Portando codigos do Python 2 para o
Python 3

Release 3.10.18

Guido van Rossum
and the Python development team

julho 08, 2025

Python Software Foundation
Email: docs@python.org

Sumario

1 A explicagio breve 2

2 Detalhes 2
2.1 Desativa suporte para Python 2.6 e anteriores . . . . . . . . . . v v v v i i e e e e e e 2
2.2 Certifique-se de especificar o suporte de versdao adequado no seu arquivo setup.py . . . . . . . . 3
2.3 Tenhaumaboacoberturadetestes . . . . . . . . . . . . . e 3
2.4 Aprenda as diferencas entre Python2e3 . . . . . . . ..o oL oo L oo 3
2.5 Updateyourcode . . . . . . . o i i e e e e e e e e e e e e e e 3
2.6 Prevent compatibility T€gressions . . . . . . . ... oL e e e e e e e e e e e 6
2.7 Check which dependencies block your transition . . . . . . . . ... ... L 6
2.8 Update your setup.py file to denote Python 3 compatibility . . . . . . ... ... ... ..... 6
2.9 Use continuous integration to stay compatible . . . . . . . . .. ... oo Lo 7
2.10 Consider using optional static type checking . . . . . . . . . .. ... .. oo 7

autor Brett Cannon

Resumo

Com o Python 3 sendo o futuro do Python, enquanto o Python 2 ainda estd em uso ativo, € bom ter seu projeto
disponivel para ambos os principais lancamentos do Python. Este guia destina-se a ajuda-lo a descobrir como
melhor para dar suporte a tanto Python 2 & 3 simultaneamente.

Se vocé estd pensando em portar um mddulo de extensdo em vez de puro cédigo Python, veja cporting-howto.

Se vocé gostaria de ler algo do ponto de vista de um desenvolvedor core do Python sobre por que Python 3 veio a
existéncia, vocé pode ler Python 3 Q & A de Nick Coghlan ou Why Python 3 exists de Brett Cannon.

Para ajuda com o port, vocé€ pode ver a lista de discussao python-porting arquivado.



https://ncoghlan-devs-python-notes.readthedocs.io/en/latest/python3/questions_and_answers.html
https://snarky.ca/why-python-3-exists
https://mail.python.org/pipermail/python-porting/

1 A explicacao breve

Para tornar seu projeto compativel com Python 2/3 de c6digo Unico, as etapas bésicas sdo:
1. Apenas se preocupe com suporte ao Python 2.7

2. Certifique-se de ter uma boa cobertura de teste (coverage.py pode ajudar; python -m pip install
coverage)

3. Aprenda as diferencas entre Python 2 e 3

4. Use Futurize (ou Modernize) para atualizar o seu codigo (por exemplo, python -m pip install
future)

5. Use Pylint para ajudar a garantir que voc€ ndo regresse em seu suporte a Python 3 (python -m pip
install pylint)

6. Use caniusepython3 para descobrir qual de suas dependéncias esta bloqueando seu uso de Python 3 (python
-m pip install caniusepython3)

7. Uma vez que suas dependéncias ndo estdo bloqueando, use a integracio continua para garantir que vocé fique
compativel com Python 2 e 3 (tox pode ajudar a testar contra vdrias versdes do Python; python -m pip
install tox)

8. Considere o uso de verificag@o de tipo estatico opcional para garantir que seu uso de tipo funciona em ambos
Python 2 e 3 (por exemplo, use mypy para verificar sua tipagem em ambos Python 2 e Python 3; python
-m pip install mypy).

Nota: Nota: Usar python -m pip install garante que o pip que vocé invoca € o instalado para o Python
atualmente em uso, seja um pip em todo o sistema ou um instalado dentro de um ambiente virtual.

2 Detalhes

Um ponto-chave sobre o suporte ao Python 2 e 3 simultaneamente € que vocé pode comecar hoje! Mesmo que suas
dependéncias ndo tenham suporte ao Python 3 ainda isso ndo significa que vocé ndo pode modernizar seu cédigo
agora para apoiar o Python 3. A maioria das alteragdes necessdrias para dar suportea o Python 3 levam ao cédigo
mais limpo usando praticas mais recentes, mesmo no cédigo Python 2.

Outro ponto-chave é que modernizar seu c6digo Python 2 para também dar suporte a Python 3 é amplamente auto-
matizado para vocé. Embora vocé possa ter que tomar algumas decisdes da API gragas ao Python 3 esclarecendo
dados de texto versus dados bindrios, o trabalho de nivel inferior agora € feito principalmente para vocé e, portanto,
pode pelo menos beneficiar das mudangas automatizadas imediatamente.

Mantenha esses pontos-chave em mente enquanto vocé 1€ sobre os detalhes de portar seu c6digo para dar suporte a
Python 2 e 3 simultaneamente.

2.1 Desativa suporte para Python 2.6 e anteriores

Enquanto vocé pode fazer Python 2.5 funcionar com Python 3, ¢ muito mais facil se vocé s6 tem que fazer funcionar
com Python 2.7. Se descartar Python 2.5 ndo é uma opg¢ao, entdo o projeto six pode lhe ajudar a dar suporte a Python
2.5 e 3 simultaneamente (python -m pip install six). Note, porém, que quase todos os projetos listados
neste HOWTO nio estardo disponiveis para vocé.

Se vocé puder ignorar o Python 2.5 e versdes mais antigas, entdo as alteracdes necessarias para o seu codigo devem
continuar a olhar e sentir como c6digo Python idiomadtico. Na pior das hipdteses vocé terd que usar uma fungio em
vez de um método em algumas instancias ou tem que importar uma fung¢@o em vez de usar uma embutida, mas de
outra forma a transformacdo geral ndo deve se sentir estranha para vocé.


https://pypi.org/project/coverage
https://python-future.org/automatic_conversion.html
https://python-modernize.readthedocs.io/
https://pypi.org/project/pylint
https://pypi.org/project/caniusepython3
https://pypi.org/project/tox
http://mypy-lang.org/
https://pypi.org/project/six

Mas vocé deve visar apenas dar suporte ao Python 2.7. Python 2.6 ndo é mais suportado e, portanto, ndo estd
recebendo corre¢des de bugs. Isso significa que vocé terd que contornar qualquer problema que vocé se deparar com
Python 2.6. H4 também algumas ferramentas mencionadas neste HOWTO que néo tem suporte ao Python 2.6 (por
exemplo, Pylint,) e isso vai se tornar mais comum a medida que o tempo passa. Serd simplesmente mais facil para
vocé se vocé s prové suporte as versdes do Python que vocé tem que dar suporte.

2.2 Certifique-se de especificar o suporte de versao adequado no seu arquivo
setup.py

Em seu arquivo setup.py, vocé deve ter o trove classifier (classificador de Trove) apropriado especificando que
versdes do Python vocé da suporte. Como seu projeto ainda ndo tem suporte a Python 3, vocé deve pelo menos

ter Programming Language :: Python :: 2 :: Only especificado. Idealmente, vocé também deve
especificar cada versdo principal/menor do Python que vocé da suporte, por exemplo, Programming Language
Python :: 2.7.

2.3 Tenha uma boa cobertura de testes

Uma vez que vocé tenha seu c6digo suportando a versdo mais antiga do Python 2 que vocé quer, vocé vai querer ter
certeza de que seu conjunto de teste tem boa cobertura. Uma boa regra de ouro € que se vocé quiser estar confiante
o suficiente em seu conjunto de teste que quaisquer falhas que aparecem ap6s ter ferramentas reescrever seu c6digo
sdo bugs reais nas ferramentas e nao em seu cédigo. Se vocé quiser um nimero como meta, tente obter mais de 80%
de cobertura (e ndo se sinta mal se voc€ achar dificil obter melhor que 90% de cobertura). Se vocé ja ndo tem uma
ferramenta para medir a cobertura do teste, entdo coverage.py € recomendada.

2.4 Aprenda as diferencas entre Python2 e 3

Once you have your code well-tested you are ready to begin porting your code to Python 3! But to fully understand
how your code is going to change and what you want to look out for while you code, you will want to learn what
changes Python 3 makes in terms of Python 2. Typically the two best ways of doing that is reading the “What’s New”
doc for each release of Python 3 and the Porting to Python 3 book (which is free online). There is also a handy cheat
sheet from the Python-Future project.

2.5 Update your code

Once you feel like you know what is different in Python 3 compared to Python 2, it’s time to update your code! You
have a choice between two tools in porting your code automatically: Futurize and Modernize. Which tool you choose
will depend on how much like Python 3 you want your code to be. Futurize does its best to make Python 3 idioms
and practices exist in Python 2, e.g. backporting the bytes type from Python 3 so that you have semantic parity
between the major versions of Python. Modernize, on the other hand, is more conservative and targets a Python 2/3
subset of Python, directly relying on six to help provide compatibility. As Python 3 is the future, it might be best to
consider Futurize to begin adjusting to any new practices that Python 3 introduces which you are not accustomed to
yet.

Regardless of which tool you choose, they will update your code to run under Python 3 while staying compatible
with the version of Python 2 you started with. Depending on how conservative you want to be, you may want to
run the tool over your test suite first and visually inspect the diff to make sure the transformation is accurate. After
you have transformed your test suite and verified that all the tests still pass as expected, then you can transform your
application code knowing that any tests which fail is a translation failure.

Unfortunately the tools can’t automate everything to make your code work under Python 3 and so there are a handful
of things you will need to update manually to get full Python 3 support (which of these steps are necessary vary
between the tools). Read the documentation for the tool you choose to use to see what it fixes by default and what
it can do optionally to know what will (not) be fixed for you and what you may have to fix on your own (e.g. using
io.open () over the built-in open () function is off by default in Modernize). Luckily, though, there are only a
couple of things to watch out for which can be considered large issues that may be hard to debug if not watched for.


https://pypi.org/project/pylint
https://pypi.org/classifiers
https://pypi.org/project/coverage
http://python3porting.com/
https://python-future.org/compatible_idioms.html
https://python-future.org/compatible_idioms.html
https://python-future.org/automatic_conversion.html
https://python-modernize.readthedocs.io/
https://python-future.org/automatic_conversion.html
https://python-modernize.readthedocs.io/
https://pypi.org/project/six

Divisao

In Python 3, 5 / 2 == 2.5 and not 2; all division between int values result in a £1oat. This change has
actually been planned since Python 2.2 which was released in 2002. Since then users have been encouraged to add
from _ future_ import division toany and allfiles which use the / and // operators or to be running

the interpreter with the —Q flag. If you have not been doing this then you will need to go through your code and do
two things:

1. Add from __future__ import division to your files

2. Update any division operator as necessary to either use // to use floor division or continue using / and expect
a float

The reason that / isn’t simply translated to // automatically is that if an object defines a __truediv__ method
but not __floordiv___ then your code would begin to fail (e.g. a user-defined class that uses / to signify some
operation but not // for the same thing or at all).

Text versus binary data

In Python 2 you could use the st r type for both text and binary data. Unfortunately this confluence of two different
concepts could lead to brittle code which sometimes worked for either kind of data, sometimes not. It also could lead
to confusing APIs if people didn’t explicitly state that something that accepted st r accepted either text or binary
data instead of one specific type. This complicated the situation especially for anyone supporting multiple languages
as APIs wouldn’t bother explicitly supporting unicode when they claimed text data support.

To make the distinction between text and binary data clearer and more pronounced, Python 3 did what most languages
created in the age of the internet have done and made text and binary data distinct types that cannot blindly be mixed
together (Python predates widespread access to the internet). For any code that deals only with text or only binary
data, this separation doesn’t pose an issue. But for code that has to deal with both, it does mean you might have to
now care about when you are using text compared to binary data, which is why this cannot be entirely automated.

To start, you will need to decide which APIs take text and which take binary (it is highly recommended you don’t
design APIs that can take both due to the difficulty of keeping the code working; as stated earlier it is difficult to do
well). In Python 2 this means making sure the APIs that take text can work with unicode and those that work with
binary data work with the bytes type from Python 3 (which is a subset of st r in Python 2 and acts as an alias for
bytes type in Python 2). Usually the biggest issue is realizing which methods exist on which types in Python 2 & 3
simultaneously (for text that’s unicode in Python 2 and st r in Python 3, for binary that’s st r/bytes in Python
2 and bytes in Python 3). The following table lists the unique methods of each data type across Python 2 & 3
(e.g., the decode () method is usable on the equivalent binary data type in either Python 2 or 3, but it can’t be used
by the textual data type consistently between Python 2 and 3 because st r in Python 3 doesn’t have the method). Do
note that as of Python 3.5 the __mod___ method was added to the bytes type.

Text data | Binary data
decode

encode
format
isdecimal
isnumeric

Making the distinction easier to handle can be accomplished by encoding and decoding between binary data and text
at the edge of your code. This means that when you receive text in binary data, you should immediately decode it.
And if your code needs to send text as binary data then encode it as late as possible. This allows your code to work
with only text internally and thus eliminates having to keep track of what type of data you are working with.

The next issue is making sure you know whether the string literals in your code represent text or binary data. You
should add a b prefix to any literal that presents binary data. For text you should add a u prefix to the text literal.
(thereisa___future__ import to force all unspecified literals to be Unicode, but usage has shown it isn’t as effective
as adding a b or u prefix to all literals explicitly)



As part of this dichotomy you also need to be careful about opening files. Unless you have been working on Windows,
there is a chance you have not always bothered to add the b mode when opening a binary file (e.g., rb for binary
reading). Under Python 3, binary files and text files are clearly distinct and mutually incompatible; see the 1 o module
for details. Therefore, you must make a decision of whether a file will be used for binary access (allowing binary
data to be read and/or written) or textual access (allowing text data to be read and/or written). You should also use
io.open () for opening files instead of the built-in open () function as the i o module is consistent from Python
2 to 3 while the built-in open () function is not (in Python 3 it’s actually io.open () ). Do not bother with the
outdated practice of using codecs.open () as that’s only necessary for keeping compatibility with Python 2.5.

The constructors of both str and bytes have different semantics for the same arguments between Python 2 &
3. Passing an integer to bytes in Python 2 will give you the string representation of the integer: bytes (3) ==
'3'. But in Python 3, an integer argument to bytes will give you a bytes object as long as the integer specified,

filled with null bytes: bytes (3) == b'\x00\x00\x00"'. A similar worry is necessary when passing a bytes
object to str. In Python 2 you just get the bytes object back: str (b'3') == b'3'. Butin Python 3 you get
the string representation of the bytes object: str (b'3') == "b'3'".

Finally, the indexing of binary data requires careful handling (slicing does not require any special handling). In Python
2,0'123'[1] == b'2" while in Python 3 b'123'[1] == 50. Because binary data is simply a collection
of binary numbers, Python 3 returns the integer value for the byte you index on. But in Python 2 because bytes
== str, indexing returns a one-item slice of bytes. The six project has a function named six.indexbytes ()
which will return an integer like in Python 3: six.indexbytes (b'123', 1).

To summarize:
1. Decide which of your APIs take text and which take binary data

2. Make sure that your code that works with text also works with unicode and code for binary data works with
bytes in Python 2 (see the table above for what methods you cannot use for each type)

Mark all binary literals with a b prefix, textual literals with a u prefix
Decode binary data to text as soon as possible, encode text as binary data as late as possible

Open files using 10 . open () and make sure to specify the b mode when appropriate

A

Be careful when indexing into binary data

Use feature detection instead of version detection

Inevitably you will have code that has to choose what to do based on what version of Python is running. The best way
to do this is with feature detection of whether the version of Python you’re running under supports what you need.
If for some reason that doesn’t work then you should make the version check be against Python 2 and not Python 3.
To help explain this, let’s look at an example.

Let’s pretend that you need access to a feature of importlib that is available in Python’s standard library since
Python 3.3 and available for Python 2 through importlib2 on PyPl. You might be tempted to write code to access
e.g. the importlib.abc module by doing the following:

import sys

if sys.version_info[0] ==
from importlib import abc
else:
from importlib2 import abc

The problem with this code is what happens when Python 4 comes out? It would be better to treat Python 2 as the
exceptional case instead of Python 3 and assume that future Python versions will be more compatible with Python 3
than Python 2:

import sys

if sys.version_info[0] > 2:
from importlib import abc

(continua na préxima pagina)



https://pypi.org/project/six
https://pypi.org/project/importlib2

(continuag@o da pagina anterior)

else:
from importlib2 import abc

The best solution, though, is to do no version detection at all and instead rely on feature detection. That avoids any
potential issues of getting the version detection wrong and helps keep you future-compatible:

try:

from importlib import abc
except ImportError:

from importlib2 import abc

2.6 Prevent compatibility regressions

Once you have fully translated your code to be compatible with Python 3, you will want to make sure your code
doesn’t regress and stop working under Python 3. This is especially true if you have a dependency which is blocking
you from actually running under Python 3 at the moment.

To help with staying compatible, any new modules you create should have at least the following block of code at the
top of it:

from __ future__ import absolute_import
from _ future_ import division
from _ future_ import print_function

You can also run Python 2 with the -3 flag to be warned about various compatibility issues your code triggers during
execution. If you turn warnings into errors with —-Werror then you can make sure that you don’t accidentally miss
a warning.

You can also use the Pylint project and its ——py 3k flag to lint your code to receive warnings when your code begins
to deviate from Python 3 compatibility. This also prevents you from having to run Modernize or Futurize over your
code regularly to catch compatibility regressions. This does require you only support Python 2.7 and Python 3.4 or
newer as that is Pylint’s minimum Python version support.

2.7 Check which dependencies block your transition

After you have made your code compatible with Python 3 you should begin to care about whether your dependencies
have also been ported. The caniusepython3 project was created to help you determine which projects - directly or
indirectly — are blocking you from supporting Python 3. There is both a command-line tool as well as a web interface
at https://caniusepython3.com.

The project also provides code which you can integrate into your test suite so that you will have a failing test when
you no longer have dependencies blocking you from using Python 3. This allows you to avoid having to manually
check your dependencies and to be notified quickly when you can start running on Python 3.

2.8 Update your setup.py file to denote Python 3 compatibility

Once your code works under Python 3, you should update the classifiers in your setup.py to contain
Programming Language :: Python :: 3 and to not specify sole Python 2 support. This will tell anyone
using your code that you support Python 2 and 3. Ideally you will also want to add classifiers for each major/minor
version of Python you now support.



https://pypi.org/project/pylint
https://python-modernize.readthedocs.io/
https://python-future.org/automatic_conversion.html
https://pypi.org/project/caniusepython3
https://caniusepython3.com

2.9 Use continuous integration to stay compatible

Once you are able to fully run under Python 3 you will want to make sure your code always works under both Python
2 & 3. Probably the best tool for running your tests under multiple Python interpreters is tox. You can then integrate
tox with your continuous integration system so that you never accidentally break Python 2 or 3 support.

You may also want to use the —bb flag with the Python 3 interpreter to trigger an exception when you are comparing
bytes to strings or bytes to an int (the latter is available starting in Python 3.5). By default type-differing comparisons
simply return False, but if you made a mistake in your separation of text/binary data handling or indexing on bytes
you wouldn’t easily find the mistake. This flag will raise an exception when these kinds of comparisons occur, making
the mistake much easier to track down.

And that’s mostly it! At this point your code base is compatible with both Python 2 and 3 simultaneously. Your
testing will also be set up so that you don’t accidentally break Python 2 or 3 compatibility regardless of which version
you typically run your tests under while developing.

2.10 Consider using optional static type checking

Another way to help port your code is to use a static type checker like mypy or pytype on your code. These tools
can be used to analyze your code as if it’s being run under Python 2, then you can run the tool a second time as if
your code is running under Python 3. By running a static type checker twice like this you can discover if you're e.g.
misusing binary data type in one version of Python compared to another. If you add optional type hints to your code
you can also explicitly state whether your APIs use textual or binary data, helping to make sure everything functions
as expected in both versions of Python.


https://pypi.org/project/tox
http://mypy-lang.org/
https://github.com/google/pytype

	A explicação breve
	Detalhes
	Desativa suporte para Python 2.6 e anteriores
	Certifique-se de especificar o suporte de versão adequado no seu arquivo setup.py
	Tenha uma boa cobertura de testes
	Aprenda as diferenças entre Python 2 e 3
	Update your code
	Prevent compatibility regressions
	Check which dependencies block your transition
	Update your setup.py file to denote Python 3 compatibility
	Use continuous integration to stay compatible
	Consider using optional static type checking


