The Python/C API
Wydanie 3.14.0a5

Guido van Rossum and the Python development team

lutego 13, 2025

Python Software Foundation
Email: docs@python.org

Spis tresci

Wprowadzenie 3
.1 Codingstandards e e e e e e e e e 3
1.2 Pliki Wiaczania-zang. Include L o 3
1.3 Useful macros o o e e e e e e e e 4
1.4 Przedmioty, ich Rodzaje i Liczby Odwotann 7

1.4.1 LiczbyodnieSien v v v e i e e e e e e e e e e e e e e e e 7

LA2 TYPY ¢ o v o e e e e e e e e e e e e e 10
1.5 Wyjatki . . . o oo e 10
1.6 Zalaczanie programu interpretujacego jezyk pytonowskio oL 12
1.7 Odpluskwiajace Budowy e 13
C API Stability 15
2.1 Unstable CAPL o e e e 15
2.2 Stable Application Binary Interface L Lo 15

22.1 Limited CAPL e e 16

222 stabilnego ABL. L. e e e 16

2.2.3 Limited API Scope and Performance 16

224 Limited API Caveats i i e e e e e 17
2.3 Platform Considerations it e e e e e e 17
24 Contents of Limited APT e 17
The Very High Level Layer 43
Reference Counting 49
Obsluga sytuacji wyjatkowych 53
5.1 Printingand clearing L L e e e e e e e e e e e e e 53
5.2 RaiSing eXCeptions o e e e e e e e e e e e e 54
5.3 Issuing warningsol e e e e e e e 57
54 Querying the error indicator e e e 57
5.5 SignalHandling e 61
5.6 ExXxception Classes v v v v v i i e e e e e e e e e e e e e e e e e e e 62
5.7 Przedmioty Sytuacji Wyjatkowycho 62
5.8 Unicode Exception Objects e 63
59 KontrolaRekursji L e 64
5.10 Sztandarowe Sytuacje Wyjatkoweo 65
5.11 Standard Warning Categories v v v v v i i e e e e e e e e e e e e e e e e e 67
Utilities 69
6.1 Operating System Utilities e 69
6.2 System Functions e e e e e e e e e e e 72

6.3 Process Control e e e e 74
6.4 Importing Modules e e e e e e e e e e e 74
6.5 Datamarshalling support L e e e e e e e e 78
6.6 Pobieranie kolejnych rzeczy podanych na wejSciu i konstruowanie wartoSci. 79
6.6.1 Parsowanie argumentow e e e e e e e e e e e e 79
6.6.2 Budowanie wartoSCio e e e e e e e 85
6.7 String conversion and formatting L L. oL L e e e 88
6.8 PyHash API e 89
6.9 Reflection L e 91
6.10 Codec registry and support functions oL Lo 92
6.10.1 Codeclookup APL. 92
6.10.2 Registry API for Unicode encoding error handlers 93
6.11 PyTime CAPL e e 94
6.11.1 Typy . . o o o e e e e 94
6.11.2 Clock Functions e e e 94
6.11.3 Raw Clock Functions e 94
6.11.4 Conversion functions oLl e e e e e 95
6.12 Supportfor Perf Maps e e e e e e e 95
Warstwa obiektow abstrakcyjnych 97
7.1 Object Protocol e e e e e e e e e e e e 97
7.2 Call Protocol e e e e e 106
7.2.1 Thetp_call Protocol e 106
7.2.2 The Vectorcall Protocol e 107
7.23 Object Calling API e 108
7.2.4 Call Support APT e e e e 111
7.3 Number Protocol L e e e e 111
7.4 Sequence Protocol L e e e e e 114
7.5 Mapping Protocol e 116
7.6 Iterator Protocol e e 117
7.7 Buffer Protocol e 118
7.7.1 Bufferstructure L. e 119
7.7.2 Bufferrequesttypes o e e e e e e 120
773 ComPpIeX arrays . . .« v v v v e e e e e e e e e e e e e e e e e 122
7.7.4 Buffer-related functions e 123
Concrete Objects Layer 125
8.1 Fundamental Objects e 125
8.1.1 TypeObjects e 125
8.1.2 TheNone Object o o i i i i ittt e e e 132
8.2 Numeric ObJectS o i i e e e e e e e e e e e e e e e e 132
8.2.1 Integer Objects o v i i e e e e e e e e e e e 132
8.2.2 Obiekty logiczne L e e e e e 142
8.2.3 Floating-Point Objects e e e e 142
8.2.4 Obiekt Liczby Zespolonej e e 144
8.3 Sequence ODbJECtS i . e e e e e e e e e e e e e e 146
8.3.1 BytesODbJects o e e e e e e e e e e 146
832 Byte Array Objects e 148
8.3.3 Unicode Objectsand Codecs i 149
83.4 Tuple Objects o o i it e e 169
8.3.5 StructSequence Objects e e e e 170
8.3.6 ListODbJects v i i e e e e e e e e e e e e e e 171
84 Container ObJECTS v v v v e it e 173
8.4.1 Obiektystownika 173
8.42 SetObjects 178
85 Obiekty Funkcja e 180
8.5.1 Obiekty Funkcja o e e e e e 180
8.5.2 Imstance Method Objects o 0 i i i e e e e e 182

8.5.3 Obiektymetod. e e e e e e e e e 182

854 CellObjects v v v i e e e e e 183

8.5.5 Code ObJects v i v i e e e e e e 183

8.5.6 Extrainformation 186

8.6 Other Objects o e e e e e 187
8.6.1 FileObjects e e 187

8.6.2 Module ObJects i e e e e e e e e e 188

8.6.3 Tterator ObJects v i i e e e e e e e e e e e e e 197

8.6.4 Descriptor Objects L e 197

8.6.5 Slice Objects e 198

8.6.6 MemoryView Objectso e e e e 199

8.6.7 Weak Reference Objects o 0 i i e e e 200

8.6.8 Capsules e e e e e e e 201

8.6.9 Frame Objects o i e e e e e e e e e 203
8.6.10 Generator Objects 205

8.6.11 Coroutine ObjJects o vt it e e e e e 206
8.6.12 Context Variables Objects e 206
8.6.13 DateTime Objects o v v i it e e e e e e e e e e 208
8.6.14 Objects for Type Hinting o e 211

9 Initialization, Finalization, and Threads 213
9.1 Before Python Initialization L e 213
9.2 Global configuration variables L e e e e 214
9.3 Initializing and finalizing the interpreter e 217
9.4 Process-wide parameterso e e e e e e e e e e e e e 220
9.5 Thread State and the Global Interpreter Lock 223
9.5.1 Releasing the GIL from extensioncode 224

9.5.2 Non-Pythoncreatedthreads, 224

9.53 Cautionsaboutfork() e 225

9.5.4 Cautions regarding runtime finalization Lo 225

9.5.5 High-level APT e 225

9.5.6 Low-level APL e 228

0.6 Sub-interpreter SUPPOTL . . . v v v v v e 231
9.6.1 APer-Interpreter GIL 233

9.6.2 Bugsandcaveats e 233

9.7 Asynchronous Notifications 234
9.8 Profilingand Tracing L e e e e e e e e e e e e e 234
0.9 Reference traCing o o i e e e e e e e e e e e e e e e 236
9.10 Advanced Debugger Support L e e 237
9.11 Thread Local Storage Support e 237
9.11.1 Thread Specific Storage (TSS) API 237
9.11.2 Thread Local Storage (TLS) APT 239

9.12 Synchronization Primitives e e e e e e e 239
9.12.1 Python Critical Section API 240

10 Python Initialization Configuration 243
10.1 PylnitConfig C APL o e 243
10.1.1 Przyktad o e 243
10.1.2 Create Config e e e e e 244

10.1.3 ErrorHandling e 244
10.1.4 Get Options v v v vt e e e e e e e e e e e 245

10.1.5 SetOptions i i i e e e e e e 245

10.1.6 Module e e 246

10.1.7 Imitialize Python L 246

10.2 Configuration Options L e e 246
10.3 Runtime Python configuration APT L 247
10.4 PyConfig C API e e 248
104.1 Przyklad e 249

10.4.2 PyWideStringlList e e e e e e e e e e 249

1043 PyStatus e 250
10.4.4 PyPreConfig e e e e 251

10.4.5 Preinitialize Python with PyPreConfig 253
10.4.6 PyConfig e 254
10.4.7 Initialization with PyConfig L 265
10.4.8 TIsolated Configuration v v i i e e e e e e e e e e e e e 267

10.4.9 Python Configuration i i e e e e 267
10.4.10 Python Path Configuration 267

10.5 Py _GetArgCArgv() o o e e 269
10.6 Delaying main module execution e e 269
11 Zarzadzanie Pamiecia 271
I1.1 Skorowidz e e 271
11.2 Allocator Domains ot v e e e e e e e 272
11.3 Raw Memory Interface e e e e 272
11.4 SprzegPamigci e e e e e e e 273
11.5 Objectallocatorso ot it e e e e e e e 275
11.6 Default Memory Allocators e 275
11.7 Customize Memory Allocators o vttt e e e 276
11.8 Debug hooks on the Python memory allocators, 277
11.9 The pymalloc allocator o o o i e e e e e e e e e e 279
11.9.1 Customize pymalloc Arena Allocator 279

11.10 The mimalloc allocator o 0 i e e e e e e 279
11.11 tracemalloc C APL e 280
1112 Przyklady o o e 280
12 Object Implementation Support 283
12.1 Przydzielanie obiektéw nastercieol e 283
12.2 Wspdlne struktury obieKtow L L e e e e e e 284
12.2.1 Base object types and MaCIOS v v v v v v v v e e e e e e e e e e e e e 284
12.2.2 Implementing functionsand methods oL oo 285
12.2.3 Accessing attributes of extension types 289

123 Type Objects o ot e e e e e e e 292
12.3.1 Quick Reference e e 293
12.3.2 PyTypeObject Definition i i et e e e 297

1233 PyObject SIots o o e e e e e 298
12.3.4 PyVarObject Slots o e 299

12.3.5 PyTypeObject Slots o o e 299
12.3.6 Static Types o o v i e e e e 318

12377 Heap TYPES . v v v v v o e 319

12.3.8 Number Object Structures v v v i i e e e e e e e 319

12.3.9 Mapping Object Structures v v ittt e e e e e 321
12.3.10 Sequence Object Structures L e 321
12.3.11 Buffer Object Structures e 322
12.3.12 Async Object StrUCtUIeS v v v v et e e e e e e e e e e e e e e e e 323
12.3.13 Slot Type typedefs o . o o e e e e e e e 324
12.3.14 Przyklady o o e e e 325

12.4 Supporting Cyclic Garbage Collection 328
12.4.1 Controlling the Garbage Collector State 330
12.4.2 Querying Garbage Collector State 331

13 API i wersjonowanie ABI 333
13.1 Build-time version CONStants L i e e e e e e e e e e 333
13.2 Run-time VErsion o i i ittt ittt e e e e e e e e 333
13.3 Bit-packing Macros o i e e e e e e e e e e e e e e e e e e 334
14 Monitoring C API 335

15 Generating Execution Events 337

15.1 Managing the Monitoring State i i e e e e e e e e e 338

A Slownik 343
B O tej dokumentacji 361
B.1 Wspéttworey dokumentacji Pythona o oL 361

C Historia i zapisy prawne 363
C.1 HiStoria programu v v vttt e e e e e e e e e e e e e e e e 363
C.2 Zasady i warunki postgpowania z Pythonem i ogélnie jegouzycia 364
C.2.1 PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2 364

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 365

C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 366

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 367

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON DOCUMENTATION . 368

C.3 Licenses and Acknowledgements for Incorporated Software 368
C3.1 Mersenne TWISter L L oo it 368

C3.2 Sockets 369

C.3.3 Asynchronous SOCKEt SEIVICES v v v v i it e 369

C34 Cookiemanagement. 370

C.3.5 ExecutiontraCing o v v it e e e e e e e e e 370

C.3.6 UUencode and UUdecode functions 371

C3.7 XMLRemote Procedure Calls 371

C.3.8 test_epoll L e e e e 372

C39 Selectkqueue e 372

C3.10 SipHash24 373

C3.11 strtodanddtoa. Lo 373

C3.12 OpenSSL 374

C3U13 exXpat. . . v v v e e e e e e e e e e e e e e e 377

C3.14 Lbflio 378

C3.15 zlib . . o e 378

C3.16 cfuhash e 379

C3.17 Hbmpdec e e e e 379

C3.18 W3CCIANTtest SUIte o vttt et et e e e e e e e e e 380

C3.19 mimalloc 380

C320 asynCio e e e 381

C.3.21 Global Unbounded Sequences (GUS) 381

D Prawa autorskie 383
Indeks 385

Vi

The Python/C API, Wydanie 3.14.0a5

Ten podrecznik dokumentuje API uzywany przez programistow C i C++, ktérzy chea napisaé rozszerzenie modut
lub osadzi¢ Pythona. Jest to dodatek do extending-index, ktéry opisuje ogdlne zasady pisania rozszerzen, ale nie
dokumentuje szczegétowo API .

Spis tresci 1

The Python/C API, Wydanie 3.14.0a5

2 Spis tresci

rozpzAt 1

Wprowadzenie

Interfejs programowania aplikacji w Pythonie daje programistom jezykéw C i C++ dostep do programu interpretu-
jacego polecenia jezyka pytonowskiego na wielu poziomach. Sprzgg (API) jest rtéwno uzyteczny z poziomu C++ ale
dla porzadku jest zwykle okreslany mianem sprzggu pomigdzy jezykami pytonowskim a C (z ang. - Python/C API).
Istnieja dwie zasadniczo rézne przyczyny dla uzycia interfejsu migdzy jezykami Python i C. Pierwsza przyczyna
jest pisanie modutéw rozszerzajqcych dla szczeg6lnych powoddw; sa to moduty jezyka C, ktére rozszerzaja interpre-
ter Pythona. To jest zwykle najczgstsze uzycie. Druga przyczyng jest uzycie Pythona jako komponentu wigkszego
programu; ta technika jest zwykle okre§lana mianem zataczania - z ang. - embedding w aplikacji.

Writing an extension module is a relatively well-understood process, where a ,,cookbook™ approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Wiele zadan sprzegu (API) jest uzytecznych niezaleznie od tego czy zalaczasz, czy tez rozszerzasz program inter-
pretujacy jezyk pytonowski; co wigcej, wigkszos¢ aplikacji ktére zalacza program interpretujacy polecenia jezyka
pytonowskiego potrzebuje takze szczegdlnych rozszerzen, wiec prawdopodobnie jest dobrym pomystem zaznajo-
mienie si¢ z pisaniem rozszerzenia przed proba zataczenia jezyka pytonowskiego w prawdziwej aplikacji.

1.1 Coding standards
If you’re writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7.

These guidelines apply regardless of the version of Python you are contributing to. Following these conventions is
not necessary for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Pliki Wigczania - z ang. Include

Wszystkie zadania, definicje typu i makropolecen konieczne do uzycia sprzegu migdzy jezykami pytonowskim i C
sa wlaczane do Zrédet w kodzie uzytkownika przez nastepujaca linijke:

#define PY SSIZE_T CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>, <limits.h>,
<assert.h>and <stdlib.h> (if available).

https://peps.python.org/pep-0007/

The Python/C API, Wydanie 3.14.0a5

© Informacja

Jako ze Python moze definiowaé pewne definicje preprocesora, ktére wptywaja na pliki nagtéwkowe na niektd-
rych systemach, musisz zataczy¢ plik Python.h przed jakimikolwiek standardowymi nagléwkami.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python . h. See Pobieranie kolejnych
rzeczy podanych na wejsciu i konstruowanie wartosci. for a description of this macro.

Wszystkie widoczne dla uzytkownika nazwy okreSlone w Python.h (z wyjatkiem tych okres§lonych przez zataczone
standardowe pliki nagtéwkowe) maja jeden z przedrostkéw Py lub _py. Nazwy rozpoczynajace si¢ od _Py stuza do
wewngtrznego uzytku przez urzeczywistnienie programu interpretujacego jezyka pytonowskiego i nie powinno by¢
uzywane przez piszacych rozszerzenia. Nazwy cztonkéw struktury nie maja zarezerwowanych przedrostkéw.

© Informacja

User code should never define names that begin with py or _py. This confuses the reader, and jeopardizes the
portability of the user code to future Python versions, which may define additional names beginning with one of
these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix are
defined by the corresponding parameters to Python’s configure script and version is '%$d.%d' % sys.
version_info[:2]. On Windows, the headers are installed in prefix/include, where prefix is the installa-
tion directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers
from exec_prefix.

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry
points to be extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.

PyMODINIT_FUNC

Declare an extension module PyTInit initialization function. The function return type is Pyobject*. The
macro declares any special linkage declarations required by the platform, and for C++ declares the function as
extern "C".

The initialization function must be named PyInit_name, where name is the name of the module, and should
be the only non-static item defined in the module file. Example:

static struct PyModuleDef spam module = {
PyModuleDef HEAD_INIT,
.m_name = "spam",

bi

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spam_module) ;

4 Rozdziat 1. Wprowadzenie

The Python/C API, Wydanie 3.14.0a5

Py_ABS (X)
Return the absolute value of x.

Added in version 3.3.

Py_ALWAYS_INLINE
Ask the compiler to always inline a static inline function. The compiler can ignore it and decides to not inline
the function.

It can be used to inline performance critical static inline functions when building Python in debug mode with
function inlining disabled. For example, MSC disables function inlining when building in debug mode.

Marking blindly a static inline function with Py_ ALWAYS_INLINE can result in worse performances (due
to increased code size for example). The compiler is usually smarter than the developer for the cost/benefit
analysis.

If Python is built in debug mode (if the Py_DEBUG macro is defined), the Py_ALwAYS_INLINE macro does
nothing.

It must be specified before the function return type. Usage:

[static inline Py_ALWAYS_INLINE int random(void) { return 4; }

Added in version 3.11.

Py_CHARMASK (C)
Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to
an unsigned char.

Py_DEPRECATED (version)
Use this for deprecated declarations. The macro must be placed before the symbol name.

Przyktad:

[Py_DEPRECATED(3.8) PyAPI_FUNC (int) Py_OldFunction (void) ;

Zmienione w wersji 3.8: MSVC support was added.

Py_GETENV (S)

Like getenv(s), but returns NULL if -E was passed on the command line (see PyConfig.

use_environment).
Py MAX (X,Y)
Return the maximum value between x and y.

Added in version 3.3.

Py_MEMBER_SIZE (type, member)

Return the size of a structure (t ype) member in bytes.
Added in version 3.6.

Py MIN (X, Y)
Return the minimum value between x and y.

Added in version 3.3.

Py_NO_INLINE

Disable inlining on a function. For example, it reduces the C stack consumption: useful on LTO+PGO builds
which heavily inline code (see bpo-33720).

Usage:

[Py_NO_INLINE static int random(void) { return 4; }

Added in version 3.11.

1.3. Useful macros 5

https://bugs.python.org/issue?@action=redirect&bpo=33720

The Python/C API, Wydanie 3.14.0a5

Py_STRINGIFY (X)
Convert x to a C string. E.g. Py _STRINGIFY (123) returns "123".

Added in version 3.4.

Py UNREACHABLE ()

Use this when you have a code path that cannot be reached by design. For example, in the default: clause
in a switch statement for which all possible values are covered in case statements. Use this in places where
you might be tempted to put an assert (0) or abort () call.

In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable
code. For example, the macro is implemented with __ builtin_unreachable () on GCC in release mode.

A use for py_UNREACHABLE () is following a call a function that never returns but that is not declared
_Py_NO_RETURN.

If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used.
For example, under low memory condition or if a system call returns a value out of the expected range. In this
case, it’s better to report the error to the caller. If the error cannot be reported to caller, Py_FatalError ()
can be used.

Added in version 3.7.

Py_UNUSED (arg)

Use this for unused arguments in a function definition to silence compiler warnings. Example: int func (int
a, int Py_UNUSED (b)) { return a; }.

Added in version 3.4.

PyDoc_STRVAR (name, Str)

Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the
value will be empty.

Use PyDoc_STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.

Przyktad:

PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
/) ooo
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
//

PyDoc_STR (Str)

Creates a docstring for the given input string or an empty string if docstrings are disabled.

Use PyDoc_STR in specifying docstrings to support building Python without docstrings, as specified in PEP
7.

Przyktad:

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR ("Returns the keys of the row.")},
{NULL, NULL}
i

6 Rozdziat 1. Wprowadzenie

https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/

The Python/C API, Wydanie 3.14.0a5

1.4 Przedmioty, ich Rodzaje i Liczby Odwotan

Most Python/C API functions have one or more arguments as well as a return value of type Pyob ject*. This type is
a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the
same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only
fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you never declare
an automatic or static variable of type PyOb ject, only pointer variables of type PyObject* can be declared. The
sole exception are the type objects; since these must never be deallocated, they are typically static Py TypeObject
objects.

Wszystkie przedmioty jezyka pytonowskiego (nawet liczby catkowite jezyka pytonowskiego) maja rodzaj i liczbe
odniesieni. Typ przedmiotu okresla jakiego rodzaju przedmiot to jest (np. liczba catkowita, lista, lub zadanie zde-
finiowane przez uzytkownika; jest wiele wigcej jak wyjasniono w types). Dla kazdego z dobrze-znanych rodzajéw
istnieje makropolecenie sprawdzajace czy przedmiot jest tego rodzaju; na przyktad, PyList_Check (a) jest praw-
dziwe wtedy (i tylko wtedy) gdy przedmiot na ktéry wskazuje a jest lista z jezyka pytonowskiego.

1.4.1 Liczby odniesien

The reference count is important because today’s computers have a finite (and often severely limited) memory size;
it counts how many different places there are that have a strong reference to an object. Such a place could be another
object, or a global (or static) C variable, or a local variable in some C function. When the last strong reference to an
object is released (i.e. its reference count becomes zero), the object is deallocated. If it contains references to other
objects, those references are released. Those other objects may be deallocated in turn, if there are no more references
to them, and so on. (There’s an obvious problem with objects that reference each other here; for now, the solution is
,don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro pPy_ TNCREF () to take a new
reference to an object (i.e. increment its reference count by one), and Py_DECREF () to release that reference (i.e.
decrement the reference count by one). The Py_DECREF () macro is considerably more complex than the incref one,
since it must check whether the reference count becomes zero and then cause the object’s deallocator to be called. The
deallocator is a function pointer contained in the object’s type structure. The type-specific deallocator takes care of
releasing references for other objects contained in the object if this is a compound object type, such as a list, as well as
performing any additional finalization that’s needed. There’s no chance that the reference count can overflow; at least
as many bits are used to hold the reference count as there are distinct memory locations in virtual memory (assuming
sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count increment is a simple operation.

It is not necessary to hold a strong reference (i.e. increment the reference count) for every local variable that contains
a pointer to an object. In theory, the object’s reference count goes up by one when the variable is made to point to
it and it goes down by one when the variable goes out of scope. However, these two cancel each other out, so at the
end the reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from
being deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the
object that lives at least as long as our variable, there is no need to take a new strong reference (i.e. increment the
reference count) temporarily. An important situation where this arises is in objects that are passed as arguments to C
functions in an extension module that are called from Python; the call mechanism guarantees to hold a reference to
every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without taking a new
reference. Some other operation might conceivably remove the object from the list, releasing that reference, and
possibly deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code which
could do this; there is a code path which allows control to flow back to the user from a Py_DECREF (), so almost any
operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject _, PyNumber_,
PySequence_ or PyMapping_). These operations always create a new strong reference (i.e. increment the reference
count) of the object they return. This leaves the caller with the responsibility to call Py_DECREF () when they are
done with the result; this soon becomes second nature.

1.4. Przedmioty, ich Rodzaje i Liczby Odwotan 7

The Python/C API, Wydanie 3.14.0a5

Szczegoty Liczby Odniesien

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). ,,Owning a refe-
rence” means being responsible for calling Py DECREF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually releasing it by calling Py DECREF () or Py_XDECREF () when it’s no longer needed—or passing on this
responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing
needs to be done for a borrowed reference.

Idac dalej, gdy wywotujace zadanie przekazuje odniesienie do przedmiotu, istnieja dwie mozliwosci: zadanie kradnie
odniesienie do przedmiotu, lub nie kradnie go. Kradniecie odniesienia oznacza, ze gdy przekazujesz odniesienie do
zadania, to zadanie przyjmuje, ze teraz ono posiada odniesienie i nie jeste$ za nie odpowiedzialny ani chwili dtuze;j.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were
designed to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for
example, the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for
the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New (3);
PyTuple_SetItem(t, 0, PyLong_FromLong(lL));
PyTuple_SetItem

3

t

t, 1, PyLong_FromLong(2L));
PyTuple_SetItem(t

(
(
(
(

, 2, PyUnicode_FromString("three"));

Here, PyLong FromLong () returns a new reference which is immediately stolen by PyTuple SetItem(). When
you want to keep using an object although the reference to it will be stolen, use pPy_INCREF () to grab another
reference before calling the reference-stealing function.

Incidentally, pPyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
pyTuple_SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_Buildvalue (), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject *tuple, *1list;

tuple = Py_BuildvValue (" (iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
references is much saner, since you don’t have to take a new reference just so you can give that reference away (,,have
it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, nj;

n = PyObject_Length (target) ;
if (n < 0)
return -1;

(ciag dalszy na nastgpnej stronie)

8 Rozdziat 1. Wprowadzenie

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
for (i = 0; 1 < n; i++) {
PyObject *index = PyLong_FromSsize_t (i);
if (!index)
return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
}

return O;

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give
you ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references,
like PyObject_GetItem() and PySequence_GetItem (), always return a new reference (the caller becomes the
owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage (the type of the object passed as an argument to the function) doesn’t enter into it! Thus, if you
extract an item from a list using PyList_GetItem (), you don’t own the reference — but if you obtain the same
item from the same list using PySequence_GetItem () (which happens to take exactly the same arguments), you
do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
using PyList_GetItem (), and once using PySequence_GetItem().

long

sum_list (PyObject *1list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check (item)) continue; /* Skip non-integers */
value = PyLong_AsLong (item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}

return total;

long

sum_sequence (PyObject *sequence)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

(ciag dalszy na nastgpnej stronie)

1.4. Przedmioty, ich Rodzaje i Liczby Odwotan 9

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong (item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

1.4.2 Typy

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

type Py_ssize_t
Czes¢ stabilnego ABI. A signed integral type such that sizeof (Py_ssize_t) == sizeof (size_t).
C99 doesn’t define such a thing directly (size_t is an unsigned integral type). See PEP 353 for details.
PY_SSIZE_T_MAX is the largest positive value of type Py ssize t.

1.5 Wyjatki

Programujacy komputer w jezyku pytonowskim musi sobie zaprzataé¢ gtowg tylko sytuacjami wyjatkowymi tylko
jesli szczegblna obstuga btedéw jest konieczna; Nieobstuzone wyjatki sa automatycznie przesytane do zadania wy-
wotujacego, potem do zadania ktére wywotato tamto zadanie, i tak dalej, dopdki nie natrafi na program interpretujacy
najwyzszego poziomu, gdzie sa przekazywane uzytkownikowi wraz z wypisem kolejnych wywotari odlozonych na
stercie.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator.
If not documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few
functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error
indicator or have an ambiguous return value, and require explicit testing for errors with PyErr Occurred (). These
exceptions are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred ()
can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, and NULL otherwise. There are a number of functions to set the exception state: PyErr SetString () is
the most common (though not the most general) function to set the exception state, and PyErr Clear () clears the
exception state.

10 Rozdziat 1. Wprowadzenie

https://peps.python.org/pep-0353/

The Python/C API, Wydanie 3.14.0a5

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; howe-
ver, they are not the same: the Python objects represent the last exception being handled by a Python try ... except
statement, while the C level exception state only exists while an exception is being passed on between C functions
until it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info ()
and friends.

Zauwaz ze poczynajac od jezyka pytonowskiego w wersji 1.5 preferowana, bezpiecznym dla watkéw sposobem na do-
step do stanu wyjatku z poziomu kodu napisanego w jezyku pytonowskim jest wezwanie zadania sys.exc_info (),
ktére zwraca okreSlony-dla-watku stan wyjatku dla kodu napisanego w jezyku pytonowskim. Poza tym sktadnia obu
sposobow na dostep do stanu sytuacji wyjatkowej zmienita si¢ tak, ze zadanie ktére ztapie wyjatek zachowa i przy-
wrdci swéj stan wyjatku tak, aby zachowaé stan wyjatku wywotujacego zadanie. To dziatanie zapobiega typowym
btedom w obstudze sytuacji wyjatkowych powodowanych przez niewinnie-wygladajace zadania nadpisujace sytuacje
wyjatkowe ktore aktualnie sg obstugiwane; to takze redukuje czesto niechciane wydtuzanie czasu zycia przedmiotéw
do ktérych odnosi sie¢ ramka stosu w wypisie Sladu wywotan.

Jako nadrzedna zasadg, przyjmuje si¢ ze zadanie ktére wywoluje inne zadanie do wykonania pewnych operacji po-
winno sprawdzi¢ czy wywotane zadanie zgtosilo wyjatek, a jesli tak, to przekazaé stan wyjatku do wywotujacego.
Powinno tez odrzucic¢ jakiekolwiek odniesienia do przedmiotéw, ktdre posiada, i zwrdcié sygnalizator btedu, ale nie
powinno ustawia¢ innego wyjatku — ktéry nadpisywatby wyjatek, ktéry wiasnie zostal zgtoszony i traci¢ istotne
informacje o doktadnym powodzie bigdu.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It
so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dict [key]
except KeyError:
item = O
dict[key] = item + 1

Tu nastepuje odpowiadajacy kod w jezyku C, w calej petni okazatosci:

int

incr_item (PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
}
const_one = PyLong_ FromLong (1L) ;
if (const_one == NULL)
goto error;

(ciag dalszy na nastgpnej stronie)

1.5. Wyjatki 11

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item) ;

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches () and PyErr_Clear () to handle specific exceptions, and the use of Py_XDECREF ()
to dispose of owned references that may be NULL (note the 'X' in the name; Py DECREF () would crash when
confronted with a NULL reference). It is important that the variables used to hold owned references are initialized to
NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to success after
the final call made is successful.

1.6 Zalgczanie programu interpretujacego jezyk pytonowski

Jedno istotne zadanie, o ktdre zalaczajacy (w przeciwienstwie do piszacych rozszerzenia) program interpretujacy
jezyk pytonowski musza si¢ martwi¢ jest zainicjowanie i prawdopodobne zakornczenie programu interpretujacego
polecenia jezyka pytonowskiego. Wigkszos$¢ uzytecznoSci programu interpretujacego polecenia jezyka pytonowskie-
go moze tylko by¢ uzyta po jego zainicjowaniu.

The basic initialization function is Py_Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, main__, and sys. It also initializes the module search path (sys.path).

Py_Initialize () doesnotsetthe,scriptargumentlist” (sys.argv).If this variable is needed by Python code that
will be executed later, setting PyConfig.argvand PyConfig.parse_argv must be set: see Python Initialization
Configuration.

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py_Initialize () calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory named 1ib/pythonX. Y relative to the parent directory
where the executable named python is found on the shell command search path (the environment variable PATH).

Na przyktad, jesli plik wykonywalny programu interpretujacego polecenia jezyka pytonowskiego znajduje si¢ w ka-
talogu /usr/local/bin/python, bedzie zaktadat, Ze biblioteki sg w katalogu /usr/local/lib/pythonX.Y
(Faktycznie, ta szczegdlna Sciezka jest takze ,,ratunkowym” potozeniem, uzywanym gdy zaden plik wykonywalny na-
zwany python nie znajdzie si¢ w katalogach znajdujacych si¢ w zmiennej Srodowiskowej PATH.) Uzytkownik moze
podmienic to zachowanie przez ustawienie zmiennej Srodowiskowej PYTHONHOME, lub wstawi¢ dodatkowe katalogi
przed sztandarowa §ciezka przez ustawienie zmiennej Srodowiskowej PYTHONPATH.

The embedding application can steer the search by setting PyConfig.program name before calling
Py _InitializeFromConfig (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted
in front of the standard path. An application that requires total control has to provide its own implementation of
Py GetPath (), Py _GetPrefix (), Py GetExecPrefix (), and Py GetProgramrFullPath () (all defined in
Modules/getpath.c).

12 Rozdziat 1. Wprowadzenie

The Python/C API, Wydanie 3.14.0a5

Sometimes, it is desirable to ,uninitialize” Python. For instance, the application may want to start over (make another
callto Py_Tnitialize ()) or the application is simply done with its use of Python and wants to free memory allo-
cated by Python. This can be accomplished by calling Py _FinalizeEx (). The function Py TsInitialized()
returns true if Python is currently in the initialized state. More information about these functions is given in a later
chapter. Notice that Py _FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory
allocated by extension modules currently cannot be released.

1.7 Odpluskwiajace Budowy

Program interpretujacy jezyk pytonowski moze by¢ zbudowany z kilkoma makropoleceniami do zataczenia do-
datkowych sprawdzen programu interpretujacego polecenia jezyka pytonowskiego i moduléw rozszerzajacych. Te
sprawdzenia maja zwyczaj dodawaé duzy narzut czasu wykonania polecen programu wiec nie s zalaczane domyslnie.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds. txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
-level profiling of the main interpreter loop. Only the most frequently used builds will be described in the remainder
of this section.

Py_DEBUG

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by a debug build of
Python. Py_DEBUG is enabled in the Unix build by adding —-with-pydebug to the ./configure command. It
is also implied by the presence of the not-Python-specific _DEBUG macro. When Py_DEBUG is enabled in the Unix
build, compiler optimization is disabled.

In addition to the reference count debugging described below, extra checks are performed, see Python Debug Build.

Defining Py_ TRACE_REFS enables reference tracing (see the configure --with-trace-refs option). When
defined, a circular doubly linked list of active objects is maintained by adding two extra fields to every PyObject.
Total allocations are tracked as well. Upon exit, all existing references are printed. (In interactive mode this happens
after every statement run by the interpreter.)

Odwolaj si¢ do Misc/SpecialBuilds.txt wZrodtowym pakiecie jezyka pytonowskiego po wigcej szczegotow.

1.7. Odpluskwiajace Budowy 13

The Python/C API, Wydanie 3.14.0a5

14 Rozdziat 1. Wprowadzenie

ROZDZIAL 2

C API Stability

Unless documented otherwise, Python’s C API is covered by the Backwards Compatibility Policy, PEP 387. Most
changes to it are source-compatible (typically by only adding new API). Changing existing API or removing API is
only done after a deprecation period or to fix serious issues.

CPython’s Application Binary Interface (ABI) is forward- and backwards-compatible across a minor release (if these
are compiled the same way; see Platform Considerations below). So, code compiled for Python 3.10.0 will work on
3.10.8 and vice versa, but will need to be compiled separately for 3.9.x and 3.11.x.

There are two tiers of C API with different stability expectations:

o Unstable API, may change in minor versions without a deprecation period. It is marked by the PyUnstable
prefix in names.

« Limited API, is compatible across several minor releases. When py_1.7MITED_APT is defined, only this subset
is exposed from Python.h.

These are discussed in more detail below.

Names prefixed by an underscore, such as _Py_InternalState, are private API that can change without notice
even in patch releases. If you need to use this API, consider reaching out to CPython developers to discuss adding
public API for your use case.

2.1 Unstable C API

Any API named with the PyUnstable prefix exposes CPython implementation details, and may change in every
minor release (e.g. from 3.9 to 3.10) without any deprecation warnings. However, it will not change in a bugfix release
(e.g. from 3.10.0 to 3.10.1).

It is generally intended for specialized, low-level tools like debuggers.

Projects that use this API are expected to follow CPython development and spend extra effort adjusting to changes.

2.2 Stable Application Binary Interface

For simplicity, this document talks about extensions, but the Limited API and Stable ABI work the same way for all
uses of the API - for example, embedding Python.

15

https://peps.python.org/pep-0387/
https://discuss.python.org/c/core-dev/c-api/30

The Python/C API, Wydanie 3.14.0a5

2.2.1 Limited C API

Python 3.2 introduced the Limited API, a subset of Python’s C API. Extensions that only use the Limited API can be
compiled once and be loaded on multiple versions of Python. Contents of the Limited API are listed below.

Py_LIMITED_API

Define this macro before including Python . h to opt in to only use the Limited API, and to select the Limited
API version.

Define py_LIMITED_API to the value of Pv_VERSTON_HEX corresponding to the lowest Python version your
extension supports. The extension will be ABI-compatible with all Python 3 releases from the specified one
onward, and can use Limited API introduced up to that version.

Rather than using the PY VERSION_HEX macro directly, hardcode a minimum minor version (e.g.
0x030A0000 for Python 3.10) for stability when compiling with future Python versions.

You can also define py_LIMITED_APT to 3. This works the same as 0x03020000 (Python 3.2, the version
that introduced Limited API).

2.2.2 stabilnego ABI

To enable this, Python provides a Stable ABI: a set of symbols that will remain ABI-compatible across Python 3.x
versions.

© Informacja

The Stable ABI prevents ABI issues, like linker errors due to missing symbols or data corruption due to changes in
structure layouts or function signatures. However, other changes in Python can change the behavior of extensions.
See Python’s Backwards Compatibility Policy (PEP 387) for details.

The Stable ABI contains symbols exposed in the Limited API, but also other ones — for example, functions necessary
to support older versions of the Limited APIL.

On Windows, extensions that use the Stable ABI should be linked against python3.d11 rather than a version-specific
library such as python39.d11.

On some platforms, Python will look for and load shared library files named with the abi 3 tag (e.g. mymodule.
abi3.so). It does not check if such extensions conform to a Stable ABI. The user (or their packaging tools) need to
ensure that, for example, extensions built with the 3.10+ Limited API are not installed for lower versions of Python.

All functions in the Stable ABI are present as functions in Python’s shared library, not solely as macros. This makes
them usable from languages that don’t use the C preprocessor.

2.2.3 Limited API Scope and Performance

The goal for the Limited API is to allow everything that is possible with the full C API, but possibly with a perfor-
mance penalty.

For example, while pyList_GetItem/() is available, its “unsafe” macro variant PyList_GET ITEM() is not. The
macro can be faster because it can rely on version-specific implementation details of the list object.

Without py_LIMITED_API defined, some C API functions are inlined or replaced by macros. Defining
Py LIMITED_API disables this inlining, allowing stability as Python’s data structures are improved, but possibly
reducing performance.

By leaving out the Py_LIMITED_APTI definition, it is possible to compile a Limited API extension with a version-
-specific ABI. This can improve performance for that Python version, but will limit compatibility. Compiling with
py_LIMITED_API will then yield an extension that can be distributed where a version-specific one is not available
— for example, for prereleases of an upcoming Python version.

16 Rozdziat 2. C API Stability

https://peps.python.org/pep-0387/

The Python/C API, Wydanie 3.14.0a5

2.2.4 Limited API Caveats

Note that compiling with Py_ LIMITED_APT is not a complete guarantee that code conforms to the Limited API or
the Stable ABI. py_LIMITED_APT only covers definitions, but an API also includes other issues, such as expected
semantics.

One issue that Py LIMITED_API does not guard against is calling a function with arguments that are invalid in
a lower Python version. For example, consider a function that starts accepting NULL for an argument. In Python 3.9,
NULL now selects a default behavior, but in Python 3.8, the argument will be used directly, causing a NULL dereference
and crash. A similar argument works for fields of structs.

Another issue is that some struct fields are currently not hidden when py_LIMITED_API is defined, even though
they’re part of the Limited API.

For these reasons, we recommend testing an extension with a/l minor Python versions it supports, and preferably to
build with the lowest such version.

We also recommend reviewing documentation of all used API to check if it is explicitly part of the Limited API. Even
withPy_LIMITED_API defined, a few private declarations are exposed for technical reasons (or even unintentionally,
as bugs).

Also note that the Limited API is not necessarily stable: compiling with Py_1IMITED_API with Python 3.8 means
that the extension will run with Python 3.12, but it will not necessarily compile with Python 3.12. In particular, parts
of the Limited API may be deprecated and removed, provided that the Stable ABI stays stable.

2.3 Platform Considerations

ABI stability depends not only on Python, but also on the compiler used, lower-level libraries and compiler options.
For the purposes of the Stable ABI, these details define a “platform”. They usually depend on the OS type and processor
architecture

It is the responsibility of each particular distributor of Python to ensure that all Python versions on a particular
platform are built in a way that does not break the Stable ABI. This is the case with Windows and macOS releases
from python.org and many third-party distributors.

2.4 Contents of Limited API

Currently, the Limited API includes the following items:

e PY VECTORCALL_ARGUMENTS_OFFSET

PyAIter_Check ()

PyArg_Parse()

PyArg_ParseTuple ()

PyArg ParseTupleAndKeywords ()

PyArg_UnpackTuple ()

PyArg_VaParse ()

PyArg_VaParseTupleAndKeywords ()

PyArg ValidateKeywordArguments ()

PyBaseObject_Type

PyBool_FromLong ()

PyBool_Type

PyBuffer_ FillContiguousStrides ()

2.3. Platform Considerations 17

The Python/C API, Wydanie 3.14.0a5

PyBuffer FillInfo()
PyBuffer FromContiguous ()
PyBuffer_GetPointer ()
PyBuffer_IsContiguous ()
PyBuffer Release ()
PyBuffer SizeFromFormat ()
PyBuffer_ToContiguous ()
PyByteArraylIter_Type
PyByteArray_AsString/()
PyByteArray_Concat ()

PyByteArray_FromObject ()

PyByteArray_ FromStringAndSize ()

PyByteArray_Resize ()
PyByteArray_Size ()
PyByteArray_Type
PyBytesIter_ Type
PyBytes_AsString()
PyBytes_AsStringAndSize ()
PyBytes_Concat ()
PyBytes_ConcatAndDel ()
PyBytes_DecodeEscape ()
PyBytes_FromFormat ()
PyBytes_FromFormatV ()
PyBytes_FromObject ()
PyBytes_FromString ()
PyBytes_FromStringAndSize ()
PyBytes_Repr ()
PyBytes_Size ()
PyBytes_Type

PyCFunction
PyCFunctionFast
PyCFunctionFastWithKeywords
PyCFunctionWithKeywords
PyCFunction_GetFlags ()
PyCFunction_GetFunction ()
PyCFunction_GetSelf ()
PyCFunction_New ()
PyCFunction_NewEXx ()

PyCFunction_Type

18

Rozdziat 2. C API Stability

The Python/C API, Wydanie 3.14.0a5

e PyCMethod_New ()

e PyCalllIter_New/()

e PyCalllter_ Type

e PyCallable_Check ()

e PyCapsule_Destructor

e PyCapsule_GetContext ()

e PyCapsule_GetDestructor ()

e PyCapsule_GetName ()

e PyCapsule_GetPointer ()

e PyCapsule_Import ()

e PyCapsule_IsValid()

e PyCapsule_New ()

e PyCapsule_SetContext ()

e PyCapsule_SetDestructor ()

e PyCapsule_SetName ()

e PyCapsule_SetPointer ()

e PyCapsule_Type

e PyClassMethodDescr_Type

e PyCodec_BackslashReplaceErrors ()
e PyCodec_Decode ()

e PyCodec_Decoder ()

e PyCodec_Encode ()

e PyCodec_Encoder ()

e PyCodec_IgnoreErrors ()

e PyCodec_IncrementalDecoder ()
e PyCodec_IncrementalEncoder ()
e PyCodec_KnownEncoding ()

e PyCodec_LookupError ()

e PyCodec_NameReplaceErrors ()
e PyCodec_Register()

e PyCodec_RegisterError ()

e PyCodec_ReplaceErrors ()

e PyCodec_StreamReader ()

e PyCodec_StreamiWriter ()

e PyCodec_StrictErrors()

e PyCodec_Unregister()

e PyCodec_XMLCharRefReplaceErrors ()
e PyComplex_FromDoubles ()

e PyComplex_ImagAsDouble ()

2.4. Contents of Limited API 19

The Python/C API, Wydanie 3.14.0a5

PyComplex_RealAsDouble ()
PyComplex_Type
PyDescr_NewClassMethod ()
PyDescr_NewGetSet ()
PyDescr_NewMember ()
PyDescr_NewMethod ()
PyDictItems_Type
PyDictIterItem_ Type
PyDictIterKey_Type
PyDictIterValue_Type
PyDictKeys_Type
PyDictProxy_New()
PyDictProxy_Type
PyDictRevIterItem_Type
PyDictRevIterKey_Type
PyDictRevIterValue_Type
PyDictValues_Type
PyDict_Clear ()
PyDict_Contains ()
PyDict_Copy ()
PyDict_DelItem()
PyDict_DelItemString/()
PyDict_GetItem()
PyDict_GetItemRef ()
PyDict_GetItemString ()
PyDict_GetItemStringRef ()
PyDict_GetItemWithError ()
PyDict_Items ()
PyDict_Keys ()
PyDict_Merge ()
PyDict_MergeFromSeqZ ()
PyDict_New ()
PyDict_Next ()
PyDict_SetItem()
PyDict_SetItemString/()
PyDict_Size()
PyDict_Type
PyDict_Update ()

PyDict_Values ()

20

Rozdziat 2. C API Stability

The Python/C API, Wydanie 3.14.0a5

e PyEllipsis_Type

e PyEnum_Type

e PyErr BadArgument ()

e PyErr BadInternalCall ()

e PyErr CheckSignals()

e PyErr Clear()

e PyErr Display ()

e PyErr DisplayException()

e PyErr ExceptionMatches ()

e PyErr Fetch()

e PyErr Format ()

e PyErr FormatV()

e PyErr GetExcInfo()

e PyErr GetHandledException ()

e PyErr GetRaisedException ()

e PyErr GivenExceptionMatches ()

e PyErr NewException ()

e PyErr NewExceptionWithDoc ()

e PyErr_ NoMemory ()

e PyErr NormalizeException ()

e PyErr Occurred()

e PyErr Print()

e PyErr PrintEx()

e PyErr ProgramText ()

e PyErr ResourceWarning()

e PyErr Restore()

e PyErr SetExcFromWindowsErr ()

e PyErr SetExcFromWindowsErrWithFilename ()
e PyErr SetExcFromWindowsErrWithFilenameObject ()
e PyErr SetExcFromWindowsErrWithFilenameObjects ()
e PyErr SetExcInfo()

e PyErr SetFromErrno ()

e PyErr SetFromErrnoWithFilename ()

e PyErr SetFromErrnoWithFilenameObject ()
e PyErr SetFromErrnoWithFilenameObjects ()
e PyErr SetFromWindowsErr ()

e PyErr SetFromWindowsErrWithFilename ()

e PyErr SetHandledException ()

e PyErr SetImportError ()

2.4. Contents of Limited API 21

The Python/C API, Wydanie 3.14.0a5

PyErr_SetImportErrorSubclass ()

PyErr_SetInterrupt ()
PyErr_ SetInterruptEx ()
PyErr_SetNone ()
PyErr_SetObject ()
PyErr_SetRaisedException ()
PyErr_SetString()
PyErr_SyntaxLocation ()
PyErr_SyntaxLocationEx ()
PyErr_WarnkEx ()
PyErr_WarnExplicit ()
PyErr_WarnFormat ()

PyErr WriteUnraisable ()
PyEval_AcquireThread()
PyEval_EvalCode ()
PyEval_EvalCodeEx ()
PyEval_EvalFrame ()
PyEval_EvalFrameEx ()
PyEval_GetBuiltins()
PyEval_GetFrame ()
PyEval_GetFrameBuiltins ()
PyEval_GetFrameGlobals ()
PyEval_GetFrameLocals ()
PyEval_GetFuncDesc ()
PyEval_GetFuncName ()
PyEval_GetGlobals ()
PyEval_GetLocals ()
PyEval_InitThreads()
PyEval_ReleaseThread()
PyEval_RestoreThread()
PyEval_SaveThread()
PyExc_ArithmeticError
PyExc_AssertionError
PyExc_AttributeError
PyExc_BaseException
PyExc_BaseExceptionGroup
PyExc_BlockingIOError
PyExc_BrokenPipeError

PyExc_BufferError

22

Rozdziat 2. C API Stability

The Python/C API, Wydanie 3.14.0a5

e PyExc_BytesWarning

e PyExc_ChildProcessError

e PyExc_ConnectionAbortedError
e PyExc_ConnectionError

e PyExc_ConnectionRefusedError
e PyExc_ConnectionResetError
e PyExc_DeprecationWarning

e PyExc_EOFError

e PyExc_EncodingWarning

e PyExc_EnvironmentError

e PyExc_Exception

e PyExc_FileExistsError

e PyExc_FileNotFoundError

e PyExc_FloatingPointError

e PyExc_FutureWarning

e PyExc_GeneratorExit

e PyExc_IOError

e PyExc_ImportError

e PyExc_ImportWarning

e PyExc_IndentationError

e PyExc_IndexError

e PyExc_InterruptedError

e PyExc_IsADirectoryError

e PyExc_KeyError

e PyExc_KeyboardInterrupt

e PyExc_LookupError

e PyExc_MemoryError

e PyExc_ModuleNotFoundError
e PyExc_NameError

e PyExc_NotADirectoryError

e PyExc_NotImplementedError
e PyExc_OSError

e PyExc_OverflowError

e PyExc_PendingDeprecationWarning
e PyExc_PermissionError

e PyExc_ProcessLookupError

e PyExc_RecursionError

e PyExc_ReferenceError

e PyExc_ResourceWarning

2.4. Contents of Limited API 23

The Python/C API, Wydanie 3.14.0a5

PyExc_RuntimeError
PyExc_RuntimeWarning
PyExc_StopAsynclteration
PyExc_Stoplteration
PyExc_SyntaxError
PyExc_SyntaxWarning
PyExc_SystemError
PyExc_SystemExit
PyExc_TabError
PyExc_TimeoutError
PyExc_TypeError
PyExc_UnboundLocalError
PyExc_UnicodeDecodeError
PyExc_UnicodeEncodeError

PyExc_UnicodeError

PyExc_UnicodeTranslateError

PyExc_UnicodeWarning
PyExc_UserWarning
PyExc_ValueError
PyExc_Warning
PyExc_WindowsError
PyExc_ZeroDivisionError
PyExceptionClass_Name ()
PyException_GetArgs ()
PyException_GetCause ()
PyException_GetContext ()
PyException_GetTraceback ()
PyException_SetArgs ()
PyException_SetCause ()
PyException_SetContext ()
PyException_SetTraceback ()
PyFile FromFd/()
PyFile_GetLine()
PyFile_WriteObject ()
PyFile WriteString/()
PyFilter_Type
PyFloat_AsDouble ()
PyFloat_FromDouble ()

PyFloat_FromString/()

24

Rozdziat 2. C API Stability

The Python/C API, Wydanie 3.14.0a5

e PyFloat_GetInfo/()

e PyFloat_GetMax ()

e PyFloat_GetMin ()

e PyFloat_Type

e PyFrameObject

e PyFrame_GetCode ()

e PyFrame_GetLineNumber ()

e PyFrozenSet_New ()

e PyFrozenSet_Type

e PyGC_Collect ()

e PyGC_Disable()

e PyGC_Enable ()

e PyGC_IsEnabled()

e PyGILState_Ensure ()

e PyGILState GetThisThreadState ()
e PyGILState_Release()

e PyGILState_ STATE

e PyGetSetDef

e PyGetSetDescr_Type

e PyImport_AddModule ()

e PyImport_AddModuleObject ()

e PyImport_AddModuleRef ()

e PyImport_AppendInittab ()

e PyImport_ExecCodeModule ()

e PyImport_ExecCodeModuleEx ()

e PyImport_ExecCodeModuleObject ()
e PyImport_ExecCodeModuleWithPathnames ()
e PyImport_GetImporter ()

e PyImport_GetMagicNumber ()

e PyImport_GetMagicTag()

e PyImport_GetModule ()

e PyImport_GetModuleDict ()

e PyImport_Import ()

e PyImport_ImportFrozenModule ()

e PyImport_ImportFrozenModuleObject ()
e PyImport_ImportModule ()

e PyImport_ImportModuleLevel ()

e PyImport_ImportModuleLevelObject ()

e PyImport_ImportModuleNoBlock ()

2.4. Contents of Limited API 25

The Python/C API, Wydanie 3.14.0a5

e PyImport_ReloadModule ()

e PyIndex_Check ()

e PyInterpreterState

e PyInterpreterState_Clear ()
e PyInterpreterState_Delete()
e PyInterpreterState_Get ()

e PyInterpreterState_GetDict ()
e PyInterpreterState_GetID()
e PyInterpreterState_New()

e PyIter Check ()

e Pylter Next ()

e Pylter NextItem()

e Pylter_Send()

e PyListIter_Type

e PyListRevIter_ Type

e PyList_Append/()

e PyList_AsTuple ()

e PyList_GetItem()

e PyList_GetItemRef ()

e PyList_GetSlice()

e PyList_Insert ()

e PyList_New()

e PyList_Reverse()

e PyList_SetItem()

e PyList_SetSlice()

e PyList_Size()

e PyList_Sort ()

e PyList_Type

e PyLongObject

e PyLongRangelIter_Type

e PyLong_AsDouble ()

e PyLong AsInt ()

e PyLong_AsInt32/()

e PyLong AsInt64()

e PyLong_AsLong ()

e PyLong_ AsLongAndOverflow ()
e PyLong_AsLongLong ()

e PyLong AsLongLongAndOverflow()

e PyLong_AsSize_t ()

26 Rozdziat 2. C API Stability

The Python/C API, Wydanie 3.14.0a5

e PyLong AsSsize_t ()

e PyLong AsUInt32()

e PyLong AsUInté64()

e PyLong_AsUnsignedLong ()

e PyLong_AsUnsignedLongLong ()

e PyLong AsUnsignedLongLongMask ()
e PyLong_AsUnsignedLongMask ()

e PyLong_AsVoidPtr()

e PyLong_FromDouble ()

e PyLong_ FromInt32()

e PyLong FromInté64()

e PyLong_ FromLong ()

e PyLong_ FromLongLong ()

e PyLong_FromSize_t ()

e PyLong FromSsize_t ()

e PyLong FromString ()

e PyLong_ FromUInt32()

e PyLong FromUInté64()

e PyLong_ FromUnsignedLong ()

e PyLong_FromUnsignedLongLong ()
e PyLong FromVoidPtr ()

e PyLong _GetInfo()

e PyLong_Type

e PyMap_Type

e PyMapping_Check ()

e PyMapping_GetItemString()

e PyMapping_GetOptionalltem()

e PyMapping_GetOptionalltemString()
e PyMapping_HasKey ()

e PyMapping_HasKeyString/()

e PyMapping HasKeyStringWithError ()
e PyMapping_HasKeyWithError ()

e PyMapping_Items ()

e PyMapping_Keys ()

e PyMapping_Length ()

e PyMapping_SetItemString()

e PyMapping_Size ()

e PyMapping_Values ()

e PyMem Calloc ()

2.4. Contents of Limited API 27

The Python/C API, Wydanie 3.14.0a5

e PyMem Free()

e PyMem Malloc ()

e PyMem RawCalloc ()

e PyMem_ RawFree ()

e PyMem RawMalloc ()

e PyMem RawRealloc ()

e PyMem Realloc ()

e PyMemberDef

e PyMemberDescr_Type

e PyMember_GetOne ()

e PyMember_SetOne ()

e PyMemoryView_FromBuffer ()
e PyMemoryView_FromMemory ()
e PyMemoryView_FromObject ()
e PyMemoryView_GetContiguous ()
e PyMemoryView_Type

e PyMethodDef

e PyMethodDescr_Type

e PyModuleDef

e PyModuleDef_ Base

e PyModuleDef_Init ()

e PyModuleDef_ Type

e PyModule_Add ()

e PyModule AddFunctions ()

e PyModule_ AddIntConstant ()
e PyModule_AddObject ()

e PyModule_ AddObjectRef ()

e PyModule AddStringConstant ()
e PyModule_ AddType ()

e PyModule_Createl ()

e PyModule_ ExecDef ()

e PyModule_ FromDefAndSpecZ2 ()
e PyModule_ GetDef ()

e PyModule_GetDict ()

e PyModule_ GetFilename ()

e PyModule_GetFilenameObject ()
e PyModule_GetName ()

e PyModule_GetNameObject ()

e PyModule_GetState()

28 Rozdziat 2. C API Stability

The Python/C API, Wydanie 3.14.0a5

e PyModule_New ()

e PyModule_NewObject ()

e PyModule_SetDocString()

e PyModule_ Type

e PyNumber_ Absolute ()

e PyNumber_Add ()

e PyNumber_And ()

e PyNumber_AsSsize_t ()

e PyNumber_Check ()

e PyNumber_Divmod ()

e PyNumber_Float ()

e PyNumber_FloorDivide ()

e PyNumber_InPlaceAdd ()

e PyNumber_InPlaceAnd()

e PyNumber_InPlaceFloorDivide ()
e PyNumber_InPlaceLshift ()

e PyNumber_InPlaceMatrixMultiply ()
e PyNumber_InPlaceMultiply ()
e PyNumber_InPlaceOr ()

e PyNumber_InPlacePower ()

e PyNumber_InPlaceRemainder ()
e PyNumber_InPlaceRshift ()

e PyNumber_InPlaceSubtract ()
e PyNumber_InPlaceTrueDivide ()
e PyNumber_InPlaceXor ()

e PyNumber_Index ()

e PyNumber_Invert ()

e PyNumber_Long ()

e PyNumber_Lshift ()

e PyNumber_MatrixMultiply ()

e PyNumber_ Multiply ()

e PyNumber_Negative ()

e PyNumber_Or ()

e PyNumber_Positive()

e PyNumber_ Power ()

e PyNumber_Remainder ()

e PyNumber_ Rshift ()

e PyNumber_Subtract ()

e PyNumber_ToBase ()

2.4. Contents of Limited API 29

The Python/C API, Wydanie 3.14.0a5

PyNumber_ TrueDivide ()
PyNumber_Xor ()
PyOS_AfterFork()
PyOS_AfterFork_Child()
PyOS_AfterFork_Parent ()
PyOS_BeforeFork ()
PyOS_CheckStack ()
PyOS_FSPath ()
PyOS_InputHook
PyOS_InterruptOccurred()
PyOS_double_to_string()
PyOS_getsig()
PyOS_mystricmp ()
PyOS_mystrnicmp ()
PyOS_setsig()
PyOS_sighandler_t
PyOS_snprintf ()
PyOS_string_to_double ()
PyOS_strtol ()
PyOS_strtoul ()
PyOS_vsnprintf ()
PyObject
PyObject.ob_refcnt
PyObject.ob_type
PyObject_ASCII()
PyObject_AsFileDescriptor()
PyObject_Bytes ()
PyObject_Call()
PyObject_CallFunction ()
PyObject_CallFunctionObjArgs ()
PyObject_CallMethod ()
PyObject_CallMethodObjArgs ()
PyObject_CallNoArgs ()
PyObject_CallObject ()
PyObject_Calloc ()
PyObject_CheckBuffer ()
PyObject_ClearWeakRefs ()
PyObject_CopyData ()

PyObject_DelAttr ()

30

Rozdziat 2. C API Stability

The Python/C API, Wydanie 3.14.0a5

PyObject_DelAttrString ()
PyObject_DelItem()
PyObject_DelIltemString ()
PyObject_Dir ()
PyObject_Format ()
PyObject_Free ()
PyObject_GC_Del ()
PyObject_GC_IsFinalized()
PyObject_GC_IsTracked()
PyObject_GC_Track ()
PyObject_GC_UnTrack ()
PyObject_GenericGetAttr ()
PyObject_GenericGetDict ()
PyObject_GenericSetAttr()
PyObject_GenericSetDict ()
PyObject_GetAIter ()
PyObject_GetAttr ()
PyObject_GetAttrString()
PyObject_GetBuffer ()
PyObject_GetItem()
PyObject_GetIter ()

PyObject_GetOptionalAttr()

PyObject_GetOptionalAttrString()

PyObject_GetTypeData ()
PyObject_HasAttr ()

PyObject_HasAttrString ()

PyObject_HasAttrStringWithError ()

PyObject_HasAttrWithError ()

PyObject_Hash ()

PyObject_HashNotImplemented()

PyObject_Init ()
PyObject_InitVar()
PyObject_IsInstance()
PyObject_IsSubclass ()
PyObject_IsTrue ()
PyObject_Length ()
PyObject_Malloc ()
PyObject_Not ()

PyObject_Realloc ()

2.4. Contents of Limited API

31

The Python/C API, Wydanie 3.14.0a5

PyObject_Repr ()
PyObject_RichCompare ()
PyObject_RichCompareBool ()
PyObject_SelfIter()
PyObject_SetAttr ()
PyObject_SetAttrString ()
PyObject_SetItem()
PyObject_Size ()
PyObject_Str()
PyObject_Type ()
PyObject_Vectorcall ()
PyObject_VectorcallMethod /()
PyProperty_Type
PyRangelIter_Type
PyRange_Type
PyReversed_Type
PySeqIter_New ()
PySeqlter_Type
PySequence_Check ()
PySequence_Concat ()
PySequence_Contains ()
PySequence_Count ()
PySequence_DelItem()
PySequence_DelSlice ()
PySequence_GetItem()
PySequence_GetSlice()
PySequence_In()
PySequence_InPlaceConcat ()
PySequence_InPlaceRepeat ()
PySequence_Index ()
PySequence_Length ()
PySequence_List ()
PySequence_Repeat ()
PySequence_SetItem()
PySequence_SetSlice ()
PySequence_Size ()
PySequence_Tuple ()
PySetIter_Type

PySet_Add ()

32

Rozdziat 2. C API Stability

The Python/C API, Wydanie 3.14.0a5

PySet_Clear ()
PySet_Contains ()
PySet_Discard()
PySet_New ()

PySet_Pop ()
PySet_Size()

PySet_Type

PySlice AdjustIndices ()
PySlice_GetIndices ()
PySlice_GetIndicesEx ()
PySlice New/()
PySlice_Type
PySlice_Unpack()
PyState_AddModule ()
PyState_FindModule ()
PyState_RemoveModule ()
PyStructSequence_Desc
PyStructSequence_Field
PyStructSequence_GetItem()
PyStructSequence_New ()
PyStructSequence_NewType ()

PyStructSequence_SetItem()

PyStructSequence_UnnamedField

PySuper_Type
PySys_Audit ()
PySys_AuditTuple ()
PySys_FormatStderr ()
PySys_FormatStdout ()
PySys_GetObject ()
PySys_GetXOptions ()
PySys_ResetWarnOptions ()
PySys_SetArgv ()
PySys_SetArgvEx ()
PySys_SetObject ()
PySys_WriteStderr ()
PySys_WriteStdout ()
PyThreadState
PyThreadState_Clear ()

PyThreadState_Delete ()

2.4. Contents of Limited API

33

The Python/C API, Wydanie 3.14.0a5

PyThreadState_Get ()
PyThreadState_GetDict ()
PyThreadState_GetFrame ()

PyThreadState_GetID ()

PyThreadState_GetInterpreter ()

PyThreadState_New ()
PyThreadState_SetAsyncExc ()
PyThreadState_Swap ()
PyThread_GetInfo()

PyThread ReInitTLS ()
PyThread_acquire_lock ()
PyThread_acquire_lock_timed()
PyThread_allocate_lock ()
PyThread_create_key ()
PyThread _delete_key ()
PyThread_delete_key_value()
PyThread_exit_thread()
PyThread_free_lock ()
PyThread_get_key_value ()
PyThread_get_stacksize ()

PyThread_get_thread_ident ()

PyThread_get_thread_native_id()

PyThread_init_thread()
PyThread_release_lock ()
PyThread_set_key_value ()
PyThread_set_stacksize ()
PyThread_start_new_thread()
PyThread_ tss_alloc()
PyThread_tss_create ()
PyThread_tss_delete()
PyThread_tss_free()
PyThread_tss_get ()
PyThread tss_1is_created()
PyThread_tss_set ()
PyTraceBack_Here ()
PyTraceBack_Print ()
PyTraceBack_Type
PyTuplelter_Type

PyTuple_GetItem()

34

Rozdziat 2. C API Stability

The Python/C API, Wydanie 3.14.0a5

e PyTuple_GetSlice ()

e PyTuple_New/()

e PyTuple Pack ()

e PyTuple_SetItem()

e PyTuple_Size ()

e PyTuple Type

e PyTypeObject

e PyType ClearCache()

e PyType_Freeze ()

e PyType FromMetaclass ()

e PyType FromModuleAndSpec ()

e PyType_FromSpec()

e PyType FromSpecWithBases ()

e PyType_GenericAlloc ()

e PyType_GenericNew ()

e PyType_GetBaseByToken ()

e PyType GetFlags ()

e PyType_GetFullyQualifiedName ()
e PyType_GetModule ()

e PyType_GetModuleByDef ()

e PyType GetModuleName ()

e PyType_ GetModuleState ()

e PyType_GetName ()

e PyType_ GetQualName ()

e PyType GetSlot ()

e PyType_GetTypeDataSize ()

e PyType_IsSubtype ()

e PyType Modified()

e PyType_Ready ()

e PyType_Slot

e PyType_ Spec

e PyType_Type

e PyUnicodeDecodeError_Create ()

e PyUnicodeDecodeError_GetEncoding ()
e PyUnicodeDecodeError_GetEnd/()

e PyUnicodeDecodeError_GetObject ()
e PyUnicodeDecodeError_GetReason ()
e PyUnicodeDecodeError_GetStart ()

e PyUnicodeDecodeError_SetEnd()

2.4. Contents of Limited API 35

The Python/C API, Wydanie 3.14.0a5

PyUnicodeDecodeError_SetReason ()
PyUnicodeDecodeError_SetStart ()
PyUnicodeEncodeError_GetEncoding ()
PyUnicodeEncodeError_GetEnd()
PyUnicodeEncodeError_GetObject ()
PyUnicodeEncodeError_GetReason ()
PyUnicodeEncodeError_GetStart ()
PyUnicodeEncodeError_SetEnd()
PyUnicodeEncodeError_SetReason ()
PyUnicodeEncodeError_SetStart ()
PyUnicodelIter_Type
PyUnicodeTranslateError_GetEnd()
PyUnicodeTranslateError_GetObject ()
PyUnicodeTranslateError_GetReason ()
PyUnicodeTranslateError_GetStart ()
PyUnicodeTranslateError_SetEnd()
PyUnicodeTranslateError_SetReason ()
PyUnicodeTranslateError_SetStart ()
PyUnicode_Append ()
PyUnicode_AppendAndDel ()
PyUnicode_AsASCIIString()
PyUnicode_AsCharmapString ()
PyUnicode_AsDecodedObject ()
PyUnicode_AsDecodedUnicode ()
PyUnicode_AsEncodedObject ()
PyUnicode_AsEncodedString ()
PyUnicode_AsEncodedUnicode ()
PyUnicode_AsLatinlString()
PyUnicode_AsMBCSString ()
PyUnicode_AsRawUnicodeEscapeString ()
PyUnicode_AsUCS4 ()
PyUnicode_AsUCS4Copy ()

PyUnicode AsUTF16String ()
PyUnicode_AsUTF32String()
PyUnicode_AsUTF8AndSize ()
PyUnicode_ AsUTF8String ()
PyUnicode_AsUnicodeEscapeString/()
PyUnicode_AsWideChar ()

PyUnicode_AsWideCharString()

36

Rozdziat 2. C API Stability

The Python/C API, Wydanie 3.14.0a5

e PyUnicode_BuildEncodingMap ()

e PyUnicode_Compare ()

e PyUnicode_CompareWithASCIIString()
e PyUnicode_Concat ()

e PyUnicode_Contains ()

e PyUnicode_Count ()

e PyUnicode_Decode ()

e PyUnicode_DecodeASCII ()

e PyUnicode_DecodeCharmap ()

e PyUnicode_DecodeCodePageStateful ()
e PyUnicode_DecodeFSDefault ()

e PyUnicode_DecodeFSDefaultAndSize ()
e PyUnicode_DecodeLatinl ()

e PyUnicode_DecodeLocale ()

e PyUnicode_DecodeLocaleAndSize ()

e PyUnicode_DecodeMBCS ()

e PyUnicode_DecodeMBCSStateful ()

e PyUnicode_DecodeRawUnicodeEscape ()
e PyUnicode_DecodeUTF16 ()

e PyUnicode_DecodeUTF16Stateful ()

e PyUnicode_DecodeUTF32 ()

e PyUnicode_DecodeUTF32Stateful ()

e PyUnicode_DecodeUTF7()

e PyUnicode_DecodeUTF7Stateful ()

e PyUnicode_DecodeUTFS8 ()

e PyUnicode_DecodeUTF8Stateful ()

e PyUnicode_DecodeUnicodeEscape ()

e PyUnicode_EncodeCodePage ()

e PyUnicode_EncodeFSDefault ()

e PyUnicode_EncodeLocale ()

e PyUnicode_Equal ()

e PyUnicode_EqualToUTF8 ()

e PyUnicode_EqualToUTF8AndSize ()

e PyUnicode_FSConverter ()

e PyUnicode_FSDecoder ()

e PyUnicode_Find/()

e PyUnicode_FindChar ()

e PyUnicode_Format ()

e PyUnicode_FromEncodedObject ()

2.4. Contents of Limited API 37

The Python/C API, Wydanie 3.14.0a5

PyUnicode_FromFormat ()
PyUnicode_FromFormatV ()
PyUnicode_FromObject ()
PyUnicode_FromOrdinal ()
PyUnicode_FromString ()
PyUnicode_FromStringAndSize ()
PyUnicode_FromWideChar ()
PyUnicode_GetDefaultEncoding ()
PyUnicode_GetLength ()
PyUnicode_InternFromString()
PyUnicode_InternInPlace ()
PyUnicode_IsIdentifier()
PyUnicode_Jdoin()
PyUnicode_Partition ()
PyUnicode_RPartition()
PyUnicode_RSplit ()
PyUnicode_ReadChar ()
PyUnicode_Replace()
PyUnicode_Resize ()
PyUnicode_RichCompare ()
PyUnicode_Split ()
PyUnicode_Splitlines /()
PyUnicode_Substring()
PyUnicode_Tailmatch ()
PyUnicode_Translate ()
PyUnicode_Type
PyUnicode_WriteChar ()
PyVarObject
PyVarObject.ob_base
PyVarObject.ob_size
PyVectorcall_ Call ()
PyVectorcall NARGS ()
PyWeakReference
PyWeakref_GetObject ()
PyWeakref_ GetRef ()
PyWeakref_ NewProxy ()
PyWeakref_ NewRef ()
PyWrapperDescr_Type

PyWrapper_New ()

38

Rozdziat 2. C API Stability

The Python/C API, Wydanie 3.14.0a5

e PyZip_Type

e Py _AddPendingCall ()

e Py AtExit ()

e Py BEGIN_ALLOW_THREADS
e Py BLOCK_THREADS

e Py BuildValue()

e Py BytesMain ()

e Py CompileString()

e Py DecRef ()

e Py DecodeLocale()

e Py END ALLOW_THREADS

e Py FEncodeLocale ()

e Py _EndInterpreter()

e Py EnterRecursiveCall ()
e Py Exit ()

e Py FatalError()

e Py FileSystemDefaultEncodeErrors
e Py _FileSystemDefaultEncoding
e Py Finalize()

e Py FinalizeEx/()

e Py GenericAlias /()

e Py GenericAliasType

e Py GetBuildInfo()

e Py GetCompiler /()

e Py GetConstant ()

e Py GetConstantBorrowed()
e Py GetCopyright ()

e Py GetExecPrefix()

e Py GetPath ()

e Py GetPlatform()

e Py GetPrefix/()

e Py GetProgramFullPath ()
e Py GetProgramName ()

e Py GetPythonHome ()

e Py_GetRecursionLimit ()

e Py GetVersion()

e Py HasFileSystemDefaultEncoding
e Py _IncRef ()

e Py Initialize()

2.4. Contents of Limited API 39

The Python/C API, Wydanie 3.14.0a5

Py InitializeEx()

Py _Is()

Py IsFalse()

Py _IsFinalizing()

Py IsInitialized()
Py_IsNone ()

Py _IsTrue ()

Py _LeaveRecursiveCall ()
Py _Main ()
Py_MakePendingCalls ()
Py _NewInterpreter()
Py_NewRef ()
Py_PACK_FULIL_VERSION ()
Py PACK_VERSION ()

Py _REFCNT ()
Py_ReprEnter ()

Py _ReprLeave ()
Py_SetProgramName ()
Py_SetPythonHome ()
Py_SetRecursionLimit ()
Py_TYPE ()

Py _UCS4
Py_UNBLOCK_THREADS
Py_UTF8Mode

Py _VaBuildValue ()
Py_Version
Py_XNewRef ()

Py _buffer
Py_intptr_t

Py _ssize_t
Py_uintptr_t
allocfunc

binaryfunc
descrgetfunc
descrsetfunc
destructor
getattrfunc
getattrofunc

getbufferproc

40

Rozdziat 2. C API Stability

The Python/C API, Wydanie 3.14.0a5

e getiterfunc

e getter

e hashfunc

e initproc

e inquiry

e iternextfunc

e lenfunc

e newfunc

e objobjargproc

e objobjproc

e releasebufferproc
e reprfunc

e richcmpfunc

e setattrfunc

e setattrofunc

e setter

e ssizeargfunc

e ssizeobjargproc

e ssizessizeargfunc
e ssizessizeobjargproc
e symtable

e ternaryfunc

e traverseproc

e unaryfunc

e vectorcallfunc

e visitproc

2.4. Contents of Limited API 41

The Python/C API, Wydanie 3.14.0a5

42 Rozdziat 2. C API Stability

ROZDZIAL 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled
carefully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that
the Python runtime is using.
int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.
int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value of PyRun_InteractiveLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys.getfilesystemencoding()). If filename
1S NULL, this function uses "?2?2" as the filename. If closeit is true, the file is closed before
PyRun_SimpleFileExFlags () returns.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)

Executes the Python source code from command in the __main__ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or -1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

43

The Python/C API, Wydanie 3.14.0a5

Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the
process, as long as PyConfig. inspect is zero.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)

Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
-memory string. filename should be the name of the file, it is decoded from filesystem encoding and error
handler. If closeit is true, the file is closed before PyRun_SimpleFileExFlags () returns.

© Informacja

On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb")). Otherwise, Python
may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)

This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute a single statement from a file associated with an interactive device according to the flags
argument. The user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem
encoding and error handler.

Returns 0 when the input was executed successfully, -1 if there was an exception, or an error code from the
errcode.h include file distributed as part of Python if there was a parse error. (Note that errcode . h is not
included by Python . h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys.ps1 and sys.ps2. filename is decoded from the filesystem encoding and error
handler. Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook)(void)
Czes¢ stabilnego ABI. Can be set to point to a function with the prototype int func (void) . The function will
be called when Python’s interpreter prompt is about to become idle and wait for user input from the terminal.
The return value is ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other
event loops, as done in the Modules/_tkinter. c in the Python source code.

Zmienione w wersji 3.12: This function is only called from the main interpreter.

char *(*PyOS_ReadlineFunctionPointer)(FILE*, FILE*, const char*)

Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout, char
*prompt), overriding the default function used to read a single line of input at the interpreter’s prompt. The
function is expected to output the string prompt if it’s not NULL, and then read a line of input from the provided
standard input file, returning the resulting string. For example, The readl ine module sets this hook to provide
line-editing and tab-completion features.

The result must be a string allocated by PyMem RawMalloc () or PyMem RawRealloc (), or NULL if an
error occurred.

Zmienione w wersji 3.4: The result must be allocated by PyMem RawMalloc () or PyMem_RawRealloc (),
instead of being allocated by PyMem Malloc () or PyMem_Realloc ().

Zmienione w wersji 3.12: This function is only called from the main interpreter.

44 Rozdziat 3. The Very High Level Layer

The Python/C API, Wydanie 3.14.0a5

PyObject *PyRun_String (const char *str, int start, PyObject *globals, PyObject *1ocals)
Wartos¢ zwracana: nowa referencja. This is a simplified interface to PyRun_StringFlags () below, leaving
flags set to NULL.

PyObject *PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompilerFlags
*flags)
Wartos¢ zwracana: nowa referencja. Execute Python source code from str in the context specified by the objects
globals and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any
object that implements the mapping protocol. The parameter start specifies the start token that should be used
to parse the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject *PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)

Wartos¢ zwracana: nowa referencja. This is a simplified interface to PyRun_FileExFlags () below, leaving
closeit set to 0 and flags set to NULL.

PyObject *pyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *1ocals, int
closeit)

Wartos¢ zwracana: nowa referencja. This is a simplified interface to PyRun_FileExFlags () below, leaving
flags set to NULL.

PyObject *PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
Wartos¢ zwracana: nowa referencja. This is a simplified interface to PyRun_FileExFlags () below, leaving
closeit set to 0.

PyObject *PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
int closeit, PyCompilerFlags *flags)
Wartos¢ zwracana: nowa referencja. Similar to PyRun_StringFlags (), but the Python source code is read
from fp instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem
encoding and error handler. If closeit is true, the file is closed before PyRun_FileExFlags () returns.

PyObject *Py_CompileString (const char *str, const char *filename, int start)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL This is a simplified interface to
Py_CompileStringFlags () below, leaving flags set to NULL.

PyObject *Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompilerFlags *flags)

Wartos¢ zwracana: nowa referencja. This is a simplified interface to Py_CompileStringExFlags () below,
with optimize set to —1.

PyObject *Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompilerFlags *flags, int
optimize)
Wartos¢ zwracana: nowa referencja. Parse and compile the Python source code in str, returning the resulting
code object. The start token is given by start; this can be used to constrain the code which can be compiled and
should be Py _eval input, Py file input,or Py _single_input. The filename specified by filename
is used to construct the code object and may appear in tracebacks or SyntaxError exception messages. This
returns NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization
level of the interpreter as given by —0 options. Explicit levels are 0 (no optimization; __debug___is true), 1
(asserts are removed, __debug___is false) or 2 (docstrings are removed too).

Added in version 3.4.

PyObject *Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompilerFlags *flags,
int optimize)

Wartos¢ zwracana: nowa referencja. Like Py _CompileStringObject (), but filename is a byte string de-
coded from the filesystem encoding and error handler.

Added in version 3.2.

45

The Python/C API, Wydanie 3.14.0a5

PyObject *PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Wartos¢ zwracana: nowa referencja. CzeS¢ stabilnego ABIL. This is a simplified interface to

PyEval_ EvalCodeEx (), with just the code object, and global and local variables. The other arguments are
set to NULL.

PyObject *pyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args, int
argcount, PyObject *const *kws, int kwcount, PyObject *const *defs, int
defcount, PyObject *kwdefs, PyObject *closure)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Evaluate a precompiled code object, given a parti-
cular environment for its evaluation. This environment consists of a dictionary of global variables, a mapping
object of local variables, arrays of arguments, keywords and defaults, a dictionary of default values for key-
word-only arguments and a closure tuple of cells.

PyObject *PyEval_EvalFrame (PyFrameObject *f)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI Evaluate an execution frame. This is a simplified
interface to PyEval_EvalFrameEx (), for backward compatibility.

PyObject *PyEval_EvalFrameEx (PyFrameObject *1, int throwflag)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI This is the main, unvarnished function of Python
interpretation. The code object associated with the execution frame f is executed, interpreting bytecode and
executing calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes an
exception to immediately be thrown; this is used for the throw () methods of generator objects.

Zmienione w wersji 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.
int PyEval_MergeCompilerF1lags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.
int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with pPy_CompileString ().
intPy file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source
code.
int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString (). This
is the symbol used for the interactive interpreter loop.
struct PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this
case, from __ future__ import can modify flags.

Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to 0, and any modification
dueto from __ future__ import is discarded.

int cf£_flags
Compiler flags.

int cf_feature_version

¢f _feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSION.
The field is ignored by default, it is used if and only if PyCF_ONLY_AST flagis setin cf_flags.
Zmienione w wersji 3.8: Added cf_feature_version field.
The available compiler flags are accessible as macros:

PyCF_ALLOW_TOP_LEVEL_AWAIT
PyCF_ONLY_ AST

46 Rozdziat 3. The Very High Level Layer

The Python/C API, Wydanie 3.14.0a5

PyCF_OPTIMIZED_AST

PyCF_TYPE_COMMENTS
See compiler flags in documentation of the ast Python module, which exports these constants under the
same names.

int CO_FUTURE_DIVISION

This bit can be set in flags to cause division operator / to be interpreted as ,true division” according to
PEP 238.

47

https://peps.python.org/pep-0238/

The Python/C API, Wydanie 3.14.0a5

48 Rozdziat 3. The Very High Level Layer

rRozpzIAL 4

Reference Counting

The functions and macros in this section are used for managing reference counts of Python objects.
Py_ssize_t Py_REFCNT (PyObject *0)
Czes¢ stabilnego ABI od wersji 3.14. Get the reference count of the Python object o.

Note that the returned value may not actually reflect how many references to the object are actually held. For
example, some objects are immortal and have a very high refcount that does not reflect the actual number of
references. Consequently, do not rely on the returned value to be accurate, other than a value of 0 or 1.

Use the py_seET REFCNT () function to set an object reference count.
Zmienione w wersji 3.10: py_REFCNT () is changed to the inline static function.
Zmienione w wersji 3.11: The parameter type is no longer const PyObject*.

void Py_SET_REFCNT (PyObject *0, Py_ssize_t refcnt)
Set the object o reference counter to refcnt.

On Python build with Free Threading, if refcnt is larger than UINT32_MAX, the object is made immortal.
This function has no effect on immortal objects.

Added in version 3.9.

Zmienione w wersji 3.12: Immortal objects are not modified.

void Py_ INCREF (PyObject *0)
Indicate taking a new strong reference to object o, indicating it is in use and should not be destroyed.

This function has no effect on immortal objects.

This function is usually used to convert a borrowed reference to a strong reference in-place. The Py _NewRef ()
function can be used to create a new strong reference.

When done using the object, release is by calling Py_DECREF ().
The object must not be NULL; if you aren’t sure that it isn't NULL, use Py_XINCREF ().

Do not expect this function to actually modify o in any way. For at least some objects, this function has no
effect.

Zmienione w wersji 3.12: Immortal objects are not modified.

49

https://peps.python.org/pep-0683/

The Python/C API, Wydanie 3.14.0a5

void Py_XINCREF (PyObject *0)
Similar to Py TNCREF (), but the object o can be NULL, in which case this has no effect.

See also Py_xNewRef ().

PyObject *Py_NewRef (PyObject *0)

Czes¢ stabilnego ABI od wersji 3.10. Create a new strong reference to an object: call Py TNCREF () on o and
return the object o.

When the strong reference is no longer needed, Py _DECREF () should be called on it to release the reference.
The object o must not be NULL; use Py_XNewRef () if o can be NULL.

Dla przyktadu:

Py_INCREF (obj) ;
self->attr = obj;

can be written as:

[self7>attr = Py_NewRef (obj) ;]

See also Py INCREF ().
Added in version 3.10.

PyObject *Py_XNewRef (PyObject *0)
Czes¢ stabilnego ABI od wersji 3.10. Similar to Py_NewRef (), but the object o can be NULL.

If the object o is NULL, the function just returns NULL.
Added in version 3.10.

void Py_DECREF (PyObject *0)

Release a strong reference to object o, indicating the reference is no longer used.
This function has no effect on immortal objects.

Once the last strong reference is released (i.e. the object’s reference count reaches 0), the object’s type’s deal-
location function (which must not be NULL) is invoked.

This function is usually used to delete a strong reference before exiting its scope.
The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py_XDECREF ().

Do not expect this function to actually modify o in any way. For at least some objects, this function has no
effect.

A\ Ostrzezenie

The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance with
a__ del () methodis deallocated). While exceptions in such code are not propagated, the executed code
has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state before Py DECREF () is invoked. For example, code to delete an
object from a list should copy a reference to the deleted object in a temporary variable, update the list data
structure, and then call Py_DECREF () for the temporary variable.

Zmienione w wersji 3.12: Immortal objects are not modified.

void Py_XDECREF (PyObject *0)

Similar to Py_DECREF (), but the object o can be NULL, in which case this has no effect. The same warning
from Py_DECREF () applies here as well.

50 Rozdziat 4. Reference Counting

https://peps.python.org/pep-0683/

The Python/C API, Wydanie 3.14.0a5

void Py_CLEAR (PyObject *0)

Release a strong reference for object o. The object may be NULL, in which case the macro has no effect; otherwise
the effect is the same as for Py _DECREF (), except that the argument is also set to NULL. The warning for
Py_DECREF () does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before releasing the reference.

It is a good idea to use this macro whenever releasing a reference to an object that might be traversed during
garbage collection.

Zmienione w wersji 3.12: The macro argument is now only evaluated once. If the argument has side effects,
these are no longer duplicated.

void Py_ IncRef (PyObject *0)

Czesé stabilnego ABI. Indicate taking a new strong reference to object o. A function version of Py XINCREF ().
It can be used for runtime dynamic embedding of Python.

void Py_DecRef (PyObject *0)

Czes¢ stabilnego ABI. Release a strong reference to object o. A function version of Py XDECREF (). It can be
used for runtime dynamic embedding of Python.

Py_SETREF (dst, src)

Macro safely releasing a strong reference to object dst and setting dst to src.

Asin case of Py CLEAR (), ,the obvious” code can be deadly:

Py_DECREF (dst) ;
dst = src;

The safe way is:

[nySETREF(dst, src); }

That arranges to set dst to src _before_ releasing the reference to the old value of dst, so that any code triggered
as a side-effect of dst getting torn down no longer believes dst points to a valid object.

Added in version 3.6.

Zmienione w wersji 3.12: The macro arguments are now only evaluated once. If an argument has side effects,
these are no longer duplicated.

Py_XSETREF (dst, src)
Variant of Py SETREF macro that uses Py_xDECREF () instead of Py DECREF ().

Added in version 3.6.

Zmienione w wersji 3.12: The macro arguments are now only evaluated once. If an argument has side effects,
these are no longer duplicated.

51

The Python/C API, Wydanie 3.14.0a5

52 Rozdziat 4. Reference Counting

ROzDzZIAL D

Obstuga sytuacji wyjatkowych

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will set
it to indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if
they are supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* functions return 1 for
success and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for
example you can’t have a non-NULL traceback if the exception type is NULL).

Gdy zadanie musi zawiez¢ z powodu bledu zadania ktére wywotato, ogdlnie nie ustawia ona wskaZnika btedu; po-
dzadanie ktore zostalo wywotane juz go ustawita. Jest on odpowiedzialny albo za obstuge btedu i wyczyszczenie
wskaznika sytuacji wyjatkowej lub powr6t po sprzatnigciu jakichkolwiek zasobéw ktére utrzymuje (takich jak od-
wotania do przedmiotéw lub zajgte pamigci); nie powinien kontynuowaé zwyczajnie jesli nie jest przygotowany do
obstugi btedu. Jesli koriczy z powodu bledu, istotne jest zwrdocenie uwagi wotajacego ze zostat zgloszony btad. Jesli
btad nie jest obstugiwany lub propagowany wilasciwie, dodatkowe odwotania do sprzggu jezyka pytonowskiego/C
moga nie zachowywac sig tak, jak planowano i moga zawieZ¢ w nieoczekiwane sposoby.

© Informacja

The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not yet
caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

5.1 Printing and clearing

void PyErr_Clear ()

Czes¢ stabilnego ABI. Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx (int set_sys_last_vars)

Czes¢ stabilnego ABI. Print a standard traceback to sys.stderr and clear the error indicator. Unless the
error is a SystemExit, in that case no traceback is printed and the Python process will exit with the error
code specified by the SystemExit instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

53

The Python/C API, Wydanie 3.14.0a5

If set_sys_last_vars is nonzero, the variable sys.last_exc is set to the printed exception. For backwards
compatibility, the deprecated variables sys.last_type, sys.last_value and sys.last_traceback
are also set to the type, value and traceback of this exception, respectively.

Zmienione w wersji 3.12: The setting of sys.last_exc was added.

void PyErr_Print ()
Czes¢ stabilnego ABI. Alias for PyErr_PrintEx (1).

void PyErr_WriteUnraisable (PyObject *obj)
Czes¢ stabilnego ABI. Call sys.unraisablehook () using the current exception and obj argument.
This utility function prints a warning message to sys.stderr when an exception has been set but it is im-

possible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in
an__del_ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message. If obj is NULL, only the traceback
is printed.

An exception must be set when calling this function.
Zmienione w wersji 3.4: Print a traceback. Print only traceback if 0bj is NULL.
Zmienione w wersji 3.8: Use sys.unraisablehook ().

void PyErr_FormatUnraisable (const char *format, ...)

Similar to PyErr WriteUnraisable(), but the format and subsequent parameters help format
the warning message; they have the same meaning and values as in PyUnicode FromFormat ().
PyErr_WriteUnraisable (obj) is roughly equivalent to PyErr FormatUnraisable ("Exception
ignored in: %R", obj).If formatis NULL, only the traceback is printed.

Added in version 3.13.

void PyErr_DisplayException (PyObject *exc)
Czes¢ stabilnego ABI od wersji 3.12. Print the standard traceback display of exc to sys.stderr, including
chained exceptions and notes.

Added in version 3.12.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
Czes¢ stabilnego ABI. This is the most common way to set the error indicator. The first argument specifies
the exception type; it is normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not
create a new strong reference to it (e.g. with py_7NCREF ()). The second argument is an error message; it is
decoded from 'utf-8'.

void PyErr_SetObject (PyObject *type, PyObject *value)
Czesé stabilnego ABI. This function is similarto PyErr SetString () butlets you specify an arbitrary Python
object for the ,,value” of the exception.

PyObject *PyErr_Format (PyObject *exception, const char *format, ...)

Wartos¢ zwracana: zawsze NULL. Czes¢ stabilnego ABI. This function sets the error indicator and returns
NULL. exception should be a Python exception class. The format and subsequent parameters help format the
error message; they have the same meaning and values as in PyUnicode_FromFormat (). formatis an ASCII-
-encoded string.

54 Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.14.0a5

PyObject *PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)

Wartosc¢ zwracana: zawsze NULL. Czesé stabilnego ABI od wersji 3.5. Same as PyErr Format (), but taking
ava_list argument rather than a variable number of arguments.

Added in version 3.5.

void PyErr_SetNone (PyObject *type)
Czes¢ stabilnego ABI. This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_BadArgument ()

Czes¢ stabilnego ABI. This is a shorthand for PyErr_SetString (PyExc_TypeError, message), Where
message indicates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject *PyErr_NoMemory ()
Wartos¢ zwracana: zawsze NULL. Czes¢ stabilnego ABIL. This is a shorthand for
PyErr_SetNone (PyExc_MemoryError); it returns NULL so an object allocation function can write
return PyErr_NoMemory (); when it runs out of memory.

PyObject *PyErr_SetFromErrno (PyObject *type)

Wartos¢ zwracana: zawsze NULL. Czesé stabilnego ABI. This is a convenience function to raise an exception
when a C library function has returned an error and set the C variable errno. It constructs a tuple object
whose first item is the integer errno value and whose second item is the corresponding error message (gotten
from strerror ()), and then calls PyErr_SetObject (type, object).On Unix, when the errno value
is EINTR, indicating an interrupted system call, this calls PyErr CheckSignals (), and if that set the error
indicator, leaves it set to that. The function always returns NULL, so a wrapper function around a system call
can write return PyErr_SetFromErrno (type); when the system call returns an error.

PyObject *PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)

Wartos¢ zwracana: zawsze NULL. Cze$¢ stabilnego ABI. Similar to PyErr_SetFromErrno (), with the ad-
ditional behavior that if filenameObject is not NULL, it is passed to the constructor of #ype as a third parameter.
In the case of OSError exception, this is used to define the £ilename attribute of the exception instance.

PyObject *PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)

Wartos¢ zwracana: zawsze NULL. Czes¢ stabilnego ABI od wersji 3.7. Similar to
PyErr SetFromErrnoWithFilenameObject (), but takes a second filename object, for raising er-
rors when a function that takes two filenames fails.

Added in version 3.4.

PyObject *PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)

Wartosé Zwracana: zawsze NULL. Czes¢ stabilnego ABL Similar to
PyErr_SetFromErrnoWithFilenameObject (), but the filename is given as a C string. filename is
decoded from the filesystem encoding and error handler.

PyObject *PyErr_SetFromWindowsErr (int ierr)

Wartos¢ zwracana: zawsze NULL. Czes¢ stabilnego ABI on Windows od wersji 3.7. This is a convenience func-
tion to raise OSError. If called with ierr of 0, the error code returned by a call to GetLastError () is used
instead. It calls the Win32 function FormatMessage () to retrieve the Windows description of error code gi-
ven by ierr or GetLastError (), then it constructs a OSError object with the winerror attribute set to the
error code, the st rerror attribute set to the corresponding error message (gotten from FormatMessage ()),
and then calls PyErr_SetObject (PyExc_OSError, object). This function always returns NULL.

Dostgpnosé: Windows.

PyObject *PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)

Wartos¢ zwracana: zawsze NULL. Czes¢ stabilnego ABI on Windows od wersji 3.7. Similar to
PyErr SetFromWindowsErr (), with an additional parameter specifying the exception type to be raised.

Dostgpnosé: Windows.

5.2. Raising exceptions 55

The Python/C API, Wydanie 3.14.0a5

PyObject *PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)

Wartos¢ zwracana: zawsze NULL. Czes¢ stabilnego ABI on Windows od wersji 3.7. Similar to
PyErr_SetFromWindowsErr (), with the additional behavior that if filename is not NULL, it is decoded
from the filesystem encoding (os. f£sdecode ()) and passed to the constructor of OSError as a third para-
meter to be used to define the £ilename attribute of the exception instance.

Dostgpno$¢: Windows.
PyObject *PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyObject
*filename)

Wartos¢ zwracana: zawsze NULL. Czes¢ stabilnego ABI on Windows od wersji 3.7. Similar to
PyErr SetExcFromWindowsErr (), with the additional behavior that if filename is not NULL, it is pas-
sed to the constructor of OSError as a third parameter to be used to define the £filename attribute of the
exception instance.

Dostgpnosé: Windows.

PyObject *PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyObject
*filename, PyObject *filename?2)
Wartos¢ zwracana: zawsze NULL. Czes¢ stabilnego ABI on Windows od wersji 3.7. Similar to
PyErr SetExcFromWindowsErriWithFilenameObject (), butaccepts a second filename object.
Dostepnosé: Windows.
Added in version 3.4.

PyObject *PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *filename)

Wartos¢ zwracana: zawsze NULL. Czes¢ stabilnego ABI on Windows od wersji 3.7. Similar to
PyErr SetFromWindowsErriithFilename (), with an additional parameter specifying the exception ty-
pe to be raised.

Dostepnos¢é: Windows.
PyObject *PyErr_SetImportError (PyObject ¥msg, PyObject *name, PyObject *path)
Wartos¢ zwracana: zawsze NULL. Czes¢ stabilnego ABI od wersji 3.7. This is a convenience function to raise

ImportError. msg will be set as the exception’s message string. name and path, both of which can be NULL,
will be set as the ImportError’s respective name and path attributes.

Added in version 3.3.
PyObject *PyErr_SetImportErrorSubclass (PyObject *exception, PyObject ¥msg, PyObject *name, PyObject
*path)
Wartos¢ zwracana: zawsze NULL. Czesé stabilnego ABI od wersji 3.6. Much like PyErr Set ImportError ()
but this function allows for specifying a subclass of ImportError to raise.

Added in version 3.6.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)

Set file, line, and offset information for the current exception. If the current exception is not a SyntaxError,
then it sets additional attributes, which make the exception printing subsystem think the exception is
a SyntaxError.

Added in version 3.4.

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)

Czes¢ stabilnego ABI od wersji 3.7. Like PyErr SyntaxLocationObject (), but filename is a byte string
decoded from the filesystem encoding and error handler.

Added in version 3.2.

void PyErr_SyntaxLocation (const char *filename, int lineno)
Czes¢ stabilnego ABI. Like PyErr SyntaxLocationEx (), but the col_offset parameter is omitted.

56 Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.14.0a5

void PyErr_BadInternalCall ()

Czes¢ stabilnego ABI. This is a shorthand for PyErr_SetString (PyExc_SystemError, message),whe-
re message indicates that an internal operation (e.g. a Python/C API function) was invoked with an illegal
argument. It is mostly for internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified
that warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the
functions raise an exception because of a problem with the warning machinery. The return value is 0 if no exception
is raised, or -1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed,
nor what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for example, Py_DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)

Czes¢ stabilnego ABI. Issue a warning message. The category argument is a warning category (see below) or
NULL; the message argument is a UTF-8 encoded string. stack_level is a positive number giving a number
of stack frames; the warning will be issued from the currently executing line of code in that stack frame.
A stack_level of 1 is the function calling PyErr WarnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_RuntimeWarning. The standard Python war-
ning categories are available as global variables whose names are enumerated at Standard Warning Categories.

For information about warning control, see the documentation for the warnings module and the -w option in
the command line documentation. There is no C API for warning control.

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python function warnings.warn_explicit () ;see there for more information. The module and
registry arguments may be set to NULL to get the default effect described there.

Added in version 3.4.

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const char

*module, PyObject *registry)

Czes¢ stabilnego ABI. Similar to PyErr warnExplicitObject () except that message and module are UTF-
-8 encoded strings, and filename is decoded from the filesystem encoding and error handler.

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Czes¢ stabilnego ABI. Function similar to PyErr_WarnEx (),butuse PyUnicode_FromFormat () toformat
the warning message. format is an ASCII-encoded string.
Added in version 3.2.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Czes¢ stabilnego ABI od wersji 3.6. Function similar to PyErr WarnFormat (), but category is
ResourceWarning and it passes source to warnings.WarningMessage.

Added in version 3.6.

5.4 Querying the error indicator

PyObject *PyErr_Occurred ()
Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI. Test whether the error indicator is set. If
set, return the exception fype (the first argument to the last call to one of the PyErr_Set* functions or to
pyErr Restore ()). If not set, return NULL. You do not own a reference to the return value, so you do not
need to Py DECREF () it.

5.3. Issuing warnings 57

The Python/C API, Wydanie 3.14.0a5

The caller must hold the GIL.

© Informacja

Do not compare the return value to a specific exception; use PyErr ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class,
in the case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Czes¢ stabilnego ABI. Equivalent to PyErr_ GivenExceptionMatches (PyErr_Occurred(), exc).
This should only be called when an exception is actually set; a memory access violation will occur if no excep-
tion has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Czes¢ stabilnego ABI. Return true if the given exception matches the exception type in exc. If exc is a class
object, this also returns true when given is an instance of a subclass. If exc is a tuple, all exception types in the
tuple (and recursively in subtuples) are searched for a match.

PyObject *PyErr_GetRaisedException (void)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.12. Return the exception currently being
raised, clearing the error indicator at the same time. Return NULL if the error indicator is not set.

This function is used by code that needs to catch exceptions, or code that needs to save and restore the error
indicator temporarily.

Na przyktad:

-

{
PyObject *exc = PyErr_ GetRaisedException();

/* ... code that might produce other errors ... */

PyErr_SetRaisedException (exc);

> Zobacz takze

PyErr GetHandledException (), to save the exception currently being handled.

Added in version 3.12.

void PyErr_SetRaisedException (PyObject *exc)
Czes¢ stabilnego ABI od wersji 3.12. Set exc as the exception currently being raised, clearing the existing
exception if one is set.

A\ Ostrzezenie

This call steals a reference to exc, which must be a valid exception.

Added in version 3.12.
void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Czes¢ stabilnego ABI. Niezalecane od wersji 3.12: Use PyErr GetRaisedException () instead.

Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set,
set all three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved.
The value and traceback object may be NULL even when the type object is not.

58 Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.14.0a5

© Informacja

This function is normally only used by legacy code that needs to catch exceptions or save and restore the
error indicator temporarily.

Na przyktad:

{
PyObject *type, *value, *traceback;
PyErr_Fetch (&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Czes¢ stabilnego ABI. Niezalecane od wersji 3.12: Use PyErr SetRaisedException () instead.

Set the error indicator from the three objects, type, value, and traceback, clearing the existing exception if one
is set. If the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value
or traceback. The exception type should be a class. Do not pass an invalid exception type or value. (Violating
these rules will cause subtle problems later.) This call takes away a reference to each object: you must own
a reference to each object before the call and after the call you no longer own these references. (If you don’t
understand this, don’t use this function. I warned you.)

© Informacja

This function is normally only used by legacy code that needs to save and restore the error indicator tem-
porarily. Use PyErr Fetch () to save the current error indicator.

void PyErr_NormalizeException (PyObject ¥*exc, PyObject **val, PyObject **tb)
Czes¢ stabilnego ABI. Niezalecane od wersji 3.12: Use PyErr_GetRaisedException () instead, to avoid
any possible de-normalization.

Under certain circumstances, the values returned by PyErr Fetch () below can be ,,unnormalized”, meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is
implemented to improve performance.

© Informacja

This function does not implicitly set the __ traceback__ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);

PyObject *PyErr_GetHandledException (void)

Czes¢ stabilnego ABI od wersji 3.11. Retrieve the active exception instance, as would be returned by sys.
exception (). This refers to an exception that was already caught, not to an exception that was freshly raised.
Returns a new reference to the exception or NULL. Does not modify the interpreter’s exception state.

5.4. Querying the error indicator 59

The Python/C API, Wydanie 3.14.0a5

© Informacja

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr SetHandledException ()
to restore or clear the exception state.

Added in version 3.11.

void PyErr_SetHandledException (PyObject *exc)

Czes¢ stabilnego ABI od wersji 3.11. Set the active exception, as known from sys.exception (). This refers
to an exception that was already caught, not to an exception that was freshly raised. To clear the exception
state, pass NULL.

© Informacja

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr GetHandledException ()
to get the exception state.

Added in version 3.11.

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Czes¢ stabilnego ABI od wersji 3.7. Retrieve the old-style representation of the exception info, as known from
sys.exc_info (). This refers to an exception that was already caught, not to an exception that was freshly
raised. Returns new references for the three objects, any of which may be NULL. Does not modify the exception
info state. This function is kept for backwards compatibility. Prefer using pyErr GetHandledException ().

© Informacja

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_SetExcInfo () to restore or
clear the exception state.

Added in version 3.3.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)

Czes¢ stabilnego ABI od wersji 3.7. Set the exception info, as known from sys.exc_info (). This refers
to an exception that was already caught, not to an exception that was freshly raised. This function steals the
references of the arguments. To clear the exception state, pass NULL for all three arguments. This function is
kept for backwards compatibility. Prefer using PyErr_SetHandledException ().

© Informacja

This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr GetExcInfo () to read the
exception state.

Added in version 3.3.

Zmienione w wersji 3.11: The type and traceback arguments are no longer used and can be NULL. The
interpreter now derives them from the exception instance (the value argument). The function still steals re-
ferences of all three arguments.

60

Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.14.0a5

5.5 Signal Handling

int PyErr_CheckSignals ()
Czes¢ stabilnego ABI. This function interacts with Python’s signal handling.

If the function is called from the main thread and under the main Python interpreter, it checks whether a signal
has been sent to the processes and if so, invokes the corresponding signal handler. If the signal module is
supported, this can invoke a signal handler written in Python.

The function attempts to handle all pending signals, and then returns 0. However, if a Python signal handler
raises an exception, the error indicator is set and the function returns -1 immediately (such that other pending
signals may not have been handled yet: they will be on the next PyErr CheckSignals () invocation).

If the function is called from a non-main thread, or under a non-main Python interpreter, it does nothing and
returns 0.

This function can be called by long-running C code that wants to be interruptible by user requests (such as by
pressing Ctrl-C).

© Informacja

The default Python signal handler for SIGINT raises the KeyboardInterrupt exception.

void PyErr_SetInterrupt ()

Czes¢ stabilnego ABI Simulate the effect of a SIGINT signal arriving. This is equivalent to
PyErr_SetInterruptEx (SIGINT).

© Informacja

This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

int PyErr_SetInterruptEx (int signum)
Czes¢ stabilnego ABI od wersji 3.10. Simulate the effect of a signal arriving. The next time
PyErr CheckSignals () is called, the Python signal handler for the given signal number will be called.

This function can be called by C code that sets up its own signal handling and wants Python signal handlers
to be invoked as expected when an interruption is requested (for example when the user presses Ctrl-C to
interrupt an operation).

If the given signal isn’t handled by Python (it was set to signal.SIG_DFL or signal.SIG_IGN), it will be
ignored.

If signum is outside of the allowed range of signal numbers, -1 is returned. Otherwise, 0 is returned. The error
indicator is never changed by this function.

© Informacja

This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

Added in version 3.10.

int PySignal_SetWakeupFd (int fd)

This utility function specifies a file descriptor to which the signal number is written as a single byte whenever
a signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_£d () in
Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.

5.5. Signal Handling 61

The Python/C API, Wydanie 3.14.0a5

Zmienione w wersji 3.5: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject *PyErr_NewException (const char *name, PyObject *base, PyObject *dict)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL This utility function creates and returns a new
exception class. The name argument must be the name of the new exception, a C string of the form module.
classname. The base and dict arguments are normally NULL. This creates a class object derived from
Exception (accessible in C as PyExc_Exception).

The __module__ attribute of the new class is set to the first part (up to the last dot) of the name argument,
and the class name is set to the last part (after the last dot). The base argument can be used to specify alternate
base classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify
a dictionary of class variables and methods.

PyObject *PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyObject *dict)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Same as PyErr NewException (), except that
the new exception class can easily be given a docstring: If doc is non-NULL, it will be used as the docstring for
the exception class.

Added in version 3.2.

5.7 Przedmioty Sytuacji Wyjatkowych

PyObject *PyException_GetTraceback (PyObject *ex)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return the traceback associated with the exception
as a new reference, as accessible from Python through the traceback__ attribute. If there is no traceback
associated, this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Czes¢ stabilnego ABI. Set the traceback associated with the exception to th. Use Py_None to clear it.

PyObject *PyException_GetContext (PyObject *ex)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return the context (another exception instance
during whose handling ex was raised) associated with the exception as a new reference, as accessible from
Python through the _context__ attribute. If there is no context associated, this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Czes¢ stabilnego ABI. Set the context associated with the exception to ctx. Use NULL to clear it. There is no
type check to make sure that ctx is an exception instance. This steals a reference to ctx.

PyObject *PyException_GetCause (PyObject *ex)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return the cause (either an exception instance, or
None, set by raise ... from ...) associated with the exception as a new reference, as accessible from
Python through the _ cause__ attribute.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Czes¢ stabilnego ABI. Set the cause associated with the exception to cause. Use NULL to clear it. There is no
type check to make sure that cause is either an exception instance or None. This steals a reference to cause.

The _ suppress_context__ attribute is implicitly set to True by this function.
PyObject *PyException_GetArgs (PyObject *ex)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.12. Return args of exception ex.
void PyException_SetArgs (PyObject *ex, PyObject *args)

Czes¢ stabilnego ABI od wersji 3.12. Set args of exception ex to args.

62 Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.14.0a5

PyObject *PyUnstable_Exc_PrepReraiseStar (PyObject *orig, PyObject *excs)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Implement part of the interpreter’s implementation of except *. orig is the original exception that was caught,
and excs is the list of the exceptions that need to be raised. This list contains the unhandled part of orig, if any,
as well as the exceptions that were raised from the except * clauses (so they have a different traceback from
orig) and those that were reraised (and have the same traceback as orig). Return the ExceptionGroup that
needs to be reraised in the end, or None if there is nothing to reraise.

Added in version 3.12.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.
PyObject *PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *reason)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a UnicodeDecodeError object with the
attributes encoding, object, length, start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject *PyUnicodeDecodeError_GetEncoding (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Wartos¢é zwracana: nowa referencja. Czes¢ stabilnego ABI. Return the encoding attribute of the given exception
object.

PyObject *PyUnicodeDecodeError_GetObject (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetObject (PyObject *exc)

PyObject *PyUnicodeTranslateError_ GetObject (PyObject *exc)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return the object attribute of the given exception
object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Czes¢ stabilnego ABI. Get the start attribute of the given exception object and place it into *start. start must
not be NULL. Return 0 on success, —1 on failure.

If the UnicodeError.object is an empty sequence, the resulting start is 0. Otherwise, it is clipped to [0,
len (object) - 17.

> Zobacz takze

UnicodeError.start

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)

Czes¢ stabilnego ABI. Set the start attribute of the given exception object to start. Return 0 on success, -1 on
failure.

5.8. Unicode Exception Objects 63

The Python/C API, Wydanie 3.14.0a5

© Informacja

While passing a negative start does not raise an exception, the corresponding getters will not consider it as
a relative offset.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Czes¢ stabilnego ABI. Get the end attribute of the given exception object and place it into *end. end must not
be NULL. Return 0 on success, —1 on failure.

If the UnicodeError.object is an empty sequence, the resulting end is 0. Otherwise, it is clipped to [1,
len (object)].

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)

int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)

int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)

Czes¢ stabilnego ABI. Set the end attribute of the given exception object to end. Return 0 on success, -1 on
failure.

> Zobacz takze

UnicodeError.end

PyObject *PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeTranslateError_GetReason (PyObject *exc)
Wartosc¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return the reason attribute of the given exception
object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)

int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)

int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)

Czes¢ stabilnego ABI. Set the reason attribute of the given exception object to reason. Return 0 on success, -1
on failure.

5.9 Kontrola Rekursiji

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension
modules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion
depth automatically). They are also not needed for #p_call implementations because the call protocol takes care of
recursion handling.
int Py_EnterRecursiveCall (const char *where)

Czes¢ stabilnego ABI od wersji 3.9. Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using Py0S_CheckStack ().
If this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and
a nonzero value is returned. Otherwise, zero is returned.

where should be a UTF-8 encoded string such as " in instance check" to be concatenated to the
RecursionError message caused by the recursion depth limit.

Zmienione w wersji 3.9: This function is now also available in the limited API.

64 Rozdziat 5. Obstuga sytuacji wyjatkowych

The Python/C API, Wydanie 3.14.0a5

void Py_LeaveRecursiveCall (void)
Czes¢ stabilnego ABI od wersji 3.9. Ends a Py _EnterRecursiveCall (). Must be called once for each
suazmﬁdinwxmﬁonofnyEnterRecursiveCall(L

Zmienione w wersji 3.9: This function is now also available in the limited API.

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_ repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().
int Py_ReprEnter (PyObject *object)

Czes¢ stabilnego ABI. Called at the beginning of the tp_repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the tp_repr

implementation should return a string object indicating a cycle. As examples, dict objects return { . ..} and
list objectsreturn [...].

The function will return a negative integer if the recursion limit is reached. In that case the tp_repr imple-
mentation should typically return NULL.

Otherwise, the function returns zero and the tp_repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)

Czes¢ stabilnego ABIL. Ends a Py _ReprEnter (). Must be called once for each invocation of
Py_ReprEnter () that returns zero.

5.10 Sztandarowe Sytuacje Wyjatkowe

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyObject*; they are all class objects. For completeness, here are all the
variables:

Nazwa C Nazwa w jezyku pytonowskim Notatki
PyExc_BaseException BaseException .
PyExc_Exception Exception ST ES I
PyExc_ArithmeticError ArithmeticError Stronal66il
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError

PyExc_BufferError BufferError

PyExc_ChildProcessError

PyExc_ConnectionAbortedErrc

PyExc_ConnectionError

PyExc_ConnectionRefusedErrc
PyExc_ConnectionResetError

PyExc_EOFError
PyExc_FileExistsError
PyExc_FileNotFoundError

PyExc_FloatingPointError

PyExc_GeneratorExit
PyExc_ImportError
PyExc_IndentationError
PyExc_IndexError
PyExc_InterruptedError
PyExc_IsADirectoryError
PyExc_KeyError
PyExc_KeyboardInterrupt

ChildProcessError
ConnectionAbortedError
ConnectionError
ConnectionRefusedError
ConnectionResetError
EOFError
FileExistsError
FileNotFoundError
FloatingPointError
GeneratorExit
ImportError
IndentationError
IndexError
InterruptedError
IsADirectoryError
KeyError
KeyboardInterrupt

cigg dalszy na nastepne;j stronie

5.10. Sztandarowe Sytuacje Wyjatkowe

65

The Python/C API, Wydanie 3.14.0a5

Tabela 1 - kontynuacja poprzedniej strony
Notatki

Nazwa C

Nazwa w jezyku pytonowskim

PyExc_LookupError
PyExc_MemoryError

PyExc_ModuleNotFoundError

PyExc_NameError

PyExc_NotADirectoryError
PyExc_NotImplementedError

PyExc_OSError
PyExc_OverflowError
PyExc_PermissionError

PyExc_ProcessLookupError
PyExc_PythonFinalizationErr

PyExc_RecursionError
PyExc_ReferenceError
PyExc_RuntimeError

PyExc_StopAsyncIteration

PyExc_StopIteration
PyExc_SyntaxError
PyExc_SystemError
PyExc_SystemExit
PyExc_TabError
PyExc_TimeoutError
PyExc_TypeError
PyExc_UnboundLocalError

LookupError
MemoryError
ModuleNotFoundError
NameError
NotADirectoryError
NotImplementedError
OSError
OverflowError
PermissionError
ProcessLookupError
PythonFinalizationError
RecursionError
ReferenceError
RuntimeError
StopAsyncIteration
StopIteration
SyntaxError
SystemError
SystemExit

TabError
TimeoutError
TypeError
UnboundLocalError

PyExc_UnicodeDecodeError UnicodeDecodeError

PyExc_UnicodeEncodeError UnicodeEncodeError
PyExc_UnicodeError UnicodeError

PyExc_UnicodeTranslateError UnicodeTranslateError
PyExc_ValueError ValueError

PyExc_ZeroDivisionError ZeroDivisionError

Added in version 3.3: PyExc_BlockingIOError, PyExc_BrokenPipeError, PyExc_ChildProcessError,

PyExc_ConnectionError, PyExc_ConnectionAbortedError, PyExc_ConnectionRefusedError,

PyExc_ConnectionResetError, PyExc_FileExistsError, PyExc_FileNotFoundError,

PyExc_InterruptedError, PyExc_IsADirectoryError, PyExc_NotADirectoryError,

PyExc_PermissionError, PyExc_ProcessLookupError and PyExc_TimeoutError were introduced
following PEP 3151.

Added in version 3.5: PyExc_StopAsyncIteration and PyExc_RecursionError.
Added in version 3.6: PyExc_ModuleNotFoundError

These are compatibility aliases to PyExc_OSError:

Nazwa C Notatki

PyExc_EnvironmentError
PyExc_IOError
PyExc_WindowsError

Zmienione w wersji 3.3: These aliases used to be separate exception types.

Uwagi:

! To jest podstawowy rodzaj przedmiotu dla innych sztandarowych sytuacji wyjatkowych.
2 Zdefiniowane tylko w systemie Windows; Kod chroniony ktéry uzywa tego przez sprawdzenie czy makrodefinicja preprocesora MS_WINDOWS
jest okreslona.

66 Rozdziat 5. Obstuga sytuacji wyjatkowych

https://peps.python.org/pep-3151/

The Python/C API, Wydanie 3.14.0a5

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the
Python exception name. These have the type Pyobject*; they are all class objects. For completeness, here are all

the variables:

Nazwa C

Nazwa w jezyku pytonowskim Notatki

PyExc_Warning
PyExc_BytesWarning
PyExc_DeprecationWarning
PyExc_FutureWarning
PyExc_ImportWarning
PyExc_PendingDeprecationWarning
PyExc_ResourceWarning
PyExc_RuntimeWarning
PyExc_SyntaxWarning
PyExc_UnicodeWarning
PyExc_UserWarning

Warning 3

BytesWarning
DeprecationWarning
FutureWarning
ImportWarning
PendingDeprecationWarning
ResourceWarning
RuntimeWarning
SyntaxWarning
UnicodeWarning
UserWarning

Added in version 3.2: PyExc_ResourceWarning.

Uwagi:

3 This is a base class for other standard warning categories.

5.11. Standard Warning Categories

67

The Python/C API, Wydanie 3.14.0a5

68 Rozdziat 5. Obstuga sytuacji wyjatkowych

ROzDzIAL O

Utilities

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

6.1 Operating System Utilities

PyObject *Py0S_FSPath (PyObject *path)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.6. Return the file system representation
for path. If the objectis a st r or bytes object, then a new strong reference is returned. If the object implements
the os.PathLike interface, then fspath__ () isreturned aslongasitisa str or bytes object. Otherwise
TypeError is raised and NULL is returned.

Added in version 3.6.

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard 1/O file fp with name filename is deemed interactive. This is the case
for files for which isatty (fileno (fp)) istrue. If the PyConfig. interact ive is non-zero, this function
also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"' or
1o,

This function must not be called before Python is initialized.

void PyOS_BeforeFork ()

Czes¢ stabilnego ABI on platforms with fork() od wersji 3.7. Function to prepare some internal state before
a process fork. This should be called before calling fork () or any similar function that clones the current
process. Only available on systems where fork () is defined.

A\ Ostrzezenie

The C fork () call should only be made from the ,main” thread (of the ,main” interpreter). The same is
true for PyOS_BeforeFork ().

Added in version 3.7.

69

The Python/C API, Wydanie 3.14.0a5

void PyOS_AfterFork_Parent ()

Czes¢ stabilnego ABI on platforms with fork() od wersji 3.7. Function to update some internal state after a pro-
cess fork. This should be called from the parent process after calling fork () or any similar function that
clones the current process, regardless of whether process cloning was successful. Only available on systems
where fork () is defined.

A\ Ostrzezenie

The C fork () call should only be made from the ,main” thread (of the ,main” interpreter). The same is
true for PyOS_AfterFork_Parent ().

Added in version 3.7.

void PyOS_AfterFork_Child ()
Czes¢ stabilnego ABI on platforms with fork() od wersji 3.7. Function to update internal interpreter state after
a process fork. This must be called from the child process after calling fork (), or any similar function that
clones the current process, if there is any chance the process will call back into the Python interpreter. Only
available on systems where fork () is defined.

A\ Ostrzezenie

The C fork () call should only be made from the ,main” thread (of the ,main” interpreter). The same is
true for PyOS_AfterFork_Child().

Added in version 3.7.

> Zobacz takze

os.register_at_fork() allows registering custom Python functions to be called by
PyOS_BeforeFork (), PyOS_AfterFork_ Parent () and PyOS_AfterFork_Child().

void PyOS_AfterFork ()

Czes¢ stabilnego ABI on platforms with fork(). Function to update some internal state after a process fork; this
should be called in the new process if the Python interpreter will continue to be used. If a new executable is
loaded into the new process, this function does not need to be called.

Niezalecane od wersji 3.7: This function is superseded by Py0S_AfterFork Child().

int PyOS_CheckStack ()
Czesé stabilnego ABI on platforms with USE_STACKCHECK od wersji 3.7. Return true when the interpreter runs
out of stack space. This is a reliable check, but is only available when USE_STACKCHECK is defined (currently
on certain versions of Windows using the Microsoft Visual C++ compiler). USE_STACKCHECK will be defined
automatically; you should never change the definition in your own code.

typedef void (¥*PyOS_sighandler_t)(int)
Czes¢ stabilnego ABI.

PyOS_sighandler_t PyOS_getsig (int i)
Czes¢ stabilnego ABI. Return the current signal handler for signal i. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly!

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler t h)

Czes¢ stabilnego ABI. Set the signal handler for signal i to be /; return the old signal handler. This is a thin
wrapper around either sigaction () or signal (). Do not call those functions directly!

70 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.14.0a5

wchar_t *Py_DecodeLocale (const char *arg, size_t *size)

Czes¢ stabilnego ABI od wersji 3.7.

A\ Ostrzezenie

This function should not be called directly: wuse the Pyconfig API with the
PyConfig _SetBytesString () function which ensures that Python is preinitialized.

This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py _Prelnitialize () function.

Decode a byte string from the filesystem encoding and error handler. If the error handler is surrogateescape
error handler, undecodable bytes are decoded as characters in range U+DC80..U+DCFF; and if a byte sequ-
ence can be decoded as a surrogate character, the bytes are escaped using the surrogateescape error handler
instead of decoding them.

Return a pointer to a newly allocated wide character string, use PyMem_RawFree () to free the memory. If
size is not NULL, write the number of wide characters excluding the null character into *size

Return NULL on decoding error or memory allocation error. If size is not NULL, *size is setto (size_t)-1
on memory error or set to (size_t) -2 on decoding error.

The filesystem encoding and error handler are selected by PyConfig Read ():see filesystem_encoding
and filesystem errors members of PyConfig.

Decoding errors should never happen, unless there is a bug in the C library.

Use the Py_EncodeLocale () function to encode the character string back to a byte string.

> Zobacz takze

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize () func-
tions.

Added in version 3.5.
Zmienione w wersji 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

Zmienione w wersji 3.8: The function now uses the UTF-8 encoding on Windows if PyPreConfig.
legacy_windows_fs_encoding is Zero,
char *Py_EncodeLocale (const wchar_t *text, size_t *error_pos)

Czes¢ stabilnego ABI od wersji 3.7. Encode a wide character string to the filesystem encoding and error handler.
If the error handler is surrogateescape error handler, surrogate characters in the range U+DC80..U+DCFF are
converted to bytes 0x80..0xFF.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error.

If error_pos is not NULL, *error_pos is set to (size_t)—1 on success, or set to the index of the invalid
character on encoding error.

The filesystem encoding and error handler are selected by PyConfig Read ():see filesystem_encoding
and filesystem errors members of PyConfig.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.

A\ Ostrzezenie

This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py_Prelnitialize () function.

6.1. Operating System Utilities 71

The Python/C API, Wydanie 3.14.0a5

> Zobacz takze

The PyUnicode_EncodeFSDefault () and PyUnicode_EncodeLocale () functions.

Added in version 3.5.
Zmienione w wersji 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

Zmienione w wersji 3.8: The function now uses the UTF-8 encoding on Windows if PyPreConfig.
legacy_windows_fs_encoding is zero.

FILE *Py_fopen (PyObject *path, const char *mode)
Similar to fopen (), but path is a Python object and an exception is set on error.
path must be a st r object, a bytes object, or a path-like object.
On success, return the new file pointer. On error, set an exception and return NULL.
The file must be closed by pPy_fclose () rather than calling directly fclose ().
The file descriptor is created non-inheritable (PEP 446).
The caller must hold the GIL.
Added in version 3.14.

int Py_fclose (FILE *file)
Close a file that was opened by Py_fopen ().

On success, return 0. On error, return EOF and errno is set to indicate the error. In either case, any further
access (including another call to Py_fclose ()) to the stream results in undefined behavior.

Added in version 3.14.

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with the
current interpreter thread’s sys module’s dict, which is contained in the internal thread state structure.
PyObject *PySys_GetObject (const char *name)
Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI. Return the object name from the sys module
or NULL if it does not exist, without setting an exception.
int PySys_SetObject (const char *name, PyObject *v)
Czes¢ stabilnego ABI. Set name in the sys module to v unless v is NULL, in which case name is deleted from
the sys module. Returns 0 on success, —1 on error.
void PySys_ResetWarnOptions ()
Czes¢ stabilnego ABIL. Reset sys.warnoptions to an empty list. This function may be called prior to
Py Initialize().

Deprecated since version 3.13, will be removed in version 3.15: Clear sys.warnoptions and warnings.
filters instead.

void PySys_WriteStdout (const char *format, ...)

Czes¢ stabilnego ABI. Write the output string described by format to sys . stdout. No exceptions are raised,
even if truncation occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted ,,%s” formats should occur; these should
be limited using ,,%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for ,,%f”, which can print hundreds of digits
for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

72 Rozdziat 6. Utilities

https://peps.python.org/pep-0446/

The Python/C API, Wydanie 3.14.0a5

void PySys_WriteStderr (const char *format, ...)
Czes¢ stabilnego ABIL. As PySys_WriteStdout (), but write to sys . stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)

Czes¢ stabilnego ABIL Function similar to PySys WriteStdout() but format the message using
PyUnicode_FromFormatV () and don’t truncate the message to an arbitrary length.

Added in version 3.2.

void PySys_FormatStderr (const char *format, ...)

Czes¢ stabilnego ABIL. As PySys_FormatStdout (), but write to sys. stderr or stderr instead.
Added in version 3.2.

PyObject *PySys_GetXOptions ()
Wartos¢ zwracana: poZyczona referencja. Czes¢ stabilnego ABI od wersji 3.7. Return the current dictionary of
—X options, similarly to sys._xoptions. On error, NULL is returned and an exception is set.

Added in version 3.2.

int PySys_Audit (const char *event, const char *format, ...)

Czes¢ stabilnego ABI od wersji 3.13. Raise an auditing event with any active hooks. Return zero for success
and non-zero with an exception set on failure.

The event string argument must not be NULL.

If any hooks have been added, format and other arguments will be used to construct a tuple to pass. Apart from
N, the same format characters as used in Py_Buildvalue () are available. If the built value is not a tuple, it
will be added into a single-element tuple.

The N format option must not be used. It consumes a reference, but since there is no way to know whether
arguments to this function will be consumed, using it may cause reference leaks.

Note that # format characters should always be treated as Py ssize t, regardless of whether
PY_SSIZE_T_CLEAN was defined.

sys.audit () performs the same function from Python code.
See also PySys_AuditTuple ().
Added in version 3.8.

Zmienione w wersji 3.8.2: Require Py_ssize_ t for # format characters. Previously, an unavoidable depre-
cation warning was raised.

int PySys_AuditTuple (const char *event, PyObject *args)
Czes¢ stabilnego ABI od wersji 3.13. Similar to PySys_Audit (), but pass arguments as a Python object. args
must be a tuple. To pass no arguments, args can be NULL.

Added in version 3.13.

int PySys_AddAuditHook (Py_AuditHookFunction hook, void *userData)

Append the callable hook to the list of active auditing hooks. Return zero on success and non-zero on failure.
If the runtime has been initialized, also set an error on failure. Hooks added through this APT are called for all
interpreters created by the runtime.

The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.

This function is safe to call before Py_Tnitialize (). When called after runtime initialization, existing audit
hooks are notified and may silently abort the operation by raising an error subclassed from Except ion (other
errors will not be silenced).

The hook function is always called with the GIL held by the Python interpreter that raised the event.

See PEP 578 for a detailed description of auditing. Functions in the runtime and standard library that raise
events are listed in the audit events table. Details are in each function’s documentation.

6.2. System Functions 73

https://peps.python.org/pep-0578/

The Python/C API, Wydanie 3.14.0a5

If the interpreter is initialized, this function raises an auditing event sys . addaudithook with no arguments.
If any existing hooks raise an exception derived from Exception, the new hook will not be added and the
exception is cleared. As a result, callers cannot assume that their hook has been added unless they control all
existing hooks.

typedef int (*Py_AuditHookFunction)(const char *event, PyObject *args, void *userData)

The type of the hook function. event is the C string event argument passed to PySys_Audit () or
PySys_AuditTuple (). args is guaranteed to be a PyTupleObject. userData is the argument pas-
sed to PySys_AddAuditHook().

Added in version 3.8.

6.3 Process Control

void Py_FatalError (const char *message)

Czes¢ stabilnego ABI. Print a fatal error message and kill the process. No cleanup is performed. This function
should only be invoked when a condition is detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be corrupted. On Unix, the standard C library
function abort () is called which will attempt to produce a core file.

The py_FatalError () function is replaced with a macro which logs automatically the name of the current
function, unless the Py_LIMITED_API macro is defined.

Zmienione w wersji 3.9: Log the function name automatically.

void Py_Exit (int status)
Czes¢ stabilnego ABI. Exit the current process. This calls Py_FinalizeEx () and then calls the standard C
library function exit (status).If Py_FinalizeEx () indicates an error, the exit status is set to 120.

Zmienione w wersji 3.6: Errors from finalization no longer ignored.

int Py AtExit (void (*func)())

Czes¢ stabilnego ABI. Register a cleanup function to be called by Py_FinalizeEx (). The cleanup function
will be called with no arguments and should return no value. At most 32 cleanup functions can be registered.
When the registration is successful, Py_AtExit () returns 0; on failure, it returns —1. The cleanup function
registered last is called first. Each cleanup function will be called at most once. Since Python’s internal finali-
zation will have completed before the cleanup function, no Python APIs should be called by func.

> Zobacz takze

PyUnstable_AtExit () for passing a void *data argument.

6.4 Importing Modules

PyObject *PyImport_ImportModule (const char *name)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. This is a wrapper around Py Import_Import ()
which takes a const char* as an argument instead of a PyoObject*.

PyObject *PyImport_ImportModuleNoBlock (const char *name)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI This function is a deprecated alias of
PyImport_ImportModule ().

Zmienione w wersji 3.3: This function used to fail immediately when the import lock was held by another
thread. In Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this
function’s special behaviour isn’t needed anymore.

Deprecated since version 3.13, will be removed in version 3.15: Use Py Import_ImportModule () instead.

74 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.14.0a5

PyObject *PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)
Wartos¢ zwracana: nowa referencja. Import a module. This is best described by referring to the built-in Python
function __import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for _ import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Import_ImportModule ().
PyObject *PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyObject *1ocals,
PyObject *fromlist, int level)

Wartos¢é zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.7. Import a module. This is best described
by referring to the built-in Python function __import__ (), as the standard __import__ () function calls
this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Added in version 3.3.

PyObject *PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist, int level)

Wartosé zZwracana: nowa referencja. Czes¢ stabilnego ABL Similar to
PyImport_ImportModuleLevelObject (), but the name is a UTF-8 encoded string instead of a Unicode
object.

Zmienione w wersji 3.3: Negative values for level are no longer accepted.

PyObject *PyImport_Import (PyObject *name)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. This is a higher-level interface that calls the current
wimport hook function” (with an explicit level of 0, meaning absolute import). It invokes the __import__ ()
function from the _ builtins__ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment.

This function always uses absolute imports.
PyObject *PyImport_ReloadModule (PyObject *m)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Reload a module. Return a new reference to the
reloaded module, or NULL with an exception set on failure (the module still exists in this case).

PyObject *PyImport_AddModuleRef (const char *name)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.13. Return the module object correspon-
ding to a module name.

The name argument may be of the form package .module. First check the modules dictionary if there’s one
there, and if not, create a new one and insert it in the modules dictionary.

Return a strong reference to the module on success. Return NULL with an exception set on failure.
The module name name is decoded from UTF-8.

This function does not load or import the module; if the module wasn’t already loaded, you will get an empty
module object. Use Py Import_ImportModule () or one of its variants to import a module. Package struc-
tures implied by a dotted name for name are not created if not already present.

Added in version 3.13.

PyObject *PyImport_AddModuleObject (PyObject *name)

Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI od wersji 3.7. Similar to
PyImport_AddModuleRef (), but return a borrowed reference and name is a Python st r object.

Added in version 3.3.

6.4. Importing Modules 75

The Python/C API, Wydanie 3.14.0a5

PyObject *PyImport_AddModule (const char *name)

Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI. Similar to Py Import_AddModuleRef (), but
return a borrowed reference.

PyObject *PyImport_ExecCodeModule (const char *name, PyObject *co)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Given a module name (possibly of the form
package.module) and a code object read from a Python bytecode file or obtained from the built-in func-
tion compile (), load the module. Return a new reference to the module object, or NULL with an exception
set if an error occurred. name is removed from sys.modules in error cases, even if name was already in
sys.modules on entry to PyImport_ExecCodeModule (). Leaving incompletely initialized modules in
sys.modules is dangerous, as imports of such modules have no way to know that the module object is an
unknown (and probably damaged with respect to the module author’s intents) state.

The module’s __spec_and _ loader__ will be set, if not set already, with the appropriate values. The
spec’s loader will be set to the module’s __loader_ (if set) and to an instance of SourceFileLoader
otherwise.

The module’s __file attribute will be set to the code object’s co_filename. If applicable,
will also be set.

cached_

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created
will still not be created.

See also PyImport_ExecCodeModuleEx () and PyImport_ExecCodeModulelWithPathnames ().

Zmienione w wersji 3.12: The setting of __cached__and __ loader__is deprecated. See ModuleSpec for
alternatives.

PyObject *PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Like Py Import_ExecCodeModule (), but the
__file__ attribute of the module object is set to pathname if it is non-NULL.

See also PyImport_ExecCodeModuleWithPathnames ().

PyObject *PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname, PyObject
*cpathname)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.7. Like
PyImport_ExecCodeModuleEx (), but the _ cached__ attribute of the module object is set to
cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.

Added in version 3.3.
Zmienione w wersji 3.12: Setting __cached___is deprecated. See ModuleSpec for alternatives.

PyObject *PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const char
*pathname, const char *cpathname)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Like Py Import_ExecCodeModuleObject (),
but name, pathname and cpathname are UTF-8 encoded strings. Attempts are also made to figure out what the
value for pathname should be from cpathname if the former is set to NULL.

Added in version 3.2.

Zmienione w wersji 3.3: Uses imp.source_from_cache () in calculating the source path if only the byte-
code path is provided.

Zmienione w wersji 3.12: No longer uses the removed imp module.

long PyImport_GetMagicNumber ()

Czes¢ stabilnego ABI. Return the magic number for Python bytecode files (a.k.a. . pyc file). The magic number
should be present in the first four bytes of the bytecode file, in little-endian byte order. Returns -1 on error.

Zmienione w wersji 3.3: Return value of -1 upon failure.

76 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.14.0a5

const char *PyImport_GetMagicTag ()

Czes¢ stabilnego ABI. Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in
mind that the value at sys.implementation.cache_tag is authoritative and should be used instead of this
function.

Added in version 3.2.

PyObject *PyImport_GetModuleDict ()

Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI. Return the dictionary used for the module
administration (a.k.a. sys.modules). Note that this is a per-interpreter variable.

PyObject *PyImport_GetModule (PyObject *name)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.8. Return the already imported module
with the given name. If the module has not been imported yet then returns NULL but does not set an error.
Returns NULL and sets an error if the lookup failed.

Added in version 3.7.

PyObject *PyImport_GetImporter (PyObject *path)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return a finder object for a sys.path/pkg.
__path__ item path, possibly by fetching it from the sys.path_importer_cache dict. If it wasn’t yet
cached, traverse sys.path_hooks until a hook is found that can handle the path item. Return None if no
hook could; this tells our caller that the path based finder could not find a finder for this path item. Cache the
result in sys.path_importer_cache. Return a new reference to the finder object.

int PyImport_ImportFrozenModuleObject (PyObject *name)

Czes¢ stabilnego ABI od wersji 3.7. Load a frozen module named name. Return 1 for success, 0 if the module is
not found, and -1 with an exception set if the initialization failed. To access the imported module on a successful
load, use Py Import_TImportModule (). (Note the misnomer — this function would reload the module if it
was already imported.)

Added in version 3.3.
Zmienione w wersji 3.4: The __file_ attribute is no longer set on the module.
int PyImport_ImportFrozenModule (const char *name)

Czes¢ stabilnego ABI. Similar to Py Import_ ImportFrozenModuleObject (), but the name is a UTF-8
encoded string instead of a Unicode object.

struct _£frozen

This is the structure type definition for frozen module descriptors, as generated by the freeze utility (see
Tools/freeze/ in the Python source distribution). Its definition, found in Include/import .h, is:

e N

struct _frozen {
const char *name;
const unsigned char *code;
int size;
bool is_package;
i

L J

Zmienione w wersji 3.11: The new is_package field indicates whether the module is a package or not. This
replaces setting the size field to a negative value.

const struct _ frozen *PyImport_FrozenModules
This pointer is initialized to point to an array of _ frozen records, terminated by one whose members are all
NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play tricks
with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject *(*initfunc)(void))
Czes¢ stabilnego ABI. Add a single module to the existing table of built-in modules. This is a convenience
wrapper around Py Import_ExtendInittab (), returning -1 if the table could not be extended. The new
module can be imported by the name name, and uses the function initfunc as the initialization function called
on the first attempted import. This should be called before Py Tnitialize ().

6.4. Importing Modules 7

https://peps.python.org/pep-3147/

The Python/C API, Wydanie 3.14.0a5

struct _inittab

Structure describing a single entry in the list of built-in modules. Programs which embed Python may use an
array of these structures in conjunction with Py Import ExtendInittab () to provide additional built-in
modules. The structure consists of two members:

const char *name

The module name, as an ASCII encoded string.
PyObject *(*initfunc)(void)
Initialization function for a module built into the interpreter.

int PyImport_ExtendInittab (struct _inittab *newtab)

Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry
which contains NULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns 0 on success or -1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This must be called before Py _Initialize().

If Python is initialized multiple times, Py Import_AppendInittab () Of PyImport_ExtendInittab ()
must be called before each Python initialization.

PyObject *PyImport_ImportModuleAttr (PyObject *mod_name, PyObject *attr_name)

Wartos¢ zwracana: nowa referencja. Import the module mod_name and get its attribute attr_name.
Names must be Python st r objects.

Helper function combining Py Import_Import () and PyObject_GetAttr (). For example, it can raise
ImportError if the module is not found, and AttributeError if the attribute doesn’t exist.

Added in version 3.14.

PyObject *PyImport_ImportModuleAttrString (const char *mod_name, const char *attr_name)

Wartos¢ zwracana: nowa referencja. Similar to PyImport_ImportModuleAttr (), but names are UTF-8
encoded strings instead of Python str objects.

Added in version 3.14.

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.
The module supports several versions of the data format; see the Python module documentation for details.

Py MARSHAL_VERSION

The current format version. See marshal.version.

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)

Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of
the size of the native long type. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr Occurred () to check for that.

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)

Marshal a Python object, value, to file. version indicates the file format.
This function can fail, in which case it sets the error indicator. Use PyErr_ Occurred () to check for that.

PyObject *PyMarshal_WriteObjectToString (PyObject *value, int version)

Wartos¢ zwracana: nowa referencja. Return a bytes object containing the marshalled representation of value.
version indicates the file format.

The following functions allow marshalled values to be read back in.

78 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.14.0a5

long PyMarshal_ReadLongFromFile (FILE *file)
Return a C 1ong from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of long.

On error, sets the appropriate exception (EOFError) and returns —1.

int PyMarshal_ReadShortFromFile (FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native size of short.

On error, sets the appropriate exception (EOFError) and returns —1.

PyObject *PyMarshal_ReadObjectFromFile (FILE *file)
Wartos¢ zwracana: nowa referencja. Return a Python object from the data stream in a FILE* opened for
reading.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadLastObjectFromFile (FILE *file)

Wartos¢ zwracana: nowa referencja. Return a Python object from the data stream in a FILE* opened for
reading. Unlike PyMarshal ReadObjectFromFile (), this function assumes that no further objects will be
read from the file, allowing it to aggressively load file data into memory so that the de-serialization can operate
from data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain
that you won’t be reading anything else from the file.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)

Wartos¢ zwracana: nowa referencja. Return a Python object from the data stream in a byte buffer containing
len bytes pointed to by data.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.6 Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowa-
nie wartosci.

Te dziatania sa uzyteczne przy tworzeniu swoich wlasnych zadan rozszerzajacych i rozszerzajacych sposobéw dzia-
fania. Dodatkowe informacje i przyklady dostepne sa w extending-index.

The first three of these functions described, PyArg_ParseTuple (), PyArg_ParseTupleAndKeywords (), and
PyArg _Parse (), all use format strings which are used to tell the function about the expected arguments. The format
strings use the same syntax for each of these functions.

6.6.1 Parsowanie argumentow

napis ksztattujacy moze by¢ pusty lub skladaé sig z ,,jednostek ksztattujacych”. Jednostka uksztattowania opisuje je-
den pytonowski przedmiot; jest to zazwyczaj jedna litera, lub kolejka jednostek uksztaltowania w ujetych w nawias.
Z kilkoma wyjatkami, jednostka uksztaltowania, ktéra nie jest kolejka jednostek ujgta w nawias zwykle odpowia-
da pojedynczo umiejscowionej rzeczy przekazywanej dla tych zadan. W ponizszych zapisach cytat jest jednostka
ksztaltujaca; polecenie ujgte w nawias okragly () oznacza typ przedmiotu w jezyku pytonowskim, ktéry odpowiada
jednostce ksztaltujacej, a zapis ujety w nawiasie kwadratowym [| okresla typ przedmiotu / przedmiotéw w jezyku
C, ktérego miejsce powinno zosta¢ wskazane i przekazane dla zadania.

Napisy i skrzynki wymiany

© Informacja

On Python 3.12 and older, the macro PY_SSIZE_T_CLEAN must be defined before including Python.h to use
all # variants of formats (s#, y#, etc.) explained below. This is not necessary on Python 3.13 and later.

6.6. Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 79

The Python/C API, Wydanie 3.14.0a5

Formaty te umozliwiaja dostegp do obiektu jako ciaglego fragmentu pamigci. Nie musisz zapewniaé nieprzetworzonej
pamigci dla zwréconego obszaru unicode lub bajtéw.

Bufory nie sa zakoriczone znakiem NULL, chyba ze zaznaczono inaczej.
Istnieja trzy sposoby konwersji taricuchéw i buforéw na jezyk C:

o Formats such as y* and s* fill a Py_burrer structure. This locks the underlying buffer so that the caller
can subsequently use the buffer even inside a Py_BEGIN_ALLOW_THREADS block without the risk of mutable
data being resized or destroyed. As a result, you have to call PyBurfer Release () after you have finished
processing the data (or in any early abort case).

o The es, es#, et and et # formats allocate the result buffer. You have to call Pyrvem Free () after you have
finished processing the data (or in any early abort case).

o Other formats take a st r or a read-only bytes-like object, such as bytes, and provide a const char * pointer
to its buffer. In this case the buffer is ,,borrowed”: it is managed by the corresponding Python object, and shares
the lifetime of this object. You won’t have to release any memory yourself.

To ensure that the underlying buffer may be safely borrowed, the object’s PyBufferProcs.
bf_releasebuffer field must be NULL. This disallows common mutable objects such as bytearray, but
also some read-only objects such as memoryview of bytes.

Besides this bf_releasebuf fer requirement, there is no check to verify whether the input object is immu-
table (e.g. whether it would honor a request for a writable buffer, or whether another thread can mutate the
data).

s (str) [const char *]
Convert a Unicode object to a C pointer to a character string. A pointer to an existing string is stored in the
character pointer variable whose address you pass. The C string is NUL-terminated. The Python string must
not contain embedded null code points; if it does, a ValueError exception is raised. Unicode objects are
converted to C strings using 'ut £-8"' encoding. If this conversion fails, a UnicodeError is raised.

© Informacja

This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them to
C character strings, it is preferable to use the 0& format with PyUnicode_FSConverter () as converter.

Zmienione w wersji 3.5: Previously, TypeError was raised when embedded null code points were encountered
in the Python string.

s* (str or byfes-like object) [Py_buffer]
This format accepts Unicode objects as well as bytes-like objects. It fills a Py_buffer structure provided by
the caller. In this case the resulting C string may contain embedded NUL bytes. Unicode objects are converted
to C strings using 'ut £-8' encoding.

s# (str, read-only byfes-like object) [const char *, Py _ssize_t]
Like s*, except that it provides a borrowed buffer. The result is stored into two C variables, the first one
a pointer to a C string, the second one its length. The string may contain embedded null bytes. Unicode objects
are converted to C strings using 'ut £-8' encoding.

z (str or None) [const char *]
Like s, but the Python object may also be None, in which case the C pointer is set to NULL.

z* (str, bytes-like object or None) [Py_buffer]
Like s*, but the Python object may also be None, in which case the buf member of the Py_burrer structure
is set to NULL.

z# (str, read-only byfes-like object or None) [const char *, Py_ssize t]
Like s#, but the Python object may also be None, in which case the C pointer is set to NULL.

y (read-only byfes-like object) [const char *]
This format converts a bytes-like object to a C pointer to a borrowed character string; it does not accept Unicode
objects. The bytes buffer must not contain embedded null bytes; if it does, a ValueError exception is raised.

80 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.14.0a5

Zmienione w wersji 3.5: Previously, TypeError was raised when embedded null bytes were encountered in
the bytes buffer.

y* (bytes-like object) [Py_buffer]
This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This is the recommended way to
accept binary data.

y# (read-only byfes-like object) [const char *, Py_ssize_t]
Ten wariant s# nie akceptuje obiektow Unicode, a jedynie bajto-podobne obiekty.

S (bytes) [PyBytesObject *]
Requires that the Python object is a bytes object, without attempting any conversion. Raises TypeError if
the object is not a bytes object. The C variable may also be declared as PyObject*.

Y (bytearray) [PyByteArrayObject *]
Requires that the Python object is a byt earray object, without attempting any conversion. Raises TypeError
if the object is not a bytearray object. The C variable may also be declared as PyObject*.

U (str) [PyObject *]
Requires that the Python object is a Unicode object, without attempting any conversion. Raises TypeError
if the object is not a Unicode object. The C variable may also be declared as Pyobject*.

w* (read-write byfes-like object) [Py_buffer]
This format accepts any object which implements the read-write buffer interface. It fills a Py buffer
structure provided by the caller. The buffer may contain embedded null bytes. The caller have to call
PyBuffer Release () when it is done with the buffer.

es (str) [const char *encoding, char **buffer]
Ten wariant s jest uzywany do zakodowania Unicode w buforze znakéw. To dziata tylko dla zakodowanych
danych bez osadzonych znakéw NUL.

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut f-8' encoding is used.
An exception is raised if the named encoding is not known to Python. The second argument must be a char**;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument.

pyArg ParseTuple () will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem Free () to
free the allocated buffer after use.

et (str, bytes or bytearray) [const char *encoding, char **buffer]
Podobnie jak es z wyjatkiem tego, ze obiekty ciagéw znakéw sa przekazywane dalej bez ich zapisywania.
Zamiast tego implementacja zaklada, ze obiekt taricucha znakéw wykorzystuje kodowanie przekazane jako
parametr.

es# (str) [const char *encoding, char **buffer, Py_ssize_ t *buffer_length]
Ten wariant s# uzywany jest do kodowania Unicode w buforze znakéw. W przeciwienstwie do formatu es,
ten wariant pozwala wprowadza¢ dane zawierajace znaki NUL.

It requires three arguments. The first is only used as input, and must be a const char* which points to the
name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char**;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument. The third argument must be a pointer to an integer;
the referenced integer will be set to the number of bytes in the output buffer.

Istnieja dwa tryby pracy:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
pyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the

6.6. Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 81

The Python/C API, Wydanie 3.14.0a5

encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a valueError will be
set.

W obu przypadkach, *buffer_length jest ustawiany na dlugo$¢ zakodowanych danych z pomini¢ciem zakari-
czajacego znaku NUL.

et# (str, bytes or bytearray) [const char *encoding, char **buffer, Py_ssize_ t *buffer_length]
Tak samo, jak w es# oprocz tego, ze obiekty ciagu bajtéw sa przekazywane do funkcji bez ich zapisywania.
Zamiast tego, implementacja zaktada Ze obiekt ciagu bajtéw uzywa kodowania przekazywanego w parametrze.

Zmienione w wersji 3.12: u, u#, 7, and z# are removed because they used a legacy Py_UNICODE* representation.

Liczby

These formats allow representing Python numbers or single characters as C numbers. Formats that require
int, float or complex can also use the corresponding special methods _ index_ (), _ float__ () or
__complex__ () to convert the Python object to the required type.

For signed integer formats, OverflowError is raised if the value is out of range for the C type. For unsigned integer
formats, no range checking is done — the most significant bits are silently truncated when the receiving field is too
small to receive the value.

b (int) [unsigned char]
Convert a nonnegative Python integer to an unsigned tiny integer, stored in a C unsigned char.

B (int) [unsigned char]
Convert a Python integer to a tiny integer without overflow checking, stored in a C unsigned char.

h (int) [short int]
Convert a Python integer to a C short int.

H (int) [unsigned short int]
Convert a Python integer to a C unsigned short int, without overflow checking.

i (int) [int]
Convert a Python integer to a plain C int.

I (int) [unsigned int]
Convert a Python integer to a C unsigned int, without overflow checking.

1 (int) [long int]
Convert a Python integer to a C long int.

k (int) [unsigned long]
Convert a Python integer to a C unsigned long without overflow checking.

L (int) [long long]
Convert a Python integer to a C 1long long.

K (int) [unsigned long long]
Convert a Python integer to a C unsigned long long without overflow checking.

n (int) [Py _ssize t]
Convert a Python integer toa C pPy_ssize_t.

c (bytes or bytearray of length 1) [char]
Convert a Python byte, represented as a bytes or bytearray object of length 1, toa C char.

Zmienione w wersji 3.3: Allow bytearray objects.

C (str of length 1) [int]
Convert a Python character, represented as a str object of length 1, to a C int.

£ (£float) [float]
Convert a Python floating-point number to a C float.

d (float) [double]
Convert a Python floating-point number to a C double.

82 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.14.0a5

D (complex) [Py_complex]
Convert a Python complex number to a C Py_ complex structure.

Inne obiekty

O (object) [PyObject *]
Store a Python object (without any conversion) in a C object pointer. The C program thus receives the actu-
al object that was passed. A new strong reference to the object is not created (i.e. its reference count is not
increased). The pointer stored is not NULL.

0! (object) [typeobject, PyObject *]
Store a Python object in a C object pointer. This is similar to O, but takes two C arguments: the first is the
address of a Python type object, the second is the address of the C variable (of type PyObject*) into which
the object pointer is stored. If the Python object does not have the required type, TypeError is raised.

o& (object) [converter, address]
Convert a Python object to a C variable through a converter function. This takes two arguments: the first is
a function, the second is the address of a C variable (of arbitrary type), converted to void*. The converter
function in turn is called as follows:

[status = converter (object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parsex* function. The returned status should be 1 for a successful conversion and 0 if the conversion
has failed. When the conversion fails, the converter function should raise an exception and leave the content
of address unmodified. If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if
the argument parsing eventually fails, giving the converter a chance to release any memory that it had already
allocated. In this second call, the object parameter will be NULL; address will have the same value as in the
original call.

Examples of converters: PyUnicode_FSConverter () and PyUnicode_FSDecoder ().
Zmienione w wersji 3.1: Py_ CLEANUP_SUPPORTED was added.

p (bool) [int]
Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C true/false
integer value. Sets the int to 1 if the expression was true and 0 if it was false. This accepts any valid Python
value. See truth for more information about how Python tests values for truth.

Added in version 3.3.

(items) (tuple) [matching-items]
Obiekt musi by¢ sekwencja jgzyka Python, ktérej dhugosc jest liczba elementéw formatu mierzona w elemen-
tach. Argumenty jezyka C musza odpowiadaé poszczegdlnym jednostkom formatu w elementach. Jednostki
formatu dla sekwencji moga by¢ zagniezdzane.

Kilka innych znakéw ma jeszcze znaczenie w ciagu formatu. Nie moga one wystapi¢ wewnatrz zagniezdzonych
nawiasach okraglych. Sg to:

|
Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value — when an optional argument is not specified,
pPyArg ParseTuple () does not touch the contents of the corresponding C variable(s).

PyArg ParseTupleAndKeywords () only: Indicates that the remaining arguments in the Python argument
list are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must always
be specified before $ in the format string.

Added in version 3.3.

The list of format units ends here; the string after the colon is used as the function name in error messages (the
»associated value” of the exception that PyArg ParseTuple () raises).

6.6. Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 83

The Python/C API, Wydanie 3.14.0a5

Na tym korczy si¢ lista jednostek formatu; ciag po Sredniku jest traktowany jako informacja o btedzie do uzycia
zamiast automatycznej wiadomosci o btedzie. Znaki dwukropka : i Srednika ; wzajemnie si¢ wykluczaja.

Note that any Python object references which are provided to the caller are borrowed references; do not release them
(i.e. do not decrement their reference count)!

Dodatkowe parametry przekazywane do tych funkcji musza by¢ adresami zmiennych ktérych typ jest okreslany przez
ciag formatu; sa one uzywane do przechowywania wartoSci z krotki wejSciowej. Jest pare przypadkéw, jak opisuje
to lista jednostek formatu powyzej, gdzie te parametry sg uzywane jako wprowadzane wartoSci; w takich przypadku
powinny one odpowiada¢ temu, co jest okreSlone we wlasciwych im jednostach formatu.

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse* functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse* functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

Funkcje interfejsu programowania aplikaciji

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
Czes¢ stabilnego ABI. Parse the parameters of a function that takes only positional parameters into local va-
riables. Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
Czesc stabilnego ABI. Identical to PyArg ParseTuple (), except thatitaccepts a va_list rather than a variable
number of arguments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *const

*keywords, ...)

Czes¢ stabilnego ABI. Parse the parameters of a function that takes both positional and keyword parameters into
local variables. The keywords argument is a NULL-terminated array of keyword parameter names specified as
null-terminated ASCII or UTF-8 encoded C strings. Empty names denote positional-only parameters. Returns
true on success; on failure, it returns false and raises the appropriate exception.

© Informacja

The keywords parameter declaration is char *const* in C and const char *const* in C++. This
can be overridden with the Py_Cxx_CONST macro.

Zmienione w wersji 3.6: Added support for positional-only parameters.

Zmienione w wersji 3.13: The keywords parameter has now type char *const* in C and const char
const in C++, instead of char**. Added support for non-ASCII keyword parameter names.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *const
*keywords, va_list vargs)
Czes¢ stabilnego ABI. Identical to PyArg ParseTupleAndKeywords (), except that it accepts a va_list ra-
ther than a variable number of arguments.
int PyArg_ValidateKeywordArguments (PyObject®)

Czes¢ stabilnego ABI. Ensure that the keys in the keywords argument dictionary are strings. This is only needed
if PyArg ParseTupleAndKeywords () is not used, since the latter already does this check.

Added in version 3.2.

int PyArg_Parse (PyObject *args, const char *format, ...)

Czes¢ stabilnego ABI. Parse the parameter of a function that takes a single positional parameter into a local
variable. Returns true on success; on failure, it returns false and raises the appropriate exception.

Przyklad:

84 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.14.0a5

p
// Function using METH O calling convention

static PyObject*
my_function (PyObject *module, PyObject *arqg)
{
int value;
if (!PyArg_Parse(arg, "i:my_ function", &value)) {
return NULL;

// ... use value

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

Czes¢ stabilnego ABI. A simpler form of parameter retrieval which does not use a format string to specify the
types of the arguments. Functions which use this method to retrieve their parameters should be declared as
METH_VARARGS in function or method tables. The tuple containing the actual parameters should be passed as
args; it must actually be a tuple. The length of the tuple must be at least min and no more than max; min and
max may be equal. Additional arguments must be passed to the function, each of which should be a pointer to
a PyObject* variable; these will be filled in with the values from args; they will contain borrowed references.
The variables which correspond to optional parameters not given by args will not be filled in; these should be
initialized by the caller. This function returns true on success and false if args is not a tuple or contains the
wrong number of elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the _weakref helper module for
weak references:

-

static PyObject *
weakref ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref NewRef (object, callback);
}

return result;

}

L

J

The call to PyArg UnpackTuple() in this example is entirely equivalent to this call to
PyArg ParseTuple():

[PyArg_ParseTuple(args, "O|O:ref", &object, &callback) }

PY_CXX_CONST

The value to be inserted, if any, before char *const* in the keywords parameter declaration of
PyArg ParseTupleAndKeywords () and PyArg VaParseTupleAndKeywords (). Default empty for C
and const for C++ (const char *const*). To override, define it to the desired value before including
Python.h.

Added in version 3.13.

6.6.2 Budowanie wartosci

PyObject *Py_Buildvalue (const char *format, ...)

Wartos¢ zwracana: nowa referencja. Czesc¢ stabilnego ABI. Create a new value based on a format string similar
to those accepted by the PyArg_Parse* family of functions and a sequence of values. Returns the value or
NULL in the case of an error; an exception will be raised if NULL is returned.

6.6. Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 85

The Python/C API, Wydanie 3.14.0a5

Py_BuildValue () does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# formats,
the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py_BuildValue (). In other words, if your code invokes malloc () and passes the allocated memory to
Py_BuildValue (), your code is responsible for calling free () for that memory once Py _Buildvalue ()
returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to
be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
s#). This can be used to make long format strings a tad more readable.

s (str or None) [const char *]
Convert a null-terminated C string to a Python str object using 'ut£-8"' encoding. If the C string
pointer is NULL, None is used.

s# (str or None) [const char *, Py ssize t]
Convert a C string and its length to a Python st r object using 'ut £-8' encoding. If the C string pointer
is NULL, the length is ignored and None is returned.

y (bytes) [const char *]
This converts a C string to a Python bytes object. If the C string pointer is NULL, None is returned.

yv# (bytes) [const char *, Py _ssize t]
This converts a C string and its lengths to a Python object. If the C string pointer is NULL, None is
returned.

z (str or None) [const char *]
Same as s.

z# (str or None) [const char *, Py ssize t]
Same as s#.

u (str) [const wchar_t *]
Convert a null-terminated wchar_t buffer of Unicode (UTF-16 or UCS-4) data to a Python Unicode
object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [const wchar_t *, Py ssize t]
Convert a Unicode (UTF-16 or UCS-4) data buffer and its length to a Python Unicode object. If the
Unicode buffer pointer is NULL, the length is ignored and None is returned.

U (str or None) [const char *]
Same as s.

U# (str or None) [const char *, Py ssize t]
Same as s#.

i (int) [int]
Convert a plain C int to a Python integer object.

b (int) [char]
Convert a plain C char to a Python integer object.

h (int) [short int]
Convert a plain C short int to a Python integer object.

1 (int) [long int]
Convert a C 1long int to a Python integer object.

B (int) [unsigned char]
Convert a C unsigned char to a Python integer object.

86

Rozdziat 6. Utilities

The Python/C API, Wydanie 3.14.0a5

H (int) [unsigned short int]
Convert a C unsigned short int toa Python integer object.

I (int) [unsigned int]
Convert a C unsigned int to a Python integer object.

k (int) [unsigned long]
Convert a C unsigned long to a Python integer object.

L (int) [long long]
Convert a C 1ong long to a Python integer object.

K (int) [unsigned long long]
Convert a C unsigned long long to a Python integer object.

n (int) [Py_ssize t]
Converta C pry_ssize_t to a Python integer.

c (bytes of length 1) [char]
Convert a C int representing a byte to a Python bytes object of length 1.

C (str of length 1) [int]
Convert a C int representing a character to Python st r object of length 1.

d (float) [double]
Convert a C double to a Python floating-point number.

f (£float) [float]
Convert a C £loat to a Python floating-point number.

D (complex) [Py_complex *]
Convert a C Py_complex structure to a Python complex number.

O (object) [PyObject *]
Pass a Python object untouched but create a new strong reference to it (i.e. its reference count is incre-
mented by one). If the object passed in is a NULL pointer, it is assumed that this was caused because the
call producing the argument found an error and set an exception. Therefore, Py_Buildvalue () will
return NULL but won't raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *]
Same as 0.

N (object) [PyObject *]
Same as 0, except it doesn’t create a new strong reference. Useful when the object is created by a call to
an object constructor in the argument list.

os& (object) [converter, anything]
Convert anything to a Python object through a converter function. The function is called with anything
(which should be compatible with void*) as its argument and should return a ,,new” Python object, or
NULL if an error occurred.

(items) (tuple) [matching-items]
Convert a sequence of C values to a Python tuple with the same number of items.

[items] (1ist) [matching-items]
Convert a sequence of C values to a Python list with the same number of items.

{items} (dict) [matching-items]
Convert a sequence of C values to a Python dictionary. Each pair of consecutive C values adds one item
to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject *Py_VaBuildValue (const char *format, va_list vargs)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Identical to Py _Buildvalue (), except that it
accepts a va_list rather than a variable number of arguments.

6.6. Pobieranie kolejnych rzeczy podanych na wejsciu i konstruowanie wartosci. 87

The Python/C API, Wydanie 3.14.0a5

6.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprint £ (char *str, size_t size, const char *format, ...)
Czes¢ stabilnego ABIL. Output not more than size bytes to str according to the format string format and the extra
arguments. See the Unix man page snprintf (3).

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)
Czes¢ stabilnego ABI. Output not more than size bytes to str according to the format string format and the

variable argument list va. Unix man page vsnprintf (3).

Py0OS_snprintf () and PyOS vsnprintf() wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure that st r [size-1] isalways '\ 0 ' upon return. They never write more than size bytes (including
the trailing '\ 0 ") into str. Both functions require that str != NULL, size > 0, format != NULL and size <
INT_MAX. Note that this means there is no equivalent to the C99 n = snprintf (NULL, 0, ...) which would
determine the necessary buffer size.

The return value (rv) for these functions should be interpreted as follows:

« When0 <= rv < size, the output conversion was successful and rv characters were written to str (excluding
the trailing '\ 0" byte at str[rv]).

e When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str[size-1]1is '\0"' in this case.

e« When rv < 0, ,something bad happened.” str[size-1] is '\0' in this case too, but the rest of str is
undefined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

unsigned long PyOS_strtoul (const char *str, char **ptr, int base)

Czes¢ stabilnego ABI. Convert the initial part of the string in str to an unsigned long value according to
the given base, which must be between 2 and 36 inclusive, or be the special value 0.

Leading white space and case of characters are ignored. If base is zero it looks for a leading 0b, 0o or 0x to
tell which base. If these are absent it defaults to 10. Base must be 0 or between 2 and 36 (inclusive). If ptr is
non-NULL it will contain a pointer to the end of the scan.

If the converted value falls out of range of corresponding return type, range error occurs (errno is set to
ERANGE) and ULONG_MAX is returned. If no conversion can be performed, 0 is returned.

See also the Unix man page st rtoul (3).
Added in version 3.2.

long PyOS_strtol (const char *str, char **ptr, int base)
Czesc stabilnego ABI. Convert the initial part of the string in str to an long value according to the given
base, which must be between 2 and 36 inclusive, or be the special value 0.
Same as Py0OS_strtoul (), but return a 1ong value instead and LONG_MAX on overflows.
See also the Unix man page st rtol (3).

Added in version 3.2.

double PyOS_string to_double (const char *s, char **endptr, PyObject *overflow_exception)

Czes¢ stabilnego ABI. Convert a string s to a doub1e, raising a Python exception on failure. The set of accepted
strings corresponds to the set of strings accepted by Python’s f1oat () constructor, except that s must not have
leading or trailing whitespace. The conversion is independent of the current locale.

If endptr is NULL, convert the whole string. Raise ValueError and return —1. 0 if the string is not a valid
representation of a floating-point number.

88 Rozdziat 6. Utilities

https://manpages.debian.org/snprintf(3)
https://manpages.debian.org/vsnprintf(3)
https://manpages.debian.org/strtoul(3)
https://manpages.debian.org/strtol(3)

The Python/C API, Wydanie 3.14.0a5

If endptr is not NULL, convert as much of the string as possible and set *endpt r to point to the first unconverted
character. If no initial segment of the string is the valid representation of a floating-point number, set *endptr
to point to the beginning of the string, raise ValueError, and return -1 . 0.

If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many
platforms) then if overflow_exception is NULL return Py_INFINITY (with an appropriate sign) and don’t
set any exception. Otherwise, overflow_exception must point to a Python exception object; raise that
exception and return -1 . 0. In both cases, set *endpt r to point to the first character after the converted value.

If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate
Python exception and return -1 . 0.

Added in version 3.1.

char *Py0OS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)

Czes¢ stabilnego ABI. Convert a double val to a string using supplied format_code, precision, and flags.

format_code must be one of 'e', 'E', '£', 'F', 'g', 'G' or 'r'. For 'r', the supplied precision must be
0 and is ignored. The 'r' format code specifies the standard repr () format.

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_O, or Py_DTSF_ALT, or-ed
together:

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
-negative.

e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

e Py _DTSF_ALT means to apply ,alternate” formatting rules. See the documentation for the
PyOS_snprintf () '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE,Py DTST_INFINITE,
or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem Free ().

Added in version 3.1.

int PyOS_stricmp (const char *s1, const char *s2)

Case insensitive comparison of strings. The function works almost identically to strcmp () except that it
ignores the case.

int PyOS_strnicmp (const char *s1, const char *s2, Py_ssize_t size)

Case insensitive comparison of strings. The function works almost identically to strncmp () except that it
ignores the case.

6.8 PyHash API

See also the PyTypeObject . tp_hash member and numeric-hash.
type Py_hash_t

Hash value type: signed integer.

Added in version 3.2.
type Py_uhash_t

Hash value type: unsigned integer.

Added in version 3.2.

PyHASH_MODULUS

The Mersenne prime P = 2**n -1, used for numeric hash scheme.

Added in version 3.13.

6.8. PyHash API 89

https://en.wikipedia.org/wiki/Mersenne_prime

The Python/C API, Wydanie 3.14.0a5

PyHASH_BITS
The exponent n of P in PyHASH MODULUS.

Added in version 3.13.

PyHASH_MULTIPLIER
Prime multiplier used in string and various other hashes.

Added in version 3.13.

PyHASH_INF
The hash value returned for a positive infinity.

Added in version 3.13.

PyHASH_IMAG

The multiplier used for the imaginary part of a complex number.
Added in version 3.13.

type PyHash_FuncDef
Hash function definition used by PyHash_GetFuncDef ().

const char *name
Hash function name (UTF-8 encoded string).

const int hash_bits
Internal size of the hash value in bits.

const int seed_bits

Size of seed input in bits.
Added in version 3.4.

PyHash_FuncDef *PyHash_GetFuncDef (void)
Get the hash function definition.

¢» Zobacz takze

PEP 456 ,,Secure and interchangeable hash algorithm”.

Added in version 3.4.

Py_hash_t Py_HashPointer (const void *ptr)

Hash a pointer value: process the pointer value as an integer (cast it to uintptr_t internally). The pointer is
not dereferenced.

The function cannot fail: it cannot return —1.
Added in version 3.13.

Py_hash_t Py_HashBuffer (const void *ptr, Py_ssize_t len)

Compute and return the hash value of a buffer of len bytes starting at address ptr. The hash is guaranteed to
match that of bytes, memoryview, and other built-in objects that implement the buffer protocol.

Use this function to implement hashing for immutable objects whose tp_richcompare function compares
to another object’s buffer.

len must be greater than or equal to 0.
This function always succeeds.

Added in version 3.14.

90 Rozdziat 6. Utilities

https://peps.python.org/pep-0456/

The Python/C API, Wydanie 3.14.0a5

Py_hash_t PyObject_GenericHash (PyObject *obj)
Generic hashing function that is meant to be put into a type object’s tp_hash slot. Its result only depends on
the object’s identity.
Szczegot implementacyjny CPythona: In CPython, it is equivalent to Py HashPointer ().

Added in version 3.13.

6.9 Reflection

PyObject *PyEval_GetBuiltins (void)
Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABIL Niezalecane od wersji 3.13: Use
PyEval_GetFrameBuiltins () instead.

Return a dictionary of the builtins in the current execution frame, or the interpreter of the thread state if no
frame is currently executing.
PyObject *PyEval_GetLocals (void)

Wartos¢ zwracana: pozyczona referencja. Czes¢é stabilnego ABIL Niezalecane od wersji 3.13: Use either
PyEval_ GetFrameLocals () to obtain the same behaviour as calling 1ocals () in Python code, or else
call PyFrame GetLocals () on the result of PyEval GetFrame () to access the £_locals attribute of
the currently executing frame.

Return a mapping providing access to the local variables in the current execution frame, or NULL if no frame
is currently executing.

Refer to 1ocals () for details of the mapping returned at different scopes.

As this function returns a borrowed reference, the dictionary returned for optimized scopes is cached on the
frame object and will remain alive as long as the frame object does. Unlike PyEval_GetFramelLocals ()
and locals (), subsequent calls to this function in the same frame will update the contents of the cached
dictionary to reflect changes in the state of the local variables rather than returning a new snapshot.

Zmienione w wersji 3.13: As part of PEP 667, PyFrame_GetLocals (), locals (), and FrameType.
f_locals no longer make use of the shared cache dictionary. Refer to the What’s New entry for additional
details.

PyObject *PyEval_GetGlobals (void)
Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI. Niezalecane od wersji 3.13: Use
PyEval_GetFrameGlobals () instead.

Return a dictionary of the global variables in the current execution frame, or NULL if no frame is currently
executing.

PyFrameObject *PyEval_GetFrame (void)
Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI. Return the current thread state’s frame, which
is NULL if no frame is currently executing.

See also PyThreadState_GetFrame ().

PyObject *PyEval_GetFrameBuiltins (void)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.13. Return a dictionary of the builtins in
the current execution frame, or the interpreter of the thread state if no frame is currently executing.

Added in version 3.13.

PyObject *PyEval_GetFrameLocals (void)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.13. Return a dictionary of the local
variables in the current execution frame, or NULL if no frame is currently executing. Equivalent to calling
locals () in Python code.

To access £_locals on the current frame without making an independent snapshot in optimized scopes, call
PyFrame_GetLocals () onthe result of PyEval_ GetFrame ().

6.9. Reflection 91

https://peps.python.org/pep-0667/

The Python/C API, Wydanie 3.14.0a5

Added in version 3.13.

PyObject *PyEval_GetFrameGlobals (void)

Wartos¢ zwracana: nowa referencja. Czesé stabilnego ABI od wersji 3.13. Return a dictionary of the global
variables in the current execution frame, or NULL if no frame is currently executing. Equivalent to calling
globals () in Python code.

Added in version 3.13.

const char *PyEval_GetFuncName (PyObject *func)
Czes¢ stabilnego ABI. Return the name of func if it is a function, class or instance object, else the name of
funcs type.

const char *PyEval_GetFuncDesc (PyObject *func)

Czes¢ stabilnego ABI. Return a description string, depending on the type of func. Return values include
»()” for functions and methods, ,, constructor”, ,, instance”, and ,, object”. Concatenated with the result of
PyEval_GetFuncName (), the result will be a description of func.

6.10 Codec registry and support functions

int PyCodec_Register (PyObject *search_function)
Czes¢ stabilnego ABI. Register a new codec search function.
As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first in
the list of search functions.

int PyCodec_Unregister (PyObject *search_function)
Czes¢ stabilnego ABI od wersji 3.10. Unregister a codec search function and clear the registry’s cache. If the
search function is not registered, do nothing. Return 0 on success. Raise an exception and return -1 on error.

Added in version 3.10.

int PyCodec_KnownEncoding (const char *encoding)
Czes¢ stabilnego ABI. Return 1 or 0 depending on whether there is a registered codec for the given encoding.
This function always succeeds.

PyObject *PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
Wartos¢ zwracana: nowa referencja. Czesc stabilnego ABI. Generic codec based encoding API.
object is passed through the encoder function found for the given encoding using the error handling method
defined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

PyObject *PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Generic codec based decoding API.
object is passed through the decoder function found for the given encoding using the error handling method

defined by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError
if no encoder can be found.

6.10.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes
encodings looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set
and NULL returned.

PyObject *PyCodec_Encoder (const char *encoding)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Get an encoder function for the given encoding.

PyObject *PyCodec_Decoder (const char *encoding)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Get a decoder function for the given encoding.

92 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.14.0a5

PyObject *PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Wartosc zwracana: nowa referencja. Czes¢ stabilnego ABI. Get an IncrementalEncoder object for the given
encoding.

PyObject *PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Wartos¢é zwracana: nowa referencja. Czes¢ stabilnego ABI. Get an IncrementalDecoder object for the given
encoding.

PyObject *PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Wartosé zwracana: nowa referencja. Czes¢ stabilnego ABI. Get a St reamReader factory function for the given
encoding.

PyObject *PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)

Wartos¢ zwracana: nowa referencja. Czesé stabilnego ABI. Geta St reamWriter factory function for the given
encoding.

6.10.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError (const char *name, PyObject *error)

Czes¢ stabilnego ABI. Register the error handling callback function error under the given name. This callback
function will be called by a codec when it encounters unencodable characters/undecodable bytes and name is
specified as the error parameter in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError Or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes
and their offset in the original string (see Unicode Exception Objects for functions to extract this information).
The callback must either raise the given exception, or return a two-item tuple containing the replacement for
the problematic sequence, and an integer giving the offset in the original string at which encoding/decoding
should be resumed.

Return 0 on success, —1 on error.

PyObject *PyCodec_LookupError (const char *name)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL. Lookup the error handling callback function regi-
stered under name. As a special case NULL can be passed, in which case the error handling callback for ,,strict”
will be returned.

PyObject *PyCodec_StrictErrors (PyObject *exc)
Wartos¢ zwracana: zawsze NULL. Czes¢ stabilnego ABI. Raise exc as an exception.

PyObject *PyCodec_IgnoreErrors (PyObject *exc)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Ignore the unicode error, skipping the faulty input.

PyObject *PyCodec_ReplaceErrors (PyObject *exc)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Replace the unicode encode error with ? or U+FFFD.

PyObject *PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
Wartos¢ zwracana: nowa referencja. Czes¢é stabilnego ABI. Replace the unicode encode error with XML cha-
racter references.

PyObject *PyCodec_BackslashReplaceErrors (PyObject *exc)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Replace the unicode encode error with backslash
escapes (\x, \u and \U).

PyObject *PyCodec_NameReplaceErrors (PyObject *exc)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.7. Replace the unicode encode error with

\N{...} escapes.

Added in version 3.5.

6.10. Codec registry and support functions 93

The Python/C API, Wydanie 3.14.0a5

6.11 PyTime C API

Added in version 3.13.
The clock C API provides access to system clocks. It is similar to the Python t ime module.

For C API related to the datet ime module, see DateTime Objects.

6.11.1 Typy
type PyTime_t
A timestamp or duration in nanoseconds, represented as a signed 64-bit integer.

The reference point for timestamps depends on the clock used. For example, Py Time_Time () returns time-
stamps relative to the UNIX epoch.

The supported range is around [-292.3 years; +292.3 years]. Using the Unix epoch (January 1st, 1970) as
reference, the supported date range is around [1677-09-21; 2262-04-11]. The exact limits are exposed as
constants:

PyTime_t PyTime_MIN

Minimum value of PyTime t.

PyTime_t PyTime_MAX

Maximum value of PyTime t.

6.11.2 Clock Functions

The following functions take a pointer to a Py Time_t that they set to the value of a particular clock. Details of each
clock are given in the documentation of the corresponding Python function.

The functions return 0 on success, or —1 (with an exception set) on failure.

On integer overflow, they set the PyExc_OverflowError exception and set *result to the value clamped to the
[PyTime MIN; PyTime_ MAX] range. (On current systems, integer overflows are likely caused by misconfigured
system time.)

As any other C API (unless otherwise specified), the functions must be called with the GIL held.

int PyTime_Monotonic (PyTime_t *result)

Read the monotonic clock. See t ime .monotonic () for important details on this clock.

int PyTime_PerfCounter (PyTime_t *result)

Read the performance counter. See t ime.perf_counter () for important details on this clock.

int PyTime_Time (PyTime_t *result)

Read the “wall clock” time. See time.time () for details important on this clock.

6.11.3 Raw Clock Functions

Similar to clock functions, but don’t set an exception on error and don’t require the caller to hold the GIL.
On success, the functions return 0.

On failure, they set *result to 0 and return -1, without setting an exception. To get the cause of the error, acquire
the GIL and call the regular (non-Raw) function. Note that the regular function may succeed after the Raw one failed.

int PyTime_MonotonicRaw (PyTime_t *result)
Similar to PyTime Monotonic (), but don’t set an exception on error and don’t require holding the GIL.

int PyTime_PerfCounterRaw (PyTime_t *result)

Similar to PyTime PerfCounter (), but don’t set an exception on error and don’t require holding the GIL.

94 Rozdziat 6. Utilities

The Python/C API, Wydanie 3.14.0a5

int PyTime_TimeRaw (PyTime_t *result)

Similar to PyTime Time (), but don’t set an exception on error and don’t require holding the GIL.

6.11.4 Conversion functions
double PyTime_AsSecondsDouble (PyTime_t t)
Convert a timestamp to a number of seconds as a C double.

The function cannot fail, but note that double has limited accuracy for large values.

6.12 Support for Perf Maps

On supported platforms (as of this writing, only Linux), the runtime can take advantage of perf map files to make
Python functions visible to an external profiling tool (such as perf). A running process may create a file in the /tmp
directory, which contains entries that can map a section of executable code to a name. This interface is described in
the documentation of the Linux Perf tool.

In Python, these helper APIs can be used by libraries and features that rely on generating machine code on the fly.
Note that holding the Global Interpreter Lock (GIL) is not required for these APIs.

int PyUnstable_PerfMapState_Init (void)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Openthe /tmp/perf-$pid.map file, unless it’s already opened, and create a lock to ensure thread-safe writes
to the file (provided the writes are done through PyUnstable WritePerfMapEntry ()). Normally, there’s
no need to call this explicitly; just use PyUnstable WritePerfMapEntry () and it will initialize the state
on first call.

Returns 0 on success, -1 on failure to create/open the perf map file, or -2 on failure to create a lock. Check
errno for more information about the cause of a failure.

int PyUnstable_WritePerfMapEntry (const void *code_addr, unsigned int code_size, const char
*entry_name)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Write one single entry to the /tmp/perf-$pid.map file. This function is thread safe. Here is what an example
entry looks like:

address size name
7£3529fcf759 b py::bar:/run/t.py

Will call PyUnstable _pPerfMapState_Init () before writing the entry, if the perf map file is not already
opened. Returns 0 on success, or the same error codes as PyUnstable_PerfMapState_Init () on failure.

void PyUnstable_PerfMapState_Fini (void)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

6.12. Support for Perf Maps 95

https://perf.wiki.kernel.org/index.php/Main_Page
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/jit-interface.txt

The Python/C API, Wydanie 3.14.0a5

Close the perf map file opened by PyUnstable PerfMapState Init (). This is called by the runtime
itself during interpreter shut-down. In general, there shouldn’t be a reason to explicitly call this, except to
handle specific scenarios such as forking.

96 Rozdziat 6. Utilities

ROZDZIAL /

Warstwa obiektow abstrakcyjnych

Funkcje, ktérych dotyczy ten rozdzial dziataja na obiektach Pythona bez wzgledu na ich typ oraz na wielu klasach
typéw obiektéw (np. wszystkie typy numeryczne oraz sekwencyjne). Uzyte na nieobstugiwanych typach obiektéw
rzuca wyjatek.

Nie da si¢ uzywac tych funckcji na obiektach, ktére nie zostaty prawidlowo zainicjowane jak np. lista utworzona
za pomoca PyList_New (), ktérej elementom nie nadano jeszcze wartosci innej niz NULL.

7.1 Object Protocol

PyObject *Py_GetConstant (unsigned int constant_id)

Czes¢ stabilnego ABI od wersji 3.13. Get a strong reference to a constant.
Set an exception and return NULL if constant_id is invalid.

constant_id must be one of these constant identifiers:

97

The Python/C API, Wydanie 3.14.0a5

Constant Identifier Wartos¢ Returned object

0 None
Py_CONSTANT_NONE

1 False
Py_CONSTANT_FALSE

2 True
Py_CONSTANT_TRUE

3 Ellipsis
Py_CONSTANT_ELLIPSIS

4 NotImplemented
Py_CONSTANT_NOT_ IMPLEMENTI

5 0
Py_CONSTANT_ZERO

6 1
Py_CONSTANT_ONE

7 L
Py CONSTANT_EMPTY_STR

8 bll
Py CONSTANT_EMPTY_ BYTES

9 0

Py_CONSTANT EMPTY TUPLE

Numeric values are only given for projects which cannot use the constant identifiers.
Added in version 3.13.
Szczegot implementacyjny CPythona: In CPython, all of these constants are immortal.
PyObject *Py_GetConstantBorrowed (unsigned int constant_id)
Czes¢ stabilnego ABI od wersji 3.13. Similar to Py_GetConstant (), but return a borrowed reference.

This function is primarily intended for backwards compatibility: using Py_GetConstant () is recommended
for new code.

The reference is borrowed from the interpreter, and is valid until the interpreter finalization.
Added in version 3.13.

PyObject *Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type com-
bination.

Py RETURN_NOTIMPLEMENTED
Properly handle returning Py _Not Implemented from within a C function (that is, create a new strong refe-
rence to Not Implemented and return it).

Py_PRINT_RAW

Flag to be used with multiple functions that print the object (like PyObject_Print () and
pyFile_Writeobject ()). If passed, these function would use the str () of the object instead of the
repr ().

98 Rozdziat 7. Warstwa obiektéw abstrakcyjnych

The Python/C API, Wydanie 3.14.0a5

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py PRINT_RAW; if given, the str () of the object is written instead of
the repr ().

int PyObject_HasAttrWithError (PyObject *o, PyObject *attr_name)
Czes¢ stabilnego ABI od wersji 3.13. Returns 1 if o has the attribute atfr_name, and 0 otherwise. This is
equivalent to the Python expression hasattr (o, attr_name).On failure, return —1.
Added in version 3.13.

int PyObject_HasAttrStringWithError (PyObject *o, const char *attr_name)
Czes¢ stabilnego ABI od wersji 3.13. This is the same as PyObject_HasAttrWithError (), but attr_name
is specified as a const char* UTF-8 encoded bytes string, rather than a PyObject*.
Added in version 3.13.

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)

Czes¢ stabilnego ABI. Returns 1 if o has the attribute attr_name, and 0 otherwise. This function always suc-
ceeds.

© Informacja

Exceptions that occur when this calls _ getattr_ () and _ getattribute_ () methods
aren’t propagated, but instead given to sys.unraisablehook (). For proper error handling, use
PyObject_HasAttrWithError (), PyObject_GetOptionalAttr () Or PyObject_GetAttr () in-
stead.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)

Czes¢ stabilnego ABI. This is the same as PyObject_HasAttr (), but attr_name is specified as a const
char* UTF-8 encoded bytes string, rather than a PyObject*.

© Informacja

Exceptions that occur when this calls _ getattr_ () and _ getattribute_ () methods
or while creating the temporary str object are silently ignored. For proper error handling,
use PyObject_HasAttrStringWithError (), PyObject_GetOptionalAttrString() Or
PyObject_GetAttrString () instead.

PyObject *PyObject_GetAttr (PyObject *o, PyObject *attr_name)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Retrieve an attribute named atfr_name from object
o. Returns the attribute value on success, or NULL on failure. This is the equivalent of the Python expression

o.attr_name.

If the missing attribute should not be treated as a failure, you can use PyObject_GetOptionalAttr ()
instead.

PyObject *PyObject_GetAttrString (PyObject *o, const char *attr_name)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. This is the same as PyObject_GetAttr (), but
attr_name is specified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.

If the missing attribute should not be treated as a failure, you can use
PyObject_GetOptionalAttrString () instead.
int PyObject_GetOptionalAttr (PyObject *obj, PyObject *attr_name, PyObject **result) ;

Czes¢ stabilnego ABI od wersji 3.13. Variant of PyObject_GetAttr() which doesn’t raise
AttributeError if the attribute is not found.

7.1. Object Protocol 99

The Python/C API, Wydanie 3.14.0a5

If the attribute is found, return 1 and set *result to a new strong reference to the attribute. If the attribu-
te is not found, return 0 and set *result to NULL; the AttributeError is silenced. If an error other than
AttributeError is raised, return —1 and set *result to NULL.

Added in version 3.13.

int PyObject_GetOptionalAttrString (PyObject *obj, const char *attr_name, PyObject **result) ;

Czes¢ stabilnego ABI od wersji 3.13. This is the same as PyObject_GetOptionalAttr (), butattr_name is
specified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.

Added in version 3.13.

PyObject *PyObject_GenericGetAttr (PyObject *o, PyObject *name)
Wartos¢é zwracana: nowa referencja. Czesé stabilnego ABI. Generic attribute getter function that is meant to be
put into a type object’s tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s
MRO as well as an attribute in the object’s __dict__ (if present). As outlined in descriptors, data descriptors
take preference over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is
raised.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Czes¢ stabilnego ABI. Set the value of the attribute named attr_name, for object o, to the value v. Raise an

exception and return -1 on failure; return 0 on success. This is the equivalent of the Python statement o.
attr_name = wv.

If vis NULL, the attribute is deleted. This behaviour is deprecated in favour of using PyObject_DelAttr (),
but there are currently no plans to remove it.

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)

Czes¢ stabilnego ABI. This is the same as PyObject_SetAttr (), but attr_name is specified as a const
char* UTF-8 encoded bytes string, rather than a Pyobject*.

If v is NULL, the attribute is deleted, but this feature is deprecated in favour of using
PyObject_DelAttrString().

The number of different attribute names passed to this function should be kept small, usually by
using a statically allocated string as attr_name. For attribute names that aren’t known at compile time,
prefer calling PyUnicode_FromString() and PyObject_SetAttr () directly. For more details, see
PyUnicode_InternFromString (), which may be used internally to create a key object.

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Czes¢ stabilnego ABI. Generic attribute setter and deleter function that is meant to be put into a type object’s
tp_setattro slot. It looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found
it takes preference over setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set
or deleted in the object’s __dict__ (if present). On success, 0 is returned, otherwise an AttributeError
is raised and -1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Czes¢ stabilnego ABI od wersji 3.13. Delete attribute named attr_name, for object o. Returns -1 on failure.
This is the equivalent of the Python statement del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Czes¢ stabilnego ABI od wersji 3.13. This is the same as PyObject_DelAttr (), but attr_name is specified
as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.

The number of different attribute names passed to this function should be kept small, usually by
using a statically allocated string as atfr_name. For attribute names that aren’t known at compile time,
prefer calling PyUnicode_FromString() and PyObject_DelAttr () directly. For more details, see
PyUnicode_InternFromString (), which may be used internally to create a key object for lookup.

PyObject *PyObject_GenericGetDict (PyObject *o, void *context)

Wartos¢ zwracana: nowa referencja. Cze$¢ stabilnego ABI od wersji 3.10. A generic implementation for the
getter of a __dict__ descriptor. It creates the dictionary if necessary.

100 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.14.0a5

This function may also be called to get the _ dict__ of the object 0. Pass NULL for context when cal-
ling it. Since this function may need to allocate memory for the dictionary, it may be more efficient to call
PyObject_GetAttr () when accessing an attribute on the object.

On failure, returns NULL with an exception set.
Added in version 3.3.

int PyObject_GenericSetDict (PyObject *o, PyObject *value, void *context)

Czes¢ stabilnego ABI od wersji 3.7. A generic implementation for the setter of a __dict__ descriptor. This
implementation does not allow the dictionary to be deleted.

Added in version 3.3.

PyObject **_PyObject_GetDictPtr (PyObject *obj)
, return NULL without setting an

Return a pointer to __dict__ of the object obj. If there is no _ dict
exception.

This function may need to allocate memory for the dictionary, so it may be more efficient to call
PyObject_GetAttr () when accessing an attribute on the object.

PyObject *PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL. Compare the values of o/ and 02 using the operation
specified by opid, which must be one of Py 17, Py_LE, Py_EQ, Py _NE, Py_GT, Or Py_GE, corresponding to
<, <=, ==, !=, >, or >= respectively. This is the equivalent of the Python expression o1 op o2, where op is
the operator corresponding to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *0l, PyObject *02, int opid)
Czes¢ stabilnego ABIL. Compare the values of o/ and o2 using the operation specified by opid, like
PyObject_RichCompare (), but returns —1 on error, 0 if the result is false, 1 otherwise.

© Informacja

If ol and 02 are the same object, PyObject RichCompareBool () will always return 1 for Py_E0 and 0 for
Py_NE.

PyObject *PyObject_Format (PyObject *obj, PyObject *format_spec)

Czes¢ stabilnego ABI. Format obj using format_spec. This is equivalent to the Python expression format (ob7,
format_spec).

Sformat_spec may be NULL. In this case the call is equivalent to format (obj) . Returns the formatted string
on success, NULL on failure.

PyObject *PyObject_Repr (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABL. Compute a string representation of object 0. Returns

the string representation on success, NULL on failure. This is the equivalent of the Python expression repr (o) .
Called by the repr () built-in function.

Zmienione w wersji 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject *PyObject_ASCII (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL. As PyObject_Repr (), compute a string repre-
sentation of object o, but escape the non-ASCII characters in the string returned by PyObject_Repr () with
\x, \u or \U escapes. This generates a string similar to that returned by pPyObject_Repr () in Python 2.
Called by the ascii () built-in function.

PyObject *PyObject_Str (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABL. Compute a string representation of object o. Returns

the string representation on success, NULL on failure. This is the equivalent of the Python expression str (o).
Called by the str () built-in function and, therefore, by the print () function.

7.1. Object Protocol 101

The Python/C API, Wydanie 3.14.0a5

Zmienione w wersji 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject *PyObject_Bytes (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Compute a bytes representation of object 0. NULL is
returned on failure and a bytes object on success. This is equivalent to the Python expression bytes (o), when
o is not an integer. Unlike bytes (o), a TypeError is raised when o is an integer instead of a zero-initialized
bytes object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Czes¢ stabilnego ABI. Return 1 if the class derived is identical to or derived from the class cls, otherwise return
0. In case of an error, return 1.

If cis is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

If cls has a __subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in
cls.__mro_

Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Czes¢ stabilnego ABI. Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error,
returns -1 and sets an exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

If clshasa___instancecheck__ () method, it will be called to determine the subclass status as described in
PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.

An instance inst can override what is considered its class by havinga __class__ attribute.

An object cls can override if it is considered a class, and what its base classes are, by havinga _ bases_
attribute (which must be a tuple of base classes).

Py_hash_t PyObject_Hash (PyObject *0)
Czes¢ stabilnego ABIL. Compute and return the hash value of an object o. On failure, return —1. This is the
equivalent of the Python expression hash (o).

Zmienione w wersji 3.2: The return type is now Py_hash_t. This is a signed integer the same size as
Py ssize_t.

Py_hash_t PyObject_HashNotImplemented (PyObject *0)

Czes¢ stabilnego ABI. Set a TypeError indicating that type (o) is not hashable and return —1. This function
receives special treatment when stored in a t p_hash slot, allowing a type to explicitly indicate to the interpreter
that it is not hashable.

int PyObject_IsTrue (PyObject *0)
Czes¢ stabilnego ABI. Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to
the Python expression not not o. On failure, return -1.

int PyObject_Not (PyObject *0)
Czes¢ stabilnego ABI. Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to
the Python expression not o. On failure, return -1.

PyObject *PyObject_Type (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. When o is non-NULL, returns a type object corre-
sponding to the object type of object 0. On failure, raises SystemError and returns NULL. This is equivalent
to the Python expression type (o). This function creates a new strong reference to the return value. The-

re’s really no reason to use this function instead of the py_TvPE () function, which returns a pointer of type
PyTypeObject*, except when a new strong reference is needed.

102 Rozdzial 7. Warstwa obiektow abstrakcyjnych

https://peps.python.org/pep-3119/
https://peps.python.org/pep-3119/

The Python/C API, Wydanie 3.14.0a5

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return non-zero if the object o is of type fype or a subtype of type, and 0 otherwise. Both parameters must be
non-NULL.

Py_ssize_t PyObject_Size (PyObject *0)

Py_ssize_t PyObject_Length (PyObject *0)
Czes¢ stabilnego ABI. Return the length of object o. If the object o provides either the sequence and map-
ping protocols, the sequence length is returned. On error, -1 is returned. This is the equivalent to the Python
expression len (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t defaultvalue)

Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__ (), and finally return the default value. On error return 1. This is the equivalent to the
Python expression operator.length_hint (o, defaultvalue).

Added in version 3.4.

PyObject *PyObject_GetItem (PyObject *o, PyObject *key)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return element of o corresponding to the object
key or NULL on failure. This is the equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Czes¢ stabilnego ABI. Map the object key to the value v. Raise an exception and return -1 on failure; return 0 on
success. This is the equivalent of the Python statement o [key] = v. This function does not steal a reference
to v.

int PyObject_DelItem (PyObject *o, PyObject *key)
Czes¢ stabilnego ABI. Remove the mapping for the object key from the object 0. Return -1 on failure. This is
equivalent to the Python statement del o[key].

int PyObject_DelItemString (PyObject *o, const char *key)
Czes¢ stabilnego ABI. This is the same as PyObject_DelItem(), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

PyObject *PyObject_Dir (PyObject *0)
Wartosc zwracana: nowa referencja. Czes¢ stabilnego ABI. This is equivalent to the Python expression dir (o),
returning a (possibly empty) list of strings appropriate for the object argument, or NULL if there was an error.
If the argument is NULL, this is like the Python dir (), returning the names of the current locals; in this case,
if no execution frame is active then NULL is returned but PyErr_ Occurred () will return false.

PyObject *PyObject_GetIter (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL This is equivalent to the Python expression
iter (o). It returns a new iterator for the object argument, or the object itself if the object is already an
iterator. Raises TypeError and returns NULL if the object cannot be iterated.

PyObject *PyObject_SelfIter (PyObject *obj)
Wartosc zwracana: nowa referencja. Czes¢ stabilnego ABI. This is equivalent to the Python __iter (self):
return self method. It is intended for iterator types, to be used in the Py TypeObject.tp_iter slot.

PyObject *PyObject_GetAIter (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czesc stabilnego ABI od wersji 3.10. This is the equivalent to the Python
expression aiter (o). Takes an AsyncIterable object and returns an AsyncIterator for it. This is ty-

pically a new iterator but if the argument is an AsyncIterator, this returns itself. Raises TypeError and
returns NULL if the object cannot be iterated.

Added in version 3.10.

void *PyObject_GetTypeData (PyObject *o, PyTypeObject *cls)

Czes¢ stabilnego ABI od wersji 3.12. Get a pointer to subclass-specific data reserved for cls.

The object o must be an instance of cls, and cls must have been created using negative PyType Spec.
basicsize. Python does not check this.

7.1. Object Protocol 103

The Python/C API, Wydanie 3.14.0a5

On error, set an exception and return NULL.

Added in version 3.12.

Py_ssize_t PyType_GetTypeDataSize (PyTypeObject *cls)

Czes¢ stabilnego ABI od wersji 3.12. Return the size of the instance memory space reserved for cls, i.e. the size
of the memory PyObject_GetTypeData () returns.

This may be larger than requested using —PyType_Spec.basicsize; it is safe to use this larger size (e.g.
with memset ()).

The type cls must have been created using negative Py Type_Spec.basicsize. Python does not check this.
On error, set an exception and return a negative value.

Added in version 3.12.

void *PyObject_GetItemData (PyObject *0)

Get a pointer to per-item data for a class with Py TPFLAGS ITEMS AT END.

On error, set an exception and return NULL. TypeError 1is raised if o does not have
Py _TPFLAGS_ITEMS_AT_ END Set.

Added in version 3.12.

int PyObject_VisitManagedDict (PyObject *obj, visitproc visit, void *arg)

Visit the managed dictionary of obyj.

This function must only be called in a traverse function of the type which has the
Py _TPFLAGS_MANAGED_DICT flag set.

Added in version 3.13.

void PyObject_ClearManagedDict (PyObject *obj)

Clear the managed dictionary of obj.

This function must only be called in a traverse function of the type which has the
Py _TPFLAGS_MANAGED_DICT flag set.

Added in version 3.13.

int PyUnstable_Object_EnableDeferredRefcount (PyObject *obj)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Enable deferred reference counting on obyj, if supported by the runtime. In the free-threaded build, this allows
the interpreter to avoid reference count adjustments to obj, which may improve multi-threaded performance.
The tradeoff is that obj will only be deallocated by the tracing garbage collector.

This function returns 1 if deferred reference counting is enabled on 0bj (including when it was enabled before
the call), and 0 if deferred reference counting is not supported or if the hint was ignored by the runtime. This
function is thread-safe, and cannot fail.

This function does nothing on builds with the GIL enabled, which do not support deferred reference counting.
This also does nothing if 0bj is not an object tracked by the garbage collector (see gc.is_tracked () and
PyObject_GC_IsTracked()).

This function is intended to be used soon after obj is created, by the code that creates it.

Added in version 3.14.

104

Rozdzial 7. Warstwa obiektow abstrakcyjnych

https://peps.python.org/pep-0703/#deferred-reference-counting

The Python/C API, Wydanie 3.14.0a5

int PyUnstable_IsImmortal (PyObject *obj)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.
This function returns non-zero if obj is immortal, and zero otherwise. This function cannot fail.

© Informacja

Objects that are immortal in one CPython version are not guaranteed to be immortal in another.

Added in version 3.14.

int PyUnstable_TryIncRef (PyObject *obj)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Increments the reference count of obj if it is not zero. Returns 1 if the object’s reference count was successfully
incremented. Otherwise, this function returns 0.

PyUnstable_EnableTryIncRef () must have been called earlier on obj or this function may spuriously
return 0 in the free threading build.

This function is logically equivalent to the following C code, except that it behaves atomically in the free
threading build:

if (Py_REFCNT (op) > 0) {
Py_INCREF (op) ;
return 1;

}

return 0O;

This is intended as a building block for managing weak references without the overhead of a Python weak
reference object.

Typically, correct use of this function requires support from obj’s deallocator (tp_dealloc). For example,
the following sketch could be adapted to implement a ,,weakmap” that works like a WeakvalueDictionary
for a specific type:

PyMutex mutex;

PyObject *
add_entry (weakmap_key_type *key, PyObject *value)
{
PyUnstable_EnableTryIncRef (value) ;
weakmap_type weakmap = ...;
PyMutex_Lock (émutex) ;
weakmap_add_entry (weakmap, key, value);
PyMutex_Unlock (&mutex) ;
Py_RETURN_NONE;

PyObject *

(ciag dalszy na nastgpnej stronie)

7.1. Object Protocol 105

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)

get_value (weakmap_key_type *key)
{
weakmap_type weakmap = ...;
PyMutex_Lock (&émutex) ;
PyObject *result = weakmap_find(weakmap, key);
if (PyUnstable_TryIncRef (result)) {
// ‘result' is safe to use
PyMutex_Unlock (&mutex) ;
return result;
}
// 1if we get here, ‘result' 1is starting to be garbage-collected,
// but has not been removed from the weakmap yet
PyMutex_Unlock (&mutex) ;
return NULL;

// tp_dealloc function for weakmap values

void

value_dealloc (PyObject *value)

{
weakmap_type weakmap = ...;
PyMutex_Lock (&mutex) ;
weakmap_remove_value (weakmap, value);

PyMutex_Unlock (&mutex) ;

Added in version 3.14.

void PyUnstable_EnableTryIncRef (PyObject *obj)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Enables subsequent uses of PyUnstable TryIncRef () on obj. The caller must hold a strong reference to

obj when calling this.
Added in version 3.14.

7.2 Call Protocol

CPython supports two different calling protocols: #p_call and vectorcall.

7.2.1 The tp_call Protocol

Instances of classes that set tp_call are callable. The signature of the slot is:

[PyObject *tp_call (PyObject *callable, PyObject *args, PyObject *kwargs);

J

A call is made using a tuple for the positional arguments and a dict for the keyword arguments, similarly to
callable(*args, **kwargs) in Python code. args must be non-NULL (use an empty tuple if there are no

arguments) but kwargs may be NULL if there are no keyword arguments.

This convention is not only used by #p_call: tp_new and tp_init also pass arguments this way.

106 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.14.0a5

To call an object, use PyObject_Call () or another call API.

7.2.2 The Vectorcall Protocol
Added in version 3.9.
The vectorcall protocol was introduced in PEP 590 as an additional protocol for making calls more efficient.

As rule of thumb, CPython will prefer the vectorcall for internal calls if the callable supports it. However, this is not
a hard rule. Additionally, some third-party extensions use #p_call directly (rather than using PyObject_call()).
Therefore, a class supporting vectorcall must also implement tp_call. Moreover, the callable must behave the
same regardless of which protocol is used. The recommended way to achieve this is by setting tp_call to
PyVectorcall cCall (). This bears repeating:

A\ Ostrzezenie

A class supporting vectorcall must also implement tp_cal1 with the same semantics.

Zmienione w wersji 3.12: The py_TPFrAGS HAVE VECTORCALL flag is now removed from a class when the class’s
__call__ () method is reassigned. (This internally sets t p_ca 11 only, and thus may make it behave differently than
the vectorcall function.) In earlier Python versions, vectorcall should only be used with immutable or static types.

A class should not implement vectorcall if that would be slower than #p_call. For example, if the callee needs to
convert the arguments to an args tuple and kwargs dict anyway, then there is no point in implementing vectorcall.

Classes can implement the vectorcall protocol by enabling the Py TPFLAGS HAVE VECTORCALL flag and setting
tp_vectorcall offset to the offset inside the object structure where a vectorcallfunc appears. This is a pointer
to a function with the following signature:

typedef PyObject *(*vectorcallfunc)(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Czes¢ stabilnego ABI od wersji 3.12.
e callable is the object being called.

« args is a C array consisting of the positional arguments followed by the
values of the keyword arguments. This can be NULL if there are no arguments.

« nargsf is the number of positional arguments plus possibly the
PY_VECTORCALIL_ARGUMENTS_OFFSET flag. To get the actual number of positional arguments from
nargsf, use PyVectorcall NARGS ().

o kwnames is a tuple containing the names of the keyword arguments;
in other words, the keys of the kwargs dict. These names must be strings (instances of str or a subclass)
and they must be unique. If there are no keyword arguments, then kwnames can instead be NULL.

PY_ VECTORCALL_ARGUMENTS_OFFSET

Czes¢ stabilnego ABI od wersji 3.12. If this flag is set in a vectorcall nargsf argument, the callee is allowed to
temporarily change args [-1]. In other words, args points to argument 1 (not 0) in the allocated vector. The
callee must restore the value of args [-1] before returning.

For PyoObject VectorcallMethod (), this flag means instead that args [0] may be changed.

Whenever they can do so cheaply (without additional allocation), callers are encouraged to use
PY_VECTORCALI_ARGUMENTS_OFFSET. Doing so will allow callables such as bound methods to make their
onward calls (which include a prepended self argument) very efficiently.

Added in version 3.8.

To call an object that implements vectorcall, use a call APl function as with any other callable.
PyObject_Vectorcall () will usually be most efficient.

7.2. Call Protocol 107

https://peps.python.org/pep-0590/

The Python/C API, Wydanie 3.14.0a5

Kontrola Rekursji

When using tp_call, callees do not need to worry about recursion: CPython uses Py_EnterRecursiveCall () and
Py_LeaveRecursiveCall () for calls made using tp_call.

For efficiency, this is not the case for calls done using vectorcall: the callee should use Py_EnterRecursiveCall and
Py_LeaveRecursiveCall if needed.

Vectorcall Support API

Py_ssize_t PyVectorcall_NARGS (size_t nargsf)

Czes¢ stabilnego ABI od wersji 3.12. Given a vectorcall nargsf argument, return the actual number of argu-
ments. Currently equivalent to:

[(Py_ssize_t) (nargsf & ~PY_VECTORCALL_ARGUMENTS_OFFSET)

However, the function PyvVectorcall_NARGS should be used to allow for future extensions.

Added in version 3.8.

vectorcallfunc PyVectorcall_Function (PyObject *op)

If op does not support the vectorcall protocol (either because the type does not or because the specific instance
does not), return NULL. Otherwise, return the vectorcall function pointer stored in op. This function never
raises an exception.

This is mostly useful to check whether or not op supports vectorcall, which can be done by checking
PyVectorcall_ Function (op) != NULL.

Added in version 3.9.

PyObject *PyVectorcall_Call (PyObject *callable, PyObject *tuple, PyObject *dict)

Czes¢ stabilnego ABI od wersji 3.12. Call callable’s vectorcall func with positional and keyword arguments
given in a tuple and dict, respectively.

This is a specialized function, intended to be put in the tp_cal1 slot or be used in an implementation of
tp_call. Itdoes not check the Py TPFLAGS HAVE VECTORCALL flag and it does not fall back to tp_call.

Added in version 3.8.

7.2.3 Object Calling API

Various functions are available for calling a Python object. Each converts its arguments to a convention supported by
the called object - either fp_call or vectorcall. In order to do as little conversion as possible, pick one that best fits
the format of data you have available.

The following table summarizes the available functions; please see individual documentation for details.

Funkcja callable args kwargs
PyObject_cCall () PyObject * tuple dict/NULL
PyObject_CallNoArgs () PyObject * — =
PyObject_CallOneArg () PyObject * 1 object —
PyObject_CallObject () PyObject * tuple/NULL —
PyObject_CallFunction () PyObject * format —
PyObject_CallMethod () obj + char* format —
PyObject_CallFunctionObjArgs () PyObject * variadic —
PyObject_CallMethodObjArgs () obj + name variadic —
PyObject_CallMethodNoArgs () Obj + name — —
PyObject_CallMethodOneArqg () Obj + name 1 ObjeCt —
PyObject_Vectorcall () PyObject * vectorcall vectorcall
PyObject_VectorcallDict () PyObject * vectorcall dict/NULL
PyObject_VectorcallMethod () arg + name vectorcall vectorcall

108

Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.14.0a5

PyObject *PyObject_Call (PyObject *callable, PyObject *args, PyObject ¥*kwargs)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Call a callable Python object callable, with argu-
ments given by the tuple args, and named arguments given by the dictionary kwargs.

args must not be NULL; use an empty tuple if no arguments are needed. If no named arguments are needed,
kwargs can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*fargs, **kwargs).

PyObject *PyObject_CallNoArgs (PyObject *callable)
Wartos¢ zwracana: nowa referencja. Czesé stabilnego ABI od wersji 3.10. Call a callable Python object callable
without any arguments. It is the most efficient way to call a callable Python object without any argument.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.

PyObject *PyObject_CallOneaArg (PyObject *callable, PyObject *arg)
Wartosc zwracana: nowa referencja. Call a callable Python object callable with exactly 1 positional argument
arg and no keyword arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.

PyObject *PyObject_CallObject (PyObject *callable, PyObject *args)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Call a callable Python object callable, with argu-
ments given by the tuple args. If no arguments are needed, then args can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args).

PyObject *PyObject_CallFunction (PyObject *callable, const char *format, ...)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Call a callable Python object callable, with a variable
number of C arguments. The C arguments are described using a Py_Buildvalue () style format string. The
format can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: callable (*args).

Note that if you only pass PyObject* args, PyObject_CallFunctionObjArgs () is a faster alternative.
Zmienione w wersji 3.4: The type of format was changed from char *.

PyObject *PyObject_CallMethod (PyObject *obj, const char *name, const char *format, ...)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Call the method named name of object obj with
a variable number of C arguments. The C arguments are described by a Py Buildvalue () format string that
should produce a tuple.

The format can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: obj.name (argl, arg2, ...).

Note that if you only pass Pyobject* args, PyObject_CallMethodObjArgs () is a faster alternative.
Zmienione w wersji 3.4: The types of name and format were changed from char *.

PyObject *PyObject_CallFunctionObjArgs (PyObject *callable, ...)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Call a callable Python object callable, with a variable
number of PyObject* arguments. The arguments are provided as a variable number of parameters followed
by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

7.2. Call Protocol 109

The Python/C API, Wydanie 3.14.0a5

This is the equivalent of the Python expression: callable (argl, arg2, ...).

PyObject *PyObject_CallMethodObjArgs (PyObject *obj, PyObject *name, ...)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI Call a method of the Python object obj, where
the name of the method is given as a Python string object in name. It is called with a variable number of
pPyObject* arguments. The arguments are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

PyObject *PyObject_CallMethodNoArgs (PyObject *obj, PyObject *name)
Call a method of the Python object obj without arguments, where the name of the method is given as a Python
string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.
PyObject *PyObject_CallMethodOneArg (PyObject *obj, PyObject *name, PyObject *arg)

Call a method of the Python object obj with a single positional argument arg, where the name of the method
is given as a Python string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.

PyObject *PyObject_Vectorcall (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Czes¢ stabilnego ABI od wersji 3.12. Call a callable Python object callable. The arguments are the same as for
vectorcallfunc. If callable supports vectorcall, this directly calls the vectorcall function stored in callable.

Return the result of the call on success, or raise an exception and return NULL on failure.
Added in version 3.9.
PyObject *PyObject_VectorcallDict (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwdict)

Call callable with positional arguments passed exactly as in the vectorcall protocol, but with keyword arguments
passed as a dictionary kwdict. The args array contains only the positional arguments.

Regardless of which protocol is used internally, a conversion of arguments needs to be done. Therefore, this
function should only be used if the caller already has a dictionary ready to use for the keyword arguments, but
not a tuple for the positional arguments.

Added in version 3.9.

PyObject *PyObject_VectorcallMethod (PyObject *name, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Czes¢ stabilnego ABI od wersji 3.12. Call a method using the vectorcall calling convention. The name of the
method is given as a Python string name. The object whose method is called is args/0], and the args array
starting at args[1] represents the arguments of the call. There must be at least one positional argument. na-
rgsf is the number of positional arguments including args/0], plus Py VECTORCALL_ARGUMENTS_OFFSET
if the value of args[0] may temporarily be changed. Keyword arguments can be passed just like in
PyObject_Vectorcall ().

If the object has the Py TPFLAGS METHOD_DESCRIPTOR feature, this will call the unbound method object
with the full args vector as arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.

Added in version 3.9.

110 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.14.0a5

7.2.4 Call Support API

int PyCallable_Check (PyObject *0)

Czes¢ stabilnego ABIL Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise.
This function always succeeds.

7.3 Number Protocol

int PyNumber_Check (PyObject *0)
Czes¢ stabilnego ABI. Returns 1 if the object o provides numeric protocols, and false otherwise. This function
always succeeds.

Zmienione w wersji 3.8: Returns 1 if o is an index integer.

PyObject *PyNumber_Add (PyObject *ol, PyObject *02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the result of adding o/ and 02, or NULL on
failure. This is the equivalent of the Python expression o1 + o2.

PyObject *PyNumber_Subtract (PyObject *ol, PyObject *02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Returns the result of subtracting 02 from ol, or
NULL on failure. This is the equivalent of the Python expression o1 - o2.

PyObject *PyNumber_Multiply (PyObject *ol, PyObject *02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the result of multiplying o/ and 02, or NULL
on failure. This is the equivalent of the Python expression o1 * o2.

PyObject *PyNumber_MatrixMultiply (PyObject *ol, PyObject *02)
Wartos¢ zwracana: nowa referencja. Czesc¢ stabilnego ABI od wersji 3.7. Returns the result of matrix multipli-
cation on o/ and 02, or NULL on failure. This is the equivalent of the Python expression o1 @ o2.
Added in version 3.5.

PyObject *PyNumber_FloorDivide (PyObject *ol, PyObject ¥02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return the floor of o/ divided by 02, or NULL on
failure. This is the equivalent of the Python expression o1 // o2.

PyObject *PyNumber_TrueDivide (PyObject *ol, PyObject ¥02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABL Return a reasonable approximation for the ma-
thematical value of o/ divided by 02, or NULL on failure. The return value is ,approximate” because binary
floating-point numbers are approximate; it is not possible to represent all real numbers in base two. This func-
tion can return a floating-point value when passed two integers. This is the equivalent of the Python expression
ol / o2.

PyObject *PyNumber_Remainder (PyObject *ol, PyObject ¥02)
Wartosé zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the remainder of dividing o/ by 02, or NULL
on failure. This is the equivalent of the Python expression o1 % o2.

PyObject *PyNumber_Divmod (PyObject *ol, PyObject ¥02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. See the built-in function divmod () . Returns NULL
on failure. This is the equivalent of the Python expression divmod (o1, 02).

PyObject *PyNumber_Power (PyObject *ol, PyObject *02, PyObject ¥03)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. See the built-in function pow () . Returns NULL on
failure. This is the equivalent of the Python expression pow (01, 02, o3), where 03 is optional. If 03 is to
be ignored, pass Py_None in its place (passing NULL for 03 would cause an illegal memory access).

PyObject *PyNumber_Negative (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the negation of o on success, or NULL on
failure. This is the equivalent of the Python expression —o.

7.3. Number Protocol 111

The Python/C API, Wydanie 3.14.0a5

PyObject *PyNumber_Positive (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI Returns o on success, or NULL on failure. This is
the equivalent of the Python expression +o.

PyObject *PyNumber_Absolute (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the absolute value of o, or NULL on failure.
This is the equivalent of the Python expression abs (o).

PyObject *PyNumber_Invert (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the bitwise negation of o on success, or
NULL on failure. This is the equivalent of the Python expression ~o.

PyObject *PyNumber_Lshift (PyObject *ol, PyObject ¥02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the result of left shifting o/ by 02 on success,
or NULL on failure. This is the equivalent of the Python expression o1 << o2.

PyObject *PyNumber_Rshift (PyObject *ol, PyObject ¥02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the result of right shifting o/ by 02 on
success, or NULL on failure. This is the equivalent of the Python expression o1 >> o2.

PyObject *PyNumber_And (PyObject *ol, PyObject *02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the ,,bitwise and” of o/ and 02 on success
and NULL on failure. This is the equivalent of the Python expression o1 & o02.

PyObject ¥*pyNumber_Xor (PyObject *ol, PyObject *02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the ,bitwise exclusive or” of ol by 02 on
success, or NULL on failure. This is the equivalent of the Python expression o1 ~ o02.

PyObject *pyNumber_Or (PyObject *ol, PyObject ¥02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the ,bitwise or” of ol and 02 on success,
or NULL on failure. This is the equivalent of the Python expression o1 | o2.

PyObject *PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the result of adding o/ and 02, or NULL on
failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1
+= 02.

PyObject *PyNumber_InPlaceSubtract (PyObject *ol, PyObject ¥02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the result of subtracting 02 from o/, or
NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement o1 -= o2.

PyObject *PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the result of multiplying o/ and 02, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol *= o2.

PyObject *PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.7. Returns the result of matrix multi-
plication on ol and 02, or NULL on failure. The operation is done in-place when ol supports it. This is the
equivalent of the Python statement o1 @= o02.

Added in version 3.5.

PyObject *PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the mathematical floor of dividing o/ by
02, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement o1 //= o2.

112 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.14.0a5

PyObject *PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject ¥02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a reasonable approximation for the ma-
thematical value of o/ divided by 02, or NULL on failure. The return value is ,,approximate” because binary
floating-point numbers are approximate; it is not possible to represent all real numbers in base two. This func-
tion can return a floating-point value when passed two integers. The operation is done in-place when ol supports
it. This is the equivalent of the Python statement o1 /= o2.

PyObject *PyNumber_InPlaceRemainder (PyObject *ol, PyObject ¥02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the remainder of dividing o/ by 02, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol %= o2.

PyObject *PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject ¥03)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. See the built-in function pow () . Returns NULL on
failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1
**= o2 when 03 iS Py_None, or an in-place variant of pow (o1, 02, o3) otherwise. If 03 is to be ignored,
pass Py_None in its place (passing NULL for 03 would cause an illegal memory access).

PyObject *PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Wartosé zwracana: nowa referencja. Czes¢ stabilnego ABI Returns the result of left shifting o/ by 02 on success,
or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement ol <<= o2.

PyObject *PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the result of right shifting o/ by 02 on
success, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the
Python statement o1 >>= o2.

PyObject *PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the ,,bitwise and” of o/ and 02 on success
and NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement ol &= o2.

PyObject *PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the ,,bitwise exclusive or” of ol by 02 on
success, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the
Python statement 01 ~= o2.

PyObject *PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the ,bitwise or” of ol and 02 on success,
or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement o1 |= o2.

PyObject *PyNumber_Long (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the o converted to an integer object on
success, or NULL on failure. This is the equivalent of the Python expression int (o).

PyObject *PyNumber_Float (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czesc¢ stabilnego ABI. Returns the o converted to a float object on success,
or NULL on failure. This is the equivalent of the Python expression float (o).

PyObject *PyNumber_Index (PyObject *¥0)
Wartosc¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Returns the o converted to a Python int on success

or NULL with a TypeError exception raised on failure.

Zmienione w wersji 3.10: The result always has exact type int. Previously, the result could have been an
instance of a subclass of int.

PyObject *PyNumber_ToBase (PyObject *n, int base)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABL Returns the integer n converted to base base as

7.3. Number Protocol 113

The Python/C API, Wydanie 3.14.0a5

a string. The base argument must be one of 2, 8, 10, or 16. For base 2, 8, or 16, the returned string is pre-
fixed with a base marker of '0b"', '0o', or '0x"', respectively. If # is not a Python int, it is converted with
PyNumber_ Index () first.

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
Czes¢ stabilnego ABI. Returns o converted to a Py_ssize_t value if o can be interpreted as an integer. If the
call fails, an exception is raised and -1 is returned.

If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
overflowError, then the exc argument is the type of exception that will be raised (usually IndexError or
OverflowError). If exc is NULL, then the exception is cleared and the value is clipped to PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check (PyObject *0)

Czes¢ stabilnego ABI od wersji 3.8. Returns 1 if o is an index integer (has the nb_index slot of the
tp_as_number structure filled in), and 0 otherwise. This function always succeeds.

7.4 Sequence Protocol

int PySequence_Check (PyObject *0)
Czes¢ stabilnego ABI. Return 1 if the object provides the sequence protocol, and 0 otherwise. Note that it
returns 1 for Python classes witha __getitem () method, unless they are dict subclasses, since in general
it is impossible to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *0)
Czes¢ stabilnego ABI Returns the number of objects in sequence o on success, and —1 on failure. This is
equivalent to the Python expression len (o).

PyObject *PySequence_Concat (PyObject *ol, PyObject ¥02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return the concatenation of o/ and 02 on success,
and NULL on failure. This is the equivalent of the Python expression o1 + o2.

PyObject *PySequence_Repeat (PyObject *o, Py_ssize_t count)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return the result of repeating sequence object o
count times, or NULL on failure. This is the equivalent of the Python expression o * count.

PyObject *PySequence_InPlaceConcat (PyObject *0l, PyObject ¥02)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return the concatenation of o/ and 02 on success,
and NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
expression ol += o2.

PyObject *PySequence_InPlaceRepeat (PyObject *¥0, Py_ssize_t count)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return the result of repeating sequence object o
count times, or NULL on failure. The operation is done in-place when o supports it. This is the equivalent of
the Python expression o *= count.

PyObject *PySequence_GetItem (PyObject *o, Py_ssize_t 1)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return the ith element of o, or NULL on failure.
This is the equivalent of the Python expression o [i].

PyObject *PySequence_GetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t12)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return the slice of sequence object o between i/
and i2, or NULL on failure. This is the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *Vv)
Czes¢ stabilnego ABI. Assign object v to the ith element of o. Raise an exception and return -1 on failure;

return 0 on success. This is the equivalent of the Python statement o [i] = v. This function does not steal
a reference to v.

If vis NULL, the element is deleted, but this feature is deprecated in favour of using PySequence _Delltem().

114 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.14.0a5

int PySequence_DelItem (PyObject *0, Py_ssize_t 1)
Czes¢ stabilnego ABI. Delete the ith element of object o. Returns -1 on failure. This is the equivalent of the
Python statement del o[i].

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t 12, PyObject *v)
Czes¢ stabilnego ABI. Assign the sequence object v to the slice in sequence object o from i/ to i2. This is the
equivalent of the Python statemento[i1:12] = wv.

int PySequence_DelSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
Czes¢ stabilnego ABI. Delete the slice in sequence object o from i/ to i2. Returns -1 on failure. This is the
equivalent of the Python statement del o[il:i2].

Py_ssize_t PySequence_Count (PyObject *0, PyObject *value)
Czes¢ stabilnego ABI. Return the number of occurrences of value in o, that is, return the number of
keys for which o [key] == value. On failure, return —1. This is equivalent to the Python expression o.
count (value).

int PySequence_Contains (PyObject *o, PyObject *value)
Czes¢ stabilnego ABI. Determine if o contains value. If an item in o is equal to value, return 1, otherwise return
0. On error, return —1. This is equivalent to the Python expression value in o.

int PySequence_1In (PyObject *o, PyObject *value)
Czes¢ stabilnego ABI. Alias for PySequence_Contains ().
Niezalecane od wersji 3.14: The function is soft deprecated and should no longer be used to write new code.

Py_ssize_t PySequence_Index (PyObject *0, PyObject *value)
Czes¢ stabilnego ABI. Return the first index i for which o [i] == value. On error, return —1. This is equiva-
lent to the Python expression o. index (value).

PyObject *PySequence_List (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return a list object with the same contents as the
sequence or iterable o, or NULL on failure. The returned list is guaranteed to be new. This is equivalent to the
Python expression 1ist (o).

PyObject *PySequence_Tuple (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a tuple object with the same contents as the
sequence or iterable o, or NULL on failure. If o is a tuple, a new reference will be returned, otherwise a tuple
will be constructed with the appropriate contents. This is equivalent to the Python expression tuple (o).

PyObject *PySequence_Fast (PyObject *o, const char *m)

Wartos¢é zwracana: nowa referencja. Return the sequence or iterable o as an object usable by the other
PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises TypeError with
m as the message text. Returns NULL on failure.

The PySequence_Fast* functions are thus named because they assume o is a PyTupleObject or
a PyListObject and access the data fields of o directly.

As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that o was returned by PySequence_Fast () and that o is not NULL. The
size can also be retrieved by calling PySequence_Size () on o, but PySequence_Fast_GET_SIZE() 18
faster because it can assume o is a list or tuple.

PyObject *PySequence_Fast_GET_ITEM (PyObject *0, Py_ssize_t 1)
Wartos¢ zwracana: pozyczona referencja. Return the ith element of o, assuming that o was returned by
PySequence_Fast (), 01s not NULL, and that i is within bounds.

PyObject **PySequence_Fast_ITEMS (PyObject *0)

Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence Fast () and
0 is not NULL.

7.4. Sequence Protocol 115

The Python/C API, Wydanie 3.14.0a5

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change.
PyObject *PySequence_ITEM (PyObject *0, Py_ssize_t 1)

Wartos¢ zwracana: nowa referencja. Return the ith element of o or NULL on failure. Faster form of
PySequence_GetItem () but without checking that PySequence_Check () on o is true and without adju-
stment for negative indices.

7.5 Mapping Protocol

See also PyObject_GetItem(), PyObject_SetItem() and PyObject_DelItem().

int PyMapping_Check (PyObject *0)
Czes¢ stabilnego ABI. Return 1 if the object provides the mapping protocol or supports slicing, and 0 otherwise.
Note that it returns 1 for Python classes witha __getitem () method, since in general it is impossible to
determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

Py_ssize_t PyMapping_Length (PyObject *0)
Czes¢ stabilnego ABI. Returns the number of keys in object o on success, and -1 on failure. This is equivalent
to the Python expression len (o).

PyObject *PyMapping_GetItemString (PyObject *0, const char *key)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. This is the same as PyObject_GetItem(), but
key is specified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.

int PyMapping_GetOptionalItem (PyObject *obj, PyObject *key, PyObject **result)
Czes¢ stabilnego ABI od wersji 3.13. Variant of Pyobject_Get Item () which doesn’t raise KeyError if the
key is not found.

If the key is found, return 1 and set *result to a new strong reference to the corresponding value. If the key
is not found, return 0 and set *result to NULL; the KeyError is silenced. If an error other than KeyError is
raised, return —1 and set *result to NULL.

Added in version 3.13.

int PyMapping_GetOptionalItemString (PyObject *obj, const char *key, PyObject **result)
Czes¢ stabilnego ABI od wersji 3.13. This is the same as PyMapping GetOptionalItem (), but key is spe-
cified as a const char* UTF-8 encoded bytes string, rather than a Pyobject*.
Added in version 3.13.

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
Czes¢ stabilnego ABI. This is the same as PyObject_SetItem(), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

int PyMapping_DelItem (PyObject *o, PyObject *key)
This is an alias of PyObject_DelItem().

int PyMapping_DelItemString (PyObject *o, const char *key)
This is the same as PyObject_DelItem(), but key is specified as a const char* UTF-8 encoded bytes
string, rather than a PyObject*.

int PyMapping_HasKeyWithError (PyObject *o, PyObject *key)
Czes¢ stabilnego ABI od wersji 3.13. Return 1 if the mapping object has the key key and 0 otherwise. This is
equivalent to the Python expression key in o. On failure, return -1.

Added in version 3.13.

116 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.14.0a5

int PyMapping_HasKeyStringWithError (PyObject *o, const char *key)
Czes¢ stabilnego ABI od wersji 3.13. This is the same as PyMapping HasKeyliithError (), but key is spe-
cified as a const char* UTF-8 encoded bytes string, rather than a Pyob ject*.
Added in version 3.13.

int PyMapping_HasKey (PyObject *0, PyObject *key)
Czes¢ stabilnego ABI. Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to
the Python expression key in o. This function always succeeds.

© Informacja

Exceptions which occur when this calls _ getitem_ () method are silently ignored. For pro-
per error handling, use PyMapping HasKeyWithError (), PyMapping_GetOptionallItem() Or
PyObject_GetItem() instead.

int PyMapping_HasKeyString (PyObject *0, const char *key)

Czes¢ stabilnego ABI. This is the same as PyMapping HasKey (), but key is specified as a const char*
UTF-8 encoded bytes string, rather than a PyObject*.

© Informacja

Exceptions that occur when this calls _ _getitem__ () method or while creating the temporary str
object are silently ignored. For proper error handling, use PyMapping HasKeyStringWithError (),
PyMapping_GetOptionalltemString () Of PyMapping_GetItemString () instead.

PyObject *PyMapping_Keys (PyObject *0)
Warto$¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL. On success, return a list of the keys in object 0. On
failure, return NULL.

Zmienione w wersji 3.7: Previously, the function returned a list or a tuple.

PyObject *PyMapping_Values (PyObject *0)

Wartos¢ zwracana: nowa referencja. Czesé stabilnego ABIL. On success, return a list of the values in object o.
On failure, return NULL.

Zmienione w wersji 3.7: Previously, the function returned a list or a tuple.
PyObject *PyMapping_Items (PyObject *0)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. On success, return a list of the items in object o,
where each item is a tuple containing a key-value pair. On failure, return NULL.

Zmienione w wersji 3.7: Previously, the function returned a list or a tuple.

7.6 lterator Protocol

There are two functions specifically for working with iterators.

int PyIter_Check (PyObject *0)
Czes¢ stabilnego ABI od wersji 3.8. Return non-zero if the object o can be safely passed to
pyIter NextItem() and 0 otherwise. This function always succeeds.

int PyAIter_Check (PyObject *0)

Czes¢ stabilnego ABI od wersji 3.10. Return non-zero if the object o provides the AsyncIterator protocol,
and 0 otherwise. This function always succeeds.

Added in version 3.10.

7.6. lterator Protocol 117

The Python/C API, Wydanie 3.14.0a5

int PyIter_NextItem (PyObject *iter, PyObject **item)
Czes¢ stabilnego ABI od wersji 3.14. Return 1 and set item to a strong reference of the next value of the iterator

iter on success. Return 0 and set ifem to NULL if there are no remaining values. Return -1, set ifem to NULL
and set an exception on error.

Added in version 3.14.
PyObject *PyIter_Next (PyObject *0)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. This is an older version of PyIter_ NextItem(),
which is retained for backwards compatibility. Prefer Pyrter NextItem().

Return the next value from the iterator o. The object must be an iterator according to PyIter Check () (itis
up to the caller to check this). If there are no remaining values, returns NULL with no exception set. If an error
occurs while retrieving the item, returns NULL and passes along the exception.

type PySendResult
The enum value used to represent different results of Py7ter Send().

Added in version 3.10.
PySendResult PyIter_Send (PyObject *iter, PyObject *arg, PyObject **presult)
Czes¢ stabilnego ABI od wersji 3.10. Sends the arg value into the iterator iter. Returns:
e PYGEN_RETURN if iterator returns. Return value is returned via presult.
e PYGEN_NEXT if iterator yields. Yielded value is returned via presult.
e PYGEN_ERROR if iterator has raised and exception. presult is set to NULL.

Added in version 3.10.

7.7 Buffer Protocol

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the
built-in bytes and bytearray, and some extension types like array . array. Third-party libraries may define their
own types for special purposes, such as image processing or numeric analysis.

While each of these types have their own semantics, they share the common characteristic of being backed by
a possibly large memory buffer. It is then desirable, in some situations, to access that buffer directly and without
intermediate copying.

Python provides such a facility at the C level in the form of the buffer protocol. This protocol has two sides:

« on the producer side, a type can export a ,,buffer interface” which allows objects of that type to expose infor-
mation about their underlying buffer. This interface is described in the section Buffer Object Structures;

« on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object
(for example a method parameter).

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms
are possible; for example, the elements exposed by an array.array can be multi-byte values.

An example consumer of the buffer interface is the write () method of file objects: any object that can export
a series of bytes through the buffer interface can be written to a file. While write () only needs read-only access
to the internal contents of the object passed to it, other methods such as readinto () need write access to the
contents of their argument. The buffer interface allows objects to selectively allow or reject exporting of read-write
and read-only buffers.

There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:
e call Pyobject_GetBuffer () with the right parameters;
e call PyArg ParseTuple () (or one of its siblings) with one of the y*, w* or s* format codes.

In both cases, PyBurfer Release () must be called when the buffer isn’t needed anymore. Failure to do so could
lead to various issues such as resource leaks.

118 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.14.0a5

7.7.1 Buffer structure

Buffer structures (or simply ,,buffers”) are useful as a way to expose the binary data from another object to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of
memory, it is possible to expose any data to the Python programmer quite easily. The memory could be a large,
constant array in a C extension, it could be a raw block of memory for manipulation before passing to an operating
system library, or it could be used to pass around structured data in its native, in-memory format.

Contrary to most data types exposed by the Python interpreter, buffers are not PyOb ject pointers but rather simple
C structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is
needed, a memoryview object can be created.

For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer().
type Py_buffer

Czes¢ stabilnego ABI (w tym wszystkie sktadniki) od wersji 3.11.

void *buf

A pointer to the start of the logical structure described by the buffer fields. This can be any location within
the underlying physical memory block of the exporter. For example, with negative st rides the value
may point to the end of the memory block.

For contiguous arrays, the value points to the beginning of the memory block.
PyObject *ob3j
A new reference to the exporting object. The reference is owned by the consumer and automatically

released (i.e. reference count decremented) and set to NULL by PyBuffer Release (). The field is the
equivalent of the return value of any standard C-API function.

As a special case, for temporary buffers that are wrapped by PyMemoryView FromBuffer () Or
PyBuffer FillInfo () this field is NULL. In general, exporting objects MUST NOT use this sche-
me.

Py_ssize_t len

product (shape) * itemsize. For contiguous arrays, this is the length of the underlying memory
block. For non-contiguous arrays, it is the length that the logical structure would have if it were copied
to a contiguous representation.

Accessing ((char *)buf) [0] up to ((char *)buf) [len-1] isonly valid if the buffer has been
obtained by a request that guarantees contiguity. In most cases such a request will be PyBUF_STMPLE or
PyBUF_WRITABLE.
int readonly
An indicator of whether the buffer is read-only. This field is controlled by the pyBUF WRITABLE flag.
Py _ssize_t itemsize
Item size in bytes of a single element. Same as the value of struct.calcsize () called on non-NULL

format values.

Important exception: If a consumer requests a buffer without the pyBUF_FORMAT flag, format will be
set to NULL, but i temsi ze still has the value for the original format.

If shapeis present, the equality product (shape) * itemsize == lenstill holds and the consumer
can use itemsize to navigate the buffer.

If shape is NULL as a result of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer must
disregard i temsize and assume itemsize ==

char *format

A NULL terminated string in st ruct module style syntax describing the contents of a single item. If
this is NULL, "B" (unsigned bytes) is assumed.

This field is controlled by the PyBUF_FORMAT flag.

7.7. Buffer Protocol 119

The Python/C API, Wydanie 3.14.0a5

Constants:

int ndim

The number of dimensions the memory represents as an n-dimensional array. If it is 0, buf points to
a single item representing a scalar. In this case, shape, strides and suboffsets MUST be NULL.
The maximum number of dimensions is given by PyBUF_MAX _NDIM.

Py_ssize_t *shape

Anarray of Py _ssize_ t of length ndimindicating the shape of the memory as an n-dimensional array.
Note that shape [0] * ... * shape[ndim-1] * itemsize MUST be equalto Ien.

Shape values are restricted to shape [n] >= 0. The case shape[n] == 0 requires special attention.
See complex arrays for further information.

The shape array is read-only for the consumer.

Py_ssize_t *strides

An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element in
each dimension.

Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST
be able to handle the case strides[n] <= 0. See complex arrays for further information.

The strides array is read-only for the consumer.

Py_ssize_t *suboffsets

An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the nth
dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after de-
-referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding in
a contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for
further information how to access elements of such an array.

The suboffsets array is read-only for the consumer.

void *internal

This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be
freed when the buffer is released. The consumer MUST NOT alter this value.

PyBUF_MAX_NDIM

The maximum number of dimensions the memory represents. Exporters MUST respect this limit, consumers
of multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_NDIM dimensions. Currently set

7.7.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyObject_GetBuffer (). Since
the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument to
specify the exact buffer type it can handle.

All py_buffer fields are unambiguously defined by the request type.

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: obj, buf, len,
itemsize, ndim.

120

Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.14.0a5

readonly, format

PyBUF_WRITABLE

Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers. For example, PyBUF_SIMPLE | PyBUF_WRITABLE can

be used to request a simple writable buffer.

PyBUF_FORMAT

Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field MUST

be NULL.

PyBUF_WRITABLE can be |»d to any of the flags in the next section. Since pPyBUF_SIMPLE is defined as O,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT must be |[»d to any of the flags except PyBUF_sS1MPLE, because the latter already implies format B
(unsigned bytes). PyBUF_FORMAT cannot be used on its own.

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each

flag contains all bits of the flags below it.

Request

ksztatt | strides suboffsets |

PyBUF_INDIRECT

PyBUF_STRIDES

PyBUF_ND

PyBUF_SIMPLE

tak tak if needed
tak tak NULL
tak NULL NULL

NULL | NULL NULL

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information,

the buffer must be C-contiguous.

Request

| ksztatt | strides | suboffsets | contig |

PyBUF_C_CONTIGUOUS

PyBUF_F_CONTIGUOUS

PyBUF_ANY_ CONTIGUOUS

PyBUF_ND

tak

tak

tak

tak

tak NULL C
tak NULL F
tak NULL CorF
NULL | NULL C

7.7. Buffer Protocol

121

The Python/C API, Wydanie 3.14.0a5

compound requests

All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.

In the following table U stands for undefined contiguity. The consumer would have to call
PyBuffer IsContiguous () to determine contiguity.

| Request ksztatt strides | suboffsets contig readonly | format |

tak tak if needed U 0 tak
PyBUF_FULL

tak tak if needed U lor0 tak
PyBUF_FULL_RO

tak tak NULL U 0 tak
PyBUF_RECORDS

tak tak NULL U lor0 tak
PyBUF_RECORDS_RO

tak tak NULL U 0 NULL
PyBUF_STRIDED

tak tak NULL U lor0 NULL
PyBUF_STRIDED_RO

tak NULL | NULL C 0 NULL
PyBUF_CONTIG

tak NULL | NULL C lor0 NULL
PyBUF_CONTIG_RO

7.7.3 Complex arrays
NumPy-style: shape and strides
The logical structure of NumPy-style arrays is defined by itemsize, ndim, shape and strides.

If ndim == 0, the memory location pointed to by bur is interpreted as a scalar of size itemsize. In that case,
both shape and st rides are NULL.

If strides is NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must
access an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides([n-1];
item = *((typeof (item) *)ptr);

As noted above, buf can point to any location within the actual memory block. An exporter can check the validity
of a buffer with this function:

def verify_ structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem

mn

(ciag dalszy na nastgpnej stronie)

122 Rozdzial 7. Warstwa obiektow abstrakcyjnych

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False

if any(v % itemsize for v in strides):
return False

if ndim <= 0:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[j]* (shape[j]-1) for j in range (ndim)
if strides[j] <= 0)

imax = sum(strides[j]* (shape[j]l-1) for j in range (ndim)
if strides([j] > 0)

return 0 <= offset+imin and offset+imaxt+itemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the
next element in a dimension. For example, the regular three-dimensional C-array char v[2][2] [3] can also be
viewed as an array of 2 pointers to 2 two-dimensional arrays: char (*v[21) [2][3]. In suboffsets representation,
those two pointers can be embedded at the start of buf, pointing to two char x[2] [3] arrays that can be located
anywhere in memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when
there are both non-NULL strides and suboffsets:

void *get_item_pointer (int ndim, wvoid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; i++)

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = *((char**)pointer) + suboffsets[i];

}

return (void*)pointer;

7.7.4 Buffer-related functions

int PyObject_CheckBuffer (PyObject *obj)

Czes¢ stabilnego ABI od wersji 3.11. Return 1 if obj supports the buffer interface otherwise 0. When 1 is
returned, it doesn’t guarantee that PyObject_GetBuffer () will succeed. This function always succeeds.

int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)
Czes¢ stabilnego ABI od wersji 3.11. Send a request to exporter to fill in view as specified by flags. If the exporter

cannot provide a buffer of the exact type, it MUST raise BufferError, set view—>obj to NULL and return
-1.

On success, fill in view, set view—>obj to a new reference to exporter and return 0. In the case of chained buffer
providers that redirect requests to a single object, view—>obj MAY refer to this object instead of exporter
(See Buffer Object Structures).

7.7. Buffer Protocol 123

The Python/C API, Wydanie 3.14.0a5

Successful calls to PyObject_GetBuffer () must be paired with calls to PyBuffer Release (), similar
tomalloc () and free (). Thus, after the consumer is done with the buffer, PyBurfer Release () must
be called exactly once.

void PyBuffer_Release (Py_buffer *view)

Czes¢ stabilnego ABI od wersji 3.11. Release the buffer view and release the strong reference (i.e. decrement the
reference count) to the view’s supporting object, view—>ob3j. This function MUST be called when the buffer
is no longer being used, otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer ().

Py_ssize_t PyBuffer_SizeFromFormat (const char *format)
Czes¢ stabilnego ABI od wersji 3.11. Return the implied i temsize from format. On error, raise an exception
and return -1.

Added in version 3.9.

int PyBuffer_IsContiguous (const Py_buffer *view, char order)
Czes¢ stabilnego ABI od wersji 3.11. Return 1 if the memory defined by the view is C-style (order is 'C') or
Fortran-style (order is 'F ') contiguous or either one (order is 'A"). Return 0 otherwise. This function always
succeeds.

void *PyBuffer_ GetPointer (const Py_buffer *view, const Py_ssize_t *indices)
Czes¢ stabilnego ABI od wersji 3.11. Get the memory area pointed to by the indices inside the given view.
indices must point to an array of view->ndim indices.

int PyBuf fer_FromContiguous (const Py_buffer *view, const void *buf, Py_ssize_t len, char fort)
Czes¢ stabilnego ABI od wersji 3.11. Copy contiguous len bytes from buf to view. fort canbe 'C' or 'F' (for
C-style or Fortran-style ordering). 0 is returned on success, —1 on error.

int PyBuffer_ToContiguous (void *buf, const Py_buffer *src, Py_ssize_t len, char order)

Czes¢ stabilnego ABI od wersji 3.11. Copy len bytes from src to its contiguous representation in buf. order can
be 'c' or 'F' or 'A' (for C-style or Fortran-style ordering or either one). 0 is returned on success, -1 on
error.

This function fails if len = src->len.

int PyObject_CopyData (PyObject *dest, PyObject *src)
Czes¢ stabilnego ABI od wersji 3.11. Copy data from src to dest buffer. Can convert between C-style and or
Fortran-style buffers.
0 is returned on success, —1 on error.
void PyBuffer_FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize, char
order)
Czes¢ stabilnego ABI od wersji 3.11. Fill the strides array with byte-strides of a contiguous (C-style if order is
'c' or Fortran-style if order is 'F ') array of the given shape with the given number of bytes per element.
int PyBuffer_FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly, int flags)
Czes¢ stabilnego ABI od wersji 3.11. Handle buffer requests for an exporter that wants to expose buf of size

len with writability set according to readonly. buf is interpreted as a sequence of unsigned bytes.

The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf
has been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view—>obj to a new reference to exporter and return 0. Otherwise, raise Buf ferError, set
view->o0bj to NULL and return —1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must
be passed unmodified. Otherwise, exporter MUST be NULL.

124 Rozdzial 7. Warstwa obiektow abstrakcyjnych

ROZDZIAL 8

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you
must perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check (). The
chapter is structured like the ,,family tree” of Python object types.

A\ Ostrzezenie

While the functions described in this chapter carefully check the type of the objects which are passed in, many
of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can cause
memory access violations and immediate termination of the interpreter.

8.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

8.1.1 Type Objects

type PyTypeObject
Czes¢ ograniczonego API (jako nieprzezroczysta struktura). The C structure of the objects used to describe
built-in types.
PyTypeObject PyType_Type
Czes¢ stabilnego ABI. This is the type object for type objects; it is the same object as t ype in the Python layer.
int PyType_Check (PyObject *0)
Return non-zero if the object o is a type object, including instances of types derived from the standard type
object. Return 0 in all other cases. This function always succeeds.
int PyType_CheckExact (PyObject *0)
Return non-zero if the object o is a type object, but not a subtype of the standard type object. Return 0 in all
other cases. This function always succeeds.
unsigned int PyType_ClearCache ()
Czes¢ stabilnego ABI. Clear the internal lookup cache. Return the current version tag.

125

The Python/C API, Wydanie 3.14.0a5

unsigned long PyType_GetF1lags (PyTypeObject *type)

Czes¢ stabilnego ABI. Return the tp_f1ags member of fype. This function is primarily meant for use with
Py LIMITED_API; the individual flag bits are guaranteed to be stable across Python releases, but access to
tp_flags itself is not part of the limited API.

Added in version 3.2.

Zmienione w wersji 3.4: The return type is now unsigned long rather than long.

PyObject *PyType_GetDict (PyTypeObject *type)

Return the type object’s internal namespace, which is otherwise only exposed via a read-only proxy (cls.
__dict_). This is a replacement for accessing tp_dict directly. The returned dictionary must be treated as
read-only.

This function is meant for specific embedding and language-binding cases, where direct access to the dict is
necessary and indirect access (e.g. via the proxy or PyObject_GetAttr ())isn't adequate.

Extension modules should continue to use tp_dict, directly or indirectly, when setting up their own types.

Added in version 3.12.

void PyType_Modified (PyTypeObject *type)

Czes¢ stabilnego ABI. Invalidate the internal lookup cache for the type and all of its subtypes. This function
must be called after any manual modification of the attributes or base classes of the type.

int PyType_AddWatcher (PyType_WatchCallback callback)

Register callback as a type watcher. Return a non-negative integer ID which must be passed to future calls to
PyType_Watch (). In case of error (e.g. no more watcher IDs available), return —1 and set an exception.

Added in version 3.12.

int PyType_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id (previously returned from Py Type AddWatcher ()). Return 0 on
success, —1 on error (e.g. if watcher_id was never registered.)

An extension should never call PyType_ClearWatcher with a watcher_id that was not returned to it by
a previous call to Py Type AddWatcher ().

Added in version 3.12.

int PyType_Watch (int watcher_id, PyObject *type)

Mark type as watched. The callback granted watcher_id by Py Type Addwatcher () will be called whenever
PyType_ Modified () reports a change to fype. (The callback may be called only once for a series of conse-
cutive modifications to type, if _PyType_Lookup () is not called on type between the modifications; this is
an implementation detail and subject to change.)

An extension should never call PyType_Watch with a watcher_id that was not returned to it by a previous call
to PyType_AddWatcher ().

Added in version 3.12.

typedef int (*PyType_WatchCallback)(PyObject *type)

Type of a type-watcher callback function.

The callback must not modify type or cause Py Type_Modified () to be called on type or any type in its MRO;
violating this rule could cause infinite recursion.

Added in version 3.12.

int PyType_HasFeature (PyTypeObject *0, int feature)

Return non-zero if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC (PyTypeObject *0)

Return true if the type object includes support for the cycle detector; this tests the type flag
Py _TPFLAGS_HAVE_GC.

126

Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Czes¢ stabilnego ABI. Return true if a is a subtype of b.
This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on b.
Call pyobject_TIsSubclass () to do the same check that i ssubclass () would do.

PyObject *PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL. Generic handler for the tp_alloc slot of a type
object. Use Python’s default memory allocation mechanism to allocate a new instance and initialize all its
contents to NULL.

PyObject *PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL. Generic handler for the tp_new slot of a type
object. Create a new instance using the type’s tp_alloc slot.

int PyType_Ready (PyTypeObject *type)
Czes¢ stabilnego ABI. Finalize a type object. This should be called on all type objects to finish their initialization.

This function is responsible for adding inherited slots from a type’s base class. Return 0 on success, or return
-1 and sets an exception on error.

© Informacja

If some of the base classes implements the GC protocol and the provided type does not include the
Py TPFLAGS_HAVE_GC in its flags, then the GC protocol will be automatically implemented from its
parents. On the contrary, if the type being created does include Py TPFLAGS_HAVE_GC in its flags then
it must implement the GC protocol itself by at least implementing the tp_t raverse handle.

PyObject *PyType_GetName (PyTypeObject *type)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.11. Return the type’s name. Equivalent
to getting the type’s __name___ attribute.
Added in version 3.11.

PyObject *PyType_GetQualName (PyTypeObject *type)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.11. Return the type’s qualified name.
Equivalent to getting the type’s __qualname__ attribute.
Added in version 3.11.

PyObject *PyType_GetFullyQualifiedName (PyTypeObject *type)
Czes¢ stabilnego ABI od wersji 3.13. Return the type’s fully qualified name. Equivalent to £"{type.
__module_ }.{type.__qualname__}",or type.__qualname__ if type._module__ isnot a string
oris equal to "builtins".

Added in version 3.13.

PyObject *PyType_GetModuleName (PyTypeObject *type)
Czes¢ stabilnego ABI od wersji 3.13. Return the type’s module name. Equivalent to getting the type.
__module___ attribute.

Added in version 3.13.
void *PyType_GetSlot (PyTypeObject *type, int slot)
Czes¢ stabilnego ABI od wersji 3.4. Return the function pointer stored in the given slot. If the result is NULL,

this indicates that either the slot is NULL, or that the function was called with invalid parameters. Callers will
typically cast the result pointer into the appropriate function type.

See PyType Slot.slot for possible values of the slor argument.
Added in version 3.4.

Zmienione w wersji 3.10: PyType_GetSlot () can now accept all types. Previously, it was limited to /eap
types.

8.1. Fundamental Objects 127

The Python/C API, Wydanie 3.14.0a5

PyObject *PyType_GetModule (PyTypeObject *type)

Czes¢ stabilnego ABI od wersji 3.10. Return the module object associated with the given type when the type
was created using PyType_FromModuleAndSpec ().

If no module is associated with the given type, sets TypeError and returns NULL.

This function is usually used to get the module in which a method is defined. Note that in such a method,
PyType_GetModule (Py_TYPE (self)) may not return the intended result. Py_TYPE (self) may be a sub-
class of the intended class, and subclasses are not necessarily defined in the same module as their superclass.
See PyCMethod to get the class that defines the method. See Py Type GetModuleByDef () for cases when
PyCMethod cannot be used.

Added in version 3.9.

void *PyType_GetModuleState (PyTypeObject *type)

Czes¢ stabilnego ABI od wersji 3.10. Return the state of the module object associated with the given type. This
is a shortcut for calling PyModule GetState () on the result of PyType GetModule ().

If no module is associated with the given type, sets TypeError and returns NULL.
If the fype has an associated module but its state is NULL, returns NULL without setting an exception.

Added in version 3.9.

PyObject *PyType_GetModuleByDef (PyTypeObject *type, struct PyModuleDef *def)

Czes¢ stabilnego ABI od wersji 3.13. Find the first superclass whose module was created from the given
PyModuleDef def, and return that module.

If no module is found, raises a TypeError and returns NULL.

This function is intended to be used together with PyModule GetState () to get module state from slot
methods (such as tp_init or nb_add) and other places where a method’s defining class cannot be passed
using the PyCMethod calling convention.

Added in version 3.11.

int PyType_GetBaseByToken (PyTypeObject *type, void *token, PyTypeObject **result)

Czes¢ stabilnego ABI od wersji 3.14. Find the first superclass in type’s method resolution order whose
Py_tp_token token is equal to the given one.

o If found, set *result to a new strong reference to it and return 1.

« If not found, set *result to NULL and return 0.

o On error, set *result to NULL and return -1 with an exception set.
The result argument may be NULL, in which case *result is not set. Use this if you need only the return value.
The token argument may not be NULL.

Added in version 3.14.

int PyUnstable_Type_ AssignVersionTag (PyTypeObject *type)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Attempt to assign a version tag to the given type.

Returns 1 if the type already had a valid version tag or a new one was assigned, or 0 if a new tag could not be
assigned.

Added in version 3.12.

128

Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

Creating Heap-Allocated Types

The following functions and structs are used to create reap types.

PyObject *PyType_FromMetaclass (PyTypeObject *metaclass, PyObject *module, PyType_Spec *spec, PyObject
*bases)

Czes¢ stabilnego ABI od wersji 3.12. Create and return a heap type from the spec (see
Py_TPFLAGS_HEAPTYPE).

The metaclass metaclass is used to construct the resulting type object. When metaclass is NULL, the metaclass
is derived from bases (or Py_tp_base[s] slots if bases is NULL, see below).

Metaclasses that override ¢ p_new are not supported, except if tp_new is NULL. (For backwards compatibility,
other PyType_From* functions allow such metaclasses. They ignore tp_new, which may result in incomplete
initialization. This is deprecated and in Python 3.14+ such metaclasses will not be supported.)

The bases argument can be used to specify base classes; it can either be only one class or a tuple of classes. If
bases is NULL, the Py_tp_bases slot is used instead. If that also is NULL, the Py_tp_base slot is used instead. If
that also is NULL, the new type derives from object.

The module argument can be used to record the module in which the new class is defined. It must be a module
object or NULL. If not NULL, the module is associated with the new type and can later be retrieved with
pyType_GetModule (). The associated module is not inherited by subclasses; it must be specified for each
class individually.

This function calls Py Type_Ready () on the new type.

Note that this function does not fully match the behavior of calling type () or using the class statement.
With user-provided base types or metaclasses, prefer calling type (or the metaclass) over PyType_From*
functions. Specifically:

e _ new__ () is not called on the new class (and it must be set to type._ _new_).
e __init__ () is not called on the new class.
e _init_subclass__ () is not called on any bases.
e _ set_name__ () is not called on new descriptors.
Added in version 3.12.
PyObject *PyType_FromModuleAndSpec (PyObject *module, PyType_Spec *spec, PyObject *bases)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.10. Equivalent to
PyType_FromMetaclass (NULL, module, spec, bases).

Added in version 3.9.

Zmienione w wersji 3.10: The function now accepts a single class as the bases argument and NULL as the
tp_doc slot.

Zmienione w wersji 3.12: The function now finds and uses a metaclass corresponding to the provided base
classes. Previously, only type instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated.

Zmienione w wersji 3.14: Creating classes whose metaclass overrides tp_new is no longer allowed.
PyObject *PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.3, Equivalent to
PyType_FromMetaclass (NULL, NULL, spec, bases).

Added in version 3.3.

Zmienione w wersji 3.12: The function now finds and uses a metaclass corresponding to the provided base
classes. Previously, only t ype instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated.

8.1. Fundamental Objects 129

The Python/C API, Wydanie 3.14.0a5

Zmienione w wersji 3.14: Creating classes whose metaclass overrides tp_new is no longer allowed.

PyObject *PyType_FromSpec (PyType_Spec *spec)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Equivalent to PyType_FromMetaclass (NULL,
NULL, spec, NULL).

Zmienione w wersji 3.12: The function now finds and uses a metaclass corresponding to the base classes
provided in Py_tp_base[s] slots. Previously, only t ype instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated.

Zmienione w wersji 3.14: Creating classes whose metaclass overrides tp_new is no longer allowed.

int PyType_Freeze (PyTypeObject *type)

Czes¢ stabilnego ABI od wersji 3.14. Make a type immutable: set the Py TPFLAGS ITMMUTABLETYPE flag.
All base classes of fype must be immutable.
On success, return 0. On error, set an exception and return —1.

The type must not be used before it’'s made immutable. For example, type instances must not be created before
the type is made immutable.

Added in version 3.14.

type PyType_Spec

Czes¢ stabilnego ABI (w tym wszystkie sktadniki). Structure defining a type’s behavior.

const char *name

Name of the type, used to set Py TypeObject . tp_name.

int basicsize

If positive, specifies the size of the instance in bytes. It is used to set Py TypeObject.tp_basicsize.
If zero, specifies that tp_basicsize should be inherited.

If negative, the absolute value specifies how much space instances of the class need in addition to the
superclass. Use PyObject_Get TypeData () to get a pointer to subclass-specific memory reserved this
way.

Zmienione w wersji 3.12: Previously, this field could not be negative.

int itemsize

Size of one element of a variable-size type, in bytes. Used to set Py TypeObject.tp_itemsize. See
tp_itemsize documentation for caveats.

If zero, tp_itemsize is inherited. Extending arbitrary variable-sized classes is dangerous, since some
types use a fixed offset for variable-sized memory, which can then overlap fixed-sized memory used by
a subclass. To help prevent mistakes, inheriting itemsize is only possible in the following situations:

« The base is not variable-sized (its tp_itemsize).

o The requested PyType_ Spec.basicsize is positive, suggesting that the memory layout of the
base class is known.

o The requested Py Type Spec.basicsize is zero, suggesting that the subclass does not access the
instance’s memory directly.

o With the py_71PFLAGS_1TEMS_AT END flag.

unsigned int £lags

Type flags, used to set Py TypeObject.tp_flags.

If the Py_TPFLAGS_HEAPTYPE flag is not set, Py Type FromSpecliithBases () sets it automatically.

130

Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

PyType_Slot *slots
Array of PyType_Slot structures. Terminated by the special slot value {0, NULL}.

Each slot ID should be specified at most once.

type PyType_Slot
Czes¢ stabilnego ABI (w tym wszystkie sktadniki). Structure defining optional functionality of a type, containing
a slot ID and a value pointer.

int slot
A slot ID.

Slot IDs are named like the field names of the structures Py TypeObject, PyNumberMethods,
PySequenceMethods, PyMappingMethods and PyAsyncMethods with an added py_ prefix. For
example, use:

e Py _tp_dealloctoset PyTypeObject.tp_dealloc
e Py _nb_addtoset PyNumberMethods.nb_add
e Py _sqg lengthtoset PySequenceMethods.sqg_length
An additional slot is supported that does not correspond to a PyTypeObject struct field:
e Py tp_ token
The following “offset” fields cannot be set using Py Type_ Slot:
e tp weaklistoffset (use Py_TPFLAGS_MANAGED_ WEAKREF instead if possible)
e tp_dictoffset (use Py _TPFLAGS_MANAGED_DICT instead if possible)
e tp_vectorcall offset (use"__vectorcalloffset__ " in PyMemberDef)

If it is not possible to switch to a MANAGED flag (for example, for vectorcall or to support Python older
than 3.12), specify the offset in Py_tp members. See PyMemberDef documentation for details.

The following internal fields cannot be set at all when creating a heap type:
e tp_dict, tp_mro, tp_cache, tp_subclasses, and tp_weaklist.

Setting Py_tp_bases or Py_tp_base may be problematic on some platforms. To avoid issues, use the
bases argument of PyType FromSpecWithBases () instead.

Zmienione w wersji 3.9: Slots in PyBufferProcs may be set in the unlimited API.

Zmienione w wersji 3.11: bf_getbufferand bf_releasebuffer are now available under the limited
API.

Zmienione w wersji 3.14: The field tp_vectorcall can now set using Py_tp_vectorcall. See the
field’s documentation for details.

void *pfunec

The desired value of the slot. In most cases, this is a pointer to a function.
pfunc values may not be NULL, except for the following slots:

e Py_tp_doc

e Py tp_ token (for clarity, prefer py_Tp USE_SpPEC rather than NULL)

Py_tp_token
A slot that records a static memory layout ID for a class.

If the PyType_Spec of the class is statically allocated, the token can be set to the spec using the special value
Py_TP_USE_SPEC:

static PyType_Slot foo_slots[] = {
{Py_tp_token, Py_TP_USE_SPEC},

8.1. Fundamental Objects 131

The Python/C API, Wydanie 3.14.0a5

It can also be set to an arbitrary pointer, but you must ensure that:
« The pointer outlives the class, so it’s not reused for something else while the class exists.
« It ,belongs” to the extension module where the class lives, so it will not clash with other extensions.

Use PyType_GetBaseByToken () to check if a class’s superclass has a given token - that is, check whether
the memory layout is compatible.

To get the token for a given class (without considering superclasses), use PyType GetSlot () with
Py_tp_token.

Added in version 3.14.

Py_TP_USE_SPEC
Used as a value with Py_tp_token to set the token to the class’s Py Type_Spec. Expands to NULL.

Added in version 3.14.

8.1.2 The None Object

Note that the PyTypeobject for None is not directly exposed in the Python/C API. Since None is a singleton,
testing for object identity (using == in C) is sufficient. There is no PyNone_Check () function for the same reason.
PyObject *Py_None

The Python None object, denoting lack of value. This object has no methods and is immortal.

Zmienione w wersji 3.12: Py_None is immortal.

Py_RETURN_NONE
Return Py_None from a function.

8.2 Numeric Objects

8.2.1 Integer Objects
All integers are implemented as ,,long” integer objects of arbitrary size.

On error, most PyLong_As* APIs return (return type)-1 which cannot be distinguished from a number. Use
PyErr_Occurred () to disambiguate.
type PyLongObject
Czes¢ ograniczonego API (jako nieprzezroczysta struktura). This subtype of PyoObject represents a Python
integer object.
PyTypeObject PyLong_Type
Czes¢ stabilnego ABI. This instance of PyTypeObject represents the Python integer type. This is the same
object as int in the Python layer.
int PyLong_Check (PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongobject. This function always succe-
eds.
int PyLong_CheckExact (PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongObject. This function always
succeeds.
PyObject *PyLong_FromLong (long v)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a new PyLongObject object from v, or

NULL on failure.

The current implementation keeps an array of integer objects for all integers between -5 and 256. When you
create an int in that range you actually just get back a reference to the existing object.

132 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

PyObject *PyLong_FromUnsignedLong (unsigned long v)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return a new PyLongObject object from a C
unsigned long, or NULL on failure.

PyObject *PyLong_FromSsize_t (Py_ssize_t V)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a new PyLongObject object from a C
Py_ssize_t,or NULL on failure.

PyObject *PyLong_FromSize_t (size_t V)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return a new PyLongObject object from a C
size_t, or NULL on failure.

PyObject *PyLong_FromLongLong (long long v)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return a new PyLongObject object from a C
long long, or NULL on failure.

PyObject *PyLong_FromInt32 (int32_t value)

PyObject *PyLong_FromInt64 (int64_t value)
Czes¢ stabilnego ABI od wersji 3.14. Return a new PyLongObject object from a signed C int32_t or
int64_t, or NULL with an exception set on failure.
Added in version 3.14.

PyObject *PyLong_FromUnsignedLongLong (unsigned long long v)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return a new PyLongObject object from a C
unsigned long long, or NULL on failure.

PyObject *PyLong_FromUInt32 (uint32_t value)

PyObject *PyLong_FromUInt64 (uint64_t value)
Czes¢ stabilnego ABI od wersji 3.14. Return a new PyLongObject object from an unsigned C uint32_t or
uint64_t, or NULL with an exception set on failure.

Added in version 3.14.

PyObject *PyLong_FromDouble (double v)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return a new PylLongObject object from the
integer part of v, or NULL on failure.

PyObject *PyLong_FromString (const char *str, char **pend, int base)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return a new PyLongObject based on the string
value in str, which is interpreted according to the radix in base, or NULL on failure. If pend is non-NULL, *pend
will point to the end of st on success or to the first character that could not be processed on error. If base
is 0, str is interpreted using the integers definition; in this case, leading zeros in a non-zero decimal number
raises a ValueError. If base is not 0, it must be between 2 and 36, inclusive. Leading and trailing whitespace
and single underscores after a base specifier and between digits are ignored. If there are no digits or st is not
NULL-terminated following the digits and trailing whitespace, ValueError will be raised.

> Zobacz takze

PyLong_AsNativeBytes () and PyLong_FromNativeBytes () functions can be used to convert
a PyLongObject to/from an array of bytes in base 256.

PyObject *PyLong_FromUnicodeObject (PyObject *u, int base)

Wartos¢ zwracana: nowa referencja. Convert a sequence of Unicode digits in the string u to a Python integer
value.

Added in version 3.3.

8.2. Numeric Objects 133

The Python/C API, Wydanie 3.14.0a5

PyObject *PyLong_FromVoidPtr (void *p)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a Python integer from the pointer p. The
pointer value can be retrieved from the resulting value using PyLong AsVoidPtr ().

PyObject *PyLong_FromNativeBytes (const void *buffer, size_t n_bytes, int flags)

Create a Python integer from the value contained in the first n_bytes of buffer, interpreted as a two’s-
-complement signed number.

flags are as for PyLong AsNativeBytes (). Passing -1 will select the native endian that
CPython was compiled with and assume that the most-significant bit is a sign bit. Pas-
sing Py ASNATIVEBYTES_UNSIGNED_BUFFER will produce the same result as calling
PyLong FromUnsignedNativeBytes (). Other flags are ignored.

Added in version 3.13.

PyObject *PyLong_FromUnsignedNativeBytes (const void *buffer, size_t n_bytes, int flags)

Create a Python integer from the value contained in the first n_byfes of buffer, interpreted as an unsigned
number.

flags are as for PyLong AsNativeBytes (). Passing —1 will select the native endian that CPython was com-
piled with and assume that the most-significant bit is not a sign bit. Flags other than endian are ignored.

Added in version 3.13.

long PyLong_AsLong (PyObject *0bj)

Czes¢ stabilnego ABI. Return a C 1ong representation of obj. If obj is not an instance of PyLongObject, first
callits __index__ () method (if present) to convert it to a PyLongObject.

Raise overflowError if the value of obj is out of range for a 1ong.
Returns -1 on error. Use PyErr Occurred () to disambiguate.
Zmienione w wersji 3.8: Use __index__ () if available.

Zmienione w wersji 3.10: This function will no longer use __int__ ().

long PyLong_AS_LONG (PyObject *obj)
A soft deprecated alias. Exactly equivalent to the preferred PyLong_AsLong. In particular, it can fail
with OverflowError or another exception.

Niezalecane od wersji 3.14: The function is soft deprecated.

int PyLong_AsInt (PyObject *obj)

Czes¢ stabilnego ABI od wersji 3.13. Similar to PyLong_AsLong (), but store the result in a C int instead of
aC long.

Added in version 3.13.

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)

Czes¢ stabilnego ABI. Return a C 1ong representation of obj. If obj is not an instance of PyLongOb ject, first
callits __index__ () method (if present) to convert it to a PyLongObject.

If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or -1, respectively,
and return -1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1 as
usual.

Returns -1 on error. Use PyErr Occurred () to disambiguate.
Zmienione w wersji 3.8: Use __index__ () if available.

Zmienione w wersji 3.10: This function will no longer use __int__ ().

long long PyLong_AsLongLong (PyObject *obj)

Czes¢ stabilnego ABIL Return a C long long representation of obj. If obj is not an instance of
PyLongObject, firstcall its __index__ () method (if present) to convert it to a PyLongObject.

Raise overflowError if the value of obj is out of range for a 1ong long.

134

Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

Returns -1 on error. Use PyErr Occurred () to disambiguate.
Zmienione w wersji 3.8: Use __index__ () if available.
Zmienione w wersji 3.10: This function will no longer use __int__ ().

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)

Czes¢ stabilnego ABIL Return a C long long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__ () method (if present) to convert it to a PyLongObject.

If the value of obj is greater than LLONG_MAX or less than LLONG_MIN, set *overflow to 1 or -1, respectively,
and return -1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1 as
usual.

Returns -1 on error. Use PyErr Occurred () to disambiguate.

Added in version 3.2.

Zmienione w wersji 3.8: Use __index__ () if available.

Zmienione w wersji 3.10: This function will no longer use __int__ ().
Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)

Czes¢ stabilnego ABIL Return a C Py_ssize t representation of pylong. pylong must be an instance of
PyLongObject.

Raise overflowError if the value of pylong is out of range fora Py_ssize t.
Returns -1 on error. Use PyErr_Occurred () to disambiguate.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)
Czes¢ stabilnego ABI. Return a C unsigned long representation of pylong. pylong must be an instance of
PyLongObject.

Raise overflowError if the value of pylong is out of range for a unsigned long.
Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.

size_t PyLong_AsSize_t (PyObject *pylong)
Czes¢ stabilnego ABIL. Return a C size_t representation of pylong. pylong must be an instance of
PyLongObject.

Raise overflowError if the value of pylong is out of range for a size_t.
Returns (size_t)-1 onerror. Use PyErr Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong (PyObject *pylong)
Czesé stabilnego ABIL Returna Cunsigned long long representation of pylong. pylong must be an instance
of PyLongObject.

Raise overflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long)-1onerror. Use PyErr Occurred () to disambiguate.
Zmienione w wersji 3.1: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask (PyObject *0bj)
Czes¢ stabilnego ABIL Return a C unsigned long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__ () method (if present) to convert it to a PyLongObject.

If the value of obj is out of range for an unsigned long, return the reduction of that value modulo
ULONG_MAX + 1.

Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.
Zmienione w wersji 3.8: Use __index__ () if available.

Zmienione w wersji 3.10: This function will no longer use __int__ ().

8.2. Numeric Objects 135

The Python/C API, Wydanie 3.14.0a5

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obj)

Czes¢ stabilnego ABI. Return a C unsigned long long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__ () method (if present) to convert it to a PyLongObject.

If the value of o0bj is out of range for an unsigned long long, return the reduction of that value modulo
ULLONG_MAX + 1.

Returns (unsigned long long)-1 onerror. Use PyErr Occurred () to disambiguate.
Zmienione w wersji 3.8: Use __index__ () if available.

Zmienione w wersji 3.10: This function will no longer use __int__ ().

int PyLong_AsInt32 (PyObject *obj, int32_t *value)

int PyLong_AsInt64 (PyObject *obj, int64_t *value)

Czes¢ stabilnego ABI od wersji 3.14. Set *value to a signed C int32_t or int64_t representation of obj.
If the obj value is out of range, raise an OverflowError.

Set *value and return 0 on success. Set an exception and return -1 on error.

value must not be NULL.

Added in version 3.14.

int PyLong_AsUInt32 (PyObject *obj, uint32_t *value)

int PyLong_AsUInt 64 (PyObject *obj, uint64_t *value)

Czes¢ stabilnego ABI od wersji 3.14. Set *value to an unsigned C uint32_t or uint 64_t representation of
obj.

If obj is not an instance of PyLongObject, first call its __index__ () method (if present) to convert it to
a PyLongObject.

« If obj is negative, raise a ValueError.

« If the obj value is out of range, raise an OverflowError.
Set *value and return 0 on success. Set an exception and return —1 on error.
value must not be NULL.

Added in version 3.14.

double PyLong_AsDouble (PyObject *pylong)

Czes¢ stabilnego ABIL Return a C double representation of pylong. pylong must be an instance of
PyLongObject.

Raise overflowError if the value of pylong is out of range for a double.

Returns -1.0 on error. Use PyErr Occurred () to disambiguate.

void *PyLong_AsVoidPtr (PyObject *pylong)

Czes¢ stabilnego ABI. Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an
overflowError will be raised. This is only assured to produce a usable void pointer for values created with
PyLong_FromVoidPtr().

Returns NULL on error. Use PyErr_Occurred () to disambiguate.

Py_ssize_t PyLong_AsNativeBytes (PyObject *pylong, void *buffer, Py_ssize_t n_bytes, int flags)

Copy the Python integer value pylong to a native buffer of size n_bytes. The flags can be set to —1 to behave
similarly to a C cast, or to values documented below to control the behavior.

Returns -1 with an exception raised on error. This may happen if pylong cannot be interpreted as an integer,
or if pylong was negative and the Py ASNATIVEBYTES_REJECT_NEGATIVE flag was set.

Otherwise, returns the number of bytes required to store the value. If this is equal to or less than n_bytes, the
entire value was copied. All n_bytes of the buffer are written: large buffers are padded with zeroes.

136

Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

If the returned value is greater than than n_byfes, the value was truncated: as many of the lowest bits of the
value as could fit are written, and the higher bits are ignored. This matches the typical behavior of a C-style
downcast.

© Informacja

Overflow is not considered an error. If the returned value is larger than n_bytes, most significant bits were
discarded.

0 will never be returned.
Values are always copied as two’'s-complement.

Usage example:

int32_t value;
Py_ssize_t bytes = PyLong_AsNativeBytes (pylong, &value, sizeof (value), -1);
if (bytes < 0) {
// Failed. A Python exception was set with the reason.
return NULL;
}
else if (bytes <= (Py_ssize_t)sizeof (value)) {
// Success!
}
else {
// Overflow occurred, but 'value' contains the truncated
// lowest bits of pylong.

Passing zero to n_bytes will return the size of a buffer that would be large enough to hold the value. This may
be larger than technically necessary, but not unreasonably so. If n_bytes=0, buffer may be NULL.

© Informacja

Passing n_bytes=0 to this function is not an accurate way to determine the bit length of the value.

To get at the entire Python value of an unknown size, the function can be called twice: first to determine the
buffer size, then to fill it:

// Ask how much space we need.
Py_ssize_t expected = PyLong_AsNativeBytes (pylong, NULL, 0, -1);
if (expected < 0) {
// Failed. A Python exception was set with the reason.
return NULL;
}
assert (expected != 0); // Impossible per the API definition.
uint8_t *bignum = malloc (expected) ;
if (!bignum) {
PyErr_SetString (PyExc_MemoryError, "bignum malloc failed.");
return NULL;
}
// Safely get the entire value.
Py_ssize_t bytes = PyLong_AsNativeBytes (pylong, bignum, expected, -1);
if (bytes < 0) { // Exception has been set.
free (bignum) ;
return NULL;

(ciag dalszy na nastgpnej stronie)

8.2. Numeric Objects 137

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)

else if (bytes > expected) { // This should not be possible.

PyErr_SetString (PyExc_RuntimeError,

"Unexpected bignum truncation after a size check.");

free (bignum) ;

return NULL;
}
// The expected success given the above pre-check.
// ... use bignum
free (bignum) ;

L J

flags is either -1 (Py_ASNATIVEBYTES_DEFAULTS) to select defaults that behave most like a C cast, or
a combination of the other flags in the table below. Note that —1 cannot be combined with other flags.

Currently, -1 corresponds to Py ASNATIVEBYTES_NATIVE_ENDIAN |
Py_ASNATIVEBYTES_UNSIGNED_BUFFER.

Flag Wartos¢

=il
Py ASNATIVEBYTES_DEFAULTS

0
Py_ASNATIVEBYTES_BIG_ENDIAN

1
Py_ASNATIVEBYTES_ LITTLE_ENDIAN

3
Py_ASNATIVEBYTES_NATIVE_ENDIAN

4
Py_ASNATIVEBYTES_UNSIGNED BUFFER

8
Py_ASNATIVEBYTES_REJECT NEGATIVE

16

Py_ASNATIVEBYTES_ALLOW_INDEX

Specifying Py_ASNATIVEBYTES_NATIVE_ENDIAN will override any other endian flags. Passing 2 is reserved.

By default, sufficient buffer will be requested to include a sign bit. For example, when converting 128 with
n_bytes=1, the function will return 2 (or more) in order to store a zero sign bit.

If Py ASNATIVEBYTES_UNSIGNED_BUFFER is specified, a zero sign bit will be omitted from size calcula-
tions. This allows, for example, 128 to fit in a single-byte buffer. If the destination buffer is later treated as
signed, a positive input value may become negative. Note that the flag does not affect handling of negative
values: for those, space for a sign bit is always requested.

Specifying Py_ASNATIVEBYTES_REJECT_NEGATIVE causes an exception to be set if pylong is negative. Wi-
thout this flag, negative values will be copied provided there is enough space for at least one sign bit, regardless
of whether Py_ASNATIVEBYTES_UNSIGNED_BUFFER was specified.

If Py ASNATIVEBYTES_ALLOW_INDEX is specified and a non-integer value is passed, its __index__ ()
method will be called first. This may result in Python code executing and other threads being allowed to run,
which could cause changes to other objects or values in use. When flags is -1, this option is not set, and
non-integer values will raise TypeError.

138

Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

© Informacja

With the default flags (-1, or UNSIGNED_BUFFER without REJECT_NEGATIVE), multiple Python inte-
gers can map to a single value without overflow. For example, both 255 and -1 fit a single-byte buffer and
set all its bits. This matches typical C cast behavior.

Added in version 3.13.

int PyLong_GetSign (PyObject *obj, int *sign)
Get the sign of the integer object obj.

On success, set *sign to the integer sign (0, -1 or +1 for zero, negative or positive integer, respectively) and
return 0.

On failure, return -1 with an exception set. This function always succeeds if obj is a PyLongObject or its
subtype.

Added in version 3.14.

int PyLong_IsPositive (PyObject *obj)
Check if the integer object 0bj is positive (obj > 0).

If obj is an instance of PyLongObject or its subtype, return 1 when it’s positive and 0 otherwise. Else set an
exception and return 1.

Added in version 3.14.

int PyLong_IsNegative (PyObject *obj)
Check if the integer object 0bj is negative (obj < 0).

If obj is an instance of PyLongObject or its subtype, return 1 when it’s negative and 0 otherwise. Else set an
exception and return —1.

Added in version 3.14.
int PyLong_IsZero (PyObject *obj)
Check if the integer object obj is zero.

If 0bj is an instance of PyLongObject or its subtype, return 1 when it’'s zero and 0 otherwise. Else set an
exception and return —1.

Added in version 3.14.

PyObject *PyLong_GetInfo (void)
Czesé stabilnego ABI. On success, return a read only named tuple, that holds information about Python’s internal
representation of integers. See sys.int_info for description of individual fields.

On failure, return NULL with an exception set.
Added in version 3.1.

int PyUnstable_Long_IsCompact (const PyLongObject *op)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Return 1 if op is compact, O otherwise.

This function makes it possible for performance-critical code to implement a “fast path” for small integers. For
compact values use PyUnstable_ILong_CompactValue ();for others fall back to a PyLong_As* function
or PyLong_AsNativeBytes ().

The speedup is expected to be negligible for most users.

8.2. Numeric Objects 139

The Python/C API, Wydanie 3.14.0a5

Exactly what values are considered compact is an implementation detail and is subject to change.
Added in version 3.12.

Py_ssize_t PyUnstable_Long_CompactValue (const PyLongObject *op)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

If op is compact, as determined by PyUnstable Long IsCompact (), return its value.
Otherwise, the return value is undefined.

Added in version 3.12.

Export API
Added in version 3.14.

struct PyLongLayout

Layout of an array of ,,digits” (,,limbs” in the GMP terminology), used to represent absolute value for arbitrary
precision integers.

Use PyLong _GetNativeLayout () to getthe native layout of Python int objects, used internally for integers
with ,,big enough” absolute value.

See also sys.int_info which exposes similar information in Python.

uint8_t bits_per_ digit

Bits per digit. For example, a 15 bit digit means that bits 0-14 contain meaningful information.

uint8_t digit_size

Digit size in bytes. For example, a 15 bit digit will require at least 2 bytes.

int8_t digits_order

Digits order:
« 1 for most significant digit first
o -1 for least significant digit first

int8_t digit_endianness

Digit endianness:
« 1 for most significant byte first (big endian)
« —1 for least significant byte first (little endian)

const PyLongLayout *PyLong_GetNativeLayout (void)
Get the native layout of Python int objects.

See the PyLongLayout structure.

The function must not be called before Python initialization nor after Python finalization. The returned layout
is valid until Python is finalized. The layout is the same for all Python sub-interpreters in a process, and so it
can be cached.

struct PyLongExport
Export of a Python int object.

There are two cases:
e If digitsis NULL, only use the value member.

o If digitsisnot NULL, use negative, ndigits and digits members.

140 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

int64 t value

The native integer value of the exported int object. Only valid if digits is NULL.

uint8_t negative
1 if the number is negative, 0 otherwise. Only valid if digits is not NULL.

Py_ssize_t ndigits
Number of digits in digits array. Only valid if digits is not NULL.

const void *digits
Read-only array of unsigned digits. Can be NULL.

int PyLong_Export (PyObject *obj, PyLongExport *export_long)
Export a Python int object.
export_long must point to a PyLongExport structure allocated by the caller. It must not be NULL.
On success, fill in *export_long and return 0. On error, set an exception and return —1.
PyLong_FreeExport () must be called when the export is no longer needed.

Szczegot implementacyjny CPythona: This function always succeeds if 0bj is a Python int object
or a subclass.

void PyLong_FreeExport (PyLongExport *export_long)
Release the export export_long created by PyLong Export ().

Szczegoél implementacyjny CPythona: Calling PyLong FreeExport () is optional if export_long->digits
iS NULL.

PyLongWriter API
The PyLongwriter API can be used to import an integer.
Added in version 3.14.

struct PyLongWriter

A Python int writer instance.

The instance must be destroyed by PyLongiriter Finish () or PyLongliriter Discard().
PyLong Writer *PyLongWriter_Create (int negative, Py_ssize_t ndigits, void **digits)

Create a PyLongWriter.

On success, allocate *digits and return a writer. On error, set an exception and return NULL.

negative is 1 if the number is negative, or 0 otherwise.

ndigits is the number of digits in the digits array. It must be greater than 0.

digits must not be NULL.

After a successful call to this function, the caller should fill in the array of digits digits and
then call PyLongWriter Finish() to get a Python int. The layout of digits is described by
PyLong_GetNativeLayout ().

Digits must be in the range [0; (1 << bits_per_digit) - 1](wherethe bits per digit is the num-
ber of bits per digit). Any unused most significant digits must be set to 0.

Alternately, call PyLongiriter Discard() to destroy the writer instance without creating an int object.

PyObject *PyLongWriter_Finish (PyLong Writer *writer)

Wartos¢ zwracana: nowa referencja. Finish a PyLongliriter created by PyLonglriter Create ().
On success, return a Python int object. On error, set an exception and return NULL.
The function takes care of normalizing the digits and converts the object to a compact integer if needed.

The writer instance and the digits array are invalid after the call.

8.2. Numeric Objects 141

The Python/C API, Wydanie 3.14.0a5

void PyLongWriter_Discard (PyLong Writer *writer)

Discard a PyLongiriter created by PyLongliriter Create ().
If writer is NULL, no operation is performed.

The writer instance and the digits array are invalid after the call.

8.2.2 Obiekty logiczne

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_Falseand Py_True.
As such, the normal creation and deletion functions don’t apply to booleans. The following macros are available,
however.

PyTypeObject PyBool_Type

Czes¢ stabilnego ABI. This instance of Py TypeObject represents the Python boolean type; it is the same
object as bool in the Python layer.

int PyBool_Check (PyObject *0)

Zwraca warto$¢ true, jesli o jest typu PyBool_Type. Ta funkcja zawsze koriczy si¢ powodzeniem.
PyObject *Py_False

The Python False object. This object has no methods and is immortal.

Zmienione w wersji 3.12: py_False is immortal.

PyObject *Py_True
The Python True object. This object has no methods and is immortal.
Zmienione w wersji 3.12: py_ True is immortal.

Py _RETURN_FALSE

Return Py_False from a function.
Py_RETURN_TRUE

Return Py_ True from a function.
PyObject *PyBool_FromLong (long v)

Wartos¢ zwracana: nowa referencja. Czesc stabilnego ABI. Return Py True or Py_False, depending on the
truth value of v.

8.2.3 Floating-Point Objects

type PyFloatObject
This subtype of PyObject represents a Python floating-point object.

PyTypeObject PyFloat_Type
Czes¢ stabilnego ABI. This instance of Py TypeObject represents the Python floating-point type. This is the
same object as f1loat in the Python layer.

int PyFloat_Check (PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatObject. This function always
succeeds.

int PyFloat_CheckExact (PyObject *p)
Return true if its argument is a PyFloatObject, but not a subtype of PyFiloatObject. This function always
succeeds.

PyObject *PyFloat_FromString (PyObject *str)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a PyFloatObject object based on the
string value in str, or NULL on failure.

142 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

PyObject *PyFloat_FromDouble (double v)
Wartos¢ zwracana: nowa referencja. Czesc¢ stabilnego ABI. Create a PyFloatObject object from v, or NULL
on failure.

double PyFloat_AsDouble (PyObject *pyfloat)

Czes¢ stabilnego ABIL Return a C double representation of the contents of pyfloat. If pyfloat is not a Python
floating-point object but hasa __float__ () method, this method will first be called to convert pyfloat into
afloat. If _ float__ () is not defined then it falls back to __index__ (). This method returns -1 .0 upon
failure, so one should call PyErr Occurred () to check for errors.

Zmienione w wersji 3.8: Use __index__ () if available.

double PyFloat_AS_DOUBLE (PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject *PyFloat_GetInfo (void)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABL Return a structseq instance which contains infor-
mation about the precision, minimum and maximum values of a float. It’s a thin wrapper around the header
file float.h.

double PyFloat_GetMax ()
Czes¢ stabilnego ABI. Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin ()
Czes¢ stabilnego ABI. Return the minimum normalized positive float DBL_MIN as C double.

Pack and Unpack functions

The pack and unpack functions provide an efficient platform-independent way to store floating-point values as byte
strings. The Pack routines produce a bytes string from a C double, and the Unpack routines produce a C double
from such a bytes string. The suffix (2, 4 or 8) specifies the number of bytes in the bytes string.

On platforms that appear to use IEEE 754 formats these functions work by copying bits. On other platforms, the
2-byte format is identical to the IEEE 754 binary16 half-precision format, the 4-byte format (32-bit) is identical to
the IEEE 754 binary32 single precision format, and the 8-byte format to the IEEE 754 binary64 double precision
format, although the packing of INFs and NaNs (if such things exist on the platform) isn’t handled correctly, and
attempting to unpack a bytes string containing an IEEE INF or NaN will raise an exception.

On non-IEEE platforms with more precision, or larger dynamic range, than IEEE 754 supports, not all values can be
packed; on non-IEEE platforms with less precision, or smaller dynamic range, not all values can be unpacked. What
happens in such cases is partly accidental (alas).

Added in version 3.11.

Pack functions

The pack routines write 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if you want the bytes string in
little-endian format (exponent last, at p+1, p+3, or p+6 p+7), zero if you want big-endian format (exponent first, at
p). The PY_BIG_ENDIAN constant can be used to use the native endian: it is equal to 1 on big endian processor, or
0 on little endian processor.

Return value: 0 if all is OK, -1 if error (and an exception is set, most likely OverflowError).
There are two problems on non-IEEE platforms:

» What this does is undefined if x is a NaN or infinity.

e —0.0 and +0. 0 produce the same bytes string.

int PyFloat_Pack2 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary16 half-precision format.

int PyFloat_Pack4 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary32 single precision format.

8.2. Numeric Objects 143

The Python/C API, Wydanie 3.14.0a5

int PyFloat_Pack8 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary64 double precision format.

Unpack functions

The unpack routines read 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if the bytes string is in
little-endian format (exponent last, at p+1, p+3 or p+6 and p+7), zero if big-endian (exponent first, at p). The
PY_BIG_ENDIAN constant can be used to use the native endian: it is equal to 1 on big endian processor, or 0 on
little endian processor.

Return value: The unpacked double. On error, thisis 1.0 and PyErr_Occurred () is true (and an exception is set,
most likely OverflowError).

Note that on a non-IEEE platform this will refuse to unpack a bytes string that represents a NaN or infinity.

double PyFloat_Unpack2 (const unsigned char *p, int le)
Unpack the IEEE 754 binary16 half-precision format as a C double.

double PyFloat_Unpack4 (const unsigned char *p, int le)
Unpack the IEEE 754 binary32 single precision format as a C double.

double PyFloat_Unpack8 (const unsigned char *p, int le)
Unpack the IEEE 754 binary64 double precision format as a C double.

8.2.4 Obiekt Liczby Zespolonej

Python-owe obiekty liczby zespolonej sa stworzone w C jako dwa oddzielne typy: jeden jest strukturg w ktdra re-
prezentuje prawdziwe liczby zespolone, a drugi ujawnia tg strukturg dla Python-owego kodu. API ma funkcje do
operacji na obydwu typach.

Liczby zespolone jako struktury w C

Note that the functions which accept these structures as parameters and return them as results do so by value rather
than dereferencing them through pointers. This is consistent throughout the API.
type Py_complex

The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate.

double real

double imag

The structure is defined as:

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)
Zwraca sume¢ dwoch liczb zespolonych wykorzystujac strukturg Py_complex jako reprezentacje.
Py_complex _Py_cr_sum (Py_complex left, double right)
Return the sum of a complex number and a real number, using the C Py_ comp1ex representation.
Added in version 3.14.
Py_complex _Py_c_diff (Py_complex left, Py_complex right)

Zwraca réznicg dwoch liczb zespolonych wykorzystujac strukturg Py complex jako reprezentacje.

144 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

Py_complex _Py_cr_dif£ (Py_complex left, double right)

Return the difference between a complex number and a real number, using the C Py_ comp1ex representation.
Added in version 3.14.

Py_complex _Py_rc_diff (double left, Py_complex right)
Return the difference between a real number and a complex number, using the C Py_ complex representation.

Added in version 3.14.

Py_complex _Py_c_neg (Py_complex num)

Return the negation of the complex number num, using the C Py_complex representation.

Py_complex _Py_c_prod (Py_complex left, Py_complex right)

Zwraca iloczyn dwdch liczb zespolonych wykorzystujac strukture Py complex jako reprezentacje.

Py_complex _Py_cr_prod (Py_complex left, double right)
Return the product of a complex number and a real number, using the C Py_complex representation.
Added in version 3.14.
Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)
Zwraca iloraz dwdéch liczb zespolonych wykorzystujac strukturg Py_complex jako reprezentacje.
If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_cr_quot (Py_complex dividend, double divisor)
Return the quotient of a complex number and a real number, using the C Py complex representation.

If divisor is zero, this method returns zero and sets errno to EDOM.
Added in version 3.14.

Py_complex _Py_rc_quot (double dividend, Py_complex divisor)

Return the quotient of a real number and a complex number, using the C Py_ complex representation.
If divisor is zero, this method returns zero and sets errno to EDOM.
Added in version 3.14.
Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
Return the exponentiation of num by exp, using the C Py_ complex representation.

If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

Set errno to ERANGE on overflows.

Complex Numbers as Python Objects

type PyComplexObject
This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex_Type
Czes¢ stabilnego ABI. This instance of PyTypeObject represents the Python complex number type. It is the
same object as complex in the Python layer.

int PyComplex_Check (PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject. This function always
succeeds.

int PyComplex_CheckExact (PyObject *p)

Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject. This function
always succeeds.

8.2. Numeric Objects 145

The Python/C API, Wydanie 3.14.0a5

PyObject *PyComplex_FromCComplex (Py_complex V)

Wartos¢ zwracana: nowa referencja. Create a new Python complex number object from a C Py_complex
value. Return NULL with an exception set on error.

PyObject *PyComplex_FromDoubles (double real, double imag)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABL Return a new PyComplexObject object from real
and imag. Return NULL with an exception set on error.

double PyComplex_RealAsDouble (PyObject *op)

Czes¢ stabilnego ABI. Return the real part of op as a C double.

If op is not a Python complex number object but has a __complex__ () method, this method will first be
called to convert op to a Python complex number object. If __complex__ () is not defined then it falls back
tocall PyFloat_AsDouble () and returns its result.

Upon failure, this method returns -1.0 with an exception set, so one should call PyErr Occurred() to
check for errors.

Zmienione w wersji 3.13: Use __complex__ () if available.

double PyComplex_ImagAsDouble (PyObject *op)

Czes¢ stabilnego ABI. Return the imaginary part of op as a C double.

If op is not a Python complex number object but has a __complex__ () method, this method will first be
called to convert op to a Python complex number object. If __complex__ () is not defined then it falls back
tocall PyFloat_AsDouble () and returns 0.0 on success.

Upon failure, this method returns -1.0 with an exception set, so one should call PyErr Occurred() to
check for errors.

Zmienione w wersji 3.13: Use __complex__ () if available.

Py_complex PyComplex_AsCComplex (PyObject *op)

Return the Py_complex value of the complex number op.

If op is not a Python complex number object but has a __complex__ () method, this method will first be
called to convert op to a Python complex number object. If _ _complex__ () is not defined then it falls back
to_ float_ ().If _ float__ () is not defined then it falls back to __index__ ().

Upon failure, this method returns Py _complex with real setto -1 .0 and with an exception set, so one should
call PyErr Occurred () to check for errors.

Zmienione w wersji 3.8: Use __index__ () if available.

8.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

8.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and called with a non-bytes parameter.

type PyBytesObject

This subtype of PyObject represents a Python bytes object.

PyTypeObject PyBytes_Type

Czes¢ stabilnego ABI. This instance of Py TypeObject represents the Python bytes type; it is the same object
as bytes in the Python layer.

int PyBytes_Check (PyObject *0)

Return true if the object o is a bytes object or an instance of a subtype of the bytes type. This function always
succeeds.

146

Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

int PyBytes_CheckExact (PyObject *0)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type. This function
always succeeds.
PyObject *PyBytes_FromString (const char *v)
Wartos¢ zwracana: nowa referencja. Czesc stabilnego ABI Return a new bytes object with a copy of the string
v as value on success, and NULL on failure. The parameter v must not be NULL; it will not be checked.
PyObject *PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a new bytes object with a copy of the string
v as value and length len on success, and NULL on failure. If v is NULL, the contents of the bytes object are
uninitialized.

PyObject *PyBytes_FromFormat (const char *format, ...)

Wartos¢ zwracana: nowa referencja. Czesc¢ stabilnego ABIL Take a C printf£ () -style format string and a va-
riable number of arguments, calculate the size of the resulting Python bytes object and return a bytes object
with the values formatted into it. The variable arguments must be C types and must correspond exactly to the
format characters in the format string. The following format characters are allowed:

| Format Characters | Typ | komentarz \

%% n/a The literal % character.

$c int A single byte, represented as a C int.

%d int Equivalent to print £ ("%d").!

Su nieoznaczony typ int Equivalent to printf ("su").!

$1d long Equivalent to print £ ("%1d").!

$1lu nieoznaczony typ dtugi | Equivalent to printf ("$1u").!

$zd Py _ssize_t Equivalent to printf("%zd").l

$zu size_t Equivalent to print £ ("$zu") Rl

$i int Equivalent to print £ ("%i").!

%X int Equivalent to print £ ("%x") !

$s const char* A null-terminated C character array.

$p const void* The hex representation of a C pointer. Mostly
equivalent to print £ ("%p") except that it is
guaranteed to start with the literal 0x regardless of
what the platform’s printf yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object,
and any extra arguments discarded.

PyObject *PyBytes_FromFormatV (const char *format, va_list vargs)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Identical to PyBytes FromFormat () except that
it takes exactly two arguments.

PyObject *PyBytes_FromObject (PyObject *0)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return the bytes representation of object o that
implements the buffer protocol.

Py_ssize_t PyBytes_Size (PyObject *0)
Czes¢ stabilnego ABI. Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE (PyObject *0)
Similar to PyBytes_Size (), but without error checking.

char *PyBytes_AsString (PyObject *0)

Czes¢ stabilnego ABIL Return a pointer to the contents of 0. The pointer refers to the internal buffer of o,
which consists of 1len (o) + 1 bytes. The last byte in the buffer is always null, regardless of whether there
are any other null bytes. The data must not be modified in any way, unless the object was just created using

! For integer specifiers (d, u, 1d, lu, zd, zu, i, x): the O-conversion flag has effect even when a precision is given.

8.3. Sequence Objects 147

The Python/C API, Wydanie 3.14.0a5

PyBytes_FromStringAndSize (NULL, size).It mustnot be deallocated. If o is not a bytes object at all,
PyBytes_AsString () returns NULL and raises TypeError.

char *PyBytes_AS_STRING (PyObject *string)

Similar to PyBytes_AsString (), but without error checking.

int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)

Czes¢ stabilnego ABI Return the null-terminated contents of the object obj through the output variables buffer
and length. Returns 0 on success.

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns -1 and
avValueError is raised.

The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not co-
unted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It must not be deallocated. If obj is not a bytes object
atall, PyBytes AsStringAndSize () returns —1 and raises TypeError.

Zmienione w wersji 3.5: Previously, TypeError was raised when embedded null bytes were encountered in
the bytes object.

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)

Czes¢ stabilnego ABI. Create a new bytes object in *bytes containing the contents of newpart appended to
bytes; the caller will own the new reference. The reference to the old value of byfes will be stolen. If the new
object cannot be created, the old reference to byfes will still be discarded and the value of *byfes will be set to
NULL; the appropriate exception will be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)

Czes¢ stabilnego ABI. Create a new bytes object in *byfes containing the contents of newpart appended to bytes.
This version releases the strong reference to newpart (i.e. decrements its reference count).

PyObject *PyBytes_Join (PyObject *sep, PyObject *iterable)

Similar to sep.join (iterable) in Python.

sep must be Python bytes object. (Note that PyUnicode_Join () accepts NULL separator and treats it as
a space, whereas PyBytes_Join () doesn’t accept NULL separator.)

iterable must be an iterable object yielding objects that implement the buffer protocol.
On success, return a new bytes object. On error, set an exception and return NULL.

Added in version 3.14.

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)

Resize a bytes object. newsize will be the new length of the bytes object. You can think of it as creating a new
bytes object and destroying the old one, only more efficiently. Pass the address of an existing bytes object as an
Ivalue (it may be written into), and the new size desired. On success, *byfes holds the resized bytes object and
0 is returned; the address in *byfes may differ from its input value. If the reallocation fails, the original bytes
object at *bytes is deallocated, *bytes is set to NULL, MemoryError is set, and -1 is returned.

8.3.2 Byte Array Objects

type PyByteArrayObject

This subtype of PyObject represents a Python bytearray object.

PyTypeObject PyByteArray Type

Czes¢ stabilnego ABI. This instance of PyTypeObject represents the Python bytearray type; it is the same
object as bytearray in the Python layer.

148

Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

Type check macros

int PyByteArray_Check (PyObject *0)
Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type. This function
always succeeds.

int PyByteArray_CheckExact (PyObject *0)

Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type. This
function always succeeds.

Direct API functions

PyObject *PyByteArray_FromObject (PyObject *0)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a new bytearray object from any object, o,
that implements the buffer protocol.

On failure, return NULL with an exception set.

PyObject *PyByteArray_ FromStringAndSize (const char *string, Py_ssize_t len)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Create a new bytearray object from string and its
length, len.

On failure, return NULL with an exception set.

PyObject *PyByteArray_Concat (PyObject *a, PyObject *b)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Concat bytearrays a and b and return a new bytearray
with the result.

On failure, return NULL with an exception set.

Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Czes¢ stabilnego ABI. Return the size of bytearray after checking for a NULL pointer.

char *PyByteArray_ AsString (PyObject *bytearray)

Czes¢ stabilnego ABI. Return the contents of bytearray as a char array after checking for a NULL pointer. The
returned array always has an extra null byte appended.

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)

Czes¢ stabilnego ABI. Resize the internal buffer of bytearray to len. Failure is a -1 return with an exception
set.

Zmienione w wersji 3.14: A negative len will now result in an exception being set and -1 returned.

Macros
These macros trade safety for speed and they don’t check pointers.

char *PyByteArray AS_STRING (PyObject *bytearray)
Similar to PyByteArray AsString (), but without error checking.

Py_ssize_t PyByteArray_GET_SIZE (PyObject *bytearray)
Similar to PyByteArray Size (), but without error checking.

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in
order to allow handling the complete range of Unicode characters while staying memory efficient. There are special
cases for strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112
(which is the full Unicode range).

UTF-8 representation is created on demand and cached in the Unicode object.

8.3. Sequence Objects 149

https://peps.python.org/pep-0393/

The Python/C API, Wydanie 3.14.0a5

© Informacja

The py_UNTCODE representation has been removed since Python 3.12 with deprecated APIs. See PEP 623 for
more information.

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:

type Py_UCS4
type Py_UCsS2
type Py_UCS1

Czes¢ stabilnego ABI. These types are typedefs for unsigned integer types wide enough to contain characters
of 32 bits, 16 bits and 8 bits, respectively. When dealing with single Unicode characters, use Py _UCS4.

Added in version 3.3.

type Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

Zmienione w wersji 3.3: In previous versions, this was a 16-bit type or a 32-bit type depending on whether you
selected a ,,narrow” or ,,wide” Unicode version of Python at build time.

Deprecated since version 3.13, will be removed in version 3.15.
type PyASCIIObject
type PyCompactUnicodeObject

type PyUnicodeObject

These subtypes of PyObject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

Added in version 3.3.
PyTypeObject PyUnicode_Type

Czes¢ stabilnego ABI. This instance of Py TypeObject represents the Python Unicode type. It is exposed to
Python code as str.

The following APIs are C macros and static inlined functions for fast checks and access to internal read-only data of
Unicode objects:

int PyUnicode_Check (PyObject *obj)

Return true if the object obj is a Unicode object or an instance of a Unicode subtype. This function always
succeeds.

int PyUnicode_CheckExact (PyObject *obj)

Return true if the object 0bj is a Unicode object, but not an instance of a subtype. This function always succeeds.
int PyUnicode_READY (PyObject *unicode)

Returns 0. This API is kept only for backward compatibility.

Added in version 3.3.

Niezalecane od wersji 3.10: This API does nothing since Python 3.12.
Py_ssize_t PyUnicode_GET_LENGTH (PyObject *unicode)

Return the length of the Unicode string, in code points. unicode has to be a Unicode object in the ,,canonical”
representation (not checked).

Added in version 3.3.

Py_UCSI *PyUnicode_1BYTE_DATA (PyObject *unicode)
Py_UCS?2 *PyUnicode_2BYTE_DATA (PyObject *unicode)

150 Rozdziat 8. Concrete Objects Layer

https://peps.python.org/pep-0623/

The Python/C API, Wydanie 3.14.0a5

Py_UCS4 *PyUnicode_4BYTE_DATA (PyObject *unicode)

Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct cha-
racter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND () to select the right function.

Added in version 3.3.
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND
Return values of the PyUnicode KIND () macro.
Added in version 3.3.
Zmienione w wersji 3.12: PyUnicode_WCHAR_KIND has been removed.
int PyUnicode_KIND (PyObject *unicode)

Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this
Unicode object uses to store its data. unicode has to be a Unicode object in the ,,canonical” representation (not
checked).

Added in version 3.3.

void *PyUnicode_DATA (PyObject *unicode)

Return a void pointer to the raw Unicode buffer. unicode has to be a Unicode object in the ,,canonical” repre-
sentation (not checked).

Added in version 3.3.

void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)

Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This function performs
no sanity checks, and is intended for usage in loops. The caller should cache the kind value and data pointer
as obtained from other calls. index is the index in the string (starts at 0) and value is the new code point value
which should be written to that location.

Added in version 3.3.

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)

Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks
or ready calls are performed.

Added in version 3.3.

Py_UCS4 pyUnicode_READ_CHAR (PyObject *unicode, Py_ssize_t index)

Read a character from a Unicode object unicode, which must be in the ,,canonical” representation. This is less
efficient than PyUnicode_READ () if you do multiple consecutive reads.

Added in version 3.3.

Py_UCS4 PyUnicode_MAX_CHAR_VALUE (PyObject *unicode)

Return the maximum code point that is suitable for creating another string based on unicode, which must be
in the ,,canonical” representation. This is always an approximation but more efficient than iterating over the
string.

Added in version 3.3.

int PyUnicode_IsIdentifier (PyObject *unicode)

Czesc stabilnego ABI. Return 1 if the string is a valid identifier according to the language definition, section
identifiers. Return 0 otherwise.

Zmienione w wersji 3.9: The function does not call Py_FatalError () anymore if the string is not ready.

8.3. Sequence Objects 151

The Python/C API, Wydanie 3.14.0a5

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a whitespace character.
int Py_UNICODE_ISLOWER (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a lowercase character.
int Py_UNICODE_ISUPPER (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is an uppercase character.
int Py_UNICODE_ISTITLE (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a titlecase character.
int Py_UNICODE_ISLINEBREAK (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a linebreak character.
int Py_UNICODE_ISDECIMAL (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a decimal character.
int Py_UNICODE_ISDIGIT (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a digit character.
int Py_UNICODE_ISNUMERIC (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a numeric character.
int Py_UNICODE_ISALPHA (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is an alphabetic character.
int Py_UNICODE_ISALNUM (Py_UCS4 ch)

Return 1 or 0 depending on whether c is an alphanumeric character.
int Py_UNICODE_ISPRINTABLE (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as ,,Other” or ,,Separator”, excepting the ASCII space (0x20) which
is considered printable. (Note that printable characters in this context are those which should not be escaped
when repr () is invoked on a string. It has no bearing on the handling of strings written to sys.stdout or
sys.stderr.)

These APIs can be used for fast direct character conversions:
Py_UCS4 py_UNICODE_TOLOWER (Py_UCS4 ch)

Return the character ch converted to lower case.
Py_UCS4 py_UNICODE_TOUPPER (Py_UCS4 ch)

Return the character ch converted to upper case.
Py_UCS4 Py_UNICODE_TOTITLE (Py_UCS4 ch)

Return the character ch converted to title case.

int Py_UNICODE_TODECIMAL (Py_UCS4 ch)

Return the character ch converted to a decimal positive integer. Return -1 if this is not possible. This function
does not raise exceptions.

int Py UNICODE_TODIGIT (Py_UCS4 ch)

Return the character ch converted to a single digit integer. Return -1 if this is not possible. This function does
not raise exceptions.

152 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

double Py_UNICODE_TONUMERIC (Py_UCS4 ch)

Return the character ch converted to a double. Return -1 . 0 if this is not possible. This function does not raise
exceptions.

These APIs can be used to work with surrogates:

int Py UNICODE_IS_SURROGATE (Py_UCS4 ch)

Check if ch is a surrogate (0xD800 <= ch <= OxDFFF).

int Py_UNICODE_IS_HIGH_SURROGATE (Py_UCS4 ch)

Check if ch is a high surrogate (0xD800 <= ch <= O0xDBFF).

int Py_UNICODE_IS_LOW_SURROGATE (Py_ UCS4 ch)

Check if ch is a low surrogate (0xDC0O0 <= ch <= 0xDFFF).

Py_UCS4 Ppy_UNICODE_JOIN_SURROGATES (Py_UCS4 high, Py_UCS4 low)

Join two surrogate code points and return a single Py UCS4 value. high and low are respectively the leading
and trailing surrogates in a surrogate pair. high must be in the range [0xD800; 0xDBFF] and low must be in
the range [0xDCO00; OxDFFF].

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject *PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)

Wartos¢ zwracana: nowa referencja. Create a new Unicode object. maxchar should be the true maximum code
point to be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence
127, 255, 65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not
resizable.

On error, set an exception and return NULL.

Added in version 3.3.

PyObject *PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)

Wartos¢ zwracana: nowa referencja. Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc., as returned by PyUnicode_KIND ()). The buffer must point to an array of
size units of 1, 2 or 4 bytes per character, as given by the kind.

If necessary, the input buffer is copied and transformed into the canonical representation. For example, if the
buffer is a UCS4 string (PyUnicode_4BYTE_KIND) and it consists only of codepoints in the UCS1 range, it
will be transformed into UCS1 (PyUnicode_1BYTE_KIND).

Added in version 3.3.

PyObject *PyUnicode_FromStringAndSize (const char *str, Py ssize_f size)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL. Create a Unicode object from the char buffer str.
The bytes will be interpreted as being UTF-8 encoded. The buffer is copied into the new object. The return
value might be a shared object, i.e. modification of the data is not allowed.

This function raises SystemError when:
o size <O,
e stris NULL and size > 0

Zmienione w wersji 3.12: str == NULL with size > 0 is not allowed anymore.

PyObject *PyUnicode_FromString (const char *str)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a Unicode object from a UTF-8 encoded
null-terminated char buffer str.

8.3. Sequence Objects 153

The Python/C API, Wydanie 3.14.0a5

PyObject *PyUnicode_FromFormat (const char *format, ...)

Wartosc zwracana: nowa referencja. Czes¢ stabilnego ABI. Take a C printf£ () -style format string and a va-
riable number of arguments, calculate the size of the resulting Python Unicode string and return a string with
the values formatted into it. The variable arguments must be C types and must correspond exactly to the format
characters in the format ASCII-encoded string.

A conversion specifier contains two or more characters and has the following components, which must occur
in this order:

1. The '%' character, which marks the start of the specifier.
2. Conversion flags (optional), which affect the result of some conversion types.

3. Minimum field width (optional). If specified as an ' *' (asterisk), the actual width is given in the next
argument, which must be of type int, and the object to convert comes after the minimum field width
and optional precision.

4. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' *' (an asterisk), the
actual precision is given in the next argument, which must be of type int, and the value to convert comes
after the precision.

5. Length modifier (optional).
6. Conversion type.

The conversion flag characters are:

Flag Znaczenie \

0 The conversion will be zero padded for numeric values.
- The converted value is left adjusted (overrides the 0 flag if both are given).

The length modifiers for following integer conversions (d, i, o, u, x, or X) specify the type of the argument
(int by default):

| Modifier =~ Typy \

long Or unsigned long

11 long long oOrunsigned long long
J intmax_t Oruintmax_t

z size_t Or ssize_t

t ptrdiff t

The length modifier 1 for following conversions s or v specify that the type of the argument is const
wchar_t*.

The conversion specifiers are:

154 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

Conver- Typ komentarz

sion

Speci-

fier

% n/a The literal % character.

d, i Specified by the The decimal representation of a signed C integer.
length modifier

u Specified by the The decimal representation of an unsigned C integer.
length modifier

o Specified by the The octal representation of an unsigned C integer.
length modifier

X Specified by the The hexadecimal representation of an unsigned C integer (lowercase).
length modifier

X Specified by the The hexadecimal representation of an unsigned C integer (uppercase).
length modifier
int A single character.
const char* or A null-terminated C character array.
const wchar_t*

P const voidx The hex representation of a C pointer. Mostly equivalent to
printf ("%p") except that it is guaranteed to start with the literal 0x
regardless of what the platform’s print £ yields.

A PyObject* The result of calling ascii ().

U PyObject* A Unicode object.

v PyObject*, A Unicode object (which may be NULL) and a null-terminated C cha-
const char* or racter array as a second parameter (which will be used, if the first pa-
const wchar_t* rameter is NULL).

S PyObject* The result of calling PyObject Str().

R PyObject* The result of calling PyObject_Repr ().

T PyObject* Get the fully qualified name of an object type; call

PyType_GetFullyQualifiedName ().

#T PyObject* Similar to T format, but use a colon (:) as separator between the module
name and the qualified name.

N PyTypeObject* Get the fully qualified name of a type; call
PyType_GetFullyQualifiedName ().

#N PyTypeObject* Similar to N format, but use a colon (:) as separator between the module

name and the qualified name.

© Informacja

The width formatter unit is number of characters rather than bytes. The precision formatter unit is number
of bytes or wchar_t items (if the length modifier 1 is used) for "$s" and "sv" (if the PyObject*
argument is NULL), and a number of characters for "$A", "$U", "$s", "$R" and "$V" (if the PyObject *

argument is not NULL).

© Informacja

Unlike to C print£ () the 0 flag has effect even when a precision is given for integer conversions (d, i, u,
o, X, Or X).

Zmienione w wersji 3.2: Support for "$11d" and "$11u" added.
Zmienione w wersji 3.3: Support for "$1i", "$11i" and "$zi" added.

Zmienione w wersji 3.4: Support width and precision formatter for "$s", "$A", "sU", "$V", "%S", "%R"

8.3. Sequence Objects 155

The Python/C API, Wydanie 3.14.0a5

added.

Zmienione w wersji 3.12: Support for conversion specifiers o and x. Support for length modifiers j and t.
Length modifiers are now applied to all integer conversions. Length modifier 1 is now applied to conversion
specifiers s and v. Support for variable width and precision *. Support for flag —.

An unrecognized format character now sets a SystemError. In previous versions it caused all the rest of the
format string to be copied as-is to the result string, and any extra arguments discarded.

Zmienione w wersji 3.13: Support for $T, $#T, $N and %$#N formats added.

PyObject *PyUnicode_FromFormatV (const char *format, va_list vargs)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Identical to PyUnicode_FromFormat () except
that it takes exactly two arguments.

PyObject *PyUnicode_FromObject (PyObject *obj)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Copy an instance of a Unicode subtype to a new
true Unicode object if necessary. If obj is already a true Unicode object (not a subtype), return a new strong
reference to the object.

Objects other than Unicode or its subtypes will cause a TypeError.

PyObject *PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)
Wartosc¢ zwracana: nowa referencja. Czesc stabilnego ABI. Decode an encoded object obj to a Unicode object.

bytes, bytearray and other bytes-like objects are decoded according to the given encoding and using the
error handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in
Codecs for details).

All other objects, including Unicode objects, cause a TypeError to be set.

The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.
Py_ssize_t PyUnicode_GetLength (PyObject *unicode)

Czes¢ stabilnego ABI od wersji 3.7. Return the length of the Unicode object, in code points.

On error, set an exception and return —1.

Added in version 3.3.

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t to_start, PyObject *from, Py_ssize_t
from_start, Py_ssize_t how_many)

Copy characters from one Unicode object into another. This function performs character conversion when
necessary and falls back to memcpy () if possible. Returns -1 and sets an exception on error, otherwise returns
the number of copied characters.

Added in version 3.3.

Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].
Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return -1 and raise an exception on error.
Added in version 3.3.

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Czes¢ stabilnego ABI od wersji 3.7. Write a character to a string. The string must have been created through
PyUnicode_New (). Since Unicode strings are supposed to be immutable, the string must not be shared, or
have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object
can be modified safely (i.e. that it its reference count is one).

Return 0 on success, —1 on error with an exception set.

Added in version 3.3.

156 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)

Czes¢ stabilnego ABI od wersji 3.7. Read a character from a string. This function checks that unicode is a Uni-
code object and the index is not out of bounds, in contrast to PyUnicode READ_CHAR (), which performs
no error checking.

Return character on success, —1 on error with an exception set.
Added in version 3.3.

PyObject *PyUnicode_Substring (PyObject *unicode, Py_ssize_t start, Py_ssize_t end)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.7. Return a substring of unicode, from
character index start (included) to character index end (excluded). Negative indices are not supported. On
error, set an exception and return NULL.

Added in version 3.3.

Py_UCS4 *PyUnicode_AsUCS4 (PyObject *unicode, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)

Czes¢ stabilnego ABI od wersji 3.7. Copy the string unicode into a UCS4 buffer, including a null character,
if copy_null is set. Returns NULL and sets an exception on error (in particular, a SystemError if buflen is
smaller than the length of unicode). buffer is returned on success.

Added in version 3.3.

Py_UCS4 *PyUnicode_AsUCS4Copy (PyObject *unicode)

Czes¢ stabilnego ABI od wersji 3.7. Copy the string unicode into a new UCS4 buffer that is allocated using
PyMem_Malloc (). If this fails, NULL is returned with a MemoryError set. The returned buffer always has
an extra null code point appended.

Added in version 3.3.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject *PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t length, const char *errors)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.7. Decode a string from UTF-8 on An-
droid and VxWorks, or from the current locale encoding on other platforms. The supported error handlers
are "strict" and "surrogateescape" (PEP 383). The decoder uses "strict" error handler if errors is
NULL. str must end with a null character but cannot contain embedded null characters.

Use PyUnicode DecodeFSDefaultAndSize () to decode a string from the filesystem encoding and error
handler.

This function ignores the Python UTF-8 Mode.

> Zobacz takze

The Py_DecodeLocale () function.

Added in version 3.3.

Zmienione w wersji 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py _DecodeLocale () was used for the surrogateescape,
and the current locale encoding was used for strict.

PyObject *PyUnicode_DecodeLocale (const char *str, const char *errors)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersii 3.7. Similar to
PyUnicode_DecodeLocaleAndSize (), but compute the string length using strlen ().

Added in version 3.3.

8.3. Sequence Objects 157

https://peps.python.org/pep-0383/

The Python/C API, Wydanie 3.14.0a5

PyObject *PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.7. Encode a Unicode object to UTF-8
on Android and VxWorks, or to the current locale encoding on other platforms. The supported error handlers
are "strict" and "surrogateescape" (PEP 383). The encoder uses "strict™ error handler if errors is
NULL. Return a bytes object. unicode cannot contain embedded null characters.

Use PyUnicode_EncodeFSDefault () to encode a string to the filesystem encoding and error handler.

This function ignores the Python UTF-8 Mode.

> Zobacz takze

The Py_EncodeLocale () function.

Added in version 3.3.

Zmienione w wersji 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py _EncodeLocale () was used for the surrogateescape,
and the current locale encoding was used for strict.

File System Encoding

Functions encoding to and decoding from the filesystem encoding and error handler (PEP 383 and PEP 529).

To encode file names to bytes during argument parsing, the "Os&" converter should be used, passing
PyUnicode_FSConverter () as the conversion function:

int PyUnicode_FSConverter (PyObject *obj, void *result)

Czes¢ stabilnego ABI. PyArg_Parse™* converter: encode str objects — obtained directly or through the os.
PathLike interface - to bytes using PyUnicode_EncodeFSDefault ();bytes objects are output as-is.
result must be an address of a C variable of type PyObject* (or PyBytesObject*). On success, set the
variable to a new strong reference to a bytes object which must be released when it is no longer used and return
a non-zero value (py_crLeANUP_supPPORTED). Embedded null bytes are not allowed in the result. On failure,
return 0 with an exception set.

If obj is NULL, the function releases a strong reference stored in the variable referred by result and returns 1.
Added in version 3.1.
Zmienione w wersji 3.6: Accepts a path-like object.

To decode file names to str during argument parsing, the "Os&" converter should be used, passing

PyUnicode_FSDecoder () as the conversion function:

int PyUnicode_FSDecoder (PyObject *obj, void *result)
Czes¢ stabilnego ABIL. PyArg_Parse* converter: decode bytes objects — obtained either directly or indirectly
through the os.PathLike interface — to str using PyUnicode_DecodeFSDefaultAndSize (); str ob-
jects are output as-is. result must be an address of a C variable of type PyObject* (or PyUnicodeObject*).
On success, set the variable to a new strong reference to a Unicode object which must be released when it is
no longer used and return a non-zero value (Py_CLEANUP_SUPPORTED). Embedded null characters are not
allowed in the result. On failure, return 0 with an exception set.

If obj is NULL, release the strong reference to the object referred to by result and return 1.
Added in version 3.2.
Zmienione w wersji 3.6: Accepts a path-like object.

PyObject *PyUnicode_DecodeFSDefaultAndSize (const char *str, Py_ssize_t size)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Decode a string from the filesystem encoding and
error handler.

If you need to decode a string from the current locale encoding, use PyUnicode_DecodeLocaleAndSize ().

158 Rozdziat 8. Concrete Objects Layer

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0383/
https://peps.python.org/pep-0529/

The Python/C API, Wydanie 3.14.0a5

> Zobacz takze

The Py_DecodeLocale () function.

Zmienione w wersji 3.6: The filesystem error handler is now used.

PyObject *PyUnicode_DecodeFSDefault (const char *str)
Wartos¢ zwracana: nowa referencja. Czesé stabilnego ABI. Decode a null-terminated string from the filesystem
encoding and error handler.
If the string length is known, use PyUnicode_DecodeFSDefaultAndSize ().

Zmienione w wersji 3.6: The filesystem error handler is now used.

PyObject *PyUnicode_EncodeFSDefault (PyObject *unicode)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL. Encode a Unicode object to the filesystem encoding
and error handler, and return bytes. Note that the resulting bytes object can contain null bytes.

If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale ().

> Zobacz takze

The Py_EncodeLocale () function.

Added in version 3.2.

Zmienione w wersji 3.6: The filesystem error handler is now used.

wchar_t Support

wchar_t support for platforms which support it:

PyObject *PyUnicode_FromWideChar (const wchar_t *wstr, Py_ssize_t size)
Wartosc¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a Unicode object from the wchar_t buffer

wstr of the given size. Passing -1 as the size indicates that the function must itself compute the length, using
wcslen (). Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *wstr, Py_ssize_t size)
Czes¢ stabilnego ABI. Copy the Unicode object contents into the wchar_t buffer wstr. At most size wchar_t
characters are copied (excluding a possibly trailing null termination character). Return the number of wchar_t
characters copied or -1 in case of an error.

When wstr is NULL, instead return the size that would be required to store all of unicode including a terminating
null.

Note that the resulting wchar_t * string may or may not be null-terminated. It is the responsibility of the caller
to make sure that the wchar_t * string is null-terminated in case this is required by the application. Also, note
that the wchar_t* string might contain null characters, which would cause the string to be truncated when
used with most C functions.

wchar_t *PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)
Czes¢ stabilnego ABI od wersji 3.7. Convert the Unicode object to a wide character string. The output string
always ends with a null character. If size is not NULL, write the number of wide characters (excluding the
trailing null termination character) into *size. Note that the resulting wchar_t string might contain null cha-
racters, which would cause the string to be truncated when used with most C functions. If size is NULL and the
wchar_t* string contains null characters a ValueError is raised.

Returns a buffer allocated by pPyMem New (use PyMem Free () to free it) on success. On error, returns NULL
and *size is undefined. Raises a MemoryError if memory allocation is failed.

Added in version 3.2.

8.3. Sequence Objects 159

The Python/C API, Wydanie 3.14.0a5

Zmienione w wersji 3.7: Raises a ValueError if size is NULL and the wchar_t* string contains null charac-
ters.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via
the following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones
of the built-in str () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is UTF-8. The file system calls should use
PyUnicode_FSConverter () for encoding file names. This uses the filesystem encoding and error handler inter-
nally.

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the
codec. Default error handling for all built-in codecs is ,,strict” (ValueError is raised).

The codecs all use a similar interface. Only deviations from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:

PyObject *PyUnicode_Decode (const char *str, Py_ssize_t size, const char *encoding, const char *errors)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a Unicode object by decoding size bytes of
the encoded string str. encoding and errors have the same meaning as the parameters of the same name in the
str () built-in function. The codec to be used is looked up using the Python codec registry. Return NULL if
an exception was raised by the codec.

PyObject *PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *errors)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Encode a Unicode object and return the result as
Python bytes object. encoding and errors have the same meaning as the parameters of the same name in the
Unicode encode () method. The codec to be used is looked up using the Python codec registry. Return NULL
if an exception was raised by the codec.

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject *PyUnicode_DecodeUTF8 (const char *str, Py_ssize_t size, const char *errors)
Wartos¢ zwracana: nowa referencja. Czesé stabilnego ABI. Create a Unicode object by decoding size bytes of
the UTF-8 encoded string str. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeUTF8Stateful (const char *str, Py_ssize_f size, const char *errors, Py_ssize_t
*consumed)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL If consumed is NULL, behave like
PyUnicode_DecodeUTFS8 (). If consumed is not NULL, trailing incomplete UTF-8 byte sequences
will not be treated as an error. Those bytes will not be decoded and the number of bytes that have been
decoded will be stored in consumed.

PyObject *PyUnicode_AsUTF8String (PyObject *unicode)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL. Encode a Unicode object using UTF-8 and return
the result as Python bytes object. Error handling is ,.strict”. Return NULL if an exception was raised by the
codec.

The function fails if the string contains surrogate code points (U+D800 - U+DFFF).

const char *PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)

Czes¢ stabilnego ABI od wersji 3.10. Return a pointer to the UTF-8 encoding of the Unicode object, and store
the size of the encoded representation (in bytes) in size. The size argument can be NULL; in this case no size

160 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

will be stored. The returned buffer always has an extra null byte appended (not included in size), regardless of
whether there are any other null code points.

On error, set an exception, set size to —1 (if it’s not NULL) and return NULL.
The function fails if the string contains surrogate code points (U+D800 - U+DFFF).

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return
a pointer to the same buffer. The caller is not responsible for deallocating the buffer. The buffer is deallocated
and pointers to it become invalid when the Unicode object is garbage collected.

Added in version 3.3.
Zmienione w wersji 3.7: The return type is now const char * rather of char *.
Zmienione w wersji 3.10: This function is a part of the limited API.

const char *PyUnicode_AsUTF8 (PyObject *unicode)
As PyUnicode AsUTF8AndSize (), but does not store the size.

A\ Ostrzezenie

This function does not have any special behavior for null characters embedded within unicode. As a re-
sult, strings containing null characters will remain in the returned string, which some C functions might
interpret as the end of the string, leading to truncation. If truncation is an issue, it is recommended to use
PyUnicode_AsUTF8AndSize () instead.

Added in version 3.3.

Zmienione w wersji 3.7: The return type is now const char * rather of char *.

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject *PyUnicode_DecodeUTF32 (const char *str, Py_ssize_t size, const char *errors, int *byteorder)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Decode size bytes from a UTF-32 encoded buffer
string and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults
to ,,strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1
or 1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF32Stateful (const char *str, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL If comsumed is NULL, behave like
PyUnicode_DecodeUTF32 (). If consumed is not NULL, PyUnicode_DecodeUTF32Stateful ()
will not treat trailing incomplete UTF-32 byte sequences (such as a number of bytes not divisible by four) as
an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in
consumed.

8.3. Sequence Objects 161

https://en.wikipedia.org/wiki/Null_character

The Python/C API, Wydanie 3.14.0a5

PyObject *PyUnicode_AsUTF32String (PyObject *unicode)
Wartos¢ zwracana: nowa referencja. CzesS¢ stabilnego ABIL. Return a Python byte string using the UTF-32
encoding in native byte order. The string always starts with a BOM mark. Error handling is ,strict”. Return
NULL if an exception was raised by the codec.

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject *PyUnicode_DecodeUTF16 (const char *str, Py_ssize_t size, const char *errors, int *byteorder)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Decode size bytes from a UTF-16 encoded buffer
string and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults
to ,,strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \ufffe
character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeUTF16Stateful (const char *str, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL If consumed is NULL, behave like
PyUnicode_DecodeUTF16 (). If consumed is not NULL, PyUnicode_DecodeUTFl16Stateful ()
will not treat trailing incomplete UTF-16 byte sequences (such as an odd number of bytes or a split surrogate
pair) as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be
stored in consumed.

PyObject *PyUnicode_AsUTF16String (PyObject *unicode)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a Python byte string using the UTF-16

encoding in native byte order. The string always starts with a BOM mark. Error handling is ,,strict”. Return
NULL if an exception was raised by the codec.

UTF-7 Codecs

These are the UTF-7 codec APlIs:

PyObject *PyUnicode_DecodeUTF7 (const char *str, Py_ssize_t size, const char *errors)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a Unicode object by decoding size bytes of
the UTF-7 encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF7Stateful (const char *str, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL If consumed is NULL, behave like
PyUnicode_DecodeUTF7 (). If consumed is not NULL, trailing incomplete UTF-7 base-64 sections
will not be treated as an error. Those bytes will not be decoded and the number of bytes that have been
decoded will be stored in consumed.

162 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

Unicode-Escape Codecs

These are the ,,Unicode Escape” codec APIs:

PyObject *PyUnicode_DecodeUnicodeEscape (const char *str, Py_ssize_t size, const char *errors)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a Unicode object by decoding size bytes of
the Unicode-Escape encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Encode a Unicode object using Unicode-Escape

and return the result as a bytes object. Error handling is ,strict”. Return NULL if an exception was raised by
the codec.

Raw-Unicode-Escape Codecs

These are the ,,Raw Unicode Escape” codec APIs:

PyObject *PyUnicode_DecodeRawUnicodeEscape (const char *str, Py_ssize_t size, const char *errors)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a Unicode object by decoding size bytes of
the Raw-Unicode-Escape encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Encode a Unicode object using Raw-Unicode-

-Escape and return the result as a bytes object. Error handling is ,strict”. Return NULL if an exception was
raised by the codec.

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted
by the codecs during encoding.
PyObject *PyUnicode_DecodeLatinl (const char *str, Py_ssize_t size, const char *errors)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a Unicode object by decoding size bytes of
the Latin-1 encoded string str. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_AsLatinlString (PyObject *unicode)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL. Encode a Unicode object using Latin-1 and return

the result as Python bytes object. Error handling is ,,strict”. Return NULL if an exception was raised by the
codec.

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject *PyUnicode_DecodeASCII (const char *str, Py ssize_t size, const char *errors)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a Unicode object by decoding size bytes of
the ASCII encoded string str. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsASCIIString (PyObject *unicode)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Encode a Unicode object using ASCII and return
the result as Python bytes object. Error handling is ,,strict”. Return NULL if an exception was raised by the
codec.

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mappings to encode and
decode characters. The mapping objects provided must support the __getitem__ () mapping interface; dictionaries
and sequences work well.

These are the mapping codec APIs:

8.3. Sequence Objects 163

The Python/C API, Wydanie 3.14.0a5

PyObject *PyUnicode_DecodeCharmap (const char *str, Py_ssize_t length, PyObject *mapping, const char
*errors)

Wartos¢ zwracana: nowa referencja. Czesé stabilnego ABI. Create a Unicode object by decoding size bytes of
the encoded string str using the given mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the
range from 0 to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None.
Unmapped data bytes — ones which cause a LookupError, as well as ones which get mapped to None, 0xFFFE
or '\ufffe', are treated as undefined mappings and cause an error.

PyObject *PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Encode a Unicode object using the given mapping

object and return the result as a bytes object. Error handling is ,strict”. Return NULL if an exception was raised
by the codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255
or None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are
treated as ,,undefined mapping” and cause an error.

The following codec API is special in that maps Unicode to Unicode.

PyObject *PyUnicode_Translate (PyObject *unicode, PyObject *table, const char *errors)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Translate a string by applying a character mapping
table to it and return the resulting Unicode object. Return NULL if an exception was raised by the codec.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide the _ getitem_ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding
is defined by the user settings on the machine running the codec.

PyObject *PyUnicode_DecodeMBCS (const char *str, Py_ssize_t size, const char *errors)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI on Windows od wersji 3.7. Create a Unicode object
by decoding size bytes of the MBCS encoded string sfr. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeMBCSStateful (const char *str, Py_ssize_f size, const char *errors, Py_ssize_t
*consumed)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI on Windows od wersji 3.7. If consumed is NULL,
behave like PyUnicode_DecodeMBCS (). If consumed is not NULL, PyUnicode_DecodeMBCSStateful ()
will not decode trailing lead byte and the number of bytes that have been decoded will be stored in consumed.

PyObject *PyUnicode_DecodeCodePageStateful (int code_page, const char *str, Py_ssize_t size, const char
*errors, Py_ssize_t *consumed)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI on Windows od wersji 3.7. Similar to
PyUnicode_DecodeMBCSStateful (), except uses the code page specified by code_page.

PyObject *PyUnicode_AsMBCSString (PyObject *unicode)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI on Windows od wersji 3.7. Encode a Unicode object
using MBCS and return the result as Python bytes object. Error handling is ,,strict”. Return NULL if an exception
was raised by the codec.

PyObject *PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI on Windows od wersji 3.7. Encode the Unicode
object using the specified code page and return a Python bytes object. Return NULL if an exception was raised
by the codec. Use cp_ACP code page to get the MBCS encoder.

164 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

Added in version 3.3.

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or -1 if an exception occurs.
PyObject *PyUnicode_Concat (PyObject *left, PyObject *right)
Wartosc¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Concat two strings giving a new Unicode string.
PyObject *PyUnicode_Split (PyObject *unicode, PyObject *sep, Py_ssize_t maxsplit)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Split a string giving a list of Unicode strings. If sep
is NULL, splitting will be done at all whitespace substrings. Otherwise, splits occur at the given separator. At
most maxsplit splits will be done. If negative, no limit is set. Separators are not included in the resulting list.
PyObject *PyUnicode_Splitlines (PyObject *unicode, int keepends)
Wartos¢ zwracana: nowa referencja. Czesé stabilnego ABI. Split a Unicode string at line breaks, returning a list
of Unicode strings. CRLF is considered to be one line break. If keepends is 0, the Line break characters are
not included in the resulting strings.
PyObject *PyUnicode_Join (PyObject *separator, PyObject *seq)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Join a sequence of strings using the given separator
and return the resulting Unicode string.
Py_ssize_t PyUnicode_Tailmatch (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int
direction)
Czes¢ stabilnego ABI. Return 1 if substr matches unicode [start :end] at the given tail end (direction ==
-1 means to do a prefix match, direction == 1 a suffix match), 0 otherwise. Return -1 if an error occurred.
Py_ssize_t PyUnicode_Find (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Czes¢ stabilnego ABI. Return the first position of substr in unicode [start:end] using the given direction
(direction == 1 means to do a forward search, direction == —1 a backward search). The return value is the index
of the first match; a value of —1 indicates that no match was found, and -2 indicates that an error occurred and
an exception has been set.
Py_ssize_t PyUnicode_FindChar (PyObject *unicode, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int
direction)

Czes¢ stabilnego ABI od wersji 3.7. Return the first position of the character ch in unicode[start:end]
using the given direction (direction == 1 means to do a forward search, direction == -1 a backward search). The
return value is the index of the first match; a value of -1 indicates that no match was found, and -2 indicates
that an error occurred and an exception has been set.

Added in version 3.3.
Zmienione w wersji 3.7: start and end are now adjusted to behave like unicode [start:end].
Py_ssize_t PyUnicode_Count (PyObject *unicode, PyObject *substr, Py_ssize_t start, Py_ssize_t end)

Czes¢ stabilnego ABI. Return the number of non-overlapping occurrences of substr in unicode [start :end].
Return -1 if an error occurred.

PyObject *PyUnicode_Replace (PyObject *unicode, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Wartos¢ zwracana: nowa referencja. Czesé stabilnego ABI. Replace at most maxcount occurrences of substr in
unicode with replstr and return the resulting Unicode object. maxcount == —1 means replace all occurrences.

int PyUnicode_Compare (PyObject *left, PyObject *right)

Czes¢ stabilnego ABI. Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respecti-
vely.

This function returns —1 upon failure, so one should call PyErr Occurred () to check for errors.

8.3. Sequence Objects 165

The Python/C API, Wydanie 3.14.0a5

> Zobacz takze

The PyUnicode_Equal () function.

int PyUnicode_Equal (PyObject *a, PyObject *b)
Czes¢ stabilnego ABI od wersji 3.14. Test if two strings are equal:
o Return 1 if a is equal to b.
o Return 0 if a is not equal to b.
o Seta TypeError exception and return -1 if @ or b is not a st r object.
The function always succeeds if a and b are st r objects.

The function works for st r subclasses, but does not honor custom __eq__ () method.

> Zobacz takze

The PyUnicode_Compare () function.

Added in version 3.14.

int PyUnicode_EqualToUTF8AndSize (PyObject *unicode, const char *string, Py_ssize_t size)

Czes¢ stabilnego ABI od wersji 3.13. Compare a Unicode object with a char buffer which is interpreted as being
UTF-8 or ASCII encoded and return true (1) if they are equal, or false (0) otherwise. If the Unicode object
contains surrogate code points (U+D800 - U+DFFF) or the C string is not valid UTF-8, false (0) is returned.

This function does not raise exceptions.
Added in version 3.13.

int PyUnicode_EqualToUTF8 (PyObject *unicode, const char *string)

Czes¢ stabilnego ABI od wersji 3.13. Similar to PyUnicode_EqualToUTF8AndSize (), but compute string
length using strlen (). If the Unicode object contains null characters, false (0) is returned.

Added in version 3.13.

int PyUnicode_CompareWithASCIIString (PyObject *unicode, const char *string)

Czes¢ stabilnego ABI. Compare a Unicode object, unicode, with string and return -1, 0, 1 for less than, equal,
and greater than, respectively. It is best to pass only ASCII-encoded strings, but the function interprets the
input string as ISO-8859-1 if it contains non-ASCII characters.

This function does not raise exceptions.

PyObject *PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Rich compare two Unicode strings and return one
of the following:

e NULL in case an exception was raised

e Py TrueOr Py_False for successful comparisons

e Py NotImplemented in case the type combination is unknown
Possible values for op are Py_G7, Py_GE, Py_EQ, Py_NE, Py_LT,and Py_LE.

PyObject *PyUnicode_Format (PyObject *format, PyObject *args)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return a new string object from format and args;

)

this is analogous to format % args.

int PyUnicode_Contains (PyObject *unicode, PyObject *substr)
Czes¢ stabilnego ABI. Check whether substr is contained in unicode and return true or false accordingly.

substr has to coerce to a one element Unicode string. -1 is returned if there was an error.

166 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

void PyUnicode_InternInPlace (PyObject **p_unicode)

Czes¢ stabilnego ABI. Intern the argument *p_unicode in place. The argument must be the address of a po-
inter variable pointing to a Python Unicode string object. If there is an existing interned string that is the same
as *p_unicode, it sets *p_unicode to it (releasing the reference to the old string object and creating a new
strong reference to the interned string object), otherwise it leaves *p_unicode alone and interns it.

(Clarification: even though there is a lot of talk about references, think of this function as reference-neutral.
You must own the object you pass in; after the call you no longer own the passed-in reference, but you newly
own the result.)

This function never raises an exception. On error, it leaves its argument unchanged without interning it.

Instances of subclasses of str may not be interned, that is, PyUnicode_CheckExact (*p_unicode) must
be true. If it is not, then — as with any other error - the argument is left unchanged.

Note that interned strings are not “immortal”. You must keep a reference to the result to benefit from interning.

PyObject *PyUnicode_InternFromString (const char *str)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL. A combination of PyUnicode FromString ()
and PyUnicode_InternInPlace (), meant for statically allocated strings.

Return a new (,,owned”) reference to either a new Unicode string object that has been interned, or an earlier
interned string object with the same value.

Python may keep a reference to the result, or make it immortal, preventing it from being garbage-collected
promptly. For interning an unbounded number of different strings, such as ones coming from user input, prefer
calling PyUnicode_FromString () and PyUnicode_InternInPlace () directly.

Szczegot implementacyjny CPythona: Strings interned this way are made immortal.

PyUnicodeWriter
The PyUnicodewriter API can be used to create a Python st r object.
Added in version 3.14.

type PyUnicodeWriter

A Unicode writer instance.

The instance must be destroyed by PyUnicodeliriter Finish()
PyUnicodeWriter Discard () On error.

PyUnicode Writer ¥PyUnicodeWriter_ Create (Py_ssize_t length)
Create a Unicode writer instance.

length must be greater than or equal to 0.
If length is greater than 0, preallocate an internal buffer of length characters.
Set an exception and return NULL on error.
PyObject *PyUnicodeWriter_Finish (PyUnicodeWriter *writer)
Return the final Python st r object and destroy the writer instance.
Set an exception and return NULL On error.
The writer instance is invalid after this call.

void PyUnicodeWriter_Discard (PyUnicode Writer *writer)

Discard the internal Unicode buffer and destroy the writer instance.
If writer is NULL, no operation is performed.

The writer instance is invalid after this call.

on

Success,

or

8.3. Sequence Objects

167

The Python/C API, Wydanie 3.14.0a5

int PyUnicodeWriter_ WriteChar (PyUnicode Writer *writer, Py_UCS4 ch)

Write the single Unicode character ch into writer.
On success, return 0. On error, set an exception, leave the writer unchanged, and return -1.

int PyUnicodeWriter_ WriteUTF8 (PyUnicode Writer *writer, const char *str, Py_ssize_t size)

Decode the string st from UTF-8 in strict mode and write the output into writer.

size is the string length in bytes. If size is equal to -1, call strlen (str) to get the string length.
On success, return 0. On error, set an exception, leave the writer unchanged, and return -1.

See also PyUnicodeWriter_ DecodeUTF8Stateful ().

int PyUnicodeWriter_ WriteWideChar (PyUnicode Writer *writer, const wchar_t *str, Py_ssize_t size)

Writer the wide string str into writer.
size is a number of wide characters. If size is equal to -1, call weslen (str) to get the string length.
On success, return 0. On error, set an exception, leave the writer unchanged, and return —1.

int PyUnicodeWriter_ WriteUCS4 (PyUnicode Writer *writer, Py_UCS4 *str, Py_ssize_t size)
Writer the UCS4 string str into writer.

size is a number of UCS4 characters.
On success, return 0. On error, set an exception, leave the writer unchanged, and return -1.

int PyUnicodeWriter_WriteStr (PyUnicode Writer *writer, PyObject *obj)
Call pyobject_Str () on obj and write the output into writer.

On success, return 0. On error, set an exception, leave the writer unchanged, and return —1.

int PyUnicodeWriter_ WriteRepr (PyUnicode Writer *writer, PyObject *obj)

Call Pyobject_Repr () on obj and write the output into writer.
On success, return 0. On error, set an exception, leave the writer unchanged, and return -1.

int PyUnicodeWriter_WriteSubstring (PyUnicode Writer *writer, PyObject *str, Py_ssize_t start, Py_ssize_t
end)

Write the substring str[start:end] into writer.

str must be Python st r object. start must be greater than or equal to 0, and less than or equal to end. end must
be less than or equal to st length.

On success, return 0. On error, set an exception, leave the writer unchanged, and return —1.

int PyUnicodeWriter_ Format (PyUnicode Writer *writer, const char *format, ...)

Similar to PyUnicode_FromFormat (), but write the output directly into writer.
On success, return 0. On error, set an exception, leave the writer unchanged, and return -1.

int PyUnicodeWriter_DecodeUTF8Stateful (PyUnicodeWriter *writer, const char *string, Py_ssize_t length,
const char *errors, Py_ssize_t *consumed)

Decode the string str from UTF-8 with errors error handler and write the output into writer.
size is the string length in bytes. If size is equal to -1, call strlen (str) to get the string length.
errors is an error handler name, such as "replace™". If errors is NULL, use the strict error handler.

If consumed is not NULL, set *consumed to the number of decoded bytes on success. If consumed is NULL,
treat trailing incomplete UTF-8 byte sequences as an error.

On success, return 0. On error, set an exception, leave the writer unchanged, and return -1.

See also PyUnicodeWriter WriteUTF8().

168 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

8.3.4 Tuple Objects

type PyTupleObject
This subtype of PyoObject represents a Python tuple object.
PyTypeObject PyTuple_Type
Czes¢ stabilnego ABI. This instance of Py TypeObject represents the Python tuple type; it is the same object
as tuple in the Python layer.
int PyTuple_Check (PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type. This function always succeeds.
int PyTuple_CheckExact (PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type. This function always
succeeds.
PyObject *PyTuple_New (Py_ssize_t len)
Wartosc¢ zwracana: nowa referencja. Czesc stabilnego ABI. Return a new tuple object of size len, or NULL with
an exception set on failure.
PyObject *PyTuple_Pack (Py_ssize_t 1, ...)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL. Return a new tuple object of size n, or NULL with
an exception set on failure. The tuple values are initialized to the subsequent n C arguments pointing to Python
objects. PyTuple_Pack (2, a, b) isequivalentto Py_Buildvalue (" (00)", a, b).
Py_ssize_t PyTuple_Size (PyObject *p)
Czes¢ stabilnego ABI. Take a pointer to a tuple object, and return the size of that tuple. On error, return -1
and with an exception set.
Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Like PyTuple_ Size (), but without error checking.
PyObject *PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI. Return the object at position pos in the tuple

pointed to by p. If pos is negative or out of bounds, return NULL and set an IndexError exception.

The returned reference is borrowed from the tuple p (that is: it is only valid as long as you hold a reference to

p). To get a strong reference, use Py_NewRef (PyTuple_GetItem(...)) Of PySequence_GetItem().
PyObject *PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)

Wartos¢ zwracana: pozyczona referencja. Like PyTuple_Get Item (), but does no checking of its arguments.
PyObject *PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return the slice of the tuple pointed to by p between

low and high, or NULL with an exception set on failure.

This is the equivalent of the Python expression p[low:high]. Indexing from the end of the tuple is not
supported.

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *¥0)
Czes¢ stabilnego ABI. Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on
success. If pos is out of bounds, return -1 and set an IndexError exception.

© Informacja

This function ,steals” a reference to o and discards a reference to an item already in the tuple at the affected
position.

8.3. Sequence Objects 169

The Python/C API, Wydanie 3.14.0a5

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject ¥0)
Like pyTuple_SetItem(), but does no error checking, and should only be used to fill in brand new tuples.

Bounds checking is performed as an assertion if Python is built in debug mode or with assertions.

© Informacja

This function ,,steals” a reference to o, and, unlike PyTuple_ SetItem(), does not discard a reference to
any item that is being replaced; any reference in the tuple at position pos will be leaked.

A\ Ostrzezenie

This macro should only be used on tuples that are newly created. Using this macro on a tuple that is already
in use (or in other words, has a refcount > 1) could lead to undefined behavior.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple
may already be known to some other part of the code. The tuple will always grow or shrink at the end. Think
of this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client
code should never assume that the resulting value of *p will be the same as before calling this function. If the
object referenced by *p is replaced, the original *p is destroyed. On failure, returns -1 and sets *p to NULL,
and raises MemoryError Or SystemError.

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.
PyTypeObject *PyStructSequence_NewType (PyStructSequence_Desc *desc)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a new struct sequence type from the data in
desc, described below. Instances of the resulting type can be created with Py St ructSequence_New ().
Return NULL with an exception set on failure.
void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type fype from desc in place.
int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)

Like PyStructSequence _InitType (), but returns 0 on success and —1 with an exception set on failure.
Added in version 3.4.

type PyStructSequence_Desc

Czes¢ stabilnego ABI (w tym wszystkie sktadniki). Contains the meta information of a struct sequence type to

create.

const char *name
Fully qualified name of the type; null-terminated UTF-8 encoded. The name must contain the module
name.

const char *doe
Pointer to docstring for the type or NULL to omit.

PyStructSequence_Field *£ields

Pointer to NULL-terminated array with field names of the new type.

170 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

intn_in_sequence

Number of fields visible to the Python side (if used as tuple).

type PyStructSequence_Field

Czes¢ stabilnego ABI (w tym wszystkie sktadniki). Describes a field of a struct sequence. As a struct se-
quence is modeled as a tuple, all fields are typed as Pyobject*. The index in the fields array of the
pPyStructSequence_Desc determines which field of the struct sequence is described.

const char *name

Name for the field or NULL to end the list of named fields, set to Py St ruct Sequence_UnnamedField
to leave unnamed.

const char *doc

Field docstring or NULL to omit.

const char *const PyStructSequence_UnnamedField

Czes¢ stabilnego ABI od wersji 3.11. Special value for a field name to leave it unnamed.
Zmienione w wersji 3.9: The type was changed from char *.
PyObject *PyStructSequence_New (PyTypeObject *type)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Creates an instance of fype, which must have been
created with PySt ruct Sequence NewType ().

Return NULL with an exception set on failure.

PyObject *PyStructSequence_GetItem (PyObject *p, Py_ssize_t pos)

Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABIL Return the object at position pos in the struct
sequence pointed to by p.

Bounds checking is performed as an assertion if Python is built in debug mode or with assertions.

PyObject *PyStructSequence_GET_ITEM (PyObject *p, Py_ssize_t pos)

Wartos¢ zwracana: poZyczona referencja. Alias to PyStructSequence_GetItem().
Zmienione w wersji 3.13: Now implemented as an alias to Py St ruct Sequence_GetItem().

void PyStructSequence_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)

Czes¢ stabilnego ABIL Sets the field at index pos of the struct sequence p to value o. Like
PyTuple_SET_ITEM (), this should only be used to fill in brand new instances.

Bounds checking is performed as an assertion if Python is built in debug mode or with assertions.

© Informacja

This function ,,steals” a reference to o.

void PySt ruct Sequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *0)
Alias to PyStructSequence_SetItem().

Zmienione w wersji 3.13: Now implemented as an alias to Py St ruct Sequence_SetItem().

8.3.6 List Objects

type PyListObject
Ten podtyp PyObject reprezentuje obiekt listy Pythona.
PyTypeObject PyList_Type

Czes¢ stabilnego ABI. This instance of Py Typeob ject represents the Python list type. This is the same object
as 1ist in the Python layer.

8.3. Sequence Objects 171

The Python/C API, Wydanie 3.14.0a5

int PyList_Check (PyObject *p)

Return true if p is a list object or an instance of a subtype of the list type. This function always succeeds.
int PyList_CheckExact (PyObject *p)

Return true if p is a list object, but not an instance of a subtype of the list type. This function always succeeds.
PyObject *PyList_New (Py_ssize_t len)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a new list of length /en on success, or NULL
on failure.

© Informacja

If len is greater than zero, the returned list object’s items are set to NULL. Thus you cannot use abstract API
functions such as PySequence_SetItem() or expose the object to Python code before setting all items
to a real object with Pyrist_SetTtem() or PyList_SET_TTEM(). The following APIs are safe APIs
before the list is fully initialized: PyList_SetTtem() and PyList_SET _TTEM().

Py_ssize_t PyList_Size (PyObject *list)
Czes¢ stabilnego ABI. Return the length of the list object in /ist; this is equivalent to len (1ist) on a list
object.

Py_ssize_t PyList_GET_SIZE (PyObject *list)
Similar to PyList_Size (), but without error checking.

PyObject *PyList_GetItemRef (PyObject *list, Py_ssize_t index)

Wartos¢é zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.13. Return the object at position index in
the list pointed to by lisz. The position must be non-negative; indexing from the end of the list is not supported.
If index is out of bounds (<0 or >=len(list)), return NULL and set an IndexError exception.

Added in version 3.13.

PyObject *PyList_GetItem (PyObject *list, Py_ssize_t index)

Wartos¢ zwracana: poZyczona referencja. Czes¢ stabilnego ABI. Like pPyList_GetItemRef (), but returns
a borrowed reference instead of a strong reference.

PyObject *PyList_GET_ITEM (PyObject *list, Py_ssize_t 1)
Wartos¢ zwracana: pozyczona referencja. Similar to PyList_GetItem (), but without error checking.

int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)
Czes¢ stabilnego ABI. Set the item at index index in list to ifem. Return 0 on success. If index is out of bounds,
return -1 and set an IndexError exception.

© Informacja

This function ,,steals” a reference to item and discards a reference to an item already in the list at the affected
position.

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *0)
Macro form of pyList_SetItem() without error checking. This is normally only used to fill in new lists
where there is no previous content.

Bounds checking is performed as an assertion if Python is built in debug mode or with assertions.

© Informacja

This macro ,,steals” a reference to item, and, unlike PyList_SetItem (), does not discard a reference to
any item that is being replaced; any reference in /ist at position i will be leaked.

172 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
Czes¢ stabilnego ABL Insert the item item into list /ist in front of index index. Return 0 if successful; return -1
and set an exception if unsuccessful. Analogous to 1ist.insert (index, item).

int PyList_Append (PyObject *list, PyObject *item)

Czes¢ stabilnego ABI. Append the object ifem at the end of list /isz. Return 0 if successful; return —1 and set an
exception if unsuccessful. Analogous to 1ist.append (item).

PyObject *PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)

Wartos¢é zwracana: nowa referencja. Czes¢ stabilnego ABIL. Return a list of the objects in list conta-
ining the objects between low and high. Return NULL and set an exception if unsuccessful. Analogous to
list[low:high]. Indexing from the end of the list is not supported.

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Czes¢ stabilnego ABI. Set the slice of list between low and high to the contents of ifemlist. Analogous to

list[low:high] = itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice
deletion). Return 0 on success, -1 on failure. Indexing from the end of the list is not supported.

int PyList_Extend (PyObject *list, PyObject *iterable)

Extend list with the contents of iterable. This is the same as PyList_SetSlice (list, PY_SSIZE_T_MAX,
PY_SSIZE_T_MAX, iterable) and analogousto list.extend(iterable) or list += iterable.

Raise an exception and return -1 if /ist is not a 1ist object. Return O on success.
Added in version 3.13.
int PyList_Clear (PyObject *list)

Remove all items from Zist. This is the same as PyList_SetSlice (list, 0, PY_SSIZE_T_MAX, NULL)
and analogous to 1ist.clear () ordel list[:].

Raise an exception and return -1 if list is not a 1ist object. Return O on success.
Added in version 3.13.
int PyList_Sort (PyObject *list)

Czes¢ stabilnego ABI. Sort the items of list in place. Return 0 on success, —1 on failure. This is equivalent to
list.sort ().

int PyList_Reverse (PyObject *list)

Czes¢ stabilnego ABI. Reverse the items of /ist in place. Return 0 on success, —1 on failure. This is the equivalent
of list.reverse ().

PyObject *PyList_AsTuple (PyObject *list)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a new tuple object containing the contents
of list; equivalent to tuple (list).

8.4 Container Objects

8.4.1 Obiekty stownika

type PyDictObject
Ten podtyp PyObject reprezentuje obiekt stownika Pythona.

PyTypeObject PyDict_Type
Czes¢ stabilnego ABI. Ta instancja Py TypeOb ject reprezentuje typ stownika Pythona. Jest to ten sam obiekt,
co dict w warstwie Pythona.

int PyDict_Check (PyObject *p)

Zwraca warto$¢ true, jesli p jest obiektem typu dict lub instancja podtypu typu dict. Funkcja ta zawsze korczy
si¢ powodzeniem.

8.4. Container Objects 173

The Python/C API, Wydanie 3.14.0a5

int PyDict_CheckExact (PyObject *p)
Zwraca warto$¢ true, jeSli p jest obiektem typu dict, ale nie jest instancja podtypu typu dict. Funkcja ta zawsze
koriczy si¢ powodzeniem.

PyObject *PyDict_New ()
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Zwraca nowy pusty stownik lub NULL w przypadku
niepowodzenia.

PyObject *PyDictProxy_New (PyObject *mapping)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a types.MappingProxyType object for
a mapping which enforces read-only behavior. This is normally used to create a view to prevent modification
of the dictionary for non-dynamic class types.

void PyDict_Clear (PyObject *p)
Czes¢ stabilnego ABI. Empty an existing dictionary of all key-value pairs.

int PyDict_Contains (PyObject *p, PyObject *key)
Czes¢ stabilnego ABI. Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise
return 0. On error, return —1. This is equivalent to the Python expression key in p.

int PyDict_ContainsString (PyObject *p, const char *key)

This is the same as PyDict_Contains (), but key is specified as a const char* UTF-8 encoded bytes
string, rather than a PyObject*.

Added in version 3.13.

PyObject *PyDict_Copy (PyObject *p)
Wartos¢ zwracana: nowa referencja. Czesé stabilnego ABI. Zwraca nowy stownik zawierajacy te same pary
klucz-warto$¢ co p.

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
Czes¢ stabilnego ABI. Insert val into the dictionary p with a key of key. key must be hashable; if it isn't,
TypeError will be raised. Return 0 on success or —1 on failure. This function does not steal a reference to
val.

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
Czes¢ stabilnego ABI. This is the same as PyDict_SetItem(),butkeyisspecifiedasaconst char* UTF-8
encoded bytes string, rather than a PyObject*.

int PyDict_DelItem (PyObject *p, PyObject *key)

Czes¢ stabilnego ABI. Remove the entry in dictionary p with key key. key must be hashable; if it isn't,
TypeError is raised. If key is not in the dictionary, KeyError is raised. Return 0 on success or -1 on
failure.

int PyDict_DelItemString (PyObject *p, const char *key)

Czes¢ stabilnego ABI. This is the same as PyDict_DelItem(),butkeyisspecifiedasaconst char* UTF-8
encoded bytes string, rather than a PyObject*.

int PyDict_GetItemRef (PyObject *p, PyObject *key, PyObject **result)
Czes¢ stabilnego ABI od wersji 3.13. Return a new strong reference to the object from dictionary p which has
a key key:

« If the key is present, set *result to a new strong reference to the value and return 1.
« If the key is missing, set *result to NULL and return 0.
» On error, raise an exception and return 1.

Added in version 3.13.

See also the PyObject_GetItem () function.

174 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

PyObject *PyDict_GetItem (PyObject *p, PyObject *key)
Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABIL Return a borrowed reference to the object from
dictionary p which has a key key. Return NULL if the key key is missing without setting an exception.

© Informacja

Exceptions that occur while this calls __hash__ () and __eq__ () methods are silently ignored. Prefer
the PyDict_GetTtemWithError () function instead.

Zmienione w wersji 3.10: Calling this API without G/L held had been allowed for historical reason. It is no
longer allowed.

PyObject *PyDict_GetItemWithError (PyObject *p, PyObject *key)
Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI. Variant of PyDict_Get Item () that does not
suppress exceptions. Return NULL with an exception set if an exception occurred. Return NULL without an
exception set if the key wasn’t present.

PyObject *PyDict_GetItemString (PyObject *p, const char *key)
Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI. This is the same as PyDict_GetItem(),but
key is specified as a const char* UTF-8 encoded bytes string, rather than a PyOb ject*.

© Informacja

Exceptions that occur while this calls __hash_ () and __eq__ () methods or while creating the tem-
porary str object are silently ignored. Prefer using the PyDict GetItemwithError () function with
your own PyUnicode_FromString () key instead.

int PyDict_GetItemStringRef (PyObject *p, const char *key, PyObject **result)
Czes¢ stabilnego ABI od wersji 3.13. Similar to PyDict_GetItemRef (), but key is specified as a const
char* UTF-8 encoded bytes string, rather than a PyObject*.
Added in version 3.13.

PyObject *PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *defaultobj)
Wartos¢ zwracana: poZyczona referencja. This is the same as the Python-level dict .setdefault (). If pre-
sent, it returns the value corresponding to key from the dictionary p. If the key is not in the dict, it is inserted
with value defaultobj and defaultobj is returned. This function evaluates the hash function of key only once,
instead of evaluating it independently for the lookup and the insertion.

Added in version 3.4.

int PyDict_SetDefaultRef (PyObject *p, PyObject *key, PyObject *default_value, PyObject **result)
Inserts default_value into the dictionary p with a key of key if the key is not already present in the dictionary. If
result isnot NULL, then *result is set to a strong reference to either default_value, if the key was not present, or the
existing value, if key was already present in the dictionary. Returns 1 if the key was present and default_value
was not inserted, or 0 if the key was not present and default _value was inserted. On failure, returns -1, sets an
exception, and sets *result to NULL.

For clarity: if you have a strong reference to default_value before calling this function, then after it returns,
you hold a strong reference to both default value and *result (if it’s not NULL). These may refer to the same
object: in that case you hold two separate references to it.

Added in version 3.13.
int PyDict_Pop (PyObject *p, PyObject *key, PyObject **result)

Remove key from dictionary p and optionally return the removed value. Do not raise KeyError if the key
missing.

« If the key is present, set *result to a new reference to the removed value if result is not NULL, and return
1.

8.4. Container Objects 175

The Python/C API, Wydanie 3.14.0a5

o If the key is missing, set *result to NULL if result is not NULL, and return 0.

o On error, raise an exception and return —1.
Similar to dict . pop (), but without the default value and not raising KeyError if the key missing.
Added in version 3.13.

int PyDict_PopString (PyObject *p, const char *key, PyObject **result)
Similar to PyDict_Pop (), but key is specified as a const char* UTF-8 encoded bytes string, rather than
a PyObject*.
Added in version 3.13.

PyObject *PyDict_Items (PyObject *p)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a PyListObject containing all the items
from the dictionary.

PyObject *PyDict_Keys (PyObject *p)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return a PyListObject containing all the keys
from the dictionary.

PyObject *PyDict_Values (PyObject *p)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Zwraca PyListObject zawierajacy wszystkie
wartoSci ze stownika p.

Py_ssize_t PyDict_Size (PyObject *p)
Czes¢ stabilnego ABI. Return the number of items in the dictionary. This is equivalent to 1en (p) on a dictio-
nary.

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)

Czes¢ stabilnego ABI. Iterate over all key-value pairs in the dictionary p. The py_ssize_t referred to by ppos
must be initialized to 0 prior to the first call to this function to start the iteration; the function returns true
for each pair in the dictionary, and false once all pairs have been reported. The parameters pkey and pvalue
should either point to PyObject* variables that will be filled in with each key and value, respectively, or may
be NULL. Any references returned through them are borrowed. ppos should not be altered during iteration. Its
value represents offsets within the internal dictionary structure, and since the structure is sparse, the offsets are
not consecutive.

Dla przyktadu:

-

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */

}

L

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) {
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) A
return -1;
}
PyObject *o = PyLong_FromLong (i + 1);
if (o == NULL)

(ciag dalszy na nastgpnej stronie)

176 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)

return -1;

if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (o) ;
return -1;

}

Py_DECREF (0) ;

The function is not thread-safe in the free-threaded build without external synchronization. You can use
Py _BEGIN_CRITICAI_SECTION to lock the dictionary while iterating over it:

Py_BEGIN_CRITICAL_SECTION (self->dict);
while (PyDict_Next (self->dict, &pos, &key, &value)) {

}
Py_END_CRITICAL_SECTION() ;

int PyDict_Merge (PyObject *a, PyObject *b, int override)
Czes¢ stabilnego ABI. Iterate over mapping object b adding key-value pairs to dictionary a. b may be a dictio-
nary, or any object supporting PyMapping Keys () and PyObject_GetItem ().lIf override is true, existing
pairs in a will be replaced if a matching key is found in b, otherwise pairs will only be added if there is not
a matching key in a. Return 0 on success or -1 if an exception was raised.

int PyDict_Update (PyObject *a, PyObject *b)
Czes¢ stabilnego ABI. This is the same as PyDict_Merge (a, b, 1) in C, and is similar to a.update (b)
in Python except that PyDict_Update () doesn’t fall back to the iterating over a sequence of key value pairs
if the second argument has no ,.keys” attribute. Return 0 on success or -1 if an exception was raised.

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)
Czes¢ stabilnego ABI. Update or merge into dictionary a, from the key-value pairs in seg2. seq2 must be an
iterable object producing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the
last wins if override is true, else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent
Python (except for the return value):

def PyDict_MergeFromSeqg2(a, seq2, override):
for key, value in seqg2:
if override or key not in a:
alkey] = value

int PyDict_AddWatcher (PyDict_WatchCallback callback)
Register callback as a dictionary watcher. Return a non-negative integer id which must be passed to future calls
to PyDict_Watch (). In case of error (e.g. no more watcher IDs available), return —1 and set an exception.

Added in version 3.12.

int PyDict_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id previously returned from pPyDict_Addwatcher (). Return 0 on suc-
cess, —1 on error (e.g. if the given watcher_id was never registered.)

Added in version 3.12.

int PyDict_Watch (int watcher_id, PyObject *dict)
Mark dictionary dict as watched. The callback granted watcher_id by pyDict_Addwatcher () will be called
when dict is modified or deallocated. Return 0 on success or —1 on error.
Added in version 3.12.

int PyDict_Unwatch (int watcher_id, PyObject *dict)
Mark dictionary dict as no longer watched. The callback granted watcher_id by PyDict_Addwatcher () will

8.4. Container Objects 177

The Python/C API, Wydanie 3.14.0a5

no longer be called when dict is modified or deallocated. The dict must previously have been watched by this
watcher. Return 0 on success or -1 on error.

Added in version 3.12.

type PyDict_WatchEvent

Enumeration of possible dictionary watcher events: PyDict_EVENT_ADDED, PyDict_ EVENT_MODIFIED,
PyDict_EVENT_DELETED, PyDict_EVENT_CLONED, PyDict_EVENT_CLEARED, or
PyDict_EVENT_DEALLOCATED.

Added in version 3.12.

typedef int (*PyDict_WatchCallback)(PyDict_ WatchEvent event, PyObject *dict, PyObject *key, PyObject
*new_value)

Type of a dict watcher callback function.

If event is PyDict EVENT_ CLEARED Or PyDict_ EVENT_DEALLOCATED, both key and new_value will be
NULL. If event is PyDict_EVENT_ADDED Or PyDict_EVENT_MODIFIED, new_value will be the new value
for key. If event is PyDict EVENT_DELETED, key is being deleted from the dictionary and new_value will be
NULL.

PyDict_EVENT_CLONED occurs when dict was previously empty and another dict is merged into it. To ma-
intain efficiency of this operation, per-key PyDict_EVENT_ADDED events are not issued in this case; instead
a single PyDict_ EVENT_ CLONED is issued, and key will be the source dictionary.

The callback may inspect but must not modify dict; doing so could have unpredictable effects, including infinite
recursion. Do not trigger Python code execution in the callback, as it could modify the dict as a side effect.

If eventispyDict_ EVENT DEALLOCATED, taking a new reference in the callback to the about-to-be-destroyed
dictionary will resurrect it and prevent it from being freed at this time. When the resurrected object is destroyed
later, any watcher callbacks active at that time will be called again.

Callbacks occur before the notified modification to dict takes place, so the prior state of dict can be inspected.

If the callback sets an exception, it must return —1; this exception will be printed as an unraisable exception
using PyErr WriteUnraisable (). Otherwise it should return 0.

There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.

Added in version 3.12.

8.4.2 Set Objects

This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using either the abstract object protocol (including PyObject CallMethod(),
PyObject_RichCompareBool (), PyObject_Hash(), PyObject_Repr (), PyObject_IsTrue(),
PyObject_Print (),and PyObject_GetIter ())or the abstract number protocol (including PyNumber_ And (),
PyNumber_Subtract (), PyNumber_Or (), PyNumber_Xor (), PyNumber_InPlaceAnd(),
PyNumber_InPlaceSubtract (), PyNumber_InPlaceOr (), and PyNumber_InPlaceXor ()).

type PySetObject

This subtype of pPyobject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of
this structure should be considered public and all are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type

Czes¢ stabilnego ABI. This is an instance of Py TypeOb ject representing the Python set type.

PyTypeObject PyFrozenSet_Type

Czes¢ stabilnego ABI. This is an instance of PyTypeOb ject representing the Python frozenset type.

178

Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.
int PySet_Check (PyObject *p)

Return true if p is a set object or an instance of a subtype. This function always succeeds.

int PyFrozenSet_Check (PyObject *p)

Return true if p is a frozenset object or an instance of a subtype. This function always succeeds.
int PyAnySet_Check (PyObject *p)

Return true if pisa set object, a frozenset object, or an instance of a subtype. This function always succeeds.
int PySet_CheckExact (PyObject *p)

Return true if p is a set object but not an instance of a subtype. This function always succeeds.

Added in version 3.10.

int PyAnySet_CheckExact (PyObject *p)
Return true if p is a set object or a frozenset object but not an instance of a subtype. This function always
succeeds.

int PyFrozenSet_CheckExact (PyObject *p)
Return true if p is a frozenset object but not an instance of a subtype. This function always succeeds.

PyObject *PySet_New (PyObject *iterable)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a new set containing objects returned by
the iterable. The iterable may be NULL to create a new empty set. Return the new set on success or NULL on
failure. Raise TypeError if iterable is not actually iterable. The constructor is also useful for copying a set
(c=set (s)).

PyObject *PyFrozenSet_New (PyObject *iterable)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return a new frozenset containing objects retur-
ned by the iterable. The iterable may be NULL to create a new empty frozenset. Return the new set on success
or NULL on failure. Raise TypeError if iterable is not actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

Py_ssize_t PySet_Size (PyObject *anyset)

Czes¢ stabilnego ABI. Return the length of a set or frozenset object. Equivalent to len (anyset) . Raises
a SystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
Macro form of pPySet_Size () without error checking.

int PySet_Contains (PyObject *anyset, PyObject *key)
Czes¢ stabilnego ABI. Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Python
__contains__ () method, this function does not automatically convert unhashable sets into temporary fro-
zensets. Raise a TypeError if the key is unhashable. Raise SystemError if anysetisnota set, frozenset,
or an instance of a subtype.

int PySet_Add (PyObject *set, PyObject *key)
Czes¢ stabilnego ABIL Add key to a set instance. Also works with frozenset instances (like
PyTuple_SetItem() it can be used to fill in the values of brand new frozensets before they are exposed
to other code). Return 0 on success or -1 on failure. Raise a TypeError if the key is unhashable. Raise

a MemoryError if there is no room to grow. Raise a SystemError if sef is not an instance of set or its
subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its
subtypes.

8.4. Container Objects 179

The Python/C API, Wydanie 3.14.0a5

int PySet_Discard (PyObject *set, PyObject *key)
Czes¢ stabilnego ABI. Return 1 if found and removed, 0 if not found (no action taken), and -1 if an error is
encountered. Does not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike
the Python discard () method, this function does not automatically convert unhashable sets into temporary
frozensets. Raise SystemError if sef is not an instance of set or its subtype.

PyObject *PySet_Pop (PyObject *set)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a new reference to an arbitrary object in the
set, and removes the object from the ser. Return NULL on failure. Raise KeyError if the set is empty. Raise
a SystemError if set is not an instance of set or its subtype.

int PySet_Clear (PyObject *set)
Czes¢ stabilnego ABI. Empty an existing set of all elements. Return 0 on success. Return -1 and raise
SystemError if sef is not an instance of set or its subtype.

8.5 Obiekty Funkcja

8.5.1 Obiekty Funkcja
Istnieje kilka funkcji specyficznych dla funkcji Pythona.

type PyFunctionObject
Struktura C uzywana dla funkcji.

PyTypeObject PyFunction_Type
This is an instance of PyTypeObject and represents the Python function type. It is exposed to Python pro-
grammers as types.FunctionType.

int PyFunction_Check (PyObject *0)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL. This
function always succeeds.

PyObject ¥*pyFunction_New (PyObject *code, PyObject *globals)
Wartos¢ zwracana: nowa referencja. Return a new function object associated with the code object code. globals

must be a dictionary with the global variables accessible to the function.

The function’s docstring and name are retrieved from the code object. __module__is retrieved from globals.
The argument defaults, annotations and closure are set to NULL. __qualname__ is set to the same value as
the code object’s co_qualname field.

PyObject *PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)
Wartos¢ zwracana: nowa referencja. As PyFunction_ New (), but also allows setting the function object’s

__gualname___ attribute. qualname should be a unicode object or NULL; if NULL, the __qualname___ attri-
bute is set to the same value as the code object’s co_qualname field.

Added in version 3.3.
PyObject *PyFunction_GetCode (PyObject *op)

Wartos¢ zwracana: poZyczona referencja. Return the code object associated with the function object op.
PyObject *PyFunction_GetGlobals (PyObject *op)

Wartos¢ zwracana: pozyczona referencja. Return the globals dictionary associated with the function object op.
PyObject *PyFunction_GetModule (PyObject *op)

Wartos¢ zwracana: pozyczona referencja. Return a borrowed reference to the __module_ attribute of the
function object op. It can be NULL.

This is normally a st ring containing the module name, but can be set to any other object by Python code.

PyObject *PyFunction_GetDefaults (PyObject *op)
Wartos¢ zwracana: pozyczona referencja. Return the argument default values of the function object op. This
can be a tuple of arguments or NULL.

180 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.

Raises SystemError and returns —1 on failure.

void PyFunction_SetVectorcall (PyFunctionObject *func, vectorcallfunc vectorcall)

Set the vectorcall field of a given function object func.
Warning: extensions using this API must preserve the behavior of the unaltered (default) vectorcall function!
Added in version 3.12.

PyObject *PyFunction_GetClosure (PyObject *op)
Wartos¢ zwracana: pozyczona referencja. Return the closure associated with the function object op. This can
be NULL or a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closure)

Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.
Raises SystemError and returns -1 on failure.

PyObject *PyFunction_GetAnnotations (PyObject *op)
Wartosé zwracana: pozyczona referencja. Return the annotations of the function object op. This can be a mutable
dictionary or NULL.

int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)

Set the annotations for the function object op. annotations must be a dictionary or Py_None.
Raises SystemError and returns -1 on failure.

int PyFunction_AddWatcher (PyFunction_WatchCallback callback)

Register callback as a function watcher for the current interpreter. Return an ID which may be passed to
PyFunction_ClearWatcher ().In case of error (e.g. no more watcher IDs available), return -1 and set an
exception.

Added in version 3.12.

int PyFunction_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id previously returned from PyFunction_Addwatcher () for the cur-
rent interpreter. Return 0 on success, or —1 and set an exception on error (e.g. if the given watcher_id was
never registered.)

Added in version 3.12.

type PyFunction_WatchEvent

Enumeration of possible function watcher events: - PyFunction EVENT CREATE
- PyFunction_ EVENT_DESTROY - PyFunction_ EVENT_MODIFY_CODE -
PyFunction_ EVENT_MODIFY DEFAULTS - PyFunction_ EVENT_MODIFY_ KWDEFAULTS

Added in version 3.12.

typedef int (*PyFunction_WatchCallback)(PyFunction_WatchEvent event, PyFunctionObject *func, PyObject
*new_value)

Type of a function watcher callback function.

If event is PyFunction_EVENT_CREATE or PyFunction_EVENT_DESTROY then new_value will be NULL.
Otherwise, new_value will hold a borrowed reference to the new value that is about to be stored in func for the
attribute that is being modified.

The callback may inspect but must not modify func; doing so could have unpredictable effects, including infinite
recursion.

If event is PyFunction EVENT_CREATE, then the callback is invoked after func has been fully initialized.
Otherwise, the callback is invoked before the modification to func takes place, so the prior state of func can be
inspected. The runtime is permitted to optimize away the creation of function objects when possible. In such
cases no event will be emitted. Although this creates the possibility of an observable difference of runtime

8.5. Obiekty Funkcja 181

The Python/C API, Wydanie 3.14.0a5

behavior depending on optimization decisions, it does not change the semantics of the Python code being
executed.

If event is PyFunction EVENT_DESTROY, Taking a reference in the callback to the about-to-be-destroyed
function will resurrect it, preventing it from being freed at this time. When the resurrected object is destroyed
later, any watcher callbacks active at that time will be called again.

If the callback sets an exception, it must return —1; this exception will be printed as an unraisable exception
using PyErr_WriteUnraisable (). Otherwise it should return 0.

There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.

Added in version 3.12.

8.5.2 Instance Method Objects

An instance method is a wrapper for a PyCFunction and the new way to bind a PyCFunction to a class object. It
replaces the former call PyMethod_New (func, NULL, class).

PyTypeObject PyInstanceMethod_Type

This instance of PyTypeObject represents the Python instance method type. It is not exposed to Python
programs.

int PyInstanceMethod_Check (PyObject *0)

Return true if o is an instance method object (has type Py InstanceMethod_Type). The parameter must not
be NULL. This function always succeeds.

PyObject *PyInstanceMethod_New (PyObject *func)

Wartos¢ zwracana: nowa referencja. Return a new instance method object, with func being any callable object.
func is the function that will be called when the instance method is called.

PyObject *PyInstanceMethod_Function (PyObject *im)
Wartos¢ zwracana: pozyczona referencja. Return the function object associated with the instance method im.
PyObject *PyInstanceMethod_GET_FUNCTION (PyObject *im)

Wartos¢ zwracana: pozyczona referencja. Macro version of Py InstanceMethod_Function () which avoids
error checking.

8.5.3 Obiekty metod

Methods are bound function objects. Methods are always bound to an instance of a user-defined class. Unbound
methods (methods bound to a class object) are no longer available.

PyTypeObject PyMethod_Type

This instance of Py TypeObject represents the Python method type. This is exposed to Python programs as
types.MethodType.

int PyMethod_Check (PyObject *0)

Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL. This
function always succeeds.

PyObject *PyMethod_New (PyObject *func, PyObject *self)
Wartos¢ zwracana: nowa referencja. Return a new method object, with func being any callable object and self

the instance the method should be bound. func is the function that will be called when the method is called.
self must not be NULL.

PyObject *PyMethod_Function (PyObject *meth)

Wartos¢ zwracana: pozyczona referencja. Return the function object associated with the method meth.

182 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

PyObject *PyMethod_GET_FUNCTION (PyObject *meth)
Wartos¢ zwracana: pozyczona referencja. Macro version of PyMethod_Function () which avoids error chec-
king.

PyObject *PyMethod_Self£ (PyObject *meth)
Wartos¢ zwracana: pozyczona referencja. Return the instance associated with the method meth.

PyObject *PyMethod_GET_SELF (PyObject *meth)

Wartos¢ zwracana: pozyczona referencja. Macro version of PyMethod_Self () which avoids error checking.

8.5.4 Cell Objects

Obiekty ,,Cell” sa uzywane do implementacji zmiennych, do ktérych odwotuje si¢ wiele zakreséw. Dla kazdej takiej
zmiennej tworzony jest obiekt komdrki do przechowywania warto$ci; zmienne lokalne kazdej ramki stosu, ktéra
odwotuje si¢ do wartosci, zawieraja odniesienie do komérek z zewngtrznych zakresow, ktére rowniez uzywaja tej
zmiennej. Gdy wartos$¢ jest dostgpna, warto$¢ zawarta w komorce jest uzywana zamiast samego obiektu komorki.
Odwotywanie si¢ do obiektu komérki wymaga wsparcia ze strony wygenerowanego kodu bajtowego; nie sa one au-
tomatycznie odwotywane, gdy uzyskuje si¢ do nich dostgp. Obiekty komoérek prawdopodobnie nie beda przydatne
w innych miejscach.
type PyCellObject
The C structure used for cell objects.
PyTypeObject PyCell_Type
The type object corresponding to cell objects.
int PyCell_Check (PyObject *ob)
Return true if ob is a cell object; ob must not be NULL. This function always succeeds.
PyObject *PyCell_New (PyObject *ob)
Wartos¢ zwracana: nowa referencja. Create and return a new cell object containing the value ob. The parameter
may be NULL.
PyObject *PyCell_Get (PyObject *cell)
Wartos¢ zwracana: nowa referencja. Return the contents of the cell cell, which can be NULL. If cell is not a cell
object, returns NULL with an exception set.
PyObject *PyCell_GET (PyObject *cell)
Wartos¢ zwracana: pozyczona referencja. Return the contents of the cell cell, but without checking that cell is
non-NULL and a cell object.
int PyCell_Set (PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell.
value may be NULL. cell must be non-NULL.

On success, return 0. If cell is not a cell object, set an exception and return —1.

void PyCell_SET (PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for
safety; cell must be non-NULL and must be a cell object.

8.5.5 Code Objects

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable code
that hasn’t yet been bound into a function.
type PyCodeObject

The C structure of the objects used to describe code objects. The fields of this type are subject to change at
any time.

8.5. Obiekty Funkcja 183

The Python/C API, Wydanie 3.14.0a5

PyTypeObject PyCode_Type

This is an instance of Py TypeObject representing the Python code object.
int PyCode_Check (PyObject *co)

Return true if co is a code object. This function always succeeds.
Py_ssize_t PyCode_GetNumFree (PyCodeObject *co)

Return the number of free (closure) variables in a code object.

int PyUnstable_Code_GetFirstFree (PyCodeObject *co)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Return the position of the first free (closure) variable in a code object.

Zmienione w wersji 3.13: Renamed from PyCode_GetFirstFree as part of Unstable C API. The old name
is deprecated, but will remain available until the signature changes again.

PyCodeObject *PyUnstable_Code_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject *names, PyObject
*varnames, PyObject *freevars, PyObject *cellvars, PyObject *filename,
PyObject *name, PyObject *qualname, int firstlineno, PyObject
*linetable, PyObject *exceptiontable)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Return a new code object. If you need a dummy code object to create a frame, use PyCode_NewEmpty ()
instead.

Since the definition of the bytecode changes often, calling PyUnstable Code_New () directly can bind you
to a precise Python version.

The many arguments of this function are inter-dependent in complex ways, meaning that subtle changes to
values are likely to result in incorrect execution or VM crashes. Use this function only with extreme care.

Zmienione w wersji 3.11: Added qualname and exceptiontable parameters.

Zmienione w wersji 3.12: Renamed from PyCode_New as part of Unstable C API. The old name is deprecated,
but will remain available until the signature changes again.

PyCodeObject *PyUnstable_Code_NewWithPosOnlyArgs (int argcount, int posonlyargcount, int
kwonlyargcount, int nlocals, int stacksize, int flags,
PyObject *code, PyObject *consts, PyObject
*names, PyObject *varnames, PyObject *freevars,
PyObject *cellvars, PyObject *filename, PyObject
*name, PyObject *qualname, int firstlineno,
PyObject *linetable, PyObject *exceptiontable)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Similar to PyUnstable Code_New (), but with an extra ,,posonlyargcount” for positional-only arguments.
The same caveats that apply to PyUnstable_Code_New also apply to this function.

184 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

Added in version 3.8: as PyCode_NewWithPosOnlyArgs
Zmienione w wersji 3.11: Added qualname and exceptiontable parameters.

Zmienione w wersji 3.12: Renamed to PyUnstable Code_ NewWithPosOnlyArgs. The old name is depre-
cated, but will remain available until the signature changes again.

PyCodeObject *PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)

Wartos¢ zwracana: nowa referencja. Return a new empty code object with the specified filename, function
name, and first line number. The resulting code object will raise an Exception if executed.

int PyCode_Addr2Line (PyCodeObject *co, int byte_offset)

Return the line number of the instruction that occurs on or before byte_of fset and ends after it. If you just
need the line number of a frame, use PyFrame_GetLineNumber () instead.

For efficiently iterating over the line numbers in a code object, use the API described in PEP 626.

int PyCode_Addr2Location (PyObject *co, int byte_offset, int *start_line, int *start_column, int *end_line, int
*end_column)

Sets the passed int pointers to the source code line and column numbers for the instruction at byte_offset.
Sets the value to 0 when information is not available for any particular element.

Returns 1 if the function succeeds and O otherwise.
Added in version 3.11.

PyObject *PyCode_GetCode (PyCodeObject *co)

Equivalent to the Python code getattr (co, 'co_code').Returnsastrongreferencetoa PyBytesObject
representing the bytecode in a code object. On error, NULL is returned and an exception is raised.

This PyBytesObject may be created on-demand by the interpreter and does not necessarily represent the
bytecode actually executed by CPython. The primary use case for this function is debuggers and profilers.

Added in version 3.11.

PyObject *PyCode_GetVarnames (PyCodeObject *co)

Equivalent to the Python code getattr(co, 'co_varnames'). Returns a new reference to
a PyTupleObject containing the names of the local variables. On error, NULL is returned and an
exception is raised.

Added in version 3.11.

PyObject *PyCode_GetCellvars (PyCodeObject *co)

Equivalent to the Python code getattr(co, 'co_cellvars'). Returns a new reference to
a PyTupleObject containing the names of the local variables that are referenced by nested functions.
On error, NULL is returned and an exception is raised.

Added in version 3.11.

PyObject *PyCode_GetFreevars (PyCodeObject *co)

Equivalent to the Python code getattr(co, 'co_freevars'). Returns a new reference to
a PyTupleObject containing the names of the free (closure) variables. On error, NULL is returned
and an exception is raised.

Added in version 3.11.

int PyCode_AddWatcher (PyCode_WatchCallback callback)

Register callback as a code object watcher for the current interpreter. Return an ID which may be passed
to PyCode_Clearwatcher (). In case of error (e.g. no more watcher IDs available), return -1 and set an
exception.

Added in version 3.12.

8.5. Obiekty Funkcja 185

https://peps.python.org/pep-0626/#out-of-process-debuggers-and-profilers

The Python/C API, Wydanie 3.14.0a5

int PyCode_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id previously returned from PyCode Addwatcher () for the current
interpreter. Return 0 on success, or —1 and set an exception on error (e.g. if the given watcher_id was never
registered.)

Added in version 3.12.

type PyCodeEvent

Enumeration of possible code object watcher events: - PY_CODE_EVENT_CREATE -
PY_CODE_EVENT_DESTROY

Added in version 3.12.

typedef int (*PyCode_WatchCallback)(PyCodeEvent event, PyCodeObject *co)

Type of a code object watcher callback function.

If event is PY_CODE_EVENT_CREATE, then the callback is invoked after co has been fully initialized. Other-
wise, the callback is invoked before the destruction of co takes place, so the prior state of co can be inspected.

If event is PY_CODE_EVENT_DESTROY, taking a reference in the callback to the about-to-be-destroyed code
object will resurrect it and prevent it from being freed at this time. When the resurrected object is destroyed
later, any watcher callbacks active at that time will be called again.

Users of this API should not rely on internal runtime implementation details. Such details may include, but
are not limited to, the exact order and timing of creation and destruction of code objects. While changes in
these details may result in differences observable by watchers (including whether a callback is invoked or not),
it does not change the semantics of the Python code being executed.

If the callback sets an exception, it must return —1; this exception will be printed as an unraisable exception
using PyErr_lriteUnraisable (). Otherwise it should return 0.

There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.

Added in version 3.12.

8.5.6 Extra information

To support low-level extensions to frame evaluation, such as external just-in-time compilers, it is possible to attach
arbitrary extra data to code objects.

These functions are part of the unstable C API tier: this functionality is a CPython implementation detail, and the
API may change without deprecation warnings.

Py_ssize_t PyUnstable_Eval_RequestCodeExtraIndex (freefunc free)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Return a new an opaque index value used to adding data to code objects.

You generally call this function once (per interpreter) and use the result with PyCode_GetExtra and
PyCode_SetExtra to manipulate data on individual code objects.

If free is not NULL: when a code object is deallocated, free will be called on non-NULL data stored under the
new index. Use Py_DecRef () when storing PyObject.

Added in version 3.6: as _PyEval_RequestCodeExtralndex

Zmienione w wersji 3.12: Renamed to PyUnstable Eval_ RequestCodeExtralIndex. The old private
name is deprecated, but will be available until the API changes.

186 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

int PyUnstable_Code_GetExtra (PyObject *code, Py_ssize_t index, void **extra)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Set extra to the extra data stored under the given index. Return O on success. Set an exception and return -1 on
failure.

If no data was set under the index, set extra to NULL and return O without setting an exception.
Added in version 3.6: as _PyCode_GetExtra

Zmienione w wersji 3.12: Renamed to PyUnstable_Code_GetExtra. The old private name is deprecated,
but will be available until the API changes.

int PyUnstable_Code_SetExtra (PyObject *code, Py_ssize_t index, void *extra)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Set the extra data stored under the given index to extra. Return 0 on success. Set an exception and return -1 on
failure.

Added in version 3.6: as _PyCode_SetExtra

Zmienione w wersji 3.12: Renamed to PyUnstable_Code_SetExtra. The old private name is deprecated,
but will be available until the API changes.

8.6 Other Objects
8.6.1 File Objects

These APIs are a minimal emulation of the Python 2 C API for built-in file objects, which used to rely on the
buffered I/O (FILE*) support from the C standard library. In Python 3, files and streams use the new io module,
which defines several layers over the low-level unbuffered I/O of the operating system. The functions described below
are convenience C wrappers over these new APIs, and meant mostly for internal error reporting in the interpreter;
third-party code is advised to access the io APIs instead.

PyObject *PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char *encoding, const
char *errors, const char *newline, int closefd)

Wartosc zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a Python file object from the file descriptor of
an already opened file fd. The arguments name, encoding, errors and newline can be NULL to use the defaults;
buffering can be -1 to use the default. name is ignored and kept for backward compatibility. Return NULL
on failure. For a more comprehensive description of the arguments, please refer to the io.open () function
documentation.

A\ Ostrzezenie

Since Python streams have their own buffering layer, mixing them with OS-level file descriptors can pro-
duce various issues (such as unexpected ordering of data).

Zmienione w wersji 3.2: Zignoruj atrybut name.

8.6. Other Objects 187

The Python/C API, Wydanie 3.14.0a5

int PyObject_AsFileDescriptor (PyObject *p)
Czes¢ stabilnego ABI. Return the file descriptor associated with p as an int. If the object is an integer, its value
is returned. If not, the object’s £ileno () method is called if it exists; the method must return an integer, which
is returned as the file descriptor value. Sets an exception and returns —1 on failure.

PyObject *PyFile_GetLine (PyObject *p, int n)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL. Equivalent to p.readline ([n]), this function
reads one line from the object p. p may be a file object or any object with a readline () method. If n is 0,
exactly one line is read, regardless of the length of the line. If n is greater than 0, no more than n bytes will
be read from the file; a partial line can be returned. In both cases, an empty string is returned if the end of the
file is reached immediately. If n is less than 0, however, one line is read regardless of length, but EOFError is
raised if the end of the file is reached immediately.

int PyFile_SetOpenCodeHook (Py_OpenCodeHookFunction handler)
Overrides the normal behavior of io.open_code () to pass its parameter through the provided handler.

The handler is a function of type:
typedef PyObject *(*Py_OpenCodeHookFunction)(PyObject*, void*)

Equivalent of PyObject *(*) (PyObject *path, void *userData), where path is guaranteed
to be PyUnicodeObject.

The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.

As this hook is intentionally used during import, avoid importing new modules during its execution unless they
are known to be frozen or available in sys.modules.

Once a hook has been set, it cannot be removed or replaced, and later calls to PyFile SetOpenCodeHook ()
will fail. On failure, the function returns -1 and sets an exception if the interpreter has been initialized.

Funkcja ta moze by¢ bezpiecznie wywotana przed Py_Tnitialize ().
Raises an auditing event setopencodehook with no arguments.
Added in version 3.8.
int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)
Czes¢ stabilnego ABI. Write object obj to file object p. The only supported flag for flags is Py PRINT RAW;

if given, the str () of the object is written instead of the repr (). Return 0 on success or —1 on failure; the
appropriate exception will be set.

int PyFile_WriteString (const char *s, PyObject *p)
Czes¢ stabilnego ABI. Write string s to file object p. Return 0 on success or —1 on failure; the appropriate
exception will be set.

8.6.2 Module Objects

PyTypeObject PyModule_Type
Czes¢ stabilnego ABI. This instance of Py TypeOb ject represents the Python module type. This is exposed to
Python programs as types.ModuleType.

int PyModule_Check (PyObject *p)
Return true if p is a module object, or a subtype of a module object. This function always succeeds.

int PyModule_CheckExact (PyObject *p)

Return true if p is a module object, but not a subtype of PyModule_Type. This function always succeeds.
PyObject *PyModule_NewObject (PyObject *name)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.7. Return a new module object with

module._ name___ set to name. The module’s _ _name_ , _ doc_ , _ package_ and _ loader_ at-
tributes are filled in (all but _ name__ are set to None). The caller is responsible for settinga _ file
attribute.

188 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

Return NULL with an exception set on error.
Added in version 3.3.
Zmienione w wersji 3.4: __package__and __ loader__ are now set to None.

PyObject *PyModule_New (const char *name)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Similar to PyModule NewObject (), but the name
is a UTF-8 encoded string instead of a Unicode object.

PyObject *PyModule_GetDict (PyObject *module)

Wartosc¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI. Return the dictionary object that implements
module’s namespace; this object is the same as the __dict__ attribute of the module object. If module is not
a module object (or a subtype of a module object), SystemError is raised and NULL is returned.

It is recommended extensions use other PyModule_* and PyObject_* functions rather than directly mani-
pulate a module’s __dict__.

PyObject *PyModule_GetNameObject (PyObject *module)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.7. Return module’s __name___ value. If
the module does not provide one, or if it is not a string, SystemError is raised and NULL is returned.

Added in version 3.3.

const char *PyModule_GetName (PyObject *module)
Czes¢ stabilnego ABI. Similar to PyModule_GetNameObject () but return the name encoded to 'utf-8"'.

void *PyModule_GetState (PyObject *module)
Czes¢ stabilnego ABI. Return the ,,state” of the module, that is, a pointer to the block of memory allocated at
module creation time, or NULL. See PyModuleDef.m_size.

PyModuleDef *PyModule_GetDef (PyObject *module)
Czes¢ stabilnego ABIL Return a pointer to the PyModuleDef struct from which the module was created, or
NULL if the module wasn’t created from a definition.

PyObject *PyModule_GetFilenameObject (PyObject *module)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return the name of the file from which module was

loaded using module’s __file_ attribute. If this is not defined, or if it is not a string, raise SystemError
and return NULL; otherwise return a reference to a Unicode object.

Added in version 3.2.

const char *PyModule_GetFilename (PyObject *module)
Czes¢ stabilnego ABI. Similar to PyModule_GetFilenameObject () but return the filename encoded to
«utf-8».

Niezalecane od wersji 3.2: PyModule GetFilename () raises UnicodeEncodeError on unencodable fi-
lenames, use PyModule GetFilenameObject () instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization func-
tion), or compiled-in modules (where the initialization function is added using Py Import_AppendInittab ()).
See building or extending-with-embedding for details.

The initialization function can either pass a module definition instance to PyModule Create (), and return the
resulting module object, or request ,,multi-phase initialization” by returning the definition struct itself.

type PyModuleDef

Czes¢ stabilnego ABI (w tym wszystkie sktadniki). The module definition struct, which holds all information
needed to create a module object. There is usually only one statically initialized variable of this type for each
module.

8.6. Other Objects 189

The Python/C API, Wydanie 3.14.0a5

PyModuleDef Base m_base
Always initialize this member to PyModuleDef HEAD_INIT.

const char *m_name

Name for the new module.

const char *m_doc
Docstring for the module; usually a docstring variable created with PyDoc_STRVAR is used.
Py_ssize_t m_size
Module state may be kept in a per-module memory area that can be retrieved with

PyModule_GetState (), rather than in static globals. This makes modules safe for use in mul-
tiple sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_rree function has been called, if present.

Setting m_size to —1 means that the module does not support sub-interpreters, because it has global
state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m_s1i ze is required for multi-phase initialization.

See PEP 3121 for more details.

PyMethodDef *m_methods
A pointer to a table of module-level functions, described by PyMethodDe £ values. Can be NULL if no
functions are present.

PyModuleDef_Slot *m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When using
single-phase initialization, m_slots must be NULL.
Zmienione w wersji 3.5: Prior to version 3.5, this member was always set to NULL, and was defined as:

inquiry m_reload

traverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).

More precisely, this function is not called if m_size is greater than 0 and the module state (as returned
by PyModule_GetState ())is NULL.

Zmienione w wersji 3.9: No longer called before the module state is allocated.

inquiry m_clear
A clear function to call during GC clearing of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).

More precisely, this function is not called if m_size is greater than 0 and the module state (as returned
by PyModule_GetState ())is NULL.

Like PyTypeObject . tp_clear, this function is not always called before a module is deallocated. For
example, when reference counting is enough to determine that an object is no longer used, the cyclic
garbage collector is not involved and m_ rree is called directly.

Zmienione w wersji 3.9: No longer called before the module state is allocated.

Jreefunc m_£free

A function to call during deallocation of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).

190 Rozdziat 8. Concrete Objects Layer

https://peps.python.org/pep-3121/

The Python/C API, Wydanie 3.14.0a5

More precisely, this function is not called if m_size is greater than 0 and the module state (as returned
by PyModule_GetState ())is NULL.

Zmienione w wersji 3.9: No longer called before the module state is allocated.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as ,,single-
-phase initialization”, and uses one of the following two module creation functions:
PyObject *PyModule_Create (PyModuleDef *def)
Wartos¢ zwracana: nowa referencja. Create a new module object, given the definition in def. This behaves like
PyModule_Create2 () with module_api_version set to PYTHON_APT_VERSTON.
PyObject *PyModule_Create2 (PyModuleDef *def, int module_api_version)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a new module object, given the definition in
def, assuming the API version module_api_version. If that version does not match the version of the running
interpreter, a Runt imeWarning is emitted.

Return NULL with an exception set on error.

© Informacja

Most uses of this function should be using PyModule Create () instead; only use this if you are sure you
need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using func-
tions like PyModule AddObjectRef ().

Multi-phase initialization

An alternate way to specify extensions is to request ,,multi-phase initialization”. Extension modules created this way
behave more like Python modules: the initialization is split between the creation phase, when the module object is
created, and the execution phase, when it is populated. The distinction is similar tothe __new__ () and __init_ ()
methods of classes.

Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry
is removed and the module is re-imported, a new module object is created, and the old module is subject to normal
garbage collection - as with Python modules. By default, multiple modules created from the same definition should
be independent: changes to one should not affect the others. This means that all state should be specific to the module
object (using e.g. using PyModule_ GetState ()), or its contents (such as the module’s _ dict__ or individual
classes created with Py Type_FromSpec ()).

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple
modules are independent is typically enough to achieve this.

To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDef in-
stance with non-empty m_slots. Before it is returned, the PyModuleDef instance must be initialized with the
following function:

PyObject *PyModuleDef_Init (PyModuleDef *def)

Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI od wersji 3.5. Ensures a module definition is
a properly initialized Python object that correctly reports its type and reference count.

Returns def cast to PyObject*, or NULL if an error occurred.
Added in version 3.5.
The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:

type PyModuleDef_Slot

8.6. Other Objects 191

The Python/C API, Wydanie 3.14.0a5

int slot

A slot ID, chosen from the available values explained below.

void *value

Value of the slot, whose meaning depends on the slot ID.

Added in version 3.5.

The m_slots array must be terminated by a slot with id 0.

The available slot types are:

Py_mod_create

Specifies a function that is called to create the module object itself. The value pointer of this slot must point
to a function of the signature:

PyObject *create_module (PyObject *spec, PyModuleDef *def)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should
return a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New (). The name is taken from spec, not the definition, to allow extension modules to dynami-
cally adjust to their place in the module hierarchy and be imported under different names through symlinks,
all while sharing a single module definition.

There is no requirement for the returned object to be an instance of PyModule Type. Any type can be used,
as long as it supports setting and getting import-related attributes. However, only PyModule_Type instances
may be returned if the PyModuleDef has non-NULL m_traverse,m_clear,m_free;Nnon-zerom_size;or
slots other than Py_mod_create.

Py_mod_exec

Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python
module: typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module (PyObject *module)

If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

Py_mod_multiple_interpreters

Specifies one of the following values:

Py_MOD_MULTIPLE_INTERPRETERS_NOT_ SUPPORTED

The module does not support being imported in subinterpreters.

Py MOD_MULTIPLE_INTERPRETERS_SUPPORTED

The module supports being imported in subinterpreters, but only when they share the main interpreter’s
GIL. (See isolating-extensions-howto.)

Py_MOD_PER_INTERPRETER GII_SUPPORTED

The module supports being imported in subinterpreters, even when they have their own GIL. (See isola-
ting-extensions-howto.)

This slot determines whether or not importing this module in a subinterpreter will fail.
Multiple Py_mod_multiple_interpreters slots may not be specified in one module definition.

If Py mod multiple_interpreters 1is not specified, the import machinery defaults to
Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED.

Added in version 3.12.

192

Rozdziat 8. Concrete Objects Layer

https://peps.python.org/pep-0451/

The Python/C API, Wydanie 3.14.0a5

Py_mod_gil

Specifies one of the following values:

Py_MOD_GIL_USED

The module depends on the presence of the global interpreter lock (GIL), and may access global state
without synchronization.

Py_MOD_GIL_NOT_USED
The module is safe to run without an active GIL.

This slot is ignored by Python builds not configured with --disable-gil. Otherwise, it determines whether
or not importing this module will cause the GIL to be automatically enabled. See whatsnew313-free-threaded-
-cpython for more detail.

Multiple Py_mod_gil slots may not be specified in one module definition.
If Py_mod_gil is not specified, the import machinery defaults to Py_MOD_GIL_USED.
Added in version 3.13.

See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used direc-
tly, for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.

PyObject *PyModule_FromDefAndSpec (PyModuleDef *def, PyObject *spec)

Wartos¢ zwracana: nowa referencja. Create a new module object, given the definition in def and the
ModuleSpec spec. This behaves like PyModule FrombDefAndSpec2 () with module_api_version set to
PYTHON_API_VERSION.

Added in version 3.5.

PyObject *PyModule_FromDefAndSpec2 (PyModuleDef *def, PyObject *spec, int module_api_version)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.7. Create a new module object, given the
definition in def and the ModuleSpec spec, assuming the API version module_api_version. If that version does
not match the version of the running interpreter, a Runt imeWarning is emitted.

Return NULL with an exception set on error.

© Informacja

Most uses of this function should be using PyModule FromDefAndSpec () instead; only use this if you
are sure you need it.

Added in version 3.5.

int PyModule_ExecDef£ (PyObject *module, PyModuleDef *def)
Czes¢ stabilnego ABI od wersji 3.7. Process any execution slots (Py_mod_exec) given in def.
Added in version 3.5.

int PyModule_SetDocString (PyObject *module, const char *docstring)

Czes¢ stabilnego ABI od wersji 3.7. Set the docstring for module to docstring. This function is cal-
led automatically when creating a module from PyModuleDef, using either PyModule_Create oOr
PyModule_FromDefAndSpec.

Added in version 3.5.

8.6. Other Objects 193

https://peps.python.org/pep-0489/

The Python/C API, Wydanie 3.14.0a5

int PyModule_AddFunctions (PyObject *module, PyMethodDef *functions)

Czes¢ stabilnego ABI od wersji 3.7. Add the functions from the NULL terminated functions array to module. Re-
fer to the PyMet hodDe £ documentation for details on individual entries (due to the lack of a shared module
namespace, module level ,.functions” implemented in C typically receive the module as their first parame-
ter, making them similar to instance methods on Python classes). This function is called automatically when
creating a module from PyModuleDef, using either PyModule_Create or PyModule_ FromDefAndSpec.

Added in version 3.5.

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution

slot (if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObjectRef (PyObject *module, const char *name, PyObject *value)

Czes¢ stabilnego ABI od wersji 3.10. Add an object to module as name. This is a convenience function which

can be used from the module’s initialization function.
On success, return 0. On error, raise an exception and return —1.

Example usage:

static int
add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong (value);
if (obj == NULL) {
return -1;
}
int res = PyModule_AddObjectRef (module, "spam", obj);
Py_DECREF (obj) ;
return res;

}

.

J

To be convenient, the function accepts NULL value with an exception set. In this case, return -1 and just leave

the raised exception unchanged.

The example can also be written without checking explicitly if obj is NULL:

p
static int

add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_ FromLong (value);
int res = PyModule_AddObjectRef (module, "spam", obj);
Py_XDECREF (obj) ;
return res;

Note that Py_xDECREF () should be used instead of Py_DECREF () in this case, since obj can be NULL.

The number of different name strings passed to this function should be kept small, usually by on-
ly using statically allocated strings as name. For names that aren’t known at compile time, pre-
fer calling PyUnicode FromString() and PyObject_SetAttr () directly. For more details, see

PyUnicode_InternFromString (), which may be used internally to create a key object.
Added in version 3.10.

int PyModule_Aadd (PyObject *module, const char *name, PyObject *value)

Czes¢ stabilnego ABI od wersji 3.13. Similar to PyModule_ AddObjectRef (), but ,steals” a reference to
value. Tt can be called with a result of function that returns a new reference without bothering to check its

result or even saving it to a variable.

Example usage:

194 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

if (PyModule_Add (module, "spam", PyBytes_FromString(value)) < 0) {

goto error;

Added in version 3.13.

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)
Czes¢ stabilnego ABI. Similar to PyModule AddobjectRef (), but steals a reference to value on success (if
it returns 0).

The new PylModule Add () or PyModule AddObjectRef () functions are recommended, since it is easy
to introduce reference leaks by misusing the PyModule_Addobject () function.

© Informacja
Unlike other functions that steal references, PyModule_AddObject () only releases the reference to value
on success.

This means that its return value must be checked, and calling code must Py_XDECREF () value manually
on error.

Example usage:

PyObject *obj = PyBytes_FromString(value);

if (PyModule_AddObject (module, "spam", obj) < 0) {
// If 'obj' is not NULL and PyModule_AddObject () failed,
// 'obj' strong reference must be deleted with Py XDECREF ().
// If 'obj' is NULL, Py XDECREF () does nothing.
Py_XDECREF (obj) ;
goto error;

I3

// PyModule_AddObject () stole a reference to obj:

// Py_XDECREF (obj) 1s not needed here.

L

Niezalecane od wersji 3.13: PyModule AddObject () is soft deprecated.

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Czes¢ stabilnego ABIL. Add an integer constant to module as name. This convenience function can be used from
the module’s initialization function. Return -1 with an exception set on error, 0 on success.

This is a convenience function that calls PyL.ong_FromLong () and PyModule_AddObjectRef ();see their
documentation for details.

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Czes¢ stabilnego ABI. Add a string constant to module as name. This convenience function can be used from
the module’s initialization function. The string value must be NULL-terminated. Return —1 with an exception
set on error, 0 on success.

This is a convenience function that «calls PyUnicode InternFromString() and
PyModule_ AddObjectRef (); see their documentation for details.

PyModule_AddIntMacro (module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of AF_INET
to module. Return —1 with an exception set on error, 0 on success.
PyModule_AddStringMacro (module, macro)

Add a string constant to module.

8.6. Other Objects 195

The Python/C API, Wydanie 3.14.0a5

int PyModule_AddType (PyObject *module, PyTypeObject *type)
Czes¢ stabilnego ABI od wersji 3.10. Add a type object to module. The type object is finalized by calling

internally Py Type_Ready (). The name of the type object is taken from the last component of tp_name after
dot. Return -1 with an exception set on error, 0 on success.

Added in version 3.9.

int PyUnstable_Module_SetGIL (PyObject *module, void *gil)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Indicate that module does or does not support running without the global interpreter lock (GIL), using one
of the values from Py _mod gi1. It must be called during module’s initialization function. If this function is
not called during module initialization, the import machinery assumes the module does not support running
without the GIL. This function is only available in Python builds configured with --disable-gil. Return
-1 with an exception set on error, 0 on success.

Added in version 3.13.

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter.
This allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can

be created from a single definition.

PyObject *PyState_FindModule (PyModuleDef *def)
Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABIL Returns the module object that was created
from def for the current interpreter. This method requires that the module object has been attached to the
interpreter state with PyState_AddModule () beforehand. In case the corresponding module object is not
found or has not been attached to the interpreter state yet, it returns NULL.

int PyState_aAddModule (PyObject *module, PyModuleDef *def)

Czes¢ stabilnego ABI od wersji 3.3. Attaches the module object passed to the function to the interpreter state.
This allows the module object to be accessible via PyState FindModule ().

Only effective on modules created using single-phase initialization.

Python calls PyState_aAddModule automatically after importing a module, so it is unnecessary (but harm-
less) to call it from module initialization code. An explicit call is needed only if the module’s own init code
subsequently calls PyState_FindModule. The function is mainly intended for implementing alternative im-
port mechanisms (either by calling it directly, or by referring to its implementation for details of the required
state updates).

The caller must hold the GIL.
Return -1 with an exception set on error, 0 on success.
Added in version 3.3.

int PyState_RemoveModule (PyModuleDef *def)

Czes¢ stabilnego ABI od wersji 3.3. Removes the module object created from def from the interpreter state.
Return -1 with an exception set on error, 0 on success.

The caller must hold the GIL.
Added in version 3.3.

196 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

8.6.3 lterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__ () method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.
PyTypeObject PySeqIter_Type
Czes¢ stabilnego ABI. Type object for iterator objects returned by PySegIter New () and the one-argument
form of the iter () built-in function for built-in sequence types.
int PySeqIter_Check (PyObject *op)
Return true if the type of op is PySeqgIter Type. This function always succeeds.
PyObject *PySeqIter_New (PyObject *seq)
Wartos¢ zwracana: nowa referencja. Czesc stabilnego ABI. Return an iterator that works with a general sequence
object, seq. The iteration ends when the sequence raises IndexError for the subscripting operation.

PyTypeObject PyCallIter_Type

Czes¢ stabilnego ABI. Type object for iterator objects returned by PyCalllter New () and the two-argument
form of the iter () built-in function.

int PyCallIter_Check (PyObject *op)
Return true if the type of op is PyCcalilter Type. This function always succeeds.
PyObject *PyCallIter_New (PyObject *callable, PyObject *sentinel)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a new iterator. The first parameter, callable,
can be any Python callable object that can be called with no parameters; each call to it should return the next
item in the iteration. When callable returns a value equal to sentinel, the iteration will be terminated.

8.6.4 Descriptor Objects
»Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.
PyTypeObject PyProperty_Type
Czes¢ stabilnego ABI. The type object for the built-in descriptor types.
PyObject *PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI.
PyObject *PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI.
PyObject *PyDescr_NewMethod (PyTypeObject *type, struct PyMethodDef *meth)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI.
PyObject *PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Wartos¢ zwracana: nowa referencja.
PyObject *PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI.

int PyDescr_IsData (PyObject *descr)
Return non-zero if the descriptor objects descr describes a data attribute, or 0 if it describes a method. descr
must be a descriptor object; there is no error checking.

PyObject *pyWrapper_New (PyObject*, PyObject™)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI.

8.6. Other Objects 197

The Python/C API, Wydanie 3.14.0a5

8.6.5 Slice Objects

PyTypeObject PySlice_Type

Czes¢ stabilnego ABI. The type object for slice objects. This is the same as s1ice in the Python layer.
int PySlice_Check (PyObject *ob)

Return true if ob is a slice object; ob must not be NULL. This function always succeeds.
PyObject *PySlice_New (PyObject *start, PyObject *stop, PyObject *step)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABIL Return a new slice object with the given values. The
start, stop, and step parameters are used as the values of the slice object attributes of the same names. Any of
the values may be NULL, in which case the None will be used for the corresponding attribute.

Return NULL with an exception set if the new object could not be allocated.

int PySlice_GetIndices (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t
*step)

Czes¢ stabilnego ABI. Retrieve the start, stop and step indices from the slice object slice, assuming a sequence
of length length. Treats indices greater than length as errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed
to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function.
Zmienione w wersji 3.2: The parameter type for the slice parameter was PyS1iceObject* before.

int PySlice_GetIndicesEx (PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t
*step, Py_ssize_t *slicelength)

Czes¢ stabilnego ABI. Usable replacement for PySiice GetIndices (). Retrieve the start, stop, and step
indices from the slice object slice assuming a sequence of length length, and store the length of the slice in
slicelength. Out of bounds indices are clipped in a manner consistent with the handling of normal slices.

Return 0 on success and -1 on error with an exception set.

© Informacja

This function is considered not safe for resizable sequences. Its invocation should be replaced by a combi-
nation of PySlice Unpack () and PySlice AdjustIndices () where

if (PySlice_GetIndicesEx(slice, length, &start, &stop, &step, &slicelength)
—< 0) |
// return error

}

is replaced by

if (PySlice_Unpack(slice, &start, &stop, &step) < 0) {
// return error
}
slicelength = PySlice_AdjustIndices (length, &start, &stop, step);

Zmienione w wersji 3.2: The parameter type for the slice parameter was PyS1iceObject * before.

Zmienione w wersji 3.6.1: If Py_ LIMITED_APT is not set or set to the value between 0x03050400 and
0x03060000 (not including) or 0x03060100 or higher PySlice GetIndicesEx () is implemented as
a macro using PySlice_Unpack () and PySlice_AdjustIndices (). Arguments start, stop and step are
evaluated more than once.

Niezalecane od wersji 3.6.1: If Py _LIMITED_API is set to the value less than 0x03050400 or between
0x03060000 and 0x03060100 (not including) PySlice_GetIndicesEx () is a deprecated function.

198 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

int PySlice_Unpack (PyObject *slice, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
Czes¢ stabilnego ABI od wersji 3.7. Extract the start, stop and step data members from a slice object as C
integers. Silently reduce values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_ MAX, silently boost the start
and stop values less than PY_SSIZE_T MINtoPY_SSIZE_T_MIN, and silently boost the step values less than
-PY_SSIZE_T_MAX to -PY_SSIZE_T_ MAX.

Return -1 with an exception set on error, 0 on success.
Added in version 3.6.1.

Py_ssize_t PySlice_AdjustIndices (Py_ssize_t length, Py ssize_t *start, Py_ssize_t *stop, Py_ssize_t step)
Czes¢ stabilnego ABI od wersji 3.7. Adjust start/end slice indices assuming a sequence of the specified length.
Out of bounds indices are clipped in a manner consistent with the handling of normal slices.
Return the length of the slice. Always successful. Doesn’t call Python code.

Added in version 3.6.1.

Ellipsis Object

PyObject *Py_Ellipsis
The Python E11ipsis object. This object has no methods. Like Py_None, it is an immortal singleton object.

Zmienione w wersji 3.12: Py_E]11ipsis is immortal.

8.6.6 MemoryView objects

A memoryview object exposes the C level buffer interface as a Python object which can then be passed around like
any other object.
PyObject *PyMemoryView_FromObject (PyObject *obj)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a memoryview object from an object that
provides the buffer interface. If obj supports writable buffer exports, the memoryview object will be read/write,
otherwise it may be either read-only or read/write at the discretion of the exporter.
PyBUF_READ
Flag to request a readonly buffer.
PyBUF_WRITE
Flag to request a writable buffer.
PyObject *PyMemoryView_ FromMemory (char *mem, Py_ssize_t size, int flags)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.7. Create a memoryview object using
mem as the underlying buffer. flags can be one of PyBUF_READ or PyBUF_WRITE.

Added in version 3.3.

PyObject *PyMemoryView_FromBuffer (const Py_buffer *view)
Wartosc¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.11. Create a memoryview object wrap-
ping the given buffer structure view. For simple byte buffers, PyMemoryView FromMemory () is the prefer-
red function.

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a memoryview object to a contiguous chunk
of memory (in either «C» or «Fortran order) from an object that defines the buffer interface. If memory is
contiguous, the memoryview object points to the original memory. Otherwise, a copy is made and the memo-
ryview points to a new bytes object.

buffertype can be one of PyBUF_READ Or PyBUF_WRITE.
int PyMemoryView_Check (PyObject *obj)

Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview. This function always succeeds.

8.6. Other Objects 199

The Python/C API, Wydanie 3.14.0a5

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
Return a pointer to the memoryview’s private copy of the exporter’s buffer. mview must be a memoryview
instance; this macro doesn’t check its type, you must do it yourself or you will risk crashes.

PyObject *PyMemoryView_GET_BASE (PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if the memoryview has

been created by one of the functions PyMemoryView FromMemory () Of PyMemoryView_ FromBuffer ().
mview must be a memoryview instance.

8.6.7 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement
weak references. The first is a simple reference object, and the second acts as a proxy for the original object as much
as it can.
int PyWeakref_Check (PyObject *ob)

Return non-zero if ob is either a reference or proxy object. This function always succeeds.

int PyWeakref_CheckRef (PyObject *ob)
Return non-zero if ob is a reference object. This function always succeeds.

int PyWeakref_CheckProxy (PyObject *ob)
Return non-zero if ob is a proxy object. This function always succeeds.

PyObject *PyWeakref_NewRef (PyObject *ob, PyObject *callback)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a weak reference object for the object ob.
This will always return a new reference, but is not guaranteed to create a new object; an existing reference object
may be returned. The second parameter, callback, can be a callable object that receives notification when ob is
garbage collected; it should accept a single parameter, which will be the weak reference object itself. callback
may also be None or NULL. If 0b is not a weakly referenceable object, or if callback is not callable, None, or
NULL, this will return NULL and raise TypeError.

PyObject *pyWeakref_NewProxy (PyObject *ob, PyObject *callback)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Return a weak reference proxy object for the object
ob. This will always return a new reference, but is not guaranteed to create a new object; an existing proxy object
may be returned. The second parameter, callback, can be a callable object that receives notification when ob is
garbage collected; it should accept a single parameter, which will be the weak reference object itself. callback
may also be None or NULL. If 0b is not a weakly referenceable object, or if callback is not callable, None, or
NULL, this will return NULL and raise TypeError.
int PyWeakref_GetRef (PyObject *ref, PyObject **pobj)
Czes¢ stabilnego ABI od wersji 3.13. Get a strong reference to the referenced object from a weak reference, ref,
into *pobyj.
« On success, set *pobj to a new strong reference to the referenced object and return 1.
« If the reference is dead, set *pobj to NULL and return 0.
« On error, raise an exception and return -1.
Added in version 3.13.

PyObject *PyWeakref_GetObject (PyObject *ref)
Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABIL Return a borrowed reference to the referenced
object from a weak reference, ref. If the referent is no longer live, returns Py_None.

© Informacja

This function returns a borrowed reference to the referenced object. This means that you should always call
Py_INCREF () on the object except when it cannot be destroyed before the last usage of the borrowed
reference.

200 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

Deprecated since version 3.13, will be removed in version 3.15: Use Pylicakref GetRef () instead.
PyObject *PyWeakref_GET_OBJECT (PyObject *ref)

Wartos¢ zwracana: pozyczona referencja. Similar to Pylicakref _GetObject (), but does no error checking.

Deprecated since version 3.13, will be removed in version 3.15: Use Pyweakref_GetRef () instead.

int PyWeakref_IsDead (PyObject *ref)

Test if the weak reference ref is dead. Returns 1 if the reference is dead, O if it is alive, and -1 with an error
set if ref is not a weak reference object.

Added in version 3.14.

void PyObject_ClearWeakRefs (PyObject *object)
Czes¢ stabilnego ABI. This function is called by the tp_dealloc handler to clear weak references.

This iterates through the weak references for object and calls callbacks for those references which have one. It
returns when all callbacks have been attempted.

void PyUnstable_Object_ClearWeakRefsNoCallbacks (PyObject *object)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Clears the weakrefs for object without calling the callbacks.

This function is called by the tp_dealloc handler for types with finalizers (i.e., __del _ ()). The handler
for those objects first calls PyObject _ClearWeakRefs () to clear weakrefs and call their callbacks, then the
finalizer, and finally this function to clear any weakrefs that may have been created by the finalizer.

In most circumstances, it’s more appropriate to use PyObject_CleariieakRefs () to clear weakrefs instead
of this function.

Added in version 3.13.

8.6.8 Capsules
Refer to using-capsules for more information on using these objects.
Added in version 3.1.

type PyCapsule

This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to
access C APIs defined in dynamically loaded modules.

type PyCapsule_Destructor
Czes¢ stabilnego ABI. The type of a destructor callback for a capsule. Defined as:

[typedef void (*PyCapsule_Destructor) (PyObject *);

See PyCapsule_New () for the semantics of PyCapsule_Destructor callbacks.
int PyCapsule_CheckExact (PyObject *p)
Return true if its argument is a PyCapsule. This function always succeeds.
PyObject *PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)

Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI. Create a PyCapsule encapsulating the pointer. The
pointer argument may not be NULL.

On failure, set an exception and return NULL.

8.6. Other Objects 201

The Python/C API, Wydanie 3.14.0a5

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule Import ().

void *PyCapsule_GetPointer (PyObject *capsule, const char *name)
Czes¢ stabilnego ABI. Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.
The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule
is NULL, the name passed in must also be NULL. Python uses the C function strcmp () to compare capsule
names.

PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Czes¢ stabilnego ABI. Return the current destructor stored in the capsule. On failure, set an exception and

return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

void *PyCapsule_GetContext (PyObject *capsule)
Czes¢ stabilnego ABI. Return the current context stored in the capsule. On failure, set an exception and return
NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

const char *PyCapsule_GetName (PyObject *capsule)
Czes¢ stabilnego ABI. Return the current name stored in the capsule. On failure, set an exception and return
NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr Occurred () to disambiguate.

void *PyCapsule_Import (const char *name, int no_block)

Czes¢ stabilnego ABI. Import a pointer to a C object from a capsule attribute in a module. The name parameter
should specify the full name to the attribute, as in module.attribute. The name stored in the capsule must
match this string exactly.

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.
Zmienione w wersji 3.3: no_block has no effect anymore.

int PyCapsule_IsValid (PyObject *capsule, const char *name)

Czes¢ stabilnego ABI. Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact (), has a non-NULL pointer stored in it, and its internal name matches the name
parameter. (See PyCapsule GetPointer () for information on how capsule names are compared.)

In other words, if PyCapsule_Tsvalid() returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get) are guaranteed to succeed.

Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext (PyObject *capsule, void *context)
Czes¢ stabilnego ABI. Set the context pointer inside capsule to context.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
Czes¢ stabilnego ABI. Set the destructor inside capsule to destructor.

Return 0 on success. Return nonzero and set an exception on failure.

202 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

int PyCapsule_SetName (PyObject *capsule, const char *name)
Czes¢ stabilnego ABI. Set the name inside capsule to name. If non-NULL, the name must outlive the capsule.
If the previous name stored in the capsule was not NULL, no attempt is made to free it.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Czes¢ stabilnego ABI. Set the void pointer inside capsule to pointer. The pointer may not be NULL.

Return 0 on success. Return nonzero and set an exception on failure.

8.6.9 Frame Objects

type PyFrameObject
Czes¢ ograniczonego API (jako nieprzezroczysta struktura). The C structure of the objects used to describe
frame objects.

There are no public members in this structure.

Zmienione w wersji 3.11: The members of this structure were removed from the public C API. Refer to the
What’s New entry for details.

The PyEval_GetFrame () and PyThreadState_GetFrame () functions can be used to get a frame object.
See also Reflection.

PyTypeObject PyFrame_Type
The type of frame objects. It is the same object as t ypes . FrameType in the Python layer.

Zmienione w wersji 3.11: Previously, this type was only available after including <frameobject .h>.
int PyFrame_Check (PyObject *obj)
Return non-zero if obj is a frame object.

Zmienione w wersji 3.11: Previously, this function was only available after including <frameobject .h>.

PyFrameObject *PyFrame_GetBack (PyFrameObject *{frame)

Wartos¢ zwracana: nowa referencja. Get the frame next outer frame.
Return a strong reference, or NULL if frame has no outer frame.
Added in version 3.9.
PyObject *PyFrame_GetBuiltins (PyFrameObject *frame)
Wartos¢ zwracana: nowa referencja. Get the frame’s £_builtins attribute.
Return a strong reference. The result cannot be NULL.
Added in version 3.11.

PyCodeObject *PyFrame_GetCode (PyFrameObject *frame)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.10. Get the frame code.

Return a strong reference.
The result (frame code) cannot be NULL.
Added in version 3.9.

PyObject *PyFrame_GetGenerator (PyFrameObject *frame)

Wartos¢ zwracana: nowa referencja. Get the generator, coroutine, or async generator that owns this frame, or
NULL if this frame is not owned by a generator. Does not raise an exception, even if the return value is NULL.

Return a strong reference, or NULL.

Added in version 3.11.

8.6. Other Objects 203

The Python/C API, Wydanie 3.14.0a5

PyObject *PyFrame_GetGlobals (PyFrameObject *frame)

Wartos¢ zwracana: nowa referencja. Get the frame’s £_globals attribute.
Return a strong reference. The result cannot be NULL.
Added in version 3.11.

int PyFrame_GetLasti (PyFrameObject *frame)
Get the frame’s £_lasti attribute.

Returns -1 if frame.f lasti iS None.
Added in version 3.11.

PyObject *PyFrame_GetVar (PyFrameObject *frame, PyObject *name)

Wartos¢é zwracana: nowa referencja. Get the variable name of frame.
« Return a strong reference to the variable value on success.
o Raise NameError and return NULL if the variable does not exist.
« Raise an exception and return NULL on error.

name type must be a str.

Added in version 3.12.

PyObject *PyFrame_GetVarString (PyFrameObject *frame, const char *name)

Wartos¢ zwracana: nowa referencja. Similar to PyFrame_GetVar (), but the variable name is a C string
encoded in UTF-8.

Added in version 3.12.

PyObject *PyFrame_GetLocals (PyFrameObject *frame)
Wartos¢ zwracana: nowa referencja. Get the frame’s £_locals attribute. If the frame refers to an optimized
scope, this returns a write-through proxy object that allows modifying the locals. In all other cases (classes,
modules, exec (), eval ()) it returns the mapping representing the frame locals directly (as described for
locals ()).

Return a strong reference.
Added in version 3.11.
Zmienione w wersji 3.13: As part of PEP 667, return an instance of PyFramelLocalsProxy_Type.

int PyFrame_GetLineNumber (PyFrameObject *frame)
Czes¢ stabilnego ABI od wersji 3.10. Return the line number that frame is currently executing.

Frame Locals Proxies
Added in version 3.13.

The £_locals attribute on a frame object is an instance of a ,,frame-locals proxy”. The proxy object exposes a write-
-through view of the underlying locals dictionary for the frame. This ensures that the variables exposed by £_locals
are always up to date with the live local variables in the frame itself.

See PEP 667 for more information.
PyTypeObject PyFrameLocalsProxy_Type

The type of frame locals () proxy objects.
int PyFrameLocalsProxy_Check (PyObject *obj)

Return non-zero if obj is a frame locals () proxy.

204 Rozdziat 8. Concrete Objects Layer

https://peps.python.org/pep-0667/
https://peps.python.org/pep-0667/

The Python/C API, Wydanie 3.14.0a5

Internal Frames
Unless using PEP 523, you will not need this.

struct _PyInterpreterFrame

The interpreter’s internal frame representation.
Added in version 3.11.

PyObject *PyUnstable_InterpreterFrame_GetCode (struct _PylnterpreterFrame *frame) ;

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Return a strong reference to the code object for the frame.

Added in version 3.12.

int PyUnstable_InterpreterFrame_GetLasti (struct _PylnterpreterFrame *frame) ;

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Return the byte offset into the last executed instruction.
Added in version 3.12.

int PyUnstable_InterpreterFrame_GetLine (struct _PylnterpreterFrame *frame) ;

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Return the currently executing line number, or -1 if there is no line number.

Added in version 3.12.

8.6.10 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over
a function that yields values, rather than explicitly calling PyGen_New () or PyGen_NewWithQualName ().
type PyGenObject

The C structure used for generator objects.
PyTypeObject PyGen_Type

The type object corresponding to generator objects.
int PyGen_Check (PyObject *ob)

Return true if ob is a generator object; ob must not be NULL. This function always succeeds.
int PyGen_CheckExact (PyObject *ob)

Return true if ob’s type is PyGen_ Type; ob must not be NULL. This function always succeeds.
PyObject *PyGen_New (PyFrameObject *frame)

Wartos¢ zwracana: nowa referencja. Create and return a new generator object based on the frame object.
A reference to frame is stolen by this function. The argument must not be NULL.

8.6. Other Objects 205

https://peps.python.org/pep-0523/

The Python/C API, Wydanie 3.14.0a5

PyObject *PyGen_NewWithQualName (PyFrameObject *frame, PyObject *name, PyObject *qualname)

Wartosc¢ zwracana: nowa referencja. Create and return a new generator object based on the frame object, with
_ name__ and _ qualname__ set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.11 Coroutine Objects
Added in version 3.5.
Coroutine objects are what functions declared with an async keyword return.

type PyCoroObject

The C structure used for coroutine objects.
PyTypeObject PyCoro_Type
The type object corresponding to coroutine objects.

int PyCoro_CheckExact (PyObject *0b)
Return true if ob’s type is PyCoro_Type; ob must not be NULL. This function always succeeds.
PyObject *PyCoro_New (PyFrameObject *frame, PyObject *name, PyObject *qualname)
Wartos¢ zwracana: nowa referencja. Create and return a new coroutine object based on the frame object, with

_ name__ and _ qualname__ set to name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.12 Context Variables Objects
Added in version 3.7.

Zmienione w wersji 3.7.1:

© Informacja

In Python 3.7.1 the signatures of all context variables C APIs were changed to use PyObject pointers instead
of PyContext, PyContextVar, and PyContextToken, €.g.:

// in 3.7.0:
PyContext *PyContext_New (void) ;

// in 3.7.1+:
PyObject *PyContext_New (void);

See bpo-34762 for more details.

This section details the public C API for the contextvars module.
type PyContext

The C structure used to represent a contextvars.Context object.
type PyContextVar

The C structure used to represent a contextvars.ContextVar object.
type PyContextToken

The C structure used to represent a contextvars. Token object.
PyTypeObject PyContext_Type

The type object representing the context type.
PyTypeObject PyContextVar_Type

The type object representing the context variable type.

206 Rozdziat 8. Concrete Objects Layer

https://bugs.python.org/issue?@action=redirect&bpo=34762

The Python/C API, Wydanie 3.14.0a5

PyTypeObject PyContextToken_Type
The type object representing the context variable token type.

Sprawdzanie typu makr:

int PyContext_CheckExact (PyObject *0)
Return true if o is of type PyContext_Type. o must not be NULL. This function always succeeds.

int PyContextVar_CheckExact (PyObject *0)
Return true if o is of type PyContextVar_ Type. o must not be NULL. This function always succeeds.

int PyContextToken_CheckExact (PyObject *0)
Return true if o is of type PyContext Token_Type. o must not be NULL. This function always succeeds.

Context object management functions:

PyObject *PyContext_New (void)
Wartos¢ zwracana: nowa referencja. Create a new empty context object. Returns NULL if an error has occurred.
PyObject *PyContext_Copy (PyObject *ctx)
Wartos¢ zwracana: nowa referencja. Create a shallow copy of the passed ctx context object. Returns NULL if
an error has occurred.
PyObject *PyContext_CopyCurrent (void)
Wartos¢ zwracana: nowa referencja. Create a shallow copy of the current thread context. Returns NULL if an
error has occurred.
int PyContext_Enter (PyObject *ctX)
Set ctx as the current context for the current thread. Returns 0 on success, and -1 on error.

int PyContext_Exit (PyObject *ctx)
Deactivate the ctx context and restore the previous context as the current context for the current thread. Returns
0 on success, and —1 on error.

int PyContext_AddWatcher (PyContext_WatchCallback callback)

Register callback as a context object watcher for the current interpreter. Return an ID which may be passed to
PyContext_ClearWatcher (). In case of error (e.g. no more watcher IDs available), return -1 and set an
exception.

Added in version 3.14.

int PyContext_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id previously returned from PyContext_AddWatcher () for the current
interpreter. Return 0 on success, or —1 and set an exception on error (e.g. if the given watcher_id was never
registered.)

Added in version 3.14.

type PyContextEvent
Enumeration of possible context object watcher events:

e Py_CONTEXT_SWITCHED: The current context has switched to a different context. The object passed to
the watch callback is the now-current contextvars.Context object, or None if no context is current.

Added in version 3.14.

typedef int (*PyContext_WatchCallback)(PyContextEvent event, PyObject *obj)

Context object watcher callback function. The object passed to the callback is event-specific; see
PyContextEvent for details.

If the callback returns with an exception set, it must return —1; this exception will be printed as an unraisable
exception using PyErr FormatUnraisable (). Otherwise it should return 0.

There may already be a pending exception set on entry to the callback. In this case, the callback should return 0
with the same exception still set. This means the callback may not call any other API that can set an exception
unless it saves and clears the exception state first, and restores it before returning.

8.6. Other Objects 207

The Python/C API, Wydanie 3.14.0a5

Added in version 3.14.
Context variable functions:

PyObject *PyContextVar_New (const char *name, PyObject *def)
Wartos¢ zwracana: nowa referencja. Create a new ContextVar object. The name parameter is used for in-
trospection and debug purposes. The def parameter specifies a default value for the context variable, or NULL
for no default. If an error has occurred, this function returns NULL.

int PyContextVar_Get (PyObject *var, PyObject *default_value, PyObject **value)
Get the value of a context variable. Returns -1 if an error has occurred during lookup, and 0 if no error
occurred, whether or not a value was found.

If the context variable was found, value will be a pointer to it. If the context variable was not found, value will
point to:

o default_value, if not NULL;
« the default value of var, if not NULL;
e NULL
Except for NULL, the function returns a new reference.

PyObject *PyContextVar_Set (PyObject *var, PyObject *value)
Wartos¢ zwracana: nowa referencja. Set the value of var to value in the current context. Returns a new token
object for this change, or NULL if an error has occurred.

int PyContextVar_Reset (PyObject *var, PyObject *token)

Reset the state of the var context variable to that it was in before PyContextvar Set () that returned the
token was called. This function returns 0 on success and -1 on error.

8.6.13 DateTime Objects

Various date and time objects are supplied by the datet ime module. Before using any of these functions, the he-
ader file datet ime . h must be included in your source (note that this is not included by Python.h), and the macro
PyDateTime_IMPORT must be invoked, usually as part of the module initialisation function. The macro puts a po-
inter to a C structure into a static variable, PyDateTimeAPI, that is used by the following macros.

type PyDateTime_Date

This subtype of PyObject represents a Python date object.

type PyDateTime_DateTime
This subtype of PyObject represents a Python datetime object.

type PyDateTime_Time
This subtype of PyObject represents a Python time object.

type PyDateTime_Delta
This subtype of PyObject represents the difference between two datetime values.

PyTypeObject PyDateTime_DateType
This instance of PyTypeObject represents the Python date type; it is the same object as datetime.date
in the Python layer.

PyTypeObject PyDateTime_DateTimeType
This instance of Py TypeObject represents the Python datetime type; it is the same object as datetime.
datetime in the Python layer.

PyTypeObject PyDateTime_TimeType

This instance of Py Typeob ject represents the Python time type; it is the same object as datetime.time
in the Python layer.

208 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

PyTypeObject PyDateTime_DeltaType
This instance of Py TypeObject represents Python type for the difference between two datetime values; it is
the same object as datetime.timedelta in the Python layer.

PyTypeObject PyDateTime_TZInfoType
This instance of Py TypeOb ject represents the Python time zone info type; it is the same object as datet ime.
tzinfo in the Python layer.

Macro for access to the UTC singleton:

PyObject *PyDateTime_TimeZone_UTC
Returns the time zone singleton representing UTC, the same object as datetime.timezone.utc.
Added in version 3.7.

Sprawdzanie typu makr:
int PyDate_Check (PyObject *ob)
Return true if ob is of type PyDateTime DateType or a subtype of PyDateTime_DateType. ob must not
be NULL. This function always succeeds.
int PyDate_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL. This function always succeeds.
int PyDateTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType or a subtype of PyDateTime_DateTimeType.
ob must not be NULL. This function always succeeds.
int PyDateTime_CheckExact (PyObject *ob)
Return true if 0b is of type PyDateTime_DateTimeType. ob must not be NULL. This function always suc-
ceeds.
int PyTime_Check (PyObject *0b)
Return true if ob is of type PyDateTime_TimeType or a subtype of PyDateTime TimeType. ob must not
be NULL. This function always succeeds.
int PyTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_ TimeType. ob must not be NULL. This function always succeeds.
int PyDelta_Check (PyObject *ob)
Return true if 0b is of type PyDateTime DeltaType or a subtype of PyDateTime DeltaType. ob must
not be NULL. This function always succeeds.
int PyDelta_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL. This function always succeeds.
int PyTZInfo_Check (PyObject *ob)
Return true if ob is of type PyDateTime TZInfoType orasubtype of PyDateTime_TZInfoType.ob must
not be NULL. This function always succeeds.
int PyTZInfo_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime TZInfoType.ob must not be NULL. This function always succeeds.

Macros to create objects:
PyObject *PyDate_FromDate (int year, int month, int day)
Wartos¢ zwracana: nowa referencja. Return a datet ime . date object with the specified year, month and day.

PyObject *PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second, int
usecond)

Wartos¢ zwracana: nowa referencja. Return a datetime.datetime object with the specified year, month,
day, hour, minute, second and microsecond.

8.6. Other Objects 209

The Python/C API, Wydanie 3.14.0a5

PyObject *PyDateTime_FromDateAndTimeAndFold (int year, int month, int day, int hour, int minute, int
second, int usecond, int fold)

Wartos¢ zwracana: nowa referencja. Return a datetime.datetime object with the specified year, month,
day, hour, minute, second, microsecond and fold.

Added in version 3.6.

PyObject *PyTime_FromTime (int hour, int minute, int second, int usecond)
Wartos¢ zwracana: nowa referencja. Return a datet ime . t ime object with the specified hour, minute, second
and microsecond.

PyObject *PyTime_FromTimeAndFold (int hour, int minute, int second, int usecond, int fold)
Wartos¢ zwracana: nowa referencja. Return a datet ime . t ime object with the specified hour, minute, second,
microsecond and fold.

Added in version 3.6.

PyObject *PyDelta_FromDSU (int days, int seconds, int useconds)

Wartos¢ zwracana: nowa referencja. Return a datetime.timedelta object representing the given number
of days, seconds and microseconds. Normalization is performed so that the resulting number of microseconds
and seconds lie in the ranges documented for datetime.timedelta objects.

PyObject *PyTimeZone_FromOffset (PyObject *offset)

Wartos¢ zwracana: nowa referencja. Return a datetime.timezone object with an unnamed fixed offset
represented by the offser argument.

Added in version 3.7.
PyObject *PyTimeZone_FromOffsetAndName (PyObject *offset, PyObject *name)

Wartos¢ zwracana: nowa referencja. Return a datetime.timezone object with a fixed offset represented by
the offset argument and with tzname name.

Added in version 3.7.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including
subclasses (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR (PyDateTime_Date *0)
Return the year, as a positive int.

int PyDateTime_GET_MONTH (PyDateTime_Date *0)
Return the month, as an int from 1 through 12.

int PyDateTime_GET_DAY (PyDateTime_Date *0)

Return the day, as an int from 1 through 31.

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime DateTime,
including subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DATE_GET_ HOUR (PyDateTime_DateTime *0)
Return the hour, as an int from O through 23.

int PyDateTime_DATE_GET_ MINUTE (PyDateTime_DateTime *0)
Return the minute, as an int from O through 59.

int PyDateTime_DATE_GET_SECOND (PyDateTime_DateTime *0)
Return the second, as an int from 0 through 59.

int PyDateTime_DATE_GET MICROSECOND (PyDateTime_DateTime *0)
Return the microsecond, as an int from 0 through 999999.

int PyDateTime_DATE_GET_ FOLD (PyDateTime_DateTime *0)

Return the fold, as an int from O through 1.
Added in version 3.6.

210 Rozdziat 8. Concrete Objects Layer

The Python/C API, Wydanie 3.14.0a5

PyObject *PyDateTime_DATE_GET_TZINFO (PyDateTime_DateTime *0)
Return the tzinfo (which may be None).

Added in version 3.10.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR (PyDateTime_Time *0)

Return the hour, as an int from 0 through 23.

int PyDateTime_TIME_GET_ MINUTE (PyDateTime_Time *0)

Return the minute, as an int from O through 59.

int PyDateTime_TIME_GET_SECOND (PyDateTime_Time *0)

Return the second, as an int from O through 59.

int PyDateTime_TIME_GET_ MICROSECOND (PyDateTime_Time *0)

Return the microsecond, as an int from 0 through 999999.

int PyDateTime_TIME_GET_FOLD (PyDateTime_Time *0)
Return the fold, as an int from O through 1.

Added in version 3.6.
PyObject *PyDateTime_TIME_GET_TZINFO (PyDateTime_Time *0)
Return the tzinfo (which may be None).

Added in version 3.10.

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DELTA_GET_DAYS (PyDateTime_Delta *0)
Return the number of days, as an int from -999999999 to 999999999.

Added in version 3.3.

int PyDateTime_DELTA_GET_SECONDS (PyDateTime_Delta *0)
Return the number of seconds, as an int from O through 86399.
Added in version 3.3.

int PyDateTime_DELTA_GET_MICROSECONDS (PyDateTime_Delta *0)
Return the number of microseconds, as an int from 0 through 999999.
Added in version 3.3.

Macros for the convenience of modules implementing the DB API:

PyObject *PyDateTime_FromTimestamp (PyObject *args)

Wartos¢ zwracana: nowa referencja. Create and return a new datetime.datet ime object given an argument
tuple suitable for passing to datetime.datetime.fromtimestamp ().

PyObject *PyDate_FromTimestamp (PyObject *args)

Wartos¢ zwracana: nowa referencja. Create and return a new datet ime . date object given an argument tuple
suitable for passing to datetime.date.fromtimestamp ().

8.6.14 Objects for Type Hinting

Various built-in types for type hinting are provided. Currently, two types exist — GenericAlias and Union. Only
GenericAlias is exposed to C.

8.6. Other Objects 211

The Python/C API, Wydanie 3.14.0a5

PyObject *Py_GenericAlias (PyObject *origin, PyObject *args)

Czes¢ stabilnego ABI od wersji 3.9. Create a GenericAlias object. Equivalent to calling the Python class
types.GenericAlias. The origin and args arguments set the GenericAlias«s __origin__ and
__args__ attributes respectively. origin should be a Py Typeobject*, and args can be a PyTupleObject*
or any PyObject *. If args passed is not a tuple, a 1-tuple is automatically constructed and __args___ is set
to (args,). Minimal checking is done for the arguments, so the function will succeed even if origin is not
atype. The GenericAlias«s __parameters_ attribute is constructed lazily from __args_ . On failure,
an exception is raised and NULL is returned.

Here’s an example of how to make an extension type generic:

s N

static PyMethodDef my_obj_methods[] = {
// Other methods.

{"__class_getitem_ ", Py_GenericAlias, METH_O|METH_CLASS, "See PEP 585"}

> Zobacz takze

The data model method __class_getitem__ ().

Added in version 3.9.

PyTypeObject Py_GenericAliasType

Czes¢ stabilnego ABI od wersji 3.9. The C type of the object returned by Py_GenericAlias (). Equivalent
to types.GenericAlias in Python.

Added in version 3.9.

212 Rozdziat 8. Concrete Objects Layer

rRozDzIAt 9

Initialization, Finalization, and Threads

See Python Initialization Configuration for details on how to configure the interpreter prior to initialization.

9.1 Before Python Initialization
In an application embedding Python, the Py_Tnitialize () function must be called before using any other Py-
thon/C API functions; with the exception of a few functions and the global configuration variables.
The following functions can be safely called before Python is initialized:
 Functions that initialize the interpreter:
- Py Initialize()
- Py InitializeEx()
- Py InitializeFromConfig ()
- Py BytesMain()

— Py_Main /()

the runtime pre-initialization functions covered in Python Initialization Configuration
« Konfiguracja funkcja:

— PyImport_AppendInittab ()

— PyImport_ExtendInittab ()

— PyInitFrozenExtensions ()

— PyMem_SetAllocator ()

— PyMem_SetupDebugHooks ()

— PyObject_SetArenaAllocator ()

— Py_SetProgramName ()

— Py_SetPythonHome ()

- PySys_ResetWarnOptions ()

- the configuration functions covered in Python Initialization Configuration

o Informatiwne funkcje:

213

The Python/C API, Wydanie 3.14.0a5

- Py_IsInitialized()
— PyMem_GetAllocator ()
— PyObject_GetArenaAllocator ()
- Py_GetBuildInfo()
— Py_GetCompiler ()
— Py_GetCopyright ()
— Py_GetPlatform()
— Py_GetVersion()
— Py_IsInitialized()
o Narzedzia:
— Py_DecodeLocale ()
— the status reporting and utility functions covered in Python Initialization Configuration
 Alokatory pamigci:
— PyMem_RawMalloc ()
— PyMem_RawRealloc ()
— PyMem_RawCalloc ()
- PyMem_RawFree ()
« Synchronization:
— PyMutex_Lock ()

— PyMutex_Unlock ()

© Informacja

Despite their apparent similarity to some of the functions listed above, the following functions should not be
called before the interpreter has been initialized: Py EncodeLocale (), Py_GetPath (), Py_GetPrefix(),
Py _GetExecPrefix (), Py_GetProgramFullPath (), Py_GetPythonHome (), Py_GetProgramName (),
PyEval_InitThreads(), and Py _RunMain().

9.2 Global configuration variables
Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.

When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, -b
sets Py_BytesWarningFlag to 1 and -bb sets Py_BytesWarningFlag to 2.

int Py_BytesWarningFlag

This API is kept for backward compatibility: setting PyConfig.bytes_warning should be used instead,
see Python Initialization Configuration.

Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if greater
or equal to 2.

Set by the —b option.

Deprecated since version 3.12, will be removed in version 3.15.

214 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.14.0a5

int Py_DebugFlag

This API is kept for backward compatibility: setting PyConfig. parser_debug should be used instead, see
Python Initialization Configuration.

Turn on parser debugging output (for expert only, depending on compilation options).
Set by the —d option and the PYTHONDEBUG environment variable.
Deprecated since version 3.12, will be removed in version 3.15.

int Py_DontWriteBytecodeFlag

This API is kept for backward compatibility: setting PyConfig.write bytecode should be used instead,
see Python Initialization Configuration.

If set to non-zero, Python won’t try to write . pyc files on the import of source modules.
Set by the —B option and the PYTHONDONTWRITEBYTECODE environment variable.
Deprecated since version 3.12, will be removed in version 3.15.

int Py_FrozenFlag

This API is kept for backward compatibility: setting PyConfig.pathconfig warnings should be used
instead, see Python Initialization Configuration.

Suppress error messages when calculating the module search path in Py_GetPath ().
Private flag used by _freeze_module and frozenmain programs.
Deprecated since version 3.12, will be removed in version 3.15.

int Py_HashRandomizationFlag

This API is kept for backward compatibility: setting PyConfig.hash_seed and PyConfig.
use_hash_seed should be used instead, see Python Initialization Configuration.

Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.
If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.
Deprecated since version 3.12, will be removed in version 3.15.

int Py_IgnoreEnvironmentFlag

This API is kept for backward compatibility: setting PyConfig.use_environment should be used instead,
see Python Initialization Configuration.

Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.
Set by the —-E and I options.
Deprecated since version 3.12, will be removed in version 3.15.

int Py_InspectFlag

This API is kept for backward compatibility: setting PyConfig. inspect should be used instead, see Python
Initialization Configuration.

When a script is passed as first argument or the —c option is used, enter interactive mode after executing the
script or the command, even when sys . stdin does not appear to be a terminal.

Set by the —1i option and the PYTHONINSPECT environment variable.
Deprecated since version 3.12, will be removed in version 3.15.

int Py_InteractiveFlag

This API is kept for backward compatibility: setting PyConfig. interactive should be used instead, see
Python Initialization Configuration.

Set by the -1 option.

Niezalecane od wersji 3.12.

9.2. Global configuration variables 215

The Python/C API, Wydanie 3.14.0a5

int Py_IsolatedFlag

This API is kept for backward compatibility: setting PyConfig. i solated should be used instead, see Python
Initialization Configuration.

Run Python in isolated mode. In isolated mode sys .path contains neither the script’s directory nor the user’s
site-packages directory.

Set by the —I option.
Added in version 3.4.
Deprecated since version 3.12, will be removed in version 3.15.

int Py_LegacyWindowsFSEncodingFlag

This API is kept for backward compatibility: setting PyPreConfig. legacy_windows_fs_encoding sho-
uld be used instead, see Python Initialization Configuration.

If the flag is non-zero, use the mbcs encoding with replace error handler, instead of the UTF-8 encoding
with surrogatepass error handler, for the filesystem encoding and error handler.

Set to 1 if the PYTHONLEGACYWINDOWSFSENCODING environment variable is set to a non-empty string.
See PEP 529 for more details.

Dostgpnosé: Windows.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_LegacyWindowsStdioFlag

This API is kept for backward compatibility: setting PyConfig. legacy windows_stdio should be used
instead, see Python Initialization Configuration.

If the flag is non-zero, use io.FileIO instead of io._WindowsConsoleIO for sys standard streams.
Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.

See PEP 528 for more details.

Dostgpnos¢: Windows.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_NoSiteFlag

This API is kept for backward compatibility: setting PyConfig.site_import should be used instead, see
Python Initialization Configuration.

Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main () if you want them to
be triggered).

Set by the —s option.
Deprecated since version 3.12, will be removed in version 3.15.

int Py_NoUserSiteDirectory

This API is kept for backward compatibility: setting PyConfig.user_site_directory should be used
instead, see Python Initialization Configuration.

Don’t add the user site-packages directoryto sys.path.
Set by the —s and -I options, and the PYTHONNOUSERSITE environment variable.
Deprecated since version 3.12, will be removed in version 3.15.

int Py_OptimizeFlag

This API is kept for backward compatibility: setting PyConfig.optimization_level should be used in-
stead, see Python Initialization Configuration.

Set by the —0 option and the PYTHONOPTIMIZE environment variable.

216 Rozdziat 9. Initialization, Finalization, and Threads

https://peps.python.org/pep-0529/
https://peps.python.org/pep-0528/

The Python/C API, Wydanie 3.14.0a5

Deprecated since version 3.12, will be removed in version 3.15.

int Py_QuietFlag

This API is kept for backward compatibility: setting PyConfig. quiet should be used instead, see Python
Initialization Configuration.

Don’t display the copyright and version messages even in interactive mode.
Set by the —q option.

Added in version 3.2.

Deprecated since version 3.12, will be removed in version 3.15.

int Py_UnbufferedStdioFlag

This API is kept for backward compatibility: setting PyConfig.buffered_stdio should be used instead,
see Python Initialization Configuration.

Force the stdout and stderr streams to be unbuffered.
Set by the —u option and the PYTHONUNBUFFERED environment variable.
Deprecated since version 3.12, will be removed in version 3.15.

int Py_VerboseFlag
This API is kept for backward compatibility: setting PyConfig. verbose should be used instead, see Python
Initialization Configuration.

Print a message each time a module is initialized, showing the place (filename or built-in module) from which it
is loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit.

Set by the —v option and the PYTHONVERBOSE environment variable.

Deprecated since version 3.12, will be removed in version 3.15.

9.3 Initializing and finalizing the interpreter

void Py_Initialize ()
Czes¢ stabilnego ABLI. Initialize the Python interpreter. In an application embedding Python, this should be
called before using any other Python/C API functions; see Before Python Initialization for the few exceptions.

This initializes the table of loaded modules (sys .modules), and creates the fundamental modules builtins,
__main__ and sys. It also initializes the module search path (sys.path). It does not set sys . argv; use the
Python Initialization Configuration API for that. This is a no-op when called for a second time (without calling
Py_FinalizeEx () first). There is no return value; it is a fatal error if the initialization fails.

Use Py _InitializeFromConfig () to customize the Python Initialization Configuration.

© Informacja

On Windows, changes the console mode from O_TEXT to 0_BINARY, which will also affect non-Python
uses of the console using the C Runtime.

void Py_InitializeEx (int initsigs)

Czes¢ stabilnego ABI. This function works like Py_Tnitialize () if initsigs is 1. If initsigs is 0, it skips
initialization registration of signal handlers, which may be useful when CPython is embedded as part of a larger
application.

Use Py _InitializeFromConfig () to customize the Python Initialization Configuration.

9.3. Initializing and finalizing the interpreter 217

The Python/C API, Wydanie 3.14.0a5

PyStatus Py_InitializeFromConfig (const PyConfig *config)

Initialize Python from config configuration, as described in Initialization with PyConfig.

See the Python Initialization Configuration section for details on pre-initializing the interpreter, populating the
runtime configuration structure, and querying the returned status structure.

int Py_IsInitialized()

Czes¢ stabilnego ABI. Return true (nonzero) when the Python interpreter has been initialized, false (zero) if
not. After Py _FinalizeEx () is called, this returns false until Py_Tnitialize () is called again.

int Py IsFinalizing()

Czes¢ stabilnego ABI od wersji 3.13. Return true (non-zero) if the main Python interpreter is shutting down.
Return false (zero) otherwise.

Added in version 3.13.

int Py _FinalizeEx ()

Czes¢ stabilnego ABI od wersji 3.6. Undo all initializations made by Py_Initialize () and subsequent use
of Python/C API functions, and destroy all sub-interpreters (see Py_NewInterpreter () below) that were
created and not yet destroyed since the last call to Py_Tnitialize (). Thisis a no-op when called for a second
time (without calling Py_Tnitialize () again first).

Since this is the reverse of Py_Initialize (), itshould be called in the same thread with the same interpreter
active. That means the main thread and the main interpreter. This should never be called while Py_RunMain ()
is running.

Normally the return value is 0. If there were errors during finalization (flushing buffered data), —1 is returned.

Note that Python will do a best effort at freeing all memory allocated by the Python interpreter. Therefore, any
C-Extension should make sure to correctly clean up all of the preveiously allocated PyObjects before using
them in subsequent calls to Py_Tnitialize (). Otherwise it could introduce vulnerabilities and incorrect
behavior.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from
a dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading
the DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated
by Python before exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may
cause destructors (__del () methods) to fail when they depend on other objects (even functions) or mo-
dules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory
allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up
in circular references between objects is not freed. Interned strings will all be deallocated regardless of their
reference count. Some memory allocated by extension modules may not be freed. Some extensions may not
work properly if their initialization routine is called more than once; this can happen if an application calls
Py Initialize () and Py FinalizeEx () more than once. Py _FinalizeEx () must not be called recur-
sively from within itself. Therefore, it must not be called by any code that may be run as part of the interpreter
shutdown process, such as atexit handlers, object finalizers, or any code that may be run while flushing the
stdout and stderr files.

Raises an auditing event cpython._PySys_ClearAuditHooks with no arguments.
Added in version 3.6.

void Py_Finalize ()
Czesé stabilnego ABI. This is a backwards-compatible version of Py_FinalizeEx () that disregards the return
value.

int Py_BytesMain (int argc, char **argv)

Czes¢ stabilnego ABI od wersji 3.8. Similar to Py_Main () but argv is an array of bytes strings, allowing the
calling application to delegate the text decoding step to the CPython runtime.

Added in version 3.8.

218 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.14.0a5

int Py_Main (int argc, wchar_t **argv)

Czes¢ stabilnego ABIL. The main program for the standard interpreter, encapsulating a full initializa-
tion/finalization cycle, as well as additional behaviour to implement reading configurations settings from the
environment and command line, and then executing _ main___ in accordance with using-on-cmdline.

This is made available for programs which wish to support the full CPython command line interface, rather
than just embedding a Python runtime in a larger application.

The argc and argv parameters are similar to those which are passed to a C program’s main () function, except
that the argv entries are first converted to wchar_t using Py_DecodeLocale (). It is also important to note
that the argument list entries may be modified to point to strings other than those passed in (however, the
contents of the strings pointed to by the argument list are not modified).

The return value will be 0 if the interpreter exits normally (i.e., without an exception), 1 if the interpreter exits
due to an exception, or 2 if the argument list does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExi t is raised, this function will not return 1, but exit the process,
as long as Py_InspectFlag is not set. If Py_InspectFlag is set, execution will drop into the interactive
Python prompt, at which point a second otherwise unhandled Systemtxit will still exit the process, while
any other means of exiting will set the return value as described above.

In terms of the CPython runtime configuration APIs documented in the runtime configuration section (and
without accounting for error handling), Py_Main is approximately equivalent to:

-

PyConfig config;

PyConfig_ InitPythonConfig(&confiqg);
PyConfig_SetArgv (&config, argc, argv);
Py_InitializeFromConfig(&config);
PyConfig Clear (&configqg);

Py_RunMain () ;
.

J

In normal usage, an embedding application will call this function instead of calling Py_Tnitialize(),
Py_InitializeEx () OrPy_InitializeFromConfig () directly,and all settings will be applied as descri-
bed elsewhere in this documentation. If this function is instead called after a preceding runtime initialization
API call, then exactly which environmental and command line configuration settings will be updated is version
dependent (as it depends on which settings correctly support being modified after they have already been set
once when the runtime was first initialized).

int Py_RunMain (void)
Executes the main module in a fully configured CPython runtime.

Executes the command (PyConfig. run_command), the script (PyConfig. run_filename) or the module
(PyConfig.run_module) specified on the command line or in the configuration. If none of these values are
set, runs the interactive Python prompt (REPL) using the _ main__ module’s global namespace.

If Pyconfig. inspect is not set (the default), the return value will be 0 if the interpreter exits normally (that
is, without raising an exception), or 1 if the interpreter exits due to an exception. If an otherwise unhandled
SystemExit is raised, the function will immediately exit the process instead of returning 1.

If pyconfig.inspect is set (such as when the -1 option is used), rather than returning when the interpreter
exits, execution will instead resume in an interactive Python prompt (REPL) using the _ _main__ module’s
global namespace. If the interpreter exited with an exception, it is immediately raised in the REPL session.
The function return value is then determined by the way the REPL session terminates: returning 0 if the session
terminates without raising an unhandled exception, exiting immediately for an unhandled SystemExit, and
returning 1 for any other unhandled exception.

This function always finalizes the Python interpreter regardless of whether it returns a value or immediately
exits the process due to an unhandled SystemExit exception.

See Python Configuration for an example of a customized Python that always runs in isolated mode using
Py _RunMain ().

9.3. Initializing and finalizing the interpreter 219

The Python/C API, Wydanie 3.14.0a5

int PyUnstable_AtExit (PylnterpreterState *interp, void (*func)(void*), void *data)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Register an atexit callback for the target interpreter interp. This is similar to Py_AtExit (), but takes an
explicit interpreter and data pointer for the callback.

The GIL must be held for interp.
Added in version 3.13.

9.4 Process-wide parameters

void Py_SetProgramName (const wchar_t *name)

Czesé stabilnego ABI. This API is kept for backward compatibility: setting PyConfig. program_name should
be used instead, see Python Initialization Configuration.

This function should be called before Py_Initialize () is called for the first time, if it is called at all. It
tells the interpreter the value of the argv [0] argument to the main () function of the program (converted to
wide characters). This is used by Py_GetpPath () and some other functions below to find the Python run-time
libraries relative to the interpreter executable. The default value is 'python'. The argument should point to
a zero-terminated wide character string in static storage whose contents will not change for the duration of the
program’s execution. No code in the Python interpreter will change the contents of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_t* string.
Deprecated since version 3.11, will be removed in version 3.15.

wchar_t *Py_GetProgramName ()

Czes¢ stabilnego ABIL. Return the program name set with PyConfig.program name, or the default. The
returned string points into static storage; the caller should not modify its value.

This function should not be called before pPy_Tnitialize (), otherwise it returns NULL.
Zmienione w wersji 3.10: It now returns NULL if called before py_Initialize ().

Deprecated since version 3.13, will be removed in version 3.15: Use PyConfig Get ("executable") (sys.
executable) instead.

wchar_t *Py_GetPrefix ()

Czes¢ stabilnego ABI. Return the prefix for installed platform-independent files. This is derived through a num-
ber of complicated rules from the program name set with PyConfig. program_name and some environment
variables; for example, if the program name is ' /usr/local/bin/python", the prefixis ' /usr/local’.
The returned string points into static storage; the caller should not modify its value. This corresponds to the
prefix variable in the top-level Makefile and the —~—prefix argument to the configure script at build
time. The value is available to Python code as sys.base_prefix. Itis only useful on Unix. See also the next
function.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.
Zmienione w wersji 3.10: It now returns NULL if called before py_1nitialize().

Deprecated since version 3.13, will be removed in version 3.15: Use PyConfig Get ("base prefix")
(sys.base_prefix)instead. Use PyConfig Get ("prefix") (sys.prefix) if virtual environments ne-
ed to be handled.

wchar_t *Py_GetExecPrefix ()

Czes¢ stabilnego ABI. Return the exec-prefix for installed platform-dependent files. This is derived through
a number of complicated rules from the program name set with PyConfig.program name and some envi-
ronment variables; for example, if the program name is ' /usr/local/bin/python’, the exec-prefix is

220 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.14.0a5

'/usr/local'. The returned string points into static storage; the caller should not modify its value. This
corresponds to the exec_prefix variable in the top-level Makefile and the ——exec—prefix argument to
the configure script at build time. The value is available to Python code as sys.base_exec_prefix. It
is only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files may
be installed in the /usr/local/plat subtree while platform independent may be installed in /usr/local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Non-Unix operating systems are a different
story; the installation strategies on those systems are so different that the prefix and exec-prefix are meanin-
gless, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.

This function should not be called before Py Initialize (), otherwise it returns NULL.
Zmienione w wersji 3.10: It now returns NULL if called before py_1nitialize().

Deprecated since version 3.13, will be removed in version 3.15: Use

PyConfig Get ("base_exec_prefix") (sys.base_exec_prefix) instead. Use

PyConfig _Get ("exec_prefix") (sys.exec_prefix) if virtual environments need to be handled.
wchar_t *Py_GetProgramFullPath ()

Czes¢ stabilnego ABI. Return the full program name of the Python executable; this is computed as a side-effect
of deriving the default module search path from the program name (set by PyConfig.program name). The
returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.executable.

This function should not be called before Py Initialize (), otherwise it returns NULL.
Zmienione w wersji 3.10: It now returns NULL if called before py_1nitialize ().

Deprecated since version 3.13, will be removed in version 3.15: Use PyConfig Get ("executable") (sys.
executable) instead.
wchar_t *Py_GetPath ()

Czes¢ stabilnego ABI. Return the default module search path; this is computed from the program name (set
by PyConfig.program name) and some environment variables. The returned string consists of a series of
directory names separated by a platform dependent delimiter character. The delimiter characteris ' : ' on Unix
and macOS, '; ' on Windows. The returned string points into static storage; the caller should not modify its
value. The list sys . path is initialized with this value on interpreter startup; it can be (and usually is) modified
later to change the search path for loading modules.

This function should not be called before Py Initialize (), otherwise it returns NULL.
Zmienione w wersji 3.10: It now returns NULL if called before py_Tnitialize().

Deprecated since version 3.13, will be removed in version 3.15: Use
PyConfig_Get ("module_search_paths") (sys.path) instead.

const char *Py_GetVersion ()

Czes¢ stabilnego ABI. Return the version of this Python interpreter. This is a string that looks something like

["3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]1"]

The first word (up to the first space character) is the current Python version; the first characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as sys.version.

See also the Py Version constant.

9.4. Process-wide parameters 221

The Python/C API, Wydanie 3.14.0a5

const char *Py_GetPlatform ()

Czes¢ stabilnego ABI. Return the platform identifier for the current platform. On Unix, this is formed from the
wofficial” name of the operating system, converted to lower case, followed by the major revision number; e.g.,
for Solaris 2.x, which is also known as SunOS 5.x, the value is 'sunos5'. On macOS, it is 'darwin’'. On
Windows, itis 'win'. The returned string points into static storage; the caller should not modify its value. The
value is available to Python code as sys.platform.

const char *Py_GetCopyright ()

Czes¢ stabilnego ABI. Return the official copyright string for the current Python version, for example
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.copyright.
const char *Py_GetCompiler ()

Czes¢ stabilnego ABI. Return an indication of the compiler used to build the current Python version, in square
brackets, for example:

["[GCC 26To2o2] " }

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.
const char *Py_GetBuildInfo ()

Czes¢ stabilnego ABI. Return information about the sequence number and build date and time of the current
Python interpreter instance, for example

["#67, Aug 1 1997, 22:34:28" }

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

void PySys_SetArgvEx (int argc, wchar_t **argv, int updatepath)

Czes¢ stabilnego ABI. This API is kept for backward compatibility: setting PyConfig.argv, PyConfig.
parse_argvand PyConfig. safe_path should be used instead, see Python Initialization Configuration.

Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main ()
function with the difference that the first entry should refer to the script file to be executed rather than the execu-
table hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty
string. If this function fails to initialize sys . argv, a fatal condition is signalled using Py_FatalError().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys.
path according to the following algorithm:

« If the name of an existing script is passed in argv [0], the absolute path of the directory where the script
is located is prepended to sys.path.

o Otherwise (that is, if argc is 0 or argv [0] doesn’t point to an existing file name), an empty string is
prepended to sys.path, which is the same as prepending the current working directory (".").

Use Py _DecodeLocale () to decode a bytes string to get a wchar_t* string.

See also PyConfig.orig_argvand PyConfig.argv members of the Python Initialization Configuration.

© Informacja

It is recommended that applications embedding the Python interpreter for purposes other than executing
a single script pass 0 as updatepath, and update sys.path themselves if desired. See CVE 2008-5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sys . path element
after having called PySys_SetArgv (), for example using:

222 Rozdziat 9. Initialization, Finalization, and Threads

https://www.cve.org/CVERecord?id=CVE-2008-5983

The Python/C API, Wydanie 3.14.0a5

[PyRun_SimpleString("import sys; sys.path.pop(0)\n"); }

Added in version 3.1.3.
Deprecated since version 3.11, will be removed in version 3.15.

void PySys_SetArgv (int argc, wchar_t **argv)

Czes¢ stabilnego ABI. This API is kept for backward compatibility: setting PyConfig.argvand PyConfig.
parse_argv should be used instead, see Python Initialization Configuration.

This function works like PySys_SetArgvEx () with updatepath set to 1 unless the python interpreter was
started with the - 1.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_t* string.

See also PyConfig.orig_argvand PyConfig.argv members of the Python Initialization Configuration.
Zmienione w wersji 3.4: The updatepath value depends on -1.

Deprecated since version 3.11, will be removed in version 3.15.

void Py_SetPythonHome (const wchar_t *home)

Czes¢ stabilnego ABI. This API is kept for backward compatibility: setting PyConfig. home should be used
instead, see Python Initialization Configuration.

Set the default ,home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for
the meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the contents of this
storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_t * string.
Deprecated since version 3.11, will be removed in version 3.15.

wchar_t *Py_GetPythonHome ()

Czes¢ stabilnego ABI. Return the default ,,home”, that is, the value set by PyConfig. home, or the value of the
PYTHONHOME environment variable if it is set.

This function should not be called before Py Initialize (), otherwise it returns NULL.
Zmienione w wersji 3.10: It now returns NULL if called before py_Tnitialize().

Deprecated since version 3.13, will be removed in version 3.15: Use PyConfig Get ("home") or the
PYTHONHOME environment variable instead.

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see
sys.setswitchinterval ()). The lock is also released around potentially blocking I/O operations like reading or
writing a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
pyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_Get ().

9.5. Thread State and the Global Interpreter Lock 223

The Python/C API, Wydanie 3.14.0a5

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
Do some blocking I/0 operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
Do some blocking I/O operation
Py END_ALLOW_THREADS

The Py BEGIN ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.

The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
Do some blocking I/O operation
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the
lock is released (since another thread could immediately acquire the lock and store its own thread state in the global
variable). Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing
the thread state pointer.

© Informacja

Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or cryptogra-
phic functions operating over memory buffers. For example, the standard z1ib and hashlib modules release
the GIL when compressing or hashing data.

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is
automatically associated to them and the code showed above is therefore correct. However, when threads are created
from C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there
a thread state structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the afo-
rementioned third-party library), you must first register these threads with the interpreter by creating a thread state
data structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using the
Python/C API. When you are done, you should reset the thread state pointer, release the GIL, and finally free the
thread state data structure.

The PyGILState Ensure () and PyGILState Release () functions do all of the above automatically. The ty-
pical idiom for calling into Python from a C thread is:

PyGILState STATE gstate;
gstate = PyGILState_Ensure();

(ciag dalszy na nastgpnej stronie)

224 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
/* Perform Python actions here. */
result = CallSomeFunction () ;
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* functions assume there is only one global interpreter (created automatically by
Py_Initialize ()). Python supports the creation of additional interpreters (using Py_NewInterpreter ()), but
mixing multiple interpreters and the PyGILState_* API is unsupported.

9.5.3 Cautions about fork()

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems
with fork (), after a process forks only the thread that issued the fork will exist. This has a concrete impact both on
how locks must be handled and on all stored state in CPython’s runtime.

The fact that only the ,,current” thread remains means any locks held by other threads will never be released. Python
solves this for os. fork () by acquiring the locks it uses internally before the fork, and releasing them afterwards.
In addition, it resets any lock-objects in the child. When extending or embedding Python, there is no way to inform
Python of additional (non-Python) locks that need to be acquired before or reset after a fork. OS facilities such
as pthread_atfork () would need to be used to accomplish the same thing. Additionally, when extending or
embedding Python, calling fork () directly rather than through os. fork () (and returning to or calling into Python)
may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after the fork.
PyOS_AfterFork_Child () tries to reset the necessary locks, but is not always able to.

The fact that all other threads go away also means that CPython’s runtime state there must be cleaned up properly,
which os. fork () does. This means finalizing all other Py Threadstate objects belonging to the current interpreter
and all other PyInterpreterState objects. Due to this and the special nature of the ,main” interpreter, fork ()
should only be called in that interpreter’s ,,main” thread, where the CPython global runtime was originally initialized.
The only exception is if exec () will be called immediately after.

9.5.4 Cautions regarding runtime finalization

In the late stage of interpreter shutdown, after attempting to wait for non-daemon threads to exit (though this can
be interrupted by KeyboardInterrupt) and running the atexit functions, the runtime is marked as finalizing:
_Py_IsFinalizing() and sys.is_finalizing () return true. At this point, only the finalization thread that
initiated finalization (typically the main thread) is allowed to acquire the GIL.

If any thread, other than the finalization thread, attempts to acquire the GIL during finalization, either
explicitty via PyGILState Ensure(), Py _END_ALLOW_THREADS, PyEval AcquireThread(), Or
PyEval_ AcquireLock (), or implicitly when the interpreter attempts to reacquire it after having yielded it,
the thread enters a permanently blocked state where it remains until the program exits. In most cases this is
harmless, but this can result in deadlock if a later stage of finalization attempts to acquire a lock owned by the
blocked thread, or otherwise waits on the blocked thread.

Gross? Yes. This prevents random crashes and/or unexpectedly skipped C++ finalizations further up the call stack
when such threads were forcibly exited here in CPython 3.13 and earlier. The CPython runtime GIL acquiring C
APIs have never had any error reporting or handling expectations at GIL acquisition time that would’ve allowed for
graceful exit from this situation. Changing that would require new stable C APIs and rewriting the majority of C
code in the CPython ecosystem to use those with error handling.

9.5.5 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the
Python interpreter:

type PyInterpreterState
Czes¢ ograniczonego API (jako nieprzezroczysta struktura). This data structure represents the state shared by

9.5. Thread State and the Global Interpreter Lock 225

The Python/C API, Wydanie 3.14.0a5

a number of cooperating threads. Threads belonging to the same interpreter share their module administration
and a few other internal items. There are no public members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

type PyThreadState
Czes¢ ograniczonego API (jako nieprzezroczysta struktura). This data structure represents the state of a single
thread. The only public data member is:
PylnterpreterState *interp

This thread’s interpreter state.

void PyEval_InitThreads ()
Czes¢ stabilnego ABI. Deprecated function which does nothing.

In Python 3.6 and older, this function created the GIL if it didn’t exist.
Zmienione w wersji 3.9: The function now does nothing.

Zmienione w wersji 3.7: This function is now called by py_Tnitialize (),soyoudon’t have to call it yourself
anymore.

Zmienione w wersji 3.2: This function cannot be called before Py_Tnitialize () anymore.
Niezalecane od wersji 3.9.

PyThreadState *PyEval_SaveThread ()
Czes¢ stabilnego ABI. Release the global interpreter lock (if it has been created) and reset the thread state to
NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it.

void PyEval_RestoreThread (PyThreadState *tstate)

Czes¢ stabilnego ABI. Acquire the global interpreter lock (if it has been created) and set the thread state to
tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it,
otherwise deadlock ensues.

© Informacja

Calling this function from a thread when the runtime is finalizing will hang the thread until the program
exits, even if the thread was not created by Python. Refer to Cautions regarding runtime finalization for
more details.

Zmienione w wersji 3.14: Hangs the current thread, rather than terminating it, if called while the interpreter
is finalizing.

PyThreadState *PyThreadState_Get ()
Czes¢ stabilnego ABI. Return the current thread state. The global interpreter lock must be held. When the
current thread state is NULL, this issues a fatal error (so that the caller needn’t check for NULL).
See also PyThreadState_GetUnchecked ().

PyThreadState *PyThreadState_GetUnchecked ()
Similar to PyThreadState_Get (), but don’t kill the process with a fatal error if it is NULL. The caller is
responsible to check if the result is NULL.

Added in version 3.13: In Python 3.5 to 3.12, the function was private and known as
_PyThreadState_UncheckedGet ().
PyThreadState *PyThreadState_Swap (PyThreadState *tstate)

Czes¢ stabilnego ABI. Swap the current thread state with the thread state given by the argument #state, which
may be NULL. The global interpreter lock must be held and is not released.

226 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.14.0a5

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState_STATE PyGILState_Ensure ()

Czes¢ stabilnego ABI. Ensure that the current thread is ready to call the Python C API regardless of the
current state of Python, or of the global interpreter lock. This may be called as many times as desired by
a thread as long as each call is matched with a call to PyGILState Release (). In general, other thread-
-related APIs may be used between PyGILState Ensure () and PyGILState_Release () calls as long
as the thread state is restored to its previous state before the Release(). For example, normal usage of the
Py _BEGIN_ALLOW_THREADS and Py END_ALLOW_THREADS macros is acceptable.

The return value is an opaque ,handle” to the thread state when PyGILState_Ensure () was called, and
must be passed to PyGTLState_Release () to ensure Python is left in the same state. Even though recursive
calls are allowed, these handles cannot be shared - each unique call to PyGILState Ensure () must save the
handle for its call to PyGILState Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code.
Failure is a fatal error.

© Informacja

Calling this function from a thread when the runtime is finalizing will hang the thread until the program
exits, even if the thread was not created by Python. Refer to Cautions regarding runtime finalization for
more details.

Zmienione w wersji 3.14: Hangs the current thread, rather than terminating it, if called while the interpreter
is finalizing.

void PyGILState_Release (PyGILState STATE)

Czes¢ stabilnego ABI. Release any resources previously acquired. After this call, Python’s state will be the same
as it was prior to the corresponding PyGILState Ensure () call (but generally this state will be unknown to
the caller, hence the use of the GILState API).

Every call to PyGILState_Ensure () must be matched by a call to PyGILState Release () on the same
thread.

PyThreadState *PyGILState_GetThisThreadState ()

Czes¢ stabilnego ABI. Get the current thread state for this thread. May return NULL if no GILState API has
been used on the current thread. Note that the main thread always has such a thread-state, even if no auto-
-thread-state call has been made on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check ()

Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return
1. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory
allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or
otherwise behave differently.

Added in version 3.4.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOW_THREADS

Czes¢ stabilnego ABI. This macro expands to { PyThreadState *_save; _save =
PyEval_SaveThread();. Note that it contains an opening brace; it must be matched with a follo-
wing Py_END_ALLOW_THREADS macro. See above for further discussion of this macro.

Py _END_ALLOW_THREADS

Czes¢ stabilnego ABI. This macro expands to PyEval RestoreThread(_save); }. Note that it contains
a closing brace; it must be matched with an earlier Py BEGIN_ ALLOW_THREADS macro. See above for further
discussion of this macro.

9.5. Thread State and the Global Interpreter Lock 227

The Python/C API, Wydanie 3.14.0a5

Py_BLOCK_THREADS

Czes¢ stabilnego ABI. This macro expands to PyEval_RestoreThread(_save);: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace.

Py_UNBLOCK_THREADS

Czes¢ stabilnego ABI This macro expands to _save = PyEval_SaveThread();: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

9.5.6 Low-level API

All of the following functions must be called after py_Initialize ().
Zmienione w wersji 3.7: Py _Tnitialize () now initializes the GIL.

PylInterpreterState *PyInterpreterState_New ()

Czes¢ stabilnego ABI. Create a new interpreter state object. The global interpreter lock need not be held, but
may be held if it is necessary to serialize calls to this function.

Raises an auditing event cpython.PyInterpreterState_New with no arguments.

void PyInterpreterState_Clear (PylnterpreterState *interp)

Czes¢ stabilnego ABI. Reset all information in an interpreter state object. The global interpreter lock must be
held.

Raises an auditing event cpython.PyInterpreterState_Clear with no arguments.

void PyInterpreterState_Delete (PylnferpreterState *interp)

Czes¢ stabilnego ABI. Destroy an interpreter state object. The global interpreter lock need not be held. The
interpreter state must have been reset with a previous call to PyInterpreterState Clear ().

PyThreadState *PyThreadState_New (PylnterpreterState *interp)

Czes¢ stabilnego ABIL. Create a new thread state object belonging to the given interpreter object. The global
interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Czes¢ stabilnego ABI. Reset all information in a thread state object. The global interpreter lock must be held.

Zmienione w wersji 3.9: This function now calls the PyThreadState.on_delete callback. Previously, that
happened in PyThreadState_Delete ().

Zmienione w wersji 3.13: The PyThreadState.on_delete callback was removed.

void PyThreadState_Delete (PyThreadState *tstate)

Czes¢ stabilnego ABI. Destroy a thread state object. The global interpreter lock need not be held. The thread
state must have been reset with a previous call to PyThreadState Clear ().

void PyThreadState_DeleteCurrent (void)

Destroy the current thread state and release the global interpreter lock. Like PyThreadState_Delete (),
the global interpreter lock must be held. The thread state must have been reset with a previous call to
PyThreadState_Clear().

PyFrameObject *PyThreadState_GetFrame (PyThreadState *tstate)
Czes¢ stabilnego ABI od wersji 3.10. Get the current frame of the Python thread state zstate.

Return a strong reference. Return NULL if no frame is currently executing.
See also PyEval_GetFrame ().
tstate must not be NULL.

Added in version 3.9.

228 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.14.0a5

uint64_t PyThreadState_Get ID (PyThreadState *tstate)

Czes¢ stabilnego ABI od wersji 3.10. Get the unique thread state identifier of the Python thread state tstate.

tstate must not be NULL.
Added in version 3.9.

PyInterpreterState *PyThreadState_GetInterpreter (PylhreadState *tstate)

Czes¢ stabilnego ABI od wersji 3.10. Get the interpreter of the Python thread state zstate.

tstate must not be NULL.
Added in version 3.9.

void PyThreadState_EnterTracing (PyThreadState *tstate)
Suspend tracing and profiling in the Python thread state zstate.

Resume them using the PyThreadState LeaveTracing () function.
Added in version 3.11.

void PyThreadState_LeaveTracing (PyThreadState *tstate)

Resume tracing and profiling in the Python thread state tstate
PyThreadState_EnterTracing() function.

See also PyEval_SetTrace () and PyEval_SetProfile () functions.
Added in version 3.11.

PylnterpreterState *PyInterpreterState_Get (void)
Czes¢ stabilnego ABI od wersji 3.9. Get the current interpreter.

suspended

by the

Issue a fatal error if there no current Python thread state or no current interpreter. It cannot return NULL.

The caller must hold the GIL.
Added in version 3.9.

int64_t PyInterpreterState_GetID (PylnterpreterState *interp)

Czes¢ stabilnego ABI od wersji 3.7. Return the interpreter’s unique ID. If there was any error in doing so then

-1 is returned and an error is set.
The caller must hold the GIL.
Added in version 3.7.

PyObject *PyInterpreterState_GetDict (PylnterpreterState *interp)

Czes¢ stabilnego ABI od wersji 3.8. Return a dictionary in which interpreter-specific data may be stored. If this
function returns NULL then no exception has been raised and the caller should assume no interpreter-specific
dict is available.

This is not a replacement for PyModule GetState (), which extensions should use to store interpreter-
-specific state information.

Added in version 3.8.

PyObject *PyUnstable_InterpreterState_GetMainModule (PylnterpreterState *interp)

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Return a strong reference to the __main__ module object for the given interpreter.
The caller must hold the GIL.
Added in version 3.13.

9.5. Thread State and the Global Interpreter Lock 229

The Python/C API, Wydanie 3.14.0a5

typedef PyObject *(*_PyFrameEvalFunction)(PyThreadState *tstate, _PylnterpreterFrame *frame, int
throwflag)

Type of a frame evaluation function.

The throwflag parameter is used by the throw () method of generators: if non-zero, handle the current excep-
tion.

Zmienione w wersji 3.9: The function now takes a #state parameter.

Zmienione w wersji 3.11: The frame parameter changed from PyFrameObject* to
_PyInterpreterFrame*.

_PyFrameEvalFunction _PyInterpreterState_GetEvalFrameFunc (PylnterpreterState *interp)

void _

Get the frame evaluation function.
See the PEP 523 ,Adding a frame evaluation API to CPython”.
Added in version 3.9.

PyInterpreterState_SetEvalFrameFunc (PylnterpreterState *interp, _PyFrameEvalFunction
eval_frame)

Set the frame evaluation function.
See the PEP 523 ,,Adding a frame evaluation API to CPython”.
Added in version 3.9.

PyObject *PyThreadState_GetDict ()

Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABIL Return a dictionary in which extensions can
store thread-specific state information. Each extension should use a unique key to use to store state in the
dictionary. It is okay to call this function when no current thread state is available. If this function returns
NULL, no exception has been raised and the caller should assume no current thread state is available.

int PyThreadState_SetAsyncExc (unsigned long id, PyObject *exc)

Czes¢ stabilnego ABI. Asynchronously raise an exception in a thread. The id argument is the thread id of the
target thread; exc is the exception object to be raised. This function does not steal any references to exc. To
prevent naive misuse, you must write your own C extension to call this. Must be called with the GIL held.
Returns the number of thread states modified; this is normally one, but will be zero if the thread id isn’t found.
If exc is NULL, the pending exception (if any) for the thread is cleared. This raises no exceptions.

Zmienione w wersji 3.7: The type of the id parameter changed from long to unsigned long.

void PyEval_AcquireThread (PyThreadState *tstate)

Czes¢ stabilnego ABI. Acquire the global interpreter lock and set the current thread state to tstate, which must
not be NULL. The lock must have been created earlier. If this thread already has the lock, deadlock ensues.

© Informacja

Calling this function from a thread when the runtime is finalizing will hang the thread until the program
exits, even if the thread was not created by Python. Refer to Cautions regarding runtime finalization for
more details.

Zmienione w wersji 3.8: Updated to be consistent with PyEval RestoreThread(),
Py_END_ALLOW_THREADS (), and PyGILState_Ensure(), and terminate the current thread if cal-
led while the interpreter is finalizing.

Zmienione w wersji 3.14: Hangs the current thread, rather than terminating it, if called while the interpreter
is finalizing.

PyEval_ RestoreThread () is a higher-level function which is always available (even when threads have not
been initialized).

230

Rozdziat 9. Initialization, Finalization, and Threads

https://peps.python.org/pep-0523/
https://peps.python.org/pep-0523/

The Python/C API, Wydanie 3.14.0a5

void PyEval_ReleaseThread (PyThreadState *tstate)

Czes¢ stabilnego ABI. Reset the current thread state to NULL and release the global interpreter lock. The lock
must have been created earlier and must be held by the current thread. The #state argument, which must not be
NULL, is only used to check that it represents the current thread state — if it isn’t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when threads have not
been initialized).

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do
that.

The ,,main” interpreter is the first one created when the runtime initializes. It is usually the only Python interpreter in
a process. Unlike sub-interpreters, the main interpreter has unique process-global responsibilities like signal handling.
It is also responsible for execution during runtime initialization and is usually the active interpreter during runtime
finalization. The PyInterpreterState_Main () function returns a pointer to its state.

You can switch between sub-interpreters using the Py Threadstate_Swap () function. You can create and destroy
them using the following functions:
type PyInterpreterConfig
Structure containing most parameters to configure a sub-interpreter. Its values are used only in
Py_NewInterpreterFromConfig () and never modified by the runtime.
Added in version 3.12.

Structure fields:

int use_main_obmalloc
If this is 0 then the sub-interpreter will use its own ,,object” allocator state. Otherwise it will use (share)
the main interpreter’s.

If this is 0 then check_multi_interp_extensions mustbe 1 (non-zero). If this is 1 then gi 1 must
notbe PyInterpreterConfig OWN_GIL.

int allow_fork
If this is 0 then the runtime will not support forking the process in any thread where the sub-interpreter
is currently active. Otherwise fork is unrestricted.
Note that the subprocess module still works when fork is disallowed.

int allow_exec
If this is 0 then the runtime will not support replacing the current process via exec (e.g. os.execv ())
in any thread where the sub-interpreter is currently active. Otherwise exec is unrestricted.

Note that the subprocess module still works when exec is disallowed.

int allow_threads
If this is 0 then the sub-interpreter’s threading module won’t create threads. Otherwise threads are
allowed.

int allow_daemon_threads
If this is 0 then the sub-interpreter’s t hreading module won’t create daemon threads. Otherwise daemon
threads are allowed (as long as a11ow_threads is non-zero).

int check_multi_interp_extensions

If this is 0 then all extension modules may be imported, including legacy (single-phase init) modules,
in any thread where the sub-interpreter is currently active. Otherwise only multi-phase init extension
modules (see PEP 489) may be imported. (Also see Py_mod multiple interpreters.)

This must be 1 (non-zero) if use_main_obmallocis 0.

9.6. Sub-interpreter support 231

https://peps.python.org/pep-0489/

The Python/C API, Wydanie 3.14.0a5

int gil
This determines the operation of the GIL for the sub-interpreter. It may be one of the following:

PyInterpreterConfig_ DEFAULT_GIL
Use the default selection (PyInterpreterConfig SHARED_GIL).

PyInterpreterConfig_SHARED_GIL
Use (share) the main interpreter’s GIL.

PyInterpreterConfig_OWN_GIL

Use the sub-interpreter’s own GIL.

If this is PyInterpreterConfig OWN_GIL then PyInterpreterConfig.use_main_obmalloc
must be 0.

PyStatus Py_NewInterpreterFromConfig (PyThreadState **tstate_p, const PylnterpreterConfig *config)

Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python
code. In particular, the new interpreter has separate, independent versions of all imported modules, including
the fundamental modules builtins, __main__ and sys. The table of loaded modules (sys.modules) and
the module search path (sys.path) are also separate. The new environment has no sys . argv variable. It has
new standard I/O stream file objects sys.stdin, sys.stdout and sys . stderr (however these refer to the
same underlying file descriptors).

The given config controls the options with which the interpreter is initialized.

Upon success, tstate_p will be set to the first thread state created in the new sub-interpreter. This thread state
is made in the current thread state. Note that no actual thread is created; see the discussion of thread states
below. If creation of the new interpreter is unsuccessful, tstate_p is set to NULL; no exception is set since the
exception state is stored in the current thread state and there may not be a current thread state.

Like all other Python/C API functions, the global interpreter lock must be held before calling this function
and is still held when it returns. Likewise a current thread state must be set on entry. On success, the returned
thread state will be set as current. If the sub-interpreter is created with its own GIL then the GIL of the calling
interpreter will be released. When the function returns, the new interpreter’s GIL will be held by the current
thread and the previously interpreter’s GIL will remain released here.

Added in version 3.12.

Sub-interpreters are most effective when isolated from each other, with certain functionality restricted:

PyInterpreterConfig config = {
.use_main_obmalloc = O,
.allow_fork = 0,
.allow_exec = 0O,
.allow_threads = 1,
.allow_daemon_threads = 0,
.check_multi_interp_extensions = 1,
.gil = PyInterpreterConfig_ OWN_GIL,
i
PyThreadState *tstate = NULL;
PyStatus status = Py_NewInterpreterFromConfig(&tstate, &config);
if (PyStatus_Exception(status)) {
Py_ExitStatusException (status);

L J

Note that the config is used only briefly and does not get modified. During initialization the config’s values are
converted into various Py InterpreterState values. A read-only copy of the config may be stored internally
onthe PyInterpreterState.

Extension modules are shared between (sub-)interpreters as follows:

232 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.14.0a5

o For modules using multi-phase initialization, e.g. PyModule FromDefAndSpec (), a separate module
object is created and initialized for each interpreter. Only C-level static and global variables are shared
between these module objects.

o For modules using single-phase initialization, e.g. PyModule Create (), the first time a particular
extension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirre-
led away. When the same extension is imported by another (sub-)interpreter, a new module is initialized
and filled with the contents of this copy; the extension’s init function is not called. Objects in the mo-
dule’s dictionary thus end up shared across (sub-)interpreters, which might cause unwanted behavior (see
Bugs and caveats below).

Note that this is different from what happens when an extension is imported after the interpreter has
been completely re-initialized by calling Py _FinalizeEx () and Py_Initialize ();in that case, the
extension’s initmodule function is called again. As with multi-phase initialization, this means that only
C-level static and global variables are shared between these modules.

PyThreadState *Py_NewInterpreter (void)

Czes¢ stabilnego ABIL Create a new sub-interpreter. This is essentially just a wrapper around
Py _NewInterpreterFromConfig () with a config that preserves the existing behavior. The result is an
unisolated sub-interpreter that shares the main interpreter’s GIL, allows fork/exec, allows daemon threads, and
allows single-phase init modules.

void Py_EndInterpreter (PyThreadState *tstate)

Czes¢ stabilnego ABI. Destroy the (sub-)interpreter represented by the given thread state. The given thread state
must be the current thread state. See the discussion of thread states below. When the call returns, the current
thread state is NULL. All thread states associated with this interpreter are destroyed. The global interpreter lock
used by the target interpreter must be held before calling this function. No GIL is held when it returns.

Py _FinalizeEx () will destroy all sub-interpreters that haven’t been explicitly destroyed at that point.

9.6.1 A Per-Interpreter GIL

Using Py_NewInterpreterFromConfig () youcan create a sub-interpreter that is completely isolated from other
interpreters, including having its own GIL. The most important benefit of this isolation is that such an interpreter
can execute Python code without being blocked by other interpreters or blocking any others. Thus a single Python
process can truly take advantage of multiple CPU cores when running Python code. The isolation also encourages
a different approach to concurrency than that of just using threads. (See PEP 554.)

Using an isolated interpreter requires vigilance in preserving that isolation. That especially means not sharing any
objects or mutable state without guarantees about thread-safety. Even objects that are otherwise immutable (e.g.
None, (1, 5))can’t normally be shared because of the refcount. One simple but less-efficient approach around this
is to use a global lock around all use of some state (or object). Alternately, effectively immutable objects (like integers
or strings) can be made safe in spite of their refcounts by making them immortal. In fact, this has been done for the
builtin singletons, small integers, and a number of other builtin objects.

If you preserve isolation then you will have access to proper multi-core computing without the complications that
come with free-threading. Failure to preserve isolation will expose you to the full consequences of free-threading,
including races and hard-to-debug crashes.

Aside from that, one of the main challenges of using multiple isolated interpreters is how to communicate between
them safely (not break isolation) and efficiently. The runtime and stdlib do not provide any standard approach to
this yet. A future stdlib module would help mitigate the effort of preserving isolation and expose effective tools for
communicating (and sharing) data between interpreters.

Added in version 3.12.

9.6.2 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t
perfect — for example, using low-level file operations like os . close () they can (accidentally or maliciously) affect
each other’s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when using single-phase initialization or (static) global variables. It is possible

9.6. Sub-interpreter support 233

https://peps.python.org/pep-0554/

The Python/C API, Wydanie 3.14.0a5

to insert objects created in one sub-interpreter into a namespace of another (sub-)interpreter; this should be avoided
if possible.

Special care should be taken to avoid sharing user-defined functions, methods, instances or classes between sub-
-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dictionary of
loaded modules. It is equally important to avoid sharing objects from which the above are reachable.

Also note that combining this functionality with PyGILState_* APIs is delicate, because these APIs assume a bi-
jection between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters.
It is highly recommended that you don’t switch sub-interpreters between a pair of matching PyGILState Ensure ()
and PyGILState Release () calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling
of Python code from non-Python created threads will probably be broken when using sub-interpreters.

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take
the form of a function pointer and a void pointer argument.
int Py_AddPendingCall (int (*func)(void*), void *arg)

Czes¢ stabilnego ABI. Schedule a function to be called from the main interpreter thread. On success, 0 is
returned and func is queued for being called in the main thread. On failure, -1 is returned without setting any
exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument
arg. It will be called asynchronously with respect to normally running Python code, but with both these con-
ditions met:

« on a bytecode boundary;
o with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return 0 on success, or —1 on failure with an exception set. func won’t be interrupted to perform
another asynchronous notification recursively, but it can still be interrupted to switch threads if the global
interpreter lock is released.

This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

To call this function in a subinterpreter, the caller must hold the GIL. Otherwise, the function func can be
scheduled to be called from the wrong interpreter.

A\ Ostrzezenie

This is a low-level function, only useful for very special cases. There is no guarantee that func will be
called as quick as possible. If the main thread is busy executing a system call, func won't be called before
the system call returns. This function is generally not suitable for calling Python code from arbitrary C
threads. Instead, use the PyGILState API.

Added in version 3.1.

Zmienione w wersji 3.9: If this function is called in a subinterpreter, the function func is now scheduled to be
called from the subinterpreter, rather than being called from the main interpreter. Each subinterpreter now has
its own list of scheduled calls.

9.8 Profiling and Tracing
The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These
are used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable
objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface

234 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.14.0a5

allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as
had been reported to the Python-level trace functions in previous versions.

typedef int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval SetpProfile() and PyEval_ SetTrace ().
The first parameter is the object passed to the registration function as obj, frame is the frame ob-
ject to which the event pertains, what is one of the constants PyTrace CALL, PyTrace EXCEPTION,
PyTrace_LINE, PyTrace_RETURN, PyTrace C_CALL,PyTrace_C_EXCEPTION,PyTrace_C_RETURN,
or PyTrace_OPCODE, and arg depends on the value of what:

Value of what Meaning of arg

PyTrace_CALL Zawsze Py_None.

PyTrace_ EXCEPTION Exception information as returned by sys.exc_info ().
PyTrace_LINE Zawsze Py_None.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.

PyTrace_C_EXCEPTION Function object being called.

PyTrace_C_RETURN Function object being called.

PyTrace_OPCODE Zawsze Py_None.

int PyTrace_CALL
The value of the what parameter to a Py_t racefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION

The value of the what parameter toa Py_ t race func function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception
becomes set within the frame being executed. The effect of this is that as exception propagation causes the
Python stack to unwind, the callback is called upon return to each frame as the exception propagates. Only
trace functions receives these events; they are not needed by the profiler.

int PyTrace_LINE

The value passed as the what parameter to a Py_tracefunc function (but not a profiling function) when
a line-number event is being reported. It may be disabled for a frame by setting £_trace_lines to 0 on that
frame.

int PyTrace_RETURN

The value for the what parameter to Py_tracefunc functions when a call is about to return.

int PyTrace_C_CALL

The value for the what parameter to Py_tracerfunc functions when a C function is about to be called.

int PyTrace_C_EXCEPTION

The value for the what parameter to Py_t race func functions when a C function has raised an exception.

int PyTrace_C_RETURN

The value for the what parameter to Py_t race func functions when a C function has returned.

int PyTrace_OPCODE

The value for the what parameter to Pyt race func functions (but not profiling functions) when a new opco-
de is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to I on the frame.

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may
be any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except PyTrace LINE PyTrace OPCODE and PyTrace EXCEPTION.

9.8. Profiling and Tracing 235

The Python/C API, Wydanie 3.14.0a5

See also the sys.setprofile () function.
The caller must hold the GIL.

void PyEval_SetProfileAllThreads (Py_tracefunc func, PyObject *0bj)

Like pyEval sSetpProfile () but sets the profile function in all running threads belonging to the current
interpreter instead of the setting it only on the current thread.

The caller must hold the GIL.

As PyEval_SetProfile (), this function ignores any exceptions raised while setting the profile functions in
all threads.

Added in version 3.12.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval SetpProfile (), except the tracing function does
receive line-number events and per-opcode events, but does not receive any event related to C function objects
being called. Any trace function registered using PyEval_SetTrace () will not receive PyTrace C_CALL,
PyTrace_C_EXCEPTION Or PyTrace_C_RETURN as a value for the what parameter.

See also the sys.settrace () function.
The caller must hold the GIL.

void PyEval_SetTraceAllThreads (Py_tracefunc func, PyObject *0obj)

Like PyEval_SetTrace () but sets the tracing function in all running threads belonging to the current inter-
preter instead of the setting it only on the current thread.

The caller must hold the GIL.

As pyEval SetTrace (), this function ignores any exceptions raised while setting the trace functions in all
threads.

Added in version 3.12.

9.9 Reference tracing

Added in version 3.13.

typedef int (*PyRefTracer)(PyObject*, int event, void *data)

The type of the trace function registered using PyRe fTracer_SetTracer (). The first parameter is a Python
object that has been just created (when event is set to PyRe fTracer CREATE) or about to be destroyed (when
event is set to PyRefTracer DESTROY). The data argument is the opaque pointer that was provided when
PyRefTracer_SetTracer () was called.

Added in version 3.13.

int PyRefTracer_CREATE
The value for the event parameter to PyRe f Tracer functions when a Python object has been created.

int PyRefTracer_DESTROY
The value for the event parameter to PyRe f Tracer functions when a Python object has been destroyed.

int PyRefTracer_SetTracer (PyRefTracer tracer, void *data)

Register a reference tracer function. The function will be called when a new Python has been created or when
an object is going to be destroyed. If data is provided it must be an opaque pointer that will be provided when
the tracer function is called. Return 0 on success. Set an exception and return —1 on error.

Not that tracer functions must not create Python objects inside or otherwise the call will be re-entrant. The
tracer also must not clear any existing exception or set an exception. The GIL will be held every time the
tracer function is called.

The GIL must be held when calling this function.
Added in version 3.13.

236 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.14.0a5

PyRefTracer PyRefTracer_GetTracer (void **data)

Get the registered reference tracer function and the value of the opaque data pointer that was registered when
PyRefTracer_ SetTracer () was called. If no tracer was registered this function will return NULL and will
set the data pointer to NULL.

The GIL must be held when calling this function.
Added in version 3.13.

9.10 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylnterpreterState *PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.

PylInterpreterState *PyInterpreterState_Main ()
Return the main interpreter state object.

PylnterpreterState *PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.

PyThreadState *PyInterpreterState_ThreadHead (PylnterpreterState *interp)

Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter
interp.

PyThreadState *PyThreadState_Next (PyThreadState *tstate)

Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState object.

9.11 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native
TLS implementation to support the Python-level thread local storage API (threading.local). The CPython C
level APIs are similar to those offered by pthreads and Windows: use a thread key and functions to associate a void*
value per thread.

The GIL does not need to be held when calling these functions; they supply their own locking.

Note that Python.h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

© Informacja

None of these API functions handle memory management on behalf of the void* values. You need to allocate
and deallocate them yourself. If the void* values happen to be Pyobject*, these functions don’t do refcount
operations on them either.

9.11.1 Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses
anew type Py_tss_t instead of int to represent thread keys.

Added in version 3.7.

> Zobacz takze

»A New C-API for Thread-Local Storage in CPython” (PEP 539)

9.10. Advanced Debugger Support 237

https://peps.python.org/pep-0539/

The Python/C API, Wydanie 3.14.0a5

type Py_tss_t

This data structure represents the state of a thread key, the definition of which may depend on the underlying
TLS implementation, and it has an internal field representing the key’s initialization state. There are no public
members in this structure.

When Py_LIMITED_API is not defined, static allocation of this type by Py_tss_NEEDS_INIT is allowed.

Py_tss_NEEDS_INIT

This macro expands to the initializer for Py_tss_t variables. Note that this macro won't be defined with
Py_LIMITED_API.

Dynamic Allocation

Dynamic allocation of the pPy_tss_t, required in extension modules built with Py _LIMITED_API, where static
allocation of this type is not possible due to its implementation being opaque at build time.
Py_tss_t *PyThread_tss_alloc ()
Czes¢ stabilnego ABI od wersji 3.7. Return a value which is the same state as a value initialized with
Py_tss_NEEDS_INIT,or NULL in the case of dynamic allocation failure.
void PyThread_tss_free (Py_fss_t ¥key)

Czes¢ stabilnego ABI od wersji 3.7. Free the given key allocated by PyThread tss_alloc (), after first
calling PyThread tss_delete () to ensure any associated thread locals have been unassigned. This is a no-
-op if the key argument is NULL.

© Informacja

A freed key becomes a dangling pointer. You should reset the key to NULL.

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread tss_set ()
and PyThread tss_get () are undefined if the given Py tss_t has not been initialized by
PyThread_tss_create().

int PyThread_tss_is_created (Py_fss_t *key)
Czes¢ stabilnego ABI od wersji 3.7. Return a non-zero value if the given Py_tss_t has been initialized by
PyThread_tss_create().

int PyThread_tss_create (Py_fss_t *key)

Czes¢ stabilnego ABI od wersji 3.7. Return a zero value on successful initialization of a TSS key. The behavior
is undefined if the value pointed to by the key argument is not initialized by rPy tss_NEEDS_1NIT. This
function can be called repeatedly on the same key - calling it on an already initialized key is a no-op and
immediately returns success.

void PyThread_tss_delete (Py_iss_t *key)

Czes¢ stabilnego ABI od wersji 3.7. Destroy a TSS key to forget the values associated with the key across all
threads, and change the key’s initialization state to uninitialized. A destroyed key is able to be initialized again
by PyThread _tss_create (). This function can be called repeatedly on the same key — calling it on an
already destroyed key is a no-op.

int PyThread_tss_set (Py_tss_t *key, void *value)
Czes¢ stabilnego ABI od wersji 3.7. Return a zero value to indicate successfully associating a void* value with
a TSS key in the current thread. Each thread has a distinct mapping of the key to a void* value.

void *PyThread_tss_get (Py_tss_t *key)

Czes¢ stabilnego ABI od wersji 3.7. Return the void* value associated with a TSS key in the current thread.
This returns NULL if no value is associated with the key in the current thread.

238 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.14.0a5

9.11.2 Thread Local Storage (TLS) API
Niezalecane od wersji 3.7: This API is superseded by Thread Specific Storage (TSS) API.

© Informacja

This version of the API does not support platforms where the native TLS key is defined in a way that cannot be
safely cast to int. On such platforms, PyThread create_key () will return immediately with a failure status,
and the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.

int PyThread_create_key ()
Czes¢ stabilnego ABI.

void PyThread_delete_key (int key)
Czes¢ stabilnego ABIL.

int PyThread_set_key_value (int key, void *value)

Czes¢ stabilnego ABIL.

void *PyThread_get_key_value (int key)
Czes¢ stabilnego ABI.

void PyThread_delete_key_value (int key)
Czes¢ stabilnego ABIL.

void PyThread_ReInitTLS ()
Czes¢ stabilnego ABIL.

9.12 Synchronization Primitives

The C-API provides a basic mutual exclusion lock.

type PyMutex
A mutual exclusion lock. The PyMutex should be initialized to zero to represent the unlocked state. For exam-
ple:

[PyMutex mutex = {0}; }

Instances of PyMutex should not be copied or moved. Both the contents and address of a PyMutex are me-
aningful, and it must remain at a fixed, writable location in memory.

© Informacja

A pyMutex currently occupies one byte, but the size should be considered unstable. The size may change
in future Python releases without a deprecation period.

Added in version 3.13.

void PyMutex_Lock (PyMutex *m)

Lock mutex m. If another thread has already locked it, the calling thread will block until the mutex is unlocked.
While blocked, the thread will temporarily release the GIL if it is held.

Added in version 3.13.

void PyMutex_Unlock (PyMutex *m)
Unlock mutex m. The mutex must be locked — otherwise, the function will issue a fatal error.

Added in version 3.13.

9.12. Synchronization Primitives 239

The Python/C API, Wydanie 3.14.0a5

9.12.1 Python Critical Section API

The critical section API provides a deadlock avoidance layer on top of per-object locks for free-threaded CPython.
They are intended to replace reliance on the global interpreter lock, and are no-ops in versions of Python with the
global interpreter lock.

Critical sections avoid deadlocks by implicitly suspending active critical sections and releasing the locks during calls to
PyEval_SaveThread (). When PyEval_RestoreThread () is called, the most recent critical section is resumed,
and its locks reacquired. This means the critical section API provides weaker guarantees than traditional locks - they
are useful because their behavior is similar to the GIL.

The functions and structs used by the macros are exposed for cases where C macros are not available. They should
only be used as in the given macro expansions. Note that the sizes and contents of the structures may change in future
Python versions.

© Informacja

Operations that need to lock two objects at once must use Py BEGIN_CRITICAL_SECTIONZ. You cannot use
nested critical sections to lock more than one object at once, because the inner critical section may suspend the
outer critical sections. This API does not provide a way to lock more than two objects at once.

Example usage:

static PyObject *
set_field (MyObject *self, PyObject *wvalue)
{
Py_BEGIN_CRITICAL_SECTION (self);
Py_SETREF (self->field, Py_XNewRef (value));
Py_END_CRITICAL_SECTION () ;
Py_RETURN_NONE;

In the above example, Py SETREF calls Py_DECREF, which can call arbitrary code through an object’s deallo-
cation function. The critical section API avoids potential deadlocks due to reentrancy and lock ordering by allo-
wing the runtime to temporarily suspend the critical section if the code triggered by the finalizer blocks and calls
PyEval_SaveThread().

Py_BEGIN_CRITICAL_SECTION (0p)

Acquires the per-object lock for the object op and begins a critical section.

In the free-threaded build, this macro expands to:

{
PyCriticalSection _py_cs;
PyCriticalSection_Begin(&_py_cs, (PyObject*) (op))

In the default build, this macro expands to {.
Added in version 3.13.

Py_END_CRITICAL_SECTION ()
Ends the critical section and releases the per-object lock.

In the free-threaded build, this macro expands to:

PyCriticalSection_End(&_py_cs);

In the default build, this macro expands to }.

Added in version 3.13.

240 Rozdziat 9. Initialization, Finalization, and Threads

The Python/C API, Wydanie 3.14.0a5

Py _BEGIN_CRITICAL_SECTION2 (a,b)

Acquires the per-objects locks for the objects @ and b and begins a critical section. The locks are acquired in
a consistent order (lowest address first) to avoid lock ordering deadlocks.

In the free-threaded build, this macro expands to:

{
PyCriticalSection2 _py_cs2;
PyCriticalSection2_Begin (&_py_cs2, (PyObject*) (a), (PyObject”*) (b))

In the default build, this macro expands to {.
Added in version 3.13.

Py_END_CRITICAL_SECTION2 ()

Ends the critical section and releases the per-object locks.

In the free-threaded build, this macro expands to:

PyCriticalSection2_End(&_py_cs2);

In the default build, this macro expands to }.

Added in version 3.13.

9.12. Synchronization Primitives 241

The Python/C API, Wydanie 3.14.0a5

242 Rozdziat 9. Initialization, Finalization, and Threads

rozoziat 10

Python Initialization Configuration

10.1 PylnitConfig C API

Added in version 3.14.
Python can be initialized with Py_TnitializeFromInitConfig().
The Py_RunMain () function can be used to write a customized Python program.

See also Initialization, Finalization, and Threads.

> Zobacz takze

PEP 741 ,,Python Configuration C API”.

10.1.1 Przykiad

Example of customized Python always running with the Python Development Mode enabled; return -1 on error:

int init_python (void)
{
PyInitConfig *config = PyInitConfig_Create();
if (config == NULL) {
printf ("PYTHON INIT ERROR: memory allocation failed\n");
return -1;

// Enable the Python Development Mode
if (PyInitConfig_SetInt (config, "dev_mode", 1) < 0) {
goto error;

// Initialize Python with the configuration
if (Py_InitializeFromInitConfig(config) < 0) {
goto error;
}
PyInitConfig Free (config);
(ciag dalszy na nastgpnej stronie)

243

https://peps.python.org/pep-0741/

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)

return 0;
error:

// Display the error message.

/S

// This uncommon braces style is used, because you cannot make
// goto targets point to variable declarations.

const char *err_msg;

(void) PyInitConfig_GetError (config, &err_msg);

printf ("PYTHON INIT ERROR: %s\n", err_msq);
PyInitConfig Free (config);

return -1;

10.1.2 Create Config
struct PyInitConfig
Opaque structure to configure the Python initialization.

PyInitConfig *PyInitConfig_Create (void)

Create a new initialization configuration using Isolated Configuration default values.
It must be freed by PyInitConfig Free ().
Return NULL on memory allocation failure.

void PyInitConfig_Free (PylnitConfig *config)
Free memory of the initialization configuration config.

If config is NULL, no operation is performed.

10.1.3 Error Handling
int PyInitConfig_GetError (PylnitConfig *config, const char **err_msg)
Get the config error message.
o Set *err_msg and return 1 if an error is set.
o Set *err_msg to NULL and return 0 otherwise.
An error message is an UTF-8 encoded string.
If config has an exit code, format the exit code as an error message.

The error message remains valid until another PyInitConfig function is called with config. The caller doesn’t
have to free the error message.

int PyInitConfig_GetExitCode (PylnitConfig *config, int *exitcode)
Get the config exit code.

o Set *exitcode and return 1 if config has an exit code set.
o Return 0 if config has no exit code set.

Only the Py_InitializeFromInitConfig () function can set an exit code if the parse_argv option is
Nnon-zero.

An exit code can be set when parsing the command line failed (exit code 2) or when a command line option
asks to display the command line help (exit code 0).

244 Rozdziat 10. Python Initialization Configuration

The Python/C API, Wydanie 3.14.0a5

10.1.4 Get Options

The configuration option name parameter must be a non-NULL null-terminated UTF-8 encoded string. See Confi-
guration Options.

int PyInitConfig_HasOption (PylnitConfig *config, const char *name)
Test if the configuration has an option called name.

Return 1 if the option exists, or return 0 otherwise.

int PyInitConfig_GetInt (PylnitConfig *config, const char *name, int64_t *value)
Get an integer configuration option.

o Set *value, and return 0 on success.
« Set an error in config and return -1 on error.

int PyInitConfig_GetStr (PylnitConfig *config, const char *name, char **value)
Get a string configuration option as a null-terminated UTF-8 encoded string.

o Set *value, and return 0 on success.

« Set an error in config and return -1 on error.
*value can be set to NULL if the option is an optional string and the option is unset.
On success, the string must be released with free (value) if it’s not NULL.

int PyInitConfig_GetStrList (PylnitConfig *config, const char *name, size_t *length, char ***items)
Get a string list configuration option as an array of null-terminated UTF-8 encoded strings.

o Set *length and *value, and return 0 on success.
o Set an error in config and return -1 on error.
On success, the string list must be released with PyInitConfig FreeStrList (length, items).

void PyInitConfig_FreeStrList (size_t length, char **items)

Free memory of a string list created by PyInitConfig_GetStrList ().

10.1.5 Set Options

The configuration option name parameter must be a non-NULL null-terminated UTF-8 encoded string. See Confi-
guration Options.

Some configuration options have side effects on other options. This logic is only implemented when
Py InitializeFromInitConfig () is called, not by the ,,Set” functions below. For example, setting dev_mode
to 1 does not set faulthandler to 1.

int PyInitConfig_SetInt (PylnitConfig *config, const char *name, int64_t value)
Set an integer configuration option.

« Return 0 on success.
o Set an error in config and return -1 on error.

int PyInitConfig_SetStr (PylnitConfig *config, const char *name, const char *value)
Set a string configuration option from a null-terminated UTF-8 encoded string. The string is copied.

« Return 0 on success.
o Set an error in config and return -1 on error.

int PyInitConfig_SetStrList (PylnitConfig *config, const char *name, size_t length, char *const *items)
Set a string list configuration option from an array of null-terminated UTF-8 encoded strings. The string list is
copied.

e Return 0 on success.

o Set an error in config and return -1 on error.

10.1. PylnitConfig C API 245

The Python/C API, Wydanie 3.14.0a5

10.1.6 Module
int PyInitConfig_AddModule (PylnitConfig *config, const char *name, PyObject *(*initfunc)(void))
Add a built-in extension module to the table of built-in modules.

The new module can be imported by the name name, and uses the function initfunc as the initialization function
called on the first attempted import.

« Return 0 on success.
o Set an error in config and return -1 on error.

If Python is initialized multiple times, PyInitConfig_AddModule () must be called at each Python initia-
lization.

Similar to the PyImport_AppendInittab () function.

10.1.7 Initialize Python
int Py_InitializeFromInitConfig (PylnitConfig *config)
Initialize Python from the initialization configuration.
« Return 0 on success.
o Set an error in config and return -1 on error.
o Set an exit code in config and return -1 if Python wants to exit.

See PyInitConfig_GetExitcode () for the exit code case.

10.2 Configuration Options

Option PyConfig/PyPreConfig member Type Visibility
"allocator" allocator int Read-only
"argv" argv list[str] Public
"base_exec_prefix" base_exec_prefix Str Public
"base_executable" base_executable str Public
"base_prefix" base_prefix str Public
"buffered_stdio" buffered_stdio bool Read-only
"bytes_warning" bytes_warning int Public
"check_hash_pycs_mode" check_hash_pycs_mode str Read-only
"code_debug_ranges" code_debug_ranges bool Read-only
"coerce_c_locale" coerce_c_locale bool Read-only
"coerce_c_locale_warn" coerce_c_locale_warn bool Read-only
"configure_c_stdio" configure_c_stdio bool Read-only
"configure_locale" configure_locale bool Read-only
"cpu_count™" cpu_count int Read-only
"dev_mode" dev_mode bool Read-only
"dump_refs" dump_refs bool Read-only
"dump_refs_file" dump_refs_file str Read-only
"exec_prefix" exec_prefix str Public
"executable" executable str Public
"faulthandler" faulthandler bool Read-only
"filesystem_ encoding" filesystem_encoding str Read-only
"filesystem_errors" filesystem errors str Read-only
"hash seed" hash_seed int Read-only
"home" home str Read-only
"import_time" import_time bool Read-only
"inspect" inspect bool Public
ciag dalszy na nastepne;j stronie
246 Rozdziat 10. Python Initialization Configuration

The Python/C API, Wydanie 3.14.0a5

Tabela 1 - kontynuacja poprzedniej strony

Option PyConfig/PyPreConfig member Type Visibility
"install_signal_handlers" install_signal_handlers bool Read-only
"int_max_str_digits" int_max_str _digits int Public
"interactive" interactive bool Public
"isolated" isolated bool Read-only
"legacy_windows_fs_encoding" legacy_windows_fs_encoding bool Read-only
"legacy_windows_stdio" legacy_windows_stdio bool Read-only
"malloc_stats" malloc_stats bool Read-only
"module_search_paths" module_search_paths list[str] Public
"optimization_level" optimization_level int Public
"orig_argv" orig_argv list[str] Read-only
"parse_argv" parse_argv bool Read-only
"parser_debug" parser_debug bool Public
"pathconfig_warnings" pathconfig _warnings bool Read-only
"perf _profiling" perf profiling bool Read-only
"platlibdir" platlibdir str Public
"prefix" prefix str Public
"program_name" program_name str Read-only
"pycache_prefix" pycache_prefix str Public
"quiet" quiet bool Public
"run_command" run_command str Read-only
"run_filename" run_filename str Read-only
"run_module" run_module str Read-only
"run_presite" run_presite str Read-only
"safe_path" safe_path bool Read-only
"show ref count" show_ref count bool Read-only
"site_import" site_import bool Read-only
"skip_source_first_line" skip_source_first_line bool Read-only
"stdio_encoding" stdio_encoding str Read-only
"stdio errors" stdio_errors str Read-only
"stdlib_dir" stdlib dir str Public
"tracemalloc" tracemalloc int Read-only
"use_environment" use_environment bool Public
"use frozen modules" use_frozen modules bool Read-only
"use_hash_ seed" use_hash_seed bool Read-only
"yser_site_directory" user_site_directory bool Read-only
"ut£8_mode" ut £8 mode bool Read-only
"verbose" verbose int Public
"warn_default_encoding" warn_default_encoding bool Read-only
"warnoptions" warnoptions list[str] Public
"write_bytecode" write_bytecode bool Public
"xoptions" xoptions dict[str, str] Public

" _pystats" _pystats bool Read-only

Visibility:

o Public: Can by get by PyConfig Get () and set by PyConfig _Set ().

« Read-only: Can by get by PyConfig Get (), but cannot be set by PyConfig Set ().

10.3 Runtime Python configuration API
At runtime, it’s possible to get and set configuration options using PyConfig Get () and PyConfig_Set () func-
tions.

The configuration option name parameter must be a non-NULL null-terminated UTF-8 encoded string. See Confi-
guration Options.

10.3. Runtime Python configuration API 247

The Python/C API, Wydanie 3.14.0a5

Some options are read from the sys attributes. For example, the option "argv™" is read from sys.argv.

PyObject *PyConfig_Get (const char *name)
Get the current runtime value of a configuration option as a Python object.

« Return a new reference on success.
« Set an exception and return NULL on error.
The object type depends on the configuration option. It can be:
e bool
e int
e str
e list[str]
e dict[str, str]

The caller must hold the GIL. The function cannot be called before Python initialization nor after Python
finalization.

Added in version 3.14.

int PyConfig_GetInt (const char *name, int *value)
Similar to PyConfig Get (), but get the value as a C int.

o Return 0 on success.
« Set an exception and return -1 on error.
Added in version 3.14.
PyObject *PyConfig_Names (void)
Get all configuration option names as a frozenset.
o Return a new reference on success.
« Set an exception and return NULL on error.

The caller must hold the GIL. The function cannot be called before Python initialization nor after Python
finalization.

Added in version 3.14.

int PyConfig_Set (const char *name, PyObject *value)

Set the current runtime value of a configuration option.
» Raise a ValueError if there is no option name.
« Raise a ValueError if value is an invalid value.
« Raise a ValueError if the option is read-only (cannot be set).
o Raise a TypeError if value has not the proper type.

The caller must hold the GIL. The function cannot be called before Python initialization nor after Python
finalization.

Added in version 3.14.

10.4 PyConfig C API

Added in version 3.8.

Python can be initialized with Py_TnitializeFromConfig () andthe PyConfig structure. It can be preinitialized
with Py _PreInitialize () and the PyPreConfig structure.

There are two kinds of configuration:

248 Rozdziat 10. Python Initialization Configuration

The Python/C API, Wydanie 3.14.0a5

o The Python Configuration can be used to build a customized Python which behaves as the regular Python. For
example, environment variables and command line arguments are used to configure Python.

o The Isolated Configuration can be used to embed Python into an application. It isolates Python from the system.
For example, environment variables are ignored, the LC_CTYPE locale is left unchanged and no signal handler
is registered.

The Py_RunMain () function can be used to write a customized Python program.

See also Initialization, Finalization, and Threads.

> Zobacz takze

PEP 587 ,,Python Initialization Configuration”.

10.4.1 Przykiad

Example of customized Python always running in isolated mode:

int main(int argc, char **argv)
{
PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);
config.isolated = 1;

/* Decode command line arguments.

Implicitly preinitialize Python (in isolated mode). */
status = PyConfig_SetBytesArgv (&config, argc, argv);
if (PyStatus_Exception (status)) {

goto exception;

status = Py_InitializeFromConfig(&config);
if (PyStatus_Exception (status)) {
goto exception;
}
PyConfig_ Clear (&configqg);

return Py_RunMain () ;

exception:

PyConfig_Clear (&configqg);

if (PyStatus_IsExit (status)) {
return status.exitcode;

}

/* Display the error message and exit the process with
non-zero exit code */

Py_ExitStatusException(status);

10.4.2 PyWideStringList

type PyWideStringList
List of wchar_t* strings.

If length is non-zero, items must be non-NULL and all strings must be non-NULL.

10.4. PyConfig C API 249

https://peps.python.org/pep-0587/

The Python/C API, Wydanie 3.14.0a5

Metody:

PyStatus PyWideStringList_Append (PyWideStringList *1ist, const wchar_t *item)
Append item to list.

Python must be preinitialized to call this function.

PyStatus PyWideStringList_Insert (PyWideStringList *list, Py_ssize_t index, const wchar_t *item)

Insert item into list at index.
If index is greater than or equal to /ist length, append item to list.
index must be greater than or equal to 0.
Python must be preinitialized to call this function.
Structure fields:
Py_ssize_t length
List length.

wchar_t **items

List items.

10.4.3 PyStatus

type PyStatus
Structure to store an initialization function status: success, error or exit.
For an error, it can store the C function name which created the error.
Structure fields:

int exitcode

Exit code. Argument passed to exit ().

const char *err_msg

Error message.

const char *func

Name of the function which created an error, can be NULL.
Functions to create a status:

PyStatus PyStatus_0k (void)
Sukces.

PyStatus PyStatus_Error (const char *err_msg)

Initialization error with a message.
err_msg must not be NULL.
PyStatus PyStatus_NoMemory (void)
Memory allocation failure (out of memory).

PyStatus PyStatus_Exit (int exitcode)
Exit Python with the specified exit code.

Functions to handle a status:

int PyStatus_Exception (PyStatus status)
Is the status an error or an exit? If true, the exception must be handled; by calling
Py ExitStatusException () for example.

int PyStatus_IsError (PyStatus status)
Is the result an error?

250 Rozdziat 10. Python Initialization Configuration

The Python/C API, Wydanie 3.14.0a5

int PyStatus_IsExit (PyStatus status)

Is the result an exit?

void Py_ExitStatusException (PyStafus status)

Call exit (exitcode) if status is an exit. Print the error message and exit with a non-zero exit code if
status is an error. Must only be called if PyStatus_Exception (status) is non-zero.

© Informacja

Internally, Python uses macros which set PyStatus. func, whereas functions to create a status set func to
NULL.

Przyktad:

PyStatus alloc(void **ptr, size_t size)
{
*ptr = PyMem RawMalloc (size);
if (*ptr == NULL) {
return PyStatus_NoMemory () ;
}
return PyStatus_Ok () ;

int main(int argc, char **argv)

void *ptr;

PyStatus status = alloc (&ptr, 16);

if (PyStatus_Exception (status)) {
Py_ExitStatusException (status);

}

PyMem_Free (ptr);

return 0O;

10.4.4 PyPreConfig

type PyPreConfig
Structure used to preinitialize Python.
Function to initialize a preconfiguration:

void PyPreConfig_InitPythonConfig (PyPreConfig *preconfig)

Initialize the preconfiguration with Python Configuration.

void PyPreConfig_InitIsolatedConfig (PyPreConfig *preconfig)

Initialize the preconfiguration with Isolated Configuration.
Structure fields:

int allocator

Name of the Python memory allocators:
e PYMEM_ALLOCATOR_NOT_SET (0): don’t change memory allocators (use defaults).
e PYMEM ALLOCATOR_DEFAULT (1): default memory allocators.
e PYMEM_ALLOCATOR_DEBUG (2): default memory allocators with debug hooks.
e PYMEM_ALLOCATOR_MALLOC (3):use malloc () of the C library.

e PYMEM_ALLOCATOR_MALLOC_DEBUG (4): force usage of malloc () with debug hooks.

10.4. PyConfig C API 251

The Python/C API, Wydanie 3.14.0a5

e PYMEM_ALLOCATOR_PYMALLOC (5): Python pymalloc memory allocator.
e PYMEM_ALLOCATOR_PYMALLOC_DEBUG (6): Python pymalloc memory allocator with debug hooks.
e PYMEM ALLOCATOR_MIMALLOC (6): use mimalloc, a fast malloc replacement.

e PYMEM_ ALLOCATOR_MIMALLOC_DEBUG (7): use mimalloc, a fast malloc replacement with debug
hooks.

PYMEM_ALLOCATOR_PYMALLOC and PYMEM_ALLOCATOR_PYMALLOC_DEBUG are not supported if Py-
thon is configured using —--without-pymalloc.

PYMEM_ALLOCATOR_MIMALLOC and PYMEM_ALLOCATOR_MIMALLOC_DEBUG are not supported if Py-

thon is configured using —--without-mimalloc or if the underlying atomic support isn’t availa-
ble.

See Memory Management.
Default: PYMEM ALLOCATOR_NOT_SET.

int configure_locale

Set the LC_CTYPE locale to the user preferred locale.

If equals to 0, set coerce_c_localeand coerce c_locale_ warn members to 0.
See the locale encoding.

Default: 1 in Python config, 0 in isolated config.

int coerce_c_locale

If equals to 2, coerce the C locale.

If equals to 1, read the LC_CTYPE locale to decide if it should be coerced.
See the locale encoding.

Default: -1 in Python config, 0 in isolated config.

int coerce_c_locale_warn

If non-zero, emit a warning if the C locale is coerced.
Default: -1 in Python config, 0 in isolated config.

int dev_mode

Python Development Mode: see PyConfig.dev_mode.
Default: -1 in Python mode, 0 in isolated mode.

int isolated

Isolated mode: see PyConfig.isolated.
Default: 0 in Python mode, 1 in isolated mode.

int legacy_windows_fs_encoding

If non-zero:
e Set PyPreConfig.ut f8_mode to 0,
e Set PyConfig.filesystem_encoding to "mbcs",
e Set PyConfig.filesystem errorsto "replace".
Initialized from the PYTHONLEGACYWINDOWSFSENCODING environment variable value.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.

Default: 0.

252 Rozdziat 10. Python Initialization Configuration

The Python/C API, Wydanie 3.14.0a5

int parse_argv
If non-zero, Py _PrelnitializeFromArgs () and Py_PrelnitializeFromBytesArgs () parse
their argv argument the same way the regular Python parses command line arguments: see Command
Line Arguments.

Default: 1 in Python config, 0 in isolated config.

int use_environment

Use environment variables? See PyConfig.use_environment.
Default: 1 in Python config and 0 in isolated config.

int ut £8_mode
If non-zero, enable the Python UTF-8 Mode.

Set to 0 or 1 by the -x ut £8 command line option and the PYTHONUTF 8 environment variable.
Also set to 1 if the LC_CTYPE locale is C or POSIX.

Default: -1 in Python config and 0 in isolated config.

10.4.5 Preinitialize Python with PyPreConfig

The preinitialization of Python:

« Set the Python memory allocators (PyPreConfig.allocator)

 Configure the LC_CTYPE locale (locale encoding)

« Set the Python UTF-8 Mode (PyPreConfig. ut £8_mode)
The current preconfiguration (PyPreConfig type) is stored in _PyRuntime.preconfig.
Functions to preinitialize Python:

PyStatus Py_PreInitialize (const PyPreConfig *preconfig)
Preinitialize Python from preconfig preconfiguration.

preconfig must not be NULL.

PyStatus Py_PreInitializeFromBytesArgs (const PyPreConfig *preconfig, int arge, char *const *argv)

Preinitialize Python from preconfig preconfiguration.
Parse argv command line arguments (bytes strings) if parse_argv of preconfig is non-zero.
preconfig must not be NULL.

PyStatus Py_PreInitializeFromArgs (const PyPreConfig *preconfig, int arge, wchar_t *const *argv)
Preinitialize Python from preconfig preconfiguration.

Parse argv command line arguments (wide strings) if parse_argv of preconfig is non-zero.
preconfig must not be NULL.

The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception() and
Py ExitStatusException().

For Python Configuration (PyPreConfig_InitPythonConfig ()),if Python is initialized with command line ar-
guments, the command line arguments must also be passed to preinitialize Python, since they have an effect on the
pre-configuration like encodings. For example, the -X ut £8 command line option enables the Python UTF-8 Mode.

PyMem_SetAllocator () can be called after Py _Prelnitialize() and before
Py _InitializeFromConfig() to install a custom memory allocator. It can be called before
Py PrelInitialize () if PyPreConfig.allocator issetto PYMEM ALLOCATOR_NOT_SET.

Python memory allocation functions like PyMem RawMalloc () mustnot be used before the Python preinitialization,
whereas calling directly malloc () and free () is always safe. Py_DecodeLocale () must not be called before the
Python preinitialization.

Example using the preinitialization to enable the Python UTF-8 Mode:

10.4. PyConfig C API 253

The Python/C API, Wydanie 3.14.0a5

PyStatus status;
PyPreConfig preconfig;
PyPreConfig InitPythonConfig (&preconfiqg);

preconfig.utf8_mode = 1;

status = Py_PrelInitialize (&preconfiqg);

if (PyStatus_Exception(status)) |
Py_ExitStatusException(status);

/* at this point, Python speaks UTF-8 */

Py_Initialize();

/* ... use Python API here ... */
Py_Finalize();

10.4.6 PyConfig

type PyConfig
Structure containing most parameters to configure Python.
When done, the PyConfig Clear () function must be used to release the configuration memory.
Structure methods:

void PyConfig_InitPythonConfig (PyConfig *config)

Initialize configuration with the Python Configuration.

void PyConfig_InitIsolatedConfig (PyConfig *config)

Initialize configuration with the Isolated Configuration.

PyStatus PyConfig_SetString (PyConfig *config, wchar_t *const *config_str, const wchar_t *str)

Copy the wide character string st into *config_str.
Preinitialize Python if needed.
PyStatus PyConfig_SetBytesString (PyConfig *config, wchar_t *const *config_str, const char *str)
Decode str using Py_DecodelLocale () and set the result into *config_str.
Preinitialize Python if needed.

PyStatus PyConfig_SetArgv (PyConfig *config, int argc, wchar_t *const *argv)

Set command line arguments (a rgv member of config) from the argv list of wide character strings.
Preinitialize Python if needed.

PyStatus PyConfig_SetBytesArgv (PyConfig *config, int argc, char *const *argv)

Set command line arguments (argv member of config) from the argv list of bytes strings. Decode bytes
uﬂngnyDecodeLocale(L

Preinitialize Python if needed.

PyStatus PyConfig_SetWideStringList (PyConfig *config, PyWideStringList *list, Py_ssize_t length,
wchar_t **items)

Set the list of wide strings list to length and items.
Preinitialize Python if needed.

PyStatus PyConfig_Read (PyConfig *config)
Read all Python configuration.

Fields which are already initialized are left unchanged.

254 Rozdziat 10. Python Initialization Configuration

The Python/C API, Wydanie 3.14.0a5

Fields for path configuration are no longer calculated or modified when calling this function, as of Python
3.11.

The pPyConfig Read() function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are stripped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.

Preinitialize Python if needed.

Zmienione w wersji 3.10: The PyConfig.argv arguments are now only parsed once, PyConfig.
parse_argv 18 set to 2 after arguments are parsed, and arguments are only parsed if PyConfig.
parse_argv equals 1.

Zmienione w wersji 3.11: PyConfig Read () no longer calculates all paths, and so fields listed under
Python Path Configuration may no longer be updated until Py_TnitializeFromConfig () is called.

void PyConfig_Clear (PyConfig *config)

Release configuration memory.

Most PyConf£ig methods preinitialize Python if needed. In that case, the Python preinitialization configuration
(pyPreConfig)inbased on the PyConfig. If configuration fields which are in common with PyPrecConfig
are tuned, they must be set before calling a PyConfig method:

e PyConfig.dev_mode

e PyConfig.isolated

e PyConfig.parse_argv

e PyConfig.use_environment

Moreover, if PyConfig SetArgv () or PyConfig SetBytesArgv () is used, this method must be cal-
led before other methods, since the preinitialization configuration depends on command line arguments (if
parse_argv iS NON-ZEro).

The caller of these methods is responsible to handle exceptions (error or exit) using PyStatus_Exception ()
and Py_ExitStatusException().

Structure fields:
PyWideStringList argv

Set sys.argv command line arguments based on argv. These parameters are similar to those passed
to the program’s main () function with the difference that the first entry should refer to the script file to
be executed rather than the executable hosting the Python interpreter. If there isn’t a script that will be
run, the first entry in argv can be an empty string.

Set parse_argv to 1 to parse argv the same way the regular Python parses Python command line
arguments and then to strip Python arguments from argv.

If argv is empty, an empty string is added to ensure that sys . argv always exists and is never empty.
Default: NULL.
See also the orig_argv member.

int safe_path

If equals to zero, Py_RunMain () prepends a potentially unsafe path to sys.path at startup:
e If argv/0jisequal to L"-m" (python -m module), prepend the current working directory.

o If running a script (python script.py), prepend the script’s directory. If it’s a symbolic link,
resolve symbolic links.

e Otherwise (python -c code and python), prepend an empty string, which means the current
working directory.

Set to 1 by the -P command line option and the PYTHONSAFEPATH environment variable.

Default: 0 in Python config, 1 in isolated config.

10.4.

PyConfig C API 255

The Python/C API, Wydanie 3.14.0a5

Added in version 3.11.

wchar_t *base_exec_prefix

sys.base_exec_prefix.

Default: NULL.

Part of the Python Path Configuration output.
See also PyConfig.exec_prefix.

wchar_t *base_executable

Python base executable: sys._base_executable.

Set by the _ PYVENV_LAUNCHER___ environment variable.
Set from PyConfig.executable if NULL.

Default: NULL.

Part of the Python Path Configuration output.

See also PyConfig.executable.

wchar_t *base_prefix

sys.base_prefix.

Default: NULL.

Part of the Python Path Configuration output.
See also PyConfig.prefix.

int buffered_stdio

If equals to 0 and configure_c_stdio is non-zero, disable buffering on the C streams stdout and
stderr.

Set to 0 by the —u command line option and the PYTHONUNBUFFERED environment variable.
stdin is always opened in buffered mode.
Domyslny: 1.

int bytes_warning

If equals to 1, issue a warning when comparing bytes or bytearray with str, or comparing bytes
with int.

If equal or greater to 2, raise a BytesWarning exception in these cases.
Incremented by the —-b command line option.
Default: 0.

int warn_default_encoding

If non-zero, emit a EncodingWarning warning when io.Text IOWrapper uses its default encoding.
See io-encoding-warning for details.

Default: 0.
Added in version 3.10.

int code_debug_ranges

If equals to 0, disables the inclusion of the end line and column mappings in code objects. Also disables
traceback printing carets to specific error locations.

Set to 0 by the PYTHONNODEBUGRANGES environment variable and by the -X no_debug_ranges com-
mand line option.

DomySIny: 1.
Added in version 3.11.

256 Rozdziat 10. Python Initialization Configuration

The Python/C API, Wydanie 3.14.0a5

wchar_t *check_hash_pycs_mode

Control the validation behavior of hash-based .pyc files: value of the ——check-hash-based-pycs
command line option.

Prawidlowe wartosci:
e L"always": Hash the source file for invalidation regardless of value of the «check_source» flag.
e L"never": Assume that hash-based pycs always are valid.
e L"default": The «check_source» flag in hash-based pycs determines invalidation.

Domyslny: L"default".

See also PEP 552 , Deterministic pycs”.

int configure_c_stdio

If non-zero, configure C standard streams:

« On Windows, set the binary mode (0_BINARY) on stdin, stdout and stderr.

o If buffered_stdio equals zero, disable buffering of stdin, stdout and stderr streams.

o If interactiveis non-zero, enable stream buffering on stdin and stdout (only stdout on Windows).
Default: 1 in Python config, 0 in isolated config.

int dev_mode

If non-zero, enable the Python Development Mode.
Set to 1 by the -x dev option and the PYTHONDEVMODE environment variable.
Default: -1 in Python mode, 0 in isolated mode.

int dump_refs

Dump Python references?
If non-zero, dump all objects which are still alive at exit.
Set to 1 by the PYTHONDUMPREF'S environment variable.

Needs a special build of Python with the Py_TRACE_REFS macro defined: see the configure
-—-with-trace-refs option.

Default: 0.

wchar_t *dump_refs_file

Filename where to dump Python references.

Set by the PYTHONDUMPREF SFILE environment variable.
Default: NULL.

Added in version 3.11.

wchar_t *exec_prefix

The site-specific directory prefix where the platform-dependent Python files are installed: sys.
exec_prefix.

Default: NULL.
Part of the Python Path Configuration output.
See also PyConfig.base_exec_prefix.

wchar_t *executable

The absolute path of the executable binary for the Python interpreter: sys.executable.
Default: NULL.

Part of the Python Path Configuration output.

10.4. PyConfig C API 257

https://peps.python.org/pep-0552/

The Python/C API, Wydanie 3.14.0a5

See also PyConfig.base_executable.

int faulthandler
Enable faulthandler?

If non-zero, call faulthandler.enable () at startup.
Setto 1 by -x faulthandler and the PYTHONFAULTHANDLER environment variable.
Default: -1 in Python mode, 0 in isolated mode.

wchar_t *filesystem_encoding

Filesystem encoding: sys.getfilesystemencoding ().
On macOS, Android and VxWorks: use "ut f-8" by default.

On Windows: use "utf-8" by default, or "mbcs" if legacy windows_fs_encoding of
PyPreConfig IS nON-Zero.

Default encoding on other platforms:
e "utf-8" if PyPreConfig.ut£8 mode is non-zero.

e "ascii" if Python detects that n1_langinfo (CODESET) announces the ASCII encoding, whe-
reas the mbstowcs () function decodes from a different encoding (usually Latinl).

e "utf-8"if nl_langinfo (CODESET) returns an empty string.
o Otherwise, use the locale encoding: n1_langinfo (CODESET) result.

At Python startup, the encoding name is normalized to the Python codec name. For example, "ANST_X3.
4-1968" is replaced with "ascii".

See also the filesystem errors member.

wchar_t *filesystem_errors

Filesystem error handler: sys.getfilesystemencodeerrors ().

On Windows: use "surrogatepass" by default, or "replace" if legacy windows_fs_encoding
of PyPreConfig isS non-zero.

On other platforms: use "surrogateescape" by default.
Supported error handlers:

e "strict"

e "surrogateescape"

e "surrogatepass" (only supported with the UTF-8 encoding)
See also the filesystem encoding member.

int use_frozen_modules

If non-zero, use frozen modules.
Set by the PYTHON_FROZEN_MODULES environment variable.
Default: 1 in a release build, or 0 in a debug build.
unsigned long hash_seed
int use_hash_seed
Randomized hash function seed.
If use_hash_seed s zero, a seed is chosen randomly at Python startup, and hash_seed is ignored.
Set by the PYTHONHASHSEED environment variable.

Default use_hash_seed value: —1 in Python mode, 0 in isolated mode.

258 Rozdziat 10. Python Initialization Configuration

The Python/C API, Wydanie 3.14.0a5

wchar_t *home

Set the default Python ,home” directory, that is, the location of the standard Python libraries (see
PYTHONHOME).

Set by the PYTHONHOME environment variable.
Default: NULL.
Part of the Python Path Configuration input.
int import_time
If non-zero, profile import time.
Set the 1 by the -x importtime option and the PYTHONPROF ILEIMPORTTIME environment variable.
Default: 0.
int inspect
Enter interactive mode after executing a script or a command.

If greater than 0, enable inspect: when a script is passed as first argument or the -c option is used, enter
interactive mode after executing the script or the command, even when sys . stdin does not appear to
be a terminal.

Incremented by the —i command line option. Set to 1 if the PYTHONINSPECT environment variable is
non-empty.

Default: 0.
int install_signal_handlers
Install Python signal handlers?
Default: 1 in Python mode, 0 in isolated mode.
int interactive
If greater than 0, enable the interactive mode (REPL).
Incremented by the —i command line option.
Default: 0.
int int_max_str_digits
Configures the integer string conversion length limitation. An initial value of -1 means the value
will be taken from the command line or environment or otherwise default to 4300 (sys.int_info.
default_max_str_digits). A value of 0 disables the limitation. Values greater than zero but less

than 640 (sys.int_info.str_digits_check_threshold) are unsupported and will produce an
error.

Configured by the -x int_max_str_digits command line flag or the PYTHONINTMAXSTRDIGITS
environment variable.

Default: -1 in Python mode. 4300 (sys.int_info.default_max_str_digits) in isolated mode.
Added in version 3.12.

int cpu_count

If the value of cpu_count is not —1 then it will override the return values of os.cpu_count (), os.
process_cpu_count (),and multiprocessing.cpu_count ().

Configured by the -X cpu_count=n/default command line flag or the PYTHON_CPU_COUNT envi-
ronment variable.

Default: -1.
Added in version 3.13.

10.4. PyConfig C API 259

The Python/C API, Wydanie 3.14.0a5

int isolated

If greater than 0, enable isolated mode:

o Set safe_path to 1: don’t prepend a potentially unsafe path to sys.path at Python startup, such
as the current directory, the script’s directory or an empty string.

e Set use_environment to 0:ignore PYTHON environment variables.
e Set user site_directory to 0:don’t add the user site directory to sys.path.

o Python REPL doesn’t import readline nor enable default readline configuration on interactive
prompts.

Set to 1 by the -I command line option.
Default: 0 in Python mode, 1 in isolated mode.
See also the Isolated Configuration and PyPreConfig.isolated.

int legacy_windows_stdio

If non-zero, use io.FileIO instead of io._WindowsConsoleIO for sys.stdin, sys.stdout and
sys.stderr.

Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.
Default: 0.

See also the PEP 528 (Change Windows console encoding to UTF-8).

intmalloc_stats

If non-zero, dump statistics on Python pymalloc memory allocator at exit.

Set to 1 by the PYTHONMALLOCSTATS environment variable.

The option is ignored if Python is configured using the --without-pymalloc option.
Default: 0.

wchar_t *platlibdir
Platform library directory name: sys.platlibdir.

Set by the PYTHONPLATLIBDIR environment variable.

Default: value of the PLATLIBDIR macro which is set by the configure --with-platlibdir
option (default: "1ib", or "DLLs" on Windows).

Part of the Python Path Configuration input.
Added in version 3.9.

Zmienione w wersji 3.11: This macro is now used on Windows to locate the standard library extension
modules, typically under DLLs. However, for compatibility, note that this value is ignored for any non-
-standard layouts, including in-tree builds and virtual environments.

wchar_t *pythonpath_env
Module search paths (sys.path) as a string separated by DELIM (os.pathsep).

Set by the PYTHONPATH environment variable.
Default: NULL.
Part of the Python Path Configuration input.

PyWideStringList module_search_paths

260 Rozdziat 10. Python Initialization Configuration

https://peps.python.org/pep-0528/

The Python/C API, Wydanie 3.14.0a5

int module_search_paths_set

Module search paths: sys.path.

If module search paths_set is equal to 0, Py InitializeFromConfig() will replace
module_search_paths and sets module_search_paths_set to 1.

Default: empty list (module_search_paths) and 0 (module_search_paths_set).
Part of the Python Path Configuration output.

int optimization_level

Compilation optimization level:

« 0: Peephole optimizer, set __debug__ to True.

e 1:Level 0, remove assertions, set __debug__ to False.

o 2: Level 1, strip docstrings.
Incremented by the -0 command line option. Set to the PYTHONOPTIMIZE environment variable value.
Default: 0.

PyWideStringList orig_argv
The list of the original command line arguments passed to the Python executable: sys.orig_argv.

If orig_argv listis empty and argv is not a list only containing an empty string, PyConfig_Read ()
copies argv into orig_argv before modifying argv (if parse_argv is non-zero).

See also the argv member and the Py_GetArgcArgv () function.
Default: empty list.
Added in version 3.10.
int parse_argv
Parse command line arguments?

If equals to 1, parse argv the same way the regular Python parses command line arguments, and strip
Python arguments from argv.

The PyConfig Read() function only parses PyConfig.argv arguments once: PyConfig.
parse_argv 1S set to 2 after arguments are parsed. Since Python arguments are stripped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.

Default: 1 in Python mode, 0 in isolated mode.

Zmienione w wersji 3.10: The PyConfig.argv arguments are now only parsed if PyConfig.
parse_argv equals to 1.

int parser_debug

Parser debug mode. If greater than 0, turn on parser debugging output (for expert only, depending on
compilation options).

Incremented by the —d command line option. Set to the PYTHONDEBUG environment variable value.
Needs a debug build of Python (the Py_DEBUG macro must be defined).
Default: 0.

int pathconfig warnings

If non-zero, calculation of path configuration is allowed to log warnings into stderr. If equals to 0,
suppress these warnings.

Default: 1 in Python mode, 0 in isolated mode.
Part of the Python Path Configuration input.

Zmienione w wersji 3.11: Now also applies on Windows.

10.4. PyConfig C API 261

The Python/C API, Wydanie 3.14.0a5

wchar_t *prefix

The site-specific directory prefix where the platform independent Python files are installed: sys .prefix.
Default: NULL.

Part of the Python Path Configuration output.

See also PyConfig.base_prefix.

wchar_t *program_name

Program name used to initialize executable and in early error messages during Python initialization.
« On macOS, use PYTHONEXECUTABLE environment variable if set.

o If the WITH_NEXT_FRAMEWORK macro is defined, use __ PYVENV_LAUNCHER___ environment va-
riable if set.

e Use argv[0] of argv if available and non-empty.

o Otherwise, use L"python" on Windows, or L"python3" on other platforms.
Default: NULL.
Part of the Python Path Configuration input.

wchar_t *pycache_prefix

Directory where cached .pyc files are written: sys.pycache_prefix.

Set by the -X pycache_prefix=PATH command line option and the PYTHONPYCACHEPREF IX envi-
ronment variable. The command-line option takes precedence.

If NULL, sys.pycache_prefix is set to None.
Default: NULL.
int quiet

Quiet mode. If greater than 0, don’t display the copyright and version at Python startup in interactive
mode.

Incremented by the —g command line option.
Default: 0.

wchar_t *run_command

Value of the —c command line option.
Used by Py_RunMain ().
Default: NULL.

wchar_t *run_filename

Filename passed on the command line: trailing command line argument without —c or -m. It is used by
the Py_RunMain () function.

For example, it is set to script .py by the python3 script.py arg command line.
See also the PyConfig.skip_source first_1line option.
Default: NULL.

wchar_t *run_module

Value of the -m command line option.
Used by Py_RunMain ().

Default: NULL.

262 Rozdziat 10. Python Initialization Configuration

The Python/C API, Wydanie 3.14.0a5

wchar_t *run_presite

package .module path to module that should be imported before site.py is run.

Set by the -X presite=package.module command-line option and the PYTHON_PRESITE environ-
ment variable. The command-line option takes precedence.

Needs a debug build of Python (the Py_DEBUG macro must be defined).

Default: NULL.

int show_ref_count

Show total reference count at exit (excluding immortal objects)?
Setto 1 by -x showrefcount command line option.
Needs a debug build of Python (the Py_REF_DEBUG macro must be defined).

Default: 0.

int site_import

Import the site module at startup?

If equal to zero, disable the import of the module site and the site-dependent manipulations of sys.path
that it entails.

Also disable these manipulations if the site module is explicitly imported later (call site.main () if
you want them to be triggered).

Set to 0 by the —s command line option.
sys.flags.no_site is set to the inverted value of site_ import.

Domyslny: 1.

int skip_source_first_line

If non-zero, skip the first line of the PyConfig. run_filename source.
It allows the usage of non-Unix forms of # ! cmd. This is intended for a DOS specific hack only.
Set to 1 by the -x command line option.

Default: 0.

wchar_t *stdio_encoding

wchar_t *stdio_errors

Encoding and encoding errors of sys.stdin, sys.stdout and sys.stderr (but sys.stderr al-
ways uses "backslashreplace" error handler).

Use the PYTHONIOENCODING environment variable if it is non-empty.
Default encoding:

e "UTF-8" if PyPreConfig.utf£8 mode is non-zero.

o Otherwise, use the locale encoding.
Default error handler:

¢ On Windows: use "surrogateescape".

e "surrogateescape" if PyPreConfig.ut f8_mode is non-zero, or if the LC_CTYPE locale is
,,C” or ,POSIX”.

e "strict" otherwise.

See also PyConfig.legacy _windows_stdio.

10.4.

PyConfig C API 263

The Python/C API, Wydanie 3.14.0a5

int tracemalloc

Enable tracemalloc?
If non-zero, call tracemalloc.start () atstartup.

Set by -X tracemalloc=N command line option and by the PYTHONTRACEMALLOC environment va-
riable.

Default: -1 in Python mode, 0 in isolated mode.

int perf_profiling
Enable the Linux perf profiler support?

If equals to 1, enable support for the Linux perf profiler.
If equals to 2, enable support for the Linux perf profiler with DWARF JIT support.
Set to 1 by -x perf command-line option and the PYTHONPERFSUPPORT environment variable.

Set to 2 by the -X perf_jit command-line option and the PYTHON_PERF_JIT_SUPPORT environ-
ment variable.

Default: -1.

Zobacz takze

See perf_profiling for more information.

Added in version 3.12.

wchar_t *stdlib_dir
Directory of the Python standard library.

Default: NULL.
Added in version 3.11.

int use_environment

Use environment variables?

If equals to zero, ignore the environment variables.
Set to 0 by the —E environment variable.

Default: 1 in Python config and 0 in isolated config.

int use_system_logger

If non-zero, stdout and stderr will be redirected to the system log.
Only available on macOS 10.12 and later, and on iOS.
Default: 0 (don’t use system log).

Added in version 3.13.2.

int user_site_directory

If non-zero, add the user site directory to sys.path.
Set to 0 by the -s and -I command line options.
Set to 0 by the PYTHONNOUSERSITE environment variable.

Default: 1 in Python mode, 0 in isolated mode.

264 Rozdziat 10. Python Initialization Configuration

The Python/C API, Wydanie 3.14.0a5

int verbose

Verbose mode. If greater than 0, print a message each time a module is imported, showing the place
(filename or built-in module) from which it is loaded.

If greater than or equal to 2, print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit.

Incremented by the —v command line option.
Set by the PYTHONVERBOSE environment variable value.
Default: 0.

PyWideStringList warnoptions

Options of the warnings module to build warnings filters, lowest to highest priority: sys.
warnoptions.

The warnings module adds sys.warnoptions in the reverse order: the last Pyconfig.
warnoptions item becomes the first item of warnings.filters which is checked first (highest
priority).

The —w command line options adds its value to warnopt ions, it can be used multiple times.

The PYTHONWARNINGS environment variable can also be used to add warning options. Multiple options
can be specified, separated by commas (,).

Default: empty list.

int write_bytecode

If equal to 0, Python won't try to write . pyc files on the import of source modules.
Set to 0 by the —-B command line option and the PYTHONDONTWRITEBYTECODE environment variable.
sys.dont_write_bytecode is initialized to the inverted value of write_bytecode.
Domyslny: 1.
PyWideStringList xoptions
Values of the -x command line options: sys._xoptions.
Default: empty list.

int _pystats
If non-zero, write performance statistics at Python exit.

Need a special build with the Py_STATS macro: see —~—enable-pystats.
Default: 0.

If parse_argv is non-zero, argv arguments are parsed the same way the regular Python parses command line
arguments, and Python arguments are stripped from argv.

The xoptions options are parsed to set other options: see the —x command line option.

Zmienione w wersji 3.9: The show_alloc_count field has been removed.

10.4.7 Initialization with PyConfig

Initializing the interpreter from a populated configuration struct is handled by calling
Py InitializeFromConfig().

The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception() and
Py ExitStatusException ().

If PyImport_FrozenModules (), PyImport_AppendInittab () Or PyImport_ExtendInittab () are used,
they must be set or called after Python preinitialization and before the Python initialization. If Python is initialized
multiple times, Py Import_AppendInittab () Of PyImport_ExtendInittab () mustbe called before each Py-
thon initialization.

10.4. PyConfig C API 265

The Python/C API, Wydanie 3.14.0a5

The current configuration (PyConfig type) is stored in PyInterpreterState.config.

Example setting the program name:

void init_python (void)
{
PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);

/* Set the program name. Implicitly preinitialize Python. */
status = PyConfig_SetString(&config, &config.program_name,
L"/path/to/my_program") ;
if (PyStatus_Exception (status)) {
goto exception;

status = Py_InitializeFromConfig (&confiqg);
if (PyStatus_Exception (status)) {
goto exception;
}
PyConfig_Clear (&configqg);
return;

exception:
PyConfig_Clear (&configqg);
Py_ExitStatusException (status);

More complete example modifying the default configuration, read the configuration, and then override some para-
meters. Note that since 3.11, many parameters are not calculated until initialization, and so values cannot be read
from the configuration structure. Any values set before initialize is called will be left unchanged by initialization:

PyStatus init_python (const char *program_name)

{
PyStatus status;

PyConfig config;
PyConfig InitPythonConfig (&config);

/* Set the program name before reading the configuration
(decode byte string from the locale encoding).

Implicitly preinitialize Python. */
status = PyConfig_SetBytesString(&config, &config.program_name,
program_name) ;
if (PyStatus_Exception(status)) A
goto done;

/* Read all configuration at once */

status = PyConfig_Read (&confiqg);

if (PyStatus_Exception(status)) A
goto done;

/* Specify sys.path explicitly */

(ciag dalszy na nastgpnej stronie)

266 Rozdziat 10. Python Initialization Configuration

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
/* If you want to modify the default set of paths, finish
initialization first and then use PySys_GetObject ("path") */
config.module_search_paths_set = 1;
status = PyWideStringList_Append (&config.module_search_paths,
L"/path/to/stdlib");
if (PyStatus_Exception (status)) {
goto done;
}
status = PyWideStringList_Append (&config.module_search_paths,
L"/path/to/more/modules") ;
if (PyStatus_Exception(status)) {
goto done;

/* Override executable computed by PyConfig Read() */
status = PyConfig_SetString(&config, &config.executable,
L"/path/to/my_executable") ;
if (PyStatus_Exception (status)) {
goto done;

status = Py_InitializeFromConfig (&confiqg);

done:

PyConfig_Clear (&configqg);
return status;

10.4.8 Isolated Configuration

PyPreConfigﬁInitIsolatedConfig()andPyConfigfInitIsolatedConfig()ﬂnmﬁonscrmneaconﬁgu—
ration to isolate Python from the system. For example, to embed Python into an application.

This configuration ignores global configuration variables, environment variables, command line arguments
(PyConfig.argv is not parsed) and user site directory. The C standard streams (ex: stdout) and the LC_CTYPE
locale are left unchanged. Signal handlers are not installed.

Configuration files are still used with this configuration to determine paths that are unspecified. Ensure PyConfig.
home is specified to avoid computing the default path configuration.

10.4.9 Python Configuration

PyPreConfig_InitPythonConfig () and PyConfig_InitPythonConfig () functions create a configuration
to build a customized Python which behaves as the regular Python.

Environments variables and command line arguments are used to configure Python, whereas global configuration
variables are ignored.

This function enables C locale coercion (PEP 538) and Python UTF-8 Mode (PEP 540) depending on the
LC_CTYPE locale, PYTHONUTF 8 and PYTHONCOERCECLOCALE environment variables.

10.4.10 Python Path Configuration
PyConfig contains multiple fields for the path configuration:
« Path configuration inputs:
- PyConfig.home

— PyConfig.platlibdir

10.4. PyConfig C API 267

https://peps.python.org/pep-0538/
https://peps.python.org/pep-0540/

The Python/C API, Wydanie 3.14.0a5

- PyConfig.pathconfig warnings

— PyConfig.program_name

— PyConfig.pythonpath_env

- current working directory: to get absolute paths

— PATH environment variable to get the program full path (from PyConfig.program name)
- _ PYVENV_LAUNCHER___ environment variable

- (Windows only) Application paths in the registry under ,,SoftwarePythonPythonCoreX.YPythonPath” of
HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE (where X.Y is the Python version).

« Path configuration output fields:
- PyConfig.base_exec_prefix
— PyConfig.base_executable
— PyConfig.base_prefix
— PyConfig.exec_prefix
— PyConfig.executable
— PyConfig.module_search_paths_set, PyConfig.module_search_paths
- PyConfig.prefix

If at least one ,output field” is not set, Python -calculates the path configuration to fill unset
fields. If module_search paths_set 1is equal to 0, module_search_paths 1is overridden and
module_search_paths_set issetto 1.

It is possible to completely ignore the function calculating the default path configuration by setting explicitly all path
configuration output fields listed above. A string is considered as set even if it is non-empty. module_search_paths
is considered as set if module_search_paths_set is set to 1. In this case, module_search_paths will be used
without modification.

Set pathconfig _warnings to 0 to suppress warnings when calculating the path configuration (Unix only, Windows
does not log any warning).

If base_prefixorbase_exec_prefixfields are not set, they inherit their value from prefixand exec_prefix
respectively.

Py_RunMain () and Py _Main() mOdify sys.path:

o If run_filename is set and is a directory which contains a __main__.py script, prepend run_filename
to sys.path.

o If isolatedis zero:

- If run_module is set, prepend the current directory to sys.path. Do nothing if the current directory
cannot be read.

- If run_filename is set, prepend the directory of the filename to sys.path.
- Otherwise, prepend an empty string to sys.path.

If site _import is non-zero, sys.path can be modified by the site module. If user site directory is
non-zero and the user’s site-package directory exists, the site module appends the user’s site-package directory to
sys.path.

The following configuration files are used by the path configuration:
e pyvenv.cfqg
e ._pth file (ex: python._pth)
e pybuilddir.txt (Unix only)

If a . _pth file is present:

268 Rozdziat 10. Python Initialization Configuration

The Python/C API, Wydanie 3.14.0a5

e Set isolatedto 1.

e Set use _environment to 0.
e Set site_import to 0.

e Set safe_pathto 1.

If home is not set and a pyvenv . cfg file is present in the same directory as executable, or its parent, pre fix and
exec_prefix are set that location. When this happens, base_prefix and base_exec_prefix still keep their
value, pointing to the base installation. See sys-path-init-virtual-environments for more information.

The _ PYVENV_LAUNCHER_ _ environment variable is used to set PyConfig.base_executable.

Zmienione w wersji 3.14: prefix, and exec_prefix, are now set to the pyvenv.cfg directory. This was previo-
usly done by site, therefore affected by -s.

10.5 Py_GetArgcArgv()

void Py_GetArgcArgv (int *argc, wchar_t ***argv)

Get the original command line arguments, before Python modified them.

See also PyConfig.orig argv member.

10.6 Delaying main module execution

In some embedding use cases, it may be desirable to separate interpreter initialization from the execution of the main
module.

This separation can be achieved by setting PyConfig.run_command to the empty string during initialization (to
prevent the interpreter from dropping into the interactive prompt), and then subsequently executing the desired main
module code using __main__.__ dict__ as the global namespace.

10.5. Py_GetArgcArgv() 269

The Python/C API, Wydanie 3.14.0a5

270 Rozdziat 10. Python Initialization Configuration

rozpziat 11

Zarzadzanie Pamiecig

11.1 Skorowidz

Zarzadzanie pamigcia w Pythonie zaktada prywatng sterte zawierajaca wszystkie obiekty i struktury danych Pytho-
na. Zarzadzanie ta prywatna sterta jest zapewniane wewngtrznie przez zarzqdce pamieci Pythona. Zarzadca pamigci
Pythona ma rézne komponenty ktére radza sobie z ré6znymi aspektami dynamicznego przechowywania, jak wspot-
dzielenie, segmentacja, alokacja wstgpna i kieszeniowanie.

Na najnizszym poziomie, przedmiot przydzielajacy pamigC ,,na-surowo” zapewnia ze bedzie doS¢ pamigci na pry-
watnej stercie dla przechowania wszystkich zwiazanych-z-jezykiem-pytonowskim danych przez wspétdziatanie z za-
rzadca pamigci systemu operacyjnego. Ponad zarzadca surowej pamigci, kilka szczegélnych dla danych typéw przed-
miotow zarzadcOw operuje na tej samej stercie i wypetnia szczegdlne zasady zarzadzania pamigcia dostosowane do
szczegllnych wilasnosci kazdego rodzaju przedmiotu. Dla przyktadu przedmioty liczb catkowitych sa zarzadzane
inaczej wewnatrz sterty niz ciagi znakéw, krotki czy stowniki gdyz liczby catkowite zaktadaja inne wymagania prze-
chowywania i wady i zalety predkosci/zajgtej przestrzeni. Zarzadca pamigcia Pythona zatem odprawia pewng ilo$¢
naktadéw pracy dla szczegblnych dla przedmiotéw réznych typéw zarzadcéw, ale zapewnia ze te drugie begda ope-
rowaé wewnatrz ograniczen prywatnej sterty.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that
the user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap.
The allocation of heap space for Python objects and other internal buffers is performed on demand by the Python
memory manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions
exported by the C library: malloc (), calloc (), realloc () and free (). This will result in mixed calls between
the C allocator and the Python memory manager with fatal consequences, because they implement different algori-
thms and operate on different heaps. However, one may safely allocate and release memory blocks with the C library
allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc (BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory () ;
...Do some I/O operation involving buf...
res = PyBytes_FromString (buf) ;
free(buf); /* malloc'ed */
return res;

271

The Python/C API, Wydanie 3.14.0a5

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the bytes object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the
latter is under control of the Python memory manager. For example, this is required when the interpreter is extended
with new object types written in C. Another reason for using the Python heap is the desire to inform the Python
memory manager about the memory needs of the extension module. Even when the requested memory is used
exclusively for internal, highly specific purposes, delegating all memory requests to the Python memory manager
causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently, under certain
circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage collection, me-
mory compaction or other preventive procedures. Note that by using the C library allocator as shown in the previous
example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

> Zobacz takze

The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.

The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator
every time a new pymalloc object arena is created, and on shutdown.

11.2 Allocator Domains

All allocating functions belong to one of three different ,,domains” (see also PyMemAllocatorDomain). These
domains represent different allocation strategies and are optimized for different purposes. The specific details on how
every domain allocates memory or what internal functions each domain calls is considered an implementation detail,
but for debugging purposes a simplified table can be found at /ere. The APIs used to allocate and free a block of
memory must be from the same domain. For example, PyMem Free () must be used to free memory allocated using
PyMem Malloc ().

The three allocation domains are:

« Raw domain: intended for allocating memory for general-purpose memory buffers where the allocation must
go to the system allocator or where the allocator can operate without the G/L. The memory is requested directly
from the system. See Raw Memory Interface.

e ,Mem” domain: intended for allocating memory for Python buffers and general-purpose memory buffers where
the allocation must be performed with the G/L held. The memory is taken from the Python private heap. See
Memory Interface.

« Object domain: intended for allocating memory for Python objects. The memory is taken from the Python
private heap. See Object allocators.

© Informacja

The free-threaded build requires that only Python objects are allocated using the ,,object” domain and that all
Python objects are allocated using that domain. This differs from the prior Python versions, where this was only
a best practice and not a hard requirement.

For example, buffers (non-Python objects) should be allocated using PyMem Malloc (), PyMem RawMalloc (),
ormalloc (), butnot Pyobject_Malloc ().

See Memory Allocation APIs.

11.3 Raw Memory Interface

The following function sets are wrappers to the system allocator. These functions are thread-safe, the GIL does not
need to be held.

272 Rozdziat 11. Zarzadzanie Pamiecia

The Python/C API, Wydanie 3.14.0a5

The default raw memory allocator uses the following functions: malloc (), calloc (), realloc() and free();
callmalloc (1) (or calloc (1, 1)) when requesting zero bytes.

Added in version 3.4.

void *PyMem_RawMalloc (Size_t n)
Czes¢ stabilnego ABI od wersji 3.13. Allocates n bytes and returns a pointer of type void* to the allocated
memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc (1) had been
called instead. The memory will not have been initialized in any way.
void *PyMem_RawCalloc (size_t nelem, size_t elsize)

Czes¢ stabilnego ABI od wersji 3.13. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to
7€eros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc (1, 1) had been called instead.

Added in version 3.5.

void *PyMem_RawRealloc (void *p, size_t n)

Czes¢ stabilnego ABI od wersji 3.13. Resizes the memory block pointed to by p to n bytes. The contents will
be unchanged to the minimum of the old and the new sizes.

If p is NULL, the call is equivalent to PyMem RawMalloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem RawMalloc (),
PyMem RawRealloc () Or PyMem_ RawCalloc ().

If the request fails, PyMem RawRealloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_RawFree (void *p)

Czes¢ stabilnego ABI od wersji 3.13. Frees the memory block pointed to by p, which must have been returned
by a previous call to PyMem_RawMalloc (), PyMem_RawRealloc () or PyMem_RawCalloc (). Otherwise,
or if PyMem_RawFree (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

11.4 Sprzeg Pamieci

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

The default memory allocator uses the pymalloc memory allocator.

A\ Ostrzezenie

The GIL must be held when using these functions.

Zmienione w wersji 3.6: The default allocator is now pymalloc instead of system malloc ().

void *PyMem_Malloc (size_t n)
Czes¢ stabilnego ABI. Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL
if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc (1) had been called
instead. The memory will not have been initialized in any way.

11.4. Sprzeg Pamieci 273

The Python/C API, Wydanie 3.14.0a5

void *PyMem_Calloc (size_t nelem, size_t elsize)

Czes¢ stabilnego ABI od wersji 3.7. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to
Zer0s.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc (1, 1) had been called instead.

Added in version 3.5.

void *PyMem_Realloc (void *p, size_t n)

Czes¢ stabilnego ABI. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to
the minimum of the old and the new sizes.

If pis NULL, the call is equivalent to PyMem_Malloc (n);else if n is equal to zero, the memory block is resized
but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem Malloc (), PyMem Realloc () Or
PyMem Calloc().

If the request fails, PyMem Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free (void *p)

Czes¢ stabilnego ABI. Frees the memory block pointed to by p, which must have been returned by a previous
callto PyMem_Malloc (), PyMem_Realloc () or PyMem Calloc ().Otherwise, orif PyMem_Free (p) has
been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

Nastepujace makropolecenia zorientowane-wedtug-typu dostarczone sa dla wygody. Zauwaz ze TYP odnosi si¢ do
dowolnego typu C.

PyMem_New (TYPE, n)

Same as PyMem _Malloc (), but allocates (n * sizeof (TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

PyMem_Resize (p, TYPE, n)

Same as PyMem_Realloc (), but the memory block is resized to (n * sizeof (TYPE)) bytes. Returns
a pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.

This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory
when handling errors.

void PyMem_Del (void *p)

Same as PyMem_Free ().

Dodaé nalezy, ze nastepujacy zbiér makropolecen dostarczony jest aby odwotywac si¢ do programu przydzielaja-
cego pamie¢ w jezyku pytonowskim bezposrednio, bez udziatu zadan sprzggu C wymienionych powyzej. Jednakze,
zauwaz, ze ich uzycie nie zachowuje wzajemnej zgodnosci binarnej pomiedzy wersjami Pythona i z tego tez powodu
ich uzycie jest niewskazane w modutach rozszerzajacych.

e PyMem MALLOC (size)

e PyMem NEW (type, size)

e PyMem_REALLOC (ptr, size)

e PyMem_ RESIZE (ptr, type, size)
e PyMem_ FREE (ptr)

e PyMem_ DEL (ptr)

274 Rozdziat 11. Zarzadzanie Pamiecia

The Python/C API, Wydanie 3.14.0a5

11.5 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

© Informacja

There is no guarantee that the memory returned by these allocators can be successfully cast to a Python object
when intercepting the allocating functions in this domain by the methods described in the Customize Memory
Allocators section.

The default object allocator uses the pymalloc memory allocator.

A\ Ostrzezenie

The GIL must be held when using these functions.

void *PyObject_Malloc (size_t n)
Czes¢ stabilnego ABI. Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL
if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc (1) had been
called instead. The memory will not have been initialized in any way.
void *PyObject_Calloc (size_t nelem, size_t elsize)

Czes¢ stabilnego ABI od wersji 3.7. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to
Zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc (1, 1) had been called instead.

Added in version 3.5.

void *PyObject_Realloc (void *p, size_t n)

Czes¢ stabilnego ABI. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to
the minimum of the old and the new sizes.

If p is NULL, the call is equivalent to PyObject_Malloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc () Or PyObject_Calloc().

If the request fails, PyObject_Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyObject_Free (void *p)

Czes¢ stabilnego ABI. Frees the memory block pointed to by p, which must have been returned by a pre-
vious call to PyObject_Malloc (), PyObject_Realloc () or PyObject_Calloc (). Otherwise, or if
PyObject_Free (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

11.6 Default Memory Allocators

Default memory allocators:

11.5. Object allocators 275

The Python/C API, Wydanie 3.14.0a5

Konfiguracja Nazwa Py- PyMem_Malloc Py-
Mem_RawMalloc Object_Malloc
Release build "pymalloc" malloc pymalloc pymalloc
Debug build "pymalloc_debug malloc + debug pymalloc + de- pymalloc + de-
bug bug
Release build, without py- "malloc" malloc malloc malloc

malloc
Debug build, without py-
malloc

"malloc_debug"

malloc + debug

malloc +debug malloc + debug

Legenda:

o Name: value for PYTHONMALLOC environment variable.

e malloc: system allocators from the standard C library, C functions: malloc (), calloc (), realloc () and

free ().

e pymalloc: pymalloc memory allocator.

e mimalloc: mimalloc memory allocator. The pymalloc allocator will be used if mimalloc support isn’t available.

o .+ debug”: with debug hooks on the Python memory allocators.

« Debug build”: Python build in debug mode.

11.7 Customize Memory Allocators

Added in version 3.4.

type PyMemAllocatorEx

Structure used to describe a memory block allocator. The structure has the following fields:

Pole

Znaczenie

void *ctx

void* malloc (void *ctx,
void* calloc (void *ctx,

elsize)

void* realloc(void *ctx,

new_size)

void free(void *ctx,

void *ptr)

size_t nelem,

void *ptr,

size_t size)

size_t

size_t

user context passed as first argument
allocate a memory block

allocate a memory block initialized with
Zeros

allocate or resize a memory block

free a memory block

Zmienione w wersji 3.5: The PyMemAllocator structure was renamed to PyMemAllocatorEx and a new

calloc field was added.

type PyMemAllocatorDomain

Enum used to identify an allocator domain. Domains:

PYMEM DOMAIN_RAW
Funkcje:

e PyMem RawMalloc ()

e PyMem RawRealloc ()

e PyMem RawCalloc ()

e PyMem RawFree ()

276

Rozdziat 11. Zarzadzanie Pamiecia

The Python/C API, Wydanie 3.14.0a5

PYMEM DOMAIN_MEM
Funkcje:

e PyMem Malloc(),
e PyMem Realloc ()
e PyMem Calloc ()
e PyMem Free()

PYMEM_DOMAIN_OBJ
Funkcje:

e PyObject_Malloc ()
e PyObject_Realloc ()
e PyObject_Calloc()
e PyObject_Free()

void PyMem_GetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)

Get the memory block allocator of the specified domain.

void PyMem_SetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)

Set the memory block allocator of the specified domain.
The new allocator must return a distinct non-NULL pointer when requesting zero bytes.

For the pyMEM _DoMATIN _RAW domain, the allocator must be thread-safe: the GI/L is not held when the allocator
is called.

For the remaining domains, the allocator must also be thread-safe: the allocator may be called in different
interpreters that do not share a GIL.

If the new allocator is not a hook (does not call the previous allocator), the PyMem_SetupDebugHooks ()
function must be called to reinstall the debug hooks on top on the new allocator.

See also PyPreConfig.allocator and Preinitialize Python with PyPreConfig.

A\ Ostrzezenie

PyMem_SetAllocator () does have the following contract:

« [t can be called after Py PreInitialize() and before Py _InitializeFromConfig/() to in-
stall a custom memory allocator. There are no restrictions over the installed allocator other than the
ones imposed by the domain (for instance, the Raw Domain allows the allocator to be called without
the GIL held). See the section on allocator domains for more information.

o If called after Python has finish initializing (after Py TnitializeFromConfig () hasbeen called)
the allocator must wrap the existing allocator. Substituting the current allocator for some other
arbitrary one is not supported.

Zmienione w wersji 3.12: All allocators must be thread-safe.

void PyMem_SetupDebugHooks (void)

Setup debug hooks in the Python memory allocators to detect memory errors.

11.8 Debug hooks on the Python memory allocators

When Python is built in debug mode, the PyMem_SetupDebugHooks () function is called at the Python preinitiali-
zation to setup debug hooks on Python memory allocators to detect memory errors.

11.8. Debug hooks on the Python memory allocators 277

The Python/C API, Wydanie 3.14.0a5

The PYTHONMALLOC environment variable can be used to install debug hooks on a Python compiled in release mode
(ex: PYTHONMALLOC=debug).

The PyMem SetupDebugHooks () function can be wused to set debug hooks after calling
PyMem_ SetAllocator().

These debug hooks fill dynamically allocated memory blocks with special, recognizable bit patterns. New-
ly allocated memory is filled with the byte 0xCD (PYMEM_CLEANBYTE), freed memory is filled with the by-
te 0xDD (PYMEM_DEADBYTE). Memory blocks are surrounded by ,forbidden bytes” filled with the byte 0xFD
(PYMEM_FORBIDDENBYTE). Strings of these bytes are unlikely to be valid addresses, floats, or ASCII strings.

Runtime checks:

« Detect API violations. For example, detect if Pyobject_Free () is called on a memory block allocated by
PyMem Malloc().

o Detect write before the start of the buffer (buffer underflow).
o Detect write after the end of the buffer (buffer overflow).

¢ Check that the GIL is held when allocator functions of PYMEM DOMATN_OBJ (eX: PyObject_Malloc ())and
PYMEM_DOMAIN_MEM (ex: PyMem Malloc ()) domains are called.

On error, the debug hooks use the t racemalloc module to get the traceback where a memory block was allocated.
The traceback is only displayed if t racemalloc is tracing Python memory allocations and the memory block was
traced.

LetS=sizeof (size_t).2*S bytes are added at each end of each block of N bytes requested. The memory layout
is like so, where p represents the address returned by a malloc-like or realloc-like function (p[1 : j1 means the slice
of bytes from * (p+i) inclusive up to * (p+j) exclusive; note that the treatment of negative indices differs from
a Python slice):

pl[-2*S:-S]
Number of bytes originally asked for. This is a size_t, big-endian (easier to read in a memory dump).

p[-s]
API identifier (ASCII character):

e 'r' for PYMEM DOMAIN_ RAW.
e 'm' for PYMEM DOMAIN_MEM.
e 'o' for PYMEM DOMAIN OBJ.

p[-S+1:0]
Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads.

pl0:N]
The requested memory, filled with copies of PYMEM_CLEANBYTE, used to catch reference to uninitialized
memory. When a realloc-like function is called requesting a larger memory block, the new excess bytes are
also filled with PYMEM_CLEANBYTE. When a free-like function is called, these are overwritten with PY-
MEM_DEADBYTE, to catch reference to freed memory. When a realloc- like function is called requesting
a smaller memory block, the excess old bytes are also filled with PYMEM_DEADBYTE.

PIN:N+S]
Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads.

PI[N+S:N+2*S]
Only used if the PYMEM_DEBUG_SERIALNO macro is defined (not defined by default).

A serial number, incremented by 1 on each call to a malloc-like or realloc-like function. Big-endian size_t.
If ,,bad memory” is detected later, the serial number gives an excellent way to set a breakpoint on the next run,
to capture the instant at which this block was passed out. The static function bumpserialno() in obmalloc.c is
the only place the serial number is incremented, and exists so you can set such a breakpoint easily.

A realloc-like or free-like function first checks that the PYMEM_FORBIDDENBYTE bytes at each end are intact.
If they’ve been altered, diagnostic output is written to stderr, and the program is aborted via Py_FatalError(). The
other main failure mode is provoking a memory error when a program reads up one of the special bit patterns and

278 Rozdziat 11. Zarzadzanie Pamiecia

The Python/C API, Wydanie 3.14.0a5

tries to use it as an address. If you get in a debugger then and look at the object, you're likely to see that it’s entirely
filled with PYMEM_DEADBYTE (meaning freed memory is getting used) or PYMEM_CLEANBYTE (meaning
uninitialized memory is getting used).

Zmienione w wersji 3.6: The PyMem SetupDebugHooks () function now also works on Python compiled in
release mode. On error, the debug hooks now use tracemalloc to get the traceback where a memory block
was allocated. The debug hooks now also check if the GIL is held when functions of pymMEM DOMATN 0OBJ and
PYMEM_DOMAIN_MEM domains are called.

Zmienione w wersji 3.8: Byte patterns 0xCB (PYMEM_CLEANBYTE), 0xDB (PYMEM DEADBYTE) and OxFB
(PYMEM_FORBIDDENBYTE) have been replaced with 0xCD, 0xDD and 0xFD to use the same values than Windows
CRT debug malloc () and free ().

11.9 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called ,,arenas” with a fixed size of either 256 KiB on 32-bit platforms or 1 MiB on 64-bit
platforms. It falls back to PyMem RawMalloc () and PyMem RawRealloc () for allocations larger than 512 bytes.

pymalloc is the default allocator of the PYMEM DOMATIN_MEM (ex: PyMem Malloc ()) and PYMEM _DOMAIN_OBJ
ex: PyObject_Malloc omains.
yObj lloc())d

The arena allocator uses the following functions:
e VirtualAlloc() and VirtualFree () on Windows,
e mmap () and munmap () if available,
e malloc () and free () otherwise.

This allocator is disabled if Python is configured with the -—without-pymalloc option. It can also be disabled at
runtime using the PYTHONMALLOC environment variable (ex: PYTHONMALLOC=malloc).

11.9.1 Customize pymalloc Arena Allocator
Added in version 3.4.

type PyObjectArenaAllocator

Structure used to describe an arena allocator. The structure has three fields:

Pole Znaczenie
void *ctx user context passed as first argument
void* alloc(void *ctx, size_t size) allocate an arena of size bytes

void free(void *ctx, void *ptr, size_t size) free an arena

void PyObject_GetArenaAllocator (PyObjectArenaAllocator *allocator)

Get the arena allocator.

void PyObject_SetArenaAllocator (PyObjectArenaAllocator *allocator)

Set the arena allocator.

11.10 The mimalloc allocator

Added in version 3.13.

Python supports the mimalloc allocator when the underlying platform support is available. mimalloc ,,is a general
purpose allocator with excellent performance characteristics. Initially developed by Daan Leijen for the runtime
systems of the Koka and Lean languages.”

11.9. The pymalloc allocator 279

The Python/C API, Wydanie 3.14.0a5

11.11 tracemalloc C API

Added in version 3.7.

int PyTraceMalloc_Track (unsigned int domain, uintptr_t ptr, size_t size)

Track an allocated memory block in the t racemalloc module.

Return 0 on success, return -1 on error (failed to allocate memory to store the trace). Return -2 if tracemalloc
is disabled.

If memory block is already tracked, update the existing trace.

int PyTraceMalloc_Untrack (unsigned int domain, uintptr_t ptr)
Untrack an allocated memory block in the t racemalloc module. Do nothing if the block was not tracked.

Return -2 if tracemalloc is disabled, otherwise return 0.

11.12 Przykiady

Tutaj jest przyktad z sekcji ,,przegladu pamigci” - z ang. - Skorowidz, przepisane, tak aby przestrzen wejScia/wyjScia
byla przydzielona ze sterty Pythona uzywajac pierwszego zestawu zadan:

PyObject *res;
char *buf = (char *) PyMem Malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString (buf) ;
PyMem_Free (buf); /* allocated with PyMem Malloc */
return res;

ten sam kod przy uzyciu zorientowanych na typ zbioréw zadan:

PyObject *res;
char *buf = PyMem_New (char, BUFSIZ); /* for I/0 */

if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString (buf) ;
PyMem_Free (buf); /* allocated with PyMem New */
return res;

Zauwaz, ze w dwoch powyzszych przyktadach, przestrzenn wymiany jest zawsze zmieniana przez zadania nalezace
do tego samego zbioru. Wiasciwie, jest wymagane uzycie tej samej rodziny sprzegdw zarzadzania pamigcia (z ang. -
memory API) dla danego obszaru pamigci, tak, ze ryzyko pomieszania r6znych programéw lokujacych zmniejszone
jest do minimum. Nastepujaca sekwencja zawiera dwa btedy, jeden z ktérych okreslony jest jako krytyczny poniewaz
miesza dwa rézne programy lokujace pamigé¢ dziatajace na réznych stertach.

char *bufl = PyMem_New (char, BUFSIZ);
char *buf2 = (char *) malloc (BUFSIZ);
char *buf3 = (char *) PyMem_ Malloc (BUFSIZ);

PyMem_Del (buf3) ; /* Wrong —- should be PyMem_ Free() */

free (buf2); /* Right -- allocated via malloc() */
free (bufl) ; /* Fatal —- should be PyMem_Free () */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released with PyObject_New, PyObject_NewVar and PyObject_Free ().

280 Rozdziat 11. Zarzadzanie Pamiecia

The Python/C API, Wydanie 3.14.0a5

Te zostang wyjasnione w nastgpnym rozdziale o okreslaniu i realizowaniu nowych typéw obiektéw w jezyku C.

11.12. Przyktady 281

The Python/C API, Wydanie 3.14.0a5

282 Rozdziat 11. Zarzadzanie Pamiecia

rozpziar 12

Object Implementation Support

This chapter describes the functions, types, and macros used when defining new object types.

12.1 Przydzielanie obiektow na stercie

PyObject *_PyObject_New (PyTypeObject *type)
Wartos¢ zwracana: nowa referencja.
PyVarObject *_PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)
Wartos¢ zwracana: nowa referencja.
PyObject *PyObiject_Init (PyObject *op, PyTypeObject *type)
Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI Initialize a newly allocated object op with its
type and initial reference. Returns the initialized object. Other fields of the object are not affected.
PyVarObject *PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABIL. To wszystko, czym zajmie si¢ funkcja
PyObject_Init (), a ponadto zainicjuje informacje o dlugosci dla obiektu o zmiennym rozmiarze.
PyObject_New (TYPE, typeobj)

Allocate a new Python object using the C structure type TYPE and the Python type object typeobj
(PyTypeObject*). Fields not defined by the Python object header are not initialized. The caller will own
the only reference to the object (i.e. its reference count will be one). The size of the memory allocation is
determined from the tp_basicsize field of the type object.

PyObject_NewVar (TYPE, typeobj, size)

Allocate a new Python object using the C structure type TYPE and the Python type object rypeobj
(PyTypeObject*). Fields not defined by the Python object header are not initialized. The allocated me-
mory allows for the TYPE structure plus size (Py_ssize_t) fields of the size given by the tp_itemsize
field of typeobj. This is useful for implementing objects like tuples, which are able to determine their size at
construction time. Embedding the array of fields into the same allocation decreases the number of allocations,
improving the memory management efficiency.

void PyObject_Del (void *op)
Same as PyObject_Free().

283

The Python/C API, Wydanie 3.14.0a5

PyObject _Py_NoneStruct
Obiekt widoczny w Pythonie jako None. Dostep do tego nalezy uzyskaé wylacznie za pomoca makra Py_None,
ktérego wartoscig jest wskaznik do tego obiektu.

> Zobacz takze

PyModule_ Create ()
Przydzielanie i tworzenie modutéw rozszerzen.

12.2 Wspolne struktury obiektow

Istnieje duza liczba struktur, ktére sa uzywane przy definiowaniu rodzajéw obiektow w Pythonie. Ten rozdziat opisuje
te struktury i jak sa one uzywane.

12.2.1 Base object types and macros

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and Pyvarobject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects. Additional macros
can be found under reference counting.

type PyObject
Czes¢ ograniczonego APL. (tylko niektore sktadniki sq czesciq stabilnego ABI) All object types are extensions of
this type. This is a type which contains the information Python needs to treat a pointer to an object as an object.
In a normal ,release” build, it contains only the object’s reference count and a pointer to the corresponding
type object. Nothing is actually declared to be a Pyobject, but every pointer to a Python object can be cast
to a PyObject*. Access to the members must be done by using the macros Py_REFCNT and Py_ TYPE.

type PyVarObject

Czes¢ ograniczonego APL. (tylko niektore sktadniki sq czesciq stabilnego ABI) This is an extension of PyObject
that adds the ob_si ze field. This is only used for objects that have some notion of length. This type does not
often appear in the Python/C API. Access to the members must be done by using the macros Py_REFCNT,
Py_TYPE,and Py_STZE.

PyObject_HEAD
This is a macro used when declaring new types which represent objects without a varying length. The Py-
Object_ HEAD macro expands to:

[Pyobject ob_base;

See documentation of Pyobject above.

PyObject_VAR_HEAD
This is a macro used when declaring new types which represent objects with a length that varies from instance
to instance. The PyObject_VAR_HEAD macro expands to:

[PyVarObject ob_base;

See documentation of Pyvarobject above.

int Py_Is (PyObject *x, PyObject *y)
Czes¢ stabilnego ABI od wersji 3.10. Test if the x object is the y object, the same as x is y in Python.
Added in version 3.10.

int Py_IsNone (PyObject *X)
Czesé stabilnego ABI od wersji 3.10. Test if an object is the None singleton, the same as x is None in Python.

Added in version 3.10.

284 Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

int Py_IsTrue (PyObject *X)
Czes¢ stabilnego ABI od wersji 3.10. Test if an object is the True singleton, the same as x is True in Python.

Added in version 3.10.

int Py_IsFalse (PyObject *X)
Czes¢ stabilnego ABI od wersji 3.10. Test if an object is the False singleton, the same as x is False in
Python.

Added in version 3.10.
PyTypeObject ¥*Py_TYPE (PyObject ¥0)

Wartos¢ zwracana: pozyczona referencja. Czes¢ stabilnego ABI od wersji 3.14. Get the type of the Python object
0.

Return a borrowed reference.
Use the py_sET _TvPE () function to set an object type.

Zmienione w wersji 3.11: py_ TYPE () is changed to an inline static function. The parameter type is no longer
const PyObject*.

int Py_IS_TYPE (PyObject *o, PyTypeObject *type)
Return non-zero if the object o type is type. Return zero otherwise. Equivalent to: Py_TYPE (o) == type.
Added in version 3.9.
void Py_SET_TYPE (PyObject *o, PyTypeObject *type)
Set the object o type to type.
Added in version 3.9.
Py_ssize_t Py_SIZE (PyVarObject *0)
Get the size of the Python object o.
Use the py_seET s1zEe () function to set an object size.

Zmienione w wersji 3.11: py_s12E () is changed to an inline static function. The parameter type is no longer
const PyVarObject*.

void Py_SET_SIZE (PyVarObject *o, Py_ssize_t size)
Set the object o size to size.

Added in version 3.9.

PyObject_HEAD_INIT (type)
This is a macro which expands to initialization values for a new Pyobject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT (type, size)
This is a macro which expands to initialization values for a new Pyvarobject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

12.2.2 Implementing functions and methods

12.2. Wspolne struktury obiektow 285

The Python/C API, Wydanie 3.14.0a5

type PyCFunction

Czes¢ stabilnego ABI. Type of the functions used to implement most Python callables in C. Functions of this
type take two PyObject* parameters and return one such value. If the return value is NULL, an exception
shall have been set. If not NULL, the return value is interpreted as the return value of the function as exposed
in Python. The function must return a new reference.

The function signature is:

PyObject *PyCFunction (PyObject *self,
PyObject *args);

type PyCFunctionWithKeywords

Czes¢ stabilnego ABIL. Type of the functions used to implement Python callables in C with signature
METH_VARARGS | METH_KEYWORDS. The function signature is:

PyObject *PyCFunctionWithKeywords (PyObject *self,
PyObject *args,
PyObject *kwargs);

type PyCFunctionFast

Czes¢ stabilnego ABI od wersji 3.13. Type of the functions used to implement Python callables in C with
signature METH_FASTCALL. The function signature is:

PyObject *PyCFunctionFast (PyObject *self,
PyObject *const *args,
Py_ssize_t nargs);

type PyCFunctionFastWithKeywords

Czes¢ stabilnego ABI od wersji 3.13. Type of the functions used to implement Python callables in C with
signature METH_FASTCALL | METH_KEYWORDS. The function signature is:

PyObject *PyCFunctionFastWithKeywords (PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) ;

type PyCMethod

Type of the functions used to implement Python callables in C with signature METH_METHOD |
METH_FASTCALL | METH_KEYWORDS. The function signature is:

PyObject *PyCMethod (PyObject *self,
PyTypeObject *defining_class,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames)

Added in version 3.9.

type PyMethodDef
Czes¢ stabilnego ABI (w tym wszystkie sktadniki). Structure used to describe a method of an extension type.
This structure has four fields:
const char *m1_name
Name of the method.

PyCFunction m1_meth
Pointer to the C implementation.

286 Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

intml_flags

Flags bits indicating how the call should be constructed.

const char *ml_doc

Points to the contents of the docstring.

The m1_meth is a C function pointer. The functions may be of different types, but they always return PyoOb ject*.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
pyCFunction defines the first parameter as PyoObject*, it is common that the method implementation uses the
specific C type of the self object.

The m1_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.

There are these calling conventions:

METH_VARARGS

This is the typical calling convention, where the methods have the type PyCFunct ion. The function expects
two Pyobject* values. The first one is the self object for methods; for module functions, it is the module
object. The second parameter (often called args) is a tuple object representing all arguments. This parameter
is typically processed using PyArg ParseTuple () Of PyArg UnpackTuple ().

METH_KEYWORDS
Can only be used in certain combinations with other flags: METH_VARARGS | METH_KEYWORDS,
METH_FASTCALL | METH_KEYWORDS and METH_METHOD | METH_FASTCALL | METH_KEYWORDS.

METH VARARGS | METH_KEYWORDS
Methods with these flags must be of type PyCFunctionwithKeywords. The function expects three parame-
ters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or possibly NULL if there are
no keyword arguments. The parameters are typically processed using PyArg ParseTupleAndKeywords ().

METH_FASTCALL

Fast calling convention supporting only positional arguments. The methods have the type PyCFunctionFast.
The first parameter is self, the second parameter is a C array of PyObject* values indicating the arguments
and the third parameter is the number of arguments (the length of the array).

Added in version 3.7.
Zmienione w wersji 3.10: METH_FASTCALL is now part of the stable ABI.

METH FASTCALL | METH_KEYWORDS
Extension of METH FASTCALL supporting also keyword arguments, with methods of type
PyCFunctionFastWithKeywords. Keyword arguments are passed the same way as in the vectorcall
protocol: there is an additional fourth PyObject* parameter which is a tuple representing the names of the
keyword arguments (which are guaranteed to be strings) or possibly NULL if there are no keywords. The
values of the keyword arguments are stored in the args array, after the positional arguments.

Added in version 3.7.

METH_METHOD
Can only be used in the combination with other flags: METH METHOD | METH FASTCALL |
METH_KEYWORDS.

METH METHOD | METH FASTCALL | METH KEYWORDS
Extension of METH_FASTCALL | METH_KEYWORDS supporting the defining class, that is, the class that
contains the method in question. The defining class might be a superclass of Py_TYPE (self).

The method needs to be of type PyCMethod, the same as for METH_FASTCALL | METH_KEYWORDS with
defining_class argument added after self.

Added in version 3.9.

METH_NOARGS

Methods without parameters don’t need to check whether arguments are given if they are listed with the

12.2. Wspolne struktury obiektow 287

The Python/C API, Wydanie 3.14.0a5

METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self and
will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

The function must have 2 parameters. Since the second parameter is unused, Py_UNUSED can be used to
prevent a compiler warning.
METH_O

Methods with a single object argument can be listed with the MeTH O flag, instead of invoking
PyArg ParseTuple () with a "o" argument. They have the type PyCFunction, with the self parameter,
and a PyObject* parameter representing the single argument.

Te dwie stale nie sa uzywane do zaznaczania konwencji wywolywania, ale wigza gdy sa uzywane z metodami klas.
Nie moga by¢ one uzywane dla funkcji okreSlonych dla modutéw. Co najwyzej jedna z tych flag moze by¢ ustawiona
dla dowolnej danej metody.
METH_CLASS
Metodzie zostanie przekazany typ obiektu jako pierwszy parametr zamiast instancji tego typu. Jest to uzy-
wane aby tworzyC¢ metody klasowe, podobnie do tego, co jest tworzone przy uzyciu wbudowanej funkcji
classmethod().
METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to
create static methods, similar to what is created when using the staticmethod () built-in function.

Jedna pozostata stata kontroluje czy metoda jest tadowana w miejscu innej definicji o tej samej nazwie metody.

METH_COEXIST
The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains
slot, for example, would generate a wrapped method named __contains__ () and preclude the loading of
a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in
place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are
optimized more than wrapper object calls.

PyObject *PyCMethod_New (PyMethodDef *ml, PyObject *self, PyObject *module, PyTypeObject *cls)
Wartos¢ zwracana: nowa referencja. Czes¢ stabilnego ABI od wersji 3.9. Turn ml into a Python callable object.
The caller must ensure that m/ outlives the callable. Typically, ml is defined as a static variable.

The self parameter will be passed as the self argument to the C function in m1->ml_meth when invoked. self
can be NULL.

The callable object’s __module__ attribute can be set from the given module argument. module should be
a Python string, which will be used as name of the module the function is defined in. If unavailable, it can be
set to None or NULL.

> Zobacz takze

function._ _module_

The cls parameter will be passed as the defining_class argument to the C function. Must be set if METH METHOD
issetonml->ml_flags.

Added in version 3.9.

PyObject *PyCFunction_NewEx (PyMethodDef *ml, PyObject *self, PyObject *module)
Wartosé zwracana: nowa referencja. Czes¢ stabilnego ABIL. Equivalent to PyCMethod_New (ml, self,
module, NULL).

PyObject *PyCFunction_New (PyMethodDef *ml, PyObject *self)

Wartos¢ zwracana: nowa referencja. Czesé stabilnego ABI od wersji 3.4. Equivalent to PyCMethod_New (m1,
self, NULL, NULL).

288 Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

12.2.3 Accessing attributes of extension types

type PyMemberDef

Czes¢ stabilnego ABI (w tym wszystkie sktadniki). Structure which describes an attribute of a type which cor-
responds to a C struct member. When defining a class, put a NULL-terminated array of these structures in the
tp_members slot.

Its fields are, in order:

const char *name

Name of the member. A NULL value marks the end of a PyMemberDef [] array.
The string should be static, no copy is made of it.

int type
The type of the member in the C struct. See Member types for the possible values.

Py_ssize_t offset
The offset in bytes that the member is located on the type’s object struct.

int £lags
Zero or more of the Member flags, combined using bitwise OR.

const char *doc

The docstring, or NULL. The string should be static, no copy is made of it. Typically, it is defined using
PyDoc_STR.

By default (when £1ags is 0), members allow both read and write access. Use the Py READONLY flag for read-
-only access. Certain types, like Py_ T STRING, imply Py_READONLY. Only Py T OBJECT EX (and legacy
T_OBJECT) members can be deleted.

For heap-allocated types (created using Py Type_ FromSpec () or similar), PyMemberDe f may contain a de-
finition for the special member "__vectorcalloffset_ ", corresponding to tp_vectorcall offset
in type objects. This member must be defined with py_T PYSSIZET, and either Py READONLY or
Py_READONLY | Py RELATIVE_OFFSET. For example:

static PyMemberDef spam_type_members[] = {
{"__vectorcalloffset_ ", Py_T_ PYSSIZET,
offsetof (Spam_object, vectorcall), Py_READONLY},
{NULL} /* Sentinel */

bi

(You may need to #include <stddef.h> for offsetof ().)

The legacy offsets tp dictoffset and tp weaklistoffset can be defined similarly using
"__dictoffset_ " and "__weaklistoffset__ " members, but extensions are strongly encouraged to
use Py TPFLAGS_MANAGED_DICT and Py _TPFLAGS _MANAGED_WEAKREF instead.

Zmienione w wersji 3.12: PyMemberDef is always available. Previously, it required including
"structmember.h".

Zmienione w wersji 3.14: py RELATIVE_OFFSET is now allowed for "__ vectorcalloffset ",
" dictoffset_ "and" weaklistoffset ".

PyObject *PyMember_GetOne (const char *obj_addr, struct PyMemberDef *m)
Czes¢ stabilnego ABI. Get an attribute belonging to the object at address 0bj_addr. The attribute is described
by PyMemberDe f m. Returns NULL on error.

Zmienione w wersji 3.12: PyMember_GetOne is always available. Previously, it required including
"structmember.h".
int PyMember_SetOne (char *obj_addr, struct PyMemberDef *m, PyObject *0)

Czes¢ stabilnego ABI. Set an attribute belonging to the object at address obj_addr to object o. The attribute to
set is described by PyMemberDe £ m. Returns 0 if successful and a negative value on failure.

12.2. Wspolne struktury obiektow 289

The Python/C API, Wydanie 3.14.0a5

Zmienione w wersji 3.12: PyMember_ SetOne is always available. Previously, it required including
"structmember.h".

Member flags
The following flags can be used with PyMemberDef. flags:

Py_READONLY
Not writable.

Py_AUDIT_READ
Emit an object.__getattr__ audit event before reading.

Py RELATIVE_OFFSET

Indicates that the o F £set of this PyMemberDef entry indicates an offset from the subclass-specific data, rather
than from PyObject.

Can only be used as part of Py_tp_members slot when creating a class using negative basicsize. It is
mandatory in that case.

This flag is only used in Py Type S1ot. When setting t p_members during class creation, Python clears it and
sets PyMemberDef.offset to the offset from the PyObject struct.

Zmienione w wersji 3.10: The RESTRICTED, READ_RESTRICTED and WRITE_RESTRICTED macros available
with #include "structmember.h" are deprecated. READ_RESTRICTED and RESTRICTED are equivalent to
Py _AUDIT_READ; WRITE_RESTRICTED does nothing.

Zmienione w wersji 3.12: The READONLY macro was renamed to Py_READONLY. The PY_AUDIT_READ macro
was renamed with the Py_ prefix. The new names are now always available. Previously, these required #include
"structmember.h". The header is still available and it provides the old names.

Member types

PyMemberDef . type can be one of the following macros corresponding to various C types. When the member is
accessed in Python, it will be converted to the equivalent Python type. When it is set from Python, it will be converted
back to the C type. If that is not possible, an exception such as TypeError or ValueError is raised.

Unless marked (D), attributes defined this way cannot be deleted using e.g. del or delattr ().

290 Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

Macro name C type Python type
char int
Py T BYTE
short int
Py T_SHORT
int int
Py T_INT
long int
Py _T_LONG
long long int

Py_T_LONGLONG

unsigned char int
Py T_UBYTE

unsigned int int
Py _T_UINT

unsigned short int
Py_T_USHORT

unsigned long int
Py _T_ULONG

unsigned long long int
Py_T_ULONGLONG

Py _ssize_ t int
Py T _PYSSIZET

float float
Py T_FLOAT

double float
Py _T_DOUBLE

char (written as O or 1) bool
Py _T_BOOL

const char* (*) str (RO)
Py T_STRING

const char[] (*) str (RO)
Py T_STRING_INPLACE

char (0-127) str (*%)
Py T CHAR

PyObject* object (D)

Py T_OBJECT_EX

(*): Zero-terminated, UTF8-encoded C string. With py_T_STRING the C representation is a pointer;
with Py_T_STRING_INPLACE the string is stored directly in the structure.

12.2. Wspolne struktury obiektow 291

The Python/C API, Wydanie 3.14.0a5

(**): String of length 1. Only ASCII is accepted.
(RO): Implies Py_READONLY.

(D): Can be deleted, in which case the pointer is set to NULL. Reading a NULL pointer raises
AttributeError.

Added in version 3.12: In previous versions, the macros were only available with #include "structmember.h"
and were named without the py_ prefix (e.g. as T_INT). The header is still available and contains the old names,
along with the following deprecated types:
T_OBJECT
Like Ppy_T_OBJECT_EX, but NULL is converted to None. This results in surprising behavior in Python: deleting
the attribute effectively sets it to None.
T_NONE
Always None. Must be used with Py READONLY.

Defining Getters and Setters

type PyGetSetDef
Czes¢ stabilnego ABI (w tym wszystkie sktadniki). Structure to define property-like access for a type. See also
description of the Py TypeObject.tp_getset slot.
const char *name
attribute name
gelter get
C function to get the attribute.
selter set

Optional C function to set or delete the attribute. If NULL, the attribute is read-only.

const char *doc

optional docstring

void *closure
Optional user data pointer, providing additional data for getter and setter.
typedef PyObject *(*getter)(PyObject*, void*)
Czesé stabilnego ABI. The get function takes one PyObject* parameter (the instance) and a user data pointer
(the associated closure):

It should return a new reference on success or NULL with a set exception on failure.

typedef int (*setter)(PyObject*, PyObject*, void*)
Czes¢ stabilnego ABI. set functions take two PyObject* parameters (the instance and the value to be set)
and a user data pointer (the associated closure):

In case the attribute should be deleted the second parameter is NULL. Should return 0 on success or —1 with
a set exception on failure.

12.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type:
the Py TypeObject structure. Type objects can be handled using any of the PyObject_* or PyType_ * functions,
but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects
behave, so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object
stores a large number of values, mostly C function pointers, each of which implements a small part of the type’s
functionality. The fields of the type object are examined in detail in this section. The fields will be described in the
order in which they occur in the structure.

292 Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

In addition to the following quick reference, the Przykfady section provides at-a-glance insight into the meaning and

use of PyTypeObject.

12.3.1 Quick Reference

»tp slots”
PyTypeObject Slotston 294 1 Type special methods/attrs In-
fOSlrona 294,2
CTDI
<R> tp_name const char * __name X X
tp_basicsize Py _ssize_t X X X
tp_itemsize Py ssize_t X X
tp_dealloc destructor X X X
tp_vectorcall_offset Py ssize_t X X
(tp_getattr) getattrfunc __getattribute__, __getattr__ G
(tp_setattr) setattrfunc __setattr__, _ delattr__ G
tp_as_async PyAsyncMethods * sub-slots %
tp_repr reprfunc __repr__ X X X
tp_as_number PyNumberMethods * sub-slots %
tp_as_sequence PySequenceMethods * sub-slots %
tp_as_mapping PyMappingMethods * sub-slots %
tp_hash hashfunc __hash__ X G
tp_call ternaryfunc _call__ X X
tp_str reprfunc _ str X X
tp_getattro getattrofunc __getattribute__, __getattr__ X X G
tp_setattro setattrofunc __setattr__, _ delattr__ X X G
tp_as_buffer PyBufferProcs * %
tp_flags nieoznaczony typ dtugi X X ?
tp_doc const char * __doc X X
tp_traverse traverseproc X G
tp_clear inquiry X G
tp_richcompare richcmpfunc _lt ,_le , _eq ,_ne , X G
gt,_ ge
(tp_weaklistoffset) Py _ssize_t X ?
tp_iter getiterfunc _ iter_
tp_iternext iternextfunc _ next__ X
tp_methods PyMethodDef [] X X
tp_members PyMemberDef [] X
tp_getset PyGetSetDef [] X X
tp_base PyTypeObject * _ base_ X
tp_dict PyObject * _ dict__ ?
tp_descr_get descrget func __get X
tp_descr_set descrsetfunc __set_, delete X
(tp_dictoffset) Py_ssize_ t X ?
tp_init initproc __init__ X X X
tp_alloc allocfunc X ? 7
tp_new newfunc __hew___ X X ?7?
tp_free freefunc X X777
tp_is_gc inquiry X X
<tp_bases> PyObject * __bases__ ~
<tp_mro> PyObject * _ mro___ ~
[tp_cache] PyObject *
[tp_subclasses] void * __subclasses___
[tp_weaklist] PyObject *
(tp_del) destructor

cigg dalszy na nastepnej stronie

12.3. Type Objects

293

The Python/C API, Wydanie 3.14.0a5

Tabela 1 - kontynuacja poprzedniej strony

PyTypeObiject Slot!

[tp_version_tag]
tp_finalize
tp_vectorcall
[tp_watched]

Type special methods/attrs In-
fo’
CTDI
nieoznaczony typ int
destructor _del X
vectorcallfunc

nieoznaczony typ znakowy

sub-slots
Slot Type special methods
am_await unaryfunc __await__
am_aiter unaryfunc __aiter__
am_anext unaryfunc __anext___
am_send sendfunc
nb_add binaryfunc _add___ radd__
nb_inplace_add binaryfunc __dadd__
nb_subtract binaryfunc _sub___ rsub__
nb_inplace_subtract binaryfunc __isub__
nb_multiply binaryfunc ~mul rmul
nb_inplace_multiply binaryfunc __imul__
nb_remainder binaryfunc ~mod____rmod__
nb_inplace_remainder binaryfunc __imod__
nb_divmod binaryfunc _divmod__ __rdi-
vmod
nb_power ternaryfunc __pOW__ _ TpOwW__
nb_inplace_power ternaryfunc 7ipOW7
nb_negative unaryfunc __neg__
nb_positive unaryfunc __pos__
nb_absolute unaryfunc __abs__
nb_bool inquiry __bool__
nb_invert unaryfunc __invert__
nb_1lshift binaryfunc __Ishift_ _ rlshift_
nb_inplace_lshift binaryfunc __ilshift

cigg dalszy na nastepnej stronie

! (): A slot name in parentheses indicates it is (effectively) deprecated.
<>: Names in angle brackets should be initially set to NULL and treated as read-only.
[]: Names in square brackets are for internal use only.
<R> (as a prefix) means the field is required (must be non-NULL).

2 Columns:

,»0”: set on PyBaseObject_Type

,I”’:seton Py Type_ Type

,»D”: default (if slot is set to NULL)

X - PyType Ready sets this value if it is NULL
~ — PyType_Ready always sets this value (it should be NULL)
? — PyType_Ready may set this value depending on other slots

Also see the inheritance column

,,I’”: inheritance

>

o

V@

("T"y .

- type slot is inherited via *PyType_Ready* if defined with a *NULL* value

— the slots of the sub-struct are inherited individually

— inherited, but only in combination with other slots; see the slot's description
— it's complicated; see the slot's description

Note that some slots are effectively inherited through the normal attribute lookup chain.

294

Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

Tabela 2 - kontynuacja poprzedniej strony

Slot Type special methods
nb_rshift binaryfunc __rshift__
__rrshift__
nb_inplace_rshift binaryfunc __irshift
nb_and binaryfunc _and___ rand__
nb_inplace_and binaryfunc __jand__
nb_xor binaryfunc __XOr__ _ rXor__
nb_inplace_xor binaryfunc __ixor__
nb_or binaryfunc _or__ _ ror__
nb_inplace_or binaryfunc __dor__
nb_int unaryfunc _int__
nb_reserved void *
nb_float unaryfunc _ float_
nb_floor_divide binaryfunc _ floordiv__
nb_inplace_floor_divide binaryfunc __ifloordiv__
nb_true_divide binaryfunc _ truediv__
nb_inplace_true_divide binaryfunc __ﬂnwdhg_
nb_index unaryfunc __index
nb_matrix _multiply binaryfunc _ matmul__ __ rmat-
mul__
nb_inplace_matrix_multiply binaryfunc __imatmul
mp_length lenfunc _len__
mp_subscript binaryfunc __getitem__
mp_ass_subscript objobjargproc _ setitem__, _ deli-
tem__
sq_length lenfunc _len__
sq_concat binaryfunc _add__
sq_repeat ssizeargfunc _ mul__
sq_item ssizeargfunc __getitem__
sq_ass_item ssizeobjargproc _ setitem__ __deli-
tem___
sq_contains objobjproc __contains__
sq_inplace_concat binaryfunc _ dadd__
sq_inplace_repeat ssizeargfunc _ imul__

bf_getbuffer
bf_releasebuffer

getbufferproc ()

releasebufferproc/()

12.3. Type Objects

295

The Python/C API, Wydanie 3.14.0a5

slot typedefs

typedef Parameter Types Return Type
allocfunc PyObject *
PyTypeObject *
Py ssize_t
destructor PyObject * void
freefunc void * void
traverseproc int
PyObject *
visitproc
void *
newfunc PyObject *
PyTypeObject *
PyObject *
PyObject *
initproc int
PyObject *
PyObject *
PyObject *
reprfunc PyObject * PyObject *
getattrfunc PyObject *
PyObject *
const char *
setattrfunc int
PyObject *
const char *
PyObject *
getattrofunc PyObject *
PyObject *
PyObject *
setattrofunc int
PyObject *
PyObject *
PyObject *
descrget func PyObject *
PyObject *
PyObject *
PyObject *
descrset func int
PyObject *
PyOhject *
296 PyObject * Rozdziat 12. Object Implementation Support
hashfunc PyObject * Py_hash_t
richcmpfunc PyObject *

The Python/C API, Wydanie 3.14.0a5

See Slot Type typedefs below for more detail.

12.3.2 PyTypeObject Definition

The structure definition for Py TypeObject can be found in Tnclude/object .h. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

Py_ssize_t tp_vectorcall offset;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */
/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */

traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */

richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

(ciag dalszy na nastgpnej stronie)

12.3. Type Objects 297

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

// Strong reference on a heap type, borrowed reference on a static type
struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;
vectorcallfunc tp_vectorcall;

/* bitset of which type-watchers care about this type */
unsigned char tp_watched;

} PyTypeObject;

12.3.3 PyObject Slots

The type object structure extends the PyvVarobject structure. The ob_size field is used for dynamic types (cre-
ated by type_new (), usually called from a class statement). Note that Py Type_ Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.

Py_ssize_t PyObject .ob_refent

Czes¢ stabilnego ABI. This is the type object’s reference count, initialized to 1 by the PyObject _HEAD_ INIT
macro. Note that for statically allocated type objects, the type’s instances (objects whose ob_ t ype points back
to the type) do not count as references. But for dynamically allocated type objects, the instances do count as
references.

Inheritance:

This field is not inherited by subtypes.

PyTypeObject *PyObject .ob_type

Czes¢ stabilnego ABI. This is the type’s type, in other words its metatype. It is initialized by the argument to the
PyObject_ HEAD_INIT macro, and its value should normally be sPyType_Type. However, for dynamically
loadable extension modules that must be usable on Windows (at least), the compiler complains that this is
not a valid initializer. Therefore, the convention is to pass NULL to the PyObject HEAD_INIT macro and to

298

Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

initialize this field explicitly at the start of the module’s initialization function, before doing anything else. This
is typically done like this:

[Foo_Type .0b_type &PyType_Type;

J

This should be done before any instances of the type are created. PyType Ready () checks if ob_type is
NULL, and if so, initializes it to the ob_type field of the base class. PyType_Ready () will not change this
field if it is non-zero.

Inheritance:

This field is inherited by subtypes.

12.3.4 PyVarObject Slots

Py _ssize_t PyVarObject .ob_size
Czes¢ stabilnego ABI. For statically allocated type objects, this should be initialized to zero. For dynamically
allocated type objects, this field has a special internal meaning.
Inheritance:

This field is not inherited by subtypes.

12.3.5 PyTypeObiject Slots

Each slot has a section describing inheritance. If Py Type Ready () may set a value when the field is set to NULL
then there will also be a ,,Default” section. (Note that many fields set on PyBaseObject_Type and PyType_Type
effectively act as defaults.)

const char *PyTypeObject .tp_name

Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type named T defined in module M in subpackage ¢ in package P
should have the tp_name initializer "p.Q.M.T".

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored
in the type dict as the value for key ' __module_ '.

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot
is made accessible as the __module__ attribute, and everything after the last dot is made accessible as the
__name___ attribute.

If no dot is present, the entire tp name field is made accessible as the _ name__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created
with pydoc.

This field must not be NULL. It is the only required field in PyTypeObject () (other than potentially
tp_itemsize).

Inheritance:
This field is not inherited by subtypes.

Py_ssize_t PyTypeObject .tp_basicsize
Py _ssize t PyTypeObject .tp_itemsize
These fields allow calculating the size in bytes of instances of the type.
There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with

variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instances, all in-
stances have the same size, given in tp_basicsize.

For a type with variable-length instances, the instances must have an ob_size field, and the instance size is
tp_basicsizeplus Ntimes tp_itemsize, where N is the ,length” of the object. The value of N is typically

12.3. Type Objects 299

The Python/C API, Wydanie 3.14.0a5

stored in the instance’s ob_size field. There are exceptions: for example, ints use a negative ob_size to
indicate a negative number, and N is abs (ob_size) there. Also, the presence of an ob_size field in the
instance layout doesn’t mean that the instance structure is variable-length (for example, the structure for the
list type has fixed-length instances, yet those instances have a meaningful ob_si ze field).

The basic size includes the fields in the instance declared by the macro PyObject_ HEAD or
PyObject_ VAR _HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an initia-
lizer for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout.
The basic size does not include the GC header size.

A note about alignment: if the variable items require a particular alignment, this should be taken ca-
re of by the value of tp basicsize. Example: suppose a type implements an array of double.
tp_itemsize is sizeof (double). It is the programmer’s responsibility that tp_basicsize is a multi-
ple of sizeof (double) (assuming this is the alignment requirement for double).

For any type with variable-length instances, this field must not be NULL.
Inheritance:

These fields are inherited separately by subtypes. If the base type has a non-zero tp_itemsize, it is gene-
rally not safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the
implementation of the base type).

destructor PyTypeObject .tp_dealloc

A pointer to the instance destructor function. This function must be defined unless the type guarantees that
its instances will never be deallocated (as is the case for the singletons None and E11ipsis). The function
signature is:

[Void tp_dealloc (PyObject *self);

The destructor function is called by the py_DECREF () and Py_XDECREF () macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor
function should free all references which the instance owns, free all memory buffers owned by the instance
(using the freeing function corresponding to the allocation function used to allocate the buffer), and call the
type’s tp_ free function. If the type is not subtypable (doesn’t have the Py TPFLAGS BASETYPE flag bit set),
it is permissible to call the object deallocator directly instead of via tp_free. The object deallocator should
be the one used to allocate the instance; this is normally PyObject_Free () if the instance was allocated
using PyObject_New Or PyObject_NewVar, or PyObject_GC_Del () if the instance was allocated using
PyObject_GC_New Or PyObject_GC_NewVar.

If the type supports garbage collection (has the Py TPFLAGS_HAVE_GC flag bit set), the destructor should call
PyObject_GC_UnTrack () before clearing any member fields.

static void foo_dealloc (foo_object *self) {
PyObject_GC_UnTrack (self);
Py_CLEAR (self->ref);
Py_TYPE (self) ->tp_free ((PyObject *)self);

Finally, if the type is heap allocated (Py_TPFLAGS HEAPTYPE), the deallocator should release the owned
reference to its type object (via Py_DECREF ()) after calling the type deallocator. In order to avoid dangling
pointers, the recommended way to achieve this is:

static void foo_dealloc (foo_object *self) {
PyTypeObject *tp = Py_TYPE (self);
// free references and buffers here
tp->tp_free(self);
Py_DECREF (tp) ;

300

Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

A\ Ostrzezenie

In a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread
which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by
a garbage collection on any thread). This is not a problem for Python API calls, since the thread on which
tp_dealloc is called will own the Global Interpreter Lock (GIL). However, if the object being destroyed
in turn destroys objects from some other C or C++ library, care should be taken to ensure that destroying
those objects on the thread which called tp_dealloc will not violate any assumptions of the library.

Inheritance:
This field is inherited by subtypes.

Py _ssize_t PyTypeObject.tp_vectorcall_offset

An optional offset to a per-instance function that implements calling the object using the vectorcall protocol,
a more efficient alternative of the simpler tp_call.

This field is only used if the flag Py TPFIAGS HAVE VECTORCALL is set. If so, this must be a positive integer
containing the offset in the instance of a vectorcall func pointer.

The vectorcallfunc pointer may be NULL, in which case the instance behaves as if
Py_TPFLAGS_HAVE_VECTORCALL was not set: calling the instance falls back to tp_call.

Any class that sets Py_TPFLAGS_HAVE_VECTORCALL must also set tp_call and make sure its behaviour is
consistent with the vectorcallfunc function. This can be done by setting tp_call to PyVectorcall_Call ().

Zmienione w wersji 3.8: Before version 3.8, this slot was named tp_print. In Python 2.x, it was used for
printing to a file. In Python 3.0 to 3.7, it was unused.

Zmienione w wersji 3.12: Before version 3.12, it was not recommended for mutable heap types to implement
the vectorcall protocol. When a user sets __call__ in Python code, only #p_call is updated, likely making it
inconsistent with the vectorcall function. Since 3.12, setting __call__ will disable vectorcall optimization by
clearing the Py_TPFLAGS_HAVE_VECTORCALL flag.

Inheritance:

This field is always inherited. However, the pPy_ TPFLAGS_HAVE_VECTORCALL flag is not always inherited. If
it’s not set, then the subclass won’t use vectorcall, except when PyvVectorcall_call () is explicitly called.

getattrfunc PyTypeObject .tp_getattr
An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name.

Inheritance:
Group: tp_getattr, tp_getattro

This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

setattrfunc Py TypeObject .tp_setattr

An optional pointer to the function for setting and deleting attributes.

This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name.

Inheritance:
Group: tp_setattr, tp_setattro

This field is inherited by subtypes together with tp_setattro: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

12.3. Type Objects 301

The Python/C API, Wydanie 3.14.0a5

PyAsyncMethods *Py TypeObject .tp_as_async

Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and
asynchronous iterator protocols at the C-level. See Async Object Structures for details.

Added in version 3.5: Formerly known as tp_compare and tp_reserved.
Inheritance:

The tp_as_async field is not inherited, but the contained fields are inherited individually.

reprfunc PyTypeObject .tp_repr

An optional pointer to a function that implements the built-in function repr ().

The signature is the same as for PyObject_Repr ():

[Pyobject *tp_repr (PyObject *self);

)

The function must return a string or a Unicode object. Ideally, this function should return a string that, when
passed to eval (), given a suitable environment, returns an object with the same value. If this is not feasible,
it should return a string starting with '<' and ending with '>"' from which both the type and the value of the
object can be deduced.

Inheritance:
This field is inherited by subtypes.
Default:

When this field is not set, a string of the form <%s object at %p> is returned, where %s is replaced by the
type name, and $p by the object’s memory address.

PyNumberMethods *PyTypeObject .tp_as_number

Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documented in Number Object Structures.

Inheritance:

The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods *PyTypeObject .tp_as_sequence

Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documented in Sequence Object Structures.

Inheritance:

The tp_as_seguence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods *PyTypeObject .tp_as_mapping

Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented in Mapping Object Structures.

Inheritance:

The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject .tp_hash

An optional pointer to a function that implements the built-in function hash ().

The signature is the same as for PyObject_Hash ():

[Py_hash_t tp_hash (PyObject *); }

The value -1 should not be returned as a normal return value; when an error occurs during the computation
of the hash value, the function should set an exception and return —1.

When this field is not set (and tp_richcompare is not set), an attempt to take the hash of the object raises
TypeError. This is the same as setting it to PyObject_HashNot Implemented ().

302

Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

This field can be set explicitly to PyObject HashNotImplemented () to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash__ = None at the Python level,
causing isinstance (o, collections.Hashable) to correctly return False. Note that the converse is
also true - setting __hash__ = None on a class at the Python level will result in the tp_hash slot being set
to PyObject_HashNotImplemented ().

Inheritance:
Group: tp_hash, tp_richcompare

This field is inherited by subtypes together with tp richcompare: a subtype inherits both of
tp_richcompare and tp_hash, when the subtype’s tp_richcompare and tp_hash are both NULL.

Default:
PyBaseObject_Type UseS PyObject_GenericHash ().

ternaryfunc PyTypeObject .tp_call

An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call ():

[PyObject *tp_call (PyObject *self, PyObject *args, PyObject *kwargs); J

Inheritance:
This field is inherited by subtypes.
reprfunc PyTypeObject .tp_str

An optional pointer to a function that implements the built-in operation str (). (Note that st r is a type now,
and str () calls the constructor for that type. This constructor calls PyObject_Str () to do the actual work,
and Pyobject_Str () will call this handler.)

The signature is the same as for PyObject_Str():

[PyObject *tp_str (PyObject *self); }

The function must return a string or a Unicode object. It should be a .friendly” string representation of the
object, as this is the representation that will be used, among other things, by the print () function.

Inheritance:

This field is inherited by subtypes.

Default:

When this field is not set, PyObject_Repr () is called to return a string representation.

getattrofunc PyTypeObject .tp_getattro

An optional pointer to the get-attribute function.

The signature is the same as for PyObject GetAttr():

[PyObject *tp_getattro (PyObject *self, PyObject *attr); }

It is usually convenient to set this field to PyObject_GenericGetAttr (), which implements the normal
way of looking for object attributes.

Inheritance:
Group: tp_getattr, tp_getattro

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

Default:

PyBaseObject_Type Uses PyObject_GenericGetAttr ().

12.3. Type Objects 303

The Python/C API, Wydanie 3.14.0a5

setattrofunc PyTypeObject .tp_setattro

An optional pointer to the function for setting and deleting attributes.

The signature is the same as for PyObject_SetAttr():

[int tp_setattro (PyObject *self, PyObject *attr, PyObject *value);

)

In addition, setting value to NULL to delete an attribute must be supported. It is usually convenient to set this
field to PyObject_GenericSetAttr (), which implements the normal way of setting object attributes.

Inheritance:
Group: tp_setattr, tp_setattro

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

Default:

PyBaseObject_Type Uses PyObject_GenericSetAttr ().

PyBufferProcs *pPyTypeObject .tp_as_buffer

Pointer to an additional structure that contains fields relevant only to objects which implement the buffer
interface. These fields are documented in Buffer Object Structures.

Inheritance:

The tp_as_burrer field is not inherited, but the contained fields are inherited individually.

unsigned long Py TypeObject.tp_£flags

This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others
are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number, tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not al-
ways present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be
considered to have a zero or NULL value instead.

Inheritance:

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py TPFLAGS_HAVE_GC flag bit is inherited together with the
tp_traverseand tp_clear fields, i.e.if the Py TPFLAGS HAVE_GC flag bitis clear in the subtype and the
tp_traverseand tp_clear fields in the subtype exist and have NULL values.

Default:
PyBaseObject_Type Uses Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE.
Bit Masks:

The following bit masks are currently defined; these can be ORed together using the | operator to form the
value of the tp_rlags field. The macro PyType HasFeature () takes a type and a flags value, #p and f, and
checks whether tp->tp_flags & f is non-zero.

Py TPFLAGS_HEAPTYPE

This bit is set when the type object itself is allocated on the heap, for example, types created dynamically
using PyType_FromSpec (). In this case, the ob_type field of its instances is considered a reference
to the type, and the type object is INCREFed when a new instance is created, and DECREFed when
an instance is destroyed (this does not apply to instances of subtypes; only the type referenced by the
instance’s ob_type gets INCREFed or DECREFed). Heap types should also support garbage collection
as they can form a reference cycle with their own module object.

Inheritance:

m

304

Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

Py_TPFLAGS_BASETYPE

This bit is set when the type can be used as the base type of another type. If this bit is clear, the type
cannot be subtyped (similar to a ,,final” class in Java).

Inheritance:
77
Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by Py Type Ready ().
Inheritance:
7
Py_TPFLAGS_READYING
This bit is set while PyType Ready () is in the process of initializing the type object.
Inheritance:
7
Py_TPFLAGS_HAVE_GC

This bit is set when the object supports garbage collection. If this bit is set, instances must be created
using PyObject_GC_New and destroyed using PyObject GC _Del (). More information in section
Supporting Cyclic Garbage Collection. This bit also implies that the GC-related fields tp_traverse and
tp_clear are present in the type object.

Inheritance:
Group: Py TPFLAGS_HAVE_GC, tp_traverse, tp_clear

The py_TPFLAGS_HAVE_GC flag bit is inherited together with the tp_traverseand tp_clear fields,
i.e.if the Py_TPFLAGS_HAVE_GC flag bit is clear in the subtype and the tp_traverseand tp_clear
fields in the subtype exist and have NULL values.

Py_TPFLAGS_DEFAULT

This is a bitmask of all the bits that pertain to the existence of certain fields in the type object and its exten-
sion structures. Currently, it includes the following bits: Py_ TPFLAGS_HAVE_STACKLESS_EXTENSION.

Inheritance:
m
Py_TPFLAGS_METHOD_DESCRIPTOR
This bit indicates that objects behave like unbound methods.
If this flag is set for type (meth), then:

e meth. get_ (obj, cls) (*args, **kwds) (with obj not None) must be equivalent to
meth (obj, *args, **kwds).

e meth.__get__ (None, cls) (*args, **kwds) must be equivalent to meth (*args,
**kwds) .

This flag enables an optimization for typical method calls like ob- .meth () : it avoids creating a tempo-
rary ,,bound method” object for obj .meth.

Added in version 3.8.
Inheritance:

This flag is never inherited by types without the Py 7PFLAGS 1MMUTABLETYPE flag set. For extension
types, it is inherited whenever tp_descr_get is inherited.

12.3.

Type Objects 305

The Python/C API, Wydanie 3.14.0a5

Py_TPFLAGS_MANAGED_DICT

This bit indicates that instances of the class have a ~object.__dict__ attribute, and that the space for the
dictionary is managed by the VM.

If this flag is set, Py TPFLAGS_HAVE_GC should also be set.

The type traverse function must call PyObject_VisitManagedDict () and its clear function must call
PyObject_ClearManagedDict ().

Added in version 3.12.
Inheritance:

This flag is inherited unless the tp_dictoffset field is set in a superclass.

Py_TPFLAGS_MANAGED_WEAKREF

This bit indicates that instances of the class should be weakly referenceable.
Added in version 3.12.
Inheritance:

This flag is inherited unless the tp_weaklistoffset field is set in a superclass.

Py_TPFLAGS_ITEMS_AT END

Only usable with variable-size types, i.e. ones with non-zero tp_itemsize.

Indicates that the variable-sized portion of an instance of this type is at the end of the instance’s memory
area, at an offset of Py_TYPE (obj) ->tp_basicsize (which may be different in each subclass).

When setting this flag, be sure that all superclasses either use this memory layout, or are not variable-sized.
Python does not check this.

Added in version 3.12.
Inheritance:

This flag is inherited.

Py_TPFLAGS_LONG_SUBCLASS
Py_TPFLAGS_LIST SUBCLASS
Py_TPFLAGS_TUPLE_SUBCLASS
Py_TPFLAGS_BYTES_SUBCLASS
Py_TPFLAGS_UNICODE_SUBCLASS
Py_TPFLAGS_DICT SUBCLASS
Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS

These flags are used by functions such as PyLong_Check () to quickly determine if a type is a subclass
of a built-in type; such specific checks are faster than a generic check, like PyObject_IsInstance ().
Custom types that inherit from built-ins should have their tp_fr1ags set appropriately, or the code that
interacts with such types will behave differently depending on what kind of check is used.

Py_TPFLAGS_HAVE_FINALIZE

This bit is set when the tp_finalize slotis present in the type structure.
Added in version 3.4.

Niezalecane od wersji 3.8: This flag isnt necessary anymore, as the interpreter assumes the
tp_finalize slotis always present in the type structure.

306

Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

Py_TPFLAGS_HAVE_VECTORCALL

This bit is set when the class implements the vectorcall protocol. See tp_vectorcall offset for
details.

Inheritance:
This bit is inherited if tp_call is also inherited.
Added in version 3.9.

Zmienione w wersji 3.12: This flag is now removed from a class when the class’s __call__ () method
is reassigned.

This flag can now be inherited by mutable classes.

Py_TPFLAGS_IMMUTABLETYPE

This bit is set for type objects that are immutable: type attributes cannot be set nor deleted.
PyType_Ready () automatically applies this flag to static types.

Inheritance:

This flag is not inherited.

Added in version 3.10.

Py_TPFLAGS_DISALLOW_INSTANTIATION

Disallow creating instances of the type: set tp_new to NULL and don’t create the __new__ key in the
type dictionary.

The flag must be set before creating the type, not after. For example, it must be set before
PyType_Ready () is called on the type.

The flag is set automatically on static types if tp_baseis NULL or sPyBaseObject_Typeand tp_new
is NULL.

Inheritance:

This flag is not inherited. However, subclasses will not be instantiable unless they provide a non-NULL
tp_new (which is only possible via the C API).

© Informacja

To disallow instantiating a class directly but allow instantiating its subclasses (e.g. for an abstract base
class), do not use this flag. Instead, make tp_new only succeed for subclasses.

Added in version 3.10.

Py TPFLAGS_MAPPING

This bit indicates that instances of the class may match mapping patterns when used as the subject of
a match block. It is automatically set when registering or subclassing collections.abc.Mapping,
and unset when registering collections.abc.Sequence.

© Informacja

Py TPFLAGS_MAPPINGand Py TPFLAGS_SEQUENCE are mutually exclusive;itis an error to enable
both flags simultaneously.

Inheritance:

This flag is inherited by types that do not already set Py TPFLAGS SEQUENCE.

12.3. Type Objects 307

The Python/C API, Wydanie 3.14.0a5

> Zobacz takze

PEP 634 - Structural Pattern Matching: Specification

Added in version 3.10.

Py_TPFLAGS_SEQUENCE

This bit indicates that instances of the class may match sequence patterns when used as the subject of
amatch block. It is automatically set when registering or subclassing collections.abc.Sequence,
and unset when registering collections.abc.Mapping.

© Informacja

Py TPFLAGS_MAPPINGand Py TPFLAGS_SEQUENCE are mutually exclusive; it is an error to enable
both flags simultaneously.

Inheritance:

This flag is inherited by types that do not already set Py TPFLAGS MAPPING.

> Zobacz takze

PEP 634 - Structural Pattern Matching: Specification

Added in version 3.10.

Py _TPFLAGS_VALID_ VERSION TAG
Internal. Do not set or unset this flag. To indicate that a class has changed call Py Type Modified ()

A\ Ostrzezenie

This flag is present in header files, but is not be used. It will be removed in a future version of CPython

const char *PyTypeObject.tp_doc

An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as
the _ doc__ attribute on the type and instances of the type.

Inheritance:
This field is not inherited by subtypes.

traverseproc PyTypeObject .tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the
pPy_TPFLAGS_HAVE_GC flag bit is set. The signature is:

[int tp_traverse (PyObject *self, visitproc visit, wvoid *arg); }

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementation
of a tp_traverse function simply calls Py vIS17() on each of the instance’s members that are Python
objects that the instance owns. For example, this is function 1ocal_traverse () fromthe thread extension
module:

308 Rozdziat 12. Object Implementation Support

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0634/

The Python/C API, Wydanie 3.14.0a5

e)
static int

local_traverse (localobject *self, visitproc visit, wvoid *argq)
{

Py _VISIT (self->args);

Py _VISIT (self->kw);

Py_VISIT (self->dict);

return 0O;

}

L J

Note that py_v1s1T () is called only on those members that can participate in reference cycles. Although
there is also a self->key member, it can only be NULL or a Python string and therefore cannot be part of
a reference cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want
to visit it anyway just so the gc module’s get_referents () function will include it.

Heap types (Py_TPFLAGS HEAPTYPE) must visit their type with:

[Py_VISIT (Py_TYPE (self)); J

It is only needed since Python 3.9. To support Python 3.8 and older, this line must be conditional:

#1f PY VERSION_HEX >= 0x03090000
Py_VISIT (Py_TYPE (self));
#endif

If the Py TPFLAGS MANAGED_DICT bit is set in the tp_flags field, the traverse function must call
PyObject_VisitManagedDict () like this:

PyObject_VisitManagedDict ((PyObject*)self, visit, arg);

A\ Ostrzezenie

When implementing tp_traverse, only the members that the instance owns (by having strong references
to them) must be visited. For instance, if an object supports weak references via the tp_weak1ist slot,
the pointer supporting the linked list (what #p_weaklist points to) must not be visited as the instance does
not directly own the weak references to itself (the weakreference list is there to support the weak reference
machinery, but the instance has no strong reference to the elements inside it, as they are allowed to be
removed even if the instance is still alive).

Note that py_VIS1T () requires the visit and arg parameters to local_traverse () to have these specific
names; don’t name them just anything.

Instances of heap-allocated types hold a reference to their type. Their traversal function must therefore either
visit Py TYPE (self), or delegate this responsibility by calling tp_t raverse of another heap-allocated type
(such as a heap-allocated superclass). If they do not, the type object may not be garbage-collected.

Zmienione w wersji 3.9: Heap-allocated types are expected to visit Py_TYPE (self) in tp_traverse. In
earlier versions of Python, due to bug 40217, doing this may lead to crashes in subclasses.

Inheritance:
(houp:Py;TPFLAGS?HAVEfGC,tpﬁtraverse,tpgclear

This field is inherited by subtypes together with tp_cilear and the Py TPFLAGS HAVE_GC flag bit: the flag
bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.
inquiry PyTypeObject .tp_clear

An optional pointer to a clear function for the garbage collector. This is only used if the
py_TPFLAGS_HAVE_GC flag bit is set. The signature is:

12.3. Type Objects 309

https://bugs.python.org/issue40217

The Python/C API, Wydanie 3.14.0a5

[

int tp_clear (PyObject *);

)

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_clear functions in the system must combine to break all reference cycles.
This is subtle, and if in any doubt supply a tp_ c1ear function. For example, the tuple type does not implement
a tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_c1ear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.

Implementations of tp_clear should drop the instance’s references to those of its members that may be
Python objects, and set its pointers to those members to NULL, as in the following example:

-

static int

local_clear (localobject *self)

{
Py_CLEAR (self-—>key);
Py_CLEAR(self->args);
Py_CLEAR (self->kw);
Py_CLEAR(self->dict);
return 0;

(
(
(
(

The Py_CLEAR () macro should be used, because clearing references is delicate: the reference to the contained
object must not be released (via Py_DECREF ()) until after the pointer to the contained object is set to NULL.
This is because releasing the reference may cause the contained object to become trash, triggering a chain of
reclamation activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks,
associated with the contained object). If it’s possible for such code to reference self again, it’s important that
the pointer to the contained object be NULL at that time, so that self knows the contained object can no longer
be used. The Py_CLEAR () macro performs the operations in a safe order.

If the Py TPFLAGS MANAGED_DICT bit is set in the tp_flags field, the traverse function must call
PyObject_ClearManagedDict () like this:

[

PyObject_ClearManagedDict ((PyObject*)self);

J

Note that tp_clear is not always called before an instance is deallocated. For example, when reference
counting is enough to determine that an object is no longer used, the cyclic garbage collector is not involved
and tp_deallocis called directly.

Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained
objects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’s tp_dealloc function to invoke
tp_clear.

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

Inheritance:
(houp:nyTPFLAGS?HAVEfGC,tpﬁtraverse,tchlear

This field is inherited by subtypes together with tp_traverse and the Py TPFLAGS HAVE_ GC flag bit: the
flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

richcmpfunc PyTypeObject .tp_richcompare

An optional pointer to the rich comparison function, whose signature is:

[Pyobject *tp_richcompare (PyObject *self, PyObject *other, int op);

The first parameter is guaranteed to be an instance of the type that is defined by Py Typeob ject.

310

Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_Not Implemented, if another error occurred it must return NULL and set an
exception condition.

The following constants are defined to be used as the third argument for tp richcompare and for
PyObject_RichCompare():

Stata Poréwnanie

<
Py_LT

Py_LE

Py _EQ

Py_NE

Py_GT

Py _GE

The following macro is defined to ease writing rich comparison functions:

Py_RETURN_RICHCOMPARE (VAL_A, VAL_B, op)

Return Py_True or Py_False from the function, depending on the result of a comparison. VAL_A and
VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats). The
third argument specifies the requested operation, as for PyObject_RichCompare ().

The returned value is a new strong reference.
On error, sets an exception and returns NULL from the function.
Added in version 3.7.

Inheritance:

Group: tp_hash, tp_richcompare

This field is inherited by subtypes together with tp_hash: a subtype inherits tp_richcompareand tp_hash
when the subtype’s tp_richcompare and tp_hash are both NULL.

Default:

PyBaseObject_Type provides a tp_richcompare implementation, which may be inherited. However, if
only tp_hash is defined, not even the inherited function is used and instances of the type will not be able to
participate in any comparisons.

Py _ssize_t PyTypeObject.tp_weaklistoffset
While this field is still supported, Py TPFLAGS_MANAGED_WEAKREF should be used instead, if at all possible.
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used

by PyObject_ClearweakRefs () and the PyWeakref_* functions. The instance structure needs to include
a field of type PyObject* which is initialized to NULL.

Do not confuse this field with tp_weak1ist; that is the list head for weak references to the type object itself.

It is an error to set both the Py TPFLAGS MANAGED WEAKREF bitand tp_weaklistoffset.

12.3. Type Objects 311

The Python/C API, Wydanie 3.14.0a5

Inheritance:

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found
via tp_weaklistoffset, this should not be a problem.

Default:

If the Py_TPFLAGS_MANAGED_WEAKREF bit is set in the tp_flags field, then tp_weaklistoffset will
be set to a negative value, to indicate that it is unsafe to use this field.

getiterfunc PyTypeObject .tp_iter

An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function).

This function has the same signature as PyObject_GetIter():

PyObject *tp_iter (PyObject *self);

Inheritance:
This field is inherited by subtypes.

iternextfunc PyTypeObject .tp_iternext

An optional pointer to a function that returns the next item in an iterator. The signature is:

[Pyobject *tp_iternext (PyObject *self);

When the iterator is exhausted, it must return NULL; a StopIteration exception may or may not be set.
When another error occurs, it must return NULL too. Its presence signals that the instances of this type are
iterators.

Iterator types should also define the tp_iter function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signature as PyIter Next ().
Inheritance:
This field is inherited by subtypes.

struct PyMethodDef *pPyTypeObject.tp_methods

An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a method
descriptor.

Inheritance:
This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef *PyTypeObject .tp_members

An optional pointer to a static NULL-terminated array of PyMemberbDef structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a member
descriptor.

Inheritance:
This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef *PyTypeObject.tp_getset

An optional pointer to a static NULL-terminated array of PyGetSetDef structures, declaring computed attri-
butes of instances of this type.

312 Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.

Inheritance:
This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).
PyTypeObject ¥*PyTypeObject .tp_base

An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

© Informacja

Slot initialization is subject to the rules of initializing globals. C99 requires the initializers to be ,,address
constants”. Function designators like Py Type GenericNew (), with implicit conversion to a pointer, are
valid C99 address constants.

However, the unary «&» operator applied to a non-static variable like PyBaseObject_Type is not re-
quired to produce an address constant. Compilers may support this (gcc does), MSVC does not. Both
compilers are strictly standard conforming in this particular behavior.

Consequently, tp_base should be set in the extension module’s init function.

Inheritance:

This field is not inherited by subtypes (obviously).

Default:

This field defaults to sPyBaseObject_Type (Which to Python programmers is known as the type object).
PyObject *pyTypeObject .tp_dict

The type’s dictionary is stored here by Py Type Ready ().

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once Py Type Ready () has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations
(like __add__ ()). Once initialization for the type has finished, this field should be treated as read-only.

Some types may not store their dictionary in this slot. Use Py Type GetDict () to retrieve the dictionary for
an arbitrary type.

Zmienione w wersji 3.12: Internals detail: For static builtin types, this is always NULL. Instead, the dict for such
types is stored on PyInterpreterState. Use PyType GetDict () to get the dict for an arbitrary type.

Inheritance:

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

Default:

If this field is NULL, PyType_Ready () will assign a new dictionary to it.

A\ Ostrzezenie

It is not safe to use PyDict_SetItem () on or otherwise modify tp_dict with the dictionary C-API.

descrgetfunc PyTypeObject .tp_descr_get
An optional pointer to a ,descriptor get” function.

The function signature is:

12.3. Type Objects 313

The Python/C API, Wydanie 3.14.0a5

[PyObject * tp_descr_get (PyObject *self, PyObject *obj, PyObject *type);

Inheritance:

This field is inherited by subtypes.

descrsetfunc PyTypeObject .tp_descr_set

An optional pointer to a function for setting and deleting a descriptor’s value.

The function signature is:

{int tp_descr_set (PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value.
Inheritance:

This field is inherited by subtypes.

Py_ssize_t PyTypeObject .tp_dictoffset

While this field is still supported, Py TPFLAGS MANAGED_DICT should be used instead, if at all possible.

If the instances of this type have a dictionary containing instance variables, this field is non-zero and con-
tains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr ().

Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.
The value specifies the offset of the dictionary from the start of the instance structure.

The tp dictoffset should be regarded as write-only. To get the pointer to the dictionary call
PyObject_GenericGetDict (). Calling PyObject_GenericGetDict () may need to allocate memory
for the dictionary, so it is may be more efficient to call PyObject_GetAttr () when accessing an attribute
on the object.

It is an error to set both the Py TPFLAGS MANAGED DICT bitand tp dictoffset.
Inheritance:

This field is inherited by subtypes. A subtype should not override this offset; doing so could be unsa-
fe, if C code tries to access the dictionary at the previous offset. To properly support inheritance, use
Py_TPFLAGS_MANAGED_DICT.

Default:
This slot has no default. For static types, if the field is NULL then no __dict__ gets created for instances.

If the Py TPFLAGS_MANAGED_DICT bitis set in the tp_flags field, then tp_dictoffset will be set to
-1, to indicate that it is unsafe to use this field.

initproc PyTypeObject .tp_init

An optional pointer to an instance initialization function.

This function correspondstothe __init__ () method of classes. Like __init__ (), itis possible to create an
instance without calling __init__ (), and it is possible to reinitialize an instance by calling its __init__ ()
method again.

The function signature is:

[int tp_init (PyObject *self, PyObject *args, PyObject *kwds);

The self argument is the instance to be initialized; the args and kwds arguments represent positional and key-
word arguments of the callto __init_ ().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after
the type’s tp_new function has returned an instance of the type. If the tp_new function returns an instance of

314

Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

some other type that is not a subtype of the original type, no tp_init function is called; if tp_new returns
an instance of a subtype of the original type, the subtype’s tp_init is called.

Returns 0 on success, —1 and sets an exception on error.
Inheritance:

This field is inherited by subtypes.

Default:

For static types this field does not have a default.

allocfunc PyTypeObject .tp_alloc

An optional pointer to an instance allocation function.

The function signature is:

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems);

Inheritance:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement).
Default:

For dynamic subtypes, this field is always set to Py Type_GenericAlloc (), to force a standard heap alloca-
tion strategy.

For static subtypes, PyBaseObject_Type uses PyType GenericAlloc (). Thatis the recommended value
for all statically defined types.

newfunc PyTypeObject .tp_new

An optional pointer to an instance creation function.

The function signature is:

[PyObject *tp_new (PyTypeObject *subtype, PyObject *args, PyObject *kwds); J

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).

The tp_new function should call subtype->tp_alloc (subtype, nitems) to allocate space for the ob-
ject, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be
ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for immutable
types, all initialization should take place in tp_new, while for mutable types, most initialization should be
deferred to tp_init.

Setthe Py_TPFLAGS DISALLOW_INSTANTIATION flag to disallow creating instances of the type in Python.
Inheritance:

This field is inherited by subtypes, except it is not inherited by static fypes whose tp_base is NULL or
&PyBaseObject_Type.

Default:

For static types this field has no default. This means if the slot is defined as NULL, the type cannot be called to
create new instances; presumably there is some other way to create instances, like a factory function.

[freefunc PyTypeObject .tp_£free

An optional pointer to an instance deallocation function. Its signature is:

[void tp_free(void *self); }

12.3. Type Objects 315

The Python/C API, Wydanie 3.14.0a5

An initializer that is compatible with this signature is PyObject_ Free ().

Inheritance:

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement)
Default:

In dynamic subtypes, this field is set to a deallocator suitable to match Py Type_GenericAlloc () and the
value of the Py_TPFLAGS_HAVE_GC flag bit.

For static subtypes, PyBaseObject_Type Uses PyObject_Free ().

inquiry PyTypeObject .tp_is_ge

An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’s type’s tp_f1ags field, and check the Py TPFLAGS HAVE GC flag bit. But some types
have a mixture of statically and dynamically allocated instances, and the statically allocated instances are not
collectible. Such types should define this function; it should return 1 for a collectible instance, and 0 for a non-
-collectible instance. The signature is:

[int tp_is_gc (PyObject *self); }

(The only example of this are types themselves. The metatype, Py Type_Type, defines this function to distin-
guish between statically and dynamically allocated types.)

Inheritance:

This field is inherited by subtypes.

Default:

This slot has no default. If this field is NULL, Py TPFLAGS HAVE_GC is used as the functional equivalent.
PyObject *PyTypeObject .tp_bases

Tuple of base types.

This field should be set to NULL and treated as read-only. Python will fill it in when the type is initialized.

For dynamically created classes, the Py_tp_bases slot can be used instead of the bases argument of
PyType_FromSpecWithBases (). The argument form is preferred.

A\ Ostrzezenie

Multiple inheritance does not work well for statically defined types. If you set tp_bases to a tuple, Python
will not raise an error, but some slots will only be inherited from the first base.

Inheritance:
This field is not inherited.

PyObject ¥*PyTypeObject .tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object, in
Method Resolution Order.

This field should be set to NULL and treated as read-only. Python will fill it in when the type is initialized.
Inheritance:
This field is not inherited; it is calculated fresh by Py Type Ready ().

PyObject ¥*PyTypeObject .tp_cache
Unused. Internal use only.

Inheritance:

316 Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

This field is not inherited.

void *PyTypeObject .tp_subclasses

A collection of subclasses. Internal use only. May be an invalid pointer.
To get a list of subclasses, call the Python method __subclasses__ ().

Zmienione w wersji 3.12: For some types, this field does not hold a valid Pyob ject*. The type was changed
to void* to indicate this.

Inheritance:

This field is not inherited.

PyObject *pyTypeObject .tp_weaklist

Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

Zmienione w wersji 3.12: Internals detail: For the static builtin types this is always NULL, even if weakrefs
are added. Instead, the weakrefs for each are stored on PyInterpreterState. Use the public C-API or the
internal _PyObject_GET_WEAKREFS_LISTPTR () macro to avoid the distinction.

Inheritance:

This field is not inherited.

destructor PyTypeObject .tp_del

This field is deprecated. Use tp_rinalize instead.

unsigned int Py TypeObject . tp_version_tag

Used to index into the method cache. Internal use only.
Inheritance:

This field is not inherited.

destructor PyTypeObject .tp_finalize

An optional pointer to an instance finalization function. Its signature is:

[void tp_finalize (PyObject *self);]

If tp_rinalize is set, the interpreter calls it once when finalizing an instance. It is called either from the
garbage collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated.
Either way, it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the
object in a sane state.

tp_finalize should not mutate the current exception status; therefore, a recommended way to write a non-
-trivial finalizer is:

static void
local_finalize (PyObject *self)
{

PyObject *error_type, *error_value, *error_traceback;

/* Save the current exception, if any. */

PyErr_Fetch (&error_type, &error_value, &error_traceback);
VAR 4

/* Restore the saved exception. */

PyErr_Restore (error_type, error_value, error_traceback);

}

L

Inheritance:

This field is inherited by subtypes.

12.3. Type Objects 317

The Python/C API, Wydanie 3.14.0a5

Added in version 3.4.

Zmienione w wersji 3.8: Before version 3.8 it was necessary to set the Py TPFLAGS_HAVE_FINALIZE flags
bit in order for this field to be used. This is no longer required.

> Zobacz takze

»Safe object finalization” (PEP 442)

vectorcallfunc PyTypeObject .tp_vectorcall

A vectorcall function to use for calls of this type object (rather than instances). In other words, tp_vectorcall
can be used to optimize type.__call__, which typically returns a new instance of type.

As with any vectorcall function, if tp_vectorcall is NULL, the #p_call protocol
(Py_TYPE (type) —>tp_call)is used instead.

© Informacja

The vectorcall protocol requires that the vectorcall function has the same behavior as the cor-
responding tp_call. This means that type->tp_vectorcall must match the behavior of
Py_TYPE (type)—>tp_call.

Specifically, if fype uses the default metaclass, type->tp_vectorcall must behave the same as
PyType_Type—>tp_call, which:

o calls type->tp_new,
« if the result is a subclass of fype, calls type->tp_init on the result of tp_new, and
e returns the result of tp_new.

Typically, tp_vectorcall is overridden to optimize this process for specific tp_new and tp_init.

When doing this for user-subclassable types, note that both can be overridden (using _ new__ () and
__init__ (), respectively).
Inheritance:

This field is never inherited.
Added in version 3.9: (the field exists since 3.8 but it’s only used since 3.9)

unsigned char Py TypeObject.tp_watched
Internal. Do not use.

Added in version 3.12.

12.3.6 Static Types

Traditionally, types defined in C code are static, that is, a static Py TypeObject structure is defined directly in code
and initialized using Py Type Ready ().

This results in types that are limited relative to types defined in Python:
« Static types are limited to one base, i.e. they cannot use multiple inheritance.

« Static type objects (but not necessarily their instances) are immutable. It is not possible to add or modify the
type object’s attributes from Python.

« Static type objects are shared across sub-interpreters, so they should not include any subinterpreter-specific
state.

Also, since PyTypeObject is only part of the Limited API as an opaque struct, any extension modules using static
types must be compiled for a specific Python minor version.

318 Rozdziat 12. Object Implementation Support

https://peps.python.org/pep-0442/

The Python/C API, Wydanie 3.14.0a5

12.3.7 Heap Types

An alternative to static types is heap-allocated types, or heap types for short, which correspond closely to classes
created by Python’s c1ass statement. Heap types have the Py TPFLAGS HEAPTYPE flag set.

This is done by filling a PyType Spec structure and calling PyType FromSpec(),
PyType_FromSpecWithBases (), PyType_FromModuleAndSpec (), Or PyType_FromMetaclass ().

12.3.8 Number Object Structures

type PyNumberMethods

This structure holds pointers to the functions which an object uses to implement the number protocol. Each
function is used by the function of similar name documented in the Number Protocol section.

Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
unaryfunc nb_int;
void *nb_reserved;
unaryfunc nb_float;

binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

unaryfunc nb_index;
binaryfunc nb_matrix_multiply;

binaryfunc nb_inplace_matrix_multiply;
} PyNumberMethods;

L

12.3. Type Objects 319

The Python/C API, Wydanie 3.14.0a5

p
© Informacja

Binary and ternary functions must check the type of all their operands, and implement the necessary co-
nversions (at least one of the operands is an instance of the defined type). If the operation is not defined
for the given operands, binary and ternary functions must return Py_Not Implemented, if another error

occurred they must return NULL and set an exception.

© Informacja

The nb_reserved field should always be NULL. It was previously
Python 3.0.1.
\

called nb_1ong, and was renamed in

binaryfunc PyNumberMet hods .nb_add

binaryfunc PyNumberMethods.nb_subtract
binaryfunc PyNumberMethods.nb_multiply
binaryfunc PyNumberMethods.nb_remainder
binaryfunc PyNumberMethods.nb_divmod

ternaryfunc PyNumberMethods .nb_power

unaryfunc PyNumberMet hods.nb_negative

unaryfunc PyNumberMethods .nb_positive

unaryfunc PyNumberMethods.nb_absolute

inquiry PyNumberMethods.nb_bool

unaryfunc PyNumberMethods.nb_invert

binaryfunc PyNumberMethods.nb_lshift

binaryfunc PyNumberMet hods.nb_rshift

binaryfunc PyNumberMethods.nb_and

binaryfunc PyNumberMethods .nb_xor

binaryfunc PyNumberMethods.nb_or

unaryfunc PyNumberMethods.nb_int

void *PyNumberMethods.nb_reserved

unaryfunc PyNumberMet hods.nb_£float

binaryfunc PyNumberMet hods.nb_inplace_add
binaryfunc PyNumberMet hods .nb_inplace_subtract
binaryfunc PyNumberMethods.nb_inplace_multiply
binaryfunc PyNumberMet hods.nb_inplace_remainder
ternaryfunc PyNumberMethods .nb_inplace_power

binaryfunc PyNumberMethods.nb_inplace_lshift

320 Rozdziat 12

. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

binaryfunc PyNumberMethods.nb_inplace_rshift
binaryfunc PyNumberMethods.nb_inplace_and

binaryfunc PyNumberMet hods .nb_inplace_xor

binaryfunc PyNumberMethods.nb_inplace_or

binaryfunc PyNumberMethods.nb_floor_divide
binaryfunc PyNumberMethods.nb_true_divide

binaryfunc PyNumberMethods.nb_inplace_£floor_divide
binaryfunc PyNumberMethods .nb_inplace_true_divide
unaryfunc PyNumberMethods .nb_index

binaryfunc PyNumberMethods.nb_matrix_multiply

binaryfunc PyNumberMet hods.nb_inplace_matrix_multiply

12.3.9 Mapping Object Structures

type PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has
three members:

lenfunc PyMappingMethods.mp_length
This function is used by PyMapping Size () and PyObject_Size (), and has the same signature. This slot
may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods .mp_subscript
This function is used by PyObject_GetItem() and PySequence_GetSlice (),and has the same signature
as PyObject_GetItem (). This slot must be filled for the PyMapping Check () function to return 1, it can
be NULL otherwise.

objobjargproc PyMappingMethods.mp_ass_subscript

This function is used by PyObject_SetItem(), PyObject_Delltem(),PySequence_SetSlice () and
PySequence_DelSlice (). It has the same signature as PyObject_SetItem (), but v can also be set to
NULL to delete an item. If this slot is NULL, the object does not support item assignment and deletion.

12.3.10 Sequence Object Structures

type PySequenceMethods

This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence Size () and PyObject_Size (), and has the same signature. It is
also used for handling negative indices via the sq_itemand the sg_ass_itemslots.

binaryfunc PySequenceMethods.sq_concat
This function is used by PySequence_Concat () and has the same signature. It is also used by the + operator,
after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat

This function is used by Py Sequence_Repeat () and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the nb_multiply slot.

12.3. Type Objects 321

The Python/C API, Wydanie 3.14.0a5

ssizeargfunc PySequenceMethods.sq item

This function is used by PySequence GetItem() and has the same signature. It is also used by
PyObject_GetItem(), after trying the subscription via the mp_subscript slot. This slot must be filled
for the PySequence_Check () function to return 1, it can be NULL otherwise.

Negative indexes are handled as follows: if the sg_Iength slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sg_item. If sq_length is NULL, the index is passed as
is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence SetItem() and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem (), after trying the item assignment and deletion via the
mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment and
deletion.

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains () and has the same signature. This slot may be left
to NULL, in this case PySequence_Contains () simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq _inplace_concat

This function is used by PySequence_InPlaceConcat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceConcat () will
fall back to PySequence_Concat (). It is also used by the augmented assignment +=, after trying numeric
in-place addition via the nb_inplace add slot.

ssizeargfunc PySequenceMethods.sq_inplace_repeat

This function is used by PySequence_TnPlaceRepeat () and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceRepeat () will
fall back to PySequence_Repeat (). It is also used by the augmented assignment *=, after trying numeric
in-place multiplication via the nb_inplace _multiply slot.

12.3.11 Buffer Object Structures

type PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an
exporter object can expose its internal data to consumer objects.

getbufferproc PyBufferProcs.bf_getbuffer
The signature of this function is:

[int (PyObject *exporter, Py_buffer *view, int flags);

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:

(1) Check if the request can be met. If not, raise Buf ferError, set view—>obj to NULL and return - 1.
(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view—>ob3 to exporter and increment view—>obj.
(5) Return 0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

« Re-export: Each member of the tree acts as the exporting object and sets view—>obj to a new reference
to itself.

» Redirect: The buffer request is redirected to the root object of the tree. Here, view—>obj will be a new
reference to the root object.

322 Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to
specific requests are in section Buffer request types.

All memory pointed to in the Py_ buffer structure belongs to the exporter and must remain valid until there are
no consumers left. format, shape, strides, suboffsets and internal are read-only for the consumer.

PyBuffer FillInfo () provides an easy way of exposing a simple bytes buffer while dealing correctly with
all request types.

PyObject_GetBuffer () is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs.bf_releasebuffer

The signature of this function is:

[void (PyObject *exporter, Py_buffer *view); }

Handle a request to release the resources of the buffer. If no resources need to be released, PyBurferProcs.

bf_releasebuffer may be NULL. Otherwise, a standard implementation of this function will take these
optional steps:

(1) Decrement an internal counter for the number of exports.
(2) If the counter is 0, free all memory associated with view.

The exporter MUST use the internal field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.

This function MUST NOT decrement view—>ob3, since that is done automatically in PyBuffer Release ()
(this scheme is useful for breaking reference cycles).

PyBuffer Release () is the interface for the consumer that wraps this function.

12.3.12 Async Object Structures
Added in version 3.5.

type PyAsyncMethods

This structure holds pointers to the functions required to implement awaitable and asynchronous iterator ob-
jects.

Here is the structure definition:

-

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;
sendfunc am_send;

} PyAsyncMethods;

unaryfunc PyAsyncMethods.am_await

The signature of this function is:

[PyObject *am_await (PyObject *self); }

The returned object must be an iferator, i.e. PyIter Check () must return 1 for it.

This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter

The signature of this function is:

[PyObject *am_aiter (PyObject *self); }

12.3. Type Objects 323

The Python/C API, Wydanie 3.14.0a5

Must return an asynchronous iterator object. See __anext__ () for details.
This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods.am_anext

The signature of this function is:

[PyObject *am_anext (PyObject *self);

Must return an awaitable object. See __anext__ () for details. This slot may be set to NULL.

sendfunc PyAsyncMethods.am_send

The signature of this function is:

[PySendResult am_send (PyObject *self, PyObject *arg, PyObject **result);

See pyTter Send () for details. This slot may be set to NULL.

Added in version 3.10.

12.3.13 Slot Type typedefs

typedef PyObject *(*allocfunc)(PyTypeObject *cls, Py_ssize_t nitems)
Czes¢ stabilnego ABI. The purpose of this function is to separate memory allocation from memory initiali-
zation. It should return a pointer to a block of memory of adequate length for the instance, suitably aligned,
and initialized to zeros, but with ob_refcnt set to 1 and ob_type set to the type argument. If the type’s
tp_itemsize is non-zero, the object’s ob_size field should be initialized to nitems and the length of the
allocated memory block should be tp_basicsize + nitems*tp_itemsize, rounded up to a multiple of
sizeof (void*) ; otherwise, nitems is not used and the length of the block should be tp_basicsize.

This function should not do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.

typedef void (*destructor)(PyObject*)
Czes¢ stabilnego ABIL.
typedef void (*£reefunc)(void*)
See tp_free.
typedef PyObject *(*newfunc)(PyTypeObject*, PyObject*, PyObject*)
Czes¢ stabilnego ABI. See tp_new.
typedef int (*initproce)(PyObject*, PyObject*, PyObject*)
Czes¢ stabilnego ABI. See tp_init.
typedef PyObject *(*reprfunc)(PyObject*)
Czes¢ stabilnego ABI. See tp_repr.
typedef PyObject *(*getattrfunc)(PyObject *self, char *attr)
Czes¢ stabilnego ABI. Return the value of the named attribute for the object.

typedef int (*setattrfunc)(PyObject *self, char *attr, PyObject *value)

Czes¢ stabilnego ABI. Set the value of the named attribute for the object. The value argument is set to NULL
to delete the attribute.

typedef PyObject *(*getattrofunc)(PyObject *self, PyObject *attr)
Czes¢ stabilnego ABI. Return the value of the named attribute for the object.

See tp_getattro.

324 Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

typedef int (¥*setattrofunc)(PyObject *self, PyObject *attr, PyObject *value)
Czes¢ stabilnego ABI. Set the value of the named attribute for the object. The value argument is set to NULL
to delete the attribute.

See tp_setattro.

typedef PyObject *(*descrget £unc)(PyObject*, PyObject*, PyObject*)
Czes¢ stabilnego ABI See tp_descr_get.

typedef int (*descrset func)(PyObject*, PyObject*, PyObject*)
Czes¢ stabilnego ABI. See tp_descr_set.

typedef Py_hash_t (*hashfunc)(PyObject*)
Czes¢ stabilnego ABI. See tp_hash.

typedef PyObject *(*richempfunc)(PyObject*, PyObject*, int)
Czes¢ stabilnego ABI. See tp_richcompare.

typedef PyObject *(*getiterfunc)(PyObject*)
Czes¢ stabilnego ABI. See tp_iter.

typedef PyObject *(*iternext func)(PyObject*)
Czes¢ stabilnego ABI. See tp_iternext.

typedef Py_ssize_t (*1lenfunc)(PyObject*)
Czes¢ stabilnego ABL

typedef int (*getbufferproc)(PyObject*, Py_buffer*, int)
Czes¢ stabilnego ABI od wersji 3.12.

typedef void (*releasebufferproc)(PyObject*, Py_buffer*)
Czes¢ stabilnego ABI od wersji 3.12.

typedef PyObject *(*unary£unc)(PyObject*)
Czes¢ stabilnego ABL

typedef PyObject *(*binaryfunc)(PyObject*, PyObject*)
Czes¢ stabilnego ABL

typedef PySendResult (*sendfunc)(PyObject*, PyObject*, PyObject**)
See am_send.

typedef PyObject *(*ternaryfunc)(PyObject*, PyObject*, PyObject™*)
Czes¢ stabilnego ABL

typedef PyObject *(*ssizeargfunc)(PyObject*, Py_ssize_t)
Czes¢ stabilnego ABIL.

typedef int (¥*ssizeobjargproc)(PyObject*, Py_ssize_t, PyObject*)
Czes¢ stabilnego ABIL.

typedef int (¥*objobjproc)(PyObject*, PyObject*)
Czes¢ stabilnego ABL

typedef int (¥*objobjargproc)(PyObject*, PyObject*, PyObject™*)
Czes¢ stabilnego ABL

12.3.14 Przykiady

The following are simple examples of Python type definitions. They include common usage you may encounter.
Some demonstrate tricky corner cases. For more examples, practical info, and a tutorial, see defining-new-types and
new-types-topics.

A basic static type:

12.3. Type Objects 325

The Python/C API, Wydanie 3.14.0a5

typedef struct {
PyObject_HEAD
const char *data;
} MyObject;

static PyTypeObject MyObject_Type
PyVarObject_ HEAD_INIT (NULL, O0)
.tp_name = "mymod.MyObject",
.tp_basicsize =

= {

sizeof (MyObject),

.tp_doc = PyDoc_STR("My objects"),
.tp_new = myobj_new,

.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,

bi

You may also find older code (especially in the CPython code base) with a more verbose initializer:

static PyTypeObject MyObject_Type
PyVarObject_ HEAD_INIT (NULL, 0)
"mymod.MyObject",
sizeof (MyObject),

~

destructor)myobij_dealloc,

~ 0~

~

R~

eprfunc)myobj_repr,

~

N~ S SN SN N N~ O~

O O O O O O O O O O ~ 0O O O O ~ O
~

~

PyDoc_STR("My objects"),

N N NS SN N SN NS NS NSNS ONS OSSN

O O O O O O O O O O O o o o o o

~

myobj_new,

bi

= {

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*/

tp _basicsize */

tp_name

tp_itemsize */
tp_dealloc */
tp_vectorcall_ offset
tp_getattr */
tp_setattr */
tp_as_async */

*/

tp_repr */
tp_as_number */
7
tp_as_mapping */
tp_hash */

tp _call */

tp_str */
tp_getattro */

tp_as_sequence

tp_setattro */
tp_as_buffer */
tp_flags */
tp_doc */
tp_traverse */
tp_clear */
tp_richcompare */
tp _weaklistoffset */
tp_iter */

4

=y

=y

4

tp_iternext
tp_methods
tp_members
tp_getset

tp _base */
*/
tp_descr_get

tp_dict

=y

7
74

tp_descr_set
tp_dictoffset
4
tp_alloc */
tp_new */

tp_init

326

Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

A type that supports weakrefs, instance dicts, and hashing:

typedef struct {
PyObject_HEAD
const char *data;
} MyObject;

static PyTypeObject MyObject_Type = {

PyVarObject_HEAD_INIT (NULL, O0)

.tp_name = "mymod.MyObject",

.tp_basicsize = sizeof (MyObject),

.tp_doc = PyDoc_STR("My objects"),

.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE |
Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_MANAGED_DICT |
Py_TPFLAGS_MANAGED_WEAKREF,

.tp_new = myobj_new,

.tp_traverse = (traverseproc)myobj_traverse,
.tp_clear = (inquiry)myobj_clear,

.tp_alloc = PyType_GenericNew,

.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,

.tp_hash = (hashfunc)myobj_hash,

.tp_richcompare = PyBaseObject_Type.tp_richcompare,
bi

A str subclass that cannot be subclassed and cannot be called to create instances (e.g. uses a separate factory func)
using Py TPFLAGS_DISALLOW_INSTANTIATION flag:

typedef struct {
PyUnicodeObject raw;
char *extra;

} MyStr;

static PyTypeObject MyStr_Type = {
PyVarObject_HEAD_INIT (NULL, O0)
.tp_name = "mymod.MyStr",
.tp_basicsize = sizeof (MyStr),
.tp_base = NULL, // set to &PyUnicode_Type in module init
.tp_doc = PyDoc_STR("my custom str"),
.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_DISALLOW_INSTANTIATION,
.tp_repr = (reprfunc)myobj_repr,

bi

The simplest static type with fixed-length instances:

typedef struct {
PyObject_HEAD
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_ HEAD_INIT (NULL, O0)
.tp_name = "mymod.MyObject",

bi

The simplest static type with variable-length instances:

typedef struct {
PyObject_VAR_HEAD

(ciag dalszy na nastgpnej stronie)

12.3. Type Objects 327

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)

const char *datall];
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_ HEAD_INIT (NULL, O)

.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof (MyObject) - sizeof (char *),
.tp_itemsize = sizeof (char *),

bi

12.4 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are ,,containers” for other objects which may also be containers. Types which do not store references to
other objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any
explicit support for garbage collection.

To create a container type, the tp_frlags field of the type object must include the Py TPFLAGS HAVE GC and
provide an implementation of the tp_t raverse handler. If instances of the type are mutable, a tp_clear imple-
mentation must also be provided.

Py TPFLAGS_HAVE_GC
Objects with a type with this flag set must conform with the rules documented here. For convenience these
objects will be referred to as container objects.

Constructors for container types must conform to two rules:
1. The memory for the object must be allocated using PyObject_GC_New or PyObject_GC_NewVar.

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject_GC_Track ().

Similarly, the deallocator for the object must conform to a similar pair of rules:
1. Before fields which refer to other containers are invalidated, PyObject_GC_UnTrack () must be called.

2. The object’s memory must be deallocated using PyObject_GC _Del ().

A\ Ostrzezenie

If a type adds the Py_TPFLAGS_HAVE_GC, then it must implement at least a tp_ t raverse handler or
explicitly use one from its subclass or subclasses.

When calling PyType Ready() or some of the APIs that indirectly call it like
PyType_FromSpecWithBases () Oor PyType_FromSpec () the interpreter will automatically populate
the tp_flags, tp_traverse and tp_clear fields if the type inherits from a class that implements the
garbage collector protocol and the child class does not include the Py TPFLAGS HAVE GC flag.

PyObject_GC_New (TYPE, typeobj)
Analogous to PyOb ject_New but for container objects with the Py TPFLAGS HAVE_GC flag set.

PyObject_GC_NewVar (TYPE, typeobj, size)
Analogous to PyObject_NewVar but for container objects with the Py TPFLAGS_HAVE_GC flag set.

PyObject *PyUnstable_Object_GC_NewWithExtraData (PyTypeObject *type, size_t extra_size)

328 Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Analogous to PyObject GC_New but allocates extra_size bytes at the end of the object (at offset
tp_basicsize). The allocated memory is initialized to zeros, except for the Pyt hon object header.

The extra data will be deallocated with the object, but otherwise it is not managed by Python.

A\ Ostrzezenie

The function is marked as unstable because the final mechanism for reserving extra data after an instance is
not yet decided. For allocating a variable number of fields, prefer using Pyvarobject and tp_itemsize
instead.

Added in version 3.12.

PyObject_GC_Resize (TYPE, op, newsize)
Resize an object allocated by Pyobject_NewVar. Returns the resized object of type TYPE* (refers to any C
type) or NULL on failure.

op must be of type Pyvarobject* and must not be tracked by the collector yet. newsize must be of type
Py ssize_t.

void PyObject_GC_Track (PyObject *op)
Czes¢ stabilnego ABI. Adds the object op to the set of container objects tracked by the collector. The collector
can run at unexpected times so objects must be valid while being tracked. This should be called once all the
fields followed by the tp_traverse handler become valid, usually near the end of the constructor.

int PyObject_IS_GC (PyObject *obj)
Returns non-zero if the object implements the garbage collector protocol, otherwise returns 0.

The object cannot be tracked by the garbage collector if this function returns 0.
int PyObject_GC_IsTracked (PyObject *op)
Czes¢ stabilnego ABI od wersji 3.9. Returns 1 if the object type of op implements the GC protocol and op is
being currently tracked by the garbage collector and O otherwise.
This is analogous to the Python function gc.is_tracked().

Added in version 3.9.
int PyObject_GC_IsFinalized (PyObject *op)
Czes¢ stabilnego ABI od wersji 3.9. Returns 1 if the object type of op implements the GC protocol and op has
been already finalized by the garbage collector and O otherwise.
This is analogous to the Python function gc.is_finalized ().

Added in version 3.9.

void PyObject_GC_Del (void *op)
Czes¢ stabilnego ABIL Releases memory allocated to an object using PyObject_GC_New oOr
PyObject_GC_NewVar.

void PyObject_GC_UnTrack (void *op)
Czes¢ stabilnego ABI. Remove the object op from the set of container objects tracked by the collector. Note
that Pyobject_GC_Track () can be called again on this object to add it back to the set of tracked objects.
The deallocator (tp_dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

12.4. Supporting Cyclic Garbage Collection 329

The Python/C API, Wydanie 3.14.0a5

Zmienione w wersji 3.8: The _PyObject_GC_TRACK () and _PyObject_GC_UNTRACK () macros have been re-
moved from the public C APIL.

The tp_traverse handler accepts a function parameter of this type:

typedef int (*visitproc)(PyObject *object, void *arg)
Czes¢ stabilnego ABI. Type of the visitor function passed to the tp_traverse handler. The function should
be called with an object to traverse as object and the third parameter to the tp_t raverse handler as arg. The
Python core uses several visitor functions to implement cyclic garbage detection; it’s not expected that users
will need to write their own visitor functions.

The tp_traverse handler must have the following type:

typedef int (*traverseproc)(PyObject *self, visitproc visit, void *arg)

Czes¢ stabilnego ABI. Traversal function for a container object. Implementations must call the visit function
for each object directly contained by self, with the parameters to visit being the contained object and the arg
value passed to the handler. The visit function must not be called with a NULL object argument. If visit returns
a non-zero value that value should be returned immediately.

To simplify writing tp_traverse handlers, a Py_vISIT() macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:
void Py_VISIT (PyObject *0)
If 0 is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return
it. Using this macro, tp_traverse handlers look like:

p
static int

my_traverse (Noddy *self, visitproc visit, woid *arg)
{

Py_VISIT (self->foo0);

Py_VISIT (self->bar);

return 0;

}

. J

The tp_clear handler must be of the inguiry type, or NULL if the object is immutable.

typedef int (¥*inquiry)(PyObject *self)
Czes¢ stabilnego ABI. Drop references that may have created reference cycles. Immutable objects do not have
to define this method since they can never directly create reference cycles. Note that the object must still be
valid after calling this method (don’t just call Py_DECREF () on a reference). The collector will call this method
if it detects that this object is involved in a reference cycle.

12.4.1 Controlling the Garbage Collector State
The C-API provides the following functions for controlling garbage collection runs.

Py_ssize_t PyGC_Collect (void)
Czes¢ stabilnego ABI. Perform a full garbage collection, if the garbage collector is enabled. (Note that gc.
collect () runs it unconditionally.)

Returns the number of collected + unreachable objects which cannot be collected. If the garbage collector
is disabled or already collecting, returns 0 immediately. Errors during garbage collection are passed to sys.
unraisablehook. This function does not raise exceptions.

int PyGC_Enable (void)
Czes¢ stabilnego ABI od wersji 3.10. Enable the garbage collector: similar to gc.enable (). Returns the
previous state, O for disabled and 1 for enabled.
Added in version 3.10.

int PyGC_Disable (void)

Czes¢ stabilnego ABI od wersji 3.10. Disable the garbage collector: similar to gc.disable (). Returns the
previous state, O for disabled and 1 for enabled.

330 Rozdziat 12. Object Implementation Support

The Python/C API, Wydanie 3.14.0a5

Added in version 3.10.

int PyGC_IsEnabled (void)

Czes¢ stabilnego ABI od wersji 3.10. Query the state of the garbage collector: similar to gc.isenabled ().
Returns the current state, O for disabled and 1 for enabled.

Added in version 3.10.

12.4.2 Querying Garbage Collector State
The C-API provides the following interface for querying information about the garbage collector.

void PyUnstable_GC_VisitObjects (gevisitobjects_t callback, void *arg)

e

To jest niestabilne API. Moze ulec zmianie bez ostrzezenia w wydaniach minor.

Run supplied callback on all live GC-capable objects. arg is passed through to all invocations of callback.

A\ Ostrzezenie

If new objects are (de)allocated by the callback it is undefined if they will be visited.

Garbage collection is disabled during operation. Explicitly running a collection in the callback may lead to
undefined behaviour e.g. visiting the same objects multiple times or not at all.

Added in version 3.12.

typedef int (*gevisitobjects_t)(PyObject *object, void *arg)

Type of the visitor function to be passed to PyUnstable_GC_VisitObjects (). arg is the same as the arg
passed to PyUnstable GC_VisitObjects. Return 0 to continue iteration, return 1 to stop iteration. Other
return values are reserved for now so behavior on returning anything else is undefined.

Added in version 3.12.

12.4. Supporting Cyclic Garbage Collection 331

The Python/C API, Wydanie 3.14.0a5

332 Rozdziat 12. Object Implementation Support

rozpziat 13

APl i wersjonowanie ABI

13.1 Build-time version constants

CPython exposes its version number in the following macros. Note that these correspond to the version code is built
with. See Py_Version for the version used at run time.

Wigcej informacji na temat stabilno$ci API i ABI w réznych wersjach mozna znalez¢ na stronie C AP Stability.

PY MAJOR_VERSION
3w3.4.1a2.
PY MINOR_VERSION
4w3.4.1a2.
PY MICRO_VERSION
1w3.4.1a2.

PY RELEASE_LEVEL

aw3.4.1a2. Moze to by¢ 0xA dla wersji alfa, 0xB dla wersji beta, 0xC dla wersji kandydujacej do wydania
lub 0xF dla wersji finalnej.

PY_RELEASE_SERIAL
2 W 3.4.1a2. Zero dla ostatecznych wydan.

PY_VERSION_HEX

The Python version number encoded in a single integer. See Py_PACK_FULI_VERSION () for the encoding
details.

Use this for numeric comparisons, for example, #if PY_VERSION_HEX >=

13.2 Run-time version

const unsigned long Py_Version

Czes¢ stabilnego ABI od wersji 3.11. The Python runtime version number encoded in a single constant integer.
See py_PACK_FULL_VERSION () for the encoding details. This contains the Python version used at run time.

Use this for numeric comparisons, for example, 1f (Py_Version >= ...).

Added in version 3.11.

333

The Python/C API, Wydanie 3.14.0a5

13.3 Bit-packing macros

uint32_t Py_PACK_FULL_VERSION (int major, int minor, int micro, int release_level, int release_serial)

uint32_t Py_PACK_VERSION (int major, int minor)

Czes¢ stabilnego ABI od wersji 3.14. Return the given version, encoded as a single 32-bit integer with the

following structure:

Argument No. of bits Bit mask Bit shift Example values
3.4.1a2 3.10.0
major 8 0xFF000000 24 0x03 0x03
minor 8 0x00FF0000 16 0x04 0x0A
micro 8 0x0000FF00 8 0x01 0x00
release_level 4 0x000000F0 4 0xA OxF
release_serial 4 0x0000000F O 0x2 0x0

For example:

Version Py PACK_FULIL_VERSION arguments

Encoded version

3.4.1a2 (3, 4, 1,
3.10.0 (3, 10, O,

0xA, 2)

OxF, 0)

0x030401a2
0x030a00£f0

Out-of range bits in the arguments are ignored. That is, the macro can be defined as:

L

#ifndef Py PACK_FULL_VERSION

#define Py PACK_FULL_VERSION(X, Y, Z, LEVEL, SERIAL) (

(((X) & Oxff) << 24) |

(((Y) & Oxff) << 16) |

(((Z) & Oxff) << 8) |

(((LEVEL) & 0xf) << 4) |

(((SERIAL) & 0Oxf) << 0))
#endif

J

Py PACK_FULL_VERSION is primarily a macro, intended for use in #if directives, but it is also available as

an exported function.

Added in version 3.14.

Czesé stabilnego ABI od wersji 3.14. Equivalent to Py_PACK_FULL_VERSION (major, minor, 0, 0, 0).

The result does not correspond to any Python release, but is useful in numeric comparisons.

Added in version 3.14.

334

Rozdziat 13. API i wersjonowanie ABI

rozoziat 14

Monitoring C API

Added in version 3.13.

An extension may need to interact with the event monitoring system. Subscribing to events and registering callbacks
can be done via the Python API exposed in sys.monitoring.

335

The Python/C API, Wydanie 3.14.0a5

336 Rozdziat 14. Monitoring C API

rozpziat 15

Generating Execution Events

The functions below make it possible for an extension to fire monitoring events as it emulates the execution of Python
code. Each of these functions accepts a PyMonitoringState struct which contains concise information about the
activation state of events, as well as the event arguments, which include a PyObject * representing the code object,
the instruction offset and sometimes additional, event-specific arguments (see sys.monitoring for details about
the signatures of the different event callbacks). The codelike argument should be an instance of t ypes.CodeType
or of a type that emulates it.

The VM disables tracing when firing an event, so there is no need for user code to do that.

Monitoring functions should not be called with an exception set, except those listed below as working with the current
exception.

type PyMonitoringState

Representation of the state of an event type. It is allocated by the user while its contents are maintained by the
monitoring API functions described below.

All of the functions below return 0 on success and -1 (with an exception set) on error.

See sys.monitoring for descriptions of the events.

int PyMonitoring_FirePyStartEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)
Fire a PY_START event.

int PyMonitoring_FirePyResumeEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)
Fire a PY_RESUME event.
int PyMonitoring_FirePyReturnEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset,
PyObject *retval)
Fire a PY_RETURN event.
int PyMonitoring_FirePyYieldEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset, PyObject
*retval)
Fire a PY_YIELD event.
int PyMonitoring_FireCallEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset, PyObject
*callable, PyObject *arg0)
Fire a CALL event.
int PyMonitoring_FireLineEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset, int lineno)
Fire a LINE event.

337

The Python/C API, Wydanie 3.14.0a5

int PyMonitoring_FireJumpEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset, PyObject
*target_offset)

Fire a JuMP event.
int PyMonitoring_FireBranchLeftEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset,
PyObject *target_offset)
Fire a BRANCH_LEFT event.
int PyMonitoring_FireBranchRightEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset,
PyObject *target_offset)
Fire a BRANCH_RIGHT event.
int PyMonitoring_FireCReturnEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset, PyObject
*retval)

Fire a C_RETURN event.

int PyMonitoring_FirePyThrowEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)
Fire a PY_THROW event with the current exception (as returned by PyErr GetRaisedException()).

int PyMonitoring_FireRaiseEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)
Fire a RAISE event with the current exception (as returned by PyErr GetRaisedException()).

int PyMonitoring_FireCRaiseEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)
Fire a c_RATISE event with the current exception (as returned by PyErr GetRaisedException ()).

int PyMonitoring_FireReraiseEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)
Fire a RERAISE event with the current exception (as returned by PyErr GetRaisedException ()).

int PyMonitoring_FireExceptionHandledEvent (PyMonitoringState *state, PyObject *codelike, int32_t
offset)

Fire an EXCEPTION_HANDLED event with the current exception (as returned by
PyErr GetRaisedException()).

int PyMonitoring_FirePyUnwindEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset)
Fire a pY_UNWIND event with the current exception (as returned by PyErr GetRaisedException ()).

int PyMonitoring_FireStopIterationEvent (PyMonitoringState *state, PyObject *codelike, int32_t offset,
PyObject *value)

Fire a STOP_ITERATION event. If value is an instance of StopIteration, it is used. Otherwise, a new
StopIteration instance is created with value as its argument.

15.1 Managing the Monitoring State

Monitoring states can be managed with the help of monitoring scopes. A scope would typically correspond to a python
function.

int PyMonitoring_EnterScope (PyMonitoringState *state_array, uint64_t *version, const uint8_t *event_types,
Py_ssize_t length)

Enter a monitored scope. event_types is an array of the event IDs for events that may be fired from the
scope. For example, the ID of a PY_START event is the value PY_MONITORING_EVENT_PY_START, which is
numerically equal to the base-2 logarithm of sys.monitoring.events.PY_START. state_array is an
array with a monitoring state entry for each event in event_types, it is allocated by the user but populated
by PyMonitoring EnterScope () with information about the activation state of the event. The size of
event_types (and hence also of state_array) is given in length.

The version argument is a pointer to a value which should be allocated by the user together with
state_array and initialized to 0, and then set only by PyMonitoring_EnterScope () itself. It allows
this function to determine whether event states have changed since the previous call, and to return quickly if
they have not.

338 Rozdziat 15. Generating Execution Events

The Python/C API, Wydanie 3.14.0a5

The scopes referred to here are lexical scopes: a function, class or method. PyMonitoring_EnterScope ()
should be called whenever the lexical scope is entered. Scopes can be reentered, reusing the same state_array
and version, in situations like when emulating a recursive Python function. When a code-like’s execution is
paused, such as when emulating a generator, the scope needs to be exited and re-entered.

The macros for event_types are:

15.1. Managing the Monitoring State 339

The Python/C API, Wydanie 3.14.0a5

Macro Zdarzenie

BRANCH_LEFT
PY MONITORING_EVENT_ BRANCH_LEFT

BRANCH_RIGHT
PY MONITORING_EVENT_ BRANCH_RIGHT

CALL
PY_MONITORING_EVENT_ CALL

C_RAISE
PY_MONITORING_EVENT C_RAISE

C_RETURN

PY_MONITORING_EVENT C_RETURN

EXCEPTION_HANDLED
PY MONITORING_EVENT_ EXCEPTION_ HANDLED

INSTRUCTION
PY_MONITORING_EVENT INSTRUCTION

JUMP
PY_MONITORING_EVENT JUMP

LINE
PY_MONITORING_EVENT LINE

PY_RESUME
PY_MONITORING_EVENT PY RESUME

PY_ RETURN
PY_MONITORING_EVENT PY RETURN

PY_ START
PY_MONITORING_EVENT PY_ START

PY_THROW
PY_MONITORING_EVENT PY THROW

PY_UNWIND
PY_MONITORING_EVENT PY UNWIND

PY_YIELD
PY_MONITORING_EVENT PY YIELD

RAISE
PY_MONITORING_EVENT RAISE

RERAISE

PY MONITORING_EVENT_ RERAISE

STOP_ITERATION
PY_MONITORING_EVENT STOP_ITERATION

int PyMonitoring_ExitScope (void)

340 Rozdziat 15. Generating Execution Events

The Python/C API, Wydanie 3.14.0a5

Exit the last scope that was entered with PyMonitoring_EnterScope ().

15.1. Managing the Monitoring State 341

The Python/C API, Wydanie 3.14.0a5

342 Rozdziat 15. Generating Execution Events

DODATEK A

Stownik

>>>
The default Python prompt of the inferactive shell. Often seen for code examples which can be executed inte-
ractively in the interpreter.

Moze odnosié sie do:

o The default Python prompt of the interactive shell when entering the code for an indented code block,
when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

» Whbudowane;j stalej E11ipsis.

abstrakcyjna klasa bazowa

Abstract base classes complement duck-typing by providing a way to define interfaces when other techniques
like hasattr () would be clumsy or subtly wrong (for example with magic methods). ABCs introduce virtual
subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance () and
issubclass () ; see the abc module documentation. Python comes with many built-in ABCs for data struc-
tures (in the collections.abc module), numbers (in the numbers module), streams (in the io module),
import finders and loaders (in the import1lib.abc module). You can create your own ABCs with the abc
module.

annotate function
A function that can be called to retrieve the annotations of an object. This function is accessible as the
__annotate___ attribute of functions, classes, and modules. Annotate functions are a subset of evaluate func-
tions.

adnotacja
Etykieta powigzana ze zmienng, atrybutem klasy lub parametrem funkcji lub warto$cig zwracana, uzywana
zgodnie z konwencja jako rype hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attribu-
tes, and functions can be retrieved by calling annotationlib.get_annotations () on modules, classes,
and functions, respectively.

See variable annotation, function annotation, PEP 484, PEP 526, and PEP 649, which describe this functio-
nality. Also see annotations-howto for best practices on working with annotations.

argument
A value passed to a function (or method) when calling the function. There are two kinds of argument:

343

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0649/

The Python/C API, Wydanie 3.14.0a5

o keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as
avalue in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following
calls to complex ():

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

o positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3
and 5 are both positional arguments in the following calls:

complex (3, 5)
complex (* (3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asynchronous context manager
An object which controls the environment seen in an async with statement by defining___aenter__ () and
__aexit__ () methods. Introduced by PEP 492.

asynchronous generator
A function which returns an asynchronous generator iterator. It looks like a coroutine function defined with
async def except that it contains yield expressions for producing a series of values usable in an async
for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in
some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for,and async with
statements.

asynchronous generator iterator
An object created by a asynchronous generator function.

This is an asynchronous iterator which when called using the __anext__ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the execution state (including local variables and
pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable
An object, that can be used in an async for statement. Must return an asynchronous iterator from its
__aiter__ () method. Introduced by PEP 492.

asynchronous iterator
An object that implements the __aiter () and __anext__ () methods. _ anext__ () must return an
awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s __anext__ ()
method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

atrybut
A value associated with an object which is usually referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

It is possible to give an object an attribute whose name is not an identifier as defined by identifiers, for example
using setattr (), if the object allows it. Such an attribute will not be accessible using a dotted expression,
and would instead need to be retrieved with getattr ().

344 Dodatek A. Stownik

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

The Python/C API, Wydanie 3.14.0a5

awaitable

An object that can be used in an await expression. Can be a coroutine or an object with an __await__ ()
method. See also PEP 492.

BDFL

Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

plik binarny

A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
("rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO and
gzip.GzipFile.

See also zext file for a file object able to read and write st r objects.

borrowed reference

In Python’s C API, a borrowed reference is a reference to an object, where the code using the object does not
own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection
can remove the last strong reference to the object and so destroy it.

Calling Py INCREF () on the borrowed reference is recommended to convert it to a strong reference in-place,
except when the object cannot be destroyed before the last usage of the borrowed reference. The Py_NewRef ()
function can be used to create a new strong reference.

bytes-like object

An object that supports the Buffer Protocol and can export a C-contiguous buffer. This includes all bytes,
bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like objects
can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as ,,read-write
bytes-like objects”. Example mutable buffer objects include bytearray andamemoryviewof abytearray.
Other operations require the binary data to be stored in immutable objects (,,read-only bytes-like objects”);
examples of these include bytes and a memoryview of a bytes object.

kod bajtowy

Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second
time (recompilation from source to bytecode can be avoided). This ,,intermediate language” is said to run on
a virtual machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are
not expected to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

callable

A callable is an object that can be called, possibly with a set of arguments (see argument), with the following
syntax:

[callable(argumentl, argument2, argumentN)

A function, and by extension a method, is a callable. An instance of a class that implements the __call_ ()
method is also a callable.

wywolanie zwrotne

klasa

A subroutine function which is passed as an argument to be executed at some point in the future.

A template for creating user-defined objects. Class definitions normally contain method definitions which ope-
rate on instances of the class.

class variable

A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the class).

closure variable

A free variable referenced from a nested scope that is defined in an outer scope rather than being resolved at

345

https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

The Python/C API, Wydanie 3.14.0a5

runtime from the globals or builtin namespaces. May be explicitly defined with the nonlocal keyword to
allow write access, or implicitly defined if the variable is only being read.

For example, in the inner function in the following code, both x and print are free variables, but only x is
a closure variable:

def outer():
x =0

def inner():
nonlocal x
x += 1
print (x)

return inner

Due to the codeobiject . co_freevars attribute (which, despite its name, only includes the names of closure
variables rather than listing all referenced free variables), the more general free variable term is sometimes used
even when the intended meaning is to refer specifically to closure variables.

liczba zespolona
An extension of the familiar real number system in which all numbers are expressed as a sum of a real part and
an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1), often
written i in mathematics or § in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1 5. To get access to com-
plex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical
feature. If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

kontekst
This term has different meanings depending on where and how it is used. Some common meanings:

« The temporary state or environment established by a context manager via a with statement.

o The collection of keyvalue bindings associated with a particular contextvars.Context object and
accessed via ContextVar objects. Also see context variable.

e A contextvars.Context object. Also see current context.

context management protocol
The __enter_ () and __exit__ () methods called by the with statement. See PEP 343.

context manager
An object which implements the context management protocol and controls the environment seen in a with
statement. See PEP 343.

context variable
A variable whose value depends on which context is the current context. Values are accessed via
contextvars.ContextVar objects. Context variables are primarily used to isolate state between concurrent
asynchronous tasks.

contiguous
A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next
to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the
last index varies the fastest when visiting items in order of memory address. However, in Fortran contiguous
arrays, the first index varies the fastest.

coroutine
Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at ano-
ther point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function
A function which returns a coroutine object. A coroutine function may be defined with the async def sta-

tement, and may contain await, async for, and async with keywords. These were introduced by PEP
492.

346 Dodatek A. Stownik

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

The Python/C API, Wydanie 3.14.0a5

CPython
The canonical implementation of the Python programming language, as distributed on python.org. The term
,CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

biezacy kontekst
The context (contextvars.Context object) that is currently used by ContextVar objects to access (get
or set) the values of context variables. Each thread has its own current context. Frameworks for executing
asynchronous tasks (see asyncio) associate each task with a context which becomes the current context
whenever the task starts or resumes execution.

dekorator
A function returning another function, usually applied as a function transformation using the @wrapper syntax.
Common examples for decorators are classmethod () and staticmethod ().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

s N

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arqg):

L J

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

deskryptor
Any object which defines the methods __get__ (), __set_ (),or __delete__ (). When a class attribute
is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to get, set or
delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the respective
descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python because
they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.

For more information about descriptors» methods, see descriptors or the Descriptor How To Guide.

stownik
An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__ ()
and __eq__ () methods. Called a hash in Perl.

dictionary comprehension
A compact way to process all or part of the elements in an iterable and return a dictionary with the results.
results = {n: n ** 2 for n in range (10) } generates a dictionary containing key n mapped to va-
lue n ** 2. See comprehensions.

dictionary view
The objects returned from dict . keys (),dict.values (),anddict.items () are called dictionary views.
They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the
view reflects these changes. To force the dictionary view to become a full list use 1ist (dictview). See
dict-views.

docstring
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing

A programming style which does not look at an object’s type to determine if it has the right interface; instead,
the method or attribute is simply called or used (,,If it looks like a duck and quacks like a duck, it must be

347

https://www.python.org

The Python/C API, Wydanie 3.14.0a5

a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by al-
lowing polymorphic substitution. Duck-typing avoids tests using type () or isinstance (). (Note, however,
that duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr ()
tests or EAFP programming.

EAFP
Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of many try and except statements. The technique contrasts with the LBYL style common
to many other languages such as C.

evaluate function
A function that can be called to evaluate a lazily evaluated attribute of an object, such as the value of type
aliases created with the t ype statement.

wyrazenie
A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation of
expression elements like literals, names, attribute access, operators or function calls which all return a value. In
contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

modul rozszerzenia
A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string
String literals prefixed with '£' or 'F' are commonly called ,.f-strings” which is short for formatted string
literals. See also PEP 498.

obiekt pliku
An object exposing a file-oriented API (with methods such as read () orwrite ()) to an underlying resource.
Depending on the way it was created, a file object can mediate access to a real on-disk file or to another type of
storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes, etc.).
File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open ()
function.

file-like object
A synonym for file object.

filesystem encoding and error handler
Encoding and error handler used by Python to decode bytes from the operating system and encode Unicode to
the operating system.

The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.

The sys.getfilesystemencoding() and sys.getfilesystemencodeerrors () functions can be
used to get the filesystem encoding and error handler.

The filesystem encoding and error handler are configured at Python startup by the PyConfig Read () func-
tion: see filesystem_encodingand filesystem errors members of PyConfig.

See also the locale encoding.

wyszukiwarka
An object that tries to find the loader for a module that is being imported.

There are two types of finder: meta path finders for use with sys.meta_path, and path entry finders for use
with sys.path_hooks.

See finders-and-loaders and import1ib for much more detail.

floor division
Mathematical division that rounds down to nearest integer. The floor division operator is / /. For example, the

348 Dodatek A. Stownik

https://peps.python.org/pep-0498/

The Python/C API, Wydanie 3.14.0a5

expression 11 // 4 evaluates to 2 in contrast to the 2. 75 returned by float true division. Note that (-11)
// 4 1is -3 because that is -2 . 75 rounded downward. See PEP 238.

free threading
A threading model where multiple threads can run Python bytecode simultaneously within the same interpreter.
This is in contrast to the global interpreter lock which allows only one thread to execute Python bytecode at
a time. See PEP 703.

free variable
Formally, as defined in the language execution model, a free variable is any variable used in a namespace which
is not a local variable in that namespace. See closure variable for an example. Pragmatically, due to the name of
the codeobject .co_freevars attribute, the term is also sometimes used as a synonym for closure variable.

funkcja
A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation
An annotation of a function parameter or return value.

Function annotations are usually used for rype hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.

See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

future
A future statement, from _ future_ import <feature>, directs the compiler to compile the current
module using syntax or semantics that will become standard in a future release of Python. The __ future__
module documents the possible values of feature. By importing this module and evaluating its variables, you
can see when a new feature was first added to the language and when it will (or did) become the default:

>>> import _ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

zbieranie Smieci
The process of freeing memory when it is not used anymore. Python performs garbage collection via reference
counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage collector
can be controlled using the gc module.

generator
A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator
An object created by a generator function.

Each yield temporarily suspends processing, remembering the execution state (including local variables and
pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to func-
tions which start fresh on every invocation).

generator expression
An expression that returns an iterator. It looks like a normal expression followed by a for clause defining a loop
variable, range, and an optional i £ clause. The combined expression generates values for an enclosing function:

349

https://peps.python.org/pep-0238/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0484/

The Python/C API, Wydanie 3.14.0a5

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function

A function composed of multiple functions implementing the same operation for different types. Which im-
plementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch () decorator, and PEP 443.

generic type

GIL

A type that can be parameterized; typically a container class such as 1ist or dict. Used for type hints and
annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the t yping module.

See global interpreter lock.

global interpreter lock

The mechanism used by the CPython interpreter to assure that only one thread executes Python bytecode at
a time. This simplifies the CPython implementation by making the object model (including critical built-in
types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier
for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/O.

As of Python 3.13, the GIL can be disabled using the -—disable-gil build configuration. After building
Python with this option, code must be run with -X gi1=0 or after setting the PYTHON_GIL=0 environment
variable. This feature enables improved performance for multi-threaded applications and makes it easier to use
multi-core CPUs efficiently. For more details, see PEP 703.

hash-based pyc

A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source file to
determine its validity. See pyc-invalidation.

hashable

IDLE

An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__ ()
method), and can be compared to other objects (it needs an __eqg__ () method). Hashable objects which
compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries)
are not; immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except
with themselves), and their hash value is derived from their id ().

An Integrated Development and Learning Environment for Python. idle is a basic editor and interpreter envi-
ronment which ships with the standard distribution of Python.

nieSmiertelne

Immortal objects are a CPython implementation detail introduced in PEP 683.

If an object is immortal, its reference count is never modified, and therefore it is never deallocated while the
interpreter is running. For example, True and None are immortal in CPython.

Immortal objects can be identified via sys._is_immortal (), or via PyUnstable IsImmortal () in the
C APL

350

Dodatek A. Stownik

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0683/

The Python/C API, Wydanie 3.14.0a5

immutable
An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path
A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the
parent package’s __path__ attribute.

import
The process by which Python code in one module is made available to Python code in another module.

importer
An object that both finds and loads a module; both a finder and loader object.

interaktywne
Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help (x)). For more on interactive mode, see tut-interac.

zinterpretowane
Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly
creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also inferactive.

interpreter shutdown
When asked to shut down, the Python interpreter enters a special phase where it gradually releases all allocated
resources, such as modules and various critical internal structures. It also makes several calls to the garbage
collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code executed
during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the _ main__ module or the script being run has finished
executing.

iterable
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define withan __iter () method or witha __getitem__ () method that implements sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter () or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator

An object representing a stream of data. Repeated calls to the iterator's _ next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any fur-
ther calls to its __next__ () method just raise StopIteration again. Iterators are required to have an
__iter__ () method that returns the iterator object itself so every iterator is also iterable and may be used
in most places where other iterables are accepted. One notable exception is code which attempts multiple ite-
ration passes. A container object (such as a 1ist) produces a fresh new iterator each time you pass it to the
iter () function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

More information can be found in typeiter.

351

The Python/C API, Wydanie 3.14.0a5

Szczegot implementacyjny CPythona: CPython does not consistently apply the requirement that an iterator
define __iter__ ().Andalso please note that the free-threading CPython does not guarantee the thread-safety
of iterator operations.

key function

A key function or collation function is a callable that returns a value used for sorting or ordering. For example,
locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They
include min (), max (), sorted(), list.sort (), heapg.merge (), heapg.nsmallest (), heapq.
nlargest (), and itertools. groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression
such as lambda r: (r([0], r[2]).Also, operator.attrgetter (), operator.itemgetter (), and
operator.methodcaller () are three key function constructors. See the Sorting HOW TO for examples
of how to create and use key functions.

keyword argument

Zobacz argument.

lambda

An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is lambda [parameters]: expression

LBYL

lista

Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between ,,the
looking” and ,.the leaping”. For example, the code, if key in mapping: return mapping[key] can
fail if another thread removes key from mapping after the test, but before the lookup. This issue can be solved
with locks or by using the EAFP approach.

A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension

A compact way to process all or part of the elements in a sequence and return a list with the results. result
= ['{:#04x}'.format (x) for x in range(256) if x % 2 == 0] generates a list of strings con-
taining even hex numbers (0x..) in the range from O to 255. The i f clause is optional. If omitted, all elements
in range (256) are processed.

ladowarka

An object that loads a module. It must define the exec_module () and create_module () methods to im-
plement the Loader interface. A loader is typically returned by a finder. See also:

« finders-and-loaders

e importlib.abc.Loader

« PEP 302

locale encoding

On Unix, it is the encoding of the LC_CTYPE locale. It can be set with 1ocale.setlocale (locale.
LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: "cpl1252").
On Android and VxWorks, Python uses "ut £-8" as the locale encoding.
locale.getencoding () can be used to get the locale encoding.

See also the filesystem encoding and error handler.

metoda magiczna

An informal synonym for special method.

352

Dodatek A. Stownik

https://peps.python.org/pep-0302/

The Python/C API, Wydanie 3.14.0a5

mapping
A container object that supports arbitrary key lookups and implements the methods specified in the
collections.abc.Mapping or collections.abc.MutableMapping abstract base classes. Exam-
ples include dict, collections.defaultdict, collections.OrderedDict and collections.
Counter.

meta path finder

A finder returned by a search of sys.meta_path. Meta path finders are related to, but different from parh
entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaklasa
The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented pro-
gramming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

metoda
A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called sel£). See function and nested scope.

method resolution order
Method Resolution Order is the order in which base classes are searched for a member during lookup. See
python_2.3_mro for details of the algorithm used by the Python interpreter since the 2.3 release.

modut
An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec

A namespace containing the import-related information used to load a module. An instance of importlib.
machinery.ModuleSpec.

See also module-specs.

MRO

See method resolution order.

mutable
Mutable objects can change their value but keep their id () . See also immutable.

nazwana krotka
The term ,,named tuple” applies to any type or class that inherits from tuple and whose indexable elements are
also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

>>> sys.float_info[1l] # Iindexed access

1024

>>> sys.float_info.max_exp # named field access

1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

. J

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from t uple and that defines named fields. Such a class can be written

353

The Python/C API, Wydanie 3.14.0a5

by hand, or it can be created by inheriting t yping.NamedTuple, or with the factory function collections.
namedtuple (). The latter techniques also add some extra methods that may not be found in hand-written or
built-in named tuples.

namespace
The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity
by preventing naming conflicts. For instance, the functions builtins.openand os.open () are distinguished
by their namespaces. Namespaces also aid readability and maintainability by making it clear which module
implements a function. For instance, writing random. seed () or itertools.islice () makes it clear that
those functions are implemented by the random and itertools modules, respectively.

namespace package
A PEP 420 package which serves only as a container for subpackages. Namespace packages may have no
physical representation, and specifically are not like a regular package because they have no __init__ .py
file.

See also module.

nested scope
The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference
and not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables
read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class
Old name for the flavor of classes now used for all class objects. In earlier Python versions, only new-style classes
could use Python’s newer, versatile features like __slots__, descriptors, properties, getattribute__ (),
class methods, and static methods.

obiekt
Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

optimized scope
A scope where target local variable names are reliably known to the compiler when the code is compiled,
allowing optimization of read and write access to these names. The local namespaces for functions, generators,
coroutines, comprehensions, and generator expressions are optimized in this fashion. Note: most interpreter
optimizations are applied to all scopes, only those relying on a known set of local and nonlocal variable names
are restricted to optimized scopes.

pakiet
A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python
module witha __ _path__ attribute.

See also regular package and namespace package.

parameter
A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

o positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

[def func (foo, bar=None): ... }

« positional-only: specifies an argument that can be supplied only by position. Positional-only parameters
can be defined by including a / character in the parameter list of the function definition after them, for
example posonlyl and posonly2 in the following:

[def func (posonlyl, posonly2, /, positional_or_keyword): ... }

o keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can
be defined by including a single var-positional parameter or bare * in the parameter list of the function

354 Dodatek A. Stownik

https://peps.python.org/pep-0420/

The Python/C API, Wydanie 3.14.0a5

definition before them, for example kw_onlyl and kw_only2 in the following:

[def func (arg, *, kw_onlyl, kw_only2):

)

« var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

[def func (*args, **kwargs):

« var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional
arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
the inspect .Parameter class, the function section, and PEP 362.

path entry

A single location on the import path which the path based finder consults to find modules for importing.

path entry finder

A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to locate
modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook

A callable on the sys.path_hooks list which returns a path entry finder if it knows how to find modules on
a specific path entry.

path based finder

One of the default meta path finders which searches an import path for modules.

path-like object

PEP

czesé

An object representing a file system path. A path-like object is either a st r or byt es object representing a path,
or an object implementing the os.PathLike protocol. An object that supports the os.PathLike protocol
can be converted to a st r or bytes file system path by calling the os . £spath () function; os . fsdecode ()
and os. fsencode () can be used to guarantee a str or bytes result instead, respectively. Introduced by
PEP 519.

Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community
input on an issue, and for documenting the design decisions that have gone into Python. The PEP author is
responsible for building consensus within the community and documenting dissenting opinions.

Zob. PEP 1.

A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as
defined in PEP 420.

positional argument

Zobacz argument.

provisional API

A provisional API is one which has been deliberately excluded from the standard library’s backwards com-
patibility guarantees. While major changes to such interfaces are not expected, as long as they are marked

355

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/

The Python/C API, Wydanie 3.14.0a5

provisional, backwards incompatible changes (up to and including removal of the interface) may occur if de-
emed necessary by core developers. Such changes will not be made gratuitously — they will occur only if serious
fundamental flaws are uncovered that were missed prior to the inclusion of the APIL.

Even for provisional APIs, backwards incompatible changes are seen as a ,;solution of last resort” - every
attempt will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package
See provisional API.

Python 3000

Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in the
distant future.) This is also abbreviated ,,Py3k”.

Pythoniczny
An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is
to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

-

for i in range(len(food)):
print (food[i])

L

As opposed to the cleaner, Pythonic method:

-

for piece in food:

print (piece)

qualified name

A dotted name showing the ,,path” from a module’s global scope to a class, function or method defined in that
module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

-

>>> class C:
class D:
def meth (self):
pass

>>> C._ _qualname_

IC’

>>> C.D.__gualname

"CoDY

>>> C.D.meth._ qualname
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, €.g2. email.mime.text:

>>> import email.mime.text
>>> email .mime.text. name
'email.mime.text'

reference count
The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Some objects are immortal and have reference counts that are never modified, and therefore the objects are
never deallocated. Reference counting is generally not visible to Python code, but it is a key element of the

CPython implementation. Programmers can call the sys.getrefcount () function to return the reference
count for a particular object.

356 Dodatek A. Stownik

https://peps.python.org/pep-0411/
https://peps.python.org/pep-3155/

The Python/C API, Wydanie 3.14.0a5

regular package
A traditional package, such as a directory containing an __init__.py file.

See also namespace package.

REPL
An acronym for the ,,read-eval-print loop”, another name for the inferactive interpreter shell.

__slots__
A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for
rare cases where there are large numbers of instances in a memory-critical application.

sekwencja
An iterable which supports efficient element access using integer indices via the _ getitem__ () special
method and defines a __len_ () method that returns the length of the sequence. Some built-in sequence
types are list, str, tuple, and bytes. Note that dict also supports __getitem_ () and _ len_ (),

but is considered a mapping rather than a sequence because the lookups use arbitrary hashable keys rather
than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes beyond just
__getitem_ ()and__len_ (),adding count (), index (),
Types that implement this expanded interface can be registered explicitly using register (). For more do-
cumentation on sequence methods generally, see Common Sequence Operations.

contains__ (),and __ reversed_ ().

set comprehension
A compact way to process all or part of the elements in an iterable and return a set with the results. results
= {c for c in 'abracadabra' if c not in 'abc'} generates the set of strings {'r', 'd'}.See
comprehensions.

single dispatch
A form of generic function dispatch where the implementation is chosen based on the type of a single argument.

slice
An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, suchasinvariable_name[1:3:5]. The bracket (subscript)
notation uses s1ice objects internally.

soft deprecated
A soft deprecated API should not be used in new code, but it is safe for already existing code to use it. The
API remains documented and tested, but will not be enhanced further.

Soft deprecation, unlike normal deprecation, does not plan on removing the API and will not emit warnings.
See PEP 387: Soft Deprecation.

special method
A method that is called implicitly by Python to execute a certain operation on a type, such as addition. Such
methods have names starting and ending with double underscores. Special methods are documented in spe-
cialnames.

instrukcja
A statement is part of a suite (a ,,block” of code). A statement is either an expression or one of several constructs
with a keyword, such as i f, while or for.

static type checker
An external tool that reads Python code and analyzes it, looking for issues such as incorrect types. See also
type hints and the t yping module.

strong reference
In Python’s C API, a strong reference is a reference to an object which is owned by the code holding the
reference. The strong reference is taken by calling Py 7NCREF () when the reference is created and released
with Py_DECREF () when the reference is deleted.

The py_nNewRef () function can be used to create a strong reference to an object. Usually, the Py DECREF ()
function must be called on the strong reference before exiting the scope of the strong reference, to avoid leaking

357

https://peps.python.org/pep-0387/#soft-deprecation

The Python/C API, Wydanie 3.14.0a5

one reference.
See also borrowed reference.

kodowanie tekstu
A string in Python is a sequence of Unicode code points (in range U+0000-U+10FFFF). To store or transfer
a string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as ,,encoding”, and recreating the string from the sequence
of bytes is known as ,,decoding”.

Istnieje wiele réznych serializacji tekstu codecs, ktére sa zbiorczo okreslane jako ,.kodowanie tekstu”.

plik tekstowy
Obiekt pliku moze odczytywac i zapisywac obiekty st r. Czesto plik tekstowy faktycznie uzyskuje dostep do
strumienia danych zorientowanego na bajty i automatycznie obstuguje kodowanie tekstu. Przyktadami plikéw
tekstowych sg pliki otwierane w trybie tekstowym ('r' lub 'w'), sys.stdin, sys.stdout i instancje io.
StringIO.

See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string
A string which is bound by three instances of either a quotation mark () or an apostrophe («). While they don’t
provide any functionality not available with single-quoted strings, they are useful for a number of reasons. They
allow you to include unescaped single and double quotes within a string and they can span multiple lines without
the use of the continuation character, making them especially useful when writing docstrings.

typ
The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type (ob7j).

type alias
A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying type hints. For example:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplel[int, int, int]]:
pass

could be made more readable like this:

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) —-> list[Color]:
pass

See typing and PEP 484, which describe this functionality.

type hint
An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.

Type hints are optional and are not enforced by Python but they are useful to static type checkers. They can
also aid IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints ().

See typing and PEP 484, which describe this functionality.

uniwersalne nowe linie
A manner of interpreting text streams in which all of the following are recognized as ending a line: the Unix
end-of-line convention '\n"', the Windows convention '\r\n', and the old Macintosh convention '\r'. See
PEP 278 and PEP 3116, as well as bytes.splitlines () for an additional use.

358 Dodatek A. Stownik

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/

The Python/C API, Wydanie 3.14.0a5

variable annotation
An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

[count: int = 0

Variable annotation syntax is explained in section annassign.

See function annotation, PEP 484 and PEP 526, which describe this functionality. Also see annotations-howto
for best practices on working with annotations.

virtual environment
A cooperatively isolated runtime environment that allows Python users and applications to install and upgrade
Python distribution packages without interfering with the behaviour of other Python applications running on
the same system.

See also venv.

virtual machine
A computer defined entirely in software. Python’s virtual machine executes the byfecode emitted by the byte-
code compiler.

Zen of Python
Listing of Python design principles and philosophies that are helpful in understanding and using the language.
The listing can be found by typing ,,import this” at the interactive prompt.

359

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python/C API, Wydanie 3.14.0a5

360 Dodatek A. Stownik

DODATEK B

O tej dokumentaciji

Dokumentacja Pythona jest generowana ze Zrédet reStructuredText przy uzyciu Sphinx, generator dokumentacji
pierwotnie stworzonej dla Pythona, a obecnie utrzymywanej jako niezalezny projekt.

Rozwéj dokumentacji i jej oprzyrzadowania jest w catosci wysitkiem wolontariackim, tak samo jak sam Python.
Jesli chcesz wnie$¢ swoj wktad, na stronie reporting-bugs znajdziesz informacje jak to zrobi¢. Nowi wolontariusze
sg zawsze mile widziani!

Ogromne podzigkowania dla:
« Fred L. Drake, Jr, twérca oryginalnego zestawu narz¢dzi dokumentacyjnych Pythona i autor wiekszosci tresci;
« projektu Docutils za stworzenie reStructuredText i pakietu Docutils;

 Fredrika Lundha za jego projekt Alternative Python Reference, z ktérego Sphinx wziat wiele dobrych pomy-
stow.

B.1 Wspoéttworcy dokumentacji Pythona

Wielu ludzi rozwija jezyk Python, bibliotekg standardowa Pythona i dokumentacje. W Misc/ACKS w Zrédiach
Pythona znajdziesz czeg$ciowa listg kontrybutoréw.

Tylko dzigki wktadowi spotecznosci Python ma tak wspaniata dokumentacje — dzigkujemy!

361

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.net/
https://github.com/python/cpython/tree/main/Misc/ACKS

The Python/C API, Wydanie 3.14.0a5

362 Dodatek B. O tej dokumentacji

popaTek G

Historia i zapisy prawne

C.1 Historia programu

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
/Iwww.cwi.nl) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Ilwww.cnri.reston.va.us) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations, which became Zope Corpo-
ration. In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-profit
organization created specifically to own Python-related Intellectual Property. Zope Corporation was a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

363

https://www.cwi.nl
https://www.cwi.nl
https://www.cnri.reston.va.us
https://www.cnri.reston.va.us
https://www.python.org/psf/
https://opensource.org

The Python/C API, Wydanie 3.14.0a5

wydanie Pochodne Rok Wriasciciel GPL-compatible?
po (1)

od 0.9.0 do niepodano od 1991 do CWI tak

1.2 1995

od 1.3 do 1.2 od 1995 do CNRI tak

1.5.2 1999

1.6 1.5.2 2000 CNRI nie

2.0 1.6 2000 BeOpen.com nie

1.6.1 1.6 2001 CNRI yes (2)

2.1 2.0i1.6.1 2001 Fundacja Programu jezyka Pytonowskie- nie
go (PSF)

2.0.1 2.011.6.1 2001 Fundacja Programu jezyka Pytonowskie- tak
go (PSF)

2.1.1 2.112.0.1 2001 Fundacja Programu jezyka Pytonowskie- tak
go (PSF)

2.1.2 2.1.1 2002 Fundacja Programu jezyka Pytonowskie- tak
go (PSF)

2.1.3 2.1.2 2002 Fundacja Programu jezyka Pytonowskie- tak
go (PSF)

2.2 and abo- 2.1.1 2001-teraz Fundacja Programu jezyka Pytonowskie- tak

ve go (PSF)

© Informacja

(1) GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others
don’t.

(2) According to Richard Stallman, 1.6.1 is not GPL-compatible, because its license has a choice of law clause.
According to CNRI, however, Stallman’s lawyer has told CNRI’s lawyer that 1.6.1 is ,,not incompatible”
with the GPL.

Podzigkowania dla wielu ochotnikéw przychodzacych z zewnatrz, ktérzy pracowali pod kierunkiem Gwidona aby
umozliwi¢ te wydania programu jezyka pytonowskiego.

C.2 Zasady i warunki postepowania z Pythonem i ogdlnie jego uzy-
cia

Python software and documentation are licensed under the Python Software Foundation License Version 2.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Version 2 and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under
that license. See Licenses and Acknowledgements for Incorporated Software for an incomplete list of these licenses.

C.2.1 PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"), and
the Individual or Organization ("Licensee") accessing and otherwise using this
software ("Python") in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
(ciag dalszy na nastgpnej stronie)

364 Dodatek C. Historia i zapisy prawne

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice of
copyright, i.e., "Copyright © 2001 Python Software Foundation; All Rights
Reserved" are retained in Python alone or in any derivative version
prepared by Licensee.

In the event Licensee prepares a derivative work that is based on or
incorporates Python or any part thereof, and wants to make the

derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to.

—Python.

PSF is making Python available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF PYTHON WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of

its terms and conditions.

Nothing in this License Agreement shall be deemed to create any relationship

of agency, partnership, or joint venture between PSF and Licensee. This License
Agreement does not grant permission to use PSF trademarks or trade name in a
trademark sense to endorse or promote products or services of Licensee, or any
third party.

By copying, installing or otherwise using Python, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

i

This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

BeOpen is making the Software available to Licensee on an "AS IS" basis.

BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
(ciag dalszy na nastgpnej stronie)

C.2. Zasady i warunki postepowania z Pythonem i ogodlnie jego uzycia 365

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013".

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY

(ciag dalszy na nastgpnej stronie)

366 Dodatek C. Historia i zapisy prawne

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)

OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2. Zasady i warunki postepowania z Pythonem i ogodlnie jego uzycia 367

The Python/C API, Wydanie 3.14.0a5

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON DOCUMENTA-
TION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random C extension underlying the random module includes code based on a download from http://www.math.
sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the
original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
(ciag dalszy na nastgpnej stronie)

368 Dodatek C. Historia i zapisy prawne

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate source
files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asynchronous socket services

The test.support.asynchat and test . support.asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to

(ciag dalszy na nastgpnej stronie)

C.3. Licenses and Acknowledgements for Incorporated Software 369

https://www.wide.ad.jp/

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Execution tracing

The t race module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro
(ciag dalszy na nastgpnej stronie)

370 Dodatek C. Historia i zapisy prawne

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode and UUdecode functions

The uu codec contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
(ciag dalszy na nastgpnej stronie)

C.3. Licenses and Acknowledgements for Incorporated Software 371

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(ciag dalszy na nastgpnej stronie)

372 Dodatek C. Historia i zapisy prawne

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLTED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash. c contains Marek Majkowski» implementation of Dan Bernstein’s SipHash24 algorithm.
It contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod and dtoa

The file Python/dtoa . c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from https://web.archive.org/web/
20220517033456/http://www.netlib.org/fp/dtoa.c. The original file, as retrieved on March 16, 2009, contains the
following copyright and licensing notice:

/**
*

* The author of this software is David M. Gay.
*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
(ciag dalszy na nastgpnej stronie)

C.3. Licenses and Acknowledgements for Incorporated Software 373

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)

* documentation for such software.

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*

***/

C.3.12 OpenSSL

The modules hashlib, posix and ss1 use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity

exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
(ciag dalszy na nastgpnej stronie)

374 Dodatek C. Historia i zapisy prawne

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution (s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(ciag dalszy na nastgpnej stronie)

C.3. Licenses and Acknowledgements for Incorporated Software 375

The Python/C API, Wydanie 3.14.0a5

(b)
stating that You changed the files;

You must retain, in the Source form
that You distribute,
attribution notices from the Source

all copyright,

excluding those notices that do not

the Derivative Works; and

distribution,

(kontynuacja poprzedniej strony)

You must cause any modified files to carry prominent notices

and

of any Derivative Works
patent, trademark, and
form of the Work,

pertain to any part of

If the Work includes a "NOTICE" text file as part of its
then any Derivative Works that You distribute must

include a readable copy of the attribution notices contained

within such NOTICE file,

pertain to any part of the Derivative Works,
within a NOTICE text file distributed

of the following places:
as part of the Derivative Works;
documentation,

within a display generated by the Derivative Works,
wherever such third-party notices normally appear.

if provided along with the Derivative Works;

excluding those notices that do not

in at least one

within the Source form or

©F,
if and
The contents

of the NOTICE file are for informational purposes only and

do not modify the License.

notices within Derivative Works that You distribute,

You may add Your own attribution

alongside

or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed

as modifying the License.

You
may
for use, reproduction,
for
reproduction,
the conditions stated in this License.

5. Submission of Contributions. Unless You

or distribution of Your modifications,
any such Derivative Works as a whole,

may add Your own copyright statement to Your modifications and
provide additional or different license terms and conditions

or

provided Your use,

and distribution of the Work otherwise complies with

explicitly state otherwise,

any Contribution intentionally submitted for inclusion in the Work

by You to the Licensor shall be under the terms and conditions of

this License,
Notwithstanding the above,

without any additional terms or conditions.
nothing herein shall supersede or modify

the terms of any separate license agreement you may have executed

with Licensor regarding such Contributions.

6. Trademarks. This License does not grant

names, trademarks, service marks,

permission to use the trade

or product names of the Licensor,

except as required for reasonable and customary use in describing the

origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required

agreed to in writing, Licensor provides
Contributor provides its Contributions)
WITHOUT WARRANTIES OR CONDITIONS OF ANY
implied, including, without
of TITLE, NON-INFRINGEMENT,
PARTICULAR PURPOSE.

appropriateness of using or

limitation,

You are

MERCHANTABILITY,
solely responsible for determining the

by applicable law or

the Work (and each
on an "AS IS" BASIS,
KIND, either express or

any warranties or conditions
or FITNESS FOR A

redistributing the Work and assume any

risks associated with Your exercise of permissions under this License.

(ciag dalszy na nastgpnej stronie)

376

Dodatek C. Historia i zapisy prawne

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINEFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 377

The Python/C API, Wydanie 3.14.0a5

C.3.14 libffi

The _ctypes C extension underlying the ct ypes module is built using an included copy of the libffi sources unless
the build is configured ——with-system-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The z1ib extension is built using an included copy of the zlib sources if the zlib version found on the system is too
old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
Jjloup@gzip.org madler@alumni.caltech.edu

378 Dodatek C. Historia i zapisy prawne

The Python/C API, Wydanie 3.14.0a5

C.3.16 cfuhash

The implementation of the hash table used by the t racemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal C extension underlying the decimal module is built using an included copy of the libmpdec library
unless the build is configured --with-system—-libmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
(ciag dalszy na nastgpnej stronie)

C.3. Licenses and Acknowledgements for Incorporated Software 379

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from the W3C
website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 mimalloc
MIT License:

Copyright (c) 2018-2021 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

(ciag dalszy na nastgpnej stronie)

380 Dodatek C. Historia i zapisy prawne

https://www.w3.org/TR/xml-c14n2-testcases/

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE .

C.3.20 asyncio

Parts of the asyncio module are incorporated from uvloop 0.16, which is distributed under the MIT license:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.21 Global Unbounded Sequences (GUS)

The file Python/gsbr.c is adapted from FreeBSD’s ,,Global Unbounded Sequences” safe memory reclamation
scheme in subr_smr.c. The file is distributed under the 2-Clause BSD License:

Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice unmodified, this list of conditions, and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
(ciag dalszy na nastgpnej stronie)

C.3. Licenses and Acknowledgements for Incorporated Software 381

https://github.com/MagicStack/uvloop/tree/v0.16.0
https://github.com/freebsd/freebsd-src/blob/main/sys/kern/subr_smr.c

The Python/C API, Wydanie 3.14.0a5

(kontynuacja poprzedniej strony)
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

382 Dodatek C. Historia i zapisy prawne

DODATEK D

Prawa autorskie

Python i ta dokumentacja jest:

Copyright © 2001 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. Wszystkie prawa zastrzezone.

Copyright © 1995-2000 Corporation for National Research Initiatives. Wszystkie prawa zastrzezone.

Copyright © 1991-1995 Stichting Mathematisch Centrum. Wszystkie prawa zastrzezone.

Patrz dzial Historia i zapisy prawne, aby zobaczy¢ petna informacje na temat licencji i praw.

383

The Python/C API, Wydanie 3.14.0a5

384 Dodatek D. Prawa autorskie

Indeks

Niealfabetyczny

..., 343
>>>, 343
__all__ (package variable), 74
__dict__ (module attribute), 189
__doc__ (module attribute), 188
__file__ (module attribute), 188, 189
_ future_ , 349
__import_

funkcja wbudowana, 75
__loader__ (module attribute), 188
_ _main___

modut, 12,217,232, 233
__name___ (module attribute), 188, 189
__package__ (module attribute), 188
__ PYVENV_LAUNCHER__, 256, 262
__slots__,357
_frozen (C struct), 77
_inittab (C struct), 78
_inittab.initfunc (C member), 78
_inittab.name (C member), 78
_Py_c_diff (C function), 144
_Py_c_neg (C function), 145
_Py_c_pow (C function), 145
_Py_c_prod (C function), 145
_Py_c_quot (C function), 145
_Py_c_sum (C function), 144
_Py_cr_diff (C function), 144
_Py_cr_prod (C function), 145
_Py_cr_quot (C function), 145
_Py_cr_sunm (C function), 144
_Py_NoneStruct (Cvar), 283
_Py_rc_diff (C function), 145
_Py_rc_quot (C function), 145
_PyBytes_Resize (C function), 148
_PyCode_GetExtra (C function), 187
_PyCode_SetExtra (C function), 187

_PyEval_RequestCodeExtraIndex (C function),

186
_PyFrameEvalFunction (C type), 229
_PyInterpreterFrame (C struct), 205

_PyInterpreterState_GetEvalFrameFunc
function), 230

(c

_PyInterpreterState_SetEvalFrameFunc
function), 230

_PyObject_GetDictPtr (C function), 101
_PyObject_New (C function), 283
_PyObject_NewVar (C function), 283
_PyTuple_Resize (C function), 170
_thread

modutl, 226

A

abort (C function), 74
abs

funkcja wbudowana, 112
abstrakcyjna klasa bazowa, 343
adnotacija, 343
allocfunc (C type), 324
annotate function, 343
argument,343
argv (in module sys), 222, 255
ascii

funkcja wbudowana, 101
asynchronous context manager, 344
asynchronous generator, 344
generator iterator, 344
iterable, 344

iterator, 344

asynchronous
asynchronous
asynchronous
atrybut, 344

awaitable, 345

B

BDFL, 345
biezacy kontekst, 347
binaryfunc (C type), 325
borrowed reference, 345
buffer interface

(see buffer protocol), 118
buffer object

(see buffer protocol), 118
buffer protocol, 118
builtins

modut, 12,217, 232, 233
bytearray

obiekt, 148
bytes

(@

385

The Python/C API, Wydanie 3.14.0a5

funkcja wbudowana, 102
obiekt, 146
bytes-like object, 345

C

callable, 345
calloc (C function), 271
Capsule
obiekt, 201
C-contiguous, 121, 346
cigg znakdw
PyObject_sStr (C function), 101
class variable, 345
classmethod
funkcja wbudowana, 288
cleanup functions, 74
close (in module o0s), 233
closure variable, 345
CO_FUTURE_DIVISION (C var), 47
code object, 183
Common Vulnerabilities and Exposures
CVE 2008-5983, 222
compile
funkcja wbudowana, 76
context management protocol, 346
context manager, 346
context variable, 346
contiguous, 121, 346
copyright (in module sys), 222
coroutine, 346
coroutine function, 346
CPython, 347
czesé, 355

D

dekorator, 347
descrget func (C type), 325
descrsetfunc (C type), 325
deskryptor, 347
destructor (C type), 324
dictionary comprehension, 347
dictionary view, 347
divmod

funkcja wbudowana, 111
docstring, 347
duck-typing, 347

E

EAFP, 348

EOFError (built-in exception), 188
evaluate function, 348
exc_info (in module sys), 11
executable (in module sys), 221
exit (C function), 74

F?

f-string, 348
file-like object, 348

filesystem encoding and error handler, 348

float
funkcja wbudowana, 113
floating-point
obiekt, 142
floor division, 348
Fortran contiguous, 121, 346
free (C function), 271
free threading, 349
free variable, 349
freefunc (C type), 324
freeze utility, 77
frozenset
obiekt, 178
function annotation, 349
funkcija, 349
obiekt, 180
funkcja wbudowana
__dimport__,75
abs, 112
ascii, 101
bytes, 102
classmethod, 288
compile, 76
divmod, 111
float, 113
hash, 102, 302
int, 113
len, 103, 114, 116, 172, 176, 179
pow, 111, 113
repr, 101, 302
staticmethod, 288
tuple, 115,173
typ, 102

G

gcvisitobjects_t (Ctype), 331
generator,349

generator expression, 349
generator iterator, 349
generic function, 350
generic type, 350
getattrfunc (Ctype), 324
getattrofunc (Ctype), 324
getbufferproc (C type), 325
getiterfunc (C type), 325
getter (C type), 292

GIL, 350

global interpreter lock, 223, 350

F+

hash

funkcja wbudowana, 102, 302
hash-based pyc, 350
hashable, 350
hashfunc (C type), 325

386

The Python/C API, Wydanie 3.14.0a5

IDLE, 350
immutable, 351
import, 351
import path, 351
importer, 351
incr_item(), 11,12
initproc (Ctype), 324
inquiry (C type), 330
instancemethod

obiekt, 182
instrukcia, 357
int

funkcja wbudowana, 113
integer

obiekt, 132
interaktywne, 351
interpreter lock, 223
interpreter shutdown, 351
iterable, 351
iterator, 351
iternext func (C type), 325

K

key function, 352

KeyboardInterrupt (built-in exception), 61

keyword argument, 352
klasa, 345

kod bajtowy, 345
kodowanie tekstu, 358
kontekst, 346

L

lambda, 352
LBYL, 352
len

funkcja wbudowana, 103, 114, 116, 172, 176,

179
lenfunc (C type), 325
liczba zespolona, 346

obiekt, 144
list comprehension, 352
lista, 352

obiekt, 171
locale encoding, 352
lock, interpreter, 223
long integer

obiekt, 132
LONG_MAX (C macro), 134

b

tadowarka, 352

M
magia
metoda, 352
main (), 220, 222, 255
malloc (C function), 271

mapping, 353

obiekt, 173
memoryview

obiekt, 199
meta path finder, 353
metaklasa, 353
METH_CLASS (C macro), 288
METH_COEXIST (C macro), 288
METH_FASTCALL (C macro), 287
METH_KEYWORDS (C macro), 287
METH_METHOD (C macro), 287
METH_NOARGS (C macro), 287
METH_O (C macro), 288
METH_STATIC (C macro), 288
METH_VARARGS (C macro), 287
method resolution order, 353

MethodType (in module types), 180, 182

metoda, 353
magia, 352
obiekt, 182
specjalne, 357
metoda magiczna, 352
module spec, 353
modules (in module sys), 74, 217
ModuleType (in module types), 188
modut, 353
__main_ ,12,217,232,233
_thread, 226
builtins, 12,217,232, 233
obiekt, 188
signal, 61
sys, 12,217,232,233

wyszukiwanie $ciezka, 12,217,221

modul rozszerzenia, 348
MRO, 353
mutable, 353

N

namespace, 354
namespace package, 354
nazwana krotka, 353
nested scope, 354
new-style class, 354
newfunc (C type), 324
niedémiertelne, 350
None

obiekt, 132
numeric

obiekt, 132

O

obiekt, 354
bytearray, 148
bytes, 146
Capsule, 201
code, 183
floating-point, 142
frozenset, 178

Indeks

The Python/C API, Wydanie 3.14.0a5

funkcia, 180
instancemethod, 182
integer, 132

liczba zespolona, 144
lista, 171

long integer, 132
mapping, 173
memoryview, 199
metoda, 182

moduil, 188

None, 132
numeric, 132

plik, 187
sekwencija, 146
stownik, 173

tuple, 169
typ, 7, 125
zestaw, 178

obiekt pliku, 348

objobjargproc (C type), 325

objobjproc (C type), 325

optimized scope, 354

overflowError (built-in exception), 134, 135

P

package variable
all ,74
pakiet, 354
parameter, 354
PATH, 12
path (in module sys), 12,217, 221
path based finder, 355
path entry, 355
path entry finder, 355
path entry hook, 355
path-like object, 355
PEP, 355
plat form (in module sys), 222
plik
obiekt, 187
plik binarny, 345
plik tekstowy, 358
positional argument, 355
pow
funkcja wbudowana, 111, 113
provisional API, 355
provisional package, 356
pPy_ABS (C macro), 4
Py_AddPendingCall (C function), 234
Py_ALWAYS_INLINE (C macro), 5
Py_ASNATIVEBYTES_ALLOW_INDEX (C macro), 138
Py_ASNATIVEBYTES_BIG_ENDIAN (C macro), 138
Py_ASNATIVEBYTES_DEFAULTS (C macro), 138
Py_ASNATIVEBYTES_LITTLE_ENDIAN (C macro),
138
Py_ASNATIVEBYTES_NATIVE_ENDIAN (C macro),
138

Py_ASNATIVEBYTES_REJECT_NEGATIVE (C macro),
138
Py_ASNATIVEBYTES_UNSIGNED_BUFFER (C macro),
138
py_aAtExit (C function), 74
Py_AUDIT_READ (C macro), 290
Py_AuditHookFunction (C type), 74
Py_BEGIN_ALLOW_THREADS (C macro), 224,227
Py_BEGIN_CRITICAL_SECTION (C macro), 240
Py_BEGIN_CRITICAL_SECTION2 (C macro), 240
Py_BLOCK_THREADS (C macro), 227
Py_buffer (Ctype), 119
Py_buffer.buf (C member), 119
Py_buffer. format (C member), 119
Py_buffer.internal (C member), 120
Py_buffer.itemsize (C member), 119
Py_buffer.len (C member), 119
Py_buffer.ndim (C member), 119
Py_buffer.obj (C member), 119
Py_buffer.readonly (C member), 119
Py_buffer.shape (C member), 120
Py_buffer.strides (C member), 120
Py_buffer.suboffsets (C member), 120
Py_Buildvalue (C function), 85
Py BytesMain (C function), 218
Py_BytesWarningFlag (C var), 214
Py_CHARMASK (C macro), 5
Py_CLEANUP_SUPPORTED (C macro), 83
Py_CLEAR (C function), 50
Py CompileString (C function), 45, 46
Py CompileStringExFlags (C function), 45
Py_CompileStringFlags (C function), 45
Py_CompileStringObject (C function), 45
Py_complex (C type), 144
Py_complex.imag (C member), 144
Py_complex.real (C member), 144
Py_CONSTANT_ELLIPSIS (C macro), 98
Py_CONSTANT_EMPTY_BYTES (C macro), 98
Py_CONSTANT_EMPTY_STR (C macro), 98
Py_CONSTANT_EMPTY_TUPLE (C macro), 98
Py_CONSTANT_FALSE (C macro), 98
Py_CONSTANT_NONE (C macro), 98
Py_CONSTANT_NOT_IMPLEMENTED (C macro), 98
Py_CONSTANT_ONE (C macro), 98
Py_CONSTANT_TRUE (C macro), 98
Py_CONSTANT_ZERO (C macro), 98
PY_CXX_CONST (C macro), 85
Py_DEBUG (C macro), 13
Py_DebugFlag (Cvar), 214
Py_DecodeLocale (C function), 70
Py_DECREF (C function), 7, 50
Py_DecRef (C function), 51
Py_DEPRECATED (C macro), 5
Py_DontWriteBytecodeFlag (C var), 215
Py_Ellipsis (Cvar), 199
Py_EncodeLocale (C function), 71
Py_END_ALLOW_THREADS (C macro), 224, 227
Py_END_CRITICAL_SECTION (C macro), 240

388

Indeks

The Python/C API, Wydanie 3.14.0a5

Py_END_CRITICAL_SECTION2 (C macro), 241
Py_EndInterpreter (C function), 233
Py_EnterRecursiveCall (C function), 64
pPy_EQ (C macro), 311

Py_eval_input (Cvar), 46

py_Exit (C function), 74
Py_ExitStatusException (C function), 251
Py_False (Cvar), 142

Py FatalError (C function), 74
Py_FatalError(), 222

Py_fclose (C function), 72
Py_FdIsInteractive (C function), 69
Py_file_input (C var), 46

Py Finalize (C function), 218
Py_FinalizeEx (C function), 74,217, 218, 232, 233
Py_fopen (C function), 72

Py_FrozenFlag (Cvar), 215

Py_GE (C macro), 311

Py _GenericAlias (C function), 211
Py_GenericAliasType (Cvar), 212
Py_GetArgcArgv (C function), 269
Py_GetBuildInfo (C function), 222
Py_GetCompiler (C function), 222
Py_GetConstant (C function), 97

Py GetConstantBorrowed (C function), 98
Py_GetCopyright (C function), 222
Py_GETENV (C macro), 5
Py_GetExecPrefix (C function), 12, 220
Py_GetPath (C function), 12, 221
Py_GetPath (), 220

Py GetPlatform (C function), 222
Py_GetPrefix (C function), 12, 220
Py_GetProgramFullPath (C function), 12,221
Py_GetProgramName (C function), 220
Py_GetPythonHome (C function), 223

Py _GetVersion (C function), 221

Py_GT (C macro), 311

Py_hash_t (Ctype), 89

Py_HashBuffer (C function), 90
Py_HashPointer (C function), 90
Py_HashRandomizationFlag (C var), 215
Py_IgnoreEnvironmentFlag (C var), 215
Py_INCREF (C function), 7, 49

Py_IncRef (C function), 51

Py_Initialize (C function), 12,217,232
Py_Initialize(), 220

Py InitializeEx (C function), 217
Py_InitializeFromConfig (C function), 217
Py_TInitializeFromInitConfig (C function), 246
Py_InspectFlag (Cvar), 215
Py_InteractiveFlag (Cvar), 215

pPy_Is (C function), 284

Py_IS_TYPE (C function), 285

Py_IsFalse (C function), 285
Py_IsFinalizing (C function), 218
Py_IsInitialized (C function), 12,218
Py_IsNone (C function), 284
Py_IsolatedFlag (Cvar), 215

Py_TIsTrue (C function), 284

pPy_LE (C macro), 311

Py _LeaveRecursiveCall (C function), 64

Py_LegacyWindowsFSEncodingFlag (C var), 216

Py_LegacyWindowsStdioFlag (C var), 216

Py_LIMITED_API (C macro), 16

Py_LT (C macro), 311

Py_Main (C function), 218

PY_MAJOR_VERSTION (C macro), 333

Py_MARSHAL_VERSION (C macro), 78

py_MaX (C macro), 5

Py_MEMBER_SIZE (C macro), 5

PY_MICRO_VERSION (C macro), 333

Py_MIN (C macro), 5

PY_MINOR_VERSION (C macro), 333

Py_mod_create (C macro), 192

Py_mod_exec (C macro), 192

Py_mod_gil (C macro), 192

Py_MOD_GIL_NOT_USED (C macro), 193

Py_MOD_GIL_USED (C macro), 193

Py_mod_multiple_interpreters (C macro), 192

Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED
(C macro), 192

Py_MOD_MULTIPLE_INTERPRETERS_SUPPORTED (C
macro), 192

Py_MOD_PER_INTERPRETER_GIL_SUPPORTED (C
macro), 192

PY_MONITORING_EVENT_BRANCH_LEFT (C macro),
340

PY_MONITORING_EVENT_BRANCH_RIGHT (C macro),
340

PY_MONITORING_EVENT_C_RAISE (C macro), 340

PY_MONITORING_EVENT_C_RETURN (C macro), 340

PY_MONITORING_EVENT_CALL (C macro), 340

PY_MONITORING_EVENT_EXCEPTION_HANDLED (C
macro), 340

PY_MONITORING_EVENT_INSTRUCTION (C macro),
340

PY_MONITORING_EVENT_JUMP (C macro), 340

PY_MONITORING_EVENT_LINE (C macro), 340

PY_MONITORING_EVENT_PY_RESUME (C macro), 340

PY_MONITORING_EVENT_PY_RETURN (C macro), 340

PY_MONITORING_EVENT_PY_START (C macro), 340

PY_MONITORING_EVENT_PY_THROW (C macro), 340

PY_MONITORING_EVENT_PY_UNWIND (C macro), 340

PY_MONITORING_EVENT_PY_YIELD (C macro), 340

PY_MONITORING_EVENT_RAISE (C macro), 340

PY_MONITORING_EVENT_RERAISE (C macro), 340

PY_MONITORING_EVENT_STOP_ITERATION (C ma-
cro), 340

pPy_NE (C macro), 311

Py NewInterpreter (C function), 233

Py_NewInterpreterFromConfig (C function), 232

Py_NewRef (C function), 50

Py_NO_INLINE (C macro), 5

Py_None (C var), 132

Py_NoSiteFlag (C var), 216

Py_NotImplemented (C var), 98

Indeks

389

The Python/C API, Wydanie 3.14.0a5

Py_NoUserSiteDirectory (Cvar), 216

Py_OpenCodeHookFunction (C type), 188

Py_OptimizeFlag (Cvar), 216

Py PACK_FULL_VERSION (C function), 334

Py_PACK_VERSION (C function), 334

Py_PrelInitialize (C function), 253

Py_PrelInitializeFromArgs (C function), 253

Py PrelnitializeFromBytesArgs (C function),
253

Py_PRINT_RAW (C macro), 98, 188

Py_QuietFlag (Cvar), 217

Py_READONLY (C macro), 290

Py_REFCNT (C function), 49

Py_RELATIVE_OFFSET (C macro), 290

PY_RELEASE_LEVEL (C macro), 333

PY_RELEASE_SERIAL (C macro), 333

Py_ReprEnter (C function), 65

Py_ReprLeave (C function), 65

Py_RETURN_FALSE (C macro), 142

Py_RETURN_NONE (C macro), 132

Py_RETURN_NOTIMPLEMENTED (C macro), 98

Py_RETURN_RICHCOMPARE (C macro), 311

Py_RETURN_TRUE (C macro), 142

Py_RunMain (C function), 219

Py SET_REFCNT (C function), 49

Py_SET_SIZE (C function), 285

Py_SET_TYPE (C function), 285

Py_SetProgramName (C function), 220

Py_SetPythonHome (C function), 223

Py_SETREF (C macro), 51

Py_single_input (C var), 46

Py_S1ZE (C function), 285

Py_ssize_t (Ctype), 10

PY_SSIZE_T_MAX (C macro), 135

Py_STRINGIFY (C macro), 5

Py_T_BOOL (C macro), 291

Py_T_BYTE (C macro), 291

Py_T_CHAR (C macro), 291

Py_T_DOUBLE (C macro), 291

Py_T_FLOAT (C macro), 291

Py_T_INT (C macro), 291

Py_T_LONG (C macro), 291

Py_T_LONGLONG (C macro), 291

Py_T_OBJECT_EX (C macro), 291

Py_T_PYSSIZET (C macro), 291

Py_T_SHORT (C macro), 291

Py_T_STRING (C macro), 291

Py_T_STRING_INPLACE (C macro), 291

Py_T_UBYTE (C macro), 291

Py_T_UINT (C macro), 291

Py_T_ULONG (C macro), 291

Py_T_ULONGLONG (C macro), 291

Py_T_USHORT (C macro), 291

Py_tp_token (C macro), 131

Py_TP_USE_SPEC (C macro), 132

Py_TPFLAGS_BASE_EXC_SUBCLASS (C macro), 306

Py_TPFLAGS_BASETYPE (C macro), 304

Py_TPFLAGS_BYTES_SUBCLASS (C macro), 306

Py_TPFLAGS_DEFAULT (C macro), 305
Py_TPFLAGS_DICT_SUBCLASS (C macro), 306
Py_TPFLAGS_DISALLOW_INSTANTIATION (Cmacro),
307
Py_TPFLAGS_HAVE_FINALIZE (C macro), 306
Py_TPFLAGS_HAVE_GC (C macro), 305
Py_TPFLAGS_HAVE_VECTORCALL (C macro), 306
Py_TPFLAGS_HEAPTYPE (C macro), 304
Py_TPFLAGS_IMMUTABLETYPE (C macro), 307
Py_TPFLAGS_ITEMS_AT_END (C macro), 306
Py_TPFLAGS_LIST_SUBCLASS (C macro), 306
Py_TPFLAGS_LONG_SUBCLASS (C macro), 306
Py_TPFLAGS_MANAGED_DICT (C macro), 305
Py_TPFLAGS_MANAGED_WEAKREF (C macro), 306
Py_TPFLAGS_MAPPING (C macro), 307
Py_TPFLAGS_METHOD_DESCRIPTOR (C macro), 305
Py_TPFLAGS_READY (C macro), 305
Py_TPFLAGS_READYING (C macro), 305
Py_TPFLAGS_SEQUENCE (C macro), 308
Py_TPFLAGS_TUPLE_SUBCLASS (C macro), 306
Py_TPFLAGS_TYPE_SUBCLASS (C macro), 306
Py_TPFLAGS_UNICODE_SUBCLASS (C macro), 306
Py_TPFLAGS_VALID_VERSION_TAG (C macro), 308
Py_tracefunc (C type), 235
Py_True (Cvar), 142
Py_tss_NEEDS_INIT (C macro), 238
Py_tss_t (Ctype), 237
py_TYPE (C function), 285
pPy_ucs1 (C type), 150
py_ucs2 (Ctype), 150
pPy_ucs4 (Ctype), 150
Py_uhash_t (C type), 89
Py_UNBLOCK_THREADS (C macro), 228
Py_UnbufferedStdioFlag (Cvar), 217
Py_UNICODE (C type), 150
Py UNICODE_IS_ HIGH_SURROGATE (C function), 153
Py_UNICODE_IS_LOW_SURROGATE (C function), 153
Py_UNICODE_IS_SURROGATE (C function), 153
Py_UNICODE_TISALNUM (C function), 152
Py_UNICODE_ISALPHA (C function), 152
Py UNICODE_ISDECIMAL (C function), 152
Py_UNICODE_ISDIGIT (C function), 152
Py_UNICODE_ISLINEBREAK (C function), 152
Py_UNICODE_ISLOWER (C function), 152
Py_UNICODE_ISNUMERIC (C function), 152
Py _UNICODE_ISPRINTABLE (C function), 152
Py UNICODE_ISSPACE (C function), 152
Py_UNICODE_ISTITLE (C function), 152
Py_UNICODE_ISUPPER (C function), 152
Py_UNICODE_JOIN_SURROGATES (C function), 153
Py_UNICODE_TODECIMAL (C function), 152
Py _UNICODE_TODIGIT (C function), 152
Py_UNICODE_TOLOWER (C function), 152
Py_UNICODE_TONUMERIC (C function), 152
Py_UNICODE_TOTITLE (C function), 152
Py_UNICODE_TOUPPER (C function), 152
Py_UNREACHABLE (C macro), 6
Py_UNUSED (C macro), 6

390

Indeks

The Python/C API, Wydanie 3.14.0a5

Py_vaBuildvalue (C function), 87

PY_VECTORCALL_ARGUMENTS_OFFSET (C macro),
107

Py_VerboseFlag (Cvar), 217

Py_Version (C var), 333

PY_VERSION_HEX (C macro), 333

Py_vISIT (C function), 330

Py_XDECREF (C function), 12, 50

Py XINCREF (C function), 49

Py_XNewRef (C function), 50

Py_XSETREF (C macro), 51

PyATter_Check (C function), 117

PyAnySet_Check (C function), 179

PyAnySet_CheckExact (C function), 179

PyArg_Parse (C function), 84

PyArg_ParseTuple (C function), 84

PyArg_ParseTupleAndKeywords (C function), 84

PyArg_UnpackTuple (C function), 85

PyArg_ValidateKeywordArguments (C function),
84

PyArg_VaParse (C function), 84

PyArg_VaParseTupleAndKeywords (C function), 84

PyASCIIObject (Ctype), 150

PyAsyncMethods (C type), 323

PyAsyncMethods.am_aiter (C member), 323

PyAsyncMethods.am_anext (C member), 324

PyAsyncMethods.am_await (C member), 323

PyAsyncMethods.am_send (C member), 324

PyBool_Check (C function), 142

PyBool FromLong (C function), 142

PyBool_Type (Cvar), 142

PyBUF_ANY_CONTIGUOUS (C macro), 121

PyBUF_C_CONTIGUOUS (C macro), 121

PyBUF_CONTIG (C macro), 122

PyBUF_CONTIG_RO (C macro), 122

PyBUF_F_CONTIGUOUS (C macro), 121

PyBUF_FORMAT (C macro), 121

PyBUF_FULL (C macro), 122

PyBUF_FULL_RO (C macro), 122

PyBUF_INDIRECT (C macro), 121

PyBUF_MAX_NDIM (C macro), 120

PyBUF_ND (C macro), 121

PyBUF_READ (C macro), 199

PyBUF_RECORDS (C macro), 122

PyBUF_RECORDS_RO (C macro), 122

PyBUF_SIMPLE (C macro), 121

PyBUF_STRIDED (C macro), 122

PyBUF_STRIDED_RO (C macro), 122

PyBUF_STRIDES (C macro), 121

PyBUF_WRITABLE (C macro), 121

PyBUF_WRITE (C macro), 199

PyBuffer FillContiguousStrides (C function),
124

PyBuffer_FillInfo (C function), 124

PyBuffer_FromContiguous (C function), 124

PyBuffer_GetPointer (C function), 124

PyBuffer_ IsContiguous (C function), 124

PyBuffer_Release (C function), 124

PyBuffer_SizeFromFormat (C function), 124
PyBuffer_ToContiguous (C function), 124
pPyBufferProcs (Ctype), 118, 322
PyBufferProcs.bf_getbuffer (C member), 322
PyBufferProcs.bf_releasebuffer (C member),
323
PyByteArray_AS_STRING (C function), 149
PyByteArray_ AsString (C function), 149
PyByteArray_Check (C function), 149
PyByteArray_CheckExact (C function), 149
PyByteArray_Concat (C function), 149
PyByteArray_FromObject (C function), 149
PyByteArray FromStringAndSize (C function),
149
PyByteArray GET_SIZE (C function), 149
PyByteArray_Resize (C function), 149
PyByteArray_Size (C function), 149
PyByteArray_Type (Cvar), 148
PyByteArrayObject (C type), 148
PyBytes_AS_STRING (C function), 148
PyBytes_AsString (C function), 147
PyBytes_AsStringAndSize (C function), 148
PyBytes_Check (C function), 146
PyBytes_CheckExact (C function), 146
PyBytes_Concat (C function), 148
PyBytes_ConcatAndDel (C function), 148
PyBytes_FromFormat (C function), 147
PyBytes_FromFormatV (C function), 147
PyBytes_FromObject (C function), 147
PyBytes_FromString (C function), 147
PyBytes_FromStringAndSize (C function), 147
PyBytes_GET_SIZE (C function), 147
PyBytes_Join (C function), 148
PyBytes_sSize (C function), 147
PyBytes_Type (C var), 146
PyBytesObject (C type), 146
PyCallable_Check (C function), 111
PyCallIter_Check (C function), 197
PyCalllter_New (C function), 197
PyCallIter_Type (Cvar), 197
pPyCapsule (C type), 201
PyCapsule_CheckExact (C function), 201
PyCapsule_Destructor (C type), 201
PyCapsule_GetContext (C function), 202
PyCapsule_GetDestructor (C function), 202
PyCapsule_GetName (C function), 202
PyCapsule_GetPointer (C function), 202
PyCapsule_Import (C function), 202
PyCapsule_TIsValid (C function), 202
PyCapsule_New (C function), 201
PyCapsule_SetContext (C function), 202
PyCapsule_SetDestructor (C function), 202
PyCapsule_SetName (C function), 202
PyCapsule_SetPointer (C function), 203
PyCell_Check (C function), 183
PyCell_GET (C function), 183
PyCell Get (C function), 183
PyCell_New (C function), 183

Indeks

391

The Python/C API, Wydanie 3.14.0a5

PyCell_SET (C function), 183
pPyCell_sSet (C function), 183
PyCell_Type (Cvar), 183
PyCellObject (Ctype), 183
PyCF_ALLOW_TOP_LEVEL_AWAIT (C macro), 46
PyCF_ONLY_AST (C macro), 46
PyCF_OPTIMIZED_AST (C macro), 46
PyCF_TYPE_COMMENTS (C macro), 46
PyCFunction (C type), 285
PyCFunction_New (C function), 288
PyCFunction_NewEx (C function), 288
PyCFunctionFast (C type), 286
PyCFunctionFastWithKeywords (C type), 286
PyCFunctionWithKeywords (C type), 286
PyCMethod (C type), 286
PyCMethod_New (C function), 288
PyCode_Addr2Line (C function), 185
PyCode_Addr2Location (C function), 185
PyCode_AddWatcher (C function), 185
PyCode_Check (C function), 184
PyCode_ClearWatcher (C function), 185
PyCode_GetCellvars (C function), 185
PyCode_GetCode (C function), 185
PyCode_GetFreevars (C function), 185
PyCode_GetNumFree (C function), 184
PyCode_GetVarnames (C function), 185
PyCode_New (C function), 184
PyCode_NewEmpty (C function), 185
PyCode_NewWithPosOnlyArgs (C function), 184
PyCode_Type (Cvar), 183
PyCode_WatchCallback (C type), 186
PyCodec_BackslashReplaceErrors (C function),
93
PyCodec_Decode (C function), 92
PyCodec_Decoder (C function), 92
PyCodec_Encode (C function), 92
PyCodec_Encoder (C function), 92
PyCodec_IgnoreErrors (C function), 93
PyCodec_IncrementalDecoder (C function), 93
PyCodec_IncrementalEncoder (C function), 92
PyCodec_KnownEncoding (C function), 92
PyCodec_LookupError (C function), 93
PyCodec_NameReplaceErrors (C function), 93
PyCodec_Register (C function), 92
PyCodec_RegisterError (C function), 93
PyCodec_ReplaceErrors (C function), 93
PyCodec_StreamReader (C function), 93
PyCodec_StreamWriter (C function), 93
PyCodec_StrictErrors (C function), 93
PyCodec_Unregister (C function), 92
PyCodec_XMLCharRefReplaceErrors (C function),
93
PyCodeEvent (C type), 186
PyCodeObject (Ctype), 183
PyCompactUnicodeObject (C type), 150
PyCompilerFlags (C struct), 46
PyCompilerFlags.cf_feature_version (C mem-

ber), 46

PyCompilerFlags.cf_flags (C member), 46
PyComplex_AsCComplex (C function), 146
PyComplex_Check (C function), 145
PyComplex_CheckExact (C function), 145
PyComplex_FromCComplex (C function), 145
PyComplex_FromDoubles (C function), 146
PyComplex_ImagAsDouble (C function), 146
PyComplex_RealAsDouble (C function), 146
PyComplex_Type (C var), 145
PyComplexObject (C type), 145
PyConfig (C type), 254
PyConfig_Clear (C function), 255
PyConfig_Get (C function), 248
PyConfig_GetInt (C function), 248
PyConfig InitIsolatedConfig (C function), 254
PyConfig_InitPythonConfig (C function), 254
PyConfig_Names (C function), 248
PyConfig._pystats (C member), 265
PyConfig_Read (C function), 254
PyConfig_Set (C function), 248
PyConfig_SetArgv (C function), 254
PyConfig_SetBytesArgv (C function), 254
PyConfig_SetBytesString (C function), 254
PyConfig_SetString (C function), 254
PyConfig_SetWideStringList (C function), 254
PyConfig.argv (C member), 255
PyConfig.base_exec_prefix (C member), 256
PyConfig.base_executable (C member), 256
PyConfig.base_prefix (C member), 256
PyConfig.buffered_stdio (C member), 256
PyConfig.bytes_warning (C member), 256
PyConfig.check_hash_pycs_mode (C member),
256
PyConfig.code_debug_ranges (C member), 256
PyConfig.configure_c_stdio (C member), 257
PyConfig.cpu_count (C member), 259
PyConfig.dev_mode (C member), 257
PyConfig.dump_refs (C member), 257
PyConfig.dump_refs_file (C member), 257
PyConfig.exec_prefix (C member), 257
PyConfig.executable (C member), 257
PyConfig.faulthandler (C member), 258
PyConfig.filesystem_encoding (C member), 258
PyConfig.filesystem_errors (C member), 258
PyConfig.hash_seed (C member), 258
PyConfig.home (C member), 258
PyConfig.import_time (C member), 259
PyConfig.inspect (C member), 259
PyConfig.install_signal_handlers
ber), 259
PyConfig.int_max_str_digits (C member), 259
PyConfig.interactive (C member), 259
PyConfig.isolated (C member), 259
PyConfig.legacy_windows_stdio
260
PyConfig.malloc_stats (C member), 260
PyConfig.module_search_paths (C member), 260

(C mem-

(C member),

392

Indeks

The Python/C API, Wydanie 3.14.0a5

PyConfig.module_search_paths_set (C mem-
ber), 260
optimization_level (C member), 261
orig_argv (C member), 261
parse_argv (C member), 261
parser_debug (C member), 261
PyConfig.pathconfig_warnings (C member), 261
.perf_profiling (C member), 264
platlibdir (C member), 260
prefix (C member), 261
program_name (C member), 262
pycache_prefix (C member), 262
pythonpath_env (C member), 260
quiet (C member), 262
run_command (C member), 262
run_filename (C member), 262
run_module (C member), 262
run_presite (C member), 262
safe_path (C member), 255
show_ref_count (C member), 263
site_import (C member), 263
PyConfig.skip_source_first_line (C member),
263
stdio_encoding (C member), 263
stdio_errors (C member), 263
stdlib_dir (C member), 264
tracemalloc (C member), 263
PyConfig.use_environment (C member), 264
.use_frozen_modules (C member), 258
use_hash_seed (C member), 258
use_system_logger (C member), 264
user_site_directory (C member), 264
verbose (C member), 264
PyConfig.warn_default_encoding (C member),
256
PyConfig.warnoptions (C member), 265
PyConfig.write_bytecode (C member), 265
PyConfig.xoptions (C member), 265
pPyContext (C type), 206
PyContext_AddWatcher (C function), 207
PyContext_CheckExact (C function), 207
PyContext_ClearWatcher (C function), 207
PyContext_Copy (C function), 207
PyContext_CopyCurrent (C function), 207
PyContext_Enter (C function), 207
PyContext_Exit (C function), 207
PyContext_New (C function), 207
PyContext_Type (C var), 206
PyContext_WatchCallback (C type), 207
PyContextEvent (C type), 207
PyContextToken (C type), 206
PyContextToken_CheckExact (C function), 207
PyContextToken_Type (C var), 206
PyContextVar (C type), 206
PyContextVar_CheckExact (C function), 207
PyContextVar_Get (C function), 208
PyContextVar_New (C function), 208
PyContextVar_Reset (C function), 208

PyConfig.
PyConfig.
PyConfig.
PyConfig.

PyConfig
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.

PyConfig.
PyConfig.
PyConfig.
PyConfig.

PyConfig
PyConfig.
PyConfig.
PyConfig.
PyConfig.

PyContextVar_Set (C function), 208
PyContextVar_Type (C var), 206
PyCoro_CheckExact (C function), 206
PyCoro_New (C function), 206
PyCoro_Type (C var), 206
PyCoroObject (C type), 206
PyDate_Check (C function), 209
PyDate_CheckExact (C function), 209
PyDate_FromDate (C function), 209
PyDate_FromTimestamp (C function), 211
PyDateTime_Check (C function), 209
PyDateTime_CheckExact (C function), 209
PyDateTime_Date (C type), 208
PyDateTime DATE_GET_FOLD (C function), 210
PyDateTime DATE_GET_HOUR (C function), 210
PyDateTime_DATE_GET_MICROSECOND (C function),
210
PyDateTime_DATE_GET_MINUTE (C function), 210
PyDateTime_ DATE_GET_SECOND (C function), 210
PyDateTime DATE_GET_TZINFO (C function), 210
PyDateTime_DateTime (C type), 208
PyDateTime_DateTimeType (C var), 208
PyDateTime_DateType (C var), 208
PyDateTime_Delta (C type), 208
PyDateTime DELTA_GET_DAYS (C function), 211
PyDateTime_DELTA_GET_MICROSECONDS (C func-
tion), 211
PyDateTime_DELTA_GET_SECONDS (C function), 211
PyDateTime_DeltaType (C var), 208
PyDateTime_ FromDateAndTime (C function), 209
PyDateTime FromDateAndTimeAndFold (C func-
tion), 209
PyDateTime_FromTimestamp (C function), 211
PyDateTime_GET_DAY (C function), 210
PyDateTime_GET_MONTH (C function), 210
PyDateTime_ GET_YEAR (C function), 210
PyDateTime_Time (C type), 208
PyDateTime_TIME_GET_FOLD (C function), 211
PyDateTime_TIME_GET_HOUR (C function), 211
PyDateTime_ TIME_GET_MICROSECOND (C function),
211
PyDateTime_TIME_GET_MINUTE (C function), 211
PyDateTime_TIME_GET_SECOND (C function), 211
PyDateTime_TIME_GET_TZINFO (C function), 211
PyDateTime_TimeType (C var), 208
PyDateTime_TimeZone_UTC (C var), 209
PyDateTime_TZInfoType (C var), 209
PyDelta_Check (C function), 209
PyDelta_CheckExact (C function), 209
PyDelta_FromDSU (C function), 210
PyDescr_IsData (C function), 197
PyDescr_NewClassMethod (C function), 197
PyDescr_NewGetSet (C function), 197
PyDescr_NewMember (C function), 197
PyDescr_NewMethod (C function), 197
PyDescr_NewWrapper (C function), 197
PyDict_AddWatcher (C function), 177
PyDict_Check (C function), 173

Indeks

393

The Python/C API, Wydanie 3.14.0a5

PyDict_CheckExact (C function), 173
PyDict_Clear (C function), 174
PyDict_ClearWatcher (C function), 177
PyDict_Contains (C function), 174
PyDict_ContainsString (C function), 174
PyDict_Copy (C function), 174
PyDict_Delltem (C function), 174
PyDict_DellItemString (C function), 174
PyDict_GetItem (C function), 174
PyDict_GetItemRef (C function), 174
PyDict_GetItemString (C function), 175
PyDict_GetItemStringRef (C function), 175
PyDict_GetItemWithError (C function), 175
PyDict_Items (C function), 176
PyDict_Keys (C function), 176
PyDict_Merge (C function), 177
PyDict_MergeFromSeqg2 (C function), 177
pPyDict_New (C function), 174

pPyDict_Next (C function), 176

PyDict_Pop (C function), 175
PyDict_PopString (C function), 176
PyDict_SetDefault (C function), 175
PyDict_SetDefaultRef (C function), 175
PyDict_SetItem (C function), 174
PyDict_SetItemString (C function), 174
PyDict_Size (C function), 176

PyDict_Type (Cvar), 173

PyDict_Unwatch (C function), 177
PyDict_Update (C function), 177
PyDict_values (C function), 176
PyDict_Watch (C function), 177
PyDict_WatchCallback (Ctype), 178
PyDict_WatchEvent (C type), 178
PyDictObject (Ctype), 173
PyDictProxy_New (C function), 174
PyDoc_STR (C macro), 6

PyDoc_STRVAR (C macro), 6
PyErr_BadArgument (C function), 55
PyErr_BadInternalCall (C function), 56
PyErr_CheckSignals (C function), 61
PyErr_Clear (C function), 10, 12, 53
PyErr_DisplayException (C function), 54
PyErr_ExceptionMatches (C function), 12, 58
PyErr_Fetch (C function), 58

PyErr_Format (C function), 54
PyErr_FormatUnraisable (C function), 54
PyErr_FormatV (C function), 54
PyErr_GetExcInfo (C function), 60
PyErr_GetHandledException (C function), 59
PyErr_GetRaisedException (C function), 58

PyErr_GivenExceptionMatches (C function), 58

PyErr_NewException (C function), 62
PyErr_NewExceptionWithDoc (C function), 62
PyErr_NoMemory (C function), 55
PyErr_NormalizeException (C function), 59
PyErr_Occurred (C function), 10, 57
pyErr_Print (C function), 54

PyErr_PrintEx (C function), 53

PyErr_ResourceWarning (C function), 57
PyErr_Restore (C function), 59

PyErr_SetExcFromWindowsErr (C function), 55

PyErr_SetExcFromWindowsErrWithFilename (C

function), 56

PyErr_SetExcFromWindowsErrWithFilenameObject

(C function), 56

PyErr_SetExcFromWindowsErrWithFilenameObjects

(C function), 56
PyErr_SetExcInfo (C function), 60
PyErr_SetFromErrno (C function), 55

PyErr_SetFromErrnoWithFilename (C function),

55
PyErr_SetFromErrnoWithFilenameObject
function), 55
PyErr_SetFromErrnoWithFilenameObjects
function), 55
PyErr_SetFromWindowsErr (C function), 55
PyErr_SetFromWindowsErrWithFilename
function), 55
PyErr_SetHandledException (C function), 60
PyErr_SetImportError (C function), 56

(C

(c

(c

PyErr_SetImportErrorSubclass (C function), 56

PyErr_SetInterrupt (C function), 61
PyErr_SetInterruptEx (C function), 61
PyErr_SetNone (C function), 55
PyErr_SetObject (C function), 54
PyErr_SetRaisedException (C function), 58
PyErr_SetString (C function), 10, 54
PyErr_SyntaxLocation (C function), 56
PyErr_SyntaxLocationEx (C function), 56

PyErr_SyntaxLocationObject (C function), 56

PyErr_WarnkEx (C function), 57
PyErr_WarnExplicit (C function), 57
PyErr_WarnExplicitObject (C function), 57
PyErr_WarnFormat (C function), 57
PyErr_WriteUnraisable (C function), 54
PyEval_AcquireThread (C function), 230
PyEval_AcquireThread(), 226
PyEval_EvalCode (C function), 45

PyEval EvalCodeEx (C function), 46
PyEval_EvalFrame (C function), 46
PyEval_EvalFrameEx (C function), 46
PyEval_GetBuiltins (C function), 91
PyEval_GetFrame (C function), 91

PyEval_ GetFrameBuiltins (C function), 91
PyEval GetFrameGlobals (C function), 92
PyEval_GetFrameLocals (C function), 91
PyEval_GetFuncbDesc (C function), 92
PyEval_GetFuncName (C function), 92
PyEval_GetGlobals (C function), 91
PyEval_GetLocals (C function), 91
PyEval_InitThreads (C function), 226
PyEval_InitThreads (), 217
PyEval_MergeCompilerFlags (C function), 46
PyEval_ReleaseThread (C function), 230
PyEval_ReleaseThread (), 226
PyEval_RestoreThread (C function), 224, 226

394

Indeks

The Python/C API, Wydanie 3.14.0a5

PyEval_RestoreThread (), 226
PyEval_SaveThread (C function), 224, 226
PyEval_SaveThread(), 226

PyEval SetProfile (C function), 235
PyEval_SetProfileAllThreads (C function), 236
PyEval_SetTrace (C function), 236
PyEval_SetTraceAllThreads (C function), 236
PyExc_ArithmeticError (C var), 65
PyExc_AssertionError (C var), 65
PyExc_AttributeError (Cvar), 65
PyExc_BaseException (C var), 65
PyExc_BlockingIOError (Cvar), 65
PyExc_BrokenPipeError (C var), 65
PyExc_BufferError (C var), 65
PyExc_BytesWarning (C var), 67
PyExc_ChildProcessError (C var), 65
PyExc_ConnectionAbortedError (C var), 65
PyExc_ConnectionError (C var), 65
PyExc_ConnectionRefusedError (C var), 65
PyExc_ConnectionResetError (C var), 65
PyExc_DeprecationWarning (C var), 67
PyExc_EnvironmentError (C var), 66
PyExc_EOFError (C var), 65
PyExc_Exception (C var), 65
PyExc_FileExistsError (Cvar), 65
PyExc_FileNotFoundError (C var), 65
PyExc_FloatingPointError (C var), 65
PyExc_FutureWarning (C var), 67
PyExc_GeneratorExit (C var), 65
PyExc_ImportError (C var), 65
PyExc_ImportWarning (C var), 67
PyExc_IndentationError (C var), 65
PyExc_IndexError (C var), 65
PyExc_InterruptedError (C var), 65
PyExc_IOError (C var), 66
PyExc_IsADirectoryError (C var), 65
PyExc_KeyboardInterrupt (C var), 65
PyExc_KeyError (C var), 65
PyExc_LookupError (C var), 65
PyExc_MemoryError (C var), 65
PyExc_ModuleNotFoundError (C var), 65
PyExc_NameError (C var), 65
PyExc_NotADirectoryError (C var), 65
PyExc_NotImplementedError (C var), 65
PyExc_OSError (C var), 65
PyExc_OverflowError (C var), 65
PyExc_PendingDeprecationWarning (C var), 67
PyExc_PermissionError (Cvar), 65
PyExc_ProcessLookupError (C var), 65
PyExc_PythonFinalizationError (C var), 65
PyExc_RecursionError (C var), 65
PyExc_ReferenceError (C var), 65
PyExc_ResourceWarning (C var), 67
PyExc_RuntimeError (C var), 65
PyExc_RuntimeWarning (C var), 67
PyExc_StopAsyncIteration (C var), 65
PyExc_StopIteration (C var), 65
PyExc_SyntaxError (C var), 65

PyExc_SyntaxWarning (C var), 67
PyExc_SystemError (C var), 65
PyExc_SystemExit (C var), 65
PyExc_TabError (C var), 65
PyExc_TimeoutError (C var), 65
PyExc_TypeError (C var), 65
PyExc_UnboundLocalError (C var), 65
PyExc_UnicodeDecodeError (C var), 65
PyExc_UnicodeEncodeError (C var), 65
PyExc_UnicodeError (C var), 65
PyExc_UnicodeTranslateError (C var), 65
PyExc_UnicodeWarning (C var), 67
PyExc_UserWarning (C var), 67
PyExc_ValueError (C var), 65
PyExc_Warning (C var), 67
PyExc_WindowsError (C var), 66
PyExc_ZeroDivisionError (C var), 65
PyException_GetArgs (C function), 62
PyException_GetCause (C function), 62
PyException_GetContext (C function), 62
PyException_GetTraceback (C function), 62
PyException_SetArgs (C function), 62
PyException_SetCause (C function), 62
PyException_SetContext (C function), 62
PyException_SetTraceback (C function), 62
PyFile_FromFd (C function), 187
PyFile_GetLine (C function), 188
PyFile_SetOpenCodeHook (C function), 188
PyFile_WriteObject (C function), 188
PyFile WriteString (C function), 188
PyFloat_AS_DOUBLE (C function), 143
PyFloat_AsDouble (C function), 143
PyFloat_Check (C function), 142
PyFloat_CheckExact (C function), 142
PyFloat_FromDouble (C function), 142
PyFloat_FromString (C function), 142
PyFloat_GetInfo (C function), 143
PyFloat_GetMax (C function), 143
PyFloat_GetMin (C function), 143
PyFloat_Pack2 (C function), 143
PyFloat_Pack4 (C function), 143
PyFloat_Pack8 (C function), 143
PyFloat_Type (Cvar), 142
PyFloat_Unpack2 (C function), 144
PyFloat_Unpack4 (C function), 144
PyFloat_Unpack$ (C function), 144
PyFloatObject (C type), 142
PyFrame_Check (C function), 203
PyFrame_GetBack (C function), 203
PyFrame_GetBuiltins (C function), 203
PyFrame_GetCode (C function), 203
PyFrame_GetGenerator (C function), 203
PyFrame_GetGlobals (C function), 203
PyFrame_GetLasti (C function), 204
PyFrame_GetLineNumber (C function), 204
PyFrame_GetLocals (C function), 204
PyFrame_GetVar (C function), 204
PyFrame_GetVarString (C function), 204

Indeks

395

The Python/C API, Wydanie 3.14.0a5

PyFrame_Type (C var), 203
PyFrameLocalsProxy_Check (C function), 204
PyFrameLocalsProxy_Type (C var), 204
PyFrameObject (C type), 203
PyFrozenSet_Check (C function), 179
PyFrozenSet_CheckExact (C function), 179
PyFrozenSet_New (C function), 179
PyFrozenSet_Type (Cvar), 178
PyFunction_AddWatcher (C function), 181
PyFunction_Check (C function), 180
PyFunction_ClearWatcher (C function), 181
PyFunction_GetAnnotations (C function), 181
PyFunction_GetClosure (C function), 181
PyFunction_GetCode (C function), 180
PyFunction_GetDefaults (C function), 180
PyFunction_GetGlobals (C function), 180
PyFunction_GetModule (C function), 180
PyFunction_New (C function), 180
PyFunction_NewWithQualName (C function), 180
PyFunction_SetAnnotations (C function), 181
PyFunction_SetClosure (C function), 181
PyFunction_SetDefaults (C function), 180
PyFunction_SetVectorcall (C function), 181
PyFunction_Type (C var), 180
PyFunction_WatchCallback (C type), 181
PyFunction_WatchEvent (C type), 181
PyFunctionObject (C type), 180
PyGC_Collect (C function), 330
PyGC_Disable (C function), 330
PyGC_Enable (C function), 330
PyGC_IsEnabled (C function), 331
PyGen_Check (C function), 205
PyGen_CheckExact (C function), 205
pPyGen_New (C function), 205
PyGen_NewWithQualName (C function), 205
PyGen_Type (C var), 205
PyGenObject (C type), 205
PyGetSetDef (Ctype), 292
PyGetSetDef.closure (C member), 292
PyGetSetDef .doc (C member), 292
PyGetSetDef.get (C member), 292
PyGetSetDef.name (C member), 292
PyGetSetDef.set (C member), 292
PyGILState_Check (C function), 227
PyGILState_Ensure (C function), 227
PyGILState_GetThisThreadState (C function),
227
PyGILState_Release (C function), 227
PyHASH_BITS (C macro), 89
PyHash_FuncDef (C type), 90
PyHash_FuncDef.hash_bits (C member), 90
PyHash_FuncDef.name (C member), 90
PyHash_FuncDef.seed_bits (C member), 90
PyHash_GetFuncbDef (C function), 90
PyHASH_IMAG (C macro), 90
PyHASH_INF (C macro), 90
PyHASH_MODULUS (C macro), 89
PyHASH_MULTIPLIER (C macro), 90

PyImport_AddModule (C function), 75
PyImport_AddModuleObiject (C function), 75
PyImport_AddModuleRef (C function), 75
PyImport_AppendInittab (C function), 77
PyImport_ExecCodeModule (C function), 76
PyImport_ExecCodeModuleEx (C function), 76
PyImport_ExecCodeModuleObject (C function), 76
PyImport_ExecCodeModuleWithPathnames c
function), 76
PyImport_ExtendInittab (C function), 78
PyImport_FrozenModules (Cvar), 77
PyImport_GetImporter (C function), 77
PyImport_GetMagicNumber (C function), 76
PyImport_GetMagicTag (C function), 76
PyImport_GetModule (C function), 77
PyImport_GetModuleDict (C function), 77
PyImport_TImport (C function), 75
PyImport_ImportFrozenModule (C function), 77
PyImport_ImportFrozenModuleObject (C func-
tion), 77
PyImport_ImportModule (C function), 74
PyImport_ImportModuleAttr (C function), 78
PyImport_ImportModuleAttrString (C function),
78
PyImport_ImportModuleEx (C function), 74
PyImport_ImportModuleLevel (C function), 75
PyImport_ImportModuleLevelObject (C func-
tion), 75
PyImport_ImportModuleNoBlock (C function), 74
PyImport_ReloadModule (C function), 75
PyIndex_Check (C function), 114
PyInitConfig (C struct), 244
PyInitConfig_AddModule (C function), 246
PyInitConfig_Create (C function), 244
PyInitConfig_Free (C function), 244
PyInitConfig FreeStrList (C function), 245
PyInitConfig_GetError (C function), 244
PyInitConfig_GetExitCode (C function), 244
PyInitConfig_GetInt (C function), 245
PyInitConfig_GetStr (C function), 245
PyInitConfig GetStrList (C function), 245
PyInitConfig_HasOption (C function), 245
PyInitConfig_SetInt (C function), 245
PyInitConfig_SetStr (C function), 245
PyInitConfig_SetStrList (C function), 245
PyInstanceMethod_Check (C function), 182
PyInstanceMethod Function (C function), 182
PyInstanceMethod_ GET_FUNCTION (C function),
182
PyInstanceMethod_New (C function), 182
PyInstanceMethod_Type (C var), 182
PyInterpreterConfig (C type), 231
PyInterpreterConfig_DEFAULT_GIL (C macro),
232
PyInterpreterConfig_ OWN_GIL (C macro), 232
PyInterpreterConfig_SHARED_GIL (C macro),
232

396

Indeks

The Python/C API, Wydanie 3.14.0a5

PyInterpreterConfig.allow_daemon_threads
(C member), 231

PyInterpreterConfig.allow_exec (C member),
231

PyInterpreterConfig.allow_fork (C member),
231

PyInterpreterConfig.allow_threads (C mem-
ber), 231

PyLong_AsLongLongAndOverflow (C function), 135
PyLong_AsNativeBytes (C function), 136
PyLong_AsSize_t (C function), 135
PyLong_AsSsize_t (C function), 135
PyLong_AsUInt32 (C function), 136
PyLong_AsUInt64 (C function), 136
PyLong_AsUnsignedLong (C function), 135
PyLong_AsUnsignedLongLong (C function), 135

PyInterpreterConfig.check _multi_interp_exteRghong AsUnsignedLongLongMask (C function),

(C member), 231
PyInterpreterConfig.qgil (C member), 231
PyInterpreterConfig.use_main_obmalloc

member), 231
PyInterpreterState (Ctype), 225
PyInterpreterState_Clear (C function), 228
PyInterpreterState_Delete (C function), 228
PyInterpreterState_Get (C function), 229
PyInterpreterState_GetDict (C function), 229
PyInterpreterState_GetID (C function), 229
PyInterpreterState_Head (C function), 237
PyInterpreterState_Main (C function), 237
PyInterpreterState_New (C function), 228
PyInterpreterState_Next (C function), 237
PyInterpreterState_ThreadHead (C function),

237
PyIter_Check (C function), 117
PyIter_Next (C function), 118
PyIter_NextItem (C function), 117
pPyIter_Send (C function), 118
PyList_Append (C function), 173
PyList_AsTuple (C function), 173
PyList_Check (C function), 171
PyList_CheckExact (C function), 172
PyList_Clear (C function), 173
PyList_Extend (C function), 173
PyList_GET_ITEM (C function), 172
PyList_GET_SIZE (C function), 172
PyList_GetItem (C function), 9, 172
PyList_GetItemRef (C function), 172
PyList_GetSlice (C function), 173
PyList_Insert (C function), 172
PyList_New (C function), 172
PyList_Reverse (C function), 173
PyList_SET_ITEM (C function), 172
PyList_SetItem (C function), 8, 172
PyList_SetSlice (C function), 173
PyList_Size (C function), 172
PyList_Sort (C function), 173
PyList_Type (Cvar), 171
PyListObject (Ctype), 171
PyLong_AS_LONG (C function), 134
PyLong_AsDouble (C function), 136
PyLong_AsInt (C function), 134
PyLong_AsInt32 (C function), 136
PyLong_AsInt64 (C function), 136
PyLong_AsLong (C function), 134
PyLong_AsLongAndOverflow (Cfunction), 134
PyLong_AsLongLong (C function), 134

(e

135
PyLong_AsUnsignedLongMask (C function), 135
PyLong_AsVoidPtr (C function), 136
PyLong_Check (C function), 132
PyLong_CheckExact (C function), 132
PyLong_Export (C function), 141
PyLong_FreeExport (C function), 141
PyLong_FrombDouble (C function), 133
PyLong_FromInt32 (C function), 133
PyLong_FromInt64 (C function), 133
PyLong_FromLong (C function), 132
PyLong_FromLongLong (C function), 133
PyLong_FromNativeBytes (C function), 134
PyLong_FromSize_t (C function), 133
PyLong_FromSsize_t (C function), 133
PyLong_FromString (C function), 133
PyLong_FromUInt32 (C function), 133
PyLong_FromUInt64 (C function), 133
PyLong_FromUnicodeObject (C function), 133
PyLong_FromUnsignedLong (C function), 132
PyLong_FromUnsignedLongLong (C function), 133
PyLong_FromUnsignedNativeBytes (C function),

134
PyLong_FromVoidPtr (C function), 133
PyLong_GetInfo (C function), 139
PyLong_GetNativeLayout (C function), 140
PyLong_GetSign (C function), 139
PyLong_IsNegative (C function), 139
PyLong_IsPositive (C function), 139
PyLong_IsZero (C function), 139
PyLong_Type (Cvar), 132
PyLongExport (C struct), 140
PyLongExport.digits (C member), 141
PyLongExport .ndigits (C member), 141
PyLongExport .negative (C member), 141
PyLongExport .value (C member), 140
PyLongLayout (C struct), 140
PyLongLayout.bits_per_digit (C member), 140
PyLongLayout.digit_endianness (C member),

140
PyLongLayout.digit_size (C member), 140
PyLongLayout .digits_order (C member), 140
PyLongObject (C type), 132
PyLongWriter (C struct), 141
PyLongWriter_Create (C function), 141
PyLongWriter_Discard (C function), 142
PyLongWriter_Finish (C function), 141
PyMapping_Check (C function), 116
PyMapping_DelItem (C function), 116

Indeks

397

The Python/C API, Wydanie 3.14.0a5

PyMapping_DelltemString (C function), 116
PyMapping_GetItemString (C function), 116
PyMapping_GetOptionalItem (C function), 116
PyMapping_ GetOptionalItemString (C function),
116
PyMapping_HasKey (C function), 117
PyMapping_HasKeyString (C function), 117
PyMapping_ HasKeyStringWithError (C function),
116
PyMapping_HasKeyWithError (C function), 116
PyMapping_Items (C function), 117
PyMapping_Keys (C function), 117
PyMapping_Length (C function), 116
PyMapping_ SetItemString (C function), 116
PyMapping_Size (C function), 116
PyMapping_Values (C function), 117
PyMappingMethods (C type), 321
PyMappingMethods.mp_ass_subscript (C mem-
ber), 321
PyMappingMethods.mp_length (C member), 321
PyMappingMethods.mp_subscript (C member),
321
PyMarshal_ ReadLastObjectFromFile
tion), 79
PyMarshal ReadLongFromFile (C function), 78
PyMarshal_ReadObjectFromFile (C function), 79
PyMarshal_ReadObjectFromString (C function),
79
PyMarshal_ReadShortFromFile (C function), 79
PyMarshal WriteLongToFile (C function), 78
PyMarshal WriteObjectToFile (C function), 78
PyMarshal_WriteObjectToString (C function), 78
PyMem_Calloc (C function), 273
pyMem_Del (C function), 274
PYMEM_DOMAIN_MEM (C macro), 276
PYMEM_DOMAIN_OBJ (C macro), 277
PYMEM_DOMAIN_RAW (C macro), 276
pPyMem_Free (C function), 274
PyMem_GetAllocator (C function), 277
PyMem_Malloc (C function), 273
pPyMem_New (C macro), 274
PyMem_RawCalloc (C function), 273
PyMem_RawFree (C function), 273
PyMem_RawMalloc (C function), 273
PyMem_RawRealloc (C function), 273
PyMem_Realloc (C function), 274
PyMem_Resize (C macro), 274
PyMem_SetAllocator (C function), 277
PyMem_SetupDebugHooks (C function), 277
PyMemAllocatorDomain (C type), 276
PyMemAllocatorEx (Ctype), 276
PyMember_GetOne (C function), 289
PyMember_SetOne (C function), 289
PyMemberDef (C type), 289
PyMemberDef .doc (C member), 289
PyMemberDef . flags (C member), 289
PyMemberDef .name (C member), 289
PyMemberDef.offset (C member), 289

(C func-

PyMemberDef . type (C member), 289
PyMemoryView_Check (C function), 199
PyMemoryView_FromBuffer (C function), 199
PyMemoryView_FromMemory (C function), 199
PyMemoryView_FromObject (C function), 199
PyMemoryView_GET_BASE (C function), 200
PyMemoryView_GET_BUFFER (C function), 199
PyMemoryView_GetContiguous (C function), 199
PyMethod_Check (C function), 182
PyMethod_Function (C function), 182
PyMethod_GET_FUNCTION (C function), 182
PyMethod_GET_SELF (C function), 183
PyMethod_New (C function), 182
PyMethod_Self (C function), 183
PyMethod_Type (C var), 182

PyMethodDef (C type), 286

PyMethodDef .ml_doc (C member), 287
PyMethodDef.ml_flags (C member), 286
PyMethodDef .ml_meth (C member), 286
PyMethodDef .ml_name (C member), 286
PyMODINIT_FUNC (C macro), 4
PyModule_Add (C function), 194
PyModule_AddFunctions (C function), 193
PyModule_AddIntConstant (C function), 195
PyModule_AddIntMacro (C macro), 195
PyModule_AddObject (C function), 195
PyModule_AddObjectRef (C function), 194
PyModule_AddStringConstant (C function), 195
PyModule_AddStringMacro (C macro), 195
PyModule_ AddType (C function), 195
PyModule_Check (C function), 188
PyModule_CheckExact (C function), 188
PyModule_Create (C function), 191
PyModule_Create2 (C function), 191
PyModule_ExecDef (C function), 193
PyModule_ FromDefAndSpec (C function), 193
PyModule_FromDefAndSpec?2 (C function), 193
PyModule_GetDef (C function), 189
PyModule_GetDict (C function), 189
PyModule_GetFilename (C function), 189
PyModule_ GetFilenameObject (C function), 189
PyModule_GetName (C function), 189
PyModule_GetNameObject (C function), 189
PyModule_GetState (C function), 189
PyModule_New (C function), 189
PyModule_NewObject (C function), 188
PyModule_SetDocString (C function), 193
PyModule_Type (C var), 188

PyModuleDef (C type), 189
PyModuleDef_Init (C function), 191
PyModuleDef_Slot (Ctype), 191
PyModuleDef_Slot.slot (C member), 191
PyModuleDef_Slot.value (C member), 192
PyModuleDef .m_base (C member), 189
PyModuleDef.m_clear (C member), 190
PyModuleDef .m_doc (C member), 190
PyModuleDef.m_free (C member), 190
PyModuleDef .m_methods (C member), 190

398

Indeks

The Python/C API, Wydanie 3.14.0a5

PyModuleDef .m_name (C member), 190
PyModuleDef.m_size (C member), 190
PyModuleDef.m_slots (C member), 190
PyModuleDef.m_slots.m_reload (C member), 190
PyModuleDef.m_traverse (C member), 190
PyMonitoring_EnterScope (C function), 338
PyMonitoring_ExitScope (C function), 340
PyMonitoring FireBranchLeftEvent (C func-
tion), 338
PyMonitoring_FireBranchRightEvent (C func-
tion), 338
PyMonitoring_FireCallEvent (C function), 337
PyMonitoring_FireCRaiseEvent (C function), 338
PyMonitoring FireCReturnEvent (C function),
338
PyMonitoring_FireExceptionHandledEvent (C
function), 338
PyMonitoring_FireJumpEvent (C function), 337
PyMonitoring FireLineEvent (C function), 337
PyMonitoring FirePyResumeEvent (C function),

337

PyMonitoring_FirePyReturnEvent (C function),
337

PyMonitoring FirePyStartEvent (C function),
337

PyMonitoring_FirePyThrowEvent (C function),
338

PyMonitoring_FirePyUnwindEvent (C function),
338

PyMonitoring FirePyYieldEvent (C function),
337

PyMonitoring_FireRaiseEvent (C function), 338
PyMonitoring_FireReraiseEvent (C function),
338
PyMonitoring FireStopIterationEvent
function), 338
PyMonitoringState (C type), 337
pyMutex (C type), 239
PyMutex_TLock (C function), 239
PyMutex_Unlock (C function), 239
PyNumber_ Absolute (C function), 112
PyNumber_Add (C function), 111
PyNumber_And (C function), 112
PyNumber_AsSsize_t (C function), 114
PyNumber_Check (C function), 111
PyNumber_Divmod (C function), 111
PyNumber_ Float (C function), 113
PyNumber_FloorDivide (C function), 111
PyNumber_TIndex (C function), 113
PyNumber_InPlaceAdd (C function), 112
PyNumber_InPlaceAnd (C function), 113
PyNumber_InPlaceFloorDivide (C function), 112
PyNumber_InPlaceLshift (C function), 113
PyNumber_InPlaceMatrixMultiply (C function),
112
PyNumber_InPlaceMultiply (C function), 112
PyNumber_InPlaceOr (C function), 113
PyNumber_InPlacePower (C function), 113

(e

PyNumber_InPlaceRemainder (C function), 113
PyNumber_InPlaceRshift (C function), 113
PyNumber_InPlaceSubtract (C function), 112
PyNumber_InPlaceTrueDivide (C function), 112
PyNumber_InPlaceXor (C function), 113
PyNumber_Invert (C function), 112
PyNumber_Long (C function), 113
PyNumber_Lshift (C function), 112

PyNumber MatrixMultiply (C function), 111
PyNumber_Multiply (C function), 111
PyNumber_Negative (C function), 111
PyNumber_Or (C function), 112
PyNumber_Positive (C function), 111
PyNumber_Power (C function), 111

PyNumber_ Remainder (C function), 111
PyNumber_Rshift (C function), 112
PyNumber_Subtract (C function), 111
PyNumber_ToBase (C function), 113
PyNumber_TrueDivide (C function), 111
PyNumber_Xor (C function), 112
PyNumberMethods (C type), 319

PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
PyNumberMethods.
321
PyNumberMethods.
PyNumberMethods.
320
PyNumberMethods
321
PyNumberMethods.

nb_absolute (C member), 320
nb_add (C member), 320
nb_and (C member), 320
nb_bool (C member), 320
nb_divmod (C member), 320
nb_float (C member), 320
nb_floor_divide (C member),

nb_index (C member), 321
nb_inplace_add (C member),

.nb_inplace_and (C member),

nb_inplace_floor_divide

(C member), 321

PyNumberMethods.
ber), 320
PyNumberMethods.

nb_inplace_lshift (C mem-

nb_inplace_matrix_multiply

(C member), 321

PyNumberMethods.

nb_inplace_multiply c

member), 320

PyNumberMethods.
321

PyNumberMethods.
ber), 320

PyNumberMethods.

(C member),

nb_inplace_or
nb_inplace_power (C mem-

(C

nb_inplace_remainder

member), 320

PyNumberMethods.
ber), 320
PyNumberMethods.

nb_inplace_rshift (C mem-

(c

nb_inplace_subtract

member), 320

PyNumberMethods.

nb_inplace_true_divide (C

member), 321

PyNumberMethods.
321

PyNumberMethods.

PyNumberMethods.

nb_inplace_xor (C member),

nb_int (C member), 320
nb_invert (C member), 320

Indeks

399

The Python/C API, Wydanie 3.14.0a5

PyNumberMethods.nb_1shift (C member), 320
PyNumberMethods.nb_matrix_multiply (C mem-
ber), 321
PyNumberMethods.
PyNumberMethods.

nb_multiply (C member), 320
nb_negative (C member), 320
PyNumberMethods.nb_or (C member), 320
PyNumberMethods.nb_positive (C member), 320
PyNumberMethods.nb_power (C member), 320
PyNumberMethods.nb_remainder (C member), 320
PyNumberMethods.nb_reserved (C member), 320
PyNumberMethods.nb_rshift (C member), 320
PyNumberMethods.nb_subtract (C member), 320
PyNumberMethods.nb_true_divide (C member),
321
PyNumberMethods.nb_xor (C member), 320
PyObject (C type), 284
PyObject_ASCIT (C function), 101
PyObject_AsFileDescriptor (C function), 187
PyObject_Bytes (C function), 102
PyObject_cCall (C function), 108
PyObject_CallFunction (C function), 109
PyObject_CallFunctionObjargs (C function), 109
PyObject_CallMethod (C function), 109
PyObject_CallMethodNoArgs (C function), 110
PyObject_CallMethodObjargs (C function), 110
PyObject_CallMethodOneArg (C function), 110
PyObject_CallNoArgs (C function), 109
PyObject_CallObject (C function), 109
PyObject_Calloc (C function), 275
PyObject_CallOneArg (C function), 109
PyObject_CheckBuffer (C function), 123
PyObject_ClearManagedDict (C function), 104
PyObject_ClearWeakRefs (C function), 201
PyObject_CopyData (C function), 124
PyObject_Del (C function), 283
PyObject_DelAttr (C function), 100
PyObject_DelAttrString (C function), 100
PyObject_DelItem (C function), 103
PyObject_DelltemString (C function), 103
pPyObject_Dir (C function), 103
PyObject_Format (C function), 101
PyObject_Free (C function), 275
PyObiject_GC_Del (C function), 329
PyObject_GC_IsFinalized (C function), 329
PyObject_GC_IsTracked (C function), 329
PyObiject_GC_New (C macro), 328
PyObject_GC_NewVar (C macro), 328
PyObject_GC_Resize (C macro), 329
PyObject_GC_Track (C function), 329
PyObject_GC_UnTrack (C function), 329
PyObject_GenericGetAttr (C function), 100
PyObject_GenericGetDict (C function), 100
PyObject_GenericHash (C function), 90
PyObject_GenericSetAttr (C function), 100
PyObject_GenericSetDict (C function), 101
PyObject_GetAlter (C function), 103
PyObject_GetArenaAllocator (C function), 279
PyObject_GetAttr (C function), 99

PyObject_GetAttrString (C function), 99
PyObject_GetBuffer (C function), 123
PyObject_GetItem (C function), 103
PyObject_GetItemData (C function), 104
PyObject_GetIter (C function), 103
PyObject_GetOptionalattr (C function), 99
PyObject_GetOptionalAttrString (C function),
100
PyObject_GetTypeData (C function), 103
PyObject_HasAttr (C function), 99
PyObject_HasAttrString (C function), 99
PyObject_HasAttrStringWithError (C function),
99
PyObject_HasAttrWithError (C function), 99
PyObject_Hash (C function), 102
PyObject_HashNotImplemented (C function), 102
PyObject_HEAD (C macro), 284
PyObject_HEAD_INIT (C macro), 285
PyObject_Init (C function), 283
PyObject_InitVar (C function), 283
PyObject_1S_GC (C function), 329
PyObject_IsInstance (C function), 102
PyObject_IsSubclass (C function), 102
PyObject_IsTrue (C function), 102
PyObject_Length (C function), 103
PyObject_LengthHint (C function), 103
PyObject_Malloc (C function), 275
PyObiject_New (C macro), 283
PyObject_NewVar (C macro), 283
PyObject_Not (C function), 102
PyObject_Print (C function), 98
PyObject_Realloc (C function), 275
PyObject_Repr (C function), 101
PyObject_RichCompare (C function), 101
PyObject_RichCompareBool (C function), 101
PyObject_SelfIter (C function), 103
PyObject_SetArenalAllocator (C function), 279
PyObject_SetAttr (C function), 100
PyObject_SetAttrString (C function), 100
PyObject_SetItem (C function), 103
PyObject_Size (C function), 103
PyObject_str (C function), 101
PyObject_Type (C function), 102
PyObject_TypeCheck (C function), 102
PyObject_VAR_HEAD (C macro), 284
PyObject_Vectorcall (C function), 110
PyObject_VectorcallDict (C function), 110
PyObject_VectorcallMethod (C function), 110
PyObject_VisitManagedDict (C function), 104
PyObjectArenaAllocator (C type), 279
PyObject.ob_refent (C member), 298
PyObject .ob_type (C member), 298
PyOS_AfterFork (C function), 70
PyOS_AfterFork_Child (C function), 70
PyOS_AfterFork_Parent (C function), 69
PyOS_BeforeFork (C function), 69
PyOS_CheckStack (C function), 70
PyOS_double_to_string (C function), 89

400

Indeks

The Python/C API, Wydanie 3.14.0a5

PyOS_rspath (C function), 69
PyOS_getsig (C function), 70
PyOS_InputHook (C var), 44
PyOS_ReadlineFunctionPointer (C var), 44
PyOS_setsig (C function), 70
PyOS_sighandler_t (C type), 70
PyOS_snprintf (C function), 88
PyOS_stricmp (C function), 89
PyOS_string_to_double (C function), 88
PyOS_strnicmp (C function), 89
PyOS_strtol (C function), 88
PyOS_strtoul (C function), 88
PyOS_vsnprintf (C function), 88
PyPreConfig (Ctype), 251
PyPreConfig InitIsolatedConfig (C function),
251
PyPreConfig_InitPythonConfig (C function), 251
PyPreConfig.allocator (C member), 251
PyPreConfig.coerce_c_locale (C member), 252
PyPreConfig.coerce_c_locale_warn (C mem-
ber), 252
PyPreConfig.configure_locale (C member), 252
PyPreConfig.dev_mode (C member), 252
PyPreConfig.isolated (C member), 252
PyPreConfig.legacy_windows_fs_encoding (C
member), 252
PyPreConfig.parse_argv (C member), 252
PyPreConfig.use_environment (C member), 253
PyPreConfig.utf8_mode (C member), 253
PyProperty_Type (Cvar), 197
PyRefTracer (Ctype), 236
PyRefTracer_CREATE (C var), 236
PyRefTracer_DESTROY (C var), 236
PyRefTracer_GetTracer (C function), 236
PyRefTracer_SetTracer (C function), 236
PyRun_AnyFile (C function), 43
PyRun_AnyFileEx (C function), 43
PyRun_AnyFileExFlags (C function), 43
PyRun_AnyFileFlags (C function), 43
PyRun_File (C function), 45
PyRun_FileEx (C function), 45
PyRun_FileExFlags (C function), 45
PyRun_FileFlags (C function), 45
PyRun_InteractiveLoop (C function), 44
PyRun_InteractiveLoopFlags (C function), 44
PyRun_InteractiveOne (C function), 44
PyRun_InteractiveOneFlags (C function), 44
PyRun_SimpleFile (C function), 44
PyRun_SimpleFileEx (C function), 44
PyRun_SimpleFileExFlags (C function), 44
PyRun_SimpleString (C function), 43
PyRun_SimpleStringFlags (C function), 43
PyRun_String (C function), 45
PyRun_StringFlags (C function), 45
PySendResult (Ctype), 118
PySeqlIter_Check (C function), 197
PySeqlIter_ New (C function), 197
PySeglter_Type (C var), 197

PySequence_Check (C function), 114
PySequence_Concat (C function), 114
PySequence_Contains (C function), 115
PySequence_Count (C function), 115
PySequence_DelItem (C function), 115
PySequence_DelSlice (C function), 115
PySequence_Fast (C function), 115
PySequence_Fast_GET_ITEM (C function), 115
PySequence_Fast_GET_SIZE (C function), 115
PySequence_Fast_ITEMS (C function), 115
PySequence_GetItem (C function), 9, 114
PySequence_GetSlice (C function), 114
PySequence_1In (C function), 115
PySequence_Index (C function), 115
PySequence_InPlaceConcat (C function), 114
PySequence_InPlaceRepeat (C function), 114
PySequence_ITEM (C function), 116
PySequence_Length (C function), 114
PySequence_List (C function), 115
PySequence_Repeat (C function), 114
PySequence_SetItem (C function), 114
PySequence_SetSlice (C function), 115
PySequence_Size (C function), 114
PySequence_Tuple (C function), 115
PySequenceMethods (C type), 321
PySequenceMethods.sq_ass_item (C member),
322
PySequenceMethods.sq_concat (C member), 321
PySequenceMethods.sq_contains (C member),

322

PySequenceMethods.sq_inplace_concat c
member), 322
PySequenceMethods.sq_inplace_repeat c

member), 322
PySequenceMethods.sq_item (C member), 321
PySequenceMethods.sq_length (C member), 321
PySequenceMethods.sq_repeat (C member), 321
pPySet_Add (C function), 179
PySet_Check (C function), 179
PySet_CheckExact (C function), 179
PySet_Clear (C function), 180
PySet_Contains (C function), 179
PySet_Discard (C function), 179
PySet_GET_SIZE (C function), 179
pySet_New (C function), 179
pPySet_Pop (C function), 180
pyset_Size (C function), 179
PySet_Type (Cvar), 178
PySetObject (Ctype), 178
PySignal_SetWakeupFd (C function), 61
PySlice_AdjustIndices (C function), 199
PySlice_Check (C function), 198
PySlice_GetIndices (C function), 198
PySlice_GetIndicesEx (C function), 198
PySlice_New (C function), 198
PySlice_Type (Cvar), 198
PySlice_ Unpack (C function), 198
PyState_AddModule (C function), 196

Indeks

401

The Python/C API, Wydanie 3.14.0a5

PyState_FindModule (C function), 196 PEP 420, 354, 355
PyState_RemoveModule (C function), 196 PEP 442,318
pystatus (C type), 250 PEP 443,350
PyStatus_Error (C function), 250 PEP 446,72
PyStatus_Exception (C function), 250 PEP 451,192
PyStatus_Exit (C function), 250 PEP 456,90
PyStatus_IsError (C function), 250 PEP 483, 350
PyStatus_IsExit (C function), 250 PEP 484, 343, 349, 350, 358, 359
PyStatus_NoMemory (C function), 250 PEP 489,193,231
PyStatus_0k (C function), 250 PEP 492, 344346
PyStatus.err_msg (C member), 250 PEP 498, 348
PyStatus.exitcode (C member), 250 PEP 519, 355
PyStatus. func (C member), 250 PEP 523,205,230
PyStructSequence_Desc (C type), 170 PEP 525, 344
PyStructSequence_Desc.doc (C member), 170 PEP 526, 343, 359
PyStructSequence_Desc.fields (C member), 170 PEP 528,216, 260
PyStructSequence_Desc.n_in_sequence (o PEP 529, 158,216
member), 170 PEP 538, 267

PyStructSequence_Desc.name (C member), 170 PEP 539,237
PyStructSequence_Field (Ctype), 171 PEP 540, 267
PyStructSequence_Field.doc (C member), 171 PEP 552,257
PyStructSequence_Field.name (C member), 171 PEP 554,233
PyStructSequence_GET_ITEM (C function), 171 PEP 578,73
PyStructSequence_GetItem (C function), 171 PEP 585, 350
PyStructSequence_InitType (C function), 170 PEP 587,249
PyStructSequence_InitType2 (C function), 170 PEP 590, 107
PyStructSequence_New (C function), 171 PEP 623, 150
PyStructSequence_NewType (C function), 170 PEP 0626#out-of-process—debuggers—and-profilers,
PyStructSequence_SET_ITEM (C function), 171 185
PyStructSequence_SetItem (C function), 171 PEP 634, 308
PyStructSequence_UnnamedField (Cvar), 171 PEP 6409, 343
PySys_AddAuditHook (C function), 73 PEP 667,91, 204
PySys_Audit (C function), 73 PEP 0683, 49, 50, 350
PySys_AuditTuple (C function), 73 PEP 703, 349, 350
PySys_FormatStderr (C function), 73 PEP 741,243
PySys_FormatStdout (C function), 73 PEP 3116, 358
PySys_GetObject (C function), 72 PEP 3119, 102
PySys_GetXOptions (C function), 73 PEP 3121, 190
PySys_ResetWarnOptions (C function), 72 PEP 3147,77
PySys_SetArgv (C function), 223 PEP 3151, 66
PySys_SetArgvEx (C function), 222 PEP 3155, 356
PySys_SetObject (C function), 72 PYTHON_CPU_COUNT, 259
PySys_WriteStderr (C function), 73 PYTHON_FROZEN_MODULES, 258
PySys_WriteStdout (C function), 72 PYTHON_GIL, 350
Python 3000, 356 PYTHON_PERF_JIT_SUPPORT, 264
Python Enhancement Proposals PYTHON_PRESITE, 263

PEP 1,355 PYTHONCOERCECLOCALE, 267

PEP 7,3,6 PYTHONDEBUG, 215, 261

PEP 238,47, 349 PYTHONDEVMODE, 257

PEP 278, 358 PYTHONDONTWRITEBYTECODE, 215, 265

PEP 302,352 PYTHONDUMPREFS, 257

PEP 343, 346 PYTHONDUMPREFSFILE, 257

PEP 353, 10 PYTHONEXECUTABLE, 262

PEP 362, 344, 355 PYTHONFAULTHANDLER, 258

PEP 383, 157,158 PYTHONHASHSEED, 215, 258

PEP 387, 15,16 PYTHONHOME, 12, 215, 223, 259

PEP 393, 149 Pythoniczny, 356

PEP 411, 356 PYTHONINSPECT, 215, 259

402 Indeks

The Python/C API, Wydanie 3.14.0a5

PYTHONINTMAXSTRDIGITS, 259
PYTHONIOENCODING, 263
PYTHONLEGACYWINDOWSFSENCODING, 216, 252
PYTHONLEGACYWINDOWSSTDIO, 216, 260
PYTHONMALLOC, 272, 276, 278, 279
PYTHONMALLOCSTATS, 260, 272
PYTHONNODEBUGRANGES, 256
PYTHONNOUSERSITE, 216, 264
PYTHONOPTIMIZE, 216, 261
PYTHONPATH, 12, 215, 260
PYTHONPERFSUPPORT, 264
PYTHONPLATLIBDIR, 260
PYTHONPROFILEIMPORTTIME, 259
PYTHONPYCACHEPREFIX, 262
PYTHONSAFEPATH, 255
PYTHONTRACEMALLOC, 264
PYTHONUNBUFFERED, 217, 256
PYTHONUTFS, 253, 267
PYTHONVERBOSE, 217, 265
PYTHONWARNINGS, 265

PyThread_create_key (C function), 239
PyThread_delete_key (C function), 239
PyThread_delete_key_value (C function), 239
PyThread_get_key_value (C function), 239
PyThread ReInitTLS (C function), 239
PyThread_set_key_value (C function), 239
PyThread_tss_alloc (C function), 238
PyThread_tss_create (C function), 238
PyThread_tss_delete (C function), 238
PyThread_tss_free (C function), 238
PyThread_tss_get (C function), 238
PyThread_tss_is_created (C function), 238
PyThread_tss_set (C function), 238
PyThreadState (C type), 223, 226
PyThreadState_Clear (C function), 228
PyThreadState_Delete (C function), 228
PyThreadState_DeleteCurrent (C function), 228
PyThreadState_EnterTracing (C function), 229
PyThreadState_Get (C function), 226
PyThreadState_GetDict (C function), 230
PyThreadState_GetFrame (C function), 228
PyThreadState_GetID (C function), 228
PyThreadState_GetInterpreter (C function), 229
PyThreadState_GetUnchecked (C function), 226
PyThreadState_LeaveTracing (C function), 229
PyThreadState_New (C function), 228
PyThreadState_Next (C function), 237
PyThreadState_SetAsyncExc (C function), 230
PyThreadState_Swap (C function), 226
PyThreadState.interp (C member), 226
PyTime_AsSecondsDouble (C function), 95
PyTime_Check (C function), 209
PyTime_CheckExact (C function), 209
PyTime_FromTime (C function), 210
PyTime_FromTimeAndFold (C function), 210
PyTime_MAX (C var), 94
PyTime_MIN (C var), 94

PyTime_Monotonic (C function), 94

PyTime_MonotonicRaw (C function), 94
PyTime_PerfCounter (C function), 94
PyTime_PerfCounterRaw (C function), 94
PyTime_t (C type), 94

PyTime_Time (C function), 94
PyTime_TimeRaw (C function), 94
PyTimeZone_FromOffset (C function), 210
PyTimeZone_ FromOffsetAndName (C function), 210
PyTrace_C_CALL (C var), 235
PyTrace_C_EXCEPTION (C var), 235
PyTrace_C_RETURN (C var), 235
PyTrace_CALL (C var), 235
PyTrace_EXCEPTION (C var), 235
PyTrace_LINE (C var), 235
PyTrace_OPCODE (C var), 235
PyTrace_RETURN (C var), 235
PyTraceMalloc_Track (C function), 280
PyTraceMalloc_Untrack (C function), 280
PyTuple_Check (C function), 169
PyTuple_CheckExact (C function), 169
PyTuple_GET_ITEM (C function), 169
PyTuple_GET_SIZE (C function), 169
PyTuple_GetItem (C function), 169
PyTuple_GetsSlice (C function), 169
PyTuple New (C function), 169
PyTuple_Pack (C function), 169
PyTuple_SET_ITEM (C function), 169
PyTuple_SetItem (C function), 8, 169
PyTuple_size (C function), 169
PyTuple_Type (C var), 169
PyTupleObiject (C type), 169
PyType_AddWatcher (C function), 126
PyType_Check (C function), 125
PyType_CheckExact (C function), 125
PyType_ClearCache (C function), 125
PyType_ClearWatcher (C function), 126
PyType_Freeze (C function), 130
PyType_FromMetaclass (C function), 129
PyType_FromModuleAndSpec (C function), 129
PyType_FromSpec (C function), 130
PyType FromSpecWithBases (C function), 129
PyType_GenericAlloc (C function), 127
PyType_GenericNew (C function), 127
PyType_GetBaseByToken (C function), 128
PyType_GetDict (C function), 126
PyType_GetFlags (C function), 125
PyType_GetFullyQualifiedName (C function), 127
PyType_GetModule (C function), 128
PyType_GetModuleByDef (C function), 128
PyType_GetModuleName (C function), 127
PyType_GetModuleState (C function), 128
PyType_GetName (C function), 127
PyType_GetQualName (C function), 127
PyType_GetSlot (C function), 127
PyType_GetTypeDataSize (C function), 104
PyType_HasFeature (C function), 126
PyType_IS_GC (C function), 126
PyType_IsSubtype (C function), 126

Indeks

403

The Python/C API, Wydanie 3.14.0a5

PyType_Modified (C function), 126
PyType_Ready (C function), 127
PyType_Slot (Ctype), 131
PyType_Slot.pfunc (C member), 131
PyType_Slot.slot (C member), 131
PyType_Spec (Ctype), 130

PyType_Spec.
PyType_Spec.
PyType_Spec.
PyType_Spec.
PyType_Spec.

basicsize (C member), 130
flags (C member), 130
itemsize (C member), 130
name (C member), 130
slots (C member), 130

PyType_Type (Cvar), 125
PyType_Watch (C function), 126
PyType WatchCallback (C type), 126
PyTypeObiject (C type), 125

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_del (C member), 317

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_flags (C member), 304

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_getset (C member), 312

PyTypeObject

PyTypeObject.
PyTypeObject.
.tp_is_gc (C member), 316

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_members (C member), 312

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.

tp_alloc (C member), 315
tp_as_async (C member), 301
tp_as_buffer (C member), 304

tp_as_mapping (C member), 302

tp_as_number (C member), 302

tp_as_sequence (C member), 302
.tp_base (C member), 313

tp_bases (C member), 316
tp_basicsize (C member), 299
tp_cache (C member), 316
tp_call (C member), 303
tp_clear (C member), 309
tp_dealloc (C member), 300

tp_descr_get (C member), 313
tp_descr_set (C member), 314
tp_dict (C member), 313

tp_dictoffset (C member), 314

tp_doc (C member), 308
tp_finalize (C member), 317

tp_free (C member), 315
tp_getattr (C member), 301
tp_getattro (C member), 303

tp_hash (C member), 302
tp_init (C member), 314

tp_itemsize (C member), 299
tp_iter (C member), 312
tp_iternext (C member), 312

tp_methods (C member), 312
tp_mro (C member), 316
tp_name (C member), 299
tp_new (C member), 315
tp_repr (C member), 302

tp_richcompare (C member), 310
.tp_setattr (C member), 301

tp_setattro (C member), 303
tp_str (C member), 303

tp_subclasses (C member), 317

tp_traverse (C member), 308

PyTypeObject.tp_vectorcall (C member), 318
PyTypeObiject.tp_vectorcall_offset (C mem-
ber), 301
PyTypeObject.tp_version_tag (C member), 317
PyTypeObiject.tp_watched (C member), 318
PyTypeObiject.tp_weaklist (C member), 317
PyTypeObject.tp_weaklistoffset (C member),
311
PyTZInfo_Check (C function), 209
PyTZInfo_CheckExact (C function), 209
PyUnicode_1BYTE_DATA (C function), 150
PyUnicode_1BYTE_KIND (C macro), 151
PyUnicode_2BYTE_DATA (C function), 150
PyUnicode_2BYTE_KIND (C macro), 151
PyUnicode_4BYTE_DATA (C function), 150
PyUnicode_4BYTE_KIND (C macro), 151
PyUnicode_AsASCIIString (C function), 163
PyUnicode_AsCharmapString (C function), 164
PyUnicode_AsEncodedString (C function), 160
PyUnicode_AsLatinlString (C function), 163
PyUnicode_AsMBCSString (C function), 164
PyUnicode_AsRawUnicodeEscapeString (C func-
tion), 163
PyUnicode_AsUCS4 (C function), 157
PyUnicode_AsUCS4Copy (C function), 157
PyUnicode_AsUnicodeEscapeString (C function),
163
PyUnicode_AsUTF8 (C function), 161
PyUnicode_AsUTF8AndSize (C function), 160
PyUnicode_ AsUTF8String (C function), 160
PyUnicode_ AsUTF16String (C function), 162
PyUnicode_AsUTF32String (C function), 161
PyUnicode_AsWideChar (C function), 159
PyUnicode_AsWideCharString (C function), 159
PyUnicode_Check (C function), 150
PyUnicode_CheckExact (C function), 150
PyUnicode_Compare (C function), 165
PyUnicode_CompareWithASCIIString (C func-
tion), 166
PyUnicode_Concat (C function), 165
PyUnicode_Contains (C function), 166
PyUnicode_CopyCharacters (C function), 156
PyUnicode_Count (C function), 165
PyUnicode_DATA (C function), 151
PyUnicode_Decode (C function), 160
PyUnicode_DecodeASCII (C function), 163
PyUnicode_DecodeCharmap (C function), 163
PyUnicode_DecodeCodePageStateful (C func-
tion), 164
PyUnicode_DecodeFSDefault (C function), 159
PyUnicode_DecodeFSDefaultAndSize (C func-
tion), 158
PyUnicode_DecodeLatinl (C function), 163
PyUnicode_DecodeLocale (C function), 157
PyUnicode_DecodeLocaleAndSize (C function),
157
PyUnicode_DecodeMBCS (C function), 164
PyUnicode_DecodeMBCSStateful (C function), 164

404

Indeks

The Python/C API, Wydanie 3.14.0a5

PyUnicode_DecodeRawUnicodeEscape (C func-
tion), 163

PyUnicode_DecodeUnicodeEscape (C function),
163

PyUnicode_DecodeUTF7 (C function), 162
PyUnicode_DecodeUTF7Stateful (C function), 162
PyUnicode_DecodeUTFS8 (C function), 160
PyUnicode_DecodeUTF8Stateful (C function), 160
PyUnicode_DecodeUTF16 (C function), 162
PyUnicode_DecodeUTF16Stateful (C function),
162
PyUnicode_DecodeUTF32 (C function), 161
PyUnicode_DecodeUTF32Stateful (C function),
161
PyUnicode_EncodeCodePage (C function), 164
PyUnicode_EncodeFsSDefault (C function), 159
PyUnicode_EncodeLocale (C function), 157
PyUnicode_Equal (C function), 166
PyUnicode_EqualToUTF8 (C function), 166
PyUnicode_EqualToUTF8AndSize (C function), 166
PyUnicode_Fill (C function), 156
PyUnicode_Find (C function), 165
PyUnicode_FindChar (C function), 165
PyUnicode_Format (C function), 166
PyUnicode_FromEncodedObject (C function), 156
PyUnicode_FromFormat (C function), 153
PyUnicode_FromFormatV (C function), 156
PyUnicode_FromKindAndData (C function), 153
PyUnicode_FromObject (C function), 156
PyUnicode_FromString (C function), 153
PyUnicode_FromStringAndSize (C function), 153
PyUnicode_FromWideChar (C function), 159
PyUnicode_FSConverter (C function), 158
PyUnicode_FSDecoder (C function), 158
PyUnicode_GET_LENGTH (C function), 150
PyUnicode_GetLength (C function), 156
PyUnicode_InternFromString (C function), 167
PyUnicode_InternInPlace (C function), 167
PyUnicode_IsIdentifier (C function), 151
PyUnicode_Join (C function), 165
PyUnicode_ KIND (C function), 151
PyUnicode_MAX_CHAR_VALUE (C function), 151
PyUnicode_New (C function), 153
PyUnicode_READ (C function), 151
PyUnicode_READ_CHAR (C function), 151
PyUnicode_ReadChar (C function), 156
PyUnicode_READY (C function), 150
PyUnicode_Replace (C function), 165
PyUnicode_RichCompare (C function), 166
PyUnicode_Split (C function), 165
PyUnicode_Splitlines (C function), 165
PyUnicode_Substring (C function), 157
PyUnicode_Tailmatch (C function), 165
PyUnicode_Translate (C function), 164
PyUnicode_Type (C var), 150
PyUnicode_WRITE (C function), 151
PyUnicode_WriteChar (C function), 156
PyUnicodeDecodeError_Create (C function), 63

PyUnicodeDecodeError_GetEncoding (C func-
tion), 63

PyUnicodeDecodeError_GetEnd (C function), 64

PyUnicodeDecodeError_GetObject (C function),
63

PyUnicodeDecodeError_GetReason (C function),
64

PyUnicodeDecodeError_GetStart (C function), 63

PyUnicodeDecodeError_SetEnd (C function), 64

PyUnicodeDecodeError_SetReason (C function),
64

PyUnicodeDecodeError_SetStart (C function), 63

PyUnicodeEncodeError_GetEncoding (C func-
tion), 63

PyUnicodeEncodeError_GetEnd (C function), 64

PyUnicodeEncodeError_GetObject (C function),
63

PyUnicodeEncodeError_GetReason (C function),
64

PyUnicodeEncodeError_GetStart (C function), 63

PyUnicodeEncodeError_SetEnd (C function), 64

PyUnicodeEncodeError_SetReason (C function),
64

PyUnicodeEncodeError_SetStart (C function), 63

PyUnicodeObject (C type), 150

PyUnicodeTranslateError_GetEnd (C function),

64
PyUnicodeTranslateError_GetObject (C func-
tion), 63
PyUnicodeTranslateError_GetReason (C func-
tion), 64
PyUnicodeTranslateError_GetStart (C func-
tion), 63
PyUnicodeTranslateError_SetEnd (C function),
64
PyUnicodeTranslateError_SetReason (C func-
tion), 64
PyUnicodeTranslateError_SetStart (C func-
tion), 63

PyUnicodeWriter (C type), 167

PyUnicodeWriter_ Create (C function), 167

PyUnicodelWriter_DecodeUTF8Stateful (C func-
tion), 168

PyUnicodeWriter_Discard (C function), 167

PyUnicodeWriter_Finish (C function), 167

PyUnicodeWriter_ Format (C function), 168

PyUnicodeWriter WriteChar (C function), 167

PyUnicodelriter_WriteRepr (C function), 168

PyUnicodeWriter_WriteStr (C function), 168

PyUnicodeWriter_WriteSubstring (C function),
168

PyUnicodeWriter_ WriteUcCs4 (C function), 168

PyUnicodelriter_WriteUTF8 (C function), 168

PyUnicodeWriter_WriteWideChar (C function),
168

PyUnstable, 15

PyUnstable AtExit (C function), 219

PyUnstable_Code_GetExtra (C function), 186

Indeks

405

The Python/C API, Wydanie 3.14.0a5

PyUnstable_Code_GetFirstFree (C function), 184

PyUnstable_Code_New (C function), 184

PyUnstable_Code_NewWithPosOnlyArgs (C func-
tion), 184

PyUnstable_Code_SetExtra (C function), 187

PyUnstable_EnableTryIncRef (C function), 106

PyUnstable_Eval_RequestCodeExtralndex
function), 186

PyUnstable Exc_PrepReraiseStar (C function),
62

PyUnstable_GC_VisitObjects (C function), 331

(«©

PyUnstable_InterpreterFrame_GetCode (o
function), 205

PyUnstable_InterpreterFrame_GetLasti (o
Sfunction), 205

PyUnstable_InterpreterFrame_GetLine c

function), 205
PyUnstable_InterpreterState_GetMainModule
(C function), 229
PyUnstable_ IsImmortal (C function), 104
PyUnstable_Long_CompactValue (C function), 140
PyUnstable_Long_IsCompact (C function), 139
PyUnstable_Module_SetGIL (C function), 196
PyUnstable_Object_ClearWeakRefsNoCallbacks
(C function), 201
PyUnstable_Object_EnableDeferredRefcount
(C function), 104
PyUnstable_Object_GC_NewWithExtraData
function), 328
PyUnstable PerfMapState_Fini (C function), 95
PyUnstable PerfMapState_Init (C function), 95
PyUnstable_TryIncRef (C function), 105
PyUnstable_Type_AssignVersionTag (C func-
tion), 128
PyUnstable WritePerfMapEntry (C function), 95
PyVarObject (C type), 284
PyVarObject_HEAD_INIT (C macro), 285
PyVarObject.ob_size (C member), 299
PyVectorcall_call (C function), 108
PyVectorcall_ Function (C function), 108
PyVectorcall NARGS (C function), 108
PyWeakref_Check (C function), 200
PyWeakref_CheckProxy (C function), 200
PyWeakref_CheckRef (C function), 200
PyWeakref_ GET_OBJECT (C function), 201
PyWeakref_ GetObject (C function), 200
PyWeakref GetRef (C function), 200
PyWeakref_IsDead (C function), 201
PyWeakref_NewProxy (C function), 200
PyWeakref_NewRef (C function), 200
PyWideStringList (C type), 249
PyWideStringList_Append (C function), 250
PyWideStringList_Insert (C function), 250
PyWideStringList.items (C member), 250
PyWideStringList.length (C member), 250
PyWrapper_New (C function), 197

(«©

Q

qualified name, 356

R

READ_RESTRICTED (C macro), 290
READONLY (C macro), 290
realloc (C function), 271
reference count, 356
regular package, 357
releasebufferproc (Ctype), 325
REPL, 357
repr

funkcja wbudowana, 101, 302
reprfunc (C type), 324
RESTRICTED (C macro), 290
richcmpfunc (C type), 325

S

sekwencija, 357

obiekt, 146
sendfunc (C type), 325
set comprehension, 357
set_all(),9
setattrfunc (C type), 324
setattrofunc (C type), 324
setswitchinterval (in module sys), 223
setter (Ctype), 292
SIGINT (C macro), 61
signal

modut, 61
single dispatch, 357
S1zE_MaX (C macro), 135
slice, 357
stownik, 347

obiekt, 173
soft deprecated, 357
special method, 357
specjalne

metoda, 357
ssizeargfunc (C type), 325
ssizeobjargproc (C type), 325
static type checker, 357
staticmethod

funkcja wbudowana, 288
stderr (in module sys), 232, 233
stdin (in module sys), 232, 233
stdout (in module sys), 232, 233
strerror (C function), 55
strong reference, 357
structmember.h, 292
sum_list (), 9
sum_sequence (), 10, 11
sys

modut, 12,217, 232, 233
SystemError (built-in exception), 189

z

S

Sciezka

406

Indeks

The Python/C API, Wydanie 3.14.0a5

modut wyszukiwanie, 12, 217, 221 Z
zbieranie $mieci, 349
1- Zen of Python, 359
T_BOOL (C macro), 292 zestaw
T_BYTE (C macro), 292 obiekt, 178
T_CHAR (C macro), 292 zinterpretowane, 351
T_DOUBLE (C macro), 292 zmienna $rodowiskowa
T_FLOAT (C macro), 292 __PYVENV_LAUNCHER__, 256, 262
T_INT (C macro), 292 PATH, 12
T_LONG (C macro), 292 PYTHON_CPU_COUNT, 259
T_LONGLONG (C macro), 292 PYTHON_FROZEN_MODULES, 258
T_NONE (C macro), 292 PYTHON_GIL, 350
T_OBJECT (C macro), 292 PYTHON_PERF_JIT_SUPPORT, 264
T_OBJECT_EX (C macro), 292 PYTHON_PRESITE, 263
T_PYSSIZET (C macro), 292 PYTHONCOERCECLOCALE, 267
T_SHORT (C macro), 292 PYTHONDEBUG, 215, 261
T_STRING (C macro), 292 PYTHONDEVMODE, 257
T_STRING_INPLACE (C macro), 292 PYTHONDONTWRITEBYTECODE, 215, 265
T_UBYTE (C macro), 292 PYTHONDUMPREFS, 257
T_UINT (C macro), 292 PYTHONDUMPREFSFILE, 257
T_ULONG (C macro), 292 PYTHONEXECUTABLE, 262
T_ULONGULONG (C macro), 292 PYTHONFAULTHANDLER, 258
T_USHORT (C macro), 292 PYTHONHASHSEED, 215, 258
ternaryfunc (C type), 325 PYTHONHOME, 12, 215, 223, 259
traverseproc (C type), 330 PYTHONINSPECT, 215, 259
triple-quoted string, 358 PYTHONINTMAXSTRDIGITS, 259
tuple PYTHONIOENCODING, 263
funkcja wbudowana, 115,173 PYTHONLEGACYWINDOWSFSENCODING, 216, 252
obiekt, 169 PYTHONLEGACYWINDOWSSTDIO, 216, 260
typ, 358 PYTHONMALLOC, 272, 276, 278, 279
funkcja wbudowana, 102 PYTHONMALLOCSTATS, 260, 272
obiekt, 7, 125 PYTHONNODEBUGRANGES, 256
type alias, 358 PYTHONNOUSERSITE, 216, 264
type hint, 358 PYTHONOPTIMIZE, 216, 261
PYTHONPATH, 12, 215, 260
U PYTHONPERFSUPPORT, 264
ULONG_MAX (C macro), 135 PYTHONPLATLIBDIR, 260
unaryfunc (C type), 325 PYTHONPROFILEIMPORTTIME, 259
uniwersalne nowe linie, 358 PYTHONPYCACHEPREFTX, 262
USE_STACKCHECK (C macro), 70 PYTHONSAFEPATH, 255
PYTHONTRACEMALLOC, 264
V PYTHONUNBUFFERED, 217, 256
variable annotation, 359 PYTHONUTFS, 253, 267
vectorcallfunc (C type), 107 PYTHONVERBOSE, 217, 265

version (in module sys), 221, 222 PYTHONWARNINGS, 265
virtual environment, 359

virtual machine, 359

visitproc (C type), 330

W

WRITE_RESTRICTED (C macro), 290

wyrazenie, 348

wyszukiwanie
$ciezka, modutl, 12,217,221

wyszukiwarka, 348

wywolanie zwrotne, 345

Indeks 407

	Wprowadzenie
	Coding standards
	Pliki Włączania - z ang. Include
	Useful macros
	Przedmioty, ich Rodzaje i Liczby Odwołań
	Liczby odniesień
	Szczegóły Liczby Odniesień

	Typy

	Wyjątki
	Załączanie programu interpretującego język pytonowski
	Odpluskwiające Budowy

	C API Stability
	Unstable C API
	Stable Application Binary Interface
	Limited C API
	stabilnego ABI
	Limited API Scope and Performance
	Limited API Caveats

	Platform Considerations
	Contents of Limited API

	The Very High Level Layer
	Reference Counting
	Obsługa sytuacji wyjątkowych
	Printing and clearing
	Raising exceptions
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Przedmioty Sytuacji Wyjątkowych
	Unicode Exception Objects
	Kontrola Rekursji
	Sztandarowe Sytuacje Wyjątkowe
	Standard Warning Categories

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Pobieranie kolejnych rzeczy podanych na wejściu i konstruowanie wartości.
	Parsowanie argumentów
	Napisy i skrzynki wymiany
	Liczby
	Inne obiekty
	Funkcje interfejsu programowania aplikacji

	Budowanie wartości

	String conversion and formatting
	PyHash API
	Reflection
	Codec registry and support functions
	Codec lookup API
	Registry API for Unicode encoding error handlers

	PyTime C API
	Typy
	Clock Functions
	Raw Clock Functions
	Conversion functions

	Support for Perf Maps

	Warstwa obiektów abstrakcyjnych
	Object Protocol
	Call Protocol
	The tp_call Protocol
	The Vectorcall Protocol
	Kontrola Rekursji
	Vectorcall Support API

	Object Calling API
	Call Support API

	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol
	Buffer structure
	Buffer request types
	request-independent fields
	readonly, format
	shape, strides, suboffsets
	contiguity requests
	compound requests

	Complex arrays
	NumPy-style: shape and strides
	PIL-style: shape, strides and suboffsets

	Buffer-related functions

	Concrete Objects Layer
	Fundamental Objects
	Type Objects
	Creating Heap-Allocated Types

	The None Object

	Numeric Objects
	Integer Objects
	Export API
	PyLongWriter API

	Obiekty logiczne
	Floating-Point Objects
	Pack and Unpack functions
	Pack functions
	Unpack functions

	Obiekt Liczby Zespolonej
	Liczby zespolone jako struktury w C
	Complex Numbers as Python Objects

	Sequence Objects
	Bytes Objects
	Byte Array Objects
	Type check macros
	Direct API functions
	Macros

	Unicode Objects and Codecs
	Unicode Objects
	Unicode Type
	Unicode Character Properties
	Creating and accessing Unicode strings
	Locale Encoding
	File System Encoding
	wchar_t Support

	Built-in Codecs
	Generic Codecs
	UTF-8 Codecs
	UTF-32 Codecs
	UTF-16 Codecs
	UTF-7 Codecs
	Unicode-Escape Codecs
	Raw-Unicode-Escape Codecs
	Latin-1 Codecs
	ASCII Codecs
	Character Map Codecs
	MBCS codecs for Windows
	Methods & Slots

	Methods and Slot Functions
	PyUnicodeWriter

	Tuple Objects
	Struct Sequence Objects
	List Objects

	Container Objects
	Obiekty słownika
	Set Objects

	Obiekty Funkcja
	Obiekty Funkcja
	Instance Method Objects
	Obiekty metod
	Cell Objects
	Code Objects
	Extra information

	Other Objects
	File Objects
	Module Objects
	Initializing C modules
	Single-phase initialization
	Multi-phase initialization
	Low-level module creation functions
	Support functions

	Module lookup

	Iterator Objects
	Descriptor Objects
	Slice Objects
	Ellipsis Object

	MemoryView objects
	Weak Reference Objects
	Capsules
	Frame Objects
	Frame Locals Proxies
	Internal Frames

	Generator Objects
	Coroutine Objects
	Context Variables Objects
	DateTime Objects
	Objects for Type Hinting

	Initialization, Finalization, and Threads
	Before Python Initialization
	Global configuration variables
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Releasing the GIL from extension code
	Non-Python created threads
	Cautions about fork()
	Cautions regarding runtime finalization
	High-level API
	Low-level API

	Sub-interpreter support
	A Per-Interpreter GIL
	Bugs and caveats

	Asynchronous Notifications
	Profiling and Tracing
	Reference tracing
	Advanced Debugger Support
	Thread Local Storage Support
	Thread Specific Storage (TSS) API
	Dynamic Allocation
	Methods

	Thread Local Storage (TLS) API

	Synchronization Primitives
	Python Critical Section API

	Python Initialization Configuration
	PyInitConfig C API
	Przykład
	Create Config
	Error Handling
	Get Options
	Set Options
	Module
	Initialize Python

	Configuration Options
	Runtime Python configuration API
	PyConfig C API
	Przykład
	PyWideStringList
	PyStatus
	PyPreConfig
	Preinitialize Python with PyPreConfig
	PyConfig
	Initialization with PyConfig
	Isolated Configuration
	Python Configuration
	Python Path Configuration

	Py_GetArgcArgv()
	Delaying main module execution

	Zarządzanie Pamięcią
	Skorowidz
	Allocator Domains
	Raw Memory Interface
	Sprzęg Pamięci
	Object allocators
	Default Memory Allocators
	Customize Memory Allocators
	Debug hooks on the Python memory allocators
	The pymalloc allocator
	Customize pymalloc Arena Allocator

	The mimalloc allocator
	tracemalloc C API
	Przykłady

	Object Implementation Support
	Przydzielanie obiektów na stercie
	Wspólne struktury obiektów
	Base object types and macros
	Implementing functions and methods
	Accessing attributes of extension types
	Member flags
	Member types
	Defining Getters and Setters

	Type Objects
	Quick Reference
	„tp slots”
	sub-slots
	slot typedefs

	PyTypeObject Definition
	PyObject Slots
	PyVarObject Slots
	PyTypeObject Slots
	Static Types
	Heap Types
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	Slot Type typedefs
	Przykłady

	Supporting Cyclic Garbage Collection
	Controlling the Garbage Collector State
	Querying Garbage Collector State

	API i wersjonowanie ABI
	Build-time version constants
	Run-time version
	Bit-packing macros

	Monitoring C API
	Generating Execution Events
	Managing the Monitoring State

	Słownik
	O tej dokumentacji
	Współtwórcy dokumentacji Pythona

	Historia i zapisy prawne
	Historia programu
	Zasady i warunki postępowania z Pythonem i ogólnie jego użycia
	PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2
	BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
	CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
	CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON DOCUMENTATION

	Licenses and Acknowledgements for Incorporated Software
	Mersenne Twister
	Sockets
	Asynchronous socket services
	Cookie management
	Execution tracing
	UUencode and UUdecode functions
	XML Remote Procedure Calls
	test_epoll
	Select kqueue
	SipHash24
	strtod and dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite
	mimalloc
	asyncio
	Global Unbounded Sequences (GUS)

	Prawa autorskie
	Indeks

