unittest.mock
— biblioteca de objeto mock¶
Novo na versão 3.3.
Código-fonte: Lib/unittest/mock.py
unittest.mock
é uma biblioteca para teste em Python. Que permite substituir partes do seu sistema em teste por objetos simulados e fazer afirmações sobre como elas foram usadas.
unittest.mock
fornece uma classe core Mock
removendo a necessidade de criar uma série de stubs em todo o seu conjunto de testes. Depois de executar uma ação, você pode fazer afirmações sobre quais métodos / atributos foram usados e com quais argumentos foram chamados. Você também pode especificar valores de retorno e definir os atributos necessários da maneira normal.
Adicionalmente, o mock fornece um decorador patch()
que lida com os atributos do módulo de patch e do nível de classe no escopo de um teste, junto com sentinel
para criar objetos únicos. Veja o guia rápido para alguns exemplos de como usar Mock
, MagicMock
e patch()
.
Mock foi projetado para uso com unittest
e é baseado no padrão ‘ação -> asserção’ em vez de ‘gravar -> reproduzir’ usado por muitas estruturas de simulação.
Existe um backport de unittest.mock
para versões anteriores do Python, disponível como mock no PyPI.
Guia Rápido¶
Os objetos Mock
e MagicMock
criam todos os atributos e métodos à medida que você os acessa e armazena detalhes de como eles foram usados. Você pode configurá-los, especificar valores de retorno ou limitar quais atributos estão disponíveis e, em seguida, fazer afirmações sobre como eles foram usados:
>>> from unittest.mock import MagicMock
>>> thing = ProductionClass()
>>> thing.method = MagicMock(return_value=3)
>>> thing.method(3, 4, 5, key='value')
3
>>> thing.method.assert_called_with(3, 4, 5, key='value')
side_effect
permite que você execute efeitos colaterais, incluindo levantar uma exceção quando um mock é chamado:
>>> mock = Mock(side_effect=KeyError('foo'))
>>> mock()
Traceback (most recent call last):
...
KeyError: 'foo'
>>> values = {'a': 1, 'b': 2, 'c': 3}
>>> def side_effect(arg):
... return values[arg]
...
>>> mock.side_effect = side_effect
>>> mock('a'), mock('b'), mock('c')
(1, 2, 3)
>>> mock.side_effect = [5, 4, 3, 2, 1]
>>> mock(), mock(), mock()
(5, 4, 3)
O Mock tem muitas outras maneiras de configurá-lo e controlar seu comportamento. Por exemplo, o argumento spec configura o mock para obter sua especificação de outro objeto. Tentar acessar atributos ou métodos no mock que não existem na especificação falhará com um AttributeError
.
O gerenciador de contexto / decorador patch()
facilita a simulação de classes ou objetos em um módulo em teste. O objeto que você especificar será substituído por um mock (ou outro objeto) durante o teste e restaurado quando o teste terminar:
>>> from unittest.mock import patch
>>> @patch('module.ClassName2')
... @patch('module.ClassName1')
... def test(MockClass1, MockClass2):
... module.ClassName1()
... module.ClassName2()
... assert MockClass1 is module.ClassName1
... assert MockClass2 is module.ClassName2
... assert MockClass1.called
... assert MockClass2.called
...
>>> test()
Nota
Quando você aninha decoradores de patches, as simulações são passadas para a função decorada na mesma ordem em que foram aplicadas (a ordem normal Python em que os decoradores são aplicados). Isso significa de baixo para cima, portanto, no exemplo acima, a simulação para module.ClassName1
é passada primeiro.
Com patch()
, é importante que você faça o patch de objetos no espaço de nomes onde eles são procurados. Normalmente, isso é simples, mas para um guia rápido, leia onde fazer o patch.
Assim como um decorador patch()
pode ser usado como um gerenciador de contexto em uma instrução with:
>>> with patch.object(ProductionClass, 'method', return_value=None) as mock_method:
... thing = ProductionClass()
... thing.method(1, 2, 3)
...
>>> mock_method.assert_called_once_with(1, 2, 3)
Também existe patch.dict()
para definir valores em um dicionário apenas durante um escopo e restaurar o dicionário ao seu estado original quando o teste termina:
>>> foo = {'key': 'value'}
>>> original = foo.copy()
>>> with patch.dict(foo, {'newkey': 'newvalue'}, clear=True):
... assert foo == {'newkey': 'newvalue'}
...
>>> assert foo == original
Mock possui suporte a simulação de métodos mágicos de Python. A maneira mais fácil de usar métodos mágicos é com a classe MagicMock
. Ele permite que você faça coisas como:
>>> mock = MagicMock()
>>> mock.__str__.return_value = 'foobarbaz'
>>> str(mock)
'foobarbaz'
>>> mock.__str__.assert_called_with()
Mock permite atribuir funções (ou outras instâncias do Mock) a métodos mágicos e elas serão chamadas apropriadamente. A classe MagicMock
é apenas uma variante do Mock que possui todos os métodos mágicos pré-criados para você (bem, todos os úteis de qualquer maneira).
A seguir, é apresentado um exemplo do uso de métodos mágicos com a classe Mock comum:
>>> mock = Mock()
>>> mock.__str__ = Mock(return_value='wheeeeee')
>>> str(mock)
'wheeeeee'
Para garantir que os objetos mock em seus testes tenham a mesmo API que os objetos que eles estão substituindo, você pode usar especificação automática. A especificação automática pode ser feita por meio do argumento autospec para fazer patch ou pela função create_autospec()
. A especificação automática cria objetos mock que têm os mesmos atributos e métodos que os objetos que estão substituindo, e qualquer funções e métodos (incluindo construtores) têm a mesma assinatura de chamada que o objeto real.
Isso garante que seus mocks falharão da mesma forma que o código de produção se forem usados incorretamente:
>>> from unittest.mock import create_autospec
>>> def function(a, b, c):
... pass
...
>>> mock_function = create_autospec(function, return_value='fishy')
>>> mock_function(1, 2, 3)
'fishy'
>>> mock_function.assert_called_once_with(1, 2, 3)
>>> mock_function('wrong arguments')
Traceback (most recent call last):
...
TypeError: <lambda>() takes exactly 3 arguments (1 given)
create_autospec()
também pode ser usada com classes, onde copia a assinatura do método __init__
, e com objetos chamáveis onde copia a assinatura do método __call__
.
A classe Mock¶
Mock
é um objeto simulado flexível destinado a substituir o uso de stubs e dublês de teste em todo o seu código. Os mocks são chamáveis e cria atributos como novos mocks à medida que você os acessa 1. Acessar o mesmo atributo sempre retorna o mesmo mock. Os mocks registram como você os utiliza, permitindo que você faça asserções sobre o que o seu código fez com eles.
MagicMock
é uma subclasse de Mock
com todos os métodos mágicos pré-criados e prontos para uso. Existem também variantes não chamáveis, úteis quando você está simulando objetos que não são chamáveis: NonCallableMock
e NonCallableMagicMock
The patch()
decorators makes it easy to temporarily replace classes
in a particular module with a Mock
object. By default patch()
will create
a MagicMock
for you. You can specify an alternative class of Mock
using
the new_callable argument to patch()
.
-
class
unittest.mock.
Mock
(spec=None, side_effect=None, return_value=DEFAULT, wraps=None, name=None, spec_set=None, unsafe=False, **kwargs)¶ Create a new
Mock
object.Mock
takes several optional arguments that specify the behaviour of the Mock object:spec: This can be either a list of strings or an existing object (a class or instance) that acts as the specification for the mock object. If you pass in an object then a list of strings is formed by calling dir on the object (excluding unsupported magic attributes and methods). Accessing any attribute not in this list will raise an
AttributeError
.If spec is an object (rather than a list of strings) then
__class__
returns the class of the spec object. This allows mocks to passisinstance()
tests.spec_set: A stricter variant of spec. If used, attempting to set or get an attribute on the mock that isn’t on the object passed as spec_set will raise an
AttributeError
.side_effect: A function to be called whenever the Mock is called. See the
side_effect
attribute. Useful for raising exceptions or dynamically changing return values. The function is called with the same arguments as the mock, and unless it returnsDEFAULT
, the return value of this function is used as the return value.Alternatively side_effect can be an exception class or instance. In this case the exception will be raised when the mock is called.
If side_effect is an iterable then each call to the mock will return the next value from the iterable.
A side_effect can be cleared by setting it to
None
.return_value: The value returned when the mock is called. By default this is a new Mock (created on first access). See the
return_value
attribute.unsafe: By default, accessing any attribute with name starting with assert, assret, asert, aseert or assrt will raise an
AttributeError
. Passingunsafe=True
will allow access to these attributes.Novo na versão 3.5.
wraps: Item for the mock object to wrap. If wraps is not
None
then calling the Mock will pass the call through to the wrapped object (returning the real result). Attribute access on the mock will return a Mock object that wraps the corresponding attribute of the wrapped object (so attempting to access an attribute that doesn’t exist will raise anAttributeError
).If the mock has an explicit return_value set then calls are not passed to the wrapped object and the return_value is returned instead.
name: If the mock has a name then it will be used in the repr of the mock. This can be useful for debugging. The name is propagated to child mocks.
Mocks can also be called with arbitrary keyword arguments. These will be used to set attributes on the mock after it is created. See the
configure_mock()
method for details.-
assert_called
()¶ Afirmar que o mock foi chamado pelo menos uma vez.
>>> mock = Mock() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.method.assert_called()
Novo na versão 3.6.
-
assert_called_once
()¶ Afirma que o mock foi chamado exatamente uma vez.
>>> mock = Mock() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.method.assert_called_once() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.method.assert_called_once() Traceback (most recent call last): ... AssertionError: Expected 'method' to have been called once. Called 2 times.
Novo na versão 3.6.
-
assert_called_with
(*args, **kwargs)¶ This method is a convenient way of asserting that the last call has been made in a particular way:
>>> mock = Mock() >>> mock.method(1, 2, 3, test='wow') <Mock name='mock.method()' id='...'> >>> mock.method.assert_called_with(1, 2, 3, test='wow')
-
assert_called_once_with
(*args, **kwargs)¶ Assert that the mock was called exactly once and that call was with the specified arguments.
>>> mock = Mock(return_value=None) >>> mock('foo', bar='baz') >>> mock.assert_called_once_with('foo', bar='baz') >>> mock('other', bar='values') >>> mock.assert_called_once_with('other', bar='values') Traceback (most recent call last): ... AssertionError: Expected 'mock' to be called once. Called 2 times.
-
assert_any_call
(*args, **kwargs)¶ assert the mock has been called with the specified arguments.
The assert passes if the mock has ever been called, unlike
assert_called_with()
andassert_called_once_with()
that only pass if the call is the most recent one, and in the case ofassert_called_once_with()
it must also be the only call.>>> mock = Mock(return_value=None) >>> mock(1, 2, arg='thing') >>> mock('some', 'thing', 'else') >>> mock.assert_any_call(1, 2, arg='thing')
-
assert_has_calls
(calls, any_order=False)¶ assert the mock has been called with the specified calls. The
mock_calls
list is checked for the calls.If any_order is false then the calls must be sequential. There can be extra calls before or after the specified calls.
If any_order is true then the calls can be in any order, but they must all appear in
mock_calls
.>>> mock = Mock(return_value=None) >>> mock(1) >>> mock(2) >>> mock(3) >>> mock(4) >>> calls = [call(2), call(3)] >>> mock.assert_has_calls(calls) >>> calls = [call(4), call(2), call(3)] >>> mock.assert_has_calls(calls, any_order=True)
-
assert_not_called
()¶ Afirma que o mock nunca foi chamado.
>>> m = Mock() >>> m.hello.assert_not_called() >>> obj = m.hello() >>> m.hello.assert_not_called() Traceback (most recent call last): ... AssertionError: Expected 'hello' to not have been called. Called 1 times.
Novo na versão 3.5.
-
reset_mock
(*, return_value=False, side_effect=False)¶ The reset_mock method resets all the call attributes on a mock object:
>>> mock = Mock(return_value=None) >>> mock('hello') >>> mock.called True >>> mock.reset_mock() >>> mock.called False
Alterado na versão 3.6: Foram adicionados dois argumentos somente-nomeado à função reset_mock.
This can be useful where you want to make a series of assertions that reuse the same object. Note that
reset_mock()
doesn’t clear the return value,side_effect
or any child attributes you have set using normal assignment by default. In case you want to reset return_value orside_effect
, then pass the corresponding parameter asTrue
. Child mocks and the return value mock (if any) are reset as well.Nota
return_value, e
side_effect
são argumentos somente-nomeado.
-
mock_add_spec
(spec, spec_set=False)¶ Add a spec to a mock. spec can either be an object or a list of strings. Only attributes on the spec can be fetched as attributes from the mock.
If spec_set is true then only attributes on the spec can be set.
-
attach_mock
(mock, attribute)¶ Attach a mock as an attribute of this one, replacing its name and parent. Calls to the attached mock will be recorded in the
method_calls
andmock_calls
attributes of this one.
-
configure_mock
(**kwargs)¶ Define atributos no mock por meio de argumentos nomeados.
Attributes plus return values and side effects can be set on child mocks using standard dot notation and unpacking a dictionary in the method call:
>>> mock = Mock() >>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError} >>> mock.configure_mock(**attrs) >>> mock.method() 3 >>> mock.other() Traceback (most recent call last): ... KeyError
The same thing can be achieved in the constructor call to mocks:
>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError} >>> mock = Mock(some_attribute='eggs', **attrs) >>> mock.some_attribute 'eggs' >>> mock.method() 3 >>> mock.other() Traceback (most recent call last): ... KeyError
configure_mock()
exists to make it easier to do configuration after the mock has been created.
-
__dir__
()¶ Mock
objects limit the results ofdir(some_mock)
to useful results. For mocks with a spec this includes all the permitted attributes for the mock.See
FILTER_DIR
for what this filtering does, and how to switch it off.
-
_get_child_mock
(**kw)¶ Create the child mocks for attributes and return value. By default child mocks will be the same type as the parent. Subclasses of Mock may want to override this to customize the way child mocks are made.
For non-callable mocks the callable variant will be used (rather than any custom subclass).
-
called
¶ A boolean representing whether or not the mock object has been called:
>>> mock = Mock(return_value=None) >>> mock.called False >>> mock() >>> mock.called True
-
call_count
¶ An integer telling you how many times the mock object has been called:
>>> mock = Mock(return_value=None) >>> mock.call_count 0 >>> mock() >>> mock() >>> mock.call_count 2
-
return_value
¶ Set this to configure the value returned by calling the mock:
>>> mock = Mock() >>> mock.return_value = 'fish' >>> mock() 'fish'
The default return value is a mock object and you can configure it in the normal way:
>>> mock = Mock() >>> mock.return_value.attribute = sentinel.Attribute >>> mock.return_value() <Mock name='mock()()' id='...'> >>> mock.return_value.assert_called_with()
return_value
também pode ser definido no construtor:>>> mock = Mock(return_value=3) >>> mock.return_value 3 >>> mock() 3
-
side_effect
¶ This can either be a function to be called when the mock is called, an iterable or an exception (class or instance) to be raised.
If you pass in a function it will be called with same arguments as the mock and unless the function returns the
DEFAULT
singleton the call to the mock will then return whatever the function returns. If the function returnsDEFAULT
then the mock will return its normal value (from thereturn_value
).If you pass in an iterable, it is used to retrieve an iterator which must yield a value on every call. This value can either be an exception instance to be raised, or a value to be returned from the call to the mock (
DEFAULT
handling is identical to the function case).An example of a mock that raises an exception (to test exception handling of an API):
>>> mock = Mock() >>> mock.side_effect = Exception('Boom!') >>> mock() Traceback (most recent call last): ... Exception: Boom!
Usando
side_effect
para retornar um sequência de valores:>>> mock = Mock() >>> mock.side_effect = [3, 2, 1] >>> mock(), mock(), mock() (3, 2, 1)
Usando um chamável:
>>> mock = Mock(return_value=3) >>> def side_effect(*args, **kwargs): ... return DEFAULT ... >>> mock.side_effect = side_effect >>> mock() 3
side_effect
can be set in the constructor. Here’s an example that adds one to the value the mock is called with and returns it:>>> side_effect = lambda value: value + 1 >>> mock = Mock(side_effect=side_effect) >>> mock(3) 4 >>> mock(-8) -7
Configuração
side_effect
paraNone
limpa isso:>>> m = Mock(side_effect=KeyError, return_value=3) >>> m() Traceback (most recent call last): ... KeyError >>> m.side_effect = None >>> m() 3
-
call_args
¶ This is either
None
(if the mock hasn’t been called), or the arguments that the mock was last called with. This will be in the form of a tuple: the first member, which can also be accessed through theargs
property, is any ordered arguments the mock was called with (or an empty tuple) and the second member, which can also be accessed through thekwargs
property, is any keyword arguments (or an empty dictionary).>>> mock = Mock(return_value=None) >>> print(mock.call_args) None >>> mock() >>> mock.call_args call() >>> mock.call_args == () True >>> mock(3, 4) >>> mock.call_args call(3, 4) >>> mock.call_args == ((3, 4),) True >>> mock.call_args.args (3, 4) >>> mock.call_args.kwargs {} >>> mock(3, 4, 5, key='fish', next='w00t!') >>> mock.call_args call(3, 4, 5, key='fish', next='w00t!') >>> mock.call_args.args (3, 4, 5) >>> mock.call_args.kwargs {'key': 'fish', 'next': 'w00t!'}
call_args
, along with members of the listscall_args_list
,method_calls
andmock_calls
arecall
objects. These are tuples, so they can be unpacked to get at the individual arguments and make more complex assertions. See calls as tuples.Alterado na versão 3.8: Adicionadas propriedades
args
ekwargs
.
-
call_args_list
¶ This is a list of all the calls made to the mock object in sequence (so the length of the list is the number of times it has been called). Before any calls have been made it is an empty list. The
call
object can be used for conveniently constructing lists of calls to compare withcall_args_list
.>>> mock = Mock(return_value=None) >>> mock() >>> mock(3, 4) >>> mock(key='fish', next='w00t!') >>> mock.call_args_list [call(), call(3, 4), call(key='fish', next='w00t!')] >>> expected = [(), ((3, 4),), ({'key': 'fish', 'next': 'w00t!'},)] >>> mock.call_args_list == expected True
Members of
call_args_list
arecall
objects. These can be unpacked as tuples to get at the individual arguments. See calls as tuples.
-
method_calls
¶ As well as tracking calls to themselves, mocks also track calls to methods and attributes, and their methods and attributes:
>>> mock = Mock() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.property.method.attribute() <Mock name='mock.property.method.attribute()' id='...'> >>> mock.method_calls [call.method(), call.property.method.attribute()]
Members of
method_calls
arecall
objects. These can be unpacked as tuples to get at the individual arguments. See calls as tuples.
-
mock_calls
¶ mock_calls
records all calls to the mock object, its methods, magic methods and return value mocks.>>> mock = MagicMock() >>> result = mock(1, 2, 3) >>> mock.first(a=3) <MagicMock name='mock.first()' id='...'> >>> mock.second() <MagicMock name='mock.second()' id='...'> >>> int(mock) 1 >>> result(1) <MagicMock name='mock()()' id='...'> >>> expected = [call(1, 2, 3), call.first(a=3), call.second(), ... call.__int__(), call()(1)] >>> mock.mock_calls == expected True
Members of
mock_calls
arecall
objects. These can be unpacked as tuples to get at the individual arguments. See calls as tuples.Nota
The way
mock_calls
are recorded means that where nested calls are made, the parameters of ancestor calls are not recorded and so will always compare equal:>>> mock = MagicMock() >>> mock.top(a=3).bottom() <MagicMock name='mock.top().bottom()' id='...'> >>> mock.mock_calls [call.top(a=3), call.top().bottom()] >>> mock.mock_calls[-1] == call.top(a=-1).bottom() True
-
__class__
¶ Normally the
__class__
attribute of an object will return its type. For a mock object with aspec
,__class__
returns the spec class instead. This allows mock objects to passisinstance()
tests for the object they are replacing / masquerading as:>>> mock = Mock(spec=3) >>> isinstance(mock, int) True
__class__
is assignable to, this allows a mock to pass anisinstance()
check without forcing you to use a spec:>>> mock = Mock() >>> mock.__class__ = dict >>> isinstance(mock, dict) True
-
class
unittest.mock.
NonCallableMock
(spec=None, wraps=None, name=None, spec_set=None, **kwargs)¶ A non-callable version of
Mock
. The constructor parameters have the same meaning ofMock
, with the exception of return_value and side_effect which have no meaning on a non-callable mock.
Mock objects that use a class or an instance as a spec
or
spec_set
are able to pass isinstance()
tests:
>>> mock = Mock(spec=SomeClass)
>>> isinstance(mock, SomeClass)
True
>>> mock = Mock(spec_set=SomeClass())
>>> isinstance(mock, SomeClass)
True
The Mock
classes have support for mocking magic methods. See magic
methods for the full details.
The mock classes and the patch()
decorators all take arbitrary keyword
arguments for configuration. For the patch()
decorators the keywords are
passed to the constructor of the mock being created. The keyword arguments
are for configuring attributes of the mock:
>>> m = MagicMock(attribute=3, other='fish')
>>> m.attribute
3
>>> m.other
'fish'
The return value and side effect of child mocks can be set in the same way,
using dotted notation. As you can’t use dotted names directly in a call you
have to create a dictionary and unpack it using **
:
>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> mock = Mock(some_attribute='eggs', **attrs)
>>> mock.some_attribute
'eggs'
>>> mock.method()
3
>>> mock.other()
Traceback (most recent call last):
...
KeyError
A callable mock which was created with a spec (or a spec_set) will introspect the specification object’s signature when matching calls to the mock. Therefore, it can match the actual call’s arguments regardless of whether they were passed positionally or by name:
>>> def f(a, b, c): pass
...
>>> mock = Mock(spec=f)
>>> mock(1, 2, c=3)
<Mock name='mock()' id='140161580456576'>
>>> mock.assert_called_with(1, 2, 3)
>>> mock.assert_called_with(a=1, b=2, c=3)
This applies to assert_called_with()
,
assert_called_once_with()
, assert_has_calls()
and
assert_any_call()
. When Especificação automática, it will also
apply to method calls on the mock object.
Alterado na versão 3.4: Adicionada introspecção de assinatura em objetos mock especificados e auto-especificados.
-
class
unittest.mock.
PropertyMock
(*args, **kwargs)¶ A mock intended to be used as a property, or other descriptor, on a class.
PropertyMock
provides__get__()
and__set__()
methods so you can specify a return value when it is fetched.Fetching a
PropertyMock
instance from an object calls the mock, with no args. Setting it calls the mock with the value being set.>>> class Foo: ... @property ... def foo(self): ... return 'something' ... @foo.setter ... def foo(self, value): ... pass ... >>> with patch('__main__.Foo.foo', new_callable=PropertyMock) as mock_foo: ... mock_foo.return_value = 'mockity-mock' ... this_foo = Foo() ... print(this_foo.foo) ... this_foo.foo = 6 ... mockity-mock >>> mock_foo.mock_calls [call(), call(6)]
Because of the way mock attributes are stored you can’t directly attach a
PropertyMock
to a mock object. Instead you can attach it to the mock type
object:
>>> m = MagicMock()
>>> p = PropertyMock(return_value=3)
>>> type(m).foo = p
>>> m.foo
3
>>> p.assert_called_once_with()
-
class
unittest.mock.
AsyncMock
(spec=None, side_effect=None, return_value=DEFAULT, wraps=None, name=None, spec_set=None, unsafe=False, **kwargs)¶ An asynchronous version of
MagicMock
. TheAsyncMock
object will behave so the object is recognized as an async function, and the result of a call is an awaitable.>>> mock = AsyncMock() >>> asyncio.iscoroutinefunction(mock) True >>> inspect.isawaitable(mock()) True
The result of
mock()
is an async function which will have the outcome ofside_effect
orreturn_value
after it has been awaited:if
side_effect
is a function, the async function will return the result of that function,if
side_effect
is an exception, the async function will raise the exception,if
side_effect
is an iterable, the async function will return the next value of the iterable, however, if the sequence of result is exhausted,StopAsyncIteration
is raised immediately,if
side_effect
is not defined, the async function will return the value defined byreturn_value
, hence, by default, the async function returns a newAsyncMock
object.
Setting the spec of a
Mock
orMagicMock
to an async function will result in a coroutine object being returned after calling.>>> async def async_func(): pass ... >>> mock = MagicMock(async_func) >>> mock <MagicMock spec='function' id='...'> >>> mock() <coroutine object AsyncMockMixin._mock_call at ...>
Setting the spec of a
Mock
,MagicMock
, orAsyncMock
to a class with asynchronous and synchronous functions will automatically detect the synchronous functions and set them asMagicMock
(if the parent mock isAsyncMock
orMagicMock
) orMock
(if the parent mock isMock
). All asynchronous functions will beAsyncMock
.>>> class ExampleClass: ... def sync_foo(): ... pass ... async def async_foo(): ... pass ... >>> a_mock = AsyncMock(ExampleClass) >>> a_mock.sync_foo <MagicMock name='mock.sync_foo' id='...'> >>> a_mock.async_foo <AsyncMock name='mock.async_foo' id='...'> >>> mock = Mock(ExampleClass) >>> mock.sync_foo <Mock name='mock.sync_foo' id='...'> >>> mock.async_foo <AsyncMock name='mock.async_foo' id='...'>
Novo na versão 3.8.
-
assert_awaited
()¶ Assert that the mock was awaited at least once. Note that this is separate from the object having been called, the
await
keyword must be used:>>> mock = AsyncMock() >>> async def main(coroutine_mock): ... await coroutine_mock ... >>> coroutine_mock = mock() >>> mock.called True >>> mock.assert_awaited() Traceback (most recent call last): ... AssertionError: Expected mock to have been awaited. >>> asyncio.run(main(coroutine_mock)) >>> mock.assert_awaited()
-
assert_awaited_once
()¶ Afirme que o mock foi aguardado exatamente uma vez.
>>> mock = AsyncMock() >>> async def main(): ... await mock() ... >>> asyncio.run(main()) >>> mock.assert_awaited_once() >>> asyncio.run(main()) >>> mock.method.assert_awaited_once() Traceback (most recent call last): ... AssertionError: Expected mock to have been awaited once. Awaited 2 times.
-
assert_awaited_with
(*args, **kwargs)¶ Assert that the last await was with the specified arguments.
>>> mock = AsyncMock() >>> async def main(*args, **kwargs): ... await mock(*args, **kwargs) ... >>> asyncio.run(main('foo', bar='bar')) >>> mock.assert_awaited_with('foo', bar='bar') >>> mock.assert_awaited_with('other') Traceback (most recent call last): ... AssertionError: expected call not found. Expected: mock('other') Actual: mock('foo', bar='bar')
-
assert_awaited_once_with
(*args, **kwargs)¶ Assert that the mock was awaited exactly once and with the specified arguments.
>>> mock = AsyncMock() >>> async def main(*args, **kwargs): ... await mock(*args, **kwargs) ... >>> asyncio.run(main('foo', bar='bar')) >>> mock.assert_awaited_once_with('foo', bar='bar') >>> asyncio.run(main('foo', bar='bar')) >>> mock.assert_awaited_once_with('foo', bar='bar') Traceback (most recent call last): ... AssertionError: Expected mock to have been awaited once. Awaited 2 times.
-
assert_any_await
(*args, **kwargs)¶ Assert the mock has ever been awaited with the specified arguments.
>>> mock = AsyncMock() >>> async def main(*args, **kwargs): ... await mock(*args, **kwargs) ... >>> asyncio.run(main('foo', bar='bar')) >>> asyncio.run(main('hello')) >>> mock.assert_any_await('foo', bar='bar') >>> mock.assert_any_await('other') Traceback (most recent call last): ... AssertionError: mock('other') await not found
-
assert_has_awaits
(calls, any_order=False)¶ Assert the mock has been awaited with the specified calls. The
await_args_list
list is checked for the awaits.If any_order is false then the awaits must be sequential. There can be extra calls before or after the specified awaits.
If any_order is true then the awaits can be in any order, but they must all appear in
await_args_list
.>>> mock = AsyncMock() >>> async def main(*args, **kwargs): ... await mock(*args, **kwargs) ... >>> calls = [call("foo"), call("bar")] >>> mock.assert_has_awaits(calls) Traceback (most recent call last): ... AssertionError: Awaits not found. Expected: [call('foo'), call('bar')] Actual: [] >>> asyncio.run(main('foo')) >>> asyncio.run(main('bar')) >>> mock.assert_has_awaits(calls)
-
assert_not_awaited
()¶ Afirma que o mock nunca foi aguardado.
>>> mock = AsyncMock() >>> mock.assert_not_awaited()
-
reset_mock
(*args, **kwargs)¶ See
Mock.reset_mock()
. Also setsawait_count
to 0,await_args
to None, and clears theawait_args_list
.
-
await_count
¶ An integer keeping track of how many times the mock object has been awaited.
>>> mock = AsyncMock() >>> async def main(): ... await mock() ... >>> asyncio.run(main()) >>> mock.await_count 1 >>> asyncio.run(main()) >>> mock.await_count 2
-
await_args
¶ This is either
None
(if the mock hasn’t been awaited), or the arguments that the mock was last awaited with. Functions the same asMock.call_args
.>>> mock = AsyncMock() >>> async def main(*args): ... await mock(*args) ... >>> mock.await_args >>> asyncio.run(main('foo')) >>> mock.await_args call('foo') >>> asyncio.run(main('bar')) >>> mock.await_args call('bar')
-
await_args_list
¶ This is a list of all the awaits made to the mock object in sequence (so the length of the list is the number of times it has been awaited). Before any awaits have been made it is an empty list.
>>> mock = AsyncMock() >>> async def main(*args): ... await mock(*args) ... >>> mock.await_args_list [] >>> asyncio.run(main('foo')) >>> mock.await_args_list [call('foo')] >>> asyncio.run(main('bar')) >>> mock.await_args_list [call('foo'), call('bar')]
Fazendo chamadas¶
Mock objects are callable. The call will return the value set as the
return_value
attribute. The default return value is a new Mock
object; it is created the first time the return value is accessed (either
explicitly or by calling the Mock) - but it is stored and the same one
returned each time.
Calls made to the object will be recorded in the attributes
like call_args
and call_args_list
.
If side_effect
is set then it will be called after the call has
been recorded, so if side_effect
raises an exception the call is still
recorded.
The simplest way to make a mock raise an exception when called is to make
side_effect
an exception class or instance:
>>> m = MagicMock(side_effect=IndexError)
>>> m(1, 2, 3)
Traceback (most recent call last):
...
IndexError
>>> m.mock_calls
[call(1, 2, 3)]
>>> m.side_effect = KeyError('Bang!')
>>> m('two', 'three', 'four')
Traceback (most recent call last):
...
KeyError: 'Bang!'
>>> m.mock_calls
[call(1, 2, 3), call('two', 'three', 'four')]
If side_effect
is a function then whatever that function returns is what
calls to the mock return. The side_effect
function is called with the
same arguments as the mock. This allows you to vary the return value of the
call dynamically, based on the input:
>>> def side_effect(value):
... return value + 1
...
>>> m = MagicMock(side_effect=side_effect)
>>> m(1)
2
>>> m(2)
3
>>> m.mock_calls
[call(1), call(2)]
If you want the mock to still return the default return value (a new mock), or
any set return value, then there are two ways of doing this. Either return
mock.return_value
from inside side_effect
, or return DEFAULT
:
>>> m = MagicMock()
>>> def side_effect(*args, **kwargs):
... return m.return_value
...
>>> m.side_effect = side_effect
>>> m.return_value = 3
>>> m()
3
>>> def side_effect(*args, **kwargs):
... return DEFAULT
...
>>> m.side_effect = side_effect
>>> m()
3
To remove a side_effect
, and return to the default behaviour, set the
side_effect
to None
:
>>> m = MagicMock(return_value=6)
>>> def side_effect(*args, **kwargs):
... return 3
...
>>> m.side_effect = side_effect
>>> m()
3
>>> m.side_effect = None
>>> m()
6
The side_effect
can also be any iterable object. Repeated calls to the mock
will return values from the iterable (until the iterable is exhausted and
a StopIteration
is raised):
>>> m = MagicMock(side_effect=[1, 2, 3])
>>> m()
1
>>> m()
2
>>> m()
3
>>> m()
Traceback (most recent call last):
...
StopIteration
If any members of the iterable are exceptions they will be raised instead of returned:
>>> iterable = (33, ValueError, 66)
>>> m = MagicMock(side_effect=iterable)
>>> m()
33
>>> m()
Traceback (most recent call last):
...
ValueError
>>> m()
66
Deletando Atributos¶
Mock objects create attributes on demand. This allows them to pretend to be objects of any type.
You may want a mock object to return False
to a hasattr()
call, or raise an
AttributeError
when an attribute is fetched. You can do this by providing
an object as a spec
for a mock, but that isn’t always convenient.
You “block” attributes by deleting them. Once deleted, accessing an attribute
will raise an AttributeError
.
>>> mock = MagicMock()
>>> hasattr(mock, 'm')
True
>>> del mock.m
>>> hasattr(mock, 'm')
False
>>> del mock.f
>>> mock.f
Traceback (most recent call last):
...
AttributeError: f
Nomes de Mock e o atributo name¶
Since “name” is an argument to the Mock
constructor, if you want your
mock object to have a “name” attribute you can’t just pass it in at creation
time. There are two alternatives. One option is to use
configure_mock()
:
>>> mock = MagicMock()
>>> mock.configure_mock(name='my_name')
>>> mock.name
'my_name'
A simpler option is to simply set the “name” attribute after mock creation:
>>> mock = MagicMock()
>>> mock.name = "foo"
Anexando Mocks como Atributos¶
When you attach a mock as an attribute of another mock (or as the return
value) it becomes a “child” of that mock. Calls to the child are recorded in
the method_calls
and mock_calls
attributes of the
parent. This is useful for configuring child mocks and then attaching them to
the parent, or for attaching mocks to a parent that records all calls to the
children and allows you to make assertions about the order of calls between
mocks:
>>> parent = MagicMock()
>>> child1 = MagicMock(return_value=None)
>>> child2 = MagicMock(return_value=None)
>>> parent.child1 = child1
>>> parent.child2 = child2
>>> child1(1)
>>> child2(2)
>>> parent.mock_calls
[call.child1(1), call.child2(2)]
The exception to this is if the mock has a name. This allows you to prevent the “parenting” if for some reason you don’t want it to happen.
>>> mock = MagicMock()
>>> not_a_child = MagicMock(name='not-a-child')
>>> mock.attribute = not_a_child
>>> mock.attribute()
<MagicMock name='not-a-child()' id='...'>
>>> mock.mock_calls
[]
Mocks created for you by patch()
are automatically given names. To
attach mocks that have names to a parent you use the attach_mock()
method:
>>> thing1 = object()
>>> thing2 = object()
>>> parent = MagicMock()
>>> with patch('__main__.thing1', return_value=None) as child1:
... with patch('__main__.thing2', return_value=None) as child2:
... parent.attach_mock(child1, 'child1')
... parent.attach_mock(child2, 'child2')
... child1('one')
... child2('two')
...
>>> parent.mock_calls
[call.child1('one'), call.child2('two')]
- 1
The only exceptions are magic methods and attributes (those that have leading and trailing double underscores). Mock doesn’t create these but instead raises an
AttributeError
. This is because the interpreter will often implicitly request these methods, and gets very confused to get a new Mock object when it expects a magic method. If you need magic method support see magic methods.
Os criadores de patches¶
The patch decorators are used for patching objects only within the scope of the function they decorate. They automatically handle the unpatching for you, even if exceptions are raised. All of these functions can also be used in with statements or as class decorators.
patch¶
Nota
The key is to do the patching in the right namespace. See the section where to patch.
-
unittest.mock.
patch
(target, new=DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)¶ patch()
acts as a function decorator, class decorator or a context manager. Inside the body of the function or with statement, the target is patched with a new object. When the function/with statement exits the patch is undone.If new is omitted, then the target is replaced with an
AsyncMock
if the patched object is an async function or aMagicMock
otherwise. Ifpatch()
is used as a decorator and new is omitted, the created mock is passed in as an extra argument to the decorated function. Ifpatch()
is used as a context manager the created mock is returned by the context manager.target should be a string in the form
'package.module.ClassName'
. The target is imported and the specified object replaced with the new object, so the target must be importable from the environment you are callingpatch()
from. The target is imported when the decorated function is executed, not at decoration time.The spec and spec_set keyword arguments are passed to the
MagicMock
if patch is creating one for you.In addition you can pass
spec=True
orspec_set=True
, which causes patch to pass in the object being mocked as the spec/spec_set object.new_callable allows you to specify a different class, or callable object, that will be called to create the new object. By default
AsyncMock
is used for async functions andMagicMock
for the rest.A more powerful form of spec is autospec. If you set
autospec=True
then the mock will be created with a spec from the object being replaced. All attributes of the mock will also have the spec of the corresponding attribute of the object being replaced. Methods and functions being mocked will have their arguments checked and will raise aTypeError
if they are called with the wrong signature. For mocks replacing a class, their return value (the ‘instance’) will have the same spec as the class. See thecreate_autospec()
function and Especificação automática.Instead of
autospec=True
you can passautospec=some_object
to use an arbitrary object as the spec instead of the one being replaced.By default
patch()
will fail to replace attributes that don’t exist. If you pass increate=True
, and the attribute doesn’t exist, patch will create the attribute for you when the patched function is called, and delete it again after the patched function has exited. This is useful for writing tests against attributes that your production code creates at runtime. It is off by default because it can be dangerous. With it switched on you can write passing tests against APIs that don’t actually exist!Nota
Alterado na versão 3.5: If you are patching builtins in a module then you don’t need to pass
create=True
, it will be added by default.Patch can be used as a
TestCase
class decorator. It works by decorating each test method in the class. This reduces the boilerplate code when your test methods share a common patchings set.patch()
finds tests by looking for method names that start withpatch.TEST_PREFIX
. By default this is'test'
, which matches the wayunittest
finds tests. You can specify an alternative prefix by settingpatch.TEST_PREFIX
.Patch can be used as a context manager, with the with statement. Here the patching applies to the indented block after the with statement. If you use “as” then the patched object will be bound to the name after the “as”; very useful if
patch()
is creating a mock object for you.patch()
takes arbitrary keyword arguments. These will be passed toAsyncMock
if the patched object is asynchronous, toMagicMock
otherwise or to new_callable if specified.patch.dict(...)
,patch.multiple(...)
epatch.object(...)
estão disponíveis para casos de uso alternativos.
patch()
as function decorator, creating the mock for you and passing it into
the decorated function:
>>> @patch('__main__.SomeClass')
... def function(normal_argument, mock_class):
... print(mock_class is SomeClass)
...
>>> function(None)
True
Patching a class replaces the class with a MagicMock
instance. If the
class is instantiated in the code under test then it will be the
return_value
of the mock that will be used.
If the class is instantiated multiple times you could use
side_effect
to return a new mock each time. Alternatively you
can set the return_value to be anything you want.
To configure return values on methods of instances on the patched class
you must do this on the return_value
. For example:
>>> class Class:
... def method(self):
... pass
...
>>> with patch('__main__.Class') as MockClass:
... instance = MockClass.return_value
... instance.method.return_value = 'foo'
... assert Class() is instance
... assert Class().method() == 'foo'
...
If you use spec or spec_set and patch()
is replacing a class, then the
return value of the created mock will have the same spec.
>>> Original = Class
>>> patcher = patch('__main__.Class', spec=True)
>>> MockClass = patcher.start()
>>> instance = MockClass()
>>> assert isinstance(instance, Original)
>>> patcher.stop()
The new_callable argument is useful where you want to use an alternative
class to the default MagicMock
for the created mock. For example, if
you wanted a NonCallableMock
to be used:
>>> thing = object()
>>> with patch('__main__.thing', new_callable=NonCallableMock) as mock_thing:
... assert thing is mock_thing
... thing()
...
Traceback (most recent call last):
...
TypeError: 'NonCallableMock' object is not callable
Another use case might be to replace an object with an io.StringIO
instance:
>>> from io import StringIO
>>> def foo():
... print('Something')
...
>>> @patch('sys.stdout', new_callable=StringIO)
... def test(mock_stdout):
... foo()
... assert mock_stdout.getvalue() == 'Something\n'
...
>>> test()
When patch()
is creating a mock for you, it is common that the first thing
you need to do is to configure the mock. Some of that configuration can be done
in the call to patch. Any arbitrary keywords you pass into the call will be
used to set attributes on the created mock:
>>> patcher = patch('__main__.thing', first='one', second='two')
>>> mock_thing = patcher.start()
>>> mock_thing.first
'one'
>>> mock_thing.second
'two'
As well as attributes on the created mock attributes, like the
return_value
and side_effect
, of child mocks can
also be configured. These aren’t syntactically valid to pass in directly as
keyword arguments, but a dictionary with these as keys can still be expanded
into a patch()
call using **
:
>>> config = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> patcher = patch('__main__.thing', **config)
>>> mock_thing = patcher.start()
>>> mock_thing.method()
3
>>> mock_thing.other()
Traceback (most recent call last):
...
KeyError
By default, attempting to patch a function in a module (or a method or an
attribute in a class) that does not exist will fail with AttributeError
:
>>> @patch('sys.non_existing_attribute', 42)
... def test():
... assert sys.non_existing_attribute == 42
...
>>> test()
Traceback (most recent call last):
...
AttributeError: <module 'sys' (built-in)> does not have the attribute 'non_existing_attribute'
but adding create=True
in the call to patch()
will make the previous example
work as expected:
>>> @patch('sys.non_existing_attribute', 42, create=True)
... def test(mock_stdout):
... assert sys.non_existing_attribute == 42
...
>>> test()
patch.object¶
-
patch.
object
(target, attribute, new=DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)¶ patch the named member (attribute) on an object (target) with a mock object.
patch.object()
can be used as a decorator, class decorator or a context manager. Arguments new, spec, create, spec_set, autospec and new_callable have the same meaning as forpatch()
. Likepatch()
,patch.object()
takes arbitrary keyword arguments for configuring the mock object it creates.When used as a class decorator
patch.object()
honourspatch.TEST_PREFIX
for choosing which methods to wrap.
You can either call patch.object()
with three arguments or two arguments. The
three argument form takes the object to be patched, the attribute name and the
object to replace the attribute with.
When calling with the two argument form you omit the replacement object, and a mock is created for you and passed in as an extra argument to the decorated function:
>>> @patch.object(SomeClass, 'class_method')
... def test(mock_method):
... SomeClass.class_method(3)
... mock_method.assert_called_with(3)
...
>>> test()
spec, create and the other arguments to patch.object()
have the same
meaning as they do for patch()
.
patch.dict¶
-
patch.
dict
(in_dict, values=(), clear=False, **kwargs)¶ Patch a dictionary, or dictionary like object, and restore the dictionary to its original state after the test.
in_dict can be a dictionary or a mapping like container. If it is a mapping then it must at least support getting, setting and deleting items plus iterating over keys.
in_dict can also be a string specifying the name of the dictionary, which will then be fetched by importing it.
values can be a dictionary of values to set in the dictionary. values can also be an iterable of
(key, value)
pairs.If clear is true then the dictionary will be cleared before the new values are set.
patch.dict()
can also be called with arbitrary keyword arguments to set values in the dictionary.Alterado na versão 3.8:
patch.dict()
now returns the patched dictionary when used as a context manager.
patch.dict()
can be used as a context manager, decorator or class
decorator:
>>> foo = {}
>>> @patch.dict(foo, {'newkey': 'newvalue'})
... def test():
... assert foo == {'newkey': 'newvalue'}
>>> test()
>>> assert foo == {}
When used as a class decorator patch.dict()
honours
patch.TEST_PREFIX
(default to 'test'
) for choosing which methods to wrap:
>>> import os
>>> import unittest
>>> from unittest.mock import patch
>>> @patch.dict('os.environ', {'newkey': 'newvalue'})
... class TestSample(unittest.TestCase):
... def test_sample(self):
... self.assertEqual(os.environ['newkey'], 'newvalue')
If you want to use a different prefix for your test, you can inform the
patchers of the different prefix by setting patch.TEST_PREFIX
. For
more details about how to change the value of see TEST_PREFIX.
patch.dict()
can be used to add members to a dictionary, or simply let a test
change a dictionary, and ensure the dictionary is restored when the test
ends.
>>> foo = {}
>>> with patch.dict(foo, {'newkey': 'newvalue'}) as patched_foo:
... assert foo == {'newkey': 'newvalue'}
... assert patched_foo == {'newkey': 'newvalue'}
... # You can add, update or delete keys of foo (or patched_foo, it's the same dict)
... patched_foo['spam'] = 'eggs'
...
>>> assert foo == {}
>>> assert patched_foo == {}
>>> import os
>>> with patch.dict('os.environ', {'newkey': 'newvalue'}):
... print(os.environ['newkey'])
...
newvalue
>>> assert 'newkey' not in os.environ
Keywords can be used in the patch.dict()
call to set values in the dictionary:
>>> mymodule = MagicMock()
>>> mymodule.function.return_value = 'fish'
>>> with patch.dict('sys.modules', mymodule=mymodule):
... import mymodule
... mymodule.function('some', 'args')
...
'fish'
patch.dict()
can be used with dictionary like objects that aren’t actually
dictionaries. At the very minimum they must support item getting, setting,
deleting and either iteration or membership test. This corresponds to the
magic methods __getitem__()
, __setitem__()
, __delitem__()
and either
__iter__()
or __contains__()
.
>>> class Container:
... def __init__(self):
... self.values = {}
... def __getitem__(self, name):
... return self.values[name]
... def __setitem__(self, name, value):
... self.values[name] = value
... def __delitem__(self, name):
... del self.values[name]
... def __iter__(self):
... return iter(self.values)
...
>>> thing = Container()
>>> thing['one'] = 1
>>> with patch.dict(thing, one=2, two=3):
... assert thing['one'] == 2
... assert thing['two'] == 3
...
>>> assert thing['one'] == 1
>>> assert list(thing) == ['one']
patch.multiple¶
-
patch.
multiple
(target, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)¶ Perform multiple patches in a single call. It takes the object to be patched (either as an object or a string to fetch the object by importing) and keyword arguments for the patches:
with patch.multiple(settings, FIRST_PATCH='one', SECOND_PATCH='two'): ...
Use
DEFAULT
as the value if you wantpatch.multiple()
to create mocks for you. In this case the created mocks are passed into a decorated function by keyword, and a dictionary is returned whenpatch.multiple()
is used as a context manager.patch.multiple()
can be used as a decorator, class decorator or a context manager. The arguments spec, spec_set, create, autospec and new_callable have the same meaning as forpatch()
. These arguments will be applied to all patches done bypatch.multiple()
.When used as a class decorator
patch.multiple()
honourspatch.TEST_PREFIX
for choosing which methods to wrap.
If you want patch.multiple()
to create mocks for you, then you can use
DEFAULT
as the value. If you use patch.multiple()
as a decorator
then the created mocks are passed into the decorated function by keyword.
>>> thing = object()
>>> other = object()
>>> @patch.multiple('__main__', thing=DEFAULT, other=DEFAULT)
... def test_function(thing, other):
... assert isinstance(thing, MagicMock)
... assert isinstance(other, MagicMock)
...
>>> test_function()
patch.multiple()
can be nested with other patch
decorators, but put arguments
passed by keyword after any of the standard arguments created by patch()
:
>>> @patch('sys.exit')
... @patch.multiple('__main__', thing=DEFAULT, other=DEFAULT)
... def test_function(mock_exit, other, thing):
... assert 'other' in repr(other)
... assert 'thing' in repr(thing)
... assert 'exit' in repr(mock_exit)
...
>>> test_function()
If patch.multiple()
is used as a context manager, the value returned by the
context manager is a dictionary where created mocks are keyed by name:
>>> with patch.multiple('__main__', thing=DEFAULT, other=DEFAULT) as values:
... assert 'other' in repr(values['other'])
... assert 'thing' in repr(values['thing'])
... assert values['thing'] is thing
... assert values['other'] is other
...
métodos do patch: start e stop¶
All the patchers have start()
and stop()
methods. These make it simpler to do
patching in setUp
methods or where you want to do multiple patches without
nesting decorators or with statements.
To use them call patch()
, patch.object()
or patch.dict()
as
normal and keep a reference to the returned patcher
object. You can then
call start()
to put the patch in place and stop()
to undo it.
If you are using patch()
to create a mock for you then it will be returned by
the call to patcher.start
.
>>> patcher = patch('package.module.ClassName')
>>> from package import module
>>> original = module.ClassName
>>> new_mock = patcher.start()
>>> assert module.ClassName is not original
>>> assert module.ClassName is new_mock
>>> patcher.stop()
>>> assert module.ClassName is original
>>> assert module.ClassName is not new_mock
A typical use case for this might be for doing multiple patches in the setUp
method of a TestCase
:
>>> class MyTest(unittest.TestCase):
... def setUp(self):
... self.patcher1 = patch('package.module.Class1')
... self.patcher2 = patch('package.module.Class2')
... self.MockClass1 = self.patcher1.start()
... self.MockClass2 = self.patcher2.start()
...
... def tearDown(self):
... self.patcher1.stop()
... self.patcher2.stop()
...
... def test_something(self):
... assert package.module.Class1 is self.MockClass1
... assert package.module.Class2 is self.MockClass2
...
>>> MyTest('test_something').run()
Cuidado
If you use this technique you must ensure that the patching is “undone” by
calling stop
. This can be fiddlier than you might think, because if an
exception is raised in the setUp
then tearDown
is not called.
unittest.TestCase.addCleanup()
makes this easier:
>>> class MyTest(unittest.TestCase):
... def setUp(self):
... patcher = patch('package.module.Class')
... self.MockClass = patcher.start()
... self.addCleanup(patcher.stop)
...
... def test_something(self):
... assert package.module.Class is self.MockClass
...
As an added bonus you no longer need to keep a reference to the patcher
object.
It is also possible to stop all patches which have been started by using
patch.stopall()
.
-
patch.
stopall
()¶ Stop all active patches. Only stops patches started with
start
.
patch de embutidos¶
You can patch any builtins within a module. The following example patches
builtin ord()
:
>>> @patch('__main__.ord')
... def test(mock_ord):
... mock_ord.return_value = 101
... print(ord('c'))
...
>>> test()
101
TEST_PREFIX¶
All of the patchers can be used as class decorators. When used in this way
they wrap every test method on the class. The patchers recognise methods that
start with 'test'
as being test methods. This is the same way that the
unittest.TestLoader
finds test methods by default.
It is possible that you want to use a different prefix for your tests. You can
inform the patchers of the different prefix by setting patch.TEST_PREFIX
:
>>> patch.TEST_PREFIX = 'foo'
>>> value = 3
>>>
>>> @patch('__main__.value', 'not three')
... class Thing:
... def foo_one(self):
... print(value)
... def foo_two(self):
... print(value)
...
>>>
>>> Thing().foo_one()
not three
>>> Thing().foo_two()
not three
>>> value
3
Aninhando Decoradores Patch¶
If you want to perform multiple patches then you can simply stack up the decorators.
You can stack up multiple patch decorators using this pattern:
>>> @patch.object(SomeClass, 'class_method')
... @patch.object(SomeClass, 'static_method')
... def test(mock1, mock2):
... assert SomeClass.static_method is mock1
... assert SomeClass.class_method is mock2
... SomeClass.static_method('foo')
... SomeClass.class_method('bar')
... return mock1, mock2
...
>>> mock1, mock2 = test()
>>> mock1.assert_called_once_with('foo')
>>> mock2.assert_called_once_with('bar')
Note that the decorators are applied from the bottom upwards. This is the standard way that Python applies decorators. The order of the created mocks passed into your test function matches this order.
Onde fazer patch¶
patch()
works by (temporarily) changing the object that a name points to with
another one. There can be many names pointing to any individual object, so
for patching to work you must ensure that you patch the name used by the system
under test.
The basic principle is that you patch where an object is looked up, which is not necessarily the same place as where it is defined. A couple of examples will help to clarify this.
Imagine we have a project that we want to test with the following structure:
a.py
-> Defines SomeClass
b.py
-> from a import SomeClass
-> some_function instantiates SomeClass
Now we want to test some_function
but we want to mock out SomeClass
using
patch()
. The problem is that when we import module b, which we will have to
do then it imports SomeClass
from module a. If we use patch()
to mock out
a.SomeClass
then it will have no effect on our test; module b already has a
reference to the real SomeClass
and it looks like our patching had no
effect.
The key is to patch out SomeClass
where it is used (or where it is looked up).
In this case some_function
will actually look up SomeClass
in module b,
where we have imported it. The patching should look like:
@patch('b.SomeClass')
However, consider the alternative scenario where instead of from a import
SomeClass
module b does import a
and some_function
uses a.SomeClass
. Both
of these import forms are common. In this case the class we want to patch is
being looked up in the module and so we have to patch a.SomeClass
instead:
@patch('a.SomeClass')
Patching Descriptors and Proxy Objects¶
Both patch and patch.object correctly patch and restore descriptors: class methods, static methods and properties. You should patch these on the class rather than an instance. They also work with some objects that proxy attribute access, like the django settings object.
MagicMock and magic method support¶
Simulando Métodos Mágicos¶
Mock
supports mocking the Python protocol methods, also known as
“magic methods”. This allows mock objects to replace containers or other
objects that implement Python protocols.
Because magic methods are looked up differently from normal methods 2, this support has been specially implemented. This means that only specific magic methods are supported. The supported list includes almost all of them. If there are any missing that you need please let us know.
You mock magic methods by setting the method you are interested in to a function
or a mock instance. If you are using a function then it must take self
as
the first argument 3.
>>> def __str__(self):
... return 'fooble'
...
>>> mock = Mock()
>>> mock.__str__ = __str__
>>> str(mock)
'fooble'
>>> mock = Mock()
>>> mock.__str__ = Mock()
>>> mock.__str__.return_value = 'fooble'
>>> str(mock)
'fooble'
>>> mock = Mock()
>>> mock.__iter__ = Mock(return_value=iter([]))
>>> list(mock)
[]
One use case for this is for mocking objects used as context managers in a
with
statement:
>>> mock = Mock()
>>> mock.__enter__ = Mock(return_value='foo')
>>> mock.__exit__ = Mock(return_value=False)
>>> with mock as m:
... assert m == 'foo'
...
>>> mock.__enter__.assert_called_with()
>>> mock.__exit__.assert_called_with(None, None, None)
Calls to magic methods do not appear in method_calls
, but they
are recorded in mock_calls
.
Nota
If you use the spec keyword argument to create a mock then attempting to
set a magic method that isn’t in the spec will raise an AttributeError
.
A lista completa de métodos mágicos compatíveis é:
__hash__
,__sizeof__
,__repr__
e__str__
__dir__
,__format__
e__subclasses__
__round__
,__floor__
,__trunc__
e__ceil__
Comparações:
__lt__
,__gt__
,__le__
,__ge__
,__eq__
e__ne__
Container methods:
__getitem__
,__setitem__
,__delitem__
,__contains__
,__len__
,__iter__
,__reversed__
and__missing__
Gerenciador de contexto:
__enter__
,__exit__
,__aenter__
e__aexit__
Métodos numéricos unários:
__neg__
,__pos__
e__invert__
The numeric methods (including right hand and in-place variants):
__add__
,__sub__
,__mul__
,__matmul__
,__div__
,__truediv__
,__floordiv__
,__mod__
,__divmod__
,__lshift__
,__rshift__
,__and__
,__xor__
,__or__
, and__pow__
Métodos de conversão numérica:
__complex__
,__int__
,__float__
e__index__
Métodos descritores:
__get__
,__set__
e__delete__
Pickling:
__reduce__
,__reduce_ex__
,__getinitargs__
,__getnewargs__
,__getstate__
e__setstate__
File system path representation:
__fspath__
Métodos de iteração assíncrona:
__aiter__
e__anext__
Alterado na versão 3.8: Adicionado suporte para os.PathLike.__fspath__()
.
Alterado na versão 3.8: Adicionado suporte para __aenter__
, __aexit__
, __aiter__
e __anext__
.
The following methods exist but are not supported as they are either in use by mock, can’t be set dynamically, or can cause problems:
__getattr__
,__setattr__
,__init__
e__new__
__prepare__
,__instancecheck__
,__subclasscheck__
,__del__
Magic Mock¶
Existem duas variantes de MagicMock
: MagicMock
e NonCallableMagicMock
.
-
class
unittest.mock.
MagicMock
(*args, **kw)¶ MagicMock
is a subclass ofMock
with default implementations of most of the magic methods. You can useMagicMock
without having to configure the magic methods yourself.The constructor parameters have the same meaning as for
Mock
.If you use the spec or spec_set arguments then only magic methods that exist in the spec will be created.
-
class
unittest.mock.
NonCallableMagicMock
(*args, **kw)¶ Uma versão não-chamável de
MagicMock
.The constructor parameters have the same meaning as for
MagicMock
, with the exception of return_value and side_effect which have no meaning on a non-callable mock.
The magic methods are setup with MagicMock
objects, so you can configure them
and use them in the usual way:
>>> mock = MagicMock()
>>> mock[3] = 'fish'
>>> mock.__setitem__.assert_called_with(3, 'fish')
>>> mock.__getitem__.return_value = 'result'
>>> mock[2]
'result'
By default many of the protocol methods are required to return objects of a specific type. These methods are preconfigured with a default return value, so that they can be used without you having to do anything if you aren’t interested in the return value. You can still set the return value manually if you want to change the default.
Métodos e seus padrões:
__lt__
:NotImplemented
__gt__
:NotImplemented
__le__
:NotImplemented
__ge__
:NotImplemented
__int__
:1
__contains__
:False
__len__
:0
__iter__
:iter([])
__exit__
:False
__aexit__
:False
__complex__
:1j
__float__
:1.0
__bool__
:True
__index__
:1
__hash__
: hash padrão para o mock__str__
: str padrão para o mock__sizeof__
: sizeof padrão para o mock
Por exemplo:
>>> mock = MagicMock()
>>> int(mock)
1
>>> len(mock)
0
>>> list(mock)
[]
>>> object() in mock
False
The two equality methods, __eq__()
and __ne__()
, are special.
They do the default equality comparison on identity, using the
side_effect
attribute, unless you change their return value to
return something else:
>>> MagicMock() == 3
False
>>> MagicMock() != 3
True
>>> mock = MagicMock()
>>> mock.__eq__.return_value = True
>>> mock == 3
True
The return value of MagicMock.__iter__()
can be any iterable object and isn’t
required to be an iterator:
>>> mock = MagicMock()
>>> mock.__iter__.return_value = ['a', 'b', 'c']
>>> list(mock)
['a', 'b', 'c']
>>> list(mock)
['a', 'b', 'c']
If the return value is an iterator, then iterating over it once will consume it and subsequent iterations will result in an empty list:
>>> mock.__iter__.return_value = iter(['a', 'b', 'c'])
>>> list(mock)
['a', 'b', 'c']
>>> list(mock)
[]
MagicMock
has all of the supported magic methods configured except for some
of the obscure and obsolete ones. You can still set these up if you want.
Magic methods that are supported but not setup by default in MagicMock
are:
__subclasses__
__dir__
__format__
__get__
,__set__
e__delete__
__reversed__
e__missing__
__reduce__
,__reduce_ex__
,__getinitargs__
,__getnewargs__
,__getstate__
e__setstate__
__getformat__
and__setformat__
- 2
Magic methods should be looked up on the class rather than the instance. Different versions of Python are inconsistent about applying this rule. The supported protocol methods should work with all supported versions of Python.
- 3
The function is basically hooked up to the class, but each
Mock
instance is kept isolated from the others.
Ajudantes¶
sentinel¶
-
unittest.mock.
sentinel
¶ The
sentinel
object provides a convenient way of providing unique objects for your tests.Attributes are created on demand when you access them by name. Accessing the same attribute will always return the same object. The objects returned have a sensible repr so that test failure messages are readable.
Sometimes when testing you need to test that a specific object is passed as an
argument to another method, or returned. It can be common to create named
sentinel objects to test this. sentinel
provides a convenient way of
creating and testing the identity of objects like this.
In this example we monkey patch method
to return sentinel.some_object
:
>>> real = ProductionClass()
>>> real.method = Mock(name="method")
>>> real.method.return_value = sentinel.some_object
>>> result = real.method()
>>> assert result is sentinel.some_object
>>> result
sentinel.some_object
DEFAULT¶
-
unittest.mock.
DEFAULT
¶ The
DEFAULT
object is a pre-created sentinel (actuallysentinel.DEFAULT
). It can be used byside_effect
functions to indicate that the normal return value should be used.
chamada¶
-
unittest.mock.
call
(*args, **kwargs)¶ call()
is a helper object for making simpler assertions, for comparing withcall_args
,call_args_list
,mock_calls
andmethod_calls
.call()
can also be used withassert_has_calls()
.>>> m = MagicMock(return_value=None) >>> m(1, 2, a='foo', b='bar') >>> m() >>> m.call_args_list == [call(1, 2, a='foo', b='bar'), call()] True
-
call.
call_list
()¶ For a call object that represents multiple calls,
call_list()
returns a list of all the intermediate calls as well as the final call.
call_list
is particularly useful for making assertions on “chained calls”. A
chained call is multiple calls on a single line of code. This results in
multiple entries in mock_calls
on a mock. Manually constructing
the sequence of calls can be tedious.
call_list()
can construct the sequence of calls from the same
chained call:
>>> m = MagicMock()
>>> m(1).method(arg='foo').other('bar')(2.0)
<MagicMock name='mock().method().other()()' id='...'>
>>> kall = call(1).method(arg='foo').other('bar')(2.0)
>>> kall.call_list()
[call(1),
call().method(arg='foo'),
call().method().other('bar'),
call().method().other()(2.0)]
>>> m.mock_calls == kall.call_list()
True
A call
object is either a tuple of (positional args, keyword args) or
(name, positional args, keyword args) depending on how it was constructed. When
you construct them yourself this isn’t particularly interesting, but the call
objects that are in the Mock.call_args
, Mock.call_args_list
and
Mock.mock_calls
attributes can be introspected to get at the individual
arguments they contain.
The call
objects in Mock.call_args
and Mock.call_args_list
are two-tuples of (positional args, keyword args) whereas the call
objects
in Mock.mock_calls
, along with ones you construct yourself, are
three-tuples of (name, positional args, keyword args).
You can use their “tupleness” to pull out the individual arguments for more complex introspection and assertions. The positional arguments are a tuple (an empty tuple if there are no positional arguments) and the keyword arguments are a dictionary:
>>> m = MagicMock(return_value=None)
>>> m(1, 2, 3, arg='one', arg2='two')
>>> kall = m.call_args
>>> kall.args
(1, 2, 3)
>>> kall.kwargs
{'arg': 'one', 'arg2': 'two'}
>>> kall.args is kall[0]
True
>>> kall.kwargs is kall[1]
True
>>> m = MagicMock()
>>> m.foo(4, 5, 6, arg='two', arg2='three')
<MagicMock name='mock.foo()' id='...'>
>>> kall = m.mock_calls[0]
>>> name, args, kwargs = kall
>>> name
'foo'
>>> args
(4, 5, 6)
>>> kwargs
{'arg': 'two', 'arg2': 'three'}
>>> name is m.mock_calls[0][0]
True
create_autospec¶
-
unittest.mock.
create_autospec
(spec, spec_set=False, instance=False, **kwargs)¶ Create a mock object using another object as a spec. Attributes on the mock will use the corresponding attribute on the spec object as their spec.
Functions or methods being mocked will have their arguments checked to ensure that they are called with the correct signature.
If spec_set is
True
then attempting to set attributes that don’t exist on the spec object will raise anAttributeError
.If a class is used as a spec then the return value of the mock (the instance of the class) will have the same spec. You can use a class as the spec for an instance object by passing
instance=True
. The returned mock will only be callable if instances of the mock are callable.create_autospec()
also takes arbitrary keyword arguments that are passed to the constructor of the created mock.
See Especificação automática for examples of how to use auto-speccing with
create_autospec()
and the autospec argument to patch()
.
Alterado na versão 3.8: create_autospec()
now returns an AsyncMock
if the target is
an async function.
ANY¶
-
unittest.mock.
ANY
¶
Sometimes you may need to make assertions about some of the arguments in a
call to mock, but either not care about some of the arguments or want to pull
them individually out of call_args
and make more complex
assertions on them.
To ignore certain arguments you can pass in objects that compare equal to
everything. Calls to assert_called_with()
and
assert_called_once_with()
will then succeed no matter what was
passed in.
>>> mock = Mock(return_value=None)
>>> mock('foo', bar=object())
>>> mock.assert_called_once_with('foo', bar=ANY)
ANY
can also be used in comparisons with call lists like
mock_calls
:
>>> m = MagicMock(return_value=None)
>>> m(1)
>>> m(1, 2)
>>> m(object())
>>> m.mock_calls == [call(1), call(1, 2), ANY]
True
FILTER_DIR¶
-
unittest.mock.
FILTER_DIR
¶
FILTER_DIR
is a module level variable that controls the way mock objects
respond to dir()
(only for Python 2.6 or more recent). The default is True
,
which uses the filtering described below, to only show useful members. If you
dislike this filtering, or need to switch it off for diagnostic purposes, then
set mock.FILTER_DIR = False
.
With filtering on, dir(some_mock)
shows only useful attributes and will
include any dynamically created attributes that wouldn’t normally be shown.
If the mock was created with a spec (or autospec of course) then all the
attributes from the original are shown, even if they haven’t been accessed
yet:
>>> dir(Mock())
['assert_any_call',
'assert_called',
'assert_called_once',
'assert_called_once_with',
'assert_called_with',
'assert_has_calls',
'assert_not_called',
'attach_mock',
...
>>> from urllib import request
>>> dir(Mock(spec=request))
['AbstractBasicAuthHandler',
'AbstractDigestAuthHandler',
'AbstractHTTPHandler',
'BaseHandler',
...
Many of the not-very-useful (private to Mock
rather than the thing being
mocked) underscore and double underscore prefixed attributes have been
filtered from the result of calling dir()
on a Mock
. If you dislike this
behaviour you can switch it off by setting the module level switch
FILTER_DIR
:
>>> from unittest import mock
>>> mock.FILTER_DIR = False
>>> dir(mock.Mock())
['_NonCallableMock__get_return_value',
'_NonCallableMock__get_side_effect',
'_NonCallableMock__return_value_doc',
'_NonCallableMock__set_return_value',
'_NonCallableMock__set_side_effect',
'__call__',
'__class__',
...
Alternatively you can just use vars(my_mock)
(instance members) and
dir(type(my_mock))
(type members) to bypass the filtering irrespective of
mock.FILTER_DIR
.
mock_open¶
-
unittest.mock.
mock_open
(mock=None, read_data=None)¶ A helper function to create a mock to replace the use of
open()
. It works foropen()
called directly or used as a context manager.The mock argument is the mock object to configure. If
None
(the default) then aMagicMock
will be created for you, with the API limited to methods or attributes available on standard file handles.read_data is a string for the
read()
,readline()
, andreadlines()
methods of the file handle to return. Calls to those methods will take data from read_data until it is depleted. The mock of these methods is pretty simplistic: every time the mock is called, the read_data is rewound to the start. If you need more control over the data that you are feeding to the tested code you will need to customize this mock for yourself. When that is insufficient, one of the in-memory filesystem packages on PyPI can offer a realistic filesystem for testing.Alterado na versão 3.4: Added
readline()
andreadlines()
support. The mock ofread()
changed to consume read_data rather than returning it on each call.Alterado na versão 3.5: read_data is now reset on each call to the mock.
Alterado na versão 3.8: Added
__iter__()
to implementation so that iteration (such as in for loops) correctly consumes read_data.
Using open()
as a context manager is a great way to ensure your file handles
are closed properly and is becoming common:
with open('/some/path', 'w') as f:
f.write('something')
The issue is that even if you mock out the call to open()
it is the
returned object that is used as a context manager (and has __enter__()
and
__exit__()
called).
Mocking context managers with a MagicMock
is common enough and fiddly
enough that a helper function is useful.
>>> m = mock_open()
>>> with patch('__main__.open', m):
... with open('foo', 'w') as h:
... h.write('some stuff')
...
>>> m.mock_calls
[call('foo', 'w'),
call().__enter__(),
call().write('some stuff'),
call().__exit__(None, None, None)]
>>> m.assert_called_once_with('foo', 'w')
>>> handle = m()
>>> handle.write.assert_called_once_with('some stuff')
E para ler arquivos:
>>> with patch('__main__.open', mock_open(read_data='bibble')) as m:
... with open('foo') as h:
... result = h.read()
...
>>> m.assert_called_once_with('foo')
>>> assert result == 'bibble'
Especificação automática¶
Autospeccing is based on the existing spec
feature of mock. It limits the
api of mocks to the api of an original object (the spec), but it is recursive
(implemented lazily) so that attributes of mocks only have the same api as
the attributes of the spec. In addition mocked functions / methods have the
same call signature as the original so they raise a TypeError
if they are
called incorrectly.
Before I explain how auto-speccing works, here’s why it is needed.
Mock
is a very powerful and flexible object, but it suffers from two flaws
when used to mock out objects from a system under test. One of these flaws is
specific to the Mock
api and the other is a more general problem with using
mock objects.
First the problem specific to Mock
. Mock
has two assert methods that are
extremely handy: assert_called_with()
and
assert_called_once_with()
.
>>> mock = Mock(name='Thing', return_value=None)
>>> mock(1, 2, 3)
>>> mock.assert_called_once_with(1, 2, 3)
>>> mock(1, 2, 3)
>>> mock.assert_called_once_with(1, 2, 3)
Traceback (most recent call last):
...
AssertionError: Expected 'mock' to be called once. Called 2 times.
Because mocks auto-create attributes on demand, and allow you to call them with arbitrary arguments, if you misspell one of these assert methods then your assertion is gone:
>>> mock = Mock(name='Thing', return_value=None)
>>> mock(1, 2, 3)
>>> mock.assret_called_once_with(4, 5, 6) # Intentional typo!
Your tests can pass silently and incorrectly because of the typo.
The second issue is more general to mocking. If you refactor some of your code, rename members and so on, any tests for code that is still using the old api but uses mocks instead of the real objects will still pass. This means your tests can all pass even though your code is broken.
Note that this is another reason why you need integration tests as well as unit tests. Testing everything in isolation is all fine and dandy, but if you don’t test how your units are “wired together” there is still lots of room for bugs that tests might have caught.
mock
already provides a feature to help with this, called speccing. If you
use a class or instance as the spec
for a mock then you can only access
attributes on the mock that exist on the real class:
>>> from urllib import request
>>> mock = Mock(spec=request.Request)
>>> mock.assret_called_with # Intentional typo!
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'assret_called_with'
The spec only applies to the mock itself, so we still have the same issue with any methods on the mock:
>>> mock.has_data()
<mock.Mock object at 0x...>
>>> mock.has_data.assret_called_with() # Intentional typo!
Auto-speccing solves this problem. You can either pass autospec=True
to
patch()
/ patch.object()
or use the create_autospec()
function to create a
mock with a spec. If you use the autospec=True
argument to patch()
then the
object that is being replaced will be used as the spec object. Because the
speccing is done “lazily” (the spec is created as attributes on the mock are
accessed) you can use it with very complex or deeply nested objects (like
modules that import modules that import modules) without a big performance
hit.
Aqui está um exemplo disso em uso:
>>> from urllib import request
>>> patcher = patch('__main__.request', autospec=True)
>>> mock_request = patcher.start()
>>> request is mock_request
True
>>> mock_request.Request
<MagicMock name='request.Request' spec='Request' id='...'>
You can see that request.Request
has a spec. request.Request
takes two
arguments in the constructor (one of which is self). Here’s what happens if
we try to call it incorrectly:
>>> req = request.Request()
Traceback (most recent call last):
...
TypeError: <lambda>() takes at least 2 arguments (1 given)
The spec also applies to instantiated classes (i.e. the return value of specced mocks):
>>> req = request.Request('foo')
>>> req
<NonCallableMagicMock name='request.Request()' spec='Request' id='...'>
Request
objects are not callable, so the return value of instantiating our
mocked out request.Request
is a non-callable mock. With the spec in place
any typos in our asserts will raise the correct error:
>>> req.add_header('spam', 'eggs')
<MagicMock name='request.Request().add_header()' id='...'>
>>> req.add_header.assret_called_with # Intentional typo!
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'assret_called_with'
>>> req.add_header.assert_called_with('spam', 'eggs')
In many cases you will just be able to add autospec=True
to your existing
patch()
calls and then be protected against bugs due to typos and api
changes.
As well as using autospec through patch()
there is a
create_autospec()
for creating autospecced mocks directly:
>>> from urllib import request
>>> mock_request = create_autospec(request)
>>> mock_request.Request('foo', 'bar')
<NonCallableMagicMock name='mock.Request()' spec='Request' id='...'>
This isn’t without caveats and limitations however, which is why it is not the default behaviour. In order to know what attributes are available on the spec object, autospec has to introspect (access attributes) the spec. As you traverse attributes on the mock a corresponding traversal of the original object is happening under the hood. If any of your specced objects have properties or descriptors that can trigger code execution then you may not be able to use autospec. On the other hand it is much better to design your objects so that introspection is safe 4.
A more serious problem is that it is common for instance attributes to be
created in the __init__()
method and not to exist on the class at all.
autospec can’t know about any dynamically created attributes and restricts
the api to visible attributes.
>>> class Something:
... def __init__(self):
... self.a = 33
...
>>> with patch('__main__.Something', autospec=True):
... thing = Something()
... thing.a
...
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'a'
There are a few different ways of resolving this problem. The easiest, but not necessarily the least annoying, way is to simply set the required attributes on the mock after creation. Just because autospec doesn’t allow you to fetch attributes that don’t exist on the spec it doesn’t prevent you setting them:
>>> with patch('__main__.Something', autospec=True):
... thing = Something()
... thing.a = 33
...
There is a more aggressive version of both spec and autospec that does prevent you setting non-existent attributes. This is useful if you want to ensure your code only sets valid attributes too, but obviously it prevents this particular scenario:
>>> with patch('__main__.Something', autospec=True, spec_set=True):
... thing = Something()
... thing.a = 33
...
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'a'
Probably the best way of solving the problem is to add class attributes as
default values for instance members initialised in __init__()
. Note that if
you are only setting default attributes in __init__()
then providing them via
class attributes (shared between instances of course) is faster too. e.g.
class Something:
a = 33
This brings up another issue. It is relatively common to provide a default
value of None
for members that will later be an object of a different type.
None
would be useless as a spec because it wouldn’t let you access any
attributes or methods on it. As None
is never going to be useful as a
spec, and probably indicates a member that will normally of some other type,
autospec doesn’t use a spec for members that are set to None
. These will
just be ordinary mocks (well - MagicMocks):
>>> class Something:
... member = None
...
>>> mock = create_autospec(Something)
>>> mock.member.foo.bar.baz()
<MagicMock name='mock.member.foo.bar.baz()' id='...'>
If modifying your production classes to add defaults isn’t to your liking
then there are more options. One of these is simply to use an instance as the
spec rather than the class. The other is to create a subclass of the
production class and add the defaults to the subclass without affecting the
production class. Both of these require you to use an alternative object as
the spec. Thankfully patch()
supports this - you can simply pass the
alternative object as the autospec argument:
>>> class Something:
... def __init__(self):
... self.a = 33
...
>>> class SomethingForTest(Something):
... a = 33
...
>>> p = patch('__main__.Something', autospec=SomethingForTest)
>>> mock = p.start()
>>> mock.a
<NonCallableMagicMock name='Something.a' spec='int' id='...'>
Vedando mocks¶
-
unittest.mock.
seal
(mock)¶ Seal will disable the automatic creation of mocks when accessing an attribute of the mock being sealed or any of its attributes that are already mocks recursively.
If a mock instance with a name or a spec is assigned to an attribute it won’t be considered in the sealing chain. This allows one to prevent seal from fixing part of the mock object.
>>> mock = Mock() >>> mock.submock.attribute1 = 2 >>> mock.not_submock = mock.Mock(name="sample_name") >>> seal(mock) >>> mock.new_attribute # This will raise AttributeError. >>> mock.submock.attribute2 # This will raise AttributeError. >>> mock.not_submock.attribute2 # This won't raise.
Novo na versão 3.7.