode is about to be executed. This event is not emitted by default: it must be explicitly requested by settingf_trace_opcodes
to 1 on the frame.
-
void PyEval_SetProfile(Py_tracefunc func, PyObject *obj)¶
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be any Python object, or
NULL
. If the profile function needs to maintain state, using a different value for obj for each thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events exceptPyTrace_LINE
PyTrace_OPCODE
andPyTrace_EXCEPTION
.See also the
sys.setprofile()
function.The caller must hold the GIL.
-
void PyEval_SetTrace(Py_tracefunc func, PyObject *obj)¶
Set the tracing function to func. This is similar to
PyEval_SetProfile()
, except the tracing function does receive line-number events and per-opcode events, but does not receive any event related to C function objects being called. Any trace function registered usingPyEval_SetTrace()
will not receivePyTrace_C_CALL
,PyTrace_C_EXCEPTION
orPyTrace_C_RETURN
as a value for the what parameter.See also the
sys.settrace()
function.The caller must hold the GIL.
Advanced Debugger Support¶
These functions are only intended to be used by advanced debugging tools.
-
PyInterpreterState *PyInterpreterState_Head()¶
Return the interpreter state object at the head of the list of all such objects.
-
PyInterpreterState *PyInterpreterState_Main()¶
Return the main interpreter state object.
-
PyInterpreterState *PyInterpreterState_Next(PyInterpreterState *interp)¶
Return the next interpreter state object after interp from the list of all such objects.
-
PyThreadState *PyInterpreterState_ThreadHead(PyInterpreterState *interp)¶
Return the pointer to the first
PyThreadState
object in the list of threads associated with the interpreter interp.
-
PyThreadState *PyThreadState_Next(PyThreadState *tstate)¶
Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState
object.
Thread Local Storage Support¶
The Python interpreter provides low-level support for thread-local storage
(TLS) which wraps the underlying native TLS implementation to support the
Python-level thread local storage API (threading.local
). The
CPython C level APIs are similar to those offered by pthreads and Windows:
use a thread key and functions to associate a void* value per
thread.
The GIL does not need to be held when calling these functions; they supply their own locking.
Note that Python.h
does not include the declaration of the TLS APIs,
you need to include pythread.h
to use thread-local storage.
Nota
None of these API functions handle memory management on behalf of the void* values. You need to allocate and deallocate them yourself. If the void* values happen to be PyObject*, these functions don’t do refcount operations on them either.
Thread Specific Storage (TSS) API¶
TSS API is introduced to supersede the use of the existing TLS API within the
CPython interpreter. This API uses a new type Py_tss_t
instead of
int to represent thread keys.
Novo na versão 3.7.
Ver também
“A New C-API for Thread-Local Storage in CPython” (PEP 539)
-
type Py_tss_t¶
This data structure represents the state of a thread key, the definition of which may depend on the underlying TLS implementation, and it has an internal field representing the key’s initialization state. There are no public members in this structure.
Quando Py_LIMITED_API não é definido, a alocação estática deste tipo por
Py_tss_NEEDS_INIT
é permitida.
-
Py_tss_NEEDS_INIT¶
This macro expands to the initializer for
Py_tss_t
variables. Note that this macro won’t be defined with Py_LIMITED_API.
Alocação dinâmica¶
Dynamic allocation of the Py_tss_t
, required in extension modules
built with Py_LIMITED_API, where static allocation of this type
is not possible due to its implementation being opaque at build time.
-
Py_tss_t *PyThread_tss_alloc()¶
- Parte da ABI Estável desde a versão 3.7.
Retorna um valor que é o mesmo estado de um valor inicializado com
Py_tss_NEEDS_INIT
, ouNULL
no caso de falha de alocação dinâmica.
-
void PyThread_tss_free(Py_tss_t *key)¶
- Parte da ABI Estável desde a versão 3.7.
Free the given key allocated by
PyThread_tss_alloc()
, after first callingPyThread_tss_delete()
to ensure any associated thread locals have been unassigned. This is a no-op if the key argument isNULL
.Nota
A freed key becomes a dangling pointer. You should reset the key to
NULL
.
Métodos¶
The parameter key of these functions must not be NULL
. Moreover, the
behaviors of PyThread_tss_set()
and PyThread_tss_get()
are
undefined if the given Py_tss_t
has not been initialized by
PyThread_tss_create()
.
-
int PyThread_tss_is_created(Py_tss_t *key)¶
- Parte da ABI Estável desde a versão 3.7.
Return a non-zero value if the given
Py_tss_t
has been initialized byPyThread_tss_create()
.
-
int PyThread_tss_create(Py_tss_t *key)¶
- Parte da ABI Estável desde a versão 3.7.
Retorna um valor zero na inicialização bem-sucedida de uma chave TSS. O comportamento é indefinido se o valor apontado pelo argumento key não for inicializado por
Py_tss_NEEDS_INIT
. Essa função pode ser chamada repetidamente na mesma tecla – chamá-la em uma tecla já inicializada não funciona e retorna imediatamente com sucesso.
-
void PyThread_tss_delete(Py_tss_t *key)¶
- Parte da ABI Estável desde a versão 3.7.
Destroy a TSS key to forget the values associated with the key across all threads, and change the key’s initialization state to uninitialized. A destroyed key is able to be initialized again by
PyThread_tss_create()
. This function can be called repeatedly on the same key – calling it on an already destroyed key is a no-op.
-
int PyThread_tss_set(Py_tss_t *key, void *value)¶
- Parte da ABI Estável desde a versão 3.7.
Return a zero value to indicate successfully associating a void* value with a TSS key in the current thread. Each thread has a distinct mapping of the key to a void* value.
-
void *PyThread_tss_get(Py_tss_t *key)¶
- Parte da ABI Estável desde a versão 3.7.
Return the void* value associated with a TSS key in the current thread. This returns
NULL
if no value is associated with the key in the current thread.
Thread Local Storage (TLS) API¶
Obsoleto desde a versão 3.7: This API is superseded by Thread Specific Storage (TSS) API.
Nota
This version of the API does not support platforms where the native TLS key
is defined in a way that cannot be safely cast to int
. On such platforms,
PyThread_create_key()
will return immediately with a failure status,
and the other TLS functions will all be no-ops on such platforms.
Due to the compatibility problem noted above, this version of the API should not be used in new code.
-
int PyThread_create_key()¶
- Parte da ABI Estável.
-
void PyThread_delete_key(int key)¶
- Parte da ABI Estável.
-
int PyThread_set_key_value(int key, void *value)¶
- Parte da ABI Estável.
-
void *PyThread_get_key_value(int key)¶
- Parte da ABI Estável.
-
void PyThread_delete_key_value(int key)¶
- Parte da ABI Estável.
-
void PyThread_ReInitTLS()¶
- Parte da ABI Estável.