Portando codigos do Python 2 para o
Python 3

Release 3.10.18

Guido van Rossum
and the Python development team

julho 08, 2025

Python Software Foundation
Email: docs@python.org

Sumario

1 A explicagio breve 2

2 Detalhes 2
2.1 Desativa suporte para Python 2.6 e anteriores v v vt it e e e e e e e 3
2.2 Certifique-se de especificar o suporte de versdo adequado no seu arquivo setup.py 3
2.3 Tenhaumaboacoberturade testes o e e e e 3
2.4 Aprenda asdiferencas entre Python2e3 oL oo 3
2.5 Updateyourcode o i i e e e e e e e e e e e e 4
2.6 Prevent compatibility T€gressions oL e e e e e e e e e e e e e 6
2.7 Check which dependencies block your transition oL 7
2.8 Update your setup.py file to denote Python 3 compatibility 7
2.9 Use continuous integration to stay compatible Lo oo oL 7
2.10 Consider using optional static type checking o oo Lo, 8

autor Brett Cannon

Resumo

Com o Python 3 sendo o futuro do Python, enquanto o Python 2 ainda estd em uso ativo, € bom ter seu projeto
disponivel para ambos os principais lancamentos do Python. Este guia destina-se a ajuda-lo a descobrir como melhor
para dar suporte a tanto Python 2 & 3 simultaneamente.

Se vocé estd pensando em portar um mddulo de extensdo em vez de puro cédigo Python, veja cporting-howto.

Se vocé gostaria de ler algo do ponto de vista de um desenvolvedor core do Python sobre por que Python 3 veio a
existéncia, vocé pode ler Python 3 Q & A de Nick Coghlan ou Why Python 3 exists de Brett Cannon.

Para ajuda com o port, vocé€ pode ver a lista de discussao python-porting arquivado.

https://ncoghlan-devs-python-notes.readthedocs.io/en/latest/python3/questions_and_answers.html
https://snarky.ca/why-python-3-exists
https://mail.python.org/pipermail/python-porting/

1 A explicacao breve

Para tornar seu projeto compativel com Python 2/3 de c6digo Unico, as etapas bésicas sdo:
1. Apenas se preocupe com suporte ao Python 2.7

2. Certifique-se de ter uma boa cobertura de teste (coverage.py pode ajudar; python -m pip install
coverage)

3. Aprenda as diferencas entre Python 2 e 3
4. Use Futurize (ou Modernize) para atualizar o seu c6digo (por exemplo, python -m pip install future)

5. Use Pylint para ajudar a garantir que vocé nao regresse em seu suporte a Python 3 (python -m pip install
pylint)

6. Use caniusepython3 para descobrir qual de suas dependéncias estd bloqueando seu uso de Python 3 (python -m
pip install caniusepython3)

7. Uma vez que suas dependéncias ndo estdo bloqueando, use a integragao continua para garantir que voc€ fique com-
pativel com Python 2 e 3 (tox pode ajudar a testar contra vérias versdes do Python; python -m pip install
tox)

8. Considere o uso de verificacdo de tipo estdtico opcional para garantir que seu uso de tipo funciona em ambos
Python 2 e 3 (por exemplo, use mypy para verificar sua tipagem em ambos Python 2 e Python 3; python -m
pip install mypy).

Nota: Nota: Usar python -m pip install garante que o pip que vocé invoca € o instalado para o Python
atualmente em uso, seja um pip em todo o sistema ou um instalado dentro de um ambiente virtual.

2 Detalhes

Um ponto-chave sobre o suporte ao Python 2 e 3 simultaneamente é que vocé pode comegar hoje! Mesmo que suas
dependéncias nio tenham suporte ao Python 3 ainda isso ndo significa que vocé nao pode modernizar seu codigo agora
para apoiar o Python 3. A maioria das alteragcdes necessdrias para dar suportea o Python 3 levam ao c6digo mais limpo
usando préticas mais recentes, mesmo no codigo Python 2.

Outro ponto-chave é que modernizar seu cédigo Python 2 para também dar suporte a Python 3 € amplamente automa-
tizado para vocé€. Embora vocé possa ter que tomar algumas decisdes da API gracas ao Python 3 esclarecendo dados
de texto versus dados bindrios, o trabalho de nivel inferior agora € feito principalmente para vocé e, portanto, pode pelo
menos beneficiar das mudangas automatizadas imediatamente.

Mantenha esses pontos-chave em mente enquanto vocé 1€ sobre os detalhes de portar seu codigo para dar suporte a Python
2 e 3 simultaneamente.

https://pypi.org/project/coverage
https://python-future.org/automatic_conversion.html
https://python-modernize.readthedocs.io/
https://pypi.org/project/pylint
https://pypi.org/project/caniusepython3
https://pypi.org/project/tox
http://mypy-lang.org/

2.1 Desativa suporte para Python 2.6 e anteriores

Enquanto vocé pode fazer Python 2.5 funcionar com Python 3, é muito mais fécil se vocé s6 tem que fazer funcionar
com Python 2.7. Se descartar Python 2.5 nfo é uma opcdo, entdo o projeto six pode lhe ajudar a dar suporte a Python 2.5
e 3 simultaneamente (python -m pip install six). Note, porém, que quase todos os projetos listados neste
HOWTO nio estardo disponiveis para vocé.

Se vocé puder ignorar o Python 2.5 e versdes mais antigas, entdo as alteragdes necessarias para o seu cédigo devem
continuar a olhar e sentir como cédigo Python idiomatico. Na pior das hipdteses vocé terd que usar uma fun¢do em vez
de um método em algumas instancias ou tem que importar uma funcio em vez de usar uma embutida, mas de outra forma
a transformacio geral nio deve se sentir estranha para vocg.

Mas vocé deve visar apenas dar suporte ao Python 2.7. Python 2.6 ndo é mais suportado e, portanto, nao estd recebendo
correcoes de bugs. Isso significa que vocé terd que contornar qualquer problema que vocé se deparar com Python 2.6.
H4 também algumas ferramentas mencionadas neste HOWTO que ndo tem suporte ao Python 2.6 (por exemplo, Pylint,)
e isso vai se tornar mais comum a medida que o tempo passa. Serd simplesmente mais facil para vocé se vocé s6 prové
suporte as versdes do Python que vocé tem que dar suporte.

2.2 Certifique-se de especificar o suporte de versao adequado no seu arquivo
setup.py

Em seu arquivo setup.py, vocé€ deve ter o trove classifier (classificador de Trove) apropriado especificando que ver-
soes do Python vocé dd suporte. Como seu projeto ainda ndo tem suporte a Python 3, vocé deve pelo menos ter
Programming Language :: Python :: 2 :: Only especificado. Idealmente, vocé também deve espe-
cificar cada versdo principal/menor do Python que vocé da suporte, por exemplo, Programming Language
Python :: 2.7.

2.3 Tenha uma boa cobertura de testes

Uma vez que vocé tenha seu c6digo suportando a versdo mais antiga do Python 2 que vocé quer, voc€ vai querer ter certeza
de que seu conjunto de teste tem boa cobertura. Uma boa regra de ouro € que se vocé quiser estar confiante o suficiente
em seu conjunto de teste que quaisquer falhas que aparecem apds ter ferramentas reescrever seu cdigo sdo bugs reais nas
ferramentas e nfo em seu cédigo. Se vocé quiser um niimero como meta, tente obter mais de 80% de cobertura (e ndo
se sinta mal se vocé€ achar dificil obter melhor que 90% de cobertura). Se vocé ja ndao tem uma ferramenta para medir a
cobertura do teste, entdo coverage.py € recomendada.

2.4 Aprenda as diferencas entre Python2 e 3

Once you have your code well-tested you are ready to begin porting your code to Python 3! But to fully understand how
your code is going to change and what you want to look out for while you code, you will want to learn what changes
Python 3 makes in terms of Python 2. Typically the two best ways of doing that is reading the “What’s New” doc for
each release of Python 3 and the Porting to Python 3 book (which is free online). There is also a handy cheat sheet from
the Python-Future project.

https://pypi.org/project/six
https://pypi.org/project/pylint
https://pypi.org/classifiers
https://pypi.org/project/coverage
http://python3porting.com/
https://python-future.org/compatible_idioms.html

2.5 Update your code

Once you feel like you know what is different in Python 3 compared to Python 2, it’s time to update your code! You
have a choice between two tools in porting your code automatically: Futurize and Modernize. Which tool you choose
will depend on how much like Python 3 you want your code to be. Futurize does its best to make Python 3 idioms and
practices exist in Python 2, e.g. backporting the bytes type from Python 3 so that you have semantic parity between the
major versions of Python. Modernize, on the other hand, is more conservative and targets a Python 2/3 subset of Python,
directly relying on six to help provide compatibility. As Python 3 is the future, it might be best to consider Futurize to
begin adjusting to any new practices that Python 3 introduces which you are not accustomed to yet.

Regardless of which tool you choose, they will update your code to run under Python 3 while staying compatible with the
version of Python 2 you started with. Depending on how conservative you want to be, you may want to run the tool over
your test suite first and visually inspect the diff to make sure the transformation is accurate. After you have transformed
your test suite and verified that all the tests still pass as expected, then you can transform your application code knowing
that any tests which fail is a translation failure.

Unfortunately the tools can’t automate everything to make your code work under Python 3 and so there are a handful of
things you will need to update manually to get full Python 3 support (which of these steps are necessary vary between the
tools). Read the documentation for the tool you choose to use to see what it fixes by default and what it can do optionally
to know what will (not) be fixed for you and what you may have to fix on your own (e.g. using io.open () over the
built-in open () function is off by default in Modernize). Luckily, though, there are only a couple of things to watch out
for which can be considered large issues that may be hard to debug if not watched for.

Divisao

In Python 3,5 / 2 == 2.5 and not 2; all division between int values result in a £1oat. This change has actu-
ally been planned since Python 2.2 which was released in 2002. Since then users have been encouraged to add from
_ future__ import division to any and all files which use the / and // operators or to be running the in-
terpreter with the —Q flag. If you have not been doing this then you will need to go through your code and do two
things:

1. Add from __ future__ import division to your files

2. Update any division operator as necessary to either use // to use floor division or continue using / and expect a
float

The reason that / isn’t simply translated to // automatically is that if an object defines a ___truediv__ method but
not ___floordiv___ then your code would begin to fail (e.g. a user-defined class that uses / to signify some operation
but not / / for the same thing or at all).

Text versus binary data

In Python 2 you could use the str type for both text and binary data. Unfortunately this confluence of two different
concepts could lead to brittle code which sometimes worked for either kind of data, sometimes not. It also could lead
to confusing APIs if people didn’t explicitly state that something that accepted st r accepted either text or binary data
instead of one specific type. This complicated the situation especially for anyone supporting multiple languages as APIs
wouldn’t bother explicitly supporting unicode when they claimed text data support.

To make the distinction between text and binary data clearer and more pronounced, Python 3 did what most languages
created in the age of the internet have done and made text and binary data distinct types that cannot blindly be mixed
together (Python predates widespread access to the internet). For any code that deals only with text or only binary data,
this separation doesn’t pose an issue. But for code that has to deal with both, it does mean you might have to now care
about when you are using text compared to binary data, which is why this cannot be entirely automated.

To start, you will need to decide which APIs take text and which take binary (it is highly recommended you don’t design
APISs that can take both due to the difficulty of keeping the code working; as stated earlier it is difficult to do well). In

https://python-future.org/automatic_conversion.html
https://python-modernize.readthedocs.io/
https://python-future.org/automatic_conversion.html
https://python-modernize.readthedocs.io/
https://pypi.org/project/six

Python 2 this means making sure the APIs that take text can work with unicode and those that work with binary data
work with the bytes type from Python 3 (which is a subset of st r in Python 2 and acts as an alias for bytes type in
Python 2). Usually the biggest issue is realizing which methods exist on which types in Python 2 & 3 simultaneously (for
text that’s unicode in Python 2 and st r in Python 3, for binary that’s st r/bytes in Python 2 and bytes in Python
3). The following table lists the unique methods of each data type across Python 2 & 3 (e.g., the decode () method is
usable on the equivalent binary data type in either Python 2 or 3, but it can’t be used by the textual data type consistently
between Python 2 and 3 because st r in Python 3 doesn’t have the method). Do note that as of Python 3.5 the __mod___
method was added to the bytes type.

Text data | Binary data
decode

encode
format
isdecimal
isnumeric

Making the distinction easier to handle can be accomplished by encoding and decoding between binary data and text at
the edge of your code. This means that when you receive text in binary data, you should immediately decode it. And if
your code needs to send text as binary data then encode it as late as possible. This allows your code to work with only
text internally and thus eliminates having to keep track of what type of data you are working with.

The next issue is making sure you know whether the string literals in your code represent text or binary data. You should
add a b prefix to any literal that presents binary data. For text you should add a u prefix to the text literal. (there is a
__future__ import to force all unspecified literals to be Unicode, but usage has shown it isn’t as effective as adding a
b or u prefix to all literals explicitly)

As part of this dichotomy you also need to be careful about opening files. Unless you have been working on Windows,
there is a chance you have not always bothered to add the b mode when opening a binary file (e.g., rb for binary reading).
Under Python 3, binary files and text files are clearly distinct and mutually incompatible; see the i o module for details.
Therefore, you must make a decision of whether a file will be used for binary access (allowing binary data to be read
and/or written) or textual access (allowing text data to be read and/or written). You should also use io.open () for
opening files instead of the built-in open () function as the i o module is consistent from Python 2 to 3 while the built-
-in open () function is not (in Python 3 it’s actually 10 . open ()). Do not bother with the outdated practice of using
codecs.open () as that’s only necessary for keeping compatibility with Python 2.5.

The constructors of both str and bytes have different semantics for the same arguments between Python 2 & 3.
Passing an integer to bytes in Python 2 will give you the string representation of the integer: bytes (3) == '3"'.
But in Python 3, an integer argument to byt e s will give you a bytes object as long as the integer specified, filled with null
bytes: bytes (3) == b'\x00\x00\x00"'. A similar worry is necessary when passing a bytes object to str. In
Python 2 you just get the bytes object back: str (b'3') == b'3'. Butin Python 3 you get the string representation
of the bytes object: str (b'3') == "b'3"'".

Finally, the indexing of binary data requires careful handling (slicing does not require any special handling). In Python
2,b'123"'[1] == b'2"' while in Python 3 b'123"'[1] == 50. Because binary data is simply a collection of
binary numbers, Python 3 returns the integer value for the byte you index on. But in Python 2 because bytes ==
str, indexing returns a one-item slice of bytes. The six project has a function named six.indexbytes () which
will return an integer like in Python 3: six.indexbytes (b'123', 1).

To summarize:
1. Decide which of your APIs take text and which take binary data

2. Make sure that your code that works with text also works with unicode and code for binary data works with
bytes in Python 2 (see the table above for what methods you cannot use for each type)

3. Mark all binary literals with a b prefix, textual literals with a u prefix

4. Decode binary data to text as soon as possible, encode text as binary data as late as possible

https://pypi.org/project/six

5. Open files using 10 .open () and make sure to specify the b mode when appropriate

6. Be careful when indexing into binary data

Use feature detection instead of version detection

Inevitably you will have code that has to choose what to do based on what version of Python is running. The best way to
do this is with feature detection of whether the version of Python you’re running under supports what you need. If for
some reason that doesn’t work then you should make the version check be against Python 2 and not Python 3. To help
explain this, let’s look at an example.

Let’s pretend that you need access to a feature of import1ib that is available in Python’s standard library since Python
3.3 and available for Python 2 through importlib2 on PyPI. You might be tempted to write code to access e.g. the
importlib.abc module by doing the following:

import sys

if sys.version_info[0] ==
from importlib import abc
else:
from importlib2 import abc

The problem with this code is what happens when Python 4 comes out? It would be better to treat Python 2 as the
exceptional case instead of Python 3 and assume that future Python versions will be more compatible with Python 3 than
Python 2:

import sys

if sys.version_info[0] > 2:
from importlib import abc
else:
from importlib2 import abc

The best solution, though, is to do no version detection at all and instead rely on feature detection. That avoids any
potential issues of getting the version detection wrong and helps keep you future-compatible:

try:

from importlib import abc
except ImportError:

from importlib2 import abc

2.6 Prevent compatibility regressions

Once you have fully translated your code to be compatible with Python 3, you will want to make sure your code doesn’t
regress and stop working under Python 3. This is especially true if you have a dependency which is blocking you from
actually running under Python 3 at the moment.

To help with staying compatible, any new modules you create should have at least the following block of code at the top
of it:

from _ future_ import absolute_import
from __ future__ import division
from _ future_ import print_function

https://pypi.org/project/importlib2

You can also run Python 2 with the -3 flag to be warned about various compatibility issues your code triggers during
execution. If you turn warnings into errors with —-Werror then you can make sure that you don’t accidentally miss a
warning.

You can also use the Pylint project and its ——py 3k flag to lint your code to receive warnings when your code begins to
deviate from Python 3 compatibility. This also prevents you from having to run Modernize or Futurize over your code
regularly to catch compatibility regressions. This does require you only support Python 2.7 and Python 3.4 or newer as
that is Pylint’s minimum Python version support.

2.7 Check which dependencies block your transition

After you have made your code compatible with Python 3 you should begin to care about whether your dependencies
have also been ported. The caniusepython3 project was created to help you determine which projects — directly or
indirectly - are blocking you from supporting Python 3. There is both a command-line tool as well as a web interface at
https://caniusepython3.com.

The project also provides code which you can integrate into your test suite so that you will have a failing test when you
no longer have dependencies blocking you from using Python 3. This allows you to avoid having to manually check your
dependencies and to be notified quickly when you can start running on Python 3.

2.8 Update your setup.py file to denote Python 3 compatibility

Once your code works under Python 3, you should update the classifiers in your set up . py to contain Programming
Language :: Python :: 3 and to not specify sole Python 2 support. This will tell anyone using your code that
you support Python 2 and 3. Ideally you will also want to add classifiers for each major/minor version of Python you now
support.

2.9 Use continuous integration to stay compatible

Once you are able to fully run under Python 3 you will want to make sure your code always works under both Python 2
& 3. Probably the best tool for running your tests under multiple Python interpreters is tox. You can then integrate tox
with your continuous integration system so that you never accidentally break Python 2 or 3 support.

You may also want to use the —bb flag with the Python 3 interpreter to trigger an exception when you are comparing
bytes to strings or bytes to an int (the latter is available starting in Python 3.5). By default type-differing comparisons
simply return False, but if you made a mistake in your separation of text/binary data handling or indexing on bytes you
wouldn’t easily find the mistake. This flag will raise an exception when these kinds of comparisons occur, making the
mistake much easier to track down.

And that’s mostly it! At this point your code base is compatible with both Python 2 and 3 simultaneously. Your testing will
also be set up so that you don’t accidentally break Python 2 or 3 compatibility regardless of which version you typically
run your tests under while developing.

https://pypi.org/project/pylint
https://python-modernize.readthedocs.io/
https://python-future.org/automatic_conversion.html
https://pypi.org/project/caniusepython3
https://caniusepython3.com
https://pypi.org/project/tox

2.10 Consider using optional static type checking

Another way to help port your code is to use a static type checker like mypy or pytype on your code. These tools can be
used to analyze your code as if it’s being run under Python 2, then you can run the tool a second time as if your code is
running under Python 3. By running a static type checker twice like this you can discover if you're e.g. misusing binary
data type in one version of Python compared to another. If you add optional type hints to your code you can also explicitly
state whether your APIs use textual or binary data, helping to make sure everything functions as expected in both versions
of Python.

http://mypy-lang.org/
https://github.com/google/pytype

	A explicação breve
	Detalhes
	Desativa suporte para Python 2.6 e anteriores
	Certifique-se de especificar o suporte de versão adequado no seu arquivo setup.py
	Tenha uma boa cobertura de testes
	Aprenda as diferenças entre Python 2 e 3
	Update your code
	Prevent compatibility regressions
	Check which dependencies block your transition
	Update your setup.py file to denote Python 3 compatibility
	Use continuous integration to stay compatible
	Consider using optional static type checking

