Python Setup and Usage
Wydanie 3.12.4

Guido van Rossum and the Python development team

lipca 31, 2024

Python Software Foundation
Email: docs@python.org

Spis tresci

1 Command line and environment 3
I[.1. Commandline i e e e 3
1.1.1 Imnterface options L e e 3

1.1.2 Generic Optionso e e e 5

1.1.3 Miscellaneous options oot e e e e 6

1.1.4 Options you shouldn’tuse 0 i i i i et e e e e 10

1.2 Environment variables L e e 10
1.2.1 Debug-mode variables e 15

2 Using Python on Unix platforms 17
2.1 Getting and installing the latest versionof Python 17
2.1 OnLinux e e e e e 17

2.1.2 OnFreeBSDandOpenBSD L 18

2.2 Building Python. e 18
2.3 Python-related paths and files e e e 18
24 Miscellaneous e e e e e e 19
2.5 Custom OpenSSL o . e e e e 19
3 Configure Python 21
3.1 BuildRequirements e e e e e e e e e e e e e 21
3.2 Generatedfiles e e 21
32,1 configure sCript e e e e e e e e e e e e 22

3.3 Configure Options o i it e e e e e e e e e 22
331 General OptionsS v v v v e 22

3.3.2 WebAssembly Options o o o i e e e e e e e e e 24

333 Install Options e e e 24

334 Performance optionsl e 25

33,5 PythonDebugBuild 26

33.6 Debugoptions e e e e e e 27

337 LAnKer Ooptions o v v e 28

3.3.8 LibrarieS Options e e e e e e e e e e e e e e e 28

3.3.9 Security Options oo e e e e e e e e e e e e 29
3310 macOSOPLions e 29
3.3.11 Cross Compiling Options oo v vt it e e e 30

34 Python Build System e e e e e e 31
34.1 Mainfilesof thebuildsystem e 31

342 Mainbuildsteps e e e 31

343 Main Makefile targets oL e 31

344 CexXenSiONS . . . v v v v vt v it e e e e e e e e e e e e e e 31

3.5 Compilerand linkerflags L e e e e 32
3.5.1 Preprocessor flags e e e 32

352 Compilerflags e
3,53 Linkerflags oL e e e e e e
4 Using Python on Windows
4.1 Thefullinstaller e e e e e e
4.1.1 Installation StEPS v v v v e e e e e e e e e e e e e e e e e e
4.1.2 Removing the MAX_PATH Limitation
4.1.3 Instalacja bez graficznego interfejsu uzytkownika oL oL
4.1.4 Installing Without Downloading,
4.1.5 Modifyinganinstallo
4.2 The Microsoft Store package i e e e e e e e
421 Knownissues e e e e e e
4.3 Thenugetorgpackages L e
4.4 Theembeddable package L e e e e
4.4.1 Python Application L e
4.4.2 Zalaczanie programu interpretujacego jezyk pytonowski oL oL
4.5 Alternative bundles e e e e
4.6 Configuring Python e e
4.6.1 Excursus: Setting environment variables oL
4.6.2 Finding the Python executable,
47 UTF-8mode e
4.8 Python Launcher for Windows e
4.8.1 Gettingstarted e e e e e e e e
4.8.2 Shebanglines e
4.8.3 Argumentsinshebanglines L o
4.8.4 Customization vt v e e e e e e e e e e
4.8.5 DIagnostiCs v i e e e e e e e e e e e e e e e e e e e
486 DryRun e e e
4.8.77 Installondemand e
48.8 Returncodes e e e
4.9 Findingmodules e
4.10 Additional modules L. e e e e
4.10.1 PyWiIn32 e
4102 cox_Freeze L
4.11 Compiling Pythonon Windows 0. e
4.12 Other Platforms e e
Using Python on a Mac
5.1 Getting and Installing Python L
5.1.1 HowtorunaPythonscript
5.1.2 Runningscripts witha GUI
5.1.3 Configuration e e e e e
52 ThelDE . . . e e
5.3 Installing Additional Python Packages
54 GUIProgramming o v v ittt e e e e e e e e
5.5 Distributing Python Applications e
5.6 Other Resources i i i it e e e
Editors and IDEs
Glosariusz

O tej dokumentacji

B.1

Wspéttworey doku

mentacji Pythona L o

Historia i zapisy prawne

C.1

Historia programu

C.2 Zasady i warunki postgpowania z Pythonem i ogdlnie jego uzycia
C.2.1 PSFLICENSE AGREEMENT FOR PYTHON 3.124

55
55
56
56
56
56
57
57
57
57

59

61

77
77

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 82

C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 83
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 84

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.12.4 DOCUMEN-
TATION 84
C.3 Licenses and Acknowledgements for Incorporated Software 84
C3.1 Mersenne TWISter L o i it e e e e e 84
C32 Sockets e e e 85
C.3.3 Asynchronous socket Services o e 86
C34 Cookiemanagementl 86
C.3.5 Execution traCing v v v v v vt i e e e e e e e e e e e 87
C.3.6 UUencode and UUdecode functions oo v i v it i i 87
C3.7 XML Remote Procedure Calls 88
C.3.8 test_epoll L e e e e 88
C39 Selectkqueue e 89
C3.10 SipHash24 e e 89
C3.11 strtodanddtoa. L e e 90
C.3.12 OpenSSL e e e e 90
C3U3 exXpat. . . . v v e e e e e e e e e e e 93
C3.14 Libfli . . . o o e e 94
C3.05 zlib . . . e e 94
C3.16 cfuhash e 95
C3.07 Hbmpdec e e e e e e e e e 95
C3.18 WI3CCIANTeSt SUIte v v v v e 96
C3.19 Audioop o e e e 96
C320 asynClo v vt i e e e e 97
D Prawa autorskie 99
Indeks 101

Python Setup and Usage, Wydanie 3.12.4

Ta czgs$¢ dokumentacji jest poswigcona ogdlnym informacjom na temat instalacji Pythona na réznych platformach,
wywotlaniu interpretera i rzeczy, ktére upraszczaja prace z Pythonem.

Spis tresci 1

Python Setup and Usage, Wydanie 3.12.4

2 Spis tresci

rRozDzIAt 1

Command line and environment

The CPython interpreter scans the command line and the environment for various settings.

Szczegot implementacy jny CPythona: Other implementations» command line schemes may differ. See implemen-
tations for further resources.

1.1 Command line

When invoking Python, you may specify any of these options:

[python [-bBdEhiIOgsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

[python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:

¢ When called with standard input connected to a tty device, it prompts for commands and executes them until
an EOF (an end-of-file character, you can produce that with Ctr1-D on UNIX or Ctrl-Z, Enter on
Windows) is read.

* When called with a file name argument or with a file as standard input, it reads and executes a script from that
file.

¢ When called with a directory name argument, it reads and executes an appropriately named script from that
directory.

* When called with —c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

¢ When called with -m module-name, the given module is located on the Python module path and executed
as a script.

Python Setup and Usage, Wydanie 3.12.4

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end
up in sys . argv — note that the first element, subscript zero (sys.argv [01]), is a string reflecting the program’s
source.

—-c¢ <command>
Execute the Python code in command. command can be one or more statements separated by newlines, with

significant leading whitespace as in normal module code.

If this option is given, the first element of sys.argv will be "—c" and the current directory will be added
to the start of sys.path (allowing modules in that directory to be imported as top level modules).

Raises an auditing event cpython. run_command with argument command.

-m <module—name>

Search sys.path for the named module and execute its contents as the __main___ module.

Since the argument is a module name, you must not give a file extension (. py). The module name should be
a valid absolute Python module name, but the implementation may not always enforce this (e.g. it may allow
you to use a name that includes a hyphen).

Package names (including namespace packages) are also permitted. When a package name is supplied instead
of a normal module, the interpreter will execute <pkg>.__main___ as the main module. This behaviour is
deliberately similar to the handling of directories and zipfiles that are passed to the interpreter as the script
argument.

Informacja

This option cannot be used with built-in modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source
file is not available.

If this option is given, the first element of sys . argv will be the full path to the module file (while the module
file is being located, the first element will be set to "—m"). As with the —c option, the current directory will be
added to the start of sys.path.

—TI option can be used to run the script in isolated mode where sys . path contains neither the current di-
rectory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python -m timeit -s "setup here" "benchmarked code here"
python -m timeit -h # for details

Raises an auditing event cpython . run_module with argument module-name.

Zobacz takze

runpy.run_module ()
Equivalent functionality directly available to Python code

PEP 338 — Executing modules as scripts

Zmienione w wersji 3.1: Supply the package name to runa __main__ submodule.

Zmienione w wersji 3.4: namespace packages are also supported

4 Rozdziat 1. Command line and environment

https://peps.python.org/pep-0338/

Python Setup and Usage, Wydanie 3.12.4

Read commands from standard input (sys . stdin). If standard input is a terminal, —: is implied.

If this option is given, the first element of sys.argv will be "-" and the current directory will be added to
the start of sys.path.

Raises an auditing event cpython. run_stdin with no arguments.

<script>

Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring
to either a Python file, a directory containinga __main__ .py file, or a zipfile containinga __main__ .py
file.

If this option is given, the first element of sys . argv will be the script name as given on the command line.

If the script name refers directly to a Python file, the directory containing that file is added to the start of
sys.path, and the file is executed as the __main___ module.

If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
__main__ .py file in that location is executed as the __main___ module.

—T option can be used to run the script in isolated mode where sy s . path contains neither the script’s direc-
tory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Raises an auditing event cpython.run_file with argument £ilename.

Zobacz takze

runpy .run_path ()
Equivalent functionality directly available to Python code

If no interface option is given, —1 is implied, sys.argv [0] is an empty string (" ") and the current directory will
be added to the start of sys.path. Also, tab-completion and history editing is automatically enabled, if available
on your platform (see rlcompleter-config).

Zobacz takze

tut-invoking
Zmienione w wersji 3.4: Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-2
-h
--help
Print a short description of all command line options and corresponding environment variables and exit.
—--help-env

Print a short description of Python-specific environment variables and exit.
Added in version 3.11.

——help—xoptions
Print a description of implementation-specific —X options and exit.

Added in version 3.11.

1.1. Command line 5

Python Setup and Usage, Wydanie 3.12.4

——help-all

-V

Print complete usage information and exit.

Added in version 3.11.

——version

Print the Python version number and exit. Example output could be:

[

Python 3.8.0b2+

When given twice, print more information about the build, like:

{

Python 3.8.0b2+ (3.8:0c076caaa8, Apr 20 2019, 21:55:00)
[GCC 6.2.0 20161005]

Added in version 3.6: The —~VV option.

1.1.3 Miscellaneous options

-b

Issue a warning when converting bytes or bytearray to st r without specifying encoding or comparing
bytes orbytearray with str or bytes with int. Issue an error when the option is given twice (-bb).

Zmienione w wersji 3.5: Affects also comparisons of bytes with int.

If given, Python won’t try to write .pyc files on the import of source modules. See also
PYTHONDONTWRITEBYTECODE.

——check-hash-based-pycs default|always|never

-i

Control the validation behavior of hash-based . pyc files. See pyc-invalidation. When set to default, chec-
ked and unchecked hash-based bytecode cache files are validated according to their default semantics. When
set to always, all hash-based . pyc files, whether checked or unchecked, are validated against their corre-
sponding source file. When set to never, hash-based . pyc files are not validated against their corresponding
source files.

The semantics of timestamp-based . pyc files are unaffected by this option.

Turn on parser debugging output (for expert only). See also the PYTHONDEBUG environment variable.

This option requires a debug build of Python, otherwise it’s ignored.

Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

See also the —P and - T (isolated) options.

When a script is passed as first argument or the —c option is used, enter interactive mode after executing the
script or the command, even when sys. stdin does not appear to be a terminal. The PYTHONSTARTUP
file is not read.

This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

Run Python in isolated mode. This also implies —F, —P and —s options.

In isolated mode sy s .path contains neither the script’s directory nor the user’s site-packages directory. All
PYTHON* environment variables are ignored, too. Further restrictions may be imposed to prevent the user
from injecting malicious code.

Rozdziat 1. Command line and environment

Python Setup and Usage, Wydanie 3.12.4

-q

Added in version 3.4.

Remove assert statements and any code conditional on the value of _ debug__. Augment the filena-
me for compiled (bytecode) files by adding .opt—1 before the .pyc extension (see PEP 488). See also
PYTHONOPTIMIZE.

Zmienione w wersji 3.5: Modify . pyc filenames according to PEP 488.

Do -0 and also discard docstrings. Augment the filename for compiled (bytecode) files by adding . opt -2
before the . pyc extension (see PEP 488).

Zmienione w wersji 3.5: Modify . pyc filenames according to PEP 488.

Don’t prepend a potentially unsafe path to sys.path:
* python -m module command line: Don’t prepend the current working directory.

e python script.py command line: Don’t prepend the script’s directory. If it’s a symbolic link, re-
solve symbolic links.

e python -c codeand python (REPL)command lines: Don’t prepend an empty string, which means
the current working directory.

See also the PYTHONSAFEPATH environment variable, and —E and —T (isolated) options.

Added in version 3.11.

Don’t display the copyright and version messages even in interactive mode.

Added in version 3.2.

Turn on hash randomization. This option only has an effect if the PYTHONHASHSEED environment variable
is set to 0, since hash randomization is enabled by default.

On previous versions of Python, this option turns on hash randomization, so that the __hash__ () values of
str and bytes objects are ,,salted” with an unpredictable random value. Although they remain constant within
an individual Python process, they are not predictable between repeated invocations of Python.

Hash randomization is intended to provide protection against a denial-of-service caused by carefully chosen
inputs that exploit the worst case performance of a dict construction, O(n*) complexity. See http://ocert.org/
advisories/ocert-2011-003.html for details.

PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.
Added in version 3.2.3.

Zmienione w wersji 3.7: The option is no longer ignored.

Don’t add the user site-packages directoryto sys.path.

See also PYTHONNOUSERSITE.

Zobacz takze

PEP 370 — Per user site-packages directory

Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main () if you want them
to be triggered).

1.1. Command line 7

https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/
http://ocert.org/advisories/ocert-2011-003.html
http://ocert.org/advisories/ocert-2011-003.html
https://peps.python.org/pep-0370/

Python Setup and Usage, Wydanie 3.12.4

l

-u
Force the stdout and stderr streams to be unbuffered. This option has no effect on the stdin stream.
See also PYTHONUNBUFFERED.
Zmienione w wersji 3.7: The text layer of the stdout and stderr streams now is unbuffered.

-v
Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. When given twice (-vv), print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit.
Zmienione w wersji 3.10: The site module reports the site-specific paths and . pth files being processed.
See also PYTHONVERBOSE.

-W arg
Warning control. Python’s warning machinery by default prints warning messages to sys.stderr.
The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those
that are otherwise ignored by default):
-Wdefault # Warn once per call location
—-Werror # Convert to exceptions
-Walways # Warn every time
-Wall # Same as —-Walways
—Wmodule # Warn once per calling module
—-Wonce # Warn once per Python process
-Wignore # Never warn
The action names can be abbreviated as desired and the interpreter will resolve them to the appropriate action
name. For example, —W1i is the same as ~-Wignore.
The full form of argument is:

[action:message:category:module:lineno

Empty fields match all values; trailing empty fields may be omitted. For example -W
ignore: :DeprecationWarning ignores all DeprecationWarning warnings.
The action field is as explained above but only applies to warnings that match the remaining fields.
The message field must match the whole warning message; this match is case-insensitive.
The category field matches the warning category (ex: DeprecationWarning). This must be a class na-
me; the match test whether the actual warning category of the message is a subclass of the specified warning
category.
The module field matches the (fully qualified) module name; this match is case-sensitive.
The lineno field matches the line number, where zero matches all line numbers and is thus equivalent to an
omitted line number.
Multiple —7 options can be given; when a warning matches more than one option, the action for the last
matching option is performed. Invalid —7 options are ignored (though, a warning message is printed about
invalid options when the first warning is issued).
Warnings can also be controlled using the PY THONWARNINGS environment variable and from within a Python
program using the warnings module. For example, the warnings.filterwarnings () function can
be used to use a regular expression on the warning message.
See warning-filter and describing-warning-filters for more details.

-x

Skip the first line of the source, allowing use of non-Unix forms of # ! cmd. This is intended for a DOS specific
hack only.

Rozdziat 1. Command line and environment

Python Setup and Usage, Wydanie 3.12.4

Reserved for various implementation-specific options. CPython currently defines the following possible values:

L]

-X faulthandler toenable faulthandler. See also PYTHONFAULTHANDLER.
Added in version 3.3.

-X showrefcount to output the total reference count and number of used memory blocks when the
program finishes or after each statement in the interactive interpreter. This only works on debug builds.

Added in version 3.4.

-X tracemalloc to start tracing Python memory allocations using the t racemalloc module. By
default, only the most recent frame is stored in a traceback of a trace. Use -X tracemalloc=NFRAME
to start tracing with a traceback limit of NFRAME frames. See tracemalloc.start () and
PYTHONTRACEMALLOC for more information.

Added in version 3.4.

-X int_max_str_digits configures the integer string conversion length limitation. See also
PYTHONINTMAXSTRDIGITS.

Added in version 3.11.

-X importtime to show how long each import takes. It shows module name, cumulative time (inclu-
ding nested imports) and self time (excluding nested imports). Note that its output may be broken in multi-
threaded application. Typical usage is python3 -X importtime -c 'import asyncio'.
See also PYTHONPROF ILEIMPORTTIME.

Added in version 3.7.

-X dev: enable Python Development Mode, introducing additional runtime checks that are too expen-
sive to be enabled by default. See also PYTHONDEVMODE.

Added in version 3.7.

—-X ut£8 enables the Python UTF-8 Mode. -X ut £8=0 explicitly disables Python UTF-8 Mode (even
when it would otherwise activate automatically). See also PYTHONUTE 8.

Added in version 3.7.

-X pycache_prefix=PATH enables writing . pyc files to a parallel tree rooted at the given direc-
tory instead of to the code tree. See also PYTHONPYCACHEPREFIX.

Added in version 3.8.

-X warn_default_encodingissues a EncodingWarning when the locale-specific default en-
coding is used for opening files. See also PY THONWARNDEFAULTENCODING.

Added in version 3.10.

-X no_debug_ranges disables the inclusion of the tables mapping extra location information (end
line, start column offset and end column offset) to every instruction in code objects. This is useful when
smaller code objects and pyc files are desired as well as suppressing the extra visual location indicators
when the interpreter displays tracebacks. See also PYTHONNODEBUGRANGES.

Added in version 3.11.

-X frozen_modules determines whether or not frozen modules are ignored by the import machi-
nery. A value of ,,on” means they get imported and ,,off” means they are ignored. The default is ,,on” if
this is an installed Python (the normal case). If it’s under development (running from the source tree)
then the default is ,,off”. Note that the ,,importlib_bootstrap” and ,,importlib_bootstrap_external” frozen
modules are always used, even if this flag is set to ,,off”.

Added in version 3.11.

—-X perf enables support for the Linux per £ profiler. When this option is provided, the perf profiler
will be able to report Python calls. This option is only available on some platforms and will do nothing

1.1. Command line 9

Python Setup and Usage, Wydanie 3.12.4

if is not supported on the current system. The default value is ,,off”. See also PYTHONPERFSUPPORT
and perf_profiling.

Added in version 3.12.
It also allows passing arbitrary values and retrieving them through the sys._xoptions dictionary.
Added in version 3.2.
Zmienione w wersji 3.9: Removed the -X showalloccount option.

Zmienione w wersji 3.10: Removed the -X oldparser option.

1.1.4 Options you shouldn’t use

-J
Reserved for use by Jython.

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line switches other
than -E or -I. It is customary that command-line switches override environmental variables where there is a conflict.
PYTHONHOME

Change the location of the standard Python libraries. By default, the libraries are searched in prefix/1ib/
pythonversion and exec_prefix/lib/pythonversion, where prefix and exec_prefix
are installation-dependent directories, both defaulting to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces both prefix and exec_prefix. To
specify different values for these, set PYTHONHOME to prefix:exec_prefix.
PYTHONPATH

Augment the default search path for module files. The format is the same as the shell’s PATH: one or more
directory pathnames separated by os.pathsep (e.g. colons on Unix or semicolons on Windows). Non-
existent directories are silently ignored.

In addition to normal directories, individual PYTHONPA TH entries may refer to zipfiles containing pure Python
modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.

The default search path is installation dependent, but generally begins with prefix/l1ib/
pythonversion (see PYTHONHOME above). It is always appended to PYTHONPATH.

An additional directory will be inserted in the search path in front of PYTHONPATH as described above under
Interface options. The search path can be manipulated from within a Python program as the variable sys.
path.

PYTHONSAFEPATH

If this is set to a non-empty string, don’t prepend a potentially unsafe path to sys.path: see the —P option
for details.

Added in version 3.11.

PYTHONPLATLIBDIR

If this is set to a non-empty string, it overrides the sys.platlibdir value.
Added in version 3.9.

PYTHONSTARTUP

If this is the name of a readable file, the Python commands in that file are executed before the first prompt
is displayed in interactive mode. The file is executed in the same namespace where interactive commands are
executed so that objects defined or imported in it can be used without qualification in the interactive session.

10 Rozdziat 1. Command line and environment

https://www.jython.org/

Python Setup and Usage, Wydanie 3.12.4

You can also change the prompts sys.ps1 and sys.ps2 and the hook sys.__interactivehook___
in this file.

Raises an auditing event coython . run_ st artup with the filename as the argument when called on startup.

PYTHONOPTIMIZE

If this is set to a non-empty string it is equivalent to specifying the —O option. If set to an integer, it is equivalent
to specifying —O multiple times.

PYTHONBREAKPOINT

If this is set, it names a callable using dotted-path notation. The module containing the callable will be im-
ported and then the callable will be run by the default implementation of sys.breakpointhook ()
which itself is called by built-in breakpoint (). If not set, or set to the empty string, it is equiva-
lent to the value ,,pdb.set_trace”. Setting this to the string ,,0” causes the default implementation of sys.
breakpointhook () to do nothing but return immediately.

Added in version 3.7.
PYTHONDEBUG

If this is set to a non-empty string it is equivalent to specifying the —d option. If set to an integer, it is equivalent
to specifying —d multiple times.

This environment variable requires a debug build of Python, otherwise it’s ignored.
PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the —1 option.

This variable can also be modified by Python code using os.environ to force inspect mode on program
termination.

Raises an auditing event cpython. run_stdin with no arguments.

Zmienione w wersji 3.12.5: (also 3.11.10, 3.10.15, 3.9.20, and 3.8.20) Emits audit events.
PYTHONUNBUFFERED

If this is set to a non-empty string it is equivalent to specifying the —u option.
PYTHONVERBOSE

If this is set to a non-empty string it is equivalent to specifying the —v option. If set to an integer, it is equivalent
to specifying —v multiple times.

PYTHONCASEOK
If this is set, Python ignores case in import statements. This only works on Windows and macOS.

PYTHONDONTWRITEBYTECODE

If this is set to a non-empty string, Python won’t try to write . pyc files on the import of source modules. This
is equivalent to specifying the —B option.

PYTHONPYCACHEPREFIX

If this is set, Python will write . pyc files in a mirror directory tree at this path, instead of in __pycache___
directories within the source tree. This is equivalent to specifying the —X pycache_prefix=PATH option.

Added in version 3.8.
PYTHONHASHSEED

If this variable is not set or set to random, a random value is used to seed the hashes of str and bytes objects.

If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the types
covered by the hash randomization.

Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a cluster of
python processes to share hash values.

1.2. Environment variables 11

Python Setup and Usage, Wydanie 3.12.4

The integer must be a decimal number in the range [0,4294967295]. Specifying the value 0 will disable hash
randomization.

Added in version 3.2.3.
PYTHONINTMAXSTRDIGITS

If this variable is set to an integer, it is used to configure the interpreter’s global integer string conversion length
limitation.

Added in version 3.11.

PYTHONIOENCODING

If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in the syn-
tax encodingname:errorhandler. Both the encodingname and the : errorhandler parts are
optional and have the same meaning as in str.encode ().

For stderr, the : errorhandler part is ignored; the handler will always be 'backslashreplace’.
Zmienione w wersji 3.4: The encodingname part is now optional.

Zmienione w wersji 3.6: On Windows, the encoding specified by this variable is ignored for interactive console
buffers unless PYTHONLEGACYWINDOWSSTDIO is also specified. Files and pipes redirected through the
standard streams are not affected.

PYTHONNOUSERSITE
If this is set, Python won’t add the user site-packages directoryto sys.path.

Zobacz takze

PEP 370 — Per user site-packages directory

PYTHONUSERBASE

Defines the user base directory, whichisused to compute the path of the user site-packages
directory and installation paths for python -m pip install --user.

Zobacz takze

PEP 370 — Per user site-packages directory

PYTHONEXECUTABLE
If this environment variable is set, sys.argv [0] will be set to its value instead of the value got through the
C runtime. Only works on macOS.

PYTHONWARNINGS
This is equivalent to the —/7 option. If set to a comma separated string, it is equivalent to specifying —w multiple
times, with filters later in the list taking precedence over those earlier in the list.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those
that are otherwise ignored by default):

WARNINGS=default # Warn once per call location

1 # Convert to exceptions
Warn every time
Same as PYTHONWARNINGS=always
Warn once per calling module
Warn once per Python process
#

Never warn

See warning-filter and describing-warning-filters for more details.

12 Rozdziat 1. Command line and environment

https://peps.python.org/pep-0370/
https://peps.python.org/pep-0370/

Python Setup and Usage, Wydanie 3.12.4

PYTHONFAULTHANDLER

If this environment variable is set to a non-empty string, faulthandler.enable () is called at startup:
install a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python
traceback. This is equivalent to —X faulthandler option.

Added in version 3.3.

PYTHONTRACEMALLOC

If this environment variable is set to a non-empty string, start tracing Python memory allocations using the
tracemalloc module. The value of the variable is the maximum number of frames stored in a traceback of a
trace. For example, PYTHONTRACEMALLOC=1 stores only the most recent frame. See the t racemalloc.
start () function for more information. This is equivalent to setting the —X tracemalloc option.

Added in version 3.4.

PYTHONPROFILEIMPORTTIME

If this environment variable is set to a non-empty string, Python will show how long each import takes. This is
equivalent to setting the —X importtime option.

Added in version 3.7.
PYTHONASYNCIODEBUG

If this environment variable is set to a non-empty string, enable the debug mode of the asyncio module.
Added in version 3.4.

PYTHONMALLOC
Set the Python memory allocators and/or install debug hooks.

Set the family of memory allocators used by Python:
* default: use the default memory allocators.

e malloc: use the malloc () function of the C library for all domains (PYMEM_DOMAIN_RAW,
PYMEM_DOMAIN_MEM, PYMEM_DOMAIN_OBJ).

e pymalloc: use the pymalloc allocator for PYMEM_DOMAIN_MEM and PYMEM_DOMAIN_OBJ do-
mains and use the malloc () function for the PYMEM_ DOMAIN_RAW domain.

Install debug hooks:

* debug: install debug hooks on top of the default memory allocators.

* malloc_debug: same as malloc but also install debug hooks.

* pymalloc_debug: same as pymalloc but also install debug hooks.
Added in version 3.6.
Zmienione w wersji 3.7: Added the "default" allocator.

PYTHONMALLOCSTATS
If set to a non-empty string, Python will print statistics of the pymalloc memory allocator every time a new
pymalloc object arena is created, and on shutdown.

This variable is ignored if the PYTHONMALLOC environment variable is used to force themalloc () allocator
of the C library, or if Python is configured without pymalloc support.

Zmienione w wersji 3.6: This variable can now also be used on Python compiled in release mode. It now has
no effect if set to an empty string.
PYTHONLEGACYWINDOWSFSENCODING

If set to a non-empty string, the default filesystem encoding and error handler mode will revert to their pre-3.6
values of «mbcs» and «replace», respectively. Otherwise, the new defaults «utf-8» and «surrogatepass» are
used.

This may also be enabled at runtime with sys._enablelegacywindowsfsencoding ().

1.2. Environment variables 13

Python Setup and Usage, Wydanie 3.12.4

Auvailability: Windows.
Added in version 3.6: See PEP 529 for more details.

PYTHONLEGACYWINDOWSSTDIO

If set to a non-empty string, does not use the new console reader and writer. This means that Unicode characters
will be encoded according to the active console code page, rather than using utf-8.

This variable is ignored if the standard streams are redirected (to files or pipes) rather than referring to console
buffers.

Auvailability: Windows.
Added in version 3.6.

PYTHONCOERCECLOCALE

If set to the value O, causes the main Python command line application to skip coercing the legacy ASCII-based
C and POSIX locales to a more capable UTF-8 based alternative.

If this variable is not set (or is set to a value other than 0), the .C_ALL locale override environment variable is
also not set, and the current locale reported for the LC_CTYPE category is either the default C locale, or else
the explicitly ASCII-based POSIX locale, then the Python CLI will attempt to configure the following locales
for the LC_CTYPE category in the order listed before loading the interpreter runtime:

e C.UTF-8
e C.utfs8
e UTF-8

If setting one of these locale categories succeeds, then the LC_CTYPE environment variable will also be set
accordingly in the current process environment before the Python runtime is initialized. This ensures that in
addition to being seen by both the interpreter itself and other locale-aware components running in the same
process (such as the GNU readline library), the updated setting is also seen in subprocesses (regardless
of whether or not those processes are running a Python interpreter), as well as in operations that query the
environment rather than the current C locale (such as Python’s own 1locale.getdefaultlocale ()).

Configuring one of these locales (either explicitly or via the above implicit locale coercion) automatically ena-
bles the surrogateescape error handler for sys.stdinand sys.stdout (sys.stderr continues
touse backslashreplace asit does in any other locale). This stream handling behavior can be overridden
using PYTHONIOENCODING as usual.

For debugging purposes, setting PY THONCOERCECLOCALE=warn will cause Python to emit warning mes-
sages on stderr if either the locale coercion activates, or else if a locale that would have triggered coercion
is still active when the Python runtime is initialized.

Also note that even when locale coercion is disabled, or when it fails to find a suitable target locale,
PYTHONUTEF'8 will still activate by default in legacy ASCII-based locales. Both features must be disabled
in order to force the interpreter to use ASCII instead of UTF -8 for system interfaces.

Auvailability: Unix.
Added in version 3.7: See PEP 538 for more details.

PYTHONDEVMODE

If this environment variable is set to a non-empty string, enable Python Development Mode, introducing addi-
tional runtime checks that are too expensive to be enabled by default. This is equivalent to setting the —X dev
option.

Added in version 3.7.

PYTHONUTF8

If set to 1, enable the Python UTF-8 Mode.
If set to 0, disable the Python UTF-8 Mode.

Setting any other non-empty string causes an error during interpreter initialisation.

14

Rozdziat 1. Command line and environment

https://peps.python.org/pep-0529/
https://peps.python.org/pep-0538/

Python Setup and Usage, Wydanie 3.12.4

Added in version 3.7.

PYTHONWARNDEFAULTENCODING

If this environment variable is set to a non-empty string, issue a EncodingWarning when the locale-specific
default encoding is used.

See i0-encoding-warning for details.
Added in version 3.10.

PYTHONNODEBUGRANGES

If this variable is set, it disables the inclusion of the tables mapping extra location information (end line, start
column offset and end column offset) to every instruction in code objects. This is useful when smaller code
objects and pyc files are desired as well as suppressing the extra visual location indicators when the interpreter
displays tracebacks.

Added in version 3.11.

PYTHONPERF SUPPORT

If this variable is set to a nonzero value, it enables support for the Linux per £ profiler so Python calls can be
detected by it.

If set to 0, disable Linux perf profiler support.
See also the —~X perf command-line option and perf_profiling.

Added in version 3.12.

1.2.1 Debug-mode variables

PYTHONDUMPREF'S
If set, Python will dump objects and reference counts still alive after shutting down the interpreter.
Need Python configured with the ——with-trace-refs build option.

PYTHONDUMPREF SFILE=FILENAME

If set, Python will dump objects and reference counts still alive after shutting down the interpreter into a file
called FILENAME.

Need Python configured with the ——with-trace—-refs build option.
Added in version 3.11.

1.2. Environment variables 15

Python Setup and Usage, Wydanie 3.12.4

16 Rozdziat 1. Command line and environment

ROZDZIAL 2

Using Python on Unix platforms

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there
are certain features you might want to use that are not available on your distro’s package. You can easily compile the
latest version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages
for your own distro. Have a look at the following links:

Zobacz takze

https://www.debian.org/doc/manuals/maint-guide/first.en.html
for Debian users

https://en.opensuse.org/Portal:Packaging
for OpenSuse users

https://docs.fedoraproject.org/en-US/package-maintainers/Packaging_ Tutorial_GNU_Hello/
for Fedora users

https://slackbook.org/html/package-management-making-packages.html
for Slackware users

17

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs.fedoraproject.org/en-US/package-maintainers/Packaging_Tutorial_GNU_Hello/
https://slackbook.org/html/package-management-making-packages.html

Python Setup and Usage, Wydanie 3.12.4

2.1.2 On FreeBSD and OpenBSD

* FreeBSD users, to add the package use:

[pkg install python3 }

e OpenBSD users, to add the package use:

pkg_add —-r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your.
—architecture here>/python-<version>.tgz

For example 1386 users get the 2.5.1 version of Python using:

[pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/1386/python-2.5.1p2.tgz }

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh clone. (If you want to contribute patches, you will need a clone.)

The build process consists of the usual commands:

./configure
make
make install

Configuration options and caveats for specific Unix platforms are extensively documented in the README.rst file in
the root of the Python source tree.

Ostrzezenie

make install can overwrite or masquerade the python3 binary. make altinstall is therefore re-
commended instead of make install since it only installs exec_prefix/bin/pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix and exec_prefix are
installation-dependent and should be interpreted as for GNU software; they may be the same.

For example, on most Linux systems, the default for both is /usr.

File/directory Znaczenie

exec_prefix/bin/python3 Recommended location of the interpreter.
prefix/lib/pythonversion, Recommended locations of the directories containing the standard
exec_prefix/lib/ modules.

pythonversion

prefix/include/pythonversion, Recommended locations of the directories containing the include
exec_prefix/include/ files needed for developing Python extensions and embedding the
pythonversion interpreter.

18 Rozdziat 2. Using Python on Unix platforms

https://www.python.org/downloads/source/
https://devguide.python.org/setup/#get-the-source-code
https://github.com/python/cpython/tree/3.12/README.rst

Python Setup and Usage, Wydanie 3.12.4

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

[$ chmod +x script J

and put an appropriate Shebang line at the top of the script. A good choice is usually

[#J/usr/bin/env python3 }

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env command,
so you may need to hardcode /usr/bin/python3 as the interpreter path.

To use shell commands in your Python scripts, look at the subprocess module.

2.5 Custom OpenSSL

1. To use your vendor’s OpenSSL configuration and system trust store, locate the directory with openssl.
cnf file or symlink in /et c. On most distribution the file is either in /etc/ssl or /etc/pki/tls. The
directory should also contain a cert . pem file and/or a cert s directory.

$ find /etc/ —name openssl.cnf —-printf "%h\n"
/etc/ssl

2. Download, build, and install OpenSSL. Make sure you use install_sw and not install. The
install_sw target does not override openssl.cnf.

curl -O https://www.openssl.org/source/openssl-VERSION.tar.gz
tar xzf openssl-VERSION
pushd openssl-VERSION
./config \
-—prefix=/usr/local/custom-openssl \
——libdir=1ib \
—-openssldir=/etc/ssl
make -jl1 depend
make -j8

v » W »n

make install_sw
popd

. J

v v v

3. Build Python with custom OpenSSL (see the configure --with-openssl and
--with-openssl-rpath options)

$ pushd python-3.x.x

$./configure -C \
——with-openssl=/usr/local/custom-openssl \
——with-openssl-rpath=auto \
——prefix=/usr/local/python-3.x.x

$ make -38

$ make altinstall

Informacja

Patch releases of OpenSSL have a backwards compatible ABI. You don’t need to recompile Python to update
OpenSSL. It’s sufficient to replace the custom OpenSSL installation with a newer version.

2.4. Miscellaneous 19

Python Setup and Usage, Wydanie 3.12.4

20

Rozdziat 2. Using Python on Unix platforms

ROZDZIAL 3

Configure Python

3.1 Build Requirements

Features required to build CPython:
e A C11 compiler. Optional C11 features are not required.
* Support for IEEE 754 floating-point numbers and floating-point Not-a-Number (NaN).
* Support for threads.
e OpenSSL 1.1.1 or newer for the ss1 and hashlib modules.
¢ On Windows, Microsoft Visual Studio 2017 or later is required.
Zmienione w wersji 3.5: On Windows, Visual Studio 2015 or later is required.

Zmienione w wersji 3.6: Selected C99 features are now required, like <stdint .h>and static inline func-
tions.

Zmienione w wersji 3.7: Thread support and OpenSSL 1.0.2 are now required.
Zmienione w wersji 3.10: OpenSSL 1.1.1 is now required.

Zmienione w wersji 3.11: C11 compiler, IEEE 754 and NaN support are now required. On Windows, Visual Studio
2017 or later is required.

See also PEP 7 ,,Style Guide for C Code” and PEP 11 ,,CPython platform support”.

3.2 Generated files

To reduce build dependencies, Python source code contains multiple generated files. Commands to regenerate all
generated files:

make regen-all

make regen-stdlib-module—names
make regen-limited-abi

make regen-configure

The Makefile.pre. in file documents generated files, their inputs, and tools used to regenerate them. Search for
regen—* make targets.

21

https://en.cppreference.com/w/c/11
https://en.wikipedia.org/wiki/C11_(C_standard_revision)#Optional_features
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/NaN#Floating_point
https://peps.python.org/pep-0007/
https://peps.python.org/pep-0011/

Python Setup and Usage, Wydanie 3.12.4

3.2.1 configure script

The make regen-configure command regenerates the aclocal.m4 file and the configure script using
the Tools/build/regen-configure. sh shell script which uses an Ubuntu container to get the same tools
versions and have a reproducible output.

The container is optional, the following command can be run locally:

[autoreconf —-ivf -Werror }

The generated files can change depending on the exact aut oconf-archive, aclocal and pkg-config ver-
sions.

3.3 Configure Options

Listall . /configure script options using:

[./configure —--help }

See also the Misc/SpecialBuilds. txt in the Python source distribution.

3.3.1 General Options

—-—enable-loadable-sqglite—extensions
Support loadable extensions in the _sglite extension module (default is no) of the sglite3 module.

See the sglite3.Connection.enable_load_extension () method of the sgqlite3 module.

Added in version 3.6.
——disable-ipv6

Disable IPv6 support (enabled by default if supported), see the socket module.
——enable-big-digits=[15]|30]

Define the size in bits of Python int digits: 15 or 30 bits.

By default, the digit size is 30.

Define the PYLONG_BITS_IN_DIGIT to 15 or 30.

See sys.int_info.bits_per_digit.

——with-suffix=SUFFIX
Set the Python executable suffix to SUFFIX.

The default suffix is . exe on Windows and macOS (python . exe executable), . js on Emscripten node, .
html on Emscripten browser, . wa smon WASI, and an empty string on other platforms (pyt hon executable).

Zmienione w wersji 3.11: The default suffix on WASM platform is one of . js, .html or .wasm.

——with-tzpath=<list of absolute paths separated by pathsep>

Select the default time zone search path for zoneinfo.TZPATH. See the Compile-time configuration of the
zoneinfo module.

Default: /usr/share/zoneinfo:/usr/lib/zoneinfo:/usr/share/lib/zoneinfo:/
etc/zoneinfo.

See os.pathsep path separator.

Added in version 3.9.

22 Rozdziat 3. Configure Python

Python Setup and Usage, Wydanie 3.12.4

——without-decimal-contextvar

Build the _decimal extension module using a thread-local context rather than a coroutine-local context
(default), see the decimal module.

See decimal.HAVE_CONTEXTVAR and the contextvars module.
Added in version 3.9.

——with-dbmliborder=<list of backend names>
Opverride order to check db backends for the dbm module

A valid value is a colon (:) separated string with the backend names:
e ndbm;
e gdbm;
e bdb.

——without-c—-locale-coercion
Disable C locale coercion to a UTF-8 based locale (enabled by default).

Don’t define the PY_COERCE_C_LOCALE macro.
See PYTHONCOERCECLOCALE and the PEP 538.

——without-freelists

Disable all freelists except the empty tuple singleton.
Added in version 3.11.

—--with-platlibdir=DIRNAME
Python library directory name (default is 1ib).

Fedora and SuSE use 1ib64 on 64-bit platforms.
See sys.platlibdir.
Added in version 3.9.
—--with-wheel-pkg-dir=PATH
Directory of wheel packages used by the ensurepip module (none by default).

Some Linux distribution packaging policies recommend against bundling dependencies. For example, Fe-
dora installs wheel packages in the /usr/share/python-wheels/ directory and don’t install the
ensurepip._bundled package.

Added in version 3.10.

—--with-pkg-config=[check|yes|no]
Whether configure should use pkg—con£fig to detect build dependencies.

¢ check (default): pkg—config is optional

* yes: pkg—config is mandatory

¢ no: configure does not use pkg—config even when present
Added in version 3.11.

——enable-pystats
Turn on internal statistics gathering.

The statistics will be dumped to a arbitrary (probably unique) file in /tmp/py_stats/, or C: \temp\
py_stats\ on Windows. If that directory does not exist, results will be printed on stdout.

Use Tools/scripts/summarize_stats.py to read the stats.

Added in version 3.11.

3.3. Configure Options 23

https://peps.python.org/pep-0538/

Python Setup and Usage, Wydanie 3.12.4

3.3.2 WebAssembly Options

—--with-emscripten-target=[browser|node]

Set build flavor for wasm32-emscripten.
¢ browser (default): preload minimal stdlib, default MEMFS.
* node: NODERAWES and pthread support.

Added in version 3.11.

——enable-wasm—-dynamic-linking

Turn on dynamic linking support for WASM.

Dynamic linking enables d1open. File size of the executable increases due to limited dead code elimination
and additional features.

Added in version 3.11.

——enable-wasm—-pthreads

Turn on pthreads support for WASM.
Added in version 3.11.

3.3.3 Install Options

——prefix=PREFIX
Install architecture-independent files in PREFIX. On Unix, it defaults to /usr/local.

This value can be retrieved at runtime using sys .prefix.
As an example, one can use ——prefix="$HOME/.local/" to install a Python in its home directory.

——exec-prefix=EPREFIX
Install architecture-dependent files in EPREFIX, defaults to ——prefix.

This value can be retrieved at runtime using sys .exec_prefix.

——disable-test—-modules

Don’t build nor install test modules, like the test package or the _testcapi extension module (built and
installed by default).

Added in version 3.10.

——with-ensurepip=[upgrade|install|no]

Select the ensurepip command run on Python installation:
e upgrade (default): run python -m ensurepip --altinstall --upgrade command.
e install:run python -m ensurepip —-altinstall command;
* no: don’t run ensurepip;

Added in version 3.6.

24 Rozdziat 3. Configure Python

Python Setup and Usage, Wydanie 3.12.4

3.3.4 Performance options

Configuring Python using ——enable-optimizations —--with-1to (PGO +LTO)is recommended for best
performance. The experimental -—enable-bolt flag can also be used to improve performance.

——enable-optimizations

Enable Profile Guided Optimization (PGO) using PROFILE_TASK (disabled by default).

The C compiler Clang requires 11 vm—-profdata program for PGO. On macOS, GCC also requires it: GCC
is just an alias to Clang on macOS.

Disable also semantic interposition in libpython if —-enable-shared and GCC is used: add
—-fno-semantic-interposition to the compiler and linker flags.

Informacja

During the build, you may encounter compiler warnings about profile data not being available for
some source files. These warnings are harmless, as only a subset of the code is exercised during
profile data acquisition. To disable these warnings on Clang, manually suppress them by adding
-Wno-profile-instr-unprofiledto CFLAGS.

Added in version 3.6.
Zmienione w wersji 3.10: Use —~fno-semantic-interposition on GCC.
PROFILE_TASK
Environment variable used in the Makefile: Python command line arguments for the PGO generation task.
Default: -m test --pgo —-timeout=$ (TESTTIMEOUT).
Added in version 3.8.
——with-1lto=[full|thin|no|yes]
Enable Link Time Optimization (LTO) in any build (disabled by default).

The C compiler Clang requires 1 1vm—ar for LTO (ar on macOS), as well as an LTO-aware linker (1d . gold
or 11d).

Added in version 3.6.
Added in version 3.11: To use ThinLTO feature, use ——with-1to=thin on Clang.

Zmienione w wersji 3.12: Use ThinLTO as the default optimization policy on Clang if the compiler accepts
the flag.

——enable-bolt
Enable usage of the BOLT post-link binary optimizer (disabled by default).

BOLT is part of the LLVM project but is not always included in their binary distributions. This flag requires
that 11vm-bolt and merge—-fdata are available.

BOLT is still a fairly new project so this flag should be considered experimental for now. Because this tool
operates on machine code its success is dependent on a combination of the build environment + the other
optimization configure args + the CPU architecture, and not all combinations are supported. BOLT versions
before LLVM 16 are known to crash BOLT under some scenarios. Use of LLVM 16 or newer for BOLT
optimization is strongly encouraged.

The BOLT_INSTRUMENT_FLAGS and BOLT_APPLY_FLAGS configure variables can be defined to
override the default set of arguments for 11vm—bolt to instrument and apply BOLT data to binaries, respec-
tively.

Added in version 3.12.

3.3. Configure Options 25

https://github.com/llvm/llvm-project/tree/main/bolt

Python Setup and Usage, Wydanie 3.12.4

——with—-computed—-gotos

Enable computed gotos in evaluation loop (enabled by default on supported compilers).

——without-pymalloc

Disable the specialized Python memory allocator pymalloc (enabled by default).

See also PYTHONMALLOC environment variable.

—--without-doc-strings

Disable static documentation strings to reduce the memory footprint (enabled by default). Documentation
strings defined in Python are not affected.

Don’t define the WITH_DOC_STRINGS macro.

See the PyDoc_ STRVAR () macro.

——enable-profiling

Enable C-level code profiling with gprof (disabled by default).

——with-strict-overflow

Add -fstrict-overflow to the C compiler flags (by default we add —fno-strict-overflow in-
stead).

3.3.5 Python Debug Build

A debug build is Python built with the ——with-pydebug configure option.
Effects of a debug build:

Display all warnings by default: the list of default warning filters is empty in the warnings module.
Add dto sys.abiflags.

Add sys.gettotalrefcount () function.

Add -X showrefcount command line option.

Add —d command line option and PYTHONDEBUG environment variable to debug the parser.

Add support for the __11trace__ variable: enable low-level tracing in the bytecode evaluation loop if the
variable is defined.

Install debug hooks on memory allocators to detect buffer overflow and other memory errors.
Define Py_DEBUG and Py_REF_DEBUG macros.

Add runtime checks: code surrounded by #ifdef Py DEBUG and #endif. Enable assert (.
.) and _PyObject_ASSERT(...) assertions: don’t set the NDEBUG macro (see also the
——with-assertions configure option). Main runtime checks:

— Add sanity checks on the function arguments.

— Unicode and int objects are created with their memory filled with a pattern to detect usage of uninitialized
objects.

— Ensure that functions which can clear or replace the current exception are not called with an exception
raised.

— Check that deallocator functions don’t change the current exception.
— The garbage collector (gc.collect () function) runs some basic checks on objects consistency.

— The Py_SAFE_DOWNCAST () macro checks for integer underflow and overflow when downcasting
from wide types to narrow types.

26

Rozdziat 3. Configure Python

Python Setup and Usage, Wydanie 3.12.4

See also the Python Development Mode and the ——with-trace—refs configure option.

Zmienione w wersji 3.8: Release builds and debug builds are now ABI compatible: defining the Py_DEBUG macro
no longer implies the Py_ TRACE_REF'S macro (see the ——with-trace-refs option), which introduces the
only ABI incompatibility.

3.3.6 Debug options

——with-pydebug
Build Python in debug mode: define the Py_DEBUG macro (disabled by default).

--with-trace-refs
Enable tracing references for debugging purpose (disabled by default).

Effects:
¢ Define the Py_ TRACE_REF'S macro.
¢ Add sys.getobjects () function.
* Add PYTHONDUMPREF'S environment variable.

This build is not ABI compatible with release build (default build) or debug build (Py_DEBUG and
Py_REF_DEBUG macros).

Added in version 3.8.

—--with—-assertions

Build with C assertions enabled (default is no): assert (...); and _PyObject_ASSERT(...);.
If set, the NDEBUG macro is not defined in the OP T compiler variable.
See also the ——with-pydebug option (debug build) which also enables assertions.
Added in version 3.6.
—-with-valgrind
Enable Valgrind support (default is no).

—-with-dtrace
Enable DTrace support (default is no).

See Instrumenting CPython with DTrace and SystemTap.
Added in version 3.6.
—--with-address—-sanitizer
Enable AddressSanitizer memory error detector, asan (default is no).
Added in version 3.6.
—-with-memory-sanitizer
Enable MemorySanitizer allocation error detector, msan (default is no).
Added in version 3.6.
—--with-undefined-behavior-sanitizer
Enable UndefinedBehaviorSanitizer undefined behaviour detector, ubsan (default is no).

Added in version 3.6.

3.3. Configure Options 27

Python Setup and Usage, Wydanie 3.12.4

3.3.7 Linker options

——enable-shared
Enable building a shared Python library: 1 ibpython (default is no).

——without-static-libpython
Do not build 1 ibpythonMAJOR.MINOR. a and do not install python . o (built and enabled by default).

Added in version 3.10.

3.3.8 Libraries options

——with-1libs='1ibl ...'

Link against additional libraries (default is no).
——with-system—-expat

Build the pyexpat module using an installed expat library (default is no).
--with-system-libmpdec

Build the _decimal extension module using an installed mpdec library, see the decimal module (default
iS no).

Added in version 3.3.

——with-readline=editline

Use editline library for backend of the readline module.
Define the WITH_EDITLINE macro.
Added in version 3.10.

——without-readline
Don’t build the readline module (built by default).

Don’t define the HAVE_LIBREADLINE macro.
Added in version 3.10.

—--with-1ibm=STRING
Override 11ibm math library to STRING (default is system-dependent).

—--with-1ibc=STRING

Override 1ibc C library to STRING (default is system-dependent).
—-with-openssl=DIR

Root of the OpenSSL directory.

Added in version 3.7.

——with-openssl-rpath=[no|auto|DIR]
Set runtime library directory (rpath) for OpenSSL libraries:

¢ no (default): don’t set rpath;
e auto: auto-detect rpath from ——with-openssl and pkg-config;
e DIR: set an explicit rpath.

Added in version 3.10.

28 Rozdziat 3. Configure Python

Python Setup and Usage, Wydanie 3.12.4

3.3.9 Security Options

——with-hash—-algorithm=[fnv|siphashl3|siphash24]
Select hash algorithm for use in Python/pyhash.c:

¢ siphash13 (default);
* siphash24;
e fnv.
Added in version 3.4.
Added in version 3.11: siphash13 is added and it is the new default.
——with-builtin-hashlib-hashes=md5, shal, sha256, shab12,sha3,blake?2

Built-in hash modules:
e md>5;
e shal;
* sha256;
e shab512;
e sha3 (with shake);
* blake2.
Added in version 3.9.

——with-ssl-default-suites=[python|openssl|STRING]
Override the OpenSSL default cipher suites string:

* python (default): use Python’s preferred selection;
e openssl:leave OpenSSL’s defaults untouched;
* STRING: use a custom string

See the ss1 module.

Added in version 3.7.

Zmienione w wersji 3.10: The settings python and STRING also set TLS 1.2 as minimum protocol version.

3.3.10 macOS Options

See Mac/README . rst.
——enable-universalsdk

——enable—universalsdk=SDKDIR

Create a universal binary build. SDKDIR specifies which macOS SDK should be used to perform the build
(default is no).

——enable-framework

——enable—-framework=INSTALLDIR

Create a Python.framework rather than a traditional Unix install. Optional INSTALLDIR specifies the installa-
tion path (default is no).

——with-universal—-archs=ARCH

Specify the kind of universal binary that should be created. This option is only valid when
——enable-universalsdk is set.

Options:

3.3. Configure Options 29

Python Setup and Usage, Wydanie 3.12.4

e universal?2;
* 32-bit;

e 64-bit;

s 3-way;

e intel;

e intel-32;

e intel-64;

e all.

——with-framework—name=FRAMEWORK

Specify the name for the python framework on macOS only valid when ——enable-framework is set
(default: Python).

3.3.11 Cross Compiling Options

Cross compiling, also known as cross building, can be used to build Python for another CPU architecture or platform.
Cross compiling requires a Python interpreter for the build platform. The version of the build Python must match the
version of the cross compiled host Python.

——build=BUILD
configure for building on BUILD, usually guessed by config.guess.

——host=HOST

cross-compile to build programs to run on HOST (target platform)

—-with-build-python=path/to/python
path to build python binary for cross compiling

Added in version 3.11.
CONFIG_SITE=file

An environment variable that points to a file with configure overrides.

Example config.site file:

config.site—aarché64
ac_cv_buggy_getaddrinfo=no
ac_cv_file__dev_ptmx=yes
ac_cv_file_ _dev_ptc=no

Cross compiling example:

CONFIG_SITE=config.site—aarch64 ../configure \
——build=x86_64-pc-linux—gnu \
——host=aarch64-unknown-linux-gnu \
—-with-build-python=../x86_64/python

30 Rozdziat 3. Configure Python

Python Setup and Usage, Wydanie 3.12.4

3.4 Python Build System

3.4.1 Main files of the build system

e configure.ac=>configure;
* Makefile.pre.in=>Makefile (created by configure);
e pyconfig.h (created by configure);

* Modules/Setup: C extensions built by the Makefile using Module /makesetup shell script;

3.4.2 Main build steps

¢ Cfiles (. c) are built as object files (. 0).
e Astatic libpython library (. a) is created from objects files.
e python.o and the static 1 ibpython library are linked into the final python program.

» C extensions are built by the Makefile (see Modules/Setup).

3.4.3 Main Makefile targets

* make: Build Python with the standard library.
* make platform::build the python program, but don’t build the standard library extension modules.

* make profile-opt: build Python using Profile Guided Optimization (PGO). You can use the configure
-—enable-optimizations option to make this the default target of the make command (make all
or just make).

* make buildbottest:Build Python and run the Python test suite, the same way than buildbots test Python.
Set TESTTIMEOUT variable (in seconds) to change the test timeout (1200 by default: 20 minutes).

e make install:Build and install Python.

* make regen-all: Regenerate (almost) all generated files; make regen-stdlib-module-names
and autoconf must be run separately for the remaining generated files.

e make clean:Remove built files.

* make distclean: Same than make clean, but remove also files created by the configure script.

3.4.4 C extensions

Some C extensions are built as built-in modules, like the sys module. They are built with the
Py_BUILD_CORE_BUILTIN macro defined. Built-in modules haveno ___file_ attribute:

>>> import sys

>>> sys
<module 'sys' (built-in)>
>>> sys._ _file
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'sys' has no attribute '_ file_ '

Other C extensions are built as dynamic libraries, like the _asyncio module. They are built with the
Py_BUILD_CORE_MODULE macro defined. Example on Linux x86-64:

3.4. Python Build System 31

Python Setup and Usage, Wydanie 3.12.4

>>> import _asyncio

>>> _asyncio

<module '_asyncio' from '/usr/lib64/python3.9/1lib-dynload/_asyncio.cpython-39-x86_
—~64-1linux—-gnu.so'>

>>> _asyncio._ file
'/usr/1ib64/python3.9/1ib-dynload/_asyncio.cpython-39-x86_64-1inux—-gnu.so'

Modules/Setup is used to generate Makefile targets to build C extensions. At the beginning of the files, C exten-
sions are built as built-in modules. Extensions defined after the * shared* marker are built as dynamic libraries.

The PyAPI_FUNC (), PyAPI_DATA () and PyMODINIT_FUNC macros of Include/exports.h are defi-
ned differently depending if the Py_BUILD_CORE_MODULE macro is defined:

e Use Py_EXPORTED_SYMBOL if the Py_BUILD_CORE_MODULE is defined
e Use Py_IMPORTED_SYMBOL otherwise.

If the Py_BUILD_CORE_BUILTIN macro is used by mistake on a C extension built as a shared library, its
PyInit_xxx () function is not exported, causing an ImportError on import.

3.5 Compiler and linker flags

Options set by the . /configure script and environment variables and used by Makefile.

3.5.1 Preprocessor flags

CONFIGURE_CPPFLAGS
Value of CPPFLAGS variable passed to the . /configure script.
Added in version 3.6.

CPPFLAGS

(Objective) C/C++ preprocessor flags, e.g. ~I include_dir if you have headers in a nonstandard directory
include_dir.

Both CPPFLAGS and LDFLAGS need to contain the shell’s value to be able to build extension modules using
the directories specified in the environment variables.

BASECPPFLAGS
Added in version 3.4.
PY_CPPFLAGS
Extra preprocessor flags added for building the interpreter object files.

Default: $ (BASECPPFLAGS) -I. —-IS$(srcdir)/Include $ (CONFIGURE_CPPFLAGS)
$ (CPPFLAGS).

Added in version 3.2.

32 Rozdziat 3. Configure Python

Python Setup and Usage, Wydanie 3.12.4

3.5.2 Compiler flags

CcC
C compiler command.
Example: gcc —-pthread.
CXX
C++ compiler command.
Example: g++ -pthread.
CFLAGS

C compiler flags.

CFLAGS_NODIST

CFLAGS_NODIST is used for building the interpreter and stdlib C extensions. Use it when a compiler flag
should not be part of CFLAGS once Python is installed (gh-65320).

In particular, CFLAGS should not contain:

* the compiler flag —I (for setting the search path for include files). The —I flags are processed from left
to right, and any flags in CFLAGS would take precedence over user- and package-supplied —T flags.

* hardening flags such as —-Werror because distributions cannot control whether packages installed by
users conform to such heightened standards.

Added in version 3.5.
COMPILEALL_OPTS

Options passed to the compileall command line when building PYC files in make install. Default:
-3j0.
Added in version 3.12.

EXTRA_CFLAGS

Extra C compiler flags.

CONFIGURE_CFLAGS
Value of CFLAGS variable passed to the . /configure script.
Added in version 3.2.

CONFIGURE_CFLAGS_NODIST
Value of CFLAGS_NODIST variable passed to the . /configure script.
Added in version 3.5.

BASECFLAGS
Base compiler flags.

OPT
Optimization flags.

CFLAGS_ALIASING
Strict or non-strict aliasing flags used to compile Python/dtoa.c.
Added in version 3.7.

CCSHARED
Compiler flags used to build a shared library.

For example, —~fPIC is used on Linux and on BSD.

3.5. Compiler and linker flags 33

https://github.com/python/cpython/issues/65320

Python Setup and Usage, Wydanie 3.12.4

CFLAGSFORSHARED
Extra C flags added for building the interpreter object files.

Default: $ (CCSHARED) when ——enable-shared is used, or an empty string otherwise.

PY_CFLAGS

Default: $ (BASECFLAGS) $(OPT) $(CONFIGURE_CFLAGS) $ (CFLAGS)
$ (EXTRA_CFLAGS).

PY_CFLAGS_NODIST

Default: $ (CONFIGURE_CFLAGS_NODIST) $(CFLAGS_NODIST) -IS$S(srcdir)/Include/
internal.

Added in version 3.5.

PY_ STDMODULE_CFLAGS
C flags used for building the interpreter object files.

Default: $(PY_CFLAGS) $(PY_CFLAGS_NODIST) $ (PY_CPPFLAGS)
$ (CFLAGSFORSHARED) .

Added in version 3.7.

PY_CORE_CFLAGS
Default: $ (PY_STDMODULE_CFLAGS) -DPy_BUILD_CORE.

Added in version 3.2.

PY_ BUILTIN_MODULE_CFLAGS

Compiler flags to build a standard library extension module as a built-in module, like the posix module.
Default: $ (PY_STDMODULE_CFLAGS) -DPy_BUILD_CORE_BUILTIN.
Added in version 3.8.

PURIFY
Purify command. Purify is a memory debugger program.

Default: empty string (not used).

3.5.3 Linker flags

LINKCC
Linker command used to build programs like python and _testembed.

Default: $ (PURIFY) $(CC).

CONFIGURE_LDFLAGS
Value of LDFLAGS variable passed to the . /configure script.

Avoid assigning CFLAGS, LDFLAGS, etc. so users can use them on the command line to append to these
values without stomping the pre-set values.

Added in version 3.2.

LDFLAGS_NODIST

LDFLAGS_NODIST is used in the same manner as CEFLAGS_NODIST. Use it when a linker flag should not
be part of LDFLAGS once Python is installed (gh-65320).

In particular, ZLDFLAGS should not contain:

* the compiler flag —L (for setting the search path for libraries). The —L flags are processed from left to
right, and any flags in LDFLAGS would take precedence over user- and package-supplied —L flags.

34 Rozdziat 3. Configure Python

https://github.com/python/cpython/issues/65320

Python Setup and Usage, Wydanie 3.12.4

CONFIGURE_LDFLAGS_NODIST
Value of LDFLAGS_NODIST variable passed to the . /configure script.

Added in version 3.8.

LDFLAGS

Linker flags, e.g. ~-L11ib_dir if you have libraries in a nonstandard directory /ib_dir.

Both CPPFLAGS and LDFLAGS need to contain the shell’s value to be able to build extension modules using
the directories specified in the environment variables.

LIBS

Linker flags to pass libraries to the linker when linking the Python executable.
Example: -1rt.

LDSHARED
Command to build a shared library.

Default: RLDSHARED@ $ (PY_LDFLAGS).

BLDSHARED
Command to build 1ibpython shared library.

Default: @BLDSHARED@ $ (PY_CORE_LDFLAGS).

PY_LDFLAGS
Default: $ (CONFIGURE_LDFLAGS) $ (LDFLAGS).

PY_LDFLAGS_NODIST
Default: $ (CONFIGURE_LDFLAGS_NODIST) $ (LDFLAGS_NODIST).

Added in version 3.8.

PY_CORE_LDFLAGS
Linker flags used for building the interpreter object files.

Added in version 3.8.

3.5. Compiler and linker flags 35

Python Setup and Usage, Wydanie 3.12.4

36

Rozdziat 3. Configure Python

rozDzIAL 4

Using Python on Windows

This document aims to give an overview of Windows-specific behaviour you should know about when using Python
on Microsoft Windows.

Unlike most Unix systems and services, Windows does not include a system supported installation of Python. To
make Python available, the CPython team has compiled Windows installers with every release for many years. These
installers are primarily intended to add a per-user installation of Python, with the core interpreter and library being
used by a single user. The installer is also able to install for all users of a single machine, and a separate ZIP file is
available for application-local distributions.

As specified in PEP 11, a Python release only supports a Windows platform while Microsoft considers the platform
under extended support. This means that Python 3.12 supports Windows 8.1 and newer. If you require Windows 7
support, please install Python 3.8.

There are a number of different installers available for Windows, each with certain benefits and downsides.
The full installer contains all components and is the best option for developers using Python for any kind of project.

The Microsoft Store package is a simple installation of Python that is suitable for running scripts and packages, and
using IDLE or other development environments. It requires Windows 10 and above, but can be safely installed without
corrupting other programs. It also provides many convenient commands for launching Python and its tools.

The nuget.org packages are lightweight installations intended for continuous integration systems. It can be used to
build Python packages or run scripts, but is not updateable and has no user interface tools.

The embeddable package is a minimal package of Python suitable for embedding into a larger application.

4.1 The full installer

4.1.1 Installation steps

Four Python 3.12 installers are available for download - two each for the 32-bit and 64-bit versions of the interpreter.
The web installer is a small initial download, and it will automatically download the required components as neces-
sary. The offline installer includes the components necessary for a default installation and only requires an internet
connection for optional features. See Installing Without Downloading for other ways to avoid downloading during
installation.

After starting the installer, one of two options may be selected:

37

https://www.python.org/downloads/
https://peps.python.org/pep-0011/

Python Setup and Usage, Wydanie 3.12.4

&5 Python 2.8.0 (64-bit) Setup — 4

pgthfqn

Wiﬂd()WS [] Add Python 3.8 to PATH Trred

Install Python 3.8.0 (64-bit)

Select Install Mow to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
Ch\Users' ol AppData\Local\Programs\Python'\Python38

Includes IDLE, pip and decumentaticn
Creates shortcuts and file associations

— Customize installation
Choose location and features

Install launcher for all users (recommended)

If you select ,,Install Now”:

You will not need to be an administrator (unless a system update for the C Runtime Library is required or you
install the Python Launcher for Windows for all users)

Python will be installed into your user directory

The Python Launcher for Windows will be installed according to the option at the bottom of the first page
The standard library, test suite, launcher and pip will be installed

If selected, the install directory will be added to your PATH

Shortcuts will only be visible for the current user

Selecting ,,Customize installation” will allow you to select the features to install, the installation location and other
options or post-install actions. To install debugging symbols or binaries, you will need to use this option.

To perform an all-users installation, you should select ,,Customize installation”. In this case:

You may be required to provide administrative credentials or approval

Python will be installed into the Program Files directory

The Python Launcher for Windows will be installed into the Windows directory
Optional features may be selected during installation

The standard library can be pre-compiled to bytecode

If selected, the install directory will be added to the system PATH

Shortcuts are available for all users

38

Rozdziat 4. Using Python on Windows

Python Setup and Usage, Wydanie 3.12.4

4.1.2 Removing the MAX_PATH Limitation

Windows historically has limited path lengths to 260 characters. This meant that paths longer than this would not
resolve and errors would result.

In the latest versions of Windows, this limitation can be expanded to approximately 32,000 characters. Your admini-
strator will need to activate the ,Enable Win32 long paths” group policy, or set LongPathsEnabled to 1 in the
registry key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystemn.

This allows the open () function, the os module and most other path functionality to accept and return paths longer
than 260 characters.

After changing the above option, no further configuration is required.

Zmienione w wersji 3.6: Support for long paths was enabled in Python.

4.1.3 Instalacja bez graficznego interfejsu uzytkownika

All of the options available in the installer Ul can also be specified from the command line, allowing scripted instal-
lers to replicate an installation on many machines without user interaction. These options may also be set without
suppressing the Ul in order to change some of the defaults.

The following options (found by executing the installer with / ?) can be passed into the installer:

Nazwa Opis

/passive to display progress without requiring user interaction
/quiet to install/uninstall without displaying any UI

/simple to prevent user customization

/uninstall to remove Python (without confirmation)

Mayout [directory] to pre-download all components

/log [filename] to specify log files location

All other options are passed as name=value, where the value is usually 0 to disable a feature, 1 to enable a feature,
or a path. The full list of available options is shown below.

4.1. The full installer 39

Python Setup and Usage, Wydanie 3.12.4

cherOnly

will override most other options.

Nazwa Opis Default
Instal- Perform a system-wide installa- 0
1ANIU- tion.
sers
Target- The installation directory Selected based on InstallAllUsers
Dir
Defaul- The default installation directory $ProgramFiles$%$\Python X.Y or
tAllU- for all-user installs $ProgramFiles (x86)%$\Python X.Y
sersTar-
getDir
Defaul- The default install directory for $LocalAppData%$\Programs\Python\PythonXY or
tJustFor- just-for-me installs %$LocalAppData%\Programs\Python\PythonXY-32
MeTar- or %$LocalAppData%$\Programs\Python\
getDir PythonXY-64
Default- The default custom install direc- (empty)
Custom- tory displayed in the UI
Target-
Dir
Associa- Create file associations if the 1
teFiles launcher is also installed.
Compi- Compile all . py filesto .pyc. 0
leAll
Prepend- Prepend install and Scripts di- O
Path rectories to PATH and add .PY
to PATHEXT
Append- Append install and Scripts direc- 0
Path tories to PATH and add .PY to
PATHEXT
Short- Create shortcuts for the interpre- 1
cuts ter, documentation and IDLE if
installed.
Inclu- Install Python manual 1
de_doc
Inclu- Install debug binaries 0
de_debug
Inclu- Install developer headers and li- 1
de_dev braries. Omitting this may lead
to an unusable installation.
Inclu- Install python.exe and rela- 1
de_exe ted files. Omitting this may lead
to an unusable installation.
Inclu- Install Python Launcher for 1
de_launche Windows.
Install- Installs the launcher for 1
Laun- all users. Also requires
cherAl- Include_launcher to
1Users besetto 1
Inclu- Install standard library and 1
de_lib extension modules. Omitting
this may lead to an unusable
installation.
Inclu- Install bundled pip and setupto- 1
de_pip ols
Inclu- Install debugging symbols (*. O
de_symbol pdb)
Inclu- Install Tcl/Tk support and IDLE 1
de_tcltk
Inclu- Install standard library test suite 1
e_test
4§nc_1u- Tnstall utility scripts 1 Rozdziat 4. Using Python on Windows
de_tools
Laun- Only installs the launcher. This 0

Python Setup and Usage, Wydanie 3.12.4

For example, to silently install a default, system-wide Python installation, you could use the following command (from

an elevated command prompt):

[pythonf3.9.0.exe /quiet InstallAllUsers=1 PrependPath=1 Include_test=0

1

To allow users to easily install a personal copy of Python without the test suite, you could provide a shortcut with the

following command. This will display a simplified initial page and disallow customization:

‘python—3.9.0.exe InstallAllUsers=0 Include_launcher=0 Include_test=0

SimpleInstall=1 SimplelInstallDescription="Just for me, no test suite."

(Note that omitting the launcher also omits file associations, and is only recommended for per-user installs when there

is also a system-wide installation that included the launcher.)

The options listed above can also be provided in a file named unattend.xml alongside the executable. This file

specifies a list of options and values. When a value is provided as an attribute, it will be converted to a number if

possible. Values provided as element text are always left as strings. This example file sets the same options as the

previous example:

<Options>
<Option Name="InstallAllUsers" Value="no" />
<Option Name="Include_launcher" Value="0" />
<Option Name="Include_test" Value="no" />
<Option Name="SimpleInstall" Value="yes" />

</Options>

<Option Name="SimpleInstallDescription">Just for me, no test suite</Option>

4.1.4 Installing Without Downloading

As some features of Python are not included in the initial installer download, selecting those features may require an
internet connection. To avoid this need, all possible components may be downloaded on-demand to create a complete
layout that will no longer require an internet connection regardless of the selected features. Note that this download
may be bigger than required, but where a large number of installations are going to be performed it is very useful to

have a locally cached copy.

Execute the following command from Command Prompt to download all possible required files. Remember to sub-
stitute python—-3.9. 0. exe for the actual name of your installer, and to create layouts in their own directories to

avoid collisions between files with the same name.

[python—3.9.0.exe /layout [optional target directory]

You may also specify the /quiet option to hide the progress display.

4.1.5 Modifying an install

Once Python has been installed, you can add or remove features through the Programs and Features tool that is part

of Windows. Select the Python entry and choose ,,Uninstall/Change” to open the installer in maintenance mode.

,»Modify” allows you to add or remove features by modifying the checkboxes - unchanged checkboxes will not install
or remove anything. Some options cannot be changed in this mode, such as the install directory; to modify these, you

will need to remove and then reinstall Python completely.

»Repair” will verify all the files that should be installed using the current settings and replace any that have been

removed or modified.

,»Uninstall” will remove Python entirely, with the exception of the Python Launcher for Windows, which has its own

entry in Programs and Features.

4.1. The full installer

41

Python Setup and Usage, Wydanie 3.12.4

4.2 The Microsoft Store package

Added in version 3.7.2.

The Microsoft Store package is an easily installable Python interpreter that is intended mainly for interactive use, for
example, by students.

To install the package, ensure you have the latest Windows 10 updates and search the Microsoft Store app for ,,Python
3.12”. Ensure that the app you select is published by the Python Software Foundation, and install it.

Ostrzezenie

Python will always be available for free on the Microsoft Store. If you are asked to pay for it, you have not selected
the correct package.

After installation, Python may be launched by finding it in Start. Alternatively, it will be available from any Command
Prompt or PowerShell session by typing python. Further, pip and IDLE may be used by typing pip or idle.IDLE
can also be found in Start.

All three commands are also available with version number suffixes, for example, as python3.exeand python3.
x .exe aswellas python . exe (where 3. x is the specific version you want to launch, such as 3.12). Open ,,Manage
App Execution Aliases” through Start to select which version of Python is associated with each command. It is
recommended to make sure that pip and idle are consistent with whichever version of python is selected.

Virtual environments can be created with python -m venv and activated and used as normal.

If you have installed another version of Python and added it to your PATH variable, it will be available as python.
exe rather than the one from the Microsoft Store. To access the new installation, use python3.exe or python3.
X.exe.

The py . exe launcher will detect this Python installation, but will prefer installations from the traditional installer.

To remove Python, open Settings and use Apps and Features, or else find Python in Start and right-click to select
Uninstall. Uninstalling will remove all packages you installed directly into this Python installation, but will not remove
any virtual environments

4.2.1 Known issues

Redirection of local data, registry, and temporary paths

Because of restrictions on Microsoft Store apps, Python scripts may not have full write access to shared locations such
as TEMP and the registry. Instead, it will write to a private copy. If your scripts must modify the shared locations,
you will need to install the full installer.

At runtime, Python will use a private copy of well-known Windows folders and the registry. For example,
if the environment variable $APPDATA% is c:\Users\<user>\AppData), then when writing to C:\
Users\<user>\AppData\Local will write to C:\Users\<user>\AppData\Local\Packages\
PythonSoftwareFoundation.Python.3.8_gbz5n2kfra8p0\LocalCache\Local\.

When reading files, Windows will return the file from the private folder, or if that does not exist, the real Windows
directory. For example reading C: \Windows\System32 returns the contents of C: \Windows\System32
plus the contents of C: \Program Files\WindowsApps\package_name\VFS\SystemX86.

You can find the real path of any existing file using os.path.realpath ():

>>> import os

>>> test_file = 'C:\\Users\\example\\AppData\\Local\\test.txt"

>>> os.path.realpath(test_file)
'C:\\Users\\example\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.8_
—gbz5n2kfra8p0\\LocalCache\\Local\\test.txt"

42 Rozdziat 4. Using Python on Windows

Python Setup and Usage, Wydanie 3.12.4

When writing to the Windows Registry, the following behaviors exist:

¢ Reading from HKLM\ \Software is allowed and results are merged with the registry.dat file in the
package.

e Writing to HKLM\ \Software is not allowed if the corresponding key/value exists, i.e. modifying existing
keys.

e Writing to HKLM\ \Software is allowed as long as a corresponding key/value does not exist in the package
and the user has the correct access permissions.

For more detail on the technical basis for these limitations, please consult Microsoft’s documentation on packaged
full-trust apps, currently available at docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-
scenes

4.3 The nuget.org packages

Added in version 3.5.2.

The nuget.org package is a reduced size Python environment intended for use on continuous integration and build
systems that do not have a system-wide install of Python. While nuget is ,,the package manager for .NET”, it also
works perfectly fine for packages containing build-time tools.

Visit nuget.org for the most up-to-date information on using nuget. What follows is a summary that is sufficient for
Python developers.

The nuget . exe command line tool may be downloaded directly from https://aka.ms/nugetclidl, for
example, using curl or PowerShell. With the tool, the latest version of Python for 64-bit or 32-bit machines is installed
using:

nuget.exe install python -ExcludeVersion -OutputDirectory .
nuget.exe install pythonx86 -ExcludeVersion -OutputDirectory .

To select a particular version, add a ~Version 3.x.y. The output directory may be changed from ., and the
package will be installed into a subdirectory. By default, the subdirectory is named the same as the package, and
without the ~-ExcludeVersion option this name will include the specific version installed. Inside the subdirectory
is a tools directory that contains the Python installation:

Without -ExcludeVersion
> .\python.3.5.2\tools\python.exe -V
Python 3.5.2

With -ExcludeVersion
> .\python\tools\python.exe -V
Python 3.5.2

In general, nuget packages are not upgradeable, and newer versions should be installed side-by-side and referenced
using the full path. Alternatively, delete the package directory manually and install it again. Many CI systems will do
this automatically if they do not preserve files between builds.

Alongside the tools directory is a build\native directory. This contains a MSBuild properties file python.
props that can be used in a C++ project to reference the Python install. Including the settings will automatically use
the headers and import libraries in your build.

The package information pages on nuget.org are www.nuget.org/packages/python for the 64-bit version and
www.nuget.org/packages/pythonx86 for the 32-bit version.

4.3. The nuget.org packages 43

https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://www.nuget.org/
https://www.nuget.org/packages/python
https://www.nuget.org/packages/pythonx86

Python Setup and Usage, Wydanie 3.12.4

4.4 The embeddable package

Added in version 3.5.

The embedded distribution is a ZIP file containing a minimal Python environment. It is intended for acting as part of
another application, rather than being directly accessed by end-users.

When extracted, the embedded distribution is (almost) fully isolated from the user’s system, including environment
variables, system registry settings, and installed packages. The standard library is included as pre-compiled and opti-
mized .pyc files in a ZIP, and python3.d11, python37.d1l1, python.exe and pythonw.exe are all
provided. Tcl/tk (including all dependents, such as Idle), pip and the Python documentation are not included.

Informacja

The embedded distribution does not include the Microsoft C Runtime and it is the responsibility of the application
installer to provide this. The runtime may have already been installed on a user’s system previously or automatically
via Windows Update, and can be detected by finding ucrtbase.d11 in the system directory.

Third-party packages should be installed by the application installer alongside the embedded distribution. Using pip
to manage dependencies as for a regular Python installation is not supported with this distribution, though with some
care it may be possible to include and use pip for automatic updates. In general, third-party packages should be
treated as part of the application (,,vendoring”) so that the developer can ensure compatibility with newer versions
before providing updates to users.

The two recommended use cases for this distribution are described below.

4.4.1 Python Application

An application written in Python does not necessarily require users to be aware of that fact. The embedded distribution
may be used in this case to include a private version of Python in an install package. Depending on how transparent
it should be (or conversely, how professional it should appear), there are two options.

Using a specialized executable as a launcher requires some coding, but provides the most transparent experience for
users. With a customized launcher, there are no obvious indications that the program is running on Python: icons
can be customized, company and version information can be specified, and file associations behave properly. In most
cases, a custom launcher should simply be able to call Py_Main with a hard-coded command line.

The simpler approach is to provide a batch file or generated shortcut that directly calls the python.exe or
pythonw.exe with the required command-line arguments. In this case, the application will appear to be Python
and not its actual name, and users may have trouble distinguishing it from other running Python processes or file
associations.

With the latter approach, packages should be installed as directories alongside the Python executable to ensure they
are available on the path. With the specialized launcher, packages can be located in other locations as there is an
opportunity to specify the search path before launching the application.

4.4.2 Zalaczanie programu interpretujacego jezyk pytonowski

Applications written in native code often require some form of scripting language, and the embedded Python distri-
bution can be used for this purpose. In general, the majority of the application is in native code, and some part will
either invoke python.exe or directly use python3.d11. For either case, extracting the embedded distribution
to a subdirectory of the application installation is sufficient to provide a loadable Python interpreter.

As with the application use, packages can be installed to any location as there is an opportunity to specify search
paths before initializing the interpreter. Otherwise, there is no fundamental differences between using the embedded
distribution and a regular installation.

44 Rozdziat 4. Using Python on Windows

https://docs.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist#visual-studio-2015-2017-2019-and-2022

Python Setup and Usage, Wydanie 3.12.4

4.5 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality. The fol-
lowing is a list of popular versions and their key features:

ActivePython
Installer with multi-platform compatibility, documentation, PyWin32

Anaconda
Popular scientific modules (such as numpy, scipy and pandas) and the conda package manager.

Enthought Deployment Manager
»The Next Generation Python Environment and Package Manager”.

Previously Enthought provided Canopy, but it reached end of life in 2016.

WinPython
Windows-specific distribution with prebuilt scientific packages and tools for building packages.

Note that these packages may not include the latest versions of Python or other libraries, and are not maintained or
supported by the core Python team.

4.6 Configuring Python

To run Python conveniently from a command prompt, you might consider changing some default environment va-
riables in Windows. While the installer provides an option to configure the PATH and PATHEXT variables for you,
this is only reliable for a single, system-wide installation. If you regularly use multiple versions of Python, consider
using the Python Launcher for Windows.

4.6.1 Excursus: Setting environment variables

Windows allows environment variables to be configured permanently at both the User level and the System level, or
temporarily in a command prompt.

To temporarily set environment variables, open Command Prompt and use the set command:

C:\>set PATH=C:\Program Files\Python 3.9;%PATH%
C:\>set PYTHONPATH=%PYTHONPATHS$;C:\My_python_lib
C:\>python

These changes will apply to any further commands executed in that console, and will be inherited by any applications
started from the console.

Including the variable name within percent signs will expand to the existing value, allowing you to add your new
value at either the start or the end. Modifying PATH by adding the directory containing python . exe to the start
is a common way to ensure the correct version of Python is launched.

To permanently modify the default environment variables, click Start and search for «edit environment variables»,
or open System properties, Advanced system settings and click the Environment Variables button. In this dialog, you
can add or modify User and System variables. To change System variables, you need non-restricted access to your
machine (i.e. Administrator rights).

Informacja

Windows will concatenate User variables affer System variables, which may cause unexpected results when mo-
difying PATH.

The PYTHONPATH variable is used by all versions of Python, so you should not permanently configure it unless
the listed paths only include code that is compatible with all of your installed Python versions.

4.5. Alternative bundles 45

https://www.activestate.com/products/python/
https://www.anaconda.com/download/
https://www.enthought.com/edm/
https://support.enthought.com/hc/en-us/articles/360038600051-Canopy-GUI-end-of-life-transition-to-the-Enthought-Deployment-Manager-EDM-and-Visual-Studio-Code
https://winpython.github.io/

Python Setup and Usage, Wydanie 3.12.4

Zobacz takze

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables
Overview of environment variables on Windows

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
The set command, for temporarily modifying environment variables

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
The setx command, for permanently modifying environment variables

4.6.2 Finding the Python executable

Zmienione w wersji 3.5.

Besides using the automatically created start menu entry for the Python interpreter, you might want to start Python
in the command prompt. The installer has an option to set that up for you.

On the first page of the installer, an option labelled ,,Add Python to PATH” may be selected to have the installer
add the install location into the PATH. The location of the Scripts\ folder is also added. This allows you to type
python to run the interpreter, and pip for the package installer. Thus, you can also execute your scripts with
command line options, see Command line documentation.

If you don’t enable this option at install time, you can always re-run the installer, select Modify, and enable it. Alterna-
tively, you can manually modify the PATH using the directions in Excursus: Setting environment variables. You need
to set your PATH environment variable to include the directory of your Python installation, delimited by a semicolon
from other entries. An example variable could look like this (assuming the first two entries already existed):

[C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Python 3.9

4.7 UTF-8 mode

Added in version 3.7.

Windows still uses legacy encodings for the system encoding (the ANSI Code Page). Python uses it for the default
encoding of text files (e.g. locale.getencoding()).

This may cause issues because UTF-8 is widely used on the internet and most Unix systems, including WSL (Windows
Subsystem for Linux).

You can use the Python UTF-8 Mode to change the default text encoding to UTF-8. You can enable the Python UTF-
8 Mode via the —X ut £8 command line option, or the PYTHONUTF 8=1 environment variable. See PYTHONUTF 8
for enabling UTF-8 mode, and Excursus: Setting environment variables for how to modify environment variables.

When the Python UTF-8 Mode is enabled, you can still use the system encoding (the ANSI Code Page) via the
,,mbcs” codec.

Note that adding PYTHONUTF 8=1 to the default environment variables will affect all Python 3.7+ applications on
your system. If you have any Python 3.7+ applications which rely on the legacy system encoding, it is recommended
to set the environment variable temporarily or use the —X ut £8 command line option.

Informacja

Even when UTF-8 mode is disabled, Python uses UTF-8 by default on Windows for:
* Console I/0 including standard I/O (see PEP 528 for details).
e The filesystem encoding (see PEP 529 for details).

46 Rozdziat 4. Using Python on Windows

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://peps.python.org/pep-0528/
https://peps.python.org/pep-0529/

Python Setup and Usage, Wydanie 3.12.4

4.8 Python Launcher for Windows

Added in version 3.3.

The Python launcher for Windows is a utility which aids in locating and executing of different Python versions. It
allows scripts (or the command-line) to indicate a preference for a specific Python version, and will locate and execute
that version.

Unlike the PATH variable, the launcher will correctly select the most appropriate version of Python. It will prefer per-
user installations over system-wide ones, and orders by language version rather than using the most recently installed
version.

The launcher was originally specified in PEP 397.

4.8.1 Getting started

From the command-line

Zmienione w wersji 3.6.

System-wide installations of Python 3.3 and later will put the launcher on your PATH. The launcher is compatible
with all available versions of Python, so it does not matter which version is installed. To check that the launcher is
available, execute the following command in Command Prompt:

&)

You should find that the latest version of Python you have installed is started - it can be exited as normal, and any
additional command-line arguments specified will be sent directly to Python.

If you have multiple versions of Python installed (e.g., 3.7 and 3.12) you will have noticed that Python 3.12 was
started - to launch Python 3.7, try the command:

[py =3.7]

If you want the latest version of Python 2 you have installed, try the command:

CE |

If you see the following error, you do not have the launcher installed:

'py' is not recognized as an internal or external command,
operable program or batch file.

The command:

[py —-—list }

displays the currently installed version(s) of Python.

The —x . y argument is the short form of the -V : Company / Tag argument, which allows selecting a specific Python
runtime, including those that may have come from somewhere other than python.org. Any runtime registered by
following PEP 514 will be discoverable. The ——11st command lists all available runtimes using the -~V : format.

When using the -V : argument, specifying the Company will limit selection to runtimes from that provider, while
specifying only the Tag will select from all providers. Note that omitting the slash implies a tag:

Select any '3.*' tagged runtime
py —-V:3

Select any 'PythonCore' released runtime
py -V:PythonCore/
(ciag dalszy na nastgpnej stronie)

4.8. Python Launcher for Windows 47

https://peps.python.org/pep-0397/
https://peps.python.org/pep-0514/

Python Setup and Usage, Wydanie 3.12.4

(kontynuacja poprzedniej strony)

Select PythonCore's latest Python 3 runtime
py -V:PythonCore/3

The short form of the argument (- 3) only ever selects from core Python releases, and not other distributions. However,
the longer form (-V : 3) will select from any.

The Company is matched on the full string, case-insenitive. The Tag is matched oneither the full string, or a prefix,
provided the next character is a dot or a hyphen. This allows —V: 3.1 to match 3.1-32, but not 3.10. Tags are
sorted using numerical ordering (3. 10 is newer than 3. 1), but are compared using text (-V: 3. 01 does not match
3.1).

Virtual environments

Added in version 3.5.

If the launcher is run with no explicit Python version specification, and a virtual environment (created with the standard
library venv module or the external virtualenv tool) active, the launcher will run the virtual environment’s
interpreter rather than the global one. To run the global interpreter, either deactivate the virtual environment, or
explicitly specify the global Python version.

From a script

Let’s create a test Python script - create a file called hello . py with the following contents

#! python
import sys
sys.stdout.write("hello from Python \n" % (sys.version,))

From the directory in which hello.py lives, execute the command:

[py hello.py }

You should notice the version number of your latest Python 2.x installation is printed. Now try changing the first line
to be:

[#.’ python3 }

Re-executing the command should now print the latest Python 3.x information. As with the above command-line
examples, you can specify a more explicit version qualifier. Assuming you have Python 3.7 installed, try changing the
first line to #! python3. 7 and you should find the 3.7 version information printed.

Note that unlike interactive use, a bare ,,python” will use the latest version of Python 2.x that you have installed.
This is for backward compatibility and for compatibility with Unix, where the command python typically refers to
Python 2.

From file associations

The launcher should have been associated with Python files (i.e. .py, .pyw, .pyc files) when it was installed.
This means that when you double-click on one of these files from Windows explorer the launcher will be used, and
therefore you can use the same facilities described above to have the script specify the version which should be used.

The key benefit of this is that a single launcher can support multiple Python versions at the same time depending on
the contents of the first line.

48 Rozdziat 4. Using Python on Windows

Python Setup and Usage, Wydanie 3.12.4

4.8.2 Shebang Lines

If the first line of a script file starts with # !, it is known as a ,,shebang” line. Linux and other Unix like operating
systems have native support for such lines and they are commonly used on such systems to indicate how a script should
be executed. This launcher allows the same facilities to be used with Python scripts on Windows and the examples
above demonstrate their use.

To allow shebang lines in Python scripts to be portable between Unix and Windows, this launcher supports a number
of «virtual» commands to specify which interpreter to use. The supported virtual commands are:

e /usr/bin/env

* /usr/bin/python

* /usr/local/bin/python
* python

For example, if the first line of your script starts with

[#/ /usr/bin/python

The default Python will be located and used. As many Python scripts written to work on Unix will already have this
line, you should find these scripts can be used by the launcher without modification. If you are writing a new script
on Windows which you hope will be useful on Unix, you should use one of the shebang lines starting with /usr.

Any of the above virtual commands can be suffixed with an explicit version (either just the major version, or the
major and minor version). Furthermore the 32-bit version can be requested by adding ,,-32” after the minor version.
Le. /usr/bin/python3.7-32 will request usage of the 32-bit python 3.7.

Added in version 3.7: Beginning with python launcher 3.7 it is possible to request 64-bit version by the ,,-64” suffix.
Furthermore it is possible to specify a major and architecture without minor (i.e. /usr/bin/python3-64).

Zmienione w wersji 3.11: The ,,-64” suffix is deprecated, and now implies ,,any architecture that is not provably
1386/32-bit”. To request a specific environment, use the new —V : TAG argument with the complete tag.

The /usr/bin/env form of shebang line has one further special property. Before looking for installed Py-
thon interpreters, this form will search the executable PATH for a Python executable matching the name provi-
ded as the first argument. This corresponds to the behaviour of the Unix env program, which performs a PATH
search. If an executable matching the first argument after the env command cannot be found, but the argument
starts with python, it will be handled as described for the other virtual commands. The environment variable
PYLAUNCHER_NO_SEARCH_PATH may be set (to any value) to skip this search of PATH.

Shebang lines that do not match any of these patterns are looked up in the [commands] section of the launcher’s
.INI file. This may be used to handle certain commands in a way that makes sense for your system. The name of the
command must be a single argument (no spaces in the shebang executable), and the value substituted is the full path
to the executable (additional arguments specified in the .INI will be quoted as part of the filename).

[commands]
/bin/xpython=C:\Program Files\XPython\python.exe

Any commands not found in the .INI file are treated as Windows executable paths that are absolute or relative to
the directory containing the script file. This is a convenience for Windows-only scripts, such as those generated by
an installer, since the behavior is not compatible with Unix-style shells. These paths may be quoted, and may include
multiple arguments, after which the path to the script and any additional arguments will be appended.

4.8. Python Launcher for Windows 49

Python Setup and Usage, Wydanie 3.12.4

4.8.3 Arguments in shebang lines

The shebang lines can also specify additional options to be passed to the Python interpreter. For example, if you have
a shebang line:

[# ! /usr/bin/python -v

Then Python will be started with the —v option

4.8.4 Customization

Customization via INI files

Two .ini files will be searched by the launcher - py.ini in the current user’s application data directory
($LOCALAPPDATAS or $Senv:LocalAppData) and py.ini in the same directory as the launcher. The sa-
me .ini files are used for both the «console» version of the launcher (i.e. py.exe) and for the «windows» version (i.e.
pyw.exe).

Customization specified in the ,,application directory” will have precedence over the one next to the executable, so a
user, who may not have write access to the .ini file next to the launcher, can override commands in that global .ini
file.

Customizing default Python versions

In some cases, a version qualifier can be included in a command to dictate which version of Python will be used by
the command. A version qualifier starts with a major version number and can optionally be followed by a period («.»)
and a minor version specifier. Furthermore it is possible to specify if a 32 or 64 bit implementation shall be requested
by adding ,,-32” or ,,-64”.

For example, a shebang line of # ! python has no version qualifier, while # ! pyt hon3 has a version qualifier which
specifies only a major version.

If no version qualifiers are found in a command, the environment variable PY_PYTHON can be set to specify the
default version qualifier. If it is not set, the default is ,,3”. The variable can specify any value that may be passed on
the command line, such as ,,3”, ,3.7”, ,,3.7-32” or ,,3.7-64”. (Note that the ,,-64” option is only available with the
launcher included with Python 3.7 or newer.)

If no minor version qualifiers are found, the environment variable PY_PYTHON{major} (where {major} is the
current major version qualifier as determined above) can be set to specify the full version. If no such option is found,
the launcher will enumerate the installed Python versions and use the latest minor release found for the major version,
which is likely, although not guaranteed, to be the most recently installed version in that family.

On 64-bit Windows with both 32-bit and 64-bit implementations of the same (major.minor) Python version installed,
the 64-bit version will always be preferred. This will be true for both 32-bit and 64-bit implementations of the launcher
- a 32-bit launcher will prefer to execute a 64-bit Python installation of the specified version if available. This is so the
behavior of the launcher can be predicted knowing only what versions are installed on the PC and without regard to the
order in which they were installed (i.e., without knowing whether a 32 or 64-bit version of Python and corresponding
launcher was installed last). As noted above, an optional ,,-32” or ,,-64” suffix can be used on a version specifier to
change this behaviour.

Examples:

* If no relevant options are set, the commands python and python2 will use the latest Python 2.x version
installed and the command python3 will use the latest Python 3.x installed.

e The command python3. 7 will not consult any options at all as the versions are fully specified.
e If PY_PYTHON=3, the commands python and python3 will both use the latest installed Python 3 version.

e If PY_PYTHON=3.7-32, the command python will use the 32-bit implementation of 3.7 whereas the
command python3 will use the latest installed Python (PY_PYTHON was not considered at all as a major
version was specified.)

50 Rozdziat 4. Using Python on Windows

Python Setup and Usage, Wydanie 3.12.4

e If PY_PYTHON=3 and PY_PYTHON3=3. 7, the commands python and python3 will both use specifi-
cally 3.7

In addition to environment variables, the same settings can be configured in the .INI file used by the launcher. The
section in the INI file is called [defaults] and the key name will be the same as the environment variables
without the leading PY__ prefix (and note that the key names in the INI file are case insensitive.) The contents of an
environment variable will override things specified in the INI file.

Na przyktad:

» Setting PY_PYTHON=3. 7 is equivalent to the INI file containing:

[defaults]
python=3.7

¢ Setting PY_PYTHON=3 and PY_PYTHON3=3. 7 is equivalent to the INI file containing:

[defaults]
python=3
python3=3.7

4.8.5 Diagnostics

If an environment variable PYLAUNCHER_DEBUG is set (to any value), the launcher will print diagnostic information
to stderr (i.e. to the console). While this information manages to be simultaneously verbose and terse, it should allow
you to see what versions of Python were located, why a particular version was chosen and the exact command-line
used to execute the target Python. It is primarily intended for testing and debugging.

4.8.6 Dry Run

If an environment variable PYLAUNCHER_DRYRUN is set (to any value), the launcher will output the command it
would have run, but will not actually launch Python. This may be useful for tools that want to use the launcher to
detect and then launch Python directly. Note that the command written to standard output is always encoded using
UTF-8, and may not render correctly in the console.

4.8.7 Install on demand

If an environment variable PYLAUNCHER_ALLOW_INSTALL is set (to any value), and the requested Python version
is not installed but is available on the Microsoft Store, the launcher will attempt to install it. This may require user
interaction to complete, and you may need to run the command again.

An additional PYLAUNCHER_ALWAYS_INSTALL variable causes the launcher to always try to install Python, even
if it is detected. This is mainly intended for testing (and should be used with PYLAUNCHER_DRYRUN).

4.8.8 Return codes
The following exit codes may be returned by the Python launcher. Unfortunately, there is no way to distinguish these
from the exit code of Python itself.

The names of codes are as used in the sources, and are only for reference. There is no way to access or resolve them
apart from reading this page. Entries are listed in alphabetical order of names.

4.8. Python Launcher for Windows 51

Python Setup and Usage, Wydanie 3.12.4

Nazwa War- Opis
tosé
RC_BAD_VENV_CFG 107 A pyvenv.cfg was found but is corrupt.
RC_CREATE_PROCESS 101 Failed to launch Python.
RC_INSTALLING 111 An install was started, but the command will need to be re-run after it
completes.
RC_INTERNAL_ERROR 109 Unexpected error. Please report a bug.
RC_NO_COMMANDLIN 108 Unable to obtain command line from the operating system.
RC_NO_PYTHON 103 Unable to locate the requested version.
RC_NO_VENV_CFG 106 A pyvenv.cfg was required but not found.

4.9

Finding modules

These notes supplement the description at sys-path-init with detailed Windows notes.

When no ._pth file is found, this is how sys.path is populated on Windows:

An empty entry is added at the start, which corresponds to the current directory.

If the environment variable PYTHONPA TH exists, as described in Environment variables, its entries are added
next. Note that on Windows, paths in this variable must be separated by semicolons, to distinguish them from
the colon used in drive identifiers (C : \ etc.).

Additional ,application paths” can be added in the registry as subkeys of \SOFTWARE\
Python\PythonCore{version}\PythonPath under both the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE hives. Subkeys which have semicolon-delimited path strings as their default value
will cause each path to be added to sys . path. (Note that all known installers only use HKLM, so HKCU is
typically empty.)

If the environment variable PYTHONHOME is set, it is assumed as ,,Python Home”. Otherwise, the path of
the main Python executable is used to locate a ,Jandmark file” (either Lib\os.py or pythonXY.zip)
to deduce the ,,Python Home”. If a Python home is found, the relevant sub-directories added to sys.path
(Lib, plat-win, etc) are based on that folder. Otherwise, the core Python path is constructed from the
PythonPath stored in the registry.

If the Python Home cannot be located, no PYTHONPATH is specified in the environment, and no registry
entries can be found, a default path with relative entries is used (e.g. . \Lib; . \plat—-win, etc).

If apyvenv. cfg file is found alongside the main executable or in the directory one level above the executable, the
following variations apply:

If home is an absolute path and PYTHONHOME is not set, this path is used instead of the path to the main
executable when deducing the home location.

The end result of all this is:

When running python.exe, or any other .exe in the main Python directory (either an installed version, or
directly from the PCbuild directory), the core path is deduced, and the core paths in the registry are ignored.
Other ,,application paths” in the registry are always read.

When Python is hosted in another .exe (different directory, embedded via COM, etc), the ,,Python Home” will
not be deduced, so the core path from the registry is used. Other ,,application paths” in the registry are always
read.

If Python can’t find its home and there are no registry value (frozen .exe, some very strange installation setup)
you get a path with some default, but relative, paths.

For those who want to bundle Python into their application or distribution, the following advice will prevent conflicts
with other installations:

52

Rozdziat 4. Using Python on Windows

Python Setup and Usage, Wydanie 3.12.4

¢ Include a ._pth file alongside your executable containing the directories to include. This will ignore paths
listed in the registry and environment variables, and also ignore site unless import site is listed.

e If you are loading python3.dll or python37.dll in your own executable, explicitly call
Py_SetPath () or (at least) Py_SetProgramName () before Py_Initialize ().

* Clear and/or overwrite PYTHONPATH and set PYTHONHOME before launching python.exe from your
application.

 If you cannot use the previous suggestions (for example, you are a distribution that allows people to run
python.exe directly), ensure that the landmark file (Lib\os.py) exists in your install directory. (No-
te that it will not be detected inside a ZIP file, but a correctly named ZIP file will be detected instead.)

These will ensure that the files in a system-wide installation will not take precedence over the copy of the standard
library bundled with your application. Otherwise, your users may experience problems using your application. Note
that the first suggestion is the best, as the others may still be susceptible to non-standard paths in the registry and user
site-packages.

Zmienione w wersji 3.6: Add . _pth file support and removes applocal option from pyvenv.cfg.
Zmienione w wersji 3.6: Add pythonXX. z1ip as a potential landmark when directly adjacent to the executable.

Niezalecane od wersji 3.6: Modules specified in the registry under Modules (not PythonPath) may be imported
by importlib.machinery.WindowsRegistryFinder. This finder is enabled on Windows in 3.6.0 and
earlier, but may need to be explicitly added to sys .meta_path in the future.

4.10 Additional modules

Even though Python aims to be portable among all platforms, there are features that are unique to Windows. A couple
of modules, both in the standard library and external, and snippets exist to use these features.

The Windows-specific standard modules are documented in mswin-specific-services.

4.10.1 PyWin32

The PyWin32 module by Mark Hammond is a collection of modules for advanced Windows-specific support. This
includes utilities for:

» Component Object Model (COM)

e Win32 API calls

* Registry

* Event log

e Microsoft Foundation Classes (MFC) user interfaces

PythonWin is a sample MFC application shipped with PyWin32. It is an embeddable IDE with a built-in debugger.

Zobacz takze

Win32 How Do I...?
by Tim Golden

Python and COM
by David and Paul Boddie

4.10. Additional modules 53

https://pypi.org/project/PyWin32/
https://docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications
https://web.archive.org/web/20060524042422/https://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
https://www.boddie.org.uk/python/COM.html

Python Setup and Usage, Wydanie 3.12.4

4.10.2 cx_Freeze

cx_Freeze wraps Python scripts into executable Windows programs (*. exe files). When you have done this, you
can distribute your application without requiring your users to install Python.

4.11 Compiling Python on Windows

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh checkout.

The source tree contains a build solution and project files for Microsoft Visual Studio, which is the compiler used to
build the official Python releases. These files are in the PCbui 1d directory.

Check PCbuild/readme. txt for general information on the build process.

For extension modules, consult building-on-windows.

4.12 Other Platforms

With ongoing development of Python, some platforms that used to be supported earlier are no longer supported (due
to the lack of users or developers). Check PEP 11 for details on all unsupported platforms.

* Windows CE is no longer supported since Python 3 (if it ever was).
¢ The Cygwin installer offers to install the Python interpreter as well

See Python for Windows for detailed information about platforms with pre-compiled installers.

54 Rozdziat 4. Using Python on Windows

https://cx-freeze.readthedocs.io/en/latest/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#get-the-source-code
https://peps.python.org/pep-0011/
https://pythonce.sourceforge.net/
https://github.com/python/cpython/issues/71542
https://cygwin.com/
https://cygwin.com/packages/summary/python3.html
https://www.python.org/downloads/windows/

ROzDZIAL D

Using Python on a Mac

Autor
Bob Savage <bobsavage@mac.com>

Python on a Mac running macOS is in principle very similar to Python on any other Unix platform, but there are a
number of additional features such as the integrated development environment (IDE) and the Package Manager that
are worth pointing out.

5.1 Getting and Installing Python

macOS used to come with Python 2.7 pre-installed between versions 10.8 and 12.3. You are invited to install the
most recent version of Python 3 from the Python website. A current ,,universal2 binary” build of Python, which runs
natively on the Mac’s new Apple Silicon and legacy Intel processors, is available there.

What you get after installing is a number of things:

* A Python 3.12 folder in your Applications folder. In here you find IDLE, the development envi-
ronment that is a standard part of official Python distributions; and Python Launcher, which handles
double-clicking Python scripts from the Finder.

e A framework /Library/Frameworks/Python.framework, which includes the Python executable
and libraries. The installer adds this location to your shell path. To uninstall Python, you can remove these
three things. A symlink to the Python executable is placed in /usr/local/bin/.

Informacja

On macOS 10.8-12.3, the Apple-provided build of Python is installed in /System/Library/
Frameworks/Python.framework and /usr/bin/python, respectively. You should never modify or
delete these, as they are Apple-controlled and are used by Apple- or third-party software. Remember that if you
choose to install a newer Python version from python.org, you will have two different but functional Python in-
stallations on your computer, so it will be important that your paths and usages are consistent with what you want
to do.

IDLE includes a Help menu that allows you to access Python documentation. If you are completely new to Python
you should start reading the tutorial introduction in that document.

55

mailto:bobsavage@mac.com
https://developer.apple.com/documentation/macos-release-notes/macos-12_3-release-notes#Python
https://www.python.org/downloads/macos/

Python Setup and Usage, Wydanie 3.12.4

If you are familiar with Python on other Unix platforms you should read the section on running Python scripts from
the Unix shell.

5.1.1 How to run a Python script

Your best way to get started with Python on macOS is through the IDLE integrated development environment; see
section The IDE and use the Help menu when the IDE is running.

If you want to run Python scripts from the Terminal window command line or from the Finder you first need an
editor to create your script. macOS comes with a number of standard Unix command line editors, vim nano among
them. If you want a more Mac-like editor, BBEdit from Bare Bones Software (see https://www.barebones.com/
products/bbedit/index.html) are good choices, as is TextMate (see https://macromates.com). Other editors include
MacVim (https://macvim.org) and Aquamacs (https://aquamacs.org).

To run your script from the Terminal window you must make sure that /usr/local/bin is in your shell search
path.

To run your script from the Finder you have two options:
e Dragitto Python Launcher.

¢ Select Python Launcher as the default application to open your script (or any .py script) through the
finder Info window and double-click it. Python Launcher has various preferences to control how your
script is launched. Option-dragging allows you to change these for one invocation, or use its Preferences menu
to change things globally.

5.1.2 Running scripts with a GUI

With older versions of Python, there is one macOS quirk that you need to be aware of: programs that talk to the Aqua
window manager (in other words, anything that has a GUI) need to be run in a special way. Use pythonw instead
of python to start such scripts.

With Python 3.9, you can use either python or pythonw.

5.1.3 Configuration

Python on macOS honors all standard Unix environment variables such as PYTHONPATH, but setting these variables
for programs started from the Finder is non-standard as the Finder does not read your .profile or .cshrc at
startup. You need to create a file ~/ .MacOSX/environment .plist. See Apple’s Technical Q&A QA1067
for details.

For more information on installation Python packages, see section Installing Additional Python Packages.

5.2 The IDE

Python ships with the standard IDLE development environment. A good introduction to using IDLE can be found at
https://www.hashcollision.org/hkn/python/idle_intro/index.html.

56 Rozdziat 5. Using Python on a Mac

https://www.barebones.com/products/bbedit/index.html
https://www.barebones.com/products/bbedit/index.html
https://macromates.com
https://macvim.org
https://aquamacs.org
https://developer.apple.com/library/archive/qa/qa1067/_index.html
https://www.hashcollision.org/hkn/python/idle_intro/index.html

Python Setup and Usage, Wydanie 3.12.4

5.3 Installing Additional Python Packages

This section has moved to the Python Packaging User Guide.

5.4 GUI Programming

There are several options for building GUI applications on the Mac with Python.

PyObjC is a Python binding to Apple’s Objective-C/Cocoa framework, which is the foundation of most modern Mac
development. Information on PyObjC is available from pyobjc.

The standard Python GUI toolkit is t k int er, based on the cros<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>